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Abstract 

 Increased levels of blood glucose are associated with the vascular complications 

of diabetes. Microvascular complications lead to delayed wound healing in patients 

suffering from diabetes. Hypoxia and hyperglycaemia characterise a wound environment 

of a person with diabetes. Angiogenesis is central to restore the supply of oxygen and 

nutrients to the wounded tissue. Endothelial cell migration is central to angiogenesis which 

is aided by hypoxia and attenuated by hyperglycaemia. However, the molecular 

mechanisms underlying the disruption to angiogenesis of diabetic wounds are not 

completely understood. The effect of hypoxia and/or high glucose concentration on the 

endothelial cell migration in vitro was studied and an anti-oxidant, silymarin formulated as 

freeze dried wafer discs was tested for its beneficial effect.  

A radial migration and a wound healing assay were developed, validated and used 

to assess the effect of hypoxia and/or high glucose concentration on the migration of 

human endothelial cells of dermal origin. Circular and semi-circular monolayers of 

endothelial cells were used for the measurement of the migration by radial migration and 

wound healing assay respectively. Net migration was calculated by subtracting the radii at 

a specified time point from that measured at time zero. The migration was studied under 

normal (20%) or below (5%) normal oxygen tension in combination with normal (5mM) or 

high (20mM) glucose concentration. Endothelial cells were treated with an anti-

proliferative agent, intracellular signal inhibitors and silymarin.  

Results demonstrated that hypoxia and high glucose concentration have opposing 

effects of increase (p<0.001) and decrease (p<0.001) respectively on the migration of 

endothelial cells. The results of the wound healing assay revealed that re-

endothelialisation occurs faster (p<0.001) than endothelialisation. The effects of hypoxia 

and high glucose concentration appeared to be mediated via PI3K-Akt and PKCβII 

pathways respectively. Further investigations revealed the possibility of HIF-1α being 

involved in both the pathways. High glucose concentration-induced decrease in cell 

migration was successfully restored (p<0.001) by the use of an anti-oxidant silymarin. This 

could be due to anti-oxidant activity of silymarin on glucose-induced overproduction of 

reactive oxygen species. Silymarin formulated as freeze dried wafer discs, sterilised by 

gamma irradiation was successful in retaining its effect (p<0.001) against the high glucose 

impaired cell migration compared to control wafers. 

In conclusion, delayed wound healing due to disrupted endothelial cell migration 

was reaffirmed to be due to elevated glucose concentration. Silymarin was successful in 

restoring glucose-induced attenuation of cell migration. Freeze dried wafers show 

promising potential as a topical application for the treatment of chronic wounds for people 

with diabetes. 
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Diabetes is a debilitating disease and whose incidence has increased significantly 

in recent years. The associated vascular complications remain a major cause of morbidity 

and mortality within this patient group. Central to vascular complications are the 

endothelial cells that line or form the basis of a blood vessel as these cells are exposed to 

high and/or fluctuating concentration of glucose and reduced oxygen availability that are 

associated with diabetes. The focus of this study is to establish an in vitro model of wound 

healing in order to investigate the key parameters of endothelial cell growth, migration 

and/or proliferation that are affected by elevated glucose concentration and reduced 

oxygen availability. The role of silymarin in the amelioration of the condition and the 

development of a novel silymarin formulation for topical application are part of this study. 

In this first chapter the rationale and the context of the existing work is explored in order to 

demonstrate the integrity and feasibility of the study and the conclusions that have been 

made. 

1.1 Diabetes Mellitus 

The International diabetes federation (IDF) defines diabetes mellitus as ‘‘a group of 

heterogeneous disorders with the common elements of hyperglycaemia and glucose 

intolerance, due to insulin deficiency, impaired effectiveness of insulin action, or both’’ 

(International Diabetes Federation 2009). The current WHO criteria for diagnosis of 

diabetes include fasting plasma glucose level at ≥7.0mmol/L (120mg/dL) or 2-h after 75g 

oral glucose load challenge with plasma glucose at ≥11.1mmol/L (200mg/dL) (World 

Health Organisation Consultation 2006). 

Diabetes currently affects approximately 285 million adults worldwide (i.e. 6.6% of 

world population), 70% of whom belong to the developing world. It is expected that 

diabetes will affect 439 million adults (7.8% of world population) by 2030. Presently, one 

million more women than men are estimated to suffer from diabetes and this difference is 

likely to go up to six million by 2030 (International Diabetes Federation 2009). Diabetes is 

the fourth or fifth leading cause of global death by disease in the developed world with 

approximately four million deaths, accounting for around 6.8% of global all-cause mortality 

each year. The high mortality is estimated to be from India, China, USA and Russia as 

there is a larger population size and thus relatively more people suffering from diabetes 

(International Diabetes Federation 2009). 

Diabetes is one of the largest non-communicable diseases, imposing heavy 

economic burden on individuals, families, health systems and nations with an expected 

11.6% of a total global healthcare expenditure spent on it. Today, the estimated global 

healthcare expenditure is 360 billion United States Dollars (USD). This is expected to 

increase to 490 billion USD by 2030. However, there is a huge disparity in the money 
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spent on diabetes by different countries, with USA spending the majority and countries 

like India, Burundi and Myanmar spending meagre amount of total global spending 

(International Diabetes Federation 2009). The economic implications of this are of greater 

significance if lost productivity and the consequent loss of national income are included in 

the finances.  

Etiologically, diabetes mellitus is classified into type 1 diabetes mellitus (T1DM) 

and type 2 diabetes mellitus (T2DM) which were previously known as insulin dependent 

diabetes mellitus (IDDM) and non insulin dependent diabetes mellitus (NIDDM) 

respectively. Type 1 diabetes, primarily considered to be an autoimmune disorder, is a 

result of lack of insulin due to the destruction of beta cells from the islets of Langerhans in 

the pancreas, and type 2 diabetes is a result of insulin resistance and/or insulin 

insufficiency (Balkau and Eschwege 2003). Gestational diabetes and other specific types 

like genetic defects of β-cell function, genetic defects of insulin action, disease of exocrine 

pancreas, endocrinopathies, drug- or chemical- or infection-induced, uncommon forms of 

immune-mediated diabetes and other genetic syndromes associated with diabetes are 

also recognized (Balkau and Eschwege 2003). 

Acute complications of T1DM include ketosis, ketoacidosis, hypoglycemic 

episodes, hyperglycemic crises and infections (Slama Gerard 2003). Later complications 

include retinopathy, cataract, nephropathy (renal insufficiency and hypertension), 

neuropathy (polyneuropathy, mononeuropathy, foot ulcers and impotence), cardiovascular 

complications (macro vascular disorders like coronary heart disease, cerebrovascular 

disease, and peripheral vascular disease), skin disorders (infections, mycosis, 

lipodystropy) and psychosocial disorders like depression (Slama Gerard 2003). The 

complications of T2DM are similar to those of T1DM although prevalence of respective 

complications does vary. Blindness due to proliferative retinopathy and risk of 

development of end stage renal disease are low in T2DM compared to T1DM patients. On 

the other hand, the rate of mortality due to cardiovascular diseases is high in T2DM 

compared to T1DM patients (Katsilambros and Tentolouris 2003). 

The Diabetes Control and Complication Trial (DCCT) and the United Kingdom 

Prospective Diabetes Study (UKPDS) were two milestone studies conducted in the USA 

and UK respectively on diabetes and its complications. The DCCT was a multi-centre (29 

centres) randomized clinical trial conducted during 1983 to 1993 and involved 1,441 

patients suffering from type 1 diabetes for a minimum of a year to a maximum of 15 years. 

After 1993, the follow up study called Epidemiology of Diabetes Interventions and 

Complications (EDIC) was continued with more than 90% patients of DCCT. The EDIC 

trial continues to study the incidences of CVS and other diabetes related complications 

(National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) 2008). The 
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DCCT has shown that intense therapy of adjusted doses of insulin with diet and exercise 

reduced the risks of developing complications compared with conventional therapy of 

unadjusted doses of insulin with only education about diet and exercise. Intensive therapy 

reduced the development of proliferative or non severe retinopathy by 47% and clinical 

neuropathy by 60%. The risk of albuminurea and microalbumin urea was reduced by 54 

and 39% respectively indicating dramatic risk reduction in nephropathy in patients 

receiving intensive insulin therapy compared with conventional therapy (DCCT Group 

1993). The follow-up study, EDIC, showed that there was a reduction in cardiovascular 

events by 42% and nonfatal myocardial infraction, stroke or death from diabetes by 57% 

in the intensive insulin therapy group (DCCT/EDIC Study Research Group et al. 2005). 

The UKPDS was designed and conducted between 1977 to 1997 by Professor 

Robert Turner and Rury Holman of diabetes trial unit of Oxford University. It was a 

multicentre (23 UK clinical sites) trial involving randomized glucose therapies in 5,102 

newly diagnosed type 2 diabetes patients (Diabetes Trials Unit 2010a). The post trial 

monitoring ran for another ten years until 2007 with all the surviving patients of UKPDS 

trial (Diabetes Trials Unit 2010b). The UKPDS was conducted in T2DM patients over a 

period of 10 years with the patients assigned to either intense glucose control with 

sulphonylurea or with insulin or conventional glucose control through diet. Haemoglobin 

A1c (HbA1c), any diabetes related deaths and microvascular endpoints were lower by 11, 

10 and 25% respectively in the group receiving intense therapy compared to their 

counterparts assigned to conventional glucose control treatment of dietary restrictions 

(UKPDS Group 1998). The UKPDS post trial monitoring study indicated that although the 

reduction in HbA1c was lost after a year, the reductions in the risk of diabetes related 

deaths and microvascular complications continued in the intensive glucose therapy group 

(Holman et al. 2008). These reports conclusively suggest that the prolonged exposure to 

hyperglycaemia is a primary causal factor in the development of vascular and other 

complications of diabetes. 

1.2 Vascular complications of Diabetes 

1.2.1 Macrovascular complications 

Macrovascular complications of diabetes include coronary heart disease (CHD), 

stroke, myocardial infarction and peripheral vascular disorders. The CHD in patients 

suffering from diabetes may result due to a number of risk factors including hypertension, 

hyperglycaemia and effects of advanced glycation end (AGE) products, dyslipidemia, 

microvascular disease and autonomic neuropathy (Adler et al. 2002). Dyslipidemia is 

thought to be a major contributory risk factor for CHD. In T1DM increased lipolysis and 

overproduction of non esterified fatty acids, and decreased activity of lipoprotein lipase 
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results in hypertriglyceridemia which acts as a risk factor. In T2DM, dyslipidemia is a 

result of raised triglycerides, decreased high density lipoproteins (HDL), raised low density 

lipoproteins (LDL) and increased levels of apolipoprotein B (apoB), an integral part of very 

low density lipoprotein (VLDL) (Poirier and Despres 2003). Hypertension is another major 

risk factor which worsens both macro and microvascular complications in diabetes. Insulin 

resistance associated with T2DM contribute to hypertension by loss of insulin’s normal 

vasodilator activity or through effects of accompanying hyperinsulinaemia (Kashyap and 

Defronzo 2007). Furthermore atheroma is known to develop earlier and faster in diabetes 

causing widespread lesions throughout the arterial walls (Renard et al. 2004). 

1.2.2 Microvascular complications 

1.2.2.1 Diabetic Retinopathy 

Diabetic retinopathy results from damage to the microvasculature of the retina. 

Retinal vessels consist of an inner layer of endothelial cells covered by a protein-

proteoglycan basement membrane and contractile pericytes. Hyperglycaemia is known to 

be the major causative factor for retinopathy causing damage to all the three parts of 

retinal vessels (Knott and Forrester 2003). Hyperglycaemia increases the auto-oxidation, 

polyol pathway flux and diacylglyerol (DAG) synthesis (reviewed in Knott and Forrester 

2003). The auto-oxidation and polyol pathway lead to the formation of free radicals due to 

depletion of two major non-enzymatic anti-oxidants glutathione and ascorbate, and this 

deleterious effect of glucose on the retina could be overcome by treatment of antioxidants 

(Knott and Forrester 2003, Obrosova et al. 2005). Higher glucose levels also cause de-

novo synthesis of DAG leading to activation of the protein kinase C (PKC) pathway which 

may lead to an increase in the expression of vascular endothelial growth factor (VEGF) 

and increased production of endothelin-1 causing increased vascular permeability, 

vasoconstriction and ischemia respectively (Idris and Donnelly 2006, Matsuo et al. 2009, 

Park et al. 2000). Studies have suggested that endothelial cells (EC) and pericytes 

undergo apoptosis in hyperglycaemic conditions leading to the structural and functional 

alterations of retinal blood vessels (Kowluru  2005). Interestingly, when co-cultured, retinal 

endothelial cells proliferated and pericytes underwent apoptosis in the presence of 

elevated glucose level and this was attenuated by fidarestat, an antioxidant (Takamura et 

al. 2008). Apoptosis of retinal endothelial cells in hyperglycaemia has been linked to 

mitochondrial fragmentation with decreased oxygen consumption (Trudeau et al.  2010). 

Hyperglycaemia leading to the formation of advanced glycation end products (AGEs) is 

also known to cause the thickening of the basement membrane altering its barrier 

functions (Gardiner, Anderson and Stitt  2003). 
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1.2.2.2 Diabetic Nephropathy  

In diabetic nephropathy both the glomerulus and the tubular interstitium are 

affected. The glomerulus consists of a tuft of around 20 to 30 capillary loops supported by 

mesengium made up of cells and matrix. The lumen of the capillary loop consists of 

fenestrated endothelial cells lying on basement membrane and podocytes on the 

extraluminal side. Hyperglycaemia causes expansion of the mesengium and basement 

membrane thickening due to synthesis and accumulation of extracellular matrix (Wolf, 

Chen and Ziyadeh 2005). The hypertrophy of renal and glomerular cells and podocytes, 

hyaline deposits, glomerular sclerosis and tubulointerstitial fibrosis are also associated 

with diabetic nephropathy (Herbach et al. 2009). The expansion of glomerular mesengium 

leads to a decrease in the glomerular filtration rate and development of protienuria (Gnudi, 

Gruden and Viberti 2003, Wolf 2002). Some patients with diabetes do not develop 

nephropathy even though the hyperglycaemia is a known factor in the development of 

renal damage (Gnudi, Gruden and Viberti 2003). Other factors like increased glomerular 

capillary pressure, proteinuria on its own and hypertension are known to contribute 

towards the development of diabetic nepropathy (Gnudi, Gruden and Viberti 2003).  

The mediators of hyperglycaemia induced nephropathy are thought to result from 

a change in the expression of growth factors such as transforming growth factor–β1 (TGF- 

β1), connective tissue growth factor (CTGF), insulin like growth factor (IGF), VEGF and 

angiotensin -2 (Gnudi, Gruden and Viberti 2003). The intracellular signalling pathways that 

have been associated with diabetic nephropathy include the activation of PKC and 

mitogen activated protein kinase (MAPK) pathways along with transcription factors such 

as nuclear factor–kβ (NF–kβ) and activator protein–1 (Toyoda et al. 2004). The enhanced 

expression of janus kinase/signal transducer and activator of transcription (JAK/STAT) 

has also been implicated in the progression of diabetic nephropathy (Berthier et al. 2009, 

Marrero et al. 2006). The biochemical mechanisms of glucose toxicity are discussed 

further in section 1.5. 

1.2.2.3 Diabetic Neuropathy 

 Diabetes mellitus causes peripheral neuronal degeneration leading to diabetic 

neuropathies. Distal symmetrical polyneuropathies (DSPs) and focal and multifocal 

neuropathies are two main categories of diabetic neuropathies. The third category, 

entrapment neuropathies are highly prevalent in patients suffering from diabetes although 

they are seen also in non-diabetic patients.  The DSPs are nerve length dependant, hence 

severely affect the nerves of feet and contribute towards the development of foot ulcers. 

Focal neuropathies are acute and cause damage to single nerves or bundles of single 

nerves, usually in isolation and independent of other complications of diabetes. The early 
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manifestations of DSPs include abnormal sensations followed by sensory loss, 

anaesthesia, paraesthesia, allodynia and hyperalgesia. The loss of thermal sensation is 

due to damage to the small fibres and loss of sensation of touch, pressure, joint position 

and vibration are due to damage to the longer fibres (Tomlinson 2003). Hyperglycaemia 

causes the loss of proliferation and migration of Schwann cells and regeneration of axons 

contributing towards diabetic neuropathy (Gumy, Bampton and Tolkovsky 2008). The 

biochemical pathways, due to oxidative stress, responsible for diabetic complications 

including neuropathy involve advanced glycation endproducts/receptor for advanced 

glycation endproducts (AGE/RAGE), polyol pathway, hexosamine pathway, PKC pathway, 

poly-ADP ribose polymerase pathway (PARP) and inflammation (Figueroa-Romero, 

Sadidi and Feldman 2008) are detailed in section 1.5.  

1.3 Impaired wound healing of diabetes  

The chronic wounds of diabetes are another set of daunting challenges of 

microvascular complications. The wound healing process involves four continuous and 

overlapping phases of coagulation, inflammation, migration-proliferation (including matrix 

deposition) and remodelling (Falanga 2005, Guo and Dipietro 2010). Initial phases of 

coagulation and inflammation set in early after injury. The formation of the fibrin plug helps 

in recruiting the inflammatory cells to the site of injury. The aggregated platelets at the site 

of injury release a range of growth factors such as platelet-derived growth factor (PDGF), 

TGF-β1, epidermal growth factor (EGF) and proinflammatory cytokines like interlukin – 1 

(IL – 1) (reviewed in Barrientos 2008). The release of growth factors help in the 

recruitment of neutrophils and macrophages to the wound site. The neutrophils 

decontaminate the wound site by phagocytosising the bacteria and with help of 

macrophages, augment the inflammatory response and tissue debridement. Further, 

neutrophils and macrophages release various growth factors like EGF, TGF – β, PDGF, 

fibroblast growth factor (FGF) and cytokines like IL – 1α and β, IL – 6, IL – 8 and tissue 

necrosis factor - 1α (TNF-1α) (Christian et al. 2006, Hubner et al. 1996). These secretions 

activate fibroblasts and keratinocytes which help in the development of tissue granulation 

(reviewed in Barrientos et al. 2008, Martin 1997). The newly recruited monocytes 

differentiate into macrophages and degrade extracellular matrix by producing enzymes 

such as hyaluronidase, elastase and collagenase which degrade hyaluronic acid, elastin 

and collagen in connective tissue (Christian et al. 2006). This process helps in the 

migration of keratinocytes, fibroblasts and endothelial cells to the site of wound.   

Decreased oxygen tension (hypoxia) at the site of wound, due to injury to the 

blood vessels immediately after wounding, is essential for the progression of wound 

healing process. Hypoxia activates the migration of keratinocytes in order to re-epithelise 
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the epidermal tissue by secretion of extracellular matrix proteins (Fitsialos et al. 2008, 

Woodley et al. 2009). Hypoxia also enhances the migration and proliferation of fibroblasts 

through the expression of hypoxia inducible factor - 1α (HIF-1α) and the consequent 

secretion of growth factors like VEGF and matrix metalloproteinases (MMPs) (Lerman et 

al. 2003, Mace et al. 2007). The fibroblasts play a crucial role during the wound healing 

process of extracellular matrix deposition and remodelling. Hypoxia is also essential for 

the migration of endothelial cells in order to form new blood vessels out of the pre-existing 

ones at the site of injury (Im et al. 2009, Wang et al. 2009). However, exposure of 

endothelial cells to hypoxia and hyperglycaemia is known to cause endothelial cell DNA 

damage which was attenuated by treating with the antioxidant, Silymarin (Weidmann et al. 

2005). The positive effect of the antioxidant illustrates the key role that oxidative damage 

has in this process. The migration and proliferation of these cells and the presence of the 

cocktail of growth factors and cytokines at the site of injury help the wound healing 

process to progress to the next stage. 

The events of migration and proliferation during wound healing are important as 

the migration of keratinocytes and fibroblasts to the wound site is due to the secretions of 

pro-migratory cocktail of growth factors and cytokines. The restoration of supply of oxygen 

and nutrients due to angiogenesis play an important preparatory role for the wound 

closure. The collagen, fibronectin and growth factors such as CTGF secreted by 

fibroblasts aid the formation of the extracellular matrix (Qiu, Kwon and Kamiyama 2007, 

Thomson et al. 2010). Myofibroblasts, a specialised form of fibroblasts which express α-

smooth muscle actin, facilitate the wound closure with help of focal adhesion proteins by 

contracting the extracellular matrix (Leask et al. 2008). Finally, the formation of extra 

cellular matrix at the beginning and later its degradation by serine proteases and MMPs 

assist in the remodelling of the wound healing process (Christiansen et al. 2007, Thomson 

et al. 2010). 

The presence of diabetes is reported to impair all of the phases of wound healing 

outlined above. These phases are shown in the following table (Table 1), which also 

summarises the main events during each phase with key cells (Falanga 2005). The 

functional changes responsible for the vascular complications of recalcitrant wounds of 

diabetes are known to be due to three main factors - endothelial dysfunction, smooth 

muscle cell dysfunction and impairment of the nerve-axon reflex (Dinh and Veves 2005). 

The endothelial function/dysfunction is dealt in detail in the following section. 
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Table 1.1: Phases of wound healing Major types of cells involved in each phase with 

selected specific events of wound healing (Adapted from Falanga 2005). 

 

Time Phases Main cell types Specific events 

 

 

 

 

 

 

Hours 

Coagulation 

Fibrin plug formation, release 

of growth factors, cytokines, 

hypoxia 

 

 

Platelets 

 

 

Neutrophils, 

monocytes 

Platelet aggregation, 

release of fibrinogen 

fragments and other 

proinflammatory 

mediators 

 

Selectins slow down 

 Inflammation 

Cell recruitment and 

chemotaxis, wound 

debriment 

 

 

 

 

 

 

 

Macrophages 

blood cells and binding to 

integrins - diapedesis 

Days 

 

 

 

 

Migration/proliferation 

Epidermal resurfacing, 

fibroplasia, angiogenesis, 

ECM deposition, contraction 

 

 

Keratinocytes, 

fibroblasts, 

endothelial 

cells 

Hemidesmosome 

breakdown- Keratinocyte                   

migration 

 

 

 

Weeks 

to 

months 

 

 

 

 

Remodelling 

Scar formation and revision, 

ECM degradation, further 

contraction and tensile 

strength 

 

Myofibroblasts 

Cross talk between 

MMPs, integrins, cells, 

cytokines - Cell migration,                                          

ECM production 

 

Phenotypic switch to 

myofibroblasts from 

fibroblasts 
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1.4 Diabetes and the endothelium 

The endothelium is an active inner monolayer of the blood vessels and participates 

in many homeostatic mechanisms. Different responses of the endothelium to intrinsic and 

extrinsic factors are observed due to the phenotypic variations observed in endothelial 

cells (ECs) at different vascular sites. The lining of ECs from the liver, spleen and bone 

marrow sinusoids is discontinuous so that nutrients and other macro molecules can pass 

through the intercellular gaps. The retina and brain are lined with continuous ECs to 

maintain the blood retinal and brain barrier respectively, while the endocrine glands and 

kidneys are lined with fenestrated ECs that facilitate selective permeability (Cines et al. 

1998). ECs also differ with respect to the genes expressed that may be classified 

depending on whether they are constitutively or inducibly expressed. Many extracellular 

signals like hypoxia, hemodynamic forces, chemokines and cytokines, growth factors, 

hormones, glucose, lipoproteins, and drugs alter transcription of specific genes and bring 

about various functional changes (Minami and Aird 2005). 

Endothelial dysfunction has increasingly been implicated in the vascular diseases 

as it is known to play a central role in both micro and macro vascular complications of 

diabetes (Rask-Madsen and King 2007, Tesfamariam and DeFelice 2007). Endothelium 

regulates the vascular tone by secreting vasodilators and vasoconstrictors. The presence 

of diabetes impairs the vascular tone by upsetting the balance between vasodilators and 

vasoconstrictors (Schalkwijk and Stehouwer 2005). The vasodilator agents such as nitric 

oxide (Victor et al. 2009), endothelium derived hyperpolarisation factor (EDHF) (Hosoya et 

al. 2010) and prostacyclins (Wotherspoon et al. 2005) and vasoconstrictor agents such as 

endothelin I and angiotensin II (Kobayashi et al. 2008) secreted by endothelium help in 

maintaining the vascular tone. 

Platelet adhesion and aggregation is regulated by the balance between pro and 

anti-aggregants. Prostacyclin (PGI2) and nitric oxide (NO) prevent platelet adherence to 

endothelium and platelet adhesion and aggregation involve phosphorylation by cAMP and 

cGMP dependant protein kinases respectively (Dunn and Grant 2005). The balance 

between coagulation and fibrinolysis is impaired by diabetes, otherwise well regulated by 

endothelium with the help of thrombomodulin/protein C, heparan sulphate/antithrombin, 

tissue factor/tissue factor inhibitor interactions, tissue-type plasminogen activator (t-PA) 

and plasminogen activator inhibitor-1 (PAI-1) (Schalkwijk and Stehouwer 2005, Stegenga 

et al. 2006, Stegenga et al. 2008). The level of cellular fibronectin was elevated in patients 

with diabetes indicating the disruption to the subendothelial matrix due to the damage to 

the endothelium by glucotoxicity (Kanters et al. 2001). 
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The endothelium plays a vital role in the inflammatory process by recruiting 

neutrophils, monocytes/macrophages and lymphocytes to the site of inflammation. The 

neutrophils initiate inflammation reaction by secreting a variety of destructive enzymes like 

myeloperoxidase, elastase, matrix metalloproteases and cathespins (Kaneider, Leger and 

Kuliopulos 2006). The exposure of endothelium to inflammatory agents increases the 

production of selectins, cell adhesion molecules (CAMs) and other cytokines which help in 

the rolling, tethering, adhesion and transmigration of leukocytes (Kubes, Suzuki and 

Granger 1991, Ulbrich, Eriksson and Lindbom 2003). Normal endothelial function is 

summarized in the following figure (Figure 1.1). 

 

 

 

 

Figure 1.1: Physiological functions of endothelium Endothelial cells perform important 

functions in the body. Endothelium A) acts as a semi permeable barrier for the transport of 

various proteins and other soluble molecules; B) maintains the haemostatic balance and 

regulates the coagulation; C) facilitates leukocyte extravasation during inflammation; D) 

actively participates in angiogenesis.  

EC, endothelial cells; IgSF, Ig superfamily; PAI-1, plasminogen activator inhibitor; PBMC, 

peripheral blood mononuclear cells; sLex, sialyl Lewis X; TFPI, Tissue Factor pathway 

inhibitor; TM, thrombomodulin 

(Reproduced with permission from Griffioen and Molema 2000). 
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Endothelial cells exposed to high concentration of glucose in vitro increase the 

production of extra cellular matrix components such as collagen and fibronectin, and of 

procoagulant proteins such as vWF and tissue factor. Due to the increase in the 

production of these factors, hyperglycaemia decreased the proliferation, migration and 

fibrinolytic potential of cells and has been reported to increase apoptosis (Baumgartner-

Parzer et al. 1995b, Boeri et al. 1989, Cagliero et al. 1988, Graier et al. 1995, Maiello et 

al. 1992, McGinn et al. 2003b). During diabetes, hyperaggregability of platelets coupled 

with activation of leukocytes and increased expression of adhesion molecules on 

endothelial cells (Ouedraogo et al. 2007) disrupts the homeostasis and may lead to 

protracted inflammation resulting in a chronic wound. In patients with diabetic retinopathy, 

lymphocytes were activated with reduced expression of surface L-selectin but increased 

circulation of L-selectin resulting in an increase in the adhesion of leukocytes (MacKinnon, 

Knott and Forrester 2004). Incubation of HUVECs with 25mM glucose induced the 

expression of P-selectin and intercellular adhesion molecule – 1 (ICAM-1), which was 

reversed by the addition of 1nM insulin and anti-P-selectin monoclonal antibody implying 

that the activation of ECs leads to the adhesion of monocytes in high glucose 

concentration (Puente Navazo et al. 2001). In vitro exposure of ECs to hyperglycaemia 

resulted in the induction of E-selectin, vascular cell adhesion molecule – 1 (VCAM-1), 

ICAM-1 and endothelial leukocyte adhesion molecule-1 (ECAM-1) mediated by a cytokine 

tissue necrosis factor – α (TNF-α), NF-kB and PKC (Altannavch et al. 2004, Morigi et al. 

1998). 

A large number of studies show that high glucose concentration causes adverse 

changes indirectly in endothelial cell function by impairing the synthesis of growth factors 

and vasoactive agents in other cells. Various growth factors like VEGF, PDGF, TGF- , 

IGF, bFGF, NGF, EGF and others have been reported to play a role in vascular 

complications of diabetes (Kofler, Nickel and Weis 2005). In human retinal endothelial 

cells (HREC) glucose up-regulated the production of TGF-β1 at 15mM concentration, and 

TGF-β1 mRNA and TGF-β receptors expression showed glucose dependant and time 

dependant changes (Pascal, Forrester and Knott 1999) suggesting a role for growth 

factors in advancing diabetic retinopathy. The expression of growth factors by leukocytes 

may also be altered by diabetes. In leukocytes of patients with diabetic retinopathy, the 

expression of VEGF121 and VEGF165-189 mRNA was found to be lower at the early stage of 

the disease compared to increased levels at later stage (Knott et al. 1999).  This increase 

in the level of transcription of the mRNA could result in a higher level of VEGF expression 

leading to neovascularisation aggravating the complications of retinopathy. Increased 

expression of VEGF protein has also been shown to be associated with retinal disease by 

aggravating the fibrosis by inducing the expression of CTGF genes via PI3K-Akt pathway 
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(Suzuma et al. 2000). Furthermore insulin resistance, hyperinsulinemia, dyslipidemia or 

hyperlipidemia, hypertension, impaired fibrinolysis and abdominal obesity are implicated in 

the development of T2DM and cause endothelial dysfunction either directly or indirectly 

(Cacicedo et al. 2004, Schalkwijk and Stehouwer 2005). 

1.5 Mechanisms of diabetic complications 

 Chronic hyperglycaemia in persons with diabetes increases the intracellular 

concentration of glucose in certain cells such as endothelial cells, mesangial cells and 

neurons and Schwann cells of peripheral nerves (Berthier et al. 2009, Gumy, Bampton 

and Tolkovsky 2008). The rate of glucose transport is similar in all the above mentioned 

cells. Glucose transport into endothelial and vascular smooth muscle cells occurs by 

GLUT-1 mediated facilitated diffusion and is thus insulin-independent. Glucose transport 

is auto regulated in smooth muscle cells, but not in endothelial cells, in which an increase 

in blood glucose concentration will increase the intracellular accumulation of glucose and 

its metabolites. The increased levels of glucose inside these cells produces deleterious 

effects leading to the diabetic complication through the following four pathways 

a. Increased flux of glucose through the polyol pathway 

b. Increased intracellular production of advanced glycation end products (AGEs) 

c. Protein kinase C (PKC) activation 

d. The hexosamine pathway 

The polyol pathway is regulated by aldose reductase (AR) enzyme which converts 

the glucose to sorbitol. Under normal circumstances, AR converts the toxic aldehydes into 

non-toxic alcohols. During hyperglycaemia, the increased concentration of glucose in the 

cells is reduced to sorbitol by AR and this is later oxidised to fructose by sorbitol 

dehydrogenase (SDH).  NADPH is increasingly oxidised to NADP+ and NAD+ is 

increasingly reduced to NADH during this process. The decrease in NADPH adversely 

affects the production of reduced glutathione, an important intracellular antioxidant.  The 

decreased amount of reduced glutathione increases the oxidative stress of the cells, 

leading to diabetic complications (Brownlee 2001, Nakamura et al. 2000, Srivastava, 

Ramana and Bhatnagar 2005). 

Advanced glycation end products (AGEs) are a group of hetergenous compounds 

resulting from non-enzymatic glycation of proteins and other molecules such as nucleic 

acids by glucose and other glycating dicarbonyl compounds such as 3-deoxyglucosone, 

methylglycoxal and glyoxal (Taguchi and Brownlee 2003). The AGEs are formed through 

a reaction pathway known as the Maillard pathway, in which the carbonyl group of 

reducing sugars are converted to reversible Schiff bases and amadori products, but 

eventually leading to the formation of irreversible AGEs. The fructose-3-phosphate and 3-
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deoxyglucosone produced as a result of metabolism of fructose by the polyol pathway 

also contribute to the formation of AGEs (Schalkwijk, Stehouwer and van Hinsbergh 

2004). The accumulation of excessive triosphosphates within the cells converts the 

intracellular proteins and lipids into oxoaldehyde and AGEs (Thornalley 2005). These 

AGEs cause cell damage by modifying the functioning of intracellular and extracellular 

proteins, alteration of the 3D configuration of the extracellular matrix molecules and by up-

regulation of receptor for AGEs (RAGEs) (Brownlee 2001, Brownlee 2005). 

The different isoforms of protein kinase-C (PKC), mainly α, β, δ, ε and δ are 

activated by hyperglycaemia via de novo synthesis of diacylglycerol (DAG) (Das Evcimen 

and King 2007). Activated PKCβ produces many effects including impairment of blood flow 

and contractility by altering the production of eNOS and ET-1 (Kuboki et al. 2000, Matsuo 

et al. 2009) and increased vascular permeability and angiogenesis by increasing the 

expression of VEGF (Rask-Madsen and King 2008). It is also reported to cause an 

increase in basement membrane thickness and capillary occlusion by increasing the 

production of collagen and fibronectin via CTGF and TGF- β (Koya et al. 2000). The 

activation of PKC is also reported to cause vascular occlusion by decreasing fibrinolysis 

via increasing PAI-1 (Ahn et al. 2001), activation of adhesion by increasing ICAMs 

(Ramana et al. 2004) and various other effects by increasing the expression of NF-κΒ and 

ROS (Brownlee  2005, Das Evcimen and King 2007). 

Glucose is mainly metabolised through glycolysis inside the cells. It is first 

converted to glucose-6-phosphate, next to fructose-6-phosphate and later to the 

remaining steps of glycolysis to yield pyruvate and lactate. However, during normal 

conditions two to three percent of fructose-6-phosphate undergoes metabolism via the 

hexosamine pathway, in which it is converted to glucosamine-6 phosphate with the help of 

the enzyme glutamine:fructose-6 phosphate amidotransferase (GFAT) and finally uridine 

phosphate N-acetyl glucosamine (UDP-GlcNAc). UDP-GlcNAc and other nucleotide 

hexosamines are substrates for glycosylation of many cytoplasmic and nuclear proteins. 

These proteins are glycosylated by the addition of a single molecule of O-linked β-GlcNAc 

on their serine and/or threonine residues (Bouche et al. 2004). During diabetes, glucose 

metabolism through hexosamine pathway is increased resulting in an increase in the level 

of expression of TGF- β1 and PAI-1 (Du et al. 2000), cardiomyopathy (Clark et al. 2003, 

Kohda et al. 2009) and impaired gene expression in endothelial cells (El-Osta et al. 2008, 

Xue et al. 2008).  

Michael Brownlee (2005) and his co-workers have proposed a unifying mechanism 

linking the four pathways outlined above to a common upstream event (Brownlee 2005, 

Nishikawa et al. 2000). The common link is the overproduction of superoxide (reactive 

oxygen species) (ROS) by the mitochondria as a result of excessive glucose metabolism. 
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In support of their hypothesis, Brownlee and his team demonstrated that three pathways 

of glucotoxicity were blocked by preventing the over production of mitochondrial 

superoxides (Nishikawa et al. 2000). Hyperglycaemia is known to over produce the 

mitochondrial superoxides by inhibiting the glycolytic enzyme glyceraldehyde 3-phosphate 

dehydrogenase (GAPDH). The inhibition of GAPDH activates the upstream intermediates 

of the glycolytic pathway, which in turn lead to the metabolism of glucose through the four 

above-mentioned pathways mainly by activating poly (ADP-ribose) polymerase (PARP) 

(Du et al. 2003). The following figure 1.2 summarises the unifying mechanism of 

complications of hyperglycaemia that has been proposed. 
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Fig. 1.2 The main four biochemical pathways of diabetes complications with 

unifying mechanism. In normal physiology, glucose is metabolised to pyruvate by 

glycolytic pathway, which later enters into TCA cycle to produce ATP. In hyperglycaemic 

condition cells become unable to metabolise the glucose sufficiently and lead to the 

overproduction of ROS, which in turn activates PARP and inhibit GAPDH. As the inhibition 

of GAPDH slows down the glycolytic pathway and increases the upstream substrates of 

glycolysis, more of accumulating intracellular glucose passes through four deleterious 

pathways: polyol, hexosamine, protein kinase C and AGE pathway (Adapted from 

Brownlee 2001, Brownlee 2005). 
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1.6 Hypoxia and Angiogenesis  

Blood vessels of the microvasculature are formed by two different mechanisms 

namely vasculogenesis and angiogenesis. Vasculogenesis, like in embryonic 

development, is the de novo formation of endothelial cells from angioblasts.  Angiogenesis 

in adult life is the formation of new capillary blood vessels from existent micro vessels. It is 

a complex and regulated process which involves multiple gene products expressed by 

different cell types, all contributing to an integrated sequence of events. (Carmeliet 2005, 

Griffioen and Molema 2000, Nussenbaum and Herman 2010). Angiogenesis has gained 

importance since Folkman published his pioneering hypothesis in 1971 about the need of 

angiogenesis in order for tumours to grow and metastasize (Folkman 1971).  

Angiogenesis is crucial in cancer therapy and diabetic retinopathy from the perspectives 

of anti-angiogenic strategies and in different ischemic conditions like cardiovascular 

diseases and impaired wound healing of diabetes for therapeutic angiogenesis (Cook and 

Figg 2010, Ferrara and Kerbel 2005). In the physiological condition, the activity of 

inducers and inhibitors of angiogenesis maintains it in balance (Conway, Collen and 

Carmeliet 2001). Table 1.2 lists the stimulatory and inhibitory regulators of the 

angiogenesis. 

Hypoxia stimulates angiogenesis by regulating the expression of growth factors 

such as VEGF, VEGFR, bFGF, PDGF and other cytokines via expression of the 

transcription factor HIF-1 and other transcription factors (Pugh and Ratcliffe 2003). Table 

1.3 summarizes the action of hypoxia on some molecules involved in different steps in 

angiogenesis. 

Angiogenesis involves different stages. The initial vasodilation acts as a prelude 

leading to the increased permeability and matrix degradation of pre-existing vessels. The 

endothelial cells proliferate and migrate as shown in Fig. 1.1D which later lead to the 

formation of cords and lumen. Once the endothelial cells along with others mature into a 

vessel, they remodel according to the local environment forming a complex functional 

network (Conway, Collen and Carmeliet 2001). Out of these different stages of vessel 

development, endothelial proliferation and migration are pertinent to this project and are 

detailed in the following sections as general cell proliferation and migration. 
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Table 1.2: Selected list of regulators of angiogenesis (Adapted from Pandya, Dhalla 

and Santani 2006) 

Stimulators Inhibitors 

HIF-1α, VEGF, VEGFR Angiostatin 

Angiopoietin-1 and Tie2 receptors Anti-angiogenic anti-thrombin III 

β-Estradiol Canstatin 

FGF, HGF, MCP-1 Endostatin (collagen XIII fragment) 

IL-8 Fibronectin fragment 

Leptin Heparinases 

PAI-1 IFN- , β, γ; IP-10 

MMPs IL4, IL12, IL18 

NOS and COX-2 TIMPs 

PDGF-BB and receptors PEDF 

TNF-  Prolactin 16 kDa fragment 

Angiogenin TSP-1 

TGF-β1, endoglin, TGF-β receptors Retinoids 

Integrins αvβ3, αvβ5 Meth-1, Meth-2 

VE-cadherin, PECAM-1 Platelet factor-4 

Abbreviations: HIF-1α – hypoxia inducible factor - 1α; VEGF—vascular endothelial growth 

factor;  VEGFR – VEGF receptors; FGF—fibroblast growth factor; HGF – hepatocyte 

growth factor; MCP-1 -macrophage chemoattractant protein; IL - interleukin; PAI-1 - 

platelet activator inhibitor-1;  MMPs - matrix metalloproteases; NOS - nitric oxide 

synthase; COX-2 – cyclooxygenase – 2; PDGF-BB - platelet derived growth factor-BB; 

TGF - transforming growth factor; VE-cadherin – vascular endothelial cadherin; PECAM-1 

– platelet endothelial cell adhesion molecule-1; TNF - tumour necrosis factor; IFN - 

interferon; TIMPs – tissue localised inhibitors of metalloproteinases; PEDF - pigment 

epithelium derived growth factor; TSP-1 - thrombospondin-1. 
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Table 1.3: Action of hypoxia on angiogenesis Some of the molecules involved in 

different steps in angiogenesis (Adapted from Pugh and Ratcliffe 2003). 

