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ABSTRACT 

COMPUTER AIDS FOR THE DESIGN OF LARGE 
SCALE INTEGRATED CIRCUITS 

by 

George B. Swan 

The work described in this thesis is concerned with the development 
of CADIC (Computer Aided Design of Integrated Circuits), a suite of 
computer programs which allows the user to design integrated circuit 
layouts at the geometric level. 

Initially, a review of existing computer aids to integrated circuit 
design is carried out. Advantages and disadvantages of each computer 
aid is discused, and the approach taken by CADIC justified in the light 
of the review. 

The hardware associated with a design aid can greatly influence its 
performance and useability. For this reason, a critical review of 
available graphic terminals is also undertaken. 

The requirements, logistics, and operation of CADIC is then 
discussed in detail. CADIC provides a consise range of features to aid 
in the design and testing of integrated circuit layouts. The most 
important features are however CADIC's high efficiency in processing 
layout data, and the implementation of complete on-line design rule 
checking. Utilization of these features allows CADIC to substantially 
reduce the lengthy design turnaround time normally associated with 
manual design aids. 

. 
Finally, the performance of CADIC is presented. Analysis of the 

results show that CADIC is very efficient at data processing, especially 
when small sections of the layout are considered. CADIC can also 
perform complete on-line design rule checking well within the time it 
takes the designer to start adding the next shape. 

If 



CHAPTER 1 

Introduction 

1.1 Aim of pro ect 

The aim of this project is to produce CADIC (Computer Aided Design 

of Integrated Circuits), a suite of computer programs to aid in the 

design of integrated circuits. It is therefore useful to point out some 

of the problems faced by the integrated circuit designer, so as to form 

a clearer picture of how CADIC could aid circuit design. 

Prior to circuit fabrication, it is the designer's job to produce 

the artwork required for each mask used in the fabrication process. A 

mask contains a unique pattern of opaque and transparent areas, and is 

used to control which areas on the silicon wafer will be doped (see 

later). This task is complicated by the fact that the physical size of 

the final circuit must be as small as possible. There are two main 

reasons for this :- 

1. Smaller size increases circuit reliability, and production yield 

2. Smaller size means more circuits on each wafer, which reduces 

fabrication costs 

Designers must therefore ensure that the pattern of shapes on each 

mask are as compact as possible. 
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The first step An the fabrication process is to protect the silicon 

by growing a thin layer of silicon oxide over the surface of the wafer 

(Figure 1.1a). Next, a layer of photographic emulsion (photo-resist) is 

spread over the oxide then baked to make it photo sensitive. Finally, 

the mask plate is laid on the photo-resist, and the sandwich exposed to 

a strong source of ultra-violet light (Figurel. lb). The radiation 

causes molecular change in the exposed photo-resist, allowing the 

unexposed areas to be washed away easily. 

Acid is then used to remove the unprotected oxide, leaving the bare 

silicon once again. This process is known as etching. Note that the 

exposed photo-resist and the silicon are unaffected by the acid. Now 

the pattern on the mask has been directly transferred onto the silicon 

(Figure 1.1c). The photo-resist has now served its purpose and is 

removed using strong organic solvents. 

If the wafer is then placed into a temperature controlled furnace, 

and fed with for example, Boron gas, the exposed areas of silicon will 

start to absorb the Boron molecules (known as doping). Controlling the 

density of the gas, and the temperature of the furnace allows very 

accurate levels of doping to be achieved (Figure 1.1d). 

The above process is now repeated using different masks and 

different' chemical elements to produce the individual components. For 

example, the last two stages required to create a bipolar transistor are 

shown in Figures 1-le and 1.1f. 

By depositing metal over the entire wafer, and then selectively 

etching, the components can be connected to form the complete circuit 

(Figure 1.1g). 

2 



The problem with the fabrication process is that in practice, the 

chemical elements are absorbed as fast along the wafer, as they are 

absorbed into the wafer. This means that the previously well defined 

doped areas now contain curved 'walls' which travel underneath the oxide 

protection layer. For example, an actual transistor is shown in Figure 

1.2. Should two areas be too close together, they may be seen to be 

separate on the mask, but in fact be joined in the silicon, thus leading 

to circuit failure. 

The designer must therefore produce the masks with regard to a set 

of design rules. In the geometric sense, these rules set a minimum 

spacing between separate areas on any one mask, minimum spacing between 

areas on different masks, the amount of overlap required to ensure 

connectivity between areas, and so on. In this way, the design rules 

ensure that any mask layout which obeys them will be faithfully 

transferred onto the silicon. 

Almost 85% of the total cost of producing integrated circuits is 

required to produce the first batch of circuits. Having to repeat the 

mask making, and fabrication stages just because the circuits were 

faulty is understandably very expensive in terms of time and money. 

However, increasing circuit complexity does increase this possibility. 

Therefore, to ensure that the circuits will operate correctly, stringent 

design rule checks must therefore be carried out while the mask layouts 

are still in intermediate form (i. e. stored on the computer). 

At" present, the design rule checks are performed of ter the masks 

are designed. Any violations detected means that the designers must 

return to the design stage, and edit the masks. Changing the layout 

often introduces new errors, therefore the design and checking stages 
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must be repeated several times before acceptable masks are obtained. 

Computer time is not cheap, for example to design rule check a large 

layout will typically cost between . L10,000 and 125,000. 

The problem of verifying mask layouts obviously gets worse as the 

layouts become larger, and more complex. New techniques are therefore 

required to handle large scale integrated circuits more efficiently. 

1.2 Guide to thesis 

Chapter two performs a critical review of existing design aids. 

Nowadays, the design and verification of integrated circuits is almost 

completely computer dependant. It is therefore very important to review 

the performance of existing computer aids before describing the 

development of CADIC. Advantages and disadvantages of each type of 

design aid is discussed in this chapter. Finally, the approach taken by 

CADIC is justified in light of the review. 

The hardware associated with a design aid can also greatly affect 

the performance, reliability, and useability of a design system. For 

this reason, Chapter three critically reviews existing graphic 

terminals, and evaluates their performance when applied to integrated 

circuit design. Lastly, the graphic terminal used by CADIC is described 

in some detail. 

The CADIC suite is split into four programs :- 

1. MANCAD : Manual language compiler 

2. CADIC1 : Interactive graphic aid 

3. DRCCAD : Design rule language compiler 

4. CADIC2 : On-line design rule checker 
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Chapter four through to seven discusses each program separately. 

The requirements of each program are discussed and logistics proposed. 

Finally the operation of each program is detailed. Chapter eight goes 

on to discuss the performance of these programs, with emphasis placed on 

CADIC1 and CADIC2, the most important programs in the CADIC suite. 

Chapter nine concludes the thesis by giving an overview of the 

project. Certain weakpoints in the CADIC suite were identified, and 

possible improvements are proposed. Finally, this chapter outlines 

several areas of research that may be pursued in the future. 
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CHAPTER 2 

A review of computer aids for the design of integrated circuits 

2.1 Introduction 

Originally, the design of integrated circuits was performed 

entirely by humans. The layouts were designed by hand, and verified 

visually. Not surprisingly, this process was very time comsuming, 

therefore as layouts became larger, and computer time became cheaper, 

more and more of the design and verification workload became computer 

aided. Nowadays, the design and verification of integrated circuits is 

almost completely computer dependant. It is therefore important to 

review the performance of existing computer aids before developing 

CADIC, the new design aid formed as a result of this project. Two main 

categories of computer aid will be considered :- 

1. Layout design 

2. Layout verification 

Advantages and disadvantages of different approaches within each 

category will be discussed below. Finally, the approach taken by CADIC 

will be justified in light of the review. 

2.2 Layout design 

Originally, the layout design was carried out at by hand. The 

designer produced a rough outline of the layout, which was then handed 
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to the draughtsman for tidying up. Around 80% of the design time was 

consumed in the latter stage, therefore the advent of computer graphics 

was welcomed. The designer could now design layouts with the inherent 

accuracy of the computer, and so dispense with the time-consuming 

draughting stage. 

As computers became more powerful, it seemed a good idea to speed 

up the design time by automating the whole design process. 

Unfortunately, the 'intuitive' power of the computer was over estimated. 

Even today, a layout produced by automatic techniques is not as compact 

as a manually produced layout. 

A compromise was therefore required. This produced systems which 

contained fully automatic routines to design a section of the layout. 

The designer could accept or reject the computer's decision, so by 

stepping through and/or repeating each stage of the design, was relieved 

of the repetitive work, but kept control of the design. Designers soon 

found that the layouts improved almost directly to the amount of human 

intervention applied. For this reason, a trend back to the manual 

approach occured. 

Nowadays, layout design aids are numerous, spanning the range from 

manual to fully automatic. Which type of design aid a manufacturer will 

want to use will depend largely on how it will help reduce the cost of 

producing integrated circuits. This cost arises from two main 

factors :- 

1. Fixed costs - the cost of designing the mask layouts 

2. Variable costs - the cost of fabricating the circuits 
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It therefore pays the large-volume manufacturer to spend more time 

and money manually designing the layouts, to gain on layout compactness. 

Smaller physical size means that more circuits can be formed on each 

batch of wafers for the same fabrication cost. On the other hand, the 

small-volume manufacturer is better decreasing the design costs by 

automatically designing the layouts, at the expense of larger circuits. 

2.2.1 Manual approach 

Manual design is the technique whereby the designer primarily uses 

on-line interactive graphics to create the pattern of shapes which go to 

form the integrated circuit layouts. A manual design aid however often 

provides other features to help simplify the design problem. Typically, 

the design aid will consist of three main programs :- 

1. Pre-processor 

2. Graphic editor 

3. Post-processor 

Each type of program will now be discussed in more detail. 

2.2.1.1 Pre-processor [11 

A pre-processing design aid accepts a 'user readable' description 

of the layout, and converts this description into a 'computer readable' 

description. In a design system incorporating several design aids, this 

'computer readable' description will be the layout database which links 

the design aids together. Two main types of pre-processor exist :- 

1. Digitiser 

2. Compiler 
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A digitiser consists of a board about three feet long, by four feet 

wide, which has a grid of fine wires embedded into its surface, plus a 

scriber which is capable of emitting magnetic signals. When the button 

on the scriber is pressed, the wires detect the signal, and an accurate 

x-y coordinate is sent to the computer. Interfacing software is 

required to collect and process the information before it can be added 

to the layout database. In this way, whole layouts can be digitised 

very quickly and easily. The cost of the digitiser however often 

precludes this type of pre-processor in an integrated circuit design 

system. 

A pre-processing compiler is conceptually similar to a software 

compiler in that a high level description of the layout is compiled down 

into the 'computer readable' description. Using a specially developed 

'manual input language', the designer can sit at standard alphanumeric 

terminal, and create a file which contains geometric information about 

the shapes in the layout. Because the files containing the manual 

description are disc-based, standard text editors can be used to edit 

the layouts. Therefore libraries of basic elements for a particular 

technology can be built up, and stored for use in future designs. 

Entering a layout using a compiler tends to be much slower than using a 

digitiser. For this reason, compilers tend to be limited to entering 

small sections of layout at a time. 

2.2.1.2 Graphic editor 

A graphic editor allows the designer to interactively create/edit 

an integrated circuit layout. Two main types of editor exist, and are 

described below :- 
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Geometric (1-61 :A designer using the geometric approach deals with 

the actual shapes that are to appear on the final mask layouts. For 

example, the shapes required to form a NAND gate are shown in Figure 

2.1. The design problem is three-fold in that the designer must :- 

1. Specify the geometry of each shape 

2. Place shapes as close together as possible, without violating any 

design rules. 

3. Preserve correct layout topology 

Since the designer has direct control over the artwork, mask 

layouts designed using the geometric approach tend to be very compact. 

In fact out of all the layout design techniques available (manual or 

automatic), the geometric approach is capable of producing the most 

compact layouts. 

The main disadvantages with the geometric approach are that the 

time required to design layouts or design turnaround time is 

comparatively long, plus the finished layouts must be extensively design 

rule checked (see later) to ensure design correctness. 

Symbolic [3,7-12] :A designer using the symbolic approach ultimately 

produces all the shapes on the mask layouts, just as in the geometric 

approach. The difference now is that the basic layout definitions (i. e. 

tracks,. transistors, contacts) are represented by symbols. In this way, 

much of the geometric information can be ignored during layout design. 

Only, once the layouts are complete does the design aid need to convert 

the symbolic layout into the geometric layout. Symbolic design 

therefore facilitates shorter design turnaround times, but the layouts 

tend to be larger than necessary. 
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Symbolic design exists in two forms; static and dynamic. Static 

design uses alphanumeric characters at specific geometric locations to 

represent the mask layouts (Figure 2.2). Layouts are designed on an 

alphanumeric terminal, and output on a line printer. 

One of the advantages of this approach is the simplification of 

design rule checking. Using characters forces the layout geometry to a 

coarse grid. By defining the grid size to be equal to the resolution of 

the fabrication process, then correlating the design rules with the 

grid, the designer is less likely to make design rule errors. Note 

however that design rule errors can still occur, so the mask layout must 

be fully checked after the design is complete. 

The main disadvantage is that mismatch between the grid spacing and 

design rule minimums forces layouts to be larger than is necessary. The 

ergonomics of static design are also very poor. The layouts are 

difficult to understand, the limited resolution of the alphanumeric 

screen restricts viewing options, and large layouts can only be checked 

by taping together sections of line printer output. 

Dynamic design overcomes many of the problems associated with the 

static approach by using colour graphics plus 'spacing synthesis'. 

Spacing synthesis allows the designer to disregard all geometric 

information, therefore only topological information is required (Figure 

2.3). After the design is complete, the design aid automatically 

converts the 'Stick diagram' into a geometric layout (as in the static 

approach) then compacts the geometric layout as much as possible. 

The main advantage of this approach is that in theory, the final 

layout does not need-to be design rule checked. The design rules are 
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built into the compaction routines, so correct shape relationships will 

always be observed. This concept breaks down when the designer wants to 

add some special geometric artwork, as is often the case in practice. 

Under these conditions, correct design cannot be assured, so the 

geometric layouts must be design rule checked, just as with all other 

manual design aids. 

A more serious problem with dynamic design is that the compaction 

routines (11,13] cannot compact the layout as well as humans can, 

therefore the final layouts are usually larger than necessary. Complex 

designs pose severe problems for even the best compaction routines, 

therefore at present, dynamic design aids are limited to producing only 

small-layouts. 

2.2.1.3 Post-processor (13 

A post-processor accepts a 'computer readable' description of the 

layout, and converts the description into a 'user readable' description, 

for example a scaled plot, or a manual input file. Post-processors 

therefore not only provide hard copies of the layout, but also provide a 

valuable feedback link within the manual design aid. 

2.2.2 Automatic approach 

Automatic design is the technique whereby the designer provides 

only a- functional or behavioural description of the layout. The 

computer, running primarily in batch mode then takes this description, 

and produces the complete set of mask layouts. Two main approaches to 

automatic design exist, and these are described below. 

14 



Cell-based : The most common cell-based design aid used today relies on 

the concept of a standard cell (14-21]. A standard cell is basically a 

layout building block, which is rectangular in shape, and is defined as 

having input/output pins only on the top and bottom edges of the cell. 

A description of the layout is built up by choosing cells from a 

pre-defined library, and specifying the connections between cells. The 

design aid then takes this information and arranges the cells in a 

series of rows, then routes the connections in the intervening channels 

(Figure 2.4), such that the total wire length is at a minimum. Standard 

cell assemblies can be generated relatively quickly, so producing a 

cheap design system. The cells have been tried and tested in the past, 

therefore the layout is geometrically correct, even if built up by 

semi-skilled users. 

The main disadvantage with the standard cell approach is that the 

finished layout consumes much more area than is necessary. This is due 

to the fact that the width along the entire length of each channel must 

be equal to the maximum required, even if this maximum is experienced 

only once in the channel. The cells themselves must be of constant 

height, which again is wasteful as the height must be that of the 

maximum required. The constraint of constant row height also makes it 

very difficult to include special cells such as ROM's or RAM's, which 

resricts ingenuity of design. 

In the never ending search to achieve the excellent results 

produced by manual design aids, the restrictive standard cell approach 

was broken down to give the general cell approach (22-251. The cell 

concept is still used, but now input/output pins can exist on any side 

of the cell, and the cells are given freedom of movement. The cell 

dimensions can now be optimized on an individual basis, and the routing 
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area in between the cells can be utilized much more efficiently (Figure 

2.5). Consequently, layouts are more compact, and wire length reduced. 

One never gets something for nothing, and in general cell 

assemblies, the penalties include more complex placement and routing 

routines which force an increase in computation time. 

While placing the cells, the best a computer program can do is 

'loosely' route the wires. Once all the cells have been placed, and the 

wires are to be 'hard' routed, the situation often arises in which some 

wires cannot be routed due to lack of space between the placed cells. 

Special cases must be made of these wires, and may involve several 

re-runs of the layout design package with human intervention. 

Silicon compilation (26,27] : The concept behind the silicon compiler is 

that of an 'ultimate' layout design aid. The designer submits a 

high-level functional description of the layout required. The silicon 

compiler accepts this description, and automatically produces the 

geometric layouts, without the use of libraries, as with the cell-based 

approach. 

To simplify the layout problem, all silicon compilers work on a 

'target' architecture. For example, a typical target architecture [26] 

is shown in Figure 2.6. Silicon compilers are therefore limited to 

producing a particular type of circuit. Blocks within the architecture 

are usually filled using ROM and PLA generators [14]. With such a fixed 

format, layouts are not surprisingly much larger than necessary. 

Silicon compilation is still very much a concept in, rather than an 

alternative to layout design. A non-trivial example has yet to be 
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published, and no working circuits have ever been produced [27]. The 

concept is however very appealing, therefore silicon compilers will 

undoubtably figure very strongly in automatic layout design in years to 

come. 

2.3 Layout verification [28] 

Humans are reliably error-prone, therefore any manual assistance 

given during the design of the mask layouts means that the masks must be 

checked to ensure validity. Originally the checks were done purely 

visually, but LSI and VLSI technology soon pushed the size of layouts 

outside the range that could be comfortably handled by humans. 

Nowadays, layout verification is in most cases totally computer 

automated, since much of the work involves mechanically repeating simple 

tests many. times. In general, two types of check are required, both of 

which are described below. 

2.3.1 Functional check 

Functional checks ensure that the layout agrees with the original 

design specifications. Three types of functional check exist, and these 

are described below. 

Device recognition [29-32] : Device recognition is becoming an 

important functional check. Analysis of the mask layouts allows the 

computer to identify the individual components, then extract information 

about the components. In this way, transistor characteristics, coupling 

capacitances, resistances, and so on can be reported to the designer. 

Comparison with the original design specifications will identify any 

errors, plus highlight possible problem areas not realised earlier in 

the design. 
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Connectivity (31,33,34) : As the title suggests, a connectivity check 

ensures that all the components in the circuit are interconnected 

correctly. The computer analyses the pattern of shapes on each mask 

layout, and builds up a list of how the components are interconnected. 

This connectivity list is then compared against a user-supplied list 

which described how the components should have been interconnected. 

Comparison of the two lists allows all connectivity violations to be 

identified. 

Simulation : Simulation was the first functional check available, and it 

is still the most common functional check carried out today. The large 

range of simulators now available allow the integrated circuit design to 

be verified at various levels of abstraction, for example :- 

1. Behavioural 

2. Register transfer 

3. Logical 

4. Timing 

5. Circuit 

Using simulators in this way allows violations to be identified 

early in the layout design process. Behavioural simulators are used at 

the initial design stage, to verify the algorithms of the digital system 

to be produced. Computer software is often used to perform this task. 

Note that no details of the physical design are required at this stage. 

Once the algorithms have been verified, a 'block diagram' of the 

layout can be formed. This 'block diagram' may then be tested using a 

register transfer level simulator (35,36]. Only crude timing 

information may be available, yet useful information such as congestion 

and hardware/firmware tradeoffs can often be identified at this stage. 
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The block diagrams can then be partitioned into low level building 

blocks, or logic gates. A logic simulator (37,38] may then be used to 

verify the logical circuit. Sophisticated delay models may be 

incorporated at this stage to obtain a more accurate picture of circuit 

operation. 

Finally, the logic gates can be replaced by the actual transistors 

and interconnections which will appear on the integrated circuit layout. 

Accurate circuit simulation (39,401 can be performed for small sections 

of the layout using an circuit simulator. To limit the amount of CPU 

time required, larger sections of layout are often simulated in less 

detail using a timing simulator [41,42]. 

Some of the newer simulators allow different sections of a layout 

at different levels of abstraction to be simulated concurrently. These 

mixed-mode simulators (43,44] can give the effect of complete circuit 

simulation, yet allow the designer to minimise CPU time and memory 

requirements by taking advantage of fast high-level descriptions in less 

critical areas of the layout. 

2.3.2 Geometric checks 

In layout verification, of equal, if not greater importance, are 

the geometric or design rule checks. These checks ensure that the 

patterns on the masks will be correctly transferred onto the silicon 

during the fabrication process, so preserving layout topology. 

Limitations in the fabrication process are such that without design 

rules, two adjacent areas may be seen to be separate on the mask 

layouts, but in fact be merged together in the silicon. Circuit failure 

or a lowering of yield and reliability would probably ensue. The design 
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rule checks can be performed in two ways, both of which are described 

below. 

Off-line (28,45-60] : The first point to note is that all mask layouts 

are presently checked this way. After the design is complete, the 

designer submits the mask layouts to the design rule checker, along with 

a file containing the design rules (611. The rules are applied to each 

mask, or combinations of masks, and any violations identified are 

written to a report file. 

Note that the combinatorial explosion caused by checking all the 

shapes against one another means that the design rule checks are very 

expensive to carry out (Typically £25,000). 

Once the checks are complete, the designer must edit out the errors 

in the layout, using the information stored in the report file. 

Correction of one error may involve repositioning part of the layout, 

which could introduce new errors. Therefore, when the editing is 

complete, the layout must be checked again for design rule violations. 

In practice, this design - check cycle must be repeated three or four 

times before an acceptable layout is achieved. 

On-line : In this approach, the design rule checker is integrated into 

the design aid, so that as 'each shape is added to the layout, it is 

checked against the the pre-defined set of design rules. If a violation 

occurs, then the shape is rejected, otherwise it is accepted. This 

approach is much cheaper in terms of CPU time, since the shape need only 

be checked against the existing layout. 

Layouts checked on-line are correct at all times, so on completion 

of the design, the circuit is ready for fabrication. Without the 
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multiple design - check cycles present in off-line techniques, the 

design turnaround time is greatly reduced. 

Ideally the checks should be performed within the time it takes the 

designer to start adding a new shape. Previous attempts at on-line 

design rule checking (3] have never achieved this, unless limited to 

very simple checks. New techniques to speed up the process are 

therefore required. 

2.4 The approach taken CADIC 

The aim of this project is to produce CADIC (Computer Aided Design 

of Integrated Circuits), a new and more effective integrated circuit 

design aid. It is therefore important to justify the approach taken by 

CADIC, in the light of existing techniques. 

A review of existing design aids shows that although automatic 

design is popular, manual design plays by far the major role in 

integrated circuit production. There are two main reasons for this :- 

1. Manual aids are capable of producing the most compact layouts 

2. Manual aids are required to produce the cells used in automatic 

design 

Within manual design, there are two possible approaches; geometric 

and symbolic. When it was first introduced, symbolic design seemed to 

be the answer to the design problem. For a variety of reasons, symbolic 

design has not lived up to these expectations, so much so that many 

companies who changed to symbolic design when it first appeared have 

since returned to geometric design. 
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Geometric design, on the other hand, although very useful, is not 

without its drawbacks. The dependence on off-line design rule checking 

forces multiple design-check cycles, which create the lengthy design 

turnaround time normally associated with geometric design. 

In conclusion, CADIC should be a manual design aid, which allows 

the designer to work at the geometric level. CADIC should also 

incorporate on-line design rule checking. In this way, the design-check 

'bottleneck' found in existing geometric design aids can be broken, 

which will allow substantial reductions in design turnaround time. 

Other standard features such as pre-processors and post-processors 

should also be incorporated into CADIC as required. 
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Figure 2.1 Geometric layout 
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CHAPTER 3 

A review of graphic terminals 

3.1 Introduction 

The way in which a graphic terminal is connected to the host 

computer, plus the distribution of intelligence between host and 

terminal can greatly influence the performance, reliability and 

useability of a system. For this reason, the whole of this chapter is 

devoted to describing graphic terminals and evaluating their use in 

integrated circuit design. 

Originally, a graphics system consisted of a large mainframe 

computer controlling a simple display. The early displays were 

non-intelligent, which meant a large amount of computer power to do the 

simplest of operations. Understandably, the early systems were very 

expensive. 

The addition of specialized hardware made displays more 

intelligent. Fundamental problems such as producing alphanumeric text 

and dashed lines could now be generated from the terminal itself. This 

helped reduce the load on the host computer, but a large amount of 

computing time was still spent driving the display. 

As time-sharing became fashionable, the host computer could no 

longer provide enough dedication to the display. Mini-computers were 

used as a satellite, and so off-loaded much of the graphics software 
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previously stored in the host. The more powerful mini-computers became, 

the more graphic and non-graphic work they could accomplish. 

As technology advanced, the micro-computer became as powerful as 

early mini-computers. Subsequently, micro-computers were soon to be 

found in the display terminal itself. The micro-computer thus helped 

reduce the mini-computer's workload, just as the mini-computer had done 

to the host computer several years earlier. Present intelligent 

terminals are highly sophisticated, with the use of these terminals in 

CAD packages becoming the rule rather than the exception. 

Note that in general, even with good intelligence distribution, the 

amount of number crunching power required in integrated circuit design 

still forces the display to be connected. to a mainframe computer. 

3.2 Alphanumeric terminals (8,54,62] 

The most basic, and certainly the cheapest type of graphics system, 

is to use the alphanumeric VDU (Video Display Unit) to display the plot. 

Software is required to convert conventional line drawing to raster-scan 

drawing, but different characters can be used to represent different 

regions. For example, if a manual design aid is constrained to plotting 

out a maximum of four masks at any one time, then all possible regions 

(hex 1- F) can be displayed, if the individual masks are defined as hex 

1,2,4,8 respectively. 

The plots are however rather crude due to the limited resolution of 

the screen (Typically 80 x 24). Graphic, interaction also tends to be 

very limited, therefore this type of terminal is often used purely an 

output device. 
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3.3 Plotters (631 

The very nature of plotters allows the user to produce a plot which 

can be taken away and studied at leisure. Consequently, plotters tend 

to be used purely as output devices. Some plotters have motor control 

buttons, plus a 'hit' button, which can be used to position the pen, 

then send the pen coordinates to the computer, so providing a limited 

interaction facility. Such an interactive system is very slow, and 

consequently its use is rather limited. 

Probably the most popular type of plotter is the flat-bed plotter* 

This type of plotter uses pens, usually ink or fibre-tip, supported on a 

gantry over the plotter base (which holds the paper). Powered by 

stepping motors, the pen and its lifting mechanism move along the gantry 

in the Y direction, and the gantry moves in the X direction. 

Changing the pens at pre-determined stages during the plot allows 

colour plots to be produced. A clever graphics package can also fill in 

the shapes, but this tends not to be done, due to plotter speed 

(Typically 25cm/sec), and striping, due to slight pen alignment errors. 

Faster plots can be achieved by using a drum plotter. Now the pen 

may move along the axis of the drum (Y direction) with the paper and 

drum rotating under the pen (X direction). The drum and pen are both 

much lighter than the gantry system, and so speeds of 80cm/sec can be 

achieved. 

Since raster graphics (see later) became popular, new types of 

plotters have been developed. These plotters-handle normal 'outline' 

plots but are specifically designed to cope with 'shaded' and/or 
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'filled-shape' plots. Two main types exist ; matrix plotter, and 

ink-let plotter. 

A matrix plotter is similar to a conventional matrix printer, 

except that it uses a multicoloured ribbon to produce the coloured plots 

as a series of dots. The ribbon usually consists of three colours 

(yellow, cyan, and magenta), which by a system of overprinting can 

produce any one of eight standard colours. The quality of the output is 

however rather poor, due mainly to the limited number of dots per line 

(typically 700), plus misalignment of overprinted dots. 

The ink-jet plotter is much more sophisticated in that liquid ink 

is sprayed onto the paper using three ink jets mounted on a gantry . 

Direction and amount of ink from each of the jets is controllable, 

allowing high resolution, and very high quality plots. 

3.4 Direct View Storage Tube Terminals (1,2] 

DVST terminals differ from the common VDU by requiring a special 

cathode ray tube as shown in Figure 3.1. Pictures are stored in the 

form of charge on the storage grid, using the main electron gun. The 

collector helps smooth out the flow of electrons from the flood gun, and 

the high potential screen accelerates these electrons through the 

storage grid, thus copying the image onto the screen. 

For an input device, the DVST terminal uses a cross-hair cursor, in 

the form of a horizontal and vertical line extending across the screen. 

These lines are repeatedly drawn at an intensity just below that 

required to permanently store an image. Through the use of suitable 

controls on the keyboard, the cursor can be positioned anywhere on the 
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screen, and the cursor coordinates obtained on request. 

DVST terminals can exist in two modes, alphanumeric and graphic, so 

allowing the user to carry out all types of interaction on the one 

terminal, providing the user with a relatively cheap graphics system. 

The storage ability of DVST terminals means that the plot can be 

built up in stages, therefore they are ideal for use in time-shared 

environments. The plot does not flicker, and the screen resolution 

tends to be very high (Typically 4096 x 3071). 

In general, the DVST terminal produces a monochromatic plot, SO 

dashed-lines are required to differentiate between shapes on different 

masks. The shapes cannot be filled, therefore plots become rather 

confused when several masks are plotted at once. 

The main disadvantage with the DVST terminal is that charge cannot 

be selectively removed from the grid, therefore no selective erasure of 

the screen is possible. Removal of part of the plot involves clearing 

the screen, then redrawing the complete plot, which can be 

time-consuming. 

3.5 Vector scan Terminals (61 

A symbolic representation of a simple vector scan terminal is shown 

in Figure 3.2. Note that a standard cathode ray tube is used, so the 

phosphor on the screen excited by the electron beam will, glow only 

momentarily. To produce a steady image on the screen, the plot must be 

redrawn or refreshed often enough so that the phosphor is re-excited 

before the glow disappears. In practice a refresh frequency of 50Hz is 
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usually chosen. 

The picture description is stored in a display file, which is a 

list of drawing and control instructions. The display file can be 

regarded as a data structure, and can be dynamically updated, providing 

selective erasure and animation features such as rubber-banding, shape 

towing and so on. 

Vector scan terminals usually offer very high resolution. Normally 

the image is monochrome, but the facility to dynamically vary the beam 

intensity does help to visually separate shapes on different masks. 

Shape fill is not possible, therefore complex layouts can become 

confused. 

Colour vector scan terminals do exist. The tubes in these 

terminals contain three phosphor layers (red, green, blue) and the layer 

is selected by varying the potential on the gun anode (Figure 3.3). By 

this method, eight colours can be produced, but in general, the system 

involves specialized control hardware, and is very expensive. 

From the computers viewpoint, a vector scan terminal requires 100% 

dedication. In a time-shared environment, this amount of dedication is 

of course not possible, so a satellite mini-computer must be present to 

carry out the graphic work. 

