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Abstract 

Software implementation of block-based video coding standards has been used in a wide 
range of applications. In many cases, such as real-time multimedia systems or power- 

constrained systems, the coding performance of software-only video encoders and 
decoders is limited by computational complexity. This thesis presents research work to 

develop techniques to manage computational complexity of video encoders. These 

techniques aim to provide significant complexity saving as well as adaptively controlling 
the computational complexity. 

This thesis first investigates experimentally the most computationally intensive functions 
in a video encoder. Based on the results of profile tests, several functions are selected as 

candidates, on which complexity reduction algorithms will be performed. These functions 
include discrete cosine transform and related functions as well as motion estimation. 

Adaptive complexity-reduction algorithms are proposed for computationally expensive 
functions: discrete cosine transform and motion estimation functions respectively. It is 

shown that these algorithms can flexibly control the computational complexity of each 
function with negligible loss of video quality. 

The inherent characteristics of coded macroblocks are investigated through experimental 

tests and they are categorized into "skipped" and "unskipped7 macroblocks based on two 

parameters. An innovative algorithm is developed to reduce the computational 
complexity by predicting "skipped" macroblock prior to encoding and not carrying out 
the coding process on these macroblocks. 

The approaches described in this thesis can not only achieve adaptive control of the 

computational complexity of a video encoder, but also can manage the trade-off between 

complexity and distortion. 

These proposed algorithms are evaluated in terms of complexity reduction performance, 
rate-distortion performance and subjective and objective visual quality by experimental 
testing. The advantages and disadvantages of each algorithm are discussed. 
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Chapter 1 Introduction 

1.1 Statement of the problem 

In the past decade, there has been an explosive growth in the field of multimedia 

communications, where digital video plays an important role. The advance in digitising 

visual information has led to the rapid development of multimedia technology and 

applications due to the compatibility of digital video with other types of information such 

as text or voice. Digital video contains huge amount of data, and despite the increases in 

processor speed and disc storage capacity, it is still necessary to represent it in a more 

concise format. The emergence of video compression techniques addresses this problem, 

making it feasible to store high quality video on a limited-storage disc or transmit it 

within the limited-bandwidth that today's network can provide. It also drives the 

development of many widely used applications, such as video conferencing, Digital 

Versatile Disc (DVD), High Definition Television (HDTV) and so on. 

The compression of digital video is accomplished by a video CODEC (Section 2.2), 

consisting of an encoder that compresses the original video signal and a decoder that 

reconstructs the original video based on the coded video sequence. Formerly, for the real- 
time video application, video CODECs were implemented in specially designed hardware 

because coding and decoding is an extremely computationally complex process (requiring 

a large amount of calculations), and only dedicated hardware was capable of dealing with 
it. With the continuous improvement in processor performance, software-only 
implemented video CODECs running on a general-purpose processors, embedded 
processors and Digital Signal Processors (DSP) became feasible. It can provide 
acceptable performance with benefits in terms of cost, flexibility and availability. 
Consequently, it is now widely used in video applications, such as video conferencing, 
video telephony, video streaming and mobile video phones. 

The performance of a software-only video CODEC may be limited by the amount of 

processing power available as well as, or rather than, the available transmission 
bandwidth. This is particularly true in a real-time video communication system and/or 

power-constrained system. In a desktop video conferencing system, the CODEC runs on 

a general-purpose PC and has to share processing resources with other applications. In a 
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mobile video handset, power consumption is closely related to processor utilisation and it 

may be necessary to restrict computational processing in order to maximise battery life 

[1]. Current software video applications typically control processor utilisation by 

dropping frames during encoding, leading to intermittent and "jerky" motion in the 

decoded video sequence. Computational complexity of video CODECs becomes a major 

constraint on the coding performance and it is therefore important to develop methods of 

managing the computational complexity of video CODECs. 

In the literature, the existing contributions of reducing the computational complexity of 

software video CODEC focus on speeding up specified operations during encoding or 
decoding, such as fast algorithms for computationally expensive ftinctions (especially 

motion estimation, Discrete Cosine Transform (DCT) or Inverse Discrete Cosine 

Transform (IDCT)). The computation reduction by this type of algorithm can vary 

significantly depending on the scene content of the video sequence. The amount of 

complexity reduction and its influence on video quality and bitrate is difficult to predict. 

The aim of this work is to flexibly manage the computational complexity of a video 
encoder and control the tradeoffs between the complexity and rate-distortion 
performance. In contrast to conventional solutions, the approaches proposed in this thesis 

are designed to provide comprehensive and predictable control of the computational 
complexity of video encoder rather than simply decreasing it. Given a target complexity, 
the video quality and rate distortion performance will be optimised within this 

computation limit. These approaches aim to provide nearly the same subjective video 
quality as the encoders without complexity reduction. This is based on a fact that a small 
loss in video quality caused by reduction of computational complexity may not be 

perceived by audiences due to the idiosyncrasy of the human visual system. 

By developing complexity management techniques to decrease and control the 

computational complexity, the coding performance of software-only video encoders will 
be improved, resulting in good perceived video quality in real-time multimedia systems 
and prolonging the battery life in mobile video devices while maintaining the same video 

quality. 
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1.2 Objectives 

In order to fulfil the aim of this work, the first step that needs to be performed is 

examining and analysing the computational cost of each operation involved in the 

encoding process. Based on these investigations, techniques are proposed to reduce and 

manage the most computationally complex functions, including DCT and related 
functions as well as the motion estimation ftinction. 

The first innovatory approach to the complexity problem is developed for the DCT 

function. The objective is to achieve near-constant complexity reduction of the DCT 

function throughout the entire video sequence at the expense of a controlled loss in video 

quality. This approach should also be applied to other related functions of DCT, including 

IDCT, quantisation and inverse quantisation. 

The method for controlling motion estimation complexity has a similar objective to that 

for the DCT function: reducing computational complexity to a target and maintaining it at 

this level with negligible loss of video quality. The origin of this method starts from the 

investigation of a fast motion estimation algorithm. 

Under the motivation of providing'a comprehensive and more significant computation 

reduction in the encoder, the objective is to investigate approaches that can decrease and 

control the complexity of the entire coding process. This method should be able to 

achieve the best rate-distortion performance within the complexity limit. 

The objectives of this work are fulfilled by developing novel approaches, which are 
implemented and evaluated through simulation. The strengths and weaknesses of them 

are also discussed based on the experimental results. 

1.3 Organization of the thesis 

The organization of this thesis is as follows: 

Chapter 2 presents a comprehensive description of the block-based video coding 
technologies and most popular video coding standards. It starts with a brief introduction 

to the fundamental terms used in block-based video coding, then it concentrates on the 

main operations and techniques employed during encoding. The video coding standards 
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(H263 and H. 263+), on which the video CODECs used in the experimental work in this 

thesis are based, are introduced. The concepts of complexity, bitrate and distortion are 
introduced and the complexity problem is discussed. 

Chapter 3 describes the test environment for the simulation, including equipment, 
CODECs and testing sequences. The video quality assessment approaches to evaluate the 

quality of decoded video sequences and the methods used to measure the computational 
complexity are also introduced. 

The development of innovative approaches and algorithms to solve the computational 
complexity problems are presented in Chapter 4- Chapter 7. 

Chapter 4 analyses the computational complexity of each function in the video encoder 

and finds out the most complex functions, which will be investigated in subsequent few 

chapters in this thesis. It also illustrates the rate-distortion performance and complexity- 
distortion performance of example CODECs. 

In Chapter 5, the development of an approach used to manage the computational 

complexity of DCT and related functions are described. An adaptive algorithm that 

consists of a basic method for reducing computations and a feed-back mechanism is 

proposed to achieve the objective of DCT complexity control that is described in Section 

1.2. 

Chapter 6 investigates a new method to control the computation of motion estimation in a 

video encoder. This method is based on a fast motion search algorithm and it can 
maintain the computational complexity at scalable target levels by controlling the motion 
estimation search pattern. 

Typically, many macroblocks; are skipped during encoding of block-based video CODEC, 

particularly at low bitrates. Chapter 7 describes an algorithm that predicts the occurrence 
of skipped macroblocks prior to encoding, making it possible to save significant 
computational effort by not coding these macroblocks. 

A summary of experimental results of the proposed approaches from Chapter 4- Chapter 
7 and the main contributions of this work are discussed and evaluated in Chapter 8. 
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Possible extensions and new directions of this research work are also indicated. Finally, 

Chapter 9 concludes this thesis. 

1.4 Original contributions 

This work addresses the computational complexity problem of software-only video 

encoders. Several approaches are developed for different computationally expensive 
functions in a video encoder, resulting in significant reduction and flexible control of 

computation costs. The original contributions to the body of knowledge in video coding 

are listed below. 

Analysing computational complexity of the entire coding process of a video 

encoder. 

Proposing the concept of controlling the computational complexity, i. e. keeping 

constant and stable complexity in an encoder. 

* Investigation of methods to predict end of block by modelling DCT coefficients. 

Development of an adaptive algorithm for controlling DCT complexity, 

achieving constant complexity target. 

Investigation of a complexity-reduction approach for motion estimation, 
maintaining complexity at the pre-determined target. 

Examination of characteristics of macroblocks and development of a method to 

classify macroblocks into various types. 

Invention of a macroblock classification approach to save significant 
computational cost with improved accuracy. 
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Chapter 2 Block-based video coding 
fundamentals 

2.1 Background 

Digital video has taken the place of traditional analogue video in a wide range of 

applications due to its compatibility with other types of data (such as voice and text). 

However, at the same time, the high bitrate required to represent digital video 
dramatically increases the burden on storage space, processing ability and transmission 

bandwidth. For example, using a video format of 352x240 pixels with 3 bytes of colour 
data per pixel, playing at 30 frames per second, 7.6 Megabytes of disc space is needed for 

one second of video and it is only feasible to store around 10 minutes of video in a 4.6 

Gigabytes DVD. When it is transmitted in real time through the internet, it requires a 

channel with 60.8 mbps, which is 118 times of the bandwidth (500 kbps) of Asymmetric 

Digital Subscriber Line (ADSL) for current broadband internet service. Even if high 

bandwidth technology is able to provide sufficient transmission speed and the storage 

problems of digital video are overcome, the processing power needed to handle such 

massive amounts of data would make video processing hardware very expensive. 
Although significant progress in storage, transmission and processing technology is being 

made, it is primarily compression technology that has made the widespread use of digital 

video possible. 

Generally speaking, there is a large amount of statistical and subjective redundancy in 

digital video sequences. Video compression techniques are designed to reduce the size of 
information for storage and transmission. Through exploiting both statistical and 

subjective redundancy, a compact representation of video data is achieved and important 

information is kept. The performance of compression depends not only on the amount of 

redundancy in the video sequence but also on compression techniques used for coding. 
There are two classes of techniques for image and video compression: lossless coding and 
lossy coding. Lossless coding techniques compress the image and video data without any 
loss of information and the compressed data can be decoded exactly the same as original 
data; however, these techniques obtain a very low compression ratio and result in large 

files. Consequently, they are appropriate for applications requiring no loss introduced by 

compression, for example, medical image storage. On the other hand, lossy coding 
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methods sacrifice some image and video quality to achieve a significant decrease in file 

size and a high compression ratio. Lossy coding techniques are widely used in digital 

image and video applications due to the high compression ratio provided. 

The growing interest in digital image and video applications has led academics and 
industry to work together to standardize compression techniques in order to meet the 

requirement of various applications. Several series of standards have been successfully 
developed by two organizations: International Organisation of Standardization, 

International Electrotechnical Commission (ISO/IEC) and the International 

Telecommunications Union, Telecommunications Standardization Sector (ITU-T). These 

standards address a wide range of video applications in terms of bitrate, image quality, 

complexity and so on. In the following section, the fundamental video coding techniques 

and popularly used compression standards are introduced. 

2.2 Block-based video coding 

Most of the popular video coding standards utilize block-based video coding techniques, 

the basic terminology and abbreviations of which are listed below: 

Luma: a sample or array representing a video luminance signal, often 

symbolized as Y. 

Chroma: a sample or array representing a blue or red video colour difference 

signal, often symbolized as Cband C,. 

* Pixel: A colour element at one position in a displayed image. 

9 Sample: A luma or chroma component at one position in a video frame. 

Block: An MxN matrix of samples or transform coefficients. M is the number of 

columns and N is the number of rows. In this thesis, a block is defined as P8 

samples or transforms coefficients (unless otherwise stated). 

Macroblock (MB): 16x 16 luma. samples (Y) and associated chroma, samples (Cb 

and Q. In this thesis, the chroma components of a macroblock are assumed to 

each consist of W samples (unless otherwise stated). 
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Frame: A set of samples representing a single time instant of a progressive video 

signal. A video frame consists of one array of luma. samples and two arrays of 

chroma samples. 

0 Picture: In this thesis, a picture is defined as a coded video frame. 

Discrete Cosine Transform (DCT): A transform converting a set of samples 
from spatial domain to frequency domain. 

Motion estimation: The process of finding a match in one or more reference 
frame(s) for a macroblock in a video frame. 

Motion compensation: Computing the difference between a macroblock and a 

matching area in one or more reference frame(s). 

Motion vector (MV): The offset between a macroblock and a matching area in a 

reference frame. 

Quantisation: Mapping a signal with N possible values to a signal with M 

possible values, where M: 5 N. 

Entropy coding: The process of representing data symbols (e. g. transform 

coefficients, motion vectors) in a compressed form. 

Encoder: Compresses a series of video frames into a concise representation 
("coded video") before transmission and/or storage. 

Decoder: Decompresses coded video prior to display and/or storage. 

9 CODEC: An abbreviation of video encoder and decoder. 

Within an image or a single frame of a video, there are usually similarities between 

neighbouring pixels, referred to as spatial redundancy. The compression of a single frame 

is accomplished by replacing the same image information with a smaller-size 

representation. Many techniques have been developed to allow the replacement of whole 

segments of an image with a set of data representing the image in a transformed state, 

among which, the Discrete Cosine Transform (DCT) is widely used in block-based 

coding. The DCT transform is commonly applied to an 8x8 block. 
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The movement and detail in a video scene tends to vary gradually, and thus adjacent 

video frames are often similar. This is temporal redundancy. if an area of a frame is 

compared with a previous frame, it is possible that an identical or similar area can be 

found. Temporal redundancy is reduced by replacing the area with a corresponding area 

derived from one or more reference frames. The basic area for comparison and 

replacement is typically a macroblock in block-based coding. If the replacement is not 

exact, DCT-based coding can be performed to further reduce the spatial redundancy. 

The block-based video coding technique can achieve a good compression ratio while it is 

also computationally efficient, which has led to its wide-spread use in many coding 

standards, such as H. 263 [2], MPEG-2 [3] and MPEG-4 [4]. 

2.3 Video coding techniques 

2.3.1 Motion estimation and compensation 
A video sequence typically contains temporal redundancy: that is two successive pictures 

are often very similar except for changes induced by object movement, illumination, 

camera movement and so on. Motion estimation and compensation is used to reduce this 

type of redundancy in moving pictures. The Block-Matching Algorithm (BMA) for 

motion estimation has been proved to be very efficient in terms of quality and bit rate; 
therefore it has been adopted by many standards based CODECs. In this section, the basic 

principle of block matching motion estimation and compensation is introduced and fast 

motion search algorithms are addressed. 

Principle of block matching motion estimation and compensation 

In block matching motion estimation, a single image is subdivided into non-overlapping 
NxN blocks, where N is usually 16 or 8. Each block in the current frame is compared 

with blocks of the same size in reference pictures in order to find out the best match, 

which meets an error criterion based on the measurement. The location of the block is 

defined by co-ordinates (xy) of top-left comer of the block. The vector pointing from the 

current block to the best match block is chosen as Motion Vector (MV). The residual 
"difference" between current and reference frames is computed by the process of motion 

compensation, and then coded and transmitted with motion vectors. 
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Two error measurements are commonly used for block matching criteria: Sum of Squared 

Error (SSE) [5] and Sum of Absolute Difference (SAD)[6], which are described in 

Equation 2-1 and Equation 2-2 respectively. 

N-1 

SSE(d, d., ) =1 (f (x, y) - f, (x + d, y+ dy»' 
X, Y--0 

Equation 2-1 

N-1 

SAD(d. � dy) =1 lf, (x, y) - f, (x + dx, y+ dy)1 
x, y--0 

Equation 2-2 

fjx, y) is luminance pixel value of NxN block in current frame and 

f, (x+d,,, y+dy) is the block in the position of (d,, dy)in reference frame. For a block 

size of 16xl6, SSE requires 16xl6=256 multiplications and 2xl6xl6=512 additions, 
whereas, SAD only need 2xl6xl6=512 additions. Compared with SSE, SAD is much 
less computationally demanding and is consequently more widely utilized. 

Mv 
Search window in 

(X, y reference frame (fr) 

(X, Y) N 

Block in current 
frame (fc) 

Figure 2-1 Example of block matching motion algorithm 
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Figure 2-1 illustrates the process of block-based motion search. An NxN block in the 

current frame (Q located by the co-ordinates (x, y) is compared with a same-size block in 

the search range of reference frame (f, ). SAD is computed for each search and the best 

motion vector is the one with the minimum SAD. 

Searchin2 al2orithms for block matching 

Full search algorithm ---- The most straightforward search method for block matching is 

Full Search Algorithm (FSA), which examines exhaustively all positions in the search 

area. The motion vector which predicts the best matching block can be definitely found, 

so FSA can be considered as an optimal solution to motion estimation. However, if the 

search range in either direction is w with step size of I pixel and assume the search range 
is square, there are in total (2wH)'times of displacement in order to find a motion vector 
for each block, requiring a large amount of computations, especially for a large search 

window. The high computational requirements of FSA make it unacceptable for real-time 

software-implemented video applications. 

In order to solve the computation problem of FSA, many fast algorithms have been 

proposed to decrease the computational complexity of motion estimation by reducing the 

number of candidates for motion searching, such as three-step search [6], two- 
dimensional logarithmic search [7], cross-search [8], diamond search [9] and so on. The 

difference between these fast algorithms is the way they skip those candidates that are 

unlikely to have minimum error. Moreover, there are some proposed algorithms which 

vary the number of pixels calculated for error measure, known as sub-sampling [10] and 

normalized partial distortion search algorithm [I I]. 

Two-dimension logarithmic search (TDL) ---- The TDL search is the first fast block 

match algorithm [7], illustrated in Figure 2-2. The search typically starts from the 
location corresponding to zero displacement, which has the same co-ordinates as current 
block (x, y). At each step, four locations in a "+" shape are examined as well as the 

central point and the location with smallest SAD is chosen as the centre of the next search. 
The radius of "+", called search step size (S), is reduced by this equation (S=S/2) for the 

next step if the best match is the central point. Otherwise, the step size remains the same. 
When S is reduced to 1 pixel, it searches all the locations surrounding the last best match, 
and then the best match is the motion vector. In the example shown in Figure 2-2, the 

II 



search window is 7 pixels and the initial step size is 2. The motion vector (2,3) is found 

through best matching of first three steps: (0,0), (2,0) and (2,2). 

3,., 

X-1 
Y+o r 

X-1 X+l x+-, 

Y41 

y 
Y-1 

Figure 2-2 Example of 2-D logarithmic search with search step size =2 

Three step search ---- Another popular fast search algorithm is Three Step Search (TSS) 

[ 12], which is similar to TDL. It also starts from searching the zero displacement location, 

but it tests 8 surrounding points in a square shape instead of four points. The initial search 

step size depends on the search window size. If the search window size is +/- (2 N . 1), 

search step(S) is set to 2(N-1) at the first stage. Like TDL, the best match of this step 
becomes the centre point of the next step. After each stage, the search step size is reduced 
by the equation (S=S/2) until S is equal to 1. Figure 2-3 illustrates the search procedure 
with search window size +/-7 = +/- (2 3 

-1). The search starts with first step size equal to 
(2 3-1) =4; the best matching locations found for first two steps are (0,4), (2,4) 

accordingly and the final MV is (3,3). 
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X-j X-1 x X41 X+l 

Y+". IIiIIII. 

Y-1 

Y41 

y 

Y-1 

Figure 2-3 Example of three step search 

Comparison of block matching algorithms ---- TDL and TSS fast search algorithms 

reduce the computations by reducing the number of candidates in search range. Table 2-1 

compares the maximum and minimum number of search points required by full search 

algorithm, TDL (search step size =2) and TSS with search window = +/-7. It is clear in 

the specified search window that TSS has a fixed number of candidates, but the number 

of points varies case by case with TDL. Both of the two fast algorithms dramatically 

reduce the computations when compared with full search algorithm. 

Table 2-1 Comparison of block matching algorithm with search window = 

Block matchin al ith 
Number of search points 

g gor m 
Minimum Maximum 

Full Search 255 255 

2-D logarithmic 13 26 

Three-step search 25 25 
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Sub-pixel motion estimation 

The fast block-based motion estimation algorithms detailed above assume that the best 

match is located exactly in a position with integer pixel offset in the search area. However, 
in many cases, the best match may be between pixel positions, so there is a need for 

motion search at sub-pixel level. The values in the sub-pixel position are created by 

interpolating the surrounding integer pixels; then the motion search is carried out on both 

integer-pixel and sub-pixel locations to find the best match. Obviously, sub-pixel motion 

estimation is much more computationally complex than integer-pixel motion search as 

extra interpolation points have to be computed, but it can significantly increase the 

accuracy of motion compensation. In order to reduce the computation, sub-pixel search is 

commonly executed only around the best integer-pixel match. 

2.3.2 DCT-based transform 

Through motion estimation and compensation, the temporal redundancy in the current 
frame is reduced and a residual frame is generated by subtracting blocks in the current 
frame from corresponding best match in reference blocks. There is still a certain amount 

of spatial redundancy in the residual frame and Discrete Cosine Transform (DCT) is 

applied, followed by quantisation to further reduce the redundancy. DCT is a 

mathematical method transforming image data from the spatial domain to the frequency 

domain. An NxN block of samples is converted into transform coefficients. The block 

size for DCT transform in image and video coding is usually chosen to be 8 because an 
8x8 block provides good spatial correlations between pixels and it does not put 
tremendous burden on processing ability and memory storage [13]. Figure 24 illustrates 

the basis functions of an P8 block. The top-left one is the "DC" basis function, which 
represents zero spatial frequency. The spatial frequency of other "AC" basis functions 
increases horizontally along the top row and vertically down the left column. The 

weighted value of basis functions is added or subtracted to each other to generate the 8x8 

transformed coefficients. 
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Figure 2-4 Basis functions of DCT transform 

The general equation of NxN two-dimensional DCT can be defined by the following 

equation, where f is NxN block of original pixels and F is the matrix of transformed 

coefficients. 

2 M-1 N-1 (2i + I)uir (2j + I)vir 
F(u, v)= A(u)A(v)Ejcos(! m: --' --')cos(-!:: -")f(i, i) 

N i=o J--o 2N 2N 

Equation 2-3 

-I where A(x) =- for x -- 0,1 otherwise. 
, F2 

The DCT transform involves costly matrix multiplication. In practice, fast DCT (FDCT) 

algorithms are proposed to replace DCT operation to reduce computations. 

Mathematically, the DCT is perfectly reversible without any loss of information. If an 

inverse DCT is applied to the transform coefficients, the reconstructed image data is 

exactly as same as the original. 

The transformed coefficients represent how much of each basis function is present in the 

original block. A large value of a coefficient means that the original image data vary 

corresponding to a specific frequency. In a typical scenario, an NxN block contains 

spatially related samples and the values of these samples do not vary dramatically, which 
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can be represented by low frequency basis coefficients. Consequently, after DCT 

transform, most coefficients are small values. The high valued ones are often those that 

represent the lower frequency functions and cluster around the DC coefficient position. 
Although compression has not been achieved at this stage, DCT transform makes a good 

preparation for next stage of coding with many low value coefficients. 

2.3.3 Quantisation 

There are typically a lot of near zero coefficients in the transformed block. Quantisation 
is used to discard these less important coefficients by dividing each coefficient by an 
integer. Only significant DCT coefficients are left after quantisation so that compression 

of the image or residual is obtained. Quantisation is an irreversible process, the data loss 

caused by which can not be recovered. 

The amount of discarded coefficients may be varied by using a quantisation step size (Q). 

Large Q tends to throw away most of the coefficients, retaining only the most important 

large-value coefficients. On the contrary, more coefficients are kept in the quantised 
block by using small Q. The level of Q decides the number of zero-coefficient generated 
by quantisation and affects video quality and final compression rate. 

2.3.4 Entropy coding 

There are only a few non-zero coefficients left, typically low frequencies around the 
"DC" one, after quantisation. The quantised DCT coefficients are further coded by three 

steps: reordering, run-level coding and entropy coding. The quantised coefficients are 
reordered into a one-dimensional array by scanning them in zigzag order. DC coefficient 
is at the first position of the array, followed by the remaining AC coefficients from low 
frequency to high frequency. Since most of the high frequency coefficients tend to be 

zero, this arrangement separates the non-zero and zero coefficients. The rearranged 
coefficients array is coded as a series of run-level pairs: "=7 is the number of 
consecutive zero before the next non-zero coefficient represented by "level". The run- 
level pairs and other coding information (such as motion vector and prediction types) are 
further compressed by entropy coding such as Variable Length Codes (VLC). The more 
frequently occurring pairs are represented by shorter codes whereas the infrequently 

16 



occurring pairs are represented by longer codes. The most popular statistical algorithms 

used in encoding are Huffman or modified Huffman coding and arithmetic coding. 

2.3.5 Generic video CODEC 

The architecture of a generic block-based DCT CODEC is depicted in Figure 2-5. At the 

encoder, motion estimation and compensation are performed on every block or MB to 

find the best motion vector and to produce the minimum residual frame of current frame 

n. Each block of the residual frame is DCT transformed, quantised and then entropy 

coded together with motion vectors from motion prediction, and finally sent to an output 

buffer for transmission. Meanwhile, the encoder carries out inverse Quantisation and 
inverse DCT to regenerate the residual frame, which is combined with reference frame to 

reconstruct frame n. The reconstructed frame n is not exactly the same as initial input 

frame due to the data loss during quantisation; however, it is a replica of the decoded 

frame at the decoder and is saved in the frame store for motion estimation for the next 

frame. Using reconstructed frames in motion estimation and compensation for the next 
frame assures that decoder performs motion compensation based on the same reference 

frame as encoder. Thus it avoids the accumulated error caused by different reference 

frames at both encoder and decoder. 

Residual of 
Frame A 

Frame Entropy 
=DCI 

Quantizabor C1 7 

Inverse: 
DCI 

Reconstructed 
Frame ri-I + 

Motion Fraime 
Compensation Store 
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Figure 2-5 Generic DCT coder and decoder 
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The decoder performs inverse operations, receiving coded video and decoding it to obtain 

quantised coefficients. With inverse quantisation and subsequent inverse DCT, the 

residual pixel values of a frame are produced. These pixel values are added to the 

reconstructed previous frame created using motion compensation based on the received 

motion vector to reproduce the entire decoded frame. The decoded frame is kept in a 
frame store for use in motion compensation of the next frame. 

2.4 Video coding standards 

ITU-T Video Coding Experts Group (VCEG) and ISO Motion Picture Experts Group 

(MPEG) are two formal organizations that develop video coding standards. These 

standards are designed for a variety of video applications ITU-T standards are called 
Recommendations and H. 26x series (H. 261 [14], 11.262 [3], H. 263 [2], and H. 264 [15]) , 
are designed for applications, such as video conferencing and video telephony. Meantime, 
ISO/IEC MPEG is responsible for the MPEG-x series: MPEG-I [16], MPEG-2 [3], 
MPEG-4 [17], MPEG-7 [18] and MPEG-21 [19]. They address the problem of video 
storage, broadcasting video and video streaming through internet and mobile networks. 

2.4.1 H. 263 

H. 263 [20], originally standardised by ITU-T in 1993, is a video coding standard for low 

bit rate video communication over Public Switched Telephone Network (PSTN) and 

mobile networks with transmission bitrates of around 10-24kbps or above. It follows a 

preceding standard H. 261, which is dedicated for video conferencing over Integrated 
Services Digital Network (ISDN) operated at bit rates of kx64kbps, where k is an integer 

from I to 30. The limitation on bit rate has been removed and H. 263 can be applied for a 

wide range of bitrates (up to 20Mbps). H. 263 employs a similar coding framework to 
H. 261 (block-based motion estimation and DCT transform coding), but it significantly 
improves coding performance and error recovery with the help of new techniques and 

optional coding modes. 

Picture format 

In H. 263, each picture is represented by luminance component (Y) and chrominance 
components (Cr and Cb). Luminance and chrominance, components are sampled with the 
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4: 2: 0 sampling pattern, according to CCIR Recommendation 601 [2 1 ]. C,. and Cb have 

half the resolution of the Y component in both horizontal and vertical directions and are 

positioned in the centre of the four Y samples. As shown in Figure 2-6, for every four 

pixels, there is only one C, and Cb sample, but four Y samples. 

171 El 
0 

El 0 

r71 

r-i 1--1 

0 

r-i F] 

Fý Y Sample 

0 Cr and Cb Sample 

Figure 2-6 4: 2: 0 sample pattern for H-263 

H. 263 supports 5 standardized picture formats, sub-QCIF, QCIF, CIF, 4CIF and16CIF, 
the picture sizes of which are shown in Table 2-2. For instance, in QCIF, 176 luminance 

components are sampled at every line and 144 lines are scanned in each frame. 
Chrominance values are sampled with half the resolution of luminance, so its chroma, 
resolution is 88x72 samples. 

