

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

SWAN, G. B., 1983. Computer aids for the design of large scale
integrated circuits. Available from OpenAIR@RGU. [online].
Available from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/�
mailto:openair%1ehelp@rgu.ac.uk�

COMPUTER AIDS FOR THE DESIGN OF LARGE
SCALE INTEGRATED CIRCUITS

By

George Baxter Swan BSc with
First Class Honours in Electronic Engineering

A thesis submitted in partial fulfilment of the
requirements of the Council for National Academic
Awards for the Degree of Doctor of Philosophy (Ph. D)

School of Electronic and Electrical Engineering
Robert Gordon's Institute of Technology
Schoolhill
Aberdeen
AB9 1FR

December 1983

F-- -ý
l'. -: -----7
4. ý ; TSA I

93A

DECLARATION

I hereby declare that this thesis is a record of work undertaken by
myself, that it has not been the subject of any previous application for
a degree, and that all sources of information have been duly
acknowledged.

During this research, the following courses were included in an
approved programme of advanced studies :-

1. "Computer Aided Design"
Robert Gordons Institute of Technology
Aberdeen
1980

2. Relevant seminars on integrated circuit design aids
University of Edinburgh
1980

3. "Interactive computer graphics"
University of Manchester
April 1981

4. "Integrated circuit design"
University of Arizona"
U. S. A.
August 1981

5. "Industrial management"
S. E. R. C Graduate School
University of Durham
April 1982

George B Swan

December 1983

INDEX

Page

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1- Introduction

0

1.1 Aim of project 1

1.2 Guide to"thesis 4

CHAPTER '2 -A review of computer aids for the design of integrated circuits

2.1 Introduction 8

2.2 Layout design 8

2.2.1 Manual approach 10

2.2.1.1 Pre-processor 10

2.2.1.2 Graphic editor 11

2.2.1.3 Post-processor 14

2.2.2 Automatic approach 14

2.3 Layout verification 17

2. 3.1 Functional check 17

2. 3.2 Geometric check 19

2.4 Approach taken by CADIC 21

0
CHAPTER 3-A review of graphic terminals

3.1 Introduction 29

3.2 Alphanumeric terminals 30

3.3 Plotters 31

3.4 Direct View Storage Tube terminals 32

3.5 Vector scan terminals 33

3.6 Raster scan terminals 35

3.7 Terminal used by CADIC 38

CHAPTER 4- MANCAD

4.1 Introduction

4.2 Choice of manual

4.3 Program operatioi

4.3.1 MANCAD : The

4.3.2 MANCAD : The

47

input language 47

1 51

compiler 52

off-line design rule checker 55

CHAPTER 5- CADIC1 : The graphic design aid

5.1 Introduction 59

5.2 Requirements 60

5.3 Logistics 63

5.4 Program operation 68

5.5 Data structure 72

CHAPTER 6- DRCCAD

6.1 Introduction 90

6.2 Choice of manual input language 94

6.3 Program operation 97

6.4 Design rule data structure 99

CHAPTER 7- CADIC2 : The on-line design rule checker

7.1 Introduction 102

7.2 Requirements 102

7.3 Logistics 104

7.4 Design rule data structure 111

7.5' Program operation 119

7.6 Shape list 125

CHAPTER 8- Performance

8.1 Introduction 130

8.2 CADIC1 130

8. 2.1 Area segmentation 131

8. 2.2 Cleaning the layout data structure 135

8. 2.3 Organised group processing 135

8. 2.4 CADICI v GAELIC 137

8.3 CADIC2 138

8. 3.1 Routine performance 141

8. 3.2 Area segmentation 145

8. 3.3 Heirarchical design 147

8. 3.4 . Checking a large layout 149

8.4 DRCCAD 151

8.5 MANCAD 151

8. 5.1 Manual language compiler 152

8. 5.2 Off-line design rule checker 152

CHAPTER 9- Conclusions and Future Work

9.1 Overview of project

9.2 Possible improvements

9.3 Future work

REFERENCES

BIBLIOGRAPHY

APPENDIX A- CADIC user manual

APPENDIX B- On-line design rule checking algorithms

170

175

185

188

195

PUBLICATIONS

ACKNOWLEDGMENTS

I would like to express thanks to my supervisor
Dr. J. D. Eades for his encouragement and assistance
throughout the project.

I also acknowledge the support of the SERC
grant, and thank Mr. B. McK. Davidson for his help in
the preparation of all the illustrations.

ABSTRACT

COMPUTER AIDS FOR THE DESIGN OF LARGE
SCALE INTEGRATED CIRCUITS

by

George B. Swan

The work described in this thesis is concerned with the development
of CADIC (Computer Aided Design of Integrated Circuits), a suite of
computer programs which allows the user to design integrated circuit
layouts at the geometric level.

Initially, a review of existing computer aids to integrated circuit
design is carried out. Advantages and disadvantages of each computer
aid is discused, and the approach taken by CADIC justified in the light
of the review.

The hardware associated with a design aid can greatly influence its
performance and useability. For this reason, a critical review of
available graphic terminals is also undertaken.

The requirements, logistics, and operation of CADIC is then
discussed in detail. CADIC provides a consise range of features to aid
in the design and testing of integrated circuit layouts. The most
important features are however CADIC's high efficiency in processing
layout data, and the implementation of complete on-line design rule
checking. Utilization of these features allows CADIC to substantially
reduce the lengthy design turnaround time normally associated with
manual design aids.

.
Finally, the performance of CADIC is presented. Analysis of the

results show that CADIC is very efficient at data processing, especially
when small sections of the layout are considered. CADIC can also
perform complete on-line design rule checking well within the time it
takes the designer to start adding the next shape.

If

CHAPTER 1

Introduction

1.1 Aim of pro ect

The aim of this project is to produce CADIC (Computer Aided Design

of Integrated Circuits), a suite of computer programs to aid in the

design of integrated circuits. It is therefore useful to point out some

of the problems faced by the integrated circuit designer, so as to form

a clearer picture of how CADIC could aid circuit design.

Prior to circuit fabrication, it is the designer's job to produce

the artwork required for each mask used in the fabrication process. A

mask contains a unique pattern of opaque and transparent areas, and is

used to control which areas on the silicon wafer will be doped (see

later). This task is complicated by the fact that the physical size of

the final circuit must be as small as possible. There are two main

reasons for this :-

1. Smaller size increases circuit reliability, and production yield

2. Smaller size means more circuits on each wafer, which reduces

fabrication costs

Designers must therefore ensure that the pattern of shapes on each

mask are as compact as possible.

1

The first step An the fabrication process is to protect the silicon

by growing a thin layer of silicon oxide over the surface of the wafer

(Figure 1.1a). Next, a layer of photographic emulsion (photo-resist) is

spread over the oxide then baked to make it photo sensitive. Finally,

the mask plate is laid on the photo-resist, and the sandwich exposed to

a strong source of ultra-violet light (Figurel. lb). The radiation

causes molecular change in the exposed photo-resist, allowing the

unexposed areas to be washed away easily.

Acid is then used to remove the unprotected oxide, leaving the bare

silicon once again. This process is known as etching. Note that the

exposed photo-resist and the silicon are unaffected by the acid. Now

the pattern on the mask has been directly transferred onto the silicon

(Figure 1.1c). The photo-resist has now served its purpose and is

removed using strong organic solvents.

If the wafer is then placed into a temperature controlled furnace,

and fed with for example, Boron gas, the exposed areas of silicon will

start to absorb the Boron molecules (known as doping). Controlling the

density of the gas, and the temperature of the furnace allows very

accurate levels of doping to be achieved (Figure 1.1d).

The above process is now repeated using different masks and

different' chemical elements to produce the individual components. For

example, the last two stages required to create a bipolar transistor are

shown in Figures 1-le and 1.1f.

By depositing metal over the entire wafer, and then selectively

etching, the components can be connected to form the complete circuit

(Figure 1.1g).

2

The problem with the fabrication process is that in practice, the

chemical elements are absorbed as fast along the wafer, as they are

absorbed into the wafer. This means that the previously well defined

doped areas now contain curved 'walls' which travel underneath the oxide

protection layer. For example, an actual transistor is shown in Figure

1.2. Should two areas be too close together, they may be seen to be

separate on the mask, but in fact be joined in the silicon, thus leading

to circuit failure.

The designer must therefore produce the masks with regard to a set

of design rules. In the geometric sense, these rules set a minimum

spacing between separate areas on any one mask, minimum spacing between

areas on different masks, the amount of overlap required to ensure

connectivity between areas, and so on. In this way, the design rules

ensure that any mask layout which obeys them will be faithfully

transferred onto the silicon.

Almost 85% of the total cost of producing integrated circuits is

required to produce the first batch of circuits. Having to repeat the

mask making, and fabrication stages just because the circuits were

faulty is understandably very expensive in terms of time and money.

However, increasing circuit complexity does increase this possibility.

Therefore, to ensure that the circuits will operate correctly, stringent

design rule checks must therefore be carried out while the mask layouts

are still in intermediate form (i. e. stored on the computer).

At" present, the design rule checks are performed of ter the masks

are designed. Any violations detected means that the designers must

return to the design stage, and edit the masks. Changing the layout

often introduces new errors, therefore the design and checking stages

3

must be repeated several times before acceptable masks are obtained.

Computer time is not cheap, for example to design rule check a large

layout will typically cost between . L10,000 and 125,000.

The problem of verifying mask layouts obviously gets worse as the

layouts become larger, and more complex. New techniques are therefore

required to handle large scale integrated circuits more efficiently.

1.2 Guide to thesis

Chapter two performs a critical review of existing design aids.

Nowadays, the design and verification of integrated circuits is almost

completely computer dependant. It is therefore very important to review

the performance of existing computer aids before describing the

development of CADIC. Advantages and disadvantages of each type of

design aid is discussed in this chapter. Finally, the approach taken by

CADIC is justified in light of the review.

The hardware associated with a design aid can also greatly affect

the performance, reliability, and useability of a design system. For

this reason, Chapter three critically reviews existing graphic

terminals, and evaluates their performance when applied to integrated

circuit design. Lastly, the graphic terminal used by CADIC is described

in some detail.

The CADIC suite is split into four programs :-

1. MANCAD : Manual language compiler

2. CADIC1 : Interactive graphic aid

3. DRCCAD : Design rule language compiler

4. CADIC2 : On-line design rule checker

4

Chapter four through to seven discusses each program separately.

The requirements of each program are discussed and logistics proposed.

Finally the operation of each program is detailed. Chapter eight goes

on to discuss the performance of these programs, with emphasis placed on

CADIC1 and CADIC2, the most important programs in the CADIC suite.

Chapter nine concludes the thesis by giving an overview of the

project. Certain weakpoints in the CADIC suite were identified, and

possible improvements are proposed. Finally, this chapter outlines

several areas of research that may be pursued in the future.

5

<-- S4,02

Q ý-- epi - layor

bs ate su

u. v radiation

(b) n

(c)

17 r- -I M

id) ý' nn

(el `Y "

nnn

cbo substrate Aft

n* n
nnn

9

PLAN

r--------- --------- t

mask ptoto
photoresisf , "'

:".................
cress I
section L ---------------------
cut View of isolation

mask Plato

phobresist
S402

Figure 1.1 Cross-secticn view of
Integrated circuit
fabrication

substrate

Figure 1 .2 Cross section view of an
actual trcnsistor

CHAPTER 2

A review of computer aids for the design of integrated circuits

2.1 Introduction

Originally, the design of integrated circuits was performed

entirely by humans. The layouts were designed by hand, and verified

visually. Not surprisingly, this process was very time comsuming,

therefore as layouts became larger, and computer time became cheaper,

more and more of the design and verification workload became computer

aided. Nowadays, the design and verification of integrated circuits is

almost completely computer dependant. It is therefore important to

review the performance of existing computer aids before developing

CADIC, the new design aid formed as a result of this project. Two main

categories of computer aid will be considered :-

1. Layout design

2. Layout verification

Advantages and disadvantages of different approaches within each

category will be discussed below. Finally, the approach taken by CADIC

will be justified in light of the review.

2.2 Layout design

Originally, the layout design was carried out at by hand. The

designer produced a rough outline of the layout, which was then handed

8

to the draughtsman for tidying up. Around 80% of the design time was

consumed in the latter stage, therefore the advent of computer graphics

was welcomed. The designer could now design layouts with the inherent

accuracy of the computer, and so dispense with the time-consuming

draughting stage.

As computers became more powerful, it seemed a good idea to speed

up the design time by automating the whole design process.

Unfortunately, the 'intuitive' power of the computer was over estimated.

Even today, a layout produced by automatic techniques is not as compact

as a manually produced layout.

A compromise was therefore required. This produced systems which

contained fully automatic routines to design a section of the layout.

The designer could accept or reject the computer's decision, so by

stepping through and/or repeating each stage of the design, was relieved

of the repetitive work, but kept control of the design. Designers soon

found that the layouts improved almost directly to the amount of human

intervention applied. For this reason, a trend back to the manual

approach occured.

Nowadays, layout design aids are numerous, spanning the range from

manual to fully automatic. Which type of design aid a manufacturer will

want to use will depend largely on how it will help reduce the cost of

producing integrated circuits. This cost arises from two main

factors :-

1. Fixed costs - the cost of designing the mask layouts

2. Variable costs - the cost of fabricating the circuits

9

It therefore pays the large-volume manufacturer to spend more time

and money manually designing the layouts, to gain on layout compactness.

Smaller physical size means that more circuits can be formed on each

batch of wafers for the same fabrication cost. On the other hand, the

small-volume manufacturer is better decreasing the design costs by

automatically designing the layouts, at the expense of larger circuits.

2.2.1 Manual approach

Manual design is the technique whereby the designer primarily uses

on-line interactive graphics to create the pattern of shapes which go to

form the integrated circuit layouts. A manual design aid however often

provides other features to help simplify the design problem. Typically,

the design aid will consist of three main programs :-

1. Pre-processor

2. Graphic editor

3. Post-processor

Each type of program will now be discussed in more detail.

2.2.1.1 Pre-processor [11

A pre-processing design aid accepts a 'user readable' description

of the layout, and converts this description into a 'computer readable'

description. In a design system incorporating several design aids, this

'computer readable' description will be the layout database which links

the design aids together. Two main types of pre-processor exist :-

1. Digitiser

2. Compiler

10

A digitiser consists of a board about three feet long, by four feet

wide, which has a grid of fine wires embedded into its surface, plus a

scriber which is capable of emitting magnetic signals. When the button

on the scriber is pressed, the wires detect the signal, and an accurate

x-y coordinate is sent to the computer. Interfacing software is

required to collect and process the information before it can be added

to the layout database. In this way, whole layouts can be digitised

very quickly and easily. The cost of the digitiser however often

precludes this type of pre-processor in an integrated circuit design

system.

A pre-processing compiler is conceptually similar to a software

compiler in that a high level description of the layout is compiled down

into the 'computer readable' description. Using a specially developed

'manual input language', the designer can sit at standard alphanumeric

terminal, and create a file which contains geometric information about

the shapes in the layout. Because the files containing the manual

description are disc-based, standard text editors can be used to edit

the layouts. Therefore libraries of basic elements for a particular

technology can be built up, and stored for use in future designs.

Entering a layout using a compiler tends to be much slower than using a

digitiser. For this reason, compilers tend to be limited to entering

small sections of layout at a time.

2.2.1.2 Graphic editor

A graphic editor allows the designer to interactively create/edit

an integrated circuit layout. Two main types of editor exist, and are

described below :-

11

Geometric (1-61 :A designer using the geometric approach deals with

the actual shapes that are to appear on the final mask layouts. For

example, the shapes required to form a NAND gate are shown in Figure

2.1. The design problem is three-fold in that the designer must :-

1. Specify the geometry of each shape

2. Place shapes as close together as possible, without violating any

design rules.

3. Preserve correct layout topology

Since the designer has direct control over the artwork, mask

layouts designed using the geometric approach tend to be very compact.

In fact out of all the layout design techniques available (manual or

automatic), the geometric approach is capable of producing the most

compact layouts.

The main disadvantages with the geometric approach are that the

time required to design layouts or design turnaround time is

comparatively long, plus the finished layouts must be extensively design

rule checked (see later) to ensure design correctness.

Symbolic [3,7-12] :A designer using the symbolic approach ultimately

produces all the shapes on the mask layouts, just as in the geometric

approach. The difference now is that the basic layout definitions (i. e.

tracks,. transistors, contacts) are represented by symbols. In this way,

much of the geometric information can be ignored during layout design.

Only, once the layouts are complete does the design aid need to convert

the symbolic layout into the geometric layout. Symbolic design

therefore facilitates shorter design turnaround times, but the layouts

tend to be larger than necessary.

12

Symbolic design exists in two forms; static and dynamic. Static

design uses alphanumeric characters at specific geometric locations to

represent the mask layouts (Figure 2.2). Layouts are designed on an

alphanumeric terminal, and output on a line printer.

One of the advantages of this approach is the simplification of

design rule checking. Using characters forces the layout geometry to a

coarse grid. By defining the grid size to be equal to the resolution of

the fabrication process, then correlating the design rules with the

grid, the designer is less likely to make design rule errors. Note

however that design rule errors can still occur, so the mask layout must

be fully checked after the design is complete.

The main disadvantage is that mismatch between the grid spacing and

design rule minimums forces layouts to be larger than is necessary. The

ergonomics of static design are also very poor. The layouts are

difficult to understand, the limited resolution of the alphanumeric

screen restricts viewing options, and large layouts can only be checked

by taping together sections of line printer output.

Dynamic design overcomes many of the problems associated with the

static approach by using colour graphics plus 'spacing synthesis'.

Spacing synthesis allows the designer to disregard all geometric

information, therefore only topological information is required (Figure

2.3). After the design is complete, the design aid automatically

converts the 'Stick diagram' into a geometric layout (as in the static

approach) then compacts the geometric layout as much as possible.

The main advantage of this approach is that in theory, the final

layout does not need-to be design rule checked. The design rules are

13

built into the compaction routines, so correct shape relationships will

always be observed. This concept breaks down when the designer wants to

add some special geometric artwork, as is often the case in practice.

Under these conditions, correct design cannot be assured, so the

geometric layouts must be design rule checked, just as with all other

manual design aids.

A more serious problem with dynamic design is that the compaction

routines (11,13] cannot compact the layout as well as humans can,

therefore the final layouts are usually larger than necessary. Complex

designs pose severe problems for even the best compaction routines,

therefore at present, dynamic design aids are limited to producing only

small-layouts.

2.2.1.3 Post-processor (13

A post-processor accepts a 'computer readable' description of the

layout, and converts the description into a 'user readable' description,

for example a scaled plot, or a manual input file. Post-processors

therefore not only provide hard copies of the layout, but also provide a

valuable feedback link within the manual design aid.

2.2.2 Automatic approach

Automatic design is the technique whereby the designer provides

only a- functional or behavioural description of the layout. The

computer, running primarily in batch mode then takes this description,

and produces the complete set of mask layouts. Two main approaches to

automatic design exist, and these are described below.

14

Cell-based : The most common cell-based design aid used today relies on

the concept of a standard cell (14-21]. A standard cell is basically a

layout building block, which is rectangular in shape, and is defined as

having input/output pins only on the top and bottom edges of the cell.

A description of the layout is built up by choosing cells from a

pre-defined library, and specifying the connections between cells. The

design aid then takes this information and arranges the cells in a

series of rows, then routes the connections in the intervening channels

(Figure 2.4), such that the total wire length is at a minimum. Standard

cell assemblies can be generated relatively quickly, so producing a

cheap design system. The cells have been tried and tested in the past,

therefore the layout is geometrically correct, even if built up by

semi-skilled users.

The main disadvantage with the standard cell approach is that the

finished layout consumes much more area than is necessary. This is due

to the fact that the width along the entire length of each channel must

be equal to the maximum required, even if this maximum is experienced

only once in the channel. The cells themselves must be of constant

height, which again is wasteful as the height must be that of the

maximum required. The constraint of constant row height also makes it

very difficult to include special cells such as ROM's or RAM's, which

resricts ingenuity of design.

In the never ending search to achieve the excellent results

produced by manual design aids, the restrictive standard cell approach

was broken down to give the general cell approach (22-251. The cell

concept is still used, but now input/output pins can exist on any side

of the cell, and the cells are given freedom of movement. The cell

dimensions can now be optimized on an individual basis, and the routing

15

area in between the cells can be utilized much more efficiently (Figure

2.5). Consequently, layouts are more compact, and wire length reduced.

One never gets something for nothing, and in general cell

assemblies, the penalties include more complex placement and routing

routines which force an increase in computation time.

While placing the cells, the best a computer program can do is

'loosely' route the wires. Once all the cells have been placed, and the

wires are to be 'hard' routed, the situation often arises in which some

wires cannot be routed due to lack of space between the placed cells.

Special cases must be made of these wires, and may involve several

re-runs of the layout design package with human intervention.

Silicon compilation (26,27] : The concept behind the silicon compiler is

that of an 'ultimate' layout design aid. The designer submits a

high-level functional description of the layout required. The silicon

compiler accepts this description, and automatically produces the

geometric layouts, without the use of libraries, as with the cell-based

approach.

To simplify the layout problem, all silicon compilers work on a

'target' architecture. For example, a typical target architecture [26]

is shown in Figure 2.6. Silicon compilers are therefore limited to

producing a particular type of circuit. Blocks within the architecture

are usually filled using ROM and PLA generators [14]. With such a fixed

format, layouts are not surprisingly much larger than necessary.

Silicon compilation is still very much a concept in, rather than an

alternative to layout design. A non-trivial example has yet to be

16

published, and no working circuits have ever been produced [27]. The

concept is however very appealing, therefore silicon compilers will

undoubtably figure very strongly in automatic layout design in years to

come.

2.3 Layout verification [28]

Humans are reliably error-prone, therefore any manual assistance

given during the design of the mask layouts means that the masks must be

checked to ensure validity. Originally the checks were done purely

visually, but LSI and VLSI technology soon pushed the size of layouts

outside the range that could be comfortably handled by humans.

Nowadays, layout verification is in most cases totally computer

automated, since much of the work involves mechanically repeating simple

tests many. times. In general, two types of check are required, both of

which are described below.

2.3.1 Functional check

Functional checks ensure that the layout agrees with the original

design specifications. Three types of functional check exist, and these

are described below.

Device recognition [29-32] : Device recognition is becoming an

important functional check. Analysis of the mask layouts allows the

computer to identify the individual components, then extract information

about the components. In this way, transistor characteristics, coupling

capacitances, resistances, and so on can be reported to the designer.

Comparison with the original design specifications will identify any

errors, plus highlight possible problem areas not realised earlier in

the design.

17

Connectivity (31,33,34) : As the title suggests, a connectivity check

ensures that all the components in the circuit are interconnected

correctly. The computer analyses the pattern of shapes on each mask

layout, and builds up a list of how the components are interconnected.

This connectivity list is then compared against a user-supplied list

which described how the components should have been interconnected.

Comparison of the two lists allows all connectivity violations to be

identified.

Simulation : Simulation was the first functional check available, and it

is still the most common functional check carried out today. The large

range of simulators now available allow the integrated circuit design to

be verified at various levels of abstraction, for example :-

1. Behavioural

2. Register transfer

3. Logical

4. Timing

5. Circuit

Using simulators in this way allows violations to be identified

early in the layout design process. Behavioural simulators are used at

the initial design stage, to verify the algorithms of the digital system

to be produced. Computer software is often used to perform this task.

Note that no details of the physical design are required at this stage.

Once the algorithms have been verified, a 'block diagram' of the

layout can be formed. This 'block diagram' may then be tested using a

register transfer level simulator (35,36]. Only crude timing

information may be available, yet useful information such as congestion

and hardware/firmware tradeoffs can often be identified at this stage.

18

The block diagrams can then be partitioned into low level building

blocks, or logic gates. A logic simulator (37,38] may then be used to

verify the logical circuit. Sophisticated delay models may be

incorporated at this stage to obtain a more accurate picture of circuit

operation.

Finally, the logic gates can be replaced by the actual transistors

and interconnections which will appear on the integrated circuit layout.

Accurate circuit simulation (39,401 can be performed for small sections

of the layout using an circuit simulator. To limit the amount of CPU

time required, larger sections of layout are often simulated in less

detail using a timing simulator [41,42].

Some of the newer simulators allow different sections of a layout

at different levels of abstraction to be simulated concurrently. These

mixed-mode simulators (43,44] can give the effect of complete circuit

simulation, yet allow the designer to minimise CPU time and memory

requirements by taking advantage of fast high-level descriptions in less

critical areas of the layout.

2.3.2 Geometric checks

In layout verification, of equal, if not greater importance, are

the geometric or design rule checks. These checks ensure that the

patterns on the masks will be correctly transferred onto the silicon

during the fabrication process, so preserving layout topology.

Limitations in the fabrication process are such that without design

rules, two adjacent areas may be seen to be separate on the mask

layouts, but in fact be merged together in the silicon. Circuit failure

or a lowering of yield and reliability would probably ensue. The design

19

rule checks can be performed in two ways, both of which are described

below.

Off-line (28,45-60] : The first point to note is that all mask layouts

are presently checked this way. After the design is complete, the

designer submits the mask layouts to the design rule checker, along with

a file containing the design rules (611. The rules are applied to each

mask, or combinations of masks, and any violations identified are

written to a report file.

Note that the combinatorial explosion caused by checking all the

shapes against one another means that the design rule checks are very

expensive to carry out (Typically £25,000).

Once the checks are complete, the designer must edit out the errors

in the layout, using the information stored in the report file.

Correction of one error may involve repositioning part of the layout,

which could introduce new errors. Therefore, when the editing is

complete, the layout must be checked again for design rule violations.

In practice, this design - check cycle must be repeated three or four

times before an acceptable layout is achieved.

On-line : In this approach, the design rule checker is integrated into

the design aid, so that as 'each shape is added to the layout, it is

checked against the the pre-defined set of design rules. If a violation

occurs, then the shape is rejected, otherwise it is accepted. This

approach is much cheaper in terms of CPU time, since the shape need only

be checked against the existing layout.

Layouts checked on-line are correct at all times, so on completion

of the design, the circuit is ready for fabrication. Without the

20

multiple design - check cycles present in off-line techniques, the

design turnaround time is greatly reduced.

Ideally the checks should be performed within the time it takes the

designer to start adding a new shape. Previous attempts at on-line

design rule checking (3] have never achieved this, unless limited to

very simple checks. New techniques to speed up the process are

therefore required.

2.4 The approach taken CADIC

The aim of this project is to produce CADIC (Computer Aided Design

of Integrated Circuits), a new and more effective integrated circuit

design aid. It is therefore important to justify the approach taken by

CADIC, in the light of existing techniques.

A review of existing design aids shows that although automatic

design is popular, manual design plays by far the major role in

integrated circuit production. There are two main reasons for this :-

1. Manual aids are capable of producing the most compact layouts

2. Manual aids are required to produce the cells used in automatic

design

Within manual design, there are two possible approaches; geometric

and symbolic. When it was first introduced, symbolic design seemed to

be the answer to the design problem. For a variety of reasons, symbolic

design has not lived up to these expectations, so much so that many

companies who changed to symbolic design when it first appeared have

since returned to geometric design.

21

Geometric design, on the other hand, although very useful, is not

without its drawbacks. The dependence on off-line design rule checking

forces multiple design-check cycles, which create the lengthy design

turnaround time normally associated with geometric design.

In conclusion, CADIC should be a manual design aid, which allows

the designer to work at the geometric level. CADIC should also

incorporate on-line design rule checking. In this way, the design-check

'bottleneck' found in existing geometric design aids can be broken,

which will allow substantial reductions in design turnaround time.

Other standard features such as pre-processors and post-processors

should also be incorporated into CADIC as required.

22

Figure 2.1 Geometric layout

//////C//////
a

i*i
i*i
i*i

TTTddddd

ddd

PPPPP$%%PP
ddd

PPPPP$%%PP
ddd

d

//////C//////

Figure 2.2 Static layout

Figure2.3 Dynamic layout

colts

channel

cells

chcrrvl

cells

charol

cells

CQIIs

channel
cells

Figure 2.4 Standard cell assembly

E: l

F-I
- ------

00000 Oö
F7

Figure. 2.5 General cell assembly

Core

Decoder

Pads

Figure 2.6 Bristle block target architecture

CHAPTER 3

A review of graphic terminals

3.1 Introduction

The way in which a graphic terminal is connected to the host

computer, plus the distribution of intelligence between host and

terminal can greatly influence the performance, reliability and

useability of a system. For this reason, the whole of this chapter is

devoted to describing graphic terminals and evaluating their use in

integrated circuit design.

Originally, a graphics system consisted of a large mainframe

computer controlling a simple display. The early displays were

non-intelligent, which meant a large amount of computer power to do the

simplest of operations. Understandably, the early systems were very

expensive.

The addition of specialized hardware made displays more

intelligent. Fundamental problems such as producing alphanumeric text

and dashed lines could now be generated from the terminal itself. This

helped reduce the load on the host computer, but a large amount of

computing time was still spent driving the display.

As time-sharing became fashionable, the host computer could no

longer provide enough dedication to the display. Mini-computers were

used as a satellite, and so off-loaded much of the graphics software

29

previously stored in the host. The more powerful mini-computers became,

the more graphic and non-graphic work they could accomplish.

As technology advanced, the micro-computer became as powerful as

early mini-computers. Subsequently, micro-computers were soon to be

found in the display terminal itself. The micro-computer thus helped

reduce the mini-computer's workload, just as the mini-computer had done

to the host computer several years earlier. Present intelligent

terminals are highly sophisticated, with the use of these terminals in

CAD packages becoming the rule rather than the exception.

Note that in general, even with good intelligence distribution, the

amount of number crunching power required in integrated circuit design

still forces the display to be connected. to a mainframe computer.

3.2 Alphanumeric terminals (8,54,62]

The most basic, and certainly the cheapest type of graphics system,

is to use the alphanumeric VDU (Video Display Unit) to display the plot.

Software is required to convert conventional line drawing to raster-scan

drawing, but different characters can be used to represent different

regions. For example, if a manual design aid is constrained to plotting

out a maximum of four masks at any one time, then all possible regions

(hex 1- F) can be displayed, if the individual masks are defined as hex

1,2,4,8 respectively.

The plots are however rather crude due to the limited resolution of

the screen (Typically 80 x 24). Graphic, interaction also tends to be

very limited, therefore this type of terminal is often used purely an

output device.

1 30

3.3 Plotters (631

The very nature of plotters allows the user to produce a plot which

can be taken away and studied at leisure. Consequently, plotters tend

to be used purely as output devices. Some plotters have motor control

buttons, plus a 'hit' button, which can be used to position the pen,

then send the pen coordinates to the computer, so providing a limited

interaction facility. Such an interactive system is very slow, and

consequently its use is rather limited.

Probably the most popular type of plotter is the flat-bed plotter*

This type of plotter uses pens, usually ink or fibre-tip, supported on a

gantry over the plotter base (which holds the paper). Powered by

stepping motors, the pen and its lifting mechanism move along the gantry

in the Y direction, and the gantry moves in the X direction.

Changing the pens at pre-determined stages during the plot allows

colour plots to be produced. A clever graphics package can also fill in

the shapes, but this tends not to be done, due to plotter speed

(Typically 25cm/sec), and striping, due to slight pen alignment errors.

Faster plots can be achieved by using a drum plotter. Now the pen

may move along the axis of the drum (Y direction) with the paper and

drum rotating under the pen (X direction). The drum and pen are both

much lighter than the gantry system, and so speeds of 80cm/sec can be

achieved.

Since raster graphics (see later) became popular, new types of

plotters have been developed. These plotters-handle normal 'outline'

plots but are specifically designed to cope with 'shaded' and/or

31

'filled-shape' plots. Two main types exist ; matrix plotter, and

ink-let plotter.

A matrix plotter is similar to a conventional matrix printer,

except that it uses a multicoloured ribbon to produce the coloured plots

as a series of dots. The ribbon usually consists of three colours

(yellow, cyan, and magenta), which by a system of overprinting can

produce any one of eight standard colours. The quality of the output is

however rather poor, due mainly to the limited number of dots per line

(typically 700), plus misalignment of overprinted dots.

The ink-jet plotter is much more sophisticated in that liquid ink

is sprayed onto the paper using three ink jets mounted on a gantry .

Direction and amount of ink from each of the jets is controllable,

allowing high resolution, and very high quality plots.

3.4 Direct View Storage Tube Terminals (1,2]

DVST terminals differ from the common VDU by requiring a special

cathode ray tube as shown in Figure 3.1. Pictures are stored in the

form of charge on the storage grid, using the main electron gun. The

collector helps smooth out the flow of electrons from the flood gun, and

the high potential screen accelerates these electrons through the

storage grid, thus copying the image onto the screen.

For an input device, the DVST terminal uses a cross-hair cursor, in

the form of a horizontal and vertical line extending across the screen.

These lines are repeatedly drawn at an intensity just below that

required to permanently store an image. Through the use of suitable

controls on the keyboard, the cursor can be positioned anywhere on the

32

screen, and the cursor coordinates obtained on request.

DVST terminals can exist in two modes, alphanumeric and graphic, so

allowing the user to carry out all types of interaction on the one

terminal, providing the user with a relatively cheap graphics system.

The storage ability of DVST terminals means that the plot can be

built up in stages, therefore they are ideal for use in time-shared

environments. The plot does not flicker, and the screen resolution

tends to be very high (Typically 4096 x 3071).