Early terminals used the core memory of the mini-computer to store 

the display file. With such a system, 80% of the computer time was 

spent sending display information to the terminal. Therefore, on the 

advent of cheap memory, and intelligent terminals, the display file was 

soon to be found in the terminal itself. 
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Regardless of mini or micro computer efficiency, if the display 

file is so large so as to force a reduction in the refresh rate, the 

picture will begin to flicker, as the phosphor glow dies before being 

refreshed. This can be off-putting for the user, and so precludes its 

use in areas of graphics which continually require complex pictures. 

The design of integrated circuits falls directly into this category, and 

so a refresh terminal is best used if some sort of windowing constraint 

is imposed. 

The input device most commonly used in conjunction with the vector 

scan terminal is the light pen. The pen is basically a photo-transistor 

which 'sees' over a limited region, and sends an interrupt signal to the 

terminal whenever the light from the electron beam enters the region. 

With knowledge of the scanning rate, the position of the light pen at 

time of interrupt can be calculated. 

To be effective, the light pen must be held perpendicular to the 

screen. This is an unnatural and tiring position to hold for any length 

of time, plus the pen and/or the user's hand tends to hide part of the 

layout. 

3.6 Raster Scan Terminals [3,4,5,64] 

Raster scan terminals consider the screen to be divided up into a 

matrix of areas (Figure 3.4a). Each area, called a pixel has a value 

associated with it, and this value is stored in a jixel memory. 

Consider 
_a simple system in which each pixel is represented by 1 bit of 

memory. On/off or black/white information is therefore stored (Figure 

3.4b). 
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The picture is produced by computing which pixels to display, and 

which pixels to omit, then writing this information into the pixel 

memory. To display the picture, the pixel memory is continuously 

scanned row by row, hence the term raster. As each bit is read out, it 

is coverted to an analogue signal, and used to control the monitor. 

As mentioned above, the simplest possible system would represent 

each pixel with 1 bit of memory, giving on/off or black/white 

information (Figure 3.5a). Better quality displays can be achieved if 

the each pixel is represented by more than 1 bit. In this situation, 

the pixel store is best visualized as a series of memory planes, each 

with equal resolution. The pixel representation is stored in parallel 

(1 bit per plane) and the outputs can be fed to a DAC to provide grey 

scale information. A 3-plane system would provide an eight level grey 

scale and is shown in Figure 3.5b. 

Theý3-plane system can give cý 

to drive-the red, -green, and blue 

colours (red, green, blue, yellow, 

produced, but cannot be altered. 

levels of. red, green, and blue, so 

(Figure 3.5d). Note that only 

Dlour information if each bit is used 

guns separately (Figure 3.5c). Eight 

cyan, magenta, white, black) are 

A 9-plane system could provide eight 

producing a palate of 512 colours 

eight colours can be shown at any one 

time. 

Simply increasing the size of the pixel store is really a 

brute-force solution to the colour palate problem. A better approach is 

to use a video look-, 2T table (Figure 3.5e). The number of planes is now 

no longer restricted to a multiple of three, as the outputs from the 

planes provide the address for the table. Each address in the video 

look-up table specifies the colour number, and the memory contents 
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specify the levels of red, green, and blue to be associated with that 

colour number. The user can load up the table, and so define the 

colours as required. 

Modern raster scan terminals have plane masking facilities, 

therefore planes may be written to selectively. In integrated circuit 

mask design, this is a useful feature. For example, if the diffusion 

layer is drawn on plane 0 and the colour 1 defined to be green, then the 

poly-diffusion layer, is drawn on plane 1, and the colour 2 defined to be 

red, 'any intersection between the shapes on the layers will result in 

colour 3, which can be defined by the user to be a unique colour. 

The resolution on raster scan terminals is low compared to other 

graphic terminals (Typically 512 x 512). This is due partly to the cost 

of memory, but mainly to the fact that standard T. V. monitors produce 

625 lines in the Y direction. If the designer can keep the resolution 

within standard T. V. limits, then off-the-shelf components can be used 

in the terminal's manufacture. 

At first sight, this seems to be a very poor resolution, but tests 

have shown that shapes which are in colour, and filled-in, can be 

identified on the screen as well as, if not better than similar shapes 

plotted on a monochrome terminal with four times the resolution [65). 

Low resolution may cause the terminal to staircase non-orthogonal lines, 

but as the majority of integrated circuit artwork is Manhattan geometry, 

this problem is not critical. 

37 



3.7 Terminal used CA_ 

The terminal used by CADIC is a SIGMA 5000 microprocessor-based 

colour raster scan terminal. The schematic and physical layout is shown 

in Figure 3.6. The GOC (Graphics Option Controller) is linked directly 

to the host(a DEC2050 time-shared mainframe computer) and all 

communications pass through the controller. The GOC then directs the 

information to the downstream VDU's as required. 

The GOC contains the microprocessor plus the pixel store, which 

consists of four display planes and two special planes (polygon, and 

fill). The display planes give 4-bit pixel representation, and so 

allows sixteen colours to be viewed simultaneously. Colours can be 

defined as required with the video look-up table, which provides a 

palate of 4096 colours. 

The special planes are reserved for shape fill exercises. For 

example, the shapes to be filled are written to the 'polygon' plane. On 

receiving the 'FILL' command, the microprocessor copies all the pixels 

outside the shapes into the 'fill' plane. The zero-valued pixels in the 

'fill' plane can then be copied into the display planes in any desired 

colour. A schematic diagram of the pixel memory is shown in Figure 3.7. 

. 
The GOC can exist in any one of three states :- Reset, Graphics, 

and Alphanumerics. The Graphics state is further divided into three 

modes :- Vector, Command, and Text. Transitions between states/modes 

only take place when the GOC receives the correct transition trigger. 

More detailed information on the SIGMA, is given in the user manual 

[66] . 
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The microprocessor in the GOC provides a range of around a hundred 

functions, including plane enable, block mode (in which rectangles are 

specified only by the bottom left hand and top right hand corners), 

selective erasure, user-specified dashed line, point mode, and shape 

f ill. 

Communication carried out in the vector mode can be optimised by 

entering the Abbreviated Graphics State (AGS). In this state, the x and 

y coordinates are each represented by two bytes (Hi and Lo). The Hi 

byte gives coarse positional information, and the Lo byte gives the 

sensitive positional information. The GOC keeps a note of the last 

bytes sent, so should for example, a short horizontal line be required, 

then only the Lo-X byte need be sent. Data transmission savings range 

from 33% to 83%, with the greatest saving occuring when plotting out 

horizontal and/or vertical lines. Since integrated circuit layouts are 

made up of predominantly orthogonal geometry, the AGS is an invaluable 

facility. 

The SIGMA uses a cross-hair cursor as an input device. The cursor 

is controlled by a hand held control box, which contains five keys : - 

up, down, left, right, and hit. CADIC programs the alphanumeric keys to 

replace the function of the hit button, so that on pressing any key, the 

relevant ASCII code, plus the cursor coordinates are sent to the host 

computer. CADIC then accepts the code as a command, and uses the 

coordinates accordingly. 
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CHAPTER 4 

MANCAD 

4.1 Introduction 

MANCAD (MANual Computer Aided Design) accepts a manual description 

of an integrated circuit layout, and converts this description into a 

ring data structure readable by CADIC1 and CADIC2. This facility is 

very useful when a graphics terminal is not readily available. The 

designer can quickly 'code-up' a layout onto sheets of paper, then enter 

the data into MANCAD using a standard alphanumeric terminal. The 

graphics terminal is therefore only required to view and/or correct the 

layout. 

The layout can also be design rule checked as it is being compiled 

using the routines developed in CADIC2 (See later). In this way, MANCAD 

also provides a very efficient batch-mode or off-line design rule 

checking facility. 

4.2 Choice of manual input language 

The ideology behind MANCAD is that a sketch drawn by the designer 

may be encoded by a non-technical assistant. This leaves the designer 

free to concentrate on more important areas of the design. The commands 

in the input language must therefore be easy to use and easy to 

remember. To save the user time and effort, the input language must 

also minimise the amount of data that is required. 
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Only the most optimistic user will expect to 

completely correctly first time. More often, a 

editing will be required, possibly months after the f: 

formed. A file purely consisting of numbers is going 

understand, so a simple format and a high degree of 

required in the language. 

enter the layout 

certain amount of 

Lle was originally 

to be difficult to 

'readability' is 

If MANCAD is to be used as an alternative to CADIC1 it is 

important that the manual input language allows the user to build up 

layouts using the same design philosophy. Therefore a format similar to 

a high level computer language seems an intuitive choice for the input 

language, since the designer builds up an integrated circuit in a very 

similar manner to the programmer writing software. For example, the 

designer collects together shapes (lines of code) to form group 

definitions (subroutines), and instances (calls) of the group 

definitions can be added to any other group definition, or main layout- 

The deciding factor on the choice of manual input language came 

about as a result of the requirements of the project, rather than from 

MANCAD itself. To test the efficiency of the CADIC software, it was 

important to use large realistic circuit layouts. Compeda Ltd, 

Stevanage, and Wolfson Microelectronic Laison Unit, Edinburgh kindly 

provided suitable circuits. The problem is that the circuits were 

designed on the GAELIC system [1], and the GAELIC layout data structure 

is not compatible with the CADIC data structure. 
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To convert the GAELIC data structure to a CADIC data structure, two 

options were available :- 

1. Write software which would convert the GAELIC data structure 

directly into a CADIC data structure 

2. The GAELIC suite of programs contains a program which converts the 

data structure back into a GAELIC manual input file. If the MANCAD 

input language is designed to be similar to the GAELIC language, 

then the equivalent CADIC data structure can be obtained by 

compiling the manual input file through MANCAD. 

It was decided to adopt the latter approach for two main reasons :- 

1. No new software is required, thus saving development time 

2. The one-stage conversion program can only be used to convert GAELIC 

data structures to CADIC data structures. Different data 

structures would require their own conversion program, therefore 

this approach is very limited in its practical use. 

The proposed MANCAD language was therefore adjusted such that it 

was compatible with the GAELIC language. This language change enhanced 

MANCAD's qualities for the following reasons :- 

1. Over the last few years, there has been a strong international 

effort to try and standardise systems and software related to 

computer aided design. By altering its manual input language, 

MANCAD has introduced a two-way link between systems, which 

otherwise would not exist. 

2. The GAELIC language contains many useful commands, which did not 

exist in the proposed MANCAD language. 

3. The GAELIC language has been used in industry for many years ncw, 

and seems to be well liked. 
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A detailed description of the GAELIC language can be found in the 

GAELIC user manual [67]. An important point to note is that the MANCAD 

language includes all the GAELIC commands, except the commands ; 

"CIRCLE", "TEXT", and "LINE". The first two commands were dropped from 

the language simply because CADIC does not allow circles or text to be 

added to the layout. The reason for dropping the "LINE" command 

requires more explanation. 

In GAELIC, shapes could contain only light segments. Therefore to 

produce a shape which contained dark segments (as in Figure 2.1), the 

designer had to use the "LINE" command to represent the shape as a 

series of lines. CADIC does however allow dark segments to be included 

in a shape, so the "LINE" command is no longer required. 

As a result of allowing dark segments, another important difference 

exists between the MANCAD and GAELIC languages. In the MANCAD language, 

shape coordinates may be preceeded by the letter 'D', which will define 

the segment going to that point as being a dark segment. In all other 

cases, the segment is defined by default to be light. 

The full range of commands available in the MANCAD input language 

therefore are as follows :- 

"RECTANGLE ......... Define coordinates of a rectangle 

"POLYGON ........... Define coordinates of a polygon 

"TRACK"....... .... Define coordinates of a track centre line 

"NEWGROUP.......... Initialise new group definition 

"ENDGROUP"........ Close present NEWGROUP command 

"GROUP ............ Call up instance(s) of group definition 

"EXTENDGROUP...... Open existing group definition 
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"REPLACEGROUP".... Replace existing group definition 

"DELETEGROUP"..... Delete existing group definition 

"REPEAT".......... Repeat shapes and/or groups in X or Y directions 

"ENDREPEAT......... Close present REPEAT command 

"MATRIX". -........ Repeat shapes and/or groups in X and Y directions 

"ENDMATRIX"....... Close present MATRIX command 

"FINISH ............ End processing 

Rather than give a detailed description of each command, a feel for 

the MANCAD language is provided by the following simple example. The 

example is in fact the manual file used to form the NAND gate layout 

shown in Figure 2.1. Note that only enough letters to uniquely identify 

a command are required in the input file. 

"NEWGR" GATE; 
"RECT" (1) 5,14: 4,8; 
"POLY" (2) S, 0,5: 12,2, -12, D-2; 
"POLY" (2) S, 0,9: 12,2, -12, D-2; 
"RECT" (2) 4,15: 6,7; 
"POLY" (3) S, 5,0: 4,3,1,9,6, D2, -6,2, -2,7,1,4, -4, 

-4,1, -7, -2, -13,1, -3; 
"RECT" (4) 6,1: 2,2; 
"RECT" (4) 6,13: 2,4; 
"RECT" (4) 6,24: 2,2; 
"POLY" (5) S, 0,0: 16, D4, -16, D-4; 
"RECT" () 5,12: 4,6; 
"POLY" (5) S, 0,23: 16, D4, -16, D-4; 

"ENDGR"; 
"GROUP" GATE, 0,16,111; 
"FINISH"; 

4.3 Program operation 

As described in the introduction to this Chapter, MANCAD converts 

or 'compiles' a manual description of a layout into the CADIC ring data 

structure. Originally, this was MANCAD's only function. It was soon 

realised however, that incorporating on-line design rule checking 
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techniques into MANCAD produced a very powerful off-line design rule 

checking facility. Both modes of MANCAD's operation are described 

below. 

4.3.1 MANCAD : The compiler 

After initialisation, MANCAD asks for the name of the file 

containing the manual input language, some details on the format of the 

file, then the name of the data structure to be created. Note that the 

data structure may already exist, in which case, the shapes in the input 

file will simply be appended to the specified data structure. In this 

way, a designer can rely on pre-defined library files to supply all the 

standard elements and/or layouts required in the new design. Lastly, 

MANCAD asks for the title to be associated with the layout. 

During compilation, MANCAD performs extensive syntax checking on 

each command in the input file. If no errors are detected in a command, 

it is accepted by MANCAD, and fully processed. on the other hand, if an 

error is found, MANCAD will react in one of three ways, depending on the 

severity of the error. 

1. The error will be automatically corrected by MANCAD, and the 

command accepted. 

2. The erroneous command, accompanied by a descriptive warning message 

will be sent to the terminal, and the command ignored. 

3. The erroneous command, and warning will be sent to the terminal, 

followed by a request by MANCAD to the user to correct the error 

immediately. 
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Once the manual file has been completely processed, MANCAD provides 

the user with three options :- 

1. Close the files, and return to monitor level 

2. Fetch another manual input file to be added to the data structure. 

In this way, library files can be loaded as required. 

3. Enter data on-line, through the keyboard. Therefore if only a few 

shapes were rejected by MANCAD, they can be re-submitted correctly. 

This saves having to edit the relevant manual file, and start the 

possibly lengthy and involved 'compilation' from the beginning. 
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An example of compiling the manual input file shown in Section 4.2 

is given below. Note that the manual file deliberately contains an 

error in one of the mask numbers, so as to show how MANCAD handles a 

typical error. 

- MANCAD - 

Program to convert manual input language into a ring data structure 

Enter name of manual input file, or return to finish :- NANDG 

Does the manual file contain line numbers ? NO 

Do you want to include design rule checking ? NO 

Enter name of existing ring data structure, or return :- 

Enter name of the new ring data structure, or return to finish :- TEST 

Enter the layout title : NAND gate 

SYNTAX : Group GATE : "RECT" () 5,12: 4,6; 
Mask information incorrect - shape ignored 

Enter name of next manual file, or TTY for 
keyboard input, or press return to finish :- TTY 

Enter data - without line numbers 
"EXTENDGR" GATE; 
"RECT" (5) 5,12: 4,6; 
"ENDGR"; 
"FINISH"; 

Enter name of next manual file, or TTY for 
keyboard input, or press return to finish :- 

END OF EXECUTION 
EXIT 
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4.3.2 MANCAD : The off-line design rule checker 

This thesis goes into great detail to explain the advantages of 

on-line design rule checking over existing off-line techniques. 

Successful implementation of on-line design rule checking should make 

the off-line approach redundant. Why then, does the CADIC suite need to 

provide off-line design rule checking ? 

The reason is that under certain circumstances, the off-line 

approach is the only way to check a circuit, even if it was designed 

using CADIC. These special cases are discussed below. 

Firstly, layouts, or section of layouts chosen from a manual 

library file will have to be checked in an off-line fashion before being 

added to the new layout design. The reason for this is that the design 

rules may have changed since the library was first developed, therefore 

previously correct layouts may now contain violations. 

Secondly, a designer may want to use a layout not designed on 

CADIC. As with the manual library files, the layout must be checked 

off-line before it can be used. 

Lastly, once the layout is designed and tested, it is ready for 

fabrication. A large proportion of companies which design integrated 

circuits do not have an 'in-house' fabrication plant. Therefore these 

companies must send their designs to a 'silicon house' to be 

manufactured. 

Before starting a design, the 'silicon house' will give the company 

details on the quality of fabrication possible, so that the design rules 
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can be defined. As long as the company always implements these rules, 

the 'silicon house' will be able to fabricate the integrated circuits. 

If the company decides to use a different 'silicon house', say for 

second source or economic reasons, a new set of design rules will be 

defined. The layout will have to be checked against these design rules 

to ensure that no violations exist. Once again this process can only be 

performed off-line. 

There are two ways in which the CADIC suite could incorporate 

off-line design rule checking as a design option :- 

1. Classical approach - Develop an independent program to design rule 

check a finished layout design, using its data structure. Note 

that the data structure must be in CADIC format. 

2. Simulated approach - Off-line design rule checking can be performed 

by checking the layouts as they are compiled into the CADIC data 

structure, using on-line design rule checking techniques. 

Note that the term 'simulated' in no way implies inferiority. In 

fact, this approach now shows many superior qualities. The simulated 

approach was adopted by the CADIC suite for a variety of reasons :- 

1. Highly efficient routines, plus the implicit selectivity of the 

on-line approach allows the simulated approach to be much faster 

than the classical approach. Note that the layout is checked just 

as rigourously as any classical technique would check it. 

2. The on-line design rule checking routines already exist. 

3. Layouts not designed using CADIC almost certainely will not be 

compatible with the CADIC data structure. The layout must 

therefore be converted, before it can be checked. Earlier in this 
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Chapter, it was decided that the convertion problem should take the 

form of a two-stage process, using the manual input language as a 

common database. The second stage of this process involves using 

MANCAD to compile the manual description into a CADIC data 

structure, so it seems sensible to incorporate the design data 

structure into this stage. 

Off-line design rule checking is incorporated into the MANCAD 

compilation by answering YES to the relevant question. If design rule 

checking is requested, then MANCAD will ask for the name of the data 

structure which contains the rules. 

MANCAD processes the manual input file in exactly the same way as 

described in Section 4.3.1. The only difference now is that before each 

shape or group call can be added to the layout data structure, it must 

be design rule checked against the existing layout. The routines to do 

this are fully described in Chapter 7. 

If a violation is identified, the relevant error message is printed 

out on the alphanumeric screen, along with information on the shape 

that caused the violation. Note that the shape is still accepted. On 

completion, the user can use the list of error messages to edit the 

layout as required. 

An example of off-line design rule checking the NAND gate layout 

shown in Section 4.2 is given below. For sake of clarity, the layout 

description is assumed to contain no syntax errors. Also the set of 

design rules for the layout are not shown, but assume that one of the 

rules specify that the separation between unrelated shapes on mask (2) 

must be greater than 3 units. For example :- 
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RULE POLYSP; 
MASK PS IS RECT, POLY MASK 2 
FAIL 'Minimum spacing between unrelated poly' IF & 

SEPARATE (PS, PS) AND SPACING (PS9PS) <3 
END 

N. B. For a description of the design rule input language, see Chapter 6. 

The two polygons on mask (2) which form the inputs to the NAND gate 

do not satisfy rule POLYSP. To design rule check the layout, MANCAD 

therefore proceeds as follows :- 

- MANCAD - 

Program to convert manual input language into a ring data structure 

Enter name of manual input file, or return to finish :- NANDG 

Does the manual file contain line numbers ? NO 

Do you want to include design rule checking ? YES 

Enter name of file containing the design rules :- DRCRUL 

Enter name of existing ring data structure, or return :- 

Enter name of the new ring data structure, or return to finish :- TEST 

Enter the layout title : NAND gate 

Minimum spacing between unrelated poly 
DESIGN : Group GATE: "POLY" (2) S, 0,9: 12,2, -12, D-2; 

Enter name of next manual file, or TTY for 
keyboard input, or press return to finish :- 

END OF EXECUTION 
EXIT 
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CHAPTER 5 

CADIC1 : The graphic design aid 

5.1 Introduction 

CADIC (Computer Aided Design of Integrated Circuits) is an 

interactive graphic design aid, which allows the user to design 

integrated circuit layouts at the geometric level. This approach was 

one of the first types of design aids made available to the designer, 

yet it can still produce more compact layouts than by alternative 

techniques. CADIC is split into two sections :- 

1. CADIC1, which allows the designer to build up and/or edit the mask 

layouts. 

2. CADIC2, which performs all the design rule checks on a newly added 

shape (if design rule checking is required). 

These sections never work simultaneously. For example, after 

adding a shape using CADIC1, CADIC2 takes control and applies the design 

rule checks. Only when CADIC2 is finished can CADIC1 regain control, 

and allow another shape to be added. For the sake of clarity, each 

section is allocated it's own Chapter. CADIC1 is described in this 

Chapter, and CADIC2 is described in Chapter 7, after certain concepts 

about design rule checking have been discussed. 
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5.2 Requirements 

CADICI's first requirement is that it must allow shapes to be added 

to the mask layouts. This feature is probably the most fundamental of 

them all, yet many design aids put heavy restrictions on the format of 

the shapes. For example, some design aids only accept rectangles (4]. 

Complex shapes must be segmented by the designer, which distracts his 

attention from the design problem. No restriction on shape format is 

therefore required in CADICI. 

CADICI must also allow the designer to delete or move any shape in 

the layout, so that errors can be corrected. 

In any problem, a designer, sometimes subconciously, will break the 

problem down into smaller, more manageable modules. In design of the 

integrated circuits, the same hierarchical process must be made 

available. CADIC1 should allow the designer to define a collection of 

shapes as a group definition, for example the circuitry that makes up a 

shift register cell (CELL). This group definition can then be used as a 

group instance in a group definition SHIFT REGISTER which includes 

several calls to CELL. The group facility therefore allows the designer 

to add and/or remove possibly complex sections of layout quickly and 

easily, so speeding up layout design. 

As the artwork is built up, the user will almost certainly want to 

study the layout at a variety of scalings. For example a large scaling 

to check inter-shape dimensions, or a small scaling to examine the 
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overall topology of the layout. To accommodate such desires, CADIC1 

must provide a large range of windowing facilities, in conjunction with 

a redraw facility. 

The above requirements are the building blocks of any graphic 

design aid. Many other features can be added to ease the designers 

task, which are of lesser importance, yet very useful. For example draw 

out a set of axes to help the designer position shapes accurately, or 

find the nearest point in the layout, so that shapes can be 'tagged' on 

to it. It is the provision of these secondary features that often 

determines whether a graphic design aid is good or bad, so it is very 

important for CADICI to provide a concise range of this type of feature. 

When comparing different graphic design aids, the quality of the 

output is also very important. For reasons mentioned earlier, the 

terminal chosen for CADICI was a SIGMA 5000 microprocessor-based colour 

raster scan terminal. A specialized graphics package is therefore 

required, so that the terminals unique features can best be utilized by 

CADIC1. 

Even with computers becoming very common in everyday life, a fair 

amount of sceptisism exists when a user is introduced to a computer 

design aid. Any interactive graphic artwork package must therefore be 

as natural to use as pen to paper. Commands must be easy to use, and 

easy to remember. The design aid must also have as few restrictions as 

possible, so that the user can utilize his ingenuity to the fullest. 
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Program response to a command must be fast, or else the user will 

quickly become bored. The user with ten Cray 1's in his head, plus 

additional visual feedback can identify a point in a layout almost 

immediately, and expects a computer program to be able to do the same. 

Program response time is dependant on three main factors :- 

1. Time sharing delays 

2. Processing delays 

3. File handling delays 

Nothing can be done by the programmer to improve time-sharing 

delays, so the time must be made up elsewhere. Processing delays can be 

reduced with careful programming, such as performing integer arithmetic 

whenever possible. Reading data from a file on disc may be as much as 

1000 times slower than if the data had been resident in core. The size 

of data stuctures required to store an integrated circuit layout force 

the use of disc storage, therefore the greatest improvements in response 

time can be achieved by efficiently handling the disc-based data. 

In a time-sharing environment, data required by a program has more 

chance of being processed if the amount of data in core is limited to 

only a few pages at any one time. CADIC allocates six pages of core for 

data, and swaps information to and from the data file as required. 

While the pages are in core, the data can be accessed very quickly. 

Should a page not in core be required, then a page already in core must 

be written back to disc, and the required page read into core. This is 

termed page swapping or paging for short. Paging is very expensive in 
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terms of time, and so the data structure holding the layout information 

must be arranged in such a fashion so as to minimise the amount of page 

swaps required during processing. 

5.3 Logistics 

The point has been made that decreasing program response time 

requires more efficient data handling. Integrated circuit technology 

requires very large data structures to describe the layout. Therefore, 

it is worth considering ways in which information to be searched can be 

cut down. 

One idea is to divide the board up into several areas, and store 

all shapes that lie in the same area together in the data structure, 

along with some sort of area identifier. This approach is of no benefit 

when plotting out the whole board, but if the user windows in to only a 

small section of the board, then the program can calculate the area(s) 

of interest, and plot out the shapes only in the relevant area(s). 

The problem with this approach is how to define shapes that lie in 

two or more areas. A simple approach is to store all such shapes in a 

special area, for example area '0' (681. When redrawing a section of 

the layout, only the areas in the window, plus area '0' must be 

processed. In large layouts, area '0' may contain many more shapes than 

any of the other areas, and so a lot of time is wasted checking it, 

possibly to no avail. 
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In an attempt to level out the distribution of shapes to an area, 

GAELIC (1) only stores shapes that lie in three or more areas in area 

'0'. Shapes that lie in two areas are stored in the area in which the 

shape's bottom left hand corner is positioned. Area '0' has certainly 

been reduced, but now shapes associated with an area can travel over the 

area's top and right-hand boundary. The effect of this is that when a 

small region is to be plotted (say within one area), then the area 

concerned must be checked, plus the three adjacent areas (left, below, 

and diagonal), then area '0'. Therefore a minimum of five areas must be 

checked. 

To ensure that only the areas that actually enter the window need 

be searched, CADICI does not use the concept of area '0'. Instead 

shapes which cross area boundaries are treated in a new way. 

The only way to ensure that a shape that enters more than one area 

is associated with an area and no others is to 'polygon clip' the 

original polygon into a number of sub-polygons, and store the 

sub-polygons as independent shapes. (See Figure 5.1). 

The sub-polygons must now contain dark segments where they were cut 

by the area boundaries, so that these segments will not be seen by the 

designer. In this form, watching a layout being plotted out on a DVST 

terminal may prove confusing, especially if the transmission speed is 

low. A track which extends across most of the layout would be drawn out 

in sections, as the program processes each area in turn, rather than 

being drawn out all at once. Of course the problem disappears once the 
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plot is finished, as the layout is now identical to that achieved if the 

shapes had not been cut up. 

Vector scan terminals may also have a problem with the sub-polygon 

approach, because the increase in individual polygons may cause the 

display to flicker, even if the layout appears to be rather sparse. 

When using the SIGMA terminal in the 'FILL' mode, the layout is not 

drawn immediately onto the screen. Instead, each mask is drawn onto the 

'invisible' polygon plane. The SIGMA then fills the shapes, then copies 

the 'filled' mask onto the screen. Because the mask only becomes 

visible once it is complete, segmentation of the polygons is never seen 

by the user. 

Another way in which the amount of information to be checked can be 

cut down is to associate each shape in the layout with a bounding 

rectangle. The dimensions of this bounding rectangle defines the size 

of a rectangle that would be required to fully enclose the shape. Using 

this information, CADICI can often ignore a shape, and all its 

coordinates, just by checking the bounding rectangle. 

Once the decision has been made as to what to put into the data 

structure, the problem of how to arrange the data becomes relevant. New 

data is always added to the end of the data structure. Therefore as the 

layout is built up, CADICI will find it increasingly difficult to keep 

useful pages in core fqr any length of time. As a consequence, 

excessive page swapping will occur, and CADIC1's efficiency will 
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decrease. To overcome this problem, CADIC1 provides a 'CLEAN' command, 

which will re-organise the layout data such that data of a similar 

nature is stored on the same page, or consecutive pages. In this way 

useful information will remain in core longer, and so increase program 

efficiency. 

The efficiency of data-handling is also dependant on the order in 

which the data is handled. For example consider a layout 'L' which 

contains group definitions 'A', 'B', 'C', 'D' arranged in the following 

hierarchy :- 

BI 

While plotting out the whole layout, many design aids, on finding a 

group instance would jump to the group definition immediately, then plot 

out its shapes and instances and so on. This continues until every 

branch of the hierarchical tree has been processed. The order in which 

groups would be handled is thus :- 

LABCBDBACALABCBDBACAL 

In a typical layout, CADIC's pre-defined core allocation of six 

pages will hold all the shape information for one group definition. 

Therefore each time a new group is processed, all the old information 

must be swapped for new information. In the above example, twenty group 
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transitions occurred, which would result in 120 page swaps (worst case). 

Excessively page swapping the same information is termed page thrashing, 

and is to be avoided at all times. 

CADICI avoids this problem by obtaining a more global knowledge of 

the group hierarchy. If layout 'L' is to be plotted out, all the shapes 

in 'L' are plotted, then information about the group instances called 

from 'L' are stored in a temporary file. (In the above example, this 

would be two calls to 'A') 

CADICI then identifies the first group instance in the file (Group 

'A'), and brings the relevant group definition into core. All the 

shapes in group 'A' are then plotted out, and any group calls identified 

(in this case, one call to 'B', and a call to 'C') are added to the 

temporary file. The file is then searched to see if any other instances 

of group 'A' exist, so that the group definition information can best be 

utilized while in core. 
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Once the other instance of group 'A' is found in the file, all it's 

shapes are again plotted out, at the new position. Group calls 'B' and 

'C' are then added to the temporary file. No more instances of 'A' are 

found, but the temporary file still contains two calls to 'B' and two 

calls to 'C'. CADICI therefore goes to the top of the file, identifies 

group B. then brings the relevant group definition into core. The above 

process is then repeated until all group instances in the temporary file 

have been plotted. Using this technique, the order in which CADIC1 

would handle the group hierarchy in the above example would be :- 

L AAB BCCCCDD 

Note that now only four group transitions occurred, resulting in 24 

page swaps (worst case). The-saving in CPU time is therefore obvious. 