 

Steps in angiogenesis Stimulatory factors Inhibitory factors 

Vasodilation NOS  

Increased vascular permeability VEGF, Flt-1, Kdr ANGPT-1, Tie-2 

Extravasation of plasma proteins VEGF ANGPT-1, Tie-2 

Endothelial sprouting ANGPT-2, Tie-2  

Degradation of extra cellular 

matrix 

Balance between MMPs 

(MMP-2) and TIMPs 

(TIMP-1), Collagen prolyl-

4-hydroxylase 

PAI-1 

Liberation of growth 

factors(including VEGF, IGF-1 

and bFGF) 

uPA receptors 
Thrombospondin-1 

PAI-1 

Endothelial cell proliferation & 

migration 

Interplay between VEGFs, 

angiopoietins and FGFs. 

MCP-1, PDGF 

 

Pericyte and smooth muscle 

recruitment 
PDGF  

Endothelial assembly & lumen 

acquisition 

VEGF121/165, ANGPT-1, 

Tie-2,  Integrins 

VEGF189 

Thormbospondin-1 

Stabilization of nascent vessels PAI-1  

Maintenance, differentiation and 

remodelling 
ANGPT-1, Tie-2 ANGPT-2; Tie-2 

 

Blue, direct transcriptional targets of HIF;  

Red hypoxia regulated genes which are indirectly connected via cobalt, iron chelators or 

von Hippel–Lindau (VHL) inactivation to HIF or related pathways; 

Green responses unconnected to HIF pathway. 

IGF, insulin like growth factor; bFGF, basic fibroblast growth factor; MMP, matrix 

metalloproteinase; TIMP, tissue inhibitor of metalloprotienase; uPA, urokinase 

plasminogen activator; MCP, monocyte chemoattractant protein; PDGF, platelet-derived 

growth factor; PAI, plasminogen activator inhibitor; ANGPT, angiopoietin 
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1.7 Cell proliferation 

All eukaryotic cells undergo proliferation through cell division. The events of the 

cell cycle include duplicating all the cell contents and a subsequent division into two 

daughter cells. The cell cycle involves four phases: gap phase 1 (G1), DNA synthesis (S), 

gap phase 2 (G2) and mitosis (M). Interphase constitutes G1, S and G2 phases and the M 

phase consists of mitosis and cytokinesis. In a typical proliferating human cell in culture, 

interphase is around 23 h and M phase is around 1 h. The chromosomes are duplicated 

during S phase (around 10 to 12 h) and segregated before the cell division during M 

phase. Two DNA molecules are disentangled and condensed into pairs known as sister 

chromatids during prophase of mitosis. Sister chromatids attached to the opposite poles of 

the spindle are aligned at the equator in metaphase stage. The sister chromatids are 

separated after the destruction of their cohesion and pulled to the opposite poles of the 

spindle in anaphase stage. The spindle is disassembled and separated chromosomes are 

packed into separate nuclei at telophase, which is followed by separation of daughter cells 

by cytokinesis. The two gap phases – G1 between M and S phase and G2 between S and 

M phase are utilised by the cells to increase their mass of proteins and organelles and to 

monitor external and internal conditions. If the extracellular conditions are unfavourable 

during early G1, after M phase, the cells may under go an additional gap phase known as 

G0. If the conditions are favourable, cells in early G1 or G0 progress through a commitment 

point known as restriction point (R). Once the cells pass through the irreversible restriction 

point, the DNA duplication begins taking the cell into S phase (Alberts et al.  2008). 

Increase in the glucose level prevented the progression of HUVECs from G1 to S phase 

by increasing the cells in G0/G1 phase and reducing the cell count in S phase. This effect 

was reported to be mediated through PI3K/Akt/eNOS/NO pathway (Zhong et al. 2010). In 

porcine aortic endothelial cells, high glucose caused the cell cycle progression into S 

phase and increased expression of FGF-2 failed to protect TNF-α induced cell death 

(Clyne, Zhu and Edelman 2008).    

The complex, orderly and unidirectional cell cycle is regulated by cell cycle control 

system which involves cyclins, cyclin dependant protein kinases (CDKs) and CDK 

inhibitors. The cell cycle progresses through three biochemical switches which are known 

as check points. The first one is restriction point (R) or G1/S check point where the cell is 

committed to enter into S phase and duplicates the chromosomes. The second is the 

G2/M checkpoint where the cell enters into M phase leading to the alignment of 

chromosomes on the spindle. The third is the metaphase to anaphase transition, where 

the sister chromatids are separated followed by the completion of mitosis and 

chemokinesis (Alberts et al.  2008). 
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Central to the cell cycle regulation are the activities of CDKs, which are in turn 

regulated by cyclins. The CDK subunit, a serine/threonine protein kinase alone is inactive 

as its catalytical activity is produced only upon the tight binding with cyclins and 

phosphorylation of their T loops by CDK activating kinase (CAK) (Lorincz and Reed 1984, 

Russo et al. 1996). Four types of CDKs i.e. CDK 1, 2, 4 and 6, are known to have active 

role in the regulation of cell cycle (Morgan 1997). Two types of cyclins are known, ones 

involved in cell cycle (cyclin A, B, D and E) and others which are not (cyclin H and C) 

(Meeran and Katiyar 2008). Cyclins involved with cell cycle are G1/S cyclins (E), S cyclins 

(A), M cyclins (B) and G1 cyclins (D). Cyclin E and D by pairing with CDK2 and CDK4/6 

respectively are known to play a vital role in the progression of cell cycle from G1 to S 

phase. Others involved at different stages are cyclin A with CDK2 then with CDK1 at S 

phase, cyclin B with CDK1 at M phase and cyclin D with CDK4/6 at G1 phase (Sherr 1994, 

Sherr 1996). The levels of cyclins change, as shown by the semi-circular shapes in Fig. 

1.3, during the cell cycle resulting in the activation of cyclin-CDK complexes. Cyclin D 

synthesized during early G1 gets degraded at the end of G1 as the cell enters S phase. 

Cyclin E synthesized at late G1 is degraded in S, cyclin A synthesized in S gets degraded 

at the exit of G2 and cyclin B synthesized in late G2 gets degraded at late M phase. 

However, unlike cyclins the levels of CDKs remain constant throughout the cell cycle 

(Alberts et al.  2008). Increased glucose concentration has been proved to lead to cycle 

arrest of endothelial progenitor cell (EPC) at G0/G1 phase by decreasing the expression of 

cyclin A and E, CDK2 and proliferating cell nuclear antigen (PCNA) (a marker of S phase) 

(Zhang et al. 2008). 

Several mechanisms control the activities of CDKs at specific stages of cell cycle. 

A protein kinase known as Wee 1 inhibits CDK activity by phospohrylation and a 

phosphatase known as Cdc25 increases CDK activity by dephosphorylation (Enders 

2010, Gutierrez et al. 2010). Along with these, CDK inhibitor proteins (CKIs) also regulate 

the cyclin-CDK complexes by acting as checkpoint effectors. There are two families of 

CKIs with multiple members in each family. The first family known as Cip/Kip (CDK 

inhibitor protein/Kinase inhibitor protein) consists of p21Cip1, p27Kip1 and p57Kip2 (Lee, 

Reynisdottir and Massague 1995, Toyoshima and Hunter 1994). The CKIs bind with the 

cyclin-CDK complex and render it inactive. CKIs undergo ubiquitination and protesomal 

degradation by an ubiquitin ligase called Skp1-Cul1-F box (SCF) protein complex and 

allow the progression of cell cycle to next phase (Kitagawa, Kotake and Kitagawa 2009). 

The coexistence of hypertension with diabetes has been reported to decrease the 

proliferation of retinal cells by increasing the expression of p27Kip1, a negative regulator of 

cell cycle (Lopes de Faria et al. 2008). A second family of CKIs, known as the INK4 

(inhibitors of CDK4) family of p15INK4b, p16INK4a, p18INK4c and p19INK4d bind to cyclin D - 
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CDK4/6 complex causing the arrest of cell cycle at G1 phase (Dai and Grant 2003, 

Hannon and Beach 1994, Hirai et al. 1995, Kim and Sharpless 2006, Serrano, Hannon 

and Beach 1993). 

The following figure 1.3 is a simple summary of the events of cell cycle. 

 

 

 

 

 

 

 

Fig.1.3 Cell cycle events G1 and G2 are the gap phases between mitosis (M) and DNA 

synthesis (S) phase. Cells go into a special gap phase (G0) or into quiescence to avoid 

aberrant proliferation taking the cues from the internal and external cellular environment. 

The level of individual cyclin (indicated by inner shapes) varies as the cell progresses 

through the cell cycle assuring the uni-directionality of the cycle, whereas the levels of 

cyclin dependent kinases (CDKs) remain same. The complexes of cyclins-CDKs with CDK 

inhibitors (CKIs) play a central role in the progression of cell cycle. The CDK inhibitors 

(CKIs) need to be deactivated to allow the progression of cell cycle; otherwise activated 

CKIs play an inhibitory role by acting at different check points.   
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1.8 Cell migration 

 Cell migration is a crucial step for the wound healing process including endothelial 

cell migration during the angiogenesis (Lauffenburger and Horwitz 1996). Cells migrate 

randomly (chemokinesis) when their sense of intrinsic directionality is low and external 

cues are not present (Petrie, Doyle and Yamada 2009, Seppa et al. 1982). On the other 

hand, directional migration is driven by the intrinsic directionality and external regulation 

(Petrie, Doyle and Yamada 2009). Chemotaxis in response to soluble cues (Liu et al. 

2009), haptotaxis in response to surface gradient like adhesion molecule or ECM (Hsu, 

Thakar and Li 2007), electrotaxis or galvanotaxis in response to electric fields (Lin et al. 

2008) and durotaxis or mechanotaxis in response to mechanical signals (Li et al. 2002) 

follow directional migration. The following figure 1.4 schematically represents the 

cytoskeletal arrangement of a migrating cell (Le Clainche and Carlier 2008). 

The cell motility cycle is also a highly organised event which includes polarization, 

protrusion, traction and retraction of a cell (Cell Migration Gateway 2010). The process of 

reorganisation of the cell into a leading front edge and trailing rear edge is known as 

polarization. Polarization initiates on the application of chemoattractants like VEGF 

leading to the next steps of migration (Shamloo et al. 2008). The cell’s polarity signalling 

network consists of the Par (partitioning defective) protein complex, PKCε and PKCδ as 

atypical protein kinase C (aPKC) and RhoGTPase signalling molecule cdc42 (Cell 

Migration Gateway 2010, Joberty et al. 2000). The par3 and par6 are part of Par protein 

complex and participate in the formation of rear-front axis in a moving cell and apical-

basal polarity with help of VE-cadherins and adherence junctions (Lampugnani et al. 

2010). Cdc42 and Rac1 by recruiting the par3/6 complex activates aPKC in order to 

reorient the microtubule-organising centre (MTOC) from which the microtubule network 

radiates and Golgi apparatus towards the leading edge of a moving cell (Koh, Mahan and 

Davis 2008, Tzima et al. 2003). The nucleus of the cell moves rearward rather than MTOC 

moving between the nucleus and leading edge and reorientation is known also to involve 

dynactin and dyanein along with cdc42 (Etienne-Manneville and Hall 2001, Palazzo et al. 

2001). Cdc42 acting through myotonic dystrophy kinase related cdc42 binding kinase 

(MRCK) was sufficient to make the nucleus move rearwards while others held the MTOC 

at the cell centroid with help of myosin dependant actin flow finally leading to the front-rear 

axis (Gomes, Jani and Gundersen 2005). Cdc42 and Rac1 phosphorylate p21 activated 

protein kinase 1 (Pak1), Pak2 and Pak4 which act as a downstream target for PKCε to 

initiate protrusion and stimulate the lumen and tube formation (Koh, Mahan and Davis 

2008, Kupfer, Louvard and Singer 1982). 
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Fig. 1.4 ‘‘Schematic illustration of the actin cytoskeleton in a migrating cell. This 

schematic cell contains the major structures found in migrating cells common to different 

cells. Migrating cells have A) lamellipodia, where branched actin filaments are generated 

at the plasma membrane by the signal responsive WASP-Arp2/3 machinery and 

maintained in fast treadmilling by a set of regulatory proteins (ADF, capping proteins, 

profilin), B) fingerlike protrusions called filopodia to sense the environment at the tip of 

which, formins like mDia2 catalyze the processive assembly of profilin-actin. The 

processive assembly of profilin-actin is catalyzed by formins. C) Focal adhesions formed 

in response to RhoA signaling, connect the extracellular matrix to contractile bundles 

made of actin filaments, myosin II, and bundling proteins including α-actinin. Focal 

adhesions contain a variety of actin binding proteins including side binding proteins, 

capping proteins, and nucleators. D) Lamella contains the signature proteins tropomyosin 

and myosin II’’. 

Lp, lamellipodium; Fp, filopodium; Lm, lamella; SF, stress fiber; FA, focal adhesion; FC, 

focal complex. 

(Reproduced with permission from Le Clainche and Carlier 2008) 
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 The actin filament polarization leads to the polymerization or formation of barbed 

ends and de-polymerization of pointed ends at the leading edge of a cell (Pollard and 

Borisy 2003). Polymerization of actin assembly at the leading edge extends the flat 

membrane (lamella) protrusions known as lamellopodia and finger like protrusions known 

as filopodia (Le Clainche and Carlier 2008, Pollard and Borisy 2003). The protrusions 

develop and initiate cell motility by a process known as ‘treadmilling’ which is accelerated 

by many actin binding proteins (Kueh and Mitchison 2009). These proteins are actin 

depolymerising factor (ADF) or cofilin, capping protein, Arp2/3 complex, an activator of 

Arp2/3 complex - profilin and many others and are involved in monomer sequestration, 

nucleation, capping, depolymerisation and termination of actin filament (Pollard and Borisy 

2003). 

The growth of the actin filament depends on the availability of un-polymerised actin 

monomers which are present in abundance bound to profilin and sequestering proteins 

such as thymosin-β4 and which are reported to increase the directional migration of cells 

(Ding et al. 2006, Malinda, Goldstein and Kleinman 1997, Malinda et al. 1999). Assembly 

or elongation of actin filament at the leading edge begins by the activation of nucleating 

promoting factors such as Wiscott-Aldrich Syndrome protein (WASp), neuronal WASp (N-

WASp) and suppressor of cAMP receptor (Scar)/WASp-family Verprolin homologous 

(WAVE) proteins (Kang et al. 2010, Vicente-Manzanares, Webb and Horwitz 2005). 

WASp, N-WASp and Scar/Wave proteins are activated by signalling molecules such as 

the Rho-family GTPase (cdc42), phosphotidylionsitol-4,5-biphsophate (PIP2) and Src 

homology 3 (SH3) domain containing  proteins like Grb2, Nck, or Abil (Carlier et al. 2000, 

Innocenti et al. 2005, Rohatgi, Ho and Kirschner 2000, Rohatgi et al. 2001). The 

WASp/WAVE proteins regulate actin polymerization by their ability to initiate the 

nucleation by Arp2/3 complex at the barbed end of actins (Kang et al. 2010, Hufner et al. 

2001). Cotractin, an F-actin binding protein is also known to promote nucleation of actin 

filament by binding with Arp2/3 complex (Kinley et al. 2003) 

The Arp2/3 complex localized at the lamellopodia, upon the activation by 

nucleating proteins caps the attachment of actin monomers at the pointed ends (Mullins, 

Heuser and Pollard 1998, Svitkina and Borisy 1999). Additionally, the Arp2/3 complex 

nucleates the barbed ends and extends the pre-existing actin filament at an angle of 700 

leading to the formation of dendritic networks of actin filament branches (Mullins, Heuser 

and Pollard 1998, Fletcher and Mullins 2010). The elongation of actin filament is aided by 

another set of actin binding proteins, mDia1 and mDia2 – mammalian Diaphanous of 

Formin family. RhoA regulated mDia1 and cdc42 regulated mDia2 bind to the barbed 

ends and recruit profilin bound G actins in order to polymerize the actin filament and aid in 

the formation of the stress fibres (Vicente-Manzanares, Webb and Horwitz 2005, 
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Watanabe and Higashida 2004). The elongation of actin filaments at the barbed ends is 

stopped by capping by proteins known as Cap Z and gelsolin (Cooper and Schafer 2000). 

The activities of elongation, branching and capping of the actin filament lead to the 

formation of protrusive lamellopodia (Fletcher and Mullins 2010). The finger-like 

protrusions, filopodia sense the external environment in which the actin polymerization is 

carried out by mDia2 and vasodilator stimulated phoshoprotein (VASP). The polymerized 

actin filaments in filopodia are arranged as bundles with the help of fascin and Irsp53-

Eps8 complex (Le Clainche and Carlier 2008, Mattila and Lappalainen 2008). 

The de-branching of actin filament begins with the hydrolysis of ATP to ADP with 

the release of a phosphate group or due to the loss of ATP (Blanchoin, Pollard and 

Mullins 2000, Hinshaw et al. 1993). Loss of phosphate causes the detachment of Arp2/3 

complex from the side of the actin filament and the free Arp2/3 complex caps the pointed 

ends and accelerates the de-branching (Blanchoin, Pollard and Mullins 2000). The de-

branching of the actin filament and loss of ATP are mediated by the activation or 

dephosphorylation of ADF/cofilin (Suurna et al. 2006). ADF/cofilins sever the actin 

filaments and thus increase the availability of actin monomers. This activity of ADF/cofilin 

is regulated by phosphorylation of its upstream regulator LIM kinase (LIMK). LIMKs are in 

turn regulated by RhoA-ROCK or PI3-K, Ca2+, phospholipid dependant PKC, Rac 

activated PAK1. PAK1 is in turn regulated by small G proteins or the DAG pathway 

(Campos et al. 2009, Gong, Stoletov and Terman 2004, Maciver and Hussey 2002). 

Profilin acting as a nucleotide exchange factor binds competitively to ADP actin and 

increases the disassociation of ADP from actin. This allows the actin to bind to abundantly 

available ATP leading to the formation of ATP-actin monomers ready to re-enter the cycle 

of actin polymerization (Pollard and Borisy 2003, Ding et al. 2006). 

In cultured cells, the network of actin and myosin produce the retrograde flow, 

where the actin filaments of lamellopodia move rearward with respect to the substratum. 

Hence, the rate of forward protrusion of a cultured cell is a result of the difference between 

the retrograde flow and actin polymerization (Ridley 2004). The process of the protrusion 

is detailed in the following figure 1.5.  
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Fig. 1.5 ‘‘Dendritic nucleation/Array treadmilling model for protrusion of the leading 

edge. (1) Extracellular signals activate receptors. (2) The associated signal transduction 

pathways produce active Rho-family GTPases and PIP2 that (3) activate WASp/Scar 

proteins. (4) WASp/Scar proteins bring together Arp2/3 complex and an actin monomer on 

the side of a pre-existing filament to form a branch. (5) Rapid growth at the barbed end of 

the new branch (6) pushes the membrane forward. (7) Capping protein terminates growth 

within a second or two. (8) Filaments age by hydrolysis of ATP bound to each actin 

subunit (white subunits turn yellow) followed by dissociation of the γ phosphate (subunits 

turn red). (9) ADF/cofilin promotes phosphate dissociation, severs ADP-actin filaments 

and promotes dissociation of ADP-actin from filament ends. (10) Profilin catalyzes the 

exchange of ADP for ATP (turning the subunits white), returning subunits to (11) the pool 

of ATP-actin bound to profilin, ready to elongate barbed ends as they become available. 

(12) Rho-family GTPases also activate PAK and LIM kinase, which phosphorylates 

ADF/cofilin. This tends to slow down the turnover of the filaments.’’ 

(Reproduced with permission from Pollard and Borisy 2003). 
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The adhesions, points of interaction between the cell and the substratum, form at 

the leading edge and disassemble at the trailing edge of a cell in order to facilitate the 

traction and retraction of cells leading to rapid migration (Le Clainche and Carlier 2008, 

Vicente-Manzanares, Webb and Horwitz 2005). Along with the actin cytoskeleton, 

components of adhesions such as integrins, adaptor and signalling proteins and 

microfilament structures play a vital role in the assembly, maturation and turnover of 

adhesions (Lock, Wehrle-Haller and Stromblad 2008, Vicente-Manzanares, Choi and 

Horwitz 2009). Focal complexes, focal adhesions, fibrillar adhesions and 3D-matrix 

adhesions are different types of adhesions observed in cells such as fibroblasts (Berrier 

and Yamada 2007, Le Clainche and Carlier 2008). Nascent adhesions of focal complexes 

are assembled and disassembled during the adhesion turnover at the leading edge of a 

cell. The focal complex which is not disassembled mature into focal adhesions and 

contain integrins, vinculin, talin, α-actinin, paxillin, zyxin, VASP, focal adhesion kinase 

(FAK), actopaxin and phosphotyrosine proteins (Le Clainche and Carlier 2008). 

Integrins are transmembrane glycoproteins expressed as alpha-beta heterodimers 

and 24 of them composed of eighteen alpha and eight beta subunits have been identified 

to constitute the receptors for ECM proteins (Hynes 2002). The outer domain of integrin 

binds to extracellular ligand and cytoplasmic domain binds the various signalling 

molecules and actin in order to produce the effect of protrusion and traction (Huveneers 

and Danen 2009). The cytoplasmic domain of integrin binds directly or indirectly to talin, 

vinculin, α actinin, FAK, Arp2/3 complex and actin filaments (Vicente-Manzanares, Choi 

and Horwitz 2009). The linkage between the actin and integrin acts as a molecular clutch 

integrating adhesion, retrograde flow and actin polymerization in order to produce the 

traction at the leading edge and retraction at the trailing edge (Le Clainche and Carlier 

2008, Vicente-Manzanares, Choi and Horwitz 2009). The activation of integrin-actin 

linkage regulates Rho family GTPases such as RhoA, Rac1 and Cdc42. Activation of Rho 

GTPases is initiated by the recruitment of upstream molecules such as FAK, Src family of 

tyrosine kinases (SFKs) and paxillin. The SFKs regulate guanine exchange factors 

(GEFs) and GTPase activating factors (GAPs), which in turn control Rho GTPases 

(Huveneers and Danen 2009).  

The disassembly of adhesions and retraction at the trailing end of a cell aided by 

the myosin-II induced contractility completes the cell motility cycle. Apart from creation of 

tension and retraction, myosin II plays role during polarization, protrusion and the traction 

as well (Vicente-Manzanares et al. 2009). 
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1.9.1 Hypoxia inducible factor-1 (HIF-1) 

Hypoxia produces its effect by activating different transcriptional pathways 

including HIF, fos, jun, NF- B and p53 (Pugh and Ratcliffe 2003).  Out of these, the 

pathway for the hypoxia controlled regulation of the growth factors through hypoxia 

inducible factor -1 (HIF-1) is come to be known as the master regulator of oxygen 

homeostasis (Semenza 2002). Wang and Semenza first identified and purified HIF-1α as 

a nuclear factor induced by the hypoxia. Later it was characterised as a heterodimeric 

transcription factor composed of hypoxia inducible HIF-1α subunit and a constitutively 

expressed HIF-1  subunit, also known as aryl hydrocarbon nuclear translocator (ARNT) 

(Fig. 1.6) (Semenza et al. 1991, Semenza and Wang 1992, Wang and Semenza 1993). In 

addition to HIF-1α and HIF-1β, other isoforms of HIF-α such as HIF-2α and HIF-3α with its 

splice variant inhibitory PAS (IPAS) have been described (Ema et al. 1997, Gu et al. 1998, 

Makino et al. 2001). 

 

 

 

 

 

Fig. 1.6: ‘‘Domain structure of HIF-1  Important functional domains of the HIF-1α and 

HIF-1β subunits are indicated as follows: a, alternate exon encoding 15 amino acids (aa) 

in HIF-1β; bHLH, basic-helix-loop-helix domain; ID, inhibitory domain; NLS-N and NLS-C, 

amino- and carboxyl-terminal nuclear localization signal; PAS, Per-ARNT-Sim homology 

domain with internal A and B repeats; PSTD, proline-serine-threonine-rich protein stability 

domain; TAD-N and TAD-C, amino- and carboxyl-terminal transactivation domain; REF-1, 

redox factor 1; TRX, thioredoxin’’ 

(Reproduced with permission from Semenza  2000). 
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The human HIF-1α gene is located on chromosome 14 (14q21-q24) and the HIF-

1  gene on chromosome 1 (1q21). HIF-1α and HIF-1  are large proteins consisting of 826 

and 789 amino acids respectively. Both subunits contain nuclear localization signals and a 

basic helix–loop–helix motif (bHLH). The HLH and basic domain are responsible for 

dimerization and DNA binding respectively (Jiang et al. 1996, Wang et al. 1995). Per-

ARNT-Sim (PAS) domain is common to both HIF-1α and HIF-1β. This sequence identifies 

a protein super family which was found in Drosophilia proteins period (Per) and single 

minded (Sim) and the vertebrate protein aryl hydrocarbon nuclear translocator (ARNT) 

(Wang et al. 1995). The dimerization of HIF-1α and HIF-1β is mediated by both HLH and 

PAS domain, which in turn is necessary for DNA binding by the basic domains (Jiang et 

al. 1996). In addition, the HIF-1α subunit contains two transactivating domains (TAD), the 

N- and C-terminal transactivating domains NTAD and CTAD, between residues 531–575 

and 813–826 respectively (Ruas, Poellinger and Pereira 2002). The NTAD overlaps with a 

larger domain denoted as O2-dependent degradation (ODD) domain, which confers 

regulation of HIF-1α protein levels as a function of O2 concentration (Huang et al. 1998). 

The main function of CTAD is to recruit and interact with transcriptional co-activator 

proteins including CBP/p300, SRC-1 and TIF-2 (Kung et al. 2000, Hirota and Semenza 

2006). 

Under hypoxia HIF-1α and HIF-1β dimerize and bind to hypoxia response 

elements (HREs) within target genes. This HIF-HRE complex activates the transcription of 

target genes by recruiting the co activators p300 and CBP (Ruas, Poellinger and Pereira 

2005). HIF-1α in non-hypoxic conditions is synthesized, ubiquinated and degraded 

whereas in hypoxic conditions HIF-1α stabilizes to dimerize with HIF-1β and 

transactivates the target genes (Webb, Coleman and Pugh 2009). Regulation of HIF-1α 

involves pVHL dependant as well as pVHL independent pathways (Yee Koh, Spivak-

Kroizman and Powis 2008).  

1.9.1.1 pVHL dependant degradation 

In the presence of oxygen, HIF-1α is hydroxylated by prolyl hydroxylase domain-

containing proteins (PHDs) 1, 2 and 3 at two proline residues Pro402 and Pro564 situated 

in the ODD domain (Masson et al. 2001). These modifications are mediated by Fe2+, 

ascorbate and 2-oxoglutarate (Huang et al. 2002, Jaakkola et al. 2001). Hydroxylation of 

Pro402 and Pro564 promotes interaction between HIF-1α and the tumour supressor 

protein von Hippel–Lindau (pVHL) (Min et al. 2002). The VHL protein functions as a 

substrate recognition component of an E3 ubiquitin ligase complex that mediates 

ubiquitination of HIF-1α, leading to its rapid degradation by proteasomes (Kamura et al. 

2000). The E3 ubiquitin ligase includes at least four other proteins: elongin B, elongin C, 
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cullin-2 and ring-box 1 (also called ROC1 or Hrt1) (Clifford et al. 2001, Maxwell et al. 

1999). Acetyl transferase arrest defective-1 (ARD-1) mediated acetylation of lysine 

residue (Lys) 532, located in ODD domain of HIF-1α, increases the interaction of HIF-1α 

and pVHL leading to the destabilisation of HIF-1α (Jeong et al. 2002). Apart from pVHL, 

tumour suppressor protein p53 promoted murine double minute 2 (MDM2) also regulates 

proteasomal degradation of HIF-1α (Ravi et al. 2000). On the contrary, the pVHL 

interacting deubiquitanting enzyme 2 (VDU2) stabilises the HIF-1α by binding to it and 

deubiquitylating it and thus preventing its proteasomal degradation (Li et al. 2005). 

A second type of modification, β-hydroxylation of an asparaginyl residue, Asn803, 

in the CTAD allows for direct O2-dependent regulation of HIF-1 activity (Lando et al. 

2002b). This modification which is mediated by factor inhibiting HIF-1 (FIH-1) blocks 

interaction of CTAD with the transcriptional co-activators CBP/p300 in the presence of 

oxygen, thereby inhibiting HIF-dependent transactivation (Lando et al. 2002a). Similar to 

PHDs, the asparaginyl hydroxylation of FIH-1 requires 2-oxoglutarate dependant 

dioxygenase, Fe2+ and ascorbate as coactivators (Lando et al. 2002a). 

However during hypoxia, the activities of PHDs are inhibited leading to the 

stabilisation of HIF-1α. Reactive oxygen species (ROS) acting as an oxygen sensing 

mechanism increases during hypoxia. Further, ROS convert the oxidative status of Fe2+ to 

Fe3+ which leads to an inhibition of PHDs activity and stabilisation of HIF-1α (Simon 2006). 

Hypoxia is also known to stabilise the HIF-1α by inducing the expression of small ubiquitin 

like modifiers (SUMO)-1 through a process known as SUMOlyation (Bae et al. 2004). 

However, newer reports suggest that the SUMOlyation lead to the HIF-1α degradation 

which could be reversed by a nuclear SUMO protease known as sentrin/SUMO-1 specific 

peptidase (SENP) 1 (Xu et al. 2010b). 

The stability and affinity of pVHL towards HIF-1α is regulated by E2 endemic 

pemphigus foliaceus (EPF) ubiquitin carrier protein (UCP). The UCP degrades pVHL by 

ubiquitylation and causes accumulation of HIF-1α during normoxia (Jung et al. 2006). 

Apart from UCP, osteosarcoma-9 (OS-9) and spermidine/spermine-N1-acetyltransferase 

(SSAT) 2 have been recognised as novel regulatory molecules (Yee Koh, Spivak-

Kroizman and Powis 2008). 

1.9.1.2 pVHL independent degradation 

 pVHL and oxygen independent degradation of HIF-1α is mediated through heat 

shock protein 90 (HSP90) and receptor of activated protein kinase C (RACK1). RACK1 

competes with HSP90 for binding to HIF-1α at PAS domain leading to its binding with HIF-

1α and subsequent homodimerization and recruitment of components of elongin E3 ligase 

complex and finally the degradation of HIF-1α (Liu et al. 2007a). RACK1 pathway is 
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regulated by SSAT1 which is essential for the stability of HIF-1α RACK1 interaction (Baek 

et al. 2007). RACK1 pathway is regulated also by calcineurin, a calcium and calmodulin 

dependent serine/threonine specific protein phosphatase which inhibits RACK1 mediated 

degradation of HIF-1α by blocking the dimerization due to dephosphorylation of the 

RACK1 (Liu et al. 2007b). 

 Phosphotidylinositol 3-kinase-Akt (PI3K-Akt) pathway not only regulates the 

transcriptional activity of HIF-1α, but also regulates its degradation via glycogen synthase 

kinase (GSK) 3β and forkhead transcription factors  (FOXO) 4 or 3a (Yee Koh, Spivak-

Kroizman and Powis 2008). The overexpression of GSK3β, which could be 

phosphorylated and degraded by protein kinase B, results in the ubiquitylation and 

proteasomal degradation of HIF-1α whereas inhibition of GSK3β resulted in the induction 

of HIF-1α (Flugel et al. 2007). The expression of FOXO4, which is negatively regulated by 

PI3K-Akt, leads to the down regulation of HIF-1α due to the induction of pVHL 

independent ubiquitylation and degradation of HIF-1α (Tang and Lasky 2003). Similarly, 

PTEN mediates FOXO3a over expression which is negatively regulated by PI3K-Akt, 

leads to the p300 dependant inactivation of transcriptional activity of HIF-1α (Emerling et 

al. 2008). The following figure 1.7 (Yee Koh, Spivak-Kroizman and Powis 2008) 

summarizes the regulation of HIF-1α degradation by various pathways. 

1.9.1.3 Translational regulation of HIF-1α 

Many mechanisms have been proposed to control the translational activity 

including HIF-1α induction by activation of PI3K-Akt mammalian target of rapamycin 

(mTOR) and mitogen activated protein kinase (MAPK) pathways (Yee Koh, Spivak-

Kroizman and Powis 2008). In human microvascular endothelial cells (HMEC-1), hypoxia 

was able to induce the phosphorylation of both ERK1 and ERK2 MAPKs (Minet et al. 

2000). In hypoxia, ERK1/2 was shown to be involved in the activation of HIF-1 

transcriptional activity by directly phosphorylating the HIF-1  confirming the involvement 

of MAPKs (Minet et al. 2000, Richard et al. 1999). Along with ERK1/2 inhibitor, the p38 

kinase inhibitor has also been known to cause the inactivation of HIF-1α (Sodhi et al. 

2000). Further, the hypoxia induced DAG accumulation and HIF-1α stabilization was 

through the action of phosphatidylcholine phospholipase C (PC-PLC)/sphingomyelin 

synthase (SMS) activity and not through DAG-dependent protein kinase C (PKC) activity 

(Aragones et al. 2001, Temes et al. 2004). However, there are other reports suggesting 

the involvement of PKC in the regulation of HIF-1  activation (Kruger et al. 1998, Lee et 

al. 2007, Yun et al. 2009). The transcriptional activity of HIF-1α has also been shown to be 

regulated by other signalling pathways such as phosphatidylinositol-3 kinase/protein 

kinase B (PI3K/Akt) and p53 (Fang et al. 2005, Lin et al. 2010, Zhong et al. 2000). 
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Fig 1.7 ‘‘Important pathways regulating HIF-1α degradation HIF-1α degradation is 

regulated by multiple pathways that are either dependent (a) or independent (b) of oxygen 

and pVHL. (a) Under normoxic conditions, HIF-1α is hydroxylated by prolyl hydroxylases 

(PHDs) leading to the recruitment of the pVHL E3 ligase complex to HIF-1α. SSAT2 binds 

to HIF-1α, pVHL and elongin C and the pVHL E3 ligase complex ubiquitylates HIF-1α 

leading to its degradation. Alternatively, pVHL can be ubiquitylated and degraded by EPF 

UCP. Hypoxia results in HIF-1α SUMOylation, which can facilitate the recognition of HIF-

1α by the pVHL E3 ligase complex and lead to HIF-1α degradation. HIF-1α SUMOylation 

can be reversed by SENP1 resulting in stabilization. However, hypoxia-induced RSUME-

mediated SUMOylation (RSUME) can increase HIF-1α stability indicating that the role of 

SUMOylation in HIF-1α regulation is still unclear. (b) Oxygen-independent regulators of 

HIF-1 include GSK3β and RACK1.’’ 

(Reproduced with permission from Yee Koh, Spivak-Kroizman and Powis 2008). 

 

 



Chapter 1 - Introduction 

- 34 - 

In addition to hypoxia, a variety of growth factors including EGF, FGF2, insulin, 

IGF1 and 2, IL-1 and NO are know to regulate the transactivational ability of HIF-1 

(Natarajan, Fisher and Fowler 2003, Semenza  2002). Other than these, ROS are also 

known to regulate the HIF-1α activity (Chandel et al. 1998, Klimova and Chandel 2008). In 

streptozotocin induced diabetic rats under ischemic conditions, mRNA expression of HIF-

1α was found to be reduced, which was restored by normoglycaemia or glutathione, a free 

radical scavenger indicating the role of ROS in regulating the expression of HIF-1α 

(Marfella et al. 2002). In another study HIF-1α protein was reported to be expressed in 

sciatic nerves of mice within three months of streptozotocin induced diabetes and anti-

oxidant alpha lipoic acid attenuated the expression of HIF-1α suggesting the role of ROS 

in expression of HIF-1α (Knott et al. 2002, Knott et al. 2003). 

1.9.2 Physiological and pathophysiological role of HIF-1 

HIF-1 regulates most of the genes involved in oxygen homoestasis, including 

genes known to be responsible for angiogenic factors, erythropoiesis, cell proliferation and 

survival, apoptosis, glucose metabolism, pH regulation and protein metabolism (Brahimi-

Horn and Pouyssegur 2009, Ke and Costa 2006). The following table 1.4 gives the list of 

some of the genes activated by HIF-1. 

Many reports confirm VEGF as a potent angiogenic mitogen and a major target 

gene of HIF-1 (Rey and Semenza 2010). Apart from tumour angiogenesis HIF-1 is also 

involved in other hypoxic conditions like ischemic conditions of diabetes and delayed 

wound healing of diabetes. In diabetic patients with unstable angina, after myocardial 

ischemia low levels of HIF-1α and VEGF levels led to impaired angiogenesis in 

comparison with non diabetic patients (Marfella et al. 2004). Gene therapy of HIF-1α 

activated many angiogenic cytokines such as VEGF, Ang-1, Ang-2, PDGF, PLGF, HO-1 

and iNOS correcting the impaired wound healing of diabetes (Mace et al. 2007, Liu et al. 

2008). Ferulic acid, an anti-oxidant produced angiogenic effects by increasing HIF-1α 

mRNA and protein along with VEGF and PDGF through PI3K/MAPK activation (Lin et al. 

2010). The 2-oxoglutarate analogue dimethyloxalylglycine (DMOG) and iron chelator 

deferoxamine (DFX) stabilised and activated HIF-1α by inhibiting HIF hydroxylases 

leading to the improvement in the wound healing of diabetic mice (Botusan et al. 2008). 
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Table 1.4: HIF-1 mediated transcriptional activation of genes (Adapted from Lee et al. 

2004) 

Function Genes 

Cell proliferation Cyclin G2, IGF2, IGF-BP1,2,3, WAF-1,TGF-α, TGF-β3 

Cell survival ADM, EPO, IGF2, IGF-BP1,2,3, NOS2, TGF-α , VEGF 

Apoptosis NIP3, NIX, RTR801 

Motility ANF/GPI, c-MET, LRP1, TGF-  

Cytoskeletal structure KRT14, KRT18, KRT19, VIM 

Cell adhesion MIC2 

Erythropoiesis EPO 

Angiogenesis EG-VEGF, ENG, LEP, LRP1, TGF-β3, VEGF 

Vascular tone  ARα1β, ADM, ET1, Haem oxygenase-1, NOS2 

Transcriptional regulation  DEC1, DEC2, ETS-1, NUR77 

pH regulation  Carbonic anhydrase 9 

Regulation of HIF-1 activity  P35srj  

Epithelial homeostasis  Intestinal trefoil factor 

Drug resistance  MDR1 

Nucleotide metabolism  Adenylate kinase 3, Ecto-5'-nucleotidase 

Iron metabolism Ceruloplasmin, Transferrin, Transeferrin receptor 

Glucose metabolism HK1, HK2, AMF/GPI, ENO1, GLUT1, GAPDH, LDHA, 

PFKBF3, PFKL, PGK1, PKM, TPI, ALD-A, ALD-C 

Extracellular-matrix 

metabolism 

CATHD, Collagen type V ( 1), FN1, MMP2, PAI1, 

Prolyl-4-hydroxylase   

Energy metabolism LEP 

Amino-Acid metabolism Transglutaminase 2 

ADM, adrenomedullin; ALD, aldolase; AMF, autocrine motility factor; AR, adrenergic receptor 

CATHD, cathepsin D; DEC, differentiated embryo chondrocyte; EG-VEGF, endocrinegland- 

derived VEGF; ENG, endoglin; ET1, endothelin-1; ENO1, enolase 1; EPO, erythropoietin; FN1, 

fibronectin 1; GLUT, glucose transporter; GAPDH, glyceraldehyde-3-P-dehydrogenase; HK, 

hexokinase; IGF2, insulin-like growth-factor 2; IGF-BP, IGF-factor-binding-protein; KRT, keratin; 

LDHA, lactate dehydrogenase A; LEP, leptin; LRP1, LDL-receptor-related protein 1; MDR1, 

multidrug resistance 1; MMP2, matrix metalloproteinase 2; NOS2, nitric oxide synthase 2; PFKBF3, 

6-phosphofructo-2-kinase/fructose-2,6-biphosphatase-3; PFKL, phosphofructokinase L; PGK 1, 

phosphoglycerate kinase 1; PAI1, plasminogen-activator inhibitor 1; PKM, pyruvate kinase M; TGF-

, transforming growth factor- ; TGF-β3, transforming growth factor-β3; TPI, triosephosphate 

isomerase; VEGF, vascular endothelial growth factor; UPAR, urokinase plasminogen activator 

receptor; VEGFR2, VEGF receptor-2; VIM, vimentin. 
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HIF-1α is also reported to play a key role in apoptosis and cell survival. At the 

cellular and molecular level, cell survival is controlled by a balance between pro-apoptotic 

and anti-apoptotic signals. These signals are mediated by a large number of gene 

families. Pro-apoptotic signalling gene families include Bcl-2 family members like bcl-2, A1 

and bcl-X, whereas anti-apoptotic signalling gene families include Bax, Bad and Bid. HIF-

1α transfected HUVEC and HDMEC were observed to show an inhibition of proliferation 

by increasing the levels of tumour suppressor protein p53 induced p21Cip1, a cyclin 

dependant kinase inhibitor (CKI) and decreasing the levels of Bcl-2, a pro-apoptotic gene. 

Further reduction in the kinase activity of CDK4/6 was also observed in HIF-1  

transfected HMEC. Hence Iida et. al. propose that by up regulating p21 and reducing the 

activity of CDK4/6, HIF-1α plays a pivotal role in the cell cycle arrest at the G0/G1 phase 

(Iida et al. 2002). In murine embryonic fibroblasts and splenic B lymphocytes HIF-1α 

causes the arrest of cell cycle by inducing p21Cip1 and p27Kip1 independent of p53 (Goda et 

al. 2003). 