In general, the DVST terminal produces a monochromatic plot, SO

dashed-lines are required to differentiate between shapes on different

masks. The shapes cannot be filled, therefore plots become rather

confused when several masks are plotted at once.

The main disadvantage with the DVST terminal is that charge cannot

be selectively removed from the grid, therefore no selective erasure of

the screen is possible. Removal of part of the plot involves clearing

the screen, then redrawing the complete plot, which can be

time-consuming.

3.5 Vector scan Terminals (61

A symbolic representation of a simple vector scan terminal is shown

in Figure 3.2. Note that a standard cathode ray tube is used, so the

phosphor on the screen excited by the electron beam will, glow only

momentarily. To produce a steady image on the screen, the plot must be

redrawn or refreshed often enough so that the phosphor is re-excited

before the glow disappears. In practice a refresh frequency of 50Hz is

33

usually chosen.

The picture description is stored in a display file, which is a

list of drawing and control instructions. The display file can be

regarded as a data structure, and can be dynamically updated, providing

selective erasure and animation features such as rubber-banding, shape

towing and so on.

Vector scan terminals usually offer very high resolution. Normally

the image is monochrome, but the facility to dynamically vary the beam

intensity does help to visually separate shapes on different masks.

Shape fill is not possible, therefore complex layouts can become

confused.

Colour vector scan terminals do exist. The tubes in these

terminals contain three phosphor layers (red, green, blue) and the layer

is selected by varying the potential on the gun anode (Figure 3.3). By

this method, eight colours can be produced, but in general, the system

involves specialized control hardware, and is very expensive.

From the computers viewpoint, a vector scan terminal requires 100%

dedication. In a time-shared environment, this amount of dedication is

of course not possible, so a satellite mini-computer must be present to

carry out the graphic work.

Early terminals used the core memory of the mini-computer to store

the display file. With such a system, 80% of the computer time was

spent sending display information to the terminal. Therefore, on the

advent of cheap memory, and intelligent terminals, the display file was

soon to be found in the terminal itself.

34

Regardless of mini or micro computer efficiency, if the display

file is so large so as to force a reduction in the refresh rate, the

picture will begin to flicker, as the phosphor glow dies before being

refreshed. This can be off-putting for the user, and so precludes its

use in areas of graphics which continually require complex pictures.

The design of integrated circuits falls directly into this category, and

so a refresh terminal is best used if some sort of windowing constraint

is imposed.

The input device most commonly used in conjunction with the vector

scan terminal is the light pen. The pen is basically a photo-transistor

which 'sees' over a limited region, and sends an interrupt signal to the

terminal whenever the light from the electron beam enters the region.

With knowledge of the scanning rate, the position of the light pen at

time of interrupt can be calculated.

To be effective, the light pen must be held perpendicular to the

screen. This is an unnatural and tiring position to hold for any length

of time, plus the pen and/or the user's hand tends to hide part of the

layout.

3.6 Raster Scan Terminals [3,4,5,64]

Raster scan terminals consider the screen to be divided up into a

matrix of areas (Figure 3.4a). Each area, called a pixel has a value

associated with it, and this value is stored in a jixel memory.

Consider
_a simple system in which each pixel is represented by 1 bit of

memory. On/off or black/white information is therefore stored (Figure

3.4b).

35

The picture is produced by computing which pixels to display, and

which pixels to omit, then writing this information into the pixel

memory. To display the picture, the pixel memory is continuously

scanned row by row, hence the term raster. As each bit is read out, it

is coverted to an analogue signal, and used to control the monitor.

As mentioned above, the simplest possible system would represent

each pixel with 1 bit of memory, giving on/off or black/white

information (Figure 3.5a). Better quality displays can be achieved if

the each pixel is represented by more than 1 bit. In this situation,

the pixel store is best visualized as a series of memory planes, each

with equal resolution. The pixel representation is stored in parallel

(1 bit per plane) and the outputs can be fed to a DAC to provide grey

scale information. A 3-plane system would provide an eight level grey

scale and is shown in Figure 3.5b.

Theý3-plane system can give cý

to drive-the red, -green, and blue

colours (red, green, blue, yellow,

produced, but cannot be altered.

levels of. red, green, and blue, so

(Figure 3.5d). Note that only

Dlour information if each bit is used

guns separately (Figure 3.5c). Eight

cyan, magenta, white, black) are

A 9-plane system could provide eight

producing a palate of 512 colours

eight colours can be shown at any one

time.

Simply increasing the size of the pixel store is really a

brute-force solution to the colour palate problem. A better approach is

to use a video look-, 2T table (Figure 3.5e). The number of planes is now

no longer restricted to a multiple of three, as the outputs from the

planes provide the address for the table. Each address in the video

look-up table specifies the colour number, and the memory contents

36

specify the levels of red, green, and blue to be associated with that

colour number. The user can load up the table, and so define the

colours as required.

Modern raster scan terminals have plane masking facilities,

therefore planes may be written to selectively. In integrated circuit

mask design, this is a useful feature. For example, if the diffusion

layer is drawn on plane 0 and the colour 1 defined to be green, then the

poly-diffusion layer, is drawn on plane 1, and the colour 2 defined to be

red, 'any intersection between the shapes on the layers will result in

colour 3, which can be defined by the user to be a unique colour.

The resolution on raster scan terminals is low compared to other

graphic terminals (Typically 512 x 512). This is due partly to the cost

of memory, but mainly to the fact that standard T. V. monitors produce

625 lines in the Y direction. If the designer can keep the resolution

within standard T. V. limits, then off-the-shelf components can be used

in the terminal's manufacture.

At first sight, this seems to be a very poor resolution, but tests

have shown that shapes which are in colour, and filled-in, can be

identified on the screen as well as, if not better than similar shapes

plotted on a monochrome terminal with four times the resolution [65).

Low resolution may cause the terminal to staircase non-orthogonal lines,

but as the majority of integrated circuit artwork is Manhattan geometry,

this problem is not critical.

37

3.7 Terminal used CA_

The terminal used by CADIC is a SIGMA 5000 microprocessor-based

colour raster scan terminal. The schematic and physical layout is shown

in Figure 3.6. The GOC (Graphics Option Controller) is linked directly

to the host(a DEC2050 time-shared mainframe computer) and all

communications pass through the controller. The GOC then directs the

information to the downstream VDU's as required.

The GOC contains the microprocessor plus the pixel store, which

consists of four display planes and two special planes (polygon, and

fill). The display planes give 4-bit pixel representation, and so

allows sixteen colours to be viewed simultaneously. Colours can be

defined as required with the video look-up table, which provides a

palate of 4096 colours.

The special planes are reserved for shape fill exercises. For

example, the shapes to be filled are written to the 'polygon' plane. On

receiving the 'FILL' command, the microprocessor copies all the pixels

outside the shapes into the 'fill' plane. The zero-valued pixels in the

'fill' plane can then be copied into the display planes in any desired

colour. A schematic diagram of the pixel memory is shown in Figure 3.7.

.
The GOC can exist in any one of three states :- Reset, Graphics,

and Alphanumerics. The Graphics state is further divided into three

modes :- Vector, Command, and Text. Transitions between states/modes

only take place when the GOC receives the correct transition trigger.

More detailed information on the SIGMA, is given in the user manual

[66] .

38

The microprocessor in the GOC provides a range of around a hundred

functions, including plane enable, block mode (in which rectangles are

specified only by the bottom left hand and top right hand corners),

selective erasure, user-specified dashed line, point mode, and shape

f ill.

Communication carried out in the vector mode can be optimised by

entering the Abbreviated Graphics State (AGS). In this state, the x and

y coordinates are each represented by two bytes (Hi and Lo). The Hi

byte gives coarse positional information, and the Lo byte gives the

sensitive positional information. The GOC keeps a note of the last

bytes sent, so should for example, a short horizontal line be required,

then only the Lo-X byte need be sent. Data transmission savings range

from 33% to 83%, with the greatest saving occuring when plotting out

horizontal and/or vertical lines. Since integrated circuit layouts are

made up of predominantly orthogonal geometry, the AGS is an invaluable

facility.

The SIGMA uses a cross-hair cursor as an input device. The cursor

is controlled by a hand held control box, which contains five keys : -

up, down, left, right, and hit. CADIC programs the alphanumeric keys to

replace the function of the hit button, so that on pressing any key, the

relevant ASCII code, plus the cursor coordinates are sent to the host

computer. CADIC then accepts the code as a command, and uses the

coordinates accordingly.

39

Main gun and
deflection svstQm Collator

o o-

10kV

Figure 3.1 Direct view storage tube

Flood gun 10WV

Host

Figure 3.2 Vector scan display

RED "-"-"-"-"

BLUE ------

GREEN

Gun
and
deflection
system

Figure 3.3 Penitron tube

10

9
8
7
6

5
4

3
2
1

123456789 10

(a)

Raster screen
(Resolution 100)

10
9

8

7
6

5

4

3
2

1

O O O O O O O O O o
0 0 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
0 0 0 1 1 1 1 0 0 0
O 1 1 1 1 1 1 1 1 0
O 1 1 1 1 1 1 1 1 0
O 1 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
123456789 10

(b) Pixel memory
(10x10x1bit)

Figure 3.4 Storage of raster scan display

Host

Pixel store

512x512x1
bits

DAC

la) Simple roster scan

Host =

Hos t

PIxsl store

512x 512m 3

bits

DAC

(b) 3- bit monochromo

Pixel store

I
IDAC

DAC
S12 x 512 x3

bits DAC

(c) 3- bit colour

Host

ld) 9- bit colour

Host
Pixel store

ideo-lod-bits
lpý

(e) 3- bit raster scan with video lock-up-table

Figure 3.5

Host

(a) Schematic layout

(b) Physical layout

Figure 3.6 SIGMA 5000 workstation

Figure 3.7 Schematic diagram of Pixel memory in the
SIGMA system

CHAPTER 4

MANCAD

4.1 Introduction

MANCAD (MANual Computer Aided Design) accepts a manual description

of an integrated circuit layout, and converts this description into a

ring data structure readable by CADIC1 and CADIC2. This facility is

very useful when a graphics terminal is not readily available. The

designer can quickly 'code-up' a layout onto sheets of paper, then enter

the data into MANCAD using a standard alphanumeric terminal. The

graphics terminal is therefore only required to view and/or correct the

layout.

The layout can also be design rule checked as it is being compiled

using the routines developed in CADIC2 (See later). In this way, MANCAD

also provides a very efficient batch-mode or off-line design rule

checking facility.

4.2 Choice of manual input language

The ideology behind MANCAD is that a sketch drawn by the designer

may be encoded by a non-technical assistant. This leaves the designer

free to concentrate on more important areas of the design. The commands

in the input language must therefore be easy to use and easy to

remember. To save the user time and effort, the input language must

also minimise the amount of data that is required.

47

Only the most optimistic user will expect to

completely correctly first time. More often, a

editing will be required, possibly months after the f:

formed. A file purely consisting of numbers is going

understand, so a simple format and a high degree of

required in the language.

enter the layout

certain amount of

Lle was originally

to be difficult to

'readability' is

If MANCAD is to be used as an alternative to CADIC1 it is

important that the manual input language allows the user to build up

layouts using the same design philosophy. Therefore a format similar to

a high level computer language seems an intuitive choice for the input

language, since the designer builds up an integrated circuit in a very

similar manner to the programmer writing software. For example, the

designer collects together shapes (lines of code) to form group

definitions (subroutines), and instances (calls) of the group

definitions can be added to any other group definition, or main layout-

The deciding factor on the choice of manual input language came

about as a result of the requirements of the project, rather than from

MANCAD itself. To test the efficiency of the CADIC software, it was

important to use large realistic circuit layouts. Compeda Ltd,

Stevanage, and Wolfson Microelectronic Laison Unit, Edinburgh kindly

provided suitable circuits. The problem is that the circuits were

designed on the GAELIC system [1], and the GAELIC layout data structure

is not compatible with the CADIC data structure.

48

To convert the GAELIC data structure to a CADIC data structure, two

options were available :-

1. Write software which would convert the GAELIC data structure

directly into a CADIC data structure

2. The GAELIC suite of programs contains a program which converts the

data structure back into a GAELIC manual input file. If the MANCAD

input language is designed to be similar to the GAELIC language,

then the equivalent CADIC data structure can be obtained by

compiling the manual input file through MANCAD.

It was decided to adopt the latter approach for two main reasons :-

1. No new software is required, thus saving development time

2. The one-stage conversion program can only be used to convert GAELIC

data structures to CADIC data structures. Different data

structures would require their own conversion program, therefore

this approach is very limited in its practical use.

The proposed MANCAD language was therefore adjusted such that it

was compatible with the GAELIC language. This language change enhanced

MANCAD's qualities for the following reasons :-

1. Over the last few years, there has been a strong international

effort to try and standardise systems and software related to

computer aided design. By altering its manual input language,

MANCAD has introduced a two-way link between systems, which

otherwise would not exist.

2. The GAELIC language contains many useful commands, which did not

exist in the proposed MANCAD language.

3. The GAELIC language has been used in industry for many years ncw,

and seems to be well liked.

49

A detailed description of the GAELIC language can be found in the

GAELIC user manual [67]. An important point to note is that the MANCAD

language includes all the GAELIC commands, except the commands ;

"CIRCLE", "TEXT", and "LINE". The first two commands were dropped from

the language simply because CADIC does not allow circles or text to be

added to the layout. The reason for dropping the "LINE" command

requires more explanation.

In GAELIC, shapes could contain only light segments. Therefore to

produce a shape which contained dark segments (as in Figure 2.1), the

designer had to use the "LINE" command to represent the shape as a

series of lines. CADIC does however allow dark segments to be included

in a shape, so the "LINE" command is no longer required.

As a result of allowing dark segments, another important difference

exists between the MANCAD and GAELIC languages. In the MANCAD language,

shape coordinates may be preceeded by the letter 'D', which will define

the segment going to that point as being a dark segment. In all other

cases, the segment is defined by default to be light.

The full range of commands available in the MANCAD input language

therefore are as follows :-

"RECTANGLE Define coordinates of a rectangle

"POLYGON Define coordinates of a polygon

"TRACK"....... Define coordinates of a track centre line

"NEWGROUP.......... Initialise new group definition

"ENDGROUP"........ Close present NEWGROUP command

"GROUP Call up instance(s) of group definition

"EXTENDGROUP...... Open existing group definition

50

"REPLACEGROUP".... Replace existing group definition

"DELETEGROUP"..... Delete existing group definition

"REPEAT".......... Repeat shapes and/or groups in X or Y directions

"ENDREPEAT......... Close present REPEAT command

"MATRIX". -........ Repeat shapes and/or groups in X and Y directions

"ENDMATRIX"....... Close present MATRIX command

"FINISH End processing

Rather than give a detailed description of each command, a feel for

the MANCAD language is provided by the following simple example. The

example is in fact the manual file used to form the NAND gate layout

shown in Figure 2.1. Note that only enough letters to uniquely identify

a command are required in the input file.

"NEWGR" GATE;
"RECT" (1) 5,14: 4,8;
"POLY" (2) S, 0,5: 12,2, -12, D-2;
"POLY" (2) S, 0,9: 12,2, -12, D-2;
"RECT" (2) 4,15: 6,7;
"POLY" (3) S, 5,0: 4,3,1,9,6, D2, -6,2, -2,7,1,4, -4,

-4,1, -7, -2, -13,1, -3;
"RECT" (4) 6,1: 2,2;
"RECT" (4) 6,13: 2,4;
"RECT" (4) 6,24: 2,2;
"POLY" (5) S, 0,0: 16, D4, -16, D-4;
"RECT" () 5,12: 4,6;
"POLY" (5) S, 0,23: 16, D4, -16, D-4;

"ENDGR";
"GROUP" GATE, 0,16,111;
"FINISH";

4.3 Program operation

As described in the introduction to this Chapter, MANCAD converts

or 'compiles' a manual description of a layout into the CADIC ring data

structure. Originally, this was MANCAD's only function. It was soon

realised however, that incorporating on-line design rule checking

51

techniques into MANCAD produced a very powerful off-line design rule

checking facility. Both modes of MANCAD's operation are described

below.

4.3.1 MANCAD : The compiler

After initialisation, MANCAD asks for the name of the file

containing the manual input language, some details on the format of the

file, then the name of the data structure to be created. Note that the

data structure may already exist, in which case, the shapes in the input

file will simply be appended to the specified data structure. In this

way, a designer can rely on pre-defined library files to supply all the

standard elements and/or layouts required in the new design. Lastly,

MANCAD asks for the title to be associated with the layout.

During compilation, MANCAD performs extensive syntax checking on

each command in the input file. If no errors are detected in a command,

it is accepted by MANCAD, and fully processed. on the other hand, if an

error is found, MANCAD will react in one of three ways, depending on the

severity of the error.

1. The error will be automatically corrected by MANCAD, and the

command accepted.

2. The erroneous command, accompanied by a descriptive warning message

will be sent to the terminal, and the command ignored.

3. The erroneous command, and warning will be sent to the terminal,

followed by a request by MANCAD to the user to correct the error

immediately.

52

Once the manual file has been completely processed, MANCAD provides

the user with three options :-

1. Close the files, and return to monitor level

2. Fetch another manual input file to be added to the data structure.

In this way, library files can be loaded as required.

3. Enter data on-line, through the keyboard. Therefore if only a few

shapes were rejected by MANCAD, they can be re-submitted correctly.

This saves having to edit the relevant manual file, and start the

possibly lengthy and involved 'compilation' from the beginning.

53

An example of compiling the manual input file shown in Section 4.2

is given below. Note that the manual file deliberately contains an

error in one of the mask numbers, so as to show how MANCAD handles a

typical error.

- MANCAD -

Program to convert manual input language into a ring data structure

Enter name of manual input file, or return to finish :- NANDG

Does the manual file contain line numbers ? NO

Do you want to include design rule checking ? NO

Enter name of existing ring data structure, or return :-

Enter name of the new ring data structure, or return to finish :- TEST

Enter the layout title : NAND gate

SYNTAX : Group GATE : "RECT" () 5,12: 4,6;
Mask information incorrect - shape ignored

Enter name of next manual file, or TTY for
keyboard input, or press return to finish :- TTY

Enter data - without line numbers
"EXTENDGR" GATE;
"RECT" (5) 5,12: 4,6;
"ENDGR";
"FINISH";

Enter name of next manual file, or TTY for
keyboard input, or press return to finish :-

END OF EXECUTION
EXIT

54

4.3.2 MANCAD : The off-line design rule checker

This thesis goes into great detail to explain the advantages of

on-line design rule checking over existing off-line techniques.

Successful implementation of on-line design rule checking should make

the off-line approach redundant. Why then, does the CADIC suite need to

provide off-line design rule checking ?

The reason is that under certain circumstances, the off-line

approach is the only way to check a circuit, even if it was designed

using CADIC. These special cases are discussed below.

Firstly, layouts, or section of layouts chosen from a manual

library file will have to be checked in an off-line fashion before being

added to the new layout design. The reason for this is that the design

rules may have changed since the library was first developed, therefore

previously correct layouts may now contain violations.

Secondly, a designer may want to use a layout not designed on

CADIC. As with the manual library files, the layout must be checked

off-line before it can be used.

Lastly, once the layout is designed and tested, it is ready for

fabrication. A large proportion of companies which design integrated

circuits do not have an 'in-house' fabrication plant. Therefore these

companies must send their designs to a 'silicon house' to be

manufactured.

Before starting a design, the 'silicon house' will give the company

details on the quality of fabrication possible, so that the design rules

55

can be defined. As long as the company always implements these rules,

the 'silicon house' will be able to fabricate the integrated circuits.

If the company decides to use a different 'silicon house', say for

second source or economic reasons, a new set of design rules will be

defined. The layout will have to be checked against these design rules

to ensure that no violations exist. Once again this process can only be

performed off-line.

There are two ways in which the CADIC suite could incorporate

off-line design rule checking as a design option :-

1. Classical approach - Develop an independent program to design rule

check a finished layout design, using its data structure. Note

that the data structure must be in CADIC format.

2. Simulated approach - Off-line design rule checking can be performed

by checking the layouts as they are compiled into the CADIC data

structure, using on-line design rule checking techniques.

Note that the term 'simulated' in no way implies inferiority. In

fact, this approach now shows many superior qualities. The simulated

approach was adopted by the CADIC suite for a variety of reasons :-

1. Highly efficient routines, plus the implicit selectivity of the

on-line approach allows the simulated approach to be much faster

than the classical approach. Note that the layout is checked just

as rigourously as any classical technique would check it.

2. The on-line design rule checking routines already exist.

3. Layouts not designed using CADIC almost certainely will not be

compatible with the CADIC data structure. The layout must

therefore be converted, before it can be checked. Earlier in this

56

Chapter, it was decided that the convertion problem should take the

form of a two-stage process, using the manual input language as a

common database. The second stage of this process involves using

MANCAD to compile the manual description into a CADIC data

structure, so it seems sensible to incorporate the design data

structure into this stage.

Off-line design rule checking is incorporated into the MANCAD

compilation by answering YES to the relevant question. If design rule

checking is requested, then MANCAD will ask for the name of the data

structure which contains the rules.

MANCAD processes the manual input file in exactly the same way as

described in Section 4.3.1. The only difference now is that before each

shape or group call can be added to the layout data structure, it must

be design rule checked against the existing layout. The routines to do

this are fully described in Chapter 7.

If a violation is identified, the relevant error message is printed

out on the alphanumeric screen, along with information on the shape

that caused the violation. Note that the shape is still accepted. On

completion, the user can use the list of error messages to edit the

layout as required.

An example of off-line design rule checking the NAND gate layout

shown in Section 4.2 is given below. For sake of clarity, the layout

description is assumed to contain no syntax errors. Also the set of

design rules for the layout are not shown, but assume that one of the

rules specify that the separation between unrelated shapes on mask (2)

must be greater than 3 units. For example :-

57

RULE POLYSP;
MASK PS IS RECT, POLY MASK 2
FAIL 'Minimum spacing between unrelated poly' IF &

SEPARATE (PS, PS) AND SPACING (PS9PS) <3
END

N. B. For a description of the design rule input language, see Chapter 6.

The two polygons on mask (2) which form the inputs to the NAND gate

do not satisfy rule POLYSP. To design rule check the layout, MANCAD

therefore proceeds as follows :-

- MANCAD -

Program to convert manual input language into a ring data structure

Enter name of manual input file, or return to finish :- NANDG

Does the manual file contain line numbers ? NO

Do you want to include design rule checking ? YES

Enter name of file containing the design rules :- DRCRUL

Enter name of existing ring data structure, or return :-

Enter name of the new ring data structure, or return to finish :- TEST

Enter the layout title : NAND gate

Minimum spacing between unrelated poly
DESIGN : Group GATE: "POLY" (2) S, 0,9: 12,2, -12, D-2;

Enter name of next manual file, or TTY for
keyboard input, or press return to finish :-

END OF EXECUTION
EXIT

58

CHAPTER 5

CADIC1 : The graphic design aid

5.1 Introduction

CADIC (Computer Aided Design of Integrated Circuits) is an

interactive graphic design aid, which allows the user to design

integrated circuit layouts at the geometric level. This approach was

one of the first types of design aids made available to the designer,

yet it can still produce more compact layouts than by alternative

techniques. CADIC is split into two sections :-

1. CADIC1, which allows the designer to build up and/or edit the mask

layouts.

2. CADIC2, which performs all the design rule checks on a newly added

shape (if design rule checking is required).

These sections never work simultaneously. For example, after

adding a shape using CADIC1, CADIC2 takes control and applies the design

rule checks. Only when CADIC2 is finished can CADIC1 regain control,

and allow another shape to be added. For the sake of clarity, each

section is allocated it's own Chapter. CADIC1 is described in this

Chapter, and CADIC2 is described in Chapter 7, after certain concepts

about design rule checking have been discussed.

59

5.2 Requirements

CADICI's first requirement is that it must allow shapes to be added

to the mask layouts. This feature is probably the most fundamental of

them all, yet many design aids put heavy restrictions on the format of

the shapes. For example, some design aids only accept rectangles (4].

Complex shapes must be segmented by the designer, which distracts his

attention from the design problem. No restriction on shape format is

therefore required in CADICI.

CADICI must also allow the designer to delete or move any shape in

the layout, so that errors can be corrected.

In any problem, a designer, sometimes subconciously, will break the

problem down into smaller, more manageable modules. In design of the

integrated circuits, the same hierarchical process must be made

available. CADIC1 should allow the designer to define a collection of

shapes as a group definition, for example the circuitry that makes up a

shift register cell (CELL). This group definition can then be used as a

group instance in a group definition SHIFT REGISTER which includes

several calls to CELL. The group facility therefore allows the designer

to add and/or remove possibly complex sections of layout quickly and

easily, so speeding up layout design.

As the artwork is built up, the user will almost certainly want to

study the layout at a variety of scalings. For example a large scaling

to check inter-shape dimensions, or a small scaling to examine the

60

overall topology of the layout. To accommodate such desires, CADIC1

must provide a large range of windowing facilities, in conjunction with

a redraw facility.

The above requirements are the building blocks of any graphic

design aid. Many other features can be added to ease the designers

task, which are of lesser importance, yet very useful. For example draw

out a set of axes to help the designer position shapes accurately, or

find the nearest point in the layout, so that shapes can be 'tagged' on

to it. It is the provision of these secondary features that often

determines whether a graphic design aid is good or bad, so it is very

important for CADICI to provide a concise range of this type of feature.

When comparing different graphic design aids, the quality of the

output is also very important. For reasons mentioned earlier, the

terminal chosen for CADICI was a SIGMA 5000 microprocessor-based colour

raster scan terminal. A specialized graphics package is therefore

required, so that the terminals unique features can best be utilized by

CADIC1.

Even with computers becoming very common in everyday life, a fair

amount of sceptisism exists when a user is introduced to a computer

design aid. Any interactive graphic artwork package must therefore be

as natural to use as pen to paper. Commands must be easy to use, and

easy to remember. The design aid must also have as few restrictions as

possible, so that the user can utilize his ingenuity to the fullest.

61

Program response to a command must be fast, or else the user will

quickly become bored. The user with ten Cray 1's in his head, plus

additional visual feedback can identify a point in a layout almost

immediately, and expects a computer program to be able to do the same.

Program response time is dependant on three main factors :-

1. Time sharing delays

2. Processing delays

3. File handling delays

Nothing can be done by the programmer to improve time-sharing

delays, so the time must be made up elsewhere. Processing delays can be

reduced with careful programming, such as performing integer arithmetic

whenever possible. Reading data from a file on disc may be as much as

1000 times slower than if the data had been resident in core. The size

of data stuctures required to store an integrated circuit layout force

the use of disc storage, therefore the greatest improvements in response

time can be achieved by efficiently handling the disc-based data.

In a time-sharing environment, data required by a program has more

chance of being processed if the amount of data in core is limited to

only a few pages at any one time. CADIC allocates six pages of core for

data, and swaps information to and from the data file as required.

While the pages are in core, the data can be accessed very quickly.

Should a page not in core be required, then a page already in core must

be written back to disc, and the required page read into core. This is

termed page swapping or paging for short. Paging is very expensive in

62

terms of time, and so the data structure holding the layout information

must be arranged in such a fashion so as to minimise the amount of page

swaps required during processing.

5.3 Logistics

The point has been made that decreasing program response time

requires more efficient data handling. Integrated circuit technology

requires very large data structures to describe the layout. Therefore,

it is worth considering ways in which information to be searched can be

cut down.

One idea is to divide the board up into several areas, and store

all shapes that lie in the same area together in the data structure,

along with some sort of area identifier. This approach is of no benefit

when plotting out the whole board, but if the user windows in to only a

small section of the board, then the program can calculate the area(s)

of interest, and plot out the shapes only in the relevant area(s).

The problem with this approach is how to define shapes that lie in

two or more areas. A simple approach is to store all such shapes in a

special area, for example area '0' (681. When redrawing a section of

the layout, only the areas in the window, plus area '0' must be

processed. In large layouts, area '0' may contain many more shapes than

any of the other areas, and so a lot of time is wasted checking it,

possibly to no avail.

63

In an attempt to level out the distribution of shapes to an area,

GAELIC (1) only stores shapes that lie in three or more areas in area

'0'. Shapes that lie in two areas are stored in the area in which the

shape's bottom left hand corner is positioned. Area '0' has certainly

been reduced, but now shapes associated with an area can travel over the

area's top and right-hand boundary. The effect of this is that when a

small region is to be plotted (say within one area), then the area

concerned must be checked, plus the three adjacent areas (left, below,

and diagonal), then area '0'. Therefore a minimum of five areas must be

checked.

To ensure that only the areas that actually enter the window need

be searched, CADICI does not use the concept of area '0'. Instead

shapes which cross area boundaries are treated in a new way.

The only way to ensure that a shape that enters more than one area

is associated with an area and no others is to 'polygon clip' the

original polygon into a number of sub-polygons, and store the

sub-polygons as independent shapes. (See Figure 5.1).

The sub-polygons must now contain dark segments where they were cut

by the area boundaries, so that these segments will not be seen by the

designer. In this form, watching a layout being plotted out on a DVST

terminal may prove confusing, especially if the transmission speed is

low. A track which extends across most of the layout would be drawn out

in sections, as the program processes each area in turn, rather than

being drawn out all at once. Of course the problem disappears once the

64

plot is finished, as the layout is now identical to that achieved if the

shapes had not been cut up.

Vector scan terminals may also have a problem with the sub-polygon

approach, because the increase in individual polygons may cause the

display to flicker, even if the layout appears to be rather sparse.

When using the SIGMA terminal in the 'FILL' mode, the layout is not

drawn immediately onto the screen. Instead, each mask is drawn onto the

'invisible' polygon plane. The SIGMA then fills the shapes, then copies

the 'filled' mask onto the screen. Because the mask only becomes

visible once it is complete, segmentation of the polygons is never seen

by the user.

Another way in which the amount of information to be checked can be

cut down is to associate each shape in the layout with a bounding

rectangle. The dimensions of this bounding rectangle defines the size

of a rectangle that would be required to fully enclose the shape. Using

this information, CADICI can often ignore a shape, and all its

coordinates, just by checking the bounding rectangle.

Once the decision has been made as to what to put into the data

structure, the problem of how to arrange the data becomes relevant. New

data is always added to the end of the data structure. Therefore as the

layout is built up, CADICI will find it increasingly difficult to keep

useful pages in core fqr any length of time. As a consequence,

excessive page swapping will occur, and CADIC1's efficiency will

65

decrease. To overcome this problem, CADIC1 provides a 'CLEAN' command,

which will re-organise the layout data such that data of a similar

nature is stored on the same page, or consecutive pages. In this way

useful information will remain in core longer, and so increase program

efficiency.

The efficiency of data-handling is also dependant on the order in

which the data is handled. For example consider a layout 'L' which

contains group definitions 'A', 'B', 'C', 'D' arranged in the following

hierarchy :-

BI

While plotting out the whole layout, many design aids, on finding a

group instance would jump to the group definition immediately, then plot

out its shapes and instances and so on. This continues until every

branch of the hierarchical tree has been processed. The order in which

groups would be handled is thus :-

LABCBDBACALABCBDBACAL

In a typical layout, CADIC's pre-defined core allocation of six

pages will hold all the shape information for one group definition.

Therefore each time a new group is processed, all the old information

must be swapped for new information. In the above example, twenty group

66

transitions occurred, which would result in 120 page swaps (worst case).

Excessively page swapping the same information is termed page thrashing,

and is to be avoided at all times.

CADICI avoids this problem by obtaining a more global knowledge of

the group hierarchy. If layout 'L' is to be plotted out, all the shapes

in 'L' are plotted, then information about the group instances called

from 'L' are stored in a temporary file. (In the above example, this

would be two calls to 'A')

CADICI then identifies the first group instance in the file (Group

'A'), and brings the relevant group definition into core. All the

shapes in group 'A' are then plotted out, and any group calls identified

(in this case, one call to 'B', and a call to 'C') are added to the

temporary file. The file is then searched to see if any other instances

of group 'A' exist, so that the group definition information can best be

utilized while in core.

67

Once the other instance of group 'A' is found in the file, all it's

shapes are again plotted out, at the new position. Group calls 'B' and

'C' are then added to the temporary file. No more instances of 'A' are

found, but the temporary file still contains two calls to 'B' and two

calls to 'C'. CADICI therefore goes to the top of the file, identifies

group B. then brings the relevant group definition into core. The above

process is then repeated until all group instances in the temporary file

have been plotted. Using this technique, the order in which CADIC1

would handle the group hierarchy in the above example would be :-

L AAB BCCCCDD

Note that now only four group transitions occurred, resulting in 24

page swaps (worst case). The-saving in CPU time is therefore obvious.

5.4 Program operation

CADICI is a graphical design aid implemented in FORTRAN, which

through the provision of simple commands allows the user to build up

and/or modify an integrated circuit layout. The command structure used

by CADICI is shown in Figure 5.2 and is described below in hierarchical

order.

Initialization : The initialization stage simply sets up all the

program variables and terminal conditions, then allows the user to

specify which layout he wants to build/modify.

