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PARTIAL DISCHARGE MEASUREMENTS IN HIGH VOLTAGE MOTORS 

by 

JOHN G. BUCHAN 

The work presented in this thesis is concerned with the development of 
an on-line technique for detecting and locating partial discharges in 
the stator winding of a high voltage electrical machine . This 
technique forms part of an on-line health monitoring strategy for the 
insulation of high voltage machines . Existing diagnostic techniques 
and partial discharge measurement systems are reviewed . The 
requirement for an on-line partial discharge location technique is 
discussed . 

An experimental investigation was carried out into the propagation 
characteristics of partial discharge pulses within a model stator 
winding . This allowed identification of the main propagation 
characteristics which were used as the basis for the development of a 
partial discharge location technique . 

In the development of a location technique ,a means of on-line 
detection of discharge signals at the motor terminals is required .A 
study was therefore made on the use of the Rogowski coil for the 
non-invasive measurement of partial discharges . 

A partial discharge location system was developed based on the 
correlation of partial discharge pulses detected at the two ends of a 
motor phase winding . The performance of the location system was 
investigated by injecting artificially generated discharge pulses into 
the model stator winding . Further verification of the ability of the 
technique to locate the position of discharges was done by injecting 
high voltage discharges . 

The final part of the research work was to develop a theoretical model 
to predict the propagation behaviour of partial discharge pulses in 
the stator winding of an electrical machine . The effect of 
electromagnetic propagation through the endwinding region is 
incorporated in the model of two adjacent coils in a winding . 



CHAPTER ONE 

INTRODUCTION 



1.1 Introduction 

The induction motor is an essential piece of equipment in any 

industrial process It provides the necessary power to mechanical 

plant such as pumps and compressors which are used in the extraction 

and processing of a product . 

The sudden and unexpected failure of an induction motor may have 

catastrophic consequences , with , the loss of plant production ; 

damage to the motor and other valuable ancillary equipment ; and the 

danger of injury to plant personnel . This is especially true in the 

offshore oil and gas industry in which men and machines work in the 

harsh enviroment of a North Sea production platform , where the risk 

of explosion exists from the release of hydrocarbon gases into 

confined areas . 

Losses in revenue from oil and gas production involve large amounts of 

money in addition to the repair and replacement costs of critical 

equipment which are particularly high in relation to land based 

industries . Reliability and availability of the induction motor which 

is critical to a process is therefore of paramount importance . 

A number of surveys have been conducted in both onshore and offshore 

industries to establish the frequency and types of failure of large 

induction motors -. The-results of three independent surveys are 

presented here . 

In a survey conducted by Robert Cordons Institute of Technology [11, 

on 82 high voltage induction motors operated by onshore and offshore 

industrial organisations ,a total of 94 failures were recorded in a 

group of 52 motors .A total of 30 motors experienced no failures . 
The motor ratings varied from 425 kW up to 6.3 MW and supply voltages 

ranged from 2.3 kV to 13.8 kV . It is notable that 98 percent of these 

machines were direct-on-line started . 

A very much larger survey was performed under the sponsorship of the 

Electric Power Research. Institutep, [2] 
. This-survey investigated the 

failures in generator and motor units in 65 power generation plants 

which represented ä total of 168 generators and 6312 motors . Of the 

motor sample population , 3863 motors were rated at 200 kW and above 

whilst: 1952 motors ranged from 75 kW to 200 kW (the remaining 497 
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motors ratings were not reported ). Supply voltages varied from 460 V 

and 575 V for low voltage motors , and between 2.3 kV and 13.2 kV for 

high voltage motors . 

From a population of 6312 motors a total of 1474 failures occured in a 

group of 1052 motors .A further breakdown of these figures shows that 

a total of 1002 failures occured in a group of 673 motors rated 200 kW 

and above , and a total of 406 failures occured in a group of 327 

motors rated from 75 kW to 200 kW . This represents an overall failure 

rate of 3.1 percent of the motors per year . 

The third survey was conducted by Shell U. K.. Exploration and 

Production [3] , which operates 10 offshore installations in the 

North Sea . The survey covers 158 motors rated between 335 kW and 9.24 

MW supplied by voltages at 4.16 kV and principally 6.6 kV . Although 

no detail is provided on the,. number of failures and failed machines , 
the reported failure rates of motors are significantly higher than 

those in motors in onshore plants , typically between 12 and 20 

percent . This underlines the increased problem of machine reliability 

on offshore installations due to the harsh operating enviroment . 

From the information presented in these surveys it can be seen that 

there are a significant amount of motor failures 
., 

in both land 

and offshore industries , to warrant the introduction of some 

effective measures to increase the levels of machine availability . 

This objective can be, achieved in the following ways : 

i. Improvement of the machine design by the manufacturer to 

meet the requirements of a particular operators 

application. This will improve motor reliability and 

thereforeýincrease-. plant availability . 

A. The introduction of an intelligentmaintenance strategy to 

reduce the probability of motor failure . 

It is the latter of these measures which forms the basis of this 

study . 
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1.2 Maintenance Philosophies 

Existing maintenance strategies can be classified into three distinct 

categories [4] , which are discussed in the following sections . 

1.2.1 Run to Break Maintenance 

Machines are run continuously until failure occurs and : are 

subsequently repaired and recommissioned . This is obviously a crude 

method of operation and not recommended for important plant motors . 

1.2.2 Regular Preventative Maintenance 

Machines are shut down for inspection at regular , planned-. time 

intervals to reduce the chance of unplanned outages . This type of 

maintenance is the common practice of operators of production 

platforms . The main problem lies in the choice of the optimum 

maintenance interval . Too frequent maintenance is wasteful in lost 

production time and increases the risk of introducing problems during 

overhaul which may lead to premature breakdown of the motor . Too long 

an interval 'increases the number of machine failures during 

operation . By experience ,a compromise between the two can be 

achieved but this does not ensure that failure of machines will not 

occur . 

