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Abstract 

Synthesis And Structural Examination af 3a. 5-Cvclo-5a- 
Androstane Steroids. 

$Y Bruce Gibb 

The work described in this thesis is based on the 
synthesis and structural examination of several cyclo- 
steroids. 

The a-aromatic steroid 3a, 5-cyclo-5c-androstan-6ß-ol- 
17-one was used as a lead compound in an attempt to produce, 
in particular, the 17a-ethynyl derivative, the 6p-methyl 
derivative and the 7a-hydroxy, 6ß-methyl derivative. Full 
experimental details of the various routes are provided. X- 
ray crystallography, along with standard spectroscopic 
techniques, were utilised in structural determinations. To 
complement these techniques molecular mechanics were also 
utilised to predict spectroscopic results and to structural- 
ly define the products. 

The biological significance of steroids with respect to 
contraception is outlined and the chemistry of the cyclopro- 
pane ring discussed. A critical evaluation of the synthesis 
of cyclopropane steroids and the alkylation of steroids has 
been made. The objectives and methodologies behind recent 
innovations are discussed. 

An improved synthesis of the lead compound, from dehy- 
droepiandrosterone, was achieved. The chemical and spectral 
implications of the introduction of a-aromaticity into the 
steroid nucleus is discussed. 

The synthesis of the ethynyl derivative, was achieved 
in increasing yields by four different routes. 

Synthesis of the 6ß-methyl derivative was considered 
via four different pathways. Three of these routes gave the 
important 6-methylene precursor but insufficient quantities 
prevented the formation of the desired molecule. 

Formation of the 7a-hydroxy, 6ß-methyl derivative, as 
well as its 6ß-hydroxy, 7a-methyl isomer has been accom- 
plished. However, instability of the epoxide precursor 
resulted in low yields. 

Two novel single crystal X-ray structures have been 
elucidated and X-ray powder diffraction data obtained on a 
third. Results of the two determinations have been pub- 
lished. The accurate geometrical details of these compounds 
formed a basis for subsequent molecular mechanics calcula- 
tions. 

Molecular modelling was used to aid product identifica- 
tion, determine theoretical product stability, i. e., poten- 
tial reaction outcome and to support spectroscopic data. 
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General Summary. 

Synthesis and Structural Examination 3a. 5-Cyclo-5c- 

Androstane Steroids. 

The structurally interesting a-aromatic steroid 3a, 5- 

cyclo-5a-androstan-6ß-ol-17-one has been used as a lead 

compound for the synthesis a number of target molecules 

possessing a cyclopropane ring. The specific target mole- 

cules, which it was hoped would possess progestational or 

anti-progestational activity, were the 17a-ethynyl deriva- 

tive, 6ß-methyl derivative and the 7a-hydroxy, 6ß-methyl 

derivative. X-ray crystallography, along with standard 

spectroscopic techniques, were utilised in structural deter- 

minations. To complement these techniques molecular mechan- 

ics were also utilised to predict spectroscopic results and 

to structurally define the products. 

The structures of two compounds, the starting molecule, 

dehydroepiandrosterone, and the parent cyclopropane steroid 

have been successfully elucidated by means of single crystal 

X-ray crystallography. Results of these two determinations 

have been published. The accurate geometrical details of 

these compounds formed a basis for subsequent molecular 

mechanics calculations. 

The synthesis of the parent steroid, from dehydroepian- 

drosterone (DHEA), was attained by several variations to the 

classical method. One particular method gave improved yields 

and was therefore the preferential method of synthesis. The 

chemical and spectral implications of the introduction of a- 

aromaticity into the steroid nucleus is discussed. 
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The initially intended "direct" synthesis of the first 

target molecule, the ethynyl derivative, was found under 

investigation to proceed with relatively low yield. Three 

alternative routes to this compound were therefore devised 

and resulted in an improved synthesis of the desired ster- 

oid. 

For the synthesis of the second target molecule, the 

6ß-methyl derivative, protection of the 17-ketone function 

was a prerequisite. After early results had indicated the 

fragmentation of the cyclopropane ring, an alternative 

route, via the dioxalane derivative of DHEA, successfully 

led to a protected derivative of the parent compound. Yields 

by this route were low but were improved when an oxathio- 

lane protecting group was used. The reactivity of the 3-C 

hydroxy group of the DHEA oxathiolane derivative was reduced 

by a long range effect induced by the protecting group. 

Molecular mechanics were used in an attempt to interpret of 

this result. Further conversions of the oxathiolane resulted 

in the isolation of the important 6-methylene precursor. In 

an attempt to further increase yields three additional 

routes to the target molecule were devised and undertaken. 

The successful synthesis of the novel 6-methylene precursor 

was achieved by two of these routes. A detailed spectroscop- 

ic analysis of the important methylene derivative indicated 

that the amount of conjugation between the exocyclic methyl- 

ene group and the cyclopropane ring was approximately half 

of that found in vinylcyclopropane. Molecular modelling 

indicated the existence of a repulsive interaction between 

the 4a-cyclopropane proton and the methylene group. This 
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results in the vinylcyclopropane moiety adopting a conforma- 

tion ill-suited for maximum conjugation. Reduction of the 

methylene group was not carried out because of insufficient 

amounts of the precursor. 

Formation of the 7a-hydroxy, 6ß-methyl derivative, as 

well as its 6ß-hydroxy, 7a-methyl isomer has been accom- 

plished. The 6-ene steroid intermediate to these derivatives 

was synthesised in higher yields by modifications to the 

literature technique. This second vinylcyclopropane deriva- 

tive was shown, by spectroscopic analysis and molecular 

modelling, to possess greater conjugation than its exocyclic 

counterpart. Conjugation was less than that found in vinyl- 

cyclopropane itself. The epoxide precursor to the target 

molecule, formed by epoxidation of the 6-ene steroid, was 

synthesised but found to be exceedingly unstable. Contrary 

to previously published work, both the a and ß-isomers were 

apparently formed, a result investigated by molecular mod- 

els. Thus the models showed that the cyclopropane ring can 

considerably affect reaction at ring B of these steroids by 

directing reagent attack to the ß-face. Based on these 

models, calculations of the expected 1HNMR coupling con- 

stants between the epoxy protons and their neighbouring 

protons were made. These results indicated that the epoxide, 

previously designated as the a-isomer, was most certainly 

the ß-isomer. The accuracy of these models was shown by the 

modelling of other steroid epoxides, including one whose 

structure had previously been defined by X-ray crystallogra- 

phy. To avoid protection of the ketone functionality, and 

hence increase the overall yield of the product, an epoxide 
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specific organo-copper reagent was utilised for the final 

step in the process instead of the initially intended Grig- 

nard reagent. The two isomers produced were identified by a 

comparison between the 1H NMR coupling constants of the 

proton geminal to the hydroxy group and those predicted by 

molecular mechanics. In constructing the molecular models of 

the four possible isomeric products, a relationship between 

the stability of each isomer and the standard deviation from 

the mean torsion angle of ring B was noted. Thus it was 

shown that, as expected, the compounds containing equatorial 

substituents were the most stable. Results also indicated 

that products with a hydroxy group at 7-C were more stable 

than their 6-hydroxy counterparts. 
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1.1.1 Introduction to steroids. 

Steroids are a group of organic compounds that normally 

possess the characteristic tetracyclic (perhydrocyclopento- 

nephenanthrene) backbone (1). Biologically derived, (section 

1.1.4) their occurrence in both animal and plant organisms 

is considerable, if not unrivalled. Their diversity is such 

that even outwith living organisms steroids can be isolated 

in considerable quantities. Thus steroids have been recov- 

ered from the ocean sediments, rock formations and shales, 

21 

to° 22 t2 

ja 
ý tt t6 24 

26a 14 is 23 
7 

3 26 

46 

(1) (2) 

and even as airborne particulates. Their structural varia- 

tions are primarily due to differences in the side chains 

R1, R2 and R3 and secondary to differences in nuclear sub- 

stitution, degrees of unsaturation and ring junction config- 

urations. R1 and R2 are normally methyl groups, therefore 

the chosen numbering system for these compounds (2) remains 

constant for any variation of the R3 sidechain. Amongst the 

0 

H 
ORH 

H 

0 0 

(3) (4) (s) 
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steroids are compounds of considerable medical importance. 

These include the sex hormones, such as estrone (3), andros- 

terone (4) and progesterone (5), the adrenocorticoid hor- 

mones such as cortisone (6) and the cardiac glycosides (3-C 

sugar derivatives of steroids such as digitoxigenin (7)). 

OH 

0 HO 

0 

(e) m 
1.1.2 Conformation and configuration 

The six carbon atoms of a cyclohexane unit can be 

considered as either a chair (8) or boat (9) form. As the 

chair form allows for reduced steric interactions this form 

ae 
its 

e 
e ea 

ae 
or e 

e 

i8) 

eis OCe0 
' 

8__e 

00 

(9) 

is of lower energy and is therefore the conformation pre- 

ferred by cyclohexane rings in steroids. In either of the 

conformations the hydrogens attached to each carbon atom can 

assume either an equatorial position (e); where the atom 

lies at 30" to the plane of the ring, or an axial position 

(a) where the carbon hydrogen is perpendicular to the plane 

of the ring. For steroids however, it is more convenient to 

designate the terms a or ß to a hydrogen atom or other 
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substituent to define whether the atom or moiety lies below 

or above the plane of the steroid, respectively. 

The ring junctions of saturated steroids may be either 

cis or trans, thus giving rise to 6 asymmetric centres (5, 

8,9,10,13 and 14-C). Therefore 64 stereoisomeric forms 

are theoretically possible in the tetracyclic nucleus alone. 

This range of possibilities is reduced somewhat in nature as 

all B/C ring junctions in naturally occurring steroids are 

trans. In the sterols and bile acids the C/D ring junction 

is also trans but in the plant glycosides this junction is 

cis. The A/B junction can be either trans, giving the 5a 

series (10) or cis giving the 5ß series (11) of compounds. 

n 

(1o) (11) 

Most of the biologically important steroids have a trans A/B 

junction, i. e., they belong to the 5a series. Because of the 

immense effect that "backbone" stereochemistry has upon the 

shape of the molecule, IUPAC rules1 require the stereochem- 

istry at all backbone carbons to be clearly marked. That is, 

all hydrogens along the backbone must be drawn. However, as 

all steroids synthesised in this work are orientated thus: 

80,9a, l0ß, 13ß, and 14a, (12), the simplified structure 

(13) will be normally used in this work. Complete structures 
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will only be drawn where reference is made to molecules that 

do not possess the above stereochemistry. 

CH3 

CHF 
H 

HH 

H 

(12) (13) 

1.1.3 Classification an nomenclature. 

The various steroids, as they were isolated and charac- 

terized, were given trivial names based usually on their 

provenance or their particular pharmacological activity. 

This resulted in a profusion of names and a rather unsystem- 

atic nomenclature which still persists to some extent in the 

literature. As the various chemical structures of the ster- 

oids became known a more rational system of nomenclature, 

based on a limited number of parent or fundamental com- 

pounds, was devised. ' The parent compounds are therefore 

ordered in terms of the number of carbon atoms that they 

possess, from 18 carbon atoms for the estrogen series 

(parent: estrane (14)) through to the zoosterols (parent: 

lanostane (15)) which possess 30 carbon atoms. The compounds 

synthesised in this work all belong to the 19 carbon atom 

(14) (13) 
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series the androgens, (parent: androstane (16)). More perti- 

nent to this work, steroids which contain a3 membered 

cyclopropane ring within their nuclear structure are common- 

ly known as cyclosteroids. Thus, a more accurate name for 

the target molecules here are cycloandrostanes. The prefix 

"cyclo" is also coupled with the appropriate numerals and 

necessary stereochemical designations to define the position 

of the cyclopropane ring. Hence all target molecules synthe- 

sised here, with the basic structure (17), are designated as 

belonging to the 3a, 5-cyclo-5a-androstanes series. However, 

d SJD 

fye) hfl 

from 1972 onwards Chemical Abstracts has (more correctly) 

designated this structure as 3ß, 5a. As the 3a, 5a terminology 

is still the most widely used, it is this name that is used 

in this work. 

Structurally intriguing, the cyclosteroids have been 

subject to intensive synthetic studies. Other such compounds 

formed thus far include the isomeric series of the title 

compound; the 3ß, 5-cyclo-5ß-steroids, and also both the a 

and ß isomers of the 5,7-cyclosteroids. Some of the many 

cyclopropane steroids synthesised to date are discussed in 

section 1.4.3 
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1.1.4 Biosynthesis of steroids. 

Biosynthesis lanosterol. 

In animals, cholesterol (18) is believed to be the 

principle starting molecule for steroid biosynthesis. Howev- 

er, desmosterol (19) and lathosterol (20) also play a sig- 

nificant part. The biochemical reaction which initiates 

Ho 

(1 d) (19) (20) 

steroid biosynthesis is the enzymatic reduction of S-3- 

hydroxy-3-methylglutaryl coenzyme-A (21) by 2H transfer from 

reduced nicotinamide-adenine dinucleotide phosphate (NADPH) 

to produce R-mevalonic (22) acid. Although other minor 

pathways do exist, the principle route to the glutarate (21) 

is by the usual condensation of three molecules of acetate 

with the aid of coenzyme-A, adenosine triphosphate (ATP) and 

the enzymes acid coenzyme-A ligase or succinyl coenzyme-A. 

CH3COSCoA 

CH3-C-CH2-C-SCoA 

CH COSCoA 

II ) 

300 

CH3COSCoA 

SCoA 
HO 

``%% 
OH 

00 

(21) 
The R-mevalonic acid is then converted to the pyrophospate 

by a two stage process, ATP being the phosphate donor. This 

mevalonyl pyrophosphate is then degraded by an anhydrodecar- 
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boxylase (with the aid of ATP) to give 3-methyl-3-butenyl 

pyrophosphate (23), adenosine diphosphate (ADP), inorganic 

phosphate and carbon dioxide. 

Next, the pyrophosphate undergoes a prototropic shift 

to give 3-methyl-2-butenyl pyrophosphate (24) with the aid 

of isopentenyl pyrophosphate isomerase. This is one of the 

few reversible reactions in the series. The shift of a 

proton is stereospecific, the hydrogen atom He being the one 

eliminated. The effect is to change a compound which has a 

relatively unreactive phosphoryl group and a nucleophilic 

double bond to a compound which is a highly reactive elec- 

trophilic allyl pyrophosphate. 

Ho OH 

(21) 

0 off 

(22) 

K 

H. (' -MHI 
H. H. 

(23) 

Fac >=<t. 
-OPO3H-POA li3 

i26) 

(24) 

ýý 

(25) 

The enzyme prenyltransferase catalyses the condensation 

of three molecules of (24) into farnesyl pyrophosphate (25). 

Two molecules of farnesyl pyrophosphate are then condensed 

together to form the triterpenoid squalene (26). It is this 

triterpenoid that is the important precursor in the synthe- 
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sis of various steroid molecules. How this molecule is 

rearranged to form the conventional steroid frame work is 

more easily understood by an alternative view of the 

molecule (27). Molecular oxygen and reduced triphosopyridine 

nucleotide (TPNH) are required for the first stage in the 

cyclisation step and a mono-epoxide, 2,3-oxidosqualene (28) 

is formed. The enzymatic cyclisation, by 2,3-oxidosqualene 

cyclase, can be represented as beginning with the uptake of 

one hydrogen atom and ending with the expulsion of another 

(28). The enzyme enforces stereospecific rearrangement of 

the intermediate. Thus, the methyl groups at 8 and 14-C 

together with the hydrogen atoms at 13 and 17-C undergo a 

concerted trans-migration. There are two 1,2-methyl shifts, 

the 8-C methyl going to 14-C and the 14-C methyl group 

migrating to the 13-C position. The resulting steroid is 

lanosterol (29). 

(27) 

(29) 
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Degradation of Lanosterol 
JtQ cholesterol. 

The general process is shown in Figure 1. The initial 

steps are the removal of three methyl groups (the gem-di- 

methyl group at 4-C and the 14a methyl group), together with 

the addition of 2H at 24-C and the shift of the ring double 

bond from 8-C to 5-C. The main pathway to cholesterol is 

believed to be via zymosterol and desmosterol, i. e., the 

three methyl groups are removed first, the double bond 

shifts, and then 2H is added at 24-C. If these reactions 

occur in a different order, the other intermediates (Figure 

1) are produced. An important alternative pathway is via 

zymosterol and lathosterol. Although a considerable amount 

of information into these processes has been accumulated 

many details have still to be determined. As mentioned 

above, cholesterol is the principle starting molecule for 

steroid hormone biosynthesis in animals but desmosterol and 

lathosterol are also utilised in significant quantities. 

These various conversions make up a vast and complex network 

of pathways which will not be detailed here but can be 

readily obtained from the comprehensive literature concern- 

ing the subject. 
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1.2.1 Steroids chemical contraceptive agents. 

The biological activity of steroids is, to say the 

least, considerable. Paradoxically however, because of the 

vast structural variations possible, testing is generally 

restricted to a distinct, targeted domain. Thus the cyclost- 

eroid derivatives discussed in this work were synthesised 

specifically to evaluate their potential as progesterone 

agonists or antagonists, i. e., their potential as anti- 

fertility agents. 

The importance of chemical contraceptive agents cannot 

be under estimated. In a 1974 review of chemical contracep- 

tion, Bennett2 noted that it had taken about 2 million years 

for the world's population to reach 3 billion. Only a few 

more years will be needed to increase the population to 6 

billion at current growth rates. There is no doubt that the 

world's increasing population is a major concern, vastly 

exceeding fuel and food supplies in many parts of the 

world. 2 However, important as such agents are, their devel- 

opment has been enormously complicated by not only research 

cost barriers but also by political and cultural barriers. 

C=b 

(30) 

Thus, at present the contraceptive RU 4863 (30) is, in 

certain cultures, often viewed with the notoriety usually 

reserved for chemicals such as CFCs or "hard" drugs. 
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1 . 2.2 Method of action 

Although there is still a considerable amount of detail 

to be learned about the way in which contraceptives operate, 

research has provided a considerable amount of information 

into the general mechanisms involved in specific areas of 

the female (and male) reproductive system. 

The female and male reproductive systems are governed 

by a family of peptides known as the gonadotropins which are 

responsible for the control and regulation of ovulation, 

spermatogenesis, development of sex organs, and maintenance 

of pregnancy. Figure 2 shows how these gonadotropins regu- 

late ovulation in females. The peptides of particular impor- 

tance are: - 

1) Luteinizing-releasing hormone (gonadotropin-releas- 

ing hormone) or LH-RH, (GnRH), a decapeptide with the struc- 

ture; Glu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2. Released 

by the hypothalamus, this simple peptide essentially con- 

trols female (and male) reproduction. 

2) Luteinizing hormone (LH) and follicle-stimulating 

hormone (FSH). These are peptides produced in the anterior 

lobe of the pituitary when stimulated by LH-HR which, in 

females, regulate the menstrual cycle. The structure, genes, 

receptors, biological roles, and their regulation (including 

by negative feedback actions of steroid hormones) have been 

intensively studied. 4-6 

Steroids that act as estrogen or progestin agonists are 

believed to suppress the production of LH or FSH, or both, 

by a feedback- 
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inhibition process. Without FSH or LH, ovulation is prevent- 

ed. Thus the process is similar to the natural inhibition of 

ovulation during pregnancy, caused by the release of estro- 

gens and progesterone from the placenta and ovaries. An 

additional effect comes from the progestin which causes the 

cervical mucus to thicken and thus provides a barrier for 

the passage of sperm through the cervix. 

Progesterone antagonists, a completely new drug design 

approach to oral contraceptives for women, are now receiving 

considerable attention. The first to be studied in clinical 

studies is RU '486 [(17ß-hydroxy-llß-(4-dimethylaminophenyl- 

l)-17a-pro-l-pynyl)-estra-4,9-diene-3-one], (30). This 

compound acts as an anti-fertility agent by binding to, and 

hence blocking, the progesterone receptor. When progesterone 

binds to its receptor, heat shock protein is released from 

the receptor and thereby opens the progesterone-receptor 

complex to DNA binding. However , when RU 486 binds to the 

receptor, heat shock protein is not released; therefore no 

transcription of the DNA can occur. Alternatively, RU 486 

may induce a conformational change in the progesterone 

receptor so that it does not fit its DNA site. Estrogen 

(O) a 

O)(Q 
(31) 
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antagonists also operate on the gonadotropin system. Con- 

versely, some of these compounds can increase the level of 

the peptide LH-RH, and hence increase ovulation, by a block- 

ing of feedback inhibition of ovary-produced estrogens. In 

this manner such compounds, e. g., Clomiphene (31) are used 

as fertility agents 

1.2.3 Hormonal contraception: review. 

Hormonal contraception was pioneered in the 1950's and 

was based on the inhibition of ovulation by progesterone.? 

At the same time Djerassi It al. 8 and Colton9 reported the 

synthesis of two highly ovulation inhibiting compounds, 

norethindrone (32) and norethynodrel (33). The current oral 

OH 
CCH 

00 

OH 

kc 

(32) (33) 

contraceptives act as progestin and estrogen agonists and 

contain mixtures of derivatives of either estrogen, e. g., 

ethinylestradiol (34), and progesterone, e. g., norethindrone 

(32) and norethynodrel (33). To this day norethindrone (32) 

(4) 

OH 

ICCi 

OH 

.a CCH 

O 

moo 

(3S) 
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and norethynodrel (33) remain the most extensively used 

progestins in oral contraceptives while estrogens such as 

ethynylestradiol (34) and mestranol (35) make up the bulk of 

estrogens used. 

Although any of the considerable number of oral contra- 

ceptives available are extremely effective at inhibiting 

ovulation some side effects are known and the safety of the 

"pill" has been one of the most intensively discussed sub- 

jects in the press. Studies based largely on the early 

products that contained large doses of estrogen showed an 

alarming incidence of thromboembolic disease. These studies 

resulted in the removal of high estrogen dosage contracep- 

tives from the American market, a tendency towards products 

containing less estrogen and the identification of women who 

should not take oral contraceptives, e. g., women over 40 

years of age and women who are moderate to heavy smokers. 

The use of the "pill" is also known to increase incidents of 

cardiovascular death and again a synergistic effect is noted 

when women smoke. Some common misconceptions, e. g., that 

oral contraceptives can lead to an increase in incidence of 

breast cancer have been shown to be false. 10 Indeed, use of 

the "pill" has shown a decrease in the risk of ovarian 

cancer. " 

Although the incidence of illness or death through the 

use of chemical contraceptives is small they nevertheless 

exist and this has meant the continued search for safer 

products by the development of more powerful contraceptives 

that can be given in small doses (or less frequently) and 

possess reduced side effects. 
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1.2.4 Considerations steroid receptor binding. 
-qf 

For a recent report into the characterization of the 

various steroid hormone receptors and the binding of com- 

pounds to such sites the reader's attention is directed to 

the excellent review by Ojasoo et A. 12 

A considerable amount of work has been undertaken in an 

attempt to map the various steroid-receptor interactions. 

For example, the uterine progesterone receptor sites have 

been investigated by synthesising derivatives of a compound 

showing anti-fertility activity and comparing their relative 

binding affinities to the protein with their structures as 

defined by X-ray crystallography. A recent example being the 

progesterone antagonist steroid R. U. 486 (30) and its 

3 derivatives. Androgens, such as the principle male sex 

OH 

(36) cý 

OH 

hormone testosterone (36) have also been studied. For exam- 

ple, the testosterone derivative, 17ß-hydroxy-7a- 

methylandrost-5-en-3-one (37) has shown to be both anti- 

estrogenic and anti -progestationa113 and its molecular 

conformation has been determined by X-ray crystallography. 
14 

A review of the stereochemical aspects of-receptor binding 

of steroids was recently presented by Duax. 15 

The fact that there are many potent non-steroidal 

estrogen or progestin agonists, e. g., the plant estrogen 
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zearalenone (38), indicates that the receptor site is not 

always (if at all) a tight fit for an agent. However some 

biologically active non-steroidal compounds such as the 

estrogen benzestrol (39) can show remarkable structural 

similarities to the four ring system of steroids. Thus, 

OH 0 

(3e) (30) 

a near identical structural similarity is not a prerequisite 

for activity. For example, the highly active diethylstilbes- 

terol (40) arises because the distance between the hydroxy 

groups16 matches the estradiol/water molecule complex 

present at the receptor site. 

OH 
fi 0 

(40) 

1.3 Rationale or synthetic studies 

6ß-Hydroxy-3a, 5-cyclo-5a-androstan-17-one (41) and its 

effects on male rats have been studied, 17 but its actions on 

the female reproductive system have not. Previous studies at 

R. G. I. T. had indicated that this compound possessed proges- 

tational or anti-progestational activity, i. e., anti-fertil- 

ity properties. It was therefore used as a lead compound for 

the synthesis of a series of 3a, 5-cyclo-5a-androstanes in an 
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attempt to produce compounds possessing female anti-fertility 

activity. This was the basis of the work carried out here. 

OH 

(41) 

The target compounds were the propargyl alcohol deriva- 

tive (42), the 6ß-methyl derivative (43), and the 6-methyl 

7-hydroxy derivative (44). It was hoped that the synthesis 

of the compounds would not only produce steroids with nota- 

ble biological activity but also provide an insight into the 

OH o0 

OH 

(42) (43) (44) 

chemical influences and effects of the cyclopropane ring. 

(It should be noted at this point that if the cyclopropane 

ring geometry confers any biological activity, then any of 

the synthesised molecules can do so only if administered by 

some other means than orally. The acidity of the stomach 

would most certainly induce addition of HCl to the three 

membered ring and hence fragment the moiety. ) 

The possibility of the lead compound (41), or indeed 

any of its derivatives, to act as an estrogen agonist (or 

20 



antagonist) was considered small because the non-planar 

nature of the A ring of the steroid would most certainly 

prevent binding to the estrogen receptor site. The structur- 

al requirements of the progesterone receptor site have also 

been studied in detail by Duax and co-workers. 18 They con- 

cluded that the progesterone 4-en-3-one ring A was a key to 

binding, but apparently only when ring A is in a 1ß, 2a half- 

chair conformation (45) and not the more common 1a, 2ß half- 

chair conformation. There are geometrical similarities 

between the 1ß, 2a half-chair conformation (45) and the 

general 3a, 5-cyclo-5a conformation (46) indicating the 

possibility of the steroids synthesised in this work acting 

as progestin agonists or antagonists. However, although 

(45) (46) 

structurally suitable, the cyclosteroids synthesised here do 

not possess the ability to form hydrogen bonds in the region 

of the 2-C (ß-face) area of the molecule, a general prereq- 

uisite for good progesterone receptor affinity-12 Thus, the 

target compounds of this work may be relatively weak proges- 

tins. However, this would not be the only criteria for a 

potential pharmaceutical product, secondary activities, 

e. g., anti-estrogenic potency and presence or lack of andro- 

genic activity must also be considered. 

The synthesis of so many unnaturally alkylated ster- 
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oids, although not leading to specific rules, has led to 

some generalisations concerning how the activity of a ster- 

oid can be increased by the alkylation of specific carbon 

atoms (or indeed by the removal of specific carbon atoms). 

Note also that similar generalisations have been "derived" 

for other chemical modifications, such as the introduction 

of halogen atoms or the conversion of a hydroxy group to its 

ester derivative (to adjust in vitro solubility), but these 

modifications are outwith the work here and therefore will 

not be discussed. 

The changes in activity caused by modifications to the 

carbon framework can occasionally be readily explained but 

often appear perplexing. For example, the removal of the 19- 

C angular methyl group generally results in an increase in 

the estrogenic activity of a steroid. This is not surprising 

considering what is known about the estrogen receptor site. 

However, on the other hand the insertion of an alkyl group 

at atom 6-C has been carried out on numerous occasions and 

has often led to an increase in the biological activity of a 

steroidl9-23 while the introduction of an alkyl group to 

atom 7-C generally causes a decrease in activity. 24 One 

example of the decrease in activity caused by alkylation of 

atom 7-C highlights the problems associated with the inter- 

pretation of results. This modification to testosterone 

causes a decrease in its anabolic activity, androgenic 

activity and its ability to act as a competitive inhibitor 

of the estrogen synthetase. 25 Furthermore, as the size of 

this group increases, the activity of the molecule de- 

creases. However, there does not appear to be a proportional 
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relationship between the two. Thus this example does not fit 

the normal "increased hydrophobic chain into a hydrophilic 

pocket" model. There is obviously a considerable amount of 

work still to be undertaken to explain such phenomena. One 

particularly important modification site is atom 17-C. This 

is because compounds such as the propargyl alcohol (42), 

synthesised as part of this work, can be orally active since 

the 17-OH group cannot be metabolised to the corresponding, 

and generally inactive, 17-one steroid. Furthermore, such 

hydrophobic 17a-substituents also tend to increase the 

relative binding affinity of-steroids to the progestin 

receptor. 3 Other modifications to steroid molecules, at 

atoms 1,2,9,11, and 16-C, also increase their progesta- 

tional activity. 26,27 

In an effort to explain such binding mechanisms experi- 

ments concerning co-crystallisation of steroids with amino 

acids and nucleic acids have been carried out. 28 However, 

these have provided only limited information. Unfortunately, 

the best case scenario (where steroids are co-crystallised 

with protein molecules) is not as yet possible because of 

the difficulties involved in the isolation of pure stable 

proteins. Crystallisation of the proteins themselves could 

also lead to the accurate mapping of the receptor sites. 

Thus the isolation of stable, crystalline proteins will 

provide a considerable amount of information into steroid/ 

receptor binding mechanisms and shed light on often bemusing 

results. 
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1.4.1 Steroidal alkylations And syntheses pf cycloQropane 

steroids. 

The synthetic work carried out in this research essen- 

tially concentrated on the introduction of a cyclopropane 

ring into the steroid framework and the alkylation of atoms 

6 and 7-C. Thus, to supplement the bibliography, developed 

for the implementation of the various reactions, a further 

literature search was undertaken. This ascertained the 

nature of the most recent research concerning the general 

introduction of cyclopropane moieties into steroids and 

their alkylation. 

1.4.2 Steroidal alkylation. 

A critical review of steroid syntheses of recent years 

showed that, with respect to their alkylation, the most 

prominent area of research has been the stereospecific 

introduction of various sidechains at 17-C. This has been 

driven by, among other paradigms, a trend for the isolation 

of novel marine sterols. Thus, in an attempt to determine 

the exact configuration of these natural products and pro- 

vide easy access to compounds possessing potent biological 

activities a vast amount of research has been undertaken. 

OH 

0 
many stags 

iwi (47) 
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Detailing this research is beyond the scope of this work. 

However, two examples capture the essence and complex nature 

of recent 17-C sidechain introductions. The formation of the 

contiguous, four chiral centred brassinolide side chain (47) 

from a pregnane derivative (48)29 and the synthesis of 

glaucasterol (49), a soft coral sterol, from (50). 30 

CHO 

mny do" 

HO 

(50) (4°) 

The alkylation of other centres in the steroid nucleus 

has, compared to the work done at 17-C, been relatively 

ignored over the last 10 years. This can be attributed to 

the success of Grignard reagents or other organo metallic 

reagents in introducing the relatively simple group usually 

required (expected! ). However more novel approaches are 

frequently developed. One particularly interesting example 

being the stereospecific carbon-carbon bond formation at 14- 

OAc 

(51) 

OAc 

uwuSOzPh 

(52) 

0 

ö 
(53) 

25 

0 
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C by cycloaddition of phenyl vinyl sulphone to 

14,16-dien-17-yl acetates, e. g., (51). Cleavage of the 

bridged intermediate (52) gave a variety of products, e. g., 

(53) and (54). 31 

Related to steroidal alkylation, a considerable amount 

of work has been undertaken into the functionalisation of 

saturated. carbon atoms by various means. Microbiological 

hydroxylations are an obvious example, but the work by 

Breslow32 exemplifies the creative nature of remote func- 

tionalisation. Thus, the introduction of a chlorine atom at 

position 9a is readily attained by ultra violet irradiation 

of intermediate (55) in the presence of dichloro-iodobenzene 

(56). 33 The formation of the 3a, 5-cyclopropane ring has 

II 

(55) (58) 

of course been used for the direct activation of atoms 5- 

C, 34 6-C and 19-C. 35,36 

There are yearly (approximately) reviews covering all 

aspects of steroid syntheses and reactions including those 

touched on here. These excellent reports, most recently 

written by Turner37-39 and Elks, 40-43 provides a valuable 

insight into the field of steroid synthetics. 
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1.4.3 Introduction of clopropane rings: - Some selected 

examples. 

The cyclopropane ring 

The most striking feature of the steroids synthesised 

in this work is the cyclopropane moiety in the A ring of the 

steroid. The cyclopropane ring, as well as adding interest- 

ing chemical features to the compounds, also has a consider- 

able effect on the geometry of the steroid A ring. 

Much work into the vast array of chemical reactions 

associated with the strained44 and uniquely bonded cyclopro- 

pane ring45-52 has been carried out and was recently summa- 

rised by Wong 
_qt al. 53 The a-aromatic nature45,46 or par- 

tial sp2 character47-52,54-58 of the 3 membered ring and its 

induced ring current led to interesting spectral features 

of the steroids produced, especially when conjugated with r- 

acceptor moieties such as keto or methylene groups. 54,55,59- 

61 The main geometrical effect of the introduction of the 

cyclopropane ring is to force the A ring of the steroid into 

the a-phase of the molecule, thus emulating the 5ß or cis 

A/B steroids in conformation (Chapter 5). Reactions of some 

of the'synthesised derivatives did not only show potential 

participation of the 3 membered ring in that reaction, but 

also indicated stereochemical influences by the cyclopropane 

moiety on those modifications carried out at ring B. The 

bonding and nature of the cyclopropane ring is discussed 

further in Chapter 2. 

The main problem associated with the synthesis of the 

target steroids was the fragmentation of the cyclopropane 
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ring during reaction. Where this occurred, procedures were 

developed where either milder conditions prevented such side 

reactions occurring, or where this criterion could not be 

fulfilled, the cyclopropane ring was introduced at a later 

stage of the synthesis. 

Although comparatively rare, compounds containing 

cyclopropane rings do occur in nature. For example, one of 

the most unique features of marine sterols is the occurrence 

of a cyclopropane ring in the 17-C sidechain. The soft coral 

steroid glaucasterol (49)62 is one example. Indeed the 

parent compound of this work, (41), has been isolated in 

trace amounts from human urine. 63,64 However, the vast 

majority of cyclopropane compounds found in the literature 

are synthetic in origin. Thus, a considerable number of 

methods for the introduction of a cyclopropane moiety into a 

steroid or other molecule exist. The most common methods 

used for the synthesis of cyclopropane steroids are dis- 

cussed below. The examples chosen also demonstrate the 

variety of cyclopropane steroids previously synthesised. 

Cyclopropane Steroids. 

The rearrangement reaction applied in this work (or 

variations of it) for the formation of the three membered 

ring is one of the most common methods utilised in the 

formation of various cyclosteroids, especially those from 

the 3a, 5 series. Consequently, this is one of the most 

studied methods to date. 65 For the reaction to proceed to 

the desired cyclosteroid (Chapter 2) specific geometrical 

conditions must be met. Thus, for the 3a, 5 series, rear- 
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rangement only occurs when the 3-C leaving group is ß-orien- 

tated. Conversely, when the reverse rearrangement of the 6a 

or 6ß-hydroxy-3a, 5-cyclosteroids occurs no 3a substituted 

products are observed. Other substitution patterns effect 

Ti0 

OH 

Cam) (58) 

the outcome of solvolysis of 3ß-sulphonates. Thus, treatment 

of 4a-methylcholesteryl tosylate (57) results in the forma- 

tion of the cyclosteroid (58) while a similar treatment of 

its 4ß-epimer (59) results in the isolation of the diene 

(60) with no detectable 3a, 5-cyclosteroid. 66 In contrast to 

TOO 

(50) (60) 

the above, the formation of 3ß, 5-cyclosteroid (61) from the 

A-nor steroid (62) only occurs when the hydroxymethyl group 

OH 
(62) 

OH 

(61) 
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is a-orientated. A ß-orientation results in the 3a, 5- 

series. 67 Other geometrical alterations or chemical modifi- 

cations of the steroid framework also alter the rate of 

reaction and the yield of the cyclopropane product. The 

attempted formation of other cyclosteroids by this method 

again confirms the specific geometrical requirements. Thus, 

solvolysis of the 7ß-tosylate (63) does not lead to the 

isolation of 5,7-cyclosteroids. The main product being the 

diene (64). 68 

(63) (64) 

Two variations to the above type of reaction have been 

utilised in the formation of cyclosteroids. Treatment of the 

4-keto-7-tosyl steroid (65) with basified methanol does 

yield, in contrast to the above, the desired cyclosteroid 

(66). 69 Also, direct access to the 6-keto cyclosteroid (67) 

0 

(65) 
0 

(66) 
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is attained by the treatment of the 3-tosylate (68) with 

tetramethylguanidine or, the phase transfer reagent benzyl- 

trimethylammonium hydroxide, in pyridine. Alternatively, a 

chlorine atom at 3-C can be used as a leaving group. 70 

T. 0 

(48) 

0 

(67) 
Another particularly important method for the formation 

of cyclosteroids is by the application of the Simmons-Smith 

methylenation reaction (methylene iodide and zinc-copper 

couple). 71 Joska et al. used this method for the formation 

of 5,7ß-cyclosteroids, e. g., (69)72 and (70). 73 Yields by 

this method are often low, especially when free hydroxy 

groups or ketone groups are present in the molecule. Howev- 

er, low yields induced by for example a hydroxy group can be 

0 

Ho 

(09) (70) 

offset when the functional group directs the incoming re- 

agent to form an isomerically pure product. Thus Simmons- 

Smith cyclopropanation of 17a and 17ß-hydroxy-14-enes of the 

androstane and estratriene series, e. g., (71) is controlled 

by the activating and syn-directing effect of the 17-hydroxy 
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group. 74 This leads to cyclopropanes in which the 14,15- 

methylene group and the 17-hydroxy group are cis in a ster- 

eospecific reaction (72). 

OH 

O -ý 

wo 

(71) 

OH 

moo"los 

C72) 

Oxidation to the 17-ketone derivative followed by reduction 

with diborane or complex metal hydrides results in a trans 

relationship between the two groups. Likewise, in the cyclo- 

propanation of the epimeric hydroxycholesteryl acetates, 

e. g., the ß-alcohol (73) gives the 5ß, 6ß derivative (74) 

while the a-isomer gives the 5a, 6a methylene compound. 
75 

Ao0 

M 

Ao0 

(74) 

Dissolving metal reductions have also been utilised in 

the formation of cyclopropane steroids. Thus, cholest-5-en- 

1,7-dione 

im) 

32 
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(75) when treated with lithium in ammonia/THF gave the 1,5- 

cyclosteroid (76). When this compound was treated with 

potassium hydroxide the expected products (77) and (78) were 

the major products isolated. Surprisingly however, when the 

steroid was treated with mild base it was converted to the 

unusual 5,7ß-cyclosteroid (79). 76 

n 

cm (7) (79) 

As the above examples show, a sulphonate group is in 

most cases used as a leaving group although chlorine has 

also been utilised. one rare example where an acetoxy group 

is utilised as a leaving group is in the reaction between 

3ß-acetoxy-6-nitrocholest-5-ene (80) and dimethyllithium 

cuprate. The product, the (E)-oxime (81) is thought to be 

formed via a free radical mechanism. Displacement of the 

acetate ion may be facilitated by complexation with the 

77 copper-lithium species. 

AMC 

NO 

(M) 

ON 

(a1) 

The cyclopropane rings of the anti-aldosterone bis- 

methylene compound (82) were introduced by two different 
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techniques. 78,79 Under Simmons-Smith methylenation condi- 

tions (diiodomethane zinc-copper couple) the 6,7 methylene 

group was introduced. Stereospecificity (ß, ß) was induced by 

the 5ß-hydroxy group present in the precursor (83). 79,80 

However, the second cyclopropane group was introduced by 

0 HO 
OH 

(82) (83) 

using the less common Corey-methylenation reaction. 81 Thus, 

either the a, ß-unsaturated ketone (84) or the dipivalate 

(85), when treated with trimethylsulfoxonium iodide in 

dimethyl sulfoxide (DMSO) containing sodium hydroxide, 

resulted in the formation of the respective 15ß, 16ß methyl- 

ene intermediates (86) and (87). 

0 

Ho 

(84) 

0 

0 

Ho 

0 

s+ 
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(88) 

0 
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Side chain cyclopropane steroids. 

As discussed above, a considerable amount of effort has 

gone into the stereospecific introduction of 17-C sidechains 

to the steroid nucleus. The discovery that in the marine 

environment many sterols possess a cyclopropane ring has led 

to the speculation that these compounds are intermediates in 

biomethylation sequences. Consequently, many investigations 

into the biosyntheses of these steroids, e. g., sormosterol82 

(88) are being carried out. The possible physiological role 

of these compounds has also attracted much interest. Thus, a 

NO 

(88) 

considerable amount of syntheses have been carried out not 

only to provide access to these novel steroids but also to 

characterise their configurations. 

in many of the marine steroids synthesised to date one 

particular method for the introduction of the cyclopropane 

"IN 

s 
NO 

0I . () 
(00) 

35 



ring has been utilised. Thus the cyclopropane ring of gor- 

gostero183 (89) was introduced by the treatment of the 

mesylate (90) with potassium tertiary butoxide as base. 

Yields were good and only a very small quantity of the 23-C 

oW 

s 

WIN 
V.. ý Ott . dw 

(91) (40) 

isomer was isolated. 84 Another example of this reaction can 

be found in the synthesis of glaucasterol (49). 85 Here again 

the mesylate derivative (91) was the chosen sulphonate. The 

cyclopropane ring of petrosterol, (92), was also introduced 

in this manner. 86 

c92i 
Finally, although not strictly relevant to this discussion 

(because we are not dealing with the formation of a cyclo- 

propane ring) the marine sterol petrosterol (92) has also 

0 

OW 

(p4) 

0 
+ 
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been synthesised by condensation of the phosophorane (93) 

and the steroid (94). 87 All four trans isomers were synthe- 

sised. However, the product distribution resulting from the 

acid-catalysed isomerisation of these four diastereomers 

showed a marked dependence on the relative stereochemistry 

between the cyclopropane ring and the adjacent chiral centre 

at 24-C. Thus, an examination of the conformations available 

to the sidechain led to a rational explanation of this 

dependence and shed light on hitherto unrecognised subtle 

stereochemical features operating among aliphatic cyclopro- 

panes. 
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CHAPTER Z 

Formation 
, gf 68-hydroxv-3a, 5-cyclo-5a-androstan-17-one and 

selected derivatives. 
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L Introduction. 

The title compound (41) is one of many steroids that 

contain a cyclopropane ring within the steroid nucleus. Most 

steroids conforming to the above have a cyclopropane ring 

incorporating carbon atoms 3,4, and 5, but others, e. g., 

off 

(41) 

the 5,7 cyclosteroids (70)1 and the 5,19 cyclosteroid (95)2 

have also been synthesised (Chapter 1). Although first 

isolated from a synthetic reaction, the title compound (41) 

has also been isolated from natural sources, originally from 

human urine. 3,4 The alcohol (41) was chosen as a lead com- 

pound to other steroids because it had, in earlier studies, 
5 

shown biological activity. Furthermore, previous work at 

R. G. I. T. had indicated anti-fertility properties. This was 

in spite of the 6-C position of the alcohol group which 

generally reduces the biological activity of steroids. 6 

HO 

i7O) (gs) 
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Other compounds discussed here are the methyl ether 

(106) of the parent alcohol (41) and the 6-keto steroid 

(111), both used as intermediates in the formation of the 6- 

methyl derivative (Chapter 3). The formation of the 17- 

propargyl derivative (42) by various routes is also dis- 

cussed. 
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2, Z Formation of 68-hydroxy-3a. 5-cyclo-5a-androstan-17-one 

41 

The parent steroid, 6ß-hydroxy-3a, 5-cyclo-5a-androstan- 

17-one (41)7 was prepared via the classical 3,5-cyclosteroid 

rearrangement originally noted by Stoll8 in the solvolysis 

of cholesteryl p-toluenesulphonate (96). 