5.4 Program operation 

CADICI is a graphical design aid implemented in FORTRAN, which 

through the provision of simple commands allows the user to build up 

and/or modify an integrated circuit layout. The command structure used 

by CADICI is shown in Figure 5.2 and is described below in hierarchical 

order. 

Initialization : The initialization stage simply sets up all the 

program variables and terminal conditions, then allows the user to 

specify which layout he wants to build/modify. 
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Main Command level : After initialization, CADICI enters the main 

command level. At this level the user cannot alter the layout in any 

way. However, the user can plot out the layout and/or set up the 

correct conditions in preparation for editing the layout. The available 

commands are briefly described below :- 

ADJUST ... Adjust mask colour settings 

AXIS ..... Draw axis on screen (Switch) 

CHANGE ... Change name of group definition or instance 

CLEAN .... Clean up the data structure 

CURSOR ... Change cursor grid 

DEPTH .... Change depth of group nesting to be plotted 

EXIT ..... Exit from program 

FILL ..... Fill in shapes (Switch) 

GROUP .... Enter group definition 

HELP ..... Write out this list of options 

INFORM ... Inform user of all program settings 

LIST ..... List out group names 

MODIFY ... Modify layout/group definition 

NET ...... Draw out a net of grid points (Switch) 

ONLINE ... Perform on-line design rule checking (Switch) 

ORIGIN ... Plot out group origins 

PLOT ..... Plot out shapes on selected masks 

SAVE ..... Save a copy of the data structure 

SWITCH ... Switch off/on design rules 

TRACK .... Change track width 

WINDOW ... Change window dimensions 
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Note that only the first two letters of each command need be typed 

to uniquely identify a command. 

Cursor Command level : On typing MODIFY at the main command level, the 

program drops down to the cursor command level, and the cross-hair 

cursor appears on the graphics screen. The user can now edit or inspect 

the layout, using the range of commands shown below :- 

SPACE ... Return to main command level 

- ....... Remove mask from plot list 

09.. Plot out mask (add mask to plot list) 

? ....... Print this list 

C ....... Add a collection or array of group instances 

F ....... Find nearest point in layout (including groups) 

G ....... Add a single group instance 

I ....... Identify nearest point in layout (without groups) 

J ....... Jump back to full layout 

K ....... Kill shapes 

L ....... Redraw last window used 

M ....... Change mask to be worked upon 

P ....... Add polygon 

Q ....... Query distance between two points on screen 

R ....... Add rectangle 

T ....... Add track 

U ....... Undefined zoom 

V ....... Verify present cursor position 

W ....... Redraw layout with present window size 
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Z ....... Defined zoom in 

( ....... Kill group instances and/or arrays 

a ....... Draw axis once 

n ....... Draw net once 

w ....... Specify new window size 

Subsequent cursor command level : Most cursor commands will perform 

their function then return to the cursor command level. On typing some 

commands, for example 'P' for Polygon, the program will drop down to the 

subsequent cursor command level. In the case of the 'P' command, the 

subsequent cursor command level is primarily concerned with adding 

points to the shape and/or modifying previous points if not correct. 

The subsequent cursor commands for adding polygons are given below :- 

A ....... Add angled light segment 

0 ....... Add orthogonal light segment 

X ....... End polygon with angled light segment 

E ....... End polygon with orthogonal light segment 

a ....... Add angled dark segment 

o ....... Add orthogonal dark segment 

x ....... End polygon with angled dark segment 

e ....... End polygon with orthogonal dark segment 

K ....... Kill shape 

N ....... Finish segment on nearest point already in layout 

S ....... Finish segment at new cursor position 

1F """""". Finish segment at point entered through the keyboard 

? "...... Print this list 
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A detailed description of CADIC1 operation, plus all the available 

commands is given in the CADICI user manual (Appendix A). 

5.5 Data Structure 

The data structure used by CADIC1 is classified as object 

orientated. This means that each shape is represented in the data 

structure by a block or bead of memory which stores the necessary 

information. Each bead is given a pointer which points to the next bead 

in the sequence. Searches involving all the possible occurrances of one 

particular type of bead area is therefore very selective if the pointer 

scheme is employed. By definition, the last bead points back to the 

first bead, and so forms a loop or ring. In this thesis, the data 

structure is therefore called a ring data structure. 

Any interactive design aid will involve adding, deleting, and 

plotting shapes, so the data structure employed must be able to cope 

with these operations efficiently. A ring data structure satisfies all 

these conditions, and so was an ideal choice for CADIC1. For example, 

deleting a shape means removing the relevant bead, and simply involves 

adjusting the pointer in the previous bead, so that it now points to the 

bead after the one to be removed (See Figure 5.3). Adding shapes uses 

the reverse process. 

A schematic representation of the ring data structure used by 

CADIC1 is shown in Figure 5.4. At first sight, it may look complex, so 

consider firstly a layout containing no group definitions (Figure 5.5). 
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Layout Headbead : This bead is the first bead in the data structure, 

and provides all the rings ready for adding area beads, group 

definitions, and group instances. It's form is as follows :- 

0 151 20 
Forward group pointer 
Reverse group pointer 

Area pointer 
Group call pointer 

Garbage ointer 
Title (1) 

Title (15) 
Layout X offset 
Layout Y offset 

Layout X dimension 
Layout Y dimension 

Mask information 

The first byte in any bead gives information about the bead itself. 

To save on space, the byte is split into three sections or fields. 

Contained in the fields are NTYP, ND, NP. 'NTYP' is an integer such 

that beads with different properties can be identified. 'NP' defines 

the number of bytes in the bead that are used as pointers, and 'ND' 

defines the number of bytes in the bead that are used for data. 

Therefore the total size of the bead is 1+NP+ND. 

The group rings will hold all the group definition headbeads (see 

later). The area ring holds all the area beads which are used to 

identify the position of shapes in the layout. If group definitions 

exist, then instances of these group definitions may exist in the 

layout. Information about these instances are held in group call beads 

on the group call ring 
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Beads which have been removed from the data structure are inactive 

as far as CADICI is concerned, but they still occupy space in the data 

structure. All inactive beads are therefore stored on the garbage ring, 

and re-used whenever possible. For example, if a bead is required, 

CADIC1 will first search the garbage ring to try and find if a suitable 

bead exists. If yes, then the bead is used, otherwise a new bead is 

formed at the end of the file. 

Any layout designed may be filed away for later use, and so a 

facility for giving an identification title is provided in CADICI. 

Fiveteen bytes of the layout headbead store text as two characters per 

byte, allowing a 30 character title. The layout bounding rectangle is 

also required by CADIC1, and this information is stored in the headbead, 

after the title. Lastly, the mask word is considered as 16 bits, 1 bit 

per mask. These bits are set to 1 if the relevant mask contains shapes, 

and 0 if not. By reading in the mask word, CADIC1 immediately knows 

whether searching for shapes on the required mask is going to be futile 

or not. 

Area beads : To increase program efficiency the layout is defined to be 

partitioned into areas. The area ring therefore holds the area beads 

which give information about which area the shapes are in. The form of 

an area bead is as follows :- 

1 2 4 
Area pointer 
Mask pointer 
Area X min. 
Area Y min. 
Area X max. 
Area Y max. 
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The area pointer simply points to the next area bead on the ring. In an 

integrated circuit layout, each shape is placed on a specific mask 

layer. An area bead therefore contains a mask ring, which contains mask 

beads, and so describes which masks have shapes in the area defined by 

the area bead. Lastly, the X and Y coordinates in the area bead define 

the position of the area on the board. 

Mask beads :A mask bead is as follows :- 

2 2 1 
Mask pointer 

Shape pointer 
Mask number 

As described bef ore, the mask pointer points to the next mask bead 

on the ring. The mask number defines the mask layer. At this stage, 

the shape information can be added on the shape ring, as the area and 

the mask layer have now been defined. 

Shape beads : There are three main forms of shape bead used in the data 

structure :- 

1. Long format polygons 

2. Short format polygons 

3. Rectangles 
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A long format polygon is the most general type of shape, and all 

shapes which contain angled segments come into this category. i. e. : - 

Xe %6 X5 y5 

XQ 

x1y1 zyz 
The long format shape bead is as follows :- 

7 1 2n 
o nter ape p 

Be Rectangle X min 
Be Rectangle Y min 
Be Rectangle X max 
Be Rectangle Y max 

x1 
yl 

xn 
yn 

Y4 

The shape pointer points to the next shape bead on the ring. Next 

comes the coordinates of the shape's bounding rectangle, followed by the 

coordinates of every point in the shape, one byte per coordinate. In 

CADIC1, all coordinates stored in the shape bead are actually those 

which define the shapes offset from the bottom left hand corner of the 

area, rather than the absolute coordinates of the shape. The reason for 

this is that CADIC1 has been designed for possible operation on a 16 bit 

computer. The range of coordinates required in an integrated circuit 

layout is now too large for 16 bit representation, therefore each 

76 



absolute coordinates would require two bytes. By storing the shape 

coordinates as offsets, and defining an area to be no larger than 64383 

increments, then the shape beads only require one byte per coordinate. 

The saving in memory is therefore obvious. 

A special case of the long format polygon is the short format 

polygon. This type of shape contain only orthogonal segments, for 

example :- 

x Y3 

x1 y1 x2%2 

In this type of shape, only every alternate coordinate need be 

stored, since (x2, y2) is also (x3, y1), and so on. Short format polygon 

beads therefore. have the form :- 

5 1 2n 
Shape pointer 

Be Rectangle X min 
Be Rectangle Y min 
Be Rectangle X max 
Be Rectangle Y max 

x1 
1 

x3 
y3 

n 

xn 
yn 
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A special case of the short format polygon is the rectangle. The 

important coordinates now are the bottom left hand corner, and the top 

right hand corner. 

X4 4 x3, Y3 

xI y1 XZ Y2 

The reason for a separate bead type is that the rectangle 

coordinates are also the bounding rectangle coordinates, so obviously 

the bounding rectangle information is now no longer required. The form 

of a rectangle bead is as follows :- 

3 1 4 
Shape pointer 

x 
yl 
x3 

3 

Earlier it was described how polygons which lie over area 

boundaries are cut into sub-polygons. These sub-polygons or open 

polygons contain both light and dark segments, which must be represented 

somehow in the shape bead. 

If the size of each area on the board is limited to 16383 

increments, then CADIC1 can use the second most significant bit of each 

coordinate byte to store the information. If set, the segment is 

defined to be dark, otherwise the segment is defined to be light, for 
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example :- 

YV 

xi 

x4 y4 

xsy6 x3y3 

/ 
i1 
" 

x1 y1 x2 y2 

light sogment 

---- dark segment 

Bit set 

X1 Y 
yl 
x2 
y2 
x3 Y 
y3 
x4 
y4 
x5 
y5 
x6 
y6 
x7 
y7 

For long format polygons, the light/dark status of the segment is 

determined by the x-coordinate of the point that the segment goes to. 

When the coordinate data is stored in a compact form, as in short 

format polygons and rectangles, the light/dark information must be 

similarly compact. Consider a section of a short format polygon as 

shown below :- 

. x3 y3 
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Remember that the point (x2, y2) is not stored in the bead, 

therefore the light/dark information must be stored totally in the point 

coordinates (x3, y3). Coordinate x3 holds the status for the first 

segment, and y3 holds the status for the second segment. An example for 

a rectangle is shown below :- 

y4 x3y3 

light 
scgmQnt 

------ dark 
segment 

Bit set 

X1 

yl Y 
x3 
y3 

X1 Y, x2 =2 

When a polygon is split up into several sub-polygons, the 

individual sub-polygons will be stored under different areas in the data 

structure. In commands such as deleting a polygon, all the sub-polygons 

which go to form the polygon must be found quickly. CADIC1 does this by 

connecting all sub-polygons (which represent the original polygon) 

together on a connectivity ring. This extra pointer requires a unique 

bead for the three types of open shape possible. 

In, for example, plotting algorithms, CADICI processes the data 

structure in a top-down nature, so the area under concern is known 

bef ore the shapes are processed. Remember that the shape coordinates 

are offset from the area origin, so the absolute coordinates of the 

shape are easily calculated. When deleting a polygon described by 

several sub-polygons, the program must chase round the connectivity ring 

to find all the coordinates, therefore the situation arises in which the 
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offset shape coordinates can be found, but the area origin is now no 

longer known. To obtain the area origin information quickly, a direct 

pointer to the area bead is also included in the open shape beads. The 

three types of open shape beads are shown below :- 

4 3 4 
Shape pointer 

-Conn. pointer 
Direct pointer 

x1 
y1 
x3 
y3_ 

6 3 2n 
Shape pointer 
Conn. pointer 
Direct pointer 

B. Rectangle X min 
B. Rectangle Y min 
B. Rectangle X dim 

B. Rectangle Y dim 
x1 
yl 

xn 
yn 

8 3 2n 
Shape pointer 
Conn. pointer 
Direct pointer 

B. Rectangle X min 
B. Rectangle Y min 
B. Rectangle X dim 

B. Rectangle Y dim 
x1 

.Yl 

xn 
n 

Group Definition Headbead :A group definition is built up in exactly 

the same way as the main layout. The only difference in terms of data 

structure is the form of headbeads used. In group definition headbeads, 

only three bytes are used to store the groupname, as opposed to fiveteen 

in the layout headbead. The form is as below :- 

20 5 8 
Forward group pointer 
Reverse group pointer 

Area pointer. 
Group Call pointer 

Garbage pointer 
Title 
Title (2) 
Title (3) 

Group X offset 
Group Y offset 

Group X dimension 
Group Y dimension 

Mask word 
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Note that all the group definitions are linked by a double ring, as 

opposed to the single ring used elsewhere in the data structure. If the 

group definitions can be arranged such that the newest group is first on 

the forward ring, one may think that the reverse ring is redundant, 

since in plotting out a layout, a top-down approach is required. This 

is correct, and in fact, the reverse group ring is seldom used by 

CADIC1. The moment when it is used is after the designer has added more 

shapes to a previously formed group definition, which is called by other 

group definitions higher up in the group hierarchy. Should the edited 

group definition now be larger, it may affect the size of the groups 

which call it. Increasing the size of the latter group definitions may, 

in turn, affect other group definitions, and so on. 

The forward group ring is pointing in the wrong direction to 

process the groups in such a bottom-up manner, therefore the reverse 

group ring was included to serve this purpose. 
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Group Call beads : Two types of group calls can be achieved. The first 

type is a single group instance, and the second type is an array 

instance, containing many group instances. 

The group instance bead is as below, and is placed on the group 

call ring of the relevant layout or group definition headbead. 

15 2 8 
Group Call pointer 

Direct pointer 
Orientation 

X offset 
Y offset 

B. Rectangle X min 
Be Rectangle Y min 
B. Rectangle X max 
B. Rectangle Y max 

Mask word 

To save on memory space and search time, the address of the group 

definition headbead is stored in the group instance bead rather than the 

group-name. Next in the bead comes the orientation of the group 

instance, relative to the layout/group definition, plus the group 

instance position relative to the origin of the layout/group definition. 

To help cut down the processing required by CADIC1 to handle all the 

group instances, the bounding rectangle plus the masks used in the 

instance are stored in the group call bead. Therefore, a group instance 

is only considered if it is inside the window, and contains shapes on 

the mask(s) required. 
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The array instance saves space and time by being defined as an 

array of group instances. The array bead looks like :- 

16 2 11 
Group Call pointer 

Direct pointer 
Orientation 

X offset 
Y offset 
X number 

X spacing 
Y number 

Y spacing 
Be Rectangle X min 
Be Rectangle Y min 
Be Rectangle X max 
Be Rectangle Y max 

As can be seen, the array bead is identical to the group instance 

bead except 'for four bytes. These bytes simply store the number of 

instances required in the X and Y directions, and the spacing between 

each instance in the respective directions. 
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(a) Ring before removing bead C 

(b) Ring after removing bead C 

Figure 5.3 Removing a bead from ring 
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CHAPTER 6 

DRCCAD 

6.1 Introduction 

DRCCAD (Design Rule Compiler for Computer Aided Design) accepts a 

'user readable' description of the design rules required during layout 

design, and converts this description into a ring data structure 

readable by CADIC2. Existing design aids generally do not require this 

type of pre-processor, therefore it is important to justify the use of 

DRCCAD in the CADIC suite of programs. 

The need for DRCCAD stems from the fact that CADIC implements 

on-line design rule checking. To show this, consider the example of 

performing a spacing check to ensure that the distance between shapes on 

mask (1) -and the shapes on mask (2) is greater than some specified 

minimum value. 

A typical off-line-design rule checker would start by writing all 

the information about the shapes on mask (1) into a file. Secondly, all 

the shape information from mask (2) would be written to another file. 

Note that the information within these files is often arranged into 

sophisticated data structures so as to allow quicker access to the 

information. 

The checker proceeds by analysing each shape combination to see if 

any two shapes violate the spacing rule. If yes, then an error message 
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is printed out to the user, along with details about the violating 

shape(s). On completion of the check, one or both of the files can be 

cleared, ready for the next check to be performed. 

Identifying each shape combination in this way means that (in 

theory) every shape in file (1) must be compared against every shape in 

file (2). The combinatorial explosion thus produced forces sometimes 

very heavy consumption of CPU time (typically ranging from a few seconds 

to several minutes). 

Performing the same spacing check in an on-line fashion requires a 

completely different approach. Once a shape is added to, for example 

mask (1), information about the shape is added to a file. Note that the 

checker now only considers particular shapes, rather than entire masks. 

Next, mask (2) must be searched to identify a shape that is liable 

to cause a spacing violation with the newly added shape on mask (1). If 

found, then the mask (2) shape is read into the file. The (design rule 

checker then performs a spacing check between the two identified shapes. 

If a violation occurs, then the relevant error message is printed out. 

Once finished with the mask (2) shape, the checker continues to search 

through mask (2) to find any other shapes that may cause a violation. 

If a shape is found, then the new shape overwrites the old mask (2) 

shape, and the above process is repeated. Once mask (2) has been 

completely searched, the newly added shape on mask (1) can be accepted 

or rejected, 'depending on how many violations were identified. 

In on-line design rule checking, only one shape is checked against 

every shape on mask (2) therefore the CPU time required is drastically 

reduced (typically fractions of a second). 
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Now consider an off-line design rule checker once again. Usually 

the description of the design rules is stored in a text file. These 

files look similar to computer programs in that each line of code 

defines a (mask) operation for the checker to perform. The checker must 

therefore read out each line of code, then decode it into a set of 

instructions before proceeding with the relevant operation. 

Using a text file to store the design rules means that access to 

the information is indirect, and therefore relatively slow. However a 

faster method of accessing the design rules is not required by the 

off-line design rule checker. As can be appreciated from the example 

shown above, the time taken to read and decode from the text file is 

negligible, compared to the time required to perform each operation. 

On the other hand, an on-line design rule checker requires less 

than one second to perform the checks. Therefore a text file 

description of the design rules will not be suitable for an on-line 

design rule checker. There are three main reasons for this :- 

1. The time taken to, read from, then decode an instruction from a text 

file could well exceed the time taken to actually perform the 

operation. 

2. The design rule file must be searched each time a shape is added to 

the layout. If a text file was used, then the time required to 

rewind then sequentially read the entire file would be too slow for 

interactive use. 

3. Different rules relate to different masks. Therefore when a shape 

is added to a particular mask, only a small subset of the total 

number of rules need to be implemented. All other rules can be 
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ignored. Once again, sequentially reading a text file to find the 

relevant rule is highly inefficient. 

An on-line design rule checker therefore requires a pre-decoded 

description of the rules to allow quick and easy access to the relevant 

information. The rules should also be organised into groups, depending 

on which masks they relate to, so that the time spent reading the design 

rules is minimised. 

Compiling the rules as an independent stage in the design of 

integrated circuit layouts has two main advantages :- 

1. The same set of design rules may be used for several months, on a 

variety of layouts. It therefore makes sense to compile the rules 

once, then utilise the compiled version of the rules as required. 

2. Compiling' the'-rules in this way allows the designer to identify and 

correct mistakes (i. e. syntax errors) in the 'user readable' 

description of the design -rules, before actual layout design 

commences. 

6.2 Choice of design rule input language 

The ideology behind DRCCAD is that a set of design rules to perform 

any type of dimension check required can be quickly encoded by the 

designer. The rules in the manual input language must therefore be easy 

to build up, ' free in format, and the commands easy to remember. 

Once the full set of design rules has been built up for a specific 

technology, the same set of rules can be applied to all future designs 

using this technology. However, a time will come when the designer will 
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have to alter the set of design rules. This may happen months or years 

after the rules were originally formed. If the set of design rules 

consists of a series of numbers representing the commands, mask numbers, 

and dimensions, it is going to be very difficult to understand. A high 

degree of 'readability' is therefore required in the language. 

Lastly, as described above, the design rule file used by off-line 

checkers tends to be similar in format to a computer program. The 

sequence of commands must be generated by the designer, therefore the 

efficiency of the design rule checker is heavily dependant on the 

designers implementation of the language used to specify the rules. The 

onus is also on the designer to create the correct sequence of commands 

to perform the required set of checks. 

Since CADIC2 requires DRCCAD to break down the design rules into a 

more 'accessible form, restrictions on the type of design rule language 

to be used can be lifted. Existing design rule checkers tended to use 

languages that were a compromise between 'user readable' and 'computer 

readable'. However, CADIC can now use a language which best suits the 

user. Decisions on which operations to implement, plus the order in 

which the operations should be performed can be left to DRCCAD. In this 

way, the user does not need an in-depth knowledge of how CADIC2 works, 

plus DRCCAD can re-organise the sequence of operations to obtain maximum 

efficiency during on-line design rule checking. 

Although GAELIC (1) implements off-line design rule checking, it 

does provide a 'user ergonomic' language to describe the design rules. 

For example, each rule consists of basically one statement which defines 

the condition to be checked for. Note that this condition is technology 

independent, plus is written in almost an identical fashion to the way 
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it would be described verbally. 

The GAELIC language is therefore directly suited to the needs of 

CADIC. For this reason, it was decided to make the DRCCAD language 

compatible with the GAELIC language. 

Within a design rule file, each rule has the following standard 

construction :- 

RULE <rulename> 
! Comment 
<Var> IS <shape type> MASK <mask number> 
FAIL <Error message> IF <failure condition> 
END 

The rulename can be any unique name up to six characters in length 

(only five characters are significant). Secondly, each rule may contain 

lines of comment to increase readability. Lastly, the failure condition 

is the set of commands which define the design condition to be checked 

for. If the failure condition is satisfied (i. e* a design rule 

violation has been identified) then the relevant error message can be 

printed out to the user, so that the nature of the violation can be 

determined. 

Alphanumeric variables may be used in the failure condition to 

represent particular types of shapes that exist on the desired masks. 

All such variables must be pre-defined using the 'IS' command, for 

example :- 

PD IS RECT , POLY MASK 1 

METAL IS RECT, MASK 4 

PD is defined to be all the shapes on mask one, and METAL is 

defined to be only the rectangles on mask four. 
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A list showing the available failure condition commands is shown 

below :- 

OVERLAP .......... Find shapes which overlap 

ENCLOSED ......... Find shapes, one enclosed by the other 

SEPARATE ......... Find shapes which are separate 

ABUTS ............ Find shapes which touch 

DISTINCT ......... Find shapes which are distinct 

PARTED ........... Find shape, one cut in two by the other 

WIDTH ............ Specify minimum width of shape 

LENGTH ........... Specify minimum length of shape 

INTERLIMB ........ Specify minimum spacing between limbs of shape 

XDIM ............. Specify minimum X dimension of shape 

YDIM ............. Specify minimum Y dimension of shape 

AREA ............. Specify minimum area of shape 

BRAREA ........... Specify min. area of shape's bounding rectangle 

SPACING .......... Specify minimum spacing between shapes 

CLEARANCE ........ Specify minimum clearance between shapes 

HORIZONTAL ....... Specify shape to lie in horizontal direction 

VERTICAL ......... Specify shape to lie in vertical direction 

AND .............. Connecting command 

OR ............... Connecting command 

NOT .............. Inverting command 

UNION (+) ........ Perform logical OR function on shapes 

INTERSECTION (*) . Perform logical AND function on shapes 

DIFFERENCE (-) ... Perform logical NAND function on shapes 

EXCLUSIVE (/) .... Perform XOR function on shapes 

INFLATE/DEFLATE .. Inflate/deflate shape 

ENDOFFILE ........ End processing 
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An example of a set of design rules are :- 

PD IS RECT, POLY MASK 1 
PS IS RECT, POLY MASK 2 
CW IS RECT, POLY MASK 3 
METAL IS RECT, POLY MASK 4 
CHAN IS RECT, POLY MASK 5 
RULE XMPLA 
! Example A 

FAIL 'Minimum width of contact' IF WIDTH (CW) <6 
END 
RULE XMPLB 
lExample B 

FAIL 'Metal separation' IF SEPARATE (METAL, METAL) & 
AND SPACING (METAL, METAL) < 10 

END 
RULE XMPLC 
lExample C 

FAIL 'Separation of polysilicon outside p-diff to poly' IF & 
OVERLAP (PS, PD) AND INTERLIMB (PS+PD) < 10 

END 
RULE XMPLD 
lExample D 

FAIL 'Minimum spacing contact to poly' IF ENCLOSED (CW, PD) & 
AND OVERLAP (PL, PS) AND SPACING (CW, PS) <5 

END 
ENDOFFILE 

Diagrams showing the checks described by each rule are shown in 

Figure 6.1. 

6.3 Program Operation 

After initialisation, DRCCAD asks for the name of the file 

containing the design rules, then asks for the name of the ring data 

structure which will store the compiled information. Note that the ring 

data structure may already exist, in which case the design rules in the 

input file will simply be compiled, then appended to the existing data 

structure. 

DRCCAD proceeds by reading out each rule from the input file, then 

performing syntax checking on it. DRCCAD has no way of knowing if the 

failure condition correctly represents the check required, but can catch 
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a variety of errors. For example :- 

1. Static errors - Misspelt commands, syntax errors, and so on 

2. Dynamic errors - Undefined shape variables, illegal rule 

structures, and so on 

Once the manual file has been completely processed, DRCCAD provides 

the user with three options :- 

1. Close the files, and return to monitor level 

2. Fetch another input file, which will be added to the existing ring 

data structure. In this way, library files can be loaded as 

required. 

3. Enter data on-line, through the keyboard. Therefore if only a few 

rules were rejected by DRCCAD, they can be re-submitted correctly. 

This saves having to edit the relevant manual file, and start the 

possibly lengthy and involved 'compilation' from the beginning. 
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An example of running the manual file (shown in the previous 

section) through DRCCAD is given below. Note that the manual file 

deliberately contains an error in one of the shape variables, so as to 

show how DRCCAD handles a typical error. 

- DRCCAD - 

Program to convert DRC input language into a ring data structure 

Enter name of DRC input file, or return to finish :- DRC 

Does the manual file contain line numbers ? NO 

Enter name of existing ring data structure, or return :- 

Enter name of the new ring data structure, or return to finish :- DUMP 

RULE MPLD 
Undefined shapename in OVERLAP 
Rule is ignored by program 

Enter name of next manual file, or TTY for 
keyboard input, or press return to finish :- TTY 

Enter data - without line numbers 
RULE XMPLD 

FAIL 'Minimum spacing contact to poly' IF ENCLOSED (CW, PD) & 
AND OVERLAP (PD, PS) AND SPACING (CW, PS) <5 

END 
. ENDOFFILE 

Enter name of next manual file, or TTY for 
keyboard input, or press return to finish : - 

END OF EXECUTION 
EXIT 

6.4 Design rule data structure 

The design rule data structure acts as a control file, which CADIC2 

uses to ensure that it performs the minimum number of calculations 

during design rule checking. This is a different concept to the layout 
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data structure, which acts in a data storage capacity. More details on 

the format of the design rule data structure will be given in Chapter 

seven, once on-line design rule checking and its requirements have been 

introduced. Only after this can the final format of the data structure 

be decided upon. 
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CHAPTER 7 

CADIC2 : The on-line design rule checker 

7.1 Introduction 

CADIC2 is the second phase of CADIC, which only comes into play if 

on-line design rule checking is required. If a shape or group instance 

is added to the layout, it is CADIC2's job to check the shape(s) against 

the existing layout, using the set of design rules specified when the 

ONLINE option was selected. Because of the importance of on-line design 

rule checking, the whole of this chapter describes the approach taken by 

CADIC2. 

7.2 Requirements 

In order to be regarded as an on-line design rule checker, CADIC2 must 

be able to do the following :- 

1. Check the newly added shape or group instance against the existing 

layout, using a set of pre-defined design rules. 

2. Perform the design rules within the time it takes the user to think 

of his next move. 

The first requirement may seem too obvious to be included as a 

requirement for on-line design rule checking, but has been included 

simply to highlight the fact that the checks can be carried out in a 

variety of ways. 
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The simplest approach is to build the rules into CADIC2. Using 

this technique, the designer need not worry about setting up the rules, 

and without having to reference a file on disc, CADIC2 would run faster, 

therefore making the second requirement easier to acheive. 

Some design rule checking programs do use this technique [69), and 

work by relating all the rules to the resolution of the fabrication 

process (A). Performance is very good, but the programs are limited to 

only one technology. Changing technology may require a major re-write 

of the program. Another disadvantage is that the rule dimensions do not 

scale down linearly with therefore changing X may again involve 

editing the program. 

With today's fast mgving technology, 

should store a description of the design 

rules can then be built up by the designer 

can be modified as required. Note that 

have to be 're-compiled' by DRCCAD, which 

code for CADIC2. 

it. was decided that CADIC2 

rules in a separate file. The 

r to suit any technology, and 

the modified design rules only 

does not affect the source 

The second requirement is the 'make-or-break' requirement of any 

on-line design rule checking program. During a design, the designer 

will work at a speed which allows his ideas to flow along, and allow a 

'design inertia' to be built up. The human brain works most efficiently 

at this steady pace. If the introduction of on-line design rule 

checking means that the designer must wait for each shape to be checked, 

then the design will never 'flow', and may be subsequently impaired as a 

result. The designer will soon become bored, and may reject the on-line 

design rule checker in favour of a conventional off-line checker. 
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Therefore after a shape is added to the layout, the on-line design 

rule checks must be completed before the designer makes his next move. 

To satisfy this requirement, the few design aids that incorporate 

on-line design rule checking (31 limit the checks to the simpler rules. 

All other rules are checked off-line. The function of the on-line 

checker is therefore to identify only the obvious errors. This is a 

fairly sensible approach, as the layout will not have to be edited just 

to correct the elementary errors, plus the off-line checker will run 

faster if it can disregard the simpler rules. 

CADIC hopes to improve on this by carrying out all the design rule 

checks once a shape is added to the layout. In this situation, the 

layout will be correct at all times, thus completely doing away with the 

need for an off-line checker. The main advantage of this is that the 

time comsuming two stage design-check cycles will no longer exist, 

allowing circuit design turnaround time to be greatly reduced. 