This philosophy equates to that of a doctor giving a patient periodic 

checks . Whilst the screening process increases- the chances of 

diagnosis of a serious illness , it will be -unable to detect a rapid 

deterioration in the patient's health 

1,2.3 Condition Based Maintenance 

Condition based maintenance' is a predictive maintenance strategy in 

which the condition of failure-prone components of the machine are 

monitored . This method relies on monitoring relevant-motor parameters 

whilst the motor is running to assess the condition or health of the 

motor . If the-parameters indicate that the machine is progressing 

towards a potentially critical condition , then the machine can be 

taken off line at the next planned outage for remedial action . 

On-line condition monitoring is approached in one of two ways : The 
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first is through 'Trend Analysis' in which an assessment of the 

machines condition can be found by observing the trend in the 

magnitude of a measured parameter to provide an indication of possible 
failure . This technique is used in conjunction with information 

obtained from case histories of the machine or other machines . 

The second approach assumes an in depth knowledge of the relationship 
between the parameter measured and the integrity of the component 

which causes the motor to fail . 

By applying a condition -based maintenance strategy the optimum time 

interval for machine examination can be obtained since this depends on 

the health of the machine which is continuously monitored 
Application of condition monitoring to machines , according to a study 
by the Department of Industry [4] 

, has been proved to have the 

following benefits to the industrial operator :- 

i. Increased plant availability resulting in greater output 
from the capital invested . 

ii. Reduced maintenance costs . 
iii. Improved safety . 
iv. More efficient plant operation . 

1.2.4 Condition Monitoring Techniques 

The first step in the application of a condition monitoring strategy 

to a rotating electrical machine is'the identification of'the, type`of 

faults which occur in normal service . As the motor is an 

electromechanical device it is possible to classify fault mechanisms 

into one of three categories as, follows : electrical , mechanical and 

electromechanical . 

1.3 Basic Motor Failure Mechanisms 

Failure which is purely electrical in nature is associated with those 

faults which occur in the stator windings of the machine . Failure 

which is purely mechanical in nature is due to faults which occur in 

the mechanical components of the machine , that is , the bearings and 

the rotor . Failure which is classed as electromechanical, is a result 

of a fault in a mechanical component due to an electrical stress and 

vice versa . An example of this is the gradual wear of bearing 
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surfaces from spark erosion which is caused by circulating currents in 

the rotor shaft and bearings of the machine . 

The surveys on motor failures conducted by R. G. I. T. and the $. P. R. I. 

have shown that the majority of machine failures are due to the 

development of faults in three major components of the motor : the 

stator winding , the bearings and the rotor . Results from these 

surveys ,( shown in table 1.1 ), indicate that around 40 percent of 

machine breakdowns are attributed to failure of the bearings and a 

similar percentage is attributed to failure of the stator winding . 
This is followed by rotor failures which accounts for 4.25 and 9 

percent of motor breakdowns . 

Machine Component Percentage of Failures 

RGIT Survey EPRI Survey 

Bearings 44.68 41 

Stator Winding 44.68 36 

Rotor 4.25 9 
Other 6.39 14 

Figure 1.1 : Percentage Failures of Major Components 

1.3.1 Bearing Failure 

Bearing failures are a direct result of one of three fault mechanisms 

and these are : 

i. Rotor shaft vibrations 

ii. Bearing currents. 

iii. Inadequate lubrication 

'Excessively high levels of vibration transmitted to the bearing from 

the rotor shaft inevitably 'lead to bearing failure . Vibration 

monitoring systems are- widely available to', detect abnormally.. high 

levels of vibration [5] .--'.: I 

Bearing currents are circulating currents-that flow through the rotor 

shaft , bearing assembly and pedestals' and the machine baseplate 

[6]. They are generated from voltages induced in the rotor shaft by 
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radial magnetic asymmetries in the machine . The flow of bearing 

currents causes sparking at the bearing surfaces which results in the 

formation of small pits from the removal of small fused metal 

particles .A further consequence is the deterioration of the 

lubricant by the discharge process and contamination from metal 

particle debris . 

The majority of bearing assemblies are not suitable for an on-line 

monitoring technique and are therefore subject to periodic examination 

off line 

One technique , applicable to plain bearings which have an oil 

circulation system only , is the particle debris monitor . Magnetic 

and conducting particles entrained in the oil may be detected and 

quantified , in terms of size and number [7] 

1.3.2 Rotor Failure 

Rotor - related failures are a result of the following fault 

mechanisms : 

i. Broken rotor bars and cracked bar/end ring jointý. - 
ii. Static and dynamic rotor eccentricity . 

Fractures can- occur in the conducting bars of a squirrel cage rotor 

winding at the point where the rotor bar is joined to the end ring 
[8] . These fractures or breaks are a result of a number of 

mechanisms . 

In an operating condition where there is a surge in the rotational 

torque exerted on the rotor , for example when the motor is started 

direct on line , the torsional force exerted on the end-ring stresses 

the bar/end ring joint . Fracture of this joint ensues through metal 

fatigue . The conductors adjacent to the broken bar carry additional 

current which causes the conductors to overheat . Subsequently , the 

overheating causes differential thermal expansion of the bars which 

stresses, the bar/end ring joints This condition becomes 

progressively worse as more fractures appear in the rotor until 

breakdown occurs . Serious damage to the stator core and end-windings 

can happen if a bar or bar fragments are freed 
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Another source of rotor bar overheating is high resistance brazed or 

welded bar/end ring joints . Current redistribution results in 

localised heating in rotor bars adjacent to the bar with the high 

resistance joint .: 

A motor with broken rotor bars exhibits torque pulsations , speed 

fluctuations and abnormal vibration which can damage the rotor and the 

bearings . 

A monitoring technique , 
[1] 

, has been developed which is capable of 

discriminating between the effects caused by high resistance bar/end 

ring joints and the number of broken rotor bars . This information is 

obtained from a frequency spectrum analysis of either the motor supply 

current , axial flux , end winding leakage flux or stator core 

vibration 

Static rotor eccentricity, is the condition in a motor caused by stator 

ovality or incorrect alignment of the rotor and stator axes , whereby 

the airgap length varies . The position of minimum airgap length is 

fixed in space . Fluctuation in the airgap length introduces 

pulsating electromagnetic forces ,( unbalanced magnetic pull ), 

which initiates abnormal vibration . This results in damage to the 

bearings of the machine . 