Too 

(N) 

2.2.1 Formation o¬ 30-tosyl-5-androsten-17-one 98a 

The first step, the introduction of a suitable leaving 

group at 3-C, was carried out by the standard method, 9,10 

i. e., by reacting together in anhydrous pyridine, dehydroe- 

piandrosterone, (DHEA), (97) and p-toluenesulphonyl chloride 

(TsCl) to yield the sulphonate (98a). The product was readi- 

ly identified spectroscopically by the appearance of the 

characteristic two doublets of a para substituted benzene 

ring in the aromatic region of the 1H NMR spectrum, corre- 

sponding to the tosyl ring and a singlet at d= 2.41 

0 0 

RS03 

(97) (96c R- p-CF3GN+ 

bR- CNs) 
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corresponding to the methyl group of the tosyl moiety. More 

subtle changes were the downfield shift of the 3-H signal 

induced by the stronger electron withdrawing properties of 

the new moiety and the slight downfield shift in the 6-C 

alkenic proton. In agreement with the above data the IR 

spectrum showed no hydroxy group absorption and strong 

aromatic absorption. 

Formation 3ß-mesyl-5-androsten-17-one (98b). 

As an alternative to the above, the methyl sulphonate 

(98b) was formed by reacting DHEA (97) with mesyl chloride 

under identical conditions. Even though the sulphur atom of 

the mesylate is less electron deficient than its counterpart 

in the tosylate molecule this reaction was found to proceed 

faster than the similar tosylation, most certainly because 

of its smaller size. Also, by virtue of the physical proper- 

ties of the sulphonic acid by product, the purity of the 

resulting sulphonate (98b) was considerably increased. 

Therefore this method was the preferred route for the forma- 

tion of a suitable sulphonate. 

Evidence of product formation was obtained spectroscop- 

ically. A notable difference in the 1H NMR spectrum of the 

product from its starting material was the addition of a 3H 

singlet at 6= 3.01 corresponding to the mesyl protons. As 

with the tosylate more subtle differences lay in the posi- 

tion of the signals attributed to the 3 and 6-H which were 

both shifted downfield. The IR spectrum of the product did 

not show absorption due to a hydroxy group but did possess 

bands corresponding to the sulphonate group. 
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In variations to the above procedures DHEA was found to 

be insufficiently soluble in other solvents which readily 

form the hydrochloride salt (the essential driving force of 

the reaction) such as triethylamine. Both sulphonating 

reactions were however successful when a molar equivalent of 

pyridine was added to a dichloromethane solution of the 

steroid and the sulphonating agent. The rate of this reac- 

tion being increased by heating the mixture. 

2.2.2 Hydrolysis and rearrangement gj sulphonate esters 

DHEA (98a and b). 

Formation of 6B-hydroxy-3a. 5-cyclo-5a-androstan-17-one (41). 

The second step in the formation of the parent cyclost- 

eroid was undertaken using both the above products under a 

variety of conditions (see below). The product was readily 

identified by the very high field signals associated with 

the cyclopropane ring (see later this chapter) and the 

00 

RSO 

OH 

(Oft R- P-Ct43CA (41) 

b: R- CH3) 

corresponding removal of alkenic absorption. The triplet 

attributed to the equatorial proton at 6-C, was considerably 

sharper than the broad signal of the DHEA counterpart (3-H 

axial) confirming the ß-orientation of the 6-alcohol 

group. 11 The distinguishing feature in the IR spectrum of 
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the product was again attributed to the cyclopropane ring12- 
14 ;a series of sharp, high frequency C-H stretching bands 

coupled with the main C-H stretching envelope. 

The general reaction mechanism, investigated previously 

in considerable detail, 15-17 involves the production of the 

cationic species (99) formed by the loss of the tosylate or 

the mesylate group which rearranges in the presence of 

potassium acetate to form ion (100). The intermediate is 

+ 

(101) 

normally represented by the non-classical ion (101). This 

participation of the 5 and 6-C r-electrons in the 

solvolysis, termed "homo-allylic participation", is regarded 

as the development of overlap between the r-orbital and the 

rear lobe of the p-orbital (102) vacant at 3-C. 18 Nucleo- 

(102) 
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philic addition to this cation by, for example, hydroxide 

ion, results, because of an axial attack at the point of 

maximum overlap of the p-orbitals with the incoming ion, in 

the formation of the 60 alcohol. 19 

The reaction detailed above was attempted by refluxing 

the steroid tosylate (or mesylate) in a series of aqueous 

ketones: acetone, butan-2-one and pentan-3-one. These showed 

that as the reaction temperature was increased the favoured 

product of solvolysis was the 3-hydroxy steroid (97), i. e., 

that the cation (99) was the thermodynamically favoured 

ionic intermediate. Thus when the reaction was carried out 

in acetone only traces of the 3-C alcohol were found20 but 

when utilising pentan-3-one the product was a mixture of the 

desired 3,5-cyclosteroid and the starting material DHEA in a 

1: 1 ratio. It was also noted that the required reaction 

time was greater as solvents of increasing molecular weight 

were used possibly because of the reduced miscibility be- 

tween the organic solvent and the water. Butan-2-one gave 

predominantly the desired product in virtually 100% yield 

if the organic layer was cooled by passing a stream of air 

over the upper section of the reaction vessel while main- 

taining gentle reflux of the lower aqueous layer. 

The thermodynamic preference for structure (99) was 

also shown by carrying out the reaction in butan-2-one in a 

sealed pressure vessel at a temperature of 1400. Under these 

more extreme conditions DHEA (97) was the only compound 

recovered. Similar examples in the literature also reflect 

this dependence. Work by Lee21 showed that the yield of 3,5- 

cyclosteroid when solvolysis of the tosylated steroid is 
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carried out in methanol, ethanol, 2-propanol and benzyl 

alcohol22 decreases with the increasing boiling point of the 

alcohol. Results are attributed to increasing steric effects 

or decreasing dielectric constants. It was also noted that 

solvolysis in diols results in the formation of the 3-sub- 

stituted product, but when carried out in an acetone-diol 

mixture the 6-substituted ß-hydroxy ether is the major 

product. This dependency is not just observed with alcohols. 

At 100' for example, the ammonolysis of 3ß substituted 

compounds gives, as well as the desired 6-substituted ster- 

oid (103), an isomeric mixture of the 3 substituted amine 

(104). 23 Likewise, cyclisation in refluxing acetic anhydride 

(1400) also gives a mixture of the relevant 3 and 6 substi- 

tuted acetates. 24 

RSOS 

Nis 

+ 

Nth 

(NO) (103) (104) 

2.2.3 Alternative cyclisation procedures 

In an attempt to prevent the removal of a dioxolane 

protecting group during cyclisation (See Chapter 3), another 

modification was made to the reaction. By further basifying 

the aqueous layer (pH 14) in the butan-2-one with a unimo- 

lecular amount of sodium hydroxide it was hoped that this 

would prevent degeneration of the protecting group by the 

improved removal of the tosylate ions from the organic 
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layer. When this method was applied to the general, butan-2- 

one cyclisation reaction, improved product purity was ob- 

served. This improvement could also be attained without the 

presence of potassium acetate but little improvement over 

the (already high yielding) acetone solvated reaction was 

detected. Thus the cyclisation of this particular steroid is 

improved at higher pH. 

An earlier method24 for the production of the 6ß- 

alcohol via the acetate (105), formed by reacting the tosy- 

late steroid (98a or b) with acetic anhydride was also 

attempted but was abandoned because of the low purity of the 

product. 

0 

(9ao or b) --- 

OAc 

(105) 

The method of Patel, 25 where the tosylate or mesylate 

(6) is not isolated before cyclisation, gave relatively good 

results in terms of purity but as noted by the author, a low 

overall yield (41%). Thus using either acetone or butan-2- 

one as solvents and either potassium acetate or sodium 

hydroxide as the buffer were the preferred methods of cycli- 

sation. 
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2.2.4 Formation 6B-methoxv-3a, 5-cyclo-5a-androstan-17-one 

(106). 

The 6-methoxy derivative (106) was used as an alterna- 

tive in some reactions where it was considered that the 

alcohol (41) was too unstable under the utilised conditions. 

Subsequent formation of the alcohol could then be achieved 

by the demethylating reagent trimethylsilyl chloride. 26,27 

The cyclisation of the tosylate (98a) or mesylate (98b) 

in anhydrous methanol containing potassium acetate gave the 

desired ether (106). The NMR spectrum of the product showed 

a prominent 3H methoxy singlet. Evidence of successful 

cyclisation came from the sharp triplet associated with the 

6a equatorial proton. This, as was expected, was positioned 

slightly further upfield than the signal from the corre- 

sponding atom in the alcohol. As was noted for the alcohol, 

the signal produced by 6-H in the starting material was 

"replaced" by highfield cyclopropane absorption. 

0 

(96a or b) 

GW 

(106) 
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2.2.5 The cvclopropane xim 

The cyclopropane ring has, over the last few decades, 

been subject to intense practical and theoretical investiga- 

tion and has been discussed many times before (see below). 

Therefore only a short summary of the moiety's properties 

and explanations to these, will be discussed here. 

C}{2 
H 

ýCH 
H2C-CH2 

C-IH H 2 2 2 2 

(107) (108) 

The peculiar properties of cyclopropane, in particular 

its ability to interact with pr-systems and to stabilise 

carbonium ions, i. e., its "unique double bond character", 28- 

31 the observed high field NMR signals, the group's short C- 

C bond length, and the moiety's reactivity to electrophiles 

a property not observed in cyclobutane (108) or indeed in 

any other cyclic alkane, have intrigued chemists for many 

years. Another unusual property, its relative stability, 

perhaps best summarises the group's anomalous repertoire of 

properties. 

2.2.6 The cvclopropane ring: - strain. 

Formation of a cyclopropane ring requires that three 

-CH2- groups must be accommodated into a triangle of atoms 

where the three C-C-C bond angles are each 600. This is a 

considerable deviation from the standard, strain free C spa 

angle of 109.5'. The strain energy of cyclopropane (107), as 
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conventionally32 defined (conventional strain energy, CSE), 

is 27.5 kcal mol-1. However, the strain energy calculated 

using the C-C-C bending force constant estimated from the 

vibrational spectra of alkanes is considerably greater; 104 

kcal mol-1. Moreover, this huge anomaly is only observed for 

three-membered rings. Thus the strain energy for cyclobu- 

tane (108), calculated in the same way; 21.6 kcal mol-1, is 

less than its CSE value of 26.5 kcal mol-1, the difference 

being attributed to eclipsing strain. The CSE values for 

these two cyclic alkanes are thus very similar, as is the 

energy required for homolytic cleavage (61 and 62.5 kcal 

mol-1 respectively). From this then, we can conclude that it 

is erroneous to rationalise the unusual chemical nature of 

cyclopropane (107), compared to the rather unremarkable 

chemical repertoire of cyclobutane (108), in terms of its 

high strain, as is so often the case in standard text 

books. 33,34 There is obviously another facet to the cyclo- 

propane ring that facilitates the above properties. 

2.2.7 cyclopropane: a a-aromatic alkane. 

All of the above properties can be explained by the 

concept of a-conjugation and a-aromaticity. Although this 

principle has been known for many years, it is only recently 

that its significant chemical implications have been rea- 

lised. Explanations into the physical, 35 electronic36-38 and 

chemical39 properties of derivatives of cyclopropane as well 

as other, often conveniently ignored, phenomena (such as the 

pyramidal structure of certain free radicals) can be 

readily attained by the application of a-conjugation. 
35 
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As the molecular orbitals (MOs) of cyclopropane have 

been discussed before40-43 the following resume is confined 

to only the essential features. 

r set 
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+r .... 

t set 
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FIGURE 3 
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MOBIUS 

Molecular orbitals (MOs) of cyclopropane. The predominant nature 

of the final MOe, r and t, is indicated by Q and $ respectively 

If one considers cyclopropane and other cyclic alkanes 

to be made up of CH2 fragments each possessing two singly 

occupied orbitals (Figure 3), then two sets of MOs can de 

distinguished: first, the r set (Huckel type system), which 

consists of linear combinations of radially orientated sp 

hybrid orbitals (a), and, secondly, the t set, (Mobius type 

system) which consists of linear combinations of tangential- 

ly orientated p orbitals (r). Mixing of the r and t orbitals 

which possess the same symmetry yields the final MOs. A 

closed-shell system is formed with Huckel (4q +2) "aromatic" 
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subshells. The mixing of r and t orbitals, apart from im- 

proving 1,2 bonding interactions in the ring, cause anti- 

bonding interactions across the ring. 

Note also that there is always a totally symmetric 

doubly occupied low lying r MO (all in Figure 3) that stems 

from the in-phase overlap of all sp2 orbitals inside the 

ring. The nature of this orbital changes dramatically with 

the size of the ring (Figure 4). In the case of cyclopropane 

it is the "surface" orbital covering the ring surface due to 

strong overlap of the three sp2 orbitals in the ring centre. 

Therefore, due to its unusual topology, cyclopropane differs 

from all other cycloalkanes; occupation of its "surface 

orbital" resulting in a three centre two electron bond (4q 

+2). As these are fully delocalised electrons 

FIGURE 4 
EquWano. of the r MOs in 0 kw" n-msmbsr. d ring and the per-MOs of a cyciopolysns 
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it is justified to term cyclopropane as a-aromatic. (Delo- 

calisation has been confirmed by calculations37 which esti- 

mate that the minimum electron density in the plane of the 

ring is still 82% of that at the critical bond point, the 

area of maximum electron density between two atoms. This 

compares to values of 33% for cyclobutane and 7% for ben- 

zene. ) 

The aromatic stabilisation energy of cyclopropane has 

been estimated35,37,43 to have a value of between 20 and 50 

kcal mol-1. Although there are differences in opinion, it is 

generally believed that cyclopropane is stabilised by its 

aromaticity to a greater degree than benzene itself (20 kcal 

mol-1). 44 The a-aromaticity then, can be used to explain the 

huge differences between observed and calculated strain 

energies. Similarly, the other "anomalies" can be readily 

explained. The shortness of the cyclopropane bonds is easily 

understood if they are strengthened by aromaticity. The 

upfield position of its NMR signals can be understood in 

terms of diamagnetic shielding due to an aromatic ring 

.1%, 001"%% 00 

(a) 

"H 

r1 R` 

" 
.I 

FIGURE 5 

(b) 

Magnetic lines of force in (a) benzene and (b) cyclopropane 
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current (Figure 5). However, in contrast to benzene, where 

the ring current leads to a downfield shift because the 

protons lie in the region where the magnetic lines of force 

have turned around and consequently reinforce the applied 

field, the cyclopropane protons lie in the shielded region. 

Reactions differing markedly from other paraffins (where the 

ring remains intact), e. g., electrophilic addition are also 

readily explained. 35 The rate determining step involves the 

formation of a non-classical ion45,46, either "edge proto- 

nated cyclopropane" (109) or a r-complex47 (HH-ºCH3+) . Such a 

structure will retain at least a large part of the cyclopro- 

pane, s initial aromatic stabilisation. The increase in one 

C-C internuclear distance, will on the other hand, lead to a 

significant decrease in the real strain energy. since the 

strain energy of cyclopropane is very large and-since in it 

is not offset by a corresponding decrease in the a aromatic 

stabilisation energy, the net decrease in energy should be 

large and act as a driving force for the reaction. 

2 

2`2 H CH 

(109) 

2.2.8 68-Hvdroxy-3a 5-cyclo-5a-androstan-17-one (41): - 

aromatic steroid. 

The difference between cyclopropane (107) and the 

cyclopropane moiety of the parent compound (41) is the 
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effective substitution of the 6 hydrogens for the groups 

CH2R, CHR2 and CHRX (X= OH). This however should not have a 

great effect on the stability of the ring as the alkyl 

groups can only weakly interact with both the a and x orbit- 

als of the cyclopropane ring. 38 The alcohol group has also 

been calculated to have little effect. However under condi- 

tions where the hydroxy proton can be removed (basic) a 

considerable stabilisation of the cyclopropane ring could 

occur. 48 Considering the structure it would seem quite 

likely that there is, to a small degree, destabilisation 

induced by increased strain because the cyclopropane ring is 

fused to ring A, and connected to ring B. 

2.2.9 The MR spectrum of 6-hydroxy-3a 5-cyclo-5a-andros- 

tan-17-one (41). 

The most marked feature in the NMR spectrum of the 

parent steroid and the derivatives formed here is of course 

the signals attributed to the cyclopropane ring. However, 

the -interpretation of these complex signals is not a simple 

one even when considering the effects of 6-C substitution 

(see this work) on the splitting pattern of these signals. 

(»o) 
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Consider, for example, the splitting pattern of the 

parent 6ß-alcohol's cyclopropane protons (Figure 6). These 

appear to be split into two sets; a 1H triplet and a set of 

4 peaks corresponding to two protons. This type of splitting 

pattern is observed for all the other steroids synthesised 

here where there is an ß orientated oxygen functionality at 

6-C, e. g., all hydroxy, methoxy and 6,7-epoxy steroids. One 

exception, the 6-benzyloxy derivative22 (110) shows no 

cyclopropane signals in the expected region. This though can 

easily be attributed to a downfield shift induced through 

T. I. S. 

FIGURE 6 
Schematic representation of the 'H. N. M. R. 

cydopropane signals of (41) 

space, by the aromatic ring, adopting a suitable conforma- 

tion in solution. Consider the following for the 6ß alcohol 

(41), Firstly, and most obviously, the two sets of peaks 

mentioned above are readily attributed to the single proton 

at 3-C and the two protons at 4-C respectively. The 3-H atom 

appears to be coupled with two protons, either at 2-C or 4- 

65 

1 .0 ppm 0.5 ppm 



C to produce the lower field triplet (J= 4.8Hz). The set of 

four peaks, apparently a pair of overlapping doublets, show 

non-equivalent protons 4a and 40 coupling with each other 

(J= 8.0Hz). With this model, there is therefore no observa- 

ble coupling between the protons at 3 and 4-C, a fact not 

readily accountable for. Thus, there are no torsion angles 

between any of the protons which approximate to 90". There 

is obviously considerably more to the interpretation of the 

signals. 

In contrast to the above steroids, compounds which do 

not possess aß functionality, e. g., the 6-substituted 

ketones, methylenes and 6,7 alkenes all show "simplified" 

splitting patterns. Both the 6 keto and methylene steroids 

show only 1H triplets, with the ketone signals occurring 

slightly further downfield than the methylene signals. This 

simplified spectrum is relatively easy to interpret. The 

insertion of the 7r-system induces a downfield shift for all 

the cyclopropane protons. This is especially true for the 4- 

C proton which according to molecular models lies approxi- 

mately in the plane of the r-system and is correspondingly 

shifted further downfield, into the main methylene envelope, 

and is thus unobservable. 

The actual signals of the cyclopropane ring protons are 

thus full of ambiguities and not easily interpreted, however 

the a-aromatic nature of the ring should have effects on 

other parts of the steroid, e. g., the 2-C protons and the 

19-C protons all should be deshielded by the cyclopropane 

ring. Although, for the 2-C protons, any effect would not be 

readily observable, the methyl signal is in fact noted49'50 
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to shift downfield. This small shift can thus be attributed 

to the a-aromaticity of the cyclopropane ring. 

In conclusion the cyclopropane ring, and hence, the 

series of steroids synthesised here can be justifiably 

termed a-aromatic. The introduction of this a-aromatic ring 

into the androstane nucleus has little effect on the overall 

stability of the ring but induces small, detectable changes 

to non-neighbouring atoms as well as the considerable loca- 

lised effects. Considering the cyclopropane carbons to be in 

a hybridised state between sp2 and sp3 (and hence possessing 

a "unique double bond character"28-31) is a perfectly suit- 

able model for explaining many of its reactions. However 

a-aromatic is a more accurate description. 
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2.3 Formation of 3a15-cyclo-5a-androstane-6.17-dione (111). 

The oxidation of the alcohol (41) was achieved by two 

methods: with Jones' reagent51 (Cr03 in concentrated sulphu- 

ric acid) and with Collins' reagent52-55 (dipyridine Cr03 

complex in dichloromethane). Both these reagents successful- 

ly converted the steroid to the psuedo-conjugated system 

ketone steroid (111) but for overall simplicity and there- 

fore improved yields the Jones' method was, wherever possi- 

ble, utilised in the synthesis of the various 6-keto ster- 

oids produced. 
0 

OH 0 

0 

(41) (111) 
The mechanism of hexavalent chromium oxidation is 

complex, but it is known that although in each stage of the 

oxidation of most organic substrates there is a net transfer 

of two electrons, the oxidising agent normally accepts a 

total of three electrons. It is therefore evident that 

intermediate states of chromium are important in the overall 

process. For the oxidation of a secondary alcohol such as 

steroid (41) the mechanism may be as follows. 

Crv, + R2CHOH ------º R2C=O + 2H+ + CrIV 

CrIV + CrVI ------- 2CrV 

CrV + R2CHOH ------- R2C=O + 2H+ + CrIII 
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These intermediate valancy states of chromium (IV and 

V) appear to be more powerful oxidising agents than CrVI and 

may, as indicated in the equations above, be responsible for 

up to two thirds of the oxidative process. 56 

The NMR spectrum of the product, as expected, showed no 

absorption associated with a proton geminal to a hydroxy 

group. A significant change was also noted in the cyclopro- 

pane signals where only a 1H triplet was observed (see 

below). Removal of hydroxy absorption and a new carbonyl 

band in the IR spectrum of the product also confirmed con- 

version. In the mass fragmentation of the product, obvious 

daughter ions from the parent ion (286) were 271, loss of a 

methyl group and 258, subsequent loss of carbon monoxide. A 

weak signal (m/z= 268) corresponded to the loss of water; a 

feature of this cyclopropane ketosteroid previously investi- 

gated. 57 

The steroid dione (111) has previously been subject to 

considerable investigation for its potential biological 

activity, 58 its general reactivity59-61 and its interesting 

structure; e. g., Butcher gt X49 studied the 1HNMR, IR and 

UV spectra of the steroid to ascertain its preferred confor- 

mation. Although generally agreeing with the presented data 

the 6-C carbonyl IR signal of the product was noted in this 

work to occur at 1681 cm -1 compared to the value of 1693 cm 

1 recorded by Butcher. 49 

Butcher noted49 that ring B of the steroid can theoret- 

ically assume conformations ranging between the extremes of 

distorted half-chair where carbon atoms 4,5,6 and 7 are 

virtually coplanar with the carbonyl oxygen (112) and an 

69 



almost undistorted boat conformation where the carbon 3 atom 

replaces carbon 4 in the coplanarity sequence (113). The 

more recent X-ray work of Hanson62 on the dione (111) 

showed that in the crystal phase at least, the B ring 

approximates to the former structure [C(4)-C(5)-C(6)-O= 

10'). This explains, the "simplification" of the cyclopro- 

pane signals in the NMR spectrum of the product. The 4-H 

atoms being deshielded to a position where they are obscured 

by the methylene envelope thus leaving only the 3-H signal 

18 7- 

0 

(> > 2) (113) 

in the "cyclopropane region" as a 1H triplet. This conforma- 

tion therefore allows for near maximum conjugation between 

the cyclopropane ring and the ketone group. 62 

Allan28'63 determined that in a cyclopropane compound 

where the ring is in conjugation with a w-acceptor substitu- 

ent the vicinal bonds (3-5 and 4-5) are weakened and the 

distal bond (3-4) is strengthened. Thus vicinal bonds tend 

to be longer and distal bonds shorter. This however is not 

the case for steroid (111). The X-ray results obtained by 

Hanson for the 6,17-diketone steroid where the relevant 

carbon-carbon bond lengths were determined as: C(3)-C(4)= 

1.61(4)A, C(3)-C(5)= 1.58(4)A and C(4)-C(5)= 1.56(3)A, i. e., 

the exact opposite of that expected. This however, because 

there is no significant difference between the values, might 
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be a misrepresentation. A particular effect is not likely to 

be revealed by one particular study. As it is only when the 

results of many measurements are analysed that trends become 

apparent. In terms of the c-aromaticity of the cyclopropane 

ring the introduction of a ketone group at the 6-position 

should, by its nature as a r-attractor, reduce the stability 

of the ring. However, although the ketone group is poten- 

tially the greatest destabilising substituent introduced (in 

this work) to the steroid its effect should be very small38 

even assuming the geometry allows for maximum conjugation. 
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2.4 Formation of 17a-ethynvl-3a, 5, cyclo-5a-androstane-60.170- 

do 
. 
(42). 

The insertion of an electron rich functional group at 

the 17a position has frequently enhanced the biological 

activity of a molecule, e. g., its luteoid activity64 or its 

binding affinity to the progestin receptor, for example, the 

now well known steroid RU 486 (30). 65 Steroidal propargyl 

derivatives that have shown high activity include norethin- 

drone (32) and mestranol (35), two of the most popular 

female contraceptives. 66 Therefore, the propargyl derivative 

(42) could be expected to show enhanced activity over that 

of its parent derivative, the 17-keto steroid (41). 

(30) 

*H OH 
0=% OCH 

Q usa 

\3I C35) 

The synthesis of the propargyl derivative was initially 

undertaken by the direct reaction of the parent steroid (41) 

with (the now superseded67) lithium acetylide but the re- 

quired reaction time, as measured by the strength of the 

carbonyl absorption of the crude reaction product, was 

considerably greater than that stated by Huffman68 in the 

analogous transformation of tricyclic steroid analogues. 

Thus 72 hours was required before carbonyl absorption of the 

crude product was absent. The product however, resisted 

repeated recrystallisation beyond its initially crystallised 

form of a pale brown, wide melting point solid. Neverthe- 

m 
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less, the spectroscopic properties indicated that the 

product was reasonably pure. The NMR spectrum was virtually 

identical to that of the starting material. Only, the 

presence of a sharp singlet (1H, ö- 2.49) corresponding to 

the alkynic proton and a small shift in the 18-C methyl 

proton signal differentiated the product from its parent. 

The IR spectrum of the product showed, as stated above, the 

absence of a carbonyl group. The presence of the ethynyl 

group was confirmed by absorption bands at 3270 and 2110 cm- 

1 Both the yield of the propargyl derivative and the purity 

were rather low, therefore several alternative routes to the 

steroid were investigated. 

0 

OH OH 

(41) (42) 

CH 

2.4.1 17a-Ethynyl-3a. 5, cyclo-5a-androstane-6B, 17B-diol 42 

Other Routes 

Three different approaches were conceived. The first 

two involved the initial introduction of the propargyl group 

prior to the insertion of the cyclopropane ring, i. e., by 

either the propargylation of DHEA (97) or its tosylate 

(98a). Both reactions were noted to proceed more smoothly 

than the identical reaction on the parent cyclosteroid (41). 

The propargyl derivative of DHEA (114), as intended, was 

then tosylated selectively at 3-C with a unimolecular amount 
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of tosyl chloride to give (115). In fact, it was found that 

the propargyl alcohol group was so sterically hindered to 

0 

Woe (97) 

0 

"G) (115) 

- -(42) 

the tosyl chloride reagent that even under concentrated 

conditions with a two fold excess of reagent only the mono- 

tosylate was isolated. Quantities of this compound, from 

both sources, were then cyclised to give the desired ster- 

oid. Although apparently giving a product of higher purity, 

the steroid still proved difficult to recrystallise. 

0 

CM. 

(42) 

OW 

(l's) 

OH 

. CCH 

+ 

OH 

OH 

(42) 
The methoxy steroid (106), was also considered as a 

source of the propargyl derivative (42). Subsequently it was 

noted that the 6-methoxy derivative (106) underwent propar- 

gylation more smoothly than its 6-hydroxy derivative (41) to 

yield the mono-alcohol (116). Treatment of this steroid with 

OH 
CCH 

Ii0 
(114) 

I OH 
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the versatile reagent trimethylsilyl iodide26,27,69-71 

yielded the desired diol (42) in low yields. Again however, 

the product resisted recrystallisation. Further recrystalli- 

sation studies with specialised techniques72 could be car- 

ried out on the compound. 
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CHAPTER 3 

Formation of 6B-methyl-3a. 5-cyclo-5a-androstan-17-one. 
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3.1 Introduction 

The insertion of a methyl group into the carbon frame- 

work can frequently endow a steroid with enhanced biological 

activity. ' As a consequence, a considerable amount of work 

has been performed on the alkylation of steroids, including 

methylation at the 6-C position. 2-5 The 3,5-cyclopropane 

ring system had been used as a means of inserting an alkyl 

group at the 6 and 7-C positions by, for example, reactions 

between ketone derivatives and Grignard reagents. 314 Subse- 

quently, the cyclopropane ring is fragmented to produce the 

desired 3-C functionalised steroid. However no attempts have 

apparently been made to synthesise the 6-methyl cyclosteroid 

(43). 

RRR 

0 
(110) (117) 

(»s) 

1 
(43) (119) 

The initially proposed route followed the methodology 

used in the synthesis of 3-C functionalised 6-C methyl 

steroids, i. e., by the formation of the ketone derivative 
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(116: R= protecting group) and reacting it with a methyl 

Grignard reagent (117). Subsequent dehydration and reduction 

of the alkene (118), which was potentially unstable to 

hydrogenation conditions, would lead to the steroid (119). 

Deprotection would give the desired steroid (43). However, 

this was superseded by a shorter route devised at a later 

stage. Thus, the direct conversion of the ketone (116) to 

the alkene (120) by a Wittig reaction was expected to in- 

crease overall yields and was therefore the preferred route. 

R R0 

0 CHI 

(116) (120) (43) 

Two different approaches to the formation of 6ß-methyl- 

3a, 5-cyclo-5a-androstan-l7-one (43), from the corresponding 

ketone derivative (116), were considered. Either the 17-C 

ketone group was to be converted to another functionality, 

i. e., protected (116: R= protecting group), or reaction 

conditions were to be investigated which would facilitate 

V 

OH 

(41) 

Oti OH 

0 

(j 
14 

OH 

(121) (122) 
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specific reaction at the 6-C position in, for example, the 

dione (116: R= =0). With respect to the latter option, 

statistical methods of reaction6 such as these usually 

result in poor yields. In the former case, methods of sta- 

tistically protecting the 17-keto group were considered, 

e. g., the reduction of the ketosteroid (41: R= =0) to the 

diol (121) which could then be specifically oxidised to the 

6-keto compound (122) by a bulky oxidant incapable of reac- 

tion at 17-C. This could be achieved with a modified Collins 

reagent (e. g. phenanthridine (123) in the place of pyridine 

(124)) or by the differential reduction of the dione (111: 

R= =0) to form the 17-hydroxy steroid (122). However, the 

0 

N 

(123) (124) 

limited amount of relevant information and the generally 

poor yields7 discouraged practical investigation. The most 

common statistical protection methods, i. e., selective 

dioxolane formation8,9 (most recentlyiO with the "bulky 

0 OH 

0 

(111) (122) 
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proton" derivative of ethylene glycol, 1,2-bis([trimethylsi- 

lyl]oxy)-ethane), rely on steric hindrance preventing reac 

tion at 17-C, the opposite of that required here. Non- 

statistical methods were therefore not initially employed. 
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3.2 Formation of 17-C protected cyclosteroids by direct 

protection of 6B-hydroxy-3a, 5-cyclo-5a-androstan-17-one 

41 . 

Several studies on the formation of 3,5-cyclosteroids 

with 17-C dioxolane protecting groups have been performed, 

notably by Julia. 11 Following formation of the 17-C dioxolane 

ýr ra 
OH 

(07) (125) (126) 

pound (126). However, the synthesis of a dioxolane protected 

3,5-cyclosteroid, such as (126), had apparently not been 

attempted by direct conversion of the cyclosteroid (41) to 

its dioxolane derivative (126). 

0 

OH OH 

(41) (126) 

The reaction conditions used were those initially 

defined by Salmi12,13, i. e., a benzene solution of the 

steroid was reacted with an excess of ethyl glycol and a 

catalytic quantity of p-toluene sulphonic acid (PTS). The 

water formed as a byproduct was azeotropically removed by a 

cooled Dean-Stark trap. An IR spectrum of the crude reaction 
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mixture showed that the 3 hours required for the protection 

of cyclohexanone, 14 or a 20-C ketosteroid15 was insuffi- 

cient, i. e., the considerable steric hindrance at 17-C 

resulted in an increase in the required reaction time. 16 

Either a 24 hour reflux or a 18 hour reflux with additional 

catalyst added after 8 hours was required for total conver- 

sion. Thin layer chromatography of the resulting oil, indi- 

cated the presence of only one compound which was crystal- 

lised to give a white solid whose melting point of 126-128' 

did not compare well with that of the literature value for 

the protected cyclosteroid (126) (144-146'). 11 The IR spec- 

trum of the product, as expected, showed no carbonyl absorp- 

tion but a strong ether absorption was present. Confirmation 

of the presence of the dioxolane group was given by the 1H 

NMR spectra which showed a 4H singlet at 6=3.87, however 

the compound did not show the characteristic high field 

signals of a cyclopropane moiety, nor the sharp triplet at 

S= 3.31 expected for the equatorial 6-H. However, there was 

a 1H doublet at S= 5.35 which corresponded to a H-6 alkenic 

proton, a 4H complex series of peaks centred S= 3.65 and a 

broad multiplet centred at 6= 3.22. As the position of this 

broad multiplet corresponded roughly with that of the 3-H 

0 

OH RD 

(41 ) (127) 
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atom of DHEA, but showed a slightly different splitting 

pattern, it was envisaged that the cyclopropane ring had 

under gone fragmentation and resulted in the formation of 

the ß-hydroxy ethylether (127) first synthesised (m. pt. 125- 

128") by Juliall by reaction of the tosylate (98a) with 

ethylene glycol. Protonation of the hydroxy group by the 

acid forming the good leaving group H2O+ at 6-C results in 

the formation of the 6-C cation (100) and as with all cyclo- 

propane carbocations this system can rearrange17 in a con- 

certed manner to give the corresponding allyl ion, i. e., the 

3-C cation (99). In an apparent release of strain the 3-5 

carbon bond is thus broken because it is the bond most 

geometrically suitable for overlapping with the empty bond- 

ing orbitals at 6-C. Nucleophilic attack of the carbocation 

by ethylene glycol then occurred resulting in the formation 

0 

+ 

+ 
Hý 

ON 

(100) (99) 

of the ß-hydroxy ethylether. This interpretation is support- 

ed by several previous studies. 18-25 The "reverse 

reaction", i. e., direct nucleophilic attack on the cyclopro- 

pane ring by the ethylene glycol anion followed by rear- 

rangement and loss of the hydroxy group cannot occur as 

nucleophilic cleavage of cyclopropanes is only possible when 

electron withdrawing-groups are attached directly to the 
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cyclopropane ring. 26 A mass fragmentation pattern of the 

product; molecular ion, m/z= 346, and CH analysis confirmed 

the proposed structure. 

As the 1H NMR spectrum gave limited information con- 

cerning the presence of a side chain at 3-C, further confor- 

mation was sought via a simple reaction designed to produce 

a compound which would produce a similar signal correspond- 

ing to the 3-H atom. The 3-tosylate (98a), was therefore 

dissolved in refluxing ethanol (the ß'-hydroxy group was 

assumed not to affect the splitting of the 3-H) to yield the 

3-C ethyl ether (128). The product was crystallised directly 

from the cooled solution, and its 1H NMR spectrum possessed 

a splitting pattern identical to that found for the (127), 

thus confirming the above. 

0 

F-SN 

(Wo: R- p-cH s}I) (1261 

0 

To prevent the rearrangement to the alkene by the 

attack of ethyl glycol on the latent 3-C carbocation two 

options were considered. Firstly, the rearrangement could 

possibly be prevented by the utilisation of a poorer leaving 

group at 6-C, thus preventing the migration of the C(3)-C(5) 

bond. Secondly, (as with the initial cyclisation of the 

tosylate to give the 3,5 cyclosteroid (Chapter 2) where it 

was noted that the DHEA cation (99) was the thermodynamical- 

ly preferred structure, ) perhaps the use of solvent capable 
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of the azeotropic removal of water, but at a lower tempera- 

ture than benzene could prevent fragmentation of the 3- 

membered ring. 

0 

RSO 

(96a: R- p-CHGH4) 
Oise 

(g8. ß: R- CH. ) (10c) 

0 

With the first idea in hand, the formation of the 6- 

methoxy derivative (106) by refluxing the tosylate (98a) in 

purified and dried methanol in the presence of potassium 

acetate was undertaken. However, when this compound was 

treated with ethylene glycol under the conditions used 

above, the presence of the poorer methoxide leaving group 

did not prevent the rearrangement of the compound. As was 

the case with the alcohol (41) the cyclopropane moiety 

rearranged to give predominantly the ß-hydroxy ether (127). 

However, in this case a small quantity of the 3-C methoxy 

steroid (128) was also detected by virtue of its promi- 

nent OMe 1H NMR signal. This loss of the functional group at 
vA iý 

o6ie 

(IOC) (127) (l274) 

6-C and its subsequent addition at 3-C probably also oc- 
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curred in the initial experiment with the alcohol but re 

mained undetected. 

Attention was then turned to the use of a solvent with 

a lower boiling point. The reactions, performed in a similar 

fashion to that used above but with hexane as the solvent 

and after an increase in reaction time from 18 to 24 hours, 

successfully converted the keto group to the dioxolane but 

did not prevent fragmentation of the cyclopropane ring 

giving either compounds (127) or (127a). A similar reaction 

but with pentane as a solvent was undertaken (36 hours 

required) but again this did not prevent the break down of 

the cyclopropane ring. However, because the alternative 

solvents used were not as efficient as benzene in the azeo- 

tropic remove of water it is very possible that a reduction 

in the fragmentation of the cyclopropane ring induced by the 

lowered reaction temperatures may have been masked by the 

longer reaction time required. 

In an attempt to prevent the break-down of the cyclo- 

propane moiety an alternative protecting reagent was chosen 

to protect the 17-C carbonyl group. The alternative reagent 

chosen was the more nucleophilic ß-mercapto ethanol 

(HS(CH2)20H), which should react more readily with the 

carbonyl group but not effect fragmentation of the cyclopro- 

pane ring. (Direct nucleophilic attack of the ring was not 

occurring and therefore the increased nucleophilicity of the 

reaction medium should not increase fragmentation. ) The 

steroid (41) was protected under similar conditions to those 

used above but required a slightly shorter reaction time 

(15 hours). The reaction product, a pale yellow oil, was 
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separated by preparative tic into three fractions, none of 

which could be crystallised. The 1H NMR spectra of all these 

products showed complex M2X2 splitting patterns produced by 

the oxathiolane protection group. The first component re- 

moved was a two component mixture (1: 1) of the 3ß and 6ß ß- 

thio ethylether protected steroids (129) and (130). As well 

as the protecting groups, the 1H NMR spectra of the com- 

pounds showed complex absorption produced by a 3-C or 6-C 
0 P% 

(41) (122) 

HO 

(131) 

+ 

+ 

sidechain. Neither steroid showed hydroxy group absorption 

in its IR spectrum. Both these products accounted for ap- 

proximately 25% of the total weight of the product. The 

second component, accounting for about 10% of the product 

weight was assigned as the protected derivative of'DHEA 

(131). The third component isolated, and accounting for 

slightly over half of the product (60%) was the 6-C ß-hy- 

droxy thioethylether compound (132). The 1H NMR spectrum of 

component three again showed complex absorption by the side 

chain, similar to the ß-thioethers recovered. However, the 6- 
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H signal was shifted slightly upfield confirming the 

presence of the thioether group. Correspondingly, the IR 

spectrum possessed a strong-hydroxy group band. 

This reaction differed in another way from the ethylene 

glycol reaction in that by varying the solvent the relative 

quantities of products would vary. Thus for hexane (reaction 

time= 24 hours) the ratio of the above products was estimat- 

ed at 2: 1: 8 and for the pentane solvated reaction (reaction 

time= 35 hours) the ratios were 2: 1: 12. However, the limited 

solubility of both the steroid and mercapto ethanol in 

hexane and pentane usually led to the reactants forming a 

lower, pink layer in the reaction vessel where apparently 

the majority of the steroid was undergoing reaction in a 

saturated ß-mercapto ethanol environment. An extension to 

this reaction, the attempted protection of the 6ß-methoxy 

steroid (106) by ß-mercapto ethanol, surprisingly produced 

identical results. The presence of the poorer leaving group 

0 

--+ (122) + (130) + (132) 

0: k 

(bc) (133) 

in the molecule made no detectable difference. However by 

virtue of its prominent 1H NMR methoxy signal the second 

component from the reaction mixture was readily identified 

as the 3ß methoxy steroid (133), thus indicating that the 

second component removed from the reaction between the 

alcohol (41) and ß-mercapto ethanol was, as assumed, the 3ß- 
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alcohol (131). 

Several points can be drawn from these results, the 

most prominent being the increasing amounts of 6-substituted 

thioether cyclosteroids recovered as the reaction tempera- 

ture decreased. Thus, although (41) undergoes loss of the 6- 

hydroxy group a reduced percentage of the molecules rear- 

range to the thermodynamically more stable delta 5 steroid 

at the reduced reaction temperatures. Attack%by the more 

nucleophilic thiol moiety of the mercapto ethanol predomi- 

nately results in the formation of (132). Thermodynamic 

considerations however do not fully explain the product. The 

nucleophilicity of the protecting reagent must also play an 

important role in the mechanism, otherwise the reaction 

between the steroid and ethylene glycol should also have led 

to the formation of a 6-substituted steroid, e. g., (134). 

Furthermore, contrary to the ethylene glycol reactions, a 

small percentage of a 6-substituted ether, i. e., (130) was 

recovered, and its yield did not appear to vary considerably 

as different solvents were used. Both these results can 

(1sß) 

possibly be attributed to 'solvent effects where in the case 

of the reactions solvated with hexane or pentane the reac- 

tions are occurring in the "separate" layer of ß-mercapto 

ethanol. Not surprisingly, the methoxy ether (or alcohol) 
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derivative were recovered in the smallest yields; the me- 

thoxide ions only being present as a molar equivalent (with 

respect to the steroid) whereas the ß-mercapto ethanol was 

present in a considerable excess. One possible compound was 

conspicuous by its absence, namely the 3-substituted ß- 

hydroxy thioether (135). Why did nucleophilic attack of a 3- 

C carbocation only apparently involve the nucleophilically 

weaker hydroxy group of the protecting group? Unfortunately, 

the generally low purity of the above compounds most cer- 

tainly masked some details of the reaction. However, the 

results do concur with those of Lee27 in the solvolysis of 

3-tosylates with diols and thiols. 

Although the differing solubility and nucleophilicity 

of mercapto ethanol compared to ethylene glycol had a con- 

siderable effect on the outcome of the reaction products no 

real improvement was attained. Therefore, because of the 

instability of the cyclopropane ring, an alternative route 

to the protected cyclosteroid was required. Thus, the ini- 

tial protection of the keto group followed by formation of 

the cyclopropane ring was attempted. 11,28-30 

3.3 Formation of 17-C protected cyclosteroids by insertion 

of a 17-C protection SlrouR prior to introduction of the 

cyclopropane rin q. 