7.3 Logistics 

In the previous Chapter, the design rule input language was 

introduced, and DRCCAD described. Note that no details were given about 

the format of the design rule data structure created by DRCCAD. The 

reason for this is that the format is dependant on the on-line design 

rule checking requirements and logistics discussed in this Chapter, 

rather than any requirements of DRCCAD. 
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So how should the design rules be implemented such that the 

processing is kept to a minimum ? Consider the following set of 

rules :- 

PD IS RECT, POLY MASK 1 
PS IS RECT, POLY MASK 2 
CW IS RECT, POLY MASK 3 
RULE ONE 

FAIL 'Test one' IF WIDTH (CW) < 10 
END 
RULE TWO 

FAIL 'Test two' IF SEPARATE (CW, CW) AND SPACING (CW, CW) < 6" 
END 
RULE THREE 

FAIL 'Test three' IF OVERLAP (PD, PS) AND AREA (PS) < 25 
END 
RULE FOUR 

FAIL 'Test four' IF OVERLAP (PD, PS) AND WIDTH (PD*PS) <4 
END 
ENDOFFILE 

The first point to note is that different rules relate to different 

masks. For example, if a shape is added to mask 'CW', then only rules 

ONE and TWO need be processed, whereas if a shape is added to masks 'PD' 

or 'PS', rules THREE and FOUR need to be processed. The first important 

timesaver therefore is to group rules related to the same mask together 

in the data structure, so that on adding a shape to the layout, all the 

relevant rules can be found quickly and easily. 

The second timesaving factor relies on the fact that within any one 

group of rules, two types of rule exists :- 

1. Self-rules 

2. General rules 

Self-rules apply only to the newly added shape, and involve no 

other shapes. Rule ONE is an example of a self-rule. This independence 

means that the check can be performed while the shape is being built up. 

General rules involve other shapes, and can only be processed once the 
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shape is complete. Rules TWO to FOUR are examples of general rules. 

By processing the self-rules while the shape is being built up, 

CADIC2 will have less checks to perform once the shape is complete, and 

so CADIC1 will be returned to the cursor command level (see Chapter 

five) sooner. General rules can become rather complex, so how should 

they be processed in order to minimise CPU time ? Two main approaches 

exist. 

The first approach is to consider each rule individually, and apply 

the rule to the whole layout. The data structure would simply contain a 

series of blocks of information, one block per rule. Each block would 

basically contain the commands, the masks used, and the error message, 

making ,. the design rules easy to implement. 

Unfortunately, as can be seen in rules THREE and FOUR, a fair 

degree of redundancy exists in the design rules. To process the rules, 

CADIC2 would have to perform the same OVERLAP operation twice. The 

higher the redundancy, the more CPU time is wasted. 

The second approach reduces this redundancy to zero by considering 

the general rules in a more global fashion. The data structure still 

contains a series of blocks, but now each block defines a single 

operation, rather than a whole rule. A pointer system is now required 

to link the operation blocks up in the correct order. 

To build up the data structure, the failure condition in each rule 

is considered, then the necessary operation blocks are added to the data 

structure in the correct order. Note that existing blocks are used 

whenever possible. For example, to build up rule THREE, three blocks 
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would be required ; an OVERLAP block, followed by an AREA block, 

followed by an ERROR MESSAGE block. To build up rule FOUR, only three 

blocks are required, instead of four, since the OVERLAP block already 

exists. The blocks are added into the data structure after the OVERLAP 

block, and are ; an INTERSECTION block, followed by a WIDTH block, 

followed by an ERROR MESSAGE block. 

Therefore if a shape was added to mask 'PD', CADIC2 would firstly 

have to find a shape on mask 'PS' that overlapped the newly added shape. 

If found, the shape on mask 'PS' would be given an AREA check. It would 

then be used to form a new shape which is the INTERSECTION of the two 

input shapes, and finally the new shape would be given a WIDTH check. 

Should either check fail, then the corresponding error message is 

printed out. 

In order to obtain very high efficiency, CADIC2 uses a data 

structure based on the second approach to implement the general design 

rule checking. 

To sustain the high efficiency, CADICZ must also minimise the 

amount of data to be processed during each operation. This is achieved 

by implementing two main concepts :- 

I. Influence bumper 

2. Segment type identification 

Defining an influence bumper round a shape or segment is a new 

concept, and is based on the idea that CADIC2 does not have to consider 

all the shapes in the layout when performing the design rule checks. In 

fact, as is shown below, only the shapes in the immediate neighbourhood 
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need be considered. 

Consider adding a shape to mask 'PD' and applying the set of design 

rules shown above. In rules THREE and FOUR, the OVERLAP selector is 

only concerned with shapes which enter the newly added shape's bounding 

rectangle. OVERLAP will therefore typically select at the most only the 

few neighbouring shapes out of the thousands of shapes possibly 

available on mask 'PS'. The OVERLAP routine therefore implicity defines 

its own influence bumper of zero increments, since possible shapes must 

enter the newly added shape's bounding rectangle before they can 

possibly cause an overlap condition. 

Now consider adding a shape to mask 'CW' and applying rule TWO. In 

this case, thousands of shapes will satisfy the SEPARATE condition, and 

so will have to be checked for a possible SPACING violation. On 

considering the rule in a more global fashion, it is obvious that if a 

shape's bounding rectangle is separate from the newly added shape's 

bounding rectangle and further away than six increments, the shape 

cannot possibly violate the rule. 

To filter out these unwanted shapes, DRCCAD calculates an influence 

bumper for each mask, as it is compiling the rules into the design rule 

data structure. As described with the OVERLAP example, the bumper width 

is normally zero, but in rules using the SEPARATE and SPACING commands, 

the bumper width Is set to the spacing dimension. 

Whenever a shape is added to the layout, CADIC2 finds the width of 

the influence bumper to be associated with the shape, then surrounds the 

shape's bounding rectangle with this bumper. During the design rule 

checks, all shapes outside the bumper can therefore be ignored 
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immediately. 

The concept of an influence bumper also helps minimise the time 

taken to perform dimensional checks such as WIDTH, SPACING and so on. 

Consider the following shapes, ready to be checked for a SPACING 

violation :- 

PS 

P11 

6 P 3 P 2 P' ds 

ty 

ds = minimum 
spacing 

The usual approach is to consider each segment combination in turn, 

calculate the minimum distance between the two segments, then compare 

this distance with the specified minimum spacing distance. If the 

calculated distance is less than the specified distance, then a SPACING 

violation has occurred. The problem with this technique is that the 

distance computation between two general segments is not trivial, and so 

is expensive in terms of CPU time to perform. 

In an attempt to reduce this time, CADIC2 relies on the fact that 

in the dimensional check, the actual distance between two segments is 

never needed. All that is important is that the distance is less than 

or greater than the specified minimum distance. 

In the example of the SPACING check, CADIC2 considers each primary 

segment in turn, and creates an influence bumper round the outside edge 

of the segment. The width of the bumper is set to the specified minimum 

spacing distance. Using highly efficient 'clipping' routines (as used 
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in computer graphics), all the secondary segments can quickly be checked 

to see if they enter the influence bumper. If yes, then a violation 

must have occurred, for example :- 

S3 key 

---T $4 r -------i 
u ------ 

J bumper 
P2 d, g5 SZ d spacing distance 

5 65 ds minimum spacing 

L--j 

Defining the influence bumper is more expensive to perform than a 

distance computation, but the operation is performed only once per 

primary segment. This expense is more that compensated by the fact that 

checking if a secondary segment enters the bumper is much cheaper than a 

distance computation. The more secondary segments, then the more CPU 

time is saved. In this way, CADIC2 can perform dimensional checks much 

faster than by the normal approach. 

The second way in which CADIC2 minimises the data to be processed 

during design rule checking is through the concept of segment type 

identification. The concept is not new, but does help reduce the amount 

of data to be processed quite significantly, especially when dealing 

with orthogonal geometry. 

CADIC2 simply ignores a segment pair if the segment are at right 

angles to one another. Consider the diagram above in the case when 

primary segment 'P2' is being compared against the secondary shape, and 

the distance 'd' is less than the specified minimum. 
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Without the segment type identification, all six secondary segments 

must be considered, out of which segments 'S1, S5, S6' will violate the 

spacing check. With segment type identification, only three segments 

'S2, S4, S6' are considered, and only segment 'S6' violates the check. 

The latter approach is obviously much faster. It also minimises the 

number of violations detected, without degrading the thoroughness of the 

spacing check. 

7.4 Design rule data structure 

In off-line design rule checking, the rules are very often stored 

in a simple sequential text file. One reason for this is that all the 

rules must be carried out at some time during the check, therefore the 

order An which then checks are carried out is not important. Note that 

the file is only searched once. 

The second reason is that each entry in the list defines a mask 

operation (i. e. applies to all the shapes on a mask), theretore Lne 

time to read each file entry is negligible compared to the time required 

to implement the instruction. 

On-line design rule checking requires, a much more sophisticated 

method of storing the design rules, since the file will be searched 

every time a shape is added to the layout. The file must therefore 

possess :- 

1. Good selection properties, so that all the rules relating to a 

particular mask'may be identified quickly and easily. 

2. High efficiency, so that then time spent accessing the file is kept 

to a minimum. 
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Ring data structures (as described in Section 5.5) are ideally 

suited to the above requirements. Therefore it was decided to use a 

ring data structure to store all the design rule information. An 

example of a typical design rule ring data structure is shown in Figure 

7.1. The figure shows in fact the data structure that would be produced 

if the set of design rules described in Section 7.3 were compiled by 

DRCCAD. Each bead type possible in the design rule data structure will 

now be described in detail. 

Desi n rule headbead : This bead is the first bead in the data 

structure, and simply provides a ring to which mask beads can be added. 

It's form is as follows : - 

011 
Mask pointer 

Mask word 

As with the beads used in the layout data structure implemented by 

CADIC1, the first byte in a bead provides information about the bead 

itself. This byte is split into three fields, and the fields are 

defined as bead identification, number of pointers, and number of data 

bytes respectively. The mask ring will hold all the mask beads required 

(see later). Lastly, the mask word is considered as 16 bits, 1 bit per 

mask. These bits are set to 1 if the relevant mask is used in a design 

rule, and 0 if not. By reading the word, CADIC2 can quickly find out 

whether the newly added shape will be involved in any design rules. The 

same information could be found by searching through the mask beads on 

the mask ring, but the frequency at which this information is required 

warrants a compacted storage format for quick reference. 
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Mask bead :A mask bead is used to collect together all the rules that 

relate to a particular mask. For example, to encode the following 

rules :- 

PD IS RECT MASK 1 
PS IS RECT, POLY MASK 2 
CW IS RECT, POLY MASK 3 
RULE ONE 

FAIL 'RULE 1' IF SEPARATE (PD, PS) AND SPACING (PD, PS) <10 
END 
RULE TWO 

FAIL 'RULE 2' IF ENCLOSED (PD, CW) AND CLEARANCE (PD, CW) <6 
END 
ENDOFFILE 

Mask bead (1) would require a copy of rules ONE and TWO, whereas 

mask bead (2) would only require rule ONE, and mask bead (3) would 

require rule TWO. See Figure 7.1 for another example of this grouping. 

The form of the mask bead. is as follows :- 

63 3 2 
Mask pointer 

General rule pointer 
e -ru e pointer 

Mask number 
Enlargement factor 

The mask pointer simply points to the next mask bead on the mask 

ring. The general rule and self-rule pointers however need more 

explanation. As described earlier, CADIC2 handles design rules in two 

ways :- 

1. Self=rules, which are processed as the shape is built up 

2. General rules, which are processed once the shape is complete 

The general rules are never required when CADIC2 is performing 

self-checks, and the self-rules are never required when performing 

general checks. To keep these rules separate, the mask bead provides 
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two rings, one for the general rules, and one for the self-rules. The 

general and self-rule pointers therefore point to the next bead on the 

respective rings. 

The next byte in the mask bead is the mask number. This number 

simply defines which mask the rules relate to. Lastly, the enlargement 

factor tells CADIC2 what size of influence bumper to use round a shape 

or group instance added to that mask. 

Self-rule beads : Self-rules apply directly to the shape being added, 

and involve no other shapes. 

follows :- 

i/d 2 3 
Self-rule pointer 

Error pointer 
Rulename 

Sh. No. She type 
Dimension 

The form of the self-rule bead is as 

Typ id 

WIDTH 9 
LENGTH 10 
INTERLIMB 11 
XDIM 12 
YDIM 13 
AREA. 14 
BRAREA 15 

The self-rule pointer points to the next bead on the self-rule 

ring. In the event of a rule violation, CADIC2 jumps down to the error 

ring to find the error bead (see later). 

In the ring data structure, every rule bead contains a rulename. 

The reason for this is that CADIC2 provides the user with the option to 

switch off/on design rules if required. Because DRCCAD merges the 

independent rules into one data structure, the rulename is the only clue 

to the bead's origin. 
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The next byte in the bead stores the shape number and the shape 

type. Shapes associated with masks 1 to 15 have a shape number 1 to 15 

respectively, and temporary shapes generated from logical operations 

have shape numbers from 50 upwards. Using this number, the shape 

information can be picked out from the shape list (see later). Only a 

certain type of shape may be required from a mask, so a shape type 

identification is also stored in the rule bead, so that unwanted shapes 

can be ignored. The shape types are defined as :- 

1- Rectangles 

2- Polygons 

3- Rectangles, and polygons 

Lastly, the rule dimension is stored so that shape dimensions can 

be compared against it. 

Selection bead : These beads are used by CADIC2 to select shapes for 

further processing. The operation of the selector bead is a bit more 

involved than the 'one bead - one operation' definition of other beads. 

Consider the following rule encoded into ring data structure format :- 

PD IS RECT, POLY MASK 1 
PS IS RECT, POLY MASK 2 
RULE EXMPLE 

END 
FAIL 'RULE 1' IF OVERLAP (PD, PS) AND WIDTH (PS) <6 

ENDOFFILE 

OVERLAP 

I WIDTH 

ERROR 
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After a shape is added to mask (1), CADIC2 will reach the overlap 

bead. From this bead, it will find the mask it must search (Shape 

number 1 to 15) and the shape type to be considered. CADIC2 then 

searches through the secondary mask (in this example, mask (2)) until a 

shape is found which overlaps the newly added shape on mask (1). If 

found, CADIC2 stores information about the secondary shape in the shape 

list (See later), then jumps down to the secondary ring. On this ring, 

CADIC2 encounters the width bead, so a width check is carried out on the 

secondary shape. If okay, CADIC2 will immediately return to the overlap 

bead, otherwise the error message will be printed out, before returning 

to the overlap bead. 

Continuing from where it left off, CADIC2 now continues to search 

through. mask (2) to see if any more shapes can be found which overlap 

the primary shape on mask (1). If yes, the above process is repeated. 

If no, (i. e. all the shapes on mask (2) have been processed), CADIC2 

returns to the mask bead, ready for another shape to be added. 

The form of the selector bead is as follows :- 

i /d 2 3 
Primary pointer 

Secondary pointer 
Rulename 

Sh. No. 1 1 Sh. type 
She No. 2 Sh* type 2 

Type . id 

OVERLAP 1 
ENCLOSED 2 
SEPARATE 3 

ABUTS 4 
DISTINCT 5 
PARTED 6 

* ENCLOSES 7 
* PARTS 8 

* Generated internally 
by DRCCAD 

The primary pointer points to the next bead on the primary ring, 

and the rulename specifies the bead's origin. Shape (1) information 

defines the primary shape attributes, and shape (2) information defines 

116 



the attributes of the (secondary) shape to be searched for. If a 

secondary shape is identified, then CADIC2 jumps down to the secondary 

ring, to process the information further. 

Topological bead - Type 1: These beads perform a check on a shape 

against a specified minimum dimension. 

The form of the bead is identical to the self-rule bead. The only 

difference is that their place in the ring data structure means that 

they can be used to check any defined shape, rather that just the newly 

added shape. 

Topological bead - Type 2: These beads are used to perform a dimension 

check between two defined shapes. The shapes may or may not be on the 

same mask. The form of the bead is as follows :- 

i /d 2 4 
Primary pointer 

Error pointer 
u ename 

Sh. No. 1 1 Sh. type 
Sh. No. 2 Sh. type 2 

Dimension 

Twe i /d 

SPACING 16 
CLEARANCE 17 

Logical bead : These beads take two shapes, and performs a logical 

operation on them,. to produce an output shape or shapes. The form of 

the bead is as follows :- 

i/d 1 4 
Primary pointer 

Ru ename 
Sh. No. 1 Sh. type 1 
Sh. No. Sh. type 2 
Sh. No. 3 Sh* type 3 

TVpe is 

UNION (+) 25 

INTERSECTION (*) 26 
DIFFERENCE (-) 27 
EXCLUSIVE (/) 28 
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The first point to note is that the bead contains only one pointer. 

This is because the bead is required to produce new shapes, and not make 

decisions. As described in other beads, the rulename defines the bead's 

origin. 

Shape information (1) and (2) define the attributes of the input 

shapes, and shape information (3) defines the attributes of the output 

shape. Since the output shape is a temporary shape, it will always 

have :- 

1. A shape number greater than 50, so that it is not confused with 

shapes found from the layout. 

2. A shape type of (3), since the form of the output shape is not 

known. 

Inflate/deflate bead : This bead accepts a shape, then inflates or 

deflates the shape by the specified amount, and stores the new shape as 

the output shape. The form of the bead is as follows :- 

30 1 4 
Primary pointer 

Rulename 
Sh. No. 1 1 Sh. type 
Sh. No. Sh. type 2 

Dimension 

As with the logical bead, this bead has only one pointer, which 

points to the next bead on the ring. The input shape is defined by 

shape information (1). The inflate/deflate factor is stored in the 

dimension, and the attributes of the output shape is defined by shape 

information (2). As with the logical bead, the output shape number will 

be greater than 50, and the shape type will be set to (3)" 
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Orientation bead : This bead accepts a shape, decides on the direction 

in which the shape points, then compares this direction against the 

required orientation. The form of the bead is as follows :- 

i/d 2 2 
Primary pointer 

Secondary pointer 
u ename 

Sh. No. Sh. type 

Type i /d 

HORIZONTAL 21 
VERTICAL 22 

The shape information defines the attributes of the shape to be 

checked. If the shape satisfies the desired orientation (defined by the 

bead i/d) then CADIC2 follows the secondary pointer, otherwise CADIC2 

follows the primary pointer. 

Error bead : The error bead contains the error message to be printed 

out. This bead is only encountered when a violation has occurred. The 

form of the bead is as follows :- 

Irror message y 

31 1 n 
Primar pointer 

u ename 

Error message 

The error message may contain up to 64 characters, and is stored in 

the bead as two characters per byte. 

7.5 Program operation 

" CADIC2 is written in FORTRAN, and consists of a library of 

routines, one routine for each failure condition command in the input 

language. The order in which the routines are processed is controlled 

by referring to the design rule ring data structure. 
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To save on development time, it was decided 

failure condition commands available in the 

Instead-only the most common commands were implei 

modular nature of CADIC2, new commands can be 

changes to the existing software. The available 

described below :- 

not to code up all the 

manual input language. 

aented. Because of the 

added without requiring 

commands are briefly 

OVERLAP ......... Find shapes which overlap 

ENCLOSED ........ Find shapes, one enclosed by the other 

SEPARATE ........ Find shapes which are separate 

WIDTH ........... Specify minimum width of shape 

INTERLIMB ....... Specify minimum spacing between limbs of shape 

AREA ............ Specify minimum area of shape 

SPACING ......... Specify minimum spacing between shapes 

CLEARANCE ....... Specify minimum clearance between shapes 

AND ............. Connecting command 

OR .............. Connecting command 

UNION (*) ....... Perform logical OR function on shapes 

INTERSECTION (+). Perform logical AND function on shapes 

DIFFERENCE (-) .. Perform logical NAND function on shapes 

EXCLUSIVE (/) ... Perform logical XOR function on shapes 

A detailed description of each routine is given in Appendix (B). 

Checking shapes : On-line design rule checking starts as soon as a shape 

is initiated (i. e. 'R', 'P', 'T'). At this stage, the parameters used to 

perform the self-tests - WIDTH, INTERLIMB, AREA are reset. As each 

segment is added to the shape, the following proceedures are carried 

out 

1. The newly added segment is checked against the existing segments to 

see if a WIDTH or INTERLIMB violation exists. The details of these 
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algorithms will be discussed in Appendix (B). 

2. The incremental area under the segment is calculated, then added to 

the summing total. Therefore, on finishing the shape, the total 

are will already be known, and can be checked for an AREA 

violation. See Appendix (B) for details. 

If any of the 'self-tests fail, the shape as it presently exists, is 

drawn out in dashed lines, and the accompanying error message is printed 

on the alphanumeric screen. CADIC2 then gives the user the chance to 

accept or reject the violation. On receiving an answer, CADIC2 removes 

the shape from the screen, then proceeds in one of two ways :- 

1. If the violation is accepted, then the shape is 'killed' from 

memory, and CADIC1 is returned to the cursor command level. 

2. If the violation is' rejected, then CADIC2 continues as if no 

violation had been identified. 

Once the shape is complete, CADIC2 performs all the required 

general design rules using the design rule data structure to control its 

sequence of operations. Whenever a violation is found, the associated 

error message is printed out on the alphanumeric screen. After all the 

checks have been completed, CADIC2 proceeds in one of two ways :- 

1. If violations existed, then the shape is drawn out in dashed lines, 

and the user given the chance to accept or reject the violations, 

just as with the self-test violation. 

2. If no violations existed, then the shape is drawn out in solid 

lines, then added to the layout ring data structure. CADICI is 

then returned to the cursor command level. 
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Checking group instances : If the designer adds a group instance to the 

layout, CADIC2 must check all the shapes in the group instance against 

all the shapes in the layout. Note that shapes within the group 

instance do not need to be checked against each other, as they will 

already have been checked when then group definition was originally 

defined. 

The combinatorial problem involved in checking the group instances 

is large, and wasteful of CPU time since usually only the shapes on the 

outside edge of the group instance are possible violation candidates. 

Therefore how can the number of check be minimised ? The check can be 

carried out in one of two ways :- 

1. Each shape in the group instance is checked against all the shapes 

in the layout. 

2. Each shape in the layout is checked against all the shapes in the 

group instance 

At first, it may seem that both methods require the same number of 

checks. This is true if all shapes are treated as possible violation 

candidates, but as with adding a shape to the layout, an influence 

bumper exists round the group instance. This means that the majority of 

the shapes in the layout can be ignored. To show how this affects then 

number of checks required, consider the following example. 
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A group instance contains 60 shapes. The layout contains 5000 

shapes, 50 of which enter the group instance's influence bumper. 

Assuming that a shape outside the bumper can be checked 20 times faster 

than a shape inside the bumper, a rough estimate of the number of checks 

required is :- 

1. (GRIN v LAYOUT) - 60*(50 +4950/20) - 17350 Checks 

2. (LAYOUT v GRIN) - 4950/20 +50*60 - 2979 Checks 

Method (2), (that is checking the shapes in the layout against the 

shapes in the group instance) is therefore the method to adopt. To 

check a newly added group instance, CADIC2 proceeds as follows :- 

1. Find the bounding rectangle of the group instance 

2. Surround the group instance with the largest influence bumper 

associated with the masks used in the group instance. 

3. Find the next shape in the layout that enters the influence 

bumper : [if finished RETURN] 

4. Consider the group instance tö now be the layout, and the shape 

identified in step (3) to be a shape newly added to the layout. 

The shape can then be checked against the group instance using the 

algorithm described in the previous section. Note that in this 

case, only the general rules are performed. 

5. goto (3) 

-As with checking shapes, CADIC2 reports all violations to the 

designer. If no violations are found, then the group instance is added 

to the layout ring data structure, and CADIC1 is returned to the cursor 

command level. If violations exist, the user is given the chance to 

accept or reject the group instance. 
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Checking array instances : If an array instance is added to the layout, 

CADIC2 proceeds in exactly the same way as if it had been a group 

instance. The only difference now is the fact that the shapes inside 

the array may affect each other, and cause design rule violations. 

Therefore, before the array is checked against the layout, an 

'array-test' must be performed. Consider the following array :- 

ii [1 D key 

4a block containing 
shapes 

LI f 21 o Each 'block' in an array is simply a group instance, so the shapes 

within . each block need not be checked against other shapes in the same 

block, since this will have been performed when the group definition was 

defined. 

Shapes associated with different blocks will have to be checked 

against each other, but due to the symmetry of the array, the array-test 

can be performed using a maximum of 4 blocks, regardless of the size of 

the array. 

CADIC2 performs the array-test by considering blocks (2,3,4) as the 

layout, and block (1) as a newly added group instance. The algorithm 

used to check group instances can then be used to perform the 

array-test. 

During the array-test, all violations are reported to the user, but 

are preceded by a note to warn the user of the violation's origin. 

Therefore a spacing error between horizontal blocks which should have 
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been reported nine times for the array shown above, is only reported 

once, along with an array-test warning. 

7.6 Shape list 

During design rule checking, information about shapes selected or 

created must be stored for future reference. To handle this, CADIC2 

uses the concept of a shape list. The list is resident in the same 

temporary file used by CADICI, and is initialised on adding a shape to 

the layout. In this way the first shape in the shape list is always the 

newly added shape. 

The shape list operates in a last-in-first-out fashion, therefore 

as shapes are selected or created, they are added to the end of the 

shape list. Similarly, once the shape has served its purpose, it is 

removed from the end of the list. Note that there is no restriction on 

the size of the shapes. The format of the shape list is as follows :- 

2 
1 

Temporcry file 
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Lookup table : The lookup table consists of a matrix stored in core, so 

as to allow fast access to its information. Each entry in the table 

consists of three values :- 

1. Shape number 

2. Shape pointer 

3. Shape depth 

All shapes handled by CADIC2 can be identified by their shape 

number. Storing this number in the lookup table provides a quick 

reference facility for routines looking for particular shapes. If more 

information about a shape is required, then the shape pointer is used to 

locate the shape in the temporary file. 

Lastly the shape depth is associated with which ring CADIC2 was 

processing in the design rule ring data structure when the shape was 

created. The newly added shape has a depth of one, all the shapes 

generated on the first ring are given a depth of two, and so on. 

Once CADIC2 has completed a ring, all the shapes generated in that 

ring, have served their purpose, and can now be removed from the shape 

list. Therefore if CADIC2 had just completed the third ring, and was 

jumping -back up to continue processing the second ring, all shape with 

depths of four and above can be deleted from the shape list. 
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Temporary file : Each block in the file contains information about the 

shape stored. The contents of each block is as follows :- 

Shape 
co-ordinates 

Max. Y 
Max. X 
Min. Y 
Min. X 

Shape types 

NO of co-ordinates 

0 

The first byte in the block defines the number of coordinates in 

the shape. The second byte gives information about the type of shape 

stored, and is defined as follows :- 

3. Closed rectangle 

4. Open rectangle 

5. Closed short format polygon 

6. Open short format polygon 

7. Closed long format polygon 

8. Open long format polygon 

The design rule checking routines often use the shape's bounding 

rectangle to try and minimise the amount of processing required. For 

this reason, the shape's bounding rectangle is also stored in the block. 

6 
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The remainder of the block contains the shape coordinates. Note 

that the coordinates are always stored in long format. The compact 

storage forms for rectangles and short format polygons could have been 

used to save space, but space is not a problem, plus decoding the 

coordinates every time a shape was used made CADIC2 inefficient. 
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CHAPTER 8 

Performance 

8.1 Introduction 

This chapter is devoted to evaluating the performance of the CADIC 

suite of programs. Each program will be discussed in terms of its main 

features, but emphasis is placed upon CADICI and CADIC2, the most 

important programs in the suite. 

8.2 CADIC1 

CADIC1 is an interactive design aid which allows the user to design 

integrated circuits-at the geometric level. In Chapter five, three main 

techniques to improve the efficiency of processing disc-based layout 

data were proposed. - These were :- 

1. Area segmentation 

2. Cleaning the layout ring data structure 

3. Organised group processing 

This efficiency is evaluated in terms of plotting efficiency, since 

plotting is probably the most common operation implemented in a design 

aid, plus one which can easily be related to, or compared against other 

design aids. Two measurements of plotting efficiency are observed :- 

1. ' CPU time 

2. Number of page swaps 
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CPU time is self explanatory. The number of page swaps is however 

less obvious as an alternative measurement of efficiency. 

Only a few pages of the layout data structure are stored in core at 

any one time. Therefore if data is required from a page which is not in 

core, a page must be removed from core to allow the required page to 

enter. This process is termed page swapping, and is to be avoided if at 

all possible. The reason for this is that a page swap involves 

mechanical movement of the disc head, first to locate the page, then to 

read'it out, and may take milliseconds (real-time) to complete. Page 

swapping also consumes a fair amount of CPU time, so much so that the 

number of page swaps and CPU time are generally directly related. 

If, CPU time and number of page swaps are directly related, why the 

need for both measurements ? The reason is that the computer used for 

this project is very powerful, therefore the CPU measurements do not 

show up small inefficiencies to any great extent. The number of page 

swaps required during any specific operation is not affected by 

computing power, and so provides a clearer, more sensitive measurement 

of efficiency. 

8.2.1 Area segmentation 

In CADIC, the layout is considered as split up into a series of 

areas, and all shapes in the layout are 'polygon clipped' such that each 

shape, or sub-shape is associated with only one area. The size of the 

area is under program control therefore tests must be carried out to 

find, if possible, the optimal setting. Emphasis will be placed on 

plotting efficiency, but other factors such as memory requirements, and 

'finding' efficiency will also be considered. 
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Plotting : The circuit chosen for this test is shown in Figure 5.1. 

This test circuit contains no group calls, so that the effects of area 

segmentation can be isolated. Note that the test circuit is in no way 

meant to represent a real circuit. It is the existence of shapes that 

is important in this test rather than their topology. 

To analyse plotting efficiency, CADIC1 was tested using two sizes 

of window ; large and small. The large window contains the whole 

layout, whereas the small window shows only a small section of the 

layout, so that the shapes can be seen in enough detail to be edited. 

It is important to note that greater emphasis is placed on 

maximising plotting efficiency for the case of the small window. There 

are three main reasons fqr this :- 

1. Around 90% of the design work is carried out using a small window. 

2. The designer will expect immediate program response, since he only 

has to consider the small section of layout visible on the screen, 

unlike the computer which must always consider the whole layout. 

3. During design rule checking, CADIC2 will require information about 

shapes local to the newly added shape to be found very quickly. 

This is similar to the case of plotting out a very small window 

which contains only a few shapes. Therefore optimising the 

performance of CADIC1 for the case of the small window will enhance 

the performance of CADIC2. 
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The results of the plotting test are shown in Figure 8.2. On analysis, 

there are three points to note :- 

1. The layout dimensions are 2040 x 1640 increments. Therefore, at 

area size 2048 x 2048 increments, the whole layout is held within 

one area. The results for this size of-area are therefore those 

that would be obtained if area segmentation was not used. 

2. Area segmentation inhibits efficiency when plotting the whole 

layout. The reason for this is that under this case, each area is 

always inside the window, therefore the extra time is now purely 

due to processing the redundant area beads. As the area size 

reduces, so the number of area beads increases, which increases 

wasted processing. Less than optimal processing efficiency is 

however not so important when plotting out large windows. In 

general, the time to plot out the layout will always be lenghty, 

theref ore a few seconds extra will not be noticed to any great 

extent. 