Few studies have investigated the role of diabetes/hyperglycaemia in the 

regulation of HIF-1α. Increased level of glucose in isolated fibroblasts of diabetic and non-

diabetic patients and ischemic tissues of wild type and diabetic mice caused decrease in 

the transactivation ability of HIF-1α leading to reduction in the expression of VEGF in 

response to hypoxia (Thangarajah et al. 2009). In human dermal fibroblasts and 

microvascular endothelial cells, hyperglycaemia in the presence of hypoxia dose 

dependently interfered with the stability and activity of HIF-1α. Inhibition of pVHL and p53 

independent proteosomal degradation of HIF-1α rectified the destabilising effect of 

hyperglycaemia (Catrina et al. 2004). High glucose concentrations and chronic hypoxia 

increased proliferation of bovine aortic smooth muscle cells (BASMC) via a HIF-1α 

mediated pathway. Higher glucose concentration attenuated the hypoxia-induced BASMC 

apoptosis by decreasing the levels of activity and expression of pro-apoptotic caspase-3 

and BNIP3L, with a concurrent increase in the expression of the anti-apoptotic protein Bcl-

xL (Gao et al. 2007). At an early stage of diabetic nephropathy, HIF-1α mRNA was found 

to be up regulated and remained elevated in isolated glomeruli of diabetic mice (Makino et 

al. 2006). In diabetic retinopathy, Alb-AGE activated the HIF-1 DNA binding activity 

mediated by an increase in the accumulation of the HIF-1α protein through an ERK-

dependent pathway. Thus, stimulation of VEGF expression by Alb-AGE, through the 

activation of HIF-1α, could play an important role in the development of diabetic 

retinopathy (Treins et al. 2001). Genetic polymorphisms associated with HIF-1α have also 

been demonstrated. A report suggests that HIF-1α is associated with the occurrence of 

T2DM by identifying a susceptibility coding SNP (cSNP) (P582S) and haplotype in the 

HIF-1α gene for T2DM (Yamada et al. 2005). 



Chapter 1 - Introduction 

- 37 - 

1.10 Silymarin 

 Hypoxia and hyperglycaemia are known to produce reactive oxygen species which 

have been implicated as a causative factor for the damage of tissues in diabetes. An anti-

oxidant such as silymarin has the potential to overcome the adverse effects of high 

glucose concentration and/or hypoxia on cell migration. Silymarin is an extract of the 

seeds of the milk thistle plant [Silybum marianum (L.) Gaertn. (Asteraceae); synonym 

Carduus marianus L.] native to the Mediterranean region (Kroll, Shaw and Oberlies 2007, 

Ramasamy and Agarwal 2008). It is a mixture containing 65-80% of silyamarin complex 

(made up of at least seven flavonlignans and a flavnoid) and 20-35% of fatty acids such 

as linoleic acid and other polyphelonic compounds (Kroll, Shaw and Oberlies 2007). 

Silyamrin mixture constitutes of seven flavanolignans namely silybin A, silybin B, isosilybin 

A, isosilybin B, silychristin, isosilychristin, silydianin and a flavanoid – toxifolin (Fig. 1.8) 

(Kim et al. 2003). 

The majority of therapeutic activity of silymarin is attributed to silybin, also spelt as 

silibin or called silibinin, as it is the most abundant constituent of silymarin. Silybin and 

isosilybin (also known as isosilibinin) are roughly 1:1 mixtures of two diastreoisomeric 

compounds of Silybin A and B and isosilybin A and B respectively and isosilybins are 

regioisomers of silybin (Lee and Liu 2003). Tincture prepared from milk thistle fruit has 

been reported to contain newer flavonolignan, silymandin (MacKinnon et al. 2007). The 

white flowering variety of Silybum marianum is known to contain silandrin, silymonin, 

silyhermin and neosilyhermin A and B in addition to the above mentioned regular 

flavonolignans (Szilagi et al. 1981). Along with the above mentioned compounds, the 

impurities present in the silymarin extracts could also be responsible for producing the 

anti-oxidant effects (Kvasnicka et al. 2003). 

1.10.1 Uses of silymarin 

 Silymarin has been in the use for the past 2000 years for the treatment of liver and 

biliary diseases (Post-White, Ladas and Kelly 2007). In the United States silymarin is sold 

under the different brand names such as Legalon, Silipide and Siliphos as dietary 

supplement, hence regulated as a food and so far not approved by US Food and Drug 

Administration for the treatment of any disorders (Post-White, Ladas and Kelly 2007). 

Silymarin produces its hepatoprotective activity by a unified mechanism through its 

anti-inflammatory, anti-oxidant and immunomodulatory effects involving scavenging and 

anti-oxidant effects on ROS induced oxidative stress and sustained inflammation in 

tissues (Comelli et al. 2007). Oxidative stress increases the production of ROS leading to 

the damage of cells and tissues. Many anti-oxidant enzymes such as superoxide 

dismutase (SOD), glutathione peroxidase (GSHPx), glutathione reductase (GR) and 
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catalase (CAT) help in the elimination of the ROS (Comelli et al. 2007). Silymarin is 

reported to produce its hepatoprotective actions by decreasing the levels of serum alanine 

aminotransferase (ALT), aspartate amino transferase (AST) and alkaline phosphatase 

(ALP) as well as total bilirubin against isoniazid, refampicin and pyrazinamide induced 

hepatotoxicity (Eminzade, Uraz and Izzettin 2008). 

 

 

 

Fig. 1.8 Chemical structures of main flavanolignans and a falvanoid (Reproduced with 

permission from Kim et al. 2003). 
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 Pretreatment of animals with silymarin prevented the hepatotoxicity caused by 

Cisplatin, an anti-cancer drug by decreasing the levels of ALT, AST, ALP and NO and by 

increasing the levels of GSHPx, SOD and GSH (Mansour, Hafez and Fahmy 2006). 

Similarly silymarin has been shown to produce hepatoprotective activities against many 

other hepato-toxins such as acetaminophen, methotrexate, diethylnitrosamine, ethanol 

and ionizing radiations (Comelli et al. 2007, Pradeep et al. 2007). Silymarin produces its 

hepatoprotective effect against hepatitis C virus by inhibiting the NF-κβ which in turn 

control the secretion of many cytokines such as TNF-α, interferon (IFN)-γ and IL-1 to 6 

from T-cells (Morishima et al. 2010). Silymarin and its components protect the liver tissue 

against hepatitis C infection through their anti-viral, anti-oxidant, anti-proliferative effects 

and by inhibition of TNF-α induced NF-κβ dependant transcription with a varying degree 

(Polyak et al. 2010). 

The results of clinical trails of silymarin use for hepatoprotective activity have not 

been uniform. In a study involving 170 patients, the treatment with silymarin proved to be 

effective against alcoholic cirrhosis compared to placebo treatment (Ferenci et al. 1989). 

In another trail involving 97 patients of acute and subacute liver disorder induced by 

alcohol received silymarin for the duration of four weeks. At the end of four weeks 

treatment, the silymarin group showed significantly lower levels of ALT and AST whereas 

the levels of total and conjugated bilirubin remained unchanged compared to the placebo 

group (Salmi and Sarna 1982). However, in a study involving 200 patients of liver injury 

due to alcohol the silymarin, after treating for two years, had no positive effect either on 

survival rate or on the prevention of liver injury (Pares et al. 1998). In a meta-analysis of 

the eighteen randomised trials conducted about the efficacy of silymarin, Rambaldi A et al. 

(2007) express their scepticism about the efficacy of silymarin as a hepatoprotectant 

against alcohol and/or hepatitis B or C induced liver damage (Rambaldi, Jacobs and 

Gluud 2007). 

In recent years silymarin has received attention for its ability to affect the outcome 

of cancer and its usefulness as an adjuvant therapy for cancer (Ramasamy and Agarwal 

2008). Silymarin is not only used as hepatoprotecatant but also to protect kidneys and 

heart during cancer treatment (Greenlee et al. 2007). Silymarin is proposed to produce its 

anti-cancer activity as a result of a combination of effects such as anti-inflammation, cell 

cycle regulation, induction of apoptosis, inhibition of invasion and metastasis, inhibition of 

proliferation and inhibition of angiogenesis (Ramasamy and Agarwal 2008). Silibinin 

produces its anti-cancerous activity by causing the arrest of progression of G1 phase of 

the cell cycle by inducing CKIs such as p21Cip1 and p27Kip1 in prostate cancer cell lines 

(Roy et al. 2007). Further, silibinin is also to known to inhibit cell proliferation by arresting 

the G2/M phase progression and by interfering with cell cycle regulators by decreasing the 
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levels of cyclin D1, D3, A and B1 and CDK 1, 2, 4 and 6 along with increasing the levels of 

p21Cip1 and p27Kip1 in advanced colorectal cancer and other tumour cell lines (Agarwal et 

al. 2006, Kaur et al. 2009). Apart from interfering with cell cycle regulators silibinin caused 

cell cycle arrest by down regulating the Rb-phosphorylation and E2F1/DP1 transcription 

complex and promotes apoptosis by down regulating survivin and up regulating the 

activated caspase-3 and 9 in hepatocarcinoma cells (Lah, Cui and Hu 2007). 

Silibinin is reported to produce antiangiogenic effect by decreasing the size of 

microvessels and the tumour expression of angiogenic cytokines such as IL-13 and TNF-α 

in lung adenocarcinoma of A/J mice (Tyagi et al. 2009). The expression of TIMP-1 and 2 

which are inhibitors of MMPs and ANG-2 and Tie-2 was increased by silibinin which 

produce an anti-angiogenic effect (Tyagi et al. 2009). Further, silibinin decreased the 

expression and nuclear localisation of HIF-1α and phosphorylation of NF-κβ and STAT-3 

which act as stimulants in angiogenesis in tumour cells (Tyagi et al. 2009). Silibinin 

inhibited angiogenesis by decreasing the expression of angiogenic stimulants such HIF-

1α, iNOS, PECAM-1, VEGF and down regulated VEGFR1 in trangenic adenocarcinoma of 

the mouse prostate model (Raina et al. 2008). In colorectal carcinoma, silibinin produced 

antiangiogenic effects by inhibiting not only HIF-1α, iNOS and VEGF but also by inhibition 

of COX1 and 3 (Singh, Gu and Agarwal 2008). Silymarin reduced the number of HUVECs 

and inhibited tube formation by decreasing the secretion of MMP-2 and VEGF (Jiang, 

Agarwal and Lu 2000). In HUVECs and HMVECs, silymarin caused the arrest of cell cycle 

progression by increasing the expression of p21, p27 and p53 and induce apoptosis by 

the increase of Bax and the decrease of Mcl-1 and survivin proteins (Singh et al. 2005). 

Topical application as well as oral feeding of silibinin decreased the ultraviolet B 

irradiation induced proliferation and apoptosis in SKH1 hairless mouse skin by inhibiting 

the phosphorylation of MAPK/p38, ERK1/2, JNK1/2 and Akt (Gu et al. 2005). Silibinin 

produces its anti-proliferative and pro-apoptotic activity by inhibiting the phosphorylation of 

MAPK/ERK pathways in gastric and renal cancer cells (Kim et al. 2009, Li et al. 2008). 

Further, Zi and Agarwal (1999) suggested that silibinin produced anti-proliferative and pro-

apoptotic effects in skin cancer cells by MAPK/ERK inactivation at a lower dose and 

MAPK/JNK1 activation at higher dose (Zi and Agarwal 1999). Silibinin reduced the 

invasiveness of lung cancer cells by inhibiting ERK1/2 and Akt activation along with 

inactivation of NF-κβ and JNK pathways. Further, PI3K and MEK inhibitors reduced the 

expression of MMP-2 and u-PA which were in turn inhibited by silibinin, suggesting that 

the silibinin effects involve MAPK and PI3K pathway (Chen et al. 2005). Silibinin produce 

anticancer effects in cervical and hepatoma cancer cells by reducing the accumulation 

and transcriptional activity of HIF-1α and decreasing the expression of VEGF which was 

potentiated by PI3K inhibitor (Garcia-Maceira and Mateo 2009). In other cells such as glial 
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cells, cardiac myocytes and neutrophils beneficial effects of silibinin are regulated by PKC 

activity along with other pathways (Tsai et al. 2010, Varga et al. 2004, Zhou et al. 2007). 

1.10.2 Silymarin and diabetes 

 In spite of established anti-oxidant effect of silymarin being exploited in hepatic 

and cancer disorders, very few reports exist about the effect of silymarin in diabetes. In 

clinical trails involving type 2 diabetes patients, silymarin reduced the levels of fasting 

glucose level, glycated haemoglobin, total cholesterol, LDL, triglyceride, SGOT and SGPT 

when administered along with conventional or glibenclamide (Huseini et al. 2006, Hussain 

2007). In another study involving patients of diabetes with liver cirrhosis, the blood 

glucose levels and fasting insulin levels decrease due to the administration of silymarin 

leading to reduced lipid peroxidation and insulin resistance (Velussi et al. 1997). These 

results were further confirmed in patients of T2DM with concomitant liver disorder when 

silybin-beta-cyclodextrin, a silibinin formulation reduced the blood glucose and 

triglycerides levels (Lirussi et al. 2002). 

Silymarin prevented the alloxan from producing its deleterious effects on renal 

tissues and restored the level of SOD, GSPHx and CAT to their normal levels in rats (Soto 

et al. 2010). Earlier Soto et al. (2004) argued that silymarin reduced alloxan induced 

pancreatic tissue damage and was able to bring the level of glucose and expression of 

insulin and glucagon close to the level of control animals (Soto et al. 2004). In addition to 

improving the above mentioned glutothione enzymes levels, silymarin prevented alloxan 

induced pancreatic destruction by preventing the lipid peroxidation as well (Soto et al. 

2003). Silibinin has been reported to produce its anti-hyperglyceamic effects by inhibiting 

the gluconeogenesis and glycogenolysis in hepatic cells of rats by inhibiting glucose-6-

phosphatase activity and decreasing the phosphorylation of glucose-6-phospahate which 

is essential for production of glucose (Guigas et al. 2007). This decrease in hepatic 

glycolysis is accompanied by a reduction in the formation of ROS from the mitochondrial 

electron transfer chain (Detaille et al. 2008). Pretreatment of RINm5F insulinoma cells and 

human islet cells with silymarin protected them against IL-1β and/or IFN-γ induced cell 

damage by partial decrease of the production of NO and expression of iNOS in a dose 

dependent manner. Further, silymarin protected RINm5F insulinoma cells from IL-1β 

induced NO production and cell destruction via partial inactivation of c-Jun NH2 terminal 

kinase (JNK) and human islets from IFN-γ induced iNOS expression and cell destruction 

via inactivation of Janus kinase/stress transducer and activator of transcription 

(JAK/STAT) proteins (Matsuda et al. 2005). Taken together, the anti-hyperglycaemic 

effect of silibinin is a result of directly decreasing glycolysis, cytoprotective effects on 
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pancreatic cells, augmentation of anti-oxidant enzymes as well as free radical scavenging 

activity. 

1.11 Topical Applications 

 One of the aims of this project was to develop a freeze dried wafers containing 

silymarin for topical application. Developments in the topical applications field has 

witnessed a rapid growth from simple bandages to modern topical applications for 

sustained release of therapeutic agents (reviewed in detail by Boateng et al. 2008). As 

with any other wound treatment, recalcitrant diabetic wounds require a suitable drug 

delivery system which releases the drug at the wound site with minimum systemic effects, 

while maintaining the stability of therapeutic agent intended to be released and also to 

show considerable therapeutic effect. One such drug delivery system is lyophilized or 

freeze dried wafers for the delivery of drugs as a topical applicant. Many reports suggest 

that lyophilized wafers could be prepared for the delivery of various therapeutic agents 

such as anti-bacterials, growth factors and other supplements such as vitamins and anti-

oxidants using a variety of vehicles (Boateng et al. 2008). 

Various polymers are used as vehicles to deliver the drugs in preparation of topical 

applications. Matthews and co-workers report the preparation of lyophilized wafers using 

sodium alginate and xanthan gum containing methyl cellulose. They tested these wafers 

on cut water melon serving as a suppurating wound surface model for qualitatative 

measurement (Matthews et al. 2005). The water insoluble drugs such as UK370106, a 

MMP-3 inhibitor could be formulated as lyophilized preparations using non ionic surfactant 

and xanthan gum as a vehicle (Matthews et al. 2008). 

PDGF and other growth factors have been proved to be beneficial in normal 

wound healing and some of their formulation as topical application has led to their 

regulatory approval (Falanga 2005). Attempts have been made to test the effect of growth 

factors on fibroblast cells of diabetic wounds by the incorporation of EGF, IGF-1, PDGF-

AB, and bFGF in various formulations (Loots et al. 2002). A chitosan film, prepared by 

freeze-drying hydroxypropylchitosan acetate buffer solution incorporated with bFGF 

solution applied on full-thickness wounds created on the backs of genetically diabetic mice 

reduced the wound size (Mizuno et al. 2003). In another study the chitosan hydrogels 

prepared by UV irradiation containing bFGF are reported to enhance the HUVECs growth 

and also induce the faster contraction of wounds in diabetic mice (Obara et al. 2003). 

TGF-β1 incorporated into various formulations was successfully tested for wound healing 

activity in diabetic rats (Puolakkainen et al. 1995). 

There are very few reports about the lyophilisation of anti-oxidants with an 

intention of using them as topical applications for diabetic wounds. The wound dressings 



Chapter 1 - Introduction 

- 43 - 

prepared by lyophilising chlorhexidine diacetate with 5-methylpyrrolidinone chitosan as a 

vehicle produced not only anti-bacterial but also anti-oxidant activity (Rossi et al. 2007). 

Topical application of silymarin successfully prevented the photo-carcinogenesis of UV 

radiation on skins of mice and different components of silymarin permeate through skin 

with varying degree (Gu et al. 2005, Hung et al. 2010). However, there are no reports 

about the lyophilized preparations of silymarin as a topical application for wounds except 

for a report which uses lyophilized silymarin nano particles to characterise a development 

of a new polymer (Guhagarkar, Malshe and Devarajan 2009). 

Sterile formulations are desirable in the treatment of chronic wounds of diabetes in 

order to avoid the possibility of increasing the microbial load at the wound site. Lyophilised 

wafers cannot be heat sterilised or autoclaved as the wafer structure would collapse due 

to heat and/or pressure risking the stability of the therapeutic agent. Therefore, gamma 

irradiation was employed to sterilise the lyophilised wafers (Matthews et al. 2006). Further 

detail about the freeze dried wafers is provided in chapter 7. 

Taken together, there is a need to understand the effect of high glucose and 

hypoxia on the migration of endothelial cells at molecular level in order to understand 

angiogenesis during the wound healing process. As the production of ROS is proven to be 

a precursor in the development of vascular complications of diabetes, the therapeutic 

potential of anti-oxidants such as silymarin at least as an adjuvant therapy should be 

explored. 

1.12.1 Aim and objectives of the study 

This study aims to develop a suitable in vitro method of measuring the migration of 

endothelial cells simulating the angiogenesis stage of the wound healing process in 

diabetes and determine if there are any beneficial effects of silymarin on cell migration. 

1.12.2 Objectives of the study 

1. Develop a migration and wound healing method by validating and optimising a pre-

existing model. 

2. Determine the effects of hypoxia and hyperglycaemia on the migration of dermal 

microvascular endothelial cells and underlying molecular mechanisms. 

3. Develop a freeze dried formulation containing silymarin and test the beneficial 

effects of silymarin on the changes in the migration owing to varying concentration 

of glucose and oxygen tension. 
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2.1.1 Materials 

All chemicals used in the study were purchased from Sigma-Aldrich (Poole, UK) 

unless otherwise stated. Cell culture materials were purchased from Invitrogen (Paisley, 

UK) and all cell culture plastics and glassware from Fisher Scientific UK Ltd 

(Loughborough, UK), unless otherwise stated. Microvascular cell reagents were 

purchased from Cascade biologics (Invitrogen Ltd. Paisley, UK). All the materials were 

used as supplied as described in the text. 

2.1.2 Endothelial Cells (ECs) 

Human umbilical vein endothelial cells (HUVECs) and human microvascular 

endothelial cells (adult dermis) (HMVECad) were used at different stages during the 

study. The majority of the preliminary work was carried out with HUVEC before moving 

onto the primary HMVECad cell line. 

HUVECs were cultured from an immortalised cell line purchased from the 

European Collection of Cell Cultures (ECACC). HUVECs were propagated from a 

cryopreserved primary culture isolated from normal human umbilical vein. The cells used 

during the study were of passages between 60 and 70. 

The primary human microvascular endothelial cells were cryopreserved from adult 

dermis at the end of tertiary culture (i.e passage 2) were purchased from Cascade 

Biologics (Invitrogen Ltd. Paisley, UK). The cells were tested by the company for the 

presence of von Willebrand factor (vWF), CD31 antigen, and CD36 antigen and for the 

absence of α-actin. The uptake of DiI-Ac-LDL (Acetylated Low Density Lipoprotein, 

labelled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate) was 

confirmed. The absence of Hepatitis B, Hepatitis C, and HIV-1 viruses, mycoplasma, 

yeast and fungi was also confirmed. The HMVECad of passage number of 7 to 16 were 

used for all experiments carried out in this study. 

2.2 Methods 

2.2.1.1 Cell count by Trypan blue dye exclusion method 

Viable cell number was determined by means of trypan blue dye exclusion. The 

cells were counted in order to seed experimental six well culture plates or for further sub 

culturing or for cryopreservation with the appropriate number of cells. An aliquot of 20µl of 

cell suspension was mixed by a gentle swirl (finger vortex) with 0.4% v/v of trypan blue 

dye at a 1:1 ratio and left to stand for 2 min to allow the dye to penetrate any non-viable 

cells. Trypan blue dye stains any dead or dying cells dark blue by permeating through 

their damaged cell membrane. Using a Pasteur pipette, a small volume ~10µl of the cell 

suspension was applied to the edge of cover slip placed on a Neubeur haemocytometer 
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and allowed to fill the area under the cover slip by means of capillary action. The cells 

were viewed under a microscope at 100x magnification. Viable cells were counted in the 

25 squares contained within the large square (of 1mm2 area) edged by double lines on 

both grids. The mean value of the two sides of the slide was noted before calculating total 

viable cell number as follows; 

 

Number of cells/ml = cell count per large square x dilution factor x 104 

 

The 104 in the above equation is a conversion factor used to convert 10-4ml to 1ml. This 

conversion factor is based on volume of the cell suspension present in one large square 

(of 1mm2 area) of the haemocytometer. 

(Volume of 1 large square = 1mm x 1mm x 0.1mm = 0.1cm x 0.1cm x 0.01cm = 10-4 cm3 = 

10-4 ml) 

2.2.1.2 Cell resuscitation 

 Aseptic procedures were used when working with cultured cells or any procedures 

linked to their use. A dedicated cell culture lab with a laminar flow air hood (Aura 2000, 

Bioair Instruments) was used. All solutions were filter or autoclave sterilised, plastics were 

autoclave sterilised and glassware was heat (180 0C for 2.5 h) sterilised prior to their use. 

The HUVECs and HMVECad were supplied as a cryopreserved vial of ≥ 3.75 x 105 

and 5 x 105 viable cells per ml respectively.  The cell lines of HUVECs were initiated into 

75cm2 flasks (T-75) and HMVECad into 25 cm2 flasks (T-25). The T-75 flasks for HUVECs 

were non-coated, whereas the T-25 flasks used for HMVECad were coated prior to use 

with sterile attachment factor (AF) (1x) solution made up of 0.1% gelatine (Cascade 

Biologics, UK). Two ml of AF solution was added to each of T-25 flasks. The flasks were 

gently agitated to allow the AF to cover the flask surface and incubated at 37 0C for 30 min 

or at room temperature for 2 h. The AF solution was completely removed by aspiration 

prior to the addition of cell suspension or medium. The coated flasks were used either 

immediately or capped tightly and stored at room temperature for using within 24 h. 

A cryopreserved vial of HUVECs or HMVECad was thawed by dipping the lower 

half of the vial in 37 0C water bath. The cell count was determined using Trypan blue as 

explained in previous section 2.2.1.1. A cryopreserved vial containing HUVEC suspension 

(1ml) was pipetted into a T-75 flask containing 10ml of culture media at the rate of 5x103 

to 1x104 cells per cm2 area of a flask. The culture media for HUVECs was prepared by 

diluting glucose free Glasgow’s Minimal Essential Medium (G-MEM) (10x) (40ml) with 

15ml of 7.5% NaHCO3, 5ml of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

(HEPES) buffer and 50ml of tryptose phosphate broth to make 432ml of 1x G-MEM 
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(Macpherson and Stoker 1962). The diluted G-MEM was prepared into 87ml aliquots and 

stored at 4 0C until required. When used for HUVEC, the diluted G-MEM was combined 

with 10% (v/v) foetal calf serum (FCS), 2mM L-glutamine, 5mM D-glucose and 1 unit/ml 

penicillin, 1µg/ml streptomycin. All media for HUVEC was warmed to 37 0C before use. 

The contents of the vial (1ml) containing HMVECad was diluted to a concentration 

of 2.5 x 104 viable cells/ml using microvascular growth supplement (MVGS) supplemented 

M-131. Each of an AF-coated T-25 flask was added with 5ml of the resulting cell 

suspension. M-131 is a basal medium containing essential and non essential amino acids, 

vitamins, other organic compounds, trace minerals, inorganic salts and 5.6mM D-glucose. 

MVGS is supplied as a concentrated (20x) solution containing foetal bovine serum (5% v/v 

final concentration), hydrocortisone, recombinant human fibroblast growth factor, heparin, 

recombinant human epidermal growth factor, and dibutyryl cyclic AMP.  

Following initial cell seeding, the flasks were left undisturbed for 24 h in humidified 

atmosphere of 5% CO2/95% air in an incubator (Galaxy S, Wolf Laboratories) at 37 0C. 

The media was replaced after 24 h to remove the traces of dimethylsulfoxide (DMSO) and 

any dead cells/debris. The media was changed every alternative day until the cells 

reached 60 % confluence. Once the cells reached 80% confluence, they were trypsinised 

for either sub-culturing as explained in section 2.2.1.4 or frozen for long term storage as 

explained below. 

2.2.1.3 Cell storage 

The supernatant obtained after centrifugation of trypsinised cell suspension was 

removed and the cell pellet was re-suspended in cryopreservation medium. The HUVECs 

were frozen in G-MEM containing 10% v/v of DMSO at a concentration of 3.75x105 to 

7.5x105 cells per ml. The HMVECad were re-suspended in cold Synth-a-Freeze solution 

at a concentration of 5x105 to 3x106 cells per ml. Synth-a-Freeze solution is a sterile liquid 

cryopreservation medium containing 10% DMSO. It does not contain any antibiotics, 

antimycotics, hormones, growth factors, serum, or proteins and is HEPES and 

bicarbonate buffered. The cell suspension was aliquoted into an appropriate number of 

cryopreservation vials. The vials containing 1ml of cell suspension were cooled to 4 0C as 

quickly as possible and were transferred overnight to -80 0C. The following day the vials 

were transferred to the vapour phase of a liquid nitrogen refrigerator (LS3000, Taylor and 

Wharton, USA, liquid nitrogen capacity – 81l). 
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2.2.1.4 Routine sub-culture 

To harvest HUVECs for subculture, growth medium was poured off and the 

monolayer was rinsed three times with 10ml calcium and magnesium free Hank’s 

balanced salt solution (HBSS). The final wash was allowed to incubate for 10 min to 

remove all trace of serum containing medium. The cells were removed from the flask by 

incubating for 10 min with 5ml of 0.25% (v/v) trypsin solution. The flask was gently 

agitated for no longer than 2 min to detach the cells. An equal volume of medium 

containing FCS was then added to the flask to neutralize the enzymatic activity of the 

trypsin. The cell suspension of the flask was removed to a sterile universal tube. The cells 

in the suspension were pelleted by centrifugation (Biofuge PrimoR, Heraeus, Germany) at 

220g force for 5 min. The supernatant was removed and the cell pellet was re-suspended 

in 1ml of fresh medium. The cell count was then determined using the Neubeur 

haemocytometer as explained earlier in section 2.2.1.1. For routine subculture, a sterile T-

75 flask was used and 5x103 cells per cm2 were supplemented with 10ml of fresh medium. 

To harvest HMVECad for subculture, growth medium was poured off into a sterile 

empty beaker. Following the addition of 3ml of Trypsin/EDTA solution (Trypsin/EDTA 

solution (1x) is a phosphate buffered, sterile solution containing 0.025% trypsin and 0.01% 

ethylenediaminetetraacetic acid (EDTA), Cascade Biologics, UK) the flask was gently 

rocked to ensure that the entire surface was covered. The flask was immediately emptied 

and 1ml of fresh Trypsin/EDTA solution was added. The cells were incubated at room 

temperature (RT) for approximately 4 to 6 min until they were completely round. The flask 

was agitated gently, without exposing the cells for an excessive length of time to the 

Trypsin/EDTA solution, to dislodge the cells from the surface of the flask. Trypsin 

Neutraliser (3ml) solution (a sterile, phosphate buffered, calcium and magnesium free 

solution (1x) containing 0.5% newborn bovine serum) (Cascade Biologics, UK) was added 

to the flask and detached cells were transferred to a sterile universal tube. An additional 

3ml of Trypsin Neutraliser solution was added to the flask and the solution was pipetted 

over the flask surface several times to dislodge any remaining cells. This solution was 

aspirated into a universal tube and centrifuged at 180g for 7 minutes. The supernatant 

was removed from the tube. The cell pellet was re-suspended in 5ml of MVGS 

supplemented M-131 and gently pipetted up and down several times to ensure a 

homogenous cell suspension. The cell count was determined using the Neubauer 

haemocytometer as explained earlier in section 2.2.1.1. The cell suspension was diluted 

in MVGS supplemented M-131 to give 5000 cells per cm2 and added to the new culture 

flasks freshly coated with AF. 

The flasks containing newly sub-cultured cells were transferred to an incubator 

and left undisturbed overnight to allow the cells to adhere and begin to grow. The growth 
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of cells was checked daily under the microscope and by observation of any change in the 

colour of medium, indicative of pH changes. 

2.2.1.5 Cell growth conditions 

The effect of normoxia (ambient O2 tension) (N) or hypoxia (5% O2 tension) (H) 

and normal (5mM) or elevated (20mM) glucose level was assessed by exposing the cells 

to these conditions for a specified period of time. The N5mM or N20mM conditions were 

achieved by growing the cells in media containing 5 or 20mM of D-glucose concentration 

in humidified atmosphere of 5% CO2/95% air in an incubator (Galaxy S, Wolf 

Laboratories) (subsequently referred to as normoxia) at 37 0C. Similarly, the H5mM or 

H20mM conditions were achieved by growing the cells in media containing 5 or 20mM D-

glucose in a humidified atmosphere of 5% O2/ 5% CO2/ 90% air in a  Galaxy R CO2 

incubator (Wolf Laboratories) (subsequently referred to as hypoxia) at 37 0C. The hypoxic 

condition was created and maintained by purging oxygen from the incubator with nitrogen.  

Different levels of glucose concentration (either 5mM or 20mM) in the media were 

achieved by adding the required quantities of previously prepared 1M D-glucose stock 

solution. Ten ml of 1M D-glucose stock solution was prepared by filter sterilisation 

(0.22µm syringe filter, Millipore) and stored at 4 0C until further use. It was prepared using 

glucose free/serum free (GF/SF) G-MEM to supplement the media of HUVEC and M-131 

to supplement the media of HMVECad. 

All the experiments involving the endothelial cells were carried out using 6 well 

plates. Where appropriate, the cells were supplemented with hydroxyurea 5mM, D-

Mannitol 5 or 20mM, silymarin (SM) 50µM, α-lipoic acid (aLA) 100µM, PKCβII/EGFR 

Inhibitor [4,5-bis(4-Fluoroanilino)-phthalimide] 1µM (Calbiochem, Merck Chemicals, 

Nottingham), p42/p44 MAPK Inhibitor (2′-Amino-3′-methoxyflavone) (PD98059) 2µM 

(Calbiochem, Merck Chemicals, Nottingham) and PI3K Inhibitor   [2-(4-Morpholinyl)-8-

phenyl-4H-1-benzopyran-4-one] (LY294002) 10µM (Invitrogen, UK). DMSO and ethanol of 

molecular biology grade were used as a solvent wherever appropriate at a final 

concentration of ≤ 0.7% v/v. 

The methods described below are the final methods used following the validation 

of radial migration and wound healing assay. The process by which the methods were 

validated is dealt with, in detail in chapter 3. 
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2.2.2 Formation of circular monolayers 

Heat sterilised (180 0C for 2.5 h) glass cloning rings (Corning, UK) of 6 x 8mm 

(outer diameter x height) were placed centrally within each well of a non-coated 6 well 

tissue culture plates (Nunc, Denmark) having an area of 10.17 cm2 per well (Fig. 2.1). The 

HUVECs were grown on non-coated surface without any coating. The culture plates were 

coated with 1.5ml of AF as described in section 2.2.1.2 before placing the glass rings in 

them, if HMVECad were to be grown onto them. The HUVEC and HMVECad were 

seeded into each glass ring at a density of 2 x 105 viable cells per ml, in a volume of 40µl.  

The 6 well plates were returned to the normoxic incubator for either overnight (in case of 

HUVECs) or 4 h (in case of HMVECad) to allow the cells to adhere to the plastic surface. 

The HMVECad successfully adhered to the treated surface within 4 h, but HUVEC took 

around 12 h to attach to the non-treated surface of the plates. The optimal incubation 

required for the cell adhesion of different cell types was determined experimentally. The 

shorter time period required for HMVECad may be due to the presence of AF and/or the 

other cell surface properties. This was not investigated further. After cell adhesion, the 

rings were taken off and the wells were supplemented with 2.5ml of appropriate growth 

media. The plates with circular cell monolayers were returned to the appropriate 

incubation conditions for further 24 and/or 48 h. 
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a) Cross sectional view with rings 

 

b) Cross sectional view after the removal of rings 

 

c) Aerial view of cell monolayers 

 

Fig. 2.1 Formation of circular cell monolayers The HMVECad or HUVEC were seeded 

in to glass rings (6mm outer diameter) at the centre of the wells of a 6 well plate (a). After 

initial incubation, the rings were taken off and the plates were returned to an incubator 

with wells filled with 2.5ml of media (b). Aerial view of the plates would reveal the 

formation of circular monolayer (4-5mm) of cells (c). 
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2.2.3 Radial migration assay 

The images of the circular monolayers were acquired digitally at 0 h, before 

incubating in different conditions, and at 24 and 48 h using an inverted microscope (DMI 

4000B, Leica Microsystems, Germany) at 25x magnification. The photomicrographs were 

analyzed by measuring the radii of the circular cell monolayers to determine the migration 

of cells with the help of Leica (QWin Standard v 2.8, Image Processing and Analysing 

System) software. 

An image acquired at 0 h was opened (Fig. 2.2a) using File Menu >Open tool. 

 

 

 

Fig. 2.2a Radial migration assay Image of a cell monolayer photographed at 0 h used to 

illustrate image analysis. 
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The annotation toolbox was opened using Image Menu > Annotate Applet > Start 

tool. A circle was drawn by selecting three points on the circumference of the monolayer 

with help of a Circle calibrated measurement button on the annotation toolbox. A circle 

with its diameter at the centre was displayed. The annotation was stopped by pressing 

Image Menu > Annotate Applet > Stop tool. 

 

 

 

Fig. 2.2b Radial migration assay The annotated circle was overlaid on the cell 

monolayer, with the diameter of the circle displayed at the centre.   
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Next Binary Menu > Binary graphics tool was used to open the binary graphics 

dialog box. The radial blue lines were drawn within a binary plane of an image by 

selecting Spokes type of graphics (Fig. 2.2c). The settings for spokes were defined by 

Spacing at an angular spacing of 90 between two spokes. The position of the spokes was 

adjusted so that the blue radial lines were originating from the centre of a circle. The size 

of the spokes was also adjusted, so that the blue radial lines nearly touched the 

circumference of the annotated circle. 

 

 

 

Fig. 2.2c Radial migration assay The blue coloured radial spokes with the angular 

spacing at 90 was overlaid at the centre of the annotated circle. The lengths of spokes 

were adjusted to not to touch the circumference of the monolayer as they could obscure 

the visibility of the cells at the edge. 
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Annotation toolbox was displayed again by using Image Menu > Annotate Applet > 

Start tool. The circle was selected with help of Select object button and deleted using 

Remove selected objects button on the annotation toolbox. Ten black lines were manually 

drawn on either side of the monolayer using a Point-Point calibrated measurement button. 

These black lines were drawn on the blue spokes from centre to the circumference of a 

circular monolayer. The distance (in µm) of black lines was displayed at their centre (Fig. 

2.2d). 

 

 

 

Fig. 2.2d Radial migration assay The manually drawn black lines on the blue spokes 

display the radius of each line. The radial distances on either side of the monolayer were 

regarded as the radial migration.    

In total, lengths of twenty radial lines per image were noted down on a excel 

spread sheet. The same procedure was repeated for the images of 24 and 48 h. Net 

migration was defined as the difference between the length of radial lines at 24 or 48 h 

with that 0 h. Net migration as mean ± SEM of twenty radii, unless otherwise stated, is 

presented in the results section. 
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2.2.4 Wound healing assay 

The HMVECad were grown in a circular monolayer in 6 well plates as explained in 

section 2.2.2. Once the glass rings were removed, the centre of a circular monolayer was 

approximately marked on the underside of the plastic to provide a reference point for 

subsequent measurements. Approximately half of the circular monolayer was removed 

using a cell scraper (Cell scraper, 23, Nunc, Denmark) and the well was then washed with 

phosphate buffered saline (PBS) to remove the detached cells and cell debris. This 

resulted in a semi-circular monolayer with both an intact edge and a wounded edge (Fig. 

2.3a). The plates were returned to the appropriate incubation conditions for 48 h with 

2.5ml of medium in each well. 

Images of a semi-circular monolayer were acquired digitally at 0 h, before 

incubating in different conditions, and at 24 and 48 h using an inverted microscope (DMI 

4000B, Leica Microsystems, Germany) at 25x magnification. The photomicrographs were 

analyzed by measuring ten radial distances from the intact edge and ten parallel distances 

from the wounded edge of the semi-circular cell monolayers (Fig. 2.3g). The migration 

distance of cells was measured with the help of Leica (QWin Standard v 2.8, Image 

Processing and Analysing System) software. 
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The image of the monolayer at 0 h was opened by File Menu > Open tool. The 

annotation toolbox was opened with help of Image Menu > Annotate Applet > Start tool. 

The shape of a semi-circular monolayer with a pre-marked reference point was drawn 

using Draw free hand button of annotation toolbox. The pre-marked reference point was 

helpful in identifying the original edges of monolayer when the annotated shape at 0 h 

would be superimposed over the images of either 24 or 48 h. 

 

 

 

Fig. 2.3a Wound healing assay The shape of the semi-circular monolayer and the pre-

made point mark on underside of the plate as a reference point was annotated on the 

image of a monolayer. 
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An image of a same monolayer acquired at 24 h was opened by File Menu > Open 

tool. The annotated shape of semi-circular monolayer of 0 h was superimposed on an 

image taken at 24 h as shown in Fig. 2.3b. A circle was drawn by selecting three points on 

the circumference of the intact edge of monolayer with help of a Circle calibrated 

measurement button on the annotation toolbox. A circle with its diameter was displayed at 

the centre. After drawing the circle, the annotation was stopped by pressing Image Menu 

> Annotate Applet > Stop tool. 

 

 

 

Fig. 2.3b Wound healing assay Annotated shape of 0 h was superimposed on the image 

of 24 h and its position is adjusted using the pre-drawn underside reference point.  
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Next Binary Menu > Binary graphics tool was used to open the binary graphics 

dialog box. The blue radial lines were drawn within a binary plane of an image by 

selecting Spokes type of graphics. The settings for spokes were defined by Spacing at an 

angular spacing of 90 between two spokes. The position of the spokes was adjusted so 

that the blue radial lines were originating from the centre of a circle. The size of the 

spokes was also adjusted, so that the blue radial lines nearly touched the circumference 

of the annotated circle (Fig. 2.3c). 

 

 

 

Fig. 2.3c Wound healing assay The blue coloured radial spokes with the angular 

spacing at 90 was overlaid at the centre of the annotated circle. The lengths of spokes 

were adjusted to lie between the circumference of the annotated image of 0 h and the 

circumference of the monolayer at 24 h. 
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Annotation toolbox was displayed again by using Image Menu > Annotate Applet > 

Start tool. The annotated circle was selected with the help of Select object button and 

deleted using Remove selected objects button on the annotation toolbox. Ten black lines 

were manually drawn on intact edge of the monolayer using the Point-Point calibrated 

measurement button. These black lines were drawn on the blue spokes from the 

circumference of annotated image taken at 0 h to the circumference of semi-circular 

monolayer of 24 h. The length (in µm) of black lines was displayed at their centre. The 

length of these lines was considered as the net migration of cells from intact edge of 

monolayer. The lengths of ten radial lines per image were noted down on a excel spread 

sheet. 