Dynamic eccentricity is similar , in that the centre of the rotor is 

not at the centre of rotation which means the minimum airgap revolves 

with the rotor . Bearing movement and flexing of the rotor shaft from 

dynamic disturbances are responsible for this form of eccentricity . 

A combination of static and dynamic eccentricity promotes large 

unbalanced magnetic forces in, the airgap which cans cause serious 

damage to the machine in the form of rub between rotor and stator 

surfaces . 

It is possible to detect and assess the severity of static and dynamic 

eccentricty in machines , [9] =, by analysis of the frequency spectrum 

of signals derived from the supply current and the stator frame 

vibration . This technique can be incorporated in an overall condition 

monitoring system . 
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1.3.3 Stator Winding Failure 

Failure of the stator winding occurs by breakdown of the stator 
insulation through a combination of degradation mechanisms and 

abnormal motor operating conditions . The former is discussed in 

section 1.5 of this chapter . 

The various abnormal operating conditions that contribute to the 

breakdown of the stator insulation are : too frequent starting 

stalling , unbalanced supply or single phasing , and overloading . 

These operational faults are generally adequately protected against by 

the use of over-current and thermal relays , thermistors located in 

the core and by negative phase sequence relays for single phasing 
faults [10] 

1.4 High Voltage Machine Insulation 
. Systems, 

A knowledge of insulation systems employed in high- voltage stator 

windings is necessary to an understanding of breakdown processes 

within these systems . 

In general , high voltage machine: stator coils are form wound .A 
strand of copper is wrapped in a layer , or layers , of micaceous 

insulation . Traditionally , this was constructed from the lapping of 

mica flakes or splittings bonded to a paper/fabric/glass cloth 

backing tape using a resin'binder'. ' This has been replaced by mica 

paper which is formed from splitting small mica flakes into tiny 

particles , which are then formed into sheets mica paper of by 

settling the particles from suspension , rather like a paper making 

process . The resin binder may be applied at this stage by 

impregnation to give a resin-filled mica tape.. Refer to reference 12 

for a more detailed account . 

Once formed , the coil is wound in a number of layers of mica tape 

impregnated in resin and heat cured to give a consolidated high 

voltage insulation system which has high dielectric and thermal 

strength .A typical coil insulation system is shown in figure 1.4.1 . 

Up-until the 1960's , the binding medium used was a natural resin ; 

either shellac or bitumen . These resins were applied to the 
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Turn 
Insulation 

Conductor 

Figure 1.4.1 - Typical High Voltage Machine Winding 

Insulation System 
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mica flake and backing tape in liquid form as hard resin suspended in 

a solvent which required the removal of the solvent before the resin 

could set . These natural resins are thermoplastics , and consequently 

become pliable and plastic at high temperatures . This restricted 

their use to machines having a class B, (130 deg C) thermal rating . 

However , in the 1950's new synthetic resins were developed , such as 

polyester and epoxy resins which are thermosetting polymers . 
Synthetic resins have higher working temperatures than natural resins 

in that they preserve their mechanical properties at higher 

temperatures . This meant that machines constructed with synthetic 

resin-bonded insulation could operate at higher temperatures . As a 

consequence greater power output could be obtained from a machine of a 

given frame size , thus making the use of synthetic resins more 

economically attractive . 

In high voltage motors the slot- bar portion of the stator coilýis 

coated in a partially conductive layer of colloidal graphite paint 

or carbon-impregnated tape to " prevent the occurrence of harmful slot 
discharges by eliminating the build up of high stress regions . 

In addition the area of the coil which emerges form the stator core in 
. 1, -ý to the endwinding space is a region of high electric-field stress due 

to the sharp discontinuity in conductor and dielectic . This region is 

covered in a stress grading semi-conductive paint which effectively 

smoothes the discontinuity in the electric field by the flow of 

leakage currents through this semi-conductive paint [12] 

1.5 Insulation breakdown mechanisms 

An understanding of the mechanisms, whereby machine stator insulation 

breaks down, is a necessary prerequisite to the development of an 

on-line insulation monitoring and diagnostic technique . 

It is possible to identify six modes of failure in a 3-phase stator 

winding of a machine [11] 
, and these are indicated on the diagram in 

figure 1.5.1 . Each of these faults result in a"flow of short-circuit 

current in the machine winding from a breakdown in the turn or ground 

insulation . 
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Figure 1.5.1 - Failure Modes in High Voltage Machine 

Stator Winding 
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Machine insulation breaks down when subjected to a combination of 

three principal stress and deterioration processes which are 

classified as follows: - 

i. Thermal 

ii. Mechanical 

iii. Electrical 

The severity of individual stresses can vary substantially and 

depends on a number of factors : the size of the machine ; type of 

insulation ; end-winding bracing system ; machine operating conditions 

and so on 

The degradation processes caused by each type of stress is reviewed 

with particular reference to present generation thermosetting 

insulation and in comparison to older thermoplastic insulation 

systems . 

1.5.1 Thermal stress 

Thermal stresses in, machine insulation can take- two forms ; 

iso-thermal and thermal cycling . 

In the case of iso-thermal stress the insulation deteriorates 

gradually over a long period of time which is observed by a decline in 

the dielectric strength of the insulation [13] . 

Deterioration is a result of heat generated. at the copper conductor 

surface at normal operating temperatures which has to be, dissipated 

through the main ground insulation to the iron in the stator core and 

the air in the endwindings Heat dissipated in the-insulation causes 

embrittlement by depolymerisation of the binding resin and eventual 

localised cracking ., 4 Loss of adhesion of the mica tape to the copper 

is also observed which accounts for the slight swelling in the stator 

bar-observed in functional ageing tests performed on epoxy resin/mica 

paper [14] . 

A similar degradation process occurs: in-. natural resin/mica flake 

insulation from thermal stressing [15] 
. The natural resins loose 

their thermoplastic quality and become brittle .. However during 

normal- service temperatures the resins become pliable and the 
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insulation swells . 

Thermal cycling of the insulation occurs during normal motor service 

when a change in load takes place or when the motor is tripped and 

re-started . Variations in temperature and the differences between the 

thermal expansion coefficients of the copper conductors and the ground 

insulation causes relative axial movement between the copper and 

insulation . These axial movements from thermal expansion and 

contractions, mechanically stress the insulation , especially at the 

interface of the slot bar and the end-windings , and promote the 

development of tape separation or 'girth cracking' which leads to the 

eventual failure of the insulation [16] 
. In addition , shear stresses 

at the copper/insulation interface cause a loss in adhesion of the 

insulation to the copper conductors . 