68

Main Command level : After initialization, CADICI enters the main

command level. At this level the user cannot alter the layout in any

way. However, the user can plot out the layout and/or set up the

correct conditions in preparation for editing the layout. The available

commands are briefly described below :-

ADJUST ... Adjust mask colour settings

AXIS Draw axis on screen (Switch)

CHANGE ... Change name of group definition or instance

CLEAN Clean up the data structure

CURSOR ... Change cursor grid

DEPTH Change depth of group nesting to be plotted

EXIT Exit from program

FILL Fill in shapes (Switch)

GROUP Enter group definition

HELP Write out this list of options

INFORM ... Inform user of all program settings

LIST List out group names

MODIFY ... Modify layout/group definition

NET Draw out a net of grid points (Switch)

ONLINE ... Perform on-line design rule checking (Switch)

ORIGIN ... Plot out group origins

PLOT Plot out shapes on selected masks

SAVE Save a copy of the data structure

SWITCH ... Switch off/on design rules

TRACK Change track width

WINDOW ... Change window dimensions

69

Note that only the first two letters of each command need be typed

to uniquely identify a command.

Cursor Command level : On typing MODIFY at the main command level, the

program drops down to the cursor command level, and the cross-hair

cursor appears on the graphics screen. The user can now edit or inspect

the layout, using the range of commands shown below :-

SPACE ... Return to main command level

- Remove mask from plot list

09.. Plot out mask (add mask to plot list)

? Print this list

C Add a collection or array of group instances

F Find nearest point in layout (including groups)

G Add a single group instance

I Identify nearest point in layout (without groups)

J Jump back to full layout

K Kill shapes

L Redraw last window used

M Change mask to be worked upon

P Add polygon

Q Query distance between two points on screen

R Add rectangle

T Add track

U Undefined zoom

V Verify present cursor position

W Redraw layout with present window size

70

Z Defined zoom in

(....... Kill group instances and/or arrays

a Draw axis once

n Draw net once

w Specify new window size

Subsequent cursor command level : Most cursor commands will perform

their function then return to the cursor command level. On typing some

commands, for example 'P' for Polygon, the program will drop down to the

subsequent cursor command level. In the case of the 'P' command, the

subsequent cursor command level is primarily concerned with adding

points to the shape and/or modifying previous points if not correct.

The subsequent cursor commands for adding polygons are given below :-

A Add angled light segment

0 Add orthogonal light segment

X End polygon with angled light segment

E End polygon with orthogonal light segment

a Add angled dark segment

o Add orthogonal dark segment

x End polygon with angled dark segment

e End polygon with orthogonal dark segment

K Kill shape

N Finish segment on nearest point already in layout

S Finish segment at new cursor position

1F """""". Finish segment at point entered through the keyboard

? "...... Print this list

71

A detailed description of CADIC1 operation, plus all the available

commands is given in the CADICI user manual (Appendix A).

5.5 Data Structure

The data structure used by CADIC1 is classified as object

orientated. This means that each shape is represented in the data

structure by a block or bead of memory which stores the necessary

information. Each bead is given a pointer which points to the next bead

in the sequence. Searches involving all the possible occurrances of one

particular type of bead area is therefore very selective if the pointer

scheme is employed. By definition, the last bead points back to the

first bead, and so forms a loop or ring. In this thesis, the data

structure is therefore called a ring data structure.

Any interactive design aid will involve adding, deleting, and

plotting shapes, so the data structure employed must be able to cope

with these operations efficiently. A ring data structure satisfies all

these conditions, and so was an ideal choice for CADIC1. For example,

deleting a shape means removing the relevant bead, and simply involves

adjusting the pointer in the previous bead, so that it now points to the

bead after the one to be removed (See Figure 5.3). Adding shapes uses

the reverse process.

A schematic representation of the ring data structure used by

CADIC1 is shown in Figure 5.4. At first sight, it may look complex, so

consider firstly a layout containing no group definitions (Figure 5.5).

72

Layout Headbead : This bead is the first bead in the data structure,

and provides all the rings ready for adding area beads, group

definitions, and group instances. It's form is as follows :-

0 151 20
Forward group pointer
Reverse group pointer

Area pointer
Group call pointer

Garbage ointer
Title (1)

Title (15)
Layout X offset
Layout Y offset

Layout X dimension
Layout Y dimension

Mask information

The first byte in any bead gives information about the bead itself.

To save on space, the byte is split into three sections or fields.

Contained in the fields are NTYP, ND, NP. 'NTYP' is an integer such

that beads with different properties can be identified. 'NP' defines

the number of bytes in the bead that are used as pointers, and 'ND'

defines the number of bytes in the bead that are used for data.

Therefore the total size of the bead is 1+NP+ND.

The group rings will hold all the group definition headbeads (see

later). The area ring holds all the area beads which are used to

identify the position of shapes in the layout. If group definitions

exist, then instances of these group definitions may exist in the

layout. Information about these instances are held in group call beads

on the group call ring

73

Beads which have been removed from the data structure are inactive

as far as CADICI is concerned, but they still occupy space in the data

structure. All inactive beads are therefore stored on the garbage ring,

and re-used whenever possible. For example, if a bead is required,

CADIC1 will first search the garbage ring to try and find if a suitable

bead exists. If yes, then the bead is used, otherwise a new bead is

formed at the end of the file.

Any layout designed may be filed away for later use, and so a

facility for giving an identification title is provided in CADICI.

Fiveteen bytes of the layout headbead store text as two characters per

byte, allowing a 30 character title. The layout bounding rectangle is

also required by CADIC1, and this information is stored in the headbead,

after the title. Lastly, the mask word is considered as 16 bits, 1 bit

per mask. These bits are set to 1 if the relevant mask contains shapes,

and 0 if not. By reading in the mask word, CADIC1 immediately knows

whether searching for shapes on the required mask is going to be futile

or not.

Area beads : To increase program efficiency the layout is defined to be

partitioned into areas. The area ring therefore holds the area beads

which give information about which area the shapes are in. The form of

an area bead is as follows :-

1 2 4
Area pointer
Mask pointer
Area X min.
Area Y min.
Area X max.
Area Y max.

74

The area pointer simply points to the next area bead on the ring. In an

integrated circuit layout, each shape is placed on a specific mask

layer. An area bead therefore contains a mask ring, which contains mask

beads, and so describes which masks have shapes in the area defined by

the area bead. Lastly, the X and Y coordinates in the area bead define

the position of the area on the board.

Mask beads :A mask bead is as follows :-

2 2 1
Mask pointer

Shape pointer
Mask number

As described bef ore, the mask pointer points to the next mask bead

on the ring. The mask number defines the mask layer. At this stage,

the shape information can be added on the shape ring, as the area and

the mask layer have now been defined.

Shape beads : There are three main forms of shape bead used in the data

structure :-

1. Long format polygons

2. Short format polygons

3. Rectangles

75

A long format polygon is the most general type of shape, and all

shapes which contain angled segments come into this category. i. e. : -

Xe %6 X5 y5

XQ

x1y1 zyz
The long format shape bead is as follows :-

7 1 2n
o nter ape p

Be Rectangle X min
Be Rectangle Y min
Be Rectangle X max
Be Rectangle Y max

x1
yl

xn
yn

Y4

The shape pointer points to the next shape bead on the ring. Next

comes the coordinates of the shape's bounding rectangle, followed by the

coordinates of every point in the shape, one byte per coordinate. In

CADIC1, all coordinates stored in the shape bead are actually those

which define the shapes offset from the bottom left hand corner of the

area, rather than the absolute coordinates of the shape. The reason for

this is that CADIC1 has been designed for possible operation on a 16 bit

computer. The range of coordinates required in an integrated circuit

layout is now too large for 16 bit representation, therefore each

76

absolute coordinates would require two bytes. By storing the shape

coordinates as offsets, and defining an area to be no larger than 64383

increments, then the shape beads only require one byte per coordinate.

The saving in memory is therefore obvious.

A special case of the long format polygon is the short format

polygon. This type of shape contain only orthogonal segments, for

example :-

x Y3

x1 y1 x2%2

In this type of shape, only every alternate coordinate need be

stored, since (x2, y2) is also (x3, y1), and so on. Short format polygon

beads therefore. have the form :-

5 1 2n
Shape pointer

Be Rectangle X min
Be Rectangle Y min
Be Rectangle X max
Be Rectangle Y max

x1
1

x3
y3

n

xn
yn

77

A special case of the short format polygon is the rectangle. The

important coordinates now are the bottom left hand corner, and the top

right hand corner.

X4 4 x3, Y3

xI y1 XZ Y2

The reason for a separate bead type is that the rectangle

coordinates are also the bounding rectangle coordinates, so obviously

the bounding rectangle information is now no longer required. The form

of a rectangle bead is as follows :-

3 1 4
Shape pointer

x
yl
x3

3

Earlier it was described how polygons which lie over area

boundaries are cut into sub-polygons. These sub-polygons or open

polygons contain both light and dark segments, which must be represented

somehow in the shape bead.

If the size of each area on the board is limited to 16383

increments, then CADIC1 can use the second most significant bit of each

coordinate byte to store the information. If set, the segment is

defined to be dark, otherwise the segment is defined to be light, for

78

example :-

YV

xi

x4 y4

xsy6 x3y3

/
i1
"

x1 y1 x2 y2

light sogment

---- dark segment

Bit set

X1 Y
yl
x2
y2
x3 Y
y3
x4
y4
x5
y5
x6
y6
x7
y7

For long format polygons, the light/dark status of the segment is

determined by the x-coordinate of the point that the segment goes to.

When the coordinate data is stored in a compact form, as in short

format polygons and rectangles, the light/dark information must be

similarly compact. Consider a section of a short format polygon as

shown below :-

. x3 y3

79

xIy1 x2y2

Remember that the point (x2, y2) is not stored in the bead,

therefore the light/dark information must be stored totally in the point

coordinates (x3, y3). Coordinate x3 holds the status for the first

segment, and y3 holds the status for the second segment. An example for

a rectangle is shown below :-

y4 x3y3

light
scgmQnt

------ dark
segment

Bit set

X1

yl Y
x3
y3

X1 Y, x2 =2

When a polygon is split up into several sub-polygons, the

individual sub-polygons will be stored under different areas in the data

structure. In commands such as deleting a polygon, all the sub-polygons

which go to form the polygon must be found quickly. CADIC1 does this by

connecting all sub-polygons (which represent the original polygon)

together on a connectivity ring. This extra pointer requires a unique

bead for the three types of open shape possible.

In, for example, plotting algorithms, CADICI processes the data

structure in a top-down nature, so the area under concern is known

bef ore the shapes are processed. Remember that the shape coordinates

are offset from the area origin, so the absolute coordinates of the

shape are easily calculated. When deleting a polygon described by

several sub-polygons, the program must chase round the connectivity ring

to find all the coordinates, therefore the situation arises in which the

80

offset shape coordinates can be found, but the area origin is now no

longer known. To obtain the area origin information quickly, a direct

pointer to the area bead is also included in the open shape beads. The

three types of open shape beads are shown below :-

4 3 4
Shape pointer

-Conn. pointer
Direct pointer

x1
y1
x3
y3_

6 3 2n
Shape pointer
Conn. pointer
Direct pointer

B. Rectangle X min
B. Rectangle Y min
B. Rectangle X dim

B. Rectangle Y dim
x1
yl

xn
yn

8 3 2n
Shape pointer
Conn. pointer
Direct pointer

B. Rectangle X min
B. Rectangle Y min
B. Rectangle X dim

B. Rectangle Y dim
x1

.Yl

xn
n

Group Definition Headbead :A group definition is built up in exactly

the same way as the main layout. The only difference in terms of data

structure is the form of headbeads used. In group definition headbeads,

only three bytes are used to store the groupname, as opposed to fiveteen

in the layout headbead. The form is as below :-

20 5 8
Forward group pointer
Reverse group pointer

Area pointer.
Group Call pointer

Garbage pointer
Title
Title (2)
Title (3)

Group X offset
Group Y offset

Group X dimension
Group Y dimension

Mask word

81

Note that all the group definitions are linked by a double ring, as

opposed to the single ring used elsewhere in the data structure. If the

group definitions can be arranged such that the newest group is first on

the forward ring, one may think that the reverse ring is redundant,

since in plotting out a layout, a top-down approach is required. This

is correct, and in fact, the reverse group ring is seldom used by

CADIC1. The moment when it is used is after the designer has added more

shapes to a previously formed group definition, which is called by other

group definitions higher up in the group hierarchy. Should the edited

group definition now be larger, it may affect the size of the groups

which call it. Increasing the size of the latter group definitions may,

in turn, affect other group definitions, and so on.

The forward group ring is pointing in the wrong direction to

process the groups in such a bottom-up manner, therefore the reverse

group ring was included to serve this purpose.

82

Group Call beads : Two types of group calls can be achieved. The first

type is a single group instance, and the second type is an array

instance, containing many group instances.

The group instance bead is as below, and is placed on the group

call ring of the relevant layout or group definition headbead.

15 2 8
Group Call pointer

Direct pointer
Orientation

X offset
Y offset

B. Rectangle X min
Be Rectangle Y min
B. Rectangle X max
B. Rectangle Y max

Mask word

To save on memory space and search time, the address of the group

definition headbead is stored in the group instance bead rather than the

group-name. Next in the bead comes the orientation of the group

instance, relative to the layout/group definition, plus the group

instance position relative to the origin of the layout/group definition.

To help cut down the processing required by CADIC1 to handle all the

group instances, the bounding rectangle plus the masks used in the

instance are stored in the group call bead. Therefore, a group instance

is only considered if it is inside the window, and contains shapes on

the mask(s) required.

83

The array instance saves space and time by being defined as an

array of group instances. The array bead looks like :-

16 2 11
Group Call pointer

Direct pointer
Orientation

X offset
Y offset
X number

X spacing
Y number

Y spacing
Be Rectangle X min
Be Rectangle Y min
Be Rectangle X max
Be Rectangle Y max

As can be seen, the array bead is identical to the group instance

bead except 'for four bytes. These bytes simply store the number of

instances required in the X and Y directions, and the spacing between

each instance in the respective directions.

84

t'El

1)

__

light segments

---- dark segments

Figure 5.1 Segmentation of shapes which cross
area boundaries

C
O 10

Zb
Ö

V
J

ºý C
O

c

Y
u
Li

ä

a

c
: FT
0

E

tý

E

c} 0
aö

c

w

Y

a
9

U

u

u
M

G

7

0

0
E

u
c 'ö

_o
b

E

L1

.k

Z)

M

ä

u 0
CL N

u,

3

n.

'0 0

V)

O

aý Q O 'fl

E
ö

u
Q

Li
U"
ýd

C7 O

a

u
C

Oi

ää O
:C

z L
vý o
o ä

c".
ö ý N

4J

Z
dý Qi

_

0

iä k

E2

chi O

(a) Ring before removing bead C

(b) Ring after removing bead C

Figure 5.3 Removing a bead from ring

ring pointer

---- dir¢d paintor

Figure 5.4 Layout ring data structure

layout
Madbsad

.ý
i

i

I

i

i
J

Figure 5.5 Layout ring data structure without group
definitions

CHAPTER 6

DRCCAD

6.1 Introduction

DRCCAD (Design Rule Compiler for Computer Aided Design) accepts a

'user readable' description of the design rules required during layout

design, and converts this description into a ring data structure

readable by CADIC2. Existing design aids generally do not require this

type of pre-processor, therefore it is important to justify the use of

DRCCAD in the CADIC suite of programs.

The need for DRCCAD stems from the fact that CADIC implements

on-line design rule checking. To show this, consider the example of

performing a spacing check to ensure that the distance between shapes on

mask (1) -and the shapes on mask (2) is greater than some specified

minimum value.

A typical off-line-design rule checker would start by writing all

the information about the shapes on mask (1) into a file. Secondly, all

the shape information from mask (2) would be written to another file.

Note that the information within these files is often arranged into

sophisticated data structures so as to allow quicker access to the

information.

The checker proceeds by analysing each shape combination to see if

any two shapes violate the spacing rule. If yes, then an error message

90

is printed out to the user, along with details about the violating

shape(s). On completion of the check, one or both of the files can be

cleared, ready for the next check to be performed.

Identifying each shape combination in this way means that (in

theory) every shape in file (1) must be compared against every shape in

file (2). The combinatorial explosion thus produced forces sometimes

very heavy consumption of CPU time (typically ranging from a few seconds

to several minutes).

Performing the same spacing check in an on-line fashion requires a

completely different approach. Once a shape is added to, for example

mask (1), information about the shape is added to a file. Note that the

checker now only considers particular shapes, rather than entire masks.

Next, mask (2) must be searched to identify a shape that is liable

to cause a spacing violation with the newly added shape on mask (1). If

found, then the mask (2) shape is read into the file. The (design rule

checker then performs a spacing check between the two identified shapes.

If a violation occurs, then the relevant error message is printed out.

Once finished with the mask (2) shape, the checker continues to search

through mask (2) to find any other shapes that may cause a violation.

If a shape is found, then the new shape overwrites the old mask (2)

shape, and the above process is repeated. Once mask (2) has been

completely searched, the newly added shape on mask (1) can be accepted

or rejected, 'depending on how many violations were identified.

In on-line design rule checking, only one shape is checked against

every shape on mask (2) therefore the CPU time required is drastically

reduced (typically fractions of a second).

91

Now consider an off-line design rule checker once again. Usually

the description of the design rules is stored in a text file. These

files look similar to computer programs in that each line of code

defines a (mask) operation for the checker to perform. The checker must

therefore read out each line of code, then decode it into a set of

instructions before proceeding with the relevant operation.

Using a text file to store the design rules means that access to

the information is indirect, and therefore relatively slow. However a

faster method of accessing the design rules is not required by the

off-line design rule checker. As can be appreciated from the example

shown above, the time taken to read and decode from the text file is

negligible, compared to the time required to perform each operation.

On the other hand, an on-line design rule checker requires less

than one second to perform the checks. Therefore a text file

description of the design rules will not be suitable for an on-line

design rule checker. There are three main reasons for this :-

1. The time taken to, read from, then decode an instruction from a text

file could well exceed the time taken to actually perform the

operation.

2. The design rule file must be searched each time a shape is added to

the layout. If a text file was used, then the time required to

rewind then sequentially read the entire file would be too slow for

interactive use.

3. Different rules relate to different masks. Therefore when a shape

is added to a particular mask, only a small subset of the total

number of rules need to be implemented. All other rules can be

92

ignored. Once again, sequentially reading a text file to find the

relevant rule is highly inefficient.

An on-line design rule checker therefore requires a pre-decoded

description of the rules to allow quick and easy access to the relevant

information. The rules should also be organised into groups, depending

on which masks they relate to, so that the time spent reading the design

rules is minimised.

Compiling the rules as an independent stage in the design of

integrated circuit layouts has two main advantages :-

1. The same set of design rules may be used for several months, on a

variety of layouts. It therefore makes sense to compile the rules

once, then utilise the compiled version of the rules as required.

2. Compiling' the'-rules in this way allows the designer to identify and

correct mistakes (i. e. syntax errors) in the 'user readable'

description of the design -rules, before actual layout design

commences.

6.2 Choice of design rule input language

The ideology behind DRCCAD is that a set of design rules to perform

any type of dimension check required can be quickly encoded by the

designer. The rules in the manual input language must therefore be easy

to build up, ' free in format, and the commands easy to remember.

Once the full set of design rules has been built up for a specific

technology, the same set of rules can be applied to all future designs

using this technology. However, a time will come when the designer will

93

have to alter the set of design rules. This may happen months or years

after the rules were originally formed. If the set of design rules

consists of a series of numbers representing the commands, mask numbers,

and dimensions, it is going to be very difficult to understand. A high

degree of 'readability' is therefore required in the language.

Lastly, as described above, the design rule file used by off-line

checkers tends to be similar in format to a computer program. The

sequence of commands must be generated by the designer, therefore the

efficiency of the design rule checker is heavily dependant on the

designers implementation of the language used to specify the rules. The

onus is also on the designer to create the correct sequence of commands

to perform the required set of checks.

Since CADIC2 requires DRCCAD to break down the design rules into a

more 'accessible form, restrictions on the type of design rule language

to be used can be lifted. Existing design rule checkers tended to use

languages that were a compromise between 'user readable' and 'computer

readable'. However, CADIC can now use a language which best suits the

user. Decisions on which operations to implement, plus the order in

which the operations should be performed can be left to DRCCAD. In this

way, the user does not need an in-depth knowledge of how CADIC2 works,

plus DRCCAD can re-organise the sequence of operations to obtain maximum

efficiency during on-line design rule checking.

Although GAELIC (1) implements off-line design rule checking, it

does provide a 'user ergonomic' language to describe the design rules.

For example, each rule consists of basically one statement which defines

the condition to be checked for. Note that this condition is technology

independent, plus is written in almost an identical fashion to the way

94

it would be described verbally.

The GAELIC language is therefore directly suited to the needs of

CADIC. For this reason, it was decided to make the DRCCAD language

compatible with the GAELIC language.

Within a design rule file, each rule has the following standard

construction :-

RULE <rulename>
! Comment
<Var> IS <shape type> MASK <mask number>
FAIL <Error message> IF <failure condition>
END

The rulename can be any unique name up to six characters in length

(only five characters are significant). Secondly, each rule may contain

lines of comment to increase readability. Lastly, the failure condition

is the set of commands which define the design condition to be checked

for. If the failure condition is satisfied (i. e* a design rule

violation has been identified) then the relevant error message can be

printed out to the user, so that the nature of the violation can be

determined.

Alphanumeric variables may be used in the failure condition to

represent particular types of shapes that exist on the desired masks.

All such variables must be pre-defined using the 'IS' command, for

example :-

PD IS RECT , POLY MASK 1

METAL IS RECT, MASK 4

PD is defined to be all the shapes on mask one, and METAL is

defined to be only the rectangles on mask four.

95

A list showing the available failure condition commands is shown

below :-

OVERLAP Find shapes which overlap

ENCLOSED Find shapes, one enclosed by the other

SEPARATE Find shapes which are separate

ABUTS Find shapes which touch

DISTINCT Find shapes which are distinct

PARTED Find shape, one cut in two by the other

WIDTH Specify minimum width of shape

LENGTH Specify minimum length of shape

INTERLIMB Specify minimum spacing between limbs of shape

XDIM Specify minimum X dimension of shape

YDIM Specify minimum Y dimension of shape

AREA Specify minimum area of shape

BRAREA Specify min. area of shape's bounding rectangle

SPACING Specify minimum spacing between shapes

CLEARANCE Specify minimum clearance between shapes

HORIZONTAL Specify shape to lie in horizontal direction

VERTICAL Specify shape to lie in vertical direction

AND Connecting command

OR Connecting command

NOT Inverting command

UNION (+) Perform logical OR function on shapes

INTERSECTION (*) . Perform logical AND function on shapes

DIFFERENCE (-) ... Perform logical NAND function on shapes

EXCLUSIVE (/) Perform XOR function on shapes

INFLATE/DEFLATE .. Inflate/deflate shape

ENDOFFILE End processing

96

An example of a set of design rules are :-

PD IS RECT, POLY MASK 1
PS IS RECT, POLY MASK 2
CW IS RECT, POLY MASK 3
METAL IS RECT, POLY MASK 4
CHAN IS RECT, POLY MASK 5
RULE XMPLA
! Example A

FAIL 'Minimum width of contact' IF WIDTH (CW) <6
END
RULE XMPLB
lExample B

FAIL 'Metal separation' IF SEPARATE (METAL, METAL) &
AND SPACING (METAL, METAL) < 10

END
RULE XMPLC
lExample C

FAIL 'Separation of polysilicon outside p-diff to poly' IF &
OVERLAP (PS, PD) AND INTERLIMB (PS+PD) < 10

END
RULE XMPLD
lExample D

FAIL 'Minimum spacing contact to poly' IF ENCLOSED (CW, PD) &
AND OVERLAP (PL, PS) AND SPACING (CW, PS) <5

END
ENDOFFILE

Diagrams showing the checks described by each rule are shown in

Figure 6.1.

6.3 Program Operation

After initialisation, DRCCAD asks for the name of the file

containing the design rules, then asks for the name of the ring data

structure which will store the compiled information. Note that the ring

data structure may already exist, in which case the design rules in the

input file will simply be compiled, then appended to the existing data

structure.

DRCCAD proceeds by reading out each rule from the input file, then

performing syntax checking on it. DRCCAD has no way of knowing if the

failure condition correctly represents the check required, but can catch

97

a variety of errors. For example :-

1. Static errors - Misspelt commands, syntax errors, and so on

2. Dynamic errors - Undefined shape variables, illegal rule

structures, and so on

Once the manual file has been completely processed, DRCCAD provides

the user with three options :-

1. Close the files, and return to monitor level

2. Fetch another input file, which will be added to the existing ring

data structure. In this way, library files can be loaded as

required.

3. Enter data on-line, through the keyboard. Therefore if only a few

rules were rejected by DRCCAD, they can be re-submitted correctly.

This saves having to edit the relevant manual file, and start the

possibly lengthy and involved 'compilation' from the beginning.

98

An example of running the manual file (shown in the previous

section) through DRCCAD is given below. Note that the manual file

deliberately contains an error in one of the shape variables, so as to

show how DRCCAD handles a typical error.

- DRCCAD -

Program to convert DRC input language into a ring data structure

Enter name of DRC input file, or return to finish :- DRC

Does the manual file contain line numbers ? NO

Enter name of existing ring data structure, or return :-

Enter name of the new ring data structure, or return to finish :- DUMP

RULE MPLD
Undefined shapename in OVERLAP
Rule is ignored by program

Enter name of next manual file, or TTY for
keyboard input, or press return to finish :- TTY

Enter data - without line numbers
RULE XMPLD

FAIL 'Minimum spacing contact to poly' IF ENCLOSED (CW, PD) &
AND OVERLAP (PD, PS) AND SPACING (CW, PS) <5

END
. ENDOFFILE

Enter name of next manual file, or TTY for
keyboard input, or press return to finish : -

END OF EXECUTION
EXIT

6.4 Design rule data structure

The design rule data structure acts as a control file, which CADIC2

uses to ensure that it performs the minimum number of calculations

during design rule checking. This is a different concept to the layout

99

data structure, which acts in a data storage capacity. More details on

the format of the design rule data structure will be given in Chapter

seven, once on-line design rule checking and its requirements have been

introduced. Only after this can the final format of the data structure

be decided upon.

100

d, 6

d 310

Rule XMPLB

d >10

d5

Figure 6.1 Design rule checks

Rule XMPLA

Rule XMPLC

Pule XMPLD

CHAPTER 7

CADIC2 : The on-line design rule checker

7.1 Introduction

CADIC2 is the second phase of CADIC, which only comes into play if

on-line design rule checking is required. If a shape or group instance

is added to the layout, it is CADIC2's job to check the shape(s) against

the existing layout, using the set of design rules specified when the

ONLINE option was selected. Because of the importance of on-line design

rule checking, the whole of this chapter describes the approach taken by

CADIC2.

7.2 Requirements

In order to be regarded as an on-line design rule checker, CADIC2 must

be able to do the following :-

1. Check the newly added shape or group instance against the existing

layout, using a set of pre-defined design rules.

2. Perform the design rules within the time it takes the user to think

of his next move.

The first requirement may seem too obvious to be included as a

requirement for on-line design rule checking, but has been included

simply to highlight the fact that the checks can be carried out in a

variety of ways.

102

The simplest approach is to build the rules into CADIC2. Using

this technique, the designer need not worry about setting up the rules,

and without having to reference a file on disc, CADIC2 would run faster,

therefore making the second requirement easier to acheive.

Some design rule checking programs do use this technique [69), and

work by relating all the rules to the resolution of the fabrication

process (A). Performance is very good, but the programs are limited to

only one technology. Changing technology may require a major re-write

of the program. Another disadvantage is that the rule dimensions do not

scale down linearly with therefore changing X may again involve

editing the program.

With today's fast mgving technology,

should store a description of the design

rules can then be built up by the designer

can be modified as required. Note that

have to be 're-compiled' by DRCCAD, which

code for CADIC2.

it. was decided that CADIC2

rules in a separate file. The

r to suit any technology, and

the modified design rules only

does not affect the source

The second requirement is the 'make-or-break' requirement of any

on-line design rule checking program. During a design, the designer

will work at a speed which allows his ideas to flow along, and allow a

'design inertia' to be built up. The human brain works most efficiently

at this steady pace. If the introduction of on-line design rule

checking means that the designer must wait for each shape to be checked,

then the design will never 'flow', and may be subsequently impaired as a

result. The designer will soon become bored, and may reject the on-line

design rule checker in favour of a conventional off-line checker.

103

Therefore after a shape is added to the layout, the on-line design

rule checks must be completed before the designer makes his next move.

To satisfy this requirement, the few design aids that incorporate

on-line design rule checking (31 limit the checks to the simpler rules.

All other rules are checked off-line. The function of the on-line

checker is therefore to identify only the obvious errors. This is a

fairly sensible approach, as the layout will not have to be edited just

to correct the elementary errors, plus the off-line checker will run

faster if it can disregard the simpler rules.

CADIC hopes to improve on this by carrying out all the design rule

checks once a shape is added to the layout. In this situation, the

layout will be correct at all times, thus completely doing away with the

need for an off-line checker. The main advantage of this is that the

time comsuming two stage design-check cycles will no longer exist,

allowing circuit design turnaround time to be greatly reduced.

7.3 Logistics

In the previous Chapter, the design rule input language was

introduced, and DRCCAD described. Note that no details were given about

the format of the design rule data structure created by DRCCAD. The

reason for this is that the format is dependant on the on-line design

rule checking requirements and logistics discussed in this Chapter,

rather than any requirements of DRCCAD.

104

So how should the design rules be implemented such that the

processing is kept to a minimum ? Consider the following set of

rules :-

PD IS RECT, POLY MASK 1
PS IS RECT, POLY MASK 2
CW IS RECT, POLY MASK 3
RULE ONE

FAIL 'Test one' IF WIDTH (CW) < 10
END
RULE TWO

FAIL 'Test two' IF SEPARATE (CW, CW) AND SPACING (CW, CW) < 6"
END
RULE THREE

FAIL 'Test three' IF OVERLAP (PD, PS) AND AREA (PS) < 25
END
RULE FOUR

FAIL 'Test four' IF OVERLAP (PD, PS) AND WIDTH (PD*PS) <4
END
ENDOFFILE

The first point to note is that different rules relate to different

masks. For example, if a shape is added to mask 'CW', then only rules

ONE and TWO need be processed, whereas if a shape is added to masks 'PD'

or 'PS', rules THREE and FOUR need to be processed. The first important

timesaver therefore is to group rules related to the same mask together

in the data structure, so that on adding a shape to the layout, all the

relevant rules can be found quickly and easily.

The second timesaving factor relies on the fact that within any one

group of rules, two types of rule exists :-

1. Self-rules

2. General rules

Self-rules apply only to the newly added shape, and involve no

other shapes. Rule ONE is an example of a self-rule. This independence

means that the check can be performed while the shape is being built up.

General rules involve other shapes, and can only be processed once the

105

shape is complete. Rules TWO to FOUR are examples of general rules.

By processing the self-rules while the shape is being built up,

CADIC2 will have less checks to perform once the shape is complete, and

so CADIC1 will be returned to the cursor command level (see Chapter

five) sooner. General rules can become rather complex, so how should

they be processed in order to minimise CPU time ? Two main approaches

exist.

The first approach is to consider each rule individually, and apply

the rule to the whole layout. The data structure would simply contain a

series of blocks of information, one block per rule. Each block would

basically contain the commands, the masks used, and the error message,

making ,. the design rules easy to implement.

Unfortunately, as can be seen in rules THREE and FOUR, a fair

degree of redundancy exists in the design rules. To process the rules,

CADIC2 would have to perform the same OVERLAP operation twice. The

higher the redundancy, the more CPU time is wasted.

The second approach reduces this redundancy to zero by considering

the general rules in a more global fashion. The data structure still

contains a series of blocks, but now each block defines a single

operation, rather than a whole rule. A pointer system is now required

to link the operation blocks up in the correct order.

To build up the data structure, the failure condition in each rule

is considered, then the necessary operation blocks are added to the data

structure in the correct order. Note that existing blocks are used

whenever possible. For example, to build up rule THREE, three blocks

106

would be required ; an OVERLAP block, followed by an AREA block,

followed by an ERROR MESSAGE block. To build up rule FOUR, only three

blocks are required, instead of four, since the OVERLAP block already

exists. The blocks are added into the data structure after the OVERLAP

block, and are ; an INTERSECTION block, followed by a WIDTH block,

followed by an ERROR MESSAGE block.

Therefore if a shape was added to mask 'PD', CADIC2 would firstly

have to find a shape on mask 'PS' that overlapped the newly added shape.

If found, the shape on mask 'PS' would be given an AREA check. It would

then be used to form a new shape which is the INTERSECTION of the two

input shapes, and finally the new shape would be given a WIDTH check.

Should either check fail, then the corresponding error message is

printed out.

In order to obtain very high efficiency, CADIC2 uses a data

structure based on the second approach to implement the general design

rule checking.

To sustain the high efficiency, CADICZ must also minimise the

amount of data to be processed during each operation. This is achieved

by implementing two main concepts :-

I. Influence bumper

2. Segment type identification

Defining an influence bumper round a shape or segment is a new

concept, and is based on the idea that CADIC2 does not have to consider

all the shapes in the layout when performing the design rule checks. In

fact, as is shown below, only the shapes in the immediate neighbourhood

107

need be considered.

Consider adding a shape to mask 'PD' and applying the set of design

rules shown above. In rules THREE and FOUR, the OVERLAP selector is

only concerned with shapes which enter the newly added shape's bounding

rectangle. OVERLAP will therefore typically select at the most only the

few neighbouring shapes out of the thousands of shapes possibly

available on mask 'PS'. The OVERLAP routine therefore implicity defines

its own influence bumper of zero increments, since possible shapes must

enter the newly added shape's bounding rectangle before they can

possibly cause an overlap condition.