3. Area segmentation enhances efficiency when plotting out the small 

window. Figure 8.2 shows that a global minimum exists at area size 

512 increments. The reason for this is that the window size chosen 

was in the order of 500 increments (which is a typical size chosen 

in practice). Larger areas will always contain shapes which do not 

enter the window, regardless of the window position. Time spent 

processing these redundant shapes is therefore wasted. The effect 

obviously becomes worse as the area size increases. When using 

area sizes smaller than the window size, the increase in CPU time 

is due to processing extra area beads. Once again, as area size 

decreases, the CPU time increases. 
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In conclusion to the effect of area segmentation on plotting 

efficiency, an area size equal to the typical working window size will 

maximise processing efficiency. 

Memor . requirements : As the area size is reduced, more shapes are 

going to cross area boundaries, hence more sub-shapes must be stored in 

the ring data structure. The effect of area size on memory requirements 

is shown in Figure 8.3a. 

This graph also explains why the small area size increases CPU time 

in the plot times. Because the file was larger, the required data was 

'further' apart, therefore more page swaps were required to retrieve it. 

Point finding : CADICI will often want to find out information about 

shapes. local to the point of interest, rather than the more global 

process-of plotting out sections of layout. For example, finding the 

nearest point in the data structure to the cross-hair cursor ('F' and 

'N' cursor commands). The effect of varying area size on the find time 

is shown in Figure 8.3b. 

The results are- obvious in the fact that the cursor can only be in 

one area at a time, therefore, the smaller the area, the smaller the 

number of shapes that CADIC1 has to check. 

8.2.2 Cleaning the layout data structure 

In section 5.3, it was mentioned that re-organising or 'cleaning' 

the data structure should reduce the number of page swaps, and enhance 

processing times. The order of re-organisation implemented was as 

follows :- 
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The designer can only work on one group definition at a time. 

Therefore each layout/group definition is treated as an independent 

'block' of data. Each 'block' can then be placed sequentially on the 

'clean' file. Within each 'block', the headbead is placed at the 

beginning, followed by all the area beads. Next is placed the first 

mask bead, then all the shapes associated with that mask, then the 

second mask bead, and so on. Lastly, the group instance beads are 

grouped together at the end of the 'block'. Note that all the beads 

previously on the garbage ring are not copied onto the 'clean' file, 

hence reducing memory requirements. 

To test the effect of 'cleaning' a ring data structure, the 'WMLU' 

circuit was 'cleaned' then re-tested as in Section 8.2.1. The results 

are shown in Figure 8.4., If Figures 8.2 and 8.4 are compared, it can be 

seen that substantial improvements in plotting efficiency were achieved. 

Frequent 'cleaning' of a ring data structure is therefore advisable. 

8.2.3 Organised Rroup processing 

The way in which the layout group hierarchy is processed will 

dramatically effect program efficiency, therefore a test circuit (Figure 

8.5) was developed to highlight inefficiencies in the various processing 

algorithms. This 'GROUP' circuit is highly structured (up to 6 levels 

of nesting), with each group definition being small enough to be 

enclosed within one area. In this way, the 'GROUP' circuit can isolate 

the characteristics of the group processing algorithms. 

Random processing : This technique is probably the most common in 

existing design aids, and simply involves processing group instances as 

they are encountered in the data structure. If the data structure is 
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small enough to be core resident, then no problems occur. However, if 

the layout must be stored on disc, and paging is required, random 

processing of the group instances means random reading of the data 

structure. Such systems are therefore prone to page thrashing. 

The results of plotting out the 'GROUP' circuit depending on the 

percentage of data structure held in core, are shown in Figure 8.6. 

Organised processing ethod 1: Instead of processing instances as 

they are encountered, CADIC1 tries to obtain a more global knowledge of 

the layout hierarchy, by storing information about the group instances 

in a temporary file (see Section 5.3 for details). In this way, CADIC1 

efficiently utilizes the group information while it is in core, and so 

increases program efficiency. 

The 'GROUP' circuit was tested using this algorithm, and the 

results are shown in Figure 8.6. As can be seen, the page swaps 

required are less than that required by the random approach, proving the 

correctness of the logistics for Method 1. On the other hand, higher 

CPU times were required. There are two reasons for this :- 

1. The extra time required to build up, and process the temporary 

file. 

2. The form of the data in the temporary file was a simple sequential 

list. CADIC1 therefore had to search through a lot of redundant 

data each time to find all the group instances pointing to the 

group definition in core. 

On obtaining the above results, Method 1 was modified into Method 2. 
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Organised processing (Method 2: The modifications to Method 1 are as 

follows :- 

1. Instead of setting up the temporary file each time CADICI processed 

the data structure, the group data, once set up, was permanently 

stored in the temporary file, until the layout group hierarchy was 

altered in some way. Future processing only had to read from the 

file, thus saving CPU time. Note that if not required, the pages 

in the temporary file containing the group data will automatically 

be paged out onto disc, and remain there until needed. The storage 

penalty is therefore restricted to relatively cheap disc space. 

2. All group instances in the temporary file which point to the same 

group definition are now linked together on a ring of pointers. 

The search time required to find find all instances of a similar 

nature is thus kept to a minimum. 

The 'GROUP' circuit was again tested using this new approach, and 

the results are shown in Figure 8.6. As can be seen, substantial 

improvements in CPU time were achieved over Method 1, and more 

importantly, the random approach. CADIC therefore uses Method 2 to 

process the layout group hierarchy. 

8.2.4 CADIC1 v GAELIC 

To find out just how efficient CADIC1 is in practice, it was 

compared against GAELIC (1J, a commercially available design aid, known 

to be very efficient. The circuit chosen for the comparison is a 'real' 

circuit which was kindly supplied by Compeda, Stevenage. For copyright 

reasons, only a few masks are shown in Figure 8.7, but to give an idea 
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of approximate complexity the layout contained around 80,000 shapes. 

Both design aids were given the 'PRIME' circuit to plot out at a 

variety of window sizes, and a graph showing the CPU times for each 

design aid is given in Figure 8.8. Three points are worth noting :- 

1. Early tests with this circuit showed that the paging routines used 

by CADIC were inefficient. On discovering this fact, CADIC was 

changed so that it used the same paging routine as GAELIC. This 

greatly reduced the CPU time required by CADIC, but unfortunately 

no longer provided information about page swaps. For this reason, 

only CPU time is shown in all future tests. 

2. At large window sizes, CADICI is less efficient than GAELIC. This 

was expected, since CADICI carries more overheads in sustaining 

area segmentation, and organised group processing. 

3. As the window size (and therefore the percentage of the layout 

actually required) decreases, so CADIC1 improves on its performance 

over GAELIC. Note that for the size of layout used in this test, 

most of the design work would be carried out with a window size of 

15% full layout and smaller, so that the layout could be seen in 

enough detail to be edited. In this situation, CADICI is much more 

efficient than GAELIC. 

8.3 CADIC2 

CADIC2 on-line design rule checks a newly added shape or group call 

against the existing layout, using a pre-defined set of design rules. 
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Testing CADIC2 under realistic conditions is however a very 

difficult problem to solve. The first reason for this is that many 

factors affect the time taken to design rule check any one particular 

shape, for example :- 

1. The mask containing the shape, since different masks usually 

contain a different number of rules 

2. The complexity of the rules 

3. The number of shapes in the existing layout 

4. The position of the newly added shape in layout 

5. The number of segments in the newly added shape 

All these variable factors means that it is extremely difficult (if 

not impossible) to generate a set of representative results, when 

considering isolated cases. For example, a slight variation of position 

of- two shapes undergoing a spacing check may double the required design 

rule checking time. 

The only way to solve this problem is to consider the results in a 

more global nature, for example consider the performance over a whole 

layout design. In this way, local differences can be ignored in favour 

of the general trends in performance. 

The second problem with evaluating CADIC2's performance is how to 

collate the design rule checking times for a whole layout design. Using 

CADICI to interactively design a circuit is far too slow, especially if 

large circuits are required. 
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A better technique is to use MANCAD to simulate the design of a 

whole layout. Once MANCAD has decoded a line of the manual input 

language into a set of shape coordinates, it uses CADIC2 to design rule 

check the shape against the existing layout, just as if the shape had 

been added interactively using CADIC1. 

By noting the design rule checking time required for each 

shape/group call, and plotting it on a graph, the performance of CADIC2 

over a complete layout design can be obtained in only a few seconds 

(real time). Therefore MANCAD was used to generate all results 

displayed in this section. 

Chapter seven discussed techniques which would hopefully minimise 

the tinte required to design rule check a shape. These were :- 

1. The design rule data structure compiled by DRCCAD ensures that 

CADIC2 performs the minimum number of operations. 

2. Each routine in CADIC2 is optimised such that the CPU time required 

to complete each operation is minimised. 

3. The concept of area segmentation allows very quick access to shape 

information local to the newly added shape/group call. 

Each technique will now be discussed in more detail. 

Unfortunately, the first technique cannot be experimentally verified, 

since major software changes would be required to implement -different 

forms of design rule data structure. It is hoped however that the 

logistics given in Chapter seven satisfy the claim that CADIC2 performs 

the minimum number of operations. 
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8.3.1 Routine performance 

The exact details of each design rule algorithm used by CADIC2 is 

given in Appendix B. For reasons described in Section 8.3, it is very 

difficult to isolate each operation, and attempt to relate it to a 

typical time. Performance of the design rule routines is therefore 

considered in a more global nature. In general, two main concepts 

within each routine helped minimise design rule checking time. these 

were :- 

1. Influence bumper 

2. Segment type identification 

Each concept will now be isolated and experimentally tested. 

Influence bumper : The influence bumper placed round a newly added 

shape/group call allows CADIC2 to ignore all shapes outside the bumper, 

and so minimise redundant processing. The concept is really only 

implemented when the SEPARATE command is used, since all other selection 

commands (i. e. OVERLAP, and ENCLOSED) have an implicit influence bumper 

width of zero. However the frequent use of the SEPARATE command 

warrants the use of the shape influence bumper. Consider the layout 

shown in Figure 8.9. The layout contains around 500 shapes on a single 

mask, and the following design rule was applied :- 

PD IS RECT , POLY MASK 1 
RULE Al 

FAIL 'Spacing test' IF SEPARATE (PD, PD) AND SPACING (PD, PD) < 70 

END 
ENDOFFILE 

Note that the layout is a test layout, and does not represent a 

working circuit. The test layout also contains no design rule 

violations. 
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A graph showing the performance of CADIC2 with and without using a 

shape influence bumper is shown in Figure 8.10. Some points to note 

about the results are as follows :- 

1. No design rule violations were identified, as expected 

2. The time taken to design rule check each shape increases 

approximately linearly with the size of the layout. Note that this 

is a very important characteristic of CADIC2 which will be 

discussed in more detail later. However, this linear relationship 

allows a 'quality factor' to be attached to any particular set of 

results, so that the effect of changes within a routine can be 

evaluated. The technique used in these tests is to apply a 

best-line fit to the results, and so obtain the equation of the 

line "- 

y-mx 

where 'y' is the typical time (in. milliseconds) required to design 

rule check the x'th shape added to the layout. The gradient 'm' 

therefore acts as the 'quality factor'. The lower the value of 

'm', then the more efficient is CADIC2. Note that the best line 

always passes through the origin, since the first shape in the 

layout requires no design rule checking. 

3. Without a shape influence bumper, CADIC2 is checking many more 

shapes against the newly added shape than is required. Applying a 

best-line fit to each graph shown in Figure 8.10 produces the 

following :- 

ualit fa=or 

Without bumper 5.11 

With bumper 0.21 
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Therefore implementing the concept of a shape influence bumper 

means that the CPU time required by rules using the SEPARATE 

command is only 4% of the CPU time required if the bumper was not 

used. 

The layout shown in Figure 8.9 was then re-tested with a design rule 

check that required a different type of selector, for example :- 

PD IS RECT, POLY MASK 1 
RULE A2 

FAIL 'Overlap test' IF OVERLAP (PD, PD) AND WIDTH (PD) < 60 
END 
ENDOFFILE 

Results showing the effect of performing the test with and without 

influence bumpers is shown below :- 

ualit factor 

Without bumper 0.23 

With bumper 0.23 

As was expected, the bumper has no effect on the OVERLAP selector. 

Similar results would also be obtained for the ENCLOSED selector. An 

important point to note is that the influence bumper greatly helps the 

SEPARATE selector, but not at the expense of the other selectors. 

The second use for an influence bumper is during dimensional 

checks. Chapter seven also proposed that CADIC2 would perform better if 

it used the concept of an influence bumper round a segment and then 

checked to see if any segments entered it, rather than use the classical 

approach to determine the minimum distance between each segment 

combination. To test this, the layout shown in Figure 8.9 was again 

tested using RULE Al shown above. One test used the concept of an 
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influence bumper, and the other test performed minimum distance 

calculations. The results of performance obtained is shown below. Note 

that the shape influence bumper was used in both cases to minimise the 

shapes identified by the SEPARATE command. 

ualit factor 

Bumper approach 0.22 

Classical approach 0.24 

As can be seen by the quality factors, a routine employing the 

bumper approach will operate about 10% faster than a routine using the 

classical approach,. CADIC2 therefore incorporates the concept of 

segment influence bumpers into all dimensional routines. 

Segment type identification : Chapter seven finally proposed that only 

certain combinations of segments need be checked during dimensional 

checks. By calculating a type (i. e. horizontal, vertical, or angled) 

for each segment, large reductions in the number of segments to be 

considered is possible. 

To test this proposal, the layout shown in Figure 8.9 was again 

used, along with RULE Al. Results showing the performance with and 

without the use of segment type identification are as follows :- 

ualit favor 

Without identification 0.22 

With identification 0.21 

In this case, identification improves performance by 5%. CADIC2 

therefore incorporates segment type identification into all dimensional 

checks. 
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8.3.2 Area segmentation 

During all selection operations (i. e. SEPARATE, OVERLAP, and 

ENCLOSED), CADIC2 must find information about the shapes close to the 

newly added shape/group call. Just as was shown with plotting out small 

windows (see Section 8.2.1) the area size should have an important 

effect on the number of shapes considered, and so the time taken to 

complete the design rule checks. 

To analyse the effect of area size, CADIC2 was tested against the 

layout shown in Figure 8.11. This layout (which in no way represents a 

working circuit) uses six masks, and contains a total of 1840 shapes. 

Note that no group instances are present, so that the effect of area 

segmentation can be isolated. A complete set of design rules (shown in 

Figure 8.12) was used in the design rule checks, to test the layout 

under realistic conditions. To add to this reality, the layout contains 

48 design rule violations. 

A graph showing the performance of CADIC2 against various area 

sizes is shown in Figure 8.13. Note that plotting speeds are also shown 

for a typical small window, so that the optimal setting between CADICI 

and CADIC2 can be compared. Some points to note about the results are 

as follows :- 

1. The optimal setting for CADIC2 is 128 increments. If the area size 

is increased, then the quality factor increases since more shapes 

within any one area must be analysed. In theory, smaller area size 

should always mean lower quality factor. However as area size is 

reduced, more shapes are liable to be 'polygon clipped' into 

sub-shapes. The routines within CADIC2 always reconstruct 
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sub-shapes into the original shapes to prevent the generation of 

false violations. This reconstruction process is rather expensive 

in terms of CPU time, therefore very small area size forces an 

excessive number of reconstructions which increases the quality 

factor. 

2. The optimal setting for CADIC1 when plotting out the small window 

is 256 increments. In this case, because the layout was smaller, 

the typical working window size would be around 150 increments. 

Note how the optimal area size for CADICI changes with window size, 

so backing up the conclusion stated in Section 8.2.1. 

3. A compromise on area size is therefore required between CADIC1 and 

CADIC2. The variation of CADIC1's optimal area size with the 

wgrking window size (largely determined by the size of the layout) 

means that it is very difficult to specify an overall optimal area 

size for CADIC (CADIC1 and CADIC2). 

Priority should be given to optimising CADIC2, since on-line 

design rule checking must always remain 'transparent' to the user. 

However, if the difference between CADIC1 and CADIC2's optimal area 

size is too large, then CADICI will perform very inefficiently. 

In conclusion, if the layouts to be designed are liable to be 

small, then CADIC's optimal area size would best be set at 128 

increments. However, as the layout size increases, CADIC's optimal 

area size becomes less well defined. Under these conditions, a 

final decision on the area size would best be left until the 

requirements of the user were discussed in more detail. 
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4.96 design rule violations were identified. This number is 

artificially high due to the fact that the layout is made up of a 

matrix of sixteen identical sections. Within each section, three 

real violations existed. CADIC2 identified the three violations, 

plus another three, caused by the implicit over-expansion of the 

orthogonal influence bumpers at shape corners. CADIC2 will of 

course identify the same violations in each section of the matrix, 

so producing the high number of violations quoted above. 

Note that most existing design rule checking programs use some 

sort of orthogonal distance test during dimensional checks, and 

nearly all programs produce false violations due to over-expansion 

at the shape corners. CADIC2 is therefore not alone with this 

problem. The justification for using the orthogonal approach is 

that it performs the checks very quickly. However, other (slower) 

techniques which do not generate these false violations are 

discussed in Section 9.2. 

8.3.3 Hierarchical design 

It is important to point out that good hierarchical or structured 

design will significantly improve the performance of CADIC2. This is 

largely due to the fact that all the shapes within a group definition 

only have to be checked against each other once. For example, if a 

transistor is defined as a group definition, and the shapes within the 

group definition satisfy all the design rules, then all group calls of 

the transistor must also be correct, and so do not need to be checked. 

The checks are therefore limited to checking the group call against the 

existing layout. 
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Hierarchical design also helps limit the number of violations 

generated during checking. If the above mentioned group definition 

contained a violation, then the violation would be generated only once, 

instead of every time the group call is used. The designer therefore is 

not swamped with multiple versions of the same violation. 

To show how hierarchical design effects performance, consider the 

layout shown in Figure 8.11 as broken up into one group definition 

(containing all the shape information for one of the sixteen sections), 

plus sixteen group calls of the group definition. In this way the 'new' 

layout appears identical to the original layout, which consisted purely 

of shapes. This example is rather trivial, but it does serve to show 

how hierarchical design can help CADIC2. The results for checking the 

two versions of the same layout are as follows :- 

Description Quality factor Total time Number of errors 

1.1840 shapes 0.12 223.7 96 

2.1 def. (115 shapes) 0.08 5.0 6 

+ 16 group calls 

The substantial difference in total time comes from the fact that 

in layout (1), CADIC2 checks 1840 shapes with a quality factor of 0.12, 

whereas in layout (2), CADIC2 checks only 131 shapes/group calls with a 

quality factor of 0.08. Good hierarchical design therefore 

significantly reduces the time spent design rule checking the layout as 

it built up. 
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8.3.4 Checking a large layout 

Lastly, it is important to observe the performance of CADIC2 as it 

design rule checks a 'real' circuit, using 'real' rules. Such data was 

kindly supplied by the Wolfson Microelectronic Unit, Edinburgh. 

The design rules are shown in Figure 8.12, and a small section of 

the circuit is shown in Figure 8.14. Due to copyright requirements only 

a few masks of the layout are shown, but the whole layout uses eight 

masks, and contains around 30,000 shapes, incorporated into a 

hierarchical design, with nesting down to four levels. The graph of 

CADIC2's performance is shown in Figure 8.15. Some points to note about 

the results are as follows :- 

1. The most important point to note is that the time taken to check 

each shape/group call increases linearly with the size of the 

layout. This is a vast improvement over existing off-line design 

rule checkers, which usually experience parabolic (n*n) 

performance. The linearity is largely due to three factors :- 

1.1 The area segmentation concept discussed in Chapter five 

minimises the amount of shape data to be analysed to often 

just the shapes within the present area, regardless of how 

many other areas have previously been filled. 

1.2 The use of the influence bumper limits the number of shapes 

and/or segments to be considered 

1.3 The use of segment type identification limits the number of 

segment combinations required during the dimensional checks 
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2. Out of the 2800 shapes/group calls added to the layout, around 

thirty 'additions' required more than two CPU seconds to perform 

the checks. In fact, the peaks go higher than ten CPU seconds. 

The reason for such a variation in performance is that each 

increment in the x-axis represents a shape/group call being added 

to the layout. A group call contains possibly hundreds of shapes, 

so the time to check a newly added group call is obviously going to 

be much greater than the typical time for a newly added shape. 

This fact is amplified by the fact that the layout shown in Figure 

8.14 uses a very large group call which contains around 20,000 

shapes. Any shapes /group calls which must be checked against this 

large group call is going to require an enormous number of checks. 

Nothing can be done to improve this. The only consolation is that 

is., this circuit, the situation is limited to around 0.1% of the 

total number of 'additions'. 

To try and iron-out the large variations in performance, the method of 

noting the design rule checking time was modified when considering group 

calls. Instead of simply noting the time to check the whole group call, 

the time to check each shape within the group call was recorded, just as 

if it had been added independently of the group call. The graph showing 

the modified results is shown in Figure 8.16. Some points to note about 

the-graph are as follows :- 

1. The total number 

contains around 

that when a group 

number of checks 

to be checked. D 

7.5. 

of shapes checked was 6712, yet the layout 

30,000 shapes. The reason for the difference is 

call is added to the layout, CADIC2 minimises the 

required by considering only the shapes that have 

etails of how CADIC2 does this is given in Section 
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2. The graph still contains a few large peaks. These peaks are due to 

shapes which must be checked against the large group call mentioned 
' 

above. As mentioned above, nothing can be done to improve this. 

8.4 DRCCAD 

DRCCAD compiles a set of design rules into a ring data structure 

readable by CADIC2. The performance of this program is not really 

important, yet a set of results for a single run of the program is 

presented, just to show that DRCCAD is no better, and no worse than 

expected. 

DRCCAD was tested while it compiled the set of design rules shown 

in Figure 8.12. Results are as follows :- 

1. Number of rules 

2. CPU time required 

3. Size of ring data structure 

8.5 MANCAD 

MANCAD can operate in one of two modes :- 

1. Manual input language compiler 

2. Off-line design rule checker 

33 

1.6 secs. 

2 pages (512 words/page) 

The performance of MANCAD in each mode will now be discussed in more 

detail. 
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8.5.1 Manual input language compiler 

As with DRCCAD, there is nothing exceptional about MANCAD's 

performance as a compiler. Compilation speeds are typical for the type 

of processing being undertaken. However, results of MANCAD's 

performance are given below, largely for completeness. The manual input 

file used in this test was the one required to produce the layout shown 

in Figure 8.14. 

1. The input file contained 2800 lines (35 pages) representing about 

30,000 shapes. 

2. CPU time required was 64.5 seconds 

3. Memory requirements for layout ring data structure was 79 pages 

(512 words/page) 

8.5.2 Off-line de sign rule checker 

Because MANCAD simply envokes on-line design rule checking 

techniques to simulate classical off-line design rule checking, it 

follows that any improvements in the on-line design rule checking 

performance must also appear in the off-line design rule checking 

performance. 

Re-testing the concepts of influence bumper, segment type, area 

size, and hierarchical design when applied to off-line design rule 

checking is therefore not required. What is more important is the 

actual off-line checking time required to design rule check a 'real' 

circuit. 
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The circuit shown in Figure 8.14 was used for the test. As stated 

earlier, the circuit used eight masks, and contained around 30,000 

shapes. Lastly,. the set of design rules used is shown in Figure 8.12. 

Results of the test are as follows :- 

Total time - 61 min. 

N. B. This time includes 64.5 seconds required to compile the manual 

input file. 

It would have been useful to compare the performance of MANCAD 

against an existing off-line design rule checker. However, no such 

access was available. No comments on MANCAD's performance as an 

off-line design rule checker can therefore be justified. It suffices to 

say that MANCAD's performance is of secondary importance, since its use 

within the CADIC is limited to a few special cases (see Section 4.3.2). 
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Figure 8.1 ' WMLU' layout 
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CHAPTER 9 

Conclusions and Future Work 

9.1 Overview of project 

This thesis began with a brief description of the various stages 

required in integrated circuit production. In this way Chapter one 

highlights some of the problems faced by the integrated circuit 

manufacturer. 

Chapter two discussed in detail existing computer aids developed to 

solve some of these problems. The advantages and disadvantages of each 

computer aid were considered, with the view towards developing CADIC 

(Computer Aided Design of Integrated Circuits), a suite of computer 

programs which aid integrated circuit design. The review showed that 

manual design aids still play a vital role in integrated circuit design. 

There are two main reasons for this :- 

1. Manual aids are capable of producing the most compact layouts 

2. Manual aids are required to produce the cells used in the automatic 

approach 

The design turnaround time associated with manual aids is however 

comparatively long. New techniques to reduce this time are therefore 

required. 
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Once a layout is designed, it must be design rule checked, so that 

tolerance errors in the fabrication process do not affect the final 

circuit. At present, layouts are checked off-line. This approach is 

expensive in terms of time and money, due to the repetative design-check 

stages. Chapter two argues that on-line design rule checking would 

break this 'bottleneck', and allow substantial reductions in design 

turnaround time. 

Lastly, the proposals for CADIC are justified in light of the 

review. The CADIC suite is split into four programs :- 

1. MANCAD : Manual input language compiler 

2. CADIC1 : Interactive graphic design aid 

3. DRCCAD : Design rule language compiler 

4. CADIC2 : On-line design rule checker 

The hardware associated with a design aid can greatly affect the 

performance, reliability, and useability of a design system. For this 

reason, Chapter three gave a critical review of available hardware, and 

evaluated their performance when applied to integrated circuit design. 

As a result of the review, CADIC uses a DEC2050 time-shared mainframe 

computer as host, and a SIGMA 5000 micro-processor based colour raster 

scan terminal as a workstation. 

Chapter four discussed MANCAD (MANual Computer Aided Design), a 

pre-processor which accepts a manual description of an integrated 

circuit layout, and converts this description into a data structure 

readable by CADICI and CADIC2. MANCAD can operate in two modes :- 

1. Compiler 

2. Off-line design rule checker 
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The compiler is very useful when the SIGMA workstation is not 

readily available. Using the manual input language, layouts, or 

sections of layouts can be quickly 'coded-up' on sheets of paper, then 

entered into MANCAD using a standard alphanumeric terminal. The SIGMA 

is therefore only required to view and/or edit the layout. 

Occasionaly, some- circuits must be design rule checked off-line. 

MANCAD uses the on-line design rule checking techniques developed in 

CADIC2 to check each shape/group call as it is compiled into the layout 

data structure. In this way MANCAD provides a highly efficient batch 

mode or off-line design rule checking facility. 

Chapter five discussed CADIC1, an interactive graphic design aid 

which allows the user, to design integrated circuit layouts at the 

geometric level. The most important feature of CADICI is its high 

efficiency in processing the disc-based layout data. This was made 

possible by implementing two new techniques :- 

1. Area segmentation 

2. Organised group processing 

The first technique required a new form of data structure to store 

the layout information. CADICI considers the layout as divided up into 

a series of areas, and associates each shape with an area. Shapes which 

enter two or more areas are 'polygon clipped' into sub-shapes, such that 

each shape, or sub-shape is associated with one area. Due to a system 

of pointers, all shapes associated with a particular area can be found 

quickly, so when the designer is say, plotting out a small section of 

the layout, only the shapes associated with the areas inside the 

plotting window need be considered. This high degree of selection 
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greatly reduces redundant searching, and thus increases program 

efficiency. 

The second technique involves considering the layout group 

hierarchy in a more global nature. If a layout is to be plotted out, 

all the shapes in the layout are plotted, then information about the 

group instances called from the layout are stored in a temporary file. 

Note that the group instances are not plotted out at this stage. CADIC1 

then goes to the top of the temporary file, identifies the first group 

instance, then brings the related group definition in core. All the 

shapes within the group definition are then plotted out, and any group 

instances called from the group definition are added to the end of the 

temporary file. 

The temporary file is then searched to see if any other instances 

of the group definition (presently in core) exist. If yes, then it is 

plotted out, and all group instances added to the temporary file. If 

no, then CADIC1 goes to the top of the file, and identifies a new group 

instance. The above process is then repeated until all group instances 

are plotted out. In this way, CADICI fully utilizes the group 

definitions while it is in core, and so increases program efficiency. 
' 

Chapter six goes on to discuss DRCCAD, (Design Rule Compiler for 

Computer Aided Design) a pre-processor which accepts a 'user readable' 

description of the design rules, and converts this description into a 

'low-level' ring data structure readable by CADIC2. 

Time spent on-line design rule checking a newly added shape is 

critical, " therefore this 'low-level' description of the design rules 

acts as a control file which CADIC2 can quickly access for information 
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on how to perform the checks. In this way, a minimum amount of time is 

spent accessing and decoding the rules, which leaves more time to 

perform the checks. 

Chapter seven discussed CADIC2, the on-line design rule checker. 

Whenever a shape or group call is added to the layout (either using 

CADICI or MANCAD), it is CADIC2's function to design rule check the 

shape(s) against the existing layout. The main feature of CADIC2 is the 

speed in which it can complete these checks. Three factors have made 

this possible :- 

1. The design rule data structure set up by DRCCAD always ensures that 

CADIC2 will perform the minimum number of operations during design 

rule checking. 

2. The layout ring data structure is very efficient in finding 

information about shapes local to the newly added shape 

3. Each routine in CADIC2 has been optimised such that the CPU time 

required to complete each operation is kept to a minimum 

Finally, Chapter eight discussed the performance of each program in 

the CADIC suite, with emphasis on CADICI and CADIC2, the most important 

programs in the suite. Logistics previously suggested for each program 

were experimentally tested, and optimal working conditions identified. 

The results of the tests confirmed three main points :- 

1. MANCAD and DRCCAD performed as expected for the type of processing 

being carried out. 

2. CADIC1 is very efficient at data processing, especially when small 

sections of layout are considered. 

3. CADIC2 can perform complete on-line design rule checking within the 

time it takes the designer to start adding the next shape. 
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9.2 Possible improvements 

In general, the CADIC suite of programs have performed very well in 

achieving all the original aims of this project. However, with the 

benefit of hinesight, certain weakpoints in CADIC have been identified. 

The purpose of this section is therefore to discuss these weakpoints, 

and suggest possible improvements. 

MANCAD : Two main areas in this program could be improved. These are :- 

1. Manual input language 

2. Off-line design rule checking violation details 

For reasons described in Section 4.2, the MANCAD manual input 

language- was made compatible with the GAELIC manual input language, 

except for the commands; "LINE", "CIRCLE", and "TEXT". The first 

improvement to the . MANCAD language would be to update MANCAD so as to 

accept these un-used commands, even though CADIC does not truly support 

them. This could be achieved as follows :- 

1. Accept the "LINE" command, then automatically add a terminating 

dark segment, so that the line becomes a closed polygon. CADIC can 

then handle the polygon, even though it still appears as a line in 

the layout. 

2. A circle defined by the "CIRCLE" command could be automatically 

transformed into a multi-segment polygon, which would approximate 

to the circle. 