 

 

 

Fig. 2.3d Wound healing assay The black lines were drawn on the blue spokes from the 

circumference of the annotated image of 0 h to the circumference at 24 h. 
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Annotation was stopped and the binary graphics dialog box was opened. The 

dialog box was used to draw the parallel lines by selecting Grid type of graphics within a 

binary plane of the image. It produces a rectangular grid consisting of a number of 

horizontal and vertical lines.  The settings for the grid were defined by Spacing (µm) 

resulting in lines of 200µm x 80µm (width x height). The position of the grid was adjusted 

so that the left arm of the grid was near to the wounded edge of monolayer. The size (µm) 

of the grid was 200 x 1040 (width x height). The graphic’s orientation was used to rotate 

the grid so that it was in line with the wounded edge. 

 

 

 

Fig. 2.3e Wound healing assay The blue coloured rectangular grid with the lines of 

length 200µm wide and spacing of 80µm between them was overlaid at the wounded 

edge of the monolayer. The blue rectangular grid was adjusted so that one arm of it is 

within the black line representing the wounded edge of 0 h and the other arm near to the 

edge of the monolayer of 24 h. 
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Annotation toolbox was displayed again by using the Image Menu > Annotate 

Applet > Start tool. Ten lines were manually drawn from the wounded edge of the 

monolayer using Point-Point calibrated measurement button. These lines were drawn on 

the lines of grid from wounded edge of 0 h to the new edge at 24 h. The lengths (in µm) of 

these lines were displayed at their centre. The length of these lines was considered as the 

net migration of cells from the wounded edge of a monolayer. The lengths of ten parallel 

lines per image were noted down on a excel spread sheet. 

 

 

 

Fig. 2.3f Wound healing assay The black lines were drawn on the blue lines from the 

wounded edge of the annotated image of 0 h to the edge at 24 h. 
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The whole procedure was repeated for an image of 48 h or alternatively the 

graphics on an image of 24 h were superimposed on an image of 48 h. The net migration 

was recorded by extending the lines to the new edge on the either side of the monolayer. 

 

 

 

Fig. 2.3g Wound healing assay The lengths of black radial and parallel lines were noted 

as net migration from the intact and the wounded edge of the monolayer respectively. 

 

Net migration presented in the results section, is given as the mean value of ten 

lines from each image, unless otherwise stated, each from the intact and wounded edge. 
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2.4 Immunocytochemical staining 

2.4.1 Background 

Immunocytochemical staining was employed to visualise specific proteins viz. 

hypoxia inducible factor -1α (HIF-1α), p27Kip1, platelet endothelial cell adhesion molecule 

(PECAM) -1 and actin in endothelial cells. The method employed is known as streptavidin-

biotin complex/alkaline phosphatase method (Fig. 2.4). This method was used for the 

detection of an antigen by light microscopy. The high affinity non-covalent bonding of 

biotin (vitamin H) with avidin and streptavidin is exploited in immunocytochemical 

detection (Molecular probes, handbook, Invitrogen). Avidin, an egg white protein and 

streptavidin, obtained from bacteria possess four binding sites for biotin. Avidin, being a 

glycoprotein with isoelectric point of 10, binds non-specifically to lectin like and negatively 

charged cell components at physiological pH. On the other hand, streptavidin with its 

more neutral iso-electric point and lack of oligosaccharide residues results in less non-

specific binding. The biotin molecule conjugates easily with antibodies and enzymes. Up 

to 150 biotin molecules can be attached to one antibody molecule. The secondary 

antibodies are conjugated to biotin and function as a link between antigens on the tissue 

or cell bound primary antibodies. The labelled streptavidin-biotin method utilizes a 

biotinylated secondary antibody that links primary antibody to a streptavidin-alkaline 

phospatase conjugate. Streptavidin-alkaline phosphate conjugate is a highly sensitive 

detector conjugate. This conjugate binds to biotin labelled secondary antibody. A single 

primary antibody subsequently is associated with multiple enzyme molecules, and 

because of the large enzyme-to-antibody ratio, a considerable increase in sensitivity is 

achieved.  

Endogenous alkaline phosphatase activity can be inhibited by addition of levamisol 

to the substrate solution. Napthol AS-MX phosphate is used as substrate. The alkaline 

phosphatase hydrolyses napthol phosphate esters (substrate) to phenolic compounds and 

phosphates. Insoluble coloured azo dyes are produced when the phenols couple with 

colourless diazonium salts (chromogen). The chromogen FastRed TR produces bright red 

end product. Aqueous mounting media must be used as FastRed TR is soluble in 

alcoholic and other organic solvents. 
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Fig. 2.4 Alkaline phosphatase labelled Streptavidin-Biotin method Alkaline 

phosphatase labelled streptavidin conjugates with biotinylated secondary antibody. The 

primary antibody is attached to multiple enzymes. The amplification of antigen signal is 

considerable due to the large enzyme to antibody ratio. (As adapted from 

‘Immunohistochemical Staining Methods’, Fourth Edition, Dako Corporation, 2006) 
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2.4.2 Method 

The circular or semi-circular endothelial cell monolayers were washed three times 

in ice cold PBS (0.01M phosphate buffer, 0.0027M potassium chloride and 0.137M 

sodium chloride, pH 7.4) at 48 h and fixed for 10 min in 4% paraformaldehyde (PFA) 

prepared in PBS solution. Preparation and fixation using PFA was carried out in a fume 

cupboard. After fixation, the cells were air dried and were either used immediately or 

stored at -20 0C for later use. The cells which were frozen were removed from the -20 0C 

freezer, and allowed 90 min to come up to room temperature prior to immunocytochemical 

detection. 

The region to be stained was delineated either using a wax pen (Mini Pap Pen, 

Zymed, Invitrogen) or in situ frames of 25µl capacity (Eppendorf AG, Germany). The cells 

in 6 well plates were equilibrated in tris buffered saline (TBS) (0.05M Tris, 0.15M NaCl, pH 

7.6) for 5 min before removal of excess liquid. Two more washes with TBS were given for 

5min each. In order to reduce non specific binding of the secondary antibodies and 

background staining, the plates were incubated for 30min with 10% normal goat serum. 

Excess serum was aspirated and the plates were washed with TBS three times for 5min 

each. The plates were incubated with primary antibody diluted in TBS in a humid chamber 

overnight at 4 0C. The different primary antibodies and their dilutions used are listed in 

table 2.1 and are also mentioned in the relevant text. Mouse or rabbit isotype control 

depending on the primary antibody, was used as a negative control. After washing the 

plates with TBS three times for 5 min each, they were incubated for 60 min with 

biotinylated secondary antibody. The relevant secondary antibody is mentioned in table 

2.1 and also in relevant text. The plates were washed in TBS three times for 5 min each 

and were incubated with streptavidin-alkaline phosphatase conjugate for 30 min. After 

removal of the conjugate, the plates were washed three times with TBS for 5min each. 

The substrate (1.2mM Napthol AS-MX phosphate disodium salt, 1mM Levamisol, 1.9mM 

Fast Red TR salt) was prepared in veronal acetate buffer (0.029M sodium acetate (tri-

hydrate), 0.028M sodium diethyl barbiturate, pH 9.2) and the cells were incubated at room 

temperature for 10min until a bright red colour developed. The plates were washed with 

distilled water and allowed to dry and then aqueous mounting media (Vectamount, Vector 

Lab) was added and cover slip applied prior to visualisation. 
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Table 2.1 Various antibodies and ancillary materials used in ICC 

 

Description of antibodies with their host and isotype Type 
Dilution used 

(in TBS)  
Manufacturer 

Anti-HIF-1α Monoclonal (Host /Isotype – Mouse/IgG1) Primary 1:50 MA1-516, Affinity Bioreagents 

Anti - HIF-1α Unconjugated Polyclonal (Host /Isotype – Mouse/IgG1) Primary 1:50 38-9800, Zymed 

Anti-phospho-p27 (Ser10) Unconjugated Polyclonal (Host – Rabbit) Primary 1:100 34-6300, Invitrogen 

Monoclonal anti human CD31 (PECAM-1) 

(Host /Isotype – Mouse/IgG1) 
Primary 1:100 P8590, Sigma 

Anti – Actin, N – terminal Polyclonal (Host – Rabbit) Primary 1:100 A2103, Sigma 

Isotype Control (Host – Mouse, Isotype - IgG and IgM) Primary control 0.5µg/ml 08-6599, Invitrogen 

Isotype Control Polyclonal (Host – Rabbit, Isotype - IgG and IgM) Primary control 0.5µg/ml 08-6199, Invitrogen 

DSB-X biotin anti-mouse (Host/Isotype – Goat/IgG(H+L)) Secondary 1:300 D20691, Invitrogen 

F(ab’)2 Anti Rabbit Ig’s biotin (Host /Isotype – Goat/Ig’s) Secondary 1:300 ALI 4409, Biosource 

AP-Streptavidin Conjugate - 1:300 43-8322, Zymed 

Normal goat serum - 10% PCN5000, Biosource 
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2.5 Statistical analysis 

The data obtained from the radial migration (n=180) and the wound healing (n=90) 

assay of cells are shown as mean ± SEM The sample size is arrived at by multiplying the 

number of observation (i.e. 20 radii for radial migration assay or 10 distances for each 

edge of the wound healing assay) multiplied by number of samples (i.e. 3) and number of 

times the experiments were repeated (i.e. 3). The images for the measurement of 

migration by both radial migration and wound healing assay were acquired with 

pixel:distance ratio of 1:3.69. However, it should be noted that the images were analysed 

using pixel:distance ratio of 1:1. The differences among different conditions and/or 

treatments were evaluated, wherever appropriate using either one way analysis of 

variance (ANOVA) followed by Bonferroni post hoc test or independent t test. The level of 

significance was conveyed using the general notations *p<0.05, **p<0.01 and ***p<0.001 

or as mentioned in the relevant legends of data figures. In addition, coefficients of 

variation were calculated to determine the reproducibility of the data. 
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3.1 Introduction 

Endothelial cell migration is an essential aspect of angiogenesis during the wound 

healing process. A range of in vitro methods have been developed to simulate in vivo 

conditions in order to understand the mechanism of cell migration and wound healing 

(Auerbach et al. 2003, Eccles, Box and Court 2005). These methods are helpful in 

providing an insight into the cellular and molecular mechanisms of impaired wound 

healing of diabetes. This chapter deals with development, validation and optimisation of 

cell migration and wound healing methods. 

A commonly employed method to measure the migration in vitro includes 

scratching the cell monolayer and measuring the distance covered by the endothelial cells 

into the scratched region (Li et al. 2006). Some studies include the use of Boyden 

chambers (transwell migration) to study the cellular migration (Hervé et al. 2005, Lee et al. 

2005), while other studies include wounding cell monolayer and counting the migrated 

cells into the wounded region (Hamuro et al. 2002). 

The method employed in carrying out the cell migration assay in this study is an 

adaptation of the omni-directional migration method described by Dolle et al. (Dolle et al. 

2005). The development of radial migration was carried out using HUVECs in the 

beginning and later made use of HMVECad. Endothelial cells were seeded as circular 

monolayers as explained in section 2.2.2 of previous chapter while developing and 

validating the migration assay. The measurements of area, length and radii of circular cell 

monolayer were carried out to validate the assay. 

The development of a method to measure the migration of endothelial cells in the 

milieu of a wound environment was another objective of this project. In connection with 

this, a scratch wound and a radial wound method were developed. The wounds were 

made on a monolayer of cells either by using a sterile pipette tip or by removing half of the 

monolayer and the migration of cells was measured. 

Unlike other chapters, this chapter is structured slightly differently. The section 

dealing with the development of the radial migration assay (section 3.2) has one general 

materials and methods section (section 3.2.1) and few subsections in the combined 

results and discussion section (section 3.2.2) where results of each method followed by a 

brief discussion explaining changes made to the method are presented.  The rationale for 

this is that the outcomes of each experiment inform the next stage. The last subsection 

3.2.3 summarises the method development process. 

The development of the wound healing method (section 3.3) also has two 

subsections, one explaining the scratch wound assay (3.3.1) and another explains the 

wound healing assay (section 3.3.2). These subsections, in turn are divided into materials 
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and methods followed by the combined results and discussion. Similar to radial migration 

assay, wound assays are summarised in section 3.3.3. 

The last two sections (section 3.4 and 3.5) dealing with Haematoxylin & Eosin 

staining and the expression of PECAM-1 and actin expression in microvascular 

endothelial cells respectively have three subsections each of introduction, materials and 

methods and finally combined results and discussion. 

3.2 Radial migration assay 

3.2.1 Materials and methods 

HUVECs or HMVECad were seeded as a circular monolayer (Fig. 3.1a) as 

explained in the section 2.2.2. 

 

 

 

Fig. 3.1a Pictorial presentation of migration assay The HUVECs or HMVECad were 

grown into circular cell monolayers. The scale bar of photomicrographs represents 200µm 

(Magnification: 25 x). 
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Photomicrographs of cell monolayers were acquired before incubation and 

recorded as 0 h samples. Images were subsequently taken at 24 and 48 h after incubation 

and are recorded as 24 and 48 h samples. The images were analyzed by measuring the 

area (Fig.3.1b), length (Fig. 3.1b) and radii (Fig. 3.1b, 2.2a-d) of circular cell monolayers 

to determine the migration of cells. All three parameters viz. area, length and radii were 

measured to find out which of them best represents the migration of endothelial cells. The 

measurement of area and length was recorded by masking the circular monolayers with a 

hand drawn loop using Leica (QWin Standard v 2.8, Image Processing and Analysing 

System) software. The measurement of radii was carried out as explained in section 2.2.3. 

A minimum of 10 or 20 (as specified in the relevant sections) radii were drawn on the 

radial spokes and the measurements were noted down. 

 

 

Fig. 3.1b Pictorial presentation of migration assay The migration was measured in 

terms of area and length by superimposing a manual drawn blue loop on a circular 

monolayer. The area (blue coloured loop) and length (black line) were recorded from the 

same loop, whereas radii (red lines) were measured by superimposing the radial spokes 

as explained in Fig 2.2a-d of previous chapter. The scale bar of photomicrographs 

represents 200µm (Magnification: 25x). 
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Three time points were used to record the migration viz. t0 = 0 h, t24 = 24 h and t48 

= 48 h. Images of cell monolayers were recorded prior to their incubation in test conditions 

as samples of t0, after 24 h incubation as samples of t24 and after 48 h incubation as 

samples of t48.  Different samples were used while developing the methodology. The 

following table 3.1 serves as a guiding point to understand the sampling methods. The 

migration (section 3.2.2.1) was defined as area or length or radii measured at 0, 24 and 

48 h. The analysis of net migration was more accurate and less time consuming 

compared to the measurement of migration; hence it was adopted from section 3.2.2.2 

onwards and for the results of other chapter. The net migration was defined as the 

difference between the measurements of 24 or 48 h with those of 0 h. The migration 

measurements depending on the sample size are presented as median for area (µm2) and 

length (µm) and as mean ± SEM (µm) for radii. 
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Table 3.1 Sampling methods Different samples (S) were used while developing the 

method for migration assay, while having three time points (t) during all the experiments. 

Recording of the net migration involved subtracting values of t0 from either t24 or t48.  

 

Section 
Time point (t) 

(h) 

Sample used to 

capture images 

Samples used to record the 

migration 

Sample 

size 

3.2.2.1 

0 (t0) S1+S2+S3 S1+S2+S3 03 

24 (t24) S4+S5+S6 S4+S5+S6 03 

48 (t48) S7+S8+S9 S7+S8+S9 03 

3.2.2.2 

and 

3.2.2.4 

0 (t0) 
S1+S2+S3 

+S4+S5+S6 
- 06 

24 (t24) S1+S2+S3 (S1+S2+S3)t24 - (S1+S2+S3)t0 03 

48 (t48) S4+S5+S6 (S4+S5+S6)t48 - (S4+S5+S6)t0 03 

3.2.2.3 

The first time point (t0) is 24 h after the formation of circular monolayer 

0 (t0) 
S1+S2+S3 

+S4+S5+S6 
- 06 

24 (t24) S1+S2+S3 (S1+S2+S3)t24 - (S1+S2+S3)t0 03 

48 (t48) S4+S5+S6 (S4+S5+S6)t48 - (S4+S5+S6)t0 03 

3.2.2.5 

and 

3.2.2.6 

0 (t0) S1+S2+S3 - 03 

24 (t24) S1+S2+S3 (S1+S2+S3)t24 - (S1+S2+S3)t0 03 

48 (t48) S1+S2+S3 (S1+S2+S3)t48 - (S1+S2+S3)t0 03 
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3.2.2 Results and discussion 

3.2.2.1 Migration assay using different samples at different time points 

The results for the migration of HUVECs in N5mM condition were obtained by 

using three separate samples (n=3) at one single time point, S1 to S3 at 0 h, S4 to S6 at 

24 h and S7 to S9 at 48 h, as mentioned in table 3.1. Thus, each time point contained 

separate samples of monolayers and did not represent the longitudinal results from an 

individual monolayer at the specified time point. The images were used to record the 

measurements as explained in section 3.2.1. Ten radii measurements were recorded for 

each sample and results are presented in figure 3.2. 

No significant difference between 0 and 24 h was observed in area (µm2) (0 h: 

100884.1 vs. 24 h: 96095.8) and length (µm) (0 h: 375.5 vs. 24 h: 388.6). However, the 

radii (µm) were significantly less (p<0.05) at 24 h (179.8 ± 1.3) compared to 0 h (186.6 ± 

1.1) (Fig. 3.2). The measurement of area, length and radii was 148461.5, 495.3 and 241.7 

± 2.3 respectively at 48 h. The migration was significantly higher (p<0.001)  at 48 h 

compared to 0 and 24 h only in case of radii and no significant difference was detected in 

either area or length. 

The migration assay using different samples at different time points (Fig. 3.2) failed 

to confirm any changes happening in the migration of cells over the period of time. On the 

contrary, the radii of 24 h samples were found to be of lesser size than those of 0 h. This 

clearly suggests that, the monolayers of cells were not of uniform size at the time of 

seeding (i.e. at 0 h). Although the cells might have migrated from their original position, 

this method failed to detect it because a different set of monolayers were used to measure 

the area, length and radii at 24 and 48 h. Hence it was decided that the use of different 

sets of monolayers at different time points was not suitable to record the migration of cells. 

As a result, in the next set of experiments the photographs of same monolayers of 0 and 

24 h and 0 and 48 h were used for image analysis.  
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Fig 3.2 The migration assay using different samples at different time points The 

circular HUVEC monolayers were exposed to N5mM condition for 48 h. The migration 

was measured in terms of area (a), length (b) and radii (c) at 0, 24 and 48 h. The median 

of area and length were analysed by nonparametric (Mann-Whitney) analysis and means 

of radii were analysed by ANOVA followed by post hoc (Bonferroni) test. 

(Area and length: n = 3, Radii: n = 30 (10 radii from each sample), 

* p<0.05, *** and ††† p<0.001 when compared to 0 and 24 h respectively) 
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3.2.2.2 Migration assay using same samples at two different time points 

A few changes were then made from the previous set of experiments. They were as 

follows 

a) Validation of the migration assay was continued by using HMVECad rather than 

HUVECs in N5mM condition. HMVECad were used, as the larger aim of the 

project was to assess the migration of dermal microvascular endothelial cells. 

b) Net migration rather than migration was assessed, as the migration at 0 h (t0) of 

previous set of experiments (section 3.2.2.1) was actually not per se the migration 

but a mere dimension of the monolayers.  

c) The sampling technique was altered in order to improve the accuracy of the 

measurements obtained.  

The results presented here were obtained by using the same three samples at two 

different time points i.e. S1 to S3 at 0 and 24 h and S4 to S6 at 0 and 48 h as explained in 

table 3.1. The photomicrographs of all the six samples i.e. S1 to S6 were captured at 0 h. 

The samples were returned to the incubator and subsequently three samples i.e. S1 to S3 

were photographed again at 24 h and other three i.e. S4 to S6 again at 48 h. That 

effectively meant that there were six samples at 0 h, three to be photographed again at 24 

h and another three to be photographed again at 48 h. The images were later used to 

record the net migration as explained in 3.2.1 by subtracting the distance of cell migration 

at either 24 or 48 h with their respective images taken at 0 h. 

No significant difference in the net migration in N5mM condition (Fig. 3.3) between 24 

and 48 h was observed for area (µm2) (24 h: 157296.0 vs. 48 h: 262240.0) and length 

(µm) (24 h: 163.0 vs. 48 h: 205.0). However, the net migration in terms of radii (µm) was 

significantly higher (p<0.001) at 48 h (116.3 ± 1.5) compared to 24 h (72.0 ± 1.2). 

The results (Fig. 3.3) show that the area and length did not change significantly 

between different time points unlike radii which increased significantly at 48 h compared to 

24 h. This was partly due to the limitation in the dimensions of the image frame. The 

dimension of the images captured at a magnification of 25x was 1392 x 1040 (width x 

height) pixels. The calibrated image size was 5136.5 x 3837.6 (width x height) in µm (1 

pixel = 3.69µm). The circular cell monolayers seeded into a glass ring of 6mm of outer 

diameter could not be captured in its entirety within the image frame.  The height of the 

image that could be captured as the frame height was smaller than the size of the circular 

monolayer, particularly at 24 and 48 h. As a result, the measurement of area and length at 

24 and 48 h did not reflect an accurate migration of cells.  Thus, the measurement of area 

and length at different time points were not sufficiently accurate at determining any 

changes in the migration of cells in specific conditions.  
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Fig 3.3 The migration assay using same samples at two different time points The 

circular HMVECad monolayers were exposed to N5mM condition for 48 h. The net 

migration was measured in terms of area (a), length (b) and radii (c) at 24 and 48 h. The 

data of area and length were analysed by nonparametric (Mann-Whitney) analysis and 

data of radii was analysed by independent t test. 

(Area and length: n = 3, Radii: n = 60 (20 radii from each of 3 samples), 

*** p<0.001 when compared to 24 h) 
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3.2.2.3 Migration assay using the same samples at two different time points with an 

extended incubation time 

The results for the migration of HMVECad in N5mM condition were obtained very 

similarly as in the last section with the following exception. In the previous section 3.2.2.2, 

0 h is when the glass rings were removed and the resulting circular monolayers were 

photographed before returning them to the incubator.  However, to obtain the results of 

this sub-section the circular monolayers supplemented with media were allowed to remain 

in the incubator overnight after removal of the glass rings. Next day, the images of 

monolayers i.e. S1 to S6 were captured and these images were considered as samples at 

0 h. The samples were returned to the incubator until the three samples i.e. S1 to S3 were 

photographed again at 24 h and the remaining three i.e. S4 to S6 at 48 h. The images 

were used to record the net migration as explained in section 3.2.1. 

No significant difference in the net migration in N5mM condition (Fig. 3.4) between 

24 and 48 h was observed for area (µm2) (24 h: 83559.0 vs. 48 h: 146692.0) and length 

(µm) (24 h: 98.0 vs. 48 h: 141.0). However, like previously, in these set of experiments 

also the net migration in terms of radii (µm) was significantly higher (p<0.001) at 48 h 

(77.7 ± 1.4) compared to 24 h (35.6 ± 0.7). 

The results presented (Fig. 3.4) confirm that the area and length failed to change 

significantly at different time points unlike radii which increased significantly at 48 h 

compared to 24 h. The earlier explanation of image frame provided in section 3.2.2.2 

holds true for this section also.  As a result, the measurement of area and length was not 

subsequently used to record the migration of cells. The extra incubation for 24 h after the 

removal of rings produced the results similar to section 3.2.2.2. Hence, in the next set of 

experiments only radii was measured in order to assess the net migration in different 

conditions and further to understand the intra and inter-experimental variabilities. 
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Fig 3.4 The migration assay using the same samples at two different time points 

with an extended incubation time The circular HMVECad monolayers were exposed to 

N5mM condition for 48 h. The net migration was measured in terms of area (a), length (b) 

and radii (c) at 24 and 48 h. The median of area and length were analysed by 

nonparametric (Mann-Whitney) analysis and means of radii were analysed by 

independent t test. 

(Area and length: n = 3, Radii: n = 60 (20 radii from each of 3 samples), 

*** p<0.001 when compared to 24 h) 
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3.2.2.4 The radial migration assay in different conditions using the same samples at two 

different time points 

The method of selecting the samples was similar to that presented in section 3.2.2.2 

with following changes 

a) Only radii, not the area and length, were used to assess the migration of 

endothelial cells. 

b) The radii of the circular monolayer of HMVECad were recorded not only in N5mM 

condition but additionally in three other conditions viz. N20mM, H5mM and 

H20mM. 

c) The migration assay was carried out on three different occasions to verify the 

reproducibility of the results. 

The results obtained on the first occasion (Fig. 3.5a) show that the net migration (µm) 

in N20mM (24 h: 39.5 ± 1.5; 48 h: 91.3 ± 2.3) condition was significantly less (p<0.001) 

than in N5mM (24 h: 48.3 ± 1.5; 48 h: 132.5 ± 5.3) condition at 48 h, but not at 24 h 

(p>0.05). The migration significantly increased in H5mM (24 h: 64.7 ± 6.4; 48 h: 133.8 ± 

2.7) at 24 h (p<0.01), but not at 48 h (p>0.05) compared to N5mM condition. The 

migration in H20mM (24 h: 60.8 ± 1.2; 48 h: 113.4 ± 2.0) condition was significantly less 

(p<0.001) at 48 h, but not at 24 h (p>0.05) when compared to H5mM condition. 

In the next experiment (Fig. 3.5b), the net migration (µm) in N20mM (24 h: 68.6 ± 

2.0; 48 h: 139.0 ± 3.1) condition was not significantly different (p>0.05) from that in N5mM 

(24 h: 65.0 ± 0.9; 48 h: 143.9 ± 4.0) condition at both time points. The migration in H5mM 

(24 h: 73.7 ± 0.7; 48 h: 153.5 ± 1.6) condition was significantly higher at 24 h (p<0.01), but 

not at 48 h (p>0.05) compared to N5mM condition. The migration in H20mM (24 h: 63.8 ± 

2.5; 48 h: 141.4 ± 1.4) condition was significantly lower at 24 h (p<0.001) and 48 h 

(p<0.05) compared to H5mM condition. 

On another occasion (Fig. 3.5c), the net migration (µm) in N20mM (24 h: 92.2 ± 

1.8; 48 h: 139.2 ± 1.9) condition was not significantly different (p>0.05) than in N5mM (24 

h: 92.6 ± 1.7; 48 h: 139.2 ± 1.9) condition at both time points. The migration in H5mM (24 

h: 97.2 ± 0.7; 48 h: 149.3 ± 1.3) condition did not significantly alter at 24 h (p>0.05), but 

was higher at 48 h (p<0.001) compared to N5mM condition. The migration in H20mM (24 

h: 83.0 ± 2.1; 48 h: 127.8 ± 1.3) condition was significantly less (p<0.001) than in H5mM 

condition at both time points. 

The changes in the net migration (Fig. 3.5a-c) happening in response to different 

conditions were not reproducible over different occasions. This could be because of using 

different samples at 24 and 48 h. To overcome this inter- and intra-experimental 

variability, it was decided that the same circular monolayer will be photographed for all the 

time points as explained in next set of experiments. 
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Fig. 3.5 Radial migration assay in different conditions using the same samples at 

two different time points The circular HMVECad monolayers were exposed to either 

5mM glucose or 20mM glucose under normoxic (20% O2 tension) or hypoxic (5% O2 

tension) condition for 48 h. The migration in all the conditions was significantly higher at 

48 h compared to 24 h on all three different occasions represented by figure a, b and c. 

The comparison between the conditions was analysed by ANOVA followed by Bonferroni 

post-hoc test. The comparison between the days of the same condition was analysed by 

independent t test.  

(n=60 for all, except for H20mM at 24 h when n=40 in figure c; 

NS = not significant (p>0.05), * p<0.05, **p<0.01, ***p<0.001 when compared as 

indicated) 
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a) 

 

b) 

 

c) 
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3.2.2.5 Migration assay using same samples for all the time points 

In this set of experiments, the same monolayers of HMVECad in N5mM condition 

were photographed and analysed at three different time points of 0, 24 and 48 h as 

explained in table 3.1. The photomicrographs of all the three samples (S1 to S3) at 0 h 

were captured. The samples were returned to the incubator and were photographed at 24 

h. The samples were returned to the incubator again for another day and finally 

photographed at 48 h. The images were used to record the net migration as explained in 

3.2.1. 

Area and length along with radii were measured in order to confirm the effect of 

the new sampling technique on the net migration. Similar to the previous set of 

experiments, no significant difference in the net migration in N5mM condition between 24 

and 48 h was observed for area (µm2) (24 h: 160128.0 vs. 48 h: 249116.0) and length 

(µm) (24 h: 162.0 vs. 48 h: 263.0) (Fig. 3.6). However, the net migration in terms of radii 

(µm) was significantly higher (p<0.001) at 48 h (111.0 ± 2.3) compared to 24 h (70.5 ± 

1.4). 

The results suggest that this sampling technique was reproducible over different 

occasions. Hence this method was followed to present the net migration in the all other 

chapters. The effects of different conditions on the migration of cells, using this method 

are presented in the next chapter. However, to overrule the user induced bias a single 

blind study of migration using this method was carried out and is presented in next 

section.   
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Fig 3.6 The migration assay using same samples for all the time points The circular 

HMVECad monolayers were exposed to N5mM condition for 48 h. The net migration was 

measured in terms of area (a), length (b) and radii (c) at 24 and 48 h. The data of area 

and length were analysed by nonparametric (Mann-Whitney) analysis and data of radii 

was analysed by independent t test. 

(Area and length: n = 3, Radii: n = 60 (20 radii from each of 3 samples), 

*** p<0.001 when compared to 24 h) 
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a) 
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3.2.2.6 Single blind analysis of migration assay 

 The images of HMVECad captured as explained in section 2.2.2 were analysed 

before blinding (un-blinded) and after blinding (blinded) the samples to recognise the user 

induced bias, if any. The migration of cells was noted for totally eight test groups to 

compare between blinded and un-blinded samples (table 3.2). No significant difference 

(p>0.05) was found in any of the eight groups between the blinded and un-blinded 

samples. The coefficients of variation (CV) were calculated to assess the variation in a 

single test group for intra-experimental variation. The minimum value of CV was 1.0% for 

un-blinded samples of group 5 and maximum value was 3.1% for blinded samples of 

group 2. The lower values of CV indicate lesser variation in the measurement of radii of 

samples within an experiment. The effects of different conditions on the migration of 

endothelial cells are discussed in the next chapter. 
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Table 3.2 Single blind analysis of radial migration assay The circular HMVECad 

monolayers were grown as circular monolayers and images were captured. The images 

without coding were analysed as un-blind samples and after coding, the same images 

were analysed as blind samples. The coefficients of variation were calculated to analyse 

the reproducibility of the results within an experiment. The comparison between the un-

blind and blind samples of a same condition was analysed by independent t test.  

(n=60 for all, except for test group 4 and 8 when n=40) 

 

 

Test 

groups 

Migration (mean ± SEM) (µm) 
p value 

Coefficient of Variation (%) 

(CV=(SEM/Mean)x100) 

Blinded Un-blinded Blinded  Un-blinded 

1 92.6 ± 1.9 95.8 ± 1.1 0.14 2.1 1.1 

2 75.2 ± 2.3 78.3 ± 1.6 0.26 3.1 2.0 

3 109.6 ± 2.1 111.8 ± 2.0 0.46 1.9 1.8 

4 89.9 ± 1.6 90.0 ± 2.2 0.96 1.8 2.4 

5 166.9 ± 2.2 168.9 ± 1.7 0.48 1.3 1.0 

6 142.0 ± 2.3 144.7 ± 2.6 0.43 1.6 1.8 

7 181.7 ± 3.0 184.5 ± 3.6 0.56 1.7 2.0 

8 142.9 ± 2.3 147.2 ± 2.1 0.17 1.6 1.4 
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3.2.3 Summary 

The following conclusions could be drawn from the different set of experiments of 

migration assay. 

1. Net migration and not simple migration is an accurate indicator of the migration of 

cells. 

2. Area and length are interdependent as they both are calculated by the software at 

a same time using a same image. One can not be used without the other in any of 

the methods explained. 

3. Area and length could not be used as parameters of the migration of cells of a 

circular monolayer due to the 

3.1 limitation posed by the image frame. This limitation could have been possibly 

overcome by making either using lower magnification of 16x or by increasing 

the image frame by altering the C-mount (a hardware part of microscope 

camera) from 0.70x to 0.50x. However this would have been still a problem, if 

the monolayers were to grow larger than image frame at 48 h and the 

3.2 large errors associated with the values of area and length as large internal 

component does not vary. 

4. The use radii of same samples for all the time points is an optimal method to 

measure the radial migration, as it makes the use of a same monolayer over the 

period of time. 

5. Use of same sample for two time point method did not produce reproducible 

results for the migration in different condition suggesting the flaws of sampling 

technique. 

6. Single blind study confirmed that the use of radii and same samples for all the time 

points is an optimal method. 

In conclusion, it was decided to use radii from the same monolayer for all the time 

points in order to record the net migration of endothelial cells. All the observations of 

section 3.2 are summarised in the following table 3.3. The radial migration assay method 

was followed for the results presented in all other chapters; the method was explained as 

a general method in chapter 2. Using the radial migration assay the measurement of 

migration was carried out in different conditions varying the glucose and oxygen tension 

levels and the results are presented in next chapter. 
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Table 3.3 Summary of the sampling methods for migration assay 

 

Section Sampling method Observations Proposed reasons 

3.2.2.1 Different samples at different time points 
No change in the area or length 

or radii over the time 
Variation in sampling technique 

3.2.2.2 
Same samples for two time points (i.e. at t0 and 

t24 or t0 and t48) 

No change in area or length, but 

change in radii over the time 

Image frame size, variation in sampling 

technique and small sample size of area 

and length 

3.2.2.3 

Same samples for two time points (i.e. t0 and t24 

or t0 and t48) with an extended incubation of 24h 

period before t0 

No change in area or length, but 

change in radii over the time 

Image frame size, variation in sampling 

technique and small sample size of area 

and length 

3.2.2.4 
Same samples for two time points (i.e. t0 and t24 

or t0 and t48) in different conditions 

Inter and intra experimental 

variability 
Sampling technique 

3.2.2.5 Same samples for all the time points 
No change in area or length, but 

change in radii over the time 

Image frame size and difference of values 

in net change compared to area and length 

3.2.2.6 Same samples for all the time points 
No difference between blinded 

and un-blinded samples 
Optimal method 
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3.3 Wound healing assay 

Two methods were employed to assess the migration of cells in the wound 

environment, termed for the purpose of this section as the scratch wound assay and the 

wound healing assay. 

3.3.1 Scratch wound assay 

3.3.1.1 Materials and Methods 

The six well plates were seeded with 5x103 HUVECs per cm2 as explained in 

section 2.2.1.4. When confluent, the monolayers were wounded by scratching with a 

sterile pipette tip drawn across the surface of the monolayers into four quadrants (Fig 

3.7a). The detached cells were removed by washing with phosphate buffered saline (PBS) 

and the plates were replenished with fresh 2.5ml of media before returning them to either 

N5mM or H5mM incubation conditions for 24 or 48 h. 

The monolayers were photographed using an inverted microscope (DMI 4000B, 

Leica Microsystems, Germany) at a magnification of  25x at 0 h before incubating cells in 

the above mentioned conditions and again images obtained at either 24 or 48 h. The 

photomicrographs were analysed using Leica (QWin Standard v 2.8, Image Processing 

and Analysing System) software by measuring the wound area of the cell monolayer. A 

circular loop generated using the software, was superimposed at the intersection of the 

monolayer where it was devoid of the cells (Fig. 3.7b). If, one loop was not big enough to 

cover the wounded region, more than one loop were used so as to cover the wounded 

region at the centre of the intersection (Fig.3.7c). The wound healing response presented 

as the median and was defined as the area (μm2) remaining free of cells at 0, 24 and 48 

h. 
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a) 

 

b) 

 

c) 

 

Fig. 3.7 Images of the scratch wound assay The confluent monolayer was scratched 

through to divide it into four quadrants (a). The wounded region was measured by 

recording the area of a software generated circular blue coloured loop superimposed at 

the intersection of quadrants. If a single circular loop (b) could not cover the central region 

of intersection, more than one loop (c) was superimposed to cover that region. The scale 

bar of photomicrographs represents 200µm (Magnification: 25x). 
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3.3.1.2 Results and Discussion 

The wounded area (µm2) in N5mM condition at 0, 24 and 48 h was 17404.3, 

2260.0 and 0.0 respectively (Fig. 3.8). The wounded area in H5mM condition at 0, 24 and 

48 h was 20956.3, 2776.8 and 0.0 respectively. There was no significant difference 

(p>0.05) in wounded area between the normoxic and hypoxic conditions at any of the time 

points. However, the wounded area was more confluent with cells at 24 h in N5mM 

(p<0.001) and H5mM (p<0.05) condition compared to 0 h. The monolayers continued to 

become confluent at 48 h compared to 24 h in N5mM (p<0.01) and H5mM (p<0.05) 

condition. 

 

 

 

 

Fig. 3.8 Scratch wound model The monolayers of HUVECs were exposed to normoxic 

(20% O2 tension) or hypoxic (5% O2 tension) condition after wounding with a sterile pipette 

tip. The data were analysed by non parametric (Mann-Whitney) analysis. 

(n=12 at 0 h and n=6 at 24 and 48 h; NS = not significant (p>0.05), *p<0.05, **p<0.01, 

***p<0.001 when compared as indicated). 
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This method failed to detect the difference in the wound healing response to 

normoxic and hypoxic condition. However, the level of significance in the wound healing 

rate over different time points in normoxic and hypoxic condition were different. These can 

be attributed to the following reasons 

a) HUVECs were detached from the surface unevenly while scratching, leading to 

variability in the level difference in the wounded area in different monolayers.  

b) As the wounding was created in an already confluent monolayer, the monolayers 

were over confluent by the time the wound healing was measured at 24 and 48 h. 

c) Like in the migration assay, the measurement of whole of area as a single value, 

rather than the multiple values of distance was an impediment in getting any 

meaningful results. 

d) The sample size was too small and was an obstacle in getting any meaningful 

difference in wound healing rate between normoxic and hypoxic conditions. 

e) This model did not provide the opportunity of assessing the migration of 

endothelial cells from both the wounded and unwounded edge of the same 

monolayer, which was one of the objectives of this project. 

After considering all the above mentioned reasons, it was decided to design an 

experiment using HMVECad where the earlier explained radial migration assay would be 

brought together with the wound healing assay as explained in section 2.2.4 of the 

previous chapter. 
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3.3.2 Wound healing assay 

3.3.2.1 Materials and methods 

 This method was developed with an aim of combining the wound healing assay 

with the migration assay, as one of the objectives of the project was to understand the 

migration of cells under the influence of a ‘normal’ and/or a ‘wounded environment’ on 

each other. The previously explained scratch wound method was not suitable to realise 

this objective. HMVECad cells were grown as a circular monolayer in 6-well plates and 

half of each monolayer was removed. The wound healing assay was carried out in N5mM 

and H5mM conditions and migration was assessed as explained in section 2.2.4 of 

chapter 2. 

3.3.2.2 Results and discussion 

The migration (µm) of HMVECad (Fig. 3.9a) from the intact edge in N5mM (24 h: 

80.2 ± 1.4; 48 h: 153.7 ± 3.1) was significantly lower (p<0.001) than in H5mM (24 h: 92.9 

± 1.9; 48 h: 183 ± 2.8) condition. Similar to the intact edge, the migration of HMVECad 

from the wounded edge (Fig.3.9b) was significantly lower (p<0.001) in N5mM (24 h: 87.8 

± 1.8; 48 h: 170.5 ± 2.8) compared to H5mM (24 h: 105.1 ± 1.4; 48 h: 208.8 ± 2.8) 

condition. The migration in H5mM condition was significantly higher (p<0.001) compared 

to N5mM condition. The wound healing assay confirmed the increase in the migration of 

cells not only over time but also with decreasing oxygen tension.  
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a) 

 

b) 

 

Fig. 3.9 Wound healing assay The migration of HMVECad in conditions of 5mM glucose 

and 20 (Normoxia – N) or 5% (Hypoxia – H) oxygen tension was assessed by the wound 

healing assay. The results are presented as net migration (mean ± SEM) of cells from the 

intact (a) and the wounded edge (b) of the monolayer. Independent t test was employed to 

compare the results between the two conditions and two time points. 

(***p<0.001 when compared as indicated, n = 90 for each condition at 24 & 48 h, except 

for H5mM of intact edge, n = 80 at 24 h) 
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3.3.3 Summary 

The following conclusions could be drawn from this different set of experiments of 

wound assays. 

1. The scratch wound assay does not provide an opportunity to bring the wound 

healing and migration assay in a single model. 