Now consider adding a shape to mask 'CW' and applying rule TWO. In

this case, thousands of shapes will satisfy the SEPARATE condition, and

so will have to be checked for a possible SPACING violation. On

considering the rule in a more global fashion, it is obvious that if a

shape's bounding rectangle is separate from the newly added shape's

bounding rectangle and further away than six increments, the shape

cannot possibly violate the rule.

To filter out these unwanted shapes, DRCCAD calculates an influence

bumper for each mask, as it is compiling the rules into the design rule

data structure. As described with the OVERLAP example, the bumper width

is normally zero, but in rules using the SEPARATE and SPACING commands,

the bumper width Is set to the spacing dimension.

Whenever a shape is added to the layout, CADIC2 finds the width of

the influence bumper to be associated with the shape, then surrounds the

shape's bounding rectangle with this bumper. During the design rule

checks, all shapes outside the bumper can therefore be ignored

108

immediately.

The concept of an influence bumper also helps minimise the time

taken to perform dimensional checks such as WIDTH, SPACING and so on.

Consider the following shapes, ready to be checked for a SPACING

violation :-

PS

P11

6 P 3 P 2 P' ds

ty

ds = minimum
spacing

The usual approach is to consider each segment combination in turn,

calculate the minimum distance between the two segments, then compare

this distance with the specified minimum spacing distance. If the

calculated distance is less than the specified distance, then a SPACING

violation has occurred. The problem with this technique is that the

distance computation between two general segments is not trivial, and so

is expensive in terms of CPU time to perform.

In an attempt to reduce this time, CADIC2 relies on the fact that

in the dimensional check, the actual distance between two segments is

never needed. All that is important is that the distance is less than

or greater than the specified minimum distance.

In the example of the SPACING check, CADIC2 considers each primary

segment in turn, and creates an influence bumper round the outside edge

of the segment. The width of the bumper is set to the specified minimum

spacing distance. Using highly efficient 'clipping' routines (as used

109

in computer graphics), all the secondary segments can quickly be checked

to see if they enter the influence bumper. If yes, then a violation

must have occurred, for example :-

S3 key

---T $4 r -------i
u ------

J bumper
P2 d, g5 SZ d spacing distance

5 65 ds minimum spacing

L--j

Defining the influence bumper is more expensive to perform than a

distance computation, but the operation is performed only once per

primary segment. This expense is more that compensated by the fact that

checking if a secondary segment enters the bumper is much cheaper than a

distance computation. The more secondary segments, then the more CPU

time is saved. In this way, CADIC2 can perform dimensional checks much

faster than by the normal approach.

The second way in which CADIC2 minimises the data to be processed

during design rule checking is through the concept of segment type

identification. The concept is not new, but does help reduce the amount

of data to be processed quite significantly, especially when dealing

with orthogonal geometry.

CADIC2 simply ignores a segment pair if the segment are at right

angles to one another. Consider the diagram above in the case when

primary segment 'P2' is being compared against the secondary shape, and

the distance 'd' is less than the specified minimum.

110

I

Without the segment type identification, all six secondary segments

must be considered, out of which segments 'S1, S5, S6' will violate the

spacing check. With segment type identification, only three segments

'S2, S4, S6' are considered, and only segment 'S6' violates the check.

The latter approach is obviously much faster. It also minimises the

number of violations detected, without degrading the thoroughness of the

spacing check.

7.4 Design rule data structure

In off-line design rule checking, the rules are very often stored

in a simple sequential text file. One reason for this is that all the

rules must be carried out at some time during the check, therefore the

order An which then checks are carried out is not important. Note that

the file is only searched once.

The second reason is that each entry in the list defines a mask

operation (i. e. applies to all the shapes on a mask), theretore Lne

time to read each file entry is negligible compared to the time required

to implement the instruction.

On-line design rule checking requires, a much more sophisticated

method of storing the design rules, since the file will be searched

every time a shape is added to the layout. The file must therefore

possess :-

1. Good selection properties, so that all the rules relating to a

particular mask'may be identified quickly and easily.

2. High efficiency, so that then time spent accessing the file is kept

to a minimum.

111

Ring data structures (as described in Section 5.5) are ideally

suited to the above requirements. Therefore it was decided to use a

ring data structure to store all the design rule information. An

example of a typical design rule ring data structure is shown in Figure

7.1. The figure shows in fact the data structure that would be produced

if the set of design rules described in Section 7.3 were compiled by

DRCCAD. Each bead type possible in the design rule data structure will

now be described in detail.

Desi n rule headbead : This bead is the first bead in the data

structure, and simply provides a ring to which mask beads can be added.

It's form is as follows : -

011
Mask pointer

Mask word

As with the beads used in the layout data structure implemented by

CADIC1, the first byte in a bead provides information about the bead

itself. This byte is split into three fields, and the fields are

defined as bead identification, number of pointers, and number of data

bytes respectively. The mask ring will hold all the mask beads required

(see later). Lastly, the mask word is considered as 16 bits, 1 bit per

mask. These bits are set to 1 if the relevant mask is used in a design

rule, and 0 if not. By reading the word, CADIC2 can quickly find out

whether the newly added shape will be involved in any design rules. The

same information could be found by searching through the mask beads on

the mask ring, but the frequency at which this information is required

warrants a compacted storage format for quick reference.

112

Mask bead :A mask bead is used to collect together all the rules that

relate to a particular mask. For example, to encode the following

rules :-

PD IS RECT MASK 1
PS IS RECT, POLY MASK 2
CW IS RECT, POLY MASK 3
RULE ONE

FAIL 'RULE 1' IF SEPARATE (PD, PS) AND SPACING (PD, PS) <10
END
RULE TWO

FAIL 'RULE 2' IF ENCLOSED (PD, CW) AND CLEARANCE (PD, CW) <6
END
ENDOFFILE

Mask bead (1) would require a copy of rules ONE and TWO, whereas

mask bead (2) would only require rule ONE, and mask bead (3) would

require rule TWO. See Figure 7.1 for another example of this grouping.

The form of the mask bead. is as follows :-

63 3 2
Mask pointer

General rule pointer
e -ru e pointer

Mask number
Enlargement factor

The mask pointer simply points to the next mask bead on the mask

ring. The general rule and self-rule pointers however need more

explanation. As described earlier, CADIC2 handles design rules in two

ways :-

1. Self=rules, which are processed as the shape is built up

2. General rules, which are processed once the shape is complete

The general rules are never required when CADIC2 is performing

self-checks, and the self-rules are never required when performing

general checks. To keep these rules separate, the mask bead provides

113

two rings, one for the general rules, and one for the self-rules. The

general and self-rule pointers therefore point to the next bead on the

respective rings.

The next byte in the mask bead is the mask number. This number

simply defines which mask the rules relate to. Lastly, the enlargement

factor tells CADIC2 what size of influence bumper to use round a shape

or group instance added to that mask.

Self-rule beads : Self-rules apply directly to the shape being added,

and involve no other shapes.

follows :-

i/d 2 3
Self-rule pointer

Error pointer
Rulename

Sh. No. She type
Dimension

The form of the self-rule bead is as

Typ id

WIDTH 9
LENGTH 10
INTERLIMB 11
XDIM 12
YDIM 13
AREA. 14
BRAREA 15

The self-rule pointer points to the next bead on the self-rule

ring. In the event of a rule violation, CADIC2 jumps down to the error

ring to find the error bead (see later).

In the ring data structure, every rule bead contains a rulename.

The reason for this is that CADIC2 provides the user with the option to

switch off/on design rules if required. Because DRCCAD merges the

independent rules into one data structure, the rulename is the only clue

to the bead's origin.

114

The next byte in the bead stores the shape number and the shape

type. Shapes associated with masks 1 to 15 have a shape number 1 to 15

respectively, and temporary shapes generated from logical operations

have shape numbers from 50 upwards. Using this number, the shape

information can be picked out from the shape list (see later). Only a

certain type of shape may be required from a mask, so a shape type

identification is also stored in the rule bead, so that unwanted shapes

can be ignored. The shape types are defined as :-

1- Rectangles

2- Polygons

3- Rectangles, and polygons

Lastly, the rule dimension is stored so that shape dimensions can

be compared against it.

Selection bead : These beads are used by CADIC2 to select shapes for

further processing. The operation of the selector bead is a bit more

involved than the 'one bead - one operation' definition of other beads.

Consider the following rule encoded into ring data structure format :-

PD IS RECT, POLY MASK 1
PS IS RECT, POLY MASK 2
RULE EXMPLE

END
FAIL 'RULE 1' IF OVERLAP (PD, PS) AND WIDTH (PS) <6

ENDOFFILE

OVERLAP

I WIDTH

ERROR

115

After a shape is added to mask (1), CADIC2 will reach the overlap

bead. From this bead, it will find the mask it must search (Shape

number 1 to 15) and the shape type to be considered. CADIC2 then

searches through the secondary mask (in this example, mask (2)) until a

shape is found which overlaps the newly added shape on mask (1). If

found, CADIC2 stores information about the secondary shape in the shape

list (See later), then jumps down to the secondary ring. On this ring,

CADIC2 encounters the width bead, so a width check is carried out on the

secondary shape. If okay, CADIC2 will immediately return to the overlap

bead, otherwise the error message will be printed out, before returning

to the overlap bead.

Continuing from where it left off, CADIC2 now continues to search

through. mask (2) to see if any more shapes can be found which overlap

the primary shape on mask (1). If yes, the above process is repeated.

If no, (i. e. all the shapes on mask (2) have been processed), CADIC2

returns to the mask bead, ready for another shape to be added.

The form of the selector bead is as follows :-

i /d 2 3
Primary pointer

Secondary pointer
Rulename

Sh. No. 1 1 Sh. type
She No. 2 Sh* type 2

Type . id

OVERLAP 1
ENCLOSED 2
SEPARATE 3

ABUTS 4
DISTINCT 5
PARTED 6

* ENCLOSES 7
* PARTS 8

* Generated internally
by DRCCAD

The primary pointer points to the next bead on the primary ring,

and the rulename specifies the bead's origin. Shape (1) information

defines the primary shape attributes, and shape (2) information defines

116

the attributes of the (secondary) shape to be searched for. If a

secondary shape is identified, then CADIC2 jumps down to the secondary

ring, to process the information further.

Topological bead - Type 1: These beads perform a check on a shape

against a specified minimum dimension.

The form of the bead is identical to the self-rule bead. The only

difference is that their place in the ring data structure means that

they can be used to check any defined shape, rather that just the newly

added shape.

Topological bead - Type 2: These beads are used to perform a dimension

check between two defined shapes. The shapes may or may not be on the

same mask. The form of the bead is as follows :-

i /d 2 4
Primary pointer

Error pointer
u ename

Sh. No. 1 1 Sh. type
Sh. No. 2 Sh. type 2

Dimension

Twe i /d

SPACING 16
CLEARANCE 17

Logical bead : These beads take two shapes, and performs a logical

operation on them,. to produce an output shape or shapes. The form of

the bead is as follows :-

i/d 1 4
Primary pointer

Ru ename
Sh. No. 1 Sh. type 1
Sh. No. Sh. type 2
Sh. No. 3 Sh* type 3

TVpe is

UNION (+) 25

INTERSECTION (*) 26
DIFFERENCE (-) 27
EXCLUSIVE (/) 28

117

The first point to note is that the bead contains only one pointer.

This is because the bead is required to produce new shapes, and not make

decisions. As described in other beads, the rulename defines the bead's

origin.

Shape information (1) and (2) define the attributes of the input

shapes, and shape information (3) defines the attributes of the output

shape. Since the output shape is a temporary shape, it will always

have :-

1. A shape number greater than 50, so that it is not confused with

shapes found from the layout.

2. A shape type of (3), since the form of the output shape is not

known.

Inflate/deflate bead : This bead accepts a shape, then inflates or

deflates the shape by the specified amount, and stores the new shape as

the output shape. The form of the bead is as follows :-

30 1 4
Primary pointer

Rulename
Sh. No. 1 1 Sh. type
Sh. No. Sh. type 2

Dimension

As with the logical bead, this bead has only one pointer, which

points to the next bead on the ring. The input shape is defined by

shape information (1). The inflate/deflate factor is stored in the

dimension, and the attributes of the output shape is defined by shape

information (2). As with the logical bead, the output shape number will

be greater than 50, and the shape type will be set to (3)"

118

Orientation bead : This bead accepts a shape, decides on the direction

in which the shape points, then compares this direction against the

required orientation. The form of the bead is as follows :-

i/d 2 2
Primary pointer

Secondary pointer
u ename

Sh. No. Sh. type

Type i /d

HORIZONTAL 21
VERTICAL 22

The shape information defines the attributes of the shape to be

checked. If the shape satisfies the desired orientation (defined by the

bead i/d) then CADIC2 follows the secondary pointer, otherwise CADIC2

follows the primary pointer.

Error bead : The error bead contains the error message to be printed

out. This bead is only encountered when a violation has occurred. The

form of the bead is as follows :-

Irror message y

31 1 n
Primar pointer

u ename

Error message

The error message may contain up to 64 characters, and is stored in

the bead as two characters per byte.

7.5 Program operation

" CADIC2 is written in FORTRAN, and consists of a library of

routines, one routine for each failure condition command in the input

language. The order in which the routines are processed is controlled

by referring to the design rule ring data structure.

119

To save on development time, it was decided

failure condition commands available in the

Instead-only the most common commands were implei

modular nature of CADIC2, new commands can be

changes to the existing software. The available

described below :-

not to code up all the

manual input language.

aented. Because of the

added without requiring

commands are briefly

OVERLAP Find shapes which overlap

ENCLOSED Find shapes, one enclosed by the other

SEPARATE Find shapes which are separate

WIDTH Specify minimum width of shape

INTERLIMB Specify minimum spacing between limbs of shape

AREA Specify minimum area of shape

SPACING Specify minimum spacing between shapes

CLEARANCE Specify minimum clearance between shapes

AND Connecting command

OR Connecting command

UNION (*) Perform logical OR function on shapes

INTERSECTION (+). Perform logical AND function on shapes

DIFFERENCE (-) .. Perform logical NAND function on shapes

EXCLUSIVE (/) ... Perform logical XOR function on shapes

A detailed description of each routine is given in Appendix (B).

Checking shapes : On-line design rule checking starts as soon as a shape

is initiated (i. e. 'R', 'P', 'T'). At this stage, the parameters used to

perform the self-tests - WIDTH, INTERLIMB, AREA are reset. As each

segment is added to the shape, the following proceedures are carried

out

1. The newly added segment is checked against the existing segments to

see if a WIDTH or INTERLIMB violation exists. The details of these

120

algorithms will be discussed in Appendix (B).

2. The incremental area under the segment is calculated, then added to

the summing total. Therefore, on finishing the shape, the total

are will already be known, and can be checked for an AREA

violation. See Appendix (B) for details.

If any of the 'self-tests fail, the shape as it presently exists, is

drawn out in dashed lines, and the accompanying error message is printed

on the alphanumeric screen. CADIC2 then gives the user the chance to

accept or reject the violation. On receiving an answer, CADIC2 removes

the shape from the screen, then proceeds in one of two ways :-

1. If the violation is accepted, then the shape is 'killed' from

memory, and CADIC1 is returned to the cursor command level.

2. If the violation is' rejected, then CADIC2 continues as if no

violation had been identified.

Once the shape is complete, CADIC2 performs all the required

general design rules using the design rule data structure to control its

sequence of operations. Whenever a violation is found, the associated

error message is printed out on the alphanumeric screen. After all the

checks have been completed, CADIC2 proceeds in one of two ways :-

1. If violations existed, then the shape is drawn out in dashed lines,

and the user given the chance to accept or reject the violations,

just as with the self-test violation.

2. If no violations existed, then the shape is drawn out in solid

lines, then added to the layout ring data structure. CADICI is

then returned to the cursor command level.

121

Checking group instances : If the designer adds a group instance to the

layout, CADIC2 must check all the shapes in the group instance against

all the shapes in the layout. Note that shapes within the group

instance do not need to be checked against each other, as they will

already have been checked when then group definition was originally

defined.

The combinatorial problem involved in checking the group instances

is large, and wasteful of CPU time since usually only the shapes on the

outside edge of the group instance are possible violation candidates.

Therefore how can the number of check be minimised ? The check can be

carried out in one of two ways :-

1. Each shape in the group instance is checked against all the shapes

in the layout.

2. Each shape in the layout is checked against all the shapes in the

group instance

At first, it may seem that both methods require the same number of

checks. This is true if all shapes are treated as possible violation

candidates, but as with adding a shape to the layout, an influence

bumper exists round the group instance. This means that the majority of

the shapes in the layout can be ignored. To show how this affects then

number of checks required, consider the following example.

122

A group instance contains 60 shapes. The layout contains 5000

shapes, 50 of which enter the group instance's influence bumper.

Assuming that a shape outside the bumper can be checked 20 times faster

than a shape inside the bumper, a rough estimate of the number of checks

required is :-

1. (GRIN v LAYOUT) - 60*(50 +4950/20) - 17350 Checks

2. (LAYOUT v GRIN) - 4950/20 +50*60 - 2979 Checks

Method (2), (that is checking the shapes in the layout against the

shapes in the group instance) is therefore the method to adopt. To

check a newly added group instance, CADIC2 proceeds as follows :-

1. Find the bounding rectangle of the group instance

2. Surround the group instance with the largest influence bumper

associated with the masks used in the group instance.

3. Find the next shape in the layout that enters the influence

bumper : [if finished RETURN]

4. Consider the group instance tö now be the layout, and the shape

identified in step (3) to be a shape newly added to the layout.

The shape can then be checked against the group instance using the

algorithm described in the previous section. Note that in this

case, only the general rules are performed.

5. goto (3)

-As with checking shapes, CADIC2 reports all violations to the

designer. If no violations are found, then the group instance is added

to the layout ring data structure, and CADIC1 is returned to the cursor

command level. If violations exist, the user is given the chance to

accept or reject the group instance.

123

Checking array instances : If an array instance is added to the layout,

CADIC2 proceeds in exactly the same way as if it had been a group

instance. The only difference now is the fact that the shapes inside

the array may affect each other, and cause design rule violations.

Therefore, before the array is checked against the layout, an

'array-test' must be performed. Consider the following array :-

ii [1 D key

4a block containing
shapes

LI f 21 o Each 'block' in an array is simply a group instance, so the shapes

within . each block need not be checked against other shapes in the same

block, since this will have been performed when the group definition was

defined.

Shapes associated with different blocks will have to be checked

against each other, but due to the symmetry of the array, the array-test

can be performed using a maximum of 4 blocks, regardless of the size of

the array.

CADIC2 performs the array-test by considering blocks (2,3,4) as the

layout, and block (1) as a newly added group instance. The algorithm

used to check group instances can then be used to perform the

array-test.

During the array-test, all violations are reported to the user, but

are preceded by a note to warn the user of the violation's origin.

Therefore a spacing error between horizontal blocks which should have

124

been reported nine times for the array shown above, is only reported

once, along with an array-test warning.

7.6 Shape list

During design rule checking, information about shapes selected or

created must be stored for future reference. To handle this, CADIC2

uses the concept of a shape list. The list is resident in the same

temporary file used by CADICI, and is initialised on adding a shape to

the layout. In this way the first shape in the shape list is always the

newly added shape.

The shape list operates in a last-in-first-out fashion, therefore

as shapes are selected or created, they are added to the end of the

shape list. Similarly, once the shape has served its purpose, it is

removed from the end of the list. Note that there is no restriction on

the size of the shapes. The format of the shape list is as follows :-

2
1

Temporcry file

125

Lookup table : The lookup table consists of a matrix stored in core, so

as to allow fast access to its information. Each entry in the table

consists of three values :-

1. Shape number

2. Shape pointer

3. Shape depth

All shapes handled by CADIC2 can be identified by their shape

number. Storing this number in the lookup table provides a quick

reference facility for routines looking for particular shapes. If more

information about a shape is required, then the shape pointer is used to

locate the shape in the temporary file.

Lastly the shape depth is associated with which ring CADIC2 was

processing in the design rule ring data structure when the shape was

created. The newly added shape has a depth of one, all the shapes

generated on the first ring are given a depth of two, and so on.

Once CADIC2 has completed a ring, all the shapes generated in that

ring, have served their purpose, and can now be removed from the shape

list. Therefore if CADIC2 had just completed the third ring, and was

jumping -back up to continue processing the second ring, all shape with

depths of four and above can be deleted from the shape list.

126

Temporary file : Each block in the file contains information about the

shape stored. The contents of each block is as follows :-

Shape
co-ordinates

Max. Y
Max. X
Min. Y
Min. X

Shape types

NO of co-ordinates

0

The first byte in the block defines the number of coordinates in

the shape. The second byte gives information about the type of shape

stored, and is defined as follows :-

3. Closed rectangle

4. Open rectangle

5. Closed short format polygon

6. Open short format polygon

7. Closed long format polygon

8. Open long format polygon

The design rule checking routines often use the shape's bounding

rectangle to try and minimise the amount of processing required. For

this reason, the shape's bounding rectangle is also stored in the block.

6

127

The remainder of the block contains the shape coordinates. Note

that the coordinates are always stored in long format. The compact

storage forms for rectangles and short format polygons could have been

used to save space, but space is not a problem, plus decoding the

coordinates every time a shape was used made CADIC2 inefficient.

128

IH 11+ W

eý eo ev ori

Hi k k
i r S Ii

.
;

I"ý I n I a

In

O
r
L

IM m g"

B
t4

tº W cn

N
N v º-

ov

w
9
c
w

ýýý
0 ý,. ý R

M r
r 'n
v
I-

0- N

Ix w

sli
1.6 p-g w

N

º- p-

cr-
O

W a IIJI

T5

ix W
W

wI

b=

CHAPTER 8

Performance

8.1 Introduction

This chapter is devoted to evaluating the performance of the CADIC

suite of programs. Each program will be discussed in terms of its main

features, but emphasis is placed upon CADICI and CADIC2, the most

important programs in the suite.

8.2 CADIC1

CADIC1 is an interactive design aid which allows the user to design

integrated circuits-at the geometric level. In Chapter five, three main

techniques to improve the efficiency of processing disc-based layout

data were proposed. - These were :-

1. Area segmentation

2. Cleaning the layout ring data structure

3. Organised group processing

This efficiency is evaluated in terms of plotting efficiency, since

plotting is probably the most common operation implemented in a design

aid, plus one which can easily be related to, or compared against other

design aids. Two measurements of plotting efficiency are observed :-

1. ' CPU time

2. Number of page swaps

130

CPU time is self explanatory. The number of page swaps is however

less obvious as an alternative measurement of efficiency.

Only a few pages of the layout data structure are stored in core at

any one time. Therefore if data is required from a page which is not in

core, a page must be removed from core to allow the required page to

enter. This process is termed page swapping, and is to be avoided if at

all possible. The reason for this is that a page swap involves

mechanical movement of the disc head, first to locate the page, then to

read'it out, and may take milliseconds (real-time) to complete. Page

swapping also consumes a fair amount of CPU time, so much so that the

number of page swaps and CPU time are generally directly related.

If, CPU time and number of page swaps are directly related, why the

need for both measurements ? The reason is that the computer used for

this project is very powerful, therefore the CPU measurements do not

show up small inefficiencies to any great extent. The number of page

swaps required during any specific operation is not affected by

computing power, and so provides a clearer, more sensitive measurement

of efficiency.

8.2.1 Area segmentation

In CADIC, the layout is considered as split up into a series of

areas, and all shapes in the layout are 'polygon clipped' such that each

shape, or sub-shape is associated with only one area. The size of the

area is under program control therefore tests must be carried out to

find, if possible, the optimal setting. Emphasis will be placed on

plotting efficiency, but other factors such as memory requirements, and

'finding' efficiency will also be considered.

131

Plotting : The circuit chosen for this test is shown in Figure 5.1.

This test circuit contains no group calls, so that the effects of area

segmentation can be isolated. Note that the test circuit is in no way

meant to represent a real circuit. It is the existence of shapes that

is important in this test rather than their topology.

To analyse plotting efficiency, CADIC1 was tested using two sizes

of window ; large and small. The large window contains the whole

layout, whereas the small window shows only a small section of the

layout, so that the shapes can be seen in enough detail to be edited.

It is important to note that greater emphasis is placed on

maximising plotting efficiency for the case of the small window. There

are three main reasons fqr this :-

1. Around 90% of the design work is carried out using a small window.

2. The designer will expect immediate program response, since he only

has to consider the small section of layout visible on the screen,

unlike the computer which must always consider the whole layout.

3. During design rule checking, CADIC2 will require information about

shapes local to the newly added shape to be found very quickly.

This is similar to the case of plotting out a very small window

which contains only a few shapes. Therefore optimising the

performance of CADIC1 for the case of the small window will enhance

the performance of CADIC2.

132

The results of the plotting test are shown in Figure 8.2. On analysis,

there are three points to note :-

1. The layout dimensions are 2040 x 1640 increments. Therefore, at

area size 2048 x 2048 increments, the whole layout is held within

one area. The results for this size of-area are therefore those

that would be obtained if area segmentation was not used.

2. Area segmentation inhibits efficiency when plotting the whole

layout. The reason for this is that under this case, each area is

always inside the window, therefore the extra time is now purely

due to processing the redundant area beads. As the area size

reduces, so the number of area beads increases, which increases

wasted processing. Less than optimal processing efficiency is

however not so important when plotting out large windows. In

general, the time to plot out the layout will always be lenghty,

theref ore a few seconds extra will not be noticed to any great

extent.

3. Area segmentation enhances efficiency when plotting out the small

window. Figure 8.2 shows that a global minimum exists at area size

512 increments. The reason for this is that the window size chosen

was in the order of 500 increments (which is a typical size chosen

in practice). Larger areas will always contain shapes which do not

enter the window, regardless of the window position. Time spent

processing these redundant shapes is therefore wasted. The effect

obviously becomes worse as the area size increases. When using

area sizes smaller than the window size, the increase in CPU time

is due to processing extra area beads. Once again, as area size

decreases, the CPU time increases.

133

In conclusion to the effect of area segmentation on plotting

efficiency, an area size equal to the typical working window size will

maximise processing efficiency.

Memor . requirements : As the area size is reduced, more shapes are

going to cross area boundaries, hence more sub-shapes must be stored in

the ring data structure. The effect of area size on memory requirements

is shown in Figure 8.3a.

This graph also explains why the small area size increases CPU time

in the plot times. Because the file was larger, the required data was

'further' apart, therefore more page swaps were required to retrieve it.

Point finding : CADICI will often want to find out information about

shapes. local to the point of interest, rather than the more global

process-of plotting out sections of layout. For example, finding the

nearest point in the data structure to the cross-hair cursor ('F' and

'N' cursor commands). The effect of varying area size on the find time

is shown in Figure 8.3b.

The results are- obvious in the fact that the cursor can only be in

one area at a time, therefore, the smaller the area, the smaller the

number of shapes that CADIC1 has to check.

8.2.2 Cleaning the layout data structure

In section 5.3, it was mentioned that re-organising or 'cleaning'

the data structure should reduce the number of page swaps, and enhance

processing times. The order of re-organisation implemented was as

follows :-

134

The designer can only work on one group definition at a time.

Therefore each layout/group definition is treated as an independent

'block' of data. Each 'block' can then be placed sequentially on the

'clean' file. Within each 'block', the headbead is placed at the

beginning, followed by all the area beads. Next is placed the first

mask bead, then all the shapes associated with that mask, then the

second mask bead, and so on. Lastly, the group instance beads are

grouped together at the end of the 'block'. Note that all the beads

previously on the garbage ring are not copied onto the 'clean' file,

hence reducing memory requirements.

To test the effect of 'cleaning' a ring data structure, the 'WMLU'

circuit was 'cleaned' then re-tested as in Section 8.2.1. The results

are shown in Figure 8.4., If Figures 8.2 and 8.4 are compared, it can be

seen that substantial improvements in plotting efficiency were achieved.

Frequent 'cleaning' of a ring data structure is therefore advisable.

8.2.3 Organised Rroup processing

The way in which the layout group hierarchy is processed will

dramatically effect program efficiency, therefore a test circuit (Figure

8.5) was developed to highlight inefficiencies in the various processing

algorithms. This 'GROUP' circuit is highly structured (up to 6 levels

of nesting), with each group definition being small enough to be

enclosed within one area. In this way, the 'GROUP' circuit can isolate

the characteristics of the group processing algorithms.

Random processing : This technique is probably the most common in

existing design aids, and simply involves processing group instances as

they are encountered in the data structure. If the data structure is

135

small enough to be core resident, then no problems occur. However, if

the layout must be stored on disc, and paging is required, random

processing of the group instances means random reading of the data

structure. Such systems are therefore prone to page thrashing.

The results of plotting out the 'GROUP' circuit depending on the

percentage of data structure held in core, are shown in Figure 8.6.

Organised processing ethod 1: Instead of processing instances as

they are encountered, CADIC1 tries to obtain a more global knowledge of

the layout hierarchy, by storing information about the group instances

in a temporary file (see Section 5.3 for details). In this way, CADIC1

efficiently utilizes the group information while it is in core, and so

increases program efficiency.

The 'GROUP' circuit was tested using this algorithm, and the

results are shown in Figure 8.6. As can be seen, the page swaps

required are less than that required by the random approach, proving the

correctness of the logistics for Method 1. On the other hand, higher

CPU times were required. There are two reasons for this :-

1. The extra time required to build up, and process the temporary

file.

2. The form of the data in the temporary file was a simple sequential

list. CADIC1 therefore had to search through a lot of redundant

data each time to find all the group instances pointing to the

group definition in core.

On obtaining the above results, Method 1 was modified into Method 2.

136

Organised processing (Method 2: The modifications to Method 1 are as

follows :-

1. Instead of setting up the temporary file each time CADICI processed

the data structure, the group data, once set up, was permanently

stored in the temporary file, until the layout group hierarchy was

altered in some way. Future processing only had to read from the

file, thus saving CPU time. Note that if not required, the pages

in the temporary file containing the group data will automatically

be paged out onto disc, and remain there until needed. The storage

penalty is therefore restricted to relatively cheap disc space.

2. All group instances in the temporary file which point to the same

group definition are now linked together on a ring of pointers.

The search time required to find find all instances of a similar

nature is thus kept to a minimum.

The 'GROUP' circuit was again tested using this new approach, and

the results are shown in Figure 8.6. As can be seen, substantial

improvements in CPU time were achieved over Method 1, and more

importantly, the random approach. CADIC therefore uses Method 2 to

process the layout group hierarchy.

8.2.4 CADIC1 v GAELIC

To find out just how efficient CADIC1 is in practice, it was

compared against GAELIC (1J, a commercially available design aid, known

to be very efficient. The circuit chosen for the comparison is a 'real'

circuit which was kindly supplied by Compeda, Stevenage. For copyright

reasons, only a few masks are shown in Figure 8.7, but to give an idea

137

of approximate complexity the layout contained around 80,000 shapes.

Both design aids were given the 'PRIME' circuit to plot out at a

variety of window sizes, and a graph showing the CPU times for each

design aid is given in Figure 8.8. Three points are worth noting :-

1. Early tests with this circuit showed that the paging routines used

by CADIC were inefficient. On discovering this fact, CADIC was

changed so that it used the same paging routine as GAELIC. This

greatly reduced the CPU time required by CADIC, but unfortunately

no longer provided information about page swaps. For this reason,

only CPU time is shown in all future tests.

2. At large window sizes, CADICI is less efficient than GAELIC. This

was expected, since CADICI carries more overheads in sustaining

area segmentation, and organised group processing.

3. As the window size (and therefore the percentage of the layout

actually required) decreases, so CADIC1 improves on its performance

over GAELIC. Note that for the size of layout used in this test,

most of the design work would be carried out with a window size of

15% full layout and smaller, so that the layout could be seen in

enough detail to be edited. In this situation, CADICI is much more

efficient than GAELIC.

8.3 CADIC2

CADIC2 on-line design rule checks a newly added shape or group call

against the existing layout, using a pre-defined set of design rules.

138

Testing CADIC2 under realistic conditions is however a very

difficult problem to solve. The first reason for this is that many

factors affect the time taken to design rule check any one particular

shape, for example :-

1. The mask containing the shape, since different masks usually

contain a different number of rules

2. The complexity of the rules

3. The number of shapes in the existing layout

4. The position of the newly added shape in layout

5. The number of segments in the newly added shape

All these variable factors means that it is extremely difficult (if

not impossible) to generate a set of representative results, when

considering isolated cases. For example, a slight variation of position

of- two shapes undergoing a spacing check may double the required design

rule checking time.

The only way to solve this problem is to consider the results in a

more global nature, for example consider the performance over a whole

layout design. In this way, local differences can be ignored in favour

of the general trends in performance.

The second problem with evaluating CADIC2's performance is how to

collate the design rule checking times for a whole layout design. Using

CADICI to interactively design a circuit is far too slow, especially if

large circuits are required.

139

A better technique is to use MANCAD to simulate the design of a

whole layout. Once MANCAD has decoded a line of the manual input

language into a set of shape coordinates, it uses CADIC2 to design rule

check the shape against the existing layout, just as if the shape had

been added interactively using CADIC1.

By noting the design rule checking time required for each

shape/group call, and plotting it on a graph, the performance of CADIC2

over a complete layout design can be obtained in only a few seconds

(real time). Therefore MANCAD was used to generate all results

displayed in this section.