3. The SIGMA workstation has the facility to plot out text on the 

screen, but CADIC has no way of storing the information in the 

layout data structure. Therefore the best MANCAD could do with the 

"TEXT" command is accept it, but do nothing with it. 
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In the future, there is no reason why the MANCAD language has to 

remain identical to the GAELIC language. Indeed any new language would 

do well to copy many of the features and constructs available in the 

GAELIC language, yet certain modifications could be incorporated into 

the new language to enhance language ergonomics and minimise the amount 

of data to be entered. Consider an example of a typical section of a 

GAELIC manual input file :- 

"NEWGR" GRP1; 
"RECT" (1) 
"POLY" (1) 
"POLY" (1) 
"POLY" (1) 
"RECT" (1) 
"RECT" (1) 
"RECT" (2) 
"POLY" (2) 
"TRAG" (2) 
"TRAC" (2) 
"TRAG" (2) 

"ENDGR"; 

"FINISH"; 

1250,4520: 180,740; 
L, 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770; 
S, 5310,100: 870, -100,150,120, -80,50, -940, -70; 
S95310,310: 940,50,80,120, -150, -100, -870, -70; 
1670,3040: 60,120; 
910,2660: 180,560; 
1870,3210: 120,1120; 
S, 2930,3100: 270,870,100,150, -120, -90, -50, -930; 
60, L, 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40; 
60, L, 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30; 60, S, 2930,3100: 270,870,100,150; 

The most fundamental modification that can be made is the removal 

of the double quotes round each command word. In the original 

specification for GAELIC, the designer was allowed to attach labels to 

specific shapes possibly for use by a future functional verification 

program. The label was entered after the command word, and was 

separated by an oblique, for example :- 

"RECT/INPUTI" (1) 1250,4520: 180,740; 

The label could vary in length, therefore quotes were required to 

delimit the label. Unfortunately, a use for the label information never 

materialized therefore GAELIC no longer supports the label option. For 

this reason, the quotes are redundant in the manual input language. 
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When building up a layout using the manual input language, the 

designer tends to enter the information a mask at a time. This is 

different to interactive design where the designer is likely to swap 

frequently between masks, as the various elements are added to the 

layout. The authors of GAELIC did not foresee this difference, and so 

included the mask information into each shape command, so as to 

facilitate frequent mask changes. As can be seen by the example above, 

rather than include the mask information each time a shape is defined, 

it would be better to remove the mask information, and define a new 

command :- 

MASK <masknum> 

I 

which would set the mask number to 'masknum'. All shapes that 

follow the MASK command would then be placed on mask 'masknum' until 

another MASK command is identified, for example :- 

MASK 1; 
RECT 1250,4520: 180,740; 
RECT 1670,3040: 60,120; 

MASK 2; 
POLY S, 2930,3100: 270,870,100,150, -120, -90, -50, -930; 

FINISH; 

In a similar way, the track width information could be removed from 

the TRACK command, and a new command ; WIDTH <trackwidth> defined, for 

example :- 

MASK 1; 
WIDTH 60; 

TRAC L, 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40; 
TRAC L, 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30; 

FINISH; 

In this way, the amount of information to be entered can once again 

be reduced. 
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Standardisation of the shape command construction is a very 

important step towards making a language easier to use. At present the 

RECTANGLEf POLYGON and TRACK commands all have different constructs 

within the GAELIC language. Defining the WIDTH command changes the 

TRACK construction to be the same as the POLYGON construction, which 

helps the aim of standardisation. The remaining difference is the 

format specification for the POLYGON command which may be 'L' (Long 

format) or 'S' (Short format). It is also very easy to forget to enter 

the format letter into the command, therefore it would be better if the 

manual input language defined unique commands to handle long and short 

format shapes, for example :- 

MASK 1; 
WIDTH 10; 

RECT 1250,4520: 180,740; 

_ 
LPOLY 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770; 
SPOLY 5310,100: 870, -100,150,120, -80,50, -940, -70; 
LTRAC 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40; 
STRAC 2930,3100: 270,870,100,150; 

FINISH; 

Note that the construction for each shape command is now identical :- 

<COMMAND> <origin>: <incremental coordinates>; 

If the above mentioned modifications were incorporated into the 

MANCAD input language, the original example would be entered as :- 

NEWGR GRP1; 
MASK 1; 

RECT 1250,4520: 180,740; 
LPOLY 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770; 
SPOLY 5310,100: 870, -100,150,120, -80,50, -940, -70; 
SPOLY 5310,310: 940,50,80,120, -150, -100, -870, -70; 
RECT 1670,3040: 60,120; 
RECT 910,2660: 180,560; 

MASK 2; 
RECT 1870,3210: 120,1120; 
SPOLY 2930,3100: 270,870,100,150, -120, -90, -50, -930; 

WIDTH 60; 
LTRAC 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40; 
LTRAC 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30; 
STRAC 2930,3100: 270,870,100,150; 

ENDGR; 
FINISH; 
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The second area in which MANCAD could be improved is concerned with 

its handling of off-line design rule checking violations. At present, 

if a shape in the manual input file violates any design rules, " the 

violation message is printed out, followed by the line in the manual 

input file corresponding to the failed shape, along with the name of the 

group definition containing the shape (See Section 4.3.2). In this way, 

the designer can use the list of error messages to identify the shapes 

in the layout, then use CADICI to edit them as required. 

Even though this approach works well, it would be better if the 

shapes which cause a violation were also stored in a plot file, along 

with the other shape(s) involved in the violation. On plotting out this 

file, the designer will find it easier to locate the erroneous shapes. 

This approach was not implemented by MANCAD for two reasons :- 

1. The plot is not essential, it only makes the erroneous shapes 

easier to find. 

2. The development time was not available. 

CADIC1 : At present, it is felt that CADICI has a consise range of 

commands which covers certainely the most common requirements in layout 

design. However, as with any design aid, someone will want it to 

perform a function that is not available. In the future, more commands 

can therefore be added to CADIC1, limited only by the number of keys on 

the keyboard. 

The second improvement to CADIC1 requires a more sophisticated 

method of paging the layout data in and out of computer memory. The 

main problem faced by a paging routine is which one of the pages 

presently in core must be swapped out, to allow a new page to enter. 
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Obviously, the aim is to keep the important pages in memory for as long 

as possible, so as to prevent page thrashing. CADICI uses a paging 

routine which removes the oldest page in the computer's memory. This 

technique suited CADICI very well, but took no account of any special 

features in the format of the layout ring data structure. 

During processing it is important for CADIC1 to keep the area beads 

in memory as much as possible, as they act as the first 'filter' in the 

task of selecting relevant data and are frequently accessed. On the 

other hand, a shape bead usually is required only once (i. e. while 

being plotted out) yet when using the paging routine, an area bead has 

as much chance of staying in core as the shape bead. It would be better 

if the paging routine could sub-divide its memory allocation of six 

pages , into say two pages for area and mask beads, and four pages for 

shape and group call beads, then page each sub-division independently of 

each other. In this way, the useful area and mask information would not 

be paged out just because CADIC1 had to process a large number of 

shapes. 

To stand any chance of competing with the present paging routine, 

the new routine must also be written in machine code. The author has no 

expertise in this area, therefore the concept was never pursued. 

to 
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DRCCAD : The only possible improvements to DRCCAD are concerned with the 

input language used to describe the design rules. Consider an example 

of the manual input language :- 

PD IS RECT, POLY MASK 1 
PS IS RECT, POLY MASK 2 
POLY1 IS RECT, POLY MASK 4 
POLY2 IS RECT, POLY MASK 5 
CW IS RECT , POLY -MASK 6 
METAL IS RECT, POLY MASK 8 
RULE Al 

FAIL 'Minimum width diffusion' IF WIDTH (PD) < 60 
END 
RULE A2 

FAIL 'Unrelated spacing masks 1 and 2' IF SEPARATE (PD, PS) & 
AND SPACING (PD, PS) < 30 

END 
RULE A3 

FAIL 'Overlap poly(l) round contact' IF ENCLOSED (CW, POLY1) & 
AND CLEARANCE (CW, POLY1) < 20 

END 
RULE A4 

FAIL 'Non-coincidence of polyl/poly2' IF OVERLAP (POLY2, POLY1) & 

.. 
AND OVERLAP (POLY2, METAL) AND WIDTH (POLY2-POLY1) < 30 

END 
ENDOFFILE 

The first point to note is that the RULE and END commands serve no 

useful purpose, and only increase the amount of data to be entered by 

the user. If a violation occurs, the violation message gives ample 

information about which design rule failed. 

Another improvement that could be made is concerned with the 

SPACING and CLEARANCE commands. At present, these commands must be 

preceded by the commands SEPARATE and ENCLOSED respectively. It is 

obvious however that the SPACING stipulation has no meaning if the 

shapes are not separate. Similarly the CLEARANCE stipulation loses 

relevance if one shape does not enclose another. The SEPARATE and 

ENCLOSED commands should therefore be implicitly accepted if the SPACING 

and CLEARANCE commands are used. Implementing these modifications would 

mean that the example shown above could be entered as :- 
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PD IS RECT, POLY MASK 1 
PS IS RECT, POLY MASK 2 
POLY1 IS RECT, POLY MASK 4 
POLY2 IS RECT, POLY MASK 5 
CW IS RECT, POLY MASK 6 
METAL IS RECT , POLY MASK 8 

FAIL 'Minimum width diffusion' IF WIDTH (PD) < 60 

FAIL 'Unrelated spacing masks 1 and 2' IF SPACING (PD, PS) < 30 

FAIL 'Overlap poly(1) round contact' IF CLEARANCE (CW, POLY1) < 20 

FAIL 'Non-coincidence of polyl/poly2' IF OVERLAP (POLY2, POLY1) & 
AND OVERLAP (POLY2, METAL) AND WIDTH (POLY2-POLY1) < 30 

ENDOFFILE 

CADIC2 : Now that CADIC2 has been shown to work well for the subset of 

commands presently available in the design rule language, the first 

improvement to CADIC2 would be to update the program to handle the new 

commands. Note that CADIC2 is written in a highly modular fashion, 

therefore adding routines to perform each new operation in no way 

affects the existing software. 

follows :- 

AB 
U/ LS... ........ . 

DISTINCT ......... 

PARTED ........... 

LENGTH ........... 

XDIM ............. 

YDIM ............ 

BRAREA ........... 

HORIZONTAL ....... 

VERTICAL ......... 

NOT .............. 

INFLATE/DEFLATE 

The commands not yet handled are as 

Find shapes which touch 

Find shapes which are distinct 

Find shapes, one cut in two by the other 

Specify minimum length of shape 

Specify minimum X dimension of shape 

Specify minimum Y dimension of shape 

Specify mine area of shape's bounding rectangle 

Specify shape to lie in horizontal direction 

Specify shape to lie in vertical direction 

Inverting command 

Inf late/def late shape 
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The second Improvement that can be made to CADIC2 is to use 

euclidian bumpers during dimensional checks. At present all bumpers are 

orthogonal, for example :- 

d 
\d"' 

key 

d= minimum spacing 

Correct width of bumpers is observed at all points except at the 

corners of shapes, where the width may reach a maximum of 'mod' units. 

Under certain conditions, this over-expansion can cause false violations 

to be generated :- 

i 

key 

d_ minimum spacing 

Note that most existing design rule checking programs use some sort 

of orthogonal distance test during dimensional check, and nearly all 

produce false errors for the above mentioned reason. The justification 

for using the orthogonal approach is that it is very easy, and fast to 

implement. 
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The only way to remove the false violations is to use euclidian 

bumpers. In this approach, the area of influence round a corner is 

described by the arc of a circle with radius 'd', and centre at the 

corner point, for example :-I 

key 

d=minimum spacing 

Y 

Now the bumper is guaranteed to be of width 'd' for all conditions. 

The euclidian approach however requires much more CPU time to implement. 

Other design rule checking programs must represent the arcs as a series 

of straight segments, therefore the large increase in the number of 

segments per shape forces about an order increase in the CPU time 

required to perform the design rule checks. 

Although more expensive than using orthogonal bumpers, CADIC2 could 

use euclidian bumpers without forcing such a large increase in CPU time. 

This is because the reasoning behind the use of bumpers applies, to any 

type of bumper, whether it be rectangular or circular. If euclidian 

bumpers were used, CADIC2 only has to decide on which type of bumper to 

create, then use the relevant 'clipping' algorithm to check if any 

segments enter it. 
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9.3 Future work 

CADIC has been discussed, and possible improvements to the existing 

design aid proposed. There are however many other programs that could 

be incorporated into CADIC to enhance its use in integrated circuit 

design. The most important of these are discussed below. 

Automatic design : In the future, as the complexity of integrated 

circuits increases from VLSI to WSI (Wafer Scale Integration), it is 

envisaged that manual aids will slowly be phased out of whole layout 

design, in favour of automatic design aids. This has the problem of 

creating layouts that will be larger than necessary, but it is felt that 

manual design will prove to be too expensive to implement at the circuit 

level. Note that manual aids will however still be used to design the 

cell library used by automatic aids. 

" The CADIC suite would therefore benefit from a program which could 

automatically place and route a cell layout. In this way, the designer 

could switch between manual and automatic aids, to acheive the optimal 

layout design. 

In many respects, the importance of manual design aids will not be 

greatly affected by this swing from manual to automatic design aid. 

Since the manual design aid will only be working with comparatively 

small sections of layout, new features can be incorporated into the 

interactive design aid, which would dtherwise not be feasible, due to 

excessive CPU time requirements. These features such as automatic 

layout adjustment and on-line functional verification are discussed 

below. 
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Automatic layout adjustment : This would be a useful extension to the 

on-line design rule checking facility available in CADIC. Instead of 

simply warning the designer that a shape has violated the design rules, 

it would be better if CADIC could automatically shift the violating 

shape, such that the design rules were in fact satisfied. 

The problem of course may not be limited to moving just the newly 

added shape. More than likely, the adjustment will cause a 'knock-on' 

effect which may cause a combinatorial explosion within the layout. 

Therefore this technique will almost definitely have to be restricted to 

small sections of layout, before it can be feasibly considered for use 

in an interactive environment. 

On-line functional verification : Design rule checking ensures that the 

layout is geometrically correct, but will not ensure that the circuit 

will operate correctly. This is the job of the functional tester. At 

present, the functional checks are performed off-line, and so create a 

'bottleneck' in the design process, just as described for off-line 

design rule checking (See Chapter two). 

The problem with on-line functional 

it into an interactive environment. 

rules were specified at the beginning of 

group definitions produced thereafter. 

so simple, since a different functional 

supplied for each group definition. 

verification is how to include 

With design rule checking, the 

the design, and applied to all 

Functional verification is not 

description would have to be 

A useful technique would be to constrain the function of each group 

definition to be any one of a pre-defined library of elements. On 

entering a group definition, the user would specify the type of element 
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he was going to develop. On completion, 

definition to ensure that the correct element 

this way the information to be entered by the 

a few words, and the computer need only check 

element, rather than having to guess the 

itself. 

t 

: ADIC could check the group 

was in fact produced. In 

user is limited to at most 

for a particular type of 

function of the element by 
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SECTION 1 

GETTING STARTED WITH CADIC 

1.1 BASIC INFORMATION ABOUT THE SIGMA 5000 AND CADIC 

The SIGMA 5000 is 
(Graphics Option Con 
alphanumeric terminal. 
graphics terminal is 
hand-held control box, 
up, down, and 'hit'. 

a microprocessor-based system consisting of a GOC 
troller), colour raster scan terminal, and an 

The input device used in conjunction with the 
a cross-hair cursor, and is controlled by a 

containing five buttons - movement left, right, 

r At various times during the use of CADIC, the cross-hair cursor 
will be displayed on the graphics screen. If a single alphanumeric key 
is pressed while the c/h cursor is visible, the ASCII equivalent of the 
key pressed, and the coordinates of the cursor are sent to the computer. 
CADIC accepts this key as a command and uses the coordinates 
accordingly. 

During the execution of CADIC, all graphic work is displayed on the 
graphic screen, with all alphanumeric input/output being carried out on 
the alphanumeric screen. 

The framed area of the screen shows the virtual window, and any 
part of the artwork contained in this window will be displayed on the 
screen. Therefore if the-window is larger that the size of the layout, 
the whole layout will be displayed, but if the window is smaller, then 
only part of the layout will be seen. The position and size of the 
virtual window is -under user control, so the user can use a large 
magnification (small window) to check spacing widths etc. or use a 
small magnification (large window) for global checks (Figure A1.1). 

Above the virtual window frame, on the left hand side, is written 
the name of the layout, or group definition that the user is presently 
working on. Above the frame and to the right is displayed the virtual 
window dimensions Xmin, Ymin, Xdim, Ydim. Below the window area, and to 
the left is a plot list which shows the mask numbers presently displayed 
on the screen. Each mask number is enclosed in a box of the relevant 
colour, so as to make identification simpler. 
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1.2 PROGRAM INITIALISATION 

On running CADIC, the alphanumeric screen will clear and the 
following message will appear :- 

- CADIC - 

PROGRAM TO GRAPHICALLY MODIFY AN INTEGRATED CIRCUIT LAYOUT 

ENTER NAME OF EXISTING RING DATA STRUCTURE OR RETURN :- 

The program will then wait for a filename. If a new ring data 
structure (i. e. new layout) is required, press carriage return. If the 
user wants to look at, or modify an existing layout, just type in the 
name of the data structure followed by carriage return. (Note - do not 
include the filename extension . RNG) 

The program will then check to see if the filename does in fact 
exist. If yes, then the graphic screen will be set up and the program 
placed at the main command level (See Section 2). If the filename does 
not exist in the user's directory, the program will return with :- 

FILE <filename> DOES NOT EXIST - PLEASE TRY AGAIN :- 

At this point, the user replies as described above. Had the user 
pressed carriage return for a new data structure, the program puts up 
the following message :- 

ENTER NAME FOR THE NEW RING DATA STRUCTURE OR RETURN :- 

Pressing carriage return will abort the program and return the user 
to the monitor level. Any filename entered is again checked by the 
program. If the filename is unique the program will set up the graphic 
screen, ask for a title (see below), and then enter the main command 
level. If the filename is not unique, the program warns :- 

FILE EXISTS - DO YOU WANT TO OVERWRITE ? 

The answer to this is YES or NO. YES will cause the file to be 
overwritten, wheras NO gives the user a chance to cover up his mistake, 
with the program again asking for the name of the new data structure as 
before. 

To help the user identify different layouts, the program always 
asks for a layout title when dealing with new data structures. A title 
up to 30 characters can be entered. Note - all group definitions in the 
layout require identity names, so the user can always tell where he is 
situated (i. e. in the main layout, or in a group definition) simply by 
looking at the title written at the top left of the screen. Therefore, 
to save confusion, it is advisable to use a layout title different from 
those likely to be chosen for group titles. 
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After supplying a title, the program enters the main command level 
(See below) and waits for further instruction. 
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SECTION 2 

MAIN LEVEL COMMANDS 

Whenever these commands are available to the user, the program will 
print : 

WHAT NOW : 

All main level commands are described below. Note that only the first 
two letters of each command need be typed to uniquely identify the 
command. 

2.1 ADJUST 

The mask colours are automatically defined during the 
initialisation- stage of the program, but the colours can be changed 
dynamically by the user with the use of the ADJUST command. 

On receiving the command, the graphics screen clears, then 15 boxes 
(one per mask) are drawn on the screen, each with an identifying number, 
and drawn in the relevant colour. The program then asks :- 

ENTER MASK REQUIRED OR PRESS RETURN TO FINISH :- 

If a number between -ý and 15 is entered, the program asks : -. 
4ý 

PRESENT SETTINGS FOR MASK <num> ARE : - 
RED - <numl>, GREEN - <num2>, BLUE - <num3> 

ENTER NEW AMOUNTS OF R, G, B OR RETURN TO FINISH :- 

Note that amounts of R, G, B can vary from 0 to 15. On entering the three 
integers, the respective mask colour is updated on the graphic screen, 
so that the user can see what it looks like. The above question is 
again asked, so that the user can try several combinations of R, G, B to 
acheive the correct colour. 
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When finished testing' the colour, press carriage return. The 
program then asks :- 

DO YOU WANT TO ACCEPT THE NEW SETTINGS ? 

If it has been decided that the original colour was better, type NO, 
otherwise type YES, after which the new settings will be used by CADIC. 
On answering this question, the program again asks :- 

ENTER MASK REQUIRED OR PRESS RETURN TO FINISH :- 

Now another mask can be processed. If no more masks are required, press 
carriage return, and the program will return to the main command level. 

2.2 AXIS 

This command complements a flag in-the program. By default the 
flag is off, but if set, the program draws scaled axes whenever the 
screen is redrawn. 

The layout is actually quantized to a grid of allowable points (See 
later), and the ticks on each axis correspond to the grid lines. Should 
the user be using a. large window, too many ticks would be required to 
show every grid line, therefore the program ticks, for example, only 
every third grid line. The user is made aware of this by a note 
positioned above the virtual window frame, which for this example would 
show :- 

AXIS GRID X3 

The AXIS command is cancelled by typing a second AXIS when at the 
main command level. It 
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2.3 CHANGE 

This option allows, the user to change the name of a group 
definition. A more subtle option is available, in which the user can 
change the group that group instances previously referred to. So if the 
user has a revised group to take the place of the old definition, this 
command saves the user from having to manually delete then re-insert all 
the affected group instances. 

On typing CHANGE at the main command level, the alphanumeric screen 
clears and the following question is asked :- 

- CHANGE GROUP NAME - 

DO YOU WANT TO CHANGE GROUP DEFINITION OR INSTANCE NAME 7 

{ 

The user must type 'DE' or 'IN' as required, followed by carriage 
return. If 'DE' was typed, the program asks : 

ENTER NAME OF GROUP DEFINITION TO BE CHANGED OR RETURN TO FINISH : 

To return to the main command level, just press carriage return, 
otherwise supply the necessary group name. If the name does not exist, 
the program returns with : 

GROUP DEFINITION NAHE <groupname> DOES NOT EXIST. 
PLEASE TRY AGAIN OR RETURN TO FINISH :- 

Should the name exist, the program will ask : 

ENTER NEW GROUP DEFINITION NAME OR RETURN :- 

Pressing carriage return will cancel the command and return the 
user to the main command level. Otherwise, a unique group name must be 
supplied. If not unique, the program will return with : 

GROUP DEFINITION NAME <groupname> ALREADY EXISTS 
PLEASE TRY AGAIN OR RETURN TO FINISH :- 

The change of an instance is as described for a definition, except 
that the words GROUP INSTANCE are used to replace GROUP DEFINITION. 
Note - group instances do not have names, they only refer to groups with 
names, so a GROUP INSTANCE NAME really means the GROUP DEFINITION NAME 
that a group instance refers to. 
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2.4 CLEAN 

In general, the user will not add shapes 'to the layout in a 
sequence that will ensure efficient build up of the data structure. 
Usually beads of similar type are scattered throughout the file, instead 
of being stored on the same or adjacent pages. 

On typing 'CLEAN' at the main command level, the program will 
re-arrange the data structure such that the information is stored in a 
more efficient manner. The layout is in no way affected, but faster 
plotting times, and better response times are possible with a 'clean' 
data structure. 

2.5 CURSOR 

In most cases, the building up of I. C. artwork is aided by the use 
of a grid. For this reason, the cursor coords are rounded to the 
nearest grid point, as set by the user. 

The default setting is XOFF, YOFF, GRID - 0,0,10 so the cursor 
coordinates will always be a multiple of 10. Note that if the settings 
were XOFF, YOFF, GRID - 3,2,10 then the x-coords will progress as 
3,13,23,,, and the y-coords will progress 2,12,22,,,. 

On typing CURSOR at the main command level, the alphanumeric screen 
clears and the program asks : 

- CURSOR GRID UPDATE - 

PRESENT CURSOR GRID SETTINGS ARE : <numl>, <num2>, <num3> 

ENTER NEW SETTINGS OR RETURN : 

The new values are then entered as integers, separated by spaces. 
Note that only the minimum amount of information need be entered. If 
only the XOFF setting was to be changed, the carriage return could be 
pressed after entering it's new value, - and the YOFF and GRID values will 
remain as before. If both offsets needed updating, then the carriage 
return can be pressed after the second entry, and so on. 
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2.6 DEPTH 

On typing DEPTH at the main command level, the alphanumeric screen 
clears and the program asks :- 

- NESTING DEPTH UPDATE -. 

PRESENT GROUP NESTING DEPTH IS : <num> 

ENTER NEW VALUE OR RETURN : 

This command allows the user to specify what depth of group nesting is 
to be drawn out. By default, DEPTH is set to 10, but when plotting out 
a layout, to save time, DEPTH could be set to 1, which would cause the 
program to draw out only the groups in the highest level of the group 
hierarchy. 

2.7 EXIT 

This command puts the user up one program/system level. Therefore 
if one was presently dealing with the whole layout, EXIT will close all 
the'files used by CADIC, then return the user to the system monitor 
level. If the user is modifying a group definition, typing EXIT will 
return him to the whole layout. Again note that a quick look at the 
name displayed at the top left-of the graphic screen will, tell the user 
whether he is presently at layout, or group level. 

2.8 FILL 

This command complements a flag in the program., By default the 
flag is off, but if set, the program fills shapes whenever they are 
plotted on the screen. 

When the flag is off, the shapes are plotted out in outline. 
Therefore the user can watch the layout be built up. When the flag is 
on, the mask-is first plotted on an 'invisible' plane. Only when 
complete will the SIGMA fill the shapes and copy the whole mask layout 
onto the screen. During-the plotting period, the user will see no 
activity, and so may cause confusion to the first time user. 

The FILL command is cancelled by typing a second FILL when at the 
main command level. 
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2.9 GROUP 

This command allows the user to set up, or modify a group 
definition. After typing GROUP, the program clears the screen then 
asks : 

- GROUP MODIFICATION - 

ENTER NAME OF EXISTING GROUP DEFINITION OR RETURN :- 

If modification of an existing group definition is required, type 
in the name followed by carriage return. If the name does not exist, 
the program will warn : 

GROUP NAME <groupname> DOES NOT EXIST - PLEASE TRY AGAIN :- 

and the user can make another attempt. If a new group definition is 
required, press carriage return, after which the program will ask : 

ENTER NAME OF THE NEW GROUP DEFINITION OR RETURN TO FINISH :- 

Pressing carriage return allows the user to cancel the command and 
return to the main command level, otherwise a unique name (up to 6 
characters) must be supplied. If the name is not unique, the following 
message will appear : 

GROUP NAME <groupname> ALREADY EXISTS - DO YOU WANT TO OVERWRITE : 

IF YES is typed, the contents of the group definition are removed, 
and the group opened as if it had been newly set up. Typing NO forces 
the program to return to the previous question, so that the user can try 
a different groupname. 

Note that at all times while using CADIC, group names must be 
unique, and also not the same as the first 6 letters of the layout 
title. 

On accepting the group name, the program sets up the screen and 
then reaches its main command level just like that described for the 
whole layout. 
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CADIC is set up to handle only one group definition at a time. 
Should the GROUP command be attempted while the user is still modifying 
a group definition, the warning :- 

STILL IN <groupname> 

will be displayed in the menu area. If another group is required 
for modification/inspection, the user must exit from the present group, 
and enter the required-group. 

IMPORTANT - At present, CADIC has no facility for deciding on which 
level in hierarchy-a group is on. Therefore the lowest level must 
be added first, -and the hierarchy built up accordingly (i. e. If A calls 
B. group B must already exist). 

2.10 HELP 

This command simply clears the alphanumeric screen and prints out a 
list of all the possible main level commands, plus a brief description 
of their-use. 

2.11 INFORM 

This command clears the alphanumeric screen and prints out the 
status of various parameters in the program, then returns to the main 
command level. The output looks like :- 

--SYSTEM INFORMATION - 

YOU ARE PRESENTLY DEALING WITH THE MAIN LAYOUT/GROUP groupname 

SWITCH SETTINGS ARE : - 
AXIS - <statl> 
NET - <stat2> 
FILL - <stat3> 
ONLINE - <stat4> 

PARAMETER SETTINGS ARE : - 
CURSOR (XOFF, YOFF, GRID) :. <numl>, <num2>, <num3> 
DEPTH : <num4> 
TRACK (DELTA) : <num5> 
WINDOW (XOFF, YOFF, XDIM, YDIM) : <num6>, <num7>, <num8>, <num9> 
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2.12 LIST 

This command clears the alphanumeric screen and prints out a list 
of all the existing group definitions. If there are more that 20 names, 
the program will stop and print : 

PRESS RETURN FOR MORE :- 

To continue, press carriage return, of ter which the screen will 
clear, and the list will continue from where it left off. 

2.13 MODIFY 

This command allows the user to modify whatever layout/group 
definition he is presently in. On receiving this command, the following 
question appears in the alphanumeric screen :- 

MASK REQUIRED : 

All layouts can have up to 15 masks, and this question defines 
which mask is to be dealt with. Note that only one mask can be operated 
on at any one time, but commands do exist for jumping between masks, 
without having to return to the main command level (See Cursor 
Commands). 

After the-user types in a valid mask number, the program checks to 
see if the mask has already been plotted out on the graphic screen. If 
not, the mask will be plotted out if a space in the plot list exists. 
Remember that a maximum of four masks can be displayed at any one time. 

If the mask number is accepted, the cross-hair cursor is displayed. 
At this point in time, the user is at the Cursor Command Level. All 
possible commands at this level will be described in Section 3. 

2.14 NET 

This command complements a flag in the program. By default the 
flag is off, but if set, the program draws a net of points whenever the 
layout is redrawn. ' These points show where the grid points lie, and 
exactly line up with the axis grid (Section 2.2), but lets the user 
position the cursor accurately, without having to keep referring'to the 
edges of the screen. 

Once the net is drawn, the note similar to that given with the AXIS 
command is shown at the top of the screen 

NET GRID x <num> 

The NET command is cancelled by typing a second NET when at the main 
command level. 
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2.15 ONLINE 

This command complements a flag in the program. By default the 
flag is off, but if set, the program will design rule check each shape 
or group call added to the layout, against a set of supplied design 
rules. After typing ONLINE, if the flag is being switched on, the 
program clears the alphanumeric screen, then asks : 

- ONLINE DESIGN RULE CHECKING - 

ENTER NAME OF DATA STRUCTURE CONTAINING THE RULESP OR RETURN :- 

Pressing carriage return cancels the command, and returns the 
program to the main command level. If a filename is specified, the 
program checks to see if it exists. If not, the program will warn : 

FILE <filename> DOES NOT EXIST - PLEASE TRY AGAIN :- 

and the user can make another attempt. If the file does exist, it is 
copied into CADIC's temporary file, then the program return to the main 
command level. 

The ONLINE command is cancelled by typing a second ONLINE when at 
the main command level. 

2.16 ORIGIN 

This command shows the user where all the group origins are 
situated. The points are shown using isosceles triangles, with the 
'top' of the triangle lying on the origin point. 

2.17 PLOT 

This command is used to plot out specified masks on the graphic 
screen. The SIGMA contains 4 , display planes, so allowing a maximum of 
16 colours to be plotted out simultaneously. The intuitive approach is 
to allow all fiveteen masks to be shown at once if required. In this 
situation, shapes on later masks will overwrite previous shapes if they 
overlap. For example, if the aluminium mask is plotted out after the 
contact mask, then all the contact holes would be overwritten. 