As the direct introduction of a dioxolane or thioxalane 

group into the 3a, 5-cyclo-5a-androstane nucleus was unsuc- 

cessful, an alternative route where the protecting group was 

introduced prior to the insertion of the cyclopropane ring 

was undertaken. As in the above work, both ethylene glycol 
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and ß-mercapto ethanol were investigated as protection 

reagents. 

Oýn 

+ (es o or b) 

FIS ii0 RSDi 

(cr) (12) (137 c R- p-cjC H 
b R" aij 

3.3. Formation of 3B-hydroxv-5-androsten-17-spiro-2'-(1.3- 

dioxolane) (125). 

Under the conditions employed above for the attempted 

formation of the protected cyclosteroid (41), DHEA was 

successfully converted" to its 17 ketal derivative (125). 

The 1H NMR spectrum of the product showed the expected 4H 

singlet at 6= 3.87 associated with the dioxolane protecting 

group. The insertion of the ß oxygen at 17-C also shifting 

the 18-methyl signal upfield from d= 0.89 to 0.84. The IR 

spectrum, as expected showed a characteristically strong 

ether band in place of the carbonyl band present in the 

starting material. The strongest peak in the mass fragmenta- 

tion pattern (m/z= 99) of the product, corresponded to the, 

loss of moiety (136),, from the steroid, a common feature of 

dioxolanes. 31 

HH 
Hol H 

0 

(136) 
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3.3.2 Formation of 3-sulphonate esters of 38-hydroxy-5- 

androsten- -17-spiro-2'-(1,3-dioxolane) 137 

After protection of the ketone group, the first step in 

the formation of the cyclopropane ring was to react the 

steroid alcohol with p-toluenesulphonyl chloride or methane 

sulphonyl chloride. The conditions employed in the formation 

of the tosylate (137a) or mesylate (137b) were identical to 

those in the corresponding DHEA reactions (see Chapter 2). 

However, in the isolation of the expected tosylate (137a) a 

second strongly UV visible compound was isolated. This was 

shown spectroscopically to be the DHEA tosylate (98a). 

Approximate 10% of the protected steroid had been converted 

back to the ketone, most likely by the presence of p- 

toluenesulphonic acid (the acid frequently used for the 

deprotection of such compounds) in the tosylating reagent. 

When the mesylate of the dioxolane (137b) was synthesised no 

significant improvement was noted. The 1H NMR and IR spectra 

of both sulphonates, separated from their corresponding 

ketones by tlc were unexceptional. 

3.3.3 Formation 6ß-hvdroxy-3a. 5-cyclo-5a-androstan-17- 

spiro-2'-(1,3-dioxolane) 126 

The cyclisation of (137b) to give the protected cy- 

closteroid (126) was carried out under the most favourable 

conditions for the formation of its 17-ketone derivative 

(98b), that is, by refluxing the sulphonate in aqueous 

acetone in the presence of potassium acetate (Chapter 2). 

Again however, even though an excess of potassium acetate 

was present, it was found that the protecting group had been 
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partially removed. The buffering of the reaction with potas- 

+ (41) 

RSA 

OH 
(137 a: R- p-Ct C H4 

b: R- CH; O (126) 

scum acetate did not prevent the acid cleavage of approxi- 

mately 10% of the dioxolane steroid, a fact not commented on 

by Julia-11 The desired product (126) was however readily 

separated by preparative tlc and its 1H NMR spectrum showed 

the expected highfield complex signals of the cyclopropane 

ring (Chapter 2). Confirmation of rearrangement also being 

found by the absence of an alkenic signal. Also the signal 

produced by the proton geminal to the hydroxy group appeared 

as a sharp triplet because of its equatorial position at 6-C 

instead of the corresponding broad signal of the axial 3-H. 

Although these reactions successfully accomplished the 

incorporation of a protecting group and a cyclopropane ring 

into the steroid framework, the yields were somewhat reduced 

because of the breakdown of the dioxolane group. An attempt 

to improve yields, by for example induced cyclisation under 

more basic conditions, again resulted in breakdown of the 

protecting group. However this can be attributed to the more 

basic conditions32 rather than the presence of the sulphonic 

acid. Instead the alternative reagent ß-mercapto ethanol was 

used. Djerassi et a33 had discovered that the oxathiolane 

protecting group, previously used in the attempted direct 

synthesis of the oxathiolane cyclosteroid, was surprisingly 
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more stable in the presence of p-toluenesulphonic acid. 

Therefore an identical strategy to that used above but with 

ß-mercapto ethanol as the protecting reagent was undertaken 

to circumvent the preceding problem. 

3.3.4 Formation 3B-hydroxy-5-androsten-17(S)-spiro-2'- 
-of 

(1,3-oxathiolane) 13 

Because of the problems encountered during initial 

experimentation with the dioxolane protecting group, the 

less common oxathiolane protection group, formed by the 

reaction between the keto group and ß-mercapto ethanol was 

investigated. The oxathiolane group possessed greater sta- 

bility in the presence of p-toluenesulphonic acid, 33 pre- 

sumed to be the cause of degradation of the dioxolane pro- 

tecting group in the two cyclisation steps. 

0 

lid K3 0: 

1 

(Q7) (131) 

The formation of the oxathiolane steroid (131), see 

below, was based again on the method of Salmi12113 used by 

Rosenkranz34 instead of the method of Djerrassi it a1.35 

which resulted in low yields for sterically hindered sites. 

As before, initial attempts indicated that the time required 

for total conversion, as found for the formation of the 

dioxolane derivative (125), was greater than that stated, 34 

again most certainly because of the steric hindrance around 
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the 17-C ketone group. An estimation of the conversion was 

based on the IR spectrum of the product before purification 

which showed at worst a very weak signal in the carbonyl 

region. The ketone impurity was suitably removed by two 

recrystallisations from 70% aqueous acetone or by flash 

chromatography, necessary for the removal of any remaining 

mercapto ethanol. 

The oxathiolane group was evident from the 1HNMR 

spectrum as two complex (M2X2) sets of peaks centred at S= 

4.09 and 2.86 corresponding to the protons adjacent to the 

oxygen and sulphur atom respectively. The protecting group 

also shifted the 18-methyl signal upfield from 6= 0.89 to S= 

0.83, the singlet indicating the isomeric purity of the 

product. This was also confirmed by the narrow melting point 

of the product (Chapter 8). The 13C NMR spectra differed 

from that of DHEA by three additional signals at 6= 40,70 

and 106 corresponding to the carbon atoms a and ß to the 

sulphur in the oxathiolane moiety, and the 17-C chiral 

carbon respectively. The removal of the carbonyl absorption 

on the IR spectrum was accompanied by the appearance of 

strong absorption between 1000-1100 cm -1 associated with the 

introduction of C-O-C and bonds into the framework. The 

protecting group was also obvious in the compounds mass 

fragmentation pattern. In a similar fragmentation to its 

"sister" compound, the dioxolane derivative (125), the major 

peak (m/z= 115), of the spectrum corresponded to moiety 

(138). Other prominent peaks derived from the parent ion 

(m/z= 348) were at 288 (loss of C2H4S), 270 (loss of water) 
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and 255 (subsequent loss of a methyl group). 

HH 
H NI 

0 

H 

HH 

(138) 

In the work by Djerass133 it was assumed that the 

regioselective reaction gave the 17(R) compound. However, 

considering the SN1 reaction mechanism, 36 it seems more 

likely that after the "formation" of the planar carbocation 

induced by loss of water, attack by the oxygen occurs from 

the less hindered a face of the molecule, thus leading to 

the 17(S) configuration (139). A comparison of the two 

Ffý 

SH 

HO--J 

TOH 
-H20 + 
--- S 

H HÖ 

OH 

S 

_ý ., ., 0 

(13P) 

structures (17(R) and 17(S)) with molecular mechanics indi- 

cated that although there are slightly greater repulsive 

forces between the 18-Me group and the ß-hetero atom when 

the steroid possesses the 17(S) configuration, (ß-sulphur) 

the overall energy of the compound is very similar to that 

of the 17(R) steroid. The only significant difference in the 

geometry of the compounds being the oxathiolane ring, where 

the large sulphur atom, close to the methyl group is accom- 
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modated by the "flipping" of the oxathiolane ring (see Chap- 

ter 6). 

3.3.5 Attempted formation of 38-tosyl-5-androsten-17(S)- 

sniro-2'-(1.3-oxathiolane). 

The first step in the formation of the cyclopropane 

ring of the protected steroid is the conversion of the 3-C 

alcohol to its sulphonate and this was initially attempted 

with tosyl chloride (p-toluenesulphonyl chloride). However, 

under identical conditions to those used in the formation of 

the DHEA tosylate (Chapter 2), i. e., the dissolution of 

equimolar amounts of steroid and tosyl chloride in pyridine, 

only the unreacted steroid (131) and p-toluenesulphonic acid 

Tact 
--ý NO REPMON 

(131) 

were recovered. The intended product was isolated by precip- 

itation induced by the addition of water to the pyridine 

solution. No evidence of formation of the steroidal tosylate 

was obtained even after the reaction mixture stood for up to 

one week (cf tosylation of DHEA (97) which required 16 

hours). These results were in total contrast to the readily 

formed dioxolane tosylate formed here and by Julia. ll Sever- 

al possible sources of interference were therefore exam- 

ined. The simple possibility of impurities in the particular 

batch of chemicals was quickly dismissed by a successful 
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repeat of the reaction on the 17-C ketone and routine 

spectroscopic analysis of the compounds involved. Another 

possibility, the presence of water of crystallinity in the 

steroid was investigated by a series of reactions using 

excesses of the tosyl chloride (up to five fold). The 

possibility that the product was unstable in the presence of 

water was also dismissed by a non-aqueous work-up, only the 

steroid (131) and tosyl chloride being recovered. The 

reaction was then performed, based on the technique of 
37 Ringold and Djerassi, but modified so as to reflux the 

steroid and the tosyl chloride in a neutral solvent (dichlo- 

romethane) and using only a2 fold excess of pyridine. 

Unlike the result of the DHEA reaction, (see Chapter 2) only 

starting materials were recovered. To increase the reaction 

temperature, chloroform and finally, neat pyridine itself 

were used as solvents and refluxed over a 24 hour period. 

These steps however did not facilitate the intended products 

and at no time was the tosylated steroid recovered. 
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The apparent inactivity of the 3ß-alcohol group by the 

oxathiolane moiety was also shown when the both DHEA (97) 

and its 17-oxathiolane derivative (131) were acetylated 

((140) and (141)) under identical conditions (pyridine and 

acetic anhydride). The reaction time required to convert the 

oxathiolane derivative to the acetate33 (141) was approxi- 

mately ten times longer than that for DHEA. Furthermore, as 

is discussed later in this chapter, the oxathiolane steroid 

(131) was successfully mesylated at the 3-C position but 

again at a much reduced rate. Two distinct possibilities for 

this result were considered. Firstly, that simple steric 

hindrance, or steric hindrance caused by intermolecular 

complexing of a reaction intermediate, were responsible. The 

second (and less likely) possibility was that some form of 

"electronic deactivation" of the alcohol group, induced by 

conformational transmission, by the oxathiolane moiety was 

occurring. Whatever the mechanism, as tosylation of the 

dioxolane steroid was achieved readily, the reduced reaction 

rates can be attributed solely to the presence of the sul- 

phur atom. 

Deactivation of the 3-hydroxy rou k steric effects. 

The likelihood that blocking of the alcohol group was 

by simple steric hindrance was dismissed in the light that 

the dioxolane steroid (125) was readily tosylated under 

identical conditions. A study of the oxathiolanes structure 

with molecular mechanics showed the improbability of the 

scenario in that the protecting group was a full 12A distant 
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from the reaction centre. Therefore, if-the source of 

inactivity of the alcohol group is to be attributed to 

steric hindrance it must be'via some form of intermolecular 

complexation occurring before or during the reaction mecha- 

nism, e. g., (142), involving either of the reactants and/or 

the solvent. From the above-results it would also appear 

that this blocking is not absolute, perhaps the geometrical 

layout of the complex retards the reaction between the 

mesylate or anhydride but completely restricts the tosylate. 

However, this is just one possibility. Perhaps the mechanism 

involved does not require another steroid molecule but is in 

fact a result of solvent clustering, a combination of the 

two or some other steric effect. 

Deactivation the 3-hydroxy grou2 by a conformational _of 

transmission induced electronic effect. 

The second possibility, that the alcohol group is 

somehow deactivated by the oxathiolane group is perhaps less 

likely, especially since tosyl chloride contains a more 

electrophilic sulphur atom than mesyl chloride. Past exam- 

ples of this sort of phenomenon, i. e., the deactivation (or 

activation) of functional groups in various chemical sys- 

tems had been reported (see below), including steroidal 
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alcohols. It was imagined that the deactivation of the 3-C 

alcohol group might be a form of an inductive effect created 

or enhanced by the oxathiolane protecting group. Even though 

it is generally thought that these effects drop off rapidly 

as the length of saturated carbon chain between substituent 

group and reaction centre increases, several long range 

effects across the steroid framework have been reported. It 

was Barton gt a1.38 who first proposed the conformational 

transmission effect, (the Barton effect) to describe the 

differing rates of base catalysed condensations of a series 

of triterpenoid 3-ketones with benzaldehyde. They found that 

with respect to lanost-8-enone (143) (rate of reaction 

=100%, giving 144), other compounds containing the partial 

phe 

(») (144) 

structure (145) underwent the identical reaction at greatly 

reduced rates, e. g., masticdienonic acid (146) (8%), or 

OH0 
sN 

COr4 

y 
0 

(145) (14) (147) 

considerably accelerated rates, e. g., ß-amyra-9(11), 13(18)- 

diene-3,12,19-trione (147) (344%). No definitive conclusions 
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were drawn however, the results being described by the 

author as "probably arising, in main part, from conforma- 

tional distortion produced by unsaturated substituents (and 

to a small extent by saturated ones)". It is envisaged that 

this distortion is transmitted through the saturated mole- 

cule by a slight flexing of valance angles and alteration of 

atomic coordinates. Blickenstaff et x. 39 has shown that the 

reactivity of certain steroidal centres such as the 6-C and 

the 12-C positions are altered by the substituent at 17-C. 

For example, selected hydroxy groups are acetylated at 

differing rates, when reacted under identical conditions of 

acetic anhydride and pyridine, apparently because of other 

hydroxy groups present'in the steroid. Their results from a 

number of hydroxy steroids (3,6,7 & 12-C), indicated a 

complex interactive relationship between functional groups 

present and their degree of activity. Blickenstaff, 39 also 

noted that the presence of a 17-C dioxolane group did not 

effect the activity of the 6-C alcohol group in the 3,5- 

cyclosteroid (126). Apart from determining that the observed 

effects were intramolecular and not intermolecular no 

definitive explanation was given. It has also been shown40 

that the rate of addition of bromine across a double bond 

in the 5 position is not only influenced by ,a substituent at 

3-C, but also at 17-C. Furthermore, Peterson4l showed that 

the rate of solvolysis of 3-C tosylates'are decreased by 

electronegative substituents at 17-C. In this case however, 

the rates of reaction were determined in solvents of low 

nucleophilicity such as formic acid and trifluoroacetic 

acid. Also, the 17-C substituents, for example the 17ß- 
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trifluoro-acetoxy- 17a-cyano group were highly electronega- 

tive. The study indicated that the 6 fold decrease in the 

rates of reaction were not due to dipole-dipole interactions 

nor dipole-charge interactions. Instead, partial removal or 

delocalisation of the negative poles of the dipoles, by 

hydrogen bonding with the solvent was attributed as the 

cause. This particular work, although explained in greater 

detail is however less relevant than the previous examples. 

It should be noted however that the results obtained in this 

work differ considerably from all the above examples in one 

major aspect; that is in the degree of deactivation at the 

functional site. None of the above cited examples or other 

works noted such extreme behaviour. 

With respect to conformational adjustments, molecular 

studies on the thioxalane (131) and DHEA (97) have shown 

that the two structures do not readily differ from-one 

another (Chapter 6). However, if small differences between 

the compounds is sufficient to cause the observed effect 

these would not be readily detectable. Indeed, if the cause 

is novel, a molecular model may be essentially useless as 

the minimiser would not take that cause into account when 

defining the structure of the oxathiolane! 

Further studies of the reactions between the steroid 

(131), and the reagents trifyl chloride (CF3SO2C1), brosyl 

chloride (p-BrC6H4SO2C1), tosyl chloride (p-CH3C6H4SO2C1) 

and mesylchloride (CH3SO2C1) could shed some light on wheth- 

er the observed results were caused by steric or electronic 

effects by virtue of the sulphonating reagents' size and 

electrophilicity. From the above limited studies, the idea 
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that the deactivation of the 3-C hydoxy group is as a result 

of intermolecular complexation in solution is more germane 

but without the further studies suggested it is perhaps 

unwise to judge whether the overriding factors are sterical- 

ly or electronically based. Indeed, the results may be an 

effect of c-congujation, a phenomenon recently theorised42 

to be present in all saturates, which is enhanced by the 

subtle geometrical changes induced by the oxathiolane group. 

3.3 
_6_ 

Formation Q 3B-mesvl-5-androsten-17(S)-spiro-2'-(1.3- 

oxathiolane) (148). 

As already mentioned an alternative to the sulphonating 

agent tosyl chloride is methane sulphonyl chloride (mesyl 

chloride) which was utilised because of its greater reactiv- 

ity observed in the mesylation of DHEA. When mesyl chloride 

HO McSO 
(131) (146) 

was reacted with the oxathiolane steroid the reaction was 

found to proceed very slowly. After 24 hours isolation of a 

small quantity of the reaction mixture gave an off white 

solid which when subjected to tlc indicated two products. 

After a total of 48 hours however the reaction was complete 

with tic showing no trace of the slower moving starting 

material. Depending on the particular sample, the product 

occasionally required recrystallisation to remove traces of 
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the product of the reaction between ß-mercapo ethanol and the 

mesyl chloride. (The thiol was often present in vary small 

quantities because small traces did not effect the yields 

considerably and purification by repeated recrystallisation 

of (131) or preparative tlc considerably reduced the overall 

yield. ) Because of these losses, incurred during recrystal- 

lisation of the starting material, an attempt to chemically 

alter the impurity (and hence improve purification), by the 

addition of a small quantity of tosyl chloride was made. 

This, as 'discussed, would not react with the thioxalane 

steroid (131) but any ß-mercaptoethanol present would hope- 

fully react to give a product differing considerably in its 

physical properties (149). However this attempt to form a 

more easily removable impurity was abandoned because a 

"pilot" reaction between the thiol and the tosylate (1: 1 

ratio) did not give a single product (149), but a complex 

0 

°H o 0 

(142) 

mixture of both mono tosylated, ditosylated and apparently 

cyclic compounds. This complex mixture, if formed in the 

steroid solution would therefore be unsuitable for fraction- 

al crystallisation experiments and the idea was dropped. 

The pure mesylate, an off white solid, was readily 

identified by spectroscopic techniques. The 1HNMR spectrum 

showed a 3H singlet at d= 3.00 which suggested the success- 

ful substitution of the hydroxy hydrogen with a mesylate 
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group. Indirect evidence was the down field shift of the 1H 

broad signal associated with the a-hydrogen at 3-C and the 

1H doublet, assigned to the delta 5 double bond, to 6= 5.43. 

The IR spectrum of the product showed no absorption associ- 

ated with a hydroxy group. Additional strong absorption at 

1340 cm -1 were allocated to the R-S03-R stretching frequen- 

cies. A very weak carbonyl signal was also evident in the 

product but its strength, as was expected, was considerably 

weaker than in the spectrum of the resultant mesylation 

product of the dioxolane steroid (137b). As with the other 

oxathiolanes produced, the compound showed the characteris- 

tic loss of the moiety C5H7OS1 m/z= 115 (138) in its mass 

fragmentation pattern. 

3.3.7 Formation of 66-hvdroxv-3a. 5-cvclo-5a-androstan-17(S)- 

so-2'- (1,3-oxathiolanel 50 

The sulphonated steroid (148) was cyclised by the 

preferred cyclisation conditions of aqueous acetone buffered 

with potassium acetate. Rearrangement predominately occurred 

but significant traces of the 3ß-hydroxy compound (131) were 

often present. Flash colunm chromatography, gave the de- 

sired 3,5-cyclosteroid (150). 

u'SO3 

OH 

(148) (150) 

The 1H NMR of the product showed the expected complex 
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pair of peaks centred at 6= 4.05 and 2.85 associated with 

the oxathiolane protecting group. Situated between these two 

signals was a 1H triplet at 6= 3.32 corresponding to the 6-C 

equatorial hydrogen. Evidence of the presence of the cyclo- 

propane ring was found in the highfield region as a5 peak 

multiplet centred at 6= 0.35. The signals corresponding to 

the two methyl groups appeared as 3H singlets, with the 19- 

methyl signal being shifted slightly downfield, by the a- 

aromaticity of the cyclopropane ring42,43 to 6= 1.08. The 

axial 6ß hydroxy group also causes a downfield shift in this 

signal. 44 The IR of the product showed strong OH absorption 

as well as strong C-O-C absorption. Cyclopropane signals 

were, in general very difficult to identify in this com- 

pound. In the mass fragmentation pattern of this compound, 

the strongest peak, as with the other oxathiolanes studied, 

was that with a mass of 115, corresponding to fragment 

(138). The parent ion (m/z= 348) and daughter products; m/z= 

288, loss of SC2H4, m/z= 270, loss of water and m/z= 254, 

subsequent loss of oxygen were also visible. 

As very little breakdown of the protecting group oc- 

curred over the two steps described above, the method there- 

fore provided an improved route to a 17-C protected 3,5- 

cyclosteroid. 

115 



3.3.8 Formation of 6-oxo-3a-5-cyclo-5a-androstane-17(S)- 

spiro-2'- (1.3-oxathiolane) (151). 

The conversion of the 6ß-alcohol to the relevant keto 

compound (151) was performed using Collins' Reagent, 45 i. e., 

a solution of the dipyridinium chromium (III) oxide complex 

OH 0 

(150) (151) 
in dichloromethane (for a discussion of chromium III oxida- 

tion see Chapter 2). This reagent was formed in a similar 

manner to the method described by Ratcliffe. 46 This in- 

volved, the careful addition of Cr03 to a solution of pyri- 

dine in dichloromethane. The reverse, i. e., the addition of 

pyridine to a stirring mixture of chromium trioxide in 

dichloromethane is not recommended because of the likelihood 

of fire. After the passage of one hour the steroid was then 

added to the burgundy coloured mixture as a solution in 

dichloromethane. The first attempt at this reaction used the 

recommended44 six fold excess excess of reagent, at 25° and 

a reaction time of 30 minutes for the conversion of bicyclic 

steroid analogue alcohols to aldehydes or ketones. This 

resulted in a partial breakdown of the 17-C oxathiolane 

protection group, which was attributed to the presence of 

small quantities of chromium trioxide (Cr03). In an effort 

to prevent this, the reagent mixture was allowed to settle 

after being stirred for the 1 hour, and the "clear" burgundy 
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solution decanted into a clean flask. Degradation of the 

protecting group was still found to occur however so a 

series of reactions where the variables, temperature, time 

and reagent: steroid ratio were independently changed were 

undertaken. The results of the experiments are shown in 

Table 1. The % degradation of the protection group was 

estimated by a comparison of the two IR spectra of the 

starting material and the product, and comparing the % 

transmissions of the relevant 17-C carbonyl signals. The % 

conversion of the 6-alcohol group was estimated by comparing 

the relevant strengths of the NMR signals of the proton 

geminal to the hydroxy group. The reaction time for the 

first set of reactions was a constant 15 minutes. 

Table I 

Estimation of percentage degradation of the oxathiolane 

protecting group during oxidation of 6-hydroxy group in 

(150). 

Ratio. reagent: steroid 

12: 1 

I DEGRADATION I OXIDATION 

30 100 

10: 1 

8: 1 

6: 1 

4: 1 

2: 1 

20 100 

15 100 

10 100 

<5 80 

0 60 

From these results, the 2: 1,6: 1 and 12: 1 ratios were 

chosen for the next set of reactions as these represented 
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the best result (6: 1) and the two extremes. On this occasion 

the contact time of the reactants was adjusted. The results 

are shown in Table 2. 

Table 2 

Estimation of percentage degradation of the oxathiolane 

protecting group during oxidation of 6-hydroxy group ihr 

steroid (150) during variation in reaction period. 

Reaction time (wins)/ j DEGRADATION j OXIDATION 
ratio, reagent: steroid 

15/ 12: 1 30 100 

8/ 12: 1 25 100 

4/ 12: 1 10 >95 

2/ 12: 1 <5 90 

30/ 6: 1 20 100 

15/ 6: 1 10 100 

8/ 6: 1 <5 100 

4/ 6: 1 <5 90 

2/ 6: 1 0 75 

30/ 2: 1 20 > 90 

20/ 2: 1 <5 75 

15/ 2: 1 0 60 

From these results it became apparent that in agreement 

with Ratcliffe, 46 a 6: 1 ratio of reactant to alcohol was the 

most successful combination of reagent and alcohol. However, 

the reaction time of 30 minutes was too great for this 

particular system. (Note that although the 12: 1 ratio over a 

2 minute period also gave good results the reaction time was 
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considered too short for practical purposes). In a final bid 

to improve the yield of product even further, a chosen set 

of reaction conditions, i. e., the results obtained from the 

reactions utilising a 6: 1 ratio were repeated but with the 

temperature at 0' instead of 25°. These results are shown 

below in Table 3. 

Table 3 

Estimation of percentage degradation of the oxathiolane 

protecting group during oxidation 6-hydroxy group in 
_Qf 

steroid (150) during variation it reaction temperature. 

Reaction Time (minutes)/ 
Temperature uj DEGRADATION OXIDATION 

30/ 0' 
25' 

10 100 
20 100 

15/ 0' < 10 > 95 
25' 10 100 

8/ 0' <5 90 
25' <5 100 

4/ 0' 0 75 
25' <5 90 

From these final results it was clear that the best 

conditions were a reaction at room temperature with a6 fold 

excess of reagent over a period of 8 minutes. After this 

time the product was worked up in an similar manner used by 

Ratcliffe. 46 The clear yellow oil was then subjected to 

preparative tlc and the pure product isolated as an off 

white solid and recrystallised as fine, colourless crystals. 

As well as a trace of the alcohol (150), the only other 

major product isolated was a small proportion of the dione 
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(111). The 1HNMR of the product whilst showing the expected 

peaks associated with the protecting group possessed no 

signal between these indicating the removal of the 6-C a 

hydrogen. Evidence of the conversion of the alcohol to the 

ketone group was also noted in the position of the absorp- 

tion signals of the cyclopropane ring protons which were 

shifted downfield so that only the 3-H cyclopropyl proton 

were observable. The shifting of the 4-H protons signal into 

the body of the methylene envelope probably being caused by 

the approximate planar configuration of the C(4)-C(5)-C(6)- 

0(6') moiety (Chapter 2). Evidence of conversion was also 

found in the IR spectrum of the product with the appearance 

of a strong carbonyl absorption at 1678 cm 1. In contrast to 

the alcohol, the cyclopropane C-H stretching bands were 

distinct at 3115,3020 and 2990 cm 1. The IR finger print 

region of the product was generally quite weak apart from 

the distinctive strong band attributed to the C-0-C bond in 

the oxathiolane moiety. The mass fragmentation pattern of 

the compound showed the parent ion (m/z= 346) as a weak 

feature. Obvious daughter products from this ion were m/z= 

318, corresponding to the loss of carbon monoxide and m/z= 

303 corresponding to the subsequent loss of a CH3 group. The 

loss of carbon monoxide is also indicative of the presence 

of the 6-C carbonyl group. The strongest ion was again at 

115 attributed to fragment (138). Loss of the elements of 

water, a feature of the mass fragmentation of cyclopropane 
4 

ketone steroids, 
6 was not a noticeable feature. 
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3.3.9 Formation of 6-methylene-3a. 5-cyclo-5a-androstane- 

17(S)-spiro-2'-(1.3-oxathiolane) 56 

The conversion of the ketone to the methylene deriva- 

tive was attained via a Wittig reaction, 48 i. e., a reaction 

between a phosphorus ylide and the carbonyl group. (An ylide 

is a molecule that has a contributing Lewis structure with 

opposite charges on adjacent atoms when these atoms have 

octets of electrons. ) The most commonly used method of 

preparation of a phosphorus ylide is by deprotonation of the 

phosphonium salt with a strong base. Thus, for the conver- 

sion required here, the triphenylphosphonium methylene ylide 

(153) was formed by the reaction between methyltriphenyl- 

Br 1' 
(Ph)3P+ - CH3 --- (Ph)3Pý CHI 

(152) (153) 

0 

H2C Pý(Ph)3 

----y- (Ph)3P CH2 

(154) 

>-cl 
! P(Ph)3 

(155) 

phosphonium bromide (152) and the strong base, n-butyl 

lithium. This highly reactive species is generally ascribed 

to be stabilised by its other resonance form the ylene (154) 

but NMR studies involving 1H, 13C and 31P are consistent 

with the dipolar form (153), indicating that the ylene form 

does not make a considerable contribution. 47 The proposed 

mechanism49-51 of the reaction of an ylide with a ketone or 

an aldehyde (see below) is initiated with nucleophilic 

attack at the carbonyl carbon to yield a dipolar intermedi- 
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ate (a betaine), which because of the strong affinity between 

oxygen and phosphorus readily forms the four membered dihy- 

drooxaphosphetane intermediate (155). The stronger 

phosphorus oxygen bond then dictates the breakdown of the 

intermediate, allowing the elimination of the phosphine 

oxide, and the formation of the methylene compound. 

0 CHI 

(151) (156) 

In a slightly modified method to that of Sondheimer, 52 

the steroid (151), was added as an ethereal solution to a3 

fold excess of triphenylphosphine-methylene, formed by the 

slow addition of triphenylphosphonium bromide to a stirring 

ethereal solution of n-butyllithium. Workup gave a clear oil 

which when subjected to preparative tlc give two white solid 

products. The major product was shown spectroscopically to 

be the desired 6-methylene derivative (156). The methylene 

group was evident in the NMR spectrum as a 2H doublet at S= 

4.63, similar to the signals attributed to the 7-methylene 

compound (171). 53 Resolution was not sufficient for coupling 

with the 7-H atoms to be detected. Also present was the 

complex multiplets associated with the oxathiolane group, 

identical to those signal in compounds (131), (148), (150) 

and (151). The presence of the methylene group however, 

shifted the 19-C methyl group signal upfield so as to coin- 

cide with the 18-C methyl signal and produced a 6H singlet 
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at S= 0.85. A similar coincidence effect is observed in the 

NMR spectrum of the delta-6 steroid (185), (see Chapter 4). 

Finally, the NMR signals produced by the 3-C cyclopropane 

hydrogen were shifted up field to S= 0.38 (triplet) indicat- 

ing the removal of the stronger electron withdrawing carbo- 

nyl group but still the approximate planar nature of the 

cyclopropane and 6-C 7-acceptor group. The IR spectrum of 

the compound showed, as with other cyclopropanes and al- 

kenes, an extended C-H stretching envelope with sharp, well 

defined bands at 3080,3065,3015,2990,2985cm-1. These 

high frequency vibrations (c. f. 3a, 5-cyclo-5a-androst-6-ene- 

17-one (185)) are probably not only due to the strain in- 

volved in the 3 membered ring54 or the methylene group, but 

also because of the interaction between the 4a-H and the 

neighbouring methylene 6'-H (157). A similar effect is 

vividly shown by Kivelson et ai. 55 in a study of the IR 

spectra of various fused bicycloheptanes e. g. (158) and 

other half caged structures such as (159). In a Drieding 

model of steroid (156), the distance between the two hydro- 

gens is 1.8A. This distance is however greater when molecu- 

lar mechanics studies are performed on the structure. These 

showed that the distance is approximately 2.10A. However, 

even this distance is considerably less than the normal Van 

'HH 

HHH 
H 

HH 

(157) (155) (159) 
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der Waals separation between two adjacent hydrogens (see 

Chapter 6). In the mass fragmentation pattern of this com- 

pound, the major daughter product from the relatively weak 

parent ion (m/z= 344) were found at m/z= 329 corresponding 

to the loss of a methyl group. As with the other steroidal 

oxathiolanes the major ion, (m/z 115), corresponded to 

oxathiolane fragment (138). 

3.3.10 6-Methvlene-3a, 5-cyclo-5c-androstane-17(S)-spiro-2'- 

(1,3-oxathiolane) as a vinyl cyclopropane analogue. 

When attached to a 7r-system, ,a cyclopropane ring is 

characterised as a strong r-donor. The interaction of the 

3e' (r) Walsh (Nuckel) orbital (see Chapter 2) with the r- 

system is maximal when the cyclopropane ring adopts a bi- 

sected (160) rather than a symmetric conformation (161) with 

respect to the adjacent A-system. 56 With the Walsh57 model 

(see Chapter 2), this conformational requirement is readily 

., 
R2 

I ̀ýýý( 
= R2 ... rR 

R, 

(160) 

2 R 
R2 

R1 
R 

(161) 
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explained by considering the symmetry of the orbitals in a 

system such as (162). The bisected conformation allows maxi 

mum overlap between the p-orbitals of the cyclopropyl carbon 

and the adjacent r-system. Generally, this conformational 

R 
R/, ' "R ,, ý,:. RR 

(max) (min) 

(162) 

dependency is assumed58-63 and used to explain the unusual 

spectroscopic properties of such r-systems, but a small 

number of workers64,65 have provided evidence to the con- 

trary, describing the cyclopropane ring as a "seat of high 

electron density whose polarisability is devoid of stereo- 

chemical bias". 65 This can possibly be attributed to the a- 

aromatic nature of cyclopropane. Differences in conjugation 

have been attributed to ring strain66 altering the p charac- 

ter of the relevant carbon atoms. 67 

Obviously, the chemical properties of cyclopropanes are 

greatly altered by conjugation with adjacent pi-systems. 

Vinylcyclopropane (VCP) (163) undergoes unimolecular rear- 

rangement to yield cyclopentene when heated. 68-71 The mecha- 

nism and stereochemistry of this rearrangement have been 

ý-ý 
(163) 
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discussed intensively72 and the potential of this structur- 

ally interesting 6-methylene steroid to undergo a series of 

reactions (for example, the system X-C(5)-C(6)-C(6'), where 

X is the mid-point of the C(3)-C(4) bond, possesses a re- 

markably geometrical similarity to 1,3-butadiene) is worth 

mentioning (164). Thus, the cyclopropane ring, whether 

considered as a-aromatic or to be in the sp2.2 hybridised 

state60 can (if it is allowed to assume the correct geome- 

try) conjugate with the vinyl group and thus enable the 

compound to undergo many interesting reactions. 58 These 

include Diels Alder type reactions to yield 5 ring steroid 

analogues such as the theoretical product (165) of the 

reaction of (156) with acrolein. This ability is dependent 

on the ability of the vinyl cyclopropane moiety to conju- 

gate, a property assumed here to be conformationally depend- 

ent, and is discussed below. 

3.3.11, Conjugation In 6-methylene-3a. 5-cyclo-5a-androstane- 

17(S)-spiro-2'-(1.3-oxathiolane) 56 . 

A measure of the degree of overlap of the orbitals of 

the cyclopropane carbons and the vinyl carbons (and thus the 

system's ability to conjugate) can be found in the determi- 

nation of the torsion angle X-C(5)-C(6)-C(6'), where X is 

the midpoint of the C(3)-C(4) bond (164). Allan59 calculated 

that this angle should be within ± 30° of the cis (0') or 

trans (180°) bisected conformations (162) which allow for 

maximum overlap and therefore maximum conjugation between a 

cyclopropane ring and the r-acceptor substituent. Other 

angular values suggest that conjugation is somewhat reduced 
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(although still apparent). X-ray crystallography would have 

provided valuable information concerning possible conjuga- 

tion, however, suitable crystals were not obtained and 

therefore molecular mechanics were undertaken as an alterna- 

tive source of information. 

R 
x 

HH 

iii:.... .... 

OHC^ cKj 

(164) (15e) (165) 

The molecular mechanics model of this compound (see 

Chapter 6) is however of limited use because the programme 

does not contain the cyclopropane carbon, either as a a- 

aromatic or a sp2.2 hybridised atom, in its range of atom 

types. More importantly, any minimisation will not recognise 

the potential overlap of cyclopropane orbitals with those of 

the r-acceptor group; for this quantum mechanics modelling 

would be required. A model was however created and its 

structure analysed because it was realised, from a Drieding 

model, that a considerable non-bonded repulsion may exist 

between the 4-H and 6'-H. Thus by creating a model with a 

torsion angle X-C(5)-C(6)-C(6') of 0' (cis-bisected) and 

reducing, in steps, the structure's overall energy until a 

minimum was reached, it became apparent that there was a 

proportional relationship between the separation of the 

hydrogens at positions 4 and 6' and the energy of the mole- 

cule. The minimised structure was attained when the torsion 

angle X-C(5)-C(6)-C(6') reached 600. From this it would 
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therefore seem reasonable to assume that there probably 

exists in this compound, a conflict between the maximum 

overlap of the conjugating orbitals and a minimisation of 

the steric repulsion between the 4 and 6' hydrogens for the 

molecule to attain a preferred and minimised structure. 

As pointed out, the programme in attaining the derived 

structure, could not take into account the possible overlap 

of orbitals and therefore resulted in a model based purely 

on steric hindrance. However, the torsion value obtained 

(60°) may be considerably reduced by stabilisation derived 

from increased conjugation. To help ascertain the correct 

structure and so determine if the system is totally dominat- 

ed by the steric repulsions or if the overlap of orbitals do 

contribute to the compound's structure further information 

must be obtained. Thus the experimental data obtained in 

this work was compared to those of other structures. 

Spectral Evidence of Conjugation 

Ultra violet, IR and 1H NMR spectral data all poten- 

tially offer a degree of insight into the system's ability 

to conjugate. 

1HNM spectroscopy. 

A considerable amount of NMR work has been undertaken 

to study the preferred conformations of VCP. However not all 

of these methods are applicable to the methylene steriod 

(156). A study of, for example, the temperature dependence 

of the 1HNMR spectrum of the compound, in an similar manner 

to the work of De Mare, 73 (who determined a three well 
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torsion potential and therefore the favoured structure, on 

the analogous, but free rotating, VCP) would probably yield 

limited information considering the geometrical restrictions 

of the system. 

However, as the simple example below illustrates, an 

insight into the degree of conjugation can possibly be 

gleamed by the actual positions of the methylene signals on 

the NMR spectrum. The introduction of conjugation creates an 

upfield shift in the signal associated with the ß hydrogen 

and a downfield shift in the a hydrogen's signal. Thus in 

structure (166) when R= H, both protons H. and Hß resonate 

at b= 5.28. Where R= CHCH2, H. resonates at 6= 6.27 and Hp 

resonates at d= 5.06.74 The latter is an example of maximum 

conjugation. Where this is restricted by structural factors 

the corresponding shifts in the signals of the a and ß 

hydrogens are diminished. Therefore a simple estimation of 

H H., R= H or H 

Hp RH 
>=<H 

(166) 
the conjugation could be attained by comparing the chemical 

shift values of the compound's methylene (ß) hydrogens with 

similar compounds where the cyclopropane ring is substituted 

with other groups. Analogous steroid structures could not be 

found for this purpose therefore compounds possessing, 1) a 

methyl group and 2) a second methylene group, in place of 

the cyclopropane ring of partial structure (168) were used 

for comparative purposes. Thus the compounds, 2,6-dimethyl- 

methylene-cyclohexane (167)75 and 1,2-dimethylenecyclo- 

129 



Hz H' HS H, Ht H, 

(im (tai) (169) 

hexane76'77 (169), were compared to the partial structure 

(168) of the cyclosteroid to give a series of structures of 

theoretically increasing conjugative ability. The results 

are shown in Table 4. 

Table j 

1HNMR chemical shifts values pf "B-protons"'of structures 

(167). 168 and 169 

Structure Chemical Shifts B 
-of -protons'(ppm) 

H1 li 2 

167 4.51 4.51 

168 4.69 4.57 

169 4.83 4.55 

Note that VCP (163) predominantly (75%) assumes the s- 

trans conformationn77 in solution and therefore its NMR 

data79 cannot be compared to those of the steroid (156). 

However, these results show that for these types of 

systems there can be no direct determination of the degree 

of conjugation based on the chemical shifts of the ß-protons 

because the extremely "tight" s-cis or "homoannular" geome- 

try of the systems (168) and (169) result in the methylene 

hydrogens experiencing a strong deshielding effect because 

of their close proximity to the other "half" of the system. 
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Furthermore, this closeness most certainly enhances the 

differences between the cyclopropane ring's a-aromaticity 

character (see Chapter 2) and the alkene, s sp2 character. It 

could be said that the vinylcyclopropane system in the 

steroid does, to a certain degree, emulate conjugated double 

bonds by an overall deshielding of the methylene hydrogens 

but this is most certainly a through space effect rather 

than an direct effect of conjugation. However, it may be 

possible to circumvent these problems. Molecular models 

(Chapter 6) indicate that atom H1 does not lie within the 

cyclopropane's a-aromatic deshielding zone and therefore may 

be used as a more reliable indicator of conjugation. Also as 

both the conjugation and deshielding ability of an sp2 atom 

are derived from that atom's sp2 character, it is not unrea- 

sonable to assume that since the ability of system (168)-to 

conjugate is "hidden" by the inherent deshielding effect of 

the system an estimation of the conjugation can be inferred 

from that deshielding effect. Considering the above 1HNMR 

data this would imply a relative conjugative ability (with 

respect to the dimethylene system (169) (which is itself not 

100% conjugated74) of approximately 50%. This compares to 

the estimated maximum conjugation value for VCP (163) of 

71%79 where free rotation of the cyclopropane ring pi-accep- 

tor system allows a planar configuration and hence maximum 

conjugation. In the steroid however, the steric effects 

between 4-H and 6'-H push the moiety away from the preferred 

planar configuration leading to a torsion angle X-C(5)-C(6)- 

C(6') greater than 30' and reduced conjugation. 
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Ultra Violet Spectroscopy. 

A comparison of the U. V. spectrum of the steroid with 

VCP, the non-conjugated methylene cyclohexane (167) and 1,2- 

dimethylene cyclohexane (169) could not really offer an 

insight into the amount of conjugation present because of 

the poor quality of the spectrum. However, even if a suit- 

able spectrum was obtained the extra strain involved in the 

fused ring system, compared to the strain found in monocy- 

cles (e. g., (167) and (169)), would drastically alter the UV 

spectrum of a group. A search for more suitable model ster- 

oids was not successful. 

IR spectroscopy. 

A better insight into the conjugation of this system 

can be found in the IR spectrum of the product as field 

differences such as in for example, the steroid (156) and 

VCP (163), have smaller effects on these spectroscopic 

values. The C=C vibration of the steroid's methylene group 

occurs at 1642 cm 1. This compares to 1651cm-1 for the non- 

conjugated methylene cyclohexane80 (170), 1639cm-1 for 

vinylcyclopropane (163)81 and 1635 cm -1 for the dimethylene 

compound (169). 82 Thus by this spectroscopic technique, the 

methylene steroid (156) possesses approximately 50% of the 

conjugation of the dimethylene compound (169). The data also 

illustrates the slightly reduced conjugation in the steroid 

as compared to VCP itself, most certainly because of the 

repulsive forces between the 4a-H and its neighbouring 6- 

methylene hydrogen. 