2. The scratch wound assay creates uneven areas of wound and involves small 

sample size due to measurement of area as a single observation. This would 

necessitate increase in the sample size to produce meaningful results. On the 

other hand wound healing assay not only combines the migration and wound 

healing together but also is able to meaningfully distinguish between the 

differences between the conditions and time points.  

In conclusion, it was decided to use radial and normal distances from un-wounded and 

wounded edge of the monolayer respectively to record the net migration of endothelial 

cells. The wound healing assay method was followed for the results presented in all other 

chapters and the method has been explained in section 2.2.4 as a general method in 

chapter 2. A more detailed look at the effect of glucose concentration and oxygen tension 

using the validated methods was then undertaken and the results are presented in next 

chapter. 

The work involving the development and validation of the migration/wound healing 

assay would benefit further if the cells seeded into a glass ring do not escape through a 

gap between the rings and surface of a plate. On few occasions, lack of sealing at the 

base of glass rings allowed the cells to escape through underneath of rings. This resulted 

in few cells residing at a little distance (few mm away) from the circumference of a circular 

monolayer. As the time progresses the cells at distance try to converge toward the 

monolayer and vice versa acting as a chemoattractants to each other. This could prove to 

be a hindrance to measure the migration and might lead to faulty measurements. Unlike 

Dolle et al. (2005), we avoided placing glass beads on the rings in order to provide the 

seal as we found it not only cumbersome and failed to prevent the cell leakage, but also 

resulted in falling off of beads creating more problem (Dolle et al. 2005).  We also avoided 

using sterile silicone high vacuum grease at the base before placing the rings, as it would 

have possibly hindered capturing of clear images (Ryan 2010). However rare the 

occurrence might be, the method stands benefitted if the way to seal the gap is found. 
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3.4 Haematoxylin and eosin (H&E) staining of endothelial cells 

3.4.1 Introduction  

H&E staining uses two different stains, haematoxylin stains the nucleus and eosin 

stains the cytoplasm and connective tissue. Haematoxylin stains the chromatin of the 

nucleus leaving behind a deep purplish-blue colour. Eosin, an orangish-pink to red dye 

leaves an orange-pink colour after staining the cytoplasmic materials. Both act as counter 

stain to each other giving the sharp contrast colour. 

H&E staining can be achieved by two commonly employed methods known as 

progressive and regressive staining. In progressive staining the slides are treated with 

haematoxylin, and then rinsed, followed by treatment with eosin. In the regressive staining 

procedure the slides are treated with Harris haematoxylin, and then differentiated in acid 

alcohol which takes out haematoxylin from everything except the nucleus, followed by 

treatment with eosin. The progressive staining employs Gill’s 1, Gill’s 2, Gill’s 3 and 

Mayer’s haematoxylin. On the other hand, the regressive staining employs a stronger form 

of haematoxylin called, Harris haematoxylin. Eosin of different strengths can be employed. 

Eosin Y being the mildest followed by Eosin Y Alcoholic and Eosin Y with Phloxine (Skip 

Brown 2010). 

3.4.2 Materials and Methods 

Previously prepared cells were removed from the -200C freezer, and allowed to 

thaw for 90 min to come up to room temperature. The cells were fixed in ice cold 70% 

ethanol in a fume hood before air drying for 10 minutes. The plates were equilibrated in 

tris-buffered saline (TBS) (50mM tris, 40mM HCl, 0.9% NaCl, pH7.6) for five minutes 

before removing the excess liquid. Another wash with TBS was given for five minutes. The 

cell monolayers were washed twice with absolute alcohol for five minutes followed by 70% 

alcohol for three minutes and finally with distilled water for two minutes to hydrate the 

cells. The plates were then treated with Harris haematoxylin for one minute followed by 

washing with water for two minutes. Haematoxylin was removed from the cytoplasm by 

washing with 0.5% acid alcohol {50ml of 5% HCl (2.5ml of Conc. HCl + 47.5ml of distilled 

H2O) + 950ml of absolute ethanol} for a minute, followed by washing with distilled water 

for two minutes. The plates were then subjected to the blueing agent (Scott’s tap water 

substitute - MgSO4.7H2O - 20g, NaHCO3 - 3.5g dissolved in 1l distilled water) for two 

minutes followed by washing with water for two minutes. The plates were then run through 

Eosin Y for 30 seconds followed by washing with water for two minutes. The plates were 

then taken back through water, 70% alcohol and absolute alcohol before applying the 

cover slip. 
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3.4.3 Results and Discussion 

H&E staining in the following images (Fig. 3.10) show the cells migrating in a radial 

direction when seeded into a circular monolayer. The image (a) of Fig. 3.10 shows the 

cells at the edge of the monolayer emigrating outwardly (blue arrows) and some cells 

within the monolayer undergoing proliferation (green circles). The proliferating cells 

appear to be undergoing mitotic division which in few hours would divide into daughter 

cells. H&E staining revealed the morphology of the HUVECs and HMVECad. The 

HUVECs resembled cobble stones in appearance, whereas the HMVECad were more 

spindle shaped. 
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a) 

 

 

 

b)      c) 

      

 

 

Fig. 3.10 Haematoxylin & Eosin staining The circular monolayers of HUVECs (a & b) 

and HMVECad (c) were stained with H&E staining. The blue arrows and green circles in 

photomicrographs indicate the migrating and proliferating cells respectively. The HUVECs 

are morphologically cobble stone shaped (b), whereas the some of HMVECad are spindle 

shaped (c). The images are representative of samples from 3 different occasions (n=3). 

The scale bar of photomicrograph represents 200 (a) and 50µm (b & c) (Magnification: 

100x & 400x). 
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3.5 Expression of PECAM-1 and actin in HMVECad 

3.5.1 Introduction 

Platelet endothelial cell adhesion molecule-1 (PECAM-1) or CD31, a glycoprotein 

belonging to IgG super family has a molecular weight of 130kDa and is expressed 

constitutively by endothelial cells and on the surface of immune cells, platelets, monocytes 

and neutrophils, some T cells and megakaryocytes (Woodfin, Voisin and Nourshargh 

2007). The role of PECAM-1 in leukocyte transmigration during the inflammatory reaction 

is well documented (Woodfin, Voisin and Nourshargh 2007). Apart from a role in 

inflammatory reaction, PECAM-1 has been implicated in modulating cell junctions, cell 

adhesion and cytoskeletal signalling pathways (Ilan and Madri 2003). PECAM-1 induces 

angiogenesis by enhancing tube formation by increasing the migration of endothelial cells 

(Cao et al. 2002). PECAM-1 knockout mice showed decreased angiogenesis due to low 

vascular density and less haemoglobin and laminin resulting in a fewer neutrophils 

accumulating at the site of foreign body implants (Solowiej et al. 2003). Further, PECAM-1 

knockout endothelial cells showed a lack of formation of filopodia, decreased wound 

healing and cell motility in in-vitro models and decreased angiogenesis in PECAM-1 

knockout mice (Cao et al. 2009). 

There are not many reports indicating the role of PECAM-1 in any of the vascular 

complications of diabetes. Hyperinsulinaemia has been implicated in exacerbating 

atherosclerosis through increased expression of PECAM-1 which increases 

transendothelial migration of leukocytes (Okouchi et al. 2002). The in vivo and in vitro 

models of embryonic vasculogenesis in mice and embryo cells of mice suggest that the 

failure of PECAM-1 tyrosine dephosphorylation leads to the vasculopathy in the presence 

of hyperglycaemia or diabetes (Pinter et al. 1999). HUVECs when treated with advanced 

glycated fibronectin in the presence of inflammatory stimulants such as IL-1α, TNF-α, 

lipopolysaccharide and AGE-albumin increased the expression of PECAM-1 suggesting 

the involvement of PECAM-1 in the advancement of atherosclerosis in diabetes 

(Sengoelge et al. 1998). The anti-oxidants and PKC inhibitors blocked the diabetic red 

blood corpuscles (RBC) induced oxidative stress leading to PECAM-1 phosphorylation 

and transendothelial migration of monocytes (Rattan et al. 1997). However the contrasting 

reports suggesting no role for PECAM-1 in the presence of diabetes also exist in equal 

numbers. It has been reported that the expression of PECAM-1 remained unchanged in 

the presence of elevated glucose levels in HUVECs (Baumgartner-Parzer et al. 1995a). 

The possible beneficial use of PPAR-γ agonist in preventing diabetes induced 

atherosclerosis may be mediated by inhibiting the expression of some of adhesion 
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molecules but not through PECAM-1, as its expression remained unchanged in HUVECs 

as well as in myocardial infarction patients (Khare et al. 2005, Pasceri et al. 2000). 

Actin rearrangement is central to the cell motility cycle. As hypoxia is central to 

angiogenesis, there are plenty of reports discussing the role of actin fibres in angiogenesis 

as discussed in section 1.8 of the chapter 1. However, the direct influence of diabetes or 

increased level of glucose on the actin filaments during migration of endothelial cells is 

very rare to find in the literature except for couple of reports. The increased levels of 

glucose impaired the cytoskeletal rearrangement through the prevention of 

phosphorylation of vasodilator stimulated phosphoprotein (VASP) which is a actin protein 

in HMVEC and EPC (Li Calzi et al. 2008). The higher glucose concentration is implicated 

in reduced migration by impairing the reorganization of actin fibres as a dense peripheral 

band in HMVEC (Hamuro et al. 2002). The metabolic products of glucose such as glyoxal 

and methylglyoxal have been reported to cause cytoskeletal rearrangement by increasing 

the formation of actin stress fibres and finally leading to the inhibition of tube formation in 

bovine pulmonary endothelial cells (Sliman et al. 2010).   

3.4.2 Materials and Methods 

HMVECad were stained for the expression of PECAM-1 and actin as a marker and 

to visualise the cytoskeletal arrangement in migrating cells respectively. The cells were 

stained for the expression of monoclonal anti-human CD31 (PECAM-1) (Sigma Aldrich, 

UK) and N-terminal polyclonal anti-actin (Sigma Aldrich, UK) primary antibodies at a 

dilution of 1:100. The detailed method of identification of proteins is explained in section 

2.4.2. Actin stained cells were counterstained with Harris haematoxylin for a minute 

followed by washing with distilled water for two minutes.  

3.4.3 Results and Discussion 

PECAM-1 was expressed in HMVECad (Fig. 3.11) in all the four conditions of 

N5mM, N20mM, H5mM and H20mM at cell junctions as it is an EC-EC adhesion molecule 

(Woodfin, Voisin and Nourshargh 2007). The intensity of the stain was uniform across the 

monolayers as shown in photomicrographs (Fig. 3.11). The intensity of the stain 

corresponding to the confluence of the endothelial cells was observed by Raychaudhury 

et al. (2001) with help of immunocytochemical staining and northern blotting for mRNA 

levels of PECAM-1 (RayChaudhury et al. 2001). The same authors also suggest that 

newly migrating and sparse cells lack the expression of PECAM-1 until they establish 

contact with other cells (RayChaudhury et al. 2001). This could possibly explain the stain 

of PECAM-1 antibody being uniform across the confluent monolayer of cells. However the 

intensity of the stain differed depending on the conditions in which the cells were cultured. 

Although the expression of PECAM-1 was found predominantly at the cell junctions in 
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normoxic conditions (Fig. 3.11b), the stain was less intense in N20mM condition 

(Fig.3.11c) compared to N5mM condition (Fig.3.10b). This result is in contrast to 

Baumgartner-Parzer et al. (1995) who did not find any change in the expression of 

PECAM-1 in HUVECs cultured in 30mmol/l glucose levels  (Baumgartner-Parzer et al. 

1995a). The staining of PECAM-1 was expected to be higher in the presence of hypoxia 

as it acts as a stimulant for angiogenesis (Cao et al. 2002). On the contrary, the stain was 

found to be less intense in hypoxic conditions (Fig.3.11d&e) and found predominantly 

within the cytoplasm of the cells. The role of PECAM-1 in the wound environment of 

diabetes needs to be probed further as it was reported to be involved in angiogenesis by 

playing an active role in cell proliferation and migration in PECAM-1 null mice and in 

HUVEC and H5V endothelial cells (Cao et al. 2009). 

The expression of actin was uniform across the different conditions hence only 

representative images are shown in Fig. 3.12 under lower magnification (Fig. 3.12a) and 

under higher magnification of intact edge (Fig. 3.12b) and wounded edge (Fig. 3.12c) of 

HMVECad monolayer. Migrating cells at the leading edge show intense staining for actin 

(yellow arrows in Fig. 3.12a) due to its accumulation and polymerization followed by 

protrusion (Vicente-Manzanares, Webb and Horwitz 2005). The localisation of the stain 

was less clear at the trailing edge and in cells at the centre of the monolayer. In the 

migrating cells of both the intact and wounded edge of the monolayer, the nucleus stained 

by haematoxylin can be clearly seen at the rear (yellow circular shapes in Fig. 3.12b&c). 

The movement of nucleus towards rear and the placement of the microtubule organising 

centre (MTOC) and Golgi apparatus (which were not visualized in the presented images 

of figure 3.12) at the front of the leading edge of a cell is indicative of the directionality of 

cell migration (Etienne-Manneville and Hall 2001). No difference in the expression of actin 

in cells migrating either at increased glucose levels and/or hypoxic conditions was 

expected as the cells migrated in all conditions with varying degree and actin is central to 

the cell motility. However it would be interesting to study the changes or regulation of actin 

involvement in the different aspects of cell motility due to increased glucose and/or 

hypoxic conditions. 
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a) 

 

b)      c) 

    

d)      e)     

    

 

Fig. 3.11 Expression of PECAM-1 in HMVECad The HMVECad grown as circular 

monolayers were exposed to either 5mM or 20mM glucose and either normoxic (20% O2) 

or hypoxic (5% O2) condition for 48h. The cells in photomicrographs a) were treated with 

control antibody (IgG1) in order to determine the antibody specificity. The expression of 

PECAM-1 protein was detected in cells treated with b) N5mM, c) N20mM, d) H5mM and 

e) H20mM conditions. The images are representative of samples from 3 different 

occasions (n=3). The scale bar of each photomicrograph represents 200µm 

(Magnification: 100x). 
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b)      c) 

    

 

 

Fig. 3.12 Expression of actin in HMVECad The wounded monolayer of HMVECad 

exposed to four different conditions for 48 h was stained for actin followed by 

counterstaining with haematoxylin. No difference in the stain was observed in different 

conditions. Cells at the edge of the monolayer in photomicrographs a) show the intense 

expression of actin (yellow arrows) compared to the cells of other region. Cells at the edge 

(b) or other region (c) of the monolayer show the actin expression concentrated at the 

leading edge of a cell. The yellow circular shapes show the movement of nucleus towards 

rear indicating the direction of cell migration. The images are representative of samples 

from 3 different occasions (n=3). The scale bar of photomicrograph a) and of b) & c) 

represents 1mm and 100µm respectively [Magnification: a) - 25x; b) & c) – 200x]. 
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4.1 Hypothesis 

 The varying concentration of glucose and oxygen tension has an effect on the 

migration of endothelial cells. 

4.2 Introduction 

 Hyperglycaemia and hypoxia characterise the wound environment of diabetes. 

Impaired angiogenesis during diabetes deprives the tissues of essential nutrients and 

oxygen supply immediately after the injury. Sprouting of new blood vessels at the site of 

injury requires the proliferation and migration of endothelial cells. The effect of high 

glucose on the migration of endothelial cells is origin specific. Increase in the retinal 

endothelial cell proliferation and migration in the presence of elevated glucose level is a 

causative factor for the development of diabetic retinopathy (Duffy et al. 2006, Huang and 

Sheibani 2008). On the other hand, in vitro migration of human aortic endothelial cells and 

endothelial progenitor cells was impaired in the presence of elevated levels of glucose 

(Hamuro et al. 2002, Chen et al. 2007). Myocardial microvascular and aortic endothelial 

cells isolated from the diabetic rats showed decrease and increase respectively in the 

migration and proliferation compared to the corresponding cells isolated from age 

matched normal Wistar rats (Wang et al. 2009). 

 Hypoxia is a well known stimulant common to angiogenesis during undesirable 

carcinogenesis or during desirable wound healing (Carmeliet 2005). Endothelial cell 

migration and proliferation are essential steps of angiogenesis (Carmeliet 2005). Hypoxia 

induced angiogenesis is mainly mediated by hypoxia inducible factor (HIF) - 1 system by 

activating the endothelial cell migration through various angiogenic stimuli which include 

various cytokines (Pugh and Ratcliffe 2003, Yamakawa et al. 2003). Few reports have 

examined the combined effect of hypoxia and hyperglycaemia on endothelial cell 

migration. In vivo evidences suggest that the presence of diabetes impairs the migration 

of endothelial cells in diabetic animals (Liu et al. 2008). The fibroblasts isolated from 

diabetic mice showed less migration in the presence of hypoxia compared to wild type 

cells on a type I collagen coated surface (Lerman et al. 2003). 

 Donatis et al. (2010) suggests an interesting hypothesis of either migration or 

proliferation being exclusive at one given time for a single cell (De Donatis, Ranaldi and 

Cirri 2010). The same authors suggest that the fibroblasts migrate at a lower 

concentration of PDGF and make a phenotypic switch from migration to proliferation once 

the dose of PDGF is sufficient enough for the cells to undergo the cell division (De Donatis 

et al. 2008). In some other incidences, the endothelial cells were treated with an anti-

proliferative agent in order to prevent the influence of proliferation on the migration of 

endothelial cells (Gade et al. 1997, Hamuro et al. 2002). 
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In this chapter an attempt is made to assess the migration in the presence of 

hyperglycaemia and/or hypoxia. An anti-proliferative agent was used to assess the 

influence of the proliferation on the migration itself. Finally, the migration was carried out 

in the presence of D-mannitol to address the possibility that osmolarity associated with the 

elevated glucose concentration was producing the observed effects. 

4.3 Materials and methods 

The migration assay and wound healing assay were carried out as detailed in 

section 2.2.3 and 2.2.4 respectively. Endothelial cells were supplemented with either 5 or 

20mM D-glucose in 20 (N) or 5% (H) oxygen tension conditions creating four conditions 

for cell migration viz. N5mM, N20mM, H5mM and H20mM. To overrule the influence of 

proliferation on migration, an anti-proliferative agent hydroxyurea at 5mM concentration 

was used as previously described (Hamuro et al. 2002). HMVECad were treated with 

either 5 or 20mM of D-mannitol which served as an osmotic control. The migration data is 

presented in microns as mean ± SEM. 

4.4 Results 

4.4.1 Effect of varying glucose concentration and oxygen tension on the migration of 

endothelial cells assessed by radial migration assay 

 HUVECs incubated in an increased concentration of glucose (N20mM) (24 h: 45 ± 

2.4; 48 h: 76.6 ± 2.8) resulted in a significant decrease (p<0.001) in the migration distance 

(µm) in comparison with normal glucose concentration (N5mM) (24 h: 73.7 ± 1.9; 48 h: 

119 ± 3.2) condition (Fig. 4.1a). The cells in hypoxia with a normal glucose concentration 

(H5mM) (24 h: 120.1 ± 2.1; 48 h: 192.2 ± 0.8) migrated significantly faster (p<0.001) than 

in N5mM glucose and hypoxia with an elevated glucose concentration (H20mM) (24 h: 

70.8 ± 1.8; 48 h: 141.2 ± 1.6). 

The migration (µm) of HMVECad (Fig. 4.1b) in N5mM (24 h: 82.6 ± 1.4; 48 h: 133 

± 1.2) was significantly higher (p<0.001) compared to N20mM (24 h: 57.2 ± 1.0; 48 h: 

105.2 ± 1.1) condition. The cells in H5mM (24 h: 105.8 ± 1.0; 48 h: 172.3 ± 1.1) condition 

migrated significantly faster (p<0.001) than in H20mM (24 h: 80.5 ± 0.9; 48 h: 124.5 ± 1.5) 

and N5mM conditions. The migration of HUVECs and HMVECad at 48 h was significantly 

higher (p<0.001) than at 24 h for all the test conditions (Fig. 4.1). 
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Fig. 4.1 Effect of glucose concentration and oxygen tension on endothelial cell 

migration The migration of HUVEC (a) and HMVECad (b) in conditions of 5 or 20mM 

glucose and 20 (Normoxia – N) or 5% (Hypoxia – H) oxygen tension was assessed by the 

radial migration assay. The results are presented as net migration (mean ± SEM) of cells 

at 24 and 48 h. The results between the conditions were analysed by analysis of variance 

(ANOVA) followed by Bonferroni post hoc test. Independent t test was employed to 

compare the results between the 24 and 48 h. 

(***p<0.001 when compared as indicated; †††p<0.001 when compared with 24 h of a 

respective condition)  

(HUVECs: n = 180 & 120 at 24 & 48 h respectively for every condition; 

HMVECad: n =160 for N5mM; n = 140 for N20mM; n =180 for H5mM & H20mM at both 24 

& 48 h)  
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4.4.2 Effect of hydroxyurea on the migration of endothelial cells 

To assess the effect of proliferation on migration, the endothelial cells were 

incubated with an anti-proliferative agent hydroxyurea at 5mM concentration along with 

varying concentrations of glucose and oxygen tension. Visual inspection indicated that the 

presence of hydroxyurea created gaps in the monolayers of both HUVEC and HMVECad 

at 48 h (Fig. 4.2). No major gaps in the monolayers were observed at 24 h. The migration 

with respect to each other conditions remained unaltered. 

Similar to untreated cells, the migration (µm) of HUVECs (Fig. 4.3a) in the 

presence of hydroxyurea in N5mM (24 h: 80.4 ± 1.7; 48 h: 139.6 ± 1.2) and H5mM (24 h: 

113.4 ± 2.8; 48 h: 152.4 ± 2.1) conditions was significantly higher (p<0.001) than in 

N20mM (24 h: 62.1 ± 1.5; 48 h: 120.3 ± 0.5) and H20mM (24 h: 75.5 ± 2.1; 48 h: 114.3 ± 

2.1) conditions respectively. The migration of cells in H5mM condition was significantly 

higher (p<0.001) than in N5mM condition. The migration of HUVECs (Fig. 4.3a) in the 

presence of hydroxyurea in H5mM and H20mM conditions was not significantly different 

than in the absence of it at 24 h (Fig. 4.1a). However, the migration in N5mM (p<0.01) and 

N20mM (p<0.001) at 24 h and in all conditions (p<0.001) at 48 h was significantly different 

between the presence (Fig. 4.3a) and absence (Fig. 4.1a) of hydroxyurea. 

The migration (µm) of HMVECad in the presence hydroxyurea (5mM) (Fig. 4.3b) 

was similar to the migration of cells in its absence. The migration in N5mM (24 h: 76.0 ± 

1.3; 48 h: 113.1 ± 1.2) and H5mM (24 h: 99.7 ± 1.8; 48 h: 149.4 ± 2.2) conditions was 

significantly higher (p<0.001) than in N20mM (24 h: 61.0 ± 1.2; 48 h: 96.7 ± 1.4) and 

H20mM (24 h: 70.1 ± 0.8; 48 h: 110.0 ± 0.9) conditions respectively. The migration of cells 

in H5mM condition was significantly higher (p<0.001) than in N5mM condition. The 

migration of HMVECad in N5mM (p<0.01), N20mM (p<0.05), H5mM (p<0.01) and H20mM 

(p<0.001) conditions at 24 h and in all above mentioned conditions (p<0.001) at 48 h was 

significantly less in the presence of hydroxyurea (Fig. 4.3b) compared to those migrating 

in absence (Fig. 4.1b) of it. 
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Fig. 4.2 Effect of hydroxyurea on the endothelial cell monolayer HMVECad were 

incubated in either 5mM or 20mM D-glucose and 20 or 5% oxygen tension in the 

presence of 5mM hydroxyurea. The images of the monolayer were captured at 0 h (a). 

After 48 h (b) of incubation, the hydroxyurea showed its effect by inhibiting the cell 

proliferation and thus creating the gaps in the monolayer. The gaps are marked by red 

circles and migrating cells are shown by blue arrow marks at the edge of the monolayer. 

Similar observation was also made from the monolayers of HUVECs. The images are 

representative of samples from 3 different occasions (n=3). The scale bar on each 

photomicrograph represents 500µm (Magnification: 25x). 
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Fig. 4.3 Effect of hydroxyurea on the migration of endothelial cells The migration of 

HUVECs (a) and HMVECad (b) in conditions of 5 or 20mM glucose and 20 (Normoxia – 

N) or 5% (Hypoxia – H) oxygen tension was assessed by the radial migration assay. The 

anti-proliferative agent hydroxyurea (5mM) was added to assess the relationship between 

proliferation and migration. The results are presented as net migration (mean ± SEM) of 

cells at 24 and 48 h. The results between the conditions were analysed by analysis of 

variance (ANOVA) followed by Bonferroni post hoc test. The independent t test was 

employed to compare the results between 24 and 48 h. 

(***p<0.001 when compared as indicated; †††p<0.001 when compared with 24 h of 

respective condition)  

(HUVECs: n = 180 & 120 at 24 & 48 h respectively for each condition; 

HMVECad: n = 180 for each condition except for N20mM, where n=160 at 24 & 48 h) 
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4.4.3 Effect of varying glucose concentration and oxygen tension on the migration of 

HMVECad assessed by wound healing assay 

 The migration experiments hereafter were studied using HMVECad only as the 

migration trend of HUVECs towards four different conditions was not different from that of 

HMVECad. The migration (µm) of HMVECad (Fig. 4.4) from the intact edge in N5mM (24 

h: 80.2 ± 1.4; 48 h: 153.7 ± 3.1) was significantly higher (p<0.001) than in N20mM (24 h: 

61.6 ± 1.3; 48 h: 129.9 ± 2.4) condition. The migration was significantly less (p<0.001) in 

H20mM (24 h: 81.8 ± 1.2; 48 h: 163.6 ± 2.1) compared to H5mM (24 h: 92.9 ± 1.9; 48 h: 

183 ± 2.8) condition. The migration was significantly higher (p<0.001) in H5mM condition 

compared to N5mM condition. 

 Similar to the intact edge, the migration (µm) of HMVECad from the wounded edge 

was significantly higher (p<0.001) in N5mM (24 h: 87.8 ± 1.8; 48 h: 170.5 ± 2.8) and 

H5mM (24 h: 105.1 ± 1.4; 48 h: 208.8 ± 2.8) conditions compared to N20mM (24 h: 70.4 ± 

1.7; 48 h: 143.4 ± 2.7) and H20mM (24 h: 87.4 ± 1.2; 48 h: 179.8 ± 2.3) conditions 

respectively. The migration in H5mM condition was significantly higher (p<0.001) 

compared to N5mM condition. The migration (µm) of cells from the wounded edge of the 

monolayer was significantly higher (p<0.001; except for N5mM and H20mM at 24 h where 

p<0.01) in all conditions compared to the migration from the intact edge of the monolayer. 
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Fig. 4.4 Effect of glucose concentration and oxygen tension on the migration of 

HMVECad The migration of HMVECad in conditions of 5 or 20mM glucose and 20 

(Normoxia – N) or 5% (Hypoxia – H) oxygen tension was assessed by the wound healing 

assay. The results are presented as net migration (mean ± SEM) of cells at 24 (a) and 48 

h (b). The results between the conditions were analysed by analysis of variance (ANOVA) 

followed by Bonferroni post hoc test. The independent t test was employed to compare 

the results between the intact and wounded edge of the monolayer. 

(***p<0.001 when compared as indicated; ††p<0.01 and †††p<0.001 when compared with 

respective condition of intact edge cells)  

(Intact edge: n = 90 for each condition at 24 & 48 h, except for H5mM where n=80 at 24 h; 

Wounded edge: n = 90 for each condition at 24 & 48 h)  
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4.4.4 Effect of varying D-mannitol concentration and oxygen tension on the migration of 

HMVECad assessed by wound healing assay 

 D-mannitol (5 or 20mM) was used in order to overrule the role of osmotic pressure 

producing any effect on the migration.  All the four conditions viz. N5mM, N20mM, H5mM 

and H20mM D-mannitol were incubated in medium containing 5.6mM D-glucose as this 

was already supplemented in the M131 medium. The migration (µm) of HMVECad (Fig. 

4.5) from the intact edge in N5mM (24 h: 91.2 ± 1.8; 48 h: 146.1 ± 2.1) was not 

significantly different than in N20mM (24 h: 92.4 ± 1.8; 48 h: 152.8 ± 2.3) condition. The 

migration was not significantly different in H20mM (24 h: 106.7 ± 1.1; 48 h: 165.8 ± 1.7) 

condition compared to H5mM (24 h: 108.3 ± 1.7; 48 h: 169.7 ± 2.0) condition. However, 

the migration was significantly higher (p<0.001) in H5mM condition compared to N5mM 

condition. 

 Similar to the intact edge, the migration (µm) of cells from wounded edge (Fig. 4.5) 

was not significantly higher in N5mM (24 h: 110.1 ± 2.2; 48 h: 174.2 ± 3.1) and H5mM (24 

h: 129.7 ± 1.8; 48 h: 203.8 ± 2.6) condition compared to N20mM (24 h: 113.3 ± 2.5; 48 h: 

180.4 ± 3.1) and H20mM (24 h: 132.6 ± 1.6; 48 h: 206.4 ± 2.8) conditions respectively. 

The migration in H5mM condition was significantly higher (p<0.001) compared to N5mM 

condition. The cells migrated significantly faster (p<0.001) in all conditions from the 

wounded edge than those from the intact edge of the monolayer. 
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Fig. 4.5 Effect of D-Mannitol on the migration of HMVECad The migration of 

HMVECad in conditions of 5 or 20mM D-Mannitol and 20 (Normoxia – N) or 5% (Hypoxia 

– H) oxygen tension was assessed by the wound healing assay. The results are 

presented as net migration (mean ± SEM) of cells at 24 (a) and 48 h (b). The results 

between the conditions were analysed by analysis of variance (ANOVA) followed by 

Bonferroni post hoc test. The independent t test was employed to compare the results 

between the intact and wounded edge of the monolayer. 

(***p<0.001 when compared as indicated; †††p<0.001 when compared with respective 

condition of intact edge cells and NS = not significant)  

(Intact and wounded edge: n = 80, except at N20mM where n=90 at 24 & 48 h) 
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4.5 Discussion 

 The results indicate that the hyperglycaemia and hypoxia have opposing effects of 

decrease and increase respectively in the migration of endothelial cells. The migration 

was less when hyperglycaemia was combined with hypoxia compared to the hypoxia 

alone. HMVECad migrated faster from the wounded side than from the intact side of the 

monolayer.  Osmotic control D-mannitol did not alter the emigrational trends of cells. The 

presence of an anti-proliferative agent reduced the migration at 48 h compared with the 

respective control. 

The decrease in the migration of both HUVECs and HMVECad due to elevated 

levels of glucose is consistent with earlier findings where hyperglycaemia has been 

reported to cause dose dependant decrease in the migration of endothelial cells (Gade et 

al. 1997, Hamuro et al. 2002, Mascardo 1988, Yu et al.  2006). Results also confirmed 

that the reduction in the migration was not a result of osmotic pressure (Fig. 4.5) as 

increased D-mannitol did not alter the migration distance compared to lower concentration 

of D-mannitol. Hyperglycaemia has been reported to cause the reduction in the migration 

of microvascular endothelial cells by dephosphorylation of vasodilator stimulated 

phosphoprotein (VASP) resulting in its decrease in the redistribution at the leading edge 

(Li Calzi et al. 2008). Carbon monoxide and NO lost their ability to induce phosphorylation 

of VASP at Ser-157 and Ser-239 respectively in the presence of elevated levels of 

glucose (Li Calzi et al. 2008). The role of NO has been implicated by other studies as well. 

The reduced migration of endothelial cells in elevated levels of glucose is attributed to NO 

mediated impairment in actin polymerization (Gade et al. 1997) and further eNOS 

expression and intracellular production of NO was shown to be mediated by NF-κβ 

(Hamuro et al. 2002, Murohara et al. 1999). Yu et.al. (2006) suggest that the reduction in 

the proliferation and migration of HUVECs in the presence of higher glucose concentration 

was a result of PI3K and Akt inhibition (Yu et al.  2006). Increased glucose is known to 

produce its deleterious effects by increasing the production of reactive oxygen species 

(Brownlee 2005). Hence, hyperglycaemia induced reduction in the migration of endothelial 

cells was overcome by the complementing the media with an anti-oxidant, thiamine 

(Ascher et al. 2001).   

HUVECs and HMVECad were used as a model of macro and microvascular cells 

to measure the migration. The migration response towards increased concentrations of 

glucose has been reported to be cell specific (Wang et al. 2009, Duffy et al. 2006). 

Contrary to these reports, HUVECs and HMVECad responded similarly to the elevated 

levels of glucose by decreasing the migration (Fig.4.1). These contradictory results could 

possibly be due to the difference in the experimental models, cell type used and/or origin 

of cells. Wang et al. (2009) used the scratch wound assay and transwell inserts to 
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measure the migration of myocardial microvascular and aortic endothelial cells isolated 

from diabetic rats (Wang et al. 2009). Doffy et al. (2006) did not measure migration but 

found that the cell viability and apoptosis to be different in response to elevated glucose 

levels in human aortic and retinal endothelial cells. 

In various cell culture systems the hypoxia starts from 5% to downward reaching 

anoxia at 0.1 to 0.2% (1% = 8mm Hg) (Pouyssegur, Dayan and Mazure 2006). Hypoxia 

inducible factor (HIF) system activates pleiotropic actions by inducing various genes 

controlling cell migration, angiogenesis, erythropoiesis, energy metabolism and others as 

a part of cellular adaptation in response to the oxygen deprivation (Wang and Semenza 

1995, Semenza 2004). Results clearly indicated that the hypoxia increased the migration 

of both HUVEC and HMVECad over the period of 48 h (Fig. 4.1). ECs adapt to the 

decreasing oxygen tension and accordingly increase the accumulation of HIF-1α and its 

target genes such as VEGF, angiopoietins and GLUT-1 (Abaci et al. 2010). Hypoxia 

induced HIF-1α dependant bFGF and VEGF autocrine activity could be responsible for the 

in vitro migration of endothelial cells as they have been implicated in vessel formation 

(Calvani et al. 2006, Takata et al. 2008). The effect of hypoxia through HIF-1α activation is 

well documented as HIF-1α gene therapy has proved to be beneficial in healing the 

wounds of diabetic mice (Liu et al. 2008, Mace et al. 2007). 

 The migration of HUVECs and HMVECad was reduced when hyperglycaemia was 

combined with hypoxia in comparison with hypoxia alone (Fig. 4.1). These results are 

consistent with clinical manifestations of the people with diabetes suffering from chronic 

wounds as they experience delayed wound healing due to impaired angiogenesis. 

Hyperglycaemia induced formation of free radicals impaired the formation of ischemia 

driven vessel formation in diabetic mice. Further, hyperglycaemia prevented the 

dimerization of HIF-1α with HIF-1β and thus reduced the HIF-1 dependant transcription of 

VEGF and stormal cell derived factor-1 (SDF-1) in hypoxic mouse fibroblasts (Ceradini et 

al. 2008). In another study in diabetic fibroblasts, hyperglycaemia interfered with the 

transactivational activity of HIF-1 by impairing the interaction of HIF-1α with the 

coactivator p300 (Thangarajah et al. 2009). Hyperglycaemia has been reported to 

decrease the hypoxia induced expression of HIF-1α and its target gene VEGF, VEGFR, 

HSP-90, SDF-1 and stormal cell factor (SCF) by destabilisation of transctivational 

domains of HIF-1α (Botusan et al. 2008, Catrina et al. 2004). 

 Hydroxyurea, an anti-proliferative agent was used to understand the influence of 

proliferation on the migration as both processes are essential for angiogenesis. The dose 

of hydroxyurea at 5mM has been found to be anti-proliferative but not cytotoxic by 

previous users (Hamuro et al. 2002). The results (Fig. 4.3) indicated that hydroxyurea 

reduced the migration only after 48 h of its introduction and did not completely prevent the 
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migration. These are consistent with previous reports where it was found that the 

cessation of proliferation did not adversely affect the migration of endothelial cells (Gade 

et al. 1997, Hamuro et al. 2002). Although there is scant evidence differentiating the 

proliferation from migration and vice versa with respect to angiogenesis, it has been 

known for some time now that migration precedes the proliferation of endothelial cells in in 

vitro wound healing models (Coomber and Gotlieb 1990). It has been suggested that the 

migration was initiated due to VEGFR2 present on long filopodia of migrating retinal 

endothelial cells at the edge (tip cells) of a monolayer which sense the angiogenic 

stimulant (Gerhardt et al. 2003). Further unlike stalk cells, tip cells failed to stain for either 

phospho-histone or Ki-67 (markers for mitosis) indicating that tip cells were not 

proliferating whereas stalk cells were (Gerhardt et al. 2003). It was also suggested that 

the place vacated within a monolayer by a migrating tip cell is filled with proliferation of 

stalk cells to maintain cell-cell contact (Farooqui and Fenteany 2005). This could be the 

reason we witnessed the gap in the monolayer in stalk cells region than in the region of tip 

cells due to inhibition of proliferation of stalk cells by hydroxyurea (Fig. 4.2). Further, cells 

in the presence of the right quantity of soluble cues are known to make a phenotypic 

switch from migration to proliferation (De Donatis et al. 2008). This could be the possible 

reason in spite of using an anti-proliferative agent the migration persisted; however, was 

not equivalent to the cells which did not receive hydroxyurea (Fig. 4.1 vs. 4.3) as stalk 

cells might have failed to proliferate to fill the gap in the monolayer and keep up the pace 

of migration. 

The wound healing assay (Fig.4.4) was carried out in order to bring the migration 

of cells from the wounded and intact edge in a single model to test the effect of wounding 

on the intact edge. The wound healing assay made use of only HMVECad and not the 

HUVECs as both exhibited similar migration trends under different conditions and 

treatments. The results (Fig. 4.4) clearly showed that cells from the wounded side migrate 

faster than those from intact edge. Although there is no direct explanation available in the 

literature to be compared, the faster re-endothelialization could be due to faster 

rearrangement of cytoskeleton at the wound edge (Lee and Gotlieb 2003). Similar to 

epithelial cells, the migration of endothelial cells as a sheet at the wounded edge may be 

helped by the formation of lamellopodia and active crawling of the cells behind the edge 

(Farooqui and Fenteany 2005). This could be further assisted by release of the 

mitogenic/angiogenic substances from the wounded cells acting as chemotactants and/or 

the denuded region acting as a coated surface inducing haptotaxis. 
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4.6 Conclusion 

It is clearly evident from the results that the basal migration was altered in the 

presence of high glucose and/or low oxygen tension. Although proliferation has not been 

shown to adversely affect the migration, the role of cell cycle regulator such as cyclin 

dependant kinase inhibitor p27Kip1 in the migration is explored in the next chapter. The role 

of transcription factor HIF-1α in carrying out the effect of hypoxia and hyperglycaemia 

along with any signalling pathways such as MAPK p42/44, PI3K and PKCβII are explored 

in next chapter. 
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5.1 Hypothesis 

 The expression of transcription factor HIF-1 and cyclin dependant kinase inhibitor 

p27Kip1 have a role to play in the migration of HMVECad. The effect of hypoxia and 

hyperglycaemia are mediated by HIF-1α and through various signalling molecules such as 

protein kinase C (PKC), mitogen activated protein kinase (MAPK) and/or 

phosphotidylinositol 3-kinase (PI3K) during the migration of microvascular endothelial 

cells. 

5.2 Introduction 

Cell division and migration, essential steps of angiogenesis during the wound 

healing process, are known to be regulated by around 1249 and 360 genes respectively 

(Neumann et al. 2010). Cyclin dependant kinase inhibitor (CKI) - p27Kip1 acts as a check 

point or negative regulator preventing cell cycle progression from G1 to S phase 

(Toyoshima and Hunter 1994). Although a great amount of evidence has been recorded 

regarding the role of p27Kip1 with respect to cancer development, there is little indicating 

the role of p27Kip1 in the development of diabetic complications. The granulation tissue 

consisting mainly of fibroblasts showed considerable decrease in proliferation due to up 

regulation of p27Kip1 delaying the wound healing in diabetic mice (Altavilla et al. 2010). 

Similarly, proliferation of retinal neuronal cells of hypertensive rats with diabetes 

decreased due to increased expression of p27Kip1 (Lopes de Faria et al. 2008). In another 

study, TGF-β induced a decrease in HUVEC number and impaired cell cycle progression 

in hyperglycaemia was attributed to the over expression of p27Kip1 (McGinn et al. 2003a). 

Most of the work involving p27Kip1 and diabetes has focussed on diabetic nephropathy. 

The p27Kip1 protein expression increased consistently in podocytes and mesangial cells 

and occasionally in glomerular endothelial cells of diabetic mice and in the mesangial cells 

of normal mice in the presence of hyperglycaemia causing cell cycle arrest and 

hypertrophy (Wolf et al. 1998). Further, it was suggested that the hyperglycaemia in 

mesangial cells increased the expression of p27Kip1 by activating ERK1/2 which directly 

phosphorylates p27Kip1 at Ser178 (Wolf et al. 2003). 