Table 2-2 H. 263 picture format 

Picture Format Sub-QCIF QCIF OF 4CIF 16CIF 

Number of samples 128 176 352 704 1408 
per line for luminance 

Number of lines for 96 144 288 576 1152 
luminance 

Number of samples per 64 88 176 352 704 
line for chrominance 

Number of lines for 48 72 144 288 576 
chrominance I I II 
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Picture structure 

H. 263 uses a block-based video coding technique, where a single picture is divided into 

number of 16xl6 macroblocks. Each macroblock contains four 8x8 Y blocks and one 
corresponding 8x8 C, and Cb block, as shown in Figure 2-7. 

8 

8 
Y 

85 

8 

Cr 
Figure 2-7 Macroblock 

8: 
j 

Cb 

The MB is the basic unit in the coding process. A group of blocks (a GOB) contains k 

rows of MB where k=I for sub-QCIF, QCIF, CIF, two for 4CIF and k=4 for 16CIF. 
The number of GOBs for various picture formats can be computed by dividing the 

number of luminance lines by 16K. Figure 2-8 shows the GOB structure of a QCIF 

picture. 

GOB 0 
GOB 1 
GOB 2 
GOB 3 
GOB 4 
GOB 5 
GOB 6 
GOB 7 
GOB 8 

1 2 

3 4 

QCIF picture 

Figure 2-8 GOB structure of QCIF 
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There are two basic coded picture types in H. 263: intra and inter coded pictures. For an 
intra-picture, no prediction is applied and the original sample values are coded with DCT 

transform, quantisation and entropy coding. An inter-picture is predicted from a previous 
intra or inter picture, then the "residual" difference is coded together intra-picture with 

motion vector. 

Half-pixel motion compensation 

H. 263 supports motion compensation with half-pixel precision as well as integer-pixel 

precision. As shown in Figure 2-9, half pixel values are created by interpolating 

neighbouring integer-pixel values. Point V is computed from integer-pixel point 'A', 'B', 

'C', 'D'. Point 'a' is calculated from 'A' and V. H. 263 can transmit motion vectors that 
fall into not only integer-pixel but also half-pixel positions. This dramatically improves 

the coding performance when compared with H. 261, where only integer motion 

compensation and a loop filter are utilized. 

/ 

CD 

Integer pixel position 

Half pixel position 

Figure 2-9 Interpolation of Half-pixel value 

Predictive codin2 of Motion vector 

a--(A+B+I)/2 

b=(A+C+I)/2 

c=(A+B+C+D)/4 

The motion vectors in H. 263 are encoded by means of predictive coding. As shown in 

Figure 2-10, motion vectors from previous coded MBs, which are to the left (MVI), top 

(MV2) and top right (MV3) of the current MB, are used for prediction. The median of 

MVIs W2 and W3 is the predictor (MVp) for current motion vector (MV, ) and the 

difference between MV and predictor is calculated according the following equation. 
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MVd ""' MVc - MVp 

where MV = Median(MVI, MV2, MV3) 
p 

Equation 24 

If the current MB is located along the boundary of the picture or GOB, one or two 

previous MVs may not exist. As illustrated in Figure 2-10, if only one previous MB is 

outside the boundary, a zero motion vector takes its place. When two previous MBs are 

missing, the remaining MV is used as predictor. 

MV2 MV3 MV2 MV3 

- ------------ 
mv (0,0) mv 

-------------- 

(a) (b) 
Picture or GOB boundary 

- -------- -- ----- - ----- 

MV] MVI MV2 (0,0) 

- --------- 
mv] mv mv 

(c) (d) 

Figure 2-10 Prediction of motion vector 

Advanced ODtional modes 

H. 263 has four advanced options designed to improve compression performance. The 

encoder and decoder must negotiate the use of optional modes. An encoder may utilize all 

or some of the options that the decoder supports. The four optional modes are as follows: 
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Unrestricted motion vector Mode (Annex D) ---- In this mode, motion vectors are 

allowed to point outside the boundaries of the picture. A pixel position outside the picture 

takes the values of the nearest boundary pixel. This mode extends the motion search 

range from default [-16,15.5] to [-31.5,31.5]. A significant gain can be obtained for 

videos where an object moves into or out of the picture or around the border. 

Advanced prediction mode (Annex F) ---- Using this mode, motion compensated 

prediction can be performed on the basis of a block instead of macroblock. Therefore, 

there are four motion vectors for the four luminance blocks in a MB. For each 

chrominance block, only one motion vector is used for motion compensation. It is derived 

by calculating the mean of the four motion vectors of luminance blocks; the result has to 
be rounded to the nearest half-pixel position. Four motion vectors per MB provide better 

motion compensation for MBs at the edge of the objects or in areas with complex motion 
because they are much more precise than one motion vector for each MB. This mode also 
includes overlapped block motion compensation, which can smooth block edges during 

motion compensation. Furthermore, motion vectors are permitted to point outside the 

picture in the same way as Unrestricted Motion Vector Mode. 

PB-frame mode (Annex G) ---- In PB-frame mode, two adjacent frames are treated as a 

unit: a PB-frame comprising a Mrame and a B-frame. Figure 2-11 illustrates the 

construction of PB-frame. The P-frame is predicted from the previous decoded I-frame or 
P-frame. B-frame is the second frame predicted bi-directionally from previous I or P- 

frame and the Mrame in this unit. The motion vectors of B-frames are derived from 

motion vectors of both of the P-frames. For a PB-frame, each macroblock consists of 6 

blocks from the Nframe and 6 blocks from the B-frame. The 6 Mrame blocks are 
transmitted first and followed by the 6 B-frame blocks. The advantage of PB- frame 

mode is that the frame rate can be doubled without significantly increasing the bit rate 

since bi-directional prediction is more efficient than unidirectional prediction. 
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Figure 2-11 PB-frame prediction 

Syntax-based arithmetic coding mode (Annex E) ---- Arithmetic coding is utilized 
instead of variable length coding in this mode. It is shown from experiments that bitrate 

reduces around 34% for inter-coded MBs and nearly 10% for intra-coded MBs [22]. 

2.4.2 H. 263+ and H. 263++ 

Following the wide use of the first version of the H. 263 standard, new negotiable options 

were added, leading to the second version of the standard, known as H. 263+ [2]. H-263+ 

provides 12 new optional modes, grouped into three types based on their functions. 

Enhancement of codin2 efficiencv 

1. Advance INTRA coding mode (Annex 1): This annex includes a modified 
inverse quantisation and a separate Variable-Length Code (VLC) table for intra- 

block coefficients. Besides, the DC coefficients, the first column and first row of 
AC coefficients may be predicted spatially from DCT coefficients of 

neighbouring blocks. 

2. Deblocking filter mode (Annex J): A special block edge filter is utilized to 

reduce the blocking artifacts of decoded frames and improve the performance of 

motion compensation. 

3. Improved PB frame mode (Annex M): Besides bi-directional prediction of B 

picture in Annex G, this mode also supports forward and backward motion 
prediction for B pictures. 
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4. Reference picture resampling (Annex P): The current video frame can be 

predicted from a "warpeX' picture, which is generated by resampling and/or 
interpolating the decoded reference frame. This mode specifies the alteration 

between the current frame and the reference frame in terms of resolution, shape, 

size and location. It can used to adaptively change the resolution of the frames 
during the encoding process. 

5. Reduced resolution update mode (Annex Q): This annex allows the encoder to 

code some macroblocks at a lower spatial resolution than the reference frame, by 

which the encoder can maintain an adequate frame rate for high motion video 

sequence. 

6. Alternative inter-VLC mode (Annex S): The encoder may use the alternative 
VLC table used in Annex I for coding quantised coefficients in inter-coded 

blocks. 

7. Modified quantisation mode (Annex T): This mode improves the flexibility of 

controlling quantisation step size during encoding. 

Error robustness 

1. Slice structured mode (Annex K): This annex groups a series of macroblocks 
(in raster order or in rectangle area of a picture) into slices. A slice is coded 

independently of any other slices, which makes it a resynchronization point in the 

bitstream, useful for limiting error propagation. 

2. Reference Picture Selection mode (Annex N): The encoder is allowed to 

choose a reference picture from several previous coded pictures for macroblock 

motion prediction in a GOB, slice or picture. 

3. Independent segment decoding mode (Annex R): In this annex, each segment 
in a video picture is decoded independently of any other video picture segments 

and motion vectors can not be pointed to outside of the current segment in the 

reference picture. When the sliced structured mode is not applied, a segment 

consists of a GOB or a consecutive number of GOB. A slice forms a segment if 

sliced structured mode is in use. 
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Increased flexibilitv 

1. Temporal, SNR and spatial scalability mode (Annex 0): This annex enables 

the coded video sequence to be decoded at various quality levels by using a 

hierarchy of pictures and enhancement pictures. 

2. Supplemental enhancement information specification (Annex L): This annex 

provides some enhanced display capabilities, such as frame freeze and zoom. 

11.263++ is the third version of H. 263, completed in 2001. It includes three extra new 

modes to enhance the coding efficiency, reduce delay and improve error resilience. 

Enhanced reference picture selection (Annex U) [23]: This optional mode 
improves coding efficiency and error resilience of Annex N by reducing the 

memory requirement for storing previously coded pictures and by predicting a 

macroblock from any pictures stored in memory. 

2. Data partitioned slice (Annex V) [24]: This annex modifies slice structured 

mode (Annex K) to enhance the effor resilience by rearranging the macroblock 
data in a slice as macroblock headers, followed by the motion vectors and all the 

coeff icients. 

3. Additional supplemental enhancement information (Annex W) [25]: In 

addition to the supplemental enhancement information defined in Annex L, this 

mode supports the use of an approximate IDCT and allows the user to insert a 

message into the coded bitstream. 

2.4.3 H. 264 

H. 264 [15] [26], previously known as H. 26L, was initially started by ITU-T VCEG in 

1998. In 2001, VCEG and ISO MPEG established the Joint Video Team (JVT) to take the 

responsibility of developing it into a standard. The standard is now finished and called 

officially Advanced Video Coding (AVC), also known as ITU-T H. 264 and ISO MPEG-4 

part 10. The main objective of the emerging H. 264 is to improve coding performance and 

efficiency with a simple syntax specification. The basic video coding approach used in 

H. 264 is very similar to that adopted in previous standards, such as H. 263. However, new 
features and enhanced prediction methods make it able to provide low bit rate, low 
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coding delay and high complexity video coding [27]. H. 264 can be applied in a variety of 

video applications: internet video streaming, mobile video, high definition TV, video 

storage on DVD and so on. 

Laver structure 

Figure 2-12 illustrates the layer structure of the H. 264 standard, which comprises a Video 

Coding Layer (VCL) and Network Abstraction Layer (NAL) [26). VCL is used to process 

the original video sequence and generate compressed information by discarding temporal 

and spatial redundancy. It is similar in principle to previous video coding standards, 
based on motion compensated prediction and transform coding. The compressed video 
data from VCL, together with some control data is sent to the NAL for formatting. The 

NAL reorganizes these data in a suitable format and adds headers for conveying to the 

transport layer. NAL has a generic format for both packet-oriented transport and bit 

streaming. The transport layer that NAL is connected to can be the Real-Time Protocol 

(RTP), systems for broadcasting or storage media. 

-------------------------------------- 

Video Coding Layer 
Control 

Data 
Network Abstraction Lay 

------------ 
IL 

-------- ------ -- 
I Transport Layer I 

Figure 2-12 H. 264 layer structure 

Picture structure 

In H. 264, the basic unit is a 16xl6 pixel matrix, called a Macroblock. A macroblock 

contains a 16xl6 luma block and two M chroma blocks as H. 264 employs 4: 2: 0 

sampling at present. However, compared with H. 263 (Section 2.4.1), chroma samples are 

positioned horizontally shifted by 0.5 pixel as shown in Figure 2-13. An entire picture 
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comprises of one or several non-overlapped slices, each containing an integer number of 

macroblocks. Slices in a picture are coded independently so that data damage or loss in 

one slice has minimal effect on decoding of the others. H. 264 supports five types of slices. 
The first one is I slice, in which macroblocks are coded without prediction from other 

pictures in the sequence. P (predicted) and B (bi-predicted) slices are predicted from one 

previously coded picture and two pictures respectively. The two remaining slice types are 
Switching Prediction (SP) and Switching Intra (SI) [28] used to facilitate switching 
between video streams. 
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Figure 2-13 4: 2: 0 sampling pattern for H. 264 
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AVC encoder 

Figure 2-14 is a block diagram of an encoder used in the video coding layer. It has some 

similarities to the generic video encoder in Figure 2-5, but the details have been changed 
to improve coding performance. Enhancements have been made in motion compensated 

prediction, intra prediction, transform and entropy coding, which will be explained in the 
following sections. 

Enhanced motion compensation 

AVC supports tree structured motion compensation, which segments a luma macroblock 
into a number of varying-size areas and employs these areas as the basic unit for motion 

estimation. At the first step, a 16x 16 macroblock may be divided into small areas of one 

of the four types: 16xl6,8xl6,16x8, M, as shown in the top row of Figure 2-15, and 

each small area is called a macroblock partition. When the 8x8 mode is chosen, a further 

segmentation may be applied to each M macroblock partition and split into macroblock 

sub-partitions according to sub-partition types, which are shown in the bottom row of 
Figure 2-15. 

MB partition 

8 88 If 8 

80 8 "4,0 1 Macroblock If 0 if Partition Types 
81 23 

16xl6 8x16 16x8 8x8 

8 448 4 
40 401 Macroblock 

8 801 Sub-partition 
41 23 Types 

M 4x8 8x4 4x4 

MB sub-partition 

Figure 2-15 Macroblock segmentation for motion compensation 
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A wide range size of partitions (from 16x 16 pixel to 4x4 pixel) in inter-coded MB can be 

used for motion estimation. H. 264 employs sub-pixel motion compensation with the 

accuracy of 
1/4 luma, samples. The value of 

'/4 
and '/2 sample positions are interpolated 

from nearby integer samples. H. 264 supports multi-picture motion-compensated 

prediction; i. e. more than one picture can be used as reference for motion-compensated 

prediction. Each MB or MB partition in P-slices can only be predicted from one 

previously coded picture (either past or subsequent picture), which are stored in the 

picture buffer at the encoder and replicated by the decoder. The prediction of MB or MB 

partitions in B-slices can be performed from two pictures from the pre-coded pictures 
buffer, which may be (1) two past pictures or (2) two future pictures or (3) one past 

picture and one future picture. 

Intra prediction 

In addition to inter-coded macroblock types, H. 264 has two intra. coding types: INTRA- 

4x4 and INTRA-16xl6, where each 4x4 or 16xl6 luma block is predicted from 

previously coded neighbour blocks. The reference blocks have to be in the same slice as 

the current block in order to maintain independent coding of each slice. For INTRA-4x4 

modes, there are nine prediction modes available for luma blocks. When INTRA- 16 x 16 

modes are used, four types of modes are supported and prediction is performed on an 

entire luma macroblock. INTRA-16xl6 is suitable for smooth image areas without too 

much detail. Each 8x8 Chroma block in a macroblock has four types of prediction modes 

which are very similar to the four INTRA- 16 x 16 modes for luma macroblocks. 

Inteizer transform, Quantisation and Entropv codin2 

After inter and intra, prediction, the residual macroblocks are transformed, quantised and 
entropy coded. Instead of the 8x8 DCT transform, H. 264 uses a 4x4 integer transform [29, 
30], which is based on the DCT transform, operating on every 4x4 residual block. If a 
macroblock is predicted using INTRA-16xl6, an extra 4x4 transform is applied to all DC 

coefficients of luma 4x4 block. For chroma blocks, an additional 2x2 transform of DC 

components is applied. Compared with the conventional DCT transform, the integer 

transform does not produce any loss of data as it is defined exactly by integer arithmetic 
operation, so that inverse transform mismatch is avoided. 
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In the quantisation stage, a scalar quantiser is used. H. 264 has 52 quantiser steps (Q) and 

this large dynamic range of Q results in flexible bitrate control. 

H. 264 supports two methods of entropy coding depending on the coding mode. For 

default entropy coding mode, Exp-Golomb codes are utilized for all syntax elements 
except for transformed coefficients, which are coded by a more sophisticated Context 
Adaptive Variable Length Coding (CAVLC) method. The cfficiency of coding can be 
improved further using the optional alternative to Exp-Golomb/CAVLC: Context- 

Adaptive Binary Arithmetic Coding (CABAC) [3 1 ]. 

In-loop deblockiniz filter 

Blocking artifacts, visible block edges in a decoded picture, are considered to be the most 

obvious artifact appearing in block-based video coding. 11.264 employs an adaptive in- 

loop deblocking filter [32] to smooth the blocking around the boundary of each 

macroblock without affecting the sharpness of the picture. Therefore, subjective video 
quality is dramatically improved. Moreover, motion estimation predicted from filtered 

macroblocks can produce smaller residual macroblocks so that the bit rate of the filtered 

sequence can be reduced when compared with a non-filtered sequence. 

2.4.4 MPEG-4 visual 

MPEG-4 [4,33], an ISO/IEC standard developed by MPEG, defines techniques that 

address a wide range of multimedia applications with high coding efficiency, interactivity, 

universal access, scalable complexity, error resilience and bitrates from 5kbps to above 
I Gbps. It supports object-based coding of natural image, video and audio, synthetic 2-1), 
3-D graphic and audio, as well as text. MPEG-4 is comprised of several parts and the 

visual part provides techniques and profiles for coding of natural, synthetic and hybrid 

natural/synthetic video. Natural video coding will be introduced in this section. 

Description of visual scene 

An MPEG4 visual scene is made up of a number of Video Objects (VO), which form a 
hierarchical representation of an entire video sequence as shown in Figure 2-16. This 

representation provides easy access to video content and allows high interactivity 
between the coding process and user. The highest level of this structure is Video Object 
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Sequence (VS), which represents the complete video scene and consists of several video 

objects. A video object has three-dimensions: two spatial dimensions in a frame and a 

time dimension. Regardless of the time dimension, a VO can occupy the entire frame size 

or rectangular area or even an arbitrary shaped object, which is coded independently by 

using motion, shape, and texture techniques. A video object has at least a base Video 

Object Layer (VOL) and optionally a number of enhanced VOLs supporting scalable 

coding, resulting in a wide variety of bitrates and computational complexity levels. A 

time sample of a VOL is called a Video Object Plane (VOP), which defines all the 
information related to a video object at an instant time. Consecutive VOPs are grouped 
into a Group of Video Object Plane (GOV). 

Fv-o-L7, 

vs 

Figure 2-16 Hierarchical structure of MPEG-4 visual scene 

Visual coding tools 

Shape coding-Shape coding tools [34] are used to represent the borders of arbitrarily 

shaped objects by using extra information, which is described in a map of the same 
resolutions as luma signals. There are two types of shape coding tools in terms of level of 
transparency: binary shape coding and grey-scale shape coding. In binary shape coding, 

shape information of pixels belonging to a VOP is defined as "opaque" and as 
"transparent" for pixels outside a VOP, whereas grey-scale shape coding employs 8 bits 

to represent the transparency level of each pixel. Binary shape information for a 

macroblock is referred to as a binary alpha block (BAB), coded by using Context based 

Arithmetic Encoding (CAE) and motion estimation independently of the corresponding 
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macroblock. BABs inside a VOP have all opaque pixels and BABs crossing the boundary 

of a VOP have both opaque and transparent pixels. 

Texture coding-The coding of motion compensated residual values is called texture 

coding, which includes DCT transform, quantisation and variable-length coding, in a 

similar way to H. 263. For a boundary MB that has both opaque and transparent pixels, 
the transparent pixels are filled with some values based on pre-determined rules 
(boundary block padding), and then the boundary MB is coded in the same way as other 
MBs. Alternatively, a block in a boundary MB can be transformed by using shape- 
adaptive DCT which only processes opaque pixels and ignores transparent pixels. 

Error resilience Several techniques may be exploited to increase coding robustness. 
First of all, unique markers are inserted into the bitstream so that the decoder can stop 
decoding until the next marker when an error is found. This is called resynchronisation. 
In MPEG4, texture data and motion data may be coded separately by means of data 

partitioning, which keeps the different types of data independent and makes it easy to 

apply error concealment methods on error-corrupted texture data. Finally, in the case of 

errors, reversible VLCs allow decoding of the bitstream both forward and backward to 

minimize the effect of an error. 

Scalability-MPEG4 supports four types of scalable coding. Firstly, it provides object- 
based scalability: the decoder can select a number of VOs instead of a full set of VOs. It 

is achieved naturally by the data structure used and is independent of the coding of each 
VO. The use of base and enhancement layer VOLs enables spatial and temporal 

scalability. Spatial resolution obtained from the base VOL can be improved by using one 

or more enhancement layers. For adjacent frames in a video sequence, temporal 

scalability enhances temporal resolution and smoothness of movement by increasing the 
frame rate. In order to provide flexible bitrates in video streaming applications, Fine 

Granular Scalability (FGS) truncates the bitstream during coding according to the 
bandwidth of the transmission channel. 

Proflles and levels 

Profiles [35) define the types of video objects present in the scene and a subset of 
corresponding coding tools that can be used to code these video objects. MPEG-4 visual 
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has 5 types of rectangular video objects, 7 types of arbitrarily shape video objects and 12 

kinds of profiles, which use one or more video objects. For example, the Simple Profile 

only includes simple video objects, but the Advanced Simple Profile has advanced simple 

and FGS video objects. The Simple profile is almost identical with the baseline CODEC 

of H. 263 described in 2.4.1. Levels in a profile specify several parameters of video 
bitstream, such as scene size, bit rate, maximum number of objects and so on. 

2.4.5 Other MPEG standards 

MPEG-1 

The first standard developed by MPEG was MPEG-I [36], coding video and associated 

audio information. MPEG- I consists of three parts: system, video and audio and has been 

optimised for video quality at bitrates of 1.1 to 1.5 Mbps, to provide a mean of storing 
digital audiovisual data on CD (with a playback rate of around 1.4 Mbps) with nearly the 

same quality as VHS cassettes. 

MPEG-2 

In order to improve the quality of MPEG-I, MPEG-2 [3] was developed to support a 
wide range of resolutions and bitrates, including digital television and high definition 

television. The MPEG-2 standard has various parts, which cover video, audio and all 
aspects related to representation and delivery. 

MPEG-7 

MPEG-7 [37], formally called the "Multimedia Content Description Interface" is aimed at 
developing a standard method to describe multimedia information. Unlike previous 
MPEG standards, it concentrates on representing the content of the information, but not 
on the information itself. Therefore, multimedia information can be searched in a similar 
way to text. 

MPEG-21 

The aim of MPEG-21 [38] is to define a standardized open framework for multimedia 
delivery and consumption by all communities across a wide range of networks and 
devices. This framework enables transparent and augmented use of multimedia resources 
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and covers the entire chain consisting of content creation, production, distribution and 
trade. 

2.5 Complexity, rate and distortion 

2.5.1 Performance evaluation of video encoders 

When evaluating the performance of video encoders, the bitrate of the coded video 

sequence, the video quality and the algorithm complexity used in the CODEC are the 

most important performance constraints that need to be considered. Changing coding 

parameters, adding optional coding modes and choosing various coding algorithms affect 
the output of video encoders, resulting in different levels of visual quality, bitrate and 

computation. In general, good quality video requires a complicated coding scheme and/or 
high bitrate. 

Visual quality and bit rate are two related parameters. In many applications, the bit rate of 

a coded video sequence is limited by the characteristics of transmission channels. In order 
to achieve the optimum coding performance, it is necessary to obtain the highest visual 

quality subject to the bit rate constraint, which is called rate-distortion optimisation. 
Many strategies have been developed to improve the rate distortion performance. Near- 

optimum strategies tend to be highly complex, requiring a large amount of computation. 

For an increasing number of applications, it is necessary to take into account of the 

computational complexity of the video encoder, such as in real-time and/or power- 

constrained applications. In these cases, the performance of a video encoder may be 

limited by the amount of processing power available as well as, or rather than, the 

available transmission bandwidth, and so there is a need to manage the complexity to 

meet the constraints of processing power. Moreover, rate-distortion strategies also have to 

work under the constraint of computational complexity, which leads to the emergence of 

complexity-rate-distortion theory [39,40]. This theory is proposed to optimise the video 

quality subject to the bitrate and complexity constraints. 

2.5.2 Rate-distortion control 

The bit rates produced by a generic video encoder (using motion-predicted compensation 
and DCT) fluctuate naturally. Some existing networks, such as Public Switched 

35 



Telephone Network (PSTN) and Integrated Services Digital Network (ISDN), provide 
fixed bit rate channels. In order to transmit compressed video data (with its variable bit 

rate) through these Constant Bit Rate (CBR) channels, a channel buffer is usually added 
to smooth out the Variable Bit Rate (VBR) video stream and rate control techniques are 

applied to prevent buffer underflow and overflow. Theoretically Variable Bit Rate (VBR) 

networks, such as, Ethernet and Asynchronous Transfer Mode (ATM), can cope with 
VBR data, but in practice, the available capacity of the channel can not always satisfy the 
bitiate requirement of transmitted data due to practical limitations (e. g. congestion) and 
thus the bit rate has to remain within a certain range. In this scenario, it is necessary to 

reduce the bit rate variation to meet channel constraints using rate control schemes. 

The rate control problem has been investigated for nearly 50 years in the literature [4143] 

and the main concern is to trade off bitrate and obtained video quality. That is, given the 
desired bit rate, how to encode the video sequence to achieve the highest objective and 
subjective video quality? A classical rate-distortion problem is shown in Equation 2-5 : 
minimize distortion (D) under the bitrate constraint (R, ), which can also be interpreted as 
how to efficiently allocate a limited bit rate to each frame and macroblock. 

Min (D), When R<R, 

Equation 2-5 

Many practical algorithms have been developed to effectively keep bit rate within the 
target whilst optimising video quality by adjusting quantisation step size (Q). The 

operations of these algorithms generally can be split into three steps: (1) Calculate and 
allocate the available bit rate for each frame, or macroblock (MB). (2) Compute Q for 

each frame or MB based on allocated bit rate. (3) Apply Q in encoding of a frame or MB 

to achieve the target. Several algorithms that have been proved to be efficient and applied 
in the popular video compression standards are introduced below. 

TMN5 

The Test Model 5 (TMNS) [44] rate control scheme proposed in H. 263 mainly focuses on 
low bit rate and real-time CBR video applications with low latency. Due to tight buffer 

size imposed by strict requirements on delay, it is necessary to control the bit rate within 
a small amount of variation. TMN5 rate control consists of output buffer regulation and 

36 



updating of quantisation step size, the details of which are stated in the following 

procedures: 

1. Allocate the same number of bits (B) (equal to target bit rate (R) divided by 

target frame rate) to each frame. 

2. Update quantiser (Q) for current frame at the beginning of each new group of 
macroblocks based on Equation 2-6. Qi-I is average quantiser for previous frame. 
B, 

-, 
is the number of bits occupied by the last frame, the number of bits spent for 

current frame so far is represented by Bi b9 mb is the present Macroblock 

number and MB is the total number of Macroblocks in a frame. 

Q=Zii- 1+ 
B, 

+L2B2 Qi I 2B, Rt 

BI = Bi-, - BI and B2= Bimb - 
mb BI 
MB 

Equation 2-6 

After encoding each frame, the number of bits spent on this frame is added to the buffer. 
If the buffer size is bigger than a threshold, the next frame is skipped. 

This method can prevent buffer overflow, but at same time, it can not guarantee a 

minimum frame rate and delay. 

TMN8 

The rate control scheme employed in H. 263 test model 8 (TMN8) [45] is based on a 
Lagrange optimisation technique presented in [46]. TMN8 rate control consists of two 
layers: frame layer and macroblock layer rate control. In the frame layer, a number of bits 

is allocated to a single frame. The new quantisation step size is computed for each 

macroblock at the macroblock layer. The operation of TMN8 rate control is very similar 
to that of TMN5 except for the following points: 
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1. TMN8 updates the same number of bits allocated to the next frame based on the 

number of remaining bits in the buffer, whereas TMN5 assigns the same target to 

every picture. 

2. The selection of the quantiser is made for each macroblock in TMN8 rather than 

each GOB (used by TMN5). 

TMN8 allocates the number of bits based on past coding information and provides more 
accurate updating of the quantiser than TMN5, which makes it achieve better rate- 
distortion performance. 

VM18 

The rate control scheme used in MPEG4 verification model 18 [47] consists of three 

parts: frame layer, macroblock layer and multiple video object rate control. The frame 

layer rate control scheme, also called Scalable Rate Control (SRC), is based on a 
quadratic rate distortion model described in [48]. SRC is designed to achieve the target 

bit rate for a single Video Object (VO) and the same quantisation step is used for all the 

macroblocks in a video Object plane. In the macroblock layer, the quantiser is updated for 

each single macroblock. The multiple video object rate control algorithm is proposed to 

control the bit rate for more than one VO in a scene. 

The SRC scheme utilizes a rate distortion model described in Equation 2-7: 
r 

+ 
X2S 

Q2 
Equation 2-7 

X, andX2are modelling parameters, which are updated according to the coding result of 
the current frame. S is the Mean Absolute Difference (MAD) of the residual value of the 

current frame after motion estimation. Target bit rate (R) for each frame is derived from 

the available bits and the bits occupied by the previous frame. The Quantiser (Q) is 

calculated based on the above equation and applied to obtain the target bit rate. 