The above data would therefore seem to indicate that 
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)ii 
v) 

(170) (156) (161) (163) 

conjugation is present in the molecule, albeit at a slightly 

reduced level compared to the trans rotamer vinylcyclopro- 

pane (163). Thus the steric repulsions between the appropri- 

ate methylene and cyclopropane hydrogens appear to predomi- 

nate over a stabilising effect induced by increased conjuga- 

tion and result in a geometry similar to that derived from 

molecular mechanics. Further confirmation of the steroid's 

conjugative ability could be gleaned from the moiety's 

ability to undergo thermal rearrangement in a similar fash- 

ion to VCp. 68-71 As mentioned, assuming this donative abili- 

ty of the cyclopropane ring to the exocyclic methylene group 

exists, there is a considerable potential for further chemi- 

cal studies. 

Although the formation of the precursor to the target 

steroid (43) had thus been attained the overall yield, even 

considering the number of steps, was very poor (18%). This 

of course does not take into account the reduction of the 

double bond (see below) and deprotection of the ketone group 

in (156) . 
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3.3.12 Potential methods for the reduction of 6-methylene- 

3a, 5-cyclo-5a-androstane-17(S)-spiro-2'-(1,3-oxathiolane) 

(156). 

Cyclopropanes can be cleaved at the least hindered bond 

by catalytic hydrogenation. This technique can be used in 

the synthesis of gem dimethyl groups. 83-85 

However, although cyclopropane compounds have a tenden- 

cy to be reduced by standard catalytic reduction methods a 

few examples where this does not occur and the double bond 

is selectively reduced have been described. One such example 

by Burn et x. 53 was the reduction of 7-methylene-3a, 5- 

00 

00 

(171) (172) 

cyclo-5a-androstanee-6,17-dione (171) to its 7ß-methyl 

derivative (172) by the action of 5% palladium charcoal at 

room temperature. However, in this particular case the 

double bond was not in conjugation with the cyclopropane 

0 

0 

(111) 

0 
(173) 

0 
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ring. That said however, catalytic reduction of 3a, 5-cyclo- 

5a-androstan-6-one (111) yields the 5a-6-one structure (173) 

because the 3,5 carbon bond is aligned with the'-system of 

the ketone group. 86 It has already been shown that this 

alignment does not exist in the 6-methylene steroid (156) 

and therefore the propensity of the cyclopropane ring in 

this system to open is probably decreased. This would there- 

fore appear to be the most suitable method for the 

-(43) 

CK, 

(156) 

reduction of (156). However, it should be noted that although 

yields of the above reactions are good, the required deprotection 

of the 17-ketone group would inevitably result in overall yields of 

under 10%. Therefore, considering this and the small quantities of 

the precursor produced a third alternative route to a 6-methylene 

derivative was utilised (section 3.2.2). 
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3.4 Formation of A 17-C protected cyclosteroid by insertion 

of 17-C protecting group prior ro introduction p1 cyclopro- 

pane ring: - acetate protection. 

Due to the initial difficulties involved in forming a 

17-C protected 3,5-cyclosteroid and the rather low yields 

involved in the oxathiolane series, an alternative approach 

to a 6-methylene steroid, outlined below, was adopted. The 

first step in this process, effectively the protection of 

the carbonyl group by its conversion to an acetate group as 
87 used by Labler, was the formation of the 3-C tosylate or 

mesylate, a relatively straight forward step utilised in 

several other aspects of this work. 

3.4.1 Formation 3B-tosyl-5-androsten-17B-ol (174a). 
_of 

The alcohol (174a) was synthesised by the direct reduc- 

tion of the keto group by two common reducing agents. Ini- 

tially the method of Labler, 87 i. e., using sodium borohy- 

dride (NaBH4) with ethanol as the solvent, was chosen. The 

ethanol contained a small amount of dioxane to increase the 

solubility of the steroid, as at room temperature the solu- 

bility of the steroid (98a) was approximately 0.5g /1. The 

recommended 30 minute period of reaction was found to be 

0 OH 

FtSO3 

(96c: R- p-OýqgH4 
b: R- CFA) 

RV. )3 

(174a: R- p- GH4 

b: R- cF3) 
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inadequate and this was increased to 2 hours to ensure 

complete reduction of the compound. 

The more powerful reducing agent, LiAlH4, with a tet- 

rahydrofuran/diethyl ether solvent system also gave the 

required alcohol, in slightly greater yields, after 30 

minutes. To prevent the possible reduction88,89 or substitu- 

tion of the tosylate group, the reaction temperature was 

maintained at -10' over the reaction period. The isolated 

product was a white solid which recrystallised from acetone 

as needles. Evidence of the conversion was supported by the 

appearance of a 1H triplet at d= 3.63, attributed to the 17- 

H geminal to the alcohol group, in the compound's 1H NMR. 

The formation of the ß-alcohol group, 90 as would be expected 

because of steric hindrance induced by the 18-methyl group, 

was shown by the shift of the methyl signal from d= 0.89 in 

the case of the ketone (where the methyl group lies in the 

deshielding zone of the carbonyl group) to d= 0.74 for the 

alcohol. Reduction was indicated by the loss of the carbo- 

nyl absorption and the appearance of hydroxy absorption in 

the IR spectrum of the compound. 

3.4.2 Formation of 3B-mesyl-5-androsten-17B-ol (174b). 

In an identical manner to the formation of (174a), the 

mesylate was reduced to the alcohol (174b) with lithium 

aluminium hydride. 

3.4.3 Formation of 5-androsten-38.17B-diol-3-tosvl-17-ace- 

tate 75a 

Following the procedure of Labler, 87 the alcohol was 

converted to the acetate (175a) by reaction in a pyridine 
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acetic anhydride mixture. This was successful if there was 

at least a 2: 1 ratio of acetic anhydride to steroid (72 

hours) but not surprisingly, considerably quicker with a 

greater excess of acetic anhydride (16 hours). The off white 

product, isolated by flash chromatography, melted at 118- 

120"c with decomposition, a trait of all tosylates or mesy- 

lates synthesised in this work. 

OH 

RS% 

(174. R- p-CI{yCv 
bR-c143) 

RSOO 

(175c R- p--d{3C, F4 

b R- cH3) 

OAC 

As expected, the 1H NMR spectrum of this compound was similar to 

that of its corresponding alcohol. The 17-H signal, as expected 

occurred further downfield because of the greater electron 

withdrawing properties of the acetate group. A singlet (3H) 

corresponding to the acetate methyl group was present at d= 2.02. 

The conversion of the alcohol to the acetate caused a shift in the 

position of the 18-methyl group signal which appeared at 6= 0.78. 

The presence of the acetate group was evident in the IR spectrum of 

the product where a strong absorption band at 1720cm-1 

corresponding to an acetate carbonyl group was present along with 

an ether linkage absorption at 1030 and 1250cm 1. 

A variation to the above procedure, gently heating the 

reaction mixture at 60"C for an 8 hour period, gave differ- 

ent results. The product crystallised as spirals after the 

slow addition of cold water to facilitate the decomposition 

138 



of acetic anhydride and induce crystallisation. However, an 

1H NMR of the product possessed a considerable number of 

unexpected signals in the aromatic region. Further recrys- 

tallisations did not result in any alteration to the NMR 

spectrum of the compound. In addition to the presence of 

signals possibly attributed to pyridine, a considerable 

downfield shift (0.6ppm) of the 17-H signal occurred. The 

compound was therefore designated as a tosylated steroid- 

acetate-pyridine complex. Considering the movement in sig- 

nals from the starting material, complexing most likely 

occurred at the D-ring, but the exact structure of the 

compound was not determined. Chemical analysis (C, H, N, & 

S) agreed with this proposed composition. 

3.4.4 Formation of 5-androsten-3B. 17B-diol-3-mesyl-17-ace- 

tate (175b). 

The alcohol (174b) was converted to the acetate (175b) 

by identical means to those used for the tosylated steroid 

(174a) . 

3 Formation of 3a. 5-cyclo-5a-androstane-6ß. 170-diol-17- 

acetate 176 

Cyclisation of the sulphonate steroids (175a or b) was 

undertaken by the acetone solvated method. A6 hour reflux 

and the previously described isolation by flash chromatogra- 

phy gave the required cyclosteroid (176). The 1H NMR of the 

steroid indicated the successful conversion to the cyclopro- 

pane system with the absence of a signal corresponding to an 

alkenic proton and the highfield absorbance of cyclopropane 
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OJka 

RS03 

(1750: R- p-CFtC, H4 OH 

b: Ri CHU) (176) 

OA6- 

protons, i. e., a7 peak multiplet identical to that of the 

parent 3,5 cyclosteroid (41). Also in common with the parent 

compound was a triplet at 6= 3.29 corresponding to the 

equatorial 6-H. The acetate methyl group signal occurred at 

6= 2.03. While the 18-methyl group remained at 6= 0.80, the 

19-methyl signal was shifted to 6= 1.06, a reflection of the 

axial oxygen function at the 6 position44 and the a-aroma- 

ticity of the cyclopropane ring42,43 (Chapter 2). The IR 

spectrum of the product showed only one weak band at 3050cm 

1 corresponding to the cyclopropane ring. Strong absorption 

bands at 3350,1720 and 1285/1020cm 1 attributed to OH, C=O 

and C-O-C functions respectively. 

3.4.6 Formation of 17B-acetoxy-3a. 5-cyclo-5a-androstan-6-one 

f177). 

The oxidation of the alcohol (176) was accomplished 

with Collins reagent. 45,46 General reaction conditions 

were identical to those used in the formation of the 17- 

thioxalane-6-keto steroid (151) (section 3.3.8). The pale 

brown oil recovered from the reaction medium was then sub- 

jected to tlc and the product isolated. Recrystallisation 

from acetone gave fine plates. The 1H NMR spectrum of (177) 
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OH 0 

(176) (177) 

OAc 

as with the previous alcohol showed a 1H triplet associated 

with the 17-H geminal to the acetate, a 3H singlet at d= 

2.01 corresponding to the acetate group and a 3H singlet at 

S= 0.81 corresponding to the 18-methyl group. Differences 

were noted with the 19-methyl group signal and cyclopropane 

signals. The 19-C methyl group was shifted slightly upfield 

while the cyclopropane splitting pattern was altered and 

shifted downfield (Chapter 2 and this chapter, section 

3.3.8) in accordance with the conversion of the 6-C func- 

tionality from an alcohol to a ketone. As with the IR spec- 

trum of compound (176), the cyclopropane C-H stretching 

frequencies of the product were not prominent with only one 

weak band at 3060cm 1. Remaining prominent was the carbonyl 

absorption at 1730ci 1 attributed to the acetate group along 

side a second new carbonyl signal at 1675cm-1 corresponding 

to six membered ring ketone. Strong absorption associated 

with the acetate group was also present at 1265 and 

1040 cm-1. 

3.4.7 Formation of 6-methylene-3a. 5-cvclo-5a-androstan-17B- 

01 ins_- 

In a similar method48,52 to the conversion of the keto 
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steroid (151) to its 6-methylene derivative (156), compound 

(177) was reacted with the Wittig48 ylide (153) formed by 

the action of n-butyllithium on methyl triphenylphosphonium 

bromide. It had been reported by Sondheimer52 that an ace- 

tate group was susceptible to cleavage under these condi- 

tions so the reaction in refluxing dry ethyl ether was 

extended to 36 hours in a bid to remove the protecting group 

by hydrolysis. The product, a clear oil, when subjected to 

ok 

0 
(177) 

OH ok. 

+ 

Clt all 

(176) (17v) 

tlc gave three products. The major product, a white solid, 

was shown by spectroscopic methods to be the desired alcohol 

(178). The 1H NMR of this compound showed a doublet (2H) 

assigned to the 6-C exocyclic methylene group at-S= 4.62. 

With the loss of the acetate group, the 17-H signal was 

shifted upfield and as for the 17-alcohol (174) appeared as 

a triplet. Signals corresponding to the two methyl groups at 

18-C and 19-C, in accordance with aß hydroxy group present 

at 17-C and a 6-methylene group were present at 6= 0.86 and 

0.76 respectively. The cyclopropane signals were identical 

with those of the thioxalane derivative (156). The IR spec- 

trum of this compound possessed an O-H absorption band and 

no acetate absorption. More prominent than either the alco- 

hol (176) or the ketone (177) were weak, sharp bands associ- 
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ated with the cyclopropane and methylene groups, which 

because of their close proximity and partial conjugation are 

perhaps best considered as one vinyl cyclopropane moiety, at 

3090,3040 and 3020cm 1. Also associated with this grouping 

was a methylene C-C band at 1642cm 1 and strong alkenic C-H 

absorption at 890cm 1. For a full discussion of this cyclo- 

propane methylene system refer to section 3.3.10 and 3.3.11. 

The second compound, accounting for approximately 10% 

of the product weight was shown to be 6-methylene-3a, 5- 

cyclo-5a-androstan-l7ß acetate (179). The 1H NMR spectrum of 

this compound showed an identical methylene doublet and a 

17-acetate methyl signal, identical with the other acetates. 

The two other 3H singlets attributed to the 18 and 19-methyl 

groups occurred at ö= 0.86 and 0.77. The cyclopropane pro- 

tons, in an identical pattern to the alcohol (178) absorbed 

as a triplet at 6= 0.41. The weak, sharp bands in the IR 

spectrum associated with the cyclopropane and methylene 

moiety were less prominent as compared to the alcohol, most 

certainly in this case because of the lower purity of the 

minor product. A strong acetate ether linkage band and 

strong carbonyl absorption, at 1250cm 1 and 1730ci 1 respec- 

tively, were also present. The carbonyl absorption obscured 

the methylene signal at 1642cm 1, but evidence of this group 

was a strong absorption band at 900cm 1. The third compound 

isolated was the unreacted 6-ketone (177). 

3.3.8 Formation of 6-methylene-3a. 5-cyclo-5a-androstan-17- 

one 80 

The 17-functional group was converted back to a ketone 
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group by reacting the alcohol (178) with an excess of Jones 

reagent. 91 The 1HNMR spectrum of the product showed no ab 

sorption corresponding to the presence of an alcohol group. 

In other respects the spectrum was identical to the starting 

material's except for the expected shift in the 18-C methyl 

signal. The IR spectrum of the product showed strong 5- 

membered ring keto absorption and no OH absorption. 
OH 6 

Oil CF2 

(178) (180) 
Thus by the above proceedure, a 6-methylene steroid, a 

precursor to the 6-methyl derivative (3) was synthesised in 

overall yield greater than that obtained in the two alter- 

native syntheses. However, the low yield (23% over 6 steps) 

prevented the isolation of quantities of the methylene 

compound suitable for reduction. 

144 



3.5 Formation of 6B-methyl-3c. 5-cyclo-5a-androstan-17-one 

u by insertion of 17-C protecting group prior to simulta- 

neous introduction cyclopropane ring and em thyl group 

The initially conceived methods for the introduction of 

the methyl group at the 6-C position (sections 3.2 and 3.3) 

although successful gave the desired steroid (43) in low 

yields primarily because of the number of steps required. 

This prompted the search for alternative, higher yielding, 

methods for the synthesis of the desired steroid. 

Cyclisation with dimethyllithium cuprate. 

Cyclisation with dimethyllithium cuprate was attempted 

because of the noted sulphonyl substituting properties of 

the reagent. 92 It was hoped that the relative inertness of 

the reagent to carbonyl groups would allow direct access to 

the desired steroid (43) from the mesylate (98b). However, 

o ON 

(91-4 (tat) 

little if any reaction occurred at 3-C over a limited period 

and a prolonged reaction resulted in (after aqueous work up) 

the isolation of the potent androgen 17a-methyl-5-androsten- 

3ß, 17ß-diol (181). The absence of any form of reaction at 3- 

C was attributed to the poorer (relative to the tosylate 

group) leaving group properties of the mesylate moiety. 
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3.6 Formation 6B-methyl-3a. 5-cyclo-5a-androstan-17-one 

(43) via 17-carbonyl steroids. 

As an alternative to the use of protecting reagents two 

methods for the introduction of a 6-methyl group were con- 

ceived: the statistical6 introduction of a methylene group 

at the 6-C position of the dione (111) and introduction of a 

6a methyl group with dimethyllithium copper via a 6-sulpho- 

nate. 

3.6.1 Selective introduction of a 6-methylene group. 

The dione (111) was directly treated with a one molar 

equivalent of the methylene ylide (153) under identical 

conditions to those employed in the Wittig48 reaction 

(section 3.3.9) of protected steroids (151) and (177). A t1c 

of the resulting oil indicated a four component mixture. 

Separation and purification of the required 6-methylene keto 

0 C CH, 

+ 

oc0 
(iit) (ttt) (194 

steroid (180), spectroscopically identical to a previous 

sample (section 3.3.8), was readily achieved but the overall 

yield was low. The major product of the reaction was the 17- 

methylene steroid (182) where nucleophilic attack occurred 

at the considerably more hindered carbonyl group. This is a 

graphic example of the ability of the cyclopropane ring to 
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conjugate with the ketone function and deactivate (with 

respect to nucleophiles) the carbonyl carbon. 

3.6.2 "Direct" introduction gf_ .4 
6-methyl group. 

This particular route initially looked very promising, 

the final target molecule (43) should theoretically be 

obtained from the readily available 3,5-cyclosteroid parent 

alcohol (41) via only two reactions, and should not require 

any form of protection. The alcohol was to be converted to 

the sulphonate (183) by reacting the steroid under previous- 

ly described conditions. The sulphonate would then be treat- 

ed with an alkyl copper reagent92 such as dimethyllithium 

0 0 0 

OH 

(41) (193) (164) 

cuprate to give, with inversion, the 6a methyl steroid 

(184). Although the second stage might have lead to some 

fragmentation of the cyclopropane ring and hence a small 

yield, it was hoped that overall yields from DHEA (97) would 

be much improved. The product could then be compared to the 

products of hydrogenation of the 6-methylene compounds to 

readily identify the isomers. 

However under further investigation, problems associat- 

ed with the first stage of the sequence, the conversion of 

the alcohol to the sulphonate, were identified. Wagner et 

al-93 noted that in the reaction between the 6-alcohol and 
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p-toluenesulphonic acid the product was not the expected 

sulphonate but the 3-pyridinium tosylate salt. 94 The salt is 

most certainly formed by the rearrangement of the 6-tosy- 

late. The electron withdrawing properties of the tosylate 

group inducing a partial positive charge at 3-C which is 

subsequently attacked by the nucleophilic pyridine. The 

mesylate group however possesses reduced electron withdraw- 

ing properties, which it was hoped would prevent rearrange- 

ment. Under standard mesylation conditions an intense red 

coloured precipitate was formed which rapidly disappeared to 

give a dark brown solution. The product was shown to be a 

rearranged product, i. e., the pyridinium mesylate salt. This 

method was therefore abandoned although an extensive inves- 

tigation might have lead to a successful method, e. g., the 

use of a leaving group that would not induce rearrangement 

but could be readily substituted by a methyl group from 

dimethyllithium cuprate. Use of less nucleophilic solvent 

could also be investigated. 
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Chapter 4 

Formation 6B-methyl-7a-hvdro2v-3 5-cycl 

androstan-17-one 
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4.1 Introduction 

As discussed in Chapter 3, the introduction of a methyl 

group into the carbon framework of a steroid can frequently 

enhance its biological activity. 1 It was therefore consid- 

ered of interest to investigate molecules with a hydroxy 

group vicinal to the methyl group at 6-C. 

00 

OH 0 

(ý) --- 
o (1 88) 

OH 

(190 

OH 

(180) 

V 

(187) 

The initial reaction sequence to be undertaken was the 

dehydration of the alcohol (41) to the delta-6 steroid (185) 

followed by the protection of its keto group (186). Subse- 

quent epoxidation to form (187), followed by reaction with a 

Grignard reagent (MeMgCl) should result in the desired 

target molecules (188) along with the 7-methyl epimers 

(189). Deprotection would lead to compounds (44) and (190). 

However, as problems were previously encountered in main- 

taining the cyclopropane ring during protection of the 17- 
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ketone group (Chapter 3), [a necessity when using Grignard 

reagents] this final reaction choice was not definitive. 

Useful information was hoped to be gleaned from this 

final step. Thus the introduction of an alkyl group at the 6 

position and a hydroxy group at carbon 7 (44a and b) [or its 

structural isomer (190a or b)] was undertaken not only 

because of their novel structures and potential activity, 

but also to investigate if any participation of the cyclo- 

propane ring occurred during reaction of the vital interme- 

diate epoxide and the nucleophilic reagent. A lack of any 

directing effect on the part of the cyclopropane ring would 

00 

(440) (44b) 0 

OH 

(190o) 

probably result in a greater proportion of the 7-methyl 

isomers (190a or b) [section 4.5]. Although structurally 

interesting it would not be too unreasonable to assume 

(considering the deactivating properties of both these 6- 

hydroxy2 and 7-methyl3 groups) that these molecules possess 
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OH 

(190b) 



little activity as anti-fertility agents. 

Work has been carried out on similar compounds, e. g., 

(191)4 by a Mannich reaction on the 6-ketone (192), or 

(193), by the cyclisation of the 3-sulphonate (194). 5 

These compounds are readily accessible because introduction 

of the hydroxy group can be attained by, for example, the 

cyclisation methodology utilised in this work. However, the 

formation of the 6-methyl isomers (44), by virtue of the 

position of the methyl group, provide a whole new series of 

problems. 

0 

(192) 

0 

T. 0 

(I") 

0 
(191) 

0 

OH 

(») 

The proposed scheme was considered the most effective 

route to the target molecule(s), although it later became 

apparent that another route was available. Thus the biologi- 

cal hydroxylation of the 3,5-cyclosteroid (41)617 gave 

small quantities of the 7-hydroxy derivative (195). There- 

fore the target molecule(s) synthesised here could be avail- 

able by the biological hydroxylation of the 6-methyl cy- 
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closteroid (43) (Chapter 3) in conceivably higher yields 

because of a directing effect induced by the additional 

methyl group. 6 

0 

OH OH 

(43) (44) 

.;. 

0 

163 

(195) 
o 

(41) 
0 



4.2 Formation of 3a, 5-cyclo-5a-androst-6-en-17-one (185). 

The first step in the reaction sequence, viz. the 

conversion of the parent 6ß-alcohol (41) to the 6-alkenic 

steroid (185)8 was undertaken by the dehydration over alumi- 

na (activated, neutral, Brockman Grade I), of the alcohol 

(41), in refluxing xylene. Such conversions have been per- 

00 

OH 

(41) (183) 

formed by Hanson and Knights9 and Riegel et x,. 10 An alter- 

native synthesis of the steroidal alkene (185) was via'the 

pyrolysis of the 6-acetate (105). Work by Hanack et al. ll 

showed that the pyrolysis of the acetate of spiro-[2,5]- 

octan-4-ol (196) led to the alkene derivative (197) in 

exceptional yields. However, as formation of the alcohol 

(41) was achieved in considerably higher yields than that of 

the acetate (105), the former dehydration reaction was 

preferred. 

0 

OAc 

(leek (107) 

OA* 

(105) 

Although a 1H NMR analysis of the crude reaction 

product showed that the desired product had been formed it 
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was apparent that some decomposition of the steroid had 

occurred. Therefore, to try to reduce this decomposition and 

ease the isolation of the product from the reaction mixture 

toluene was chosen as an alternative solvent. This resulted 

in improved yields as the lower reflux temperature caused 

less decomposition of the steroid. Also, filtering off the 

aluminium oxide and washing with chloroform led to a near 

quantitative return of organic material. Both sets of condi- 

tions afforded a pale brown oil, which by tic, was shown to 

consist of two major components in a ratio of approximately 

4: 1. These were successfully separated by preparative tlc or 

column chromatography. The major component, the required 

alkene, was recovered as an off white solid which when 

recrystallised from ethanol gave colourless plates. The 

successful dehydration was evident from the 1H NMR spectrum 

of the compound. Absent from the spectrum, was the signal 

from the 6-H atom geminal to the hydroxy group in the start- 

ing material. New signals, a pair of double doublets (ABX 

system) in the alkene region of the spectrum, were attribut- 

ed to the atoms 6-H and 7-H. The coupling between these 

atoms (3J= 9.6Hz), indicated that the dihedral angle between 

the protons was very small, confirming the cis nature of the 

alkenic group. Both the 7-H and 6-H atoms were again coupled 

to the 8-H atom. The vicinal coupling between the protons at 

7-C and 8-C (3J= 2.3 Hz) was readily observed in most sam- 

ples but a particularly pure sample, obtained by recrystal- 

lisation, was required to detect the smaller coupling (4J= 

0.9 Hz) between the 6-H and 8-H protons. The position of the 

double bond resulted in the shielding of the 19-H angular 
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methyl group, and as a consequence, the angular methyl 

signals overlapped. Thus a singlet corresponding to 6 pro- 

tons was present at 6= 0.93. Finally, it was apparent that 

the complex splitting of the high field signals attributed 

to the cyclopropane protons had been altered, to a four peak 

multiplet, by the change at 6-C. The most prominent feature 

of the IR spectrum of the alkene was the sharp, high fre- 

quency C-H stretching bands associated with the cyclopropane 

and alkene moieties. The alkene function was also evident at 

1635 and 735 cm-1, the latter absorption again indicating 

the cis nature of the alkene. 

0. 

0 

(198) 

The major side product of the reaction, accounting for 

20% of the material recovered, was identified as 4-andros- 

tene-3,17-dione (198) by comparison of its melting point and 

molecular spectra (1H NMR, IR and UV) with an authentic 

sample. A trace of a third compound was isolated by column 

chromatography and shown to be 3a, 5-cyclo-5a-androstane-6- 

17-dione (111). 

The side products isolated in this work differed from 

those obtained by Hanson9 who unexceptionally12 isolated the 

required 3a, 5-cyclo-5a-androst-6-ene-17-one (185) (26%), its 

17-a (2%) and ß (4%) hydroxy derivatives and 3a, 5-cyclo-5a- 

androstane-6,17-dione (4%). Earlier work by Romeo8 and 
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Riegel et al. 10 produced an analogous side product to the 

major side product obtained here. Thus, treatment of 3a, 5- 

cyclo-5a-cholesteryl methyl ether (199)10 gave, as well as 

the expected 6-alkene (200), small quantities of cholesteryl 

methyl ether (201). It is therefore envisaged that the 6- 

alcohol, via a similar mechanism, gives the 3ß-alcohol which 

then undergoes oxidation and rearrangement to form (198). A 

d 000, + 

y msoed OW 
(u°) a" (M) 

possible mechanism, would involve a 1,4-shift via a alumini- 

um oxide-hydroxide complex and would presumably be intramo- 

lecular. However, where the rearranging group from 6-C is a 

methoxy moietylO no subsequent oxidation occurs. The fact 

that different products were observed can perhaps be at- 

tributed to the type of alumina used (as noted in the dehy- 

dration of 9a-hydroxy-4-androstene-3-17-dione13). As stated, 

the alumina utilised for the work carried out here was 

neutral, but neither of the above authors stated whether 

they used acidic, neutral, or alkaline alumina. 

OH 

M0 

(lee) 
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4.2.1 3a, 5-Cyclo-5a-androst-6-en-17-one As a vinylcyclo- 

propane analogue 

In Chapter 3 the ability of the cyclopropane ring to 

conjugate effectively with a r-acceptor group, 14-21 (in that 

particular case the exocyclic 6-methylene group) was dis- 

cussed in terms of whether the structure approached the 

cis-bisected conformation (torsion angle X-C(5)-C(6)-C(7)= 

00 where X is the midpoint between 3-C and 4-C, (202)). In 

the case of the exocyclic methylene steroid (180) it was 

determined that the conjugation present in the molecule was 

less than that of vinylcyclopropane'(163) because steric 

repulsion between the methylene hydrogen and the 4-H cyclo- 

propane atoms resulted in the twisting of the cyclopropane 

moiety away from the ideal cis-bisected conformation. Here 

(185), we are dealing with a equally ideal trans-bisected 

conformation. 
0 R CH2 

R 

(202) 
Since, in the case of the alkene (185) no similar steric 

repulsions exist, it is reasonable to assume that the trans 

bisected (X-C(5)-C(6)-C(7)N 1800) system it possesses is 

more akin to (trans) vinylcyclopropane and therefore pos- 

sesses a greater degree of conjugation than its exocyclic 

counterpart. This property, as discussed in Chapter 3, could 

potentially lead to some unusual chemical properties and 

rearrangements, e. g., rearrangement induced by thallium 

(III) ions. 22 
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conjugation , 
i} 3a. 5-cyclo-5a-androst-6-en-17-one. 

For maximum overlap between the cyclopropane orbitals 

and the sp2 hybridised bond, and hence maximum conjugation, 

the torsion angle X-C(5)-C(6)-C(7) must lie within about 

30917,18 of the trans-bisected conformation (180'). A Dried- 

ing model of the steroid (185) indicated that this torsion 

angle was indeed very close to this value while molecular 

mechanics (Chapter 6) on the other hand gave a value of 

158'. However, as discussed in Chapters 3 and 6, it should 

be noted that these calculations do not take into account 

the potential overlap between the cyclopropane orbitals and 

the sp2 hybridised bond which would have a tendency to 

increase this value closer to 180'. With the lack of any 

steric repulsions in the steroid (185) the conjugation 

present in this molecule should be significant, and greater, 

than that of the methylene steroid (180). Confirmation of 

this assumption was found in the spectral properties of the 

steroid and, it is hoped, in the X-ray structure of the 

steroid which is currently under investigation. 

Spectral Evidence Conjugation 

The 1H NMR, IR and UV spectra of the alkene (185) all 

potentially offer an insight into the amount of conjugation 

present in the molecule. 

Spectroscopy 

As discussed in Chapter 3, difficulties in estimating 

the degree of conjugation present in (180) arose because of 

the "tight" cis arrangement of the system. A similar problem 
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was not anticipated here. However, a literature search for 

steroids that possessed an isolated delta-6 double bond 

and/or the 4,6-diene system, used for a comparison with the 

steroid (185) provided a new set of problems. -Although 

delta-6 or delta-4,6 steroids are comparatively rare, the 1H 

NMR data for the steroid (203)23 and the cholest-4,6-diene 

(204)24 were available for a comparison of the position of 

the signal attributed to 6-H. However, because of complica- 

tions in the spectra no author had attempted the specific 

HO 

(203) (204) 

designation of signals. For example, the alkenic signals-of 

the relatively simple alkene (203) do not appear as a sin- 

glet as might be expected, but as two doublets at 6= 5.26 

and 5.48. (This splitting is noticed in other delta-6 ster- 

oids25 and in cyclohexene itself. 26) Furthermore, in the 

delta-4,6 steroids, the alkenic protons are unresolved and 

appear as a complex series of absorptions between 6= 5.43 

and 5.63. Thus a comparison with the alkenic signals from 

the steroid (185), 6= 5.59 and 5.25 (6 and 7-H respective- 

ly), is very limited. 

HY 

HP R 

(166) 

R= H or >--< H 

HH 
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As discussed in Chapter 3, the introduction of a conju- 

gating group into a system such as (166) induces a downfield 

shift in the a hydrogen's signal. Thus in (166) when R= H, 

both protons resonate at 6= 5.28. However when R= CHCH2, H. 

resonates at 6=6.27. This latter case is an example of 

maximum conjugation. Where this is restricted by steric 

factors the corresponding shift is diminished. Therefore, if 

it is assumed that in the diene (204) the most deshielded 

proton, whose signal occurs at 6= 5.63, is the 6-H atom, 

then even without knowing whether the 6-H atom in (203) 

absorbs at 8= 5.26 or 5.48 it is obvious that there is 

considerable conjugation in the cyclopropane steroid (185). 

Even if a small shift in the 6-H signal is due to the proton 

possibly being situated within the deshielding zone of the 

c-aromatic cyclopropane ring (c. f. 19-C, Chapter 2) conju- 

gation is still evident. A simple estimation, direct from 

these absorption values, indicates a level of conjugation of 

greater than 50% of that of the diene. This degree of conju- 

gation is also evident when the steroid moiety is compared 

to vinylcyclopropane (163), where the additional alkyl 

groups are taken into consideration. However, a comparison 

between the respective signals of 7-H show that this type of 

estimation of conjugation is not foolproof. Compared to the 

non-conjugated alkene (203) and the cyclosteroid (185), the 

7-C proton in (204) is deshielded more than anticipated, 

i. e., here a similar treatment does not work. 

It should also be noted that because of the intrinsic 

differences between the two steroids (185) and (180) a 

direct comparison between the steroids cannot be made. 
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However, a indirect comparison can however be made since the 

diene system (204) is generally assumed to possess greater 

conjugation27 than the exocyclic counterpart (205). Thus 

alkene (185) should possess considerably more conjugation 

than its exocyclic counterpart (180). Although a simplifica- 

tion, the above conclusion is in line with the predictions 

that steric repulsions in (180) twist the vinylcyclopropane 

moiety away from the maximum conjugating conformation. 

Infra-red Spectroscopy 

As mentioned above, data on a non-substituted delta-6 

steroid were rather scant. Therefore, a comparison of the 

C=C stretching frequency of the steroid (185) was made with 

cyclohexene (206) and the 4,6-diene (204). Thus, for the 

simple cyclohexene, the double bond absorbs28 at 1649cm-1 

while absorption by the conjugated diene29 occurs at 1620cm 

1 As would be expected, the steroid (185) absorption 

(1635cm-1) lies approximately midway between these two 

O Gý" ý.. 
Wi 

000 (1e5) (201) (205) 

values. For vinylcyclopropane, 30 absorption occurs at 

1639cm-1 but this discrepancy, i. e., that conjugation is 

apparently greater in the steroid, occurs because double 

bonds within rings have a tendency to absorb at lower 

2$ 
frequencies. This shift is generally however not great and 
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it would therefore be reasonable to assume that the conjuga- 

tion present in the steroid is comparable with that found in 

vinylcyclopropane. Since the opposite is true for exocyclic 

double bonds, i. e., that as the ring size increases the 

frequency of absorption increases, it would not be justifia- 

ble to make an accurate comparison between the two steroids 

(185) and (180) which have C=C stretching frequencies of 

1635 and 1642 cm -1 respectively. Indeed, "there are still a 

number of very interesting anomalies (in conjugation effects 

on C=C values) which still await an adequate explanation". 28 

However, if, as above, it is assumed that the system (204) 

possesses a greater amount of conjugation than its exocyclic 
27 

counterpart, (205) then greater conjugation in (185) can 

be inferred from the data. Thus unlike the exocyclic steroid 

(180), compound (185) possesses a similar level of conjuga- 

tion to that found in vinylcyclopropane (163). 

ultra violet Spectroscopy 

A further indication of conjugation in the steroid can 

be found in the UV spectrum of the steroid when it is com- 

pared to similar structures that possess either a second 

double bond in the place of the cyclopropane ring, e. g., 

(204) or a saturated carbon centre, e. g., (207). For the 

HH 
E 
H 

H 

(2M 

d613 (J dý 
(185) (204) 
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simple alkene (207), the chromophore absorbs at 193nm (S= 

11000 1. mo1-1. cm-1) , 3nm higher than cyclohexene because of 

the increased amount of strain in the system. 31 When a 

double bond is introduced to the structure, as in the case 

of the conjugated 4,6-diene (204) its 'i max 
is shifted to 

235nm (E= 19000 l. mol-l. cm-1). 27 In the case of steroid 

(185), its ) 
max can be found midway between these two re- 

sults at 216nm (F-= 14000 l. mol-lcm 1). Although an increase 

in the amount of strain at the ring junction carbon is 

created by the presence of the cyclopropane ring any shift- 

ing in absorbance maxima is small and cannot account for the 

whole of the 25nm shift. 32 Unfortunately, further estimation 

of this conjugation cannot be gleaned from a comparison with 

vinylcyclopropane due of the considerable strain differences 

between the two systems. Furthermore, a comparison between 

the UV data of (185) and (180) is not possible because of 

the vague nature of the UV spectrum of (180) and the intrin- 

sic geometrical differences between them. 

The above data would therefore seem to indicate that 

conjugation is present in this molecule at a level compara- 

ble to that of vinylcyclopropane and at a level greater than 

that found in the exocyclic counterpart (180). However, as 

the comparison of 1H NMR and IR data shows, this treatment 

is at best an approximation which, for the most part, fits 

reasonably well in these systems. There are most certainly 

additional complications to be considered if this simplistic 

approach is to be applied more accurately or indeed to other 

chemical situations. However, the results indicate the level 

of conjugation present in (185) is considerable and there- 
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fore the potential for further chemical studies on this 

steroid exists. 

4.3 Formation of 3a. 5-cvclo-5a-androst-6-en-17-spiro-2'- 

(1.3-dioxolane) (186). 

As discussed above, the protection of the ketone group 

was a prerequisite if the steroid epoxide, formed from the 

alkene, was to be reacted with a Grignard reagent. Although 

considerable problems arose in the protection of the 3,5- 

cycloparent (Chapter 3), similar problems were not antici- 

pated in the protection of the alkene (185) because of the 

lack of a leaving group at 6-C. 

0 

(185) (186) 

The reaction conditions used were identical to those 

initially defined by Salmi, 33 i. e., a benzene solution of 

the steroid was reacted with an excess of ethylene glycol 

and a catalytic quantity of p-toluene sulphonic acid. The 

water formed was azeotropically removed by a cooled Dean- 

Stark apparatus. Isolation of the reaction mixture gave a 

clear oil which, with the aid of chromatography, was sepa- 

rated into two compounds. The major product, a white solid, 

was recrystallised from ethanol as fine plates and was shown 

by spectroscopy to be the required alkene (186). Conversion 

was evident by the presence of a 4H singlet in the 1H NMR 
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spectrum at 6= 3.86 corresponding to the dioxolane protect- 

ing group. Unusually, the signal corresponding to the angu- 

lar methyl groups, a singlet (ö= 0.93) in the starting 

alkene, remained a singlet (d= 0.89) in the product. Conver- 

sion was further confirmed in the IR spectrum of the com- 

pound which showed no carbonyl absorption but strong ether 

absorption. 

There was spectroscopic evidence to show that the minor 

product was the starting alkene (185). 

Although this product could now be epoxidised to form 

(187) it was realised, considering the low yield of the 

epoxidation step, 35 that if this step was included in the 

reaction sequence, the overall yield from DHEA (97) to the 

epoxide would only be of the order of 5%. Therefore in an 

attempt to improve overall yields the protection of the 

carbonyl group was abandoned and the ketone-epoxide (209) 

reacted with dimethyllithium cuprate, a reagent more epoxide 

specific than a Grignard reagent. The nucleophilic ring 

opening of the oxirane to yield the desired target molecules 

is discussed in section 4.5. 
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4.4 Formation of 6.7-epoxy-3a. 5-cyclo-5a-androstan-l7-one 

(209). 

The attack on a carbon double bond by a peracid to form 

an epoxide is generally believed to be a concerted 

process. 36 The most satisfactory representation of the 

transition state being shown below (208). 37 Belief that the 

mechanism does not involve ionic intermediates38 is based on 

the demonstration by Schwartz and Blumberg39 that the 

reaction rate of the epoxidation process shows no direct 

relation to the solvent polarity. Reaction rates can, howev- 

er, be increased when benzene is used as a solvent, e. g., 

the epoxidation of cyclohexene with perbenzoic acid proceeds 

30 times faster than a similar reaction utilising diethyl 

ether as the solvent. 40 This is attributed to the benzene 

allowing the intramolecular hydrogen bond to predominate, 

thus permitting the molecule to adopt the configuration 

strongly favoured for reaction. In ether, this intramolecu- 

lar bonding is greatly reduced by hydrogen bonding with the 

basic oxygen of the ether. 41 

R 
0 

R 

R 

.. ý... o ;. ýýý. 
ýa 

RR 

-ý 
No **ýR 

0 

(206) 

The conversion of the steroid alkene (185) to the 

epoxide (209) was undertaken by the method used by Hanson et 

al. 
35 in which the steroid was reacted with m-chloroperben- 

zoic acid (MCPBA) in diethyl ether. Attempts using the 
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described procedure showed the reaction to be exceptionally 

variable in its outcome. Often, after the recommended 30 

minute period, only starting material was recovered. On 

other occasions the reaction had apparently proceeded too 

far with the isolation of hydroxy esters, e. g., (210) a sign 

of the considerable instability of the epoxide. This 

property is discussed below. 

0 0 

t 

0 

(103) (209) (210) 

Consider the following: an ester such as (210) is 

formed when the side product carboxylic acid reacts with the 

42 epoxide, a reaction catalysed by mineral acids. , 43 Howev- 

er, although this situation arises for reactions performed 

in formic acid or reaction mixtures that contain a strongly 

acidic mineral acid, e. g., monopermaleic acid44 or peroxy- 

trifluoroacetic acid45 it is usually not the case for 

peracid reagents such as perbenzoic acid and MCPBA when 

dichloromethane or chloroform are employed as solvents. 46 

Where the epoxidising reagent is a derivative of a strong 

acid, e. g., peroxytrifluoroacetic acid, anhydrous sodium 

carbonate (or disodium hydrogen phosphate for reactions that 

require a longer period47) may be used to scavenge the 

carboxylic acid and prevent the secondary reaction occur- 

ring. 
48 

However, in the work of Hanson, 35 it was noted that 

178 



even under the mild conditions (MCPBA, dichloromethane and 

sodium carbonate) formation of the hydroxy ester still 

occurred. It is therefore a measure of the epoxide's consid- 

erable instability that the oxirane ring fragmented under 

such mild conditions. The instability, as noted by Hanson, 35 

is most certainly due to the cyclopropane ring stabilising 

the incipient carbocation. Products are therefore determined 

by the nucleophilic components in the reaction medium. 

As well as problems with instability, the desired 

product was also difficult to isolate in a pure state. 

Already noted35 for its instability during sublimation and 

chromatography, the product, a clear brown oil, failed to 

crystallise from various solvent systems including a diethyl 

ether-petroleum mixture. 35 Proton NMR spectra of the crude 

reaction product was, as noted above, variable. The signals 

from the epoxidilic hydrogens, two doublets (J= 4.5 Hz) at 

6= 2.89 (6-C) and 3.23 (7-C)36 were never the only signals 

present that could be attributed to an epoxide. Other 

signals were found at d= 3.00 and d= 3.65. These four sig- 

nals varied in strength for different samples but the rela- 

tive strengths of the former pair appeared to predominate. 

(Note that the above signals were assumed to be pairs be- 

cause of their similar strengths). A further investigation 

of possible structural effects governing the possible forma- 

tion of isomers and the identification of these isomers was 

therefore undertaken. Unfortunately, in this work, only the 

signal at 6= 3.23 was ever resolved as a doublet, a crucial 

factor in the identification of isomers. 

179 



Stereochemistrv QZ 6.7-ep-3a. 5-cvclo-5a-androstan-17-one 

(209). 

An inspection of the structure of the steroid alkene 

with either a Drieding model or molecular mechanics indicat- 

ed that the method used by Hanson35 to define which isomer 

of the steroid oxirane was produced was not necessarily 

00 

+ 

(1 ES) (209c) (209b) 

0 

correct. The assumption that the steroid was the a-epoxide 

(209a) was based on the earlier work of James et a1.49 and 

Angyal et a l. 50 where it was stipulated that the C-19 methyl 

group in steroids such as the cholest-6-ene (211)49 

ADC ADC 

(211) (212) 

caused sufficient steric hindrance to force the incoming 

reagent to attack the double bond from the a-phase of the 

molecule. This resulted in only the one product, the 6a, 7a 

epoxide (212). In the more hindered delta 4 steroids, epoxi- 

dations with MCPBA have been shown to result in the forma- 

tion of the a-isomer. A particularly interesting example was 

the epoxidation of the 19-hydroxy androstane (213) which 

after formation of the a-epoxide undergoes a Baeyer-Villiger 
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rearrangement to form the lactone (214). 51 Other compounds, 

for example, the equally hindered 5-ene (215) gave an epi- 

meric mixture of a and ß-epoxides when reacted with perben- 

zoic acid. 52 These examples are accepted to be governed by 

the steric effects induced by the 19-C methyl group. 