Increasingly the evidence for the role of cytoplasmic p27Kip1 in regulating cell 

migration particularly in the backdrop of metastasis of cancerous cells is emerging 

(McAllister et al. 2003). Cell cycle independent migratory stimulant role of p27Kip1 was 

illustrated when p27Kip1 was knocked out in mouse embryonic fibroblasts led to the 

reduced migration due to increased RhoA activation with subsequent increase in the focal 

adhesions and stress fibres (Besson et al. 2004). Over expression of p90 ribosomal S6 

kinase 1 (RSK1), a serine/threonine kinase activated downstream of MAPK and PI3K, 

increased cytoplasmic localisation of p27Kip1 which in turn increased the migration by 
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inhibition of RhoA activation (Larrea et al. 2009). In contrast, other reports suggest that 

p27Kip1 mediates decrease in the cell motility. Elevated glucose level has been implicated 

in the increased migration and proliferation of aortic smooth muscle cells mediated by 

decreased expression of p27Kip1 and increased production of ROS (Yoon et al. 2010). 

Vascular smooth muscle cells cultured in high glucose have shown an increase in the 

proliferation and migration and this was inhibited by the use of simavistatin, a lipid 

lowering drug by increased expression of p27Kip1 (Chan et al. 2010). The migration of 

HUVECs, tube formation by HUVECs and by coronary artery endothelial cells (HCAECs) 

and blood flow recovery and vessel density in mice were inhibited due to the over 

expression of p27Kip1 establishing its role not only on the cell cycle progression but also 

during in vitro as well as in vivo migration (Goukassian et al. 2001, Moss et al. 2010). 

Further, over expression of p27Kip1 resulted in the disruption of lamellopodia formation, 

actin re-organization and focal adhesions in vascular smooth muscle cells and fibroblasts 

leading to the decrease in the migration (Diez-Juan and Andres 2003). 

Transcription factor HIF-1 mediates many biological activities including cell 

proliferation, migration/angiogenesis or invasion and metastasis through a cocktail of 

cytokines and growth factors (Semenza 2007). Deletion of HIF-1α resulted in reduced 

proliferation and migration of endothelial cells and HIF-1α null mice exhibited delayed 

wound healing due to impairment in the angiogenesis owing to decreased expression of 

VEGF (Tang et al. 2004). On one hand if hypoxia is known to stabilize HIF-1α, on other 

hand hyperglycaemia is known to destabilize or inactivate the HIF-1α in diabetic wound 

environment (Botusan et al. 2008, Thangarajah et al. 2010). Hyperglycaemia has been 

reported to interfere with the stability of HIF-1α in multiple ways. In a recent work, 

Thangarajah et al. (2010) suggest that hyperglycaemia produces reactive oxygen species 

which subsequently impair the binding of HIF-1 complex with co-activator p300 by 

methylglyoxal, a glycolytic end product thus preventing the transcription of downstream 

target genes leading to impaired wound healing in diabetic mice (Thangarajah et al. 2009, 

Thangarajah et al. 2010). Hyperglycaemia has also been shown to cause the 

destabilisation of HIF-1α stability by proteasomal degradation (Catrina et al. 2004). In 

another study by Botusan et al. (2008), hyperglycaemia has been shown to interfere with 

a) the stability of HIF-1α by causing VHL dependant degradation and b) translational 

activity by modifying the caroboxy terminal transactivation domain of HIF-1 (Botusan et al. 

2008). Decrease in the hypoxia responsive element (HRE) promoter transactivation too 

has also been held responsible for producing the deleterious effects of glucose on HIF-1α 

expression (Gao et al. 2007). The effects of hyperglycaemia and hypoxia may also be 

mediated through various signalling pathways including PKCβII, p42/p44 MAPK and PI3K-

Akt. 
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5.2.1 Protein Kinase C (PKC) pathway 

Diacylglycerol (DAG)/Protein kinase C (PKC) activation is implicated in mediating 

the vascular complications of diabetes (Das Evcimen and King 2007). Ruboxistaurin 

(LY333531), a PKC β antagonist inhibited AGE induced expression of TGF-β1 and ICAM-

1 reducing macrophage adhesion to HUVECs via anti-oxidant property by increasing 

superoxide dismutase/malondialdehyde (SOD/MDA) level (Xu et al. 2010a). The same 

antagonist inhibited the VEGF induced proliferation, migration and tube formation by 

HUVECs and inhibition of VSMC too with partial inhibition of p42/p44 MAPK and Akt 

(Andrassy et al. 2005, Nakamura et al. 2010). Decrease in the glomerular endothelial cell 

numbers and VEGF over expression was over come by PKC β inhibitor in diabetic Ren-2 

rats proving its role in the prevention of nephropathic complication of diabetes as well 

(Kelly et al. 2007). Diabetes induced a decrease in sciatic motor and saphaneous nerve 

sensory conduction velocity with blood flow along with thermal hyperalgesia was 

overcome by the use of ruboxistaurin in streptozotocin induced diabetic rats (Cotter, Jack 

and Cameron 2002). Protein kinase C β has also been reported to be involved with wound 

healing by modulating the F-actin activity in HUVECs (Jensen and Larsson 2004). All the 

above mentioned evidence suggests that over activation of PKC β actively precipitates the 

vascular complication of diabetes. ROS mediated over expression of HIF-1α mRNA in 

cancerous cells is known to subsequently activate PI3K-Akt and PKC signalling pathways 

(Koshikawa et al. 2009). Hypoxia independent activation of HIF-1α by angiotensin II was 

dependent on the production of ROS and activation of PKC in VSMC (Page et al. 2002). 

However the role of PKC β in either mediating the effects of hypoxia or HIF-1α on wound 

healing or cell proliferation and migration is not completely elucidated. 

5.2.2 p42/p44 mitogen activated protein kinase (MAPK) 

 p42/p44, also known as extracellular regulated kinase (ERK) 1/2 MAPK is one of 

the evolutionarily conservative four MAPK cascades along with c-Jun N-terminal kinase 1-

3 (JNK1-3), p38MAPK α, β, γ, δ and ERK5 (Keshet and Seger 2010). Various mitogens 

such as growth factors activate the ERK cascade by an upstream kinase called 

MAPK/ERK kinase (MEK) in an order to initiate vital cell functions such as proliferation 

and differentiation (Keshet and Seger 2010). The evidence involving the role of MAPK in 

precipitating the complications of diabetes is accumulating. Advanced glycation end 

products (AGE) induce apoptosis in endothelial progenitor cells which was reversed by 

the use of MPAK inhibitors confirms the MAPK pathways involvement in deleterious 

effects of high glucose (Shen et al. 2010). The expression of phosphorylated ERK1/2 was 

found in the subcutaneous microvascular endothelial cells isolated from human tissue of 

T2DM patients (Gogg, Smith and Jansson 2009). The migration of human coronary artery 



Chapter 5 – Molecular mechanisms of cell migration 

- 132 - 

endothelial cells due to VEGF by inducing the formation of stress fibres and adhesion 

molecules was mediated by the activation of ERK 1/2 MAPK and Akt (Mahadev et al. 

2008). Glycated bFGF resulted in the reduced capillary formation by bovine aortic 

endothelial cells with a reduction in the activation of ERK 1/2, which suggests that high 

glucose produces its deleterious effect on angiogenesis and hence wound healing via 

deactivation of ERK 1/2 MAPK (Duraisamy et al. 2001). PD98059, a p42/p44 MAPK 

inhibitor blocked the high glucose induced stimulation of L-arginine transport, membrane 

hyperpolarisation and eNOS phosphorylation resulting in NO production in HUVECs which 

could lead to the vasodilation during gestational diabetes (Flores et al. 2003). Topical 

administration of rhPDGF on skin wounds of diabetic rats improved the wound healing 

with increased phosphorylation of ERK 1/2 at the wound site (Cheng et al. 2007). 

 ERK1/2 MAPK has also been implicated in mediating HIF-1α induced activities. 

Hypoxia induced the migration and proliferation in VSMC through the activation of HIF-1α, 

ROS and ERK (Fu et al. 2010). Hypoxia induced VEGF expression was mediated by the 

activation of ERK, whereas PI3K mediated hypoxia induced HIF-1α and VEGF expression 

confirming PI3K and ERK1/2 MAPK role as an upstream mediators for the expression of 

HIF-1α and VEGF in animals (Yang et al. 2009). HIF-1α was phosphorylated by p42/p44 

MAPK in vitro as well as in vivo and the activation of p42/p44 MAPK increased the 

transcription activity of HIF-1α (Richard et al. 1999). It has been suggested that p42/p44 

MAPK although may not have any effect either on the stabilization or DNA binding activity 

of HIF-1α, but mediates the transcriptional activity of HIF-1α (Hur et al. 2001). 

5.2.3 Phosphatidylinoisitol 3-Kinase (PI3K)/adenosine-triphosphate dependant 

tyrosine kinase (Akt) Pathway  

 The PI3K-Akt signalling pathway controls many cellular activities including cell 

proliferation and activation of angiogenesis by controlling the expression of VEGF in 

endothelial cells (Jiang et al. 2000). Further, inhibition of PI3K-Akt pathway has been 

implicated in the inhibition of VEGF induced HUVEC migration as well (Matsunaga et al. 

2008). Activation of PI3K-Akt pathway is also believed to mediate high glucose induced 

retinal endothelial cell migration contributing towards the proliferative retinopathy of 

diabetes (Huang and Sheibani 2008).  On the other hand, the PI3K-Akt signalling pathway 

was suppressed in the EPCs obtained from diabetic patients leading to a decrease in 

migration and cell count. The effect was more pronounced if EPCs were treated with both 

glucose and oxidized LDL (Hamed et al. 2010). Increased glucose levels caused a 

decrease in cell proliferation and an increase in apoptosis and senescent activity of 

HUVECs and this effect was associated with the inhibition of the PI3K-Akt pathway 

(Varma et al. 2005, Zhong et al. 2010).  Apoptosis induced by high glucose has been 
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reported to be due to an increase in the production of ROS mediated by PI3K-Akt pathway 

(Sheu et al. 2005). All this evidence made it clear that activation of PI3K-Akt pathway 

leads to increased migration and a reduction in the migration results due to its 

suppression in the presence of glucose. 

 Various studies have reported the involvement of PI3K-Akt pathway in regulating 

the expression of HIF-1α. Ferulic acid, a natural compound produced its angiogenic 

effects by increasing the expression of HIF-1α with subsequent increase in the production 

of VEGF and PDGF via activation of PI3K-Akt pathway along with p42/p44 MAPK 

pathway in HUVECs (Lin et al. 2010). Another natural product, apigenenin a dietary 

flavanoid inhibited the formation of tubes via decreasing the expression of HIF-1α and 

subsequent expression of VEGF via PI3K-Akt pathway (Fang et al. 2005). The choroidal 

blood vessel formation in rats and retinal pigment epithelial cells in vitro up regulated the 

expression of HIF-1α and VEGF production in the presence of hypoxia with the activation 

of PI3K-Akt pathway (Yang et al. 2009). In tumour cells, hypoxia stabilised the HIF-1α with 

simultaneous increased production of ROS and this was negated by the use of a PI3K 

inhibitor leading to the conclusions that the production of ROS and HIF-1α are mediated 

by PI3K-Akt pathway in cancer cells (Koshikawa et al. 2009, Zhong et al. 2000). However, 

the role of PI3K-Akt in regulating HIF-1α remains unclear as short duration hypoxia 

stabilized and accumulated HIF-1α depending on the activation of PI3K-Akt whereas 

prolonged hypoxia resulted in the inactivation of Akt and down regulation of HIF-1α via 

glycogen synthase kinase (GSK) 3β pathway (Mottet et al. 2003). 

5.3 Materials and methods 

5.3.1 Immunocytochemistry and wound healing assay 

Expression of the cyclin dependent kinase inhibitor p27Kip1 and hypoxia inducible 

factor–1α (HIF-1α) was carried out by immunocytochemistry as explained in chapter 2 

(section 2.4.2). Unconjugated polyclonal anti-phospho-p27 (Ser10) at 1:100 and 

monoclonal anti-HIF-1α at 1:50 were used for identifying p27Kip1 and HIF-1α in HMVECad 

after incubation of cells for 48 h in four conditions (viz. N5mM, N20mM, H5mM and 

H20mM). The expression of HIF-1α was assessed for HMVECad at 48 h in the presence 

of different signal inhibitors as mentioned in the relevant segments and legends of the 

figures. The quantification of the stain is explained below in section 5.3.2. 

The molecular mechanisms of hypoxia and/or hyperglycaemia mediated migration 

of HMVECad was assessed by the addition of signal inhibitors at the beginning of the 

wound healing assay. The wound healing assay was carried out as explained in section 

2.2.4 using HMVECad. Different signal inhibitors such as PKCβII/EGFR inhibitor 

(PKCβII/EGFRi) [4,5-bis(4-Fluoroanilino)-phthalimide] 1µM (Calbiochem, Merck Chemicals, 
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Nottingham), p42/p44 MAPK Inhibitor (P42/p44 MAPKi) (2′-Amino-3′-methoxyflavone) 

(PD98059) 2µM (Calbiochem, Merck Chemicals, Nottingham) and PI3K Inhibitor (PI3Ki) 

[2-(4-Morpholinyl)-8-phenyl-4H-1-benzopyran-4-one] (LY294002) 10µM (Invitrogen, UK) 

were used. DMSO of molecular biology grade was used as a solvent for these signal 

inhibitors at a final concentration of ≤ 0.7% v/v and an equivalent concentration was used 

for each control. 

5.3.2 Quantification of the protein expression 

 The images stained for the expression of p27Kip1 and HIF-1α were quantified using 

the Image J freeware (Image J 2010) developed by the National Institute of Health of 

Bethesda, USA. The quantification of stained images involved four steps 

a) Changing the scale of measurement from pixels to micrometers 

b) Converting the image to gray scale 

c) Segmenting the red stained cells using the threshold 

d) Measuring the threshold area at a fixed value 
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Conversion of the scale from pixels to micrometers was done by using 

Analyse>Set>Scale command to set the scale to micrometers. As all the images were 

captured at the magnification of 100x, the conversion ratio was 0.74pixels/µm. This ratio 

was used for all the images. 

 

 

 

Fig. 5.1a Quantification of stain An image of which the stain was to be quantified was 

opened and the scale was converted to pixels 
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Conversion of the images to gray scale was done using the Image>Type>RGB 

stack command to split the image into red, green and blue channels. It is essential to 

stack the image in gray scale in order to measure the threshold. The green channel of the 

RGB stack was selected to get the best separation. 

 

 

 

Fig.5.1b Quantification of stain Image was converted to gray scale 
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Next Image>Adjust>Threshold tool was used for thresholding the image. As image 

J cannot correctly threshold the image, it was manually adjusted. Using the ‘Threshold’ 

tool, the upper level of the threshold was fixed at 150 for all images barring a few images 

whose maximum threshold was either equal to or less than 150. For such images the 

adjusted threshold was slightly less than 150. 

 

 

 

Fig.5.1c Quantification of stain Image was thresholded to reflect accurate staining 
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Analyse>Set Measurement dialog was used to select the ‘Area’, ‘Area Fraction’, 

‘Limit to threshold’ and ‘Display Label’ so that image J measured the percentage of 

stained area and displayed it as a result. 

 

 

 

Fig.5.1d Quantification of image Parameter such as area of a defined square was 

selected to be displayed 
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The rectangular selections icon on the image J tool bar was selected to draw a 

square of 229.7 x 229.7 µm2. These dimensions were drawn on the image with the aim of 

measuring the threshold within six identical sized areas along the edges of the monolayer. 

These squares (229.7 x 229.7 µm2) were drawn along the edges of the layer to quantify 

the expression of proteins in migrating cells. However while quantifying HIF-1α expression 

in the images captured from the radial migration assay (Fig. 5.6 from section 5.4.2), the 

squares were drawn randomly as the cells were stained uniformly across the image. After 

drawing each of the six squares, the Analyse>Measure command was selected to display 

the area and percent area in the ‘Results’ window. These results were copied to the excel 

worksheet for subsequent analysis. The results were expressed as mean ± SEM of 

percent of stained area of six observations for each image (n=6) from each condition. All 

the results were analysed using SPSS 15.0. 

 

 

 

 

Fig. 5.1e Quantification of stain Total of six squares of defined area were measured for 

each image 
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5.4 Results  

5.4.1 Expression of p27Kip1 protein in HMVECad  

HMVECad expressed p27Kip1 protein at N5mM, N20mM, H5mM and H20mM 

conditions at 48 h. The p27Kip1 was predominantly expressed in the nuclei of the cells at 

the migrating edges of the monolayer for all of the test conditions (Fig. 5.2c-f). It was very 

rarely found anywhere other than the edges of the monolayer. Interestingly, in some of the 

cells migrating in 5mM glucose in both normoxia and hypoxia the p27Kip1 expression was 

localised, along with nuclei, in the cytoplasm of cells (Fig. 5.2c&e). No difference in the 

intensity of the expression of p27Kip1 was found between N5mM and N20mM or between 

H5mM and H20mM conditions. However, the cells incubated in 5% oxygen (Fig. 5.2e&f) 

expressed more p27Kip1 than those of their normoxic (Fig. 5.2c&d) counterparts. 

 The expression of p27Kip1 was also assessed for migrating cells of the wound 

healing assay model at 48 h. Similar to those of the circular monolayer; the HMVECad 

migrating from the intact edge of the semicircular monolayer expressed p27Kip1 in the 

nuclei and in some cases (i.e. N5mM and H5mM) in the cytoplasm of cells at the leading 

edges (Fig. 5.3c&e).  The intact edge of HMVECad (Fig. 5.3) was more intensely stained 

for p27Kip1 in N5mM and H5mM compared to N20mM and H20mM conditions respectively. 

Cells migrating under N20mM and H20mM conditions showed only weak staining. On the 

other hand HMVECad migrating from the wounded edge expressed very little p27Kip1 for 

all the four conditions (Fig. 5.4). 

 The influence of varying glucose concentration and oxygen tension on the intensity 

of the p27Kip1 staining was quantified using image J freeware (Fig. 5.5). The intensity of 

p27Kip1 expression by HMVECad of the intact and wounded edge of the semicircular 

monolayer was assessed. The percent area of stained cells at the intact edge was found 

to be significantly less for N20mM (1.3 ± 0.7) and H20mM (3.2 ± 0.7) compared to those 

of N5mM (9.0 ± 2.3) and H5mM (18.9 ± 7.5) conditions respectively. The HMVECad of the 

intact edge under H5mM conditions expressed significantly higher quantities of p27Kip1 

when compared to the N5mM condition (p<0.001). However, the difference in the p27Kip1 

expression in cells migrating from the wounded edge was not found to reach statistical 

significance (p>0.05) for N5mM (3.0 ± 2.1), N20mM (1.5 ± 0.6), H5mM (2.2 ± 1.8) and 

H20mM (4.6 ± 2.2) conditions. 

When the intensity of the expression of p27Kip1 is compared between the intact and 

wounded edge, it was found to be significantly different for N5mM (p<0.05) and H5mM 

(p<0.001) only. The intensity of the stain for cells in both N20mM and H20mM was not 

significantly different between the intact and wounded edge. 
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a)      b) 

     

 c)      d) 

     

e)      f) 

     

Fig. 5.2 Expression of p27Kip1 in HMVECad of the circular monolayer The circular 

monolayers of HMVECad were exposed to four different conditions for 48 h. The cells of 

a) and b) were treated with control antibody (IgG1) and TBS alone in order to determine 

the antibody specificity and as buffer control respectively. The expression of p27Kip1 

protein was detected in the cells treated with c) N5mM, d) N20mM, e) H5mM and f) 

H20mM conditions. The arrows and circles indicate nuclear and cytoplasmic staining 

respectively. The images are representative of samples from 3 different occasions (n=3). 

The scale bar on each photomicrograph represents 200µm (Magnification: 100x). 
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a)      b)     

     

 c)      d) 

     

 e)      f)     

     

Fig. 5.3 Expression of p27Kip1 in HMVECad of the intact edge The intact edges of the 

semicircular monolayer of HMVECad were exposed to four different conditions for 48h. 

The cells were treated with control antibody (IgG1) (a) and TBS alone (b) in order to 

determine the antibody specificity and as buffer control respectively. The expression of 

p27Kip1 protein was detected in cells treated with c) N5mM, d) N20mM, e) H5mM and f) 

H20mM conditions. The arrows and circles indicate nuclear and cytoplasmic staining 

respectively. The images are representative of samples from 3 different occasions (n=3). 

The scale bar on each photomicrograph represents 200µm (Magnification: 100x). 
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a)      b) 

     

c)      d) 

     

e)      f) 

     

Fig. 5.4 Expression of p27Kip1 in HMVECad of the wounded edge The wounded edges 

of the semicircular monolayer of HMVECad were exposed to four different conditions for 

48 h. The cells were treated with a) control antibody (IgG1) and b) TBS alone in order to 

determine the antibody specificity and as buffer control respectively. The expression of 

p27Kip1 protein was detected in cells treated with c) N5mM, d) N20mM, e) H5mM and f) 

H20mM conditions. The images are representative of samples from 3 different occasions 

(n=3). The scale bar on each photomicrograph represents 200µm (Magnification: 100x). 
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Fig. 5.5 Expression of p27Kip1 in HMVECad in response to glucose concentration 

and oxygen tension The semicircular monolayers were incubated at 5mM or 20mM 

glucose concentration in either normoxic (20% O2) or hypoxic (5% O2) condition for 48 h. 

The cells were stained for the expression of p27Kip1 on both the intact and wounded edge 

of the semicircular monolayer. Intensity of the expression was quantified as percent area 

using Image J freeware. The results are presented as mean ± SEM of 6 identical sized 

regions (n=6) at either intact or wounded edge from a single monolayer. The results for 

different conditions were analysed by analysis of variance (ANOVA) followed by 

Bonferroni post hoc test. The comparison between the intact and wounded edge was 

analysed by Independent t test.   

(*p<0.05, **p<0.01, ***p<0.001 and NS = not significant when compared as indicated) 
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5.4.2 Expression of HIF-1α in HMVECad 

The circular monolayers of HMVECad in N5mM, N20mM, H5mM and H20mM 

conditions were stained for the detection of HIF-1α (Fig. 5.6) protein after measuring the 

migration at 48 h. The expression was found to be uniform across the given monolayer. 

The HIF-1α staining was more intense in cells exposed to hypoxic conditions compared to 

normoxic conditions (Fig.5.6e&f vs. c&d). The expression was weak in N5mM (Fig.5.6c) 

than in N20mM (Fig.5.6d) condition. Hypoxia induced expression of HIF-1α was 

predominantly found to be concentrated in the nuclei of the cells which were cultured in 

5mM glucose concentration (Fig.5.6c&e) and in the perinuclear region for those which 

were cultured in 20mM glucose concentration (Fig.5.6d&f).  

 The expression of HIF-1α in the migrating cells of the intact edge of the 

semicircular monolayer was found to be higher (Fig. 5.7) in hypoxic conditions than 

normoxic conditions at 48 h, similar to that of the circular monolayer. However, the cells 

sitting at the edge expressed more HIF-1α than any other part of the layer for all the 

conditions (Fig. 5.7). The distinction between the nuclear and perinuclear localisation of 

HIF-1α expression was not clear for N5mM and N20mM conditions. For cells migrating in 

H5mM conditions, the expression of HIF-1α was greater than any other conditions and 

was localised predominately in the nuclei. The cells incubated in H20mM expressed HIF-

1α more at the perinuclear region than within the nucleus. 

The cells migrating from the wounded edge of the semicircular monolayer (Fig. 

5.8) expressed HIF-1α across the layer uniformly for any given condition. The cells 

migrating under H5mM condition expressed more HIF-1α than those in any other 

conditions. 

HIF-1α expression in HMVECad located in the intact or the wounded edges due to 

the changes in concentration of glucose and oxygen tension was quantified by image J 

(Fig. 5.9). The cells migrating from the intact edge expressed significantly (p<0.001) more 

HIF-1α for H5mM (21.2 ± 8.3) than H20mM (7.2 ± 2.6) and N5mM (5.5 ± 2.4) conditions. 

However, no significant (p>0.05) difference in the percent area of stained cells was 

observed between N5mM and N20mM (3.8 ± 2.3) conditions. The HIF-1α expression 

pattern was similar for the wounded edge. The intensity of the stain was significantly 

higher (p<0.001) for H5mM (14.1 ± 3.5) than H20mM (2.5 ± 1.7) and N5mM (3.0 ± 1.0). 

No significant difference (p>0.05) was found between N5mM and N20mM (2.6 ± 1.2). 

No significant difference in the level of HIF-1α protein was found between the 

intact and wounded edge for any of the conditions except for H20mM, where cells of the 

intact edge expressed more (p<0.05) HIF-1α than those of wounded edge.  
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a)      b) 

    

 c)      d) 

     

e)      f) 

     

Fig. 5.6 Expression of HIF-1α in HMVECad of the circular monolayer The circular 

monolayer of HMVECad were exposed to four different conditions for 48 h. The cells were 

treated with a) control antibody (IgG1) and b) TBS alone in order to determine the 

antibody specificity and as buffer control respectively. The expression of HIF-1α protein 

was detected in cells treated with c) N5mM, d) N20mM, e) H5mM and f) H20mM 

conditions. The arrows and circles indicate nuclear and perinuclear staining respectively. 

The images are representative of samples from 3 different occasions (n=3). The scale bar 

of each photomicrograph represents 200µm (Magnification: 100x). 
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a)      b) 

     

 c)      d) 

     

 e)      f) 

     

Fig. 5.7 Expression of HIF-1α in HMVECad of the intact edge The intact edges of the 

semicircular monolayer of HMVECad were exposed to four different conditions for 48 h. 

The cells were treated with a) control antibody (IgG1) and b) TBS alone in order to 

determine the antibody specificity and as buffer control respectively. The expression of 

HIF-1α protein was detected in cells treated with c) N5mM, d) N20mM, e) H5mM and f) 

H20mM conditions. The arrows and circles indicate nuclear and perinuclear staining 

respectively. The images are representative of samples from 3 different occasions (n=3). 

The scale bar of each photomicrograph represents 200µm (Magnification: 100x).  
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a)      b) 

     

 c)      d) 

     

 e)      f) 

     

Fig. 5.8 Expression of HIF-1α in HMVECad of the wounded edge The wounded edges 

of the semicircular monolayer of HMVECad were exposed to four different conditions for 

48 h. The cells were treated with a) control antibody (IgG1) and b) TBS alone in order to 

determine the antibody specificity and as buffer control respectively. The expression of 

HIF-1α protein was detected in cells treated with c) N5mM, d) N20mM, e) H5mM and f) 

H20mM conditions. The arrows and circles indicate nuclear and perinuclear staining 

respectively. The images are representative of samples from 3 different occasions (n=3). 

The scale bar of each photomicrograph represents 200µm (Magnification: 100x). 
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Fig. 5.9 Expression of HIF-1α in HMVECad in response to altered glucose and 

oxygen concentration The semicircular monolayers were incubated at either 5mM or 

20mM glucose concentration and either normoxic (ambient O2) or hypoxic (5% O2) 

condition for 48 h. The cells were stained for the expression of HIF-1α. Intensity of the 

expression was quantified as percent area using Image J freeware. The results are 

presented as mean ± SEM of six identical sized regions (n=6) at either intact or wounded 

edge from a single monolayer. The results for different conditions were analysed by 

analysis of variance (ANOVA) followed by Bonferroni post hoc test. The comparison 

between the intact and wounded edge was analysed by Independent t test. 

(**p<0.01, ***p<0.001 and NS = not significant when compared as indicated) 
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5.4.3 Effect of intracellular signal inhibitors on the migration of HMVECad in 

hypoxia 

 The migration (µm) of HMVECad from the intact edge for H5mM condition 

(Fig.5.10) was greater than for the cells incubated in H20mM amongst all treatments viz. 

untreated cells (166.5 ± 3.9 vs. 147.0 ± 3.2), p42/p44 MAPKi (163.0 ± 4.1 vs. 118.0 ± 3.9) 

and PI3Ki treatment (124.8 ± 3.5 vs. 104.5 ± 3.8) except for PKCβII/EGFRi treated cells 

(169.0 ± 3.9 vs. 163.4 ± 4.1) at 48 h. However, the migration of cells from the wounded 

edge for H5mM condition was faster than those for H20mM condition for all the treatments 

(untreated cells: 212.7 ± 4.6 vs. 183.1 ± 4.2, p42/p44 MAPKi treated cells: 194.8 ± 4.1 vs. 

156.7 ± 7.4, PKCβII/EGFRi treated cells: 210.0 ± 4.0 vs. 193.0 ± 4.5 and PI3Ki treatment: 

169.7 ± 4.9 vs. 130.3 ± 5.0).  

 The PI3Ki treated cells of the intact edge (Fig. 5.10) migrated significantly lesser 

(p<0.001) than those of the other three treatments under H5mM condition. No difference 

(p>0.05) in the migration was recorded for either PKCβII/EGFRi treated or p42/p44 MAPKi 

treated cells when compared with those of untreated cells for H5mM condition. The PI3Ki 

treated cells were not significantly different (p>0.05) from p42/p44 MAPKi treated cells in 

the migration under H20mM condition. However along with PI3Ki treated cells, p42/p44 

MAPKi treated cells also migrated significantly less (p<0.001) than those of untreated and 

PKCβII/EGFRi treated cells for H20mM condition. 

 The cells of the wounded edge (Fig. 5.10) migrated significantly less when they 

received PI3Ki compared to no treatment (p<0.001) or p42/p44 MAPKi (p<0.05) or 

PKCβII/EGFRi (p<0.001) treatment for H5mM condition. No difference (p>0.05) was 

observed in the migration between untreated, p42/p44 MAPKi treated or PKCβII/EGFRi 

treated cells for H5mM condition. The inhibition of PI3K treatment significantly prevented 

the cells from migrating on par with the other treatments (p<0.001 against untreated and 

PKCβII/EGFRi, p<0.01 against p42/p44 MAPKi) under H20mM condition too. The p42/p44 

MAPKi treated cells also migrated significantly less than those of untreated (p<0.01) and 

PKCβII/EGFRi treated (p<0.001) cells under H20mM condition. However, like those from 

the intact edge, the cells from the wounded edge showed no significant (p>0.05) 

difference in the migration of PKCβII/EGFRi treatment from those of no treatment. The 

migration of the HMVECad (Fig. 5.10) from the wounded edge was significantly greater 

(p<0.001) than that from intact edge for all the treatments and both the conditions. 
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Fig. 5.10 Effect of specific intracellular signal inhibitors on the migration of HMVECad The semi circular monolayers of HMVECad were 

treated with either p42/p44 MAPK inhibitor (PD98059) (2µM) or PKCβII/EGFR inhibitor (1µM) or PI3K inhibitor (LY294002) (10µM). The 

migration of HMVECad of the semicircular monolayer in the presence of the above mentioned treatments due to the conditions induced by both 

5mM or 20mM glucose concentration and hypoxia (5% oxygen tension) at 48 h was assessed by the wound healing assay. The results 

represent 10 observations from each of 3 samples of one occasion (n=30, unless mentioned below). The results are presented as net migration 

(mean ± SEM) of cells. The comparison between treatments was analysed by analysis of variance (ANOVA) followed by Bonferroni post hoc 

test. The comparison among conditions and edges was analysed by Independent student’s t test. The migration was significantly lower 

(p<0.001) at the intact edge for both the conditions and all the treatments compared to respective condition and treatment of the wounded 

edge.  

(††p<0.01, ††† p<0.001 when compared with H5mM condition of respective edge; *p<0.05, **p<0.01, and ***p<0.001 when compared as 

indicated)  

(Intact and wounded edges: n = 20 for both PD98059 and LY294002 in H5mM and for PKCβII/EGFRi in H20mM) 
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5.4.4 Effect of intracellular signal inhibitors on the expression of HIF-1α 

 The HMVECad were treated with p42/44 MAPKi or PKCβII/EGFRi or PI3Ki to 

understand their role in regulating the expression of HIF-1α. The semicircular monolayers 

were incubated in H5mM and H20mM conditions for 48 h before staining for the 

expression of HIF-1α. The expression of HIF-1α was localised in the nucleus for H5mM 

treatments (Fig. 5.11Aa and 5.12Aa), and both nucleus and the perinuclear region in 

H20mM (Fig. 5.11Ba & 5.12Ba) and in PI3Ki treated cells (Fig.5.11d (A&B) & 5.12d 

(A&B)). HIF-1α was predominantly perinuclear in cells treated with p42/p44 MAPKi 

(Fig.5.11b (A&B) & 5.12b (A&B)) and PKCβII/EGFRi (Fig.5.11c (A&B) & 5.12c (A&B)) in 

H5mM and H20mM conditions. HIF-1α staining was more intense in untreated cells of the 

intact and wounded edge compared to treated cells in both H5mM (Fig. 5.11Aa & 5.12Aa) 

and H20mM (Fig. 5.11Ba & 5.12Ba) conditions. 

 The HIF-1α expression in the presence of different signal inhibitors was quantified 

using image J (Fig. 5.13). Untreated (7.6 ± 2.2) HMVECad of the intact edge expressed 

significantly more HIF-1α than p42/p44 MAPKi (2.1 ± 0.3) (p<0.001) or PKCβII/EGFRi (2.2 

± 0.4) (p<0.001) or PI3Ki (2.1 ± 0.4) (p<0.001) treatment for H5mM condition. No 

significant difference (p>0.05) was observed amongst the treated cells for H5mM 

condition. The H20mM conditions followed the trend of H5mM as the untreated cells (9.4 

± 1.2) expressed more of HIF-1α than p42/p44 MAPKi (2.1 ± 0.3) (p<0.001) or 

PKCβII/EGFRi (5.1 ± 0.7) (p<0.01) or PI3Ki (2.9 ± 0.5) (p<0.001) treatment. Among the 

different treatments, the level of HIF-1α protein was more (p<0.05) in PKCβII/EGFRi 

treated cells compared to p42/p44 MAPKi treated cells. There was no difference (p>0.05) 

between H5mM and H20mM condition for any of the treatments except for PKCβII/EGFRi. 

The PKCβII/EGFRi treated cells expressed more (p<0.01) HIF-1α in H20mM than in H5mM 

condition of intact edge. 

 The level of expression of HIF-1α in the wounded edge was different (p<0.01) 

between the untreated cells (9.4 ± 1.7) and PI3Ki treated cells (2.6 ± 0.5) for H5mM 

condition. No difference (p>0.05) was observed between the untreated cells and p42/p44 

MAPKi (6.1 ± 1.1) or PKCβII/EGFRi treated (5.1 ± 1.1) cells for H5mM condition. No 

difference (p>0.05) among the treatments was observed. For H20mM condition, p42/p44 

MAPKi treatment (2.4 ± 0.4) significantly reduced (p<0.001) the expression of HIF-1α 

compared to either no treatment (10.5 ± 1.1) or PKCβII/EGFRi treatment (8.3 ± 0.9). A 

significant difference (p<0.01) was also found between the untreated and PI3Ki treated 

cells (5.4 ± 0.9). The level of the protein was significantly less (p<0.01) for p42/p44 MAPKi 

and more (p<0.05) for PKCβII/EGFRi and PI3Ki treatment at H20mM compared to H5mM 

condition. 
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 The HMVECad of the wounded edge expressed more HIF-1α for p42/p44 MAPKi 

(p<0.01) and PKCβII/EGFRi (p<0.05) treatment than those of intact edge in H5mM 

condition. No difference (p>0.05) was detected for untreated and PI3Ki treated cells. 

However, for H20mM condition, PKCβII/EGFRi (p<0.01) and PI3Ki (p<0.05) treatment 

increased the expression of HIF-1α in the cells of the wounded edge compared to intact 

edge. No difference (p>0.05) between the two edges was observed in untreated as well 

as for p42/p44 MAPKi treated cells.  
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Fig. 5.11A Effect of inhibitors on the expression of HIF-1α in HMVECad of the intact 

edge The HMVECad of intact edges of the semicircular monolayer were treated with 

signal inhibitors and exposed to 5mM glucose under hypoxic (5% O2) condition for 48 h. 

The expression of HIF-1α protein was detected in cells treated with a) no treatment, b) 

p42/p44 MAPKi (PD98059) (2µM), c) PKCβII/EGFRi (1µM) and d) PI3Ki (LY294002) 

(10µM) treatment. The arrows and circles indicate nuclear and perinuclear staining 

respectively. The images are representative of 3 samples (n=3). The scale bar of each 

photomicrograph represents 200µm (Magnification: 100 x). 
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Fig. 5.11B Effect of inhibitors on the expression of HIF-1α in HMVECad of the intact 

edge The HMVECad of the intact edges of the semicircular monolayer were treated with 

signal inhibitors and exposed to 20mM glucose under hypoxic (5% O2) condition for 48 h. 

The expression of HIF-1α protein was detected in cells treated with a) no treatment, b) 

p42/p44 MAPKi (PD98059) (2µM), c) PKCβII/EGFRi (1µM) and d) PI3Ki (LY294002) 

(10µM) treatment. The arrows and circles indicate nuclear and perinuclear staining 

respectively. The images are representative of 3 samples (n=3). The scale bar of each 

photomicrograph represents 200µm (Magnification: 100 x). 
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Fig. 5.12A Effect of inhibitors on the expression of HIF-1α in HMVECad of the 

wounded edge The HMVECad of wounded edges of the semicircular monolayer were 

treated with signal inhibitors and exposed to 5mM glucose under hypoxic (5% O2) 

condition for 48 h. The expression of HIF-1α protein was detected in cells treated with a) 

no treatment, b) p42/p44 MAPKi (PD98059) (2µM), c) PKCβII/EGFRi (1µM) and d) PI3Ki 

(LY294002) (10µM) treatment. The arrows and circles indicate nuclear and perinuclear 

staining respectively. The images are representative of 3 samples (n=3). The scale bar of 

each photomicrograph represents 200µm (Magnification: 100 x). 
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Fig. 5.12B Effect of inhibitors on the expression of HIF-1α in HMVECad of the 

wounded edge The HMVECad of the wounded edges of the semicircular monolayer were 

treated with signal inhibitors and exposed to 20mM glucose under hypoxic (5% O2) 

condition for 48 h. The expression of HIF-1α protein was detected in cells treated with a) 

no treatment, b) p42/p44 MAPKi (PD98059) (2µM), c) PKCβII/EGFRi (1µM) and d) PI3Ki 

(LY294002) (10µM) treatment. The arrows and circles indicate nuclear and perinuclear 

staining respectively. The images are representative of 3 samples (n=3). The scale bar of 

each photomicrograph represents 200µm (Magnification: 100 x). 
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Fig. 5.13 Expression of HIF-1α in HMVECad in response to the specific intracellular signal inhibitors Intensity of the stain for the 

expression of HIF-1α was quantified as percent area using Image J freeware. The semicircular monolayer was incubated at 5mM or 20mM 

glucose concentration and hypoxic (5% O2) condition for 48 h. The cells were treated with either p42/44 MAPK inhibitor (PD98059) (2µM) or 

PKCβII/EGFR inhibitor (1µM) or PI3K inhibitor (LY294002) (10µM) at the beginning of the incubation. The results are presented as mean ± SEM 

of 6 identical sized regions from 3 samples (n=18, unless mentioned below). The comparison between the treatments within a condition was 

analysed by analysis of variance (ANOVA) followed by Bonferroni post hoc test. Independent student’s t test was employed to compare 

amongst the conditions and edges. 

(†p<0.05, †† p<0.01 when compared with intact edge of the respective treatment, *p<0.05, **p<0.01 and ***p<0.001 when compared as 

indicated) 

(Intact & wounded edge: n = 12 for both p42/p44 MAPKi and PI3Ki in H5mM condition) 
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5.5 Discussion 

HMVECad incubated in hypoxia expressed more p27Kip1 compared to normoxia 

(Fig.5.2c&d vs. 5.2e&f) as hypoxia has been reported to activate various cell cycle 

regulators. The expression of p27Kip1 has been found to be activated in hypoxic cells 

(Gardner et al. 2001). The expression of p27Kip1 in the nuclei of some of HMVECad only at 

the migrating edge of a monolayer (Fig. 5.2) could indicate that those cells might be 

actively under the consideration of not transiting from G1 to S phase of cell cycle. However 

this observation, although correct might not have any bearing on the migration of cells, as 

the migration has been observed in the presence of anti-proliferative agent (Fig. 4.3). The 

expression of p27Kip1 in the cytoplasm (Fig. 5.2c&e, 5.3c&e) could indicate its role in the 

migration as the evidence has started emerging in its favour. It has been proved that 

MAPK/PI3K downstream effector p90 ribosomal S6 kinase (RSK1) increased the 

migration via accumulation of p27Kip1 in cytoplasm (Besson et al. 2004, Larrea et al. 2009). 

On the contrary, over expression of p27Kip1 is implicated in negatively regulating the 

migration along with proliferation (Diez-Juan and Andres 2003, Goukassian et al. 2001). It 

is also worth remembering that the cells might be making the phenotypic switch from 

migration to proliferation (De Donatis et al. 2008). However, there is a need to confirm this 

further. Surprisingly, either no difference in the p27Kip1 nuclear expression was found 

between the normal and elevated glucose concentration or cells incubated in low glucose 

concentration expressed more p27Kip1 protein compared to higher glucose level 

(Fig.5.2c&e vs. d&f). These observations are contrary to previous observation wherein 

high glucose leads to the induction of p27Kip1 mediated hypertrophy of mesengial cells 

(Wolf et al. 2003). The cells at the middle of the monolayer (Fig.5.2-5.4) have not, as 

expected, expressed the p27Kip1. This could be explained on the basis that the cells in the 

middle of the monolayer are neither at the forefront of the migration nor undergoing active 

proliferation irrespective of the conditions. 