Compared with the TMN8 rate control algorithm used in H. 263, SRC has the following 

significant improvements: 
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It supports control of various bitrates, frame sizes and frame rates, thus it can 

satisfy constraints of both CBR and VBR channels at frame-layer level. 

0 In a CBR application, it can vary the frame rate in order to target bit rate. 

2.5.3 Complexity-distortion control 

As one of the performance constraints, the computational complexity of video encoders 
has been a concern since the introduction of video compression, especially when it comes 

to practical implementation and applications. This is a problem of trade-off between 

visual quality and algorithm complexity: (a) either increasing video quality at the expense 

of higher computations or (b) reducing the complexity with corresponding degradation in 

visual quality. The choice of the level of quality and complexity are based on the 

requirements of the practical application. For example, when encoding a movie and 

storing it on a DVD, the main concern is to obtain best visual quality and meet the bitrate 

requirement. Coding is performed offline so that complexity does not matter. Thus, 

complicated algorithms can be applied to achieve the target. On the other hand, in the 

scenario of a real time application, coding time becomes a significant factor and therefore 

algorithm complexity has to be taken into account. Researchers have developed many 

methods and techniques in order to solve the trade-off problems (a) or (b) and some of 

them are listed below: 

For trade-off problem (a) 

Full motion search algorithm: theoretically it can find the best match as it 

searches the entire search area, but requires a lot of computation. 

Variable block size in motion estimation: H. 264 supports different block size for 

motion search from 16xl6 pixels to 4x4 pixels. The variety of block size makes 

motion search more efficient and accurate, resulting in improvement of coding 
performance. However, it significantly increases complexity. 

* Optional modes in H. 263 as introduced in section 2.4.2: these modes can add 

extra computations to encoding while increasing video quality. 
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For trade-off problem (b) 

0 Fast motion estimation search algorithm: decreases the complexity by searching 

in a small area or reduces some of the search points, resulting in inaccuracy 

compared with the full search algorithm. 

Approximate DCT transform: it speeds up the transform by indirect or direct fast 

transform [49], filtering the input signal [50] or calculating only low frequency 

components [5 1 ], at the same time causing loss of video quality. 

With increased processor speed and application of software CODECs, there are emerging 

requirements not only to reduce the computational complexity, but also to adaptively 

control the trade-off between complexity and video quality, which can be interpreted as: 

trying to minimise distortion (D) subject to complexity constraint (Cý) 

Min (D), When C< Ct 

Equation 2-8 

2.5.4 Complexity-rate-distortion control 

Rate-distortion achieves good decoded visual quality by efficient allocation of available 
bits. Various rate control algorithms have different levels of computational complexity. 
The performance comparison of these algorithms has to be made based on the same 
computation expenses. Complexity-distortion control, analogous to rate-distortion control, 
provides scalable control of computations and minimizes quality distortion within a 
complexity boundary. The reduction of computation affects not only video quality but 

also the bitrate of the decoded video sequence. Therefore, it is necessary to explore the 

relationship among the three parameters and give rise to a new theory: Complexity-Rate- 
Distortion control. Researchers [52-54] have addressed the tradeoffs between complexity, 
bitrate and quality. Coding a video sequence at various rates R and complexities C, the 

video quality function D(R, C) can be represented by a three-dimension convex 
surface[55]. Figure 2-17 shows a complexity-rate-distortion surface of "Carphone" video 
sequence coded by using the complexity reduction algorithm introduced in 7.3.4. 
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Figure 2-17 Complexity-ratc-distortion surface 

Given a target R, and Q, there is a point on the surface which satisfies the R and C 

requirement as well as having the highest video quality as illustrated in Equation 2-9. 

Min (D), When C< Ct and R< Rt 

Equation 2-9 

2.6 Summary 
In this chapter, the ftmdamental technology for video coding and the most well known 

video coding standards are discussed. Software-only implemented video CODECs enable 

a wider range of application due to their scalability and low-cost. The most important 

problem in a software-based video encoder is how to optimise the achieved video quality 

subject to the communication bandwidth and computational complexity constraints. 
Many approaches have been proposed in the literature to minimize quality distortion 

within a bitrate limitation. The later chapters of this thesis address the trade-off problem 
between tcomputational complexity and video quality. The techniques developed aim to 

adaptively control computational complexity while achieving the maximum video quality. 
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Chapter 3 Experimental method 

3.1 Introduction 
Proposed approaches to manage the computational complexity of a video encoder are 
investigated in Chapter 4-Chapter 7. The experimental system employed in those chapters 
can be described by a generic diagram, as shown in Figure 3-1. This chapter introduces 

test environments and methods, including test video sequences, platform, video CODECs, 

video quality assessment methods and complexity measurement methods. 

Measure 
Complexity 

I 

put Video Video 
Sequence Encoder 

Complexity Reduction 
Algorithm 

Figure 3-1 Block diagram of experiments 

3.2 Test environment 
Platform 

Measure 
Video Quality 

I 

oded Vlýdee 
Ic 

jo 

Sequence 

The experiments described in the following chapters were carried out on two 

workstations: 

Dell workstation with Intel 80OMHZ processor and 256Mbytes memory, running 
Windows 2000. 
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0 Samsung laptop with Intel Pentium 1111-M 1.7GHZ processor and 512Mbyes 

Memory, running Windows XP. 

Test video sequences 

Test sequences are chosen from ITU test video materials widely used by researchers and 

scientists with the goal of covering a range of content detail, object motion and different 

types of background as well as camera movement. The picture format of the selected 

video clips is QCIF as introduced in Table 2-2. 

Claire: This is a scene with very low motion and detail. A lady sits in front of a 

fixed single-colour background, talking to a camera with a few facial and head 

movements. (Figure 3-2) 

0 Mother and Daughter: This scene contains a mother with a little daughter sitting 

on her lap with a wall and painting as background. The scene contains moderate 
detail and facial motion as well as head and hand movement. (Figure 3-3) 

0 Carphone: A man sitting in a moving car, with a lot of head and shoulder 

movements and exaggerated facial expressions. The interior of the car does not 

change significantly, but the scene seen through the car window varies while the 

car is moving. Moreover, the picture is affected by camera shake. (Figure 3-4) 

Foreman: A worker talking to the camera with animated facial expression and 
hand gestures. The camera pans from the worker (Figure 3-5 (a)) to a 

construction site (Figure 3-5 (b)) causing significant movement of the whole 

picture. 

Figure 3-2 Example frame of "Claire" video sequence (frame 5) 
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Figure 3-3 Example frame of "Mother and Daughter" sequence (frame 5) 

Figure 34 Example frame of "Carphone" sequence (frame 5) 

(a) (b) 

Figure 3-5 Example frames of "foreman" video sequence: (a) Frame 150 (b) Frame 
220 

These sequences reflect a wide range of video with different properties and behaviour: 

from low detail to high detail scenes, from moderate to high movement, from fixed to 
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changing background, etc. It is possible to systematically assess the performance of a 

CODEC or proposed method by using these test sequences, 

3.3 Video CODECs 

The encoder and decoder used in the experiments are an 11.263 CODEC based on Test 

Model TMN5 [44] and H. 263+ CODEC based on TMN8 [45] (or low complexity mode 

of TMNIO), which were developed by University of British Columbia, Canada. These 

software-only CODECs are written in C language and run under the Microsoft Windows 

operating system. 

The H. 263 encoder has the following features: 

* Supports the 4: 2: 0 Y Cr Cb format (Section 2.4.1) 

* Includes a normal DCT transform (Section2.3.2) and a fast DCT transform as 
described in [56]. 

Motion estimation including integer motion search (full spiral search algorithm 
[5 7]) and half-pixel search (Section 2.4.1). 

* Two rate control methods: offline rate control and TMN5 (Section 2.5.2 ) 

Compared with H. 263, the H. 263+ encoder includes additional features: 

Use Nearest Neighbour Search (NNS) as optional fast motion estimation 

algorithm, which is introduced in Section 6.2. 

0 Three rate control methods: offline rate control (Quantiser step size is updated 
once per frame), TMN5 and TMN8 (Section 2.5.2 ) 

3.4 Video quality assessment 

In order to assess the quality of decoded video sequences, two types of quality 

measurement are employed in the experiments. Objective testing is used to give a 

numeric assessment of video quality, compared with a reference video sequence. 
Subjective testing is carried out to measure perceived video quality based on opinions of 

representative users. 
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3.4.1 Objective test methods 

Objective video quality test methods are based on statistics measured between the two 

video sequences, such as average difference, maximum error, Mean Squared Error (MSE) 

and so on, among which, MSE is the most popular one. As shown in Equation 3-1, MSE 

calculates the average of squared difference between test video sequence (V, ) and (V,, ) 

original video sequence, where N is the total number of pixels in a single picture. For a 

colour video, MSE can be calculated separately for luminance component, or each of the 

chrominance components. 

N 
L (VO 

- 

MSE = '=' 
N 

Equation 3-1 

In practice, most video coding systems more often use Peak Signal Noise Ratio (PSNR) 

rather than MSE to assess the video quality, which is illustrated in Equation 3-2, where n 
is the number of bits used to represent a sample. In this thesis, PSNR of the luminance 

component is utilized to measure objective video quality. 

PSNR = l0loglo 
(2 1)' 

MSE 

Equation 3-2 

The advantage of PSNR is its simplicity and ease of computation, but it is not always 
consistent with perceived video quality because it only considers the MSE of part of 

signal (either luma or chroma) of a frame without taking account the Human Visual 

System (HVS) factor. Experimental results show that many HVS features influence 

perceived video quality; consequently, incorporating these features into video quality 

assessment has been suggested in the literature [58-60]. However, due to the high 

computational complexity of the HVS based measurement and the difficulty of reliably 

simulating 'real' HVS response, it has not been widely implemented. Therefore, in 

addition to PSNR, subjective testing is also carried out to test video quality in this thesis. 
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3.4.2 Subjective test methods 

The aim of the subjective testing in these experiments is to obtain a clear opinion from 

audiences about the perceived quality of test video sequences (coded and decoded by our 

algorithms). ITU-T recommendation P. 910 [61] defines subjective video quality 

assessment methods for multimedia applications, such as video telephony, video 

conferencing etc. Two methods selected from P. 910 are employed because the specified 

requirement of digital images (picture format, frame rate and bit rate) are suitable for the 

experiments in this work. One is the Degradation Category Rating method (DCR), where 

a reference sequence (source sequence without coding) and test video sequence are 

assessed in pairs. When the QCIF picture format is used, it is suggested that they should 
be presented on the same monitor as shown in Figure 3-6: the reference sequence is 

always positioned to the left of the sequence under test. After seeing each pair of 

sequences, a non-expert viewer will be asked to grade the degradation of the test 

sequence relative to the reference sequence. The levels of the degradation are listed in 
Table 3-1. 

L 

Reference Test 
sequence sequence 

Figure 3-6 Reference and test sequences position of DCR method 
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Table 3-1 Grading table for Degradation Category Rating method 

Grades Descriptions 

5 Imperceptible 

4 Perceptible but not annoying 

3 Slightly annoying 

2 Annoying 

I Very annoying 

The Pair Comparison (PC) Method also tests a pair of video sequences on the same 

screen, but they are shown in two relative positions: (1) test sequence A on the left and 

test sequence B on the right (2) test sequence A on the right and test sequence B on the 

left as illustrated in Figure 3-7. The viewer chooses the sequence he/she prefers in terms 

of perceived quality. 

A op 

mow 
sequence A sequence H 

I est I est 
sequence B sequence 

Figure 3-7 Reference and test sequence position of Pair Comparison method 

In the assessment of either DCR or PC, both reference sequence and test sequence are 
displayed on the same screen simultaneously. They are the same length and start and stop 

at the exactly same video frame. The viewers have to make their decision in less than ten 

seconds. Generally, the number of viewers required for testing each pair of video 
sequence will be from 4 to 40. In the subjective testing of this work, 15 viewers 
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participated in the experiments for evaluating each pair of scenarios and the test 

conditions are set according to the rules described in [6 1 ]. 

3.5 Computational complexity measurement 

Computational complexity is another important performance-related parameter that needs 
to be evaluated. Three different methods have been chosen to calculate complexity 
depending on the experimental situation. 

EncodinLy time 

Encoding time is a direct measurement of the algorithm complexity in software-only 

encoders. In order to estimate the complexity of different types of encoder, the time spent 

on a encoding video sequence (in milliseconds) is recorded and utilized to compare the 

complexities in Chapter 4. 

Number Of Drocessed blocks 

Encoding time depends on the processing speed of the workstation used for simulation 
and the time cost for a single function during encoding a single frame is very small. 
Therefore, it is difficult to measure accurately the complexity of each function using 
encoding time. In Chapter 5, Chapter 6 and Chapter 7, the number of macroblocks or 
blocks actually coded is chosen as an assessment of computational complexity of each 
function in a CODEC. As described in Equation 3-3, 

Ni 

Bi 

Equation 3-3 

Where Bi is the total number of MBs or blocks in frame i, Ni represents the number of 
MBs or blocks of frame i that have been coded and m is the total number of frames in a 
video sequence. 
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The computational complexity (C) is defined as the result of the sum of Ni in a video 

sequence over the total number of macroblocks or blocks of this entire sequence. For the 

reference video CODEC without our computation reduction algorithms, the complexity is 

equal to one for every function as coding is carried out on every macroblock. If the 

complexity of the CODEC with our proposed algorithm is less than 1, a computation 

saving has been achieved. 

Profiling 

The third way to calculate the computational complexity of the main functions is 

profiling. The profiling function included in Microsoft Visual C++ is used to measure the 

total time coverage of each individual functions whilst encoding a video sequence. This 

provides accurate information about processor utilization. 

The extra complexity of each proposed algorithm is calculated in terms of basic 

operations used in the computer, including addition, multiplication, shift and comparison. 

so 



Chapter 4 Computational complexity of video 

encoders 

4.1 Introduction 

Popular video coding standards (Chapter 2) employ block based video coding techniques, 

where the encoding process consists of motion estimation and compensation, DCT, 
Quantisation and Entropy coding. A video encoder also includes a decoding process 
(inverse DCT and inverse quantisation) in order to decode the current frame and 
reconstruct it for motion compensation of the next frame. Some of these functions are 

computationally complex, requiring significant processing power. Real-time 
implementation of a video encoder with a normal frame rate (25 frames/s) and good 

visual quality can be achieved by using hardware, such as a dedicated video processor. 
With the increase in speed of general-purpose processors, the implementation of 

software-only video encoders becomes more and more feasible. However, it is still the 

computational complexity of these functions that determines the frame rate and video 

quality that a software-implemented video encoder can achieve. Compared with encoding, 
the decoding process is considerably simpler because it does not require motion 
estimation, DCT or quantisation. In this chapter, the computational complexity of 

software-only video encoders is investigated in order to find out the computation cost of 

encoding functions. The Rate-distortion performance of H. 263 and H. 263+ are examined 
and the correlations between algorithm complexity and rate-distortion performance are 
discussed. 

4.2 Computational complexity analysis of video encoder 

Profile tests (Section 3.5) were performed on a PC with an Intel Pentium 1111 mobile 

processor (1.7 GHZ) in order to examine the computational complexity of the main 
functions in a video encoder. The actual time spent on each function was measured in 

milliseconds. Processor utilization (P,, ), is given by dividing the time cost of each 
function (Tfun,, jon) by total encoding time (To. 1) (Equation 4-1), and indicates the 

computational complexity of each function. There are two types of video encoders 
employed in the experiments: an H. 263 encoder based on TMN5, and an H. 263+ 
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encoders based on TMN8 (see Section 3.3). The baseline encoder of each is almost 
identical: they both use the fast forward and inverse DCT algorithm described in [56] and 
full motion estimation search algorithm. The following fast motion estimation algorithms 

are selected as an alternative to full search for each type of encoder: the Three Step 

Search algorithm [12] is chosen for the TMN5 encoder and TMN8 encoder utilizes the 

nearest neighbour search described in Section 6.2. Integer search window size is set to +/- 

7 Pixels for both full search and fast search algorithms and half pixel motion search 
function is switched on, resulting in +/-7.5 pixels total search area. 

T function 
T 
total 

Equation 4-1 

The "Carphone" video sequence (300 frames) is coded by TMN5 and TMN8 with Q=8 

and various motion search algorithms. The total time spent on encoding the video 
sequence and the percentage of processing power spent on the main functions are 
summarized in Table 4-1 and Table 4-2 for TMN5 and TMNS respectively. Since DCT, 

quantisation, inverse DCT and inverse quantisation are related functions (processing the 

residual data from motion compensation), they are grouped together for evaluation of 

processor utilization in the table. Motion estimation in the table includes both integer and 
half-pixel motion search. Except for the file input/output functions and statistical 
information calculation functions (as they are not included in a real-time encoder), other 
functions are grouped together as "Remaining functions". 
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Table 4-1 Proriling result of H. 263 (TMN5) 

Processor Utilization 

With Full search With Three-step 
search 

DCT, IDCT, Quant and 
Dequant 15.9% 26.8% 

Motion estimation (integer 
and half-pixel) 

63.8% 38.2% 

Remaining functions 20.3% 35.0% 

Total coding time(Seconds) 14.766 8.796 

Table 4-2 Profiling result of H. 263+ (TMN8) 

Processor Utilization 

With Full search With Nearest neighbour 
search 

DCT, IDCT, Quant and 12.6% 21.4% 
Dequant 

Motion estimation (integer 63.6% 38.7% 
and half-pixel) 

Remaining functions 23.8% 39.9% 

Total coding time(Seconds) 14.924 8.807 

It is clear that motion estimation takes up more than half of the processing power for both 

TMN5 and TMN8 from Table 4-1 and Table 4-2 when the ftill spiral search is employed. 
Thus motion estimation is an extremely computationally expensive function. By using a 
fast search algorithm, the encoding time decreases from 14.766 seconds to 8.796 seconds 
for TMN5 and from 14.924 seconds to 8.807 seconds for TMN8. The total processing 

power consumed by DCT and related functions as well as motion estimation is nearly 
65% for TMNS with three-step search and 60% for TMN8 with nearest neighbour fast 
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motion search; therefore, they are the most computational complex functions in a video 

encoder. 

The profiling results depend partly on the chosen processor and video sequences, but the 

experimental results clearly demonstrate that DCT and related functions and motion 

estimation are the most computationally expensive functions in a video encoder. These 

functions are therefore good candidates for complexity optimisation. 

4.3 Rate-distortion performance 

The video sequence "Carphone" was encoded using H. 263 (TMN5) with either full 

motion estimation search algorithm or three-step search. The quantiser step size (Q) was 

changed from 4 to 16 with increments of 4 and the PSNR and bitrate were recorded at 

each setting. Similar experiments were carried out for H. 263+ (TMN8) with the full 

search algorithm and the nearest neighbour search algorithm. 

Figure 4-1 and Figure 4-2 illustrate the rate-distortion curve (PSNR against bit rate) for 

TMN5 and TMN8 respectively. It is obvious that the full search algorithm outperforms 
fast search algorithms through the entire range of bit rate for both TMN5 and TMN8. 

Since TMN5 and TMN 8 employ the same baseline CODEC and the same kind of full 

motion search algorithm, the full search curves for both of them are almost identical. 

Compared with three-step search, NNS is much closer to the rate-distortion curve of full 

search, so it is clear that NNS achieves better rate-distortion performance than the three- 

step search. 

TMN5 (carphorm) 
37 

36- 

35- 

34- 

33- 

32- 

31 
Full soam 
Three-stop search 

30 
so 100 isa 200 25a X 

Sitrate(kbpe) 

Figure 4-1 Rate-distortion performance of TMN5 
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TMN8 (carphone) 

9L 
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35- 
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32- 

/" 
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Sitmte(kbpe) 

Figure 4-2 Rate-distortion performance of TMN8 

4.4 Discussion of computational complexity and rate-distortion 

performance 

Figure 4-1 shows that the full search algorithm has better coding performance than the 

three-step search, but has a high computational cost: 14.926 seconds (in Table 4-1) for 

encoding "Carphone" with 300 frames (a video sequence with a length of 12 seconds 

when the frame rate is 25 frames per second), and is therefore unsuitable for real-time 

encoding on this platform. The Three-step algorithm enables real-time coding by 

reducing the complexity of motion search with a small loss in rate-distortion performance: 
it takes only 8.796 seconds (less than 12 seconds, the requirement for real-time) to 

complete encoding of the same video clip. Similar results are illustrated in Figure 4-2 and 
Table 4-2 for Nearest Neighbour Search. These experimental results show there is a 

relationship between coding performance and computational complexity. High coding 
performance may require a complicated algorithm; fast coding algorithms can speed up 
the coding process at the expense of coding performance, which can be described as the 

trade-off problem between complexity and coding performance introduced in Section 2.5. 

A reduction in the computational cost of coding is often at the expense of a loss in coding 

performance. 

Figure 4-1 and Figure 4-2 shows that the nearest neighbour search algorithm provides 
better coding performance than the three-step search and Table 4-2 shows that its 
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encoding time (8.807 seconds) is nearly identical to that of three-step search (8.796 

seconds) listed in Table 4-1. Therefore, when trying to decrease the computational 

complexity of a video encoder, the loss of coding performance may be minimized by 

careful algorithm development and selection. 

4.5 Summary 
This chapter has demonstrated that the most computationally intensive functions in 

software-implemented video encoders are the DCT and related functions as well as 
motion estimation. Complexity reduction affects rate-distortion performance. However, 

the distortion can be minimised by developing effective algorithms. In the next chapter, 
approaches to reduce the complexity of the DCT and related function are introduced. 
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Chapter 5 Computational complexity control of 
DCT 

5.1 Introduction 

In Chapter 4, the Discrete Cosine Transform is demonstrated to be a complexity intensive 

function in software-implemented video encoders. This chapter starts by summarizing 

previous methods to reduce the DCT complexity in the literature and concentrates on the 

development of an algorithm for adaptive complexity management of the DCT function. 

Discrete Cosine Transform (DCT) based video coding standards (such as 11.263 and 
MPEG4) continue to be widely used. Software implementations of these coding 

standards are used in a wide range of applications as they can provide low-cost, efficient 

and compatible encoding and decoding functionalities. In the applications of real-time 

multimedia communication systems and/or mobile-video systems (where power is a 

significant constraint), the performance of a video CODEC may be limited by the amount 

of processing power available as well as, or rather than, the available transmission 
bandwidth. When the processor can not cope with encoding video at the required frame 

rate, it starts to drop frames, resulting in variable performance. The resulting "jerky" 

video seriously damages perceived video quality. 

The DCT (introduced in Section 2.3.2) is a widely-used transform technique in digital 

signal processing. Its main applications include image and video compression. The DCT 

operation requires a significant number of calculations. A major breakthrough in speeding 

up the DCT process was made in 1974 [62] with the invention of the first fast DCT 

algorithm, which is based on the Fast Fourier Transform (FFT). Since then, a lot of 

research work has been conducted to investigate efficient DCT algorithms, which can be 

mainly classified into two types: indirect approaches and direct approaches. The indirect 

approach speeds up the DCT process by mapping cosine sequences to other kinds of 
transformation sequences (for example: sine and cosine sequences in the Fourier 

Transform), and then making use of existing fast algorithms (for example, the FFT) [491. 

[63-65] belong to the second category, which recursively decompose a matrix of original 
signals into matrix factors to decrease the required computations. These fast DCT 
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algorithms achieve computational complexity reduction by means of mathematical 

approaches, resulting in an output exactly the same as that of the conventional DCT. 

The experimental results presented in Section 4.2 show that fast DCT algorithms are 

nevertheless complicated, requiring a large amount of coding resources. In a 

computation-constrained system, it may be necessary to resort to approximate calculation 

of the DCT so that computational complexity can be reduced further, at the expense of 
loss of information. 

Subband-DCT approaches have been proposed to achieve faster computation of DCT [50, 

66,67]. In [50], the input sequence is decomposed into a series of sub-bands by a low- 

pass filter and a high-pass filter. The high-frequency bands are discarded because they 

contain less important information and DCT coefficients are only calculated from the 

low-frequency bands. If the decomposition is repeated n times, 2n sub-bands are 

generated. A pre-determined complexity budget can be roughly achieved by adjusting the 

number of decompositions. Subband-DCT can produce an approximate DCT because 

some energy in the signal is thrown away prior to transform. The error caused by the 

approximation depends on the level and type of decomposition as well as the input 

sequence. If the input video sequence tends to have more energy in low-frequency bands, 

the output of subband DCT is similar to that of the conventional fast DCT. 

Pruned DCT techniques [51,68-70] are based on statistical characteristics of the DCT 

output: low-frequency DCT components have high values and high-frequency 

components tend to be near zero or zero. These techniques suggest computing a low- 
frequency subset of DCT coefficients (e. g. a 4x4 or W) instead of the entire W DCT. 
High-frequency DCT coefficients are set to zero directly without being calculated. In a 
video frame, the blocks have various distributions of DCT coefficients and applying the 

same size of pruned DCT to all the blocks will result in loss of information for those 
blocks that have frequently high coefficient values, causing a loss of the decoded video 
quality. 

Subband DCT and pruned DCT reduce computational complexity by approximately 
calculating the DCT coefficients. The accuracy of the DCT output depends very much on 
the input video signal: the more energy in low-frequency components, the less loss of 
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video quality. These techniques can decrease the amount of computation, but they can not 
adaptively control complexity and video quality. 

New research work has led to the development of Variable Complexity Algorithms 
(VCAs) which aim to flexibly manage the computational complexity of a video CODEC 
independent of input video signal. It is necessary to trade off the complexity reduction 
and the video quality to meet the requirement of the specific applications. Generally 

speaking, VCAs aim to achieve a scalable reduction in computational complexity with 
acceptable loss of video quality. 

A simple VCA has been proposed to reduce the complexity of IDCT function [71] by 

detecting the zero input coefficients and ignoring them in computation. Similarly in [72), 

a VCA for the DCT function saves computation resources by detecting a subset or the 

entire input signal in a block which will become zero after quantisation. An image 

analyser [73] based on hierarchical vector quantisation [74] has been suggested to vary 
the DCT complexity of the JPEG image by indicating sub-blocks containing all zero 

coefficients. This method is also applicable to MPEG video sequences. The VCAs for 

DCT and IDCT require additional calculations to classify the inputs, which may offset the 

computational savings. 

The distribution of quantised DCT coefficients can be represented by the position of the 
last nonzero coefficient: End-of-Block (EOB). It is possible to predict the EOB of each 
block by using a model and the DCT operations with reduced-computations can be 

applied to those blocks that have low EOB values. In [75], the authors have exploited the 
relationship between EOB and the quantiser step size (Q) used for each block in several 
video sequences and have found that the EOB decreases with the increment of Q. 
Consequently, it is proposed to use the quantiser step size to predict the EOB. When Q is 
larger than a pre-determined threshold, a 4x4 subset of DCT coefficients is calculated. 
Otherwise, the normal 8x8 DCT operation is carried out. This model only considers the 
influence of the quantiser on the output DCT coefficients, but does not take into account 
the variation of the input signal. It "sacrifices" blocks which have high detail and/or 
motion because a lot of important information is thrown away. This model is improved in 
[76] by including the residual energy of each macroblock after motion compensation 
(represented by Sum Absolute Difference (SAD)). The quantiser and SAD are compared 

59 



with a threshold to decide whether to calculate a full-DCT, to compute only the DC 

component of the DCT coefficients or to skip the entire DCT process. The threshold is 

identical for any input video sequence. Applying the same threshold to video sequences 

with various levels of detail and movement results in different levels of complexity 

reduction and video quality degradation. This method can reduce DCT computations, but 
is not able to provide adaptive control of the computational complexity. Appendix J in 

MPEG4 Video Verification Model (VM) 18 [77] proposes comparing the SAD of each 
block (rather than macroblock in [76]) with a threshold to predict all-zero quantised 
DCT-coefficients. It only lists the upper bound of the threshold that guarantees no loss of 

video quality: i. e. non-zero coefficients blocks are assured with full DCT operation and 
there is no further introduction of the selection of threshold. 

In this chapter, the following steps are taken to develop an "intelligent" method of 

managing computational complexity. The models used to predict the EOB are compared 
and the correlation between complexity and threshold is investigated. An adaptive 
algorithm is proposed to flexibly control the complexity of the DCT and related functions, 
including quantisation, IDCT and inverse quantisation. Experimental and profiling results 
demonstrate this algorithm can achieve and maintain a "target" level of computational 
complexity. This work has been published in [78], which is presented in full in an 
Appendix. 

5.2 Predicting End of Block and decision thresholds 

5.2.1 Predicting End of Block 

During block-based video coding, an encoder performs motion estimation to find the 

most similar area in reference frarne(s) for each macroblock in the current video frame. 

The selection is made based on error measurements, the most popular one of which is 

Sum of Absolute Difference (SAD) (shown in Equation 2-2), due to its low computation 
cost. The macroblock with minimum luminance SAD in the reference frame(s) is chosen 

as the best match for the current MB and the difference between each sample of these 
MBs is DCT transformed and encoded. 

The luminance SAD value of a MB (SADMB) has been suggested to predict the position 
of the last non-zero quantised coefficient (End of block: EOB) of every block in a MB 
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[76]. The EOB depends on the energy of the DCT coefficients in each block, which is 

decided by the residual value of each block after motion-compensated prediction. The 

SADMB represents the average value of the luminance residual signal in a MB and it 

therefore can approximate the position of EOB. However this is based on an assumption 

that every block in an MB, including four luminance blocks and two chrominance blocks, 

has the same value of EOB. If a macroblock is positioned at the edge of a high detail 

and/or motion area, some blocks will have high signal energy and others have low energy, 

so that the EOB of these blocks in the same MB will not be identical. The SADMB of each 

macroblock is calculated during motion estimation, so this method adds no extra 

computation to the encoding process. 