Chapter seven discussed techniques which would hopefully minimise

the tinte required to design rule check a shape. These were :-

1. The design rule data structure compiled by DRCCAD ensures that

CADIC2 performs the minimum number of operations.

2. Each routine in CADIC2 is optimised such that the CPU time required

to complete each operation is minimised.

3. The concept of area segmentation allows very quick access to shape

information local to the newly added shape/group call.

Each technique will now be discussed in more detail.

Unfortunately, the first technique cannot be experimentally verified,

since major software changes would be required to implement -different

forms of design rule data structure. It is hoped however that the

logistics given in Chapter seven satisfy the claim that CADIC2 performs

the minimum number of operations.

140

8.3.1 Routine performance

The exact details of each design rule algorithm used by CADIC2 is

given in Appendix B. For reasons described in Section 8.3, it is very

difficult to isolate each operation, and attempt to relate it to a

typical time. Performance of the design rule routines is therefore

considered in a more global nature. In general, two main concepts

within each routine helped minimise design rule checking time. these

were :-

1. Influence bumper

2. Segment type identification

Each concept will now be isolated and experimentally tested.

Influence bumper : The influence bumper placed round a newly added

shape/group call allows CADIC2 to ignore all shapes outside the bumper,

and so minimise redundant processing. The concept is really only

implemented when the SEPARATE command is used, since all other selection

commands (i. e. OVERLAP, and ENCLOSED) have an implicit influence bumper

width of zero. However the frequent use of the SEPARATE command

warrants the use of the shape influence bumper. Consider the layout

shown in Figure 8.9. The layout contains around 500 shapes on a single

mask, and the following design rule was applied :-

PD IS RECT , POLY MASK 1
RULE Al

FAIL 'Spacing test' IF SEPARATE (PD, PD) AND SPACING (PD, PD) < 70

END
ENDOFFILE

Note that the layout is a test layout, and does not represent a

working circuit. The test layout also contains no design rule

violations.

141

A graph showing the performance of CADIC2 with and without using a

shape influence bumper is shown in Figure 8.10. Some points to note

about the results are as follows :-

1. No design rule violations were identified, as expected

2. The time taken to design rule check each shape increases

approximately linearly with the size of the layout. Note that this

is a very important characteristic of CADIC2 which will be

discussed in more detail later. However, this linear relationship

allows a 'quality factor' to be attached to any particular set of

results, so that the effect of changes within a routine can be

evaluated. The technique used in these tests is to apply a

best-line fit to the results, and so obtain the equation of the

line "-

y-mx

where 'y' is the typical time (in. milliseconds) required to design

rule check the x'th shape added to the layout. The gradient 'm'

therefore acts as the 'quality factor'. The lower the value of

'm', then the more efficient is CADIC2. Note that the best line

always passes through the origin, since the first shape in the

layout requires no design rule checking.

3. Without a shape influence bumper, CADIC2 is checking many more

shapes against the newly added shape than is required. Applying a

best-line fit to each graph shown in Figure 8.10 produces the

following :-

ualit fa=or

Without bumper 5.11

With bumper 0.21

142

Therefore implementing the concept of a shape influence bumper

means that the CPU time required by rules using the SEPARATE

command is only 4% of the CPU time required if the bumper was not

used.

The layout shown in Figure 8.9 was then re-tested with a design rule

check that required a different type of selector, for example :-

PD IS RECT, POLY MASK 1
RULE A2

FAIL 'Overlap test' IF OVERLAP (PD, PD) AND WIDTH (PD) < 60
END
ENDOFFILE

Results showing the effect of performing the test with and without

influence bumpers is shown below :-

ualit factor

Without bumper 0.23

With bumper 0.23

As was expected, the bumper has no effect on the OVERLAP selector.

Similar results would also be obtained for the ENCLOSED selector. An

important point to note is that the influence bumper greatly helps the

SEPARATE selector, but not at the expense of the other selectors.

The second use for an influence bumper is during dimensional

checks. Chapter seven also proposed that CADIC2 would perform better if

it used the concept of an influence bumper round a segment and then

checked to see if any segments entered it, rather than use the classical

approach to determine the minimum distance between each segment

combination. To test this, the layout shown in Figure 8.9 was again

tested using RULE Al shown above. One test used the concept of an

143

influence bumper, and the other test performed minimum distance

calculations. The results of performance obtained is shown below. Note

that the shape influence bumper was used in both cases to minimise the

shapes identified by the SEPARATE command.

ualit factor

Bumper approach 0.22

Classical approach 0.24

As can be seen by the quality factors, a routine employing the

bumper approach will operate about 10% faster than a routine using the

classical approach,. CADIC2 therefore incorporates the concept of

segment influence bumpers into all dimensional routines.

Segment type identification : Chapter seven finally proposed that only

certain combinations of segments need be checked during dimensional

checks. By calculating a type (i. e. horizontal, vertical, or angled)

for each segment, large reductions in the number of segments to be

considered is possible.

To test this proposal, the layout shown in Figure 8.9 was again

used, along with RULE Al. Results showing the performance with and

without the use of segment type identification are as follows :-

ualit favor

Without identification 0.22

With identification 0.21

In this case, identification improves performance by 5%. CADIC2

therefore incorporates segment type identification into all dimensional

checks.

144

8.3.2 Area segmentation

During all selection operations (i. e. SEPARATE, OVERLAP, and

ENCLOSED), CADIC2 must find information about the shapes close to the

newly added shape/group call. Just as was shown with plotting out small

windows (see Section 8.2.1) the area size should have an important

effect on the number of shapes considered, and so the time taken to

complete the design rule checks.

To analyse the effect of area size, CADIC2 was tested against the

layout shown in Figure 8.11. This layout (which in no way represents a

working circuit) uses six masks, and contains a total of 1840 shapes.

Note that no group instances are present, so that the effect of area

segmentation can be isolated. A complete set of design rules (shown in

Figure 8.12) was used in the design rule checks, to test the layout

under realistic conditions. To add to this reality, the layout contains

48 design rule violations.

A graph showing the performance of CADIC2 against various area

sizes is shown in Figure 8.13. Note that plotting speeds are also shown

for a typical small window, so that the optimal setting between CADICI

and CADIC2 can be compared. Some points to note about the results are

as follows :-

1. The optimal setting for CADIC2 is 128 increments. If the area size

is increased, then the quality factor increases since more shapes

within any one area must be analysed. In theory, smaller area size

should always mean lower quality factor. However as area size is

reduced, more shapes are liable to be 'polygon clipped' into

sub-shapes. The routines within CADIC2 always reconstruct

145

sub-shapes into the original shapes to prevent the generation of

false violations. This reconstruction process is rather expensive

in terms of CPU time, therefore very small area size forces an

excessive number of reconstructions which increases the quality

factor.

2. The optimal setting for CADIC1 when plotting out the small window

is 256 increments. In this case, because the layout was smaller,

the typical working window size would be around 150 increments.

Note how the optimal area size for CADICI changes with window size,

so backing up the conclusion stated in Section 8.2.1.

3. A compromise on area size is therefore required between CADIC1 and

CADIC2. The variation of CADIC1's optimal area size with the

wgrking window size (largely determined by the size of the layout)

means that it is very difficult to specify an overall optimal area

size for CADIC (CADIC1 and CADIC2).

Priority should be given to optimising CADIC2, since on-line

design rule checking must always remain 'transparent' to the user.

However, if the difference between CADIC1 and CADIC2's optimal area

size is too large, then CADICI will perform very inefficiently.

In conclusion, if the layouts to be designed are liable to be

small, then CADIC's optimal area size would best be set at 128

increments. However, as the layout size increases, CADIC's optimal

area size becomes less well defined. Under these conditions, a

final decision on the area size would best be left until the

requirements of the user were discussed in more detail.

146

4.96 design rule violations were identified. This number is

artificially high due to the fact that the layout is made up of a

matrix of sixteen identical sections. Within each section, three

real violations existed. CADIC2 identified the three violations,

plus another three, caused by the implicit over-expansion of the

orthogonal influence bumpers at shape corners. CADIC2 will of

course identify the same violations in each section of the matrix,

so producing the high number of violations quoted above.

Note that most existing design rule checking programs use some

sort of orthogonal distance test during dimensional checks, and

nearly all programs produce false violations due to over-expansion

at the shape corners. CADIC2 is therefore not alone with this

problem. The justification for using the orthogonal approach is

that it performs the checks very quickly. However, other (slower)

techniques which do not generate these false violations are

discussed in Section 9.2.

8.3.3 Hierarchical design

It is important to point out that good hierarchical or structured

design will significantly improve the performance of CADIC2. This is

largely due to the fact that all the shapes within a group definition

only have to be checked against each other once. For example, if a

transistor is defined as a group definition, and the shapes within the

group definition satisfy all the design rules, then all group calls of

the transistor must also be correct, and so do not need to be checked.

The checks are therefore limited to checking the group call against the

existing layout.

147

Hierarchical design also helps limit the number of violations

generated during checking. If the above mentioned group definition

contained a violation, then the violation would be generated only once,

instead of every time the group call is used. The designer therefore is

not swamped with multiple versions of the same violation.

To show how hierarchical design effects performance, consider the

layout shown in Figure 8.11 as broken up into one group definition

(containing all the shape information for one of the sixteen sections),

plus sixteen group calls of the group definition. In this way the 'new'

layout appears identical to the original layout, which consisted purely

of shapes. This example is rather trivial, but it does serve to show

how hierarchical design can help CADIC2. The results for checking the

two versions of the same layout are as follows :-

Description Quality factor Total time Number of errors

1.1840 shapes 0.12 223.7 96

2.1 def. (115 shapes) 0.08 5.0 6

+ 16 group calls

The substantial difference in total time comes from the fact that

in layout (1), CADIC2 checks 1840 shapes with a quality factor of 0.12,

whereas in layout (2), CADIC2 checks only 131 shapes/group calls with a

quality factor of 0.08. Good hierarchical design therefore

significantly reduces the time spent design rule checking the layout as

it built up.

148

8.3.4 Checking a large layout

Lastly, it is important to observe the performance of CADIC2 as it

design rule checks a 'real' circuit, using 'real' rules. Such data was

kindly supplied by the Wolfson Microelectronic Unit, Edinburgh.

The design rules are shown in Figure 8.12, and a small section of

the circuit is shown in Figure 8.14. Due to copyright requirements only

a few masks of the layout are shown, but the whole layout uses eight

masks, and contains around 30,000 shapes, incorporated into a

hierarchical design, with nesting down to four levels. The graph of

CADIC2's performance is shown in Figure 8.15. Some points to note about

the results are as follows :-

1. The most important point to note is that the time taken to check

each shape/group call increases linearly with the size of the

layout. This is a vast improvement over existing off-line design

rule checkers, which usually experience parabolic (n*n)

performance. The linearity is largely due to three factors :-

1.1 The area segmentation concept discussed in Chapter five

minimises the amount of shape data to be analysed to often

just the shapes within the present area, regardless of how

many other areas have previously been filled.

1.2 The use of the influence bumper limits the number of shapes

and/or segments to be considered

1.3 The use of segment type identification limits the number of

segment combinations required during the dimensional checks

149

2. Out of the 2800 shapes/group calls added to the layout, around

thirty 'additions' required more than two CPU seconds to perform

the checks. In fact, the peaks go higher than ten CPU seconds.

The reason for such a variation in performance is that each

increment in the x-axis represents a shape/group call being added

to the layout. A group call contains possibly hundreds of shapes,

so the time to check a newly added group call is obviously going to

be much greater than the typical time for a newly added shape.

This fact is amplified by the fact that the layout shown in Figure

8.14 uses a very large group call which contains around 20,000

shapes. Any shapes /group calls which must be checked against this

large group call is going to require an enormous number of checks.

Nothing can be done to improve this. The only consolation is that

is., this circuit, the situation is limited to around 0.1% of the

total number of 'additions'.

To try and iron-out the large variations in performance, the method of

noting the design rule checking time was modified when considering group

calls. Instead of simply noting the time to check the whole group call,

the time to check each shape within the group call was recorded, just as

if it had been added independently of the group call. The graph showing

the modified results is shown in Figure 8.16. Some points to note about

the-graph are as follows :-

1. The total number

contains around

that when a group

number of checks

to be checked. D

7.5.

of shapes checked was 6712, yet the layout

30,000 shapes. The reason for the difference is

call is added to the layout, CADIC2 minimises the

required by considering only the shapes that have

etails of how CADIC2 does this is given in Section

150

2. The graph still contains a few large peaks. These peaks are due to

shapes which must be checked against the large group call mentioned
'

above. As mentioned above, nothing can be done to improve this.

8.4 DRCCAD

DRCCAD compiles a set of design rules into a ring data structure

readable by CADIC2. The performance of this program is not really

important, yet a set of results for a single run of the program is

presented, just to show that DRCCAD is no better, and no worse than

expected.

DRCCAD was tested while it compiled the set of design rules shown

in Figure 8.12. Results are as follows :-

1. Number of rules

2. CPU time required

3. Size of ring data structure

8.5 MANCAD

MANCAD can operate in one of two modes :-

1. Manual input language compiler

2. Off-line design rule checker

33

1.6 secs.

2 pages (512 words/page)

The performance of MANCAD in each mode will now be discussed in more

detail.

151

8.5.1 Manual input language compiler

As with DRCCAD, there is nothing exceptional about MANCAD's

performance as a compiler. Compilation speeds are typical for the type

of processing being undertaken. However, results of MANCAD's

performance are given below, largely for completeness. The manual input

file used in this test was the one required to produce the layout shown

in Figure 8.14.

1. The input file contained 2800 lines (35 pages) representing about

30,000 shapes.

2. CPU time required was 64.5 seconds

3. Memory requirements for layout ring data structure was 79 pages

(512 words/page)

8.5.2 Off-line de sign rule checker

Because MANCAD simply envokes on-line design rule checking

techniques to simulate classical off-line design rule checking, it

follows that any improvements in the on-line design rule checking

performance must also appear in the off-line design rule checking

performance.

Re-testing the concepts of influence bumper, segment type, area

size, and hierarchical design when applied to off-line design rule

checking is therefore not required. What is more important is the

actual off-line checking time required to design rule check a 'real'

circuit.

152

The circuit shown in Figure 8.14 was used for the test. As stated

earlier, the circuit used eight masks, and contained around 30,000

shapes. Lastly,. the set of design rules used is shown in Figure 8.12.

Results of the test are as follows :-

Total time - 61 min.

N. B. This time includes 64.5 seconds required to compile the manual

input file.

It would have been useful to compare the performance of MANCAD

against an existing off-line design rule checker. However, no such

access was available. No comments on MANCAD's performance as an

off-line design rule checker can therefore be justified. It suffices to

say that MANCAD's performance is of secondary importance, since its use

within the CADIC is limited to a few special cases (see Section 4.3.2).

153

Figure 8.1 ' WMLU' layout

O
O
N
N

0 0 0 N

0

8

9
I-

E
NV C

d

0

a
Co

8
w

0ö0
«a

j

"-, -0 «a x c :ZZxcX8

x 1101 x

0Q
9 cr oo sý 080 ýd Co
(spas nd3) awiu ; old sdDMS a6Dd

N 1
C

Gr M
r- �G i

c ý. v
Qý

N LL-

b

v

N

6 ö°C04- rý 0 co W
ý, I- qdoÖ CI4

(sa5Dd) sjuawailnbai AJowaw ("soas nd3), 'il Pull

I

V
I

v

0

Q

3

to
Of
v a

0

Full layout

Window

200 400 600 800 1000 1200 1400
area size (increments)

(a)

Fl! I Iaycn&

200 400 600 800 10 00 1200 1400
area SiZQ (incrQmerts)

(b)

1600 1800 2000 2200

1bß 1a 2000 2200

Figure 8.4 The effect of'" varying area size on
clean WMLIJ circuit

Qpp »r 7
O
A
d

. 3-

O

0

LA

C6

O1
L

, ýj m

4
U
ý..
a

0
40

.8

OL

0

I

Vd
ti

y;, d

N
0

O

0

A
B

c

Y3 hO EO a7 100
X in core

A Method 1B Random C Method 2

(a)

Window

A

h
4
0

N
b
Ö
4ý

q

A hkthod I

8N

Q

ý---
"c

6 in core
A Method 1B Random C Method 2

(C)

Full l,
_

ayout

Window

Figure 8.6 The effects of tiarying the
amount of data structure held
in core for 'GROUP' circuit

A6 in corp
9 liv. dom C Method 2

(b)

Full layout

oD yo eo so goo
% in core

A Method I8 Random C Method 2

(d)

O

d
r

'w
x
cr a-

n

co

7
O1

Lý.

8

(*s:)as) awn nd3

2

2

'O
d

OV

o>
U_

>. C3

O

C Q1
U-

a

0
04

0

rp Ef

ö ýa h 8a ý DoEf

8 ýa ýö 800

po
0

OD

au

Do

0o

ý pa ý po

s po ý po
0

00 8 6ý8 0

s8g ýö po Q

s 00 8ý ýýÖö

O

b

X
in
d

E

Q1
C

N

Qn

a0

4)

Ll.

L
CJ
a E

a m E

'° 0 s s
33

11 n

tn
C1
O

.C N

. fJ

.r C

U

W

0 v7 Co

U-

i
c

(spuo: >as) awn nd3

UV

O
d

x

E

7

q-
11-7
co

7
p1

L&..

r

a

N y

O
v N V

6 G
v

M

F

Z
v

W6

< A O.
v i' E

1 _ G
0 ý+. ý W V w

,

C
ä

C r. v
ý. ' r ý t

t W
~ p¢ .7 V A w

W " 4F 'r Ir' I r

ýY W T
H Ci

v q s ýº

'° n i º, 10 eo s ý s

Z
ZZ

C

v

c

~p W

a A

nv r
V

AN

p s mÖ K
. 7

ýN e x iv

A ý
ý' O=

j
Vý Wý

i YC
.. iV

8
v

A A
S [

Y
y

N
n

Yv
Ný V N

U

o

w
ý

.
pi V N

4ai1 .
pi W

.
ýi < Y

41 "
YO ºV

iY
MV

]

Y'

CO
ý1

YU
4G
YV

y

C
Yd

y= Vi . . . N

<
Nr ,1 i ä11 u .7W fl. N 1w CD _ $ L. Zl Nw
0 o o o o w
w mo ý mo J ý ý ý te V
. .ý o. d O d o. G i O. D D .ý a D. ý. .t

c2 i5 . M. M

M

H
M

A L J V

W I- ; C

w ý v

r r
ýv 10

NC
, b

r ý
y ,

I

j

. If V ýf
Y

r Yý

i

N ' +1C

CV

i vv eV

-i -c
I

-' Im.
N S VS

-c
V c V

L V V

i r i i i
I'1

º

Y
fF i
W

N
IN

i. I
LL

V1 l i
LL

i. fI
S. S.

o

R R
V

v °
v

g V º

' a
o g ;ý t . . i Q v N 10 p y mo E F

v v
Y ° CC

O F.
r oý il " "4

le'. ' " y
<
d

` to s
p

e gs m 9

{C
i 0 "

y
Y

F
W
y

Cp
0 a

"

.i
Iir C -

e y ^
O

f

y
y

L
`

"
.0 « C

A
N "

C
V

C
f

a a
gyp,. R

!
Y

! M

fD " 03 . " R
^ w

g _ p
d y " " " v ýý Y .

0 m Ö p v ýp v v a ýt
ý

W
g

0 CpC
_A

A Y
M 6

_p

1N 40

s
W ýg i Cý " f ý - s "'ýN Vj NýOy

< ~ <
7

22

y
7r 1Wi. ý

i 7 - s 8 ý
. rA

p c av
p

O
.. YK 1 IK Z i i i 9V 7 OV

YM
V
Y

i i Cx
Ö p

p, ei
Y

. i

`< L
U S

ºº G. GM6 y W
Y M r

C Je L lc
y

y
V

Y.
3*

y C
Y ` Yj Ly

^ C ýdGýG : : C

o
ý ý 9 La y i i9 d c ü ý Q 1.

Gý-. G. ý ý mo 'C ` h h h . i
4KK< k `{ w < .ip . .00. ` + 0. öº üI r N PI

W
'ý I r r I ü V Ir i. CI

: f J
i iºº< Yi N pl

e
Y1

e
O1 Y1 "1 Y y e

y V Y

e
ýi V Y

g äe Cr Cn 6Lsa 6D

L

N
q-r 00

II_1
LL

(spumas nd:
cv O

... O

awiu bold
öö

N
0 0

N

N

9

8

8

N

a)
E
i
u C

v

N
N

o "N

O

O
0
9

N
U
O

U

'U
C
La

U
0

U

C
O

N

d d

n
0

dr

Co
rn g , iz

0
0

O

öaö
ýo}oD} 4wDnb

7
O
A
d

LL
-j 0

1
OD
0,
7
D1
L

Q

6 C
a
E

N

Nv 0
cx Ü

.C
tn 4- oo

_Qý

(spuoDs fld:)) aw%i fld3
It'd ýr mNI-O

0
T

9

Ln

Gº
-: V

C
D
E
0
4' v a

Vt '0
C)

0 L ö
U) E

Ln

U C*4
U

t0

0 co

p1
Li..

r

0

(spuooas) awn nd3

CHAPTER 9

Conclusions and Future Work

9.1 Overview of project

This thesis began with a brief description of the various stages

required in integrated circuit production. In this way Chapter one

highlights some of the problems faced by the integrated circuit

manufacturer.

Chapter two discussed in detail existing computer aids developed to

solve some of these problems. The advantages and disadvantages of each

computer aid were considered, with the view towards developing CADIC

(Computer Aided Design of Integrated Circuits), a suite of computer

programs which aid integrated circuit design. The review showed that

manual design aids still play a vital role in integrated circuit design.

There are two main reasons for this :-

1. Manual aids are capable of producing the most compact layouts

2. Manual aids are required to produce the cells used in the automatic

approach

The design turnaround time associated with manual aids is however

comparatively long. New techniques to reduce this time are therefore

required.

170

Once a layout is designed, it must be design rule checked, so that

tolerance errors in the fabrication process do not affect the final

circuit. At present, layouts are checked off-line. This approach is

expensive in terms of time and money, due to the repetative design-check

stages. Chapter two argues that on-line design rule checking would

break this 'bottleneck', and allow substantial reductions in design

turnaround time.

Lastly, the proposals for CADIC are justified in light of the

review. The CADIC suite is split into four programs :-

1. MANCAD : Manual input language compiler

2. CADIC1 : Interactive graphic design aid

3. DRCCAD : Design rule language compiler

4. CADIC2 : On-line design rule checker

The hardware associated with a design aid can greatly affect the

performance, reliability, and useability of a design system. For this

reason, Chapter three gave a critical review of available hardware, and

evaluated their performance when applied to integrated circuit design.

As a result of the review, CADIC uses a DEC2050 time-shared mainframe

computer as host, and a SIGMA 5000 micro-processor based colour raster

scan terminal as a workstation.

Chapter four discussed MANCAD (MANual Computer Aided Design), a

pre-processor which accepts a manual description of an integrated

circuit layout, and converts this description into a data structure

readable by CADICI and CADIC2. MANCAD can operate in two modes :-

1. Compiler

2. Off-line design rule checker

171

The compiler is very useful when the SIGMA workstation is not

readily available. Using the manual input language, layouts, or

sections of layouts can be quickly 'coded-up' on sheets of paper, then

entered into MANCAD using a standard alphanumeric terminal. The SIGMA

is therefore only required to view and/or edit the layout.

Occasionaly, some- circuits must be design rule checked off-line.

MANCAD uses the on-line design rule checking techniques developed in

CADIC2 to check each shape/group call as it is compiled into the layout

data structure. In this way MANCAD provides a highly efficient batch

mode or off-line design rule checking facility.

Chapter five discussed CADIC1, an interactive graphic design aid

which allows the user, to design integrated circuit layouts at the

geometric level. The most important feature of CADICI is its high

efficiency in processing the disc-based layout data. This was made

possible by implementing two new techniques :-

1. Area segmentation

2. Organised group processing

The first technique required a new form of data structure to store

the layout information. CADICI considers the layout as divided up into

a series of areas, and associates each shape with an area. Shapes which

enter two or more areas are 'polygon clipped' into sub-shapes, such that

each shape, or sub-shape is associated with one area. Due to a system

of pointers, all shapes associated with a particular area can be found

quickly, so when the designer is say, plotting out a small section of

the layout, only the shapes associated with the areas inside the

plotting window need be considered. This high degree of selection

172

greatly reduces redundant searching, and thus increases program

efficiency.

The second technique involves considering the layout group

hierarchy in a more global nature. If a layout is to be plotted out,

all the shapes in the layout are plotted, then information about the

group instances called from the layout are stored in a temporary file.

Note that the group instances are not plotted out at this stage. CADIC1

then goes to the top of the temporary file, identifies the first group

instance, then brings the related group definition in core. All the

shapes within the group definition are then plotted out, and any group

instances called from the group definition are added to the end of the

temporary file.

The temporary file is then searched to see if any other instances

of the group definition (presently in core) exist. If yes, then it is

plotted out, and all group instances added to the temporary file. If

no, then CADIC1 goes to the top of the file, and identifies a new group

instance. The above process is then repeated until all group instances

are plotted out. In this way, CADICI fully utilizes the group

definitions while it is in core, and so increases program efficiency.
'

Chapter six goes on to discuss DRCCAD, (Design Rule Compiler for

Computer Aided Design) a pre-processor which accepts a 'user readable'

description of the design rules, and converts this description into a

'low-level' ring data structure readable by CADIC2.

Time spent on-line design rule checking a newly added shape is

critical, " therefore this 'low-level' description of the design rules

acts as a control file which CADIC2 can quickly access for information

173

on how to perform the checks. In this way, a minimum amount of time is

spent accessing and decoding the rules, which leaves more time to

perform the checks.

Chapter seven discussed CADIC2, the on-line design rule checker.

Whenever a shape or group call is added to the layout (either using

CADICI or MANCAD), it is CADIC2's function to design rule check the

shape(s) against the existing layout. The main feature of CADIC2 is the

speed in which it can complete these checks. Three factors have made

this possible :-

1. The design rule data structure set up by DRCCAD always ensures that

CADIC2 will perform the minimum number of operations during design

rule checking.

2. The layout ring data structure is very efficient in finding

information about shapes local to the newly added shape

3. Each routine in CADIC2 has been optimised such that the CPU time

required to complete each operation is kept to a minimum

Finally, Chapter eight discussed the performance of each program in

the CADIC suite, with emphasis on CADICI and CADIC2, the most important

programs in the suite. Logistics previously suggested for each program

were experimentally tested, and optimal working conditions identified.

The results of the tests confirmed three main points :-

1. MANCAD and DRCCAD performed as expected for the type of processing

being carried out.

2. CADIC1 is very efficient at data processing, especially when small

sections of layout are considered.

3. CADIC2 can perform complete on-line design rule checking within the

time it takes the designer to start adding the next shape.

174

9.2 Possible improvements

In general, the CADIC suite of programs have performed very well in

achieving all the original aims of this project. However, with the

benefit of hinesight, certain weakpoints in CADIC have been identified.

The purpose of this section is therefore to discuss these weakpoints,

and suggest possible improvements.

MANCAD : Two main areas in this program could be improved. These are :-

1. Manual input language

2. Off-line design rule checking violation details

For reasons described in Section 4.2, the MANCAD manual input

language- was made compatible with the GAELIC manual input language,

except for the commands; "LINE", "CIRCLE", and "TEXT". The first

improvement to the . MANCAD language would be to update MANCAD so as to

accept these un-used commands, even though CADIC does not truly support

them. This could be achieved as follows :-

1. Accept the "LINE" command, then automatically add a terminating

dark segment, so that the line becomes a closed polygon. CADIC can

then handle the polygon, even though it still appears as a line in

the layout.

2. A circle defined by the "CIRCLE" command could be automatically

transformed into a multi-segment polygon, which would approximate

to the circle.

3. The SIGMA workstation has the facility to plot out text on the

screen, but CADIC has no way of storing the information in the

layout data structure. Therefore the best MANCAD could do with the

"TEXT" command is accept it, but do nothing with it.

175

In the future, there is no reason why the MANCAD language has to

remain identical to the GAELIC language. Indeed any new language would

do well to copy many of the features and constructs available in the

GAELIC language, yet certain modifications could be incorporated into

the new language to enhance language ergonomics and minimise the amount

of data to be entered. Consider an example of a typical section of a

GAELIC manual input file :-

"NEWGR" GRP1;
"RECT" (1)
"POLY" (1)
"POLY" (1)
"POLY" (1)
"RECT" (1)
"RECT" (1)
"RECT" (2)
"POLY" (2)
"TRAG" (2)
"TRAC" (2)
"TRAG" (2)

"ENDGR";

"FINISH";

1250,4520: 180,740;
L, 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770;
S, 5310,100: 870, -100,150,120, -80,50, -940, -70;
S95310,310: 940,50,80,120, -150, -100, -870, -70;
1670,3040: 60,120;
910,2660: 180,560;
1870,3210: 120,1120;
S, 2930,3100: 270,870,100,150, -120, -90, -50, -930;
60, L, 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40;
60, L, 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30; 60, S, 2930,3100: 270,870,100,150;

The most fundamental modification that can be made is the removal

of the double quotes round each command word. In the original

specification for GAELIC, the designer was allowed to attach labels to

specific shapes possibly for use by a future functional verification

program. The label was entered after the command word, and was

separated by an oblique, for example :-

"RECT/INPUTI" (1) 1250,4520: 180,740;

The label could vary in length, therefore quotes were required to

delimit the label. Unfortunately, a use for the label information never

materialized therefore GAELIC no longer supports the label option. For

this reason, the quotes are redundant in the manual input language.

176

When building up a layout using the manual input language, the

designer tends to enter the information a mask at a time. This is

different to interactive design where the designer is likely to swap

frequently between masks, as the various elements are added to the

layout. The authors of GAELIC did not foresee this difference, and so

included the mask information into each shape command, so as to

facilitate frequent mask changes. As can be seen by the example above,

rather than include the mask information each time a shape is defined,

it would be better to remove the mask information, and define a new

command :-

MASK <masknum>

I

which would set the mask number to 'masknum'. All shapes that

follow the MASK command would then be placed on mask 'masknum' until

another MASK command is identified, for example :-

MASK 1;
RECT 1250,4520: 180,740;
RECT 1670,3040: 60,120;

MASK 2;
POLY S, 2930,3100: 270,870,100,150, -120, -90, -50, -930;

FINISH;

In a similar way, the track width information could be removed from

the TRACK command, and a new command ; WIDTH <trackwidth> defined, for

example :-

MASK 1;
WIDTH 60;

TRAC L, 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40;
TRAC L, 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30;

FINISH;

In this way, the amount of information to be entered can once again

be reduced.

177

Standardisation of the shape command construction is a very

important step towards making a language easier to use. At present the

RECTANGLEf POLYGON and TRACK commands all have different constructs

within the GAELIC language. Defining the WIDTH command changes the

TRACK construction to be the same as the POLYGON construction, which

helps the aim of standardisation. The remaining difference is the

format specification for the POLYGON command which may be 'L' (Long

format) or 'S' (Short format). It is also very easy to forget to enter

the format letter into the command, therefore it would be better if the

manual input language defined unique commands to handle long and short

format shapes, for example :-

MASK 1;
WIDTH 10;

RECT 1250,4520: 180,740;

_
LPOLY 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770;
SPOLY 5310,100: 870, -100,150,120, -80,50, -940, -70;
LTRAC 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40;
STRAC 2930,3100: 270,870,100,150;

FINISH;

Note that the construction for each shape command is now identical :-

<COMMAND> <origin>: <incremental coordinates>;

If the above mentioned modifications were incorporated into the

MANCAD input language, the original example would be entered as :-

NEWGR GRP1;
MASK 1;

RECT 1250,4520: 180,740;
LPOLY 840,3500: 140,0,0,690,100,0,0,80, -240,0,0, -770;
SPOLY 5310,100: 870, -100,150,120, -80,50, -940, -70;
SPOLY 5310,310: 940,50,80,120, -150, -100, -870, -70;
RECT 1670,3040: 60,120;
RECT 910,2660: 180,560;

MASK 2;
RECT 1870,3210: 120,1120;
SPOLY 2930,3100: 270,870,100,150, -120, -90, -50, -930;

WIDTH 60;
LTRAC 3440,270: -330,0, -50,50, -300,0, -80,80, -140,0, -40,40;
LTRAC 2670,750: 350,0,30, -30,270,0,80, -80,180,0,30, -30;
STRAC 2930,3100: 270,870,100,150;

ENDGR;
FINISH;

178

The second area in which MANCAD could be improved is concerned with

its handling of off-line design rule checking violations. At present,

if a shape in the manual input file violates any design rules, " the

violation message is printed out, followed by the line in the manual

input file corresponding to the failed shape, along with the name of the

group definition containing the shape (See Section 4.3.2). In this way,

the designer can use the list of error messages to identify the shapes

in the layout, then use CADICI to edit them as required.

Even though this approach works well, it would be better if the

shapes which cause a violation were also stored in a plot file, along

with the other shape(s) involved in the violation. On plotting out this

file, the designer will find it easier to locate the erroneous shapes.

This approach was not implemented by MANCAD for two reasons :-

1. The plot is not essential, it only makes the erroneous shapes

easier to find.