The lack of expression of p27Kip1 in elevated glucose levels in intact edge cells was 

clearly demonstrated when the stain was quantified using image J freeware (Fig.5.5). 

Surprisingly, the intensity of the stain differed between the cells cultured in normal glucose 

levels of intact edge and wounded edge but not for those cultured in higher glucose levels 

(Fig.5.5). It is further surprising that the cells at the wounded edge failed to express p27Kip1 

either in nuclei or cytoplasm suggesting no role for it either in proliferation (expected) or 

migration (unexpected). As no difference in the expression of p27Kip1 between any of the 

conditions in HMVECad of wounded edge (Fig.5.5) was found, it is plausible to 

understand the lack of nuclear expression considering that the proliferation might be 

taking place and aiding the increased migration at the wounded edge. However the lack of 
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cytoplasmic expression of p27Kip1 in the cells of wounded edge raises the question about 

activated p27Kip1 having any role in the migration of cells. This dichotomy in the role of 

cytoplasmic p27Kip1 in regulating the migration of cells could be the reason behind the 

contradicting evidences being reported. Taken together there is a need for more work to 

elucidate the role of p27Kip1 in proliferation and/or migration of microvascular endothelial 

cells in diabetic milieu. 

The immunostain being more intense in the presence of hypoxia (Fig.5.6e, 5.7e 

and 5.8e) is very much expected as HIF-1α is a well known angiogenic stimulant under 

the control of oxygen tension. Hypoxia is essential not only for the stabilization of HIF-1α 

but also for the nuclear translocation and its accumulation in the nucleus, so that it can 

perform its transcriptional activity (Kallio et al. 1998). The expression of HIF-1α was found 

to be nuclei specific in large number of HMVECad cultured in normal glucose condition as 

against the perinuclear localisation in elevated glucose levels (Fig.5.6c&e vs. d&f). The 

perinuclear localization suggests that HIF-1α although stabilized due to hypoxia and 

hence getting expressed, might not be translocated into nuclei as the high glucose might 

be interfering with that process. Apart from this, there are reports suggesting the 

degradation of HIF-1α in the presence of higher glucose. Catrina et el. (2004) suggest that 

hyperglycaemia interferes with the stability of HIF-1α in hypoxia against the proteasomal 

degradation in spite of the inhibition of PHDs and with the transcriptional activity of HIF-1α 

(Catrina et al. 2004). Further, stabilization and activation of HIF-1α rectified the diabetes 

induced impairment of wound healing by restoring the activation of many essential target 

genes such as VEGF, VEGFR, HSP-90, SDF-1α, SCF and Tie-2 (Botusan et al. 2008). 

The degradation of HIF-1α and its failure to undergo nuclear translocation in the presence 

of high glucose could be the reasons for the decreased migration of HMVECad. The 

expression of HIF-1α in normoxia (Fig.5.6c&d) although weak could have been regulated 

not by oxygen tension but by other factors such as growth factors and cytokines which are 

also known to regulate HIF-1 (Webb, Coleman and Pugh 2009). It was interesting to note 

the uniformity of the stain across the circular monolayer as against the expectation of cells 

at the edge having more stain (Fig. 5.6). The expectation that the cells at the edge of 

monolayer express more HIF-1α was based on the proposition that HIF-1 being a 

transcription factor for many mitogenic agents such as VEGF would be instrumental in 

driving the migration up (Pugh and Ratcliffe 2003). 

HMVECad at the intact and wounded edge in hypoxia (Fig.5.7e&f and 5.8e&f) 

stained slightly more intensely than the cells at the centre of the monolayer. This could 

indicate that HIF-1α activation is essential for the migration of cells. The quantification of 

the intensity of the stain using image J freeware (Fig.5.9) found no difference among any 

of the conditions except in H20mM condition between the intact and wounded edge, 
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although the migration of the wounded edge was greater than the intact edge (chapter 4, 

Fig.4.4). Contrary to the expectation HIF-1α level was found to be more intense at the 

intact edge than at the wounded edge.  

 We wanted to assess the role of possible signalling pathway/s in mediating the 

HIF-1α and hyperglycaemia regulated migration of HMVECad. Hence, the migration was 

assessed using p42/p44 MAPK, PKCβII and PI3K signal inhibitors in hypoxia as it was well 

established that hypoxia not only stimulates the migration but also activates HIF-1 system. 

Further, HMVECad were stained in the presence of inhibitors for the expression of HIF-1α 

in order to understand how different signalling pathways regulated the expression of HIF-

1α in H5mM (Fig.5.11 A&B) and H20mM (Fig.5.12 A&B) conditions. HIF-1α was localised 

as expected in the nuclei of untreated cells (Fig.5.11Aa & 5.12Aa) in H5mM condition in 

both intact and wounded edges. Unlike previous set of experiments, equal number of cells 

if not more, expressed nuclear localisation than perinuclear localisation of HIF-1α in the 

presence of H20mM condition (Fig.5.11Ba & 5.12Ba). Further, when the stain was 

quantified (Fig. 5.13) no difference in the quantity of HIF-1α was observed between H5mM 

and H20mM conditions in untreated cells. 

The PI3Ki treated cells from both the intact and wounded edge, migrated 

significantly less than other treatments and untreated cells (Fig.5.10). This clearly 

indicates that PI3K activation is central to the migration and re-endothelialisation induced 

by hypoxia and this observation is consistent with previous reports (Fitsialos et al. 2008, 

Woodward et al. 2009). The involvement of PI3K in mediating the HIF-1α dependant 

migration of endothelial cells was confirmed by the consistent decrease in the expression 

of HIF-1α in PI3Ki treated cells compared to untreated cells (Fig.5.13). The mediatory role 

of PI3K in regulating the expression of HIF-1α has been reported by other workers as well 

(Mottet et al. 2003, Yang et al. 2009). Inhibition of PI3K-Akt pathway could be aggravating 

the decrease in the migration induced by high glucose through degrading the HIF-1α as 

few PI3Ki treated cells expressed HIF-1α in nucleus (Fig.5.11Bd &5.12Bd), not the extent 

of untreated cells (Fig.5.13). This observation is consistent with previous reports where 

the inhibition of PI3K pathway has been reported to be detrimental in mediating the effects 

of high glucose in migration of cells (Yu et al.  2006). Interestingly, more of HIF-1α was 

expressed by the re-endothelializing PI3K inhibited cells from the wounded edge in 

H20mM compared to their counterparts in H5mM condition (Fig.5.13). 

Although many reports support the role of p42/p44 MAPK pathway in mediating 

the effects of hypoxia and HIF-1α (Richard et al. 1999), p42/p44 MAPK inhibition did not 

impact the migration (Fig.5.10) in hypoxia alone in HMVECad. The presence of elevated 

glucose levels continued to decrease the migration further when treated with p42/p44 

MAPKi or PI3Ki (Fig. 5.10). This indicates that the inhibition of MAPK along with PI3K 



Chapter 5 – Mechanistics of cell migration 

 - 164 - 

pathway aggravates the deleterious effect of glucose on the migration in the presence of 

hypoxia. The decreased activation of p42/p44 MAPK has been implicated in reducing the 

tube formation by glycated bFGF (Duraisamy et al. 2001). The decrease in the migration 

due to inhibition of p42/p44 MAPK could be due to reduced production of VEGF and 

decreased activity of HIF-1α during hyperglycaemia (Gupta et al. 1999, Yun et al. 2009). 

The role of p42/p44 MAPK pathway in mediating the effects of hypoxia and/or 

hyperglycaemia remain unclear as it did not produce any conclusive effect either on the 

migration or on the expression of HIF-1α. These results are not surprising as p42/p44 

MAPK is known to mediate proliferation and differentiation effects and p38 MAPK pathway 

has been implicated in mediating the migration of cells (Rousseau et al. 1997). However, 

regulation of HIF-1α remained puzzling as it has been reported to be regulated by p42/p44 

MAPK (Richard et al. 1999). This population of cells could possibly were affected by 

different set of signalling pathways than p42/p44 MAPK. 

The inhibition of PKC pathway led to the reversal of high glucose effects in 

migration indicating that glucose caused HIF-1α degradation via activation of PKC 

pathway as PKCβII/EGFRi treated cells expressed HIF-1α in high glucose compared to 

normal glucose levels. These results confirm that the production of ROS via de novo 

synthesis of DAG and subsequent activation of PKC pathway is central to the harmful 

effects of high glucose (Brownlee 2005). The perinuclear HIF-1α expression in 

PKCβII/EGFRi treated cells suggests that the phopsphorylation of PKCβII may have a role 

in the nuclear translocation of HIF-1α into the nucleus. Hyperglycaemia is known to not 

only induce the activation of PKCβII pathway but also the formation of ROS in HUVECs 

(Gallo et al. 2005). Further, the beneficial effects of PKC inhibitor was demonstrated when 

it reduced the microvascular complications of hind limbs in STZ induced diabetic mice 

through the increased expression of PDGF (Tanii et al. 2006). Although the migration of 

PKCβII/EGFRi treated cells from wounded edge decreased, the expression of HIF-1α did 

not diminish in comparison to untreated cells in H20mM condition. This clearly indicates 

that deleterious effects of glucose in decreasing the migration were mediated at least 

partially through the activation of PKC pathway via HIF-1α. 

5.6 Conclusion 

Hyperglycaemia results in decreasing the migration compared to hypoxia alone 

due to retarded transcriptional activity of HIF-1 either because of failure in nuclear 

translocation or degradation of HIF-1α. This activity was mediated by PKCβII pathway. The 

p42/p44 MAPK pathway aggravated the effects of high glucose whereas PI3K pathway 

might be a mediator for either aggravating the effects of high glucose and/or for the 

inhibition of angiogenic stimulant effects of hypoxia. The role of cytoplasmic expression of 
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p27Kip1 during the migration of cells needs a further probing. As ROS are known to be a 

common source of both hypoxia and hyperglycaemia, in the next chapter effect of 

silymarin, an antioxidant on the migration of HMVECad is evaluated. 
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6.1 Hypothesis 

 Antioxidant, silymarin [Silybum marianum (L.)] will have a beneficial effect on high 

glucose induced decrease in the migration of HMVECad. 

6.2 Introduction  

 Silymarin complex consisting of seven different flavonolignans and a flavanoid has 

been in use as a hepatoprotective agent and as an antioxidant for many years (Comelli et 

al. 2007, Post-White, Ladas and Kelly 2007).  Silymarin produces its anti-oxidant effects 

through various ways. It has been shown to increase many anti-oxidant enzymes such as 

superoxide dismutase (SOD), glutathione peroxidase (GSHPx), glutathione reductase 

(GR) and catalase (CAT) as well as decreasing the levels of serum alanine 

aminotransferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP) 

and total bilirubin which help in the elimination of ROS (Comelli et al. 2007, Eminzade, 

Uraz and Izzettin 2008). Silymarin has started to receive attention not only as a 

hepatoprotective adjuvant for cancer therapy but also because of its antiangiogenic 

effects (Ramasamy and Agarwal 2008, Singh, Gu and Agarwal 2008). Silibinin, the main 

component of silymarin has been shown to produce antiangiogenic effects by decreasing 

the expression of many angiogenic stimulants such as HIF-1α, iNOS, PECAM-1, VEGF, 

down regulation of VEGFR1 (Raina et al. 2008) and by increasing the expression of 

TIMP-1 and 2 which are inhibitors of MMPs and ANG-2 and Tie-2 (Tyagi et al. 2009). The 

anticancerous effects were mediated by the inhibition of the phosphorylation of p38, 

JNK1/2 and ERK1/2 MAPK and PI3K-Akt pathway (Garcia-Maceira and Mateo 2009, Gu 

et al. 2005). However, beneficial effects of silibinin in non-cancerous cells such as glial 

cells, cardiac myocytes and neutrophils are regulated by PKC activity along with other 

pathways (Tsai et al. 2010, Varga et al. 2004, Zhou et al. 2007). 

 The anti-diabetic effects of silymarin remain untested to a large extent. Silymarin is 

known to produce its anti-diabetic effects by acting as a cytoprotectant of pancreatic cells, 

as an anti-oxidant and by inhibition of hepatic glucose formation (Guigas et al. 2007, Soto 

et al. 2003, Soto et al. 2004 and Soto et al. 2010). Silymarin has also been proved to 

provide the cytoprotective effect to HUVECs against hypoxia as well as high glucose 

(Weidmann 2008). Hypoxia and high glucose are known to produce their effects by 

inducing the production of ROS (Li et al. 2010). As silymarin is a known antioxidant, the 

effects of silymarin on the migration of endothelial cells in the presence of high glucose 

and/or low oxygen tension are tested in this chapter. 

6.3 Materials and methods  

The migration of HMVECad was assessed in the presence of silymarin (SM) 

(50µM) (in 0.5% v/v of DMSO) and α-lipoic acid (aLA) (100 µM) (in 0.5% v/v of ethanol) 
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(Weidmann 2008). Alpha lipoic acid was used as a positive control to compare with 

silymarin treatment. DMSO and ethanol were used as a vehicle control for SM and aLA 

treatment respectively. The migration was assessed by both the radial migration assay 

and wound healing assay as explained in section 2.2.3 and 2.2.4 respectively. The 

migration of endothelial cells was assessed in 20% O2 tension and 5mM glucose (N5mM), 

20% O2 tension and 20mM glucose (N20mM), 5% O2 tension and 5mM glucose (H5mM) 

and 5% O2 tension and 20mM glucose (H20mM) conditions. All the results are presented 

as net migration (mean ± SEM) in micrometers and analysed using SPSS 15.0. 

6.4 Results 

6.4.1 Effect of silymarin on the migration of HMVECad by radial migration assay 

The vehicle control (DMSO) for silymarin, did not significantly alter endothelial cell 

migration (Fig. 6.1a & b) when compared to control. The migration pattern was found to be 

similar to that explained in section 4.4.1.; the migration (µm) of untreated endothelial cells 

was lower (p<0.001) for N20mM (24 h: 57 ± 1.3; 48 h: 117.2 ± 1.5) in comparison to that 

of N5mM (24 h: 78.4 ± 0.8; 48 h: 133.9 ± 0.9) condition for both 24 and 48 h. The 

migration was high (p<0.001) for H5mM (24 h: 101.4 ± 1.1; 48 h: 174.6 ± 1.5) compared to 

N5mM condition for 24 and 48 h. When hypoxia and high glucose concentration (H20mM) 

(24 h: 72.2 ± 1.1; 48 h: 136.3 ± 1.3) were combined the migration was lower (p<0.001) 

than that of hypoxic and normal glucose (H5mM) level for both 24 and 48 h. 

The results show that the addition of silymarin (50µM) increased the migration of 

cells in N20mM (24 h: 100.4 ± 1.0; 48 h: 178.3 ± 1.6) condition and was found to bring the 

migration (µm) level to those in N5mM (24 h: 99.9 ± 0.8; 48 h: 172.7 ± 2.0) condition. 

However, the migration of cells in H5mM (24 h: 117.9 ± 1.4; 48 h: 208.9 ± 5.6) condition 

was found to be more (p<0.001) than those in N5mM condition as with the untreated cells. 

Like in normoxia, the migration of cells in H20mM (24 h: 115.5 ± 1.3; 48 h: 198.5 ± 2.0) 

condition was brought to the level of H5mM condition and no significant difference was 

found between the two conditions. The number of observations (n = 40) recorded for 

H5mM and H20mM at 48 h was less due to the limitation of image size that could have 

been captured within the image frame, which was explained in section 3.2.3. The 

migration of untreated cells in all conditions was significantly (p<0.001) lower compared to 

respective condition of silymarin treated cells. The silymarin treatment increased the 

migration level of HMVECad in 20mM condition under both normoxia and hypoxia to that 

of 5mM condition. These results confirm the ability of the silymarin to overcome the high 

glucose induced decrease in the migration of microvascular endothelial cells. 
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Fig. 6.1 Effect of silymarin (50µM) on the migration HMVECad were cultured in 

conditions of 5 or 20mM glucose and 20 (Normoxia – N) or 5% (Hypoxia – H) oxygen 

tension. The migration was assessed by the radial migration assay. The silymarin 

significantly increased (p<0.001) the migration for all the conditions compared to 

respective condition of untreated cells. The results are presented as net migration (mean 

± SEM) of cells at 24 (a) and 48h (b) and analysed by analysis of variance (ANOVA) 

followed by Bonferroni post hoc test. 

(***p<0.001 when compared as indicated; NS = not significant)  

v.c. (DMSO) 24 & 48h: N5mM=160; N20mM=120; H5mM=180; H20mM=180 

SM 24 & 48h: N5mM=180 & 120; N20mM=180; H5mM=180 & 40; H20mM=140 & 40) 
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6.4.2 Effect of α - lipoic acid on the migration of HMVECad by radial migration assay 

The migration of HMVECad in the presence of vehicle control (ethanol) (Fig. 6.2a 

& b) was comparable to those found with DMSO. The migration (µm) in N20mM condition 

(24 h: 62.1 ± 1.3; 48 h: 110.5 ± 1.6) was lower (p<0.001) and that of H5mM (24 h: 105.9 ± 

1.9; 48 h: 175.5 ± 2.6) condition was higher (p<0.001) in comparison with the N5mM (24 

h: 73.7 ± 0.8; 48 h: 136.8 ± 1.7) condition for both 24 and 48 h. When hypoxia and high 

glucose concentration (H20mM) were combined (24 h: 74.1 ± 0.6; 48 h: 138.3 ± 0.9) the 

migration was lower (p<0.001) than that of hypoxic and normal glucose level (H5mM) at 

24 and 48 h. 

Unlike silymarin, aLA (100µM) failed to overcome the decrease in the migration 

(µm) of N20mM (24 h: 73.8 ± 0.8; 48 h: 129 ± 1.2) cells compared to those of N5mM (24 

h: 77.4 ± 0.8; 48 h: 144.4 ± 0.9) cells (24 h: p<0.05; 48 h: p<0.001). Similarly, there was a 

significant decrease (p<0.001) for both 24 and 48 h in the migration of cells incubated in 

H20mM (24 h: 82.5 ± 0.9; 48 h: 144.1 ± 1.3) condition compared to H5mM (24 h: 92.2 ± 

1.3; 48 h: 165.8 ± 2.0) condition. However, hypoxia (H5mM) was still able to drive the 

migration of the cells further (p<0.001) than those of normoxia (N5mM). 

Alpha lipoic acid treatment was found to significantly (N5mM: 24 h - p<0.01 & 48 h 

- p<0.001, N20mM: 24 & 48 h - p<0.001) increase the migration under normoxic condition 

when compared to those of untreated cells of same conditions. However, in H5mM 

condition the migration at 24 (p<0.001) and 48 h (p<0.01) was found to be less than that 

of untreated cells. For the cells incubated in H20mM condition, the migration due to aLA 

treatment was again found to be high at 24 (p<0.001) and 48 h (p<0.001) compared to 

those of untreated cells of the same condition. As aLA failed to overcome the high glucose 

induced decrease in the migration, it was decided to continue to work with silymarin and 

the aLA was not used any further. 
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Fig. 6.2 Effect of α- lipoic acid (100µM) (aLA) on the migration HMVECad were 

cultured in conditions of 5 or 20mM glucose and 20 (Normoxia – N) or 5% (Hypoxia – H) 

oxygen tension. The migration was assessed by the radial migration assay. Alpha lipoic 

acid significantly increased the migration of all conditions except H5mM condition, 

compared to the respective condition of untreated cells. The results are presented as net 

migration (mean ± SEM) of cells at 24 (a) and 48 h (b) and analysed by analysis of 

variance (ANOVA) followed by Bonferroni post hoc test. 

(*p<0.05, **p<0.01 & ***p<0.001 when compared as indicated)  

(v. c. (ethanol) 24 & 48 h: N5mM=180; N20mM=160; H5mM=140; H20mM=180 

aLA 24 & 48 h: N5mM = 180; N20mM = 180; H5mM = 160; H20mM = 160) 
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6.4.3 Effect of silymarin on the migration of HMVECad by the wound healing assay 

 The effect of silymarin (50µM) on HMVECad migrating from the intact and 

wounded edges of the semicircular monolayer was assessed by the wound healing assay. 

Like with the radial migration assay, the vehicle control (DMSO) for SM on its own 

did not alter the trends of endothelial cell migration (Fig 6.3a & b) from intact or wounded 

edge of the layer. The migration pattern for vehicle control was found to be similar to that 

explained in the earlier section (6.4.1) of this chapter. The migration (µm) of endothelial 

cells from the intact edge was lower (p<0.001) under N20mM (24 h: 82.4 ± 1.9; 48 h: 

160.3 ± 3.2) condition in comparison to that of N5mM (24 h: 100.2 ± 2; 48 h: 192.2 ± 4.7) 

condition for both 24 and 48 h. The migration was higher (p<0.001) in H5mM (24 h: 136.6 

± 2.7; 48 h: 237.6 ± 3.9) condition compared to that of N5mM condition at both 24 and 

48h. When hypoxia and high glucose level were combined (H20mM) (24h: 95.6 ± 3.9; 

48h: 191.5 ± 4.5) the migration was lower (p<0.001) than that of hypoxic and normal 

glucose level (H5mM) for 24 and 48 h. 

The migration (µm) of cells from the wounded edge of the same monolayer was 

measured. The same patter of migration (N5mM; 24 h: 131.9 ± 4.2; 48 h: 227.9 ± 4.6, 

N20mM; 24 h: 107.5 ± 2.9; 48 h: 187.7 ± 4.2, H5mM; 24 h: 165 ± 3.3; 48 h: 262.7 ± 4.3 

and H20mM; 24 h: 125.5 ± 4.3; 48 h: 224.2 ± 4.5) was observed for cells migrating from 

the wounded edge of the layer (Fig. 6.3a & b). When the migration of untreated cells were 

compared between the intact and wounded edges of the monolayer, it was observed that 

the wounded edge cells migrated significantly (p<0.001) faster than those on non 

wounded edge for all the conditions and time points. 

The results (Fig. 6.3a & b) for the intact edge of the layer show that the silymarin 

treatment increased the migration (µm) in N20mM condition (24 h: 95.9 ± 3.3; 48 h: 190.5 

± 4.2) and was found to be on par with those of N5mM (24 h: 97.4 ± 3.9; 48 h: 169.1 ± 

5.3) at 24 h. However, the migration of cells from the intact edge in N20mM condition was 

significantly increased (p<0.01) beyond the migration in N5mM condition after 48 h. The 

migration of cells incubated in H5mM (24 h: 120.2 ± 2.6; 48 h: 208.6 ± 3.9) condition was 

found to be significantly higher (p<0.001) than those of N5mM condition. Under hypoxic 

conditions, silymarin halted the effect of hyperglycaemia on the migration of cells in 

H20mM (24 h: 122.2 ± 3.1; 48 h: 221.5 ± 4.3) condition at 24 and 48 h and brought it to 

the level of H5mM condition. 

The silymarin treated cells migrating from the wounded edge of the layer followed 

the same pattern as those from the intact edge for all the conditions and time points 

(N5mM; 24 h: 122.4 ± 2.1; 48 h: 215.1 ± 3.5, N20mM; 24 h: 129.5 ± 3; 48 h: 235.5 ± 3.1, 

H5mM; 24 h: 148.7 ± 2.8; 48 h: 266.5 ± 4.1 and H20mM; 24 h: 159.6 ± 4; 48 h: 269.1 ± 

4.3). Like with the cells of intact edge, the silymarin treatment caused an increase in the 
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migration of cells in N20mM condition beyond that in N5mM condition of the wounded 

edge at 48 h. Like untreated cells, it was observed that the silymarin treated cells of the 

wounded edge migrated faster (p<0.001) than those of unwounded edge of the same 

monolayers for all conditions and time points. 

The difference in the migration of the untreated and silymarin treated cells from 

intact edge did not reach significance at 24 h in N5mM condition. However by the end of 

48 h the silymarin treated cells from the intact edge had migrated less (p<0.01) than those 

of untreated cells. The difference in the migration of the untreated and treated cells 

migrating from the wounded edge did not reach significance at both time points. In 

N20mM condition, the migration of cells in the presence of SM was significantly higher 

than those of untreated cells for both the intact (24 h: p<0.01 48 h: p<0.001) and wounded 

edges (24 & 48 h: p<0.001) and for both time points. In H5mM condition at 24 and 48 h, 

SM treated cells migrated slower from the intact edge (24 h: p<0.01, 48 h: p<0.001) 

compared to those of untreated cells. Surprisingly, SM treated cells from the wounded 

edge migrated slower at 24 h (p<0.01), but covered more distance in the next 24 h hence 

no difference was found between the treated and untreated cells at the end of 48 h. 

Similar to N20mM condition there was a significant difference (p<0.001) between the 

untreated and treated cells at H20mM condition at both time points as silymarin negated 

the effect of hyperglycaemia on reducing migration distance. It was noted that the 

migration of untreated cells from the intact edge of the wounded semicircular monolayer 

(Fig. 6.3a & b) was significantly (p<0.001) higher than that of intact circular monolayer 

(Fig. 6.1a & b) 
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Fig. 6.3 Effect of silymarin (50µM) on the migration of HMVECad from intact and 

wounded edges Migration in conditions of 5 or 20mM glucose and 20 (Normoxia – N) or 

5% (Hypoxia – H) oxygen tension was assessed by the wound healing assay. The 

silymarin significantly increased (p<0.001) the migration of 20mM conditions compared to 

respective conditions of untreated cells. The results are presented as net migration (mean 

± SEM) of cells at 24 (a) and 48 h (b) and analysed by analysis of variance (ANOVA) 

followed by Bonferroni post hoc test. 

(**p<0.01, *** p<0.001 when compared as indicated; NS = not significant)  

(v.c. intact edge and wounded edge (24 & 48h): N5mM = 60 & 90; N20mM = 60 & 90; 

H5mM = 60 & 90; H20mM = 40 & 70 

SM intact edge (24 & 48h): N5mM = 40 & 70; N20mM = 40 & 60; H5mM = 50 & 70; 

H20mM = 50 & 70 

SM wounded edge (24 & 48h): N5mM = 50 & 70; N20mM = 40 & 70; H5mM = 60; H20mM 

= 60 & 80)  
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6.5 Discussion 

Silymarin successfully restored the high glucose induced decrease in the migration 

of HMVECad in the presence of both normoxia and hypoxia. This observation was true for 

both radial migration and the wound healing assay. The migration of silymarin treated 

HMVECad in hypoxia compared to normoxia was not consistent as it was contradictory 

between the radial migration and wound healing assay. Further, the results indicated that 

α-lipoic acid was not sufficiently effective in restoring the negative trend of migration due 

to high glucose. 

It has been proven from the data presented in chapter 4 that high glucose and low 

oxygen tension have opposing effects on the migration of HMVECad. The migration of 

cells treated with vehicles (untreated) (Fig.6.1 & 6.2) resembled the trends explained in 

chapter 4. However, there are no reports to the best of our knowledge, detailing the role of 

silymarin in endothelial cell migration or angiogenesis during diabetes, although it has 

been proved to have beneficial effects in diabetes (Soto et al. 2010). It has been 

confirmed from chapter 5 that the over activation of PKC pathway mediated the 

deleterious effects of high glucose whereas activation of PI3K is essential to induce the 

migration in hypoxia. 

Hyperglycaemia is known to cause the production of ROS which in turn over 

activates different pathways including DAG dependant PKC pathway which leads to 

glucotoxicity (Brownlee 2001). High glucose causes not only the production of ROS via 

over activation of PKCβII but also its translocation from cytosol to the membrane (Gallo et 

al. 2005). Silibinin has been proved to produce its anti-oxidant activity by inhibition of DAG 

dependant PKC translocation and NADPH activity (Varga et al. 2004). It is also known 

that the inhibitors of PKC prevent the formation of various ROS in endothelial cells (Pricci 

et al. 2003). Further, increased production of ROS in hyperglycaemia leads to the 

dysfunction of HIF-1α with subsequent impairment in the expression of target genes such 

as VEGF and PDGF (Thangarajah et al. 2010). This could possibly suggest that silymarin 

restored the migration of HMVECad (Fig.6.1 &6.3) in high glucose by inhibition of the 

production of ROS via reduced activation of PKCβII pathway and restoration of HIF-1α 

activity. However, it was surprising to note the inability of aLA (Fig.6.2) to produce any 

effect on the high glucose induced decrease in the migration, as it is a established strong 

anti-oxidant capable of interfering with the production of ROS and subsequent activation 

of PKCβII along with other oxidative markers (Ihnat et al. 2007). 

The results (Fig.6.1) suggest that silymarin treated cells increased the migration 

compared to untreated cells in both normoxia and hypoxia. Hypoxia causes an increase in 

the production of ROS and activation of PI3K leading to the increase in the migration of 

cancer cells due to increased transcriptional activity of HIF-1α (Koshikawa et al. 2009). 
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However, during the normal wound healing process hypoxia is desirable as it stimulates 

angiogenesis in order to re-establish the supply of oxygen and nutrients to the wounded 

tissue (Falanga 2005). The inhibition of PI3K attenuated hypoxia induced migration as 

noticed in chapter 5. Hence, silymarin could be causing the increase in the migration by 

either by its ability to scavenge the free radicals or through the mechanisms other than 

PI3K-Akt pathway. However, the increased migration was not consistent when the 

wounded monolayers were treated with silymarin (Fig.6.3). The cells in hypoxia from intact 

and wounded edge migrated significantly lesser than untreated cells. These conflicting 

results make the interpretation difficult. Further, there are no reported evidences about the 

pro-angiogenic effects of silymarin. On the contrary, the anti-angiogenic effects of 

silymarin find reasoning in the literature, which suggest that silymarin or its main 

constituent silibinin decreases the migration. Singh et al. (2005) suggests that silibinin 

produces its anti-angiogenic effects through multiple ways in both HUVEC and HMVEC 

(Singh et al. 2005). It has been suggested that silibinin inhibits the proliferation of 

HUVECs by the over expression of p27Kip1, p21Cip1 and p53 and causes apoptosis by 

increasing the activity of caspase 3 and 7 and decreasing survivin activity (Singh et al. 

2005). Further, silibinin has also been shown to cause a decrease in angiogenic stimuli by 

decreased MMP-2 mediated migration and tube formation through the inhibition of the Akt 

pathway and NF-κβ pathways (Singh et al. 2005). Anti-angiogenic effects of silymarin or 

silibinin are attributed to inactivation or inhibition of HIF-1α, PI3K-Akt pathway, ERK1/2, 

JNK1/2 and p38 MAPK (Chen et al. 2005, Garcia-Maceira and Mateo 2009, Gu et al. 

2005). 

6.6 Conclusion 

It could be possible that silymarin is restoring the high glucose induced decrease 

in the migration through its free radical scavenging activity via PKCβII inhibition and 

restoration of HIF-1α activity. Successful restoration of the migration in high glucose by 

silymarin suggests that it could be a candidate for therapeutic angiogenesis, hence 

formulated as a topical application with an aim of developing it as a therapeutic agent for 

delayed wound healing of diabetes. 
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7.1 Hypothesis 

 Gamma ray irradiated lyophilised wafer discs containing silymarin restore the high 

glucose induced reduction of endothelial cell migration compared to control wafer discs. 

7.2 Introduction 

 Wound dressings developed over many years are classified into different 

categories depending on their content, physical form and their function (Boateng et al. 

2008). Different agents such antimicrobials, growth factors and supplements are used to 

medicate the wound dressings (Boateng et al. 2008). Freeze-dried fibrin discs containing 

growth factors were reported to enhance endothelialisation (Kumar and Krishnan 2002) 

and those containing tetracyclins were successfully used as subcutaneous implants to 

control infection during wound healing in mice with steady release of the drug into the 

serum (Kumar, Vasantha Bai and Krishnan 2004). Similarly topical application of vitamins 

A, E and C has shown to improve wound healing in rats (Porto da Rocha et al. 2002). 

Lyophilised or freeze-dried formulations are a promising topical drug deliver system for the 

application of therapeutic agents used to treat recalcitrant diabetic wounds. Wafers can be 

developed to contain a variety of medication using freeze-dried polymers as topical 

vehicles (Matthews et al. 2005, Matthews et al. 2008). Silymarin or silibinin has been used 

topically to treat contact dermatitis and photocarcinogenesis in experimental animals (Han 

et al. 2007, Mallikarjuna et al. 2004). However, freeze-dried products containing silymarin 

for the topical treatment of diabetic wounds has not been reported. 

Natural polymers are widely used as vehicles in many different formulations. 

Selection of a vehicle is critical as some vehicles themselves may have a therapeutic 

effect. A freeze-dried chitosan film with and without bFGF was beneficial when applied on 

full-thickness wounds created on the backs of genetically diabetic mice until day five 

indicating that the vehicle itself may also have an effect on the wound healing (Mizuno et 

al. 2003). TGF- 1 was incorporated in phosphate buffered saline/poloxamer gel 

formulations, duoDERM hydroactive paste and in a poly (ethylene oxide) hydrogel and 

tested for wound healing activity in diabetic rats. Poloxamer gel formulations containing 

TGF- 1 showed improved wound healing in diabetic rats with sustained release of drug 

suggesting the importance of the carrier used in drug delivery (Puolakkainen et al. 1995). 

Polymers can also be used as vehicles for RNA interference constructs (Werth et al. 

2006). Xanthan gum and sodium alginate with methylcellulose have been successfully 

used to prepare freeze-dried wafers for wound models (Matthews et al. 2005, Matthews et 

al. 2006). 

Characterisation of physical properties of freeze-dried formulations is essential in 

order to understand drug/vehicle interactions, flow properties and drug release profile. 
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Some of the procedures such as thermal analysis and rheology are helpful in 

understanding the physical properties of freeze dried wafers and their contents (Matthews 

et al. 2008). The flow properties of the vehicle and other contents of topical applications 

determine the residence time of a drug when applied to the wound surface. The 

formulations for wound treatment would be effective if they establish an adherence to the 

wound site with prolonged residence time (Jones, Lawlor and Woolfson 2003). Other 

physical properties such as water vapour transmission, gaseous exchange, water 

absorption (from the wound surface) and adherence (to the wound site) are also of 

interest (Gatti, Pinchiorri and Monari 1994). These properties also serve as valuable 

guidance dictating the selection of materials.  

Therapeutic agents used in the treatment of chronic wounds of diabetes needs to 

be sterile in order to keep the bacterial load to the minimum at the wound site. Any topical 

application desirous of containing either anti-bacterial or proteinaceous growth factor or 

any other medication sensitive to heat can not be autoclaved or heat sterilised as the 

contents may not remain stable after sterilisation (Traub and Leonhard 1995). However 

the preparations can be sterilised by other method such as gamma irradiation while 

maintaining the stability of heat labile contents (Matthews et al. 2006). Gamma rays 

generated from Co-60 are widely used in industry to sterilise many pharmaceutical 

preparations, surgical instruments and cell culture materials. Gamma irradiation has been 

reported to affect stability and properties of few materials. The viscosity of extruded 

products containing xanthan gum increased when irradiated and those containing starch 

displayed increased expansion when exposed to ionising radiation (Hanna et al.  1997). 

The viscosity and molecular weight was reduced and chain breaking increased, with a 

change in colour, when alginate solution was exposed to gamma rays (Lee et al. 2003). 

The rheological properties of freeze-dried wafers containing xanthan gum remained 

largely unaffected when exposed to 40kGy of gamma radiation where as those composed 

of sodium alginate displayed reduced viscosity (Matthews et al. 2006). The ability of 

xanthan gum to withstand ionising radiation and its ability to potentially produce enhanced 

residence time at a wound site due to its viscous nature makes it an ideal vehicle for 

freeze dried products. 

This chapter deals with the preparation of freeze dried wafer discs composed of 

xanthan gum as a vehicle and silymarin and α-lipoic acid as active ingredients. The pre- 

and post-lyophilised gels were rheologically characterised by continuous flow 

measurements. Freeze dried wafer discs were tested on the wound healing model 

following gamma ray sterilisation. 
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7.3 Materials and methods 

7.3.1 Preparation of lyophilised wafers 

Polymer gels of xanthan gum (XG), guar gum (GG), ghatti gum (GhG), locust bean 

gum (LbG), karaya gum (KG) and sodium alginate (SA) were prepared at concentrations 

of 1.5, 2, 7, 1.5, 3 and 5% (w/v) respectively. The gels containing these polymers were 

prepared by dissolving them in pre-heated (~ 40 0C) distilled water in a stainless steel 

beaker. Distilled water was heated by placing the beaker on a hot plate and the polymer 

was added and stirred with a mechanical overhead stirrer at 500rpm. The resulting gel 

was used for rheological characterisation as explained in 7.3.2.  

XG (1.5% w/v) was chosen as a vehicle to prepare the lyophilised wafers 

containing silymarin (SM) or α-lipoic acid (aLA). Wafers were prepared at concentration of 

50 and 100 µM of SM and aLA respectively, for further testing with endothelial cells. 

Pluronic F68 was used to aid suspension of SM and aLA as they are insoluble in water. 

Gels were prepared by dissolving Pluronic F68 (0.2% w/v) in distilled water in a stainless 

steel beaker, followed by the addition of SM (0.07% w/v) or aLA (0.06% w/v). Different 

components and their ratio in gels used for the preparation of the wafers are tabulated in 

Table 7.1. The contents were stirred using a Silverson turbine mixer for 0.5 h at room 

temperature (22 0C). XG (1.5% w/v) was added and the beaker was left overnight in the 

fridge at ~4 0C to form a weak gel. Roller mixture was used to get homogenous 

suspension of SM and aLA gels. 

Samples of prepared gel suspensions (4g) were poured to each well of a 6-well 

plate, avoiding the formation of bubbles for freeze drying. Gel suspensions were 

lyophilised in a laboratory scale freeze drier (VirTis adVantage, Biopharma Process 

Systems, Hampshire, UK) with shelf cooling. Gels were cooled to -50 0C and then heated 

to room temperature by a series of thermal ramps under reduced pressure. Primary drying 

removed the frozen water by sublimation and the remaining non-freezing water was 

removed by desorption to the gas phase. The freeze drying process was carried out over 

26 hours and a temperature profile of the process is charted in Fig. 7.1 Resulting 

lyophilized wafers were pressed to a paper-thin size and punched to make discs using a 

paper punch. Wafer discs (~5mm in size and ~1.5mg in weight) were placed in self-

sealable polythene bags and stored at room temperature. 
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Table 7.1 Contents of gels used to prepare lyophilised wafers The wafers containing 

silymarin (SM) or α-lipoic acid (aLA) as active pharmaceutical ingredient (API) were 

prepared using xanthan gum (XG) as a vehicle and non-ionic surfactant Pluronic F68 as a 

suspending agent. Vehicle control (v.c.) wafers contained no API. 

 

Batch 

No. 

Component ratio 

(%) in gels 

XG : F68 : API 

(API=SM/aLA) 

Calculated solids in  each wafer 

gel (4g) (mg) Mean (± S.D) weight 

of wafer (mg) (n=6) 

XG F68 API Total 

1 (v.c.) 1.5 : 0.2 : 0.0 60 8 - 68 65.7 (±2.6) 

2 (v.c.) 1.5 : 0.2 : 0.0 60 8 - 68 67.7 (±1.1) 

3 (SM) 1.5 : 0.2 : 0.07 60 8 2.8 70.8 67.7 (±0.6) 

4 (SM) 1.5 : 0.2 : 0.07 60 8 2.8 70.8 68.8 (±1.5) 

5 (aLA) 1.5 : 0.2 : 0.06 60 8 2.4 70.4 68.5 (±0.8) 

6 (aLA) 1.5 : 0.2 : 0.06 60 8 2.4 70.4 69.2 (±0.5) 
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Fig. 7.1 Freeze-drying cycle The temperature profile of the freeze drying cycle for 26h 

was obtained during the preparation of the wafers. The pre-lyophilised gels were cooled to 

-50 0C and then heated to room temperature by a series of thermal ramps under reduced 

pressure. 
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7.3.2 Rheological properties of polymer gels 

The rheological properties of pre-lyophilised polymer gels were measured using a 

dynamic rheometer (AR1000, TA Instruments). Gels formed from lyophilised wafers by the 

addition of volumetric amounts of distilled water to their original weight (i.e. 4g per well) 

were also rheologically characterised. Continuous flow rheometry tests were conducted at 

25 0C. This test depends on the viscous drag exerted on the geometry, when it is rotated 

on the fluid to determine the apparent viscosity of the fluid.  The geometry is composed of                                                                                                                                                                                                                                                                                                                                                                                                                                            

a wide-angle cone which spins centrally above a stationary plate giving torsional shear.  A 

cone and plate geometry of 40mm/20 (steel) and truncation value of 57µm was used. Flow 

measurements were carried out at continuous shear rates ranging from 0 to 600s-1. The 

results (rheograms) were a plot of shear rate vs. shear stress. The rheograms were 

analysed by the system software using the Herschel-Bulkley equation  

 

    σ = η’γn + σ0 

 

where ζ is shear stress (Pa), ε’ the viscosity coefficient or consistency (Pa.s), γ the shear 

rate (s-1), n the rate index (flow behaviour index) and ζ0 the yield stress (Pa). 