Appendix J in MPEG4 video VM 18 suggests using the SAD of each W block (SADB) 

to model the EOB, which is described as follows: 

77 
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Equation 5-1 

Where C(ij) are the residual samples of luminance block or chrominance block. 

SADB gives a more precise prediction of the EOB for each block than SADmB because it 

represents the energy of a single block more accurately. SADMB is computed for each 

macroblock during motion estimation. SADB can be obtained without additional 

computations by ensuring the encoder calculates SADMB from the sum of SADB of the 
luminance blocks. Additional computations for calculating SAD13 of the chrominance 
blocks are required as they are not used in motion estimation. 

In order to compare the performance of predicting EOB of SADm, 3 and SADB, the 

"Carphone" video sequence was coded by H. 263 encoder with Q=8 and no optional 

modes. SADMB for each macroblock, SADB for each block in a MB and the 

corresponding EOB value are recorded. The EOB represents the position of the last non- 

zero quantised coefficients. EOB equal to zero means all of the coefficients are zero, 
EOB equal to one means that only the DC coefficient is non-zero and so on. Since 
SADmB is the total of absolute value of 256 residual samples in a 16x 16 MB and SAD13 is 
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that of 64 residual samples of each 8x8 block, SADmj3 is normalized by dividing each 

value by 4 so that SADmB and SADB can be compared on the same basis. 

The performance of SADmj3 and SADB are compared in Figure 5-1. The line "P(EOB=O)" 

plots the probability of EOB=O against SAD (normalised SADmB or SADB)- It is clear for 

both SADmj3 and SADB that low SAD corresponds to a high probability of EOB being 

equal to zero. Furthermore, SADB gives much higher P(EOB=O) than SADMB at the same 

value through the entire range of SAD. The cumulative distribution of SADMB and SAD13 

are shown in the lines labelled with "CDF", which have a similar trend and are very close 
to each other. This indicates that the distribution of SAD values for SADB and normalized 
SADm, 3 are approximately the same. 
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P(EOB-0) 
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Figure 5-1 Probability of EOB=O and cumulative distribution (CDF) (Carphone, 
Q=8) 

Table 5-1 lists P(EOB=O), CDF (proportion of blocks) and SAD value of some examples. 
For instance, when SADB is equal to 200, there is 90% probability that EOB will be zero 
(i. e. all coefficients in this block will become zero after quantisation); however, there is 

only a 55% probability that EOB will be zero for normalized SADMB equal to 200. 

Correspondingly, there are 40% blocks which have SAD less than or equal to 200. 
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Table 5-1 Probability of EOB=O and block distributions (Carphone, Q=8) 

SAD threshold P(EOB *=O) 
Proportion of 
blocks 

SAD, 3 = 200 90% 40% 

SADmIj = 200 55% 40% 

SAD13 = 250 70% 60% 

SADr, 113 = 250 20% 60% 

The computational complexity of DCT function may be reduced using either SADMB or 
SADB to predict all-zero DCT coefficients. Given a pre-determined threshold (TO), if the 

SAD value of a MB or block is less, DCT and quantisation are not performed. For 

example, when the threshold is set to 200 and SADmB is used as a predictor, 40% blocks 

will not go through the DCT, i. e. 40% of the computational complexity of DCT and 

related functions (including quantisation, IDCT and inverse quantisation) are saved. 
Within those 40% blocks, 55% are correctly predicted and the coefficients of the 

remaining 45% are wrongly set to zero. Those 45% mis-predicted blocks will cause 
degradation of video quality. However, when SADB is employed, for the same threshold 
(200), there is the same percentage of computation reduction (40%), but the mis- 

prediction rate drops to 10%. This indicates that SADB can achieve better video quality 

than SADMB with the same reduction of DCT complexity. This is because the number of 

non-zero quantised coefficients in an individual block depends on the energy in that block 

and SADB gives a more accurate measure of block energy than SADmB (which is 

proportional to the average energy across all 4 luminance blocks in the current 

macroblock). 

5.2.2 Decision threshold 

The P(EOB=O) curve in Figure 5-1 indicates that P(EOB=O) depends on the SAD value. 
The P(EOB=O) also depends on the quantisation step size because a higher quantiser 

results in a high probability that all coefficients will be zero after quantisation. Figure 5-2 

plots the probability of EOB=O against SADB for the Carphone sequence with varying 

quantiser step size. 
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Figure 5-2 Probability of EOB=O against block SAD for Carphone with varying Q 

The value of SADB at which a given P(EOB=O) occurs is approximately related to 

quantiser step size Q, i. e. 

SADB 
P(EOB = 0) =*Q 

Equation 5-2 

In order to determine whether the DCT should be calculated for a block, SADB /Q may be 

compared with a threshold To. A complexity-reduction algorithm to reduce the 

complexity of DCT can be described in pseudocode as follows: 

IF SADB IQ < To 

THEN Do not perfonn DCT and quantisation 

Set quantised coefficients to zero 

ELSE Perfonn DCT and quantisation 

A lower value of the threshold To will tend to give a more accurate prediction of zero 
EOB, resulting in almost no loss of video quality. For example, if the threshold To is set 
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at about 25, EOB will be correctly predicted for approximately 90% of blocks when 

quantiser step size is 8. A higher value of To should provide high computational 

complexity reduction (i. e. fewer DCTs are calculated) at the expense of poorer prediction 

accuracy. 

5.3 Variation in computational complexity 

5.3.1 Variation of complexity with fixed threshold 

By using the complexity-reduction algorithm described in Section 5.2.2, video sequences 
"Carphone" "Mother and daughter" and "Claire" were coded with fixed threshold TO=30 

and a fixed quantisation step size = 8. At each frame, the number of blocks transformed 
by DCT (Ni) was recorded. The DCT complexity of a frame i (Q) is defined as Nj over 
Bi (the total number of blocks in a frame), as shown in Equation 5-3. The DCT 

complexity of the original video encoder (without the complexity-reduction algorithm) is 

equal to one as all of the blocks go through the DCT process. It is possible that the DCT 

complexity of each frame may be less than one after employing the complexity-reduction 
algorithm in the encoder. 

ci = 
Ni 
Bi 

Equation 5-3 

Figure 5-3 compares the DCT complexity of the first 200 frames of the "Carphone", 
"Mother and daughter" and "Claire" sequences for fixed TO=30. There is a clear variation 
of DCT complexity between sequences: sequences with little detail and low activity (such 

as Claire) tend to have lower complexity than high movement and detail sequences 
("Carphone", "Mother and daughter", etc. ). "Claire" has lower value of residual signal 

causing a high probability of EOB=O. Given the same threshold To, the DCT will be 

skipped for more blocks in "Claire" than for a high-activity sequence. There is also 

variation between frames in the same video sequence (e. g. frame 170-200 in "Carphone"), 

which is caused by changes in scene activity. 

65 



0- 8. T- 30.0 

I 0.5 Corphone 

03 

0.4- Moth« 7$; ttý 

02- 

0.1 

0 
0 20 40 80 00 120 140 li; 6 180 200 

Frann 

Figure 5-3 Variation of DCT complexity 

With a fixed threshold, the computational complexity of the DCT depends on the scene 

content of the input video, so it is difficult to predict how much complexity reduction can 
be achieved. It is also impossible to predict the error of skipping the DCT process (mis- 

prediction) and its effect on video quality. Therefore, it is difficult to manage the 

processor utilization required to carry out the DCT for an unknown input video sequence. 
The fixed threshold causes variation of the DCT complexity of each frame, resulting in a 

varying requirement of processing power. If available processor capacity is limited, it 

may not be possible to process the video sequence when the DCT complexity increases 

significantly. An intelligent complexity-control approach should be able to maintain a 
predictable level of computational complexity that does not depend on the content of the 

video sequence. 

5.3.2 Correlation between complexity, threshold and quantiser 

The video sequences "Claire", "Mother and daughter" and "Carphonc" were coded using 

a H. 263 encoder integrated with the complexity-reduction algorithm described in Section 

5.2.2 with a range of fixed threshold (To) and quantiser step size (Q). The corresponding 

computational complexity of the DCT function (C) was recorded for each pair of To and 
Q and Figure 54 plots the relationship of complexity (C), threshold (To) and quantiser (Q) 

for each test sequence. There is a clear relation between the complexity, threshold and 

quantiser: at a fixed threshold, complexity decreases when Q increases; a large value of 
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To tends to reduce the DCT complexity with fixed Q. Figure 54 also shows that varying 

the threshold results in a greater change of complexity than varying the quantiser. The 

shape of the T/Q/C surfaces for various video sequences is very similar and only the 

actual values of complexity are different, which indicates that there is a consistent 

relationship between C, To and Q regardless of the content of the input video sequences. 
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Figure 54 Surface of DCT complexity, TO and quantiser 

In order to examine the effect of changing the threshold and quantiser on the coded bit 

rate, Figure 5-5 plots the mean bit rate, To and Q of the above video sequences. Higher 

values of Q reduce the coded bit rate. This is because high Q produces more zero 
coefficients after quantisation and therefore less information is left for entropy coding. To 

also influences the coded bit rate (for a fixed value of Q): higher values of To result in 
lower bit rates, as fewer blocks are actually coded. However, the Wect is small compared 
with the effect of quantiser step size Q on bit rate. 
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Figure 5-6 DCT complexity against 1/QTe 

Figure 5-4 demonstrates that computational complexity of DCT is closely related to the 

threshold and quantiser and large values of To and Q tend to produce low complexity. 
Figure 5-6 plots the DCT complexity (C) against (I/QTo) for the three test video 

sequences described above. Most of the markers fall into the range specified by the two 

dashed lines, which indicates an approximately linear relationship between complexity 

and (I/QTO). Those markers who are outside this range tends to have higher value of 
(I/QTO), corresponding with lower value of Q and T. It is not necessary to take into 

account of these points as lower value of Q and T will result in almost no skipping of 
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DCT function on blocks. Consequently, C can be represented as a linear function of 

(I/QTo) for each video sequence, i. e. 

v 

To Q 
Equation 54 

Parameter v varies with the content of the video sequence. 

5.4 Adaptive control of DCT complexity 

5.4.1 Introduction 

With a fixed threshold, there is significant variation in the computational complexity of 
DCT processing between sections of the same video sequence due to the changing scene 

content. Equation 54 demonstrates the approximately linear relationship between 

complexity (C) and I/To, indicating that it may be possible to adaptively change To to 

reduce variation in complexity. Scene content in a video sequence tends to vary gradually 
(i. e. neighbouring frames are often similar in terms of detail and activity), thus it is 

proposed to update To based on the measured computational complexity C of one or more 

recently-encoded frames. It is proposed to update To after encoding each frame in order to 

maintain a near-constant "target" computational complexity (Ct) throughout the entire 

video sequence. Modifying To once per frame should be sufficient for the purpose of 

managing processor resources: a practical video encoding application will usually buffer 

one or more frames of coded data prior to transmission and so a short-term variation in 

computational complexity during the encoding of a frame is not likely to be significant. 
For practical computational management, it is more important to smooth out the 

computational complexity over a longer period. 

The development process of an adaptive complexity-reduction algorithm is investigated 

in this section, the goals of which are to: 

1. Maintain a mean target complexity C, 

2. Minimize the variation in frame complexity C,, 
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3. Minimize distortion 

5.4.2 Updating threshold 

After encoding frame n, the actual value of DCT complexity for frame n (C,, ) can be 

measured based on the proportion of blocks processed by the DCT. Based on the 

relationship between complexity, threshold and quantiser described in Equation 54, v can 
be represented as: 

CnQnTOn 
Equation 5-5 

where T% and Q, are the threshold and mean quantiser for frame n and C. is the measured 
DCT complexity of frame n (i. e. the proportion of blocks for which the DCT and 
quantisation functions were calculated as defined in Equation 5-3). 

For the next frame n+l, the threshold To(,, ) is required to achieve the target complexity 
Ct. The relationship between To(,,,, ), Ct and Q(,, +, ) (the quantiser step size at the frame 
level chosen for frame n+1) corresponds with Equation 54. Consequently, To(,, +, ) can be 

calculated from Equation 54: 

v 
TO(n+l) = 

Ct Q(n+l) 

Equation 5-6 

Assuming that the proportionality term v does not vary significantly between frame n and 
frame n+l, combining Equation 5-5 and Equation 5-6: 

TO(n+l) ": ": TOn - 

Qn Cn 

Q(n+l) Ct 

Equation 5-7 
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Rearranging gives: 

TO(n+l) : --TOn 

Qn 
1+ 

Q(n+l) Ct 

Equation 5-8 

Equation 5-8 contains a term proportional to the previous value of To and a term 

proportional to the error between the actual and target computational complexity (C,, -C, ). 

The sensitivity of Equation 5-8 to this error term may be varied by scaling the error term 

with a factor k- 

TO(n+l) "": TOn 
Qn 

1+ 
Cn - Ct 

Q(n+l) W, 

Equation 5-9 

A small value of k means that the update is sensitive to small errors (C. -Ct): it should 
therefore converge rapidly to a target complexity C, at the expense of possible instability. 
A large value of k should give better stability but slower convergence. 

If quantiser (Q) is kept constant throughout each sequence, which means that the term 
Q,, /Q(. +, ) becomes unity, Equation 5-9 can be simplified to: 

TO(n+l) =TOn 1+ 

kC, 

Equation 5-10 

5.4.3 Adaptive complexity-reduction algorithm 

Based on the method of updating the threshold (To) in Equation 5-10, the adaptive DCT 

complexity-reduction algorithm can be described as: 

1. Initialisation (set Q, k and a initial value of To); 
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2. IF SA D, 9 IQ < To 

THEN Do notperform DCT and quantisation 

Set quantised coefficients to zero 

ELSE Perfonn DCT and quantisation 

3. Update To after encoding eachframe 

4. Go to step 2 

5.5 Experimental results 

5.5.1 Video quality, convergence time and complexity stability 

The adaptive complexity-reduction algorithm for the DCT function proposed above was 
tested in terms of video quality, convergence time and the stability of the complexity. The 

quality of each video sequence coded by the adaptive algorithm is evaluated using PSNR: 

mean PSNR drop (compared with a "baseline" encoder) gives the average quality of 

entire video sequence and the PSNR value of each frame shows the variation of the 

quality throughout the sequence. Convergence time and complexity stability indicate the 

complexity-control ability of the adaptive algorithm. This algorithm can use any 
threshold for the first frame and updates it for the next frame after encoding the current 
frame. It usually takes a few frames to reach the target complexity level, and the 
convergence time is defined as the number of frames that are coded before the algorithm 
reaches target complexity (within +/-10% of Q. Changing term k in Equation 5-10 will 
affect the convergence time of the algorithm. The stability of the adaptive algorithm may 
be estimated by measuring the Standard Deviation (STD) of the DCT complexity, which 
is described in the following equation. A lower STI) value indicates high stability of the 
algorithm. 

n 
z (ci 

- 
C", 

e), n 

STD - t' 

X 

n-1 
where 

Cave 

n i=l 
cl 

Equation 5-11 
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The sequences "Carphone". "Claire" and "Mother and Daughter" were encoded by 11-263 

TMN5 encoder integrated with the adaptive DCT complexity-reduction algorithm 
described by Equation 5-10, with a range of quantiser step size Q, convergence factors k 

and target DCT complexities C, Q was kept constant throughout each sequence and the 

threshold To was initially set to an arbitrary value of 30 in each case. 

"Mother and daughter" video sequence 

Figure 5-7, Figure 5-8 and Figure 5-9 plot the variation of DCT complexity (C) against 
frame number for the Mother and Daughter video sequence with Q=8 and convergence 
factor k--2,6,10 respectively. The target complexity (i. e. the proportion of blocks for 

which the DCT is calculated) is set to 0.1,0.3,0.5. Figure 5-7 shows the obtained 

complexity of every frame when k is equal to 2. It is clear that the complexity quickly 

converges to the target value. The adaptive algorithm achieves constant and stable 

complexity for Ct = 0.3 and 0.5. However, the obtained complexity seriously oscillates if 

the target is set to 0.1. The result of k--10 is shown in Figure 5-9: the algorithm is stable 
for all the target values but converges slowly to each target, especially for Q=0.5. A good 

compromise between stability of the algorithm and convergence time is given by k--6 

shown in Figure 5-8: the algorithm remains stable for Ct ý: 0.1 and maintains the target 

complexity despite changes in sequence characteristics. 
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Figure 5-7 DCT complexity for mother and daughter with k--2 

73 



0.6 

0.5 

-2-0.4 

FE- 0.3 

c: ) 0.2 

Mother and Daughter, Q= 8, k= 6 

Ct=0.5 

Ct=0.3 

Ct=O. l 

0 50 100 150 200 
Frame 

Figure 5-8 DCT complexity for mother and daughter with k--6 
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Figure 5-9 DCT complexity for mother and daughter with k--10 

The corresponding PSNR of each frame in "mother and daughter" video sequence with 
Q= 8 and k --2,6,10 are shown in Figure 5-10, Figure 5-1 land Figure 5-12 respectively. 
For k--6 in Figure 5-11, there is a negligible drop in PSNR when Ci--0.5 (not shown in the 
figure), and a slightly larger drop when Q--0.3. PSNR drops more significantly when 
Cj--0.1, but the decoded sequence is still clearly recognizable. Figure 5-10 shows for k--2 
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a large drop and oscillation of PSNR occurs when target complexity is equal to 0.1 due to 

the unstable threshold as shown in Figure 5-7. 
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Figure 5-10 PSNR against frame number of mother and daughter with k--2 
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Figure 5-11 PSNR against frame number of mother and daughter with k=6 
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Figure 5-12 PSNR against frame number of mother and daughter with k--10 

Similar results were obtained for the other sequences (Carphone and Claire). 
Convergence factor k--6 gives acceptable performance for all sequences and all values of 
Q. 

Converuence factor k--6 

Table 5-2 summarizes the experimental results for each sequence coded by the adaptive 
algorithm with a convergence factor k--6. The mean DCT complexities listed in this Table 

are nearly the same as the target set for each case and the standard deviation of the 

measured DCT complexity ("STD Complexity") is very small. These results show that 
the adaptive algorithm can achieve the target DCT complexity and remain stable 
throughout the video sequence. Table 5-2 also shows that the PSNR drop is very small for 

each sequence and quantisation step size when Cý = 0.3 and 0.5 (the highest drop is only 
0.241 IdB for "Carphone" with Q=8 and Ct = 0.3). When Ct = 0.1, the adaptive algorithm 
can maintain the target complexity with only a small drop in PSNR except in the case of 
"Carphone" with Q=8. This is because "Carphone" contains more motion and detail than 
the other two sequences. Hence it is more difficult to achieve a target complexity of 
CFO. I (i. e. to discard 90% of blocks) without a significant loss of image quality. The last 

column in this table is convergence time and it occurs within 23 frames in the worst case. 
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Table 5-2 Performance of adaptive algorithm (k--6) 

Sequence Ct Q 
Mean DCT 

complexity 

STD DCT 

complexity 

Mean PSNR 

drop (dB) 

Convergence 

(frames) 

0.1 
8 0.1009 0.0113 0.4300 3 

16 0.0997 0.0087 0.0161 7 

Claire 0.3 
8 0.2968 0.0137 0.0276 17 

16 0.2928 0.0368 0.0 21 

0.5 
8 0.4883 0.0467 0.0026 22 

16 0.4792 0.0760 0.0 23 

0.1 
8 0.1051 0.0277 1.8294 4 

- 
16 0.1027 0.0121 0.7028 2 

Carphone 0.3 
8 0.3044 0.0247 0.2411 10 

. 3007 0.0281 0.0087 10 

0.5 
8 0.5007 0.0322 0.0227 8 

16 0.4952 0.0576 0.0007 16 

0.1 
8 

- 

0.1017 0.0202 0.6269 5 

16 0.1002 0.0128 0.1475 5 

Mother 

and 0.3 
8 0.3002 0.0093 0.0772 1 

Daughter 
- 
16 0.2965 0.0353 0.0019 10 

0.5 
8 0.4942 0.0285 0.0384 18 

16 0.4872 0.0068 0.0088 22 
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5.5.2 Proriling results 

The actual processor utilization was measured by profiling an H. 263 encoder (based on 
H-263 TMN-5) that incorporates the adaptive update algorithm (Equation 5-10). The 

encoder uses a fast motion estimation algorithm, three-step search, with a search window 
of +/-7.5 luminance samples. The Forward and Inverse DCTs are calculated using the 

algorithm described in [56]. Figure 5-13 shows the actual coding time spent on each 
function for 200 frames of the "Mother and Daughter" sequence, with k=6, Q=8 and Ct 

=0.3. Only the most computationally intensive functions are listed. "SAD 
- 
Macroblock7 

is the function that calculates SAD for integer-accuracy motion estimation and 
"FindHalfPel" calculates the half-pixel component of the motion vector. 
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Figure 5-13 Profiling result of Mother and daughter with k--6, Q=8 and Ct--0.3 

The black bars show the result when a full FDCT operation is carried out for each block 

and the DCT is clearly the most computationally intensive function. The "Model 
- 
Y" bars 

show the result of applying the proposed adaptive algorithm to the luminance blocks only, 
with a target complexity of 30%. The algorithm successfully reduces the number of 
calculations for luminance blocks by around 70% but the total computation time for the 
forward DCT (and also the Quantiser function) is only reduced by about 47% because 
DCT and Quantisation are still calculated for every chrominance block. 
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The "Model_YCrCb" bars show the results when the adaptive algorithm is applied to 
both luminance and chrominance blocks. There is a small extra computational overhead 
because SAD13 is calculated for the Cr and Cb blocks in each macroblock (this value is 

not normally calculated during motion estimation). However, the results clearly show that 

the complexity reduction outweighs this extra overhead and the encoder achieves around 
69% reduction in complexity of the DCT and Quantiser functions. 

5.6 Summary 

The DCT and related functions have been demonstrated to be computationally complex 
functions in a software video encoder. In this chapter, a complexity-reduction algorithm 
is proposed to control DCT complexity by comparing statistical information about each 
block with a threshold in order to determine whether to perform DCT and quantisation 

operations on the block. The efficiency of the algorithm depends on how accurately it can 

estimate the block information and it has been demonstrated that block SAD can provide 

more accurate prediction of block coefficients than macroblock SAD. Using a fixed 
decision threshold in the algorithm results in unpredictable performance, with variable 
complexity and quality depending on the time-varying content of the encoded video 
sequence. In order to achieve adjustable control of complexity, the adaptive algorithm 
presented in this chapter uses a feedback loop to update the threshold on a ftame basis. 
The changing of threshold compensates for variation in scene content so that the 

complexity control algorithm becomes independent of the input video signal statistics. 
The proposed algorithm enables the encoder to maintain a near-constant target level of 
computational complexity throughout the video sequence. 

The complexity, quality and convergence performance of the proposed algorithm have 
been tested by applying it to video sequences with various levels of activity and a range 
of quantisation step sizes. Results demonstrate that it works well, enabling the encoder to 

reduce the complexity of DCT and quantiser functions to a target level and keep it at this 
level throughout the entire video sequence with little deviation. The adaptive algorithm 

can achieve complexity reduction by up to 70-90% with minimal video quality loss. 

Profiling results show that the extra computation for calculating the SAD value of 
chrominance block is small compared with the total complexity reduction and therefore 

can be neglected. 

79 



Chapter 6 Computational complexity control of 

motion estimation 

6.1 Introduction 

Chapter 5 investigates an adaptive algorithm to manage the computational complexity of 
the DCT and related functions. This chapter will address the complexity problem of 
motion estimation function. 

Motion estimation has been demonstrated to be a computationally expensive function 

since the invention of video coding techniques. Many attempts have been made to speed 

up the process of block-bascd motion search in the last two decades, resulting in some 

efficient fast search algorithms as described in Section 2.3.1. Most of these algorithms 

save computations by reducing the number of candidates for motion search (such as 
three-step search [6], four-step search [79]) or by reducing the number of luminance 

samples used in the block matching process (SAD or SSE introduced in Section 2.3.1) 

[10,11,80] 
. In [10], the fast block matching process can be obtained by sub-sampling 

the luminance components in horizontal and vertical directions. Computation scalable 
algorithms [81-83] have been proposed to further the complexity reduction of the 

specified fast motion search algorithms. In [81], the authors proposed a method to 

control the complexity of a motion estimation algorithm (3-D recursive search block- 

matcher) [84]. The computation-constrained motion estimation search algorithm 
described in [82] is reported to reduce computation of the Nearest Neighbour Search 
(NNS) by varying a control parameter of search termination criterion. The value of the 

control parameter is chosen based on experiments and pre-determined for each sequence, 
and is therefore not able to provide flexible, predictable control of computational 
complexity or tradeoffs between complexity and rate-distortion performance. 

Most existing "fast search" and "computation scalable" motion estimation algorithms are 
input dependent, i. e. the computational cost of motion estimation varies depending on the 

content of the input video sequence. Typically, complex or high-motion scenes lead to an 
increased number of search operations and can therefore place an unacceptably high 
burden on the processor. When the computational burden is too high, the only solution is 
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for the software encoder to "skip" frames and reduce the encoded frame rate. This in turn 
leads to "choppy" video at the decoder. It would be preferable in many cases to manage 
the computational complexity of motion estimation in order to reduce the number of 
skipped frames and maintain a smoother video sequence, perhaps at the expense of a 
slight reduction in image quality. 

The adaptive algorithm proposed in this chapter provides efficient and predictable control 
of the complexity of motion estimation based on a particular fast search algorithm, 
Nearest Neighbour Search (NNS) [82] . This algorithm can obtain a pre-determined target 
complexity regardless of the content of the input sequence. This allows the encoder to 
adjust complexity to meet the available processor utilization. A feed-back controller is 

added to this algorithm to maintain the complexity of each frame at a target level by 
flexibly adjusting the motion estimation search pattern. Experimental results show that 
flexible management of computational complexity can be achieved with only a small 
degradation in rate-distortion performance. 

6.2 The "Nearest Neighbour Search" fast search algorithm 

Nearest Neighbour Search (NNS) is a very efficient integer-pixel motion search 
algorithm and can be adopted as an alternative to the full search in 11.263 / MPEG4 

video encoders. The search origin is the median-predicted motion vector that is derived 
from previously transmitted motion vectors of spatially or temporally neighbouring 
macroblocks. Sum of Absolute Differences (SAD) described in Equation 2-2 is employed 
as the block match measurement. Figure 6-1 illustrates the search procedure of NNS: this 
algorithm always searches the four neighbouring locations in an equal size diamond- 

shaped "layer". Then, the neighbour location with minimum SAD is chosen to be the 
centre point for the next search "layer" and its four neighbours are processed. The basic 

rule is that layer i+1 is centred at the location with smallest SAD of layer i and it 

always contains four immediate neighbours. After the first layer, there are still four 

candidates in each diamond-shaped layer, but only 2 or 3 of them need to be tested at 
each layer (because the rest of the candidates belong to previous layers). The search is 

terminated (a) when all candidates of the current layer have been considered and the 

minimum SAD value of the cur-rent layer is larger than that of the previous layer or (b) 

when the next layer would extend outside the search area. In addition to searching around 
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the median-predicted position, the (0,0) position (the position of the current macroblock) 
is also tested. 

* Median predicted search location 
* First layer search location 

,L Second layer search location 
* Third layer search locatior 

Figure 6-1 Search path of Nearest Neighbour Search 

The practical NNS algorithm used in TMN8 H. 263+ encoder model [45] requires to be 

performed on at least three layers for each macroblock because the termination rule is 

only switched on after three layers have been searched. In other words, the search 
continues until after the third search layer and when the termination rules are met, which 
can be described as: 

SADL > SADL-1 AND L: 2: 3 
Equation 6-1 

L is the number of current search layer, SAD, represents the minimum SAD value of the 

current layer and SADL-1 is the minimum SAD value of the last search layer. The search 

origin of NNS is located by the median-predicted motion vector, which is close to the 
global minimum (the best matching position) in the search area. Searching at least three 
layers for every macroblock reduces the possibility of getting trapped in local minima 
around the median-predicted motion vector. However, for those macroblocks whose best 

matching motion vector is at (0,0) position or within three searching layers, additional 
operations will slow down the coding process. Generally, L will not become very large 

when the search is terminated. 
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6.3 Reducing motion estimation complexity 

6.3.1 Complexity of motion estimation 

In block-based motion estimation, the Sum of Absolute Difference (SAD) needs to be 

calculated at each search location for the current macroblock (MB). During the 

calculation of SAD for a 16xl6 MB, each pixel requires three operations: a subtraction, 
an absolute-value calculation and an addition, so the total number of operations for one 
SAD calculation is 16xl6x3. The overall computation cost for calculating SAD per 

macroblock is (number of search locations) xl6x IW operations. The computation of 
SAD takes up most of the computation resources spent in motion search so that the 

number of SAD operations can be used to represent the complexity of motion estimation 
function. 

In the NNS motion search algorithm, there are at most four search candidates at each 
layer; the number of SAD operations (i. e. the complexity of motion estimation) is 

approximately linearly related to the number of layers for motion search. The more layers 

are searched, the more SAD operations are required, hence the more complex the motion 
search algorithm is. Therefore, it may be possible to reduce the number of SAD 

operations by controlling the search layer. Unnecessary search locations (which will not 
result in global minima) can be ignored by terminating the search at a proper time. This 

may provide a trade-off between complexity and rate-distortion performance. 