These problems are associated more with older thermoplastic 

insulations . Tests show , [13,14] , that the epoxy thermosetting 

resin insulation systems exhibit a high resistance to thermal cycling 

stresses . This is because epoxy resin/mica paper insulation has a 

similar thermal expansion coefficient to copper thus the insulation 

tends to move axially with the copper conductor [15,17] . 

Thermal cyclic stress is also responsible for damage done to the 

partially conductive paint coating on the slot bar causing it-to flake 

[18] . 

It has also been suggested that localised heating at points-of contact 

between the partially conductive coating and the slot leads to 

degradation of small areas of the coating . The displacement currents 

which flow through the insulation are conducted along the partially 

conductive coating to the core .. If the point of contact between the 

coating and the core is relatively small the current passing through 

this area causes heat to be dissipated which thermally degrades the 

coating material [19]. 

1.5.2 Mechanical stress 

The stator windings of an electrical machine are subjected to 

electromagnetic forces created by the interaction of the current 

carried by the winding conductors and. the magnetic field in which 

conductors are situated . As both current and magnetic field vary 
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sinusoidally at the supply frequency 
, the electromagnetic forces 

generated vary sinusoidally at twice the supply frequency . These 

cyclic forces cause the slot and end-winding conductors to vibrate at 
twice the supply frequency . Maximum forces are generated in a winding 

when two phases carry equal and opposite currents . 

In order to eliminate damaging vibration the bar is supported 

continuously along the length of the slot by wedges in core slots to 

prevent radial motion of the bar in. the slot , and packing material 
to prevent motion between insulation and the core surfaces . This is 

a particular requirement for hard thermosetting insulated bars which 
do not provide a uniform fit of the bar within the core slot . Older 

thermoplastic insulated coils conform to the contour of the slot and 

provide a wedge tight fit as the insulation expands at service 
temperature [17] 

A poor fit or damage to the packing material in the presence of the 

vibration will cause abrasion of the partially conductive layer and 
the mainwall insulation and a loosening , of the wedge and packing 

material Loosening of wedges and packing. material in turn, 

accelerates the abrasion of the coil insulation surface 

The end-windings are supported with one or more bracing rings which 

are positioned close to the coil nose and secured to the individual 

coil with resinäted glsss'fibre tape or cord . Each coil is separated 
from adjacent coils with bracing blocks . Movements in the 

end-windings however are more pronounced due to the fact that they are 
fixed at the-, slot end and are allowed a number of degrees of freedom 

The movements ""from"-' vibration tend to be in the radial and 

circumferential directions as shown in figure 1.5.2 . Vibration causes 

abrasion of the insulation where the tape or cord binds the coils 

together and to the bracing ring , [3] , which may result in the 

eventual fracture and failure of the main insulation . It is also 

responsible for fatigue fracture of the copper connections between 

coils . Arcing at the fracture position ensues leading to the 

breakdown of the insulation from overheating . 

Mechanical stresses in the end-windings from vibration are 

particularly high during start-up of the machine [20] . During this 

period the winding. conductors carry as much as seven times the normal 

running current . This gives rise to electromagnetic forces in the 
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Abrasion 
points . 

Figure 1.5.2 - Endwinding Vibration 
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endwindings that are as much as 49 times the magnitude experienced 

during normal service . The forces are such .. that individual coils 

experience larger movements and more severe abrasion than in normal 

running conditions . After a large number of starts the vibration 

causes fatigue cracking of the copper at the coil connections . 

1.5.3 Electrical stress 

Electrical stress in a machine winding occurs from external and 

internal processes and are categorised as follows :- 

i. Dielectric stress 

ii. Partial discharges 

Dielectric stress occurs from the application of a high voltage across 

a small insulation space causing a steep voltage gradient that 

stresses the mainwall and interturn insulation . This, voltage is 

either the normal sinusoidal supply voltage applied to the machine or 

an externally generated , steep-fronted , voltage surge 

1.5.3.1 System voltage surges 

Voltage surges generated in power distribution systems from switching 

operations are frequent and severely stress the insulation of high 

voltage machines , resulting in the possible breakdown of the 

insulation . These switching transients may be placed in one of two 

categories . 

In the first category are steep-fronted transients which place severe 

stress on the interturn insulation , whilst in, the second category are 

large overvoltages, which are lower, -frequency transients, --that 

severely stress the mainwall insulation ., 

Steep-fronted transients occur when an arc is "struck during the 

closure of the contacts of a circuit-breaker , termed a pre-strike , 

and the opening of contacts , termed a restrike . Restriking 
;r 

transients are a rare occurence while prestriking transients are 

very frequent and occur during every contact closure [21] 

During circuit breaker closure, one of the poles will close initially, 

followed shortly by closure of the second and third poles . The first 
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pole closure will result in a steep-fronted voltage transient of, at 

worst, an amplitude equal to the peak phase to earth voltage . This 

surge then propagates to the motor terminals where it is increased to 

twice the phase voltage , due to the much greater surge impedance of 

the motor compared with the cable . When the surge impinges on the 

other two phase windings a resonant oscillation occurs which may 

reach 2 times the phase voltage at the terminals of each phase . Under 

these conditions , the voltage across the second and third poles of 

the breaker will approach(2.0 + 0.5)Vph . If at this instant in time a 

pre-strike occurs across the second or third pole a steep-fronted 

transient is injected in the motor cable, which can double to 5 times 

phase voltage at the motor terminals . 

In circuit breakers which can interrupt the arc current very quickly, 

multiple prestrikes can take place before contact closure thus 

subjecting the machine winding to a number of steep-fronted transients 

(see figure 1.5.3 . This is a particular problem with the use of 

vacuum circuit breakers . The wavefront duration of the prestriking 

transient is very short, in the region of 0.2 psec to l)usec [21] . As 

a result a large proportion,,, ( as much as 80 to 90 percent ) of 

the incident surge wavefront is distributed across the line end coil 

of the motor due to the propagation time in the winding. This causes 

high interturn voltages which stress the interturn insulation . Any 

localised weak points will be overstressed , followed by breakdown of 

the interturn insulation and winding failure . Moreover during the 

steepest wavefront conditions , under 600 nsec , the largest interturn 

voltage occurs in the neutral end turn'of the line coil [21]. 