2. The development time was not available.

CADIC1 : At present, it is felt that CADICI has a consise range of

commands which covers certainely the most common requirements in layout

design. However, as with any design aid, someone will want it to

perform a function that is not available. In the future, more commands

can therefore be added to CADIC1, limited only by the number of keys on

the keyboard.

The second improvement to CADIC1 requires a more sophisticated

method of paging the layout data in and out of computer memory. The

main problem faced by a paging routine is which one of the pages

presently in core must be swapped out, to allow a new page to enter.

179

Obviously, the aim is to keep the important pages in memory for as long

as possible, so as to prevent page thrashing. CADICI uses a paging

routine which removes the oldest page in the computer's memory. This

technique suited CADICI very well, but took no account of any special

features in the format of the layout ring data structure.

During processing it is important for CADIC1 to keep the area beads

in memory as much as possible, as they act as the first 'filter' in the

task of selecting relevant data and are frequently accessed. On the

other hand, a shape bead usually is required only once (i. e. while

being plotted out) yet when using the paging routine, an area bead has

as much chance of staying in core as the shape bead. It would be better

if the paging routine could sub-divide its memory allocation of six

pages , into say two pages for area and mask beads, and four pages for

shape and group call beads, then page each sub-division independently of

each other. In this way, the useful area and mask information would not

be paged out just because CADIC1 had to process a large number of

shapes.

To stand any chance of competing with the present paging routine,

the new routine must also be written in machine code. The author has no

expertise in this area, therefore the concept was never pursued.

to

180

DRCCAD : The only possible improvements to DRCCAD are concerned with the

input language used to describe the design rules. Consider an example

of the manual input language :-

PD IS RECT, POLY MASK 1
PS IS RECT, POLY MASK 2
POLY1 IS RECT, POLY MASK 4
POLY2 IS RECT, POLY MASK 5
CW IS RECT , POLY -MASK 6
METAL IS RECT, POLY MASK 8
RULE Al

FAIL 'Minimum width diffusion' IF WIDTH (PD) < 60
END
RULE A2

FAIL 'Unrelated spacing masks 1 and 2' IF SEPARATE (PD, PS) &
AND SPACING (PD, PS) < 30

END
RULE A3

FAIL 'Overlap poly(l) round contact' IF ENCLOSED (CW, POLY1) &
AND CLEARANCE (CW, POLY1) < 20

END
RULE A4

FAIL 'Non-coincidence of polyl/poly2' IF OVERLAP (POLY2, POLY1) &

..
AND OVERLAP (POLY2, METAL) AND WIDTH (POLY2-POLY1) < 30

END
ENDOFFILE

The first point to note is that the RULE and END commands serve no

useful purpose, and only increase the amount of data to be entered by

the user. If a violation occurs, the violation message gives ample

information about which design rule failed.

Another improvement that could be made is concerned with the

SPACING and CLEARANCE commands. At present, these commands must be

preceded by the commands SEPARATE and ENCLOSED respectively. It is

obvious however that the SPACING stipulation has no meaning if the

shapes are not separate. Similarly the CLEARANCE stipulation loses

relevance if one shape does not enclose another. The SEPARATE and

ENCLOSED commands should therefore be implicitly accepted if the SPACING

and CLEARANCE commands are used. Implementing these modifications would

mean that the example shown above could be entered as :-

181

PD IS RECT, POLY MASK 1
PS IS RECT, POLY MASK 2
POLY1 IS RECT, POLY MASK 4
POLY2 IS RECT, POLY MASK 5
CW IS RECT, POLY MASK 6
METAL IS RECT , POLY MASK 8

FAIL 'Minimum width diffusion' IF WIDTH (PD) < 60

FAIL 'Unrelated spacing masks 1 and 2' IF SPACING (PD, PS) < 30

FAIL 'Overlap poly(1) round contact' IF CLEARANCE (CW, POLY1) < 20

FAIL 'Non-coincidence of polyl/poly2' IF OVERLAP (POLY2, POLY1) &
AND OVERLAP (POLY2, METAL) AND WIDTH (POLY2-POLY1) < 30

ENDOFFILE

CADIC2 : Now that CADIC2 has been shown to work well for the subset of

commands presently available in the design rule language, the first

improvement to CADIC2 would be to update the program to handle the new

commands. Note that CADIC2 is written in a highly modular fashion,

therefore adding routines to perform each new operation in no way

affects the existing software.

follows :-

AB
U/ LS...

DISTINCT

PARTED

LENGTH

XDIM

YDIM

BRAREA

HORIZONTAL

VERTICAL

NOT

INFLATE/DEFLATE

The commands not yet handled are as

Find shapes which touch

Find shapes which are distinct

Find shapes, one cut in two by the other

Specify minimum length of shape

Specify minimum X dimension of shape

Specify minimum Y dimension of shape

Specify mine area of shape's bounding rectangle

Specify shape to lie in horizontal direction

Specify shape to lie in vertical direction

Inverting command

Inf late/def late shape

182

The second Improvement that can be made to CADIC2 is to use

euclidian bumpers during dimensional checks. At present all bumpers are

orthogonal, for example :-

d
\d"'

key

d= minimum spacing

Correct width of bumpers is observed at all points except at the

corners of shapes, where the width may reach a maximum of 'mod' units.

Under certain conditions, this over-expansion can cause false violations

to be generated :-

i

key

d_ minimum spacing

Note that most existing design rule checking programs use some sort

of orthogonal distance test during dimensional check, and nearly all

produce false errors for the above mentioned reason. The justification

for using the orthogonal approach is that it is very easy, and fast to

implement.

183

The only way to remove the false violations is to use euclidian

bumpers. In this approach, the area of influence round a corner is

described by the arc of a circle with radius 'd', and centre at the

corner point, for example :-I

key

d=minimum spacing

Y

Now the bumper is guaranteed to be of width 'd' for all conditions.

The euclidian approach however requires much more CPU time to implement.

Other design rule checking programs must represent the arcs as a series

of straight segments, therefore the large increase in the number of

segments per shape forces about an order increase in the CPU time

required to perform the design rule checks.

Although more expensive than using orthogonal bumpers, CADIC2 could

use euclidian bumpers without forcing such a large increase in CPU time.

This is because the reasoning behind the use of bumpers applies, to any

type of bumper, whether it be rectangular or circular. If euclidian

bumpers were used, CADIC2 only has to decide on which type of bumper to

create, then use the relevant 'clipping' algorithm to check if any

segments enter it.

184

9.3 Future work

CADIC has been discussed, and possible improvements to the existing

design aid proposed. There are however many other programs that could

be incorporated into CADIC to enhance its use in integrated circuit

design. The most important of these are discussed below.

Automatic design : In the future, as the complexity of integrated

circuits increases from VLSI to WSI (Wafer Scale Integration), it is

envisaged that manual aids will slowly be phased out of whole layout

design, in favour of automatic design aids. This has the problem of

creating layouts that will be larger than necessary, but it is felt that

manual design will prove to be too expensive to implement at the circuit

level. Note that manual aids will however still be used to design the

cell library used by automatic aids.

" The CADIC suite would therefore benefit from a program which could

automatically place and route a cell layout. In this way, the designer

could switch between manual and automatic aids, to acheive the optimal

layout design.

In many respects, the importance of manual design aids will not be

greatly affected by this swing from manual to automatic design aid.

Since the manual design aid will only be working with comparatively

small sections of layout, new features can be incorporated into the

interactive design aid, which would dtherwise not be feasible, due to

excessive CPU time requirements. These features such as automatic

layout adjustment and on-line functional verification are discussed

below.

185

Automatic layout adjustment : This would be a useful extension to the

on-line design rule checking facility available in CADIC. Instead of

simply warning the designer that a shape has violated the design rules,

it would be better if CADIC could automatically shift the violating

shape, such that the design rules were in fact satisfied.

The problem of course may not be limited to moving just the newly

added shape. More than likely, the adjustment will cause a 'knock-on'

effect which may cause a combinatorial explosion within the layout.

Therefore this technique will almost definitely have to be restricted to

small sections of layout, before it can be feasibly considered for use

in an interactive environment.

On-line functional verification : Design rule checking ensures that the

layout is geometrically correct, but will not ensure that the circuit

will operate correctly. This is the job of the functional tester. At

present, the functional checks are performed off-line, and so create a

'bottleneck' in the design process, just as described for off-line

design rule checking (See Chapter two).

The problem with on-line functional

it into an interactive environment.

rules were specified at the beginning of

group definitions produced thereafter.

so simple, since a different functional

supplied for each group definition.

verification is how to include

With design rule checking, the

the design, and applied to all

Functional verification is not

description would have to be

A useful technique would be to constrain the function of each group

definition to be any one of a pre-defined library of elements. On

entering a group definition, the user would specify the type of element

186

he was going to develop. On completion,

definition to ensure that the correct element

this way the information to be entered by the

a few words, and the computer need only check

element, rather than having to guess the

itself.

t

: ADIC could check the group

was in fact produced. In

user is limited to at most

for a particular type of

function of the element by

187

REFERENCES

1. Eades JD
"The design of an interactive computer system for
microelectronic mask making"
Phd Thesis 1976

2. Smith T F, and Woods BJ
"Poligon : An interactive graphics design tool"
Computer Aided Design Conference 1980 pp 31 - 37

3. Infante B, Bracken D, McCalla B, Yamakoshi S, and Cohen E
"An interactive graphics system for the design of
integrated circuits"
15th Design Automation Conference 1981 pp 182 - 187

4. Fairbairn DG
"ICARUS : An interactive integrated circuit layout program"
15th Design Automation Conference 1981 pp 188 - 192

5. Franco D, and Reed L
"The cell design system"
18th Design Automation Conference 1981 pp 240 - 247

6. Carmody P, Barone A, Morrell J, Weiner A, and Hennesy J
"An interactive graphics system for custom design"
17th Design Automation Conference 1980 pp 430 - 439

7. Williams JD
"STICKS :A graphical compiler for high level LSI design"
National Computer Conference 1978 pp 289 - 295

8. Clary D, Kirk R, and Sapiro S
"SIDS : An interactive colour graphics system for
the symbolic layout and checking of MOS IC's"
Enro-Graphics Conference 1979 pp 317 - 328

9. Richardson FK et al.
"An interactive graphical system for the design of photomasks"
N. E. Electronic Research and Engineering 1970 pp 182 - 183

10. Dunlop AE
"SLIP : Symbolic layout of integrated circuits with compaction"
CAD publication Vol 10 No. 6 1978 pp 387 - 391

188

11. Hsueh MY
"Symbolic layout compaction"
NATO Advanced Study on Computer Design Aids
for VLSI circuits 1980

12. Weste N

" "Virtual grid symbolic layout"
18th Design Automation Conference 1981 pp 225 - 233

13. Cho Y E, Korenjak A J, and Stockton DE
"Floss - An approach to automated layout for high-volume designs"
14th Design Automation Conference 1977 pp 138 - 141

14. Kozawa T, Horino H, Ishiga T, Sakemi J, and Sato S
"Advanced LILAC - An automated layout generation system for
MOS/LSI's"
11th Design Automation Conference 1974 pp 26 - 46

15. Beke H, and Sansen W
"CALMOS : Aý portable software system for the automatic and
interactive layout for MOS/LSI"
16th Design Automation Conference 1976 pp 102 - 108

16. Persky G, Deutsch D N. and Schweikert DG
"LTX -A system for the directed automatic design of LSI circuits"
13th Design Automation Conference 1976 pp 399 - 408

17. Persky G
"PRO : An automatic string placement program for polycell layouts"
13th Design Automation Conference 1976 pp 417 - 424

18. Schweikert DG
"A 2-dimensional placement algorithm for the layout of electrical
circuits"
13th Design Automation Conference 1976 pp 408 - 416

19. Shiraishi H, and Hirose F
"Efficient placement and routing techniques for Master Slice LSI"
17th Design Automation Conference 1980 pp 458 - 464

20. Cox GW
"The standard transistor array (STAR) Part 2"
17th Design Automation Conference 1980 pp 451 - 457

21. Feller A
"Automatic layout of low-cost quick-turnaround random-access custom
LSI devices"
13th Design Automation Conference 1976 pp 79 - 85

189

22. Preas B T, and vanCleemput WM
"Placement algorithms for arbitrarily shaped blocks"
16th Design Automation Conference 1979 pp 474 - 480

23. Preas B T, and Gwyn CW
"Methods for hierarchical automatic layout of custom LSI circuit
masks"
15th Design Automation Conference 1978 pp 206 - 212

24. Loosemore KJ
"I. C. Layout - The automatic approach"
5th ESSIRC 1979 pp 48 - 50

25. Preas B T, and Gwyn CW
"Architecture for contemporary computer aids to generate I. C. mask layouts"
11th Annual Asilomar Conference 1977 pp 353 - 361

26. Johannsen D
"Bristle Blocks :A silicon compiler"
Caltech conference on VLSI 1979 pp 303 - 310

27. Werner J
"The silicon compiler : Panacea, wishful thinking, or old hat ?"
VLSI design publication Vol 3 No. 5 1982 pp 46 - 52

28. Baird HS
"A survey of computer aids for I. C. mask artwork verification"
IEEE Symposium on circuits and systems 1977 pp 441 - 445

29. Chao S., Huang Y, and Yam L
"A hierarchical approach for layout versus circuit consistency
check"
17th Design Automation Conference 1980 pp 270 - 276

30. Losleben P, and Thompson K
"Topological analysis for VLSI circuits" 16th Design Automation Conference 1979 pp 461 - 473

31. Corbin LV
"Custom VLSI electrical rule checking in an intelligent terminal" 18th Design Automation Conference 1981 pp 696 - 701

32. Williams L
"Automatic VLSI layout verification"
18th Design Automation Conference 1981 pp 726 - 732

190

33. Allgair R M, and Evans DS
"A comprehensive approach to a connectivity audit or a fruitful

comparison of apples and oranges"
14th Design Automation Conference 1977 pp 312 - 321

34. Baird H S, and Cho YE
"An artwork design verification system"
12th Design Automation Conference 1975 pp 414 - 420

35. Hollander Y
"Using an RTL-simulator to simplify VLSI design"
VLSI publication Vol 4 No 5 1983

36. Flake P, Musgrave G, and White IJ
"HILO -A logic system simulator"
IEE conference on Computer Aided Design 1974 pp 130 - 136

37. Denneau M, Kranstadt E. and Pfister G
"Design and implementation of a software simulation engine"
CAD publication Vol 15 No. 3 1983 pp 123 - 130

38. Reynolds JS
"A conversational logic simulator for use with a time-sharing
computer"
IEE conference on CAD 1969 pp 608 - 615

39. Weeks W, et. al.
"Algorithms for ASTAP -A network-analysis program"
IEEE trans. on circuits and systems Vol CT-20 1973 pp 628 - 634

40. Nagel LW
"SPICE2 :A computer program to simulate semiconductor circuits"
University of California, Berkeley

41. Tanabe'N, Nakamura H, and Kawakita K
"MOSTAP : An MOS circuit simulator for LSI"
Int. symposium on circuits and systems 1980 pp 1035 - 1038

42. Chanta B R, Gummel H K, and Kozak P
"MOTIS - An MOS timing simulator"
IEEE trans. on cir. and sys. Vol CAS-22 1975 pp 301 - 310

43. Newton A R, and Pederson D0
"Simulation program with large scale integrated circuit emphasis"
International symposium of circuits and systems 1978 pp 1-4

191

44. Hill D D, and VanCleemput WM
"SABLE : Multi-level simulation for hierarchical design"
Int. symposium on circuits and systems 1980 pp 431 - 434

45. Whitney T
"A hierarchical design-rule checking algorithm"
VLSI design publication (formerly Lambda) Vol 2 No. 1

46. Lindsay B W, and Preas BT
"Design rule checking and analysis of IC mask designs"
13th Design Automation Conference 1976 pp 301 - 308

47. Kozawa T, Tsuki A, Sakemi J, Muira C, and Ishii T
"A concurrent pattern algorithm for VLSI mask design"
18th Design Automation Conference 1981 pp 563 - 570

48. McCaw CR
"Unified shapes checker :A checking tool for VLSI"
16th Design Automation Conference 1979 pp 81 - 87

49. Baird HS
"Fast algorithms for LSI artwork analysis"
14th Design Automation Conference 1977

50. Lambert D-R
"Graphics language One"
18th Design Automation Conference 1981

51. McGrath E
"Design integrity and immunity checking"
17th Design Automation Conference 1980

pp 303 - 311

pp 713 - 719

pp 263 - 268

52. Edmonston T H, and Jennings RM
"A low cost hierarchical system for VLSI layout verification"
18th Design Automation Conference 1981 pp 505 - 510

53. Treble DP
"Dimensional checking of MOS LSI circuits"
International conference on CAD 1972 pp 7 -11

54. Franqui B, and Culliney JN
"Computer aided verification of MOS LSI layouts"
Wescon Electronics Show and Convention 1980

55. Alexander D
"A VLSI design rule checker"
Computer Aided Design conference 1980 pp 57 - 60

1981

192

56. Yoshida K, Mitsuhasi T, Nakada Y, Chiba T, Ogita K, and Nakatsuka S
"A layout checking system for large scale integrated circuits"
14th Design Automation Conference 1977 pp 322 - 330

57. Yamin M
"XYTOLR :A computer program for integrated circuit mask design
checkout"
Bell system technical journal Vol 51 No. 7
1972 pp 1581 - 1593

58. Rosenberg L M, and Benbassat C
"CRITIC : An integrated circuit design rule checking program"
11th Design Automation Conference 1974 pp 14 - 18

59. Stratford RI
"Computer aided checking of integrated circuit layout constraints"
International Conference on Computer Aided Design
1972 pp 45 - 50

60. Wilcox P, Rombeek H, and Caughey DM
"Design rule verification based on one dimensional scans"
15th Design Automation Conference 1978 pp 285 - 289

61. Mitchell CL
"MAP :A user-controlled automated mask analysis program"
11th Design Automation Conference 1974 pp 107 - 118

62. Lewis D
"CIFSYM : Layout design on an alphanumeric terminal"
VLSI design publication (formerly Lambda) Vol 2 No. 3 1981

63. "ICMASK"
University of Florida

64. Weste N
"A color graphics system for I. C. mask design and analysis"
15th Design Automation Conference 1978 pp 199 - 205

65. Ackland B D. and Weste N
"Colour display terminals for VLSI : Another perspective"
VLSI publication Vol 3 No. 1 1982

66. "User manual for 5500 series"
4082.075.41 1978 Issue A

67. Eades JD
"GAELIC user's manual"
Wolfson Microelectronic Laison Unit 1974

193

68. "KICK"
Personal communication
University of California Berkeley

69. Lyon RE
"Simplified design rules for VLSI layouts"
VLSI publication (formerly Lambda) Vol 2 No. 1 1981

194

BIBLIOGRAPHY

1. Mead and Conway
"Introduction to VLSI systems"
Addison Wesley

2. Sansen W, Heyns W. and Beke H
"Layout automation based on placement and routing algorithms"
NATO Advanced Study Institute on Computer Design Aids for VLSI
circuits 1980

3. VLSI publication (formerly Lambda)
CMP publications Ltd.

4. Paviidis T
"Algorithms for graphics and image processing"
Springer-Verlag Berlin-Heidelberg New York

5. Foley J D, and Van Dam A
"Fundamentals of Interactive computer graphics"
Addison Wesley

6. Camezind Hans
"Electronic Integrated systems design"
Van Nostrand Reinhold Company New york

7. Mayor J
"M. O. S. T. integrated circuit engineering"
Peter Peregrinus Ltd. London

8. Breuer M
"Design automation of digital systems ; theory + techniques"
Prentice-Hall

9" Ayres RF
"VLSI : Silicon compilation and the art of automatic
microchip design"
Prentice-Hall

195

APPENDIX A

CADIC

Computer Aided Design of Integrated Circuits

USER MANUAL

Al

CONTENTS

Section 1 Getting started with CADIC

1.1 Basic Information about the SIGMA and CADIC
1.2 Program initialisation

Section 2 Main Level Commands

2.1 ADJUST
2.2 AXIS
2.3 CHANGE
2.4 CLEAN
2.5 CURSOR
2.6 DEPTH
2.7 EXIT-
2.8 FILL
2.9 GROUP
2.10 HELP
2.11 INFORM
2.12 LIST
2.13 MODIFY
2.14 NET
2.15 ONLINE
2.16 ORIGIN
2.17 PLOT
2.18 SAVE
2.19 SWITCH
2.20 TRACK
2.21 WINDOW

Section 3 (Overleaf)

A2

Section 3 Cursor level commands

3.1 SPACE.... Return to main command level
3.2 -........ Remove mask from plot list
3.3 0 -> 9... Add masks to plot list
3.4 ?........ Available cursor commands
3.5 C........ Add collection or array of group instances
3.6 F........ Find nearest point in the layout
3.7 G........ Add group instances
3.8 I........ Identify point in shape to be moved
3.9 J........ Jump back to full layout

. 3.10 K........ Kill shapes
3.11 L........ Last window
3.12 M........ Change mask
3.13 P........ Add polygons
3.14 Q........ Query distance'
3.15 R........ Add rectangles
3.16 T........ Add tracks
3.17 U........ Undefined Zoom
3.18 V........ Verify cursor coordinates
3.19 W........ Redraw window
3.20 Z........ Zoom by a factor of 2
3.21 [........ Kill group instances and arrays
3.22 a... ".... Plot axis once
3.23 n........ Plot net once
3.24 s........ Show how shape, is segmented
3.25 w........ Define window size

A3

SECTION 1

GETTING STARTED WITH CADIC

1.1 BASIC INFORMATION ABOUT THE SIGMA 5000 AND CADIC

The SIGMA 5000 is
(Graphics Option Con
alphanumeric terminal.
graphics terminal is
hand-held control box,
up, down, and 'hit'.

a microprocessor-based system consisting of a GOC
troller), colour raster scan terminal, and an

The input device used in conjunction with the
a cross-hair cursor, and is controlled by a

containing five buttons - movement left, right,

r At various times during the use of CADIC, the cross-hair cursor
will be displayed on the graphics screen. If a single alphanumeric key
is pressed while the c/h cursor is visible, the ASCII equivalent of the
key pressed, and the coordinates of the cursor are sent to the computer.
CADIC accepts this key as a command and uses the coordinates
accordingly.

During the execution of CADIC, all graphic work is displayed on the
graphic screen, with all alphanumeric input/output being carried out on
the alphanumeric screen.

The framed area of the screen shows the virtual window, and any
part of the artwork contained in this window will be displayed on the
screen. Therefore if the-window is larger that the size of the layout,
the whole layout will be displayed, but if the window is smaller, then
only part of the layout will be seen. The position and size of the
virtual window is -under user control, so the user can use a large
magnification (small window) to check spacing widths etc. or use a
small magnification (large window) for global checks (Figure A1.1).

Above the virtual window frame, on the left hand side, is written
the name of the layout, or group definition that the user is presently
working on. Above the frame and to the right is displayed the virtual
window dimensions Xmin, Ymin, Xdim, Ydim. Below the window area, and to
the left is a plot list which shows the mask numbers presently displayed
on the screen. Each mask number is enclosed in a box of the relevant
colour, so as to make identification simpler.

A4

1.2 PROGRAM INITIALISATION

On running CADIC, the alphanumeric screen will clear and the
following message will appear :-

- CADIC -

PROGRAM TO GRAPHICALLY MODIFY AN INTEGRATED CIRCUIT LAYOUT

ENTER NAME OF EXISTING RING DATA STRUCTURE OR RETURN :-

The program will then wait for a filename. If a new ring data
structure (i. e. new layout) is required, press carriage return. If the
user wants to look at, or modify an existing layout, just type in the
name of the data structure followed by carriage return. (Note - do not
include the filename extension . RNG)

The program will then check to see if the filename does in fact
exist. If yes, then the graphic screen will be set up and the program
placed at the main command level (See Section 2). If the filename does
not exist in the user's directory, the program will return with :-

FILE <filename> DOES NOT EXIST - PLEASE TRY AGAIN :-

At this point, the user replies as described above. Had the user
pressed carriage return for a new data structure, the program puts up
the following message :-

ENTER NAME FOR THE NEW RING DATA STRUCTURE OR RETURN :-

Pressing carriage return will abort the program and return the user
to the monitor level. Any filename entered is again checked by the
program. If the filename is unique the program will set up the graphic
screen, ask for a title (see below), and then enter the main command
level. If the filename is not unique, the program warns :-

FILE EXISTS - DO YOU WANT TO OVERWRITE ?

The answer to this is YES or NO. YES will cause the file to be
overwritten, wheras NO gives the user a chance to cover up his mistake,
with the program again asking for the name of the new data structure as
before.

To help the user identify different layouts, the program always
asks for a layout title when dealing with new data structures. A title
up to 30 characters can be entered. Note - all group definitions in the
layout require identity names, so the user can always tell where he is
situated (i. e. in the main layout, or in a group definition) simply by
looking at the title written at the top left of the screen. Therefore,
to save confusion, it is advisable to use a layout title different from
those likely to be chosen for group titles.

A5

After supplying a title, the program enters the main command level
(See below) and waits for further instruction.

A6

SECTION 2

MAIN LEVEL COMMANDS

Whenever these commands are available to the user, the program will
print :

WHAT NOW :

All main level commands are described below. Note that only the first
two letters of each command need be typed to uniquely identify the
command.

2.1 ADJUST

The mask colours are automatically defined during the
initialisation- stage of the program, but the colours can be changed
dynamically by the user with the use of the ADJUST command.

On receiving the command, the graphics screen clears, then 15 boxes
(one per mask) are drawn on the screen, each with an identifying number,
and drawn in the relevant colour. The program then asks :-

ENTER MASK REQUIRED OR PRESS RETURN TO FINISH :-

If a number between -ý and 15 is entered, the program asks : -.
4ý

PRESENT SETTINGS FOR MASK <num> ARE : -
RED - <numl>, GREEN - <num2>, BLUE - <num3>

ENTER NEW AMOUNTS OF R, G, B OR RETURN TO FINISH :-

Note that amounts of R, G, B can vary from 0 to 15. On entering the three
integers, the respective mask colour is updated on the graphic screen,
so that the user can see what it looks like. The above question is
again asked, so that the user can try several combinations of R, G, B to
acheive the correct colour.

A7

When finished testing' the colour, press carriage return. The
program then asks :-

DO YOU WANT TO ACCEPT THE NEW SETTINGS ?

If it has been decided that the original colour was better, type NO,
otherwise type YES, after which the new settings will be used by CADIC.
On answering this question, the program again asks :-

ENTER MASK REQUIRED OR PRESS RETURN TO FINISH :-

Now another mask can be processed. If no more masks are required, press
carriage return, and the program will return to the main command level.

2.2 AXIS

This command complements a flag in-the program. By default the
flag is off, but if set, the program draws scaled axes whenever the
screen is redrawn.

The layout is actually quantized to a grid of allowable points (See
later), and the ticks on each axis correspond to the grid lines. Should
the user be using a. large window, too many ticks would be required to
show every grid line, therefore the program ticks, for example, only
every third grid line. The user is made aware of this by a note
positioned above the virtual window frame, which for this example would
show :-

AXIS GRID X3

The AXIS command is cancelled by typing a second AXIS when at the
main command level. It

A8

2.3 CHANGE

This option allows, the user to change the name of a group
definition. A more subtle option is available, in which the user can
change the group that group instances previously referred to. So if the
user has a revised group to take the place of the old definition, this
command saves the user from having to manually delete then re-insert all
the affected group instances.

On typing CHANGE at the main command level, the alphanumeric screen
clears and the following question is asked :-

- CHANGE GROUP NAME -

DO YOU WANT TO CHANGE GROUP DEFINITION OR INSTANCE NAME 7

{

The user must type 'DE' or 'IN' as required, followed by carriage
return. If 'DE' was typed, the program asks :

ENTER NAME OF GROUP DEFINITION TO BE CHANGED OR RETURN TO FINISH :

To return to the main command level, just press carriage return,
otherwise supply the necessary group name. If the name does not exist,
the program returns with :

GROUP DEFINITION NAHE <groupname> DOES NOT EXIST.
PLEASE TRY AGAIN OR RETURN TO FINISH :-

Should the name exist, the program will ask :

ENTER NEW GROUP DEFINITION NAME OR RETURN :-

Pressing carriage return will cancel the command and return the
user to the main command level. Otherwise, a unique group name must be
supplied. If not unique, the program will return with :

GROUP DEFINITION NAME <groupname> ALREADY EXISTS
PLEASE TRY AGAIN OR RETURN TO FINISH :-

The change of an instance is as described for a definition, except
that the words GROUP INSTANCE are used to replace GROUP DEFINITION.
Note - group instances do not have names, they only refer to groups with
names, so a GROUP INSTANCE NAME really means the GROUP DEFINITION NAME
that a group instance refers to.

A9

2.4 CLEAN

In general, the user will not add shapes 'to the layout in a
sequence that will ensure efficient build up of the data structure.
Usually beads of similar type are scattered throughout the file, instead
of being stored on the same or adjacent pages.

On typing 'CLEAN' at the main command level, the program will
re-arrange the data structure such that the information is stored in a
more efficient manner. The layout is in no way affected, but faster
plotting times, and better response times are possible with a 'clean'
data structure.

2.5 CURSOR

In most cases, the building up of I. C. artwork is aided by the use
of a grid. For this reason, the cursor coords are rounded to the
nearest grid point, as set by the user.

The default setting is XOFF, YOFF, GRID - 0,0,10 so the cursor
coordinates will always be a multiple of 10. Note that if the settings
were XOFF, YOFF, GRID - 3,2,10 then the x-coords will progress as
3,13,23,,, and the y-coords will progress 2,12,22,,,.

On typing CURSOR at the main command level, the alphanumeric screen
clears and the program asks :

- CURSOR GRID UPDATE -

PRESENT CURSOR GRID SETTINGS ARE : <numl>, <num2>, <num3>

ENTER NEW SETTINGS OR RETURN :

The new values are then entered as integers, separated by spaces.
Note that only the minimum amount of information need be entered. If
only the XOFF setting was to be changed, the carriage return could be
pressed after entering it's new value, - and the YOFF and GRID values will
remain as before. If both offsets needed updating, then the carriage
return can be pressed after the second entry, and so on.

A10

2.6 DEPTH

On typing DEPTH at the main command level, the alphanumeric screen
clears and the program asks :-

- NESTING DEPTH UPDATE -.

PRESENT GROUP NESTING DEPTH IS : <num>

ENTER NEW VALUE OR RETURN :

This command allows the user to specify what depth of group nesting is
to be drawn out. By default, DEPTH is set to 10, but when plotting out
a layout, to save time, DEPTH could be set to 1, which would cause the
program to draw out only the groups in the highest level of the group
hierarchy.

2.7 EXIT

This command puts the user up one program/system level. Therefore
if one was presently dealing with the whole layout, EXIT will close all
the'files used by CADIC, then return the user to the system monitor
level. If the user is modifying a group definition, typing EXIT will
return him to the whole layout. Again note that a quick look at the
name displayed at the top left-of the graphic screen will, tell the user
whether he is presently at layout, or group level.

2.8 FILL

This command complements a flag in the program., By default the
flag is off, but if set, the program fills shapes whenever they are
plotted on the screen.

When the flag is off, the shapes are plotted out in outline.
Therefore the user can watch the layout be built up. When the flag is
on, the mask-is first plotted on an 'invisible' plane. Only when
complete will the SIGMA fill the shapes and copy the whole mask layout
onto the screen. During-the plotting period, the user will see no
activity, and so may cause confusion to the first time user.

The FILL command is cancelled by typing a second FILL when at the
main command level.

All

2.9 GROUP

This command allows the user to set up, or modify a group
definition. After typing GROUP, the program clears the screen then
asks :

- GROUP MODIFICATION -

ENTER NAME OF EXISTING GROUP DEFINITION OR RETURN :-

If modification of an existing group definition is required, type
in the name followed by carriage return. If the name does not exist,
the program will warn :

GROUP NAME <groupname> DOES NOT EXIST - PLEASE TRY AGAIN :-

and the user can make another attempt. If a new group definition is
required, press carriage return, after which the program will ask :

ENTER NAME OF THE NEW GROUP DEFINITION OR RETURN TO FINISH :-

Pressing carriage return allows the user to cancel the command and
return to the main command level, otherwise a unique name (up to 6
characters) must be supplied. If the name is not unique, the following
message will appear :

GROUP NAME <groupname> ALREADY EXISTS - DO YOU WANT TO OVERWRITE :

IF YES is typed, the contents of the group definition are removed,
and the group opened as if it had been newly set up. Typing NO forces
the program to return to the previous question, so that the user can try
a different groupname.

Note that at all times while using CADIC, group names must be
unique, and also not the same as the first 6 letters of the layout
title.

On accepting the group name, the program sets up the screen and
then reaches its main command level just like that described for the
whole layout.

A12

CADIC is set up to handle only one group definition at a time.
Should the GROUP command be attempted while the user is still modifying
a group definition, the warning :-

STILL IN <groupname>

will be displayed in the menu area. If another group is required
for modification/inspection, the user must exit from the present group,
and enter the required-group.

IMPORTANT - At present, CADIC has no facility for deciding on which
level in hierarchy-a group is on. Therefore the lowest level must
be added first, -and the hierarchy built up accordingly (i. e. If A calls
B. group B must already exist).

2.10 HELP

This command simply clears the alphanumeric screen and prints out a
list of all the possible main level commands, plus a brief description
of their-use.