6.3.2 Upper-layer and lower-layer termination algorithm 

A straightforward way to discard the SAD operations is limiting the upper bound of the 
layer (L,, 

Pp,, 
) that may be searched. Motion search has to stop when the current search 

layer (L) is greater than the pre-determinedL. P.,., even though the normal termination 

rules ( SADL > SADL-I ) are not met. This upper-layer termination algorithm can be 

defmed as: 

SADL > SADL-1 L> Lu 
er OR pp 

Equation 6-2 
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By using this upper-layer termination rule, there is no complexity reduction or video 

quality loss for macroblocks whose best match motion vector can be found within 

However, for those macroblocks, whose best motion vector goes beyond L,, 
Pp,,, the use of 

upper layer bound L,, 
Pp,,, will decrease the number of SAD operations (i. e. complexity of 

motion estimation), with a corresponding loss of accuracy of the motion vector. 

In order to test the influence of fixing the upper-search layer on the motion search result, 
the NNS in H. 263+ TMN8 encoder is integrated with the upper-layer ten-nination 

algorithm. 200 frames of video sequence "Foreman" are coded at QCIF resolution with 
1,2,3,4 and fted quantiser step size Q=8. Rate control is not switched on. 
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Figure 6-2 Complexity Comparison of upper-layer search algorithm and fast search 
algorithm 

Figure 6-2 shows the computational complexity of motion estimation (represented by 

total number of SAD operations per frame) with various L,, 
PP, values. The complexity of 

the "full-complexity" NNS fast search algorithm (where no algorithm is applied) varies 
with the content of the input video; in contrast, the complexity of the upper-layer search 
algorithm is kept at a certain level and oscillates slightly. From this figure, it can be seen 
that the complexity of L,, 

P,,, =4 is very close to the curve of "ftill complexity" NNS in 
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most range of frames, which indicates the motion vector for most of macroblocks can be 

found in a small range and only some macroblocks with high activities will go beyond 

this range. Figure 6-3 compares the rate-distortion performance of "full complexity" NNS 

and upper-layer search algorithm. It is clear that the significant reduction of 

computational complexity is achieved at the expense of poorer rate-distortion 

performance. 
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Figure 6-3 Rate-distortion performance comparison of upper-layer search 
algorithm and fast search algorithm 

The implementation of NNS described in [45] does not end motion search when the 
termination rules are satisfied until it reaches the third layer. Searching until the third 
layer will waste computation resources for macroblocks whose best motion vector is in 
the first layer or in the second layer. The lower-laycr search algorithm allows the motion 
search to stop after the first or second layer and the search continues when: 

SADL > SADL-1 Am 
L> Ll,, 

wer 

Equation 6-3 

Where =1,2. 
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The complexity performance and rate-distortion performance of the "Foreman" sequence, 

coded by H. 263+ Tmn8 CODEC incorporated with the lower-layer search algorithm, are 
illustrated in Figure 64 and Figure 6-5 respectively. From Figure 64, it can be seen that 

the shape of complexity curves of L,,,, =1 or 2 is very similar to the "full complexity" 

one and significant complexity (the number of SAD operations) has been reduced. This 

means that a lot of motion searches naturally stop at the first or second layer. Results in 

Figure 6-5 show that there is only a little drop in rate-distortion performance when the 
lower layer termination algorithm is applied. 
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6.3.3 Relationship of complexity, bit rate and video quality 

Experimental results of upper-layer and lower-layer termination algorithms show a 

certain range of trade-offs between complexity and rate-distortion performance. 
Combining both upper-layer and lower-layer algorithms to control the available search 

range can clearly demonstrate the detailed variation of complexity and its effect on video 
quality and bitrate. The new termination algorithm is as follows: 

SADL > SAD L-1 AND 
L ý! Ll,, 

wer OR 
L>L 

upper 

Equation 64 

Where, L, =1,2,3 and 
L,, 

pp,, 
ý: Llower 

- 

Two video sequences "Foreman" and "Mother and Daughter" are coded with a range of 
quantiser (Q=4,8,12,16) and combinations of lower-layer and upper-layer search 

algorithms listed in Table 6-1. Figure 6-6 and Figure 6-7 plot the relationship of 

computational complexity, bit rate and video quality (represented by PSNR) for 

"Foreman" and "Mother and Daughtee' respectively. A wide range of computational 
complexity of motion estimation is obtained by using both upper-layer and lower-layer 

algorithms. The rate-distortion performance varies with the different combinations of 
lower-layer and upper-layer. Through selecting the appropriate combination of lower- 
layer and upper-layer, it should be possible to obtain near-optimum quality whilst 
ensuring that computational complexity does not exceed a "target" value. For the high 

movement sequence 'Toremaný' in Figure 6-6 and the moderate movement sequence 
"Mother and Daughter" in Figure 6-7 the algorithm with Ll,,, I outperforms the others 

in terms of rate-distortion performance versus computational complexity reduction. 

Table 6-1 The combination of upper-layer and lower-layer 

Lower Layer Upper Layer 

1 1,2,3,4,5,6... 

2 2,3,4,5,6... 

3 3,4,5,6... 
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Operating with a fixed lower and upper layer enables a reduction of computational 
complexity but the algorithm is still "input-dependent", i. e. the computational cost 
depends on the input sequence and is therefore not fully predictable. In the next section 
methods are examined for adaptively controlling computation in order to achieve a 
"targef 'computational complexity. 
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6.4 Adaptive control of motion estimation complexity 

Four video sequences "Foreman", "Carphone", "Mother and Daughter" and "Clair" are 

coded with L,,,., = 1, L,,,,, from I to 10 and quantiser step sizes (Q) = 4,8,12 and 16. 

These sequences offer a combination of various types of video content. Figure 6-8 plots 
the complexity of motion estimation (represented by number of SAD operations) against 
L,, 

P,,,, 
for each video sequence and Q. It can be seen for the same video sequence that 

complexity curves with various values of Q are approximately co-located, which 
indicates that the relationship of complexity and L,, 

P,,,, 
is independent of quantisation step 

size. When L,, 
Pp,, 

is less than or equal to 5, it is clear that the number of SAD operations 

increases quickly with L,, 
P,,, ; 

however, the rate of increase slows down after 

L,, 
P,,,, 

becomes greater than 5. This means there are only fewer macroblocks whose best 

motion vector is located in the high search layer, especially for low-movcment video 

sequences. Setting L,, 
Pp,, to a high value will not contribute significantly to the total 

computational complexity. 
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The computational complexity curve can be described approximately by a polynomial 

equation, which is plotted superimposed on the complexity curves in Figure 6-8. The 

slope of the straight-line approximations varies depending on the amount of activity and 

level of detail in the sequence. Therefore, the relationship between Lpper and the number 

of SAD operations (S) can be approximately represented by a linear relationship for 

lower values ofL. Ppe,. : 

KxL,, 
Pp,,, +A 

Equation 6-5 

L,, 
Pp,, 

is equal to 1,2,3,4,5 and K, A are determined by the characteristics of the video 

sequence. 

Given a target number of SAD operations (S, ) for motion estimation, the objective of the 

adaptive algorithm is to achieve and maintain the target complexity for any video 

sequence whilst minimizing any increase in distortion. 

After completing encoding frame n, the actual number of SAD operations for motion 

estimation in frame n (S,, ) can be obtained. According to Equation 6-5, the relationship 

between S,, and the upper-layer of ftame n (L,,, 
p, (, ) 

) can be described as: 

Sn =KXLupper (n)+, 
4 

Equation 6-6 

Therefore, parameter k is obtained by arranging this equation: 

Sn-A 
L 

upper (n) 

Equation 6-7 

For frame n+l, upper-layer has to be chosen in order to achieve the target complexity 

(number of SAD operations), so the relationship of complexity and for frame n+I 

is given by: 
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S, =KXLupper(n+l) + 
'4 

Equation 6-8 

Hence, 

Lupper(n+l)= S' A=L,, 
Pp,., (n) 

X 
S, -A 

K Sn -A 

Equation 6-9 

This adaptive algorithm proceeds as follows: 

1. Choose initial value for A 

2. Set initial L,, 
Pp,,, to achieve target number of SAD operations S, 

3. Encode frame n and measure the actual number of SAD operations S,, 

4. Update L,, 
P,,,, using Equation 6-9 

5. Go to step 3 

Equation 6-9 will usually produce a non-integer value of and so the rcsult is 

rounded to the nearest integer in the range 1-5. 

6.5 Experimental Results 

In the simulation, a soflware 11.263+ encoder (based on TMN8) is used to evaluate the 

adaptive complexity-reduction algorithm described in Equation 6-9. Test video sequences 

are "Foreman", "Carphone" and "Mother and Daughter", which provide various scenes 

with different levels of object movement. The picture format is QCIF (176xl44) and 
frame rate is set to 30 frames per second. Test sequences arc coded with a range of 

quantiser values ( Q=4,8,12,16) and target SAD (St), ( i. e. number of SAD operations for 

motion search) from 500 to 800 increasing by 100 at a time. The search window size is 

set to +/-7.5 pixels and rate control and optional modes are disabled. By experiment, the 

parameter A is set in the adaptive algorithm to be 100. This value gives good results for 

all the sequences and it does not appear necessary to vary A adaptively. 
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Figure 6-9, Figure 6-10 and Figure 6-11 illustrates the corresponding computational 

complexity, video quality (PSNR) and rate-distortion of "Foreman" video sequence with 

Q=8 and A= 100. "ForemaW' is a video sequence with high object motion and rapid 

changes of scene starting from frame 160, which results in a large number of SAD 

operations in motion estimation, especially in frames 160 to 180. The target complexity 
(number of SAD operations) is set to 500 or 800 and, at each target, the obtained 
complexity of every single frame and corresponding PSNR are plotted in Figure 6-9 and 
Figure 6-10 respectively. It is clear that the complexity is reduced to the target levels (Si= 
500 and S, = 800) and maintained reasonably closely to these levels throughout the 

sequence. For the scene changing area (from frame 160 to frame 200), it can be seen that 
the obtained complexity oscillates in order to achieve the target due to the adjustment of 
the adaptive algorithm. PSNR shown in Figure 6-10 is largely unchanged throughout the 

video sequences for both the targets (as would be expected with a fixed quantiser step 
size). Compared with the "full complexity" NNS fast search algorithm, the rate distortion 

performance of the adaptive algorithm in Figure 6-11 is slightly reduced by around 0.5- 
O. M. Clearly, the curve of Si= 800 gives better rate-distortion performance than that of 
St= 500, but it achieves less complexity reduction. This demonstrates the relationship 
between coding performance and complexity as introduced in Section 4.4. 
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Experimental results for "Mother and Daughter" are shown in Figure 6-12, Figure 6-13 

and Figure 6-14. Figure 6-12 plots the computational complexity of each framc at Q=8. 
The complexity drops to the same level (around 430) for both "targets" (Sj= 500 and SF 
800) because "Mother and Daughter" is a moderate-movemcnt sequence and the SAD 

operations can be reduced dramatically by setting lower-laycr to 1. The corresponding 
PSNR for both of the targets (shown in Figure 6-13) is almost the same as that of "full" 
NNS fast search throughout the sequence, which shows there is negligible drop in vidco 
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quality even with the large amount of complexity reduction. From Figure 6-14, the rate- 
distortion curve of target complexity =500 or 800 can not be seen clearly as they overlap 
that of "full" NNS fast search. This indicates that rate-distortion performance is 

maintained by using the adaptive complexity-reduction algorithm. 
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Figure 6-15 compares frame 50 of the "Mother and daughter" video sequence without 

complexity reduction and with target = 800. It is very clear that there is no difference 

between the two sample frames, indicating the video sequence with complexity reduction 

in motion estimation has the same subjective video quality as the original video sequence. 

Figure 6-16 shows the same result for the "Foreman" video sequence. 

(a) Original (b) Target = 900 

Figure 6-15 Sample frame 50 of decoded "Mother and Daughter" sequence with Q=--8 and target=800 
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(a) Original (b) Target = 800 

Figure 6-16 Sample frame 50 of decoded "Foreman" sequence with Q=8 and 
target=800 

Table 6-2, Table 6-3 and Table 6-4 summarize the results for each test sequence with 

various Q and target complexities. The computational complexity of motion estimation in 

each sequence is represented by the mean number of SAD operations. Mean PSNR drop 

(compared with the "full" complexity NNS motion search) is used to measure the video 

quality and bitrate is given in terms of kilo-bits per second. These tables also list the 

original bit rate and mean number of SAD operations of the "full complexity" NNS fast 

search, for comparison with the adaptive algorithm. The detailed results of "Foreman" 

and "Mother and Daughter" are also listed in Table 6-3 and Table 6-4 respectively and 

are similar to that of "Carphone". 

The results of "Carphone" in Table 6-2 show that target complexity has been achieved: 
the mean number of SAD operations has significantly dropped from 1416 (when Qz--8) 

and 1438 (when Q=16) to the target level (492 for Q=8 and 489 for Q=16) when S, = 500. 

For other targets (St= 600,700 or 800), the complexity has been reduced to less than the 

pre-determined target because the number of SAD operations can be easily decreased to a 
low level by setting lower-layer =1. The mean PSNR drop of "Carphone" is less than or 

equal to 0.09dB, a drop in video quality that is not likely to be obvious to viewers [95]. 

The obtained bit rate of "Carphone" coded with Q=8 and target = 500 is 124.32 kbps by 

an increase of only 4.05kbps (3%) when compared with the original bit rate of 
"Carphone" with "full" NNS fast search. This is because the adaptive algorithm saves 

complexity whilst decreasing the accuracy of the motion vector, resulting in higher 

energy in the residual macroblock, and therefore higher bit rate. Similar results can be 
found for "Carphone" with other combinations of Q and target except for Q= 16 and target 
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= 500, where the bit rate is reduced from 46.57 kbps ("full complexity" fast search) to 
45.58 kbps. The detailed results of "Foreman" and "Mother and Daughter" are also listed 

in Table 6-3 and Table 64 respectively and they are similar to that of "Carphone". 

Table 6-2 Performance of adaptive algorithm on "Carphone" 

Bit rate Mean no. of Q Mean no. Mean Bit- 
W CIO (kbps) SAD of SAD PSNR Rate 

(fast search) operations u Operations drop 
v (fast search) m (kbps) 

dB ( ) 
Q=8 Q=16 Q=8 Q=16 

120.3 46.6 1416 1438 500 8 492 0.08 124.32 

16 489 0.02 45.58 

600 8 536 0.02 124.24 

16 534 0.01 47.32 

700 8 566 0.02 123.58 u 
16 566 0.07 47.37 

800 8 590 0.09 123.12 
1 

16 
1 
586 0.02 1 47.07 
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Table 6-3 Performance of adaptive algorithm on "Foreman" 

Bit rate Mean no. of Q Mean no. Mean Bit 
(kbps) SAD of SAD PSNR rate 
(fast search) operations u operations drop 

(fast search) (kbps) 
(dB) 

Q=8 Q=16 Q=8 Q=16 

188.4 81 1645 1674 500 8 521 0.0 224.59 

16 521 0.01 99.76 

600 8 590 -0.01 219.86 

16 590 -0.03 97.5 
L 

700 8 657 0.21 217.3 

16 660 0.26 95.82 

800 8 703 0.18 215.99 

1 
-6 

714 0.25 94.41 

Table 6-4 Performance of adaptive algorithm on "Mother and Daughter" 

Bit rate Mean no. of Q Mean no. Mean Bit- 
(kbps) SAD 4w of SAD PSNR Rate 
(fast search) operations u Operations drop 

(fast search) (kbps) 
(dB) 

Q=8 Q=16 Q =8 Q=16 

50.1 19.7 1256 1297 500 8 425 -0.07 50.39 

16 426 0.1 19.82 

600 8 429 -0.08 50.31 

16 430 0.17 49.65 

700 8 429 -0.08 50.31 

0.17 19.65 

800 8 429 -0.08 50.31 

16 430 0.17 19.65 
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6.6 Summary 

In this chapter, methods for decreasing the computational complexity of the motion 
estimation function are presented for a specified fast search algorithm: nearest neighbour 
search. Through examining the inherent relation between complexity and upper search 
layer (L. 

Pp, '), an adaptive algorithm is proposed to flexibly control the computational 

complexity by varyingL,, P,, which is updated on a frame basis based on the obtained 

complexity of the previous frame. The experimental results show that motion estimation 
complexity can be successfully controlled by the proposed algorithm. The adaptive 
algorithm described here enables a flexible trade-off between computational complexity 
(in this case, the number of SAD operations) and rate-distortion performance. It could 
form part of a video encoder that can optimise performance in scenarios where 
computational resources are restricted. 
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Chapter 7 Macroblock classification and 

complexity control 

7.1 Introduction 

Methods to manage the complexity of computationally expensive functions have been 

investigated in Chapter 5 and Chapter 6. The proposed adaptive complexity-control 

algorithms for DCT and motion estimation can flexibly trade-off the computational 

complexity and rate-distortion performance in order to meet the specified requirement. 
The complexity-reduction methods for motion estimation in the literature are usually 
dedicated for a particular fast motion search algorithm, for example, [86] proposed a new 

specific block matching algorithm incorporated with complexity-distortion optimisation 

and the methods developed in Chapter 6 are based on Nearest Neighbour Search. This 

chapter will investigate approaches to reduce the computational complexity of the entire 

encoding process regardless of the type of motion estimation algorithm. 

Sum of Absolute Differences (SAD) has been proposed to reduce the complexity of DCT 

and related functions by predicting non-zero coefficients in a MB [75,77] and the 

algorithm proposed in Chapter 5 improves the accuracy of prediction by using block SAD 
instead of macroblock SAD. In [87], SAD is used to predict zero motion vectors to save 
the computation in motion estimation and the authors report that this method performs 

well together with DCT computation reduction. 

In a block-based video coding system, such as H. 263+/MPEG4 Simple Profile, motion 

estimation and compensation, DCT transform and quantisation are the main processes to 

reduce temporal and spatial redundancy. After that, there are two important parameters 

remaining for each macroblock: (1) motion vectors (MV), which point to the most similar 

matching region in a reference frame and (2) quantised coefficients (QCoeff), the residual 

signal in a MB. Since successive video frames are similar, many coded macroblocks in 

an inter-coded frame have zero motion vectors and/or quantised coefficients. A MB with 

zero MV and no non-zero coefficients is skipped after processing. If these skipped 

macroblocks could be accurately predicted prior to encoding, all subsequent operations 
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on these macroblocks (motion estimation and compensation, DCT, quantisation, etc) 

could be avoided, saving considerable computational effort. 

This chapter presents a pre-classification algorithm that categorises MBs into two types, 
66 skipped" and "not skipped", prior to encoding. Computational complexity can be 

reduced by not processing MBs that are expected to be skipped. The proposed algorithm 
provides a simple, controllable and robust method of managing computational resources. 
It can control the amount of reduced computation whilst minimising distortion due to 

occasional incorrect macroblock classification. 

The organization of this chapter is as follows. Section 7.2 introduces the concepts of 

macroblock classification and methods to reduce the computational complexity. Section 

7.3 describes the development of a pre-classification algorithm based on measured 

characteristics of an input macroblock. Simulation results for the proposed algorithm and 

conclusions are presented in Section 7.4 and Section 7.5 respectively. This work has also 
been published in [88]; the full paper is appended with this thesis. 

7.2 Distribution of Macroblock types 

An encoder that conforms to one of the popular DCT-based video coding standards (such 

as H. 263 or MPEG4 Simple Profile) processes each frame in units of a Macroblock. In 

an inter-coded picture, motion estimation is carried out in order to find a suitable 

prediction for the current macroblock from reference frames. Each block of the motion- 

compensated residual MB is coded using the DCT, quantisation, reordering and entropy 

coding. Motion vectors and quantised coefficients are encoded together with side 
information and the macroblock is reconstructed for prediction of further pictures. 

Four video sequences ("Carphone", "Mother and Daughter", "Foreman" and "Clairc") 

were encoded using an H. 263+ encoder (corresponding to the low complexity mode of 
test model TMNIO [89]; hereafter described as "TMNIO") with a fixed quantiscr step 

size (Q=8,12). Coded MBs in P-pictures were categorised into four types based on the 

values of MV and QCoeff. (1) "skipped" (zero MV, no non-zero QCoefo, (2) "MV=O" 
(zero MV, some non-zero QCoefo, (3) "QCoeff=O" (non-zero MV, no non-zero QCoefo 

and (4) "othee'(non-zero, MV and non-zero QCoefo. 

101 



Carphone 

100% 
90% 

' 80% ýý35.7 /-4 

70% 
60% 7 7% 12.2% 12 2010 

6 

50% 1 yo 21 1 '/o 
40% 28.8', 

30% 
.......... .......... 

20% ' , 

10% ::: 27.8%: -- 
...... .. ..... ... 

.......... ........... 

.......... ........... .......... 0% 
- . ......... .......... .- -- ........... 

0=8 Q=12 

(a) Carphone 

0=8 

100% 
11.7%: 

90% 
80% `1 C, 2 

53.3%: 
70% ý 
60% 

.......... .......... .......... 50% .......... 
.......... 

40% .......... .......... 76.1% 
.......... 

8,7%, 

30% .......... 
.......... . 58.8%. 

. 20% 
.......... ......... 

.......... .......... 
.......... .......... .......... 10% ..... .......... 
.......... .......... 

13.0% 
0% 

Claire M other a nd F oreman 
Daughte r 

(b) Q=8 

H Others 

UQCoeff=OMB 
0 MV=O MB 

13 Skipped MB 

Figure 7-1 Distribution of four types of NIlls in video sequences 

Figure 7-1 shows the distribution of four categories (a) for "Carplione" encoded Nk 1111 1ýý () 

quantiser step sizes (Q=8,12) and (b) for the remaining three sequences encoded with a 

quantiser step size of 8. Figure 7-1(a) demonstrates, that the proportion of skipped 

macroblocks increases with increment ot'quantiser step size (Q). When Q increases, DCT 

coefficients will be divided by a larger number and therefore there Is I higher probability 
that the DCT coefficients will become zero after quantisation. It is clear from Figure 7-1 
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(b) that low-activity sequences such as "Claire" and "Mother and Daughter" contain a 
higher proportion of skipped MBs than high-motion sequences such as "Carphone" and 
"Foreman". For "Claire" and "Mother and Daughter", more than half of the MBs are 

skipped during encoding and even for "Foreman"t there are still 13% MBs containing all 

zero MV and QCoeff.. The proportion of skipped MBs depends on the degree of detail 

and activities in a video sequence: in low-detail and low-motion sequences, neighbouring 
frames tend to have higher similarities, resulting in high probabilities of zero MV and/or 
zero QCoeff. With the exception of "Foreman", the majority of macroblocks in each 
sequence (i) contain no motion vectors, (ii) contain no coefficients or (iii) are skipped. 

It is clear from Figure 7-1 that a significant proportion of MBs are skipped (not coded), 

particularly in low-motion sequences and/or at higher quantiser step sizes (and hence 

lower bitrates). Predicting the presence of a skipped macroblock prior to coding could 

make it possible to save considerable computational resources by not carrying out 

computationally intensive functions on it. Here, the following approach is proposed to 

reduce the computational complexity: 

Prior to encoding, classify each inter-coded MB as "skipped" or "not skipped" by 

prediction from local sequence statistics. 

If the MB is predicted as "not skipped", carry out the usual encoding functions 

(motion estimation and compensation, DCT, quantisation, rescaling, IDCT, 

reconstruction, reordering, run-level coding, entropy coding). 

0 If the MB is predicted as "skippc&', indicate the presence of a skipped MB in the 

bit stream; no further processing needs to be carried out. 

If the prediction of MB type is correct, computational complexity is reduced without any 

effect on decoded video quality. If a macroblock that should have been encoded (i. e. a 

macroblock that contains non-zcro MV and/or QCoeff after encoding) is wrongly 

predicted as "skipped". a reduction in decoded quality is likely to occur. Computational 

complexity reduction may therefore lead to increased distortion. [90] demonstrates that 

objective video quality measurement (PSNR) does not always correlate with subjective 

video quality. It has been argued previously (78] that a small reduction in PSNR is an 

acceptable penalty for reduced computation. A limited degradation in PSNR (less than 
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IdB) is difficult to distinguish subjectively by audiences [85] and hence the subjective 

video quality will not be significantly affected. Furthen-nore, in a real-time video 

application, maintaining a consistent video frame rate through computational complexity 

management (at the expense of limited reduction in PSNR) is likely to be preferable to a 
"jerky" decoded video sequence due to an encoder dropping frames. 

7.3 Macroblock classification algorithms 

7.3.1 Correlation between residual energy and probability of skipped 

macroblock 

Macroblocks that are skipped have zero MV and no non-zero QCoeff. This means that (a) 

the closest matching region is in the same position in the reference frame and (b) the 

energy of the residual MB (after subtracting the reference region from current 
macroblock) is low, such that there are no non-zero DCT coefficients after quantisation. 
Both of these conditions are likely to be met if there is a strong similarity between the 
current MB and the same MB position in the reference frame. Without motion 
compensation, the energy of the residual MB formed by subtracting the reference MB (in 

the same location as current MB) from the current MB is approximated by SADOmB (sum 

of absolute differences for luminance part of macroblock, zero displacement): 

15 15 

SADOmB =LL JCc (ig j) - 
Cp (iý j)l 

i=o j=o 

Equation 7-1 

Cc (i, j) and CP (i, j) are luminance samples from an MB in the current frame and in 

the same position in the reference frame, respectively. 

SADOMB represents the total energy of a residual MB. A skipped MB has low residual 
energy and a zero motion vector and so there may be a correlation between SADOmB and 
P(skip), the probability of skipping the current MB. Figure 7-2(a) plots SADOmB for each 
MB in frame 100 of the "Carphone" sequence (QCIF format, encoded with a fixed 

quantiser step size of 8). The dark colour corresponds to a low value of SADOmB. Figure 
7-2(b) plots the distribution of skipped and unskipped MBs after coding this frame using 
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TMN 10 and the black region signifies the skipped MBs. It is c1car that skippcd Mlis tend 

to have low values of SADON113. It may therefore be POSSIbIC 10 Use SADON11, to III-C(liCt 

whether a MB is likely to be skipped. 

I 

1200, 

1000 

600 

Er 
:9pd 

SAIM, 111 

EL 
(h) Skipped NI It 

Figure 7-2 SADOMBand skipped NIB (Carphone, Q=8, Frame 1011) 

7.3.2 Classiýying skipped NlBs using SADONjjj 

The "Carphonc" sequence was coded using TMN 10 with fixed quantiscl, ,, tcl) si/C ot X. 

The dotted region of Figure 7-3 plots SADONIII (x-axis) against 11(skjp), the probability 

that a MB with a given SADOmj, will be skipped (y-axis). The solid linc plots thc 

cumulative density (CDF) ot'SADONII, and each pair ofco-ordinatcs In this line sho%ýs thc 

percentage of the MBs (Y co-ordinate) whose SADON, jj VIlUe is less than the x co- 

ordinate. 

Figure 7-3 indicates that SADOmjj correlates with P(skip)-. MBs with low SAI)()\,,, valLIC 

tend to have a high probability of' being skipped. It thcreforc may be possible tO LISC 

SADOmij as a predictor to determine whether a given MB is likely to be skipped. All 

algorithm for macroblock classification can be described in pseudocodC itS 1'()110\\'S: 

IT'SADONII, < Tsado 

THEA'skip coding this MB and set Wand Q('octl'to zero 
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ELSE continue coding 

When SADO,, jj, is less than a pre-determined threshold (TsadO), the encoder skips coding 

this MB and sets MV and QCoeff to zero directly, hence reducing the processing required 

for the macroblock. 

Carphone (D--8 380 ft-arnes 

09 
P(Skipping MB) 

08- . jz:. 

0,7- CDF 

06ý 

,ö 0.5- 

0.3ý 

0.1- 

0 0 20,0 400 600 800 1000 1200 1400 1600 1800 2000 
MB SAD 

Figure 7-3 Probability of skipping MB with Q=8 

Carphone 

0.9 0=4 

0.8- Q= 12 
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0.7. 
Q= 16 

0ý6- P(Skipping MB) with momng awfage 

0.5- 

0.4 

0.3. 

0.2ý 

0.1 
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MB SAD/O 

Figure 7-4 Probability of skipping MB with normalized SADO.,, B 
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The relationship between SADOMB and P(skip) also depends on the quantiser step size 

since a higher step size results in an increased proportion of skipped macroblocks (as 

shown in Figure 7.1). Figure 74 plots P(skip) against (SADOMB / Q) for the "Carphone" 

sequence with various quantiser step sizes Q (Q=4,8,12,16). The plots of P(skip) in this 

Figure arc smoothed with a moving average operator to facilitate comparison of the 

different sequences. Normalising SADOMB with respect to Q produces a similar trend for 

each coded sequence. The pre-classification algorithm can therefore be changed to the 

following: 

IF SADOMB /Q < Tdo 

THEN skip coding this MB and set MV and QCoeff to zero 

ELSE continue coding 

7.3.3 Improving the accuracy of the pre-classification algorithm 

The pre-classification algorithm described in the previous section 7.3.2 may not produce 
the correct classification for every MB because the probability of skipping MBs P(skip) is 

less than I in many cases. Whatever the value is chosen for TsadO, there may be some 
MBs that have a value of SADOMB below this threshold but should not be skipped. The 

pre-classification algorithm will fail in these cases, causing macroblocks to be 

erroneously skipped and increasing distortion in the decoded video sequence. Therefore, 

the aim of this section is to find a method to improve the accuracy of the pre- 
classification algorithm in order to decrease the distortion caused by incorrect prediction. 