Large switching over-voltages can be produced by current chopping when 

a circuit breaker opens . The magnitude of this overvoltage is 

proportional to the product of the level of current chopped and the 

system surge impedance ,( that of the supply cable and motor 

[23] . This severly stresses the ground insulation of the machine. 

1.5.3.2. Partial Discharges 

Partial discharges are essentially low energy electrical discharges 

which cause insulation breakdown by a gradual erosion process . These 

discharges occur internally and externally-to the insulation 
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Internal discharges take place in small voids or cavities in the 

insulation which are formed when air is trapped in small quantities 

during the curing and pressing process of coils at the manufacturing 

stage. In the air space of a cavity the electric field strength is 

higher than that across the solid insulation due to the difference in 

the dielectric permittivities . Thee relative permittivity of air, 

Eo, is equal to unity while the permittivity of a mica 

paper/epoxy resin composite dielectric , 
Er 

, varies between 5 and 7 

such that the electric stress across the cavity is :- 

Ec _t . Es .... (1.1) 

which can be as much as 7 times the electric stress, in the 

dielectric. The other contributory factor determining the magnitude 

of electric stress enhancement and distortion of the electric field 

within a cavity is the shape of the cavity , [24] , and the presence 

of charge or semi-conducting deposits on the surface of the cavity, 
[25] . 

If, under normal working stress, the voltage across the cavity exceeds 

the breakdown potential -of the gas, -a-discharge-between opposite 

surfaces of the cavity will be established. The voltage across the 

cavity is then quickly restored . Under-alternating voltage stress 

this process is repeated and a number of discharges occur on each half 

cycle. This sequence of discharge breakdown within a cavity is 

explained with reference, to the simple model of a disk shaped cavity 

of thickness t, contained in a solid dielectric of thickness d, see 

figure 1.5.4 . 

In the electrical circuit analogue [26], the cavity is represented by 

a capacitance Cc , the dielectric above and below the cavity is 

represented by a capacitance Cb and a capacitance C. corresponds to 

the remaining dielectric. It follows that 

Cb = Eo. Er A and Cc = Ee. A .... (1.2) 
(d-t) t 

where A is the surface area of the cavity . 
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The voltage Vc, developed across the cavity is therefore : 

vc _ Cb -Va = Va 

(Cc+Cb) 1+ 1/Er(d/t-1) 
.... (1.3) 

As the voltage rises during the positive half cycle of the supply the 

voltage across the cavity rises in accordance with equation (1.3). 

Once the voltage Vc exceeds the breakdown potential Of the cavity , 

+u ,a discharge occurs and the voltage collapses in the cavity to a 

voltage level of +v . Once the voltage level reaches +v the 

discharge finishes . The voltage across the cavity then builds up with 

the applied voltage Va .A second discharge occurs when the voltage in 

the cavity reaches +u and the sequence of events is repeated. Thus a 

number of discharges are produced on the rising portion of the 

positive half cycle. A similar behaviour is observed on the negative 

half cycle in which discharges occur when the cavity voltage 

exceeds -u . The sequence of discharges is shown, 'with respect to the 

applied ac voltage for a single cycle , in figure 1.5.5 . 

The main erosion mechanism is through electron and ion bombardment of 

the cavity surfaces. Electrons and ions impinging on the surfaces 

cause deterioration of the surface materials by the scission or 

breaking of chemical bonds and high localised surface temperatures, 

[251 . The application of an alternating voltage causes alternate 

ion and electron bombardment of cavity walls. Erosion may not take 

place at the same site on a cavity surface since discharges occur at 

different positions in the -cavity . This is due to the high-surface 

resistivity which promotes charge accumulation at a discharge site 

when the cavity is only partially discharged. The remnant charge 

distorts the electric field and forces the next discharge to occur at 

a different place on the surface . 

In addition to particle bombardment, the surface of a cavity can be 

attacked from active discharge bi-products such as ozone, 03 , and 

nitric oxides, N02. 

Studies performed on samples of epoxy resins, [27] , have shown that 

large crystalline growths, oxalic acid, are deposited on the surface 

of cavities and that these formations intensify surface erosion. 

Similarily, investigations on the degradation imechanisms of mica 

subjected to internal discharges, (having energies of 1Ö and 166 
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Figure 1.5.5 - Sequence of Discharges in an Internal ` 
Cavity under Alternating Voltage Stress 
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, uJoules), have shown that the crystalline structure of mica collapses 

with the formation of cracks and splitting of surface layers . This 

deterioration process is accelerated by the nitric acid formed by the- 

discharges [28] . 

The net effect of all these degradation mechanisms is a slow erosion 

of the cavity surfaces and the material as a whole thereby reducing 

the dielectric strength of the insulation. 

Internal partial discharge erosion of high voltage machine insulation 

has been the greatest problem for older thermoplastic natural resin 

insulation which swells in service, causing de-lamination and void 
formation. Mica paper/synthetic resin insulation systems are well 

consolidated from heat pressing and curing and remain so during 

service so that the presence of internal cavity discharges is greatly 

reduced. However, motor failure has occured , [29] , from breakdown 

of the turn insulation in the endwindings. The presence of a 

groundwall insulation puncture in the endwinding, evidence of 

overheating at the breakdown site and no evidence of mechanical 

abrasion suggest the failure has been induced by partial discharges. 

Internal discharges occur in cavities which develop at the interface 

of the turn and main wall insulation. The main wall insulation is 

very resistant to discharge attack but the much thinner interturn 

insulation is less resistant to erosion . Eventually the turn 

insulation fails creating a short circuit between turns. This leads 

to excessive overheating of the adjacent main wall insulation from the 

mains frequency current at the point of short circuit. Failure of the 

main wall insulation ensues. 

External discharges take the form of slot discharges in the core and 

surface discharges in the endwinding. 