2.11 INFORM

This command clears the alphanumeric screen and prints out the
status of various parameters in the program, then returns to the main
command level. The output looks like :-

--SYSTEM INFORMATION -

YOU ARE PRESENTLY DEALING WITH THE MAIN LAYOUT/GROUP groupname

SWITCH SETTINGS ARE : -
AXIS - <statl>
NET - <stat2>
FILL - <stat3>
ONLINE - <stat4>

PARAMETER SETTINGS ARE : -
CURSOR (XOFF, YOFF, GRID) :. <numl>, <num2>, <num3>
DEPTH : <num4>
TRACK (DELTA) : <num5>
WINDOW (XOFF, YOFF, XDIM, YDIM) : <num6>, <num7>, <num8>, <num9>

A13

2.12 LIST

This command clears the alphanumeric screen and prints out a list
of all the existing group definitions. If there are more that 20 names,
the program will stop and print :

PRESS RETURN FOR MORE :-

To continue, press carriage return, of ter which the screen will
clear, and the list will continue from where it left off.

2.13 MODIFY

This command allows the user to modify whatever layout/group
definition he is presently in. On receiving this command, the following
question appears in the alphanumeric screen :-

MASK REQUIRED :

All layouts can have up to 15 masks, and this question defines
which mask is to be dealt with. Note that only one mask can be operated
on at any one time, but commands do exist for jumping between masks,
without having to return to the main command level (See Cursor
Commands).

After the-user types in a valid mask number, the program checks to
see if the mask has already been plotted out on the graphic screen. If
not, the mask will be plotted out if a space in the plot list exists.
Remember that a maximum of four masks can be displayed at any one time.

If the mask number is accepted, the cross-hair cursor is displayed.
At this point in time, the user is at the Cursor Command Level. All
possible commands at this level will be described in Section 3.

2.14 NET

This command complements a flag in the program. By default the
flag is off, but if set, the program draws a net of points whenever the
layout is redrawn. ' These points show where the grid points lie, and
exactly line up with the axis grid (Section 2.2), but lets the user
position the cursor accurately, without having to keep referring'to the
edges of the screen.

Once the net is drawn, the note similar to that given with the AXIS
command is shown at the top of the screen

NET GRID x <num>

The NET command is cancelled by typing a second NET when at the main
command level.

A14

2.15 ONLINE

This command complements a flag in the program. By default the
flag is off, but if set, the program will design rule check each shape
or group call added to the layout, against a set of supplied design
rules. After typing ONLINE, if the flag is being switched on, the
program clears the alphanumeric screen, then asks :

- ONLINE DESIGN RULE CHECKING -

ENTER NAME OF DATA STRUCTURE CONTAINING THE RULESP OR RETURN :-

Pressing carriage return cancels the command, and returns the
program to the main command level. If a filename is specified, the
program checks to see if it exists. If not, the program will warn :

FILE <filename> DOES NOT EXIST - PLEASE TRY AGAIN :-

and the user can make another attempt. If the file does exist, it is
copied into CADIC's temporary file, then the program return to the main
command level.

The ONLINE command is cancelled by typing a second ONLINE when at
the main command level.

2.16 ORIGIN

This command shows the user where all the group origins are
situated. The points are shown using isosceles triangles, with the
'top' of the triangle lying on the origin point.

2.17 PLOT

This command is used to plot out specified masks on the graphic
screen. The SIGMA contains 4 , display planes, so allowing a maximum of
16 colours to be plotted out simultaneously. The intuitive approach is
to allow all fiveteen masks to be shown at once if required. In this
situation, shapes on later masks will overwrite previous shapes if they
overlap. For example, if the aluminium mask is plotted out after the
contact mask, then all the contact holes would be overwritten.

Another approach uses the fact that the SIGMA can mask the writing
of data to the display planes. By putting a mask on each plane, the
overlap conditions produce unique colour numbers, and so specific
colours can be assigned to the overlap. In the case of plotting the
aluminium and contact masks, the contact holes would still be seen under
the aluminium, and correctly coloured to show it up against contact
holes that were not covered. This approach is obviously better, and was
the approach adopted by CADIC. Therefore, when plotting out masks,
CADIC limits the number of masks to a maximum of four at any one time.

A15

2.18 SAVE

To prevent the ring data structure becoming corrupt due to, say a
system failure, CADIC takes .a working copy of the data structure during
initialization. All future work is performed using the working copy.
Typing 'SAVE' at the main command level will copy the working copy into
the actual data structure, thus producing a protected version of the
layout.

The 'SAVE' command should be used frequently if the user is
building up and/or editing the layout, so that a system failure loses
only the work up to the most recent 'SAVE' command, instead of the whole
day's work. Note that an automatic save of the working copy is made
when exiting from CADIC.

2.19 SWITCH

During on-line
temporarily switch
relevant, or because
off switching off /on

receiving the comman,
asks :-

design rule checking, the user may want to
off certain rules, either because the rule is not
the rule is taking too long to implement. The task
rules can be achieved using the SWITCH command. On

3, the alphanumeric screen clears, and the program

ENTER RULE NAME TO BE CHANGED OR PRESS RETURN TO FINISH :-

If an existing rule name is entered, the program asks :-

RULE <rulename> IS PRESENTLY <status> - do you want to change it ?

If the rule is already in the correct status, type NO, otherwise
typing YES will invert the status (i. e. OFF -> ON, ON -> OFF). Once
complete, the program again asks :-

ENTER RULE NAME TO BE CHANGED OR PRESS RETURN TO FINISH :-

In this way, several rules can be changed at the same time. If no
more changes are required, press carriage return, and the program will
return to the main command level. Note that the SWITCH command only has
relevance if the ONLINE flag is set. If not, the program gives the
warning :-

ON-LINE DESIGN RULE CHECKING NOT YET IMPLEMENTED

then returns to the main command level.

A16

2.20 TRACK

This command allows the user to change the width of a track. By
default A is set to 10 units, where e is defined as :

On typing TRACK, the alphanumeric screen clears, and the program asks s

- TRACK UPDATE -

PRESENT TRACK DIMENSION IS : DELTA - <num>

ENTER NEW'VALUE OR RETURN :

Pressing return leaves the value of ', & as before, otherwise a is
updated as required.

2.21 WINDOW

This command allows the user to specify the virtual window size.
The program clears the alphanumeric screen and asks :

i

- WINDOW UPDATE -

PRESENT WINDOW SIZE IS : <numl>, <num2>, <num3>, <num4>

ENTER NEW VALUES OR RETURN :-

As in the CURSOR command, only the minimum number of values need be
entered.

A17

SECTION 3

CURSOR COM}MND LEVEL

Whenever the cross hair cursor is visible, the user is at the
cursor command level. At this level, the user can alter the artwork, or
simply inspect it using the range of windowing functions available. The
commands are as follows : -

3.1 SPACE..... RETURN TO MAIN COMMAND LEVEL

Pressing the space bar will return the user to the main command
level.

3.2 -..... REMOVE MASK FROM PLOT LIST

On typing '-', the program asks :-

" MASK REQUIRED :

Enter the mask number to be removed. If the mask is not displayed on
the screen, the program will reply with :-

MASK <num> IS NOT IN THE PLOT LIST

If the mask number entered is displayed on the screen, then it will be
immediately removed, and the plot list at the bottom left hand corner of
the screen will be updated accordingly. If the mask the user was
working on is to be removed, then the program will remove it, but ask :-

THE MASK YOU WERE WORKING ON HAS BEEN REMOVED

MASK REQUIRED :

On completion of this command, the program returns to the cursor command
level.

A18

3.3 ?.... AVAILABLE CURSOR COMMANDS

At any time while the
type '? ' to find out which
example, if the user is at
commands will be given.
only those commands releva
given.

cross hair cursor is visible, the user can
cursor commands are presently available. For
the cursor command level, the full list of
If the user is in middle of adding a polygon,

nt to the addition of the polygon will be

The list of commands appears on the alphanumeric screen, along with
a brief description of their use, and will provide useful information
for both the inexperienced and experienced user.

3.4 0 -> 9..... ADD MASKS TO PLOT LIST

Pressing keys 1 -> 9, plots out the corresponding mask number if a
space in the plot list exists. If there are already four masks
displayed on the screen, the program will warn :-

THERE IS NO MORE ROOM IN THE PLOT LIST

and will return to`the cursor command level. If the mask already
exists, the program will warn :-

MASK <num> IS ALREADY IN THE PLOT LIST

then will return to the cursor command level.

The graphic screen does not clear, so the plot will superimpose
itself onto any existing artwork. This facility allows the user to
check alignment between shapes on different masks etc.

If the 0 key is pressed, the question :

MASK REQUIRED :

appears in the menu area, allowing the user to choose a mask number over
the whole range 0 s> 15.

A19

3.5 C- ADD'COLLECTION OR ARRAY OF CROUP INSTANCES

The user can insert an array of group instances using this command.
When typed, the program asks :

ENTER GROUPNAME OR RETURN TO FINISH :-

To cancel the command, press carriage return, otherwise enter the
name of the group required in the array, followed by carriage return.
If the groupname does not exist, the program replies with:

GROUPNAME <groupname> DOES NOT EXIST
PLEASE TRY AGAIN OR RETURN TO FINISH :-

If the name does exist, the program asks s.

ORIENTATION :-

By this it means the orientation of the group instances in the
array, as the array cannot be orientated. The orientation is a 3-digit
decimal number of the form 'abc' where a- reflection in X-axis, b-
reflection in Y-axis, c- rotation of +90 degrees. The letters a to c
are given the value 1 or 0 depending on whether the transformation is,
or is not required. Note that if an orientation involves a rotation,
the rotation is always implemented first.

As an example, if the user wants the group reflected in the X-axis,
the code would be 100. If rotation followed by reflection in the Y-axis
is required, the code would be 011.

If the user presses carriage return without entering an orientation
code, a default value of 000 will be assumed. On accepting an
orientation code, the program proceeds by asking :

X NUMBER AND SPACING

which means the number of group instances required in the X direction of
the array, plus the spacing between instances. Pressing only carriage
return will assume the X number as 1.

Once answered, a similar question will be asked in reference to the
Y direction :

Y NUMBER AND SPACING

On completion of the data input, a point on the screen will show
where the origin of the bottom left-hand group instance is situated.
Note - if the group instance has been rotated, then this point may not
be the bottom left-hand corner of the whole array (See Figure A1.2)

A20

Once placed, the cross hair cursor is returned, as the user has the
ability to adjust the position of the array if not correct.

Typing an 'S' will just substitute the new cross hair cursor
coordinates, whereas typing a '-0' will ask for the coords to be entered
at the keyboard, allowing the user to specify the point exactly. Should
the array be incorrect, the user can remove it from the artwork by
typing a 'K'. Note - to be effective, this command must be used before
any other command (other than 'S' and '#') is implemented.

Once the array is in the correct position, the user can draw it out by using the 'D' command.

If the ONLINE flag is set, then the array must be design rule
checked before it is drawn out and added to the ring data structure.
Once the checks have been applied, CADIC proceeds in one of two ways.

If no violations exist, the array is drawn out in solid lines, and
added to the data structure. If violations do exist, the error messages
are printed out on the alphanumeric screen. The array is then drawn out
in dashed lines, and the following question asked :

DO YOU WANT TO OVER-RULE THE ERRORS ?

Answer YES or NO. If the answer is YES, then the array is drawn out in
solid lines, and is added to the ring data structure. If the answer is
NO, then the array is removed from the screen, and 'killed' from memory.

3.6 F- FIND NEAREST POINT IN THE LAYOUT
-(INCLUDING

GROUPS

On typing an 'F', the program searches the data structure for the
point that is closest to the cross hair cursor. Note that this search
includes all group instances and arrays. If a point is found, the
program replies with :

NEAREST POINT TO THE CURSOR IS : -
X- <numl>, Y- <num2>

If the point cannot be found, for example if the user is on the
wrong mask, the program warns :

NO SHAPES ON MASK <num>
CLOSE TO THE CURSOR

3.7 C -, ADD GROUP INSTANCE

This command follows exactly as the 'C' command, except of course,
the X and Y numbers and spacing are not asked for. As with the arrays,
the group instance can be moved, drawn out, and aborted once it is
inserted.

A21

3.9 I- IDENTIFY POINT IN A SHAPE TO BE MOVED
----- -----
On typing an 'I', the program searches the data structure for the

point that is closest to the cross-hair cursor. Note that the search
does not include group instances and arrays.

If a point is found, the user can move the whole shape if required.
Typing a 'Y' at the new position for the point allows the shape to be
moved at an angle. Typing an 'H' will force the program to calculate
the nearest point to the new cursor position, such that the movement in
orthogonal. For example :-

ii

11
1I

11
11
11
1I

I_--------. -. --+ Y

ýr -ear rrrl

Vrýr7

1

1
1

Lr
. rrrr rrý

ýH

In either case, a point will be drawn at the new location. This
point can be adjusted using any of the commands Once
happy with the position of the point, typing a 'D' will delete the
original shape, and draw it in its new location. Note that an automatic
delete and draw will take place (if not already done so) before
commencing with a new cursor level command.

3.9 J- JUMP BACK TO FULL LAYOUT

The bounding rectangle of
whenever new shapes or group
definition. The program stores tl
the cursor command level forces
that the whole layout fits neatly
the cursor is not important.

3.10 K- KILL SHAPES

the layout is dynamically updated
calls are added to the layout/group

lese dimensions and so typing a 'J' at
the program to redraw the layout, such
into the window area. The position of

To implement this command, the user must place the cross hair

cursor over the shape that is to be deleted. If the program cannot find
the shape, the message :

THERE ARE NO SHAPES ON MASK <num>
CLOSE TO THE CURSOR

If this is the case, the cursor must be repositioned and the 'K'
command tried again. If the shape is found, it will be immediately
removed from the layout.

A22

3.11 L- LAST WINDOW

This command redraws the layout using the previous window
dimensions. Such a command is useful, for example, if the user is
presently using a large window. He can zoom in to make a detailed
check, then when finished, can type 'L' to return to the original window
size that he was using.

3.12 M- CHANCE MASK

When in the MODIFY mode, the user can operate on only one mask at a
time. Should modification be required on another mask, using the 'H'

command will, force the program to ask :

MASK REQUIRED :

The new mask number can be entered, so continuing the modification,
but now on the new mask number.

3.13 P- ADD POLYGONS

This command will initiate the adding of a
structure. Note - this point must be the bottom

polygon. In CADIC there are two classifications
format polygons, and long format polygons.
contain only orthogonal segments (Manhattan
format polygons may contain angled segments : -

nn

0

E 0E

polygon to the data
left-hand corner of the
for polygons. Short
Short format polygons

geometry), wheras long

After shape initialisation, the user can set about
adding the other points. To do this, he has the choice of eight

0, A, E, X, o, a, e, x. commands :'''

The '0' key will calculate the nearest point to the cursor, such
that the segment between the new point and the last point is orthogonal.
(i. e. horizontal or vertical). To finish a polygon orthogonally, the
user must type an 'E'. Note - the position of the cursor is not
important when finishing polygons, as the last point must be equal to
the first point to satisfy the closed shape constraint.

On the other hand, if the 'A' command is used, the cursor
coordinates will be accepted, allowing angled segments to be added. To
finish a polygon with an angled segment, type an 'X'. Again the
position of the cursor for this finishing command is not important.

A23

Note that If a light segment is required, use the upper case
commands, and if a dark segment is required, used the lower case
commands.

If the user adds a point which he realises to be in the wrong
place, he can move it using one of the following options : , 'N'.
Note - these commands only apply to the point newly added.

'S' will simply recalculate the coordinates of the point, using the
new cursor coordinates. '#' is identical to the 'S' command except that
the coords are entered at the keyboard. 'N' will search through the
data structure, and find the point nearest to the cursor position. If
found, this point replaces the incorrect one, so allowing the user to
'tag' shapes onto existing anchor points.

At any point during the formation of the polygon, the user can
abort the 'P' command, by typing a 'K' for kill.

Once the polygon is complete, the user can draw out the shape by
using the 'D' command. Note that if not already drawn out, through
using the 'D' command, the polygon will be drawn out automatically
before commencing any new cursor level command.

If the ONLINE flag is set, then the polygon must be design rule
checked before it is drawn out and added to the ring data structure. In
the event of a violation, the program will proceed as described in
Section 3.5.

3.14 S-
-QUERY

DISTANCE

This command is used to check distances between two points on the
graphic screen. On pressing 'Q', the present cursor position will be
shown as a point on the screen. If the user then moves the cursor, and
types a second 'Q', the new cursor position will be shown by a point,
and the incremental-distance between the two points will be diplayed in
the alphanumeric screen :

INCREMENTAL DISTANCE BETWEEN THE TWO POINTS IS : -
X-INC - <numl>, Y-INC - <num2>

A24

3.15 R- ADD RECTANGLES

This command initialises the program to accept a rectangle into the
data structure, and will show the present cursor position by a point on
the screen. Note - this point must be the bottom left-hand corner of
the rectangle. To complete the rectangle, type an '0' at the position
of the top right-hand corner of the rectangle :-

Co

R
As with the polygon command, any of the options i 'S', 'M', 'N', 'K'

can be used in conjunction with the 'R' and '0' commands, with the 'D'
command also being available to draw out the rectangle, when satisfied
that the rectangle is correct. Again,, the program will automatically
draw out the shape (if not already done so) before commencing any new
cursor level command.

If the ONLINE flag is set, then the rectangle must be design rule
checked before it is drawn out and added to the ring data structure. In
the event of a violation, the program will proceed as described in
Section 3.5.

3.16 T- ADD TRACKS

This command initialises the program ready for insertion of a
track, and shows the present cursor position as a point on the screen.
Note that this point must be the bottom left hand point of the track
centre line.

To add a track, the user specifies the centre line, with the width
of the track being defined by DELTA. To change this value the user must
return to the main command level.

T ---- -- -ý'ý

After typing a 'T' to initialize the track, the commands '0' and
'A' can be used to add orthogonal and angled track centre-line points.
As with the polygon and rectangle, the points can be moved by commands t

To finish the track, type an 'E' at the required point if the last
segment is to be orthogonal, or type an 'X' if the segment is to be
angled. To draw out the track, type 'D', but remember that an automatic
draw will take place when commencing a new cursor level command, If not
already done so.

A25

If the ONLINE flag is set, then the track must be design rule
checked before it is drawn out and added to the ring data structure. In
the event of a violation, the program will proceed as described in
Section 3.5.

3.17 U- UNDEFINED ZOOM

This command redraws the, layout, but with the facility of allowing
the user to 'zoom' in or out of the artwork. On typing a 'U', the
program will ask :

ZOOM IN FACTOR :

If a positive integer is entered, the window dimensions will
decrease by the zoom-in-factor (effectively increasing the artwork by
the same factor), and the centre of the new virtual window will
correspond to the cursor position at the time when the 'U' key was
pressed.

If a negative integer was entered as the zoom-in-factor, then the
window size will increase, giving the effect of moving away, or zooming
out, from the layout.

3.18 V- VERIFY CURSOR COORDINATES

This command simply tells the user the present coordinates of the
cross hair cursor. These are given in the menu area as :

CURSOR POSITION IS : -
R- <numl>, Y- <num2>

These coordinates will also be represented as a point on the screen.

3.19 W- REDRAW WINDOW

This command lets the user 'slide' the virtual window around, so
that he can look at different areas of the artwork, without changing the
window size (The window offsets will of course change). The direction
moved is dependent on the cursor position, so the screen can be
considered to be cut up into 9 sections as shown in Figure A1.3a.

Assume for example, that the cursor is in area 6 when the 'W'
command is implemented-The program then asks :

ENTER DISPLACEMENT FACTOR :

By this, it means the number of half windows that the user wants to
move along. The effect of different displacement factors for area 6 are
shown in Figure A1.3b.

A26

Similarily, if the cursor is in area 4, the window will move left
by the specified amount, and areas 9 and 2 will cause the window to move
up or down respectively. If areas 1,3,7,9 are chosen, the window will
move in a diagonal fashion, with the direction being dependent on which
area is chosen. Note that if the cursor is in area 5 the displacement
factor will not be asked for, and the artwork will be redrawn using the

same window settings as before.

3.20 Z- ZOOM IN BY A FACTOR OF 2

This command acts in exactly the same way as the 'U' command,
except the the zoom-in-factor is set automatically to +2.

3.21 L- (Shift a- KILL GROUP INSTANCES AND ARRAYS

To delete a group instance, place the cross hair cursor over the
instance and type '('. If the program finds the group instance, it will
instantaneously delete it.

To delete an array, the procedure is exactly as above, except that
the cross hair cursor must be placed over the bottom left instance in

the array to be effective.

3.22 a- PLOT AXIS ONCE

This command is useful when at the cursor command level, and the

axes are required for a quick check on a shape's position. The axes are

plotted once, and the axis flag is not set.

3.23 n- PLOT NET ONCE

This command is useful at the cursor command level, when the net of
points is required for a quick check on a shape's position. The net is

plotted once, and the net flag is not set.

3.24 s- SHOW HOW A SHAPE IS SEGMENTED

Future work in CADIC may allow the Individual sub-polygons to be

processed, rather than the polygon as a whole. For example moving only
a segment of a track. In such situations it may be useful to see just
how a polygon is cut up (if at all).

Positioning the cursor over the shape under question, and typing
's' will show up all the sub-polygons if they exist.

3.25 w- DEFINE WINDOW SIZE

This command allows the user to choose an area of the layout to be
redrawn. The position of the cursor is taken as the bottom left hand
corner of the area. The cursor is then repositioned at the required top
right hand corner of the area, and a second 'w' is typed. The program
then redraws the layout, such that the chosen area fills the screen.

A27

NANO ante

0

masks Plotted 1234

(a) Futl layout

NASD gate

F-I

masks plotted 123 4

(b) Large magnification (Zoom in)

"... - 1

WkNu gule

masks plotted 1234

f c) Small magnification (Zoom out)
Figure

__

[1

a
Lé

.1 ___

fl

I
11

__ __

III
o. _

Figure Al-2 The array commcnd

origin

Xd 1% . 6- 0. Xdhý

Ile

4i56
I

1'1

1ý2'3

`-an amr1

Xdim

.
ýe

>P

(a) Segmeniation of screen window when using'W commc, nd

w

1 half window 2 half windows

1 i

11 t' 1

(XOy%tf) (XottYott) (Xcff Yott) ýXottYOtfý

(b) The effect of he displacement frcior

Figure A1.3

APPENDIX B

On-line design rule checking algorithms

B1

CONTENTS

Section 1 Available commands

1.1 OVERLAP
1.2 SEPARATE
1.3 ENCLOSED
1.4 ENCLOSES
1.5 SPACING
1.6 CLEARANCE
1.7 WIDTH
1.8 INTERLIMB
1.9 AREA
1.10 UNION
1.11 INTERSECTION
1.12 DIFFERENCE
1.13 EXCLUSIVE

B2

SECTION 1

AVAILABLE COMMANDS

In this section, the algorithms used to perform the design rule checks will

be described. Before doing this, it is useful to describe some of the more

general definitions that will be used.

Firstly, a shape can be defined as primary or secondary. A primary shape is

one which has already been stored in the shape list. A secondary shape is the

shape to be found. For example, the dimension checks (WIDTH, AREA etc) only use

primary shapes, selectors (QVERLAP, SEPARATE etc) use a primary shape to find a

secondary shape. Note that the definition only exists within any one algorithm,

since a secondary shape found by an OVERLAP test will become a primary shape if it

is tested in WIDTH, and so on.

Secondly, much use is made of the segment type to try a cut down the number

of segments to be processed. The segment type for each segment is calculated when

required, and is defined as follows :-

0- angled segment in

1- horizontal in

2- vertical in

3- angled segment out

4- horizontal out

5- vertical out

B3

The direction of a segment is from the starting coordinates to the finishing

coordinates, and is deemed to be travelling outwards or inwards using the

following rule :-9 Cr

160 "

270"

The design rule algorithms are described below.

S-.

Os

outwards il -90' <0< 90"
inwards 11 160' <0< 270'

B4

1.1 OVERLAP

This routine finds a secondary shape which overlaps the pre-defined primary

shape. An overlap between two shapes exists if the shapes share a common areas

for example : - key
r----'

,

r--- ---
ENO

---- --
ENO

YES

--- primary shape

"rrrrý semridary shape

The algorithm used to find overlapping shapes is as follows :-

1. Set overlap flag to FALSE.

2. Find next primary shape from shape list : [if finished RETURN]

A 3. Find next secondary shape from data structure : (if finished
goto (2))

4. Do primary and secondary bounding rectangles overlap ?

B YES - goto (5) (overlap still possible, so carry out more
detailed analysis)

NO - goto (3) (if the bounding rectangles are separate,
then the shapes cannot possibly overlap)

C 5. Find next primary segment in primary shape : (if finished goto (3)]

6. Does primary segment enter secondary bounding rectangle ?

D YES - goto (7) (overlap still possible, therefore carry out
more detailed analysis)

NO - goto (5) (if outside bounding rectangle, the primary segment
cannot possibly intersect secondary segments)

E 7. Does the primary segment intersect any secondary segments
in secondary shape ?

YES - goto (8)

NO - goto (5)

8. Here for overlap
Set overlap flag to . TRUE.
Store secondary shape in shape list
RETURN

B5

Some points to note about the algorithm are as follows :-

At step (A), if the secondary shape identified is a sub-polygon, then the

whole polygon must'be reconstructed before continuing the test. The OVERLAP test

will-not fail if only the sub-polygon is considered, but if a future routine

tests, for example, the area of the overlapping shape, a false error may be

generated due to the fact that only the sub-polygon was stored, and not the whole

polygon.

At step (B), if both the primary and secondary shapes are rectangles then the

rest of the check can be ignored, since the OVERLAP condition is automatically

satisfied. The reason for this is that the coordinates of the rectangle's

bounding rectangle are identical to the rectangle's coordinates. Similarly, at

step (D), if. any primary segment enters the secondary bounding rectangle, and the

secondary shape is a rectangle, the OVERLAP condition is automatically satisfied.

If the secondary shape is totally inside the primary shape, then the OVERLAP

condition should be satisfied, but will not be, because no segment crossovers

occurred. To catch this special case, a test is performed at step (C) which

checks if the bottom left hand corner of the secondary shape is inside (i. e. to

the left) of the primary segment. Therefore if no segment intersections were

found, and the above mentioned corner was always inside the primary segments, the

OVERLAP condition-is over-ruled at step (3), and CADIC2 re-directed to step (8).

At step (E), only certain combinations of primary versus secondary segments

need be considered. These combinations are as follows :-

Primary segment

Horizontal
Vertical
Angled

Secondary se ent

Vertical, Angled
Horizontal, Angled
Horizontal, Vertical, Angled

B6

1.2 SEPARATE

This routine finds a secondary shape which is separate from the pre-defined

primary shape. Two shapes are separate if the shapes do not share any common

area, for example :-

r---"--
J

----ý

ýqJ

r--I

, NO

key

primary shape

- -- -- -- wcordary stupe

The algorithm used to find separate shapes is as follows :-

1. Set separate flag to FALSE.

2. Find next primary shape from shape list : [if finished RETURN]

A 3. Find next secondary shape from data structure : [if finished goto (2)j

4. Do primary and secondary bounding rectangles overlap ?

B YES - goto (5) (possible separation, therefore perform
more detailed analysis)

NO - goto (8) (if bounding rectangles are separate, shapes
must be separate)

C 5. Find next primary segment in primary shape : (if finished goto (8))

6. Does primary segment enter secondary bounding rectangle ?

D YES - goto (7) (possible separation, therefore perform more
detailed analysis)

NO - goto (5) (if outside bounding rectangle, the primary
segment cannot intersect any secondary segments)

E 7. Does the primary segment intersect any secondary segments
in secondary shape ?

YES - goto (3) (shapes cannot be separate)

NO - goto (5)

8. Here for separate shapes
Set separate flag to . TRUE.
Store secondary shape in shape list
RETURN

B7

Some points to note about the algorithm are as follows :-

At step (A), if the secondary shape identified is a sub-polygon, then the

whole polygon must be re-constructed in case it is needed in other routines. The

problem now is that if the polygon is separate, then each sub-polygon will satisfy

the SEPARATE condition, and multiple versions of the same polygon will be stored

in the shape list.. This redundancy will cause excessive processing in future

routines, so the approach taken by CADIC2 is to only consider a sub-polygon if it

contains the bottom left hand corner of the original polygon. All other

sub-polygons are ignored.

At step (B), the SEPARATE condition

secondary shapes are both rectangles. TI

of a rectangles bounding rectangle are

rectangle. Similarly, at step (D), any

bounding rectangle, when the secondary

SEPARATE condition automatically fails.

automatically fails if the primary and

he reason for this is that the coordinates

identical to the coordinates of the

primary segment that enters the secondary

shape is a rectangle means that the

If the secondary shape is totally inside the primary shape, then the SEPARATE

condition should fail, but will not, because no segment intersections occured. To

catch this special case, a test is'performed at step (C), which checks if the

bottom left hand corner of the secondary shape is inside (i. e. to the left) of

the primary segment. Therefore if no segment intersections were found, and the

above mentioned corner was always inside the primary segments, the SEPARATE

condition is over-ruled at step (8), and CADIC2 re-directed to step (3).

At step (E), only certain combinations of horizontal versus secondary

segments need be considered. These combinations are as described in the OVERLAP

algorithm.

B8

1.3 ENCLOSED

This routine finds a secondary shape which encloses the pre-defined primary

shape. -A shape is enclosed when none of its area is outside the enclosing shape,

for example : -

NO

NO ii key
Y- primary shape us

- -- --- secondary shape

The algorithm used is as follows :-

1. Set enclosed flag to FALSE.

2. Find next primary shape from shape list : [if finished RETURN]

A 3. Find next secondary shape from data structure : [if finished goto (2)]

4. Does the secondary bounding rectangle enclose primary bounding rectangle ?

B YES - goto (5) {possible enclosure, therefore perform
more detailed analysis)

NO - goto (3) (if the primary bounding rectangle is not enclosed,
then the primary shape cannot possibly be enclosed)

C 5. Find next secondary segment in secondary shape : [if finished goto (8)]

6. Does secondary segment enter primary bounding rectangle ?

D YES - goto (7) (possible enclosure violation, therefore
perform more detailed analysis)

NO - goto (5) (if outside bounding rectangle, the secondary
segment cannot intersect any primary segments)

E 7. Does the secondary segment intersect any primary segments
in primary shape ?

YES - goto (3) (primary shape cannot be enclosed by secondary shape)

NO - goto (5)

8. Here for enclosure
Set enclosure flag to . TRUE.
Store secondary shape in shape list
RETURN

B9

Some points to note about the algorithm are as follows :-

At step (A), if the secondary shape identified is a sub-polygon, then the

whole polygon must be re-constructed before the ENCLOSED test can continue. The

reason is that the sub-polygon may not enclose the primary shape, whereas the

whole polygon does enclose the primary shape. Re-constructing the polygon for

every sub-polygon would create multiple copies of the same shape in the shape

list. Therefore, the above process is only carried out when the sub-polygon

containing the bottom left hand corner of the original polygon is found. All

other sub-polygons are ignored.

At step (B), the ENCLOSED condition is automatically satisfied if the primary

and secondary shape are both rectangles. Conversely, at step (D), if any

secondary segment-enters the primary bounding rectangle when the primary shape is

a rectangle, the ENCLOSED condition automatically fails.

If the primary shape is totally outside the secondary shape, but the primary

bounding rectangle is enclosed by the secondary bounding rectangle, then the

ENCLOSED condition should fail, but will not, because no segment intersections

were found. To catch this special case, a test is performed at step (C), which

checks if the bottom left hand corner of the secondary shape is outside (i. e. to

the right) of the primary segment. Therefore if no segment intersections were

found, and the above mentioned corner was always outside the primary segments, the

ENCLOSED condition is over-ruled at step (8), and CADIC2 re-directed to step (3).

At step (E), only certain combinations of primary versus secondary segments

need be considered. These combinations are as described in the OVERLAP algorithm.

B10

1.4 ENCLOSES

This routine finds a secondary shape which is enclosed by the pre-defined

primary shape. A shape is enclosed when none of its area is outside the enclosing

shape for example :-
r-- '

NO

1
1

'LNO

r, --1

key

primary shape

----- secondary shape

The algorithm used is identical to the ENCLOSED algorithm, except that the

roles of the primary and secondary shapes are reversed. Note that this command is

generated internally-by DRCCAD,. and is not available in the manual input language.

1.5 SPACING

This routine takes two separate shapes, and carries out a check to see if the

spacing between the shapes is less than a specified minimum, for example :-

key

iI
------ J

----- primary shape

--- -- secmdzry shape

d minimum spacing

The algorithm used proceeds as described below. Note that the terms primary

and secondary shape is now used to isolate the two groups of shapes involved. For

example, if the spacing test was between the shapes on mask (1) and mask (2), then

B11

the primary shape(s) would relate to those shape(s) in the shape list that were on

mask (1), and the secondary shape(s) would relate to the shape(s) in the shape

list that were on mask (2).