11D 

0 -. 
0p 

OH 
CHO C114) 

However, as mentioned above, a study of the overall 

shape of any of the 3,5-cyclosteroids either with Drieding 

models or molecular mechanics shows that the inserted cyclo- 

propane ring causes the A ring to project into the a-phase 

of the molecule, thus apparently creating as much, if not 

more steric hindrance than the 19-C methyl group. Corrobora- 

tion of this hypothesis can be found in the "surprising" 

formation of the 6ß, 7ß-dihydroxy steroid (216) obtained by 

the osmylation of the alkene. 9 The idea that considerable 

steric effects are induced by the cyclopropane ring is 

0 

(215) 

OH 

(216) 
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further promoted by a study of other epoxidation reactions 

involving steric influences by similar "a-phase 

protrudents". 

For example, the epoxidation of the progesterone deriv- 

ative (217), because of the 3a-oxygen atom, results in the 

formation of the ß-epoxide as the major product. 53 Another 

example54 is the 
4yß ý 

R R- H or CFb 

(217) (218) 

epoxidation of the 3a-chloro DHEA derivative (218), where 

again steric hindrance (this time by the axial chlorine 

atom) results in the formation of the ß-isomer. If, as in 

the above examples where the 3-C substituent contribute to 

the shielding of the a-face it seems very likely that the 

conformation adopted by the 3,5-cyclosteroid also shields 

the a-face (Figure 7). Even though we are dealing with non- 

identical double bonds between the steroid synthesised here 

(delta-6) and the two examples (217) and (218), (delta-5) it 

seems likely that the cyclopropane moiety of (185) shields 

the double bond to a greater extent than the chlorine atom 

of (218). Furthermore, the notion that the methyl group of 

the cyclopropane steroids shields the double bond to a 

greater extent than the cyclopropane moiety is obviously 

false. 
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Also note that, the 3a, 5-cyclo-5a-steroids structurally 

emulate the n bonded A and B rings of the 5ß-steroids 

(219). Epoxidation reactions of the delta 2,3, and 6 ster- 

oids are directed by their non-planar ring system to the ß- 

face. 55,56 Therefore a similar result might be expected for 

the steroid (185). From the above we can therefore assume 

that the epoxidation of (185) is certainly not 

stereospecific. 35 

(185) (219) 

Further searches through the literature for other 

examples showed that epoxidations at delta-6 were not as 

well studied as for the other steroid positions. This is 

perhaps not surprising as a literature search for the previ- 

ous section showed that the delta-6 steroids have over the 

years been subject to considerably fewer studies than other 

steroidal alkenes. This was the case for a search of previ- 

ous X-ray studies of 6,7-epoxides. Only one epoxide, the 

naturally occurring compound Nic 10, ((6a, 7c-epoxy-5-hy- 

droxy-17(13-18)abeo-5a-pregna-2,13,15,17-tetraene-1,20-dione] 

(220), 57 has to date been investigated and its data entered 
58 into the CSSR. 

Since the designation of the 6,7 epoxide, defined as 
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.,., 

(220) 

the a-isomer (209a) by Hanson, was felt to be tenuous, 

further studies on this compound were carried out. X-ray 

crystallography was logically considered but it was not 

possible to grow suitable crystals of the product. Therefore 

molecular models of the two isomers (209a and b) were con- 

structed in an effort to determine the correct structure. 

From the relevant dihedral angles of these models (Chapter 

6) an estimation of the 1H NMR coupling constants produced 

by the epoxidilic protons were made based on the Karplus 

equation59: 

3Jab- JO. cos20- 0.28 (0'1 0 _< 90') 

3 Jab- J180. cos2o- 0.28 (90' 105 180') 

where the constants, JO and J180= 8.5 and 9.5 respectively 

and 0 is the dihedral angle between the two protons. These 

results are shown below in Table 5. - 
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A 

Theoretical 1HNM R coupling constants the epoxidilic 

protons in g ºo eRoxide isomers (209a) A 09b 

STEROID ISOMER THEORETICAL COUPLING CONSTANTS. Qj (Hz) 

H6-H7 H7-H6 H7-H8 

6a, 7a-epoxide 6.7 6.7 4.9 

6ß, 7p-epoxide 4.9 4.9 5.6 

When these results were compared to those derived 

experimentally (two doublets, J- 4.5 Hz35), it appeared 

that, with respect to the coupling between the two epoxidil- 

ic protons, the model of the A-isomer (209b) was a closer 

approximation to the product. However, the experimental 

results showed no coupling between the 7-H and 8-H atoms, 

and this can be taken to indicate an antiperiplanar rela- 

tionship between 7 and 8-H. For example, in a rigid system, 

coupling between two vicinal protons Ha and He is reduced, 

when an electronegative atom is antiperiplanar to one of the 

X 
Ha 

He UEI x 
H_ HQ 

H. X= OH H 

OAc 

(221) Br (222) 

atoms. 
27 For the cyclohexane system (221) the coupling 

constant Jae is only 2.5Hz when X= OH, OAc or Br but 5.5Hz 

in (222) where the electronegative atom is no longer antipe- 

riplanar. In an extreme case, for example 3,4-epoxytetrahy- 
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dofuran, (223), which has a plane of symmetry and therefore 

shows only 3 signals, one anticipated coupling is not ob- 

served at all. The dihedral angle between Hb and He is close 

to 900 and therefore it is not really surprising that there 

is no coupling between them. However, in the case of Hb and 

Ha the dihedral angle is between 0 and 300 and a coupling 

constant of between 6-8 Hz would be expected. No coupling is 

observed primarily because the electronegative oxygen lies 

0 
0 

V 

Hb 
Ha, 

(223) 

antiperiplanar to Ha. Therefore there is a contradiction 

here. If this is the reason for the lack of observable 

coupling between 7-H and 8-H in the steroid epoxide, the 

epoxidilic oxygen must be in the a-position to lie antiperi- 

planar to the 8ß hydrogen, in conflict with that indicated 

by the molecular mechanics models. Note, however, that it 

could be said, as indicated in diagram (221) that small 

amount of coupling should be observed, not none at all, but 

other effects such as a greater degree of ring strain could 

play an unknown part. 

In an attempt to ascertain whether or not the molecular 

model was in fact giving a reasonable representation of the 

product several other steroids, preferably whose structures 

had been defined by x-ray crystallography, were modelled and 

these compared to their relevant 1H NMR experimental data. 
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This, it was hoped, would indicate the accuracy of the 

models and determine if the lack of 7-H 8-H coupling was 

caused by a factor other than the presence of an anti-peri- 

planar oxygen atom. 

The first compound studied was the naturally occurring 

aromatic D ring steroid Nic 10 (220) whose X-ray structure 

had been determined by Begley It .. 57 The calculated 

coupling constants (between 6-H, 7-H and 8-H) derived from a 

molecular model (Karplus equation59) and the experimentally 

obtained results are shown below in Table 6. 

T 
-able 

6 

Comparison between theoretical And And eXRerimentaderived 

I coupling constants for 1c IQ (220). 

Coupling constants, a iz 

H6-H7 H7-H6 H7-H8 

Found 4.0 4.0 2.0 

Calculated 4.0 4.0 6.4 

It can be seen that from the above results that the 

model created produced a very accurate estimation of the 

coupling between the epoxidilic hydrogens. The coupling 

between the 7 and 8 protons is considerably different, but 

this can however be explained by the oxygen atom antiperi- 

planar to 8-H. The observed coupling of 2 Hz indicates that 

in this system the antiperiplanar oxygen does not cause 

complete elimination of the coupling between protons at 
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position 7 and 8. If a similar reduction in the relevant 

coupling constant of Nic 10 is applied to the a-epoxide 

(209a) a perhaps small unobserved coupling would be present 

but an exact value cannot be applied because of the differ- 

ence in structures. Rather this is taken to indicate that 

some form of coupling between the 7 and 8 protons should be 

observed in the 6a-7a epoxide (209a). 

As already mentioned, Nic 10 was the only 6,7-epoxy- 

steroid that had been subject to an X-ray analysis and 

registered on the SRC Crystal Structure Search and Retrieval 

database. However, other steroid epoxide models confirmed 

the accuracy of the method for estimating the coupling 

constants of this type of compound. As discussed above, the 

epoxidation of 3a-chloroandrost-5-en-17-one (218) leads to 

0 

a a 

0 

(218) (224) 

the 5ß, 6ß epoxide (224)54 whose experimental coupling con- 

stants are shown below, along with the theoretical values 

derived from the molecular model, in Table 7. 
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Table 7 
Comparison between theoretical and experimentally derived 

I coupling constants epoxide (224). 

Coupling constants. jl 

H6a-H7a H6a-H7ß 

Found 3.0 0.0 

Calculated 5.0 0.3 

Again the model fit is a good approximation. In this 

example, it is the coupling between protons 6a and 7a that 

would be expected to be reduced because of the antiperipla- 

nar relationship between the oxygen and the 7a proton. 

Secondary splitting of the epoxidilic proton's signal, by 

the 7ß proton, would be virtually undetectable. 

In conclusion, these above examples show that accurate 

models of various steroid epoxides can be produced with the 

molecular mechanics utilised here. However problems are 

encountered with the steroid central to the discussion; 

(185). The molecular model of the 6ß, 7ß-epoxide (209b), with 

respect to epoxidilic proton coupling, fits reasonably well 

with data quoted by Hanson35, but also predicts (an unob- 

served35) coupling between atoms 7 and 8-H (J= 5.6Hz). For 

the 6a, 7a-epoxide (209a) the predicted coupling between the 

epoxidilic protons are not consistent with those quoted35 

nor is an expected 2Hz coupling between atoms 7 and 8-H. 

The work carried out here indicated that a varying epimeric 

mixture was the most likely outcome of the reaction but 
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difficulty in separation, because of the instability of the 

products, prevented the determination of coupling constants. 

Thus no comparison to the molecular models or to Hansons 

data can be made. 35 

In view of the problems encountered in this work it was 

decided that no further attempts at purifying the unstable 

epoxide would be attempted and that the product, after 

removal of the peracid and carboxylic acid, would be reacted 

directly with dimethyllithium cuprate. The stable products 

could then be separated, and by virtue of their configura- 

tion, used to identify the stereochemistry of the epoxide. 

4R Formation of 6B-methyl-7a-hydroxv-3a, 5-cyclo-5a-andros- 

tan-17-one (44). 

The nucleophilic ring opening of oxiranes by organome- 

tallic reagents is a useful synthetic method which has been 

limited in scope by competing reactions arising from either 

the Lewis acidity or basicity of the reagent. However, 

dimethyllithium cuprate60 and other lithium cuprate re- 

agents61 have been shown62-64 to largely circumvent these 

side reactions which are encountered with other organometal- 

lic reagents such as Grignard reagents. Equally as important 

for this work is the relative inert nature of organocuprates 

to carbonyl groups. Thus, although Grignard reagents were 

initially proposed for the oxirane ring opening, dimethyl- 

lithium cuprate was chosen as a more suitable reagent be- 

cause increased yields could be expected by the omission of 

two steps in the reaction sequence and by the more specific 

nature of the reagent. 63,64 
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uo 

+ RCu 

R 

(225) 
The reaction between a simple oxirane and dimethyllith- 

ium cuprate is envisaged to proceed by one of two mechanisms 

(225 and 226). Lithium ion assistance is suggested by the 

fact that diethyl ether is a better solvent than tetrahy- 

drofuran62 as the oxirane competes effectively with the 

ether for the lithium ion. -The reagent's attack on the 

epoxide ring via an SN2 mechanism results in the introduc- 

tion of a methyl group on the less hindered carbon atom. 

u"" 
' uo 
o Sý2 >ý 

----- + RCu 

R; R 
R 

(226) 

the reacting epoxide. For example, if the epoxide is in the 

a-configuration (209a) then attack from the p-phase will be 

influenced by the 19-methyl group. From models, it would 

appear that both positions 6 and 7 are more or less equally 

hindered by this group and therefore for this steroid no 
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: "] 

RCu 

C 

`Li * OH 

(227) 
(44a or b) 

real preference should be noted. The use of the fairly bulky 

copper reagent, instead of the smaller Grignard reagent, 

might however favour attack at the 7 position. If the epox- 

ide is in the p-configuration (209b) then attack from the a- 

phase is more likely to occur at the 7 position because of 

the greater steric hindrance induced by the cyclopropane 

ring. Thus considering only steric effects results would be 

expected to show a higher yield of the 7-methyl derivative. 

However, for this steroid one other complicating factor must 

be taken into account; the possible (electronic) directing 

effect of the cyclopropane ring. In the transition state of 

an SN2 mechanism the carbon undergoing reaction changes from 

the spa hybridised state to sp2 hybridised state and there- 

fore possesses a p-orbital which forms partial bonds with 

both the incoming and outgoing moieties (227). This entire 

group of atoms carries a negative charge which adjacent p- 

orbitals, in this particular case the cyclopropane orbitals 

(Chapter 2), can stabilise. This will result in a bias 

towards formation of 6-methyl derivatives (44) which will, 

to an unknown degree, cancel out any of the steric effects 

discussed above. Alternatively, if the cyclopropane ring 

acts only in its capacity as an electron donator then a 
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transition state at 7-C would be stabilised"(228) and forma- 

tion of the 7-methyl derivative (190) accentuated. A similar 

effect to this latter possibility has been noted in the 

hydroboration of vinylcyclopropane. 65 

0 

UR 

OH 
(22g) 

(190c or b) 
Dimethyllithium cuprate, as potentially with other organome- 

tallic reagents, can react with cyclopropanes in such a 

manner as to cause ring fragmentation. However, this unde- 

sired side reaction usually only occurs to any great degree 

when the cyclopropane ring is activated. For example, com- 

pound (229) rapidly undergoes 1,7-addition66 because of the 

activating properties of the ester groups (230). Likewise, 

CO2Et 

CO2Et 

(229) 

R2CuU 
--ý R C02Et 

C02Et 

(230) 

(231) undergoes ring opening under similar conditions to 

form the tricyclic compound (232). 67 Cyclopropyl carbonyls, 

e. g., highly strained (234) or strained and activated (236) 

can also react with dimethylithium cuprate to give (235)68 

and (237)69 respectively. Similarly, cyclopropyl ketones 

such as (238) undergo 1,5 addition at the less substituted 
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Ho 

(231) 

0 

(234) 
Et 

0 

X- 0 or CFI 

(236) 

H 
COO" 

(235) 

Et0lC 

0 

(237) 
carbon with the complex cuprate R2CuCNLi2. BF370 but, related 

to this work, the yield is reduced to 5% when the cyclopro- 

pane ring is fused to another ring (239). 7 

ii 
%quCNL12. BF3 

(238) R1- H or CH3 

(239) 

R2CuCHU2. BF3 

(232) 

: ý' Z 

JA% 

Rý 0 

R' 

0 

R 
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Ignoring the possible formation of rearranged products 

but considering just those desired and the uncertainty of 

the exact configuration of the epoxide(s) produced in the 

previous step it seemed prudent, with molecular mechanics, 

to construct models of the four possible isomers which could 

then be used to identify the products of reaction. This in 

turn would give valuable information into the opening of the 

oxirane ring and details of the configuration of the epoxide 

reactant(s). 

The construction of the models of the four isomers, 

(44a, b) and (190a, b), as well as indicating the relative 

stabilities of the compounds (Chapter 6), allowed the calcu- 

lation of the dihedral angles between the proton geminal to 

the hydroxy group and its neighbouring protons. Using the 

Karplus equation59 would thus allow the prediction of the 

relevant protons coupling constants. The results are shown 

below in Table 8. 

Table $ 

Theoretical i couuling constants 1 the proton geminal 

to the hydroxy group the four isomers (44a and k, and _in 
190a and b). 

STEROID DIHEDRAL ANGLES BETWEEN 
SOME U GEMINAL TO OH GROUP 

AND NEIGHBOURING HIS. 
6a-Me, 7ß-OH (44a) 175'(6-H), 179'(8-H) 

6ß-Me, 7a-OH (44b) 67'(6-H), 56'(8-H) 

6a-OH, 7ß-Me (190a) 178'(7-H) 

6ß-OH, 7a-Me (190b) 660(7-H) 

CALCULATED 
COUPLING 
CONSTANTS j1_ 

9.1,9.2 Hz 

1.0,2.4 Hz 

9.2 Hz 

1.1 Hz 
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Therefore, for 7-hydroxy derivatives a double doublet 

(or possibly a triplet) would be expected for the signal 

from the 7-H atom with the two isomers being readily distin- 

guished by large or small couplings. For the corresponding 

6-hydroxy steroids the 6-H atom would appear as a doublet 

with the two isomers again being readily distinguished by 

the observed coupling constant. 

However, when the crude epoxide was treated with di- 

methyllithium cuprate it became obvious that the problems 

encountered in the previous step were not overcome. Thus a 

complex mixture of products was recovered which was not 

fully separated by flash chromatography. Yields were also 

low, such that, during the many attempts of this reaction 

only on two separate occasions were the targeted compounds 

identified along with compounds derived from the fragmenta- 

tion of the epoxide. 35 Thus, by 1H NMR analysis, two differ- 

ent products possessing a cyclopropane ring, a third methyl 

group and a hydroxy group were detected. Both the products 

showed poorly resolved adsorptions at 8= 3.68 and 3.83 

indicative of protons geminal to hydroxy groups. The first 

of these two compounds also possessed cyclopropane absorp- 

tion as a triplet at d= 0.4. Only two signals attributed to 

the methyl groups were observed, the higher (and broader) 

field signal corresponding to 6 protons. The second compound 

also possessed cyclopropane absorption but this time virtu- 

ally identical to the splitting pattern found in the parent 

cyclosteroid (41). Three methyl signals were readily observ- 

able. Comparing the molecular mechanics calculations and the 

observed sharpness of the signals from the atoms adjacent to 
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the hydroxy groups indicated that the products were the 7a- 

hydroxy, 6ß-methyl (44b) and the 6ß-hydroxy, 7a-methyl 

(190b) derivatives respectively. This is further substanti- 

ated by the similarities between the splitting patterns of 

0 

OH 

0 

(44b) (lam) 

the cyclopropane protons absorptions in the parent 6ß-hy- 

droxy cyclosteroid (41) and the second compound isolated 

(190b). The differences in position between the two signals 

caused by the proton geminal to the hydroxy group can be 

accounted for by the substitution of a neighbouring hydrogen 

atom for a methyl group. 

Several points can be drawn from these results. With 

respect to a directing effect induced by the cyclopropane 

ring; with both 6 and 7-methyl products isolated from dif- 

ferent reactions it is impossible to say whether or not 

there is a prevailing influence during the reaction. Also, 

although the molecular mechanics calculations (Chapter 6) 

indicate that the above two products are the least stable 

among the four possible isomers (44a and b) (190a and b), no 

conclusions can be drawn again because of the limited re- 

sults and the possibly small differences in overall energy 

of the conformers. Finally, although there is room for 

improvement in the formation and isolation of these steroid 

derivatives the reaction products indicate that the epoxida- 
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tion of the alkene (185) does not occur selectively from the 

a-phase of the molecule. Thus, the presence in the A-ring of 

the cyclopropane ring has a dramatic effect on the product 

determination of reactions occurring at ring-B. 
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5.1 Introduction. 

X-ray crystallography has for some time now provided 

details of the conformations of various chemical structures 

in the solid state. It has often been assumed that there 

could be no relationship between the conformation of mole- 

cules in crystals and their preferred conformations in 

solution, however, it is now clear from studies of many 

families of compounds that the X-ray technique can be a 

powerful tool in our understanding of drug action and for 

designing new drugs. ' This is perhaps especially true for 

steroids because of their rigid carbon framework. 2 The 

presence of only weak forces of attraction in both the 

crystal lattice and the receptor site means that conforma- 

tions are generally very similar and of low energy. The 

measurement of coupling constants derived from 1HNMR spec- 

troscopic analysis of steroids in solutions has provided 

further confirmation. For example, from the X-ray studies 

carried out in this work, C(14)-C(15)-C(16)-C(17) torsion 

angles of DHEA (97) and the 3,5-cyclosteroid (41) were 

calculated to be 22.6' and 23.8' respectively (this compares 

to the values of 15.8' (DHEA) and 18.6' (3,5-cyclosteroid) 

obtained from molecular modelling). From 1H NMR spectro- 

scopic experiments3 a value of approximately 20' has been 

calculated for this torsion angle. In short, the steroid 

conformation observed in steroid crystals can be assumed to 

be the same or very similar to that at a receptor. 
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! 5.2 Discussion. 

5.2.1 3B-Hvdroxy-5-androsten-17-one. DHEA (97). 

Although structurally unexceptional, it was a surprise, 

considering the importance of DHEA as a precursor, to find 

that it had not previously been subjected to an X-ray analy- 

sis. As a result of an X-ray study4 the asymmetric unit of 

0 

(97) 

the compound (97) was found to contain two steroid molecules 

with similar conformations together with two water mole- 

cules. Extensive hydrogen bonding was present but fine 

details were obscured due to the difficulty in locating 

water hydrogen atoms accurately. The ring conformations of 

DHEA are A: chair, B: 8ß, 9a half chair, C: chair, D: C14a- 

envelope (Figure 8). The atomic co-ordinates (& temperature 

factors), bond lengths, valence angles, ring torsion angles 

and structure factors of 3ß-hydroxy-5-androsten-17-one (97) 

are listed in Tables 10-14 respectively. 
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5.2.2 68-Hvdroxv-3a, 5-cyclo-5a-androstan-17-one (41). 

Although several other cyclosteroid derivatives have 

been studied by X-ray crystallography, e. g. (240)5, (241), 6 

(242)7 and (243)8v 6p-hydroxy-3a, 5-cyclo-5a-androstan-17-one 

(41) is one of only a few 3a, 5-cyclo-5a-steroids to be 

0 

C 

(240) 

AMC 

(241) 

MO 
H 

(242) 

studied by single crystal X-ray diffractrometry. 9 These 

include compounds with the 6-keto (244), 10-12 and 6-methoxy 

functionality (245). 13 Analysis of the ketone structure 

indicates that the compound adopts such a conformation so as 

AoO H 

(243) 

0 

(244) 

Ma 

(24 6) 

to allow maximum conjugation between the cyclopropane ring 

and the ketone moiety. 10-12 

0 

OH 

(41) 
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The atomic co-ordinates (& temperature factors), bond 

lengths, valance angles, ring torsion angles and structure 

factors of 6ß-hydroxy-3a, 5-cyclo-5a-androstan-17-one (41) 

are listed in Tables 15-19 respectively. 

The most prominent feature of the steroid (41) is the 

cyclopropane ring and the geometry and orientation of the 

three membered ring were accurately defined by the X-ray 

analysis. Thus, prediction of steric influences during 

reaction, for close analogues of the compound, are possible. 

The planar cyclopropane ring has valancy angles {C(3)- 

C(4)-C(5), C(3)-C(5)-C(4) and C(4)-C(5)-C(3)) of 61.0(7), 

59.3(7) and 59.7(7)' respectively. The presence of the 

cyclopropane ring, which lies predominantly in the a-phase 

of the molecule results in the associated 5-membered ring 

also adopting an a-phase orientation. Thus the steroid 

structurally emulates the cis or 5ß family of steroids. This 

most certainly results in significant protection of the a- 

face of rings A and B, an important factor when considering 

probable reaction products. Simultaneously, the cyclopropane 

ring and the C(19) methyl group would, because of their ß 

(relative to the 5-membered A ring) orientation, most cer- 

tainly direct reaction at C(1) and C(2) to the a-phase. Thus 

the X-ray structure of the cyclosteroid predicts retarded 

reaction rates at these two carbon 

0 
OH 

St+f 6 

0 
(111) (248) 
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atoms. The electron donating effect of the cyclopropane ring 

is noticeable in the B ring (half chair) of the steroid with 

the relatively short C(5)-C(6) bond. Not surprisingly, the 

dione (111)10 and more so the cyclopropylcarbinyl cation 

(246)14 exhibit similar, but greater, reductions in their 

relative bond lengths. The remaining rings of the steroid, 

C: half chair and D: 14a envelope are unexceptional (Figure 

9). 
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5.2.3 X-ray Lowder diffraction analysis of 3a. 5-cyclo-5a- 

androst-6-en-17-one (185). 

Suitably large crystals of the alkene (185) proved 

surprisingly difficult to grow. However, batches of small 

crystals were readily grown and these were subjected to 

powder diffraction analysis. The ''d" values for the eight 

0 

(185) 
strongest peaks (calculated from Bragg's law) are shown 

below in Table 9. Thus the data for this compound can be 

entered into the Powder Diffraction File of organic and 

organometallic phases. 15 More recently suitable crystals for 

single crystal analysis have been obtained. An analysis 

should provide information concerning the conjugation 

present in the vinylcyclopropane moiety. 
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Table 9 

Calculated "d" values for eight strongest peaks derived from 

powder diff raction data of compound (185). 

Peak Intensity 2. A sin e d 
1 100 15.03 7.52 0.13 5.88 

2 21 13.50 6.75 0.12 6.53 

3 13 16.05 8.02 0.14 5.51 

4 10 14.00 7.00 0.12 6.32 

5 8 17.58 8.79 0.15 5.04 

6 8 16.73 8.36 0.14 5.32 

7 6 19.79 9.90 0.17 4.48 

8 5 26.79 13.40 0.23 3.32 
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,51 Experimental. 

Data for both structures were collected on a Nicolet P3 

automated diffractometer using a graphite monochromator. The 

structures were determined with MITHRIL16 and completed with 

SHELX76.17 Molecular geometries were generated by the GX 

package. 18 

30-Hydroxv-5-androsten-17-one DE 
. 
(97) Monohydrate. 

C19H2802. H201 Mr 288, - orthorhombic, P212121 (No 19), 

a= 22.545(7), b= 22.673(22), c= 6.819(2) A. V= 3485.6 A3, Z= 

8, DX= 1.17gCm-3, Mo Ka, ) =0.71069 A, µ= 0.43cm-1, F(000)= 

1344, T= 293K, R= 0.071 for 1308 observed reflections. 

A colourless crystal, 1.40x 0.20x 0.20 mm was used. 

Cell dimensions were obtained from the setting angles of 12 

independent reflexions with 28< 20'. The data were corrected 

for Lorentz and polarization effects, but not for absorp- 

tion. A total of 2738 unique intensities were measured with 

28 5 50' from w-28 scans; 1308 reflections had F> 5a(F). 

Range of hkl: 05h5 24,0 5k 23,0 <_ 1 _<8. Two reference 

reflexions monitored periodically showed no significant 

variation in intensity. In determination of the structure, 

blocked full-matrix least-squares calculations on F with 

anisotropic thermal parameters for C and 0 atoms and iso- 

tropic thermal parameters for H atoms converged at R= 0.071. 

Each hydrated steroid molecule was refined in alternate 

cycles of least-squares calculations such that the total 

number of parameters was 423. Units weights were used. The 

position of the hydroxy and water hydrogen atoms, which were 

associated with high error, were refined but the remaining 
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hydrogen atoms were allowed to ride on their attached atoms. 

All C-H and O-H bond distances were constrained to 1.00(2) A 

and the hydrogen atoms were given one of four common temper- 

ature factors (methyl and non-methyl in molecule A and B). 

Atomic scattering factors from SHELX. 17 Final "/a 5 0.5, P 

max 0.1, P min -0. le A-3. 

The atomic co-ordinates (& temperature factors), bond 

lengths, valancy angles, ring torsion angles and structure 

factors of 3ß-hydroxy-5-androstan-17-one (97) are listed in 

Tables 10-14 respectively. 

. 3. -Hvdroxy-3a. 5-cyclo-5a-androstan-17-one (41). 

C19H28020 Mr= 288, orthorhombic, P2221 (No. 20), a= 

11.041(22), b= 9.591(17), c= 31.210(25) A. V= 3305.0 A3, Z= 

8, Dx= 1.16gcm 3, Mo Ka, 1 =0.71069 A, µ= 0.39cm-1, F(000)= 

1264, T= 293K, R= 0.062 for 776 unique reflections. 

A colourless crystal, 0.64x 0.65x 0.08 mm was used. 

Cell dimensions were obtained from the setting angles of 12 

independent reflexions with 28 200. The data were corrected 

for Lorentz and polarization effects, but not for absorp- 

tion. A total of 2028 unique intensities were measured with 

28 <_ 500 from w-29 scans; 1308 reflections had F> 5a(F). The 

small number of intensities above background level were due 

to the very thin, weakly diffracting crystal. Range of hkl: 

o5hS 14,0 5k 12,0 S1 _< 44. Two reference reflexions 

monitored periodically showed no significant variation in 

intensity. In the determination of the structure, blocked 

full-matrix least-squares calculations on F with anisotropic 

thermal parameters for C and 0 atoms and common isotropic 
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thermal parameters for methyl and non-methyl H atoms con- 

verged at R= 0.062, WR= 0.046. The hydroxy hydrogen atom was 

freely refined but the remaining hydrogen atoms were allowed 

to ride on their attached atoms. Atomic scattering factors 

from SHELX. 17 Final "/a < 0.03, final e 
max= 0.06, min= 

-0.8e A-3. 

The atomic co-ordinates (& temperature factors), bond 

lengths, valancy angles, ring torsion angles and structure 

factors of 6ß-hydroxy-3a, 5-cyclo-5a-androstan-l7-one (41) 

are listed in Tables 15-19 respectively. 

5.3.2 Powder diffraction analysis: Experimenta 

Crystals of the alkene (185) were ground in a mortar 

and pestle, by hand, so as to reduce the possibility of any 

phase changes occurring. A layer of the powder was then 

mounted on a slide backed by a piece of translucent adhesive 

tape. 

The sample was then rotated through an angle of 26= 45' 

at a rate of 29' per minute (Cu Ko,? =1.5418A) and the 

collected data processed. 19 
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TABLE 10 

FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC TEMPERATURE FACTORS 
(ANGSTROM SQUARED), WITH STANDARD DEVIATIONS IN THE LEAST 
SIGNIFICANT DIGITS IN PARENTHESES. FOR ANISOTROPIC ATOMS, THE 
EQUIVALENT ISOTROPIC TEMPERATURE FACTORS ARE SHOWN. (97) 

X/A Y/H Z/C V 
C 3(l) . 8917 (4) -. 4164(4) -. 4426(14) 

. 067 
0(2) . 7201(5) -. 0058(4) 

. 1760(13) 
. 066 

0(3) 
". 

9922 (4) . 0278(4) -. 0789(13) . 070 
0(21) . 9499(5) . 0781(5) 

. 2629(15) 
. 075 

0(22) . 8339(6) 
. 5457(5) 

. 2117(16) 
. 102 

0(23) . 9108(5) 
. 0310(7) 

. 6129(16) 
. 126 

C (1) . 7896(6) -. 2932(5) -. 3047(19) 
. 053 

C(2) . 8086(6) -. 3553(7) -. 3651(21) . 072 
C (3) . 8741(5) -. 3589(6) -. 4010(18) 

. 048 
C(4) . 9106(6) -. 3323(7) -. 2353(18) 

. 062 
C(5) . 8884 (6) -. 2722(7) -. 1737(17) . 051 
C(6) . 9262(6) -. 2301(7) -. 1683(17) . 052 
C(7) . 9117(5) -. 1664(6) -. 1107(19) . 056 
C (s) . E3526(6) -. 1647(5) -. 0029(17) 

. 043 
C(9) . 8053(5) -. 2008(6) -. 1019(18) 

. 047 
C(10) . 8259(5) -. 2656(6) -. 1290(15) 

. 038 
C(11) . 7427(6) -. 1937(6) -. 0236(21) 

. 064 
C(12) . 7256(6) -. 1292(5) 

. 0145(21) . 060 
C(13) . 7720(6) -. 0982(6) 

. 1311(18) . 048 
C(14) . 8321(5) -. 1026(5) 

. 0365(17) . 040 
C(15) . 8712(6) -. 0579(6) 

. 1410(20) . 071 
C(16) . 8262(6) -. 0070(7) 

. 1709(21) . 068 
C(17) . 7657(7) -. 0342(5) 

. 1627(18) . 048 
C(18) . 7716(7) -. 1237(7) 

. 3504(20) . 086 
C(19) . 8085(7) -. 3030(6) 

. 0575(20) . 077 
C(21) . 9307(6) . 2362(7) 

. 4018(16) . 062 
C(22) . 9565(7) . 1750(7) 

. 4089(19) . 078 
C(23) . 9240(6) . 1349(7) 

. 2607(18) . 053 
C(24) . 9362(7) . 1624(7) 

. 0521(17) . 064 
C(25) . 9145(6) . 2231(7) 

. 0444(18) . 054 
C(26) . 8762(6) . 2398(7) -. 0967(19) . 057 
C(27) . 8530(6) . 3014(6) -. 1275(18) . 057 
C(28) . 8885(6) . 3495(6) -. 0116(19) . 051 
C(29) . 9016(6) . 3245(6) 

. 1973(16) . 050 
C(30) . 9392(6) . 2678(6) 

. 1942(17) . 052 
C(31) . 9312(7) . 3751(6) 

. 3282(18) . 063 
C(32) . 8937(7) . 4307(7) 

. 3354(19) . 068 
C(33) . 8855(8) . 4532(6) 

. 1204(21) . 063 
C(34) . 8513(6) . 4036(6) 

. 0124(17) . 053 
C(35) . 8265(8) . 4356(7) -. 16B2(21) . 083 
C(36) . 8039(8) . 4942(7) . -. 0887 (20) . 087 
C(37) . 8427(8) . 5021(8) 

. 1017(21) . 074 
C(38) . 9445(7) . 4762(7) 

. 0337(21) . 101 
C C39) 1.0051(5) . 2798(7) 

. 1542(20) . 075 
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(contd.. ) 
X/A Y/B Z/C U 

H(1) . 9356(13) -. 4220(46) -. 4600(158)" . 048(8) 
H(1A) . 7945(6) -. 2668(5) -. 4211(19) . 048(8) 
H(113) . 74613(6) -. 2946(5) -. 2661(19) . 048(8) 
H(2A) . 7872(6) -. 3667(7) -. 4879(21) . 048(8) 
H(2B) . 7979(6) -. 3833(7) -. 2576(21) . 048(8) 
H(3) . 8826(5) -. 3342(6) -. 5191(18) . 048(8) 
H(4A) . 9527(6) -. 3285(7) -. 2793(18) . 048(8) 
H(413) . 9085(6) -. 3594(7) -. 1198(18) . 048(8) 
H(6) . 9680(6) -. 2393(7) -. 2056(17) . 04B(8) 
H(7A) . 9094(5) -. 1413(6) -. 2309(19) . 048(8) 
H (7B) . 9435(5) -. 1511(6) -. 0222(19) . 04B(B) 
H(8) . 8597(6) -. 1838(5) . 1273(17) . 048(8). 
H(9) . 8008(5) -. 1834(6) -. 2360(18) . 048(8) 
H(11A) . 7144(6) -. 2107(6) -. 1211(21) . 048(8) 
H(11B) . 7395(6) -. 2158(6) . 1029(21) . 048(8) 
H(12A) . 6872(6) -. 1281(5) . 0879(21) . 048(8) 
H(1213) . 7208(6) -. 1086(5) -. 1142(21) . 048(8) 
H(14) . B328(5) -. 0905(5) -. 1045(27) . 04B(S) 
H(15A) . 8857(6) -. 0736(6) 

. 2694(20) . 048(8) 
H (15B) . 9058(6) -. 0457(6) . 0586 (20) . 048(8) 
H('16A) . 8309(6) . 0227(7) . 0637(21) . 048(8) 
H(16B) . 8326(6) . 0125(7) . 3007(21) . 048(8) 
H(18A) . 7754(7) -. 1676(7) . 3461(20) . 11(2) 
H(186) . 7335(7) -. 1128(7) . 4164(20) . 11(2) 
H(18C) . 8056(7) -. 1066(7) . 4255(20) . 11(2) 
H(19A) . 7653(7) -. 2979(6) . 0848(20) . 11(2) 
H(19B) . 8320(7) -. 2890(6) 

. 1729(20) . 11(2) 
H(19C) . 8172(7) -. 3456(6) 

. 0332(20) . 11(2) 
H(21) . 920(5) . 046(5) 

. 248(22) . 09(1) 

H(21A) . 8872(6) . 2336(7) . 4300(16) . 09(1) 
H(21B) . 9504(6) . 2607(7) 

. 5050(16) . 09(1) 

H(22A) . 9996(7) . 1767(7) . 3746(19) . 09(1) 
H(22B) . 9518(7) . 1584(7) . 5440(19) . 09(1) 
H(23) . 8808(6) . 1321(7) 

. 2926(18) . 09(1) 

H(23A) . 8691(19) . 0255(50) . 6580(187) . 09(1) 
H(238) . 937(4) . 000(4) . 670(18) . 09(1) 
H(24A) . 9156(7) . 1382(7) -. 0500(17) . 09(1) 

H(24B) . 9799(7) . 1621(7) 
. 0267(17) . 09(1) 

H(26) . 8619(6) . 2085(7) -. 1886(19) . 09(1) 
H(27A) . 8555(6) . 3109(6) -. 2705(18) . 09(1) 

H(27B) . 8106(6) . 3027(6) -. 0845(18) . 09(1) 
M28) . 9258(6) . 3593(6) -. 0841(18) . 09(l) 
H(29) . 8629(6) . 3127(6) 

. 2571(16) . 09(1) 

H(31A) . 9710(7) . 3850(6) 
. 2721(18) . 09(1) 
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(contd. ) 

X/A Y/B Z/C V 
H(31B) . 9363(7) . 3598(6) . 4648(18) . 09(1) 
H(32A) . 8542(7) . 4217(7) . 3952(19) . 09(1) 
H(32B) . 9144(7) . 4614(7) . 4156(19) . 09(1) 
H(34) . 8175(6) . 3847(6) -. 0832(17) . 09(1) 
H(35A) . 7934(8) . 4125(7) -. 2282(21) . 09(1) 
H(35B) . 8584(8) . 4420(7) -. 2682(21) . 09(1) 
H(36A) . 8115(8) . 5267(7) -. 1845(20) . 09(1) 
H(36B) . 7605(8) . 4923(7) -. 0587(20) . 09(1) 
H(38A) . 9752(7) . 4445(7) . 0420(21) . 11(3) 
H(3813) . 9582(7) . 5116(7) . 1086(21) . 11(3) 
H (38C) -. 9381 (7) . 4872(7) -. 1067(21) . 11(3) 
H(39A) 1.0205(5) . 3085(7) 

. 2532(20) . 11(3) 
H(39B) 1.0101(5) . 2966(7) . 0196(20) . 11(3) 
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TABLE 15 

FRACTIONAL ATOMIC COORDINATES AND ISOTROPIC TEMPERATURE FACTORS 
(ANGSTROM SQUARED), WITH STANDARD DEVIATIONS IN THE LEAST 
SIGNIFICANT DIGITS IN PARENTHESES. FOR ANISOTROPIC ATOMS, THE 
EQUIVALENT ISOTROPIC TEMPERATURE FACTORS ARE SHOWN. (41) 

X/A Y/B Z/C 
O(1) 1579(6) 

. 5260(6) 
. 5590(2) 

0(2) . 3043(5) -. 2567(6) 
. 5939(2) 

C(1) . 3246(8) -. 0115(9) 
. 7189(3) 

C (2)' . 2033(9) -. 0745(10) 
. 7340(3) 

C(3) . 1801(9) -. 1932(11) 
. 7028(4) 

C(4) . 2816(9) -. 2897(10) 
. 6954(3) 

C(5) . 2577(8) -. 1731(10) 
. 6647(3) 

C(6) . 2082(8) -. 2103(9) 
. 6217(3) 

C(7) . 1451(7) -. 0834(8) 
. 6017(3) 

C(8) . 2248(7) 
. 0441(8) 

. 6003(3) 
C(9) . 2704(7) 

. 0838(8) 
. 6458(3) 

C(10) . 3305(8) -. 0373(9) 
. 6704(3) 

C(11) . 3465(7) 
. 2159(8) 

. 6449(3) 
C(12) . 2828(7) 

. 3400(8) 
. 6236(3) 

C(13) . 2375(7) 
. 2992(9) 

. 5794(3) 
C(14) . 1591(8) 

. 1706(8) 
. 5830(3) 

C(15) . 0930(7) 
. 1634(9) 

. 5393(3) 
C(16) . 0627(7) . 3180(9) 

. 5318(3) 
C(17) . 1522(8) 

. 4002(9) 
. 5574(3) 

C(18) . 4633(6) -. 0596(9) 
. 6559(3) 

C(19) . 3444(7) 
. 2830(10) 

. 5470(3) 
H(1A) . 3939(8) -. 0584(9) 

. 7336(3) 
H(113) . 3269(8) 

. 0908(9) 
. 7250(3) 

H(2) . 275(6) -. 338(5) 
. 577(2) 

H(2A) . 1369(9) -. 0038(10) 
. 7323(3) 

H(2B) . 2101(9) -. 1099(10) 
. 7640(3) 

H(3A) . 0929(9) -. 2103(11) 
. 7097(4) 

H(4A) . 3548(9) -. 2868(10) 
. 7142(3) 

H(413) . 2652(9) -. 3882(10) 
. 6867(3) 

H(6A) . 1482(8) -. 2875(9) 
. 6253(3) 

H(7A) . 0713(7) -. 0612(8) 
. 6190(3) 

H(713) . 1206(7) -. 1077(8) 
. 5718(3) 

H(8A) . 2935(7) 
. 0193(8) 

. 5809(3) 
H(9A) . 1964(7) 

. 1044(8) 
. 6632(3) 

H(11A) . 3668(7) 
. 2423(8) 

. 6751(3) 
H(1113) . 4228(7) . 1960(8) 

. 6288(3) 
H(12A) . 3414(7) . 4189(8) 

. 6208(3) 
H(12B) . 2127(7) 

. 3698(8) 
. 6417(3) 

H(14A) . 0962(8) 
. 1741(8) 

. 6061(3) 
H(15A) . 0180(7) . 1053(9) 

. 5411(3) 
H(15I3) . 1471(7) . 1258(9) 

. 5164(3) 
H(16A) -. 0216(7) 

. 3386(9) 
. 5416(3) 
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(contd. ) 
X/A Y/B Z/C U 

H(16B) . 0705(7) . 3410(9) 
. 5007(3) . 056(5 

H(1OA) . 4652(6) -. 0765(9) . 6243(3) . 06(1) 
H(1013) . 4984(6) -. 1419(9) . 6711(3) . 06(1) 
H(1E3C) . 5120(6) . 0254(9) . 6628(3) . 06(1) 
H(19A) . 4058(7) . 2171(10) . 5591(3) . 06(1) 
H(19B) . 3830(7) . 3759(10) . 5420(3) . 06(1) 
H(19C) . 3130(7) . 2453(10) . 5193(3) . 06(1) 
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TABLE 15 (contd. ) 

VIBRATION PARAMETERS (ANGSTROM SQUARED) IN THE EXPRESSION: 

-2(PI SGUARED)(U11((H. A*)SGUARED) + U22((K. B*)SQUARED) + 
U33 ( (L. C*") SQUARED) + 2. U12. H. K. A*. B* + 2. U13. H. L. A*. C* + 
2. U23. K. L. B*. C*) 

U11 U22 U33 U12 U13 U23 
0(1) . 081(4) . 045(4) . 077(5) -. 002(5) -. 023(4) -. 003(4) 
0(2) . 057(4) . 059(4) . 084(6) -. 016(4) . 016(4) -. 026(5) 
C(1) . 