Figure 7-5 shows one example of a macroblock falling into this category. MB(8,4) in 

Frame 18 of "Carphone" has a low value of SADOmE, (535) but is not skipped as shown in 

Figure 7-5(b). 
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k*ý HA 

"ý offma I)w 

SOL I 
(a) (b) Skipped MB 

Figure 7-5 Example ()f 1()Ný-s. ý I)(),, I, I ue N Ili (Carphone, Q=8, Frame 18, N1 (8,4)) 

I-xamination ot' Mlis that tall into this category shows that these MBs often OCCUI- Oll the 

edges of nlo% ing areas. The residual (without illotion compensation) typically contains a 

small number of high-valucd samples, not enough to cause a signiticant increase in SAD 

but enough to produce sonic tion-zero quantiscd coefficients. 

Figure 7-6 shows the residual and DCT output for the It. 11111nance part of MB(8,4) in 

frame 18 of"Carphone", which has a low SAD value, but should not be skipped. From 

Figure 7-6 (a), it is clear that this is a repon with a few high residual ValuCS, 

corresponding to a moving edge in the video sequence. Figure 7-6 (b) plots the magnitude 

ofunquantised DCT coefficients of the four luminance blocks. It can be seen that the top- 

left block has a number of significant DCT coefficients. In particular, the four low- 

f, requency DCT coefficients. the DC coefficient and the 3 lowest AC coeffliciclits 

positioned in (0.1 1,0) and ( 1,1 ) have large magnitudes. The high ilia nitude of these 

low-frequency components is caused by the hig 
,h value of a few samples in residual block. 

They are too significant to become zero after quantisation, which is the reason why this 

MB is not skipped. 
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so 

60- Block I 

40ý 
Block 2 

20- 

0 
0 

Blorkýpa 

11W. 

- -20 5 
0 Block 4 

<10 

10 
is 

15 

20 20 

(a) Residual value 

25 

20 

15 

io 

5 

0 
C 

20 Z" 

0 

(b) Absolute DCT output 

Figure 7-6 Example of DCT process of (Carphone, Q=8, Frame 18, M (8,4)) 

If the magnitudes of the DC and three low-frequency components can be approximated 
prior to encoding, the MBs (that have low SADOmB but should not be skipped) may not be 

wrongly predicted as "Skipped" type so that accuracy of the pre-classification can be 
improved. 
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A high-magnitude DC coefficient tends to produce a correspondingly high SADOMB 

(since the DC coefficient is proportional to the mean sample value of each block). 

Consequently, the DC coefficient can be approximately represented by SADOMB- 

However, the three lowest-frequency AC coefficient magnitudes are not reflected in the 

calculation of SADOmB. Therefore, a low-complexity method of estimating the magnitude 

of these coefficients (without actually carrying out the DCT) is proposed based on their 
basis pattern. The procedure for this method is illustrated in Figure 7-7. 

Macro Block 
(16XI6) 

Block 11 Block 2 

8 

8 

4 

4 

Yol 

Ylo 

Yll 

Figure 7-7 Predicting the three low frequency components 

In a 16x 16 macroblock, each W luminance block is divided into four 4 x4 sub-blocks. A, 

B, C and D (shown in Equation 7-2) are the SAD values of each 4x4 block and R (i, j) are 
the rcsidual pixel values without motion compensation. 

33 

A 
i=o j--o 

73 
C=zz 

, 
IR(i, j)l 

i=4 j=O 

37 

1: 1: IR (i, j)l 
i=O J=4 

77 

=J: I: IR(i, j)l 
i=4 j=4 

Equation 7-2 

Since the frequency represented by DCT coeff icients (0,1) is changing horizontally from 
left to right, (A+C-B-D) (shown as Yo, in Equation 7-3) can be used to approximately 
evaluate the magnitude of the DCT coefficients (0, I). Similarly, a low-complexity 

estimate of the magnitudes of the other low frequency DCT coefficients coefal, O) and 
coeffl(l, l) are provided by Y10 and Y11 respectively in Equation 7-3 based on their basis 

Block IN 
(N = 1,2,3,4) 

A B 

C 0 
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patterns. If any of these coefficients have a large value, there is a high probability that the 

macroblock should not be skipped. Therefore Y4x4block (Equation 7-4) is used to predict 

whether each block may be skipped. The maximum for the luminance part of a 

macroblock is calculated using Equation 7-5. 

Yol = abs(A +C-B- D) 

Y =abs(A+B-C-D) 10 

Y, =abs(A+D-B-C) I 
Equation 7-3 

Y4x4block= AIL4X(Yo 1, Y, 0, Y, 1) 
Equation 7-4 

Y4x4max= AMX(Y4 x 4blockl 
3, Y4x4block2 ý Y4 x 4block 

3 IY4x4block4 
) 

Equation 7-5 

The calculated value of Y4x4., is compared with a threshold T4by4 to improve the 

accuracy of skip prediction. The macroblock pre-classification algorithm becomes: 

IF SADOmB /Q < Tdo and Y4x4,,.,, < T4by4 

THEN skip coding this NM and set MV and QCoeff to zero 

ELSE continue coding 

Figure 7-8 shows the results of calculating Y01, Y10 and Y, 1 for MB(8,4) in frame 18 of 
"Carphone". Using Equation 7-3, Equation 74 and Equation 7-5, Y4x4.,, of this MB is 

calculated to be 159. If it is greater than the threshold T4by4, it will not be skipped during 

encoding. 
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Figure 7-8 Example of predicting the three low frequency components (Carphone, 

Q=8, Frame 18, NIB(8,4)) 

7.3.4 Choosing threshold T4by4 

The video sequences "Carphone", 'Toremarý' and "Mother and Daughter" were coded 
using the modified classification algorithm with various values of quantiser step size Q 

and T4by4. For each fixed value of Q, a range of values of T4by4 were tested and the choice 

of T4by4 resulting in minimum distortion was recorded. The results of this experiment 
indicate that the optimal choice of T4by4 is approximately linearly related to Q (Equation 

7-6). 

T =IOQ+70 4by4 

Equation 7-6 

Incorporating Equation 7-6 into the pre-classification algorithm gives the following: 

IF SADOm, 3 /Q < T,. do and (Y4x4m, -70)/Q < 10 

THEN skip coding this MB and set MV and QCoeff to zero 

ELSE continue coding. 

Applying this algorithm to MB(8,4) in frame 18 of "Carphone" sequence, where Y4x4,,.,, 

: -- 159 and Q=8: 
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(Y4x4..,, -70)/Q = (159-70)/8 = 11.125 

This is greater than 10 and so the MD is not skipped, regardless of the value of SADOmB. 

7.4 Experimental results 

Several simulations were conducted to evaluate the performance of the macroblock 

classification algorithms. H. 263+ TMNIO CODEC is modified with incorporating two 

pre-classif ication algorithms: (a) Tdo only and (b) Tmo+ T4by4. The performances of the 

two algorithms are compared in terms of accuracy of prediction, decoded video quality, 

rate-distortion performance and computational complexity. The three test sequences 
"Carphone", "Mother and Daughter" and "Foreman" were used with a picture size of 
QCIF (I 76x 144) and frame rate of 30 frames per second. 

7.4.1 Performance of MB prediction 

Each test sequence was coded using TMNIO encoder with classification algorithms (a) 

Two only and (b) Tdo+ T4by4 with 2 80 frames and Q=8. Fixed thresholds Tsado and T4by4 

were chosen for the two algorithms to achieve the same target percentage of skipped MBs. 

In the experiments, the pre-determined targets for "Carphone" were set to 30% and 45% 

skipped MBs, and those for "Mother and Daughter" were chosen as 45% and 70%. 

Compared with the other two sequences, "Foreman" only has one target (30%) because it 

contains a lot of high motion and it is not possible to set a high target for skipped MBs 

without a significant reduction in decoded quality. For each sequence with a specified 
target and a pre-classif ication algorithm (either (a) T,. do only or (b) T. do+ T4by4), the total 

number of skipped MBs, the number of "missed" MBs (MBs that are skipped by the 

unmodified encoder but were not predicted as skipped MB by the proposed pre- 
classification algorithm) and the number of MBs wrongly skipped by the pre- 
classification algorithm are summarised in Table 7-1. The average luminance PSNR drop 

relative to TMN 10 encoder with no complexity reduction, is also listed in Table 7-1. 

In order to evaluate the performance of the proposed classification algorithms, 280 
frames of each sequence were coded by TMNIO and MPEG-4 VM18 [47] (Simple 
Profile) with Q=8 and without any pre-classification algorithms. The percentage of 
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skipped MBs and average luminance PSNR of "Carphone", "Mother and daughter" and 

"Forernan" are shown in Table 7-2(a), (b) and (c) respectively. 

From Table 7-2(a), 7712 MBs are skipped during encoding of "Carphone" using TMN 10 

(27.82% of total MBs). Using MPEG-4 VM18 with the same coding parameters, 7409 

MBs (26.72% of total MBs) are skipped during encoding. MPEG4 has less skipped MBs 

than TMNIO, but it outperforms TMNIO by around 0.2 dB in terms of average PSNR. 
Similar results can be found for "Mother and Daughter" and "Foreman7. 

For each sequence with the same complexity target, it can be seen from Table 7-1 that 

the total number of MBs skipped by using (a) Two alone is nearly the same as that by (b) 

T. do+ TOy4ý so that the complexity reduction performance of the two algorithms is 

comparable. Table 7-1 shows that the T,. do+ T4by4 "misses" fewer MBs than T. do alone in 

each case and the number wrongly predicted skipped MBs is always lower for TsadO+ 

To, 
y4. Since the total number MBs skipped by both of the algorithms is the same, there are 

more skipped MBs correctly predicted by TsadO+ T4by4 than by TsadO. This indicates that 

T. do+ T4by4 provides a more accurate prediction than TWO only, resulting in better video 

quality, which is illustrated by the value of average luminance PSNR drop: Two+ T4by4 

has lower PSNR drop than Tdo only. For the "Carphone" sequence with Q=8, the 

maximum percentage of skipped MBs by TMNIO is 27.82% (from Table 2(a)). Hence, 

when the skipped MB target is set to 45% for "Carphone", an extra 5224 MBs (number of 

wrongly predicted MBs) are skipped by Tsado+ T4by4. These extra skipped MBs cause a 

degradation of video quality. However, because the pre-classification algorithms select 
MBs with low residual energy, the loss of video quality is minimized. 
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Table 7-1 Performance of skipping MBs prediction using two classification 
algorithms 

Average 

Video Target 
Skipped Classification Total Missed Wrongly Y PSNR 

Sequence AlBs % algorithms Skipped Predicted drop 

(dB) 

TsadO only 
Carphone 8312 1585 2185 0.22 

30% 
TsadO+, T4by4 

8329 1532 2149 0.19 

T. do only 
12413 523 5224 0.63 

45% 
T. do+ 

T4by4 

12389 431 5108 0.51 

T, 
ado only 

8298 8209 222 0.14 

45% 
T. do+ 

T4by4 

8261 8226 202 0.08 
Mother 
and 
Daughter Tdo only 

19411 1041 4167 1.05 

70% 
T. do+ 

T4by4 

19368 1011 4094 0.58 

T. do only 
8288 318 4998 0.64 

Foreman 30% 
Tsado+ T4by4 

8264 280 4936 0.41 
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Table 7-2 Number of I%IBs skipped by TMNIO and MPEG4 

(a) "Carphone" sequence 

Carphone TAIN10 MPEG4 

Skipped AIB 7712 (27.82%) 7409 (26.72%) 

r Average Y PSNR(dB) 34.10 34.32 

"Alother and Daughter" sequence 

Mother and Daughter TNINIO MPEG4 

Skipped NIB 16285 (58.75%) 16288 (58.75%) 

Average Y PSNR(dB) 34.95 35.28 

(c) "Foreman" sequence 

Foreman TMN10 MPEG4 

Skipped NIB 3608(13%) 3347 (12.07%) 

Average Y PSNR(dB) 33.37 33.65 

7.4.2 Video Quality 

7.4.2.1 Objective video quality 

Table 7-1 demonstrates that T. do+ T4by4 achieves a lower PSNR drop than T. dO only 

(with the same complexity reduction), therefore it can provide better video quality than 

T. do. Figure 7-9 shows the PSNR of each frame of "Carphone" with Q=8,45% skipped 

MBs and fixed thresholds T,,, do and T4by4. The thresholds were chosen to give a 45% mean 

reduction in computational complexity (i. e. 45% skipped macroblocks) in each case. It 

can be seen that Tdo + T4by4 consistently achieves better video quality than T,, mo alone 

throughout the video sequences, for a comparable reduction in computational complexity. 
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by4) 
31 

45",. MBskipped(Tsý: iiiJO. T4 

45% MB skipped (TsadO) 

325 
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Frame Number 

I. . igure 7-9 IISNR againo frame number for "Carphone" N%ith sallic colllplcxitý 
reduction b% t%% o (N pes of cla%%ification algorithins 

The "Carphone" \Ideo sequence \Nas coded using two types of pre-class, hcation 

algorithms. At each fixed qUantiser. T,, j, )\vas varied from low to high to parameterisc the 

perforniance ofthe algorithm at a range of computational complexity values. Figure 7-10 

plots the percentage of MBs classified as "skipped" by the proposed algorithm (x-axis) 

against the mean drop in luminance PSNR compared with the sarne sequence encoded 

without complexity reduction (y-axis). This drop in PSNR is caused by occasional 

incorrect skipping of MRs that should have been encoded. As T,,,,, (, increases, the graph 

moves to the right and up: more MBs are skipped but the PSNR drop increases. 

This Figure sho\, -.,, that classifying rilacroblocks using t,, \o thresholds. T,,,,,, ) ý T4hý4, 

produces better \ ideo quality than T,, i() alone for the entire range ot'percentage ofskipped 

NIBs and various quantiser step sizes. I-or example, using only T,,,, i,, to classify 

macroblocks, tile algorithm skips 401o ofmacroblocks at the expense of a PSNR drop of 

M(III (for a fixed quantiser step size Q=S). Using T,,,, () f T4b, 4, approximately 44"o of' 

macroblocks can be skipped without any further PSNR drop. When Q-16, skipping 

approximateiv 460o of macroblocks produces a PSNR drop of 0.5dB using only T, do; 

approximately 56% may be skipped for the same PSNR drop using T,,,,,. + T. 11, \ 4. The 
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method out-pcrl'Ornis the T,, d, ) nicthod more significand at highcr quantisci y 

step SI/CS (Q). 

Carphone 

O= 16 Tsa(JO 

Z Q= 16 Tsad0+T4by4 

04 

0.3 

0.2- 

0.1. 

o 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Skipped MBo/. 

Uigurc 7-10 Performauce comparison of various Q and t, *, v-o types of classilicalion 
algorithnis 

7.4.2.2 StibJective video quality 

1-11-11.11-C '-I I compares frame 87 ofthe "Carphone" sequence after encoding and dccoding 

using three methods: (a) without any complexity reduction, (b) after skipping 45'ý, ofthe 

macroblocks using T,,, d, ) only and (c) after skipping 45(ý, o ofthe macroblocks using T,,,,,, )+ 
T4b., 4. Figure 7-11 (b) shows some visible degradation compared with Figure 7-11 (a), with 
blocking anit'acts around the top of' the head introduced by the complexity reduction 

algorithin (note that these arti facts occur at the boundary of a moving obýj ect, as reported 

in Section 7.3.3). Figure 7-11 (c) is very similar to Figure 7-11 (a) with little apparent 

increase in distortion. When played back at 30 frames per second, there is a slight 
degradation in sequence (b) compared \\ ith (a) but no obvious difference between (c) and 

(a). An interesting feature of the (T,,,,, (, + T-th. 4) algorithin is that MBs classified as 

.. skipped" are typically in low-activity regions of the scene (such as the background of' 

"Carphone-) and incorrectly-skipped macroblocks in this region tend not to be noticed by 

the vie\ýer. Hence the SLIýjective quality is often better than the PSNR results might imply. 
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(a) Original 

(h) With TsadO only (c) TsadO+ -r4by4 

F, igure 7-11 Sample frame 87 of decoded "Carphone" sequence with Q=8 aud 45'! /, ) 
skipped NIB 

I tic "Carphotic" and "Foreman" vldco sequences are encoded by TMN 10 without and 

with the two pre-classitication algorithms: (a) T,,, dOonly and (b) T, ý,, ()- T4[,, 4 The quantisel, 

size is varied from 4 to 16 with an increment of 4. Fixed thresholds are chosen lot- 

T,,,,,, and T4b, to achieve a complexity reduction of 30% and 45'/0 tor "Carphone" and 
30% for "Foreman 11 . At each case, the coded video is decoded and tested on 15 viewers 

using the sub - jective video qUallty testing methods introduced in Section 

Degradation Category Rating (DCR) and Pair Comparison (PC) methods. 

During the DUR test, according to the grading levels Ilsted in Table 3-1, viewers gl%le 

their opinions about the degradation ofeach test sequence compared with original video 
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sequence (without compression). Score "Y' means the degradation is imperceptible and 
the perceived video quality of the test sequence is exactly the same as the original. Score 

"I" indicates the worst visual quality, clear and very annoying degradation. The 

perceived video quality of sequences coded by classification algorithms is evaluated by 

DCR drop, which is defined as the difference between its average degradation score and 
that of the sequence coded with full complexity (no classification algorithm applied) at 

each quantiser. 

Figure 7-12 and Figure 7-13 plot DCR drop of "Carphone" with 30% and 45% 

complexity reduction respectively. In each figure, the "triangle" marks show the actual 
value of DCR drop of the sequence coded by T. dOonly and the "square" marks show that 
of the sequence coded by Tdo+ T4by4- It is clear that there is a big variation of DCR drop 
between different quantiser step sizes of T. dO only. This is because the subjective opinion 
of viewers is varied and the total number of viewers is limited. In order to compare the 
performance of the proposed two algorithms, linear trend lines are also plotted in the 
same figure, indicating the trend implied by these marks. 

Carphone DCR drop (30%MB skipped) 
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0.5 - A 30%MB skipped (TsadO) 
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0 30%MB skipped 

e 0.3 (TsadO+T4by4) 
V 
19 0.2 A 30%MB skipped (TsadO): 

Linear trend line 

0.1 
-30%MB skipped 

------------------ - 
(TsadO+T4by4): Linear 

T trend line 

-0.1 
--46 
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Figure 7-12 DCR drop for "Carphone" with 30% MB skipped 
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Carphone DCR drop (45%MB skipped) 
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Figure 7-13 DCR drop for "Carphone" with 45% MB skipped 
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It is clear in Figure 7-12 that the DCR drop is around zero for TsadO + T4by4 , signifying 

no perceived visual quality loss compared with the normal coding without any 
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complexity-reduction algorithm. Both Figure 7-12 and Figure 7-13 illustrates that DCR 

drop decreases with increasing quantiser and becomes negative for TsadO+ T4by4 with 

large quantiser in Figure 7-13, e. g. quantiser =16. A negative DCR drop means that the 

video sequence with complexity reduction has better perceived video quality than that 

with full complexity at the same quantiser. For both 30% and 45% complexity reduction, 
TsadO+ T4by4 provides a consistently lower DCR drop than TsadO only along the entire 

range of Q. Similar results can be found in Figure 7-14 for "Foreman" with 30% skipped 
MBs: TsadO+ T4by4 outperforms TsadO only in terms of perceived visual quality. The 

results shown in the above figures are the average DCR drop of all test subjects. There is 

a wide variation in the recorded results due to the difference in subjective opinion of the 

viewers. The variation can be reduced by increasing the number of viewers. 

During the PC test, video sequences coded by classification algorithms are displayed 

together with the same video coded without complexity reduction. Viewers choose the 

one they prefer in terms of perceived video quality. The proportion of people, who think 

the rcduced-complexity video has better video quality than normal video with "full" 

complexity (P), is recorded. Individual P points and linear trend of P against Q are 

plotted in Figure 7-15 for "Carphone" with 30% complexity reduction, Figure 7-16 for 

"Carphone" with 45% complexity reduction and Figure 7-17 for "Foreman" with 30% 

complexity reduction. P--50% means the subjective video quality of reduced-complexity 

video is the same as that of "full" complexity video, which is plotted as a dotted line in 

each figure. 
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Figure 7-15 PC results for "Carphone" with 30% MB skipped 
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Figure 7-16 PC results for "Carphone" with 45% MB skipped 
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In Figure 7.17, it can be seen that nearly 50% of subjects prefer the video sequences with 
30% complexity reduction by using Tdo+ TOy4t whereas around 30% of subjects 

preferred the sequence -svith 30% complexity reduction using only TWO. For 45% 

complexity reduction, Figure 7-16 shows that Tdo+ T4by4achieves higher P than T. do at 
large values of Q. Figure 7-17 demonstrates that T. do+ T4by4outperfonns Tdo with an 
increase nearly 15% in P. 

7.4.3 Rate-distortion performance 

Figure 7-18 plots the rate-distortion performance of the "Carphone" sequence after 

encoding and decoding using the H. 263 TMN-10 reference model operating in Baseline 

mode ("Original'). Two methods (Tdo only and TWO+ T4by4) are used to achieve two 

target complexity reduction levels (30% skipped macroblocks and 45% skipped 

macroblocks) and the corresponding rate-distortion curves are plotted in Figure 7-18. 

The (Tdo+ T4by4) algorithm outperforms the Tdo algorithm at both complexity targets 

through the entire range of bit rate. Using the (Tdo+ T4by4) method the computational 

complexity can be reduced by 30% with a very slight degradation in rate-distortion 

performance. 
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Figure 7-18 Rate-distortion performance of "Carphonell 

7.4.4 Computational complexity 

The purpose of the pre-classification algorithm is to reduce computational complexity 
during encoding and so it is important to identify any additional computational costs 
added by the proposed algorithm. SADOMB is normally computed in the first step of any 
motion estimation algorithm and so there is no extra calculation required. Furthermore, 

the SAD values of each 4x4 block (A, B, C and D in Equation 2) may be calculated 
without penalty if SADOmB is calculated by adding together the values of SAD for each 
4x4-samplc sub-block in the macroblock (Equation 7-7). 

4 

SADO E(A+B+C+D) 
AM 

block=l 

Equation 7-7 

The additional computational requirements of the classification algorithm are the 
operations in Equation 7-3, Equation 74 and Equation 7-5. For each MB consisting of 
four M luma blocks, there are 12 (=4x3) additions, 24 (4x6) subtractions and 12 
comparisons. This is negligible compared with the computational cost of motion 
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estimation, DC7, etc. For each macroblock, therefore, the computational saving of our 

proposed algorithm significantly outweighs the small computational cost of classifying 

macroblocks. 

7.5 Summary 

This chapter describes a macroblock pre-classification algorithm that has the potential to 

significantly reduce computational complexity in a software video encoder. The goal of 
this algorithm is to avoid expensive processing of macroblocks that are destined to be 

skipped during encoding, whilst minimising distortion due to incorrect classification 

predictions. The initial SAD calculation SADOmI3 can give an approximate prediction of 

macroblock type (as reported in [87]) but incorrectly predicts non-skipped macroblocks 

that contain significant low frequency AC coefficients after quantisation, Adding a 

prediction of low-frequcncy residual energy improves the accuracy of macroblock 

classification, particularly for macroblocks at the edge of moving regions. 

Experimental results show that the proposed classification algorithm can deliver 

substantial computational savings (40-50% for a high activity sequence such as 
"Carphone", more for low activity sequences) with only a small reduction in rate- 
distortion performance. The reduction in subjective quality is actually smaller than the 
PSNR results imply, since the algorithm tends to classify skipped macroblocks in static, 

visually unimportant regions of the scene. The classification process is computationally 

simple and most of the operations may be integrated into the normal motion estimation 
process. 

The classification algorithm has been applied to H. 263+ but it is equally applicable to 
MPEG4 Simple Profile and other macroblock-based encoders. 
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Chapter 8 Discussion 

8.1 Introduction 
This chapter summarizes the main developments and experimental results of Chapter 5, 

Chapter 6 and Chapter 7. The advantages and disadvantages of these proposed techniques 

are evaluated by analysing the experimental results and comparing with other approaches 
in the literature. Possible directions for further research are also indicated. 

8.2 Summary of developments and experimental results 

Computational complexity limits the coding performance of software-only video 

encoders. This work has proposed several approaches to reduce and manage complexity 
during the encoding process. 

8.2.1 DCT complexity analysis 

An adaptive algorithm used to control the computation cost of DCT and related functions 

is introduced in Chapter 5. This algorithm exploits the correlation between all-zero 

coefficients and the SAD value of a single block (SADB) by means of statistical analysis. 
Based on the relationship found by experiments, SADB approximately predicts the 

occurrence of all-zero coefficient blocks and a lower value of SAD13 indicates higher 

possibility of a block containing all-zcro coefficients. It is obvious that SADB can not 

provide a 100% accurate estimation. However, since SADB represents the average energy 

of a block, the distortion caused by incorrect prediction is minimized. The computational 

complexity of DCT and related functions are reduced by comparing the SAD13 of every 
block with a pre-set threshold and not carrying out further processing of blocks whose 
SAD,, is less than this threshold. 

The use of a constant threshold in the entire video sequence results in variation of 

complexity, and consequently variable processor utilization, which does not satisfy the 

objective of near-constant complexity described in Section 1.2. Through examining the 

relationship between complexity(C), thresholds (To) and quantiser step size (Q), it is 

found that complexity is almost linear in relation to I/QTO. This approximate correlation 
makes it possible to choose the threshold for each frame which can achieve a target 
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complexity. The objective of DCT complexity control (near-constant complexity 

throughout the video sequence) is accomplished by adding a feed-back loop into the 

complexity-rcduction algorithm, which updates the threshold for each frame based on 

previous complexity information. 

The mechanism of this adaptive algorithm is based on two hypotheses (1) the correlations 
between complexity, threshold and quantiser and (2) successive motion-compensated 
frames have a similar distribution of coefficients in each block. Section 5.3.2 describes 
the investigation and Figure 5-6 demonstrates the correlation between these three 

parameters. It is well known that neighbouring frames have strong similarities (i. e. 
temporal redundancy); accordingly, after motion estimation and compensation, two 

consecutive motion-compensated frames are similar in terms of energy distribution. 

The performance of the proposed algorithm is evaluated by experiments in Section 5.5 in 

terms of video quality, complexity stability and convergence time. The results 
demonstrate that the adaptive algorithm can reduce computations of DCT and related 
functions by 50-70% with negligible loss of video quality. When the complexity 
reduction increases to 90%, the video quality loss is still small for low or moderate 
activity video sequences. This is because they naturally contain more all-zero coefficients 
than high motion sequences. It is also shown that the complexity can converge quickly to 

a target and may be controlled at this level without significant oscillation. Profiling 

results demonstrate the ability of the proposed algorithm to control coding time. The extra 
calculations added by this algorithm have almost no effect on the total complexity. 

Experimental results have demonstrated that the objectives for this part of the work 
described in Section 1.2 have been achieved. Compared with previous approaches to 

reduce the complexity of DCT function in literature, especially Sun's work [75], the 
innovation and advantages of this adaptive algorithm are summarized as: 

SAD13 is used to predict the all-zero coefficients block, which is more accurate 
than the SAD value of a macroblock. 

It is proposed not only to decrease computations but also to maintain near- 
constant complexity throughout the video sequence. 
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A feed back loop is employed, which updates a control threshold dynamically to 

achieve the target complexity regardless of initial condition or sequence statistics. 

However, this algorithm does not include any mechanism to stop reducing complexity in 

circumstances when the obtained video quality is very bad. For instance, if a low 

complexity target (such as 0.1) is set for a very high-motion video sequence, the adaptive 

algorithm will skip DCT and related functions for most of the blocks in order to achieve 

the target, causing a serious loss in quality. The 'best' factor k in the algorithm is chosen 
based on experimental results and it may be appropriate to change it dynamically, based 

on the characteristics of the input video. Suggestions for possible improvements and 

extension of this work are described in Section 8.3. 

8.2.2 Motion estimation complexity analysis 

Chapter 6 describes management of computational complexity of motion estimation 
function based on nearest neighbour search (NNS). As described in Section 1.2, the 

objective of this development is to achieve constant complexity of motion estimation 
throughout the video sequence, which is fulfilled by the proposed adaptive algorithm. 
Through examining the search pattern and the termination rules of NNS, it is found that 
the complexity of motion search can be reduced by controlling the maximum number of 
layers that are searched. The near linear correlations of complexity and number of search 
layers found in the simulations demonstrate the possibility of adjusting the maximum 

number of search layers for the current frame in order to obtain a target complexity. The 

adaptive algorithm for motion estimation is built on two foundations, which are similar to 

that of the adaptive algorithm for DCT, (1) the linear correlation between complexity and 
the number of search layers and (2) neighbouring frames have strong similarities. 

The experimental results in Section 6.5 demonstrate that the adaptive algorithm for 

motion estimation achieves good performance in decreasing and controlling 

computational complexity. However, the use of this algorithm causes degradation in rate 
distortion performance that compensates for the reduction in computational complexity. 

Conventional methods of decreasing the computation cost of motion search typically 

reduce the number of candidates involved in the search. In comparison with conventional 

methods, the approach investigated in Chapter 6 has the following innovative aspects: 
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* It achieves ncar-constant complexity of motion estimation by means of 
dynamically updating thrcsholds. 

* The control of the complexity is largely independent of the input video signal. 