1. Set spacing violation flag to FALSE.

2. Find next primary shape from shape list : [if finished RETURN]

A 3. Expand primary bounding rectangle by spacing factor

4. Find next secondary shape from shape list : (if finished goto (2))

5. Do the primary and secondary bounding rectangles overlap ?

B YES - goto (6) (possible spacing violation, therefore perform
more detailed analysis)

NO - goto (4) (if the secondary shape is outside the expanded
primary bounding rectangle, then the spacing
test is automatically satisfied)

6. Find next secondary segment from secondary shape : [if finished goto (4)]

7. Does secondary segment. enter expanded primary bounding rectangle ?

C YES - goto (8) (possible spacing violation, therefore perform
more detailed analysis)

NO - goto (6) (if outside bounding rectangle, the secondary segment
cannot possibly violate test)

8. Form bumper along outside edge of the secondary segment

9. Do any primary segments from primary shape enter bumper ?

YES - goto (10)

NO - goto (6)

10. Here for violation
Set spacing violation flag to TRUE.
RETURN

B12

Some notes about the algorithm are as follows :-

In step (A), the primary bounding rectangle is expanded by the minimum

spacing distance W. One of the reasons for doing this is to allow the outcome

of the SPACING test to be decided using only the bounding rectangle information.

On entering the routine, the secondary shape is known to be separate from the

primary shape. If the secondary bounding rectangle is also separate from the

expanded primary bounding rectangle, then the spacing distance must be greater

than 'd'.

The second reason is that CADIC2 knows that any secondary segments that do

not enter the expanded bounding rectangle must be further away than the minimum

spacing distance. All such segments can therefore be ignored.

In step (B), if both the primary shape and the secondary shape are

rectangles, then the spacing condition must be violated. Similarly, in step (C),

if a secondary segment enters the expanded bounding rectangle, and the primary

shape is a rectangle, the SPACING condition must be violated.

B13

1.6 CLEARANCE

This routine takes two shapes, the primary enclosed by the secondary, and

performs a" check to see if the distance between the two shapes is less than the

specified minimum, for example :-

ý--- ý --,

ii
ýddý

key

primary shape

----- -I

iI

r

------ secondary shape

d minimum ckararce

The algorithm proceeds as follows. As described in the SPACING algorithm,

the terms primary and secondary shape isolate the two groups of shapes involved.

1. Set clearance violation flag to . FALSE.

2. Find next primary shape from shape list : [if finished RETURN]

A 3. Expand primary bounding rectangle by clearance factor

4. Find next secondary shape from shape list : [if finished goto (2))

5. Does the secondary bounding rectangle enclose expanded primary bounding
rectangle ?

B YES - goto (6) (correct clearance possible, therefore perform
more detailed analysis)

NO - goto (11) (the secondary shape cannot possibly
enclose primary shape with minimum of
clearance all round)

6. Find next secondary segment from secondary shape : [if finished goto (4)]

7. Does secondary segment enter expanded primary bounding rectangle ?

C YES - goto (8) (clearance violation possible, therefore perform
more detailed analysis)

NO - goto (6) (if outside bounding rectangle, the secondary
segment cannot possibly violate rule)

8. Form bumper along inside edge of the secondary segment

B14

9. Do any primary segments from primary shape enter bumper ?

YES - goto (10)

NO - goto (6)

10. Here for-violation
Set clearance violation flag to TRUE.
RETURN

Some points to note about the algorithm are as follows :-

In step (A), the primary bounding rectangle is expanded by the minimum

clearance distance 'd'. One of the reasons for doing this is to allow the outcome

of the CLEARANCE-test to be decided using only the bounding rectangle information.

On entering this routine, the primary shape is known to be enclosed by the

secondary shape. If the expanded bounding rectangle is now not enclosed by the

secondary bounding rectangle, then the clearance between the shapes must have been

less than 'd'.

The second reason is that CADIC2 knows that any secondary segments that do

not enter the expanded primary bounding rectangle must be further away that the

minimum clearance. All segments can therefore be ignored.

In step (B), if the expanded bounding rectangle is enclosed, and the two

, shapes are rectangles, then the CLEARANCE condition must be satisfied.

Conversely, in step (C), if a secondary segment enters the expanded bounding

rectangle, and the primary shape is a rectangle, then the CLEARANCE must be

violated.

B15

1.7 WIDTH

This routine checks the width of a shape, against a specified minimum

distance 'd', for example :-

The algorithm is described below. Note that the terms primary segment and

secondary segment are now used to isolate the segments within the primary shape.

The segment presently being checked is the primary segment, and all the segments

between the. primary segment,. and the start of the shape, are the secondary

segments.

1. Set width violation flag to . FALSE.

2. Find next primary shape from shape list : (if finished RETURN)

3. Is shape a rectangle ?

YES - goto (4)

NO - goto (6)

4. Check width using the bounding rectangle dimensions

5. Is there a violation ?

YES - goto (10)

NO - goto (2)

6. Find next primary segment from primary shape : (if finished goto (2)]

7. Is primary segment travelling outwards ?

YES - goto (6) (width violation can only be caused by
segments travelling inwards)

A NO - goto (8)

8. Form bumper along inside edge of primary segment

B16

9. Do any secondary, segments from primary shape enter bumper ?

YES - goto (10)

NO - goto (6)

10. Here for violation
Set width violation flag to . TRUE.
RETURN

A point to note about the algorithm is as follows :-

In step (A) only in-going segments are checked. The reason for this is that

by forming bumpers round the inside of in-going segments, the processing is cut by

half, yet all the dimensions are checked. To show this, consider the following

shape :-

key

I
dd minimum width

I
® bumper

-, d k-

B17

1.8 INTERLIMB

This routine checks the spacing between limbs of a shape against a specified

minimum distance 'd', -for example :-

The algorithm proceeds as follows :-

1. Set interlimb violation flag to FALSE.

2. Find next primary shape from shape list : (if finished RETURN)

3. Is shape a rectangle ?

YES - goto (2) (interlimb check does not apply to rectangles)

NO - goto (4)

4. Find next primary segment from primary shape : (if finished goto (2)J

5. Is primary segment travelling inwards ?

YES - goto (4) (interlimb violation can only be caused by
segments travelling outwards)

A NO - goto (6)

6. Form bumper along outside edge of the primary segment

7. Do any secondary segments from primary shape enter bumper ?

YES - goto (8)

NO - goto (4)

8. Here for violation
Set interlimb violation flag to . TRUE.
RETURN

B18

A point to note about the algorithm is as follows :-

In step (A), only out-going segments are checked. The reason for this is

that by forming bumpers round the outside of each out-going segments, the

processing is cut by half, yet all the dimensions are checked. To show this,

consider the following shape :-

d

dj

key
d= minimum interlimb

bumper E7 7,11ý

B19

1.9 AREA

This routine checks the area of a shape against a specified minimum area, for

example :-

key

A= Areu

The algorithm is as follows :-

1. Set area violation flag to FALSE.

2. Find next primary shape from shape list : [if finished RETURN]
Set area total to zero

3. Is shape a rectangle ?

YES - goto (4)

NO - goto (6)

4. Check area using the bounding rectangle dimensions

5. Is area greater than limit ?

YES - goto (2)

NO - goto (9)

6. Find next segment from primary shape : [if finished goto (8)]

A 7. Calculate incremental area under segment
Add area to total
goto (6)

8. Is total area greater than limit ?

YES - goto (2)

NO - goto (9)

9. Here for violation
Set area violation flag to TRUE.
RETURN

B20

A point to note about the algorithm is as follows :-

In step (A), we can easily calculate the area under a segment. If a negative

area is attached to out-going segments, and a positive area attached to in-going

segments, then by calculating the area for each segment, and summing it to a

total, the area of the shape can be found. For example :-

+600

+500
+200

-100 -450 -500
'' Reference level

Area= -100 -450 -500 +600 + 500 +200 = 250 units

B21

1.10 UNION

This routine forms a new shape which is the logical OR of the two input

shapes, for example :-

key
The algorithms is as follows :- primary snape

---- ! secondary shape

"-"-" output shape

1. Find next primary shape in shape list : [if finished RETURN)

2. Find next secondary shape in shape list : [if finished goto (1)]

3. Set output shape information to zero

4. Find next primary segment in primary shape : [if finished goto start of
shape]

5. Add primary segment's starting coordinates to the output shape
coordinates.

6. Is the output shape closed ?

YES - goto (10) (output shape now complete)

NO - goto (7) (continue building up shape)

A 7. Does the primary segment intersect any of the secondary segments
travelling out from the primary shape ?

YES - goto (8)

NO - goto (4)

8. Re-define the secondary segment that caused the intersection to now start
at the intersection point.

B 9. Swap the shape information such that the secondary shape now acts as the
primary shape, and vice-versa. Note that the secondary segment re-defined
in step (8) will now become the present primary segment*
goto (5)

10. Store output shape in shape list.
goto (2)

B22

Some points to note about the algorithm are as follows :-

The output shape is built up by following the primary shape in an

anticlockwise direction until an intersection point is found. The routine must

then turn outwards, and follow the secondary shape in an anticlockwise direction

until an intersection point is found. The above process is then repeated until

the output shape is complete.

In step (A), because the routine always turns outwards at an intersection

point, only the secondary segments travelling out from (as opposed to into) the

primary shape need be considered. Not only does this rule half the number of

checks required, but it automatically keeps the routine moving in the correct

direction. Note that the intersection check is carried out in exactly the same

way as detailed in earlier routines.

Once an-intersection point is found, the secondary shape takes over the role

as primary shape and vice-versa. Writing an algorithm to perform this can take

two forms :-

1. Produce a two-stage routine, one for when shape (A) is the primary shape, and

one for when shape (B) is the primary shape. The algorithm then jumps

between stages as the intersection points are encountered.

2. Produce a single-stage routine, but swap the primary and secondary shape

information after each intersection point.

CADIC2 uses the latter approach at step (B), because the single-stage routine

reduces the software required by half, and the construction of the lookup table in

the shape list means that only the two relevant addresses in the lookup table need

to be interchanged to effectively swap the shape information.

B23

1.11 INTERSECTION

This routine performs a logical AND function on the two input shapes to

produce new output shape(s), for example :-
key

ýx
I primary shape

r:::: > ix i ---- secondary shape

Ix "---"- output shape

'B 1" output shape U--. i x=A. 8 starting point
Note that more than one shape may be produced. The algorithm proceeds as

follows :-

1. Find next primary shape in shape list : [if finished RETURN]

2. Find next secondary shape in shape list : [if finished goto (1)]

A 3. Find next starting point of output shape : [if finished goto (2)j

4. Re-define the primary segment to start at intersection point.
Initialise output shape by storing its starting point

5. Find next primary segment in primary shape : [if finished goto start of
shape]

6. Add primary segment's starting coordinates to the output shape coordinates

7. Is the output shape closed ?

YES - goto (11)

NO - goto (8)

B 8. Does primary segment intersect any secondary segments travelling into the
primary shape ?

YES - goto (9)

NO - goto (5)

9. Re-define the secondary segment that caused the intersection point to now
start at the intersection point

C 10. Swap the shape information . Note that the secondary segment re-defined
in step (9) will now become the present primary segment.
goto (6)

11, Store the output shape in the shape list.
goto (3)

B24

Some points to note about the algorithm are as follows :-

In step (A), finding the starting point of the output shape involves finding

the first intersection point that has not already been used to form a previous

output shape. These points are shown in the diagram above.

On finding a starting point, the output shape is built up as follows. The

routine proceeds along the edge of shape (A) in an anticlockwise direction, until

an intersection point is found. The routine then turns inwards, and proceeds

along shape (B) in an anticlockwise direction until an intersection point is

found. The above process is then repeated until the output shape is complete. In

step (B), because the routine always turns inwards at the intersection point, only

secondary segment travelling into (as opposed to segments travelling out from) the

primary shape. need be considered.

At step (C), the routine swaps the shape information for the same reasons

described in the UNION algorithm.

B25

1.12 DIFFERENCE

This routine performs a logical NAND operation on the two input shapes, to

produce the new output shape(s), for example : -
r---i

I-T
4I . x. 1

3ii Ix I

A11.2 Ix i Ix
"J ýB'I

xA. B

key
- primary shape

---- secondary shape

"-"-" output shape

" output starting
points

Note that more than one shape may be produced. The algorithm proceeds as

follows :-

1. Find next primary shape in shape list : [if finished RETURN]

2. Find next secondary shape in shape list : [if finished goto (1))

3. Set 'INC' to clockwise

A 4. Find next starting point of output shape : (if finished goto (2)]
Goto (10)

5. Travelling in the 'INC' direction, find next primary segment in primary
shape : [if finished goto start of shape]

6. Add primary segment's starting coordinates to the output shape coordinates

7. Is the output shape closed ?

YES - goto (12)

NO - goto (8)

B 8. Does primary segment intersect any secondary segments travelling into the
primary shape ?

YES - goto (9)

NO - goto (5)

9. Re-define the secondary segment that caused the intersection point to now
start at the intersection point

C 10. Swap the shape information

11. Reverse the direction of 'INC'.
Goto (6)

12. Store the output shape in the shape list.
Goto (3)

B26

Some points to note are as follows :-

In step (A), finding the starting point of the output shape involves finding

the first intersection point that has not already been used to form a previous

output shape. These points are shown in the diagram above.

On finding a starting point, the output shape is built up as follows. The

routine proceeds along the edge of shape (B) in a clockwise direction until an

intersection point is found. The routine then turns inwards, and proceeds along

shape (A) in an anticlockwise direction until an intersection point is found. The

above process is then repeated until the output shape is complete. Because of

this continual reversal of direction, the secondary segments in step (B) are

processed in the opposite direction to the direction of the primary segment. This

rule automatically ensures that the routine moves in the correct direction.

As described in the INTERSECTION algorithm, because the routine always turns

inwards at an intersection point, only secondary segments travelling into the

primary-shape need be considered.

At step (C), the routine swaps the shape information for the same reasons

described in the, UNION algorithm.

B27

1.13 EXCLUSIVE

This routine performs a logical XOR function on the two input shape to

produce new output shape(s), for example :-

key

!
IX"-

-" primary shape

sea ndary shape
IX

JA "-"-" output shape
'B ' L_J

Note that the

operation. In fact

DIFFERENCE routine tw

I8
L_J

A

1

IX

X. A. B+$. A

EXCLUSIVE operation is very similar to the DIFFERENCE

all the output shapes can easily be produced by using the

ice with shapes (A) and (B) defined as below :-

ii

ix Ix

x= 8. A

ix

I>
ix i

i ix i

x=8. A

B28

key

primary shape

- -- secondary shape

"-"-" output shape

PUBLICATIONS

1. Swan GB
"Computer Aids for the Design"of Large Scale Integrated Circuits"
Published in Royal Television Society Journal May 1982

2. Swan G B, and Eades JD
"CADIC : An efficient integrated circuit design aid"
Accepted for CAD84 conference, Brighton March 1984

R Ih t': apxr - John Luge Baird Travelling Scholarship

Computer aids for
the design of large scale
integrated circuits

George B Swan

Robert Gordon's Institute of
Technology, Aberdeen

A report on the 1981 Royal Television Society/John Logie Baird
Travelling Scholarship (sponsored by Radio Rentals Ltd;

Introduction
The economics of IC (integrated circuit)
technology advocate the use of high den-
sity circuitry. As a result, In the past, IC
density has been doubling every two years.
Having to repeat the very expensive mask
making and fabrication process because
the circuit contained errors is obviously
unwanted, but increasing the density does
increase this possibility. Stringent tests
must therefore be carried out on the mask
layouts (which are used to control the
fabrication process) to ensure that the
correct circuit will be produced.

Present day VLSI (Very Large Scale
Integration) can now produce silicon chips
containing up to 450,000 gates. Even for
an average sized layout, a computer may
require several hours to complete just the
design rule checks (see later). Computer
time is not cheap, for example a single
run of a design rule checker will typically
cost £10,000 to £25,000. The use of such
programs must therefore be kept to a
minimum.

This article is split into three main
sections. Firstly there is a brief description
of how a silicon chip is formed, and so
hopefully help the reader understand why
design rule checks are required. This leads
on a summary of some existing computer
techniques for the design and checking
IC's. Lastly there is a description of the
approach taken at Robert Gordon's Insti-
tute of Technology, Aberdeen, plus a
comparison against other techniques.

John Logic Baird Travelling Scholarship
The Scholarship allowed me to travel to
the University of Arizona, which aided
my research in two ways. Firstly. the
excellent on-campus facilities for IC fabri-
cation allowed me to obtain hands-on
experience in IC design and production.
Secondly, I was able to carry out a detailed
survey of ICMASK, the computer design
aid used at the University.

The Scholarship also allowed me to
travel to California and visit other Univer-
sities, and IC companies in the Silicon
Valley region. These visits involved dem.
onstrations of popular design aids, talks
to the authors, plus discussions with the
users.

The first stage of my research project
involves a critique of existing computer
design aids for which the John Logie Baird
Travelling Scholarship has proved invalu-
able. Exposure to other design aids has

made me more aware of desirable features,
which will undoubtably improve the
quality of all future work.

IC Fabrication
Integrated circuit fabrication allows
hundreds of identical circuits to be pro-
duced simultaneously on a single wafer of
silicon. By adding various chemical
elements to predefined areas on the wafer
(called doping the silicon), it is possible
to make transistors, diodes, resistors, and
capacitors which form the circuit.

Prior to circuit fabrication, the designer
must produce photographic masks for
each stage of the process (up to 30 masks
may be required). A mask consists of
patterns of transparent and opaque areas,
which will ultimately define which areas
of the wafer will be doped, and which
areas will not.

The first step in the fabrication process
is to protect the silicon by growing a thin
layer of silicon oxide over the surface of
the wafer. Next, a layer of photographi-
cally active material (photo-resist) Is spread
over the oxide, and the mask plate laid on
the photo-resist. This sandwich is then
exposed to a strong source of ultra-violet
light. The radiation causes molecular
change in the exposed photo-resist, allow-
ing the unexposed photo-resist to be
washed away easily.

Acid is then used to remove the unpro-
tected oxide, leaving the bare silicon once
again (termed etching). Note that the
photo-resist and silicon are unaffected by
the acid. Now the pattern on the mask
has been directly transferred on to the
silicon.

If the wafer is then placed into a tem-
perature controlled furnace, and fed with
for example, Boron gas, the exposed areas
of silicon will start to absorb the Boron
molecules. Controlling the density of the
gas, and the temperature of the furnace,
allows very accurate levels of doping to
be achieved.

The above process is now repeated
using different masks and different chemi-
cal elements to produce the individual
components. By depositing metal over
the entire wafer, and then selectively
etching, the components can be connected
to form the complete circuit.

The problem with the fabrication
process is that in practice, the elements
are absorbed into the silicon as fast trans-
versely (along the wafer) as they are

R1S Paper John Logic Baird Travelling Scholarship

longitudinally (through the wafer). This
means that the previously well defined
doped areas now contain curved 'walls'
which travel underneath the oxide pro-
tection layer.

Should two areas be too close together,
they may be seen to be separate on the
mask, but in fact be joined together in
the silicon, so leading to circuit failure.
The designer must therefore produce the
mask with regard to a set of design rules.

In the geometric sense, these rules set
a minimum spacing between areas on any
one mask, minimum spacing between
areas on different masks, the amount of
overlap required to ensure connectivity
between areas, and so on.

Present Design Aids
As a result of being awarded the John
Logie Baird Scholarship, a survey of exist-
ing computer design aids was carried out.
These aids ranged from fully automatic
programs, to digitizing a layout drawn
out by hand. For low-volume custom
designed chips, the automatic approach is
ideal, since the designer simply chooses
modules or cells from a standard library,
and specifies which cells are connected to
which. The program then places all the
cells and routes the tracks to the best of
its ability.

When first introduced, this approach
was considered to be the answer to all the
designer's problems. Unfortunately, due
to the computer's implicit inability to
recognize shapes, and lack of ingenuity,
the layoutt computed (even after using
substantial amounts of computer time)
consume more silicon area than necessary,
and problems in trying to route all the
wires are often encountered.

It was soon realized that some human
intervention must be included. This led to
several approaches in which the designer
uses his intelligence to do the design, and
leaves the computer to handle all the cal-
culations and tedious work.

One of the offshoots from this Ideol-
ogy was the symbolic approach, in which
the geometric definitions are represented

i as lines and/or boxes. Stick diagrams as
they are known have attracted much
attention recently, as the simplified
diagrams help ease the designer's job.
Routines exist to compact these diagrams,
and convert them into geometric layouts,
but even the best routines have difficulty
when processing large layouts. The result-

ing non-efficient use of silicon area is
undesirable, therefore many companies
are returning to the geometric approach,
to achieve the required density.

At the geometric design level, the
designer is manipulating the actual shapes
that will apear in the mask layout. The
design time is longer, but very compact
layouts are possible, which is a necessary
stipulation if large-volume production of
the circuit is required.

With any design technique, which
involves human intervention, the complete
layout must be checked using a set of
design rules. In general, the design rule
checking of a layout is done off-line ie as
a separate process. Therefore the designer
generates the layout, which is passed to
the design rule checker, along with a set
of design rules. The checker prints out a
list of all the violations, and the designer
then returns to the design stage and
modifies the layout. Correction of one
error may require the repositioning of
part of the layout, which could introduce
new errors. Therefore in practice, this
two-stage cycle must be repeated about
three to four times before an acceptable
layout is achieved.

It would obviously be much better if
the design rule checks could be carried
out as the shapes were being added (ie on.
line) so that any violations could immedi-
ately be spotted. The problem that has
stopped this approach being carried out
before is how to complete the checks fast
enough, because a user who has to wait
for each shape to be accepted will soon
become discontented, and hence prone to
even more mistakes.

The approach taken at Robert Gordon's
Institute of Technology
The aim of research at Robert Gordon's
Institute of Technology is to produce a
program which provides the user with a
full range of facilities to build up and/or
modify a mask layout, at the geometric
level. Through using a novel data-structure,
the designer will have a set of predefined
design rule checks carried out for each
shape added, within the time it takes him
to think of his next action.

To tackle the problem of storing the
huge amount of data produced in design-
ing a layout, consider the layout as a
collection of much smaller areas. All the
information in the data structure is con-
nected by a system of pointers, so by

knowing the area a shape is in, and the
mask it has been assigned to, the shape
co-ordinates can be found very quickly.

Area assignment for shapes which lie
in more than one area is treated using a
new approach. This should drastically
cut the number of shapes that must be
checked against each other, when carrying
out the design rule checks. With such a
data-structure, it is hoped to be able to
carry out design rule checks two to four
times faster than the most efficient tech.
niques around.

At present, the graphics package
required to design the layouts has been
completed. Through the use of simple
commands, the designer can add/modify
shapes, move them about, or delete them.
Should a collection of shapes be repeated
often in the layout, there exist facilities
to define the collection as a group defi-
nition. Instances of this group can then
be added to the layout again through the
use of a simple command. All these com-
mands plus many more take the burden
off the designer, and leave him to do what
he can do best - defining shapes and fit-
ting them together.

Future work will involve adding on-line
design rule checking to the existing pack.
age. Some time will also be spent carrying
out tests so that computer time and
memory requirements will be minimised.

Acknowledgements
I would like to thank Radio Rentals for
providing the lohn Logie Baird Travelling
Scholarship. I am also indebted to the
Royal Television Society for handling all
the arrangements.

CADIC : AN EFFICIENT INTEGRATED CIRCUIT DESIGN AID

G. B. Swan and J. D. Eades

Robert Gordon's Institute of Technology, Aberdeen

The CADIC suite of programs to aid integrated circuit
design is presented. The most important features of
this design aid are high efficiency in data-processing,
and on-line design rule checking. CADIC can therefore
substantially reduce the design turnaround time
normally associated with manual design aids.

Hardware and software details will be given. Emphasis
however, is placed on how CADIC's main features were
obtained. Experimental results highlighting the
performance of CADIC are also presented.

Key-words : integrated circuit design, high efficiency,
on-line design rule checking, research in progress

INTRODUCTION

The CADIC (Computer Aided Design of Integrated Circuits) suite of
programs allöws the user to design manually integrated circuits. This
was one of the first types of design aid available, yet it is still
capable of producing the most compact layouts. The design turn-around
time associated with manual design aids is comparatively long,
therefore new-techniques to reduce this time are required.

Integrated circuit layouts must be designed with respect to a set of
design rules, so that tolerance errors in the fabrication process do
not affect the final circuit. In general, layouts are checked after
the layout has been designed (i. e. off-line). The combinatorial
explosion caused by checking all the shapes against one another means
that these design rule checks are very expensive 'to carry out. Once
complete, the layout must be edited to correct the errors, then
re-checked. Typically this design-check cycle is repeated three or
four times before an acceptable layout is acheived.

Checking the layout as it is being designed (i. e. on-line) would be
much cheaper, since a new shape need only be checked against existing
shapes. In addition, the layout is correct at all times, therefore
doing away with re-runs of the checker. Ideally, the design rule
checks should be performed within the time it takes the designer to
start adding the next shape. Previous attempts at on-line design rule
checking have never achieved this, unless limited to very simple
checks (1,2).

This paper describes new techniques to increase program efficiency,
such that complete on-line design rule checking can be incorporated
into CADIC as a design option.

HARDWARE

A photograph of the SIGMA 5000 'intelligent' workstation used by CADIC
is shown in Figure 1. The microprocessor-based GOC (Graphic Option
Controller) forms the basis of the system, by monitoring all the data
sent to and from the host computer (DEC 2050). Data received from the
host is dealt with in one of two ways. Alphanumeric data is routed to
the alphanumeric monitor, whereas graphic data is mapped into the
GOC's pixel store (4 x 512 x 512 bits), to be displayed on the high
quality colour raster-scan monitor.

Similarly, the GOC receives alphanumeric and/or graphic data from the
downstream monitors, and sends this data to the host. In this way,
each monitor appears to be directly connected to the host, and thus
can operate independently of each other.

The SIGMA does have the disadvantage of having only four bit planes to
store graphic data. CADIC is therefore restricted to plotting out a
maximum of four masks at any one time [3]. However, more modern
hardware is now available which would overcome this problem.

SOFTWARE

The CADIC suite consists of four programs :-

1. MANCAD - Manual input language compiler
2. CADIC1 - Interactive design aid
3. DRCCAD - Design rule language compiler
4. CADIC2 - On-line design rule checker

MANCAD, CADICI, and'DRCCAD operate as independent programs. However,
MANCAD and CADIC] must include CADIC2 in the link-list if design rule
checking is required.

The CADIC software' is written entirely in FORTRAN, except for two
machine code routines which handle disc I/O operations.

Because the host computer is time-shared, it was decided to limit the
amount of data in memory in the hope that the computer's operating
system would favour CADIC. For this reason, CADIC keeps only six pages
of disc-based data in memory at any one time, and uses a paging
routine implicit in the disc I/O routines to swap data in and out of
the memory as required.

Each program in the CADIC suite will now be discussed in more detail.

(a) MANCAD

MANCAD (MANual Computer Aided Design) accepts a manual description of
an integrated circuit layout, - and converts this description into a
data structure readable by CADIC. Note that the data structure may
already exist, in which case the new shapes are added to the existing
layout.

This type of program is very useful when the SIGMA workstation is not
readily available. Layouts, or sections of layouts can be 'coded-up'
on paper, then quickly entered into MANCAD using a standard
alphanumeric terminal. The workstation is therefore only required to
view and/or edit the final artwork.

By on-line design rule checking each shape as it is compiled, MANCAD
ensures that all sections of layout added to the data structure will
satisfy the predefined set of design rules, just as if the shapes had
been added interactively using CADIC1.

(b) CADIC1

CADICI is an interactive design aid which allows the user to design
integrated circuit layouts at the geometric level. CADICI provides
around 50 commands, all of which are easy to use and easy to remember.

The most important feature of CADIC1 is its high efficiency in
processing the disc-based layout data. This was made possible by using
two new techniques :-

1. Area segmentation
2. Organised group processing

The first technique requires a new form of data structure to store the
layout information. CADIC1 considers the layout as divided up into a
series of areas, and associates each shape with an area. Shapes which
enter two or` more areas are 'polygon clipped' into sub=shapes, such
that each sub-shape is associated with only one area. For an example
of a 'polygon clipped' shape, see Figure 2.

Therefore if the designer wants to plot out a small section of the
layout, CADIC1 need only consider the shapes associated with the areas
inside the plotting window. By tracing through a system of pointers in
the data structure, CADIC1 can quickly find all the shapes associated
with a particular area. This high degree of selection greatly reduces
redundant searching, which increases program efficiency.

The second technique involves considering the. layout group hierarchy
in a more global nature, in an attempt to fully utilize the group
information while it is in computer memory.

If a layout is to be plotted out, all the shapes in the layout are
plotted, then information about the group instances called from the
layout are stored in a temporary file. Note that the group instances
are not plotted out at this stage. CADIC1 then goes to the top of the
temporary file, identifies the first group instance, then brings the
related group definition into memory. All the shapes within the group
definition are then plotted out, and any group instances called from
the group definition are added to the temporary file.

The temporary file is then searched to see if any other instances of
the group definition (presently in memory) exist. If yes, then it is
plotted out, and all the group instances added to the file. If no,
then CADICI goes to the top of the file, and identifies a new group
instance. The above process is then repeated until all group instances
in the file are plotted out. In this way, much less page swapping is
required, and so program efficiency is improved.

To find out just how efficient CADIC1 is in practice, it was compared
against GAELIC [4], a commercially available design aid, known to be
efficient. Both design aids were given the same layout to plot out,
and results showing the CPU times for each design aid, at variety of
window sizes is shown in Figure 3.

Two points are worth noting :-

1. At large window sizes, CADIC1 is less efficient than GAELIC.
This is to be expected since CADICI carries more overheads in
sustaining area segmentation and organised group processing.

2. As the window size (and therefore the percentage of the
layout actually required) decreases, so CADIC1 improves its
performance over GAELIC. Note that for the size of layout
used in the test, most of the design work would be carried
out at 15% full layout and smaller, so that the layout could
be seen in enough detail. In this situation, CADIC1 is much
more efficient than GAELIC.

(C) DRCCAD

DRCCAD (Design Rule Compiler for Computer Aided Design) accepts a
description of the design rules required, and converts this
description into a data structure readable by CADIC2.

Note that CADIC2 is simply a library of design rule routines. All the
information about the design tolerances and how CADIC2 should carry
out the. checks is stored in this design rule data structure. Therefore
after compilation, DRCCAD re-arranges the information in the data
structure, so that CADIC2 will have to perform the minimum amount of
work to design rule check a newly added shape.

(d) CADIC2

Whenever a shape or group call is added to the layout, it is CADIC2's
function to design rule check the shape(s) against the existing
layout, within the time it takes the designer to think of his next
action. Three main factors have made this possible :-

1., The design rule data structure always ensures that CADIC2
performs the minimum number of operations.

2. The layout data structure is very efficient in finding
information about shapes local to the newly added shape.

3. Each routine in CADIC2 has been optimised such that the CPU
time required to complete the relevant operation is kept to a
minimum.

To test CADIC2, a layout containing around 2000 shapes was designed,
and the time taken to design rule check each shape was recorded. Note
that a full set of design rules was applied. Too many factors affect
the design rule checking time to be able to give an accurate
prediction of how long any particular shape will take to be checked,
therefore it is better to consider the performance of CADIC2 in a more
global nature.

Consider figure 4 which plots out the performance of CADIC2 as the
above mentioned circuit is created. There are two points to note :-

1. The time taken by CADIC2 to design rule check a shape
increases linearly with the size of the layout. This is a
vast improvement over existing off-lige design rule checkers,
which usually experience parabolic (n) performance

2. As can be seen by the graph, CADIC2 seldom required more than
0.5 CPU seconds per shape to complete the checks. More
typically, CADIC2 required only around 0.2 CPU seconds per
shape. Therefore, CADIC2 can perform on-line design rule
checking well within the time it takes the user to start
adding a new shape.

Future tests with CADIC2 will involve much larger circuits, but it is
expected that the time to design rule check a newly added shape/group
call will rise only slightly above the previously mentioned results.
This is largely due to the fact that by using area segmentation in the
layout data structure, only the shapes in the present area need be
considered, regardless of how many other areas have previously been
filled.

CONCLUSION

The CADIC suite of programs to aid integrated circuit design has been
presented. The most important features of CADIC are high efficiency,
and on-line design rule checking.

Logistics, backed up with experimental results are also presented,
confirming two points :-

1. CADIC is very efficient at data processing, especially when
small sections of layout are considered.

2. CADIC can perform complete on-line design rule checking
within the time it takes the designer to start adding the
next shape.

Future work will involve continual assessment of CADIC's efficiency,
plus application of on-line design rule checking to much larger
circuits.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the support of the Science and
Engineering Research Council in this work. In addition, the assistance
of Mr. B. Davidson, RGIT in the preparation of the diagrams is
acknowledged.

0

REFERENCES

1. Carmody P, Barone A, Morrell J, Weiner A, and Hennesy J

"An intractive graphics system for custom design"
17th Design Automation Conference 1980 pp 430 - 439

2. Smith T F, and Woods BJ
"Poligon - An interactive graphics design tool"
Computer Aided Design conference 1980 pp 31 - 37

3. Eades JD
"The use of color graphics in integrated circuit layout design"
European conf. on Electronic design automation 1981 pp 98 - 101

4. Eades JD
"The design of an interactive computer system
for microelectronic mask making"
Ph D Thesis 1976

i

Figure 1 The SIGMA Work Station

a

ý-

ä

q-
-"

20 b "A 9p ': A
-Cvmlcq! 01 Cp 1Y pý01'M

Figure 3 CADIC1 V GAELIC

`ý

tight segments

------ dark segments

Figure 2 Polygon Clipping

-,: -

-e

u..
O

shares mdod b tnyoui

L

Figure 4 Performance of C41DIC2

C°
:_

	G B Swan thesis coversheet
	G B Swan thesis