Slot discharges occur in the air space between the stator'bar and-the 

iron core and along the surface of the coil. Insulation systems of 

resin/mica paper are particularly vulnerable to slot discharges since 

these insulations are rigid and do not swell in normal service as do 

natural resin bonded insulations. Consequently the partially 

conductive surface coating makes positive electrical contact with the 

slot sides at intermittent intervals requiring extensive use, of 

packing material to compensate for this. Two forms of slot discharge 

have been identified in high voltage motors and generators, [30] , 
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which are characterised by the discharge initiation mechanism and the 

damage which results. The first form is a low intensity discharge 

which occurs at sites of damage or removal of the partially conductive 

coating even though electrical contact is maintained between the slot 

bar surface and the core. 

At locations along the slot bar surface which are not in contact with 

the core, a surface potential is allowed to build up from displacement 

currents flowing through the mainwall insulation along the surface 

coating to the earth point of contact. The potential development. 

depends on the resistivity of the partially conducting coating and the 

magnitude of the displacement currents. Calculations of resistivities 
for uniform conductive coatings have shown that surface. potentials of 

only a few volts are developed. Even with departures of 80% from 

the manufacturers recommended resistivity, the potential developed at 

the bar surface is insufficient to cause slot discharge. However, if 

the partially conducting coating is damaged and small areas of coating 

are removed slot discharge activity will occur. 

Damage may occur in service when abrasion between the slot bar surface 

and core laminations results from bar vibration when loose wedges and 

excessive clearances are present. It is also possible that excessive 

heating at the points of contact may lead to degradation of small 

regions of the surface coating [19] . 

The high resistivity of the main wall insulation, at the free surface 

where the coating has been removed, allows development of high surface 

voltages. If the surface potential is sufficiently high, partial 

discharges will bridge the air gap between the insulation and the core 

or pass across the insulation surface to the surrounding surface 

coating. Surface discharges from the free surface to the conductive 

coating are established when the air gap is sufficiently large to 

cause the stress across the surface to be the greatest. The miniumium 

air gap for this has been shown to be approximately 0.15 mm for a 

circular bare surface of radius 1 mm or greater, on an 11 kV coil 

[30]. 

Surface discharges of this sort cause erosion of the partially 

conducting coating and extension of the bare surface. Similarly, at 

smaller separations the stress between the bare surface and the core 

is greatest and slot discharges between these points result. Slot 



discharges of this type damage both the surface insulation and iron 

core but do not affect the surface coating . 

Low intensity slot: discharges have magnitudes in the range 1000 to 

10,000pC , 
[31] , which can erode the surface layer resin exposing the 

glass fibre and mica. Abrasion of this glass fibre and mica layer 

from mechanical vibration of the bar in the slot cell can leave the 

second layer of resin open to discharge erosion and the process 

repeats . 

The second form of slot discharge is very much more intense. It 

occurs when the slot bar and conductive coating are totally isolated 

from the iron core when contact is. lost from excessive vibration and 

loose wedges. When the slot bar becomes isolated there-is a 

capacitive voltage division across the insulation and air gap which 

may cause breakdown of the intervening air space producing a high 

intensity arc discharge. Discharge magnitudes characteristic of this 

type of discharge are in excess of 10,000pC and may be greater 

than 100,000pC [33] 
. Temperatures generated at the point of 

discharge may be as high as 1000 deg C which causes rapid erosion of 

the main wall insulation with the formation of erosion pits. 

Surface discharges occur in the endwindings in the. presence of 

contamination materials deposited on the endwinding' surface of the 

machine. Typical contaminants are : oil from bearing leaks, water 

from a highly humid atmosphere or sea water as in the case of a 

motor on an offshore installation ). 

These contaminants allow the passage of excessive leakage currents 

which promote development of tracking and surface discharges at points 

of high stress. In the extreme case surface discharges can promote 

the breakdown of the insulation . 

It has been shown in the discussion that a cumulative effect of 

thermal, mechanical and electrical stresses cause , 
gradual degradation 

and final breakdown of the insulation of high voltage machine stators 

and this is conveniently summarised in the block diagram in figure 

1.5.6 . 
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1.6 High Voltage Insulation Diagnostic Measurements. 

The purpose of diagnostic measurements is to assess the condition or 

health of high voltage insulation from observable phenomena which may 

be related to or give a measure of the insulation integrity. 

The significance of partial discharges in determining the life*of high 

voltage insulation is well recognised and observation of partial 

discharge phenomena yield by far the most information regarding the 

integrity of insulation, especially localised deterioration. 

Although, it is recognised that measurements of insulation resistance 

and polarisation index , [32] 
, give useful information on the degree 

of surface contamination and dryness of the insulation and general 

state of the insulation, these measurements are limited in the 

assessment of the condition of the insulation. 

Partial discharges are caused by rapid movement of electrical charge 

and hence energy changes, which are observable from the secondary 

physical effects these energy changes produce :- 

i. Electrical current pulses. 

ii. Dielectric losses. 

iii. E. M. radiation. 

iv. Light emissions. 

v. Sound emissions. 

vi. Chemical reactions. 

Insulation diagnostic measurements are based on the measurements of 

one of these effects of- partial discharge and are generally classified' 

into the following categories :- 

i. Integrated measurements 

ii. Resolved measurements 

iii. Radio interference measurements. 

1.6.1 Integrated measurements. 

Integrated measurements provide a quantitative measurement of 

dielectric loss or energy dissipation within the insulation structure. 

Dielectric loss is due to three main causes and these are : the 
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residual leakage current which arises from the conductivity of the 

dielectric : polarisation loss and the loss incurred by internal 

partial discharges. 

1.6.1.1 Loss Tangent Measurements 

A lossy dielectric is modelled conventionally , 
[26],, by either a 

series or parallel combination of a capacitor and resistor as shown in 

figure 1.6.1.1. Considering the parallel circuit equivalent only, the 

dielectric is represented by an ideal capacitance Cp and the 

dielectric loss is represented by a resistor, Rp. Under a. c. voltage 

stress the phasor relationships between voltage and current are shown 

in figure 1.6.1.2 . 

Energy dissipated per cycle of supply voltage is thus a product of the 

ohmic current Ir and the applied voltage V. 