Another approach uses the fact that the SIGMA can mask the writing 
of data to the display planes. By putting a mask on each plane, the 
overlap conditions produce unique colour numbers, and so specific 
colours can be assigned to the overlap. In the case of plotting the 
aluminium and contact masks, the contact holes would still be seen under 
the aluminium, and correctly coloured to show it up against contact 
holes that were not covered. This approach is obviously better, and was 
the approach adopted by CADIC. Therefore, when plotting out masks, 
CADIC limits the number of masks to a maximum of four at any one time. 
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2.18 SAVE 

To prevent the ring data structure becoming corrupt due to, say a 
system failure, CADIC takes .a working copy of the data structure during 
initialization. All future work is performed using the working copy. 
Typing 'SAVE' at the main command level will copy the working copy into 
the actual data structure, thus producing a protected version of the 
layout. 

The 'SAVE' command should be used frequently if the user is 
building up and/or editing the layout, so that a system failure loses 
only the work up to the most recent 'SAVE' command, instead of the whole 
day's work. Note that an automatic save of the working copy is made 
when exiting from CADIC. 

2.19 SWITCH 

During on-line 
temporarily switch 
relevant, or because 
off switching off /on 

receiving the comman, 
asks :- 

design rule checking, the user may want to 
off certain rules, either because the rule is not 
the rule is taking too long to implement. The task 
rules can be achieved using the SWITCH command. On 

3, the alphanumeric screen clears, and the program 

ENTER RULE NAME TO BE CHANGED OR PRESS RETURN TO FINISH :- 

If an existing rule name is entered, the program asks :- 

RULE <rulename> IS PRESENTLY <status> - do you want to change it ? 

If the rule is already in the correct status, type NO, otherwise 
typing YES will invert the status (i. e. OFF -> ON, ON -> OFF). Once 
complete, the program again asks :- 

ENTER RULE NAME TO BE CHANGED OR PRESS RETURN TO FINISH :- 

In this way, several rules can be changed at the same time. If no 
more changes are required, press carriage return, and the program will 
return to the main command level. Note that the SWITCH command only has 
relevance if the ONLINE flag is set. If not, the program gives the 
warning :- 

ON-LINE DESIGN RULE CHECKING NOT YET IMPLEMENTED 

then returns to the main command level. 
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2.20 TRACK 

This command allows the user to change the width of a track. By 
default A is set to 10 units, where e is defined as : 

On typing TRACK, the alphanumeric screen clears, and the program asks s 

- TRACK UPDATE - 

PRESENT TRACK DIMENSION IS : DELTA - <num> 

ENTER NEW'VALUE OR RETURN : 

Pressing return leaves the value of ', & as before, otherwise a is 
updated as required. 

2.21 WINDOW 

This command allows the user to specify the virtual window size. 
The program clears the alphanumeric screen and asks : 

i 

- WINDOW UPDATE - 

PRESENT WINDOW SIZE IS : <numl>, <num2>, <num3>, <num4> 

ENTER NEW VALUES OR RETURN :- 

As in the CURSOR command, only the minimum number of values need be 
entered. 
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SECTION 3 

CURSOR COM}MND LEVEL 

Whenever the cross hair cursor is visible, the user is at the 
cursor command level. At this level, the user can alter the artwork, or 
simply inspect it using the range of windowing functions available. The 
commands are as follows : - 

3.1 SPACE..... RETURN TO MAIN COMMAND LEVEL 

Pressing the space bar will return the user to the main command 
level. 

3.2 -..... REMOVE MASK FROM PLOT LIST 

On typing '-', the program asks :- 

" MASK REQUIRED : 

Enter the mask number to be removed. If the mask is not displayed on 
the screen, the program will reply with :- 

MASK <num> IS NOT IN THE PLOT LIST 

If the mask number entered is displayed on the screen, then it will be 
immediately removed, and the plot list at the bottom left hand corner of 
the screen will be updated accordingly. If the mask the user was 
working on is to be removed, then the program will remove it, but ask :- 

THE MASK YOU WERE WORKING ON HAS BEEN REMOVED 

MASK REQUIRED : 

On completion of this command, the program returns to the cursor command 
level. 
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3.3 ?.... AVAILABLE CURSOR COMMANDS 

At any time while the 
type '? ' to find out which 
example, if the user is at 
commands will be given. 
only those commands releva 
given. 

cross hair cursor is visible, the user can 
cursor commands are presently available. For 
the cursor command level, the full list of 
If the user is in middle of adding a polygon, 

nt to the addition of the polygon will be 

The list of commands appears on the alphanumeric screen, along with 
a brief description of their use, and will provide useful information 
for both the inexperienced and experienced user. 

3.4 0 -> 9..... ADD MASKS TO PLOT LIST 

Pressing keys 1 -> 9, plots out the corresponding mask number if a 
space in the plot list exists. If there are already four masks 
displayed on the screen, the program will warn :- 

THERE IS NO MORE ROOM IN THE PLOT LIST 

and will return to`the cursor command level. If the mask already 
exists, the program will warn :- 

MASK <num> IS ALREADY IN THE PLOT LIST 

then will return to the cursor command level. 

The graphic screen does not clear, so the plot will superimpose 
itself onto any existing artwork. This facility allows the user to 
check alignment between shapes on different masks etc. 

If the 0 key is pressed, the question : 

MASK REQUIRED : 

appears in the menu area, allowing the user to choose a mask number over 
the whole range 0 s> 15. 
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3.5 C- ADD'COLLECTION OR ARRAY OF CROUP INSTANCES 

The user can insert an array of group instances using this command. 
When typed, the program asks : 

ENTER GROUPNAME OR RETURN TO FINISH :- 

To cancel the command, press carriage return, otherwise enter the 
name of the group required in the array, followed by carriage return. 
If the groupname does not exist, the program replies with: 

GROUPNAME <groupname> DOES NOT EXIST 
PLEASE TRY AGAIN OR RETURN TO FINISH :- 

If the name does exist, the program asks s. 

ORIENTATION :- 

By this it means the orientation of the group instances in the 
array, as the array cannot be orientated. The orientation is a 3-digit 
decimal number of the form 'abc' where a- reflection in X-axis, b- 
reflection in Y-axis, c- rotation of +90 degrees. The letters a to c 
are given the value 1 or 0 depending on whether the transformation is, 
or is not required. Note that if an orientation involves a rotation, 
the rotation is always implemented first. 

As an example, if the user wants the group reflected in the X-axis, 
the code would be 100. If rotation followed by reflection in the Y-axis 
is required, the code would be 011. 

If the user presses carriage return without entering an orientation 
code, a default value of 000 will be assumed. On accepting an 
orientation code, the program proceeds by asking : 

X NUMBER AND SPACING 

which means the number of group instances required in the X direction of 
the array, plus the spacing between instances. Pressing only carriage 
return will assume the X number as 1. 

Once answered, a similar question will be asked in reference to the 
Y direction : 

Y NUMBER AND SPACING 

On completion of the data input, a point on the screen will show 
where the origin of the bottom left-hand group instance is situated. 
Note - if the group instance has been rotated, then this point may not 
be the bottom left-hand corner of the whole array (See Figure A1.2) 
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Once placed, the cross hair cursor is returned, as the user has the 
ability to adjust the position of the array if not correct. 

Typing an 'S' will just substitute the new cross hair cursor 
coordinates, whereas typing a '-0' will ask for the coords to be entered 
at the keyboard, allowing the user to specify the point exactly. Should 
the array be incorrect, the user can remove it from the artwork by 
typing a 'K'. Note - to be effective, this command must be used before 
any other command (other than 'S' and '#') is implemented. 

Once the array is in the correct position, the user can draw it out by using the 'D' command. 

If the ONLINE flag is set, then the array must be design rule 
checked before it is drawn out and added to the ring data structure. 
Once the checks have been applied, CADIC proceeds in one of two ways. 

If no violations exist, the array is drawn out in solid lines, and 
added to the data structure. If violations do exist, the error messages 
are printed out on the alphanumeric screen. The array is then drawn out 
in dashed lines, and the following question asked : 

DO YOU WANT TO OVER-RULE THE ERRORS ? 

Answer YES or NO. If the answer is YES, then the array is drawn out in 
solid lines, and is added to the ring data structure. If the answer is 
NO, then the array is removed from the screen, and 'killed' from memory. 

3.6 F- FIND NEAREST POINT IN THE LAYOUT 
-(INCLUDING 

GROUPS 

On typing an 'F', the program searches the data structure for the 
point that is closest to the cross hair cursor. Note that this search 
includes all group instances and arrays. If a point is found, the 
program replies with : 

NEAREST POINT TO THE CURSOR IS : - 
X- <numl>, Y- <num2> 

If the point cannot be found, for example if the user is on the 
wrong mask, the program warns : 

NO SHAPES ON MASK <num> 
CLOSE TO THE CURSOR 

3.7 C -, ADD GROUP INSTANCE 

This command follows exactly as the 'C' command, except of course, 
the X and Y numbers and spacing are not asked for. As with the arrays, 
the group instance can be moved, drawn out, and aborted once it is 
inserted. 
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3.9 I- IDENTIFY POINT IN A SHAPE TO BE MOVED 
----- ----- 
On typing an 'I', the program searches the data structure for the 

point that is closest to the cross-hair cursor. Note that the search 
does not include group instances and arrays. 

If a point is found, the user can move the whole shape if required. 
Typing a 'Y' at the new position for the point allows the shape to be 
moved at an angle. Typing an 'H' will force the program to calculate 
the nearest point to the new cursor position, such that the movement in 
orthogonal. For example :- 

ii 
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1I 

11 
11 
11 
1I 
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ýr -ear rrrl 

Vrýr7 

1 

1 
1 

Lr 
. rrrr rrý 

ýH 

In either case, a point will be drawn at the new location. This 
point can be adjusted using any of the commands Once 
happy with the position of the point, typing a 'D' will delete the 
original shape, and draw it in its new location. Note that an automatic 
delete and draw will take place (if not already done so) before 
commencing with a new cursor level command. 

3.9 J- JUMP BACK TO FULL LAYOUT 

The bounding rectangle of 
whenever new shapes or group 
definition. The program stores tl 
the cursor command level forces 
that the whole layout fits neatly 
the cursor is not important. 

3.10 K- KILL SHAPES 

the layout is dynamically updated 
calls are added to the layout/group 

lese dimensions and so typing a 'J' at 
the program to redraw the layout, such 
into the window area. The position of 

To implement this command, the user must place the cross hair 

cursor over the shape that is to be deleted. If the program cannot find 
the shape, the message : 

THERE ARE NO SHAPES ON MASK <num> 
CLOSE TO THE CURSOR 

If this is the case, the cursor must be repositioned and the 'K' 
command tried again. If the shape is found, it will be immediately 
removed from the layout. 
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3.11 L- LAST WINDOW 

This command redraws the layout using the previous window 
dimensions. Such a command is useful, for example, if the user is 
presently using a large window. He can zoom in to make a detailed 
check, then when finished, can type 'L' to return to the original window 
size that he was using. 

3.12 M- CHANCE MASK 

When in the MODIFY mode, the user can operate on only one mask at a 
time. Should modification be required on another mask, using the 'H' 

command will, force the program to ask : 

MASK REQUIRED : 

The new mask number can be entered, so continuing the modification, 
but now on the new mask number. 

3.13 P- ADD POLYGONS 

This command will initiate the adding of a 
structure. Note - this point must be the bottom 

polygon. In CADIC there are two classifications 
format polygons, and long format polygons. 
contain only orthogonal segments (Manhattan 
format polygons may contain angled segments : - 

nn 

0 

E 0E 

polygon to the data 
left-hand corner of the 
for polygons. Short 
Short format polygons 

geometry), wheras long 

After shape initialisation, the user can set about 
adding the other points. To do this, he has the choice of eight 

0, A, E, X, o, a, e, x. commands :''' 

The '0' key will calculate the nearest point to the cursor, such 
that the segment between the new point and the last point is orthogonal. 
(i. e. horizontal or vertical). To finish a polygon orthogonally, the 
user must type an 'E'. Note - the position of the cursor is not 
important when finishing polygons, as the last point must be equal to 
the first point to satisfy the closed shape constraint. 

On the other hand, if the 'A' command is used, the cursor 
coordinates will be accepted, allowing angled segments to be added. To 
finish a polygon with an angled segment, type an 'X'. Again the 
position of the cursor for this finishing command is not important. 
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Note that If a light segment is required, use the upper case 
commands, and if a dark segment is required, used the lower case 
commands. 

If the user adds a point which he realises to be in the wrong 
place, he can move it using one of the following options : , 'N'. 
Note - these commands only apply to the point newly added. 

'S' will simply recalculate the coordinates of the point, using the 
new cursor coordinates. '#' is identical to the 'S' command except that 
the coords are entered at the keyboard. 'N' will search through the 
data structure, and find the point nearest to the cursor position. If 
found, this point replaces the incorrect one, so allowing the user to 
'tag' shapes onto existing anchor points. 

At any point during the formation of the polygon, the user can 
abort the 'P' command, by typing a 'K' for kill. 

Once the polygon is complete, the user can draw out the shape by 
using the 'D' command. Note that if not already drawn out, through 
using the 'D' command, the polygon will be drawn out automatically 
before commencing any new cursor level command. 

If the ONLINE flag is set, then the polygon must be design rule 
checked before it is drawn out and added to the ring data structure. In 
the event of a violation, the program will proceed as described in 
Section 3.5. 

3.14 S- 
-QUERY 

DISTANCE 

This command is used to check distances between two points on the 
graphic screen. On pressing 'Q', the present cursor position will be 
shown as a point on the screen. If the user then moves the cursor, and 
types a second 'Q', the new cursor position will be shown by a point, 
and the incremental-distance between the two points will be diplayed in 
the alphanumeric screen : 

INCREMENTAL DISTANCE BETWEEN THE TWO POINTS IS : - 
X-INC - <numl>, Y-INC - <num2> 
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3.15 R- ADD RECTANGLES 

This command initialises the program to accept a rectangle into the 
data structure, and will show the present cursor position by a point on 
the screen. Note - this point must be the bottom left-hand corner of 
the rectangle. To complete the rectangle, type an '0' at the position 
of the top right-hand corner of the rectangle :- 

Co 

R 
As with the polygon command, any of the options i 'S', 'M', 'N', 'K' 

can be used in conjunction with the 'R' and '0' commands, with the 'D' 
command also being available to draw out the rectangle, when satisfied 
that the rectangle is correct. Again,, the program will automatically 
draw out the shape (if not already done so) before commencing any new 
cursor level command. 

If the ONLINE flag is set, then the rectangle must be design rule 
checked before it is drawn out and added to the ring data structure. In 
the event of a violation, the program will proceed as described in 
Section 3.5. 

3.16 T- ADD TRACKS 

This command initialises the program ready for insertion of a 
track, and shows the present cursor position as a point on the screen. 
Note that this point must be the bottom left hand point of the track 
centre line. 

To add a track, the user specifies the centre line, with the width 
of the track being defined by DELTA. To change this value the user must 
return to the main command level. 

T ---- -- -ý'ý 

After typing a 'T' to initialize the track, the commands '0' and 
'A' can be used to add orthogonal and angled track centre-line points. 
As with the polygon and rectangle, the points can be moved by commands t 

To finish the track, type an 'E' at the required point if the last 
segment is to be orthogonal, or type an 'X' if the segment is to be 
angled. To draw out the track, type 'D', but remember that an automatic 
draw will take place when commencing a new cursor level command, If not 
already done so. 
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If the ONLINE flag is set, then the track must be design rule 
checked before it is drawn out and added to the ring data structure. In 
the event of a violation, the program will proceed as described in 
Section 3.5. 

3.17 U- UNDEFINED ZOOM 

This command redraws the, layout, but with the facility of allowing 
the user to 'zoom' in or out of the artwork. On typing a 'U', the 
program will ask : 

ZOOM IN FACTOR : 

If a positive integer is entered, the window dimensions will 
decrease by the zoom-in-factor (effectively increasing the artwork by 
the same factor), and the centre of the new virtual window will 
correspond to the cursor position at the time when the 'U' key was 
pressed. 

If a negative integer was entered as the zoom-in-factor, then the 
window size will increase, giving the effect of moving away, or zooming 
out, from the layout. 

3.18 V- VERIFY CURSOR COORDINATES 

This command simply tells the user the present coordinates of the 
cross hair cursor. These are given in the menu area as : 

CURSOR POSITION IS : - 
R- <numl>, Y- <num2> 

These coordinates will also be represented as a point on the screen. 

3.19 W- REDRAW WINDOW 

This command lets the user 'slide' the virtual window around, so 
that he can look at different areas of the artwork, without changing the 
window size (The window offsets will of course change). The direction 
moved is dependent on the cursor position, so the screen can be 
considered to be cut up into 9 sections as shown in Figure A1.3a. 

Assume for example, that the cursor is in area 6 when the 'W' 
command is implemented-The program then asks : 

ENTER DISPLACEMENT FACTOR : 

By this, it means the number of half windows that the user wants to 
move along. The effect of different displacement factors for area 6 are 
shown in Figure A1.3b. 
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Similarily, if the cursor is in area 4, the window will move left 
by the specified amount, and areas 9 and 2 will cause the window to move 
up or down respectively. If areas 1,3,7,9 are chosen, the window will 
move in a diagonal fashion, with the direction being dependent on which 
area is chosen. Note that if the cursor is in area 5 the displacement 
factor will not be asked for, and the artwork will be redrawn using the 

same window settings as before. 

3.20 Z- ZOOM IN BY A FACTOR OF 2 

This command acts in exactly the same way as the 'U' command, 
except the the zoom-in-factor is set automatically to +2. 

3.21 L- (Shift a- KILL GROUP INSTANCES AND ARRAYS 

To delete a group instance, place the cross hair cursor over the 
instance and type '('. If the program finds the group instance, it will 
instantaneously delete it. 

To delete an array, the procedure is exactly as above, except that 
the cross hair cursor must be placed over the bottom left instance in 

the array to be effective. 

3.22 a- PLOT AXIS ONCE 

This command is useful when at the cursor command level, and the 

axes are required for a quick check on a shape's position. The axes are 

plotted once, and the axis flag is not set. 

3.23 n- PLOT NET ONCE 

This command is useful at the cursor command level, when the net of 
points is required for a quick check on a shape's position. The net is 

plotted once, and the net flag is not set. 

3.24 s- SHOW HOW A SHAPE IS SEGMENTED 

Future work in CADIC may allow the Individual sub-polygons to be 

processed, rather than the polygon as a whole. For example moving only 
a segment of a track. In such situations it may be useful to see just 
how a polygon is cut up (if at all). 

Positioning the cursor over the shape under question, and typing 
's' will show up all the sub-polygons if they exist. 

3.25 w- DEFINE WINDOW SIZE 

This command allows the user to choose an area of the layout to be 
redrawn. The position of the cursor is taken as the bottom left hand 
corner of the area. The cursor is then repositioned at the required top 
right hand corner of the area, and a second 'w' is typed. The program 
then redraws the layout, such that the chosen area fills the screen. 
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SECTION 1 

AVAILABLE COMMANDS 

In this section, the algorithms used to perform the design rule checks will 

be described. Before doing this, it is useful to describe some of the more 

general definitions that will be used. 

Firstly, a shape can be defined as primary or secondary. A primary shape is 

one which has already been stored in the shape list. A secondary shape is the 

shape to be found. For example, the dimension checks (WIDTH, AREA etc) only use 

primary shapes, selectors (QVERLAP, SEPARATE etc) use a primary shape to find a 

secondary shape. Note that the definition only exists within any one algorithm, 

since a secondary shape found by an OVERLAP test will become a primary shape if it 

is tested in WIDTH, and so on. 

Secondly, much use is made of the segment type to try a cut down the number 

of segments to be processed. The segment type for each segment is calculated when 

required, and is defined as follows :- 

0- angled segment in 

1- horizontal in 

2- vertical in 

3- angled segment out 

4- horizontal out 

5- vertical out 
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The direction of a segment is from the starting coordinates to the finishing 

coordinates, and is deemed to be travelling outwards or inwards using the 

following rule :-9 Cr 

160 " 

270" 

The design rule algorithms are described below. 

S-. 

Os 

outwards il -90' <0< 90" 
inwards 11 160' <0< 270' 
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1.1 OVERLAP 

This routine finds a secondary shape which overlaps the pre-defined primary 

shape. An overlap between two shapes exists if the shapes share a common areas 

for example : - key 
r----' 

, 

r--- --- 
ENO 

---- -- 
ENO 

YES 

--- primary shape 

"rrrrý semridary shape 

The algorithm used to find overlapping shapes is as follows :- 

1. Set overlap flag to FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 

A 3. Find next secondary shape from data structure : (if finished 
goto (2) ) 

4. Do primary and secondary bounding rectangles overlap ? 

B YES - goto (5) (overlap still possible, so carry out more 
detailed analysis) 

NO - goto (3) (if the bounding rectangles are separate, 
then the shapes cannot possibly overlap) 

C 5. Find next primary segment in primary shape : (if finished goto (3)] 

6. Does primary segment enter secondary bounding rectangle ? 

D YES - goto (7) (overlap still possible, therefore carry out 
more detailed analysis) 

NO - goto (5) (if outside bounding rectangle, the primary segment 
cannot possibly intersect secondary segments) 

E 7. Does the primary segment intersect any secondary segments 
in secondary shape ? 

YES - goto (8) 

NO - goto (5) 

8. Here for overlap 
Set overlap flag to . TRUE. 
Store secondary shape in shape list 
RETURN 
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Some points to note about the algorithm are as follows :- 

At step (A), if the secondary shape identified is a sub-polygon, then the 

whole polygon must'be reconstructed before continuing the test. The OVERLAP test 

will-not fail if only the sub-polygon is considered, but if a future routine 

tests, for example, the area of the overlapping shape, a false error may be 

generated due to the fact that only the sub-polygon was stored, and not the whole 

polygon. 

At step (B), if both the primary and secondary shapes are rectangles then the 

rest of the check can be ignored, since the OVERLAP condition is automatically 

satisfied. The reason for this is that the coordinates of the rectangle's 

bounding rectangle are identical to the rectangle's coordinates. Similarly, at 

step (D), if. any primary segment enters the secondary bounding rectangle, and the 

secondary shape is a rectangle, the OVERLAP condition is automatically satisfied. 

If the secondary shape is totally inside the primary shape, then the OVERLAP 

condition should be satisfied, but will not be, because no segment crossovers 

occurred. To catch this special case, a test is performed at step (C) which 

checks if the bottom left hand corner of the secondary shape is inside (i. e. to 

the left) of the primary segment. Therefore if no segment intersections were 

found, and the above mentioned corner was always inside the primary segments, the 

OVERLAP condition-is over-ruled at step (3), and CADIC2 re-directed to step (8). 

At step (E), only certain combinations of primary versus secondary segments 

need be considered. These combinations are as follows :- 

Primary segment 

Horizontal 
Vertical 
Angled 

Secondary se ent 

Vertical, Angled 
Horizontal, Angled 
Horizontal, Vertical, Angled 
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1.2 SEPARATE 

This routine finds a secondary shape which is separate from the pre-defined 

primary shape. Two shapes are separate if the shapes do not share any common 

area, for example :- 

r---"-- 
J 

----ý 

ýqJ 

r--I 

, NO 

key 

primary shape 

- -- -- -- wcordary stupe 

The algorithm used to find separate shapes is as follows :- 

1. Set separate flag to FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 

A 3. Find next secondary shape from data structure : [if finished goto (2)j 

4. Do primary and secondary bounding rectangles overlap ? 

B YES - goto (5) (possible separation, therefore perform 
more detailed analysis) 

NO - goto (8) (if bounding rectangles are separate, shapes 
must be separate) 

C 5. Find next primary segment in primary shape : (if finished goto (8)) 

6. Does primary segment enter secondary bounding rectangle ? 

D YES - goto (7) (possible separation, therefore perform more 
detailed analysis) 

NO - goto (5) (if outside bounding rectangle, the primary 
segment cannot intersect any secondary segments) 

E 7. Does the primary segment intersect any secondary segments 
in secondary shape ? 

YES - goto (3) (shapes cannot be separate) 

NO - goto (5) 

8. Here for separate shapes 
Set separate flag to . TRUE. 
Store secondary shape in shape list 
RETURN 
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Some points to note about the algorithm are as follows :- 

At step (A), if the secondary shape identified is a sub-polygon, then the 

whole polygon must be re-constructed in case it is needed in other routines. The 

problem now is that if the polygon is separate, then each sub-polygon will satisfy 

the SEPARATE condition, and multiple versions of the same polygon will be stored 

in the shape list.. This redundancy will cause excessive processing in future 

routines, so the approach taken by CADIC2 is to only consider a sub-polygon if it 

contains the bottom left hand corner of the original polygon. All other 

sub-polygons are ignored. 

At step (B), the SEPARATE condition 

secondary shapes are both rectangles. TI 

of a rectangles bounding rectangle are 

rectangle. Similarly, at step (D), any 

bounding rectangle, when the secondary 

SEPARATE condition automatically fails. 

automatically fails if the primary and 

he reason for this is that the coordinates 

identical to the coordinates of the 

primary segment that enters the secondary 

shape is a rectangle means that the 

If the secondary shape is totally inside the primary shape, then the SEPARATE 

condition should fail, but will not, because no segment intersections occured. To 

catch this special case, a test is'performed at step (C), which checks if the 

bottom left hand corner of the secondary shape is inside (i. e. to the left) of 

the primary segment. Therefore if no segment intersections were found, and the 

above mentioned corner was always inside the primary segments, the SEPARATE 

condition is over-ruled at step (8), and CADIC2 re-directed to step (3). 

At step (E), only certain combinations of horizontal versus secondary 

segments need be considered. These combinations are as described in the OVERLAP 

algorithm. 
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1.3 ENCLOSED 

This routine finds a secondary shape which encloses the pre-defined primary 

shape. -A shape is enclosed when none of its area is outside the enclosing shape, 

for example : - 

NO 

NO ii key 
Y- primary shape us 

- -- --- secondary shape 

The algorithm used is as follows :- 

1. Set enclosed flag to FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 

A 3. Find next secondary shape from data structure : [if finished goto (2)] 

4. Does the secondary bounding rectangle enclose primary bounding rectangle ? 

B YES - goto (5) {possible enclosure, therefore perform 
more detailed analysis) 

NO - goto (3) (if the primary bounding rectangle is not enclosed, 
then the primary shape cannot possibly be enclosed) 

C 5. Find next secondary segment in secondary shape : [if finished goto (8)] 

6. Does secondary segment enter primary bounding rectangle ? 

D YES - goto (7) (possible enclosure violation, therefore 
perform more detailed analysis) 

NO - goto (5) (if outside bounding rectangle, the secondary 
segment cannot intersect any primary segments) 

E 7. Does the secondary segment intersect any primary segments 
in primary shape ? 

YES - goto (3) (primary shape cannot be enclosed by secondary shape) 

NO - goto (5) 

8. Here for enclosure 
Set enclosure flag to . TRUE. 
Store secondary shape in shape list 
RETURN 
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Some points to note about the algorithm are as follows :- 

At step (A), if the secondary shape identified is a sub-polygon, then the 

whole polygon must be re-constructed before the ENCLOSED test can continue. The 

reason is that the sub-polygon may not enclose the primary shape, whereas the 

whole polygon does enclose the primary shape. Re-constructing the polygon for 

every sub-polygon would create multiple copies of the same shape in the shape 

list. Therefore, the above process is only carried out when the sub-polygon 

containing the bottom left hand corner of the original polygon is found. All 

other sub-polygons are ignored. 

At step (B), the ENCLOSED condition is automatically satisfied if the primary 

and secondary shape are both rectangles. Conversely, at step (D), if any 

secondary segment-enters the primary bounding rectangle when the primary shape is 

a rectangle, the ENCLOSED condition automatically fails. 

If the primary shape is totally outside the secondary shape, but the primary 

bounding rectangle is enclosed by the secondary bounding rectangle, then the 

ENCLOSED condition should fail, but will not, because no segment intersections 

were found. To catch this special case, a test is performed at step (C), which 

checks if the bottom left hand corner of the secondary shape is outside (i. e. to 

the right) of the primary segment. Therefore if no segment intersections were 

found, and the above mentioned corner was always outside the primary segments, the 

ENCLOSED condition is over-ruled at step (8), and CADIC2 re-directed to step (3). 

At step (E), only certain combinations of primary versus secondary segments 

need be considered. These combinations are as described in the OVERLAP algorithm. 
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1.4 ENCLOSES 

This routine finds a secondary shape which is enclosed by the pre-defined 

primary shape. A shape is enclosed when none of its area is outside the enclosing 

shape for example :- 
r-- ' 

NO 

1 
1 

'LNO 

r, --1 

key 

primary shape 

----- secondary shape 

The algorithm used is identical to the ENCLOSED algorithm, except that the 

roles of the primary and secondary shapes are reversed. Note that this command is 

generated internally-by DRCCAD,. and is not available in the manual input language. 

1.5 SPACING 

This routine takes two separate shapes, and carries out a check to see if the 

spacing between the shapes is less than a specified minimum, for example :- 

key 

iI 
------ J 

----- primary shape 

--- -- secmdzry shape 

d minimum spacing 

The algorithm used proceeds as described below. Note that the terms primary 

and secondary shape is now used to isolate the two groups of shapes involved. For 

example, if the spacing test was between the shapes on mask (1) and mask (2), then 
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the primary shape(s) would relate to those shape(s) in the shape list that were on 

mask (1), and the secondary shape(s) would relate to the shape(s) in the shape 

list that were on mask (2). 

1. Set spacing violation flag to FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 

A 3. Expand primary bounding rectangle by spacing factor 

4. Find next secondary shape from shape list : (if finished goto (2)) 

5. Do the primary and secondary bounding rectangles overlap ? 

B YES - goto (6) (possible spacing violation, therefore perform 
more detailed analysis) 

NO - goto (4) (if the secondary shape is outside the expanded 
primary bounding rectangle, then the spacing 
test is automatically satisfied) 

6. Find next secondary segment from secondary shape : [if finished goto (4)] 

7. Does secondary segment. enter expanded primary bounding rectangle ? 

C YES - goto (8) (possible spacing violation, therefore perform 
more detailed analysis) 

NO - goto (6) (if outside bounding rectangle, the secondary segment 
cannot possibly violate test) 

8. Form bumper along outside edge of the secondary segment 

9. Do any primary segments from primary shape enter bumper ? 

YES - goto (10) 

NO - goto (6) 

10. Here for violation 
Set spacing violation flag to TRUE. 
RETURN 
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Some notes about the algorithm are as follows :- 

In step (A), the primary bounding rectangle is expanded by the minimum 

spacing distance W. One of the reasons for doing this is to allow the outcome 

of the SPACING test to be decided using only the bounding rectangle information. 

On entering the routine, the secondary shape is known to be separate from the 

primary shape. If the secondary bounding rectangle is also separate from the 

expanded primary bounding rectangle, then the spacing distance must be greater 

than 'd'. 

The second reason is that CADIC2 knows that any secondary segments that do 

not enter the expanded bounding rectangle must be further away than the minimum 

spacing distance. All such segments can therefore be ignored. 

In step (B), if both the primary shape and the secondary shape are 

rectangles, then the spacing condition must be violated. Similarly, in step (C), 

if a secondary segment enters the expanded bounding rectangle, and the primary 

shape is a rectangle, the SPACING condition must be violated. 
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1.6 CLEARANCE 

This routine takes two shapes, the primary enclosed by the secondary, and 

performs a" check to see if the distance between the two shapes is less than the 

specified minimum, for example :- 

ý--- ý --, 

ii 
ýddý 

key 

primary shape 

----- -I 

iI 

r 

------ secondary shape 

d minimum ckararce 

The algorithm proceeds as follows. As described in the SPACING algorithm, 

the terms primary and secondary shape isolate the two groups of shapes involved. 