A disadvantage of this approach is that it cannot always achieve exactly the pre- 
determined target because the number of layers used in changing the threshold is limited 

and it can not perform very fine adjustment. This approach is designed for reducing and 
controlling the complexity of nearest neighbour search and it cannot be directly applied to 
other fast motion search algorithms, but the basic concept and mechanism of this 
approach may be applicable to other fast search algorithms for block-based motion 
estimation. 

8.2.3 Macroblock classification analysis 

Chapter 7 introduces a prc-classification algorithm used to manage the computational 

complexity of the entire encoding process including motion estimation and compensation, 
DCT and related functions as well as variable length coding. Certain macroblocks contain 

all-zero quantised DCT coefficients and zero motion vectors and these macroblocks are 

categorized as skipped MB by a pre-classification algorithm. Encoding these skipped 
NIBs wastes computational resources as they are skipped after processing. Significant 

computational can be saved by not coding these skipped MBs, so the main task of this 

prc-classification algorithm is to identify skipped MBs correctly prior to encoding. 

The first approach presented in Chapter 7 predicts skipped NIBS by using SADOMB (SUM 

of absolute difference of the luminance part of a MB without motion estimation). Since 
SADOmB is the value of the error measurement for zero displacement in motion search 
and represents the average energy of a macroblock, low SADOmI3 value indicates a high 

possibility of both zero motion and all-zero DCT coefficients after quantisation. 
Therefore, a MB is classified as a skipped MB if its SADOmB value is less than a pre- 
determined threshold. SADOMB provides a good prediction of skipped MB, but it is not 
100% accurate and there are always some NIBS with low SADOmB values which are not 
skipped naturally. Through examining the characteristics of those NIBS, it is found that 
they often fall into the area on the edge of the movement in a picture. They typically have 
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a few high value coefficients, which are not enough to significantly increase the value of 
SADOmB, but can produce non-zcro coefficients after quantisation. 

A new method is added to the prc-classification algorithm to improve the accuracy of the 

prediction. It identifies those unskipped MBs with a low SADOmB value by estimating the 
low-frequency components. When the estimated low-frequency value exceeds a certain 
level, this 1AB will not be skipped even if its SADOmj3 is less than the threshold. This 

method improves the accuracy of the pre-classification algorithm and the small additional 

computation can be ignored in comparison with a significant computational saving. 

Experimental results in Section 7.4 demonstrate that prediction accuracy is improved by 

the new method of estimating the low-frequency components of the DCT, resulting in an 
increase in decoded video quality and rate-distortion performance compared with the 
basic method of SADOMB only. The proposed pre-classification algorithm can deliver a 
3045% complexity reduction with small degradation in objective video quality. The 

subjective video quality is actually higher than implied by PSNR because the algorithm 

skips the macroblocks in unimportant areas, such as the background. 

Methods of complexity reduction described in the literature are performed on single or 
related operations during encoding, so that the maximum complexity saving is limited. 
This pre-classification algorithm has the following advantages: 

This algorithm is able to decrease the computation burden for each 
macroblock in terms of the entire coding process, so it can obtain more 
significant complexity saving than other methods. 

* This algorithm minimizes the incorrect prediction of skipped macroblocks by 

means of estimating low-frequency DCT coefficients. 

A fixed threshold is utilized to obtain the complexity target and it may be possible to 
achieve better results by changing it adaptively. Furthermore, ftirther work is needed 
before this algorithm can be applied to practical real-time video communications. Section 
8.3 gives suggestions for future research. 
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8.3 Suggestions for future work 

The techniques presented in this thesis could be extended in several ways. This section 
lists some possible topics for further development, some of which are directly linked with 
the proposed complexity-rcduction algorithms; others indicate general directions for the 
longer term. 

1) The adaptive algorithm for DCT and related functions updates the thresholds for 

the current frame based on one previous frame and it may be possible to achieve 
better stability by examining several preceding frames. The 'best' factor k is 

selected according to experimental results; in order to obtain the best control for 

various sequences with different levels of coding parameters, it may be necessary 

to change it dynamically, based on the characteristics of the video sequence and 

the current coding situation. 

2) The macroblock pre-classification algorithm employs a fixed threshold to achieve 

complexity management. A suitable approach for extending this work might be to 

include a control algorithm such as the feedback-based computational complexity 

control mechanism described in Chapter 5 to achieve constant and stable 

complexity. 

3) The macroblock pre-classification algorithm reduces complexity by skipping 
MBs with all-zero DCT coefficients and zero MV. There are still two types of 

macroblocks that may benefit from complexity reduction: "QCoeff=O" and 
"MWO". Further work might be appropriate to integrate the pre-classification 
algorithm with computational management of "QCoeff=O" macroblocks (e. g. the 
DCT block classification algorithm described in Chapter 5) and "MV=O" 

macroblocks. 

4) Computational management affects the rate-distortion performance of a video 
CODEC and so it could be useful to take bit rate into account and examine the 
joint control of rate, complexity and distortion [39]. 

5) The Advanced Video Coding standard (MPEG-4 part IO/H. 264) has a significant 
performance improvement over previous video coding standards due to the 
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employment of new techniques, such as multiple references frames and variable- 
size blocks. However, it is also these new techniques that dramatically increase 

the complexity of the CODEC and make it difficult to implement in real-time. 
Researchers have already started to work on this problem and to date mainly 
concentrated on speeding up the motion estimation [91-93]. The complexity 
control techniques developed in this thesis are based on block-based video coding 
and focus on the main coding functions. It may be possible to apply these 

algorithms to the 11.264 encoder and investigate new approaches in order to 

achieve adaptive control of the complexity of H. 264. 
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Chapter 9 Conclusions 

This thesis addresses the computational complexity problem of software video encoders. 
The performance of soft%%-are CODECs is constrained by several parameters including 

computational complexity and transmission bandwidth. In the scenarios of real-time 

multimedia and mobile video, computational complexity becomes a key constraint. The 

obtained video quality of a coded sequence depends on the available bitrate and 

computational capacity. The aim of this work is to limit the computational burden as well 

as to adaptivcly control complexity in order to provide optimal video quality. 

Ilie allocation of computation resources to each function during the encoding process is 

examined and profiling test results show that motion estimation, DCT and related 
functions (including quantisation, IDCT, and inverse quantisation) are typically the most 

computationally complex functions and therefore become candidates for complexity 

control. 

An adaptive complexity control algorithm for DCT and related functions is described in 

Chapter 5, which can reduce computation to a target level and keep it at this level 

throughout a video sequence. Constant complexity performance can be obtained at the 

expense of negligible or little loss of video quality as compared with full DCT complexity. 
The main innovation of this approach is that (1) it provides adaptive control of 

computational complexity rather than a simple reduction in computation and (2) the 

complexity control is largely independent of the input video sequence. 

Most existing "fast" motion estimation algorithms reduce computation by decreasing the 

number of candidates for motion search. In many cases the complexity reduction depends 

on the content of video sequences. In Chapter 6, a variable-complexity algorithm is 

described for managing motion estimation complexity based on the Nearest Neighbour 

Search algorithm. This algorithm has the following advantages: (1) it is capable of 

maintaining the complexity at a near-constant target level regardless of the input video 

signal, (2) it achieves small loss in rate-distortion performance. 

Coded macroblocks are classified into "skipped" and "unskipped" types based on the 
value of quantised DCT coefficients and motion vectors. In Chapter 7, two macroblock 
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pre-classification algorithms have been investigated to predict the skipped MBs prior to 

encoding, with the potential to save significant computational effort by not coding these 

Ms. The accuracy of the prediction of the first proposed algorithm is improved by 

estimating the magnitude of low-frequcncy DCT coefficients. The most important 

advantage of this technique is that the achieved computational complexity reduction 

applies to the entire encoding process for a macroblock rather than single functions or 

groups of functions. 

A reduction in computational complexity of video encoders affects decoded video quality. 
The proposed algorithms achieve the minimal quality distortion under a fixed encoder 

complexity constraint and provide controllable trade-offs between complexity and video 

quality. Computation resources are efficiently allocated among different frames and 

components of a video sequence. 

The techniques described in this thesis fulfil the aim and objectives of this research work. 
They arc practical and can be applied to video coding applications where encoding time is 

an important factor, such as real-time multimedia systems, to control computational 

complexity whilst maintaining acceptable video quality. These algorithms can also 
bcncfit power-constrained systems, for example mobile video phones, by reducing the 

power consumption for encoding video, hence potentially achieving longer battery life. 
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Abstract 

Typically, many macroblocks (MBs) are skipped during encoding of H. 263 or MPEG-4 SP video data, particularly at 
low bit-rates. In this paper, we describe an algorithm that predicts the occurrence of skipped MBs prior to encoding, 
making it possible to save significant computational effort by not coding these MBs. The algorithm estimates the energy 
Of low-frequency quantized coefficients in order to classify each MB as 'skipped' or 'not skipped'. Results show that the 
algorithm can deliver substantial computational savings at the expense of a small reduction in rate-distortion 
performance. 
C) 2003 Elsevier B. V. All rights reserved. 

1. Introduction 

Video CODECs based on the H263 [5] and 
MPEG-4 [3] video coding standards are used in a 
wide range of applications. Software-only CO- 
DECs are becoming particularly popular, offering 
advantages such as flexibility, ease of upgrading 
and distribution. In real-time and/or power-con- 
strained applications, the performance of a video 
CODEC may be limited by the amount of 
processing power available as well as, or rather 
than, the available transmission bandwidth. In a 
desktop video conferencing system, the CODEC 
runs on a general-purpose PC and has to share 
processing resources with other applications. in a 
mobile video handset, power consumption is 
closely related to processor utilization and it may 

*Corresponding author. Fax: + 44-1224-262-444. 
E-mail address: 9905854@rgu. ac. uk (Y. Zhao). 

be necessary to restrict computational processing 
in order to maximize battery life. Current software 
video applications typically control processor 
utilization by dropping frames during encoding, 
leading to intermittent and 'jerky' motion in the 
decoded video sequence. Hence, computational 
complexity can be a major constraint on coding 
performance. It is therefore important to develop 

methods of managing the computational complex- 
ity of video CODECs. 

Previous work on reducing computational com- 
plexity of video CODECs has included many 

proposals for 'fast search' motion estimation 
algorithms [6,7]. Adaptive motion estimation 
algorithms such as Nearest Neighbour Search [1] 

provide coding performance that is close to that of 
Full Search with greatly reduced complexity. 
However, the computational cost of this type of 
algorithm can vary significantly depending on the 

scene characteristic of the video sequence. Several 

0923-5965/$ -see front matter (D 2003 Elsevier B. V. All rights reserved. doi: 10.10 16/S0923-5965(03)00072-9 
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methods [10,21 have been proposed to reduce the an 
computational complexity in the discrete cosine Se 
transform (DCD by calculating a subset of the 
DCT coefficients. Applying these methods to all 
blocks in an image will significantly reduce the 2. 
quality of the decoded image and this has led to 
proposals for algorithms that selectively calculate 
the DCT based on sequence statistics [111. In [91, r 
we describe an algorithm that enables flexible and 0 
accurate management of DCT complexity in a il 
software video encoder and a similar approach to n 
motion estimation complexity is presented in 114]. a 
The initial calculation of sum of absolute differ- a 
ences (SAD) for zero motion vector (MV) is used 
to reduce motion estimation complexity in [13] and 
the authors report that this method performs well 
together with DCT computation reduction. The 
results presented in these papers show that 
variable-complexity algorithms can reduce com- 
putational complexity, usually at the expense of 
increased distortion. 

Many coded macroblocks (MBs) in an inter- 
coded frame have zero MVs and/or quantized 
coefficients Wcoeff). An MB with zero MV and no 
non-zero coefficients is skipped. If these skipped 
MBs could be accurately predicted prior to 
encoding, all subsequent operations on these 
MBs (motion estimation and compensation, 
DCT, quantization, etc. ) could be avoided, saving 
considerable computational effort. 

This paper presents a pre-classification algo- 
rithm that categorizes MBs into two types, 
'skipped' and 'not skipped', prior to encoding, 
Computational complexity can be reduced by not 
processing MBs that are expected to be skipped. 
The proposed algorithm provides a simple, con- 
trollable and robust method of managing compu- 
tational resources. It can control the amount of 
reduced computation whilst minimizing distortion 
due to occasional incorrect MB classification. 

This paper is organized as follows. Section 2 
introduces the concepts of MB classification and 
the trade-off between computational complexity 
and rate-distortion performance. Section 3 de- 
scribes the development of a pre-classification 
algorithm based on measured characteristics of 
an input MEý and Section 4 presents simulation 
results for the proposed algorithm. Conclusions 

d suggestions for further work are given in 

ction 5. 

Distribution Of macroblock types 

A CODEC that conforms to one of the popular 
ICT-based video coding standards (such as 11.263 

r MPEG-4 Simple Profile) processes each frame 

i units of an MB. In an inter-coded picture, 

, iotion estimation is carried out in order to find 

suitable prediction for the current MB from 

reference frame. Each block of the mOtiOn' 
ýompensated residual MB is coded using the DCT, 

juantization, reordering and entropy coding. Ws 

ind quantized coefficients are encoded together 

with side information and the MB is reconstructed 
for prediction of further pictures. 

Four video sequences ('Carphone', Mother and 
Daughter', 'Foreman' and 'Claire) were encoded 
using an H. 263 +encoder (corresponding to the 
low complexity mode of test model TMN10 1121; 

hereafter described as 'TMNIO') with a fixed 

quantizer step size. Coded MBs in p-pictures were 

categorized into four types: 'skipped, (zero MV, 110 

non-zcro Qc., ff), 'MV=0' (zero MV. some 1101" 

zero Qc(,, ff), IQCe -zero 
MV, no 

, ff = 0' (non 
non-zero Qcefr) and 'othee (non-zero MV and 

non-zcro Qc(,, ff). Fig. I shows the distribution of 

the four categories (a) for Carphone' encoded 
with two quantizer step sizes and (b) for the 

remaining three sequences encoded with a quanti- 
zer step size of 8. Fig. 1(a) demonstrates that th. c 

proportion of skipped MBs increases with quanti- 
zer step size and Fig. l(b) shows that 101" 

motion sequences such as 'Claire' and 'Mother 
and Daughter' contain a higher proportion Of 

skipped MBs than high-motion sequences such as 
'Carphone' and 'Foreman'. With the exception Of 
'Foreman', the majority of MBs in each sequence 

coeffcicnts or (i) contain no MVs, (ii) contain no 
(iii) are skipped. 

It is clear from Fig. I that a significalit 
proportion of MBs are skipped (not Coded)' 
particularly in low-motion sequences and/or at 
higher quantizer step sizes (and hcncc lower bit- 

rates). Predicting the presence of a skipped 
1ý413 

Prior to coding could make it possible to save 
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Fig. 1. Distribution of four types of MBs in video sequences: (a) Carphone; and (b) Q=8. 

considerable computational resources by not 
carrying out computationally intensive functions. 
We propose the following approach to MB 
classification: 

1. Prior to encoding, classify each inter-coded MB 
as 'skipped' or 'not skipped' by prediction from 
local sequence statistics. 

2. If the MB is predicted as 'not skipped', carry 
out the usual encoding functions (motion 
estimation and compensation, DCT, quantiza- 
tion, rescaling, IDCT, reconstruction, reorder- 
ing, run-level coding, entropy coding). 

3. If the MB is predicted as 'skipped', indicate the 
presence of a skipped MB in the bitstream; no 
further processing is carried out. 

If the prediction of MB type is correct, 
computational complexity is reduced without any 
effect on decoded video quality. If an MB that 
should have been encoded (i. e. an MB that 
contains non-zero MV and/or Qc,,, ff after encod- 
ing) is predicted as 'skipped', a reduction in 
decoded quality is likely to occur. Computational 

complexity reduction may therefore lead to 
increased distortion. We have argued previously 
[91 that a small reduction in PSNR is an acceptable 
penalty for reduced computation. A limited 
degradation in PSNR (less than I dB) is difficult 
to distinguish subjectively [8]. Furthermore, in a 
real-time video application, maintaining a consis- 
tent video frame rate through computational 

complexity management (at the expense of limited 
reduction in PSNR) is likely to be preferable to a 
'jerky' decoded video sequence due to an encoder 
dropping frames. 

3. Macroblock classification algorithms 

3.1. Correlation between residual energy and 
probability of skipped macroblock 

MBs that are skipped have zero MV and Qc., ff. 
This means that (a) the closest matching region is 
in the same position in the reference frame and (b) 
the energy of the residual MB (after subtracting 
the reference region) is low, such that there are no 
non-zero DCT coefficients after quantization. 
Both of these conditions are likely to be met if 
there is a strong similarity between the current MB 
and the same MB position in the reference frame. 
The energy of the residual MB formed by 
subtracting the reference MB (without motion 
compensation) from the current MB is approxi- 
mated by SADOMB (SAD for luminance part of 
MB, zero displacement): 

15 15 

SADOMB =EE ICC(Q) 
- CPYJA (1) 

i=0 j=0 

Cc(Q) and Cp(Q) are luminance samples from an 
MB in the current frame and in the same position 
in the reference frame, respectively. 

Claire Mother and Daughter Foreman 
(b) 
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When SAI)OMB/Q IS less than I pre-determined 
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threshold value is chosen, there may he simne 
MBs that have a value or SADOMH helow this 
threshold but should not be skipped. The ckissi- 

Ca, phone 

0.7 

,a 04 

0.3 

0.2 

0.1 

1-ig. 4. Prohahilit. N )I' ski ppilIg %Ili%% 1111 1101 IlIA I i7cd SA1 )()\Ili 
ý 

ficatioll algoi-1111111 xvill f"lil if) tl)C. W cases, causing 
N413s to be crroncouslý skipped and increasing 
dis(ortion ill the dccodcd vidco sequence. Fig. 5 
sho"s olle example of' an MB I'alling into this 
catcgorv. MB(8.4) ill Frame IS ol' Varplione' has 
a low %aluc of' SAD0\114 (5 3 5) bill Is [lot skipped. 

Fumination of' Mlis that fall into 11iis cafegorý 
sllo%k, s that these MR,, okell occur oil the edges of- 
moving arcas. The i-csidual (williout motion 
collipcilsatioll) týpio:, IIIN contilills a slimll 1111111bey 
of' Illgh-VAHM S41111I)ICS, 1101 Cll0LlgIl to callse ýl 
significant increase ill SAD bill enough to produce 
11011-ICI-0 LIUMM/M COCHiCIC111S. I-ig. 6 ShOWS 1111C 
residual and DCT oulplit 1,01, [lie luminance palt oI' 
MB(8,4) Ill h-ame 18 of' 'Uarphonc'. The i-csidual 
(a) coillailis a si%fle high-valtled 1-cgion (corre- 
sponding to a moving edge ill the ýideo sequence). 
The Linqualili/M DCT cocIlicient Illagnitilde of' 
tile l'otir luminance blocks (h) sho"s that tile top- 
Ich block has a number ol'significant coct'liclelits. 
Ill tile I'Mil' IOW-fi-C(ILICIICý' D(-l' COCIji- 
clents Wie DU coct'ficient and file three lowest AC 
coefficients) have 1,11-gc magill(lides. 

A high-nizigniludc DC cod'ficient lends 

PYOdLlCC d COlTCSP0lldillj'1. V high SADO..,, llt (since 
tile DC coelliciellf is proportional to file 111call 
sailiple value of' cach block). llmke\er, tile Ifirce 
l0WCSt-I'f-C(ILlcncv AC coeiliclent mapnifudes m-c 
not rcl1ccfed ill tile CACLIkItIOll ol' SAD0\11t. 
We thcref'ore propose a loýk-complexily Inctilod 
01, estilliatillL, the Inau'llilude 0,111CSC codficlent.. " 
(without actuallv carl-Ying out 1hC DUT) and this is 
iflusirated ill Fig. 7. 

'', I I'll-, "i, 

, I') 

I-, g 5.1ýxýjjjjple of low-SADO,, fli %alue NIB (( arphone, Q 8,1 ranic IS, %IB (8,4)) (a) SADO,, 111. and (b) skipped NIB 

0 50 1 (X) 150 2(X) 2, W 

MB SAD/Q 
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Caqftm CIN-8 Fmý 18, MB(8,4) 
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0 

-20, 
lock 3 

0 slod 0 
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Coeff(I. 0 ff(011) 
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DC of block2 

10 0( block4 

0 

10 16 10 to 

(a) 
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Fig. 6. Example of DCT process of (Carphone, Q=8, Frame 18, MB (8,4)): (a) residual value; and (b) absolute DCT output. 

Macro Block Block N 
(1606) (N - 1.2.3,4) Y01 

Block I Block 2AB 

1=4> =4> Y10 
Block 3 Block 4CD 

Y11 

Fig. 7. Predicting the three low-frequency components. 

Each 8x8 luminance block is divided into four 
4x4 blocks. A, B, C and D (Eq. (2)) are the SAD 
values of each 4x4 block and R(Q) are the 
residual pixel values without motion compensation 

3337 
A=E1: JR(Q)j B=EE JR(Q)j 

i=0 J=O i=O J=3 (2) 0777 
C=1: 1: JR(Q)j D=1: ý JR(Q)j 

i=4 J=3 i=4 J=4 

Yol, Ylo and Y11 (Eq. (3)) provide a low- 
complexity estimate of the magnitudes of the three 
low-frequency DCT coefficients coeff(0,1), 
coeff(1,0) and coeff(l, l), respectively. If any of 
these coefficients is large then there is a high 
probability that the MB should not be skipped. 
We therefore use Y4 x 4block (Eq. (4)) to predict 
whether each bloc 

,k 
may be skipped. The max- 

imum for the luminance part of an MB is 

calculated using Eq. (5) 
Yol = abs(A +C-B- D), 
Ylo = abs(A +B-C- D), 
Yn = abs(A +D-B- C), (3) 

Y4 x 4block = max(Yo 1, Ylo, Y, 1), (4) 

Y4 x 4..,, = max( Y4 x 4bl,. k It Y4 x 4block2 
9 

Y4 x 4block3t Y4 x 4block4)- (5) 
The calculated value of Y4 x 41nax is compared 

with a threshold T4x4 to improve the accuracy of 
skip prediction. The MB classification algorithm 
becomes: 

IF SADOM BIQ < Tsado and Y4 x 4,,, < T4 
x4 THEN skip coding this MB and set MV and QC., ff 

to zero 
ELSE continue coding 
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A, B, C, D value 
in a MB 
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1 155 159 129 

=1> 2 19 15 3 

39 25 25 

4 38 18 10 

Fig. 8. Example of predicting the three low-frequency components (Carphone, Q=8, Frame 18, MB(8,4)). 

Fig. 8 shows the results of calculating Y01, Y10 
and Y11 for MB(8,4) in frame 18 of 'Carphone'. 
Using Eqs. (3)-(5), Y4 x 4max of this MB is 
calculated to be 159. If it is greater than the 
threshold T4x4, it will not be skipped during 
encoding. 

3.4. Choosing threshold T4 
x4 

The video sequences 'Carphone', 'Foreman' and 
'Mother and Daughter' were coded using the 
modified classification algorithm with various 
values of quantizer stepsize Q and T4x4. For each 
fixed value of Q, a range of values of T4x4 were 
tested and the choice of T4x4 resulting in minimum 
distortion was recorded. The results of this experi- 
ment indicate that the optimal choice of T4x4 is 
approximately linearly related to Q (Eq. (6)) 
T4x4 ýI OQ + 70. (6) 

Incorporating Eq. (6) into the pre-classification 
algorithm gives the following: 

IF SADOMB/Q< Tado and (Y4 x 4max-70)/Q< 10 
THEN skip coding this MB and set MV and QCOe 

to zero 
ELSE continue coding 

Applying this algorithm to MB(8,4) in frame 18 
of 'Carphone' sequence, where Y4 x 41nax =-- 159 
and Q=8: 
(Y4 x 4. ax - 70)IQ = (159 - 70)/8 = 11.125. 

This is greater than 10 and so the MB is not 
skipped, regardless of the value of SADOMB- 

4. Experimental results 

4.1. Performance of MB prediction 

807 

Video sequences 'Carphone', 'Mother and 
Daughter' and 'Forman' were coded using a 
modified TMNIO encoder, incorporating our 
MB classification algorithms (a) TradO only and 
(b) TsadO + T4.4 with 280 frames and Q=8. 
Fixed thresholds Tado and T4x4 were chosen 
for the two algorithms to achieve the same 
target percentage of skipped MBs. For each 
algorithm, the total number of skipped MBs, 
the number of 'missed' MBs (MBs that are 
skipped by the unmodified encoder but were not 
predicted as skipped by our algorithm) and the 
number of MBs wrongly skipped by our algorithm 
are summarized in Table 1. The average luminance 
PSNR drop relative to TMNIO encoder with 
no complexity reduction is also listed in Table I 
for each case. In order to evaluate the performance 
of the proposed classification algorithms, 
each sequence was coded by TMNIO and 
MPEG-4 VM18 [4] (Simple Profile) without any 
classification algorithms. The percentage of 
skipped MBs and average luminance PSNR of 
each sequence are shown in Table 2(a), (b), and (c) 
respectively. 

From Table 2(a), 7712MBs are skipped during 

encoding of 'Carphone' using TM N 10 (27.82% of 
total MBs). Using MPEG-4 VM18 with the same 
coding parameters, 7409 MBs (26.72% of total 
MBs) are skipped during encoding. For the 
sequences listed in Table 2, TMNIO and MPEG- 
4 skip a similar number of MBs but MPEG-4 



SOK Y. Atio, I. E. G. Ri(hardsoll / Sifinal Proccv%inq: Imatle Communication 18 (2003) NO/ 

I able I 
11ciforinance of ; kipping M Bs predicli(),, using two classification algorithins 

Video Farget skipped Classi licit tion Tolal Missed Wrongly A%crage Y PSNR 

Sequence M [is alporilhins skippcd predicted (hop 013) 

Carplionc 30 T,. "Io (Mly 8112 1 5.45 2185 0.22 
T, do ý, 1'4 

-4 
8329 1532 2149 0N 

4S T', 'fo Mlly 12,413 523 5224 0.03 
4 1'4 12,389 431 5108 (01 

Mother and 45 T""t, olfly 8299 8209 222 0.14 

daughter TI,, i(, + T, 4 8261 8226 202 0.09 
70 7,,,, 1(1 only 19,411 1041 4167 1.05 

T-dO - 74 19,369 1011 4094 0.59 

I oreman 30 Fmio Oilly 8289 318 499S 0.64 
7',, jo + '/ 44 9264 280 4936 0.41 

[ able 2 
Number of' Mlis skipped hy TMNIO and MITGA 

I MNIO MPLG-4 

(a) *Carphone' sequence 
Skipped MB 7712 (27.92"%) 7409 (26.72"//o) 
A%ciapc Y PSNR(dB) 14.10 34.32 

(h) 'Alother wid daut. 11ifei' vi, quen(e 
Skipped MR 16285 (58.7511/1, ý) 16288 (58.75%) 
Awrage Y PSNR(dB) 34.95 35.29 

(C) velluenct, 
Skipped Mll 3608 (13%) 3347 (12.07%) 
Average Y PSNR(dB) 33.37 33.65 

VM 18 outperl'Ornis TMN 10 in terms of' avcrage 
PSNR. 

Table I shows that (lie algorithm using T,, 10 t 
T4.4 'misses' Imer Mlis than the algorithm using 
,I, alone I'or all the video sequences, i. e. T, (, () ý 
T4.4 provides, a more accurate prediction than 
,I, only. For the 'Carphone' sequence, the 
111,1xilijum pcrcentagc of' skipped m BS by 
TMNIO is 27-82'),, ý, (fi-oni Table 2(a)). Hence, 

when the skipped M13 target is set to 45'ý/O 
I'o, - an extra 5224 MRS are skipped 
by T, ýI(Jfl i 

T4.4. These extra skipped M 13S 

WLISC ýI degradation Of Video LILMI'lly However, 
becaLISC OUr 11gorithms select MBs with low 

residual energy, tile loss of' video qUAIty IS 

minimized. 

carphone : 

35 

34,5 

34 

Ir 
Z 

33.5 

33 

0 50 100 150 200 250 
Frame Nuniber 

Fig. 9. PSNR against tranle number for 'Carphone' Aith saine 
complexity reduction by two types ot'classification algorithms. 

4.2. Video quality 

4.2.1.01)jectire qualit. v 
Fig. 9 shows the PSNR of each frame of 

Varphone' with Q 8,45". ý, skipped MBs and 
fixed thi-csholds T,,,, I(l and '1'4,4. The thresholds 
were chosen to give it 45"/, (, IIICIIII I-CdLICtiOII in 
computational complexity (i. e. 45'ý/, ý skipped MBs) 
in each case. This figUI-C shows that t '1'4 

-4 
consistently achieves better video quality than 

alone, for it comparable reduction in 
compulational complexity. 

The *Carphone' video sequence was coded using 
two types of MB classification algorithms. At each 
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fiXed CiLlantizer, ,I, 
I(jo was varied 1rom low to high 

to IXFallietcrize the perl'ormancc of' tile algorithm 
M ZI RillgC 01' COMPLIL1001MI COIIIPICXlty VALICS. 
Fig. 10 plot,, tile pcl, ccljtýlgc of' Mils ckissitic(i ýls 
I skipped, by Our algol-1111111 (x-axis) auainst tile 
mean drop in PSNR compared with the same 
Se(jllelICC ClICOded kNltIlOLlt COMI)ICXitý' I-C&IC0011 
(y-axis). This (11-01) ill PSNR V, Caused b,, 

occasional incorrect skipping of' M Bs that should 
have becii encoded. As increases, the graph 
moves to the right and up: more M13s are skippcd 
but the PSNR drop inci-cases. 