073(8) . 050(6) 
. 080(9) 

. 004(6) -. 012(7) . 000(6) 
C(2) . 10(1) . 08(1) . 07(1) . 00(1) . 03(1) . 01(1) 
C(3) . 066(8) . 077(8) . 070(9) -. 016(7) . 012(7) -. 007(7) 
C(4) . 11(1) . 06(1) . 09(1) -. 03(1) -. 03(1) . 01(1) 
C(5) . 044(6) . 046(6) . 063(9) --00l(5) . 003(6) -. 013(6) 
C(6) . 044(6) . 053(6) 

. 075(9) -. 025(6) . 008(6) -. 030(6) 
C(7) . 039(5) . 055(6) 

. 039(7) -. 013(5) -. 003(5) -. 014(5) 
C(8) . 031(5) . 039(5) . 058(7) -. 014(5) . 008(5) -. 013(6) 
C(9) . 029(5) . 036(5) . 053(7) 

. 003(4) . 000(5) -. 004(5) 
C(10) . 049(6) . 050(6) 

. 043(6) . 003(6) . 008(5) -. 010(6) 
C(11) . 030(4) . 054(6) . 055(7) -. 013(5) -. 007(5) -. 015(5) 
C(12) . 032(5) . 043(5) . 060(9) -. 011(5) -. 002(5) -. 010(6) 
C(13) . 037(5) . 043(6) . 048(7) -. 009(5) . 005(5) -. 012(5) 
C(14) . 039(5) . 048(6) . 041(7) -. 012(5) . 006(5) -. 007(5) 
C(15) . 052(6) . 050(6) . 049(8) -. 020(5) -. 003(5) -. 017(6) 
C(16) . 049(6) . 066(7) . 051(7) -. 020(5) -. 012(5) -. 011(6) 
C(17) . 045(6) . 048(6) . 045(7) -. 012(6) -. 001(5) -. 010(6) 
C(18) . 037(6) . 074(8) . 089(8) . 004(5) -. 007(5) -. 014(7) 
C(19) . 056(6) . 076(7) . 075(8) -. 029(6) . 021(6) -. 013(7) 
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Chapter 6 

Molecular Mechanics Calculations 
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6 Introduction. 

Although molecular mechanics calculations can deal with 

much larger molecules than quantum mechanical calculations 

their application to macro-molecules has been limited. 

However, further down the scale, a significant amount of 

work has been carried out on relatively large molecules such 

as steroids. For this particular class of compound several 

molecular mechanics calculations have been published, and 

the geometries obtained usually show good agreement with X- 

ray structural data. 1-3 The molecular models usually show 

the ß-phase convex conformation of the steroids as seen in 

X-ray studies, a feature not readily detected from a Dried- 

ing model. 4 Results from molecular mechanics calculations 

also confirm that the most common stereochemistry, 5a, 8ß, 

9a, 14c, (247), (a kinetic product resulting from the cycli- 

sation of squalene) is not the most thermodynamically stable 

configuration. Rather the 5a, 8ß, 9a, 14ß configuration 

(248) is the most stable, although the presence of a 17-C 

sidechain tends to stabilise the 14a isomer. 5 The reader is 

directed to "Molecular Mechanics" by Burkert and Allinger1 

for a comprehensive review of molecular mechanics calcula- 

tions and their application to steroids. 

H 

(247) (248) 
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The molecular mechanics package used in this work was 

the PC version of the ChemmodR system by U-micro which 

utilised a force field developed by White and Bovill. 6 

The compounds that were studied were those that were 

deemed to be of particular structural interest in the syn- 

thetic work. Wherever possible the models were constructed 

from the atomic co-ordinates of dehydroepiandosterone (97) 

or the parent 3,5 cyclosteroid (41) whose structures were 

determined from single crystal X-ray crystallographic work 

(Chapter 5). Several starting models were employed in an 

effort to determine if the Newton-Raphson minimiser was 

indeed finding a global minimum molecular potential energy 

conformation and not coming to rest on, for example, a local 

energy minimum. ' The Chemmod molecular modelling system was 

found to be restrictive in several areas and these are 

highlighted in the following pages where they have arisen. 

All molecular diagrams in this chapter are based on energy 

minimised structures. 

0 

HO 

OH 

(97) (41) 

0 

256 



6.2 Molecular Mechanics Compounds Studied by X_Ray Crys- 

tallography 

6.2.1 38-Hydro -5-androsten-17-one 97 

The bond lengths, bond angles and torsion angles of 

dehydroepiandosterone (97) from the X-ray data and the 

0 

HO 

(97) 

molecular model are compared below in Tables 20,21, and 22. 

Figures 10 and 11 show DHEA (97) from the "normal" prospec- 

tive and a lengthways view (methyl groups to rear). 
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TABS 20 

COMPARISON OF BOND 
-CAI 

DERIVED FROM X-RAY STUDIES 

(average e. s. d. = 0.02A AND MOLECULAR MECHANICS STUDIES FOR 

DEHYDROEPIANDROSTERONE 97 

X aY "flf X-ray mm 

C(1)-C(2) 1.52 1.55 C(9)-C(10) 1.56 1.58 

C(1)-C(10) 1.59 1.56 C(9)-C(11) 1.53 1.57 

C(2)-C(3) 1.51 1.55 C(10)-C(19) 1.57 1.56 

C(3)-O(1) 1.29 1.44 C(11)-C(12) 1.53 1.56 

C(3)-C(4) 1.53 1.55 C(12)-C(13) 1.51 1.56 

C(4)-C(5) 1.51 1.54 C(13)-C(14) 1.50 1.56 

C(5)-C(6) 1.35 1.43 C(13)-C(17) 1.48 1.53 

C(5)-C(10) 1.45 1.54 C(13)-C(18) 1.61 1.56 

C(6)-C(7) 1.54 1.52 C(14)-C(15) 1.52 1.55 

C(7)-C(8) 1.52 1.55 C(15)-C(16) 1.55 1.55 

C(8)-C(9) 1.50 1.56 C(16)-C(17) 1.49 1.53 

C(8)-C(14) 1.52 1.56 C(17)-O(2) 1.22 1.21 
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TABLE 21 

COMPARISON Q VALENCY ANGLES = DERIVED FROM X-RAY STUDIES 

(average e. s. d. = MP- MOLECULAR MECHANICS STUDIES FOR 

DEHYDROEPIANDROSTERONE (97). 

X-ray X-ray mm 

C1-C2-C3 111.7 112.0 C8-C14-C13 114.3 114.0 

C1-C10-C5 107.6 107.3 C8-C14-C15 121.4 121.3 

C1-C10-C9 108.0 110.8 C9-C8-C14 111.1 112.2 

C1-C10-C19 105.8 109.2 C9-C10-C19 110.7 111.7 

C2-C1-C10 114.8 116.6 C9-C11-C12 112.0 116.4 

C2-C3-01 113.8 113.1 C10-C9-C11 113.3 115.9 

C2-C3-C4 113.0 111.1 C11-C12-C13 110.9 111.6 

01-C3-C4 109.7 113.1 C12-C13-C14 111.6 107.0 

C3-C4-C5 112.3 113.4 C12-C13-C17 118.3 117.1 

C4-C5-C6 116.3 119.1 C12-C13-C18 109.0 111.2 

C4-C5-C10 118.9 118.4 C13-C14-C15 106.4 104.4 

C5-C6-C7 123.4 124.7 C13-C17-02 127.0 124.1 

C5-C10-C9 114.0 111.4 C13-C17-C16 108.7 110.9 

C5-C10-C19 110.4 106.3 C14-C13-C17 102.2 98.6 

C6-C5-C10 124.8 122.5 C14-C13-C18 113.2 116.0 

C6-C7-C8 110.1 114.9 C14-C15-C16 100.0 104.2 

C7-C8-C9 112.6 111.8 C15-C16-C17 106.8 103.8 

C7-C8-C14 112.1 111.7 C16-C17-02 124.3 123.8 

C8-C9-C10 110.7 114.1 C17-C13-C18 102.3 106.7 

C8-C9-C11 116.5 113.2 
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TABLE 22 

COMPARISON OI RING TORSION ANGLES j' DERIVED FROM X-RAY 

STUDIES javeraae e. s. d. = 60AND MOLECULAR MECHANICS 

STUDIES FOR DEHYDROEPIANDROSTERONE1. 

RING A X-ray HN 

C(1)-C(2)-C(3)-C(4) 49.2 52.4 

C(2)-C(3)-C(4)-C(5) -47.7 -50.4 

C(3)-C(4)-C(5)-C(10) 51.1 50.2 

C(4)-C(5)-C(10)-C(1) -49.9 -46.9 

C(5)-C(10)-C(1)-C(2) 50.1 48.6 

C(10)-C(1)-C(2)-C(3) -51.6 -54.4 

RING h X-ray 

C(5)-C(6)-C(7)-C(8) 17.3 15.3 

C(6)-C(7)-C(8)-C(9) -45.6 -42.4 

C(7)-C(8)-C(9)-C(10) 55.9 55.7 

C(8)-C(9)-C(10)-C(5) -36.3 -40.1 

C(9)-C(10)-C(5)-C(6) 8.4 11.8 

C(10)-C(5)-C(6)-C(7) 1.1 0.7 
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RING -ra mm 

C(8)-C(9)-C(11)-C(12) 44.1 42.0 

C(9)-C(11)-C(12)-C(13) -49.2 -50.8 

C(11)-C(12)-C(13)-C(14) 54.8 58.1 

C(12)-C(13)-C(14)-C(8) -55.7 -61.6 

C(13)-C(14)-C(8)-C(9) 48.1 55.0 

C(14)-C(8)-C(9)-C(11) -42.7 -42.7 

RING Q X_rav mm 

C(13)-C(14)-C(15)-C(16) -38.0 -37.3 

C(14)-C(15)-C(16)-C(17) 22.6 15.8 

C(15)-C(16)-C(17)-C(13) 0.4 11.4 

C(16)-C(17)-C(13)-C(14) -23.7 -33.1 

C(17)-C(13)-C(14)-C(15) 39.0 42.2 

One of the differences between the model and the X-ray 

structure was in the determination of the C(3)-0(1), C(5)- 

C(l0) and C(5)-C(6) bond lengths. The greater values in the 

molecular model probably arise because the model is of an 

isolated molecule and is therefore not subject to crystal 

packing forces. Rings B and D, where sp2 character exists, 

were affected the most with a change of bond angles and 

torsion angles resulting in small but significant changes in 

geometry. The twisting of the original B ring geometry of a 

slightly distorted half-chair with C(8) out of the plane is 

reduced so that the plane through C(10)-C(5)-C(6)-C(7) is 

now virtually planar (to within 0.7'). Changes in the other 

torsion angles result in an effective shifting of C(7) into 
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FIGURE 10 - 3U pow. (97) 

FIGURE 11 
"Lin hways" pwapeetiv+ (me" group. to rear) of 4Wrydo (97) 

FIGURE 12 
"N ý" P° 6ß-hydr+oxy-3', 5-cydo-54-andr+o*tan-l7-one (tj) 

OO0 
oa 

ýo00 
oýr ýo 0 

FIGURE 13 
"Lawthways" pe " (MG W groups to r. ar) of Bp-hydroxy- 

-39'. 5-cyclo-5Q-andootan-17-on. (4.1) 
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the a-plane and hence reduced distortion from the half-chair 

configuration. Deviation from the 14c envelope configuration 

of the D ring was due to the movement of the C(17) keto 

group into the a-plane. Overall however, general changes 

were small. 

6.2.2 68-Hvdroxy-3a. 5-cvclo-5a-androstan-17-one (41). 

As mentioned in section 6.1, the programme was severely 

limited in some calculations. One of the major limitations 

of the modelling system used was its inability to perform 

calculations on the cyclopropane ring carbons. Indeed force 

fields capable of handling cyclopropane rings are relatively 

rare. Attempts to treat the cyclopropane ring with force 

fields suitable for open chains have been undertaken 7,8 but 

have not worked well. Alternatively, force fields with 

additional parameters have been quite successful8'9 but are 

still not as good as those for simple alkanes. The treatment 

of more complex cyclopropane compounds, especially those 

where the cyclopropane ring is fused to another ring, re- 

sults in compounds with a multitude of various strains that 

are, at best, very difficult to work with. ' 

0 

OH 

(41) 

As it was only possible to treat the cyclopropane ring 
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keep the bonds between these three atoms at constant values 

(those derived from the X-ray data) and to allow the ring to 

ride freely as an integral unit. The bond lengths, bond 

angles and torsion angles of compound (41) from the X-ray 

analysis and the molecular model were compared and are shown 

below in Tables 23,24 and 25. Figures 12 and 13 show the 

3,5-cyclosteroid from the "normal" prospective and a length- 

ways view (methyl groups to rear). 

TABLE 2 

COMPARISON OF BOND LENGTHS JAI "DERIVED FROM X-RAY STUDIES 

_(_average 
e. s. d. = 0.02 1 MOLECULAR MECHANICS STUDIES 

FOR 68-HYDROXY-3a 5-CYCLO-5a-ANDROSTAN-17-ONE (41). 

Y um 

C(1)-C(2) 1.54 1.55 C(9)-C(10) 

C(1)-C(10) 1.53 1.56 C(9)-C(11) 

C(2)-C(3) 1.52 1.54 C(10)-C(19) 

C(3)-C(4) 1.47 --- a C(11)-C(12) 

C(3)-C(5) 1.47 --- a C(12)-C(13) 

C(4)-C(5) 1.50 --- a C(13)-C(14) 

C(5)-C(6) 1.49 1.57 C(13)-C(17) 

C(5)-C(10) 1.54 1.58 C(13)-C(18) 

C(6)-C(7) 1.54 1.55 C(14)-C(15) 

C(6)-O(1) 1.44 1.44 C(15)-C(16) 

C(7)-C(8) 1.51 1.55 C(16)-C(17) 

C(8)-C(9) 1.56 1.56 C(17)-O(2) 

C(8)-C(14) 1.51 1.56 

acyclopropane bond lengths constrained. 

X-ray mm 

1.54 1.57 

1.52 1.56 

1.55 1.56 

1.52 1.56 

1.52 1.56 

1.51 1.56 

1.52 1.53 

1.56 1.56 

1.55 1.55 

1.54 1.55 

1.50 1.53 

1.21 1.21 
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24 

COMPARISON Q VALENCY ANGLES j DERIVED FROM X-RAY STUDIES 

(average e. s. d. = 0 9" AND MOLECULAR MECHANICS STUDIES FOR 

68-HYDROXY- 3a. 5-CYCLO- 5a-AN DROSTAN-17-ONE (41). 

X-ray mm X-ray mm 

C1-C2-C3 104.1 104.0 C7-C8-C14 112.4 113.0 

C1-C10-C5 103.2 100.9 C8-C9-C10 114.2 115.0 

C1-C10-C9 110.5 111.0 C8-C9-C11 111.5 111.4 

C1-C10-C19 110.6 110.3 C8-C14-C13 114.0 112.8 

C2-C1-C10 106.0 105.7 C8-C14-C15 120.3 122.2 

C2-C3-C4 116.3 118.1 C9-C8-C14 106.5 110.7 

C2-C3-C5 108.7 108.6 C9-C10-C19 111.4 112.2 

C3-C4-C5 59.7 --- a C9-C11-C12 113.6 114.8 

C3-C5-C4 59.3 --- a C10-C9-C11 113.5 115.8 

C3-C5-C6 118.6 118.7 C11-C12-C13 110.2 112.0 

C3-C5-C10 108.6 108.4 C12-C13-C14 109.3 107.6 

C4-C3-C5 61.0 --- a C12-C13-C17 116.8 117.2 

C4-C5-C6 117.5 118.3 C12-C13-C18 111.4 110.9 

C4-C5-C10 117.8 124.9 C13-C14-C15 103.9 104.6 

C5-C6-01 110.2 108.8 C13-C17-02 125.9 124.0 

C5-C6-C7 110.0 111.5 C13-C17-C16 108.4 111.0 

C5-C10-C9 110.8 113.5 C14-C13-C17 101.5 98.5 

C5-C10-C19 110.1 108.3 C14-C13-C18 113.6 116.1 

C6-C5-C10 119.8 114.0 C14-C15-C16 101.2 103.6 

C6-C7-C8 113.0 111.4 C15-C16-C17 106.5 104.1 

C7-C6-01 107.5 113.6 C16-C17-02 125.6 123.4 

C7-C8-C9 111.2 111.3 C17-C13-C18 104.0 106.3 
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TABLE 2& 

COMPARISON QE RING TORSION ANGLES I_a DERIVED FROM WRAC 

STUDIES (average e. s. d. = 9.9") AND MOLECULAR MECHANICS STUD 

O 6B-HYDROXY-3a. 5-CYCLO-5a-ANDROSTAN-17-ONE (41). 

RING A X-ray mm 

C(1)-C(2)-C(3)-C(4) 49.0 52.6 

C(1)-C(2)-C(3)-C(5) -17.2 -14.5 

C(2)-C(3)-C(4)-C(5) -97.7 -97.0 

C(2)-C(3)-C(5)-C(10) -1.5 -7.6 

C(3)-C(4)-C(5)-C(10) 96.2 91.8 

C(3)-C(5)-C(10)-C(1) 19.5 26.2 

C(4)-C(5)-C(10)-C(1) -45.0 -38.5 

C(5)-C(10)-C(1)-C(2) -29.9 -34.9 

C(10)-C(1)-C(2)-C(3) 29.4 31.3 

RING -ra HIl 

C(5) -C(6) -C(7) -C(8) 53.4 58.3 

C(6)-C(7)-C(8)-C(9) -57.1 -57.6 

C(7)-C(8)-C(9)-C(10) 52.1 49.7 

C(8)-C(9)-C(10)-C(5) -42.7 -42.0 

C(9)-C(10)-C(5)-C(6) 42.1 42.1 

C(10)-C(5)-C(6)-C(7) -46.9 -50.5 
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RING C X-rav mm 

C(8)-C(9)-C(11)-C(12) 54.0 47.7 

C(9)-C(11)-C(12)-C(13) -53.0 -52.0 

C(11)-C(12)-C(13)-C(14) 54.3 56.2 

C(12)-C(13)-C(14)-C(8) -61.7 -60.0 

C(13)-C(14)-C(8)-C(9) 60.4 58.6 

C(14)-C(8)-C(9)-C(11) -54.8 -49.6 

RING 12 X-ray HH 

C(13)-C(14)-C(15)-C(16) -40.9 -38.8 

C(14)-C(15)-C(16)-C(17) 23.8 18.6 

C(15)-C(16)-C(17)-C(13) 1.3 8.9 

C(16)-C(17)-C(13)-C(14) -26.6 -30.9 

C(17)-C(13)-C(14)-C(15) 41.7 41.8 

One of the obvious results in the table of bond lengths 

is the difference in the lenght of the C(5)-C(6) bond. The 

X-ray study (indicating the "partial sp2" character of the 

cyclopropane ring) gives a shorter bond length. Thus the 

major weakness of the molecular mechanics model is evident 

here because the programme, in treating the three cyclopro- 

pane carbons as sp3 hybridised, has calculated this bond to 

be longer by assuming no movement of electrons occurs. 

The torsion angles of the A ring show greater deviation 

from the planar nature of the 5 membered [C(1)-C(2)-C(3)- 

C(5)-C(10)) ring (noted in a Drieding model) than those in 

the X-ray structure. Bond angles C(2)-C(3)-C(4) and C (4) - 

C(5)-C(10), i. e., those defining the relationship between 

the cyclopropane and cyclopentane rings, were increased. As 
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was noted in the case of the D ring of DHEA, torsion angles 

were adjusted, i. e., the pushing of the C(17) atom out of 

the plane distorting the 14a envelope. Changes elsewhere 

were small. 

The accuracy of the model was indicated by the theoret- 

ical estimation of the coupling between 6-H and its neigh- 

bouring protons. The dihedral angles between the 6a-hydrogen 

and its vicinal 7-hydrogens were measured at 54.30 and 58.40 

which gives, using the Karplus equation: 10111 

3Jab2-JO. cos2O- 0.28 (0'2t 05 90') 

3Jab° J180. cos2o- 0.28 (90' Z0 <_ 1800) 

where the constants, JO and J180= 8.5 and 9.5 respectively 

and 0 is the dihedral angle between the two protons, an 

estimated coupling constants of 2.5 Hz ± 0.5Hz. This com- 

pares very favourably with the observed triplet (J= 2.7Hz). 

As this relatively simple example shows, the clarification 

of a structure can be achieved by predicting 1H NMR cou- 

pling constants. Therefore this technique was utilised on 

other, more complex examples to help predict or elucidate 

their structure. 
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6.3 Molecular modelling investigations of structurally 

interesting steroids related to the synthetic studies. 

Several compounds, detailed below, were investigated by 

molecular mechanics in attempts to gain further details of 

their structure. Information gained was used for a variety 

of purposes. 

6.3 3B-Hydroxv-5-androstene-17-spiro-2'-(1,3-oxathiolane) 

(131). S or a configuration? 

By study of the reaction mechanism for the formation of 

the oxathiolane (Section 3.3.4) it was concluded that the 

17(S) configuration (131a) was the product of this apparent- 

ly regioselective reaction. However, because of a potential- 

ly large repelling force between the ß-orientated sulphur 

HO 

(131a) (131b) 

atom and the C(18) methyl group in the S-isomer it was 

considered that the product of reaction may in fact have 

the 17(R) configuration (131b). Thus although attack at 

C(17) by the hydroxy group may, by steric effects, be di- 

rected to form the S-isomer, the (potentially) lower energy 

of the R-isomer may direct the reaction to this product via 

a higher energy intermediate. To determine the exact struc- 

tures of the two isomers and hence examine the steric dif- 

ferences between (131a) and (131b) the two models were gener- 
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ated, and their energies minimised. A comparison of the 

geometrical data of the two compounds is presented below in 

Tables 26,27 and 28. Not surprisingly, data from rings A 

and B were virtually identical and therefore have been 

omitted. 
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TABLE 26 

COMPARISON Q BOND LENGTHS LAI DERIVED FROM MOLECULAR ME 

CHANICS STUDIES R THE 
, 
17$ AND 17S OXATHIOLANE STEROIDS 

(131a and 

17S 

C(11)-C(12) 1.556 1.556 

C(12)-C(13) 1.561 1.563 

C(13)-C(14) 1.558 1.561 

C(13)-C(17) 1.573 1.573 

C(13)-C(18) 1.569 1.566 

C(14)-C(15) 1.548 1.546 

C(15)-C(16) 1.554 1.553 

1$ 17S 

C(16)-C(17) 1.563 1.563 

C(17)-O(2) 1.440 1.441 

C(17)-S(1) 1.837 1.836 

S(1)-C(20) 1.801 1.796 

C(20)-C(21) 1.544 1.545 

C(9)-C(11) 1.566 1.565 

C(21)-0(2) 1.433 1.431 
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TABLE 2 

COMPARISON O VALENCY ANGLES L. U DERIVED FROM MOLECULAR 

MECHANICS STUDIES 
, 
O. THE 17R AND 17S OXATHIOLANE STEROIDS 

a and 

2R 

C8-C9-C11 112.5 

C8-C14-C13 115.7 

C8-C14-C15 119.5 

C9-C8-C14 112.7 

C9-C10-C19 111.4 

C9-C11-C12 116.0 

C10-C9-C11 115.7 

C11-C12-C13 113.5 

C12-C13-C14 106.1 

C12-C13-C17 118.5 

C12-C13-C18 111.4 

C13-C14-C15 103.9 

C13-C17-02 112.2 

C13-C17-Sl 117.4 

7S 

112.2 

116.1 

119.4 

112.4 

111.4 

116.0 

115.8 

113.6 

105.1 

117.6 

109.4 

103.9 

110.0 

119.3 

C13-C17-C16 

C14-C13-C17 

C14-C13-C18 

C14-C15-C16 

C15-C16-C17 

C16-C17-02 

C16-C17-S1 

C17-C13-C18 

02-C17-S1 

C17-S1-C20 

C17-02-C21 

C20-C21-02 

C21-C20-S1 

1$ 17S 

102.6 102.8 

102.1 101.6 

113.1 113.4 

104.2 103.5 

108.5 108.6 

110.5 109.2 

109.0 110.2 

108.6 109.7 

105.9 105.1 

91.2 91.6 

114.3 113.8 

111.7 112.3 

103.9 102.7 
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TABLE 28 

COMPARISON Q THE RING TORSION ANGLES 
, 
j'_ DERIVED FRO 

MOLECULAR MECHANICS STUDIES OE THE I AND 17S OXATHIOLANE 

STEROIDS. (131a and 

RING C 17S 

C(8)-C(9)-C(11)-C(12) 41.9 42.3 

C(9)-C(11)-C(12)-C(13) -51.0 -51.0 

C(11)-C(12)-C(13)-C(14) 55.8 56.2 

C(12)-C(13)-C(14)-C(8) -58.3 -59.0 

C(13)-C(14)-C(8)-C(9) 53.0 53.9 

C(14)-C(8)-C(9)-C(11) -41.4 -41.6 

RING 12 17R 17S 

C(13)-C(14)-C(15)-C(16) -30.6 -34.2 

C(14)-C(15)-C(16)-C(17) 5.9 10.6 

C(15)-C(16)-C(17)-C(13) 20.7 16.7 

C(16)-C(17)-C(13)-C(14) -39.0 -37.0 

C(17)-C(13)-C(14)-C(15) 20.7 44.8 
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Table 29 shows the values of the torsion angles of the 

oxathiolane ring and the torsion angles defining the geome- 

try of attachment of the oxathiolane ring (ring E) to the D 

ring of the steroid. In the Table, X(1) and X(2) represent a 

sulphur atom and a oxygen atom respectively in the case of 

the 17S isomer. The opposite is true for the R isomer 

(Figure 14). 

................. .... 
X C20 

X x'21 

(131a: 17(S), X, = S, X2= 0) 
(131b: 17(R), X, = 0, X2= S) 

FIGURE 14 
Numbering used for Table 29 

274 



TAB 21 

COMPARISON OF THE TORSION ANGLES jJ� OF THE OXATHIOLANE RING 

DERIVED FROM MOLECULAR MECHANICS STUDIES OF THE 17S 

OXATHIOLANE STEROIDS (131). 

RING Äg- RING) i$ 17S 

C(17)-X(1)-C(20)-C(21) 2.0 -33.5 

X(1)-C(20)-C(21)-X(2) -25.2 26.5 

C(20)-C(21)-X(2)-C(17) 31.7 -2.1 

C(21)-X(2)-C(17)-X(1) -31.7 -23.0 

X(2)-C(17)-X(1)-C(20) 21.8 33.8 

C(13)-C(17)-X(1)-C(20) -107.3 -90.2 

C(13)-C(17)-X(2)-C(21) 94.2 106.6 

C(14)-C(13)-C(17)-X(1) -157.1 -159.2 

C(14)-C(13)-C(17)-X(2) 80.3 79.2 

C(15)-C(16)-C(17)-X(1) 139.9 144.9 

C(15)-C(16)-C(17)-X(2) -104.1 -100.2 

C(16)-C(17)-X(1)-C(20) 139.7 151.2 

C(16)-C(17)-X(2)-C(21) -150.6 -141.2 

As already stated, examination of the two isomers (131) 

showed that changes in configuration at the 17-position had 

no effect on the A and B rings. However, the above data also 

shows that there is very little geometrical difference 

between rings C and D of the two isomers. The two struc- 

tures, constructed from the DHEA (97) model by identical 

means and minimised to the same degree showed that the final 

energy value of the 17S configuration was only 4.5% greater 

than that of the 17R steroid. Figures 15 and 16 show the two 
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FIGURE 15 

"N~ p. rweeh» of 31-nyo+oooº-andr+o. c-5-«n-17(s)-spino-2 -(1.3-0=dMolan. ) (1310) 

a 

0 

FIGURE 16 

. _,,, d» pv, p. _ of 3-Ior&+oooº-cnarýo t-5-. n-17(R)-. pro-r-(1,3-onuthiolan. ) (131b) 
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isomers from the "normal prospective". Thus there is no great 

difference between the two structures in terms of overall 

energy and therefore no reason to presume that the regiose- 

lective product is the R-isomer. Further confirmation can be 

gleamed from a more detailed study of the oxathiolane ring 

in the two isomers. 

The only significant difference between the two ster- 

oids epimers' lies with the two oxathiolane rings where the 

rings of each epimer are "mirror images" of each other. 

Table 30, where the torsion angles are arranged under the 

same type of bond instead of their geometrical orientation, 

gives a clearer picture than Table 29. The unnumbered car- 

bons represent the respective oxathiolane carbons of each 

epimer. 

TABLE 30 

ALTERNATIVE COMPARISON OF THE OXATHIOLANE RING TORSION 

ANGLES . 
L1. QE THi 17R AND 1 OXATHIOLANE STEROIDS. 131 

TORSION ANGLE 17R 17S 

C(17)-S-C-C 31.7 -33.5 

S-C-C-O -25.2 26.5 

C-C-O-C(17) 2.0 -2.1 

C-O-C(17)-S 21.8 -23.0 

O-C(17)-S-C -31.7 33.8 

As indicated by the data, the oxathiolane ring of the 

17S isomer is more distorted than the oxathiolane ring of 

the 17R isomer. This distortion is also seen in the steroid 
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framework, e. g., the angle C(17)-C(13)-C(18) increases from 

102.6' for DHEA to 108.6' for the R-isomer (131b) and to 

109.7' for the S-isomer (131a). However, these changes, as 

indicated above, do not significantly add to the overall 

energy of the molecule and can therefore easily accommodate 

the sulphur atom into the ß-position. This is further sup- 

ported by comparing the strengths of the interaction between 

the oxathiolane and C(18) methyl groups of the two epimers. 

Thus a plot of potential energy verses rotation of torsion 

angle C(14)-C(13)-C(18)-H led to a measurement of the repul- 

sive force on the hydrogen atom's closest approach (Figure 

17). For the 17S compound the increase in energy as the 

methyl hydrogen reached its closest point to the heteroatom 

was only 2% more than that for the 17R steroid. This infor- 

mation and that given above lead to the conclusion that 

there is, with respect to an energetically favoured struc- 

ture, essentially no difference between the two compounds 

and that the reaction would not be affected by the introduc- 

tion of the sulphur atom into the ß-position. This is used 

to support the postulate of the formation of the 17S isomer 

by the mechanism given in Chapter 3. 

Note however that the molecular mechanics models do 

potentially offer a more definitive identification of the 

isomeric product by an analysis of the splitting patterns 

of the 1H NMR signals of the product. Because of the two 

forms of the oxathiolane ring the dihedral angles between 

the 4 protons of the ring differ (Table 31) and would there- 

fore lead to differing splitting patterns. However, the 

differences between the theoretical splitting patterns 
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resulting from these differences are too small to be distin- 

guished readily on the instrument used and certain identifi- 

cation would most certainly involve considerable experimen- 

tation on a more powerful instrument. 

TABLE 21 

DIHEDRAL ANGLES 
, 
L', BETWEEN OXATHIOLANE PROTONS QF M 

TWO POSSIBLE ISOMERS (131), 

DIHEDRAL ANGLE 

eac 

ead 

177 17S 

31.8 35.0 

32.2 29.9 

ebc 72.1 85.5 

ebd 28.9 29.6 

... "- S Hý 
Hb 

'- N -, ýHý, 
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6.3.2 -Hydroxy-5-androstene-17(S)-spiro-2'-(1.3-oxathio- 

ße) 31a). A comparison conformational features with _Qf 

IAA (97)s 

In Chapter 3 it was noted that the oxathiolane steroid 

(131a) would not undergo tosylation at the C(3) hydroxy 

group. It was also observed that the mesylation or acetyla- 

tion of the above group occurred at a considerably slower 

rate than for a similar reaction with DHEA (97). In relation 

to this, the two respective compounds were compared to 

ascertain if the oxathiolane group conferred any structural 

changes to the main steroid framework and was thus experi- 

encing a form of the Barton effect12 (Chapter 3). The com- 

plete results showed that the A and B rings of the two 

compounds were almost identical. However, as noted in Tables 

32,33 and 34, slight alterations to the C ring and consid- 

erable alterations to the D ring (due to the change in 

hybridisation of atom C(17)) were noted. 
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TABLE 32 

COMPARISON Q BOND LENGTHS ßl, DERIVED FROM MOLECULAR ME- 

CHANICS STUDIES FOR DEHYDROEPIANDOSTERONE RJR ITS 17S- 

OXATHIOLANE COMPOUND. 

EA 

C(11)-C(12) 1.556 

C(12)-C(13) 1.556 

C(13)-C(14) 1.557 

C(13)-C(17) 1.529 

C(13)-C(18) 1.562 

C(14)-C(15) 1.552 

C(15)-C(16) 1.554 

17S 

1.556 

1.563 

1.561 

1.573 

1.566 

1.546 

1.553 

DUE 17S 

C(16)-C(17) 1.526 1.563 

C(17)-O(2) 1.212 1.440 

C(17)-S(1) -- 1.836 

S(1)-C(20) -- 1.796 

C(20)-C(21) -- 1.545 

C(9)-C(11) 1.568 1.565 

C(21)-O(2) -- 1.433 
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TABLE 33 

COMPARISON OF TM VALENCY ANGLES . DERIVED FROM MOLECULAR 

MECHANICS STUDIES OF DEHYDROEPIANDROSTERONE AND 17$- 

OXATHIOLANE COMPOUND. 

DIIEAý 77SS DHEA 17S 

C8-C9-C11 113.2 112.2 C13-C17-C16 110.9 102.8 

C8-C14-C13 114.0 116.1 C14-C13-C17 98.6 101.6 

C8-C14-C15 121.3 119.4 C14-C13-C18 116.0 113.4 

C9-C8-C14 112.2 112.4 C14-C15-C16 104.2 103.5 

C9-C10-C19 111.7 111.4 C15-C16-C17 103.8 108.6 

C9-Cll-C12 116.4 116.0 C16-C17-02 123.8 109.2 

C10-C9-C11 115.9 115.8 C16-C17-Sl --- 110.2 

C11-C12-C13 111.6 113.6 C17-C13-C18 106.7 109.7 

C12-C13-C14 107.0 105.1 02-C17-S1 --- 105.1 

C12-C13-C17 117.1 117.6 C17-S1-C20 --- 91.6 

C12-C13-C18 111.2 109.4 C17-02-C21 --- 113.8 

C13-C14-C15 104.4 103.9 C20-C21-02 --- 112.3 

C13-C17-02 124.1 110.0 C21-C20-S1 --- 102.7 

C13-C17-Sl --- 119.3 
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TABLE 34 

COMPARISON Q. THE RING TORSION ANGLES (*) DERIVED FRAM 

MOLECULAR MECHANICS STUDIES-QE DEHYDROEPIANDROSTERONE $ý1g 

ITS f OXATHIOLANE COMPOUND. 

RING 
-Q 

DHEA 

C(8)-C(9)-C(11)-C(12) 40.6 42.3 

C(9)-C(8)-C(14)-C(13) 53.9 53.9 

C(9)-C(11)-C(12)-C(13) -50.3 -51.0 

C(11)-C(12)-C(13)-C(14) 58.1 56.2 

C(12)-C(13)-C(14)-C(8) -61.6 -59.0 

C(14)-C(8)-C(9)-C(11) -40.8 -41.6 

RING p DHEA 

C(13)-C(14)-C(15)-C(16) -37.8 -34.2 

C(14)-C(13)-C(17)-C(16) -32.0 -37.0 

C(14)-C(15)-C(16)-C(17) 17.1 10.9 

C(15)-C(16)-C(17)-C(13) 9.9 16.7 

C(17)-C(13)-C(14)-C(15) 41.8 44.8 

RING E (OXATHIOLAN 

C(17) -s (i) -C (20) -C (21) 

S (1) -C (20) -C (21) -o (2) 

c(is)-0(2)-C(21)-C(20) 

s(1)-c(i7)-0(2)-C(21) 

0(2)-c(is)-s(1)-c(2o) 

LE RING) 

-33.5 

26.5 

-2.1 

-23.0 

33.8 
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The information given above readily shows the altera- 

tion of the D ring induced by the conversion of the C(17) 

atom from an sp2 to an sp3 hybridised state. Although 

changes in the conformation of the C ring are noticeable 

with the alteration at C(17) these changes are not signifi- 

cant. Since no difference was observed between the A and B 

rings of the two compounds it would appear that the noted 

reduced rates of reaction cannot be explained by geometrical 

alterations leading to some form of Barton effect12 (Chapter 

3). 

§. 3.6-Methylene-3a, 5-cyclo-5a-androstan-17-one (180). 

Conformation dependence ky conjugation 
, off py the 4-H/6'-H 

interaction? 

When constructed from a Drieding model, the 6-methylene 

derivatives synthesised, e. g., (180) (Chapter 3) appeared to 

be of interest. It was noted that there may be a repulsive 

interaction between the C(4) cyclopropane protons and the 

relevant C(6') methylene proton because of their close 

proximity (157). This would have an effect on the geometry 

and hence on the level of conjugation between the cyclopro- 

pane and the exo-cyclic methylene group. There is effective- 

ly therefore a compromise here between maximum conjugation 

and minimum interaction which will determine the geometry of 

the steroid (the reader is directed to Chapter 3, for a 

detailed explanation of this). Although the modelling system 

used cannot refine cyclopropane carbon positions (and hence 

any conjugation present in the molecule), a molecular me- 

chanics model was constructed to investigate the proton 
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interaction and determine its effects on the conjugation. 

The model was constructed from the parent 3,5-cyclosteroid 

(41) by the transforming of C(6) into a sp2 carbon and 

attaching a methylene group. The torsion angle C(4)-C(5)- 

C(6)-C(6') was, before minimisation, set at 300, i. e., X- 

C(5)-C(6)-C(6')= 0' [where X is the midpoint between C(3) 

and C(4)] (249), the value that would theoretically allow 

maximum conjugation, and also that indicated by a Drieding 

model. A comparison between the parent cyclosteroid (41) and 

its (minimised) methylene derivative (Figure 18) was made 

and is presented below in Tables 35,36 and 37. As no 

changes were expected, nor indeed found, in the C and D 

rings their relevant data have been omitted. 

TABLE 35 

COMPARISON OF BOND LENGTHS a� DERIVED FROM MOLECULAR IE_ 

CHANICS STUDIES O 3a. 5-CYCLO-5ac-ANDROSTAN-60-OL-17-ONE. AI 

6-METHYLENE-3a. 5-CYCLO-5a-ANDROSTAN-17-ONE. 

PARENT METHLYENE PARENT METHYLE 

C(1)-C(2) 1.548 1.548 C(6)-C(7) 1.550 1.526 

C(1)-C(10) 1.564 1.564 C(6)-C(6') --- 1.342 

C(2)-C(3) 1.545 1.545 C(7)-C(8) 1.553 1.553 

C(3)-C(4) 1.471 --- a C(8)-C(9) 1.560 1.567 

C(3)-C(5) 1.477 --- a C(8)-C(14) 1.559 1.561 

C(4)-C(5) 1.496 --- a C(9)-C(10) 1.574 1.543 

C(5)-C(6) 1.573 1.549 C(9)-C(11) 1.565 1.578 

C(5)-C(10) 1.578 1.579 C(10)-C(19) 1.559 1.558 

aCyclopropane bond lengths constrained. 
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TABLE 36 

COMPARISON QE VALENCY ANGLES (_, i_ DERIVED FROM MOLECULAR 

MECHANICS STUDIES QE 3 a, 5-CYCLO-5a-ANDROSTAN- 6B -OL- 17 -ONE 

1 6-METHYLENE-3a. 5-CYCLO-5a-ANDROSTANE. 

PARENT METHYLENE PARENT M ETHYLENE 

C1-C2-C3 104.0 104.0 C4-C5-C10 124.9 124.9 

C1-C10-C5 100.9 100.8 C5-C6-C6' --- 120.4 

C1-C10-C9 111.0 110.7 C5-C6-C7 111.5 117.6 

C1-C10-C19 110.3 110.9 C5-C10-C9 113.5 114.6 

C2-C1-C10 105.7 105.5 C5-C10-C19 108.3 107.1 

C2-C3-C4 118.1 117.7 C6-C5-C10 114.0 111.7 

C2-C3-C5 108.6 108.6 C6-C7-C8 111.4 110.2 

C3-C4-C5 59.4 --- a C7-C6-C6' --- 122.0 

C3-C5-C4 59.0 --- a C7-C8-C9 111.3 111.0 

C3-C5-C6 118.7 117.0 C7-C8-C14 113.0 112.6 

C3-C5-C10 108.4 108.3 C8-C9-C10 115.0 115.0 

C4-C3-C5 61.6 --- a C8-C9-C11 111.4 111.4 

C4-C5-C6 118.3 121.7 C10-C9-C11 115.8 116.0 

aCyclopropane ring constrained 
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TABLE 37 

COMPARISON Q RING TORSION ANGLES j DERIVED FROM MOLECULAR 

MECHANICS STUDIES QE 3a, 5-CYCLO-5a-ANDROSTAN-6B-OL-17-ONE 

=1 6-METHYLENE-3a, 5-CYCLO-5a-ANDROSTAN-17-ONE. 

RING $ PARENT METHYLENE 

C(1)-C(2)-C(3)-C(4) 52.6 52.7 

C(1)-C(2)-C(3)-C(5) -14.5 -14.4 

C(2)-C(3)-C(4)-C(5) -97.0 -97.5 

C(2)-C(3)-C(5)-C(10) -7.6 -8.3 

C(3)-C(4)-C(5)-C(10) 91.8 91.5 

C(3)-C(5)-C(10)-C(1) 26.2 27.1 

C(4)-C(5)-C(10)-C(1) -38.5 -37.4 

C(5)-C(10)-C(1)-C(2) -34.9 -35.7 

C(10)-C(1)-C(2)-C(3) 31.3 31.7 

RING B PARENT METHYLENE 

C(5)-C(6)-C(7)-C(8) 58.3 55.8 

C(6)-C(7)-C(8)-C(9) -57.6 -55.4 

C(6')-C(6)-C(5)-C(10) --- 132.5 

C(6')-C(6)-C(7)-C(8) --- -123.3 

C(7)-C(8)-C(9)-C(10) 49.7 51.0 

C(8)-C(9)-C(10)-C(5) -42.0 -42.9 

C(9)-C(10)-C(5)-C(6) 42.1 38.4 

C(10)-C(5)-C(6)-C(7) -50.5 -46.7 

The introduction of the methylene group, as the above 

tables show, had little effect on the geometry of the A 

ring. The change in geometry in the B ring, as would be 
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expected, is more pronounced. As well as the obvious short- 

ening of the C(5)-C(6) and C(6)-C(7) bonds, the torsion 

angles change to allow the B ring to adopt a chair conforma- 

tion. This results in the methylene hydrogens, which appear 

virtually in the plane of the steroid framework in a Dried- 

ing model, moving out of the plane and away from the cyclo- 

propane hydrogens. So much so that the methylene hydrogens 

become the most p-orientated hydrogens in the structure with 

the exception of the methyl protons (Figure 18). Thus the 

torsion angle C(4)-C(5)-C(6)-C(61) [X-C(5)-C(6)-C(61)) was 

adjusted to -42' [-72'] (250). 