1. Set clearance violation flag to . FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 

A 3. Expand primary bounding rectangle by clearance factor 

4. Find next secondary shape from shape list : [if finished goto (2)) 

5. Does the secondary bounding rectangle enclose expanded primary bounding 
rectangle ? 

B YES - goto (6) (correct clearance possible, therefore perform 
more detailed analysis) 

NO - goto (11) (the secondary shape cannot possibly 
enclose primary shape with minimum of 
clearance all round) 

6. Find next secondary segment from secondary shape : [if finished goto (4)] 

7. Does secondary segment enter expanded primary bounding rectangle ? 

C YES - goto (8) (clearance violation possible, therefore perform 
more detailed analysis) 

NO - goto (6) (if outside bounding rectangle, the secondary 
segment cannot possibly violate rule) 

8. Form bumper along inside edge of the secondary segment 
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9. Do any primary segments from primary shape enter bumper ? 

YES - goto (10) 

NO - goto (6) 

10. Here for-violation 
Set clearance violation flag to TRUE. 
RETURN 

Some points to note about the algorithm are as follows :- 

In step (A), the primary bounding rectangle is expanded by the minimum 

clearance distance 'd'. One of the reasons for doing this is to allow the outcome 

of the CLEARANCE-test to be decided using only the bounding rectangle information. 

On entering this routine, the primary shape is known to be enclosed by the 

secondary shape. If the expanded bounding rectangle is now not enclosed by the 

secondary bounding rectangle, then the clearance between the shapes must have been 

less than 'd'. 

The second reason is that CADIC2 knows that any secondary segments that do 

not enter the expanded primary bounding rectangle must be further away that the 

minimum clearance. All segments can therefore be ignored. 

In step (B), if the expanded bounding rectangle is enclosed, and the two 

, shapes are rectangles, then the CLEARANCE condition must be satisfied. 

Conversely, in step (C), if a secondary segment enters the expanded bounding 

rectangle, and the primary shape is a rectangle, then the CLEARANCE must be 

violated. 
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1.7 WIDTH 

This routine checks the width of a shape, against a specified minimum 

distance 'd', for example :- 

The algorithm is described below. Note that the terms primary segment and 

secondary segment are now used to isolate the segments within the primary shape. 

The segment presently being checked is the primary segment, and all the segments 

between the. primary segment,. and the start of the shape, are the secondary 

segments. 

1. Set width violation flag to . FALSE. 

2. Find next primary shape from shape list : (if finished RETURN) 

3. Is shape a rectangle ? 

YES - goto (4) 

NO - goto (6) 

4. Check width using the bounding rectangle dimensions 

5. Is there a violation ? 

YES - goto (10) 

NO - goto (2) 

6. Find next primary segment from primary shape : (if finished goto (2)] 

7. Is primary segment travelling outwards ? 

YES - goto (6) (width violation can only be caused by 
segments travelling inwards) 

A NO - goto (8) 

8. Form bumper along inside edge of primary segment 
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9. Do any secondary, segments from primary shape enter bumper ? 

YES - goto (10) 

NO - goto (6) 

10. Here for violation 
Set width violation flag to . TRUE. 
RETURN 

A point to note about the algorithm is as follows :- 

In step (A) only in-going segments are checked. The reason for this is that 

by forming bumpers round the inside of in-going segments, the processing is cut by 

half, yet all the dimensions are checked. To show this, consider the following 

shape :- 

key 

I 
dd minimum width 

I 
® bumper 

-, d k- 
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1.8 INTERLIMB 

This routine checks the spacing between limbs of a shape against a specified 

minimum distance 'd', -for example :- 

The algorithm proceeds as follows :- 

1. Set interlimb violation flag to FALSE. 

2. Find next primary shape from shape list : (if finished RETURN) 

3. Is shape a rectangle ? 

YES - goto (2) (interlimb check does not apply to rectangles) 

NO - goto (4) 

4. Find next primary segment from primary shape : (if finished goto (2)J 

5. Is primary segment travelling inwards ? 

YES - goto (4) (interlimb violation can only be caused by 
segments travelling outwards) 

A NO - goto (6) 

6. Form bumper along outside edge of the primary segment 

7. Do any secondary segments from primary shape enter bumper ? 

YES - goto (8) 

NO - goto (4) 

8. Here for violation 
Set interlimb violation flag to . TRUE. 
RETURN 
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A point to note about the algorithm is as follows :- 

In step (A), only out-going segments are checked. The reason for this is 

that by forming bumpers round the outside of each out-going segments, the 

processing is cut by half, yet all the dimensions are checked. To show this, 

consider the following shape :- 

d 

dj 

key 
d= minimum interlimb 

bumper E7 7,11ý 
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1.9 AREA 

This routine checks the area of a shape against a specified minimum area, for 

example :- 

key 

A= Areu 

The algorithm is as follows :- 

1. Set area violation flag to FALSE. 

2. Find next primary shape from shape list : [if finished RETURN] 
Set area total to zero 

3. Is shape a rectangle ? 

YES - goto (4) 

NO - goto (6) 

4. Check area using the bounding rectangle dimensions 

5. Is area greater than limit ? 

YES - goto (2) 

NO - goto (9) 

6. Find next segment from primary shape : [if finished goto (8)] 

A 7. Calculate incremental area under segment 
Add area to total 
goto (6) 

8. Is total area greater than limit ? 

YES - goto (2) 

NO - goto (9) 

9. Here for violation 
Set area violation flag to TRUE. 
RETURN 
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A point to note about the algorithm is as follows :- 

In step (A), we can easily calculate the area under a segment. If a negative 

area is attached to out-going segments, and a positive area attached to in-going 

segments, then by calculating the area for each segment, and summing it to a 

total, the area of the shape can be found. For example :- 

+600 

+500 
+200 

-100 -450 -500 
'' Reference level 

Area= -100 -450 -500 +600 + 500 +200 = 250 units 
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1.10 UNION 

This routine forms a new shape which is the logical OR of the two input 

shapes, for example :- 

key 
The algorithms is as follows :- primary snape 

---- ! secondary shape 

"-"-" output shape 

1. Find next primary shape in shape list : [if finished RETURN) 

2. Find next secondary shape in shape list : [if finished goto (1)] 

3. Set output shape information to zero 

4. Find next primary segment in primary shape : [if finished goto start of 
shape] 

5. Add primary segment's starting coordinates to the output shape 
coordinates. 

6. Is the output shape closed ? 

YES - goto (10) (output shape now complete) 

NO - goto (7) (continue building up shape) 

A 7. Does the primary segment intersect any of the secondary segments 
travelling out from the primary shape ? 

YES - goto (8) 

NO - goto (4) 

8. Re-define the secondary segment that caused the intersection to now start 
at the intersection point. 

B 9. Swap the shape information such that the secondary shape now acts as the 
primary shape, and vice-versa. Note that the secondary segment re-defined 
in step (8) will now become the present primary segment* 
goto (5) 

10. Store output shape in shape list. 
goto (2) 
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Some points to note about the algorithm are as follows :- 

The output shape is built up by following the primary shape in an 

anticlockwise direction until an intersection point is found. The routine must 

then turn outwards, and follow the secondary shape in an anticlockwise direction 

until an intersection point is found. The above process is then repeated until 

the output shape is complete. 

In step (A), because the routine always turns outwards at an intersection 

point, only the secondary segments travelling out from (as opposed to into) the 

primary shape need be considered. Not only does this rule half the number of 

checks required, but it automatically keeps the routine moving in the correct 

direction. Note that the intersection check is carried out in exactly the same 

way as detailed in earlier routines. 

Once an-intersection point is found, the secondary shape takes over the role 

as primary shape and vice-versa. Writing an algorithm to perform this can take 

two forms :- 

1. Produce a two-stage routine, one for when shape (A) is the primary shape, and 

one for when shape (B) is the primary shape. The algorithm then jumps 

between stages as the intersection points are encountered. 

2. Produce a single-stage routine, but swap the primary and secondary shape 

information after each intersection point. 

CADIC2 uses the latter approach at step (B), because the single-stage routine 

reduces the software required by half, and the construction of the lookup table in 

the shape list means that only the two relevant addresses in the lookup table need 

to be interchanged to effectively swap the shape information. 
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1.11 INTERSECTION 

This routine performs a logical AND function on the two input shapes to 

produce new output shape(s), for example :- 
key 

ýx 
I primary shape 

r:::: > ix i ---- secondary shape 

Ix "---"- output shape 

'B 1" output shape U--. i x=A. 8 starting point 
Note that more than one shape may be produced. The algorithm proceeds as 

follows :- 

1. Find next primary shape in shape list : [if finished RETURN] 

2. Find next secondary shape in shape list : [if finished goto (1)] 

A 3. Find next starting point of output shape : [if finished goto (2)j 

4. Re-define the primary segment to start at intersection point. 
Initialise output shape by storing its starting point 

5. Find next primary segment in primary shape : [if finished goto start of 
shape] 

6. Add primary segment's starting coordinates to the output shape coordinates 

7. Is the output shape closed ? 

YES - goto (11) 

NO - goto (8) 

B 8. Does primary segment intersect any secondary segments travelling into the 
primary shape ? 

YES - goto (9) 

NO - goto (5) 

9. Re-define the secondary segment that caused the intersection point to now 
start at the intersection point 

C 10. Swap the shape information . Note that the secondary segment re-defined 
in step (9) will now become the present primary segment. 
goto (6) 

11, Store the output shape in the shape list. 
goto (3) 
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Some points to note about the algorithm are as follows :- 

In step (A), finding the starting point of the output shape involves finding 

the first intersection point that has not already been used to form a previous 

output shape. These points are shown in the diagram above. 

On finding a starting point, the output shape is built up as follows. The 

routine proceeds along the edge of shape (A) in an anticlockwise direction, until 

an intersection point is found. The routine then turns inwards, and proceeds 

along shape (B) in an anticlockwise direction until an intersection point is 

found. The above process is then repeated until the output shape is complete. In 

step (B), because the routine always turns inwards at the intersection point, only 

secondary segment travelling into (as opposed to segments travelling out from) the 

primary shape. need be considered. 

At step (C), the routine swaps the shape information for the same reasons 

described in the UNION algorithm. 
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1.12 DIFFERENCE 

This routine performs a logical NAND operation on the two input shapes, to 

produce the new output shape(s), for example : - 
r---i 

I-T 
4I . x. 1 

3ii Ix I 

A11.2 Ix i Ix 
"J ýB'I 

xA. B 

key 
- primary shape 

---- secondary shape 

"-"-" output shape 

" output starting 
points 

Note that more than one shape may be produced. The algorithm proceeds as 

follows :- 

1. Find next primary shape in shape list : [if finished RETURN] 

2. Find next secondary shape in shape list : [if finished goto (1)) 

3. Set 'INC' to clockwise 

A 4. Find next starting point of output shape : (if finished goto (2)] 
Goto (10) 

5. Travelling in the 'INC' direction, find next primary segment in primary 
shape : [if finished goto start of shape] 

6. Add primary segment's starting coordinates to the output shape coordinates 

7. Is the output shape closed ? 

YES - goto (12) 

NO - goto (8) 

B 8. Does primary segment intersect any secondary segments travelling into the 
primary shape ? 

YES - goto (9) 

NO - goto (5) 

9. Re-define the secondary segment that caused the intersection point to now 
start at the intersection point 

C 10. Swap the shape information 

11. Reverse the direction of 'INC'. 
Goto (6) 

12. Store the output shape in the shape list. 
Goto (3) 
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Some points to note are as follows :- 

In step (A), finding the starting point of the output shape involves finding 

the first intersection point that has not already been used to form a previous 

output shape. These points are shown in the diagram above. 

On finding a starting point, the output shape is built up as follows. The 

routine proceeds along the edge of shape (B) in a clockwise direction until an 

intersection point is found. The routine then turns inwards, and proceeds along 

shape (A) in an anticlockwise direction until an intersection point is found. The 

above process is then repeated until the output shape is complete. Because of 

this continual reversal of direction, the secondary segments in step (B) are 

processed in the opposite direction to the direction of the primary segment. This 

rule automatically ensures that the routine moves in the correct direction. 

As described in the INTERSECTION algorithm, because the routine always turns 

inwards at an intersection point, only secondary segments travelling into the 

primary-shape need be considered. 

At step (C), the routine swaps the shape information for the same reasons 

described in the, UNION algorithm. 
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1.13 EXCLUSIVE 

This routine performs a logical XOR function on the two input shape to 

produce new output shape(s), for example :- 
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all the output shapes can easily be produced by using the 
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Introduction 
The economics of IC (integrated circuit) 
technology advocate the use of high den- 
sity circuitry. As a result, In the past, IC 
density has been doubling every two years. 
Having to repeat the very expensive mask 
making and fabrication process because 
the circuit contained errors is obviously 
unwanted, but increasing the density does 
increase this possibility. Stringent tests 
must therefore be carried out on the mask 
layouts (which are used to control the 
fabrication process) to ensure that the 
correct circuit will be produced. 

Present day VLSI (Very Large Scale 
Integration) can now produce silicon chips 
containing up to 450,000 gates. Even for 
an average sized layout, a computer may 
require several hours to complete just the 
design rule checks (see later). Computer 
time is not cheap, for example a single 
run of a design rule checker will typically 
cost £10,000 to £25,000. The use of such 
programs must therefore be kept to a 
minimum. 

This article is split into three main 
sections. Firstly there is a brief description 
of how a silicon chip is formed, and so 
hopefully help the reader understand why 
design rule checks are required. This leads 
on a summary of some existing computer 
techniques for the design and checking 
IC's. Lastly there is a description of the 
approach taken at Robert Gordon's Insti- 
tute of Technology, Aberdeen, plus a 
comparison against other techniques. 

John Logic Baird Travelling Scholarship 
The Scholarship allowed me to travel to 
the University of Arizona, which aided 
my research in two ways. Firstly. the 
excellent on-campus facilities for IC fabri- 
cation allowed me to obtain hands-on 
experience in IC design and production. 
Secondly, I was able to carry out a detailed 
survey of ICMASK, the computer design 
aid used at the University. 

The Scholarship also allowed me to 
travel to California and visit other Univer- 
sities, and IC companies in the Silicon 
Valley region. These visits involved dem. 
onstrations of popular design aids, talks 
to the authors, plus discussions with the 
users. 

The first stage of my research project 
involves a critique of existing computer 
design aids for which the John Logie Baird 
Travelling Scholarship has proved invalu- 
able. Exposure to other design aids has 

made me more aware of desirable features, 
which will undoubtably improve the 
quality of all future work. 

IC Fabrication 
Integrated circuit fabrication allows 
hundreds of identical circuits to be pro- 
duced simultaneously on a single wafer of 
silicon. By adding various chemical 
elements to predefined areas on the wafer 
(called doping the silicon), it is possible 
to make transistors, diodes, resistors, and 
capacitors which form the circuit. 

Prior to circuit fabrication, the designer 
must produce photographic masks for 
each stage of the process (up to 30 masks 
may be required). A mask consists of 
patterns of transparent and opaque areas, 
which will ultimately define which areas 
of the wafer will be doped, and which 
areas will not. 

The first step in the fabrication process 
is to protect the silicon by growing a thin 
layer of silicon oxide over the surface of 
the wafer. Next, a layer of photographi- 
cally active material (photo-resist) Is spread 
over the oxide, and the mask plate laid on 
the photo-resist. This sandwich is then 
exposed to a strong source of ultra-violet 
light. The radiation causes molecular 
change in the exposed photo-resist, allow- 
ing the unexposed photo-resist to be 
washed away easily. 

Acid is then used to remove the unpro- 
tected oxide, leaving the bare silicon once 
again (termed etching). Note that the 
photo-resist and silicon are unaffected by 
the acid. Now the pattern on the mask 
has been directly transferred on to the 
silicon. 

If the wafer is then placed into a tem- 
perature controlled furnace, and fed with 
for example, Boron gas, the exposed areas 
of silicon will start to absorb the Boron 
molecules. Controlling the density of the 
gas, and the temperature of the furnace, 
allows very accurate levels of doping to 
be achieved. 

The above process is now repeated 
using different masks and different chemi- 
cal elements to produce the individual 
components. By depositing metal over 
the entire wafer, and then selectively 
etching, the components can be connected 
to form the complete circuit. 

The problem with the fabrication 
process is that in practice, the elements 
are absorbed into the silicon as fast trans- 
versely (along the wafer) as they are 
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longitudinally (through the wafer). This 
means that the previously well defined 
doped areas now contain curved 'walls' 
which travel underneath the oxide pro- 
tection layer. 

Should two areas be too close together, 
they may be seen to be separate on the 
mask, but in fact be joined together in 
the silicon, so leading to circuit failure. 
The designer must therefore produce the 
mask with regard to a set of design rules. 

In the geometric sense, these rules set 
a minimum spacing between areas on any 
one mask, minimum spacing between 
areas on different masks, the amount of 
overlap required to ensure connectivity 
between areas, and so on. 

Present Design Aids 
As a result of being awarded the John 
Logie Baird Scholarship, a survey of exist- 
ing computer design aids was carried out. 
These aids ranged from fully automatic 
programs, to digitizing a layout drawn 
out by hand. For low-volume custom 
designed chips, the automatic approach is 
ideal, since the designer simply chooses 
modules or cells from a standard library, 
and specifies which cells are connected to 
which. The program then places all the 
cells and routes the tracks to the best of 
its ability. 

When first introduced, this approach 
was considered to be the answer to all the 
designer's problems. Unfortunately, due 
to the computer's implicit inability to 
recognize shapes, and lack of ingenuity, 
the layoutt computed (even after using 
substantial amounts of computer time) 
consume more silicon area than necessary, 
and problems in trying to route all the 
wires are often encountered. 

It was soon realized that some human 
intervention must be included. This led to 
several approaches in which the designer 
uses his intelligence to do the design, and 
leaves the computer to handle all the cal- 
culations and tedious work. 

One of the offshoots from this Ideol- 
ogy was the symbolic approach, in which 
the geometric definitions are represented 

i as lines and/or boxes. Stick diagrams as 
they are known have attracted much 
attention recently, as the simplified 
diagrams help ease the designer's job. 
Routines exist to compact these diagrams, 
and convert them into geometric layouts, 
but even the best routines have difficulty 
when processing large layouts. The result- 

ing non-efficient use of silicon area is 
undesirable, therefore many companies 
are returning to the geometric approach, 
to achieve the required density. 

At the geometric design level, the 
designer is manipulating the actual shapes 
that will apear in the mask layout. The 
design time is longer, but very compact 
layouts are possible, which is a necessary 
stipulation if large-volume production of 
the circuit is required. 

With any design technique, which 
involves human intervention, the complete 
layout must be checked using a set of 
design rules. In general, the design rule 
checking of a layout is done off-line ie as 
a separate process. Therefore the designer 
generates the layout, which is passed to 
the design rule checker, along with a set 
of design rules. The checker prints out a 
list of all the violations, and the designer 
then returns to the design stage and 
modifies the layout. Correction of one 
error may require the repositioning of 
part of the layout, which could introduce 
new errors. Therefore in practice, this 
two-stage cycle must be repeated about 
three to four times before an acceptable 
layout is achieved. 

It would obviously be much better if 
the design rule checks could be carried 
out as the shapes were being added (ie on. 
line) so that any violations could immedi- 
ately be spotted. The problem that has 
stopped this approach being carried out 
before is how to complete the checks fast 
enough, because a user who has to wait 
for each shape to be accepted will soon 
become discontented, and hence prone to 
even more mistakes. 

The approach taken at Robert Gordon's 
Institute of Technology 
The aim of research at Robert Gordon's 
Institute of Technology is to produce a 
program which provides the user with a 
full range of facilities to build up and/or 
modify a mask layout, at the geometric 
level. Through using a novel data-structure, 
the designer will have a set of predefined 
design rule checks carried out for each 
shape added, within the time it takes him 
to think of his next action. 

To tackle the problem of storing the 
huge amount of data produced in design- 
ing a layout, consider the layout as a 
collection of much smaller areas. All the 
information in the data structure is con- 
nected by a system of pointers, so by 

knowing the area a shape is in, and the 
mask it has been assigned to, the shape 
co-ordinates can be found very quickly. 

Area assignment for shapes which lie 
in more than one area is treated using a 
new approach. This should drastically 
cut the number of shapes that must be 
checked against each other, when carrying 
out the design rule checks. With such a 
data-structure, it is hoped to be able to 
carry out design rule checks two to four 
times faster than the most efficient tech. 
niques around. 

At present, the graphics package 
required to design the layouts has been 
completed. Through the use of simple 
commands, the designer can add/modify 
shapes, move them about, or delete them. 
Should a collection of shapes be repeated 
often in the layout, there exist facilities 
to define the collection as a group defi- 
nition. Instances of this group can then 
be added to the layout again through the 
use of a simple command. All these com- 
mands plus many more take the burden 
off the designer, and leave him to do what 
he can do best - defining shapes and fit- 
ting them together. 

Future work will involve adding on-line 
design rule checking to the existing pack. 
age. Some time will also be spent carrying 
out tests so that computer time and 
memory requirements will be minimised. 
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CADIC : AN EFFICIENT INTEGRATED CIRCUIT DESIGN AID 

G. B. Swan and J. D. Eades 

Robert Gordon's Institute of Technology, Aberdeen 

The CADIC suite of programs to aid integrated circuit 
design is presented. The most important features of 
this design aid are high efficiency in data-processing, 
and on-line design rule checking. CADIC can therefore 
substantially reduce the design turnaround time 
normally associated with manual design aids. 

Hardware and software details will be given. Emphasis 
however, is placed on how CADIC's main features were 
obtained. Experimental results highlighting the 
performance of CADIC are also presented. 

Key-words : integrated circuit design, high efficiency, 
on-line design rule checking, research in progress 

INTRODUCTION 

The CADIC (Computer Aided Design of Integrated Circuits) suite of 
programs allöws the user to design manually integrated circuits. This 
was one of the first types of design aid available, yet it is still 
capable of producing the most compact layouts. The design turn-around 
time associated with manual design aids is comparatively long, 
therefore new-techniques to reduce this time are required. 

Integrated circuit layouts must be designed with respect to a set of 
design rules, so that tolerance errors in the fabrication process do 
not affect the final circuit. In general, layouts are checked after 
the layout has been designed (i. e. off-line). The combinatorial 
explosion caused by checking all the shapes against one another means 
that these design rule checks are very expensive 'to carry out. Once 
complete, the layout must be edited to correct the errors, then 
re-checked. Typically this design-check cycle is repeated three or 
four times before an acceptable layout is acheived. 

Checking the layout as it is being designed (i. e. on-line) would be 
much cheaper, since a new shape need only be checked against existing 
shapes. In addition, the layout is correct at all times, therefore 
doing away with re-runs of the checker. Ideally, the design rule 
checks should be performed within the time it takes the designer to 
start adding the next shape. Previous attempts at on-line design rule 
checking have never achieved this, unless limited to very simple 
checks (1,2). 

This paper describes new techniques to increase program efficiency, 
such that complete on-line design rule checking can be incorporated 
into CADIC as a design option. 



HARDWARE 

A photograph of the SIGMA 5000 'intelligent' workstation used by CADIC 
is shown in Figure 1. The microprocessor-based GOC (Graphic Option 
Controller) forms the basis of the system, by monitoring all the data 
sent to and from the host computer (DEC 2050). Data received from the 
host is dealt with in one of two ways. Alphanumeric data is routed to 
the alphanumeric monitor, whereas graphic data is mapped into the 
GOC's pixel store (4 x 512 x 512 bits), to be displayed on the high 
quality colour raster-scan monitor. 

Similarly, the GOC receives alphanumeric and/or graphic data from the 
downstream monitors, and sends this data to the host. In this way, 
each monitor appears to be directly connected to the host, and thus 
can operate independently of each other. 

The SIGMA does have the disadvantage of having only four bit planes to 
store graphic data. CADIC is therefore restricted to plotting out a 
maximum of four masks at any one time [3]. However, more modern 
hardware is now available which would overcome this problem. 

SOFTWARE 

The CADIC suite consists of four programs :- 

1. MANCAD - Manual input language compiler 
2. CADIC1 - Interactive design aid 
3. DRCCAD - Design rule language compiler 
4. CADIC2 - On-line design rule checker 

MANCAD, CADICI, and'DRCCAD operate as independent programs. However, 
MANCAD and CADIC] must include CADIC2 in the link-list if design rule 
checking is required. 

The CADIC software' is written entirely in FORTRAN, except for two 
machine code routines which handle disc I/O operations. 

Because the host computer is time-shared, it was decided to limit the 
amount of data in memory in the hope that the computer's operating 
system would favour CADIC. For this reason, CADIC keeps only six pages 
of disc-based data in memory at any one time, and uses a paging 
routine implicit in the disc I/O routines to swap data in and out of 
the memory as required. 

Each program in the CADIC suite will now be discussed in more detail. 

(a) MANCAD 

MANCAD (MANual Computer Aided Design) accepts a manual description of 
an integrated circuit layout, - and converts this description into a 
data structure readable by CADIC. Note that the data structure may 
already exist, in which case the new shapes are added to the existing 
layout. 

This type of program is very useful when the SIGMA workstation is not 
readily available. Layouts, or sections of layouts can be 'coded-up' 
on paper, then quickly entered into MANCAD using a standard 
alphanumeric terminal. The workstation is therefore only required to 
view and/or edit the final artwork. 



By on-line design rule checking each shape as it is compiled, MANCAD 
ensures that all sections of layout added to the data structure will 
satisfy the predefined set of design rules, just as if the shapes had 
been added interactively using CADIC1. 

(b) CADIC1 

CADICI is an interactive design aid which allows the user to design 
integrated circuit layouts at the geometric level. CADICI provides 
around 50 commands, all of which are easy to use and easy to remember. 

The most important feature of CADIC1 is its high efficiency in 
processing the disc-based layout data. This was made possible by using 
two new techniques :- 

1. Area segmentation 
2. Organised group processing 

The first technique requires a new form of data structure to store the 
layout information. CADIC1 considers the layout as divided up into a 
series of areas, and associates each shape with an area. Shapes which 
enter two or` more areas are 'polygon clipped' into sub=shapes, such 
that each sub-shape is associated with only one area. For an example 
of a 'polygon clipped' shape, see Figure 2. 

Therefore if the designer wants to plot out a small section of the 
layout, CADIC1 need only consider the shapes associated with the areas 
inside the plotting window. By tracing through a system of pointers in 
the data structure, CADIC1 can quickly find all the shapes associated 
with a particular area. This high degree of selection greatly reduces 
redundant searching, which increases program efficiency. 

The second technique involves considering the. layout group hierarchy 
in a more global nature, in an attempt to fully utilize the group 
information while it is in computer memory. 

If a layout is to be plotted out, all the shapes in the layout are 
plotted, then information about the group instances called from the 
layout are stored in a temporary file. Note that the group instances 
are not plotted out at this stage. CADIC1 then goes to the top of the 
temporary file, identifies the first group instance, then brings the 
related group definition into memory. All the shapes within the group 
definition are then plotted out, and any group instances called from 
the group definition are added to the temporary file. 

The temporary file is then searched to see if any other instances of 
the group definition (presently in memory) exist. If yes, then it is 
plotted out, and all the group instances added to the file. If no, 
then CADICI goes to the top of the file, and identifies a new group 
instance. The above process is then repeated until all group instances 
in the file are plotted out. In this way, much less page swapping is 
required, and so program efficiency is improved. 



To find out just how efficient CADIC1 is in practice, it was compared 
against GAELIC [4], a commercially available design aid, known to be 
efficient. Both design aids were given the same layout to plot out, 
and results showing the CPU times for each design aid, at variety of 
window sizes is shown in Figure 3. 

Two points are worth noting :- 

1. At large window sizes, CADIC1 is less efficient than GAELIC. 
This is to be expected since CADICI carries more overheads in 
sustaining area segmentation and organised group processing. 

2. As the window size (and therefore the percentage of the 
layout actually required) decreases, so CADIC1 improves its 
performance over GAELIC. Note that for the size of layout 
used in the test, most of the design work would be carried 
out at 15% full layout and smaller, so that the layout could 
be seen in enough detail. In this situation, CADIC1 is much 
more efficient than GAELIC. 

(C) DRCCAD 

DRCCAD (Design Rule Compiler for Computer Aided Design) accepts a 
description of the design rules required, and converts this 
description into a data structure readable by CADIC2. 

Note that CADIC2 is simply a library of design rule routines. All the 
information about the design tolerances and how CADIC2 should carry 
out the. checks is stored in this design rule data structure. Therefore 
after compilation, DRCCAD re-arranges the information in the data 
structure, so that CADIC2 will have to perform the minimum amount of 
work to design rule check a newly added shape. 

(d) CADIC2 

Whenever a shape or group call is added to the layout, it is CADIC2's 
function to design rule check the shape(s) against the existing 
layout, within the time it takes the designer to think of his next 
action. Three main factors have made this possible :- 

1., The design rule data structure always ensures that CADIC2 
performs the minimum number of operations. 

2. The layout data structure is very efficient in finding 
information about shapes local to the newly added shape. 

3. Each routine in CADIC2 has been optimised such that the CPU 
time required to complete the relevant operation is kept to a 
minimum. 

To test CADIC2, a layout containing around 2000 shapes was designed, 
and the time taken to design rule check each shape was recorded. Note 
that a full set of design rules was applied. Too many factors affect 
the design rule checking time to be able to give an accurate 
prediction of how long any particular shape will take to be checked, 
therefore it is better to consider the performance of CADIC2 in a more 
global nature. 



Consider figure 4 which plots out the performance of CADIC2 as the 
above mentioned circuit is created. There are two points to note :- 

1. The time taken by CADIC2 to design rule check a shape 
increases linearly with the size of the layout. This is a 
vast improvement over existing off-lige design rule checkers, 
which usually experience parabolic (n ) performance 

2. As can be seen by the graph, CADIC2 seldom required more than 
0.5 CPU seconds per shape to complete the checks. More 
typically, CADIC2 required only around 0.2 CPU seconds per 
shape. Therefore, CADIC2 can perform on-line design rule 
checking well within the time it takes the user to start 
adding a new shape. 

Future tests with CADIC2 will involve much larger circuits, but it is 
expected that the time to design rule check a newly added shape/group 
call will rise only slightly above the previously mentioned results. 
This is largely due to the fact that by using area segmentation in the 
layout data structure, only the shapes in the present area need be 
considered, regardless of how many other areas have previously been 
filled. 

CONCLUSION 

The CADIC suite of programs to aid integrated circuit design has been 
presented. The most important features of CADIC are high efficiency, 
and on-line design rule checking. 

Logistics, backed up with experimental results are also presented, 
confirming two points :- 

1. CADIC is very efficient at data processing, especially when 
small sections of layout are considered. 

2. CADIC can perform complete on-line design rule checking 
within the time it takes the designer to start adding the 
next shape. 

Future work will involve continual assessment of CADIC's efficiency, 
plus application of on-line design rule checking to much larger 
circuits. 
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Figure 1 The SIGMA Work Station 
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