P = Ir. v 

In practical measurements the value of tan 6 is measured which can be 

related to the power loss in the dielectric, 

P= wCpV2 tan 6 
.... (1.4) 

since tan 6 is defined as, 

tan 6= Ir =1 
Ic cwCpRp 

.... (1.5) 

6 is termed the dielectric loss angle and the tangent of the angle 

is termed the loss tangent or dissipation factor. 

The measurement of loss tangent is normally performed using an a. c. 

bridge device such as the Schering bridge shown in figure 1.6.1.3. In 

the high voltage arms of the bridge are the specimen (winding) 

capacitance Ci and a loss free standard capacitance C2 

Capacitance C4 and resistance R3 are variable to provide the controls 

to balance the bridge, and with resistance R4 constitute the low 

voltage arms of the bridge. The high voltage supply is at mains 

frequency. 
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At bridge balance position the ratio of bridge impedances is given by 

the equation, 

ZI Z2 .... (1.6) 

Z3 Z4 

From this relationship the capacitance of the test dielectric can be 

obtained , which is ; 

C, = C2. ýA 

R3 
.... (1.7) 

The loss tangent is then calculated from the following relationship , 

tan6 = 43. R4. C4 .... (1.8) 

Several other a. c. bridge circuits are available which measure 

capacitance and loss tangent . One widely used in measurements on 
insulation systems is the Ampere-turn or transformer ratio-arm bridge 

[38] 
. 

The presence of supply frequency harmonics may cause difficulty in 

achieving bridge balance conditions depending on the detector's 

response to these harmonic frequencies [36] . 

In a homogeneous insulation the loss tangent has a fixed value 

independent of the applied voltage which may exhibit a slight increase 

with temperature. Loss tangent is therefore a measure of the quality 

of an insulation subject to residual and polarisation dielectric 

energy loss. However in a non-homogeneous insulation containing 

internal cavities a change in the tan 6 characteristic is observed 

with the applied voltage. As the supply voltage. is raised internal 

partial discharges will occur at the inception voltage, Vi A 

corresponding increase in the loss tangent value occurs at this point. 

Further increase in applied voltage results in a gradual increase in 

the loss tangent, a characteristic termed tip-up, which is shown in 

the graph in figure 1.6.1.4. 

Along with the increase in tan 6 with increasing voltage is an 

increase in the capacitance C of the insulation due to the short 
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circuit effect partial discharges have on the capacitance of internal 

cavities [34] . 

A measurement of the degree of tip-up as a result of internal 

discharges can be expressed in terms of the index A tan b which is 

defined over a voltage interval AV. 

In accordance with, acceptance standards for individual coils, 

[35], tan 6 is measured at 0.2 Vi increments up to the rated line 

voltage of the machine VLand A tan 6 is defined with respect , 
to a 

voltage interval of 0.2 VL . The use of A tan6 as a measure of the 

integrity of an insulation, however requires great care especially 

in its application to machine winding insulation systems [36] . 

A more useful term in diagnostic measurement is the integrated energy 

dissipated per cycle through internal discharges which can be obtained 

from the loss tangent curve and is expressed approximately by the 

relationship [37] : -- 

Jc = 20 
1(C. 

tan6 Ci. tanbi ) .... ("1.9)ý 

This can be expressed as energy dissipated per cycle per unit of 

capacitance for ease of comparison of measurements between insulation 

systems and is therefore [32] 
, 

Jc = 2rtV2(C. tanb - Ci . tanbi )/Ci .... (1.10) 

1.6.1.2 Dielectric Loss Anaylser 

The dielectric loss analyser (D. L. A. ) is basically a capacitive 

bridge device which provides a c. r. t. display of charge transfer 

against voltage. It was developed concurrently by separate 

researchers Simons et al , 
[39] 

, and Dakin et al [40] . 

The basic circuit is shown in figure 1.6.1.5 in which Cl is a loss 

free standard capacitance, C2 is the specimen, C3 and R4 are the 

bridge balance controls and the ratio arm capacitance is C4 ." 
Capacitors C3 and C4 are relatively large to limit the voltage across 

the low voltage arms of the bridge to a few hundred volts. A 

reference voltage from the supply is derived from a potential divider 

and applied to the horizontal (X - plates) plates of the c. r. t. The 
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bridge is balanced by adjusting the values of C3 and R4 . R4 

compensates for the losses in the specimen. 

At balance condition, the c. r. t. trace displays a horizontal line. As 

the supply voltage is increased, partial discharges occur. Each 

discharge results in an accumulated charge being deposited on the 

plates of capacitor C4 with a simultaneous step in voltage impressed 

across the high impedance transformer. 

A voltage amplifier is incorporated to improve bridge sensitivity. 

This voltage is thus developed across the vertical Y- plates of the 

c. r. t. The accumulated effect of all discharges during one cycle of 

the supply is a loop trace which has a rhomboid shape. 

Figure 1.6.1.6 shows the development of this shape from the waveforms 

applied to the plates of the c. r. t. where point A is the discharge 

inception point. 

The vertical height of the rhomboid corresponds to the total charge 

transfer during one half cycle which is Qm . Similarly the base of the 

rhomboid is equal to twice the peak inception voltage, -'that is 2/2 

Vi . Integrated discharge is energy therefore given by the area of 

the loop trace expressed per unit of capacitance as: 

Jc = 2f2. Vi. Qm ( joules/pFcycle ) .... (1.11) 

C2 

In addition to this quantities the dielectric loss analyser yields the 

specimen capacitance and the loss tangent values. 

Tests on machine windings are normally conducted off - line with the 

use of a high voltage test transformer which is used to allow 

measurements of integrated discharge energy, loss tangent and 

capacitance at steps in supply voltage of 0.2VL to rated line 

voltage. The integrated energy and loss tangent versus voltage 

characteristics are obtained for each phase winding and the complete 

winding , 
[32] 

, from which-an assessment of the general condition of 

the insulation can be made. 

Records of the loop traces observed during tests yield additional 

diagnostic information such as endwinding contamination which is 
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observed as a ripple effect distorting the rhomboid or the presence of 

large slot discharges which appear as irregularities on the inclined 

portions of the loop trace. Interpretation of loop traces in this 

manner however, requires considerable operator skill and experience. 