This movement was shown to be as a result of the inter- 

action between the two protons in question by repeating the 

minimisation and observing each step in the minimisation 

process. Thus, for each step the methylene group was pushed 

further out of the plane of the B ring and the overall 

energy of the steroid was reduced by approximately 30%. 

However, the modelling system, as already discussed, 

cannot perform calculations for cyclopropane carbons. The 

above result is therefore based purely on steric considera- 

tions, i. e., the conjugation present between the cyclopro- 

pane ring and the exocyclic methylene group has not been 

taken into account. As the minimised model stands (torsion 

angle X-C(5)-C(6)-C(6')= 72') very little conjugation will 

be present. The true structure would be between the original 

model and its minimised alternative because of the stabilis- 

ing effect from an increased level of conjugation. 
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6.3.4 3a, 5-Cvclo-5a-androst-6-en-17-one 1185). 

A molecular model of the title compound (185) was 

constructed along with the models of steroids (217) and 

(218) in order to estimate and compare the amounts of steric 

hindrance around the double bond of each steroid. Although 

the comparison is between delta-5 steroids and the delta-6 

steroid (185) it would still appear (Figs 19-24) that the 

delta-6 double bond in (185) is as hindered from the a-phase 

as that of the chloro compound (217) but perhaps slightly 

less hindered than the dioxolane (218). From the "end-on 

view" the more complete blocking of the A ring in (185) is 

evident. Both views of (185) (Fig 19 and 20) show that the A 

ring provides considerably more hindrance than the 19-methyl 

group. Therefore as steroids (217) and (218) both yield the 

ß-epoxide on reaction with m-chloroperbenzoic acid, 13114 the 

models here would indicate that the steroid (185) does 

likewise or possibly forms an epimeric mixture. It is false 

to assume that under epoxidation conditions the a-isomer is 

formed exclusively. 
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6.3.5 6.7-Epoxv-3a. 5-cvclo-5a-androstan-l7-one (209). 

The modelling of the 6,7 epoxide (209) was originally 

undertaken to help predict the likely outcome of the reac- 

tion between it and dimethyllithium cuprate (Chapter 4). 

Thus, nucleophilic ring opening is initiated by attack on 

the least hindered carbon (assuming no electronic effects 

induced by the cyclopropane ring) which could potentially be 

identified from the model. However, from the model of the 

6a, 7a epoxide (209a) it became clear that the predicted 1H 

NNR signals from the epoxidilic hydrogens did not match the 

data recorded by Hanson et al. 15 As experimental and theo- 

retical results indicated an isomeric mixture of epoxides 

the ß-epoxide was also constructed (209b) and the two struc- 

tures (Figures 25 and 26) compared. Table 38 shows the 

calculated torsion angles for both isomers. 

TABLE 38 

COMPARISON OF IM DIHEDRAL ANGLES 
�O_ 

BETWEEN THE EPOXIDILIC 

pIROTONSJ- N BETWEEN Ij EPOXIDILIC PROTONS AND H-8 FOR 

a Al ß-EPOXIDE ISOMERS f209a) AND (209b). 

to od some H6-C6-C7-H7 H7-C7-C8-H8 

6a, 7a-epoxide 25.3 39.0 

6ß, 7ß-epoxide 38.9 141.6 

With the Karplus equationlO these results indicate that 

in the case of the a-isomer, the C(6) proton's signal would 

appear as a doublet (J= 6.7 Hz) and the C(7) proton as a 
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double doublet (J= 6.7 and 4.9 Hz). Its corresponding isomer 

should show a doublet for the C(6) proton (J= 4.9 Hz) and a 

double doublet (J= 4.9 and 5.6 Hz). These results are com- 

pared with those measured experimentally (Chapter 4). 

0 

V 

(2%a) (209b) 

0 
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Ig four possible isomeric products of reaction be- 

tween he two 6.7-epoxy-3a. 5-cyclo-5a-androstan-17-one 

isomers (209a and 209b) And dimethyllithium cuurate, 

As discussed in section 6.2.5, in any SN2 nucleophilic 

reaction, attack of an epoxide by dimethyllithium cuprate 

occurs at the less hindered carbon atom (1"> 2"> 3"). As in 

this particular example both carbons are secondary carbons, 

steric hindrance induced by another part of the molecule 

will determine the outcome of the reaction, especially where 

the reagent contains a bulky metal atom, e. g., copper. 

However, for this steroid participation of the cyclopropane 

00 

(4.4o) (44b) 
0 

OH OH 

(1900) (190b) 

ring must also be considered. To aid identification of the 

possible products, 6a(ß)-methyl-3a, 5-cyclo-5a-androstan- 

7o(ß)-0l-17-one (44a, (44b)) or 7a(ß)-methyl-3c, 5-cyclo-5a- 

androstan -6a(ß)-ol-17-one (190a, (190b)), molecular models 

were constructed to investigate their geometrical differ- 
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ences. Tables 39,40 and 41 compares rings A and B of the 

four compounds with the parent cyclosteroid (41). Figures 

27-30 show the four isomers and the orientation of their 

substituents. 

TABLE 39 

COMPARISON Q, F- BOND LENGTHS JAI DERIVED FROM MOLECULAR ME- 

CHANICS QE COMPOUNDS (44a), (44b). (190a) 1. p (190b) WITH 

6B-HYDROXY-3a. 5-CYCLO-5a-ANDROSTAN-17-ONE (41). 

Bond Parent (44a) (44b) (190a) (190b) 

C(1)-C(2) 1.548 1.546 1.564 1.548 1.548 

C(1)-C(10) 1.564 1.546 1.564 1.565 1.563 

C(2)-C(3) 1.545 1.544 1.544 1.544 1.544 

C(3)-C(4) 1.471a ___ a a ___ a ___ a 

C(3)-C(5) 1.477a ___ a a ___ a ___ a 

C(4)-C(5) 1.496a ___ a ___ a ___ a ___ a 

C(5)-C(6) 1.573 1.576 1.577 1.572 1.572 

C(5)-C(10) 1.578 1.581 1.580 1.573 1.579 

C(6)-C(7) 1.550 1.557 1.555 1.561 1.558 

C(7)-C(8) 1.553 1.560 1.559 1.569 1.561 

C(8)-C(9) 1.560 1.568 1.566 1.574 1.567 

C(9)-C(10) 1.574 1.575 1.576 1.576 1.576 

aCyclopropane ring constrained. 
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TABLE 40 

COMPARISON OF VALENCY ANGLES () DERIVED FROM MOLECULAR 

MECHANICS QE COMPOUNDS (44a); (44b). (190a) AND (190b) WITH 

6B-HYDROXY-3a. 5-CYCLO-5aANDROSTAN-17-ONE l41). 

Bond angle 
. (41) 

C1-C2-C3 104.0 103.7 103.6 108.6 104.1 

C1-C10-C5 100.9 101.3 100.6 100.3 100.6 

C1-C10-C9 111.0 110.8 111.1 111.5 111.1 

C2-C1-C10 105.7 105.6 106.0 105.8 105.8 

C2-C3-C4 118.1 117.8 118.0 116.2 118.1 

C2-C3-C5 108.6 109.3 109.0 108.8 108.3 

C3-C4-C5 59.4 ---a -__a ___a ___a 

C3-C5-C4 59.0 ---a --- a ___a ___a 

C3-C5-C6 118.7 119.5 118.1 119.8 119.2 

C3-C5-C10 108.4 107.7 108.0 108.1 108.9 

C4-C3-C5 61.6 ---a --- a ___a ___a 

C4-C5-C6 118.3 120.4 118.4 119.6 119.2 

C4-C5-C10 124.9 123.4 125.4 125.8 124.7 

C5-C6-C7 111.5 113.6 112.4 113.9 112.8 

C5-C10-C9 113.5 114.0 113.7 113.5 114.0 

C6-C5-C10 114.0 113.5 113.9 112.0 113.1 

C6-C7-C8 111.4 111.8 111.0 111.3 109.6 

C7-C8-C9 111.3 111.5 112.0 111.8 112.5 

C8-C9-C10 115.0 115.4 115.2 117.3 115.0 

aCyclopropane ring constrained. 
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TABLE ii 

COMPARISON OF TORSION ANGLES (_) DERIVED FROM MOLECULAR 

MECHANICS Q COMPOUNDS (44a), (44b), (190a) M1 (190b) WITH 

6B-HYDROXY-3a, 5-CYCLO-5a-ANDROSTAN-17-ONE (41). 

Ring A Parent (44a) (44b) (190a) (190b) 

C1-C2-C3-C4 52.6'' 52.3 53.5 54.6 51.9 

C1-C2-C3-C5 -14.5 -15.0 -13.8 -12.4 -15.1 

C2-C3-C4-C5 -97.0 -98.1 -97.6 -98.0 -96.6 

C2-C3-C5-C10 -7.6 -7.0 -8.8 -10.8 -7.1 

C3-C4-C5-C10 91.8 91.6 90.9 90.7 92.4 

C3-C5-C10-C1 26.2 25.8 27.2 28.9 25.8 

C4-C5-C10-C1 -38.5 -38.3 -37.1 -35.4 -39.0 

C5-C10-C1-C2 -34.9 -35.1 -35.7 -36.5 -34.8 

C10-C1-C2-C3 31.3 31.6 31.3 31.0 31.7 

in P Parent 4a 44b (190a) (190b) 

C5-C6-C7-C8 58.3 55.2 57.2 57.1 58.8 

C6-C7-C8-C9 -57.6 -54.9 -56.4 -50.8 -56.8 

C7-C8-C9-C10 49.7 49.6 49.2 44.6 48.9 

C8-C9-C10-C5 -42.0 -43.1 -41.6 -41.5 -40.9 

C9-C10-C5-C6 42.1 41.5 41.7 44.0 41.8 

C10-C5-C6-C7 -50.5 -48.2 -50.1 -53.4 -51.8 
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As would be expected, the greater influences by the 

methyl and hydroxy group are noted for the B ring of the 

steroid. In all four compounds this ring has a chair confor- 

mation which can yield valuable information about the strain 

involved in the system. Consider the following. In the chair 

conformation of cyclohexane all six torsion angles are, when 

the signs are ignored, equal. Thus, in the minimum energy 

conformation, the standard deviation (an-1) from the average 

torsion angle value is zero. However, when strain is intro- 

duced into the system by, for example, the substitution of a 

hydrogen atom by an alkyl group, this strain produces a dis 

tortion in the conformation of the ring which in turn re- 

sults in an increase in the standard deviation from the 

average torsion angle. For the four isomers (44a), (44b), 

(190a) and (190b) the B rings experience identical amounts 

of strain due to the coupling with rings A and C. Therefore 

any increase in strain can be attributed to the substituents 

present and this will be observed by calculating the stand- 

ard deviation from the average torsion value. Thus, for this 

and other similar systems we have a method for estimating 

strain by noting the (most readily detectable) out of plane 

bending. For the four isomers (44a), (44b), (190a) and 

(190b) the standard deviation from the average torsion value 

were calculated at 5.7,6.8,6.1 and 7.5 respectively. Thus 

the equatorial isomers (44a) and (190a) show, as would be 

expected, that they are the least strained compounds by 

virtue of the standard deviation from their torsion angles. 

In contrast, the more strained derivatives (44b) and (190b), 

with axial substituents, show greater standard deviations 

303 



from the mean. Another important fact can be drawn from these 

results, i. e., that the derivatives where the hydroxy group 

is situated at carbon 6 are apparently less stable than 

those where the hydroxy group is situated at carbon 7. 

Apparently there is a greater interaction between the cyclo- 

propane moiety and a hydroxy group at this position than 

there is for a methyl group. If therefore both epoxide 

isomers are being produced in the previous step and the 

stability of the products influence the outcome of the 

reaction, i. e., we neglect any possible electronic influ- 

ences by the cyclopropane ring, we could expect to see 

greater quantities of the 6a-methyl compound (44a) than its 

7a-methyl counterpart (190b). Likewise we would expect to 

see greater quantities of the 7ß-methyl compound (190a) than 

the 6ß derivative (44b). The ratio between these two product 

pairs is dependent on molar ratio of the epoxide isomers. 

The construction of the models also allows the estima- 

tion of the coupling constants of the proton geminal to the 

hydroxy group and thus product identification. Shown below 

in Table 42 are the torsion angles between the proton gemi- 

nal to the hydroxy group and its neighbouring proton. 
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TABE 42 

ESTIMATION QE TORSION ANGLES U BETWEEN COUPLING PROTONS 

FOR POSSIBLE REACTION PRODUCTS (44a). (44b), (190a) AND 

(190b). 

COMPOUND 

(44a): 6a-Me, 7ß-OH 

(44b) : 6ß-Me, 7a-OH 

(190a): 6a-OH, 7ß-Me 

(190b): 6ß-OH, 7a-Me 

ö-(HO)CH-CH (CH31 

174.8 

67.5 

177.8 

65.8 

cb- (HO) CH-C (8) H 

179.0 

55.9 

___a 

___a 

aNo coupling between H(6) and H(8). 

Thus, by the Karplus equation, 10 the 6a-methyl deriva- 

tive (44a) should show a broad double doublet (or triplet), 

J= 9.2 and 9.1Hz, while the 6ß-methyl isomer (44b) should 

show a sharp double doublet (or triplet), J= 1.0 and 2.4Hz. 

In a similar manner, the 7a and ß-methyl steroids (190a) and 

(190b) should both show a broad and sharp (J= 9.2 and 1.1Hz 

respectively) doublet. By these means the products of reac- 

tion between the epoxide (15 or 16) and dimethyllithium 

cuprate were thus readily identified. 
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Chapter 7 
Biological est' a suggestio3l for ue work. 
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7 Biological testing. 

The aim of this work was to synthesise a variety of 

steroid molecules based on the parent cyclosteroid (41) 

which had previously been shown to possess anti-fertility 

properties. However, a subsequent test of this compound 

contradicted this result, i. e., that the steroid showed no 

anti-fertility properties. Therefore, it was proposed that 

00 

NO 

OH 

(41) (97) 

the activity originally noted arose from some impurity in 

the initial sample. The variety of syntheses of the parent 

steroid had indicated that often small quantities of DHEA 

(97) were present either because of incomplete sulphonation 

of the starting material or incomplete rearrangement in the 

second step of the synthesis of (41). Therefore DHEA, as a 

trace impurity, was considered the most likely cause of the 

noted biological activity. However, the subsequent testing 

of this compound indicated that it too possessed no anti- 

fertility activity. Thus, the originally noted activity of 

the sample must have been, if a simple experimental error is 

assumed not to have occurred, derived from either one of two 

possibilities. Firstly, the activity may be induced by 

another impurity in the sample. However, considering the 

knowledge of the reactions used in the synthesis of (41) 

this seems very unlikely. The second possibility is that 
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both steroids, (41) and (97), were present and that a 

synergistic effect was responsible for the activity. However, 

testing to evaluate such an effect was not undertaken. 

Although the above results were disappointing several 

of the derivatives synthesised were also tested. However, 

because of frequently low yields or difficulty in isolating 

some of the products in the pure state testing was limited. 

Neither of the two steroids that were tested, (111) and 

(116), possessed any degree of biological activity. 

0 

0 ow 
(11 t) (lie) 

7.2 Suggestions for further work. 

OH 

CCH 

It was apparent from early on in the work that one of 

the major problems associated with the isolation of the 

desired target molecules was the presence of the cyclopro- 

pane ring in the target molecules. For example, in the 

protection of the 17-C carbonyl group fragmentation of the 

three membered ring was a considerable problem. However, 

0 

+ 

v 

0 

(2090) (209b) 

problems did not only arise with the stability of the cyclo- 
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propane ring but also because of its effect on other func- 

tional groups in the molecule. Two specific examples being 

the activation of a neighbouring epoxide group, e. g., com- 

pounds (209a and b), which resulted in considerable insta- 

bility, and the deactivation of the 6-C ketone group in 

(111) which prevented selective methylenation at 6-C. Both 

these phenomena had considerable influence on overall 

"route suitability. " Future work could therefore be based on 

the premise that the cyclopropane ring be introduced during 

the final stages of a route in the synthesis of such com- 

pounds. However, this represents an entirely different 

strategy to that used here. Modifications to those strate- 

gies utilised in this work were discussed in the introduc- 

tions to chapters 3 and 4 and will therefore not be comment- 

ed upon here. However, in the latter stages of this work one 

particular method came to light which holds considerable 

potential for future work. Thus, the treatment of the chol- 

esteryl tosylate (96) with triethyl aluminium resulted in, 

among other products, the isolation of 6 (a and ß) ethyl 

substituted cyclopropane derivatives (251). 1 This represents 

a combination of the two approaches outlined above and 

potentially offers rapid access to the desired steroidal 

systems. 

Tao 

(98) 
Et 

(251) 
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Another major problem associated with the work undertaken was 

inthe purification of the various intermediates. Thus the 

application of preparative tic, column chromatography and flash 

chromatography often failed to separate the reaction mixtures into 

the various components. In several cases, irreversible binding wa: 

also found to occur to a certain degree. With respect to future 

work, it would therefore be worth considering the application of 

more sophisticated means of separation such as preparative high 

performance liquid chromatography (hplc). Alternatively, further 

studies into flash chromatographic separation could be 

carried out using more complex and/or gradient solvent 

systems and investigations into different silica types. 

1) . Tolsmkov, G. A., Izv. Akad Nauk. SSSR Ser. Khim", 1983,6, 

1452. 
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CHAPTER 8 

EXPERIMENTAL 
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. 
8.1 Introduction. 

8.1.1 Instrumentation. 

Melting points were determined on a Gallenkamp melting 

point apparatus and are uncorrected. The infrared spectra 

were recorded on a Nicolet 5ZDX FTIR spectrometer either as 

a Nujol suspension or as a neat liquid film. The ultraviolet 

spectra were recorded on a Cecil CE588 spectrometer. The 

mass spectra were recorded on a A. E. I. MS 10 low resolution 

instrument. The 1H and 13C NMR spectra were determined with 

a Varian FT 80A spectrometer. Elemental analysis were per- 

formed on a Perkin Elmer 240 analyser. 

1.2 Abbreviations. 

The following abbreviations are used in the following 

sections: 

m. pt.: - melting point. 
1H/ 13C NMR: - proton or carbon nuclear magnetic resonance 

spectroscopy respectively. 

s: singlet, d: doublet, t: triplet, m: multiplet, bs: broad 

singlet, bm: broad multiplet. 

IR: - infrared spectroscopy. 

UV: - ultraviolet spectroscopy. 
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8.2 Syntheses from Chapter 

38-Hydro -5-androsten-17-one (Dehydroepiandrosterone) (97). 

The starting material,. Dehydroepiandrosterone (97), 

DHEA, was obtained from Aldrich Chem Co. m. pt. = 149-1510.1H 

NMR (8): 0.89 (3H, s, 18-H), 1.05 (3H, s, 19-H), 3.44 (1H, 

bm, 3-H), 5.37 (1H, d, J- 2.4Hz, 6-H). 13C NMR (6): 145.09 

(5-C) , 124.68 (6-C) , 75.37 (3-C) . IR Vmax (cm-1) : 3450, 

3025,1730,1665. CH analysis, calculated for C19H2802, C= 

78.99%, H= 9.73%. Found, C= 79.16%, H- 9.72%. 

Sulphonation reactions. 

38-Tosyl-5-androsten-17-one (98a). 

Method 

Dehydroepiandosterone (DHEA) (97) was converted to its 

3ß tosylate by the method described by Butenandt and Su- 

ranyi, 1 and Johns. 2 The steroid, (1g, 3.47 mmoles) was 

dissolved in 10 ml of anhydrous pyridine. To this stirring 

solution was added p-toluenesulphonyl chloride (0.67g, 3.52 

mmoles). During dissolution and for a period thereafter of 

30 minutes, an increase in the solution temperature was 

noted. The reaction mixture was then allowed to stand at 

room temperature for 16 hours. After this period the pyri- 

dine hydrochloride salt had precipitated out of solution. 

10ml of cold (0") distilled water was added to allow disso- 

lution of the salt and cause complete precipitation of the 

steroid product. The slightly off white solid was then 

filtered, washed further with cold distilled water and dried 
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by vacuum. (1.37g, 90%) m. pt 151'. [lit= 151'1]. 1H NMR (6): 

0.84 (3H, s, 18-H), 0.97 (3H, s, 19-H), 2.41 (3H, s, tosyl 

Me-H), 4.30 (1H bra, 3-H), 5.45 (1H, d, J= 3.2Hz, 6-H), 7.31 

(2H, d, J= 9.6Hz, aromatic-H), 7.80 (2H, d, J= 9.6Hz, aro- 

matic-H). 13C NMR. (6): 143.03 (5-C), 133.65 (aromatic-C, ß 

to S), 131.49 (aromatic-C a to S), 126,64 (6-C), 85.86 (3- 

C). IR y max 
(cm 1): 3080,1740,1675,1605,1360,1090. 

Method 2. 

Dehydroepiandrosterone (97), (0.5g, 1.74 =moles), tosyl 

chloride (0.32g, 1.74 mmoles) and-anhydrous pyridine (0.27g, 

3.46 mmoles) were dissolved in 50 ml dichloromethane. The 

reaction mixture was then refluxed overnight. After cooling, 

the solution was diluted with 100 ml chloroform and washed 

with 3 portions (100ml) of 5% HC1,5% NaHCO3 and distilled 

water. The organic layer was then dried with anhydrous 

magnesium sulphate. Removal of the solvent under reduced 

pressure gave the desired tosylate (98a), (0.68g, 90%), 

identical to the above in all respects. 

38-Mesyl-5-androsten-17-one (98b). 

Method I 

In an identical manner to the formation of the tosy- 

late, methane sulphonyl chloride (0.4g, 3.49 mmoles) was 

added to a stirring solution of anhydrous pryidine (loml) 

containing 3ß-hydroxy-5-androstene-17-one (97), an increase 

in solution temperature was noted. The reaction mixture was 

allowed to stand overnight. After this time the pyridine 

hydrochloride salt had precipitated out of solution. The 
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addition of 10ml cold distilled water caused the dissolution 

of the salt and the complete precipitation of the required 

steroid. The product, an off white solid was washed with 

cold distilled water and vacuum dried. (1.20q, 95%), m. pt 

149-150' [lit= 149-151.3]. 1H NMR. (6): 0.88 (3H, s, 18-H), 

1.05 (3H, s, 19-H), 3.01 (3H, s, mesyl-H), 4.45 (1H bm, 3- 

H) , 5.45 (1H, d, J= 4.2Hz, 6-H) . IR Vmax (cm-1) : 3050, 

3025,1735,1675,1370,1080,740. 

Method Z 

Methanesulphonyl chloride (0.4g, 3.49 mmoles) was added 

to a dichloromethane solution (100ml) containing anhydrous 

pryidine (0.28g, 3.49 mmoles) and 3ß-hydroxy-5-androsten- 

17-one (97) (1.0g 3.46 mmoles). The reaction mixture was 

refluxed overnight. After cooling the pyridine solution was 

washed with 3 portions (50m1) of 5%HC1,5% NaNCO3 and cold, 

distilled water. Drying of the organic layer and removal of 

the solvent gave the desired mesylate (98b) spectroscopical- 

ly identical to the above. 

Cyclisation reactions. 

6B-Hydroxy-3a. 5-cyc1o-5a-androstan-17-one (41). 

The 3ß-tosylate (98a) or mesylate (98b) were converted 

to the 3,5-cyclo-5a-androstane (41) by several methods. The 

most successful being the aqueous acetone solvolysis method 

based loosely on the method of Johns2 and Kosower; 4 a varie- 

ty of solvents were used. Other cyclisations attempted were 

based on the methods of Patel5 and that of Ringold and 

Djerassi. 6 
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Method 1 

To a solution of the tosylate (lg, 2.26 mmoles) or the 

mesylate (lg, 2.73 mmoles) in 100ml acetone was added 30m1 

of distilled water containing lg of potassium acetate 

(KOAc). This mixture was then heated under ref lux for 6 

hours. After cooling, the solution was extracted with 5x 

50m1 portions of dichloromethane (CH2C12). The organic layer 

was then dried with magnesium sulphate and the solvent 

removed under reduced pressure. The product, a white solid 

was recrystallised from 70% acetone or saturated aqueous 

butan-2-one as colourless plates. (0.52/ 0.63g, 80%) m. pt= 

136-138'. [lit= 138-14001]. 1H NMR (6): 0.27 (1H, d, J= 8Hz, 

4-H), 0.32 (1H, d J= 8Hz, 4-H), 0.55 (1H, t, J= 4.8 Hz, 3- 

H), 0.92 (3H, s, 18-H), 1.09 (3H, s, 19-H), 3.31 (1H, t, J= 

2.7 Hz, 6-H). 13C NMR (6): 77.20 (6-H). IR1Vmax (cm-1): 

3450,3060,3012,2997,1735. CH analysis, calculated for 

C19H28021 C= 79.20%, H= 9.72%. Found, C= 79.16%, H= 9.72%. 

Method L 

The tosylated steroid (98a) (1g, 2.26 soles) or mesy- 

lated steroid (98b) (1g, 2.73 mmoles) was dissolved in 55m1 

of butan-2-one. To this was added a solution of potassium 

acetate, (1g, 10.2 mmoles), in 20m1 distilled water. This 

two phase mixture was refluxed for 8 hours. After cooling 

the two layers were separated and the aqueous layer washed 

with 5 portions (20m1) of diethyl ether. The two organic 

layers were then combined and dried with anhydrous magnesium 

sulphate. Evaporation-of the solvent under reduced pressure 
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gave a white crystalline solid. Thin layer chromatography 

(tlc) indicated small and varying amount of secondary minor 

product (0%-25%). Recrystallisation from a saturated aqueous 

butan-2-one gave the desired 3,5-cyclosteroid (41) as co- 

lourless plates (0.48/ 0.58g, 75%) and DHEA (97) (0.09/ 

0.1g, 13%), needle crystals. Spectroscopic data of both 

compounds were identical to those cited above. 

MOthod 

The tosylate (98a) (200mg, 0.45 mmoles) or the mesylate 

(98b) (200mg, 0.55 mmoles) were dissolved in 100ml of pen- 

tan-3-one. To this was added a solution of potassium acetate 

(399mg, 4.08 mmoles) in 100ml of distilled water. This two 

phase mixture was refluxed for 8 hours and the product 

isolated in the usual manner (see Method 2, above). Thin 

layer chromatography indicated a small and varying amount of 

a minor product. Recrystallisation from 70% acetone solution 

gave the desired 3,5-cyclosteroid (41) (91/ 110mg, 70%) as 

plate crystals, and DHEA (97) (26/ 30mg, 20%) as a residual 

gum. Spectroscopic data of both compounds were identical to 

those cited above. 

Method 4 

A two phase reaction mixture identical to that of 

method 2 was placed in a sealed reaction vessel which was 

heated to 140"c for a period of 8 hours. After this time the 

vessel was cooled in iced water. The flask contents were 

then extracted with dichloromethane (CH2C12). The resulting 

solution was washed with 5% NaHCO3 and distilled water, 
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dried with magnesium sulphate and decolourised with activated 

charcoal. Removal of the solvent under reduced pressure gave 

a white solid which afforded DHEA (97) as colourless needle 

crystals (0.55g, 71%) when recrystallised from 70% acetone. 

The spectroscopic data of the product are cited above. 

5. - 

A solution of potassium acetate (1g, 10.1 mmoles) and 

sodium hydroxide (120mg 3.00 mmoles) in 50ml distilled water 

was added to a solution of the tosylate (98a) (lg, 2.26 

mmoles) or mesylate (98b) (1g, 2.73 mmoles) dissolved in 

100ml acetone. The solution was refluxed for 6 hours. Isola- 

tion by the usual method gave a white solid which recrystal- 

lised from 70% acetone as the desired 3,5-cyclosteroid (41), 

plates, (0.52/ 0.63g, 80%). 

ý" 

A solution of potassium acetate (1g, 10.1 mmoles) and 

sodium hydroxide (120mg 3.00 mmoles) in 50ml distilled water 

was added to a solution of the tosylate (98a) (1g, 2.26 

mmoles) or mesylate (98b) (ig, 2.73 mmoles) dissolved in 

100ml butan-2-one. This two phase mixture was refluxed for 8 

hours. Isolation by the usual method gave a white solid 

which recrystallised from 70% acetone as the desired 3,5- 

cyclosteroid (41), plates (0.48/ 0.59g, 75%). 

Z.. e. 

Distilled water (50m1) containing sodium hydroxide (ig, 

1.02 mmoles) was added to a solution of the tosylate (98a), 
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(1g, 2.26 mmoles) or mesylate (1g, 2.73 mmoles) in 100ml 

acetone. The reaction mixture was then refluxed for 6 hours. 

The product, worked up in the usual manner give a white 

crystalline solid. Recrystallisation from 70% acetone gave 

the required 3,5-cyclosteroid (41) (0.59/ 0.70g, 70%) as 

colourless plates. Spectroscopic data of the product were 

identical to that cited above. 

6B-Methoxv-3a, 5-cyclo-5a-androstan-17-one (106). 

Formation of the methyl ether derivative was via the 

3ß-tosyl steroid (98a). 5g (1.13 mmoles) of the steroid 

(98a) and 2g (2.04 mmoles) of potassium acetate were dis- 

solved in 400m1 of purified and dried methanol. Refluxing of 

the solution allowed full dissolution of the mixture and 

reflux was then maintained for 6 hours. After this period 

the solution was cooled and the solvent removed under re- 

duced pressure. The resulting slurry was taken up in chloro- 

form and washed with 5x 100ml distilled water. Drying of the 

solvent followed by its removal under reduced pressure gave 

a clear glass. (2.7g, 80%). Crysrallisation from 50% aqueous 

methanol gave fine needles m. pt= 102-105' (lit? 104-1050]. 

1H NMR (6) : 0.49, (3H, m, 3 and 4-H), 0.92 (3H, s, 18-H), 

1.05 (3H, s, 19-H), 2.84 (1H, t, J= 1.6Hz, 6-H), 3.36 (3H, 

s, methoxy-H). IR V max (cm-1): 3058,1735,1090. 
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Oxidation reactions. 

Oxidation to the 6-ketone system was attained by two 

methods. Both Jones' and Collins' reagents successfully oxi 

dising the 6ß-alcohol in high yield. 

Method I 

3.5-Cvclo-5a-androstane-6.17-dione (111). 

Jones' reagent, was freshly made by dissolving chromium 

trioxide (Cr03,26.72g, 26.7 mmoles) in concentrated sulphu- 

ric acid (H2SO4,23m1). This solution was made up to 100ml 

by the slow addition of cold distilled water. 

In an analogous method to that of Djerassi at al., 8 

the alcohol (41) (500mg, 1.74 mmoles) was dissolved in 20ml 

of purified acetone. Jones' Reagent was then added drop-wise 

and"with stirring until no further green precipitate was 

produced and a permanent orange colour predominated (3m1). 

The reaction temperature was maintained at 0' during the 

addition of the reagent and for a further 0.5 hours. The 

reaction mixture was then poured into a separating funnel 

containing distilled water (100ml), chloroform and a trace 

of propan-2-ol. After vigorous agitation the layers were 

allowed to separate and stand for 5 minutes. Isolation of 

the organic layer, followed by drying, decolourising and 

removal of the solvent under reduced pressure gave a yellow 

solid. Thin layer chromatography (tlc) indicated a small 

amount of secondary. product spectroscopically identical to 

4-androstene-3,17-dione. The pale yellow solid, recrystal- 

lised from 70% aqueous acetone gave colourless needles 

(0.41g, 85%). m. pt= 182-183' [lit= 182-183'1]. 1H NMR (d): 

322 



0.75 (1H, t, J= 4.0Hz, 3-H), 0.92 (3H, s, 18-H), 1.04 (3H, 

s, 19-H). 13C NMR (ö): 145.09, C-5,124.68, C-6,75.37, 

C(3). IRVmax (cm-1) : 3093,3022,1732,1681. CH analysis, 

calculated for C19H2602, C= 79.72%, H= 9.09%. Found C= 

79.18%, H= 9.39%. MS: m/z= 286 (80%) [molecular ion], 271 

(30%), 136 (100%). 

Method 2 

3a. 5-Cyclo-5a-androstane-6,17-dione (111). 

The Collins' reagent9 was freshly prepared by the addi 

tion of chromium trioxide (Cr03,0.52g, 5.21 mmoles) to a 

stirring solution of pyridine (0.82g, 10.5 mmoles) in 50ml 

purified dichloromethane. The reaction mixture was stirred 

at room temperature for 1 hour. In an analogous method to 

Ratcliffe, 10 the steroid (41), (250mg, 0.87 mmoles), as a 

solution in 30 ml purified dichloromethane, was added to 

the stirring solution of Collins reagent. After a period of 

one hour the solvent was decanted and washed with 5% sodium 

hydroxide (NaOH) until no further decolourisation of the 

organic layer occurred. The gum on the surface of the reac- 

tion vessel was then dissolved in 100ml 5% NaOH and extract- 

ed with 3x 50ml CH2C12. The organic layers were then com- 

bined and further washed with consective 50ml portions of 5% 

NaOH, 5% HC1,5% NaHCO3,5% NaCl and distilled water until 

each of the aqueous solution failed to decolourise the 

organic layer further. The solvent was then dried with 

anhydrous magnesium sulphate and decolourised with activated 

charcoal. Removal of the solvent under reduced pressure gave 

the desired 3,5-cyclosteroid dione (111) as an off white 
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solid. Recrystallisation from 70% acetone gave colourless 

needles (0.39g, 80%). Spectroscopic data were identical with 

that cited above. 

17a-ethynyl-3a. 5-cyclo-5a-androstane-6B. 17B-diol (42). 

The propargyl alcohol was synthesised by four routes. 

These were: - 

1). The direct propargylation of the cyclosteroid (41). 

2). Propargylation of DHEA followed by insertion of the 

cyclopropane ring. 

3). Propargylation of the tosylate of DHEA followed by 

cyclisation. 

4). Propargylation of the 6-methoxy steroid (106) followed 

by its conversion to the alcohol (42). 

Route I 

17a-Ethynyl-3a. 5-cyc1o-5a-androstane-6ß. 17B-diol (42). 

Propargylation of the parent 3,5-cyclosteroid was based 

on the method of propargylation used by Huffman and Arapa- 

kos. 11 Under a nitrogen atmosphere, a 60m1 solution of 

sodium dried 1,4-dioxane was saturated with acetylene gas. 

To this solution was added, with stirring, 6g of lithium 

acetylide ethylenediamine complex and, cautiously, a 20m1 

portion of the anhydrous 1,4-dioxane containing lg ( 3.47 

mmoles) of the keto steroid (41). During this period and for 

an additional 30 minutes, acetylene gas was bubbled through 

the solution. The reaction, monitored by infra red spectros- 

copy, was complete after a period of 5 days at room tempera- 

ture. After this time, a 20% aqueous solution of ammonium 
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chloride was slowly added, while maintaining vigorous agita- 

tion, until no further evolution of gas occurred. This 

mixture was then extracted with diethyl ether until the 

ether extracts were clear. The organic layer was then dried 

with magnesium sulphate and decolourised with activated 

charcoal. Removal of the solvent gave a pale brown oil. 

Preparative thin layer chromatography (mobile phase toluene, 

chloroform, methanol (3: 2: 1)) gave one major product which 

was isolated as a pale brown solid (0.38g, 40%). m. pt= 75- 

81". 1H NMR. (6): 0.27 (1H, d, J= 8Hz, 4-H), 0.32 (1H, d, J= 

8Hz, 4-H), 0.55 (1H, t, J= 4.8Hz, 3-H), 0.86 (3H, s, 18-H), 

1.07 (3H, s 19-H), 2.49 (1H, s, alkynic-H), 3.32, (1H, t, J= 

2.4 Hz, 6-H). IR V max (cm-1): 3580,3460,3270,2110. CH 

analysis, calculated for, C21H3002: C= 80.75%, H= 9.95%. 

Found, C= 81.10%, H= 10.23%. 

Route ZI 

17a-Ethynyl-5-androstene-3B. 17B-diol (114). 

The propargyl derivative (114) of DHEA was synthesised 

under identical conditions to those used for the direct 

synthesis of compound (42). The product (114) was isolated 

by preparative thin layer chromatography (tic) using a 

toluene, chloroform and methanol mobile phase (3: 2: 1) as an 

off-white solid. (0.80g, 80%) m. pt= 229-230'. [lit= 240- 

242'12] lH NMR (6): 0.85 (3H, s, 18-H), 1.01 (3H, s 19-H), 

2.49 (1H, s, alkynic-H), 3.50 (1H, bm, 3-H), 5.37 (1H, d, J= 

2.4Hz, 6-H). IR V max (cm-1): 3575,3440,3270,2110,1675. 

CH analysis, calc for, C= 80.25, H= 9.55. Found, C= 81.09, 

H= 9.61. 
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3B-Tosyl-17a-ethynyl-5-androsten-17B-ol (115). Method 

The 3-C tosylate was synthesised under identical condi- 

tions to the synthesis of the DHEA tosylate (98a). The 

product, purified by preparative tlc (3: 1 toluene ethyl 

acetate) was an off white solid (0.59g, 80%). m. pt= 1430 

(with decomposition). 1H NMR (6): 0.84 (3H, s, 18-H), 0.99 

(3H, s, 19-H), 2.43 (3H, s, tosyl methyl-H), 2.53 (1H, s, 

alkynic-H), 4.56 (1H, bm, 3-H), 5.31 (1H, d, J=3.2Hz, 6-H), 

7.33 (2H, d, J= 9.6Hz, aromatic-H), 7.81 (2H, d, J= 9.6Hz, 

aromatic-H). IR tlmax (cm-1): 3400,3100,2110,1665,1605, 

1340,1080. 

Method 2 

The 3-C tosylate was synthesised under identical condi- 

tions to the method described in method 1 but a second molar 

equivalent of tosyl chloride was added to the reaction 

mixture. The product, (115) spectroscopically identical in 

all respects to that cited above was recovered as an off 

white solid (0.60g, 80%). 

17a-Ethvnvl-3a, 5-cyclo-5a-androstane-6B, 17B-diol 42 

The cyclisation of the 3-C tosylate, to give the 3,5- 

cyclosteroid propargyl alcohol (42) was attained by an 

identical method to that used to give the 3,5-cyclosteroid 

parent (41), (Method 1). The product was purified by prepar- 

ative tlc (3: 2: 1 toluene, chloroform, methanol) giving an 

off white solid, (0.25g, 70%) spectroscopically identical to 

that cited above. 
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Details of the synthesis of the tosylated DHEA (98a) 

and the compounds analytical data are described earlier in 

this Chapter. 

-Tosyl-17a-ethynyl-5-androsten-17B-ol (115). 

Propargylation of the tosylated steroid was carried out 

under identical conditions to those used in the propargyla- 

tion of the parent 3,5-cyclosteroid (Route I) and DHEA 

(Route II). Preparative tic (3: 1 toluene, ethyl acetate) 

gave an off white solid. m. pt= 139-141" with decomposition. 

Spectroscopic data of this product were identical to that 

cited above. 

17a-Ethvnvl-3a. 5-cvclo-5a-androstane-6B. 17B-diol (42). 

The cyclisation of the C(3) tosylate, propargyl alcohol 

was carried out under the standard conditions previously 

mentioned. The product, spectroscopically identical that 

previously cited was isolated in an identical manner. 

RoutIV. e 

68-Methoxy-17a-ethynyl-3a. 5-cyclo-5a-androstan-17ß-o1 116 

Synthesis of (116) from the 6-methoxy steroid (106) was 

attained using identical conditions to the propargylation of 

the parent 3,5-cyclosteroid alcohol (41). The product of 

reaction was a pale oil. Preparative tlc gave an off white 

creamy solid that resisted crystallisation. 1H NMR (6): 0.47 

(3H, in, 3 and 4-H), 0.92 (3H, s, 18-H), 1.05 (3H, s, 19-H), 

327 



2.48 (1H, s, alkynic-H), 2.83 (1H, t, J= 1.6Hz, 6-H), 3.36 

(3H, s, methoxy-H). IR V max 
(cm-1): 3058,1735,1090. Chemi- 

cal analysis, calculated for C21H3002: C= 80.01%, H= 9.74%. 

Found, C= 80.39%, H= 9.75%. 

17a-Ethynyl-3a. 5-cyclo-5a-androstane-6B. 17B-diol 42 

Under a nitrogen atmosphere, the methoxy steroid (116) , 0.25g 

(0.76 mmoles) was dissolved in 3 0m1 dry chloroform containing 1.98 

(0.99 mmoles) trimethylsilyl iodide. This solution was then 

refluxed for 24 hours. The reaction mixture was washed with 5% 

Na2S2O5, NaHCO3 and NaCl. Removal of the solvent gave a clear oil. 

Thin layer chromatography indicated the presence of three compound 

in an approximately a 1: 1: 1 mixture. Separation by preparative tlc 

gave the parent 3,5-cyclosteroid alcohol (41), 6ß-methoxy-17a- 

ethynyl-3a, 5-cyclo-5a-androstan-17ß-ol (116) and 17a-ethynyl-3a 

cyclo-5a-androstane-6ß, 17ß-diol (42). Spectroscopic details of t 

products are cited above. 
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�ý . 

8.3 Syntheses from Chapter 
, 

Formation f 6B-Methvl-3a, 5- 

Syntheses from section 2., 2,, 

6B-Hydroxy-3a, 5-Cyclo-5a-androstane-6B-17-spiro-2'-(1.3- 

dioxolane) (126) 

The attempted formation of the protected steroid was 

attempted via either the well documented method of Salmi13 

or by similar means but using unconventional solvents such 

as hexane or pentane. In these cases the volume of solvent 

used was fifty times greater than that stated below for 

benzene. However the product described below was shown to be 

solvent independent. The 3,5-cyclosteroid (41) (5g, 17.36 

mmoles), 3.10g ethylene glycol (50 mmoles) and 0.25g p- 

toluene sulphonic acid [PTS] (1.45 mmoles) were dissolved in 

200ml of benzene and the round bottomed flask fitted with a 

modified Dean/Stark trap possessing a second condenser to 

cool the condensate. 14 After refluxing for 16 hours the 

solution was cooled, diluted to 400ml with diethyl ether and 

washed with five, 100ml portions of 5% NaHCO3 solution and 

distilled water. The organic phase was then dried, decolou- 

rised and the solvent removed under reduced pressure. The 

product, a white solid, was shown to be virtually pure by 

tlc, a very small amount of a second product being present. 

The two products were separated by recrystallisation from 

70% aqueous acetone: 

Major product, 3ß-(ß-hydroxyethoxy)-5-androstene-17- 

Spiro-21-(1,3-dioxolane), (127), colourless plates, (4.2g, 
65%). m. pt= 126-128" [lit= 125-128' 15]. 1H NMR (6) : 0.86 
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(3H, s, 18-H), 1.01 (3H, s, 19-H), 3.22 (1H, bm 3-H), 3.65 

(4H, m, ß-hydroxyethoxy sidechain), 3.87 (4H, s, dioxolane- 

H) , 5.35 (1H, d, J= 4.2Hz, 6-H) . 
13C NMR (6) : 62.2,64.5, 

65.2,69.0,70.4,119.5. IR max: (cm-1): 3420,1665,1050. 

MS m/z: 367(5%) [molecular ion], 270(10%), 155(35%), 

99(100%), 91(75%). CH analysis, calculated for C21H32031C= 

79.84%, H= 7.26%. Found, C= 79.82%, H= 7.06%. 