This figure shows that classil'yIng NIB,. using 
two thl-cshold S, TadO 1 T4 4, PI-0(111CC bCttel. VI(ICO 
quality thall dolic. For example, using only 
'F,,,, I() to classil'y MBs, the algoritlim skips 40", ý of' 
MBs at the expense of'a PSNR drop 40.5dii (Cor 
a fixed L111,1111lZel- step size Q 8). Using 7,,,,, (, 1 

0,9 
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07 
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Sk, pped MHýý, ý 

Fig. 10. [lei Fo 1-111a lice compalison of' ýanous Q and mo Jýpcs 
of, classification algol ithill. 

T4-4, approximatek, 44",, ý of' M Bs can he skipped 
without any l'urther PSNR drop. When 10, 

skipping approxinlatcly 46",, oI' MB,, produces a 
PSNR drop of' 0.5dB using only ipproxi- 
matcly 56",, may he skippcd (Or thc IlMnc PSNR 

(11-01) Using rlý, J() I, F4 
-1 - 

4.2.2. Subjeclivc quellit. i, 
Fig. II compares 1'ranic 87 of' tile 'Carphone' 

Sequence ahcr encoding and decoding using, 1111-ce 
111MIMS: (A) WithOkit illy C0111I)IC\i(N I-C&IC11011, 

(h) aller skipping 494 ofTe MW using 14& onlý 
and (c) alter skipping, 45"ý. A' the Mlis using, 
Q, M f 74,4, Hg. I Ifh) shows mime visiNe degm- 
datOn comparal with Fig. I 1(a), with blocking 
artef acts around tile top 01, the head introduced hy 
tile complexity rMuction algorithin (note that 
these artcFacts occul, at [lie boundary of a IIIo\ ing 

objeci, us reported in Section 3.3). Fig. I 1(c) is 

\cl. y similar to Fig. 11(. 1) %%idl little appalent 
illCI-CýISC ill diStOl-tiOll. When J)LIýCd hack at 30 
I'l-allies per Second, there I,, a slight degradation ill 

Sequence (h) Compared with (ýi) hill no oh6olls 
dilTercncc bctýýccn (c) and (a). Ali iniciesung 
1'eat ure of' t lie 0111.4 4) ýilg'Olithlll is ti"I N113s 

classified as "'Kipped, are typicallý in 10\ý-ýIcli\itý 

regions of' the scene (SLICII IS tile hackground of 
'Carphone') and incorrectly skipped Mils in this 
region tend not to he noticed by the ýic\\cr. I 1clicc 
tile ', LlliiCCti\C LJLMhtý' is often I)CItCl* 111,111 tile 
PSNR rcsults might imply. 

4.3. Ratc-dislorlion pci: 1ormance 

F ig. 12 pl ()Is tI ic rate-distor I it) n perl'or I' I it I Ice ol' 
lie Va I-pholle, seq llence it I'l er clicod 1 11 g, and 

I igý II. sample II ýl 11 Ic dc' k! It 
and jc) I-,,, ,III 
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carpt*no 

30% Skip (TsadO+T4by4) 

OdqlnW 

,, 
"1 30% Skip (TsadO) 

45% Skip (TsadO) 

45% kip (TsadD+T4by4) 

subtractions and 12 comparisons. This is negligible 
compared with the cost of motion estimation, 
DCT, etc. for each MB and so the computational 
saving of our proposed algorithm significantly 
outweighs the small computational cost of classi- 
fying MBs. 

5. Conclusions 

In this paper we have described an MB 
classification algorithm that has the potential to 
significantly reduce computational complexity in a 
software video encoder. The goal of this algorithm 
is to avoid expensive processing of MBs that are 
destined to be skipped during encoding, whilst 
minimizing distortion due to incorrect classifica- 
tion predictions. The initial SAD calculation 
SADOml, can give an approximate prediction of 
MB type (as reported in [13]) but incorrectly 
predicts non-skipped MBs that contain significant 
low-frequency AC coefficients after quantization. 
Adding a prediction of low-frequcncy residual 
energy improves the accuracy of MB classification, 
particularly for MBs at the edge of moving 
regions. 

Experimental results show that our classification 
algorithm can deliver substantial computational 
savings (40-50% for a high-activity sequence 
such as 'Carphone', more for low activity 
sequences) with only a small reduction in rate- 
distortion performance. The reduction in subjec- 
tive quality is actually smaller than the PSNR 
results imply, since our algorithm tends to classify 
skipped MBs in static, visually unimportant 
regions of the scene. The classification process is 
computationally simple and most of the opera- 
tions may be integrated into the normal motion 
estimation process. 

In this paper, the classification algorithm 
was applied to H. 263 but it is equally applicable 
to MPEG-4 Simple Profile and other MB- 
based CODECs. It is planned to incorporate 
other classification methods with this algorithm 
(e. g. the DCT block classification algorithm 
described in [9]) in order to avoid unnecessary 
computation for MBs in other categories such as 
'Qc,,, ff = 0' and 'MV = 0' (Fig. 1) and to examine 

0 60 100 150 200 250 300 350 400 
Bitrate (kb/s) 

Fig. 12. Rate-distortion performance. 

decoding using the H. 263 TMN-8 reference model 
operating in Baseline mode (Original). Two 

methods (TadO only and TsadO + T4x4) are used 
to achieve two target complexity reduction levels 
(30% skipped MBs and 45% skipped MBs) and 
the corresponding rate-distortion curves are 
plotted in Fig. 12. The (T. dO + T4x4) algorithm 
outperforms the T. do algorithm at both complex- 
ity targets. Using the (T. dO + T4,, 4) method we can 
reduce complexity by 30% with a very slight 
degradation in rate-distortion performance. 

4.4. Computational complexity 

The purpose of our proposed algorithm is to 
reduce the computational complexity during en- 
coding and so it is important to identify any 
additional computational costs due to the classi- 
fication algorithm. SADOmB is normally computed 
in the first step of any motion estimation algorithm 
and so there is no extra calculation required. 
Furthermore, the SAD values of each 4x4 block 
(A, AC and D in Eq. (2)) may be calculated 
without penalty if SADOMB is calculated by adding 
together the values of SAD for each 4x 4-sample 
sub-block in the MB. 

The additional computational requirements of 
the classification algorithm are the operations in 
Eqs. (3)-(5). For each MB consisting of four 8x8 
blocks, there are 12(= 4x 3) additions, 24(4 x 6) 
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the effect of adding a control algorithm such as the 
feedback-based computational complexity control 
mechanism described in [9]. 
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Adaptive Management of Video 
Encoder Complexity 

n this paper, we investigate methods of reducing the computational complexity of the discrete 
cosine transform (DCT) in a software video encoder. The number of DCT calculations may be 
reduced by modeling the distribution of zero blocks. We demonstrate that the reduction in 

computational complexity is variable and depends on the statistics of the video sequence. We 
propose a new adaptive algorithm that can maintain a near-constant reduction in complexity. The 
proposed algorithm performs well at converging to a "target" computational complexity, at 
the expense of a small reduction in image quality. This algorithm provides a flexible mechanism 
for managing computational complexity in a video encoder. 

(D 2002 Elsevier Science Ltd. All rights reserved. 
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Introduction 

There is a growing market for video communication 
applications that incorporate software-only implemen- 
tations of popular video coding standards such as H. 263 
[1] and MPEG4 [2]. These include conferencing and 
streaming video applications on the PC platform as well 
as emerging applications for embedded processors and 
digital signal processors [3]. 

In many cases, the performance of these software- 
only CODECs is limited by available processing power 
as well as, or rather than, by available bandwidth. This 
is particularly true for applications using low-power 
embedded processors or in cases where the video 
CODEC must compete for processor resources with 
several other applications. It is therefore important to 
develop flexible methods of managing the computa- 
tional complexity of video encoding and decoding. 

In this paper, we take the following approach to 
support complexity management for real-time video 
encoding. The discrete cosine transform (DCT) [41 is 
identified as a computationally intensive function. 
Methods of predicting or modeling the output of the 
DCT (and therefore bypassing some computational 
steps) are compared. An adaptive algorithm is described 
and is shown to be suitable for dynamically controlling 
the complexity of the DCT (and related functions) to 
maintain a "target" level of computational complexity. 

DCT Complexity 

Popular video coding standards such as H. 263 and 
MPEG4 make use of DCT encoding of motion- 
compensated residual frames. Within this type of video 
CODEC, encoding requires more processing power than 
decoding (due to the extra computation required for 

1077-2014/02/ $35.00 ((-) 2002 Elsevier Science Ltd. All rights reserved. 
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motion estimation and reconstruction). In a software- 
based encoder, the computationally intensive operations 
include motion estimation and compensation, DCT, 
quantization and variable length encoding. For exam- 
ple, Table 1 summarizes the results of profiling a 
software H. 263 encoder running on a Pentium III 
processor. The encoder uses the "fast" forward and 
inverse DCT algorithms described in [5] and a logarith- 
mic search motion estimation algorithm with a search 
area of +7.5 pixels. In this example, the DCT, 
quantization, inverse DCT and inverse quantization 
steps take nearly 35% of the total processing resources. 
It is therefore useful to examine methods of reducing the 
computational complexity of the DCT and related 
functions. 

Reducing DCT complexity 

After motion compensation, the residual energy in many 
image blocks in a typical inter-coded video frame is low, 
such that most or all of the quantized coefficients are 
zero. In these cases it may not be necessary to transform 
and quantize all 64 coefficients. Several reduced- 
complexity DCT algorithms have been developed that 
reduce the number of arithmetic operations required to 
carry out the DCT [6-8]. These algorithms typically use 
66pruning" to calculate a subset of the complete 8x8 
DCT (e. g. a4x4 or 2x2 DCT). Applying a pruned 
DCT algorithm to all blocks in an image will, however, 
significantly reduce the quality of the decoded image. 

A model of the distribution of quantized DCT 
coefficients in a block may be used to predict the likely 
position of the highest non-zero coefficient (the end of 
block position or EOB). Reduced complexity approx- 
imations to the DCT (and quantize) operations can be 
applied to blocks where the model predicts a low value 
of EOB. In [9], the quantization parameter selected for 
each image block is used to predict the maximum value 
of EOB with a certain confidence (e. g. 95%, 98%, etc. ). 
A reduced-complexity DCT is applied if the predicted 
EOB is less than a threshold. This penalizes those blocks 
that do not fit the model (i. e. where the quantizer is high 
but there are a significant number of non-zero coeffi- 

Table 1. Profile of software H. 263 encoder 
Functions Processor 

utilization 
DCT, IDCT, Quant and Dequant 34.8 
Motion estimation (integer and half-pixel) 26.9 
Remaining functions 38.3 

cients). These blocks tend to contain image detail and so 
this method is likely to degrade the quality of "active" 
areas of the video scene. This model is extended in [10] 
to include a measure of macroblock energy in the model 
(the minimum mean absolute error, MMAE). The 
predicted EOB is compared with pre-determined thresh- 
old values in order to choose either a full DCT, a 
reduced-complexity DCT or no DCT. Annex P of 
MPEG4 (Video) [2] suggests comparing MMAE with a 
threshold and encoding each block with either a full 
DCT or no DCT. In [11] a general model is applied to 
each of the DCT inputs to estimate whether some or all 
of the output coefficients are zero. This model requires 
additional computation to classify the inputs, which 
may offset the computational savings due to a reduced- 
complexity DCT, 

Predicting end of block 

An H. 263 video encoder carries out motion estimation 
to select the "best" matching region from a reference 
frame (typically the previous reconstructed frame) for 
each macroblock. In practice, this selection is usually 
based on the minimum sum of absolute differences 
(SAD) or MMAE between the 16 x 16 luminance 
samples in the current macroblock and a neighboring 
16 x 16 region in the luminance component of the 
reference frame. SAD is given by 

15 15 

SADMB IC(Q)l 

i=o j=o 

where C(Q) are the residual luminance samples after 
motion compensated prediction from the reference 
frame. 

The luminance SAD for the current macroblock 
(SADMB) may be used to model or predict the highest 

non-zero DCT coefficient after quantization [9,10]. The 

position of the highest non-zero coefficient (the end of 
block or EOB) depends on the energy of the DCT 

coefficients. This in turn depends on the energy of the 
residual image samples after motion compensation, 
which is approximated by SADMB- 

Annexe P of [2] recommends using the SAD of the 
current 8x8 block as a predictor for EOB. Block SAD 
(SADB) is given by: 

77 
SADB =LL IC(i, j)l (2) 

i=o j=o 



VIDEO ENCODER COMPLEXITY MANAGEMENT 

SADB for each luminance block may readily be obtained 
in a software video encoder without extra computation, 
since SADMB may be calculated from the sum of SADB 
values for each block. Additional computation is 
required to calculate SADB for the chrominance blocks 
in the macroblock since these values are not normally 
calculated during Motion Estimation: we investigate 
whether this extra computation is worthwhile in Section 
5 of this paper. 

Figure I compares the performance of the two 
predictors (SADMB, and SADB). The "Carphone" video 
sequence was encoded using an H. 263 software encoder 
(with a fixed quantizer step size Q= 8) and the values of 
EOB, SADmB and SADB were recorded for each block 
of the encoded sequence. The lines labeled 
"P(EOB=O)" plot the probability of zero EOB against 
SAD. (Note: SADMB is normalized by dividing each 
value by 4, since SADmB is the sum of 256 difference 
values whereas SADB is the sum of 64 values. ) There is a 
higher probability that EOB for the current block is zero 
for lower values of SAD. Some examples are listed in 
Table 2 and highlighted here. For example, if SADB for 
the current block is 200, there is a 90% probability that 
EOB will be zero, i. e. that there will be no non-zero 
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coefficients remaining after DCT and quantization. 
If SADMB (normalized) for the current block is 200, 
there is a 55% probability that EOB will be zero. The 
lines labeled "CDF" plot the cumulative density 
function of SADMB and SADB: these plots show that 
the distributions of SADMB and SADB are approxi- 
mately the same. For example, SAD :! ý 200 for 
approximately 40% of image blocks. The encoder may 
reduce computational complexity by choosing not to 
calculate the DCT for blocks with SAD < 200. If SA DMB 
is used as a predictor, computational complexity will be 
reduced by 40% (since 40% of blocks fall into this 
category) but the decoded image will be distorted due to 
the 45% error in predicting blocks with zero 13013. If 
SADB is used as a predictor, the complexity will once 
again be reduced by 40%, with lower distortion of the 
decoded image due to the 10% error in prediction. 
This indicates that SADB gives a more accurate 
prediction of EOB than SADMB. This is because the 

number of non-zero quantized coefficients in an 
individual block depends on the energy in that block 

and SADB gives a more accurate measure of block 

energy than SADMB (which is proportional to the 
average energy across all four luminance blocks in the 

current macroblock). 

Carphone, 0=8 
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I 
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�/ / 
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/ // 
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CDF, SADMB 

� 

P(EOB=O) 

P(EOB=O) 

. 
SADMB 

100 150 200 250 300 350 400 450 500 550 600 
SAD (nomiaHzed for SADMB) 

Figure 1. Probability of zero EOB and cumulative distribution (CDF) (Carphone, Q= 8). 
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Table 2. EOB probability and block distributions, Carphone, 
Q=8 

SAD threshold P(EOB = 0) Proportion of 
blocks (%) 

SA DB = 200 90 40 
SADMB=200 55 40 
SAD, g=250 70 60 
SADMB=250 20 60 

Decision thresholds 

Figure 2 plots P(EOB=O) for the Carphone sequence 
with varying quantizer. The value of SADB at which a 
given P(EOB=O) occurs is approximately linearly 
related to quantizer step size Q, i. e. 

P(EOB = 0) ýe- 
SADB 

(3) 

In order to determine whether the DCT should be 
calculated for a block, SADB may be compared with a 
threshold To, as described in Annex P of [2]: 

DCT-Flag = (SADBIQ < TO? l : 0) (4) 

If DCTýFlag is 1, the "full" DCT and quantization are 
calculated for the current block. If DCT Flag is 0, all 
the quantized DCT coefficients are set to zero (i. e. the 
DCT and quantize operations are skipped). 

A lower value of the threshold To will tend to give a 
more accurate prediction of zero EOB. For example, if 
the threshold To is set at about 25, EOB will be correctly 
predicted for approximately 90% of blocks. A higher 

value of To should give lower computational complexity 
(i. e. fewer DCTs are calculated) at the expense of poorer 
prediction accuracy. 

Variation in Computational Complexity 

The sequences "Carphone", "Claire" and "Mother and 
Daughter" were encoded using the threshold algorithm 
(Eqn (4)) with a fixed threshold To= 30 and a fixed 

quantizer step size Q=8. Figure 3 shows the computa- 
tional complexity of the DCT calculations (compared 
with encoding every block using the "full" DCT) for the 
first 200 frames of the sequences "Carphone", "Claire" 
and "Mother and Daughter". There is a clear variation 
between sequences: in general, for a given value of SAD, 

Carphone 
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Figure2. Probability of zero EOB ("Carphone", varying Q) (-) Q=4, ( --- ) Q=8, ( .... ) Q= 12, Q= 16. 
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Figure 3. Variation in DCT complexity, To = 30 (fixed). 

there is a higher probability that EOB =0 for a sequence 
with low activity (such as Claire) than for a sequence 
with high activity (such as Carphone) and this produces 
a variation in the number of blocks "skipped" by the 
threshold algorithm. There is also a variation in DCT 
complexity during each sequence (for example, in the 
later part of "Carphone"). 

With a fixed threshold, the computational complexity 
of the DCT (and also the prediction error and hence the 
PSNR) varies depending on scene content. These 
variations make it difficult to predict or manage the 
processor utilization required to carry out the DCT. A 
more useful approach is to maintain a predictable level 
of computational complexity that does not depend on 
the content of the video sequence. 

The sequences "Carphone", "Claire" and "Mother 
and Daughter" were encoded with a range of threshold 
values To and quantizer step sizes Q. Figure 4 plots the 
relationship between threshold (T), quantizer step size 
(Q) and computational complexity of the DCT and 
quantizer functions (Q. The computational complexity 
C varies with To and Q: larger values of To and Q tend 

in 
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to reduce C and vice versa. The shape of the surface is 

similar for the three sequences, but the actual values of 
C vary between the sequences. Figure 4 indicates that it 
should be possible to control the DCT complexity C by 
varying To and/or Q. Note that a wider dynamic range 
of C may be obtained by varying To (with fixed Q) than 
by varying Q (with fixed TO). 

Figure 5 shows the mean bitrate of each of the coded 
sequences described above. It is clear that To has a 
limited effect on the coded bitrate (for a fixed value of 
Q): higher values of To produce lower bitrates, since 
fewer blocks are actually coded. However, the effect is 

small compared with the effect of quantizer step size Q 

on bitrate. 

Figure 6 plots DCT complexity (C) against (IITQ) for 

each of the coded sequences above. This figure shows 
that C is approximately linearly related to IITQ: 

v 
TOQ 

(5) 

The term v varies with the content of the video sequence. 
It should be possible to vary the threshold To in order to 
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compensate for the variation in video scene content in After encoding frame n, the actual value of v can be 
order to maintain a near-constant reduction in complexity. calculated. Rearranging Eqn (5): 

Adaptive Modeling to Maintain Constant Complexity 

With a fixed threshold, the computational complexity 
tends to vary gradually and so it should be possible to 
update the threshold To based on the measured 
computational complexity C of one or more recently 
encoded frames. We propose to update To after each 
encoded frame in order to maintain a near-constant 
"target" computational complexity C, Modifying To 
once per frame should be sufficient for the purpose of 
managing processor resources: a practical video encod- 
ing application will usually buffer one or more frames of 
coded data prior to transmission and so a short-term 
variation in computational complexity during the 
encoding of a frame is not likely to be significant. Of 
greater importance is the computational complexity 
over a longer period. The goals of an adaptive algorithm 
should therefore be to: 

1. Maintain a mean target complexity Ct. 
2. Minimize the variation in frame complexity C, 
3. Minimize distortion. 
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(6a) 

where To,, and Q,, are the threshold and mean quantizer 
for frame n and Cn is the measured DCT complexity of 
frame n (i. e. the proportion of blocks for which the DCT 
and quantize functions were calculated). The threshold 
To(n+ 1) required to achieve the target complexity C, for 
frame n +I can be calculated from Eqn (4) (assuming 
that v does not vary significantly between frame n and 
frame n+ 1): 

v Ton+l ý Z7ý0 (6b) 
CIQ,., +i 

where Q,, I is the quantizer step size (at the frame level) 
chosen for frame n+1. 

Combining Eqns (6a) and (6b): 

TOn+l 
-: -- 

TOn 
Qn Cn 

(7a) 
Qn+ I Cl 
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Rearranging yields: 

I. E. G. RICHARDSON AND Y ZHAO 

E2 - C, To,, + I= To" -9. -- 
(1 

+ C, 
(7b) 

Q,, +l 
Eqn (7b) contains a term proportional to the previous 
value of To and a term proportional to the error between 
the actual and target computational complexity 
(C,, -C, ). The sensitivity of the update equation to this 
error term may be varied by scaling the error term with a 
factor k: 

To., +I = To" Q'I (I+ cl, - clý 

Q,, +i T-C-I) 
A small value of k means that the update is sensitive to 
small errors (C, -C, ): it should therefore converge 
rapidly to a target complexity C, at the expense of 
possible instability. A large value of k should give better 
stability but slower convergence. 

Results 

Convergence, stability and quality 

The sequences "Carphone", "Claire" and "Mother and 
Daughter" were encoded using the adaptive update 
algorithm described by Eqn (8), with a range of 
quantizer values Q, convergence factors k and target 
DCT complexities Ct. Q was kept constant throughout 
each sequence. This means that the term Q, 1Q, +, in 
Eqn (8) becomes unity, making it possible to study the 
relationship between complexity and To. The threshold 
To was set to an arbitrary initial value of 30 in each case. 

Figure 7 plots the variation of DCT complexity C, 
threshold To and peak signal to noise ratio (PSNR) for 
the Mother and Daughter sequence with Q=8. The left- 
hand column of Figure 7 shows the variation of DCT 
complexity (C) (i. e. the proportion of blocks for which 
the DCT is calculated). When k=2, the complexity 
quickly converges to the target value. However, the 
update algorithm is clearly unstable for C, =0.1 (i. e. a 
target complexity of 10% of the "full" DCT complex- 
ity). When k= 10, the algorithm is stable but converges 
slowly to the target C, A good compromise is given by 
k=6: the algorithm remains stable for C, ;ý0.1 and 
maintains the target complexity despite changes in 
sequence characteristics. The center column of Figure 
7 shows the variation of the threshold To. For k=6, the 
threshold varies gradually as the content of the sequence 
changes. The right-hand column of Figure 7 shows the 

PSN R of each frame of the sequence. For k=6, there is 

a small drop in PSNR when C, = 0.5 (not shown) and a 
slightly larger drop when C, =0.3. PSNR drops more 
significantly when C, = 0.1: however, the video sequence 
is still clearly recognizable. 

Similar results were obtained for the other sequences 
(Carphone and Claire). Convergence factor k=6 gives 
acceptable performance for all sequences and all values 
of Q. Table 3 summarizes the results for each sequence 
with a convergence factor k=6. This table shows that 
the adaptive algorithm maintains the target complexity 
with only a small drop in PSNR for C, >0.1. The drop 
in PSNR is highest for the "Carphone" sequence. This is 
because "Carphone" contains more motion and detail 
than the other two sequences and hence it is more 
difficult to achieve a target complexity of C, = 0.1 (i. e. to 
discard 90% of blocks) without a significant loss of 
image quality. The standard deviation of the measured 
DCT complexity ("STD Complexity") indicates the 
stability of the update algorithm and these results show 
that the algorithm remains stable in each measured case. 
"Convergence" is defined as the number of frames that 
are encoded before the algorithm reaches the target 
complexity (within + 10% of Q and this occurs within 
23 frames in the worst case. 

Profiling 

The actual processor utilization was measured by 

profiling an H. 263 encoder (based on H. 263 TMN-5) 
that incorporates the adaptive update algorithm 
(Eqn (8)). The encoder uses a logarithmic search motion 
estimation algorithm with a search window of ±7.5 
luminance samples and the Forward and Inverse DCTs 
are calculated using the algorithm described in [5]. 
Figure 8 shows the results for 200 frames of the "Mother 
and Daughter" sequence, with k=6 and Q=8. Only the 
5 most computationally intensive functions are listed. 
"SAD Macroblock" is the function that calculates SAD 
for integer-accuracy motion estimation and "FindHalf- 
Pei" calculates the half-pixel component of the motion 
vector. 

The black bars show the result when a full FDCT 
calculation is carried out for each block: the DCT is 

clearly the most computationally intensive function. The 
"Model 

- 
Y" bars show the result of applying the 

proposed adaptive threshold algorithm to the luminance 
blocks only, with a target complexity of 30%. The 

algorithm successfully reduces the number of calcula- 
tions for luminance blocks by around 70% but the total 
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Figure 7. Results for "Mother and Daughter" with k=2,6,10: DCT complexity, To and PSNR. 

computation time for the forward DCT (and also the 
quantizer function) is only reduced by about 47% 
because DCT and quantization are still calculated for 
every chrominance block. 

The "Model YCrCb" bars show the results when the 
adaptive algorithm is applied to luminance and chro- 
minance blocks. There is a small extra computational 
overhead because SADB is calculated for the Cr and Cb 
blocks in each macroblock (this value is not normally 
calculated during motion estimation). However, the 
results clearly show that the complexity reduction 

outweighs this extra overhead and the encoder achieves 
around 69% reduction in complexity of the DCT and 
quantizer functions. 

Discussion and Conclusions 

The results described in this paper indicate that the 
computational complexity of the DCT and quantizer 
functions in a DCT-based video encoder can be 

successfully controlled by comparing block SAD with 
a threshold in order to determine whether to encode 

I 
v7- 
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Table 3. Adaptive threshold performance (k = 6) 

Sequence Ct Q Mean DCT STD DCT Mean PSNR drop Convergence (frames) 

complexity complexity (dB) 

Claire 0.1 8 0.1009 0.0113 0.4300 3 
16 0.0997 0.0087 0.0161 7 

0.3 8 0.2968 0.0137 0.0276 17 
16 0.2928 0.0368 0.0 21 

0.5 8 0.4883 0.0467 0.0026 22 
16 0.4792 0.0760 0.0 23 

Carphone 0.1 8 0.1051 0.0277 1.8294 4 
16 0.1027 0.0121 0.7028 2 

0.3 8 0.3044 0.0247 0.2411 10 
16 0.3077 0.0281 0.0087 10 

0.5 8 0.5007 0.0322 0.0227 8 
16 0.4952 0.0576 0.0007 16 

Mother and daughter 0.1 8 0.1017 0.0202 0.6269 5 
16 0.1002 0.0128 0.1475 5 

0.3 8 0.3002 0.0093 0.0772 1 
16 0.2965 0.0353 0.0019 10 

0.5 8 0.4942 0.0285 0.0384 18 
16 0.4872 0.0068 0.0088 22 

each block. A fixed decision threshold gives unpredict- 
able performance results, with variable complexity and 
quality depending on the time-varying content of the 
encoded video sequence. The adaptive threshold update 
algorithm presented here enables the encoder to main- 
tain a near-constant target level of computational 
complexity. This algorithm performs well, enabling the 
encoder to reduce the complexity of the DCT and 
quantizer functions by up to 70-90% with minimal 
quality loss. 
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Figure 8. Result of profiling: "Mother and Daughter", 
Pentium III processor (E) Full, (CU) Model-Y, (Z) Mod- 
el-YCrCb. 

This adaptive algorithm may be a suitable component 
of a complexity control system in which the computa- 
tional overhead of a video CODEC is managed in a 
similar way to the bit-rate control algorithm commonly 
used in a video encoder. "Coarse" complexity manage- 
ment may be achieved by skipping (i. e. not encoding) 
frames when there are insufficient processing resources 
available. We propose that "fine" complexity manage- 
ment (in which encoder complexity is controlled without 
dropping frames) may augment this. The aim of such a 
complexity control scheme should be to provide flexible, 

accurate control of computational overhead whilst 
minimizing variation in video quality. The adaptive 
threshold algorithm described here could form a suitable 
basis of such a scheme. 

It may be worth investigating improvements to the 
adaptive update algorithm. The algorithm described 
here calculates the new threshold based on the results 
for the previous encoded frame and it may be possible to 
achieve better stability by examining several preceding 
frames. The variation in the proportionality factor v 
(Eqn (5)) appears to be related to the content of the 
video sequence (for example, v is highest for "active" 

sequences such as "Carphone") and the accuracy of the 
threshold update could perhaps be improved by 
incorporating a measure of scene activity such as SAD. 
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The choice of To and Q affects the coded bit rate (as 
well as the computational complexity), as shown in 
Figure 5. Bit-rate control is an essential requirement of 
many video coding applications and it would be useful 
to extend the approach described here to provide joint 
bit rate and complexity control. 

Finally, this approach may be extended to other 
computationally intensive functions in a video CODEC. 
For example, the variable complexity motion estimation 
algorithm described in [121 is reported to reduce the 
computation of motion estimation by a varying amount 
depending on a control parameter and on the statistics 
of the video sequence. It may be that our adaptive 
technique could also be applied to a variable-complexity 
motion estimation algorithm to provide flexible, pre- 
dictable management of computational complexity. 
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