7.3.3 Sterilisation of wafers 

Wafers prepared as detailed in section 7.3.1 were irradiated with ultra violet rays 

(UVitec CROSSLINKER CL-500). Wafers were irradiated with UV rays at 0.36, 0.72, 1.5, 

3.0, 6.0 and 12.0 J/cm2. As the UV rays failed to sterilise the wafers, they were sterilised 

by gamma irradiation. Each batch of the control, SM and aLA wafers was divided into 

three lots packed as wafer discs in self-sealable plastic pouches. One lot was not 

irradiated to compare with other irradiated lots. One lot was irradiated with 25KGy, 

another with 40KGy of gamma rays (Isotron Plc, Swindon, UK) using Cobalt-60 as a 

source with an approximate dose rate of 5kGy/h.  

After irradiation wafers were tested for the presence of bacteria and fungi. To test 

for the presence of bacteria, wafers were incubated in tryptone soya agar (TSA) (Oxoid, 

UK)[40g/l of TSA made up of tryptone 15g/l, soyapeptone 5g/l, sodium chloride 5g/l and 

agar 15g/l poured into Petri dishes and sterilised at 1210C for 15 minutes] plates for 24h 

(Landry et al. 2001). To test for the presence of fungi wafers were incubated with 

sabouraud dextrose agar (SAB) (Oxoid, UK)[65g/l of SAB made up of mycologicalpeptone 

10g/l, glucose 40g/l and agar 15g/l is poured into Petri dishes and sterilised at 1210C for 

15 minutes] plates for 48h (Landry et al. 2001). 
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7.3.4 Quantification of silymarin in the wafers 

 High performance liquid chromatography (HPLC) was used to quantify SM 

(Quaglia et al. 1999) present in non-irradiated, 25 and 40kGy irradiated wafer discs. The 

HPLC system used for the quantification of silymarin content was as follows: 

 

Table 7.2 Components of HPLC equipment  

 Components Make 

1 Pump Jasco PU-1580 

2 Column Agilent Eclipse XDB-C18 

3 Degasser Jasco DG-980-50 

4 Gradient Unit Jasco – 1580 -02 

5 UV-Visible Detector Jasco UV-1500 

6 Data acquisition and evaluation Jasco Borwin 15.0 

 

The standard (or calibration) curve was obtained by running SM solution, prepared 

by dissolving 0.0112g of silymarin in 50ml of solvent in a volumetric flask. The solvent 

(50ml) was composed of 32ml of solvent A (0.01% formic acid in deionised water), 6ml of 

solvent B (HPLC grade methanol) and 12ml of solvent C (HPLC grade acetonitrile). 

Solution was injected into a valve using a 50µl sample loop. Analyte produces five well 

defined peaks at λ value of 289nm and a flow rate of 1ml/min using the following gradient 

elution: 

 

Table 7.3 HPLC gradient elution used to analyse silymarin 

Time % water % methanol % acetonitrile 

0 68 12 20 

10 68 12 20 

15 50 20 30 

20 50 20 30 

25 68 12 20 

  

 Standard solution from SM neat and sample solutions of non-irradiated, 25 and 

40kGy irradiated SM wafer discs were prepared in the above mentioned HPLC solvent to 

carry out the quantification of SM. 
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7.3.5 Effect of silymarin wafers on the migration of HMVECad 

 Gamma irradiated sterile wafer discs with and without silymarin were tested for 

their effect on the migration of human microvascular endothelial cells of adult dermis 

(HMVECad). The migration of cells in the presence of discs in four different conditions of 

normoxia in absence and presence of elevated glucose (N5mM and N20mM) and in 

hypoxia in absence and presence of elevated glucose concentration (H5mM and H20mM) 

was measured according to the method explained in 2.2.4. The results are expressed as 

net migration in microns (µm) and expressed as mean ± SEM. 

7.4 Results 

7.4.1 Rheological characterisation of the gels 

 The gels made from 2% GG and 1.5% XG exhibited plastic (i.e. a clear yield stress 

followed by a decrease in apparent viscosity as a function of increased shear rate) flow 

(Fig. 7.2a). The viscosity coefficient (consistency) and yield stress (inability of the gel to 

flow at lower shear rate) of the GG was found to be more than that of XG (table 7.4). 

Plastic flow exhibits a dramatic ‘shear thinning’ effect when a shear stress in excess of the 

minimum yielding stress is applied. The gels from other gums viz. 5% SA, 3% KG, 1.5% 

LbG and 7% GhG exhibited pseudoplastic (i.e. decreased apparent viscosity with 

increasing shear rate) flow (Fig. 7.2b). The flow charts of these polymer gums suggest 

that the gels exhibited pseudoplastic flow as they started to flow as soon as the shear 

stress was applied, making the flow curves pass through the origin. Pseudoplastic flow 

also exhibits shear thinning although less dramatically than plastic flow. The viscosity 

coefficient of 5% SA was found highest whereas 7% GhG exhibited the lowest (table 7.4). 

The freeze dried wafer discs of SM and aLA were prepared using 1.5% XG and sterilised 

by gamma rays. The freeze drying process did not change the flow properties of the post-

lyophilised reconstituted wafer gels from that of corresponding pre-lyophilised gels (Fig. 

7.3). Sterilisation by gamma rays increased the viscosity coefficient and yield stress of 

post-lyophilised control and SM wafers. On the contrary, viscosity coefficient decreased 

for sterilised aLA wafers and yield stress remained unchanged. Alpha lipoic acid pre- and 

post-lyophilised gels before sterilisation were more viscous with higher viscosity 

coefficient values and exhibited a higher yield stress compared to either control or SM 

wafer gels (table 7.4).  
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a) 

 

b) 

 

 

 

Fig. 7.2 Rheograms of gels The flow charts were obtained from gels composed of a) 2% 

GG and 1.5% XG and b) 5% SA, 3% KG, 1.5% LbG and 7% GhG. The XG and GG 

exhibited (a) plastic flow and the others (b) pseudoplastic flow. Arrows indicate ascending 

(      ) and descending (      ) cycles. 
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a) 

 

b) 

 

c) 

 

Fig. 7.3 The rheograms of pre-lyophilised and post-lyophilised wafer gels Flow 

charts of gels of irradiated and non-irradiated reconstituted post-lyophilised a) control 

wafers, b) silymarin (SM) wafers and c) α-lipoic acid (aLA) wafers. The wafers were 

composed of 0.07%w/v of SM or 0.06% w/v of aLA, 1.5% w/v of xanthan gum (XG) as a 

vehicle and non-ionic surfactant, Pluronic F68. Arrows indicate ascending (   ) and 

descending (      ) cycles. 
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Table 7.4 Viscosity coefficients and yield stress The viscosity coefficients 

(consistency) and yield stress (inability to flow at lower shear rates) of polymer gels, pre-

lyophilised wafer gels and post-lyophilised wafer gels were calculated using the Herschel-

Bulkley model. 

 

Fig. 

No. 

Gels Viscosity 

coefficient (Pa.s) 

Rate index Yield stress 

(Pa.s) 

7.2a 2.0% GG 

1.5% XG 

74.9 

1.8 

0.11 

0.39 

139.8 

24.6 

7.2b 5.0% SA 

3.0% KG 

7.0% GhG 

1.5% LbG 

31.9 

23.7 

2.7 

4.7 

0.44 

0.33 

0.51 

0.34 

- 

- 

- 

- 

7.3a Pre-lyophilised control gel 

Post-lyophilised control wafer gel 

Gamma (25kGy) irradiated gel 

Gamma (40kGy) irradiated gel 

2.5 

2.3 

2.9 

3.2 

0.31 

0.32 

0.29 

0.28 

18.9 

18.4 

20.2 

20.3 

7.3b Pre-lyophilised SM gel 

Post-lyophilised SM wafer gel 

Gamma (25kGy) irradiated gel 

Gamma (40kGy) irradiated gel 

2.2 

1.9 

2.8 

3.6 

0.33 

0.35 

0.31 

0.32 

19.3 

19.2 

23.2 

33.0 

7.3c Pre-lyophilised aLA gel 

Post-lyophilised aLA wafer gel 

Gamma (25kGy) irradiated gel 

Gamma (40kGy) irradiated gel 

3.3 

3.0 

1.7 

1.9 

0.31 

0.33 

0.39 

0.38 

25.2 

24.8 

25.0 

26.5 
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7.4.2 Sterilisation of wafers 

Lyophilized wafers composed of 1.5% XG, 5% SA, 2% hydroxypropyl methyl 

cellulose (HPMC) and 4% methyl cellulose (MC) were subjected to UV irradiation from 0 

to 12 J/cm2. Gels of HPMC and MC were prepared by slowly adding these polymers with 

continuous stir to pre-heated (~70 0C) distilled water in a glass beaker. The wafers were 

prepared by the same method to that of XG wafers. After UV irradiation, these wafers 

were tested for the presence of bacteria and fungi (table 7.5). Microbial colonies were 

counted to grade the level of contamination. The complete absence of colonies was 

considered as no contamination. One to 5 colonies, 6 to 20 colonies and more than 20 

colonies were graded as +, ++ and +++ respectively. Bacteria were found to be present in 

all wafers and the presence of fungi was detected in all wafers except in those made from 

MC. Gamma irradiated wafers were also tested for the presence of bacteria and fungi 

(Fig. 7.4). Bacteria and fungi were both absent in wafers irradiated with 25 and 40kGy of 

gamma rays, but present in non-irradiated control samples. 
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Table 7.5 UV irradiation Wafers prepared from different polymers were treated with UV 

radiation of different strengths and tested for the presence of a) bacteria and b) fungi. 

 

a) 

 Control 

(0J/cm2) 

0.36 

J/cm2 

0.72 

J/cm2 

1.5 

J/cm2 

3.0 

J/cm2 

6.0 

J/cm2 

12.0 

J/cm2 

XG +++ ++ ++ ++ ++ ++ ++ 

HPMC + + ++ + +++ +++ + 

MC + ++ ++ - - - + 

SA +++ +++ +++ + +++ +++ + 

 

 

 

b) 

 Control 

(0J/cm2) 

0.36 

J/cm2 

0.72 

J/cm2 

1.5 

J/cm2 

3.0 

J/cm2 

6.0 

J/cm2 

12.0 

J/cm2 

XG ++ - - + - - - 

HPMC - - + - - - - 

MC - - - - - - - 

SA - - + + - - - 

 

 

- No contamination (0 colonies)       

+       -      1 – 5 colonies 

++     -     6 – 20 colonies  

+++   -     >20 colonies 
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a) 

 

      25kGy      0kGy   40kGy 

 

 

 

b) 

 

     25kGy   0kGy    40kGy 

 

 

Fig. 7.4 Sterilisation by gamma irradiation The control, silymarin and α-lipoic acid 

wafers were prepared using 1.5% w/v of XG as a vehicle with 0.2% w/v of Pluronic F68 as 

non-ionic surfactant. They were successfully sterilised by treating with 25 and 40kGy 

gamma radiation. The gamma irradiated wafer discs did not show any presence of either 

a) bacteria or b) fungi, whereas untreated (0kGy) wafer discs were contaminated. 
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7.4.3 Quantification of silymarin in the wafers by HPLC 

 The concentration of silymarin present in gamma irradiated wafer discs was 

quantified by HPLC. The standard reference solution of silymarin was prepared by 

dissolving 0.0112g neat silymarin in 50ml of HPLC solvent as explained in 7.3.4. A series 

of solutions at different concentrations was prepared by diluting a standard reference 

solution. The range of standard solution concentrations obtained by a series of dilutions 

was between 8.96 and 89.6µg/ml. These standard solutions were used to obtain 

chromatograms with five distinguishable peaks (Fig. 7.5). The area under the curve (AUC) 

for each of the five peaks and total peak area was measured using the software (Table 

7.6). The AUC of peak 2 obtained from the different standard solutions was used to plot 

the calibration curve (Fig. 7.6). Peak 2 data was used as it was the most prominent of all 

peaks. The calibration curve of the standard solutions showed good linearity (correlation 

coefficient = 0.986). 

The molecular weight of SM and aLA is 482.44 and 206.33Da respectively. Each 

small disc added to 2.5ml of medium in a well weighs ~1.5mg. This 1.5mg wafer disc 

contained either 0.06mg of SM or 0.052mg of aLA in order to achieve the final 

concentration of 50 or 100µM respectively in 2.5ml of media. Silymarin alone was 

quantified as it was used in measuring the migration of HMVECad (Chapter 6). 

 The sample solutions were prepared by dissolving SM wafer discs in HPLC 

solvent. Weight of two each of non-irradiated, 25 and 40kGy irradiated wafer discs was 

noted and dissolved in 5ml of HPLC solvent so that they have a theoretical or expected 

concentration of 79.7, 78.05 and 85.37µg/ml respectively (Table 7.7). These sample 

solutions were run through the HPLC and AUC of peak 2 was used to quantify the 

silymarin present. The regression equation (y = 15994x – 45718) obtained from the 

calibration curve suggests that the silymarin present in non irradiated, 25 and 40kGy 

irradiated wafer discs was 71.7, 69.5 and 76.5µg/ml respectively. 
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Fig. 7.5 Chromatogram obtained from silymarin by HPLC The chromatogram was 

obtained by running a volumetric solution of silymarin (0.0112g) dissolved in 50ml of a 

solvent composed of 0.01% v/v formic acid in deionised water (32ml); methanol (6ml); and 

acetonitrile (12ml). The silymarin (50µl) solution was injected at a flow rate of 1ml/min to 

obtain five clear and distinguishable peaks at 289nm by the UV Visible detector. Numbers 

at each peak indicate the retention time (minutes) at which a peak appears on the 

chromatogram.  
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Table 7.6 Calculation of area under curve (AUC) The chromatograms obtained by 

HPLC contain five peaks due to standard and sample wafer disc solutions. The AUC for 

these peaks was calculated using Jasco Borwin 15.0 software.  

 

 
Concentration of 

silymarin (µg/ml) 

AUC (data in thousands) 

Total 

area 

Peak 

1 

Peak 

2 

Peak 

3 

Peak 

4 

Peak 

5 

Std 1 8.96 449.1 31.9 155.6 24.4 86.8 150.4 

Std 2 17.92 602.9 30.4 262.1 27.2 91.4 191.8 

Std 3 26.88 860.9 50.4 378.1 44.5 125.0 262.6 

Std 4 35.84 1164.2 72.9 489.4 66.4 180.1 355.4 

Std 5 44.8 1382.4 82.7 586.8 77.2 209.7 425.9 

Std 6 89.6 3570.5 234.7 1436.4 219.8 579.4 1100.0 

Sample 1 

0kGy 
- 3271.6 217.9 1102.3 173.4 544.6 1233.4 

Sample 2 

25kGy 
- 2934.0 142.1 1066.1 103.3 679.7 942.6 

Sample 3 

40kGy 
- 3503.8 183.2 1178.2 150.2 676.4 1315.8 
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Fig. 7.6 Quantification of silymarin in lyophilised wafer discs The calibration curve 

was obtained from silymarin standard solutions. The data from peak 2 was used to plot 

the calibration curve. The concentration of the silymarin present in the sample wafer discs 

was calculated from the regression equation. 

(Key: ● standard solutions, ▲ 25kGy irradiated SM wafer discs, x non-irradiated wafer 

discs and ж 40kGy irradiated wafer discs) 
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Table 7.7 Quantification of silymarin Peak 2 AUC was used to quantify the silymarin 

present in sample wafer disc solutions. The sample wafer disc solutions were prepared 

from non-irradiated, 25 and 40kGy irradiated wafer discs.   

 

 

Weight of the 

wafer discs in 

solvent 

(mg/ml) 

Measured 

concentration of 

silymarin  (µg/ml) 

(y = 15994x – 45718) 

Theoretical 

concentration of 

silymarin (µg/ml) 

Area under 

the curve for 

peak 2 

Std 1 - - 8.96 155644.2 

Std 2 - - 17.92 262053.5 

Std 3 - - 26.88 378076 

Std 4 - - 35.84 489391.8 

Std 5 - - 44.8 586805 

Std 6 - - 89.6 1436422 

Sample1 

(0kGy) 
2.0 71.7 79.7 1102258 

Sample2 

(25kGy) 
1.9 69.5 78.1 

1066145 

 

Sample3 

(40kGy) 
2.1 76.5 85.4 

1178273 
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7.4.4 Effect of silymarin wafer discs on the migration of HMVECad 

 The control and silymarin wafer discs were prepared as detailed in 7.3.1. Gamma 

irradiated wafer discs were used to assess their effect on the migration of HMVECad. The 

effect of the control wafer discs on the migration was assessed by placing 1 or 3 or 5 

discs in each well of a 6 well plate seeded with a circular monolayer of HMVECad. 

The net migration (µm) of endothelial cells (Fig. 7.7) in N5mM condition with no 

discs (24 h: 105.8 ± 0.6, 48 h: 160.9 ± 1.7), 1 disc (24 h: 101.4 ± 1.1, 48 h: 175.1 ± 1.1), 3 

discs (24 h: 101.9 ± 0.6, 48 h: 165.2 ± 1.2) and 5 discs (24 h: 111.8 ± 1.9, 48 h: 172.9 ± 

1.2) was found to be significantly (p<0.001) more than that of N20mM condition for no 

discs (24 h: 96.6 ± 1.1, 48 h: 138.7 ± 1.1), 1 disc (24 h: 92.6 ± 0.9, 48 h: 155.3 ± 0.7), 3 

discs (24 h: 86.1 ± 0.9, 48 h: 155.9 ± 0.5) and 5 discs (24 h: 90.9 ± 1.3, 48 h: 146.5 ± 1.1). 

These results confirm that the control wafers (i.e. 1.5% w/v XG + 0.2% w/v F68) on their 

own did not alter the migration when glucose concentration was altered. 

The migration (µm) of cells (Fig. 7.8) from the intact edge in the presence of 

silymarin wafer discs in N5mM (24 h: 82.7 ± 2.1, 48 h: 143.3 ± 3.0) condition was not 

different (p>0.05) than in N20mM (24 h: 89.7 ± 1.7, 48 h: 156.7 ± 3.1) condition. Similarly, 

the migration of cells was not different (p>0.05) in H5mM (24 h: 103.7 ± 1.9, 48 h: 168.7 ± 

2.5) condition compared to H20mM (24 h: 98.7 ± 1.7, 48 h: 171 ± 2.5) condition. However, 

the migration in H5mM condition was significantly higher (p<0.001) than in N5mM 

condition. A similar pattern of migration was observed for cells migrating from the 

wounded edge of the same monolayer (N5mM; 24 h: 101.6 ± 2.6, 48 h: 194 ± 4.6, 

N20mM; 24 h: 109.6 ± 2.3, 48 h: 184.6 ± 2.8, H5mM; 24 h: 132.4 ± 2.9, 48 h: 207.8 ± 3.6 

and H20mM; 24 h: 129.7 ± 2.4, 48 h: 203.4 ± 2.8). Unlike the intact edge, the migration 

from the wounded edge in N20mM condition was higher (p<0.05) compared to N5mM 

condition. 

Control wafer discs produced a migration (µm) similar to that of the vehicle 

controls detailed in previous chapter 6. The migration of HMVECad (Fig. 7.8) from the 

intact edge of the semicircular monolayer in N5mM condition (24 h: 89 ± 2.1, 48 h: 139.8 ± 

1.9) was significantly (p<0.001) higher than in N20mM (24 h: 77.4 ± 1.8, 48 h: 125.6 ± 2.6) 

condition. The migration in H5mM (24 h: 112.1 ± 3.1, 48 h: 165.5 ± 4.9) condition was 

much higher (p<0.001) than in N5mM condition. High glucose concentration combined 

with hypoxia (H20mM) (24 h: 93.9 ± 1.8, 48 h: 145.1 ± 2.8) significantly reduced (p<0.001) 

the migration of cells compared to those in H5mM condition. The migration of endothelial 

cells from the wounded edge of the monolayer (N5mM; 24 h: 115.7 ± 2.6, 48 h: 174.1 ± 

3.6, N20mM; 24 h: 100.8 ± 2.3, 48 h: 152.7 ± 2.6, H5mM; 24 h: 136.2 ± 2.9, 48 h: 203.4 ± 

4.5 and H20mM; 24 h: 117.6 ± 1.8, 48 h: 172.5 ± 2.2) was similar to that from the intact 

edge with similar levels of significance. 
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Fig. 7.7 Effect of control wafer discs on the migration of HMVECad The migration due 

to control wafer discs (1.5%w/v XG + 0.2%w/v Fluronic F68) was carried out in conditions 

of 5mM or 20mM glucose and 20% (Normoxia – N) oxygen tension. The migration was 

assessed by the radial migration assay. The control wafer discs did not alter the migration 

when the glucose level was increased. The results are presented in microns as net 

migration (mean ± SEM) (n=60) of cells at 24 (a) and 48 h (b) and analysed by 

independent t test. 

(***p<0.001 when compared with N5mM condition of respective disc numbers) 
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Fig. 7.8 Effect of silymarin wafer discs on the migration of HMVECad The migration 

of cells from intact and wounded edges in conditions of 5mM or 20mM glucose and 20% 

(Normoxia – N) or 5% (Hypoxia – H) oxygen tension was assessed by the wound healing 

assay. The silymarin wafer discs successfully overcame the negative effects of high 

glucose. The cells migrating from the wounded edge were significantly faster (p<0.001) 

than their counterparts from the intact edge for all the conditions and treatments. The 

migration due to control wafer discs resulted in trends similar to those of vehicle control 

wherein high glucose resulted in the reduction during both normoxia and hypoxia. The 

results are presented in microns as net migration (mean ± SEM) (n=90) of cells at 24 (a) 

and 48 h (b) and analysed by analysis of variance (ANOVA) followed by Bonferroni post 

hoc test. 

(*p<0.05 and NS = not significant when compared as indicated) 

(Control wafers: Intact & wounded edge, 24&48 h, N5mM = 80, H5mM = 60, H20mM = 80; 

SM wafers: Intact & wounded edge; 24&48 h, N5mM = 60, H5mM = 80 and H20mM = 80) 
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7.5 Discussion 

 The viscosity coefficient and yield stress of freeze dried silymarin wafers increased 

after gamma ray sterilisation. Sterilised wafers containing silymarin exhibited plastic flow 

and the drug content remained largely unaffected by ionising gamma rays. High 

performance liquid chromatography was used to quantify the silymarin present in sterile 

and non-sterile wafer discs. The migration due to silymarin present in the wafer discs was 

comparable to that of neat drug. 

The preparation of freeze dried wafer discs involved XG as a vehicle and non-ionic 

surfactant Pluronic F68 as both silymarin and aLA are water insoluble drugs (table 7.1). 

Matthews et al. (2008) successfully used XG along with non-ionic surfactant to prepare 

the freeze dried wafers of a water insoluble MMP-3 inhibitor (Matthews et al. 2008). The 

discrepancies observed between the calculated contents with that of mean weight of each 

(table 7.1) freeze dried wafer might be due to either a combination of residual water 

content and absorbed moisture as observed in a previous study (Matthews et al. 2005) or 

due to the loss of a part of wafer while peeling the wafer out of a well in which they were 

cast. The doses were calculated so that each wafer disc of SM and aLA produced 50 and 

100µM respectively when placed in 2.5ml of medium of a well of six well plate. 

 The rheological studies help to design the freeze dried products to achieve 

suitable consistency when applied to the wound site. Gels prepared from XG and GG 

exhibited plastic flow whereas other gums including SA exhibited psuedoplastic flow (Fig. 

7.2). This is consistent with earlier findings where flow curves of XG gel alone and in 

combination with varying concentration of methyl cellulose have a small yield value and 

flow curves of SA pass through origin (Matthews et al. 2005). Although the viscosity 

coefficient and yield stress exhibited by XG was much lower than that of GG, XG was 

used as a vehicle to prepare the lyophilised wafers. Xanthan gum was chosen over other 

natural polymers as it produces the right amount of consistency so that the topical 

application will have sufficient residence time at the wound site. Sufficient residence time 

of topical application is critical in the delivery of a drug (Jones, Lawlor and Woolfson 

2003). The expected enhancement in residence time by XG could be due to yield stress 

exhibited by XG which delays or inhibits viscous flow (Matthews et al. 2006). The pre-

lyophilised gel of the control wafer containing XG and Pluronic F68 was more viscous than 

XG alone but the yield value was lower. This indicates that non-ionic surfactant could be 

acting as a viscosity enhancer. Another added advantage of using XG as a vehicle in the 

preparation intended for wound management is its ability to withstand ionising gamma 

rays while undergoing sterilisation. 
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Sterilisation of potable water and clothing in operating theatres by UV irradiation 

has been in use for some time now (Taylor, Bannister and Leeming 1995, Zimmer and 

Slawson 2002). Attempts to sterilise the wafers by UV rays however, did not yield the 

desired results (table 7.5). The reason for this needs further assertion. This could possibly 

be due to either the failure of UV rays to penetrate wafers or the failure of polysaccharides 

to absorb UV rays and disrupt the microbes. This necessitated the search for other 

sterilisation methods. 

Silymarin and aLA wafer discs (Fig. 7.4) were sterilised at 25 and 40kGy of 

gamma rays which are normal dose rates for sterilising medical devices. However, lower 

doses used in sterilising products such as bone allografts can be explored (Nguyen, 

Morgan and Forwood 2007). The flow properties were investigated after gamma ray 

sterilisation in order to understand the possible changes ionisation might inflict on the 

polymers and active constituents. It is evident from the results (Fig. 7.3 & table 7.4) that 

reconstituted gels from XG wafers and SM wafers showed a small dose dependant 

increase in their viscosity coefficient and yield stress values upon gamma irradiation. 

These observations are in agreement with previous observations where gamma irradiation 

of XG resulted in a small increase in yield stress (Hanna et al.  1997). The antioxidant 

activity of SM might be acting synergistically in avoiding polymer chain scission by gamma 

rays, as antioxidant such as ascorbate are known to protect blood products against 

degradation by gamma rays (Zbikowska, Nowak and Wachowicz 2006). In contrast, the 

viscosity coefficient of reconstituted gels of sterile aLA wafers was decreased compared 

to non-sterile gels, but yield stress remained unchanged. This anomaly, along with the full 

potentials of other polymers as a suitable vehicle in preparing freeze dried products and 

their ability to remain stable during the sterilization process remains to be explored. 

It has been observed from chapter 6 that silymarin produces its effects against 

glucose induced decrease in cell migration at 50µM concentration. The quantity of 

silymarin present in individual wafer discs was assessed by comparing the sample 

solutions against the standard curve of known concentrations of silymarin by HPLC (Table 

7.6 & 7.7). HPLC has been used to quantify the different components of silymarin and 

further to establish its pharmacokinetic profile in human plasma in conjunction with other 

analytical methods (Quaglia et al. 1999, Wen et al. 2008). The different components of 

silymarin were separated and detected as five separate peaks (Fig. 7.5) at retention times 

of 3-18min which was different from earlier observations at 289nm (Quaglia et al. 1999). 

Peaks were not assigned to the components of silymarin due to their complex chemical 

nature and were simply referred as peak 1 to 5. Area under the curve of peak 2 was used 

to establish the standard curve and to calculate the concentration of silymarin in samples 
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as it was a predominant peak among others even at lower concentrations (Table 7.6, 7.7 

and Fig. 7.6). 

 Neither the presence of a single control wafer disc or an increase in their number 

altered the migration trends as the presence of high glucose continued to decrease the 

migration (Fig. 7.7 & 7.8). This confirms that unlike chitosan which has been reported to 

induce changes in wound healing (Mizuno et al. 2003), XG did not produce any effect on 

its own. The silymarin wafer discs were prepared so that each disc contained silymarin 

equivalent to 50µM when placed in a well containing 2.5ml of medium. However, the 

concentration of silymarin present in the wafer discs quantified by HPLC (table 7.7) 

suggested that one disc with an average weight of 1.5mg contained 10-11% less silymarin 

than expected. This could possibly be due to faulty readings obtained by HPLC as a result 

of non-homogenous dispersion of silymarin in xanthan gel or due to water content of 

wafers. It has been proved that water or moisture content in lyophilised wafers could be as 

high as 10-15% w/w (Matthews et al. 2005). This would mean that silymarin content could 

possibly be 10-15% less than expected. However, this decrease in the dose of silymarin 

did not adversely affect the migration of cells (Fig. 7.8). Similar to neat silymarin, as found 

in chapter 6, wafer discs containing the drug successfully prevented the decrease in 

endothelial cell migration due to elevated glucose levels both in normoxia and hypoxia. 

7.6 Conclusion 

Silymarin was successfully formulated as freeze dried wafer discs and sterilized by 

gamma radiation. The sterile freeze-dried discs containing silymarin retained their effect of 

restoring the migration of cells against the elevated glucose concentration both in 

normoxia and hypoxia. 

7.7 Further work 

 This pilot study established the method of formulating the silymarin into a freeze 

dried product. Qualitative and quantitative analysis of silymarin would be aided further by 

characterisation of wafers and gels by the use of differential scanning calorimetry (DSC) 

for thermal analysis, particle size distribution, vapour content and physical structure of 

wafers by scanning electron microscopy. The project would also benefit from studies on 

long term stability and drug release profile of silymarin in the freeze dried form. 

Furthermore, the effect of gamma sterilisation on the stability of the active ingredients 

needs further investigation by different analytical methods such as nuclear magnetic 

resonance (NMR) and liquid chromatography - mass spectra (LC-MS). 
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8.1 Discussion 

 The Diabetes Control and Complication Study (DCCT) and the United Kingdom 

Prospective Diabetes Study (UKPDS) have established that elevated glucose 

concentration is responsible for the onset and progression of the vascular complications of 

diabetes (DCCT Group 1993, UKPDS Group 1998). The presence of elevated glucose 

concentration interferes with hypoxia induced angiogenesis leading to a delay in wound 

healing for patients suffering from diabetes mellitus (Falanga 2005). Hypoxia is an 

essential stimulant for angiogenesis including endothelial cell migration during wound 

healing as well as cancer (Carmeliet 2005). The findings of this thesis suggest that the 

hypoxia and hyperglycaemia have opposing effects on the migration of endothelial cells. 

Hypoxia, as expected, increased the migration whereas the presence of higher 

concentration of glucose hindered the migration of endothelial cells. The deleterious 

effects of high glucose were mediated through HIF-1α protein and the migration was 

restored by the use of an anti-oxidant, silymarin. The strategy of developing a topical 

application resulted in a successful development of freeze dried wafer discs containing 

silymarin which prevented the deleterious effects of high glucose on migration.   

 In vitro migration of cells can be investigated using different methods (Auerbach et 

al. 2003, Eccles, Box and Court 2005). The scratch wound assay is one of the most 

widely used assays. We were interested in developing a method which would help to 

understand the influence of wounding a cell monolayer on the migration of cells not only 

from the wounded edge but also from the intact edge. A scratch wound assay is of no help 

in this regard as there is no intact edge as the scratch wound would be made on a 

confluent monolayer. Recently Dolle et al. (2005) used an omni-directional migration 

assay which was an improvement of previously designed assays by others (Dolle et al. 

2005). The omni-directional assay depends on the accuracy of placing glass rings on pre-

marked circles underneath each well of a six well plate and any changes would lead to 

non usability of the data generated. This omni-directional assay was based on optimising 

a method explained by Dixit and co-workers (Dixit et al. 2001). Dixit et al. (2001) 

measured the area of a circularly seeded monolayer at the starting time point and seven 

days later at an end time point. The radii were calculated from the difference in the 

approximate area of a monolayer at an end time point and area of a steel ferrule (used to 

cast the cells into a circular monolayer) at a starting time point (Dixit et al. 2001). The 

authors considered the approximation of area of a circular monolayer at an end time point 

possibly due to the lack of image analysis tools to analyse the exact area during the time 

of their study. The radial migration assay detailed in section 2.2.3 of chapter 2 of this 

study is a further improvement of the omni-directional assay explained by Dolle et al. 

(2005) and Dixit et al. (2001). Unlike the earlier methods, the radial migration assay 
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method developed in this thesis provides the flexibility of seeding the cells anywhere 

within a confined area of a glass ring and allows the measurement of an exact area or 

radii of monolayer using image analysis software. Once the radial migration assay was 

developed (after numerous trials and errors as discussed in chapter 3), it easily lent itself 

to develop the wound healing assay as explained in section in 2.2.4 of chapter 2. The 

wound healing assay explained in this thesis was able to not only determine the migration 

of cells from the intact and wounded edge together in one model as envisioned but to the 

best of our knowledge is also a novel method. Furthermore, the choice of 5% oxygen 

tension for the hypoxic conditions used in this study was chosen as the upper limit at 

which hypoxia mediated responses were operating and prior to induction of anoxia 

(Pouyssegur, Dayan and Mazure 2006). The results presented here demonstrate that this 

was sufficient to enhance cell migration and also activate HIF-1α. So these conditions 

were used throughout the study. 

The results of all the chapters clearly suggest that the ECs from the wounded edge 

migrated faster than their counterparts from the intact edge. In the light of these results, it 

could be argued that the wounded surface and un-wounded surface on which cells 

migrate, influences the rate and direction of migration. The migration of cells from the 

intact edge resembles endothelialisation simulating neo-angiogenesis or vasculogenesis 

whereas that from the wounded edge resembles re-endothelialisation simulating 

angiogenesis. Endothelial cells participating in endothelialisation demonstrated 

directionality with a basal speed (i.e. velocity) whereas those participating in re-

endothelialisation have directionality and increased speed (i.e. increased velocity). The 

increased velocity in endothelial cell migration from the wounded edge could be due to 

active crawling of stalk cells lining up behind tip cells at the edge, faster formation of 

lamellopodia and rearrangement of cytoskeletal structure in the leading edge of the 

migrating tip cells (Farooqui and Fenteany 2005, Lee and Gotlieb 2003). Along with these 

factors we suspect that the denuded surface might be acting as a ‘matrix’ and induces or 

enhances the haptotaxis. Furthermore, the release of soluble cues from ‘wounded’ cells 

might also be influencing the chemotaxis which needs further exploration. Chemotaxis 

and haptotaxis could be acting additively to increase the migration from the wounded 

edge compared to that from the intact edge. It would of interest to develop this by 

characterisation of the factors involved in inducing cell migration. 

The glucose dependent decrease in endothelial cell migration observed in this 

study contrasts with enhanced migration of retinal endothelial cells due to high glucose 

observed during diabetic retinopathy (Aiello et al. 1994, Huang and Sheibani 2008). This 

illustrates the importance of the source of endothelial cells and also demonstrates a 

rationale for the variety of vascular complications exhibited in the diabetes. In this study, 
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the intracellular processes that are involved in the observed changes in cell migration due 

to hypoxia and/or high glucose demonstrated the following; 

- The role of p27Kip1 in cell migration was inconclusive but the differences in 

expression profile of cells within the wound healing model highlight the need 

for further in-depth investigation. 

- Activation of PKCβII was central to the hyperglycaemia induced decrease in the 

migration of ECs and supports the notion of glucose mediated activation of 

ROS (This was further supported by the work using silymarin). 

- Activation of p42/p44 MAPK was required for high glucose mediated changes 

in cell migration. 

- The PI3K pathway was required for the hypoxia induced increase in EC 

migration. This could be due to the hypoxia induced activation of growth 

factors. 

- HIF-1α appeared to be a common factor between both hypoxia and 

hyperglyaecemia affected cell migration. 

 

Increased concentration of glucose is known to lead to the production of ROS in 

endothelial cells and has been proposed as a unifying mechanism for four different 

metabolic pathways of excessive glucose metabolism which are increased flux of glucose 

through polyol and hexosamine pathway, increased production of AGEs and activation of 

the PKC (Brownlee 2005, Nishikawa et al. 2000). Use of anti-oxidants has successfully 

prevented some of the deleterious effects of high glucose produced by ROS which were 

mediated through the over activation of PKCβII (Gallo et al. 2005, Kunisaki et al. 1994). 

Therefore we also used an anti-oxidant, silymarin which was able to prevent the glucose 

mediated decrease in the cell migration.  To our knowledge, there are no reports of using 

silymarin in preventing the deleterious effects of glucose on the migration although 

another anti-oxidant, thiamine has been successfully used in bovine aortic endothelial 

cells to overcome the glucose induced decrease in cell migration (Ascher et al. 2001).  

 Silymarin was formulated as a freeze dried wafer once it was confirmed to restore 

the reduced migration due to high glucose. This has potential for more direct therapeutic 

use as a topical application to wounds. The ability of freeze dried wafers to retain the 

effectiveness of the drug is an important finding and will be further investigated in future 

projects to realize the larger goal of a development of a suitable formulation for chronic 

wounds of diabetes. The following cartoon summarizes the findings of this thesis; 
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Fig. 8.1 Summary of the findings High glucose concentration attenuates the migration of 

HMVECad by over production of ROS and over activation of PKCβII which could be 

interfering with the stabilisation, translocation and transcriptional activities of HIF-1α. 

Silymarin treatment mimicked the effect of PKCβII inhibitor by restoring the migration of 

cells via its anti-oxidant activities. On the other hand, hypoxia and growth factors such as 

VEGF increase the migration by increasing the stability and transcriptional activity of HIF-

1α, which might be mediated through PI3K-Akt pathway. 
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8.2 Conclusion 

 Hypoxia and hyperglycaemia have an opposing effect of the migration of 

microvascular endothelial cells of dermal origin. Hypoxia increased and hyperglycaemia 

decreased the migration of cells. The change in migration response to varying 

concentration of glucose and oxygen tension appears to be mediated via multiple 

molecular pathways. Hypoxia appears to increase the migration via activating PI3K 

pathway whereas hyperglycaemia appears to decrease the migration due to the 

overproduction of ROS and activation of PKCβII pathway. HIF-1α seems to be a common 

link between the two which is activated in presence of hypoxia and its activity is hindered 

in the presence of high glucose. Anti-oxidant effects of silymarin seem to be successful in 

restoring the high glucose induced reduction in the migration of cells. Silymarin formulated 

as a freeze dried wafer disc retained its effectiveness against the deleterious effects of 

high glucose concentration. 

8.3 Future work 

a) Relationship between the migration and proliferation need further investigation 

as we and others observed that the migration and proliferation although 

interlinked might not be occurring simultaneously in a cell of a monolayer 

(Gerhardt et al. 2003). This could be further ascertained by staining the cells 

for mitosis markers such as phospho-histone or Ki67 which would help to 

understand the proliferation status of stalk and tip cells of a monolayer. 

b) The link between HIF-1α and hypoxia/hyperglycaemia affected migration, 

although established to some extent, would benefit further by the use of other 

molecular biology techniques such as anti-sense technology or use of siRNA to 

establish a direct link between them.  

c) The role of HIF-1α and small GTPases such as RhoA, Rac1 and cdc42 in 

mediating the migration may not be independent of each other. Establishing a 

link between these two would enhance the understanding of the effects of the 

diabetic milieu on the angiogenesis of wound healing. 

d) Mechanistically, on reflection, it would have been beneficial to assess the role 

of both p38 along with p42/p44 MAPK pathways in mediating the 

migration/proliferation during hyperglycaemia. As the role of PI3K-Akt pathway 

produced pro-migratory effects in hypoxia was established, it would be 

interesting to understand the effect that different isoforms of PI3K have in the 

regulation of migration. Further, the role of PI3K-Akt in mediating the high 

glucose induced decrease in cell migration should be further explored. The 

greatest paradox about the effect of hyperglycaemia on the migration and by 



Chapter 8 - Discussion 

 - 214 - 

that extension on angiogenesis is that of the contrast between decrease in 

wound healing process and increase in proliferative diabetic retinopathy. 

Clearly, the environment and cell origin will have some bearing but it may be 

that the relative levels of hypoxia and hyperglycaemia differs between the two 

conditions. It would be of a great interest to study the effect of hyperglycaemia 

on the migration/proliferation of microvascular endothelial cells of dermal and 

simultaneously of retinal origin. In this respect the role of PKCβII would be 

interesting to ascertain as ruboxistaurin (a PKCβ inhibitor – developed by Eli 

Lilly) came up to the stage of approval before it was withdrawn by the company 

for its use in proliferative retinopathy (Anonymous 2007). 

e)  Molecular mechanism/s through which silymarin produces its effect also needs 

investigation. The development of freeze dried wafers as a suitable formulation 

would benefit from future work of testing them on an in vivo model of wound 

healing. 

 

It is a continuous and arduous task to develop a suitable formulation containing a 

therapeutic agent (á la magic pill) for chronic wounds of diabetes, as wound healing itself 

is a complex process and the presence of diabetes further complicates the picture. While 

it is recognised that this complexity exists and has also been demonstrated by this study, 

it also illustrates that the combination of mechanistic and therapeutic study provides some 

hope for resolution in a clinical context. This is a challenge for the combination of multiple 

disciplines of biomedical sciences, but it may also be paraphrased as a ‘juggernaut’ which 

takes a lot of energy to initiate movement, but once moving, the power of its size and 

impact fully evident. 
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