Evaporation of the recrystallising medium gave 3ß- 

hydroxy-5-androsten-17-spiro-2'-(1,3-dioxolane), (125), as a 

gum, (0.44g, 7%). 1H NMR (6): 0.86 (3H, s, 18-H) O, 1.01 (3H, 

s, 19-H), 3.46 (1H, bm 3-H), 3.87 (4H, s, dioxolane-H), 5.34 

(d, J= 3.2 Hz, 6-H). IRVmax: (cm-1): 3350,1735,1665, 

1020. - 

3B-Ethoxy-5-androsten-17-one (128). 

To 20ml of refluxing ethanol was added 200mg (4.54x 10- 

4 moles of the tosylated steroid (98a). Heating was then 

maintained for a further 10 minutes. After this period, the 

solution was allowed to cool slowly by wrapping the flask in 

tin foil and placing it in a refrigerator. Complete cooling 

resulted in the crystallisation of 122mg (85%) of the de- 

sired ether as fine needles. m. pt= 128-130 '. 1H NMR (8): 

0.88 (3H, s, 18-H), 1.03 (3H, s, 19-H), 1.19 (3H, t, J. 

7.2Hz, ethylether methyl-H) 3.18 (1H, bm 3-H), 3.53 (2H, q, 

J= 7.2Hz, ethylether methylene-H), 5.37 (1H, d, J= 4.0Hz, 6- 

H). IRVmax (cm 1): 3420,1735,1665,1050. 
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6B-Methoxy-3a. 5-cyclo-5a-androstane-l7-spiro-2'-(1,3-dioxo- 

lane) . 

The reaction was carried out by the method described 

for the reaction of the 6ß-alcohol (41) (see above). Again 

the three solvent systems were investigated but the product 

yields were identical in all cases. The two products were 

separated by crystallisation from 70% aqueous acetone: 

Major product, 3ß-(ß-hydroxy ethoxy)-5-androsten-17- 

spiro-2'- (1,3-dioxolane) (127), colourless plates (0.9g, 

70%), compound was spectroscopically identical to previous 

sample. 

Evaporation of the recrystallising medium gave 3ß- 

methoxy-5-androsten-17-spiro-2'-(1,3-dioxolane) (128) as a 

gum. 1H NMR (ö): 0.84 (3H, s, 18-H), 1.02 (3H, s, 19-H), 3.20 

(1H, bm 3-H), 3.42 (3H, s, methoxy-H) 3.87 (4H, s, dioxo- 

lane-H), 5.34 (1H, d, J= 3.2 Hz, 6-H). IR v max 
(cm 1): 3350, 

1665,1020. 

6B-Hydroxy-3c. 5-cyclo-5a-androstane-17(S)-spiro-2'-(1.3- 

oxathiolane) (150). 

Formation of the protected steroid was via a slightly 

modified method to that of Djerassi g x16 and Salmi, 13 

i. e., the addition of a further quantity of p-toluenesul- 

phonic acid mid-way through the reaction. Similar reactions 

but using the unconventional solvents hexane or pentane. In 

these cases the volume of solvent is 50 times greater than 

those stated below for benzene. 5g of the 3,5-cyclosteroid 

(41) (17.36 mmoles), 3.90g ß-mercapto ethanol (50 mmoles) 

and 0.25g p-toluene sulphonic acid [PTS] (1.45 mmoles) were 
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dissolved in 200m1 of benzene and the round bottomed flask 

fitted with a modified Dean/Stark trap possessing a second 

condenser to cool the condensate. 14 After refluxing for 16 

hours a further 0.15g of PTS was added and the reflux con- 

tinued for a further 24 hours. The solution was then diluted 

to 400m1 with ether and washed with five, 100ml portions of 

5% NaHCO3 solution and 10,100ml portions of distilled 

water. The organic phase was then dried and decolourised and 

the solvent removed under reduced pressure to give a pale 

brown oil. Preparative tlc gave three components all of 

which failed to recrystallise. The ratio (by weight) of 

components (1: 2: 3) varied, depending on the solvent used. 

Approximate ratios for benzene hexane and pentane as sol- 

vents were 2: 1: 5,2: 1: 6 and 2: 1: 12 respectively: 

Component 1, assigned as inseparable mixture of 3ß-(ß- 

thiol ethoxy)-5-androsten-17(S)-spiro-2'-(1,3-oxathiolane) 

(129) and 6p-(ß-thiol ethoxy)- 3a, 5-cyclo-5a-androstane- 

17 (S)-spiro-2'-(1,3-oxathiolane) (130). 1H NMR (6) : 0.48 

(1H, in, 3 or 4-H), 0.89,1.02 (3H, s, 18-H), 0.92,1.05 (3H, 

s, 19-H), 2.53 (2H, in, methylene H, a to sulphur, p-thiol 

ethoxy sidechain), 2.88 (3H, bm, (M2X2 + 3-H or 6-H), 4-H 

oxathiolane moiety), 3.69 (2H, in, methylene Ha to oxygen, 

ß-thiol ethoxy sidechain), 4.10 (2H, in, (M2X2), 5-H oxathio- 

lane moiety), 5.33 (0.5H, d, J- 2.4Hz, 6-H). IR Vmax (cm 1): 

2530, '1670, -1080,770. 

Component 2, assigned as 3ß-hydroxy-5-androsten-17(S)- 

spiro-2'-(1,3-oxathiolane) (131). 1H NMR (d): 0.83 (3H, s, 

18-H), 1.00 (3H, s, 19-H), 2.91 (2H, bm, (M2X2), 4-H oxathi- 

olane moiety), 3.41 (1H, bm, 3-H), 3.99,4.04 (2H, in, 
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(M2X2), 5-H oxathiolane moiety), 5.34 (1H, d, J= 3.2Hz, 6- 

H). IRVmax (cm 1): 1665,1090,1060,730. 

Component 3, assigned as 6ß-(ß-thio ethoxy)-3a, 5-cyclo- 

5a-androstane-17(S)-spiro-2'-(1,3-oxathiolane) (132). 1H NMR 

(6): 0.50 (1H, m, 3 or 4-H), 0.83 (3H, s, 18-H), 1.06 (3H, 

s, 19-H), 2.60 (2H, m, methylene a to sulphur, ß-hydroxy 

thio ethyl ether sidechain), 2.91 (2H, bm, (M2X2), 4-H oxa 

thiolane moiety), 3.12 (1H, s, 6-H), 3.62 (2H, bm, methylene 

Ha to oxygen atom, ß-hydroxy thiother sidechain), 3.99, 

4.01,4.08,4.15 (2H, in, (M2X2), 5-H oxathiolane moiety), 

5.34 (1H, d, J= 4.2Hz, 6-H). IR)lmax (cm-1): 3400,1665, 

1090,1060,755. 

6B-Methoxy-3a, 5-cyclo-5a-androstane-17(S)-spiro-2'-(1,3- 

oxathiolane). 

The formation of the 6-methoxyoxathiolane protected 

steroid was attempted by the three methods used in the 

attempted protection of the 6ß-alcohol derivative (see 

above). Yields of the products were identical to the results 

from the 6ß-alcohol reaction: 

Component 1, assigned as inseparable mixture of 3ß-(ß- 

thio ethoxy)-5-androsten-17(S)-spiro-2'-(1,3-oxathiolane) 

(129) and 6ß-(ß-thio ethoxy)-3a, 5-cyclo-5a-androstane- 

17(S)-spiro-2'-(1,3-oxathi-olane) (130). Spectroscopically 

identical to previous sample. 

Component 2, assigned as 6ß-methoxy-5-androsten-17(S)- 

spiro-2'-(1,3-oxathiolane) (133). 1H NMR (6): 0.83 (3H, s, 

18-H), 1.00 (3H, s, 19-H), 2.90 (2H, bm, (M2X2), 4-H oxathi- 

olane moiety), 3.17 (1H, bm, 6-H), 3.35 (3H, s, methoxy-H) 
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4.04 (2H, m, (M2X2), 5-H oxathiolane moiety), 5.34 (1H, d, 

J- 2.4Hz, 6-H). IRVmax (cm 1)= 1650,1090,1060,730. 

Component 3, assigned as 6ß-(ß-hydroxy thioethyl ether)-3a, 5- 

cyclo-5a-androstane-17(S)-spiro-2'-(1,3-oxathiolane) (132). Spe 

scopically identical to previous sample. 

Syntheses from section 3.3 

3B-Hvdroxv-5-androsten-17-spiro-2'-(1.3-dioxolane) 25 

The synthesis of the protected derivative of DHEA was 

carried out under identical conditions to those used in the 

attempted protection of the 3,5-cyclosteroid (41). The 

product, isolated as a white solid was recrystallised from 

70% aqueous acetone as colourless plates, (4.61g, 80%). 

m. pt= 166-168" [165-166.17] 1H NMR (6): 0.84 (3H, s, 

18-H), 1.01 (3H, s, 19-H),,, 3.50 (1H, bm, 3-H), 3.87 (4H, s, 

dioxolane-H), 5.36 (1H, d, J= 2.4Hz, 6-H). IR V max (cm-1): 

3350,1665,1020. 

3B-Tosyl-5-androsten-17-spiro-2'-(1.3-dioxolane) 7a 

Formation of the tosylate derivative was in an identi- 

cal manner to the synthesis of the DHEA tosylate (98a). 

Isolation gave an off white solid which tlc showed as com- 

prising of two products in the approximate ratio of 10: 1. 

These two compounds were readily separated by preparative 

tic: 

Major component, 3ß-tosyl-5-androsten-17-spiro-2'-(1,3- 

dioxolane) (137a) (2.80g, 70%). m. pt= 138-141'c. [lit= 139- 

1410 15 1.1H NMR (6): 0.86 (3H, s, 18-H), 1.01 (3H, s, 19- 

H), 2.41 (3H, s, tosyl Me-H), 3.89 (4H, s, dioxolane-H), 
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4.32 (1H, bm, 3-H), 5.35 (J= 4.2 Hz, 6-H), 7.30, (2H, d, J= 

8.6Hz, aromatic-H), 7.80 (2H, d, J- 8.6Hz, aromatic-H). IR L 

max,, (cm 1): 1670,1605,1350,1030. 

Minor component, (0.25g) 3ß-tosyl-5-androsten-17-one 

(98a). Identical to previously produced sample. 

6B-Hydro -3a. 5-Cyclo-5a-androstane-17-spiro-2'-(1.3-dioxo_ 

lane) (126). 
The protected, tosylated steroid (137a) was cyclised 

under identical conditions to those employed in the acetone 

solvated cyclisation of the DHEA tosylate (98a). Thin layer 

chromatography showed the presence of two products in the 

off white solid which were readily separated by preparative 

tic: , 

Major product, (1.41q, 70%), 6ß-hydroxy-3a, 5-cyclo-5a- 

androstane-17-spiro-2'-(1,3-dioxolane) (126). m. pt= 144-146' 

(lit= 144-1460,18 1.1H NMR (6): 0.27 (1H, d, J= 8Hz, 4-H), 

0.33 (1H, d, J= 8Hz, 4-H), 0.55 (1H, to J= 4.8Hz, 3-H), 0.86 

(3H, s, 18-H), 1.05 (3H, s, 19-H), 3.30 (1H, to J= 2.4Hz, 

6-H), 3.80 (4H, s, dioxolane-H). IR V max (cm-1): 3060,3010, 

1050. 

Minor component, isolated as a gum from recrystallisa- 

tion medium, 6ß-hydroxy-3a, 5-cyclo-5a-androstan-17-one (41) 

(0.29g). Identical to previously isolated sample. 

3B-Mesyl-5-androsten-17-spiro-2'-(1,3-dioxolane) (137b). 

Mesylation of the protected steroid (126) was carried 

out in an identical manner to the mesylation of DHEA (97). 

Two compounds (10: 1) were detected and separated by tic: 

335 



Major component, 3ß-mesyl-5-androsten-17-spiro-2'-(1,3- 

dioxolane) (137b), (2.84g, 71%). m. pt= 165-167'. 1H NMR (6): 

0.86 (3H, s, 18-H), 1.03 (3H, s, 19-H), 3.00 (3H, s, mesyl- 

H), 3.87 (4H, s, dioxolane-H), 5.43 (1H, d, J= 4.2 Hz, 6-H). 

IR V max 
(cm 1): 1670,1360,1140,1050. 

Minor component, (0.35g), 3ß-mesyl-5-androsten-17-one 

(97b). Identical to previously synthesised sample. 

6B-Hydro -3a. 5-Cvclo-5a-androstane-17-spiro-2'-(1.3-dioxo- 

lane) (126). 

Cyclisation of the steroid mesylate was accomplished 

under the same conditions used in the acetone solvated 

cyclisation of DHEA. 

The white solid product was shown by tlc to consist of two 

compounds which were separated by tic: 

Major product, 6ß-hydroxy-3a, 5-cyclo-5a-androstane-17- 

spiro-2'-(1,3-dioxolane) (126), (1.50g, 75%). Identical to 

previously synthesised sample. 

Minor component, (0.22g), 6ß-hydroxy-3a, 5-cycloandros- 

tan-17-one (41). Identical to previously synthesised sample. 

3B-Hvdroxv-5-androsten-17(S)-spiro-2'-(1.3-oxathiolane) 

(131). 

Formation of the oxathiolane derivative of DHEA was 

undertaken in an identical procedure to that used in the 

attempted direct synthesis of compound (150) where benzene 

was used as solvent. The product was isolated as a white 

solid by flash column chromatography of the crude reaction 

slurry (5.37g: 80%). m. pt= 148-1500 [lit= 151-153' 19]. 1H 
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NMR (6): 0.83 (3H, s, 18-H), 1.02 (3H, s, 19-H), 2.86 (2H, 

in, (M2X2), oxathiolane moiety 4-H), 3.53 (1H, bm, 3-H), 4.09 

(2H, in, (M2X2), oxathiolane moiety 5-H), 5.35 (1H, d, J= 

4.2Hz, 6-H). 13C NMR (6): 40 (oxathiolane moiety 5-C), 70 

(oxathiolane moiety 4-C), 72 (3-C), 106 (17-C), 122 (6-C), 

142 (5-C). IR Vmax (cm 1): 3380,1670,1085,740. CH analy- 

sis, calc. for, C= 68.90%, H=9.10%, Found, 69.23%, H=9.19%. 

MS m/z: 348 (25%) (molecular ion], 288 (40%), 270 (50%), 255 

(30%), 244 (15%), 213 (15%), 145 (20%), 115 (100%). 

3B-Tosyl-5-androsten-17(S)-spiro-2'-(1,3-oxathiolane). 

Formation of the tosylated oxathiolane steroid was 

initially undertaken in an identical procedure to that used 

in the tosylation of DHEA (97). Three further adaptations 

were also investigated. 

Method 

The reaction was carried out under identical conditions 

to the tosylation of DHEA (97). The product, a pale brown 

solid was crystallised direct from solution by the addition 

of iced water. Thin layer chromatography indicated two 

compounds which were readily separated by preparative tic 

utilising toluene/ ethyl acetate (3: 1) as a mobile phase: 

Major compound, DHEA, spectroscopically identical to 

starting material. 

Minor compound, p-toluenesulphonic acid. Identical to 

an authentic sample. 
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Method 2 

This method was identical to method I but a five fold 

excess of tosyichloride was employed. The product was worked 

up in the usual manner and resulted in the isolation of the 

starting steroid (131) and p-toluenesulphonyl chloride. 

Method 2 

By identical means to the tosylation of DHEA where 

dichloromethane was used as a solvent (method 2), the thiox- 

alane (131) was treated with an equimolar amount of tosyl 

cholride under reflux. The product showed no sign of tosyal- 

tion having occured. 

Method 

The conditions employed were identical to those used in 

both method I and II but the reaction mixtures were warmed 

to 40" or 600 in an oil bath or allowed to reflux. All six 

reactions again resulted in the isolation of starting mate- 

rial. 

Method 5. 

All the above methods were repeated but a non-aqueous 

workup was employed. Removal of the solvent under reduced 

pressure at room temperature, followed by preparative tic 

resulted in the isolation of the two starting materials. 

38-Mesv1-5-androsten-17(S)-spiro-2'-(1,3-oxathiolaneZ 1148). 

In a similar manner to the formation of the mesylate 

(98b), 1g of the oxathiolane (2.87 mmoles) was dissolved in 

10ml of anhydrous pyridine. To this solution was added 0.34g 
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of methanesulphonyl chloride (2.97 mmoles) and the mixture 

allowed to stand at room temperature for 48 hours. After 

this period 20 ml of 50% acetone solution was added to the 

solution and the precipitate filtered off. Vacuum drying at 

40" gave a white solid. (0.96g: yield= 75%). m. pt= 147-1480. 

1H NMR (8): 0.83 (3H, s, 18-H), 1.03 (3H, s, 19-H), 2.85 

(2H, m, (M2X2), oxathiolane moiety 4-H), 3.00 (3H, s, mesy- 

late-H), 4.05 (2H, m, (M2X2), oxathiolane moiety 5-H), 4.50 

(1H, bm, 3-H), 5.43 (1H, d J- 4.2Hz, 6-H). IR V max (cm-1): 

3050,3025,1675,1340,1090,780. 

Reaction between tosyl chloride And ß-mercapto ethanol. 

p-Toluenesulphonyl chloride (1g, 5.25 mmoles) and an 

equimolar amount of ß-mercapto ethanol (0.41g) were dis- 

solved in 5ml of pyridine. This mixture was then stirred 

overnight. removal of the solvent under reduced pressure 

gave a brown oil consisting of a complex mixture of 

products. Partial separation by preparative tlc gave three 

fractions: 

Fraction 1,2-tosyl-ß-mercaptoethanol (149). 1H NMR 

(6) : 2.32 (3H, s, tosyl Me-H), 2.86 (2H, t, J= 5.6Hz, 1-H) , 

3.83 (2H, t, J= 5.6Hz, 2-H), 7.10 (2H, d, J= 8.0, aromatic- 

H), 7.62 (2H, d, J= 8Hz, aromatic-H). IR V max (cm-1) : 3420, 

1600,1150,820. 

Fractions 2 and 3 were tentatively assigned as insepa- 

rable mixtures of ditosylates and cyclised products. 
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6B-Hydroxy-3a, 5-Cyclo-5o-androstane-17(S)-spiro-2'-(1.3- 

Cyclisation was attained by an identical method to 

that used in the formation of the parent 3,5 cyclosteroid 

(41). Purification of the resulting oil with flash chroma- 

tography (mobile phase toluene/ ethyl acetate, 3: 1) gave the 

desired steroid (150) as a colourless glass, (1.29g, 80%). 

1H NMR (d): 0.28 (1H, d, J= 8Hz, 4-H), 0.34 (1H, d, J= 8Hz, 

4-H), 0.57 (1H, t, 4.8Hz, 3-H), 0aß5 (3H, s, 18-H), 1.08 

(3H, s, 19-H), 2.85 (2H, m, (M2X2), oxathiolane moiety 4-H), 

3.32 (1H, t, J- 2.4Hz, 6-H), 4.05 (2H, m, oxathiolane moiety 

5-H). IR Vmax (cm-1): 3420,3070,1080,1035. CH analysis, 

calc for, C= 72.41% H= 9.19%. Found C= 72.83% H= 9.23%. MS 

m/z: 348 (10%) (molecular ion], 288 (25%), 270 (30%), 254 

(20%), 115 (100%). 

6-oxo-3a. 5-Cvclo-5a-androstanee-17(S)-soiro-2'-(1.3-oxathio- 

lane) (151). 
The oxidation of the 60 alcohol to the relevant ketone 

with Collins' reagentl° was carried out in an identical 

procedure to that used for the oxidation of the parent 

alcohol (41) to the ketone (111). Drying the organic extract 

with anhydrous magnesium sulphate, decolourising with char- 

coal and evaporation of the solvent gave a clear yellow oil. 

Preparative tlc utilising a 3: 1 toluene ethyl acetate mobile 

phase yielded two pale yellow solids: 

The major product, was recrystallised from 70% acetone 

as colourless needles. Major product, (0.32g, 65%), 6-oxo- 

3a, 5-cyclo-5a-androstane-17(S)-spiro-2'-(1,3-oxathiolane) 
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(151). m. pt 148-150'. 1H NMR (6): 0.74 (1H, t, J= 4.0Hz, 3- 

H) j 0.87 (3H, s, 18-H), 1.01 (3H, s, 19-H) f 2.86 (2H, m, 

(M2X2) oxathiolane moiety 4-H), 4.06 (2H, m, (M2X2) oxathio- 

lane moiety 5-H) . IR Vmax (cm-1) : 3115,3020,2990,1678, 

1070,805. MS m/z: 346 (1%) [molecular ion], 287 (20%), 115, 

(100%). 

Minor product, (30mg), 3a, 5-cyclo-5a-androstane-6-17- 

dione (111). Data cited above. 

ethvlene3a. 5-cvclo-5c-androstane-17 lS 1-sniro-2' - 

Synthesis of the 6-methylene derivative, from the 6- 

keto steroid, was carried out using similar methods to that 

of Wittig20 and Sondheimer. 21 Under a nitrogen atmosphere, 

iml of a 1.6M ethereal solution of n-butyl lithium (1.59 

mmoles) was added slowly and with stirring to a suspension 

of 0.52g methyltriphenylphosphonium bromide (CH3P(Ph)3Br 

(1.44 mmoles) in 50m1 sodium dried diethyl ether. This 

yellow solution was then stirred at room temperature for 4 

hours. 100mg of the steroid (0.29 mmoles) dissolved in 20m1 

of sodium dried ether was then slowly added and this mixture 

was refluxed, with the exclusion of oxygen, for 16 hours. 

After this period the precipitate was filtered off and 

washed with ether. The combined solutions were washed with 

aqueous solutions of 5% HC1 , 5% NaNCO3 and water before 

drying with magnesium sulphate. Decolourising and removal of 

the solvent under vacuum gave a brown oil. Preparative tic 

using 3: 1 toluene: ethyl acetate as the mobile phase result- 

ed in the isolation of two products: 
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Major component, 6-methylene-3a, 5-cyclo-5a-androstane- 

17(S)- spiro-2'-(1,3-oxathiolane) (156), (66mg, 66%). m. pt= 

133-136'. 1H NMR (6): 0.38 (1H, t, J= 5.6Hz, 3-H), 0.85 

(6H, s, 18 and 19-H), 2.85 (2H, m, (M2X2), oxathiolane 

moiety 4-H), 4.03 (2H, m, oxathiolane moiety 5-H), 4.63 (2H, 

d, J- 5.6Hz, 6'-H). IR V max 
(cm-1): 3080,3065,3015,2990, 

2985,1642. MS m/z: 344 (2%) (molecular ion], 277 (10%), 115 

(100%). 

Minor component, 3a, 5-cyclo-5a-androstan-6-one-17(S)-spiro- 

2'-(1,3-oxathiolane (151) (20mg). 
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Syntheses from section 3.4. 

The reaction conditions for the synthesis of 3ß-mesyl-5- 

androsten-17-ol (or the 3ß tosylate), its corresponding 17ß- 

acetate, 3a, 5-cyclo-5a-androstane-6ß, 17ß-diol-17-acetate 

and 17ß-acetoxy-3a, 5-cyclo-5a-androstan- 6-one were based on 
2 the work of Labler and Sorm. 2 

3B-Tosvl-5-androsten-17-one (98a). 

The formation of this compound is discussed elsewhere 

in this chapter. 

5-Androsten-3B. 17B-diol-3-tosylate (174a). 

ig of lithium aluminiumhydride (LiAlH4,26.3 mmoles) as 

a slurry in 100ml of sodium dried diethyl ether was slowly 

added, with stirring to a solution of the tosylated steroid 

(98a), 3.76g (8.51 mmoles) in 100ml sodium dried tetrahy- 

drofuran. After a period of 3 hours 50ml of ice cold dis- 

tilled water were carefully added and the mixture stirred 

for 30 minutes. The organic layer was then separated off and 

the aqueous layer washed with 2x 50ml portions of diethyl 

ether. The organic layers were then combined, dried with 

magnesium sulphate and the solvent removed under reduced 

pressure. The desired alcohol, a creamy white solid, gave 

colouress crystals, (3.13g, 83%), after recrystallisation 

from anhydrous acetone. m. pt= 138-140' (with decomposition), 

[lit 145-147.22]. 1H NMR (6): 0.74 (3H, s, 18-H), 0.98 (3H, 

s, 19-H), 2.44 (3H, s, tosyl-H), 3.63, (H, t, J= 8.0Hz, 17- 

H), 4.36 (1H, bm, 3-H), 5.42 (1H, d, J= 2.4Hz, 6-H), 7.32 
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(2H, d, J= 8.8Hz, aromatic-H), 7.84 (2H, d, J= 8.8Hz, aro- 

matic-H). IR V max (cm 1): 3380,1680,1605,1350,1170,640. 

3B-Mesyl-5-androsten-17-one (98b). 

The formation of this compound is discussed elsewhere 

in this chapter. 

5-Androsten-3B. 17B-diol-3-mesylate (174b). 

The reduction of the keto group of the mesylate (98b) 

was achieved by an identical proceedure to that used for the 

tosylate, that is, with a three molar excess of LiAlH4 (see 

above). The alcohol, a creamy white solid, gave colouress 

crystals, (2.46g, 83%) after recrystallisation from acetone. 

m. pt= 135-138', (with decomposition). 1H NMR (6): 0.74 (3H, 

s, 18-H),, 1.05 (3H, s, 19-H), 3.02 (3H, s, mesyl-H), 3.67 

(1H, t, J= 7.2 Hz, 17-H), 4.43 (1H, bm, 3-H), 5.45 (]H, d, 

J= 4.8 Hz, 6-H). IRVmax (cm-1): 3330,3025,3005,1665, 

1350,1170,950. 

5-Androstene-3ß. 17B-diol-3-tosylate-17-acetate (175). 

The steroid alcohol (174), lg (2.25 mmoles) was dis- 

solved in a mixture of acetic anhydride (5m1) and pyridine 

(15m1) and the mixture stirred over a 12 hour peroid. After 

this time 10ml of iced distilled water was added to the 

reaction mixture. This was then stirred for an additional 30 

minutes at which point the solution was extracted with 5x 

50m1 portions of CHC13. The organic layer was then separated 

and washed repeadly with 5% HC1 and 5% NaHCO3 solutions. 

Drying of the solvent with magnesium sulphate and removal of 
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the solvent under reduced pressure gave a white solid which 

recrystallised as long needles, (1.01g, 92%), from a 70% 

acetone solution. m. pt= 118-1200 [lit= 119-121' 22]. 1H NMR 

(6) : 0.78 (3H, s, 18-H),, 0.97 (3H, s, 19-H),, 2.02 (3H, s, 

acetate-H), 2.44 (3H, s, tosyl-H), 4.40 (1H, bm, 3-H), 4.59 

(1H, t, J= 7.2 Hz, 17-H), 5.44 (1H, d, J= 4.8 Hz, 6-H), 

7.34, (2H, d, J= 8.0, aromatic-H), 7.84 (2H, d, J= 8.0Hz, 

aromatic-H). 1R V max (cm-1): 1720,1675,1600,1250,1030, 

640. 

5-Androstene-38.178-diol-3-mesylate-17-acetate (175b). 

The steroid alcohol (174b), lg (2.72 mmoles) was con- 

verted to its 17ß-acetate under identical conditions to 

those used for the tosylate. The product a white solid 

recrystallised as long needles (1.06g, 95%), from anhydrous 

acetone. m. pt= 150-152'. IH NMR (6): 0.78 (3H, s, 18-H), 

1.05 (3H, s, 19-H), 2.00 (3H, s, acetate-H), 3.04 (3H, s, 

mesyl-H), 4.44 (1H, bm, 3-H), 4.62, (1H, t, J= 7.2Hz, 17-H), 

5.45 (1H, d, J= 4.8 Hz, 6-H). IR V max 
(cm-1): 3330,3025, 

3005,1725,1665,1350,1070. 

3a, 5-Cyclo-5a-androstane-6ß, 17ß-diol-17-acetate 176 

The cyclisation of the mesylate (175b) or tosylate 

(175a) was undertaken by method 1 of the cyclisation reac- 

tions attempted. lg of the steroid (2.05/ 2.43 mmoles) was 

dissolved in 100mi of acetone. To this solution was added ig 

(10.20 mmoles) potassium acetate in 20m1 distilled water and 

the resulting aqueous solution refluxed for 6 hours. After 

cooling a further 20ml of distilled water was added and the 
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solution temperature lowered. The product, as colouress 

crystals, was collected by filteration and dried. (0.54g 80% 

(mesylate) / 0.68g 85%(tosylate)). m. pt= 131-132" (lit= 

130-132' 22]. 1H NMR (6): 0.29 (1H, d, J= 8Hz, 4-H) 0.35 

(1H, d, J= 8Hz, 4-H), 0.56 (1H, t, J= 4.8Hz, 3-H), 0.84 (3H, 

s, 18-H),, 1.06 (3H, s, 19-H), 2.03 (3H, s, acetate-H), 3.29 

(1H, t, J= 2.4 Hz, 6-H), 4.61 (1H, t, J= 7.2Hz, 17-H). IR 

Vmax (cm 1): 3350,3050,1720,1285,1020. 

17ß-Acetoxy-3a 5-cvclo-5a-androstan-6-one 1177). 

The oxidation of the 6ß-alcohol (176) was undertaken in 

an identical procedure to that used in the oxidation of 

steroid alcohol (150). Reaction between the steroid (lg, 

3.03 mmoles) and the six fold excess of Collins' reagentl0 

gave, after removal of the solvent, a clear or pale yellow 

glass. Crystallisation from acetone afforded colouress 

plates (0.68g 68%). m. pt= 113-114' [lit= 114' 22]. 1H NMR 

(6): 0.69 (1H, t, J= 4.8 Hz, 3-H), 0.81 (3H, s, 18, -H), 1.00 

(3H, s, 19-H), 2.01 (3H, s, acetate-H), 4.61 (1H, t, j= 

7.2Hz, 17-H). IR Vmax (cm-1): 3060,1730,1675,1265,1040. 

6-Methylene-3a. 5-cyclo-5a-androstan-17ß-ol 178 

Synthesis of the methylene derivative was undertaken in 

an identical fashion to the 6-methylene steroid (156). The 

reaction between the steroid (250mg) and a four fold excess 

of the Wittig reagent gave, after removal of the solvent 

under reduced pressure, a pale yellow oil. Preparative tic 

successfully separated two products: 
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Major component, 6-methylene-3a, 5-cyclo-5a-androstan- 

17ß-ol (178), (175mg, 70%) as a white solid. m. pt= 139-141'. 

1H NMR (6) : 0.41, (1H, t, J- 4.6 Hz, 3-H) , 0.77 (3H, s, 18- 

H), 0.86 (3H, s, 19-H), 3.66 (1H, t, J= 7.2 Hz, 17-H), 4.64 

(2H, d, J- 5.6Hz, 6'-H). IR V max (cm-1): 3380,3090,3042, 

3020,1650,890. CH analysis, calculated for C20H300: C= 

83.92%, H= 10.49%. Found C= 83.22%, H= 10.49%. 

Minor component 6-methylene-3a, 5-cyclo-5a-androstan- 

17ß-yl acetate (179), (40mg, 16%) as a pale brown gum. 1HNMR 

(6): 0.41, (1H, t, J= 4.6Hz, 3-H), 0.77 (3H, s, 18-H), 0.86 

(3H, s, 19-H), 2.02 (3H, s, acetate-H), 4.60 (1H, t, J= 

8.0Hz, 17-H), 4.63 (2H, d, J= 5.6Hz, 6'-H). IR V max (cm-1) : 

3090,3020,1730,1645,1250,900. 

6-Methylene-3a. 5-cyclo-5a-androstan-17-one 80 

In an identical manner to the Jones' oxidation of DHEA 

(97), 100mg (3.49x mmoles) of steroid alcohol (179) was 

oxidised to the 17-ketone compound. Removal of the solvent 

under reduced pressure gave a clear glass which failed to 

crystallise (76mg, 77%) 1H NMR (6) : 0.41, (1H, t, J= 4.8Hz, 

3-H), 0.86 (3H, s, 18-H), 0.90 (3H, s, 19-H), 4.64 (2H, d, 

J= 5.6Hz, 6'-H). IR V max (cm-1): 3085,3040,3020,1735, 

1650,890. 
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Syntheses from section s 

6B-methyl-3a, 5-cvclo-5a-androstan-17-one 

On the basis of the sulphonate substituting properties 

of dimethyllithium cuprate23 and the use of trialkyl alumin- 

ium for simultaneous cyclisation and alkylation of 6-C in 

3-C sulphonates, 24 the reaction between the 3-C mesylate and 

dimethyllithium cuprate was investigated. 

A five fold (1.53 mmoles) excess of dimethyllithium 

cuprate was formed under a dry nitrogen atmosphere by the 

addition of 0.29g copper iodide to 33.7mg methyl lithium in 

100ml anhydrous diethyl ether. The yellow precipitate thus 

formed was stirred at room temperature for 30 minutes. After 

this peroid the steroid, 100mg (3.07 mmoles), was added as a 

solution in 50m1 anhydrous diethyl ether resulting in a 

white precipitate. The reaction mixture was then continuous- 

ly stirred for 12 hours. Decomposition of the excess of the 

reagent was facilitated by the slow addition of a saturated 

solution of ammonium chloride. The two phase mixture was 

then stirred for an additional 2 hours. The organic layer 

was then removed and the aqueous layer washed with 3x 100ml 

diethyl ether. The combined organic layers were then dried 

with anhydrous magnesium sulphate and the solvent removed. 

Column chromatography of the resulting oil, on silica gel 

with toluene/ ethyl acetate (3: 1) as eluent, resulted in the 

isolation of two white solids: 

Major component, 17a-methylandrost-5-ene-3ß, l7ß-diol 

(70mg) (181), m. pt. 207-210' [lit= 212' 25). 1H NMR (d): 

0.80 (3H, s, 18-H),, 0.96 (3H, s, 18-H), 1.15 (3H, s, 17-H), 

3.44 (1H, bm, 3-H), 5.37 (1H, d, J= 2.4Hz, 6-H). IR vmax 
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(cm 1): 3400,1640. 

Minor component, 3ß-hydroxy-5-androsten-17-one (20mg) 

(97). 

Syntheses from section 3.6 

Attempted synthesis of the 6-methylene derivative (180) 

was undertaken in an identical fashion20,21 to the 17-pro- 

tected methylene steroids (156) and (178). The reaction 

between the dione (500mg) and a four fold excess of Wittig 

reagent, gave after removal of the solvent under reduced 

pressure, an off white solid. Column chromatography on 

silica gel using toluene/ethyl acetate (3: 1) as eluent gave 

three products: 

17-methylene-3a, 5-cyclo-5a-androstan-6-one (182) as an 

off white solid (300mg). m. pt. = 135-141' 1H NMR (6): 0.75 

(1H, t, J- 4.8Hz, 3-H), 1.02 (3H, s, 18-H), 0.87 (3H, s, 18- 

H), 4.50 (2H, bs, 17'-H). IRVmax (cm 1): 3075,3010,1680. 

6-methylene-3a, 5-cyclo-5a-androstan-17-one (180) as a 

colourless oil (80mg). 1HNMR (6): 0.40 (1H, t, J= 4.8Hz, 3- 

H), 0.86 (3H, s, 18-H), 0.90 (3H, s, 18-H), 4.64 (2H, d, J= 

5.6Hz, 6'-H). IR vmax (cm 1): 3085,3040,3020,1735,1645, 

890. 

3a, 5-cyclo-5a-androstane-6,17-dione (111), (50mg). 

m. pt. = 181-183' [lit= 182-18301] 'HNMR (6): 0.75 (1H, to 

J= 4.8Hz, 3-H), 0.92 (3H, s, 18-H), 1.04 (3H, s, 19-H). IR 

'max (c,, -') : 3090,3015,1735,1680. 
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Synthesis Q. 6B-methyl-7a-hvdroxv-3a. 5-cvclo-5a-androstan- 

17_one (44) 

8.4 Synthesis from chapter 

3a. 5-Cvclo-5a-androst-6-en-17-one 
_(185). 

In an analogous manner to Cambie g X28 unpurified 

steroid alcohol (41) (4g, 1.74x 10-2 moles) was dissolved in 

150ml toluene and to this solution was added 15g neutral 

alumunium oxide and this mixture refluxed overnight. The 

addition of boiling sticks as well as anti-bumping granules 

was necessary to avoid excessive bumping. After this period 

the mixture was cooled and alumina removed by filtration. 

The alumina was then washed for a period of 1 hour with 

dichloromethane. Combining the organic solutions, decolou- 

rising with charcoal and removal of the solvent gave an 

oily, brown solid. Column chromatography on silica gel with 

toluene/ ethyl acetate as eluent gave three compounds the 

first two of which were in sufficient quantities for recrys- 

tallisation from neat ethanol: 

Major product, 3a, 5-cyclo-5a-androst-6-en-17-one (185), 

(2.72g, 59%) m. pt= 136-1370, [lit= 136-137°27]. 1H NMR (6): 

0.44 (1 or 2H, m, 3 or 4-H), 0.93 (6H, s, 18 and 19-H), 5.25 

(1H, dd, J= 9.6 and 2.3 Hz, 7-H), 5.57 (1H, dd, J= 9.6 and 

0.9 Hz, 6-H). IR max (cm-1): 3062,3022,3000,1735,1635, 

735. UV (nm), 216 (14000). 

4-androsten-3,17-dione, (0.42g) (198). m. pt= 169-171'. 

[lit= 170-171'25] 1H NMR (6): 0.92 (3H, s, 18-H), 1.21 (3H, 

s, 19-H), 5.75 (1H, s, 4-H). IRVmax (cm-1): 1740,1675, 

1620, UV (nm), 239.5 

3a, 5-cyclo-5a-androstane-6,17-dione, (0.33g) (111). 
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m. pt= 179-182' [lit= 182-183'1]. 1HNM. R (6): 0.75, (1H, t, J= 

4.0Hz), 3-H), 0.92 (3H, s, 18-H), 1.04 (3H, s, 19-H). IR 

vmax,, (c 1): 3093,3022,1732,1681. 

3a. 5-Cvclo-5a-androstan-6-en-17-dioxolane (186). 

In a similar manner to the attempted formation of the 

dioxolane. derivative (125) 0.5g (1.84 mmoles) of the ster- 

oid, 5.1g (82.2 mmoles) ethylene glycol and 100mg of p- 

toluenesulphonic acid were dissolved in 100ml benzene. The 

flask was fitted with a modified Dean/Stark apparatus and 

the solution refluxed for 16-hours. After cooling, the 

benzene was diluted with 100ml diethyl ether and washed with 

lox 100ml, 5% NaHCO3. The organic layer was then dried and 

the solvent removed under reduced pressure to give a clear 

oil. Preparative tlc utilising a 3: 1 ratio of toluene and 

ethyl acetate as the mobile phase produced only one major 

product as a colouress glass. 

3a, 5-cyclo-5a-androstan-6-ene-17,17-dioxolane (186). 1H 

NMR (6): 0.36 (1 or 3H, m, 3 and 4-H), 0.89 (6H, s, 18 and 

19-H), 3.86 (4H, s, dioxolane-H), 5.19 (1H, d, J= 9.6Hz, 7- 

H), 5.54 (1H, d, J= 9.6Hz, 6-H). IRVmax (cm-1): 3065,3040, 

1645,1120,1050. 

6a. 7a-Epoxy-3a. 5-cyclo-5a-androstan-17-one (209). 

The epoxidation of 3a, 5-cyclo-5a-androst-6-en-17-one 

was based on the method used by Cambie at al.. 28 The ster- 

oid, 3a, 5-cyclo-5a-androstan-6-en-17-one (800mg, 2.94 

mmoles) in 30ml sodium dried ether was treated with m-chlo- 

roperbenzoic acid (1.26g, 7.35 mmoles) at 00 for 30 minutes. 
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After this period the solution was diluted with aa further 

50m1 of diethyl ether and then washed rapidly with ice cold 

50m1 portions of 2% ferrous sulphate, water, 5% sodium 

hydrogen carbonate and water. The organic layer was then 

dried with anhydrous magnesium sulphate and the solvent 

removed under reduced pressure to yield a pale brown oil. 

Spectroscopic data varied from sample, to sample but the 1H 

NMR spectrum consistently showed signals at (6): 0.38, (3H, 

m, 3 and 4-H), 2.89,3.00,3.23 3.65 (bs, 6 and 7H). 

Because isolation proved extremly difficult the oily 

product was treated instantaneously with dimethyllithium 

cuprate. 

68-methyl-7a-hydroxy-3a. 5-cyclo-5a-androstan-17-one (44)" 

The oil obtained from the epoxidation of the alkene 

(185) (0.8g, 2.80 mmoles), as a solution in anhydrous dieth- 

yl ether (50ml) was added slowly to a five fold excess of 

dimethyllithium cuprate23 in 100ml anhydrous ether prepared 

by the addition of 20m1,1.4 M solution methyl lithium 

(0.62g) to 80ml anhydrous ether containing 2.66g copper (I) 

iodide. As expected, the addition of one molar equivalent of 

methyl lithium resulted in a yellow precipitate. The addi- 

tion of a second equivalent resulted in the desired colour- 

ess/ pale brown oil. The reaction mixture was then stirred 

for 14 hours. After this peroid 80m1 of a saturated solution 

of ammonium chloride was added and the solution stirred for 

a further 2 hours. The layers were then separated and the 

aqueous layer washed with three portions of diethyl ether 

(50m1). The organic phases were then combined and the sol- 
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vent removed under reduced pressure to yield an olive green 

gum. Flash chromatography utilising a mobile phase of ethyl 

acetate and toluene (3: 1) resulted in the collection of five 

pale brown oily fractions. Thin layer chromatography and 1H 

NMR spectroscopy showed limited separation had been attained 

but identified the presence of two of the desired products: 

6ß-methyl-7a-hydroxy-3a, 5-cyclo-5a-androstan-17-one 

(44b), 40mg. 1H NMR (6): 0.40 (3H, t, cyclopropyl), 0.91 

(6H, bs, 6' and 18-H), 0.97 (3H, s, 19-H), 3.68 (1H, 7-H). 

IR Vmax (cm 1): 3480,1735. 

7a-methyl-6ß-hydroxy-3a, 5-cyclo-5a-androstan-17-one 

(190b), 40mg. 1H NMR (6): 0.30 (2H, m, 4-H) 0.50 (1H, m, 3- 

H), 0.88 (3H, s, 18-H),, 1.09 (3H, s, 19-H),, 1.18 (3H, bs, 

7'-H), 3.83 (1H, 6-H). IRVmax (cm 1): 3530,1735. 
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Postgraduate studies. 

Additional Courses 

The following courses at Aberdeen University and The 

Robert Gordon Institute of Technology have been attended: 

1). Chemical Crystallography (3rd year undergraduate 

course). 

2). organic Synthesis (4th year undergraduate course). 

3). Radiation Hazards Course. 

4). Biologically Active Steroids (4th year undergraduate 

course). 

Conferences 

The 19th Scottish regional meeting (December 1990) of 

the Royal Society of Chemistry- Perkin Division was at- 

tended. Posters presentations were made at the Chemistry 

Postgraduate Summer School, Scottish College of Textiles, 

1988 and the British Crystallographic Association, Spring 

Meeting, Exeter University, April 1990. In addition a number 

of seminars at Aberdeen University and The Robert Gordon 

Institute of Technology were presented and/or attended. 
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