The dielectric loss analyser does provide useful additional diagnostic 

information to loss tangent measurement and has the advantange that 

loss energy measurements from discharge processes can be separated 

from inherent dielectric losses. However being an integrated 

measurement system it can only provide a measurement of overall 

insulation integrity and is not capable of detecting localised 

degradation mechanisms . Slot discharge activity which is a principle 

erosion process in modern synthetic resin bonded insulations , can 

only be detected if these discharges are widespread throughout the 

winding . 

A recent development in the D. L. A. , [41] , is the addition of a 
discharge pulse measurement system whereby large slot. discharge pulses 

are detected using a resonant circuit and superimposed on the loop 

trace display. This aids measurement of discharge inception voltage 

and indicates the magnitude of large slot discharges. 

It is therfore a very useful diagnostic tool especially for older 

natural resin bonded insulation systems which are more susceptible to 

damage from internal cavity discharge attack. 

1.6.2 Resolved measurements 

Resolved measurements involve the detection and measurement of 

individual partial discharges. This may be achieved by optic and 

acoustic techniques but by far the most useful and practical method is 

electrical detection. In this, type of detection partial discharges 

may be measured by means of a detection circuit connected to the 

terminals of the specimen. : 

1.6.2.1 Partial Discharge Pulses 

Before discussing the various methods of partial discharge detection 

it is beneficial to examine the characteristics of individual partial 

discharge current pulses since" measurements are -based on these 

Discharge pulse shapes are dependent onýthe. mechanism of discharge 
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present and this is related to the electrode physical arrangement . 

Broadly speaking there are three general types of discharge that occur 

in high voltage equipment and these are as follows :- 

i. Corona discharges. 

ii. Surface discharges. 

iii. Internal discharges. 

Corona discharges occur at sharp points or protrusions on high voltage 

conductor surfaces between the point and the surrounding air due to 

the high electric field stress around the point . At low inception 

voltages , the discharges occur on the negative half cycle of the 

supply . The resulting current pulse shape is characterised by a steep 

rising front followed by a long exponentially decaying tail . These 

pulses are called Trichel pulses . Peak currents vary, from 0.5 to 2 

mA , rise times vary from 1.3 to 1.8 nsec, and durations are in the 

range of 100 to 160 nsec for a point electrode radius of curvature of 

0.12 mm [71] . 

Much larger and less frequent discharges occur on the positive half 

cycle at higher inception stresses and involve a streamer type 

discharge mechanism . The rise times of these pulses are in the 

region of 2 nsec , peak current varies from around 1.5 to 3.5 mA 

whilst pulse durations lie between 160 to 220 nsec for electrode 

separations greater than 35 mm . Smaller electrode separations result 

in slightly shorter pulse durations due to transit times of ion 

particles ."" ,-t 

Surface discharges occur both on the positive and negative polarity 

half cycles of the supply . 'In general, pulses are very similar in 

shape to those of corona discharge pulses with a fast-rise time. front 

and exponential tail . Typical rise times are in the region of between 

2 and 3 nsec . However the amplitude and duration of the pulse-varies 

considerably depending on the surface resistivity , whether or not 

contaminants are present . Measured durations vary from 50 to 500 nsec 

for uniform electrode/dielectric arrangements [72,74] . 

Internal discharges occur in small cavities within a solid dielectric 

and vary in nature depending on the discharge mechanism which is 

operative . Obviously these are very complicated phenomena and only 
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generalisations are discussed in this section . 

A single electron avalanche forms the basis of a discharge across the 

gap between opposite faces of the cavity . 

Depending on the gap separation , voltage surface resistivity etc., 

in the cavity a Townsend-like discharge occurs at low over-voltages 

and a streamer-like discharge is predominant at high over-voltages . 
Over-voltage being defined as the magnitude of voltage across the 

cavity above the minimum breakdown potential of the cavity [75] . 

In a Townsend type discharge the current pulse has a theoretical pulse 

shape as shown in figure, 1.6.2.1 in which the current due to the 

electron avalanche lasts for approximately between 250 and 800 

picoseconds ,( normally less than 1 nsec. ) The positive ion 

current is more rectangular in shape and of a, much longer duration 

[73,75] . Observed pulse durations lie between 20 and 300 nanoseconds, 
[75] , depending on the gap separation . 

Streamer-like discharges , self sustaining discharges , are 

characterised by a larger and longer duration pulses which are 

Gaussian in shape . However there is very little quantitative 

information on these discharges 
. 

In general partial discharges are widely different in shape, 

magnitude, and duration . These factors depend on the discharge 

mechanism present . However it can be said of all partial discharges 

that they have very short rise times and varying durations such that 

signal frequencies of concern in measurement may extend from tens of 

kilohertz up to a few gigahertz . This makes accurate measurement of 

the discharge current pulse itself impractical as such wideband 

measurement introduces considerable problems . The capacitance of the 

test specimen and associated circuit resistances and capacitance limit 

the effective response time of the measuring circuit making it 

extremely difficult to measure current pulses . 

A derived quantity known as the apparent charge of a partial discharge- 

is however measureable . This is best explained with reference to the 

simple model of a dielectric containing a cavity as shown in figure 

1.5.4 . 
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When a discharge takes place in the specimen, electrical charge is 

lost to the system which causes a small change in the specimen 

capacitance, 6C, and a voltage drop across the terminals of the 

specimen given by the expression, 

6v = Cb . 
bVc .... (1.12) 

Ca + Cb 

Charge is subsequently restored to the specimen from the high voltage 

source. The charge transfered is given by 

.... (1.13) q= (Ca + Cb). 6Vt 

Substitution of equation (1.12) into the above equation gives 

9Q = Cb . bVc 
.... (1.14) 

The quantity, q0, is referred to as the apparent charge of the partial 
discharge. Although qn is not equal to the true charge transfer in 

the discharge q. given by, 

qý .... (1.15)- = Cc . 6V L 

the two quantities are related [42] . The charge measured at the 

terminals is less than the actual charge transfer in the cavity due to 

the smaller series capacitance Cb. 

1.6.2.2 Partial Discharge Measurement Circuits. 

There are three basic partial discharge detection circuits and these 

are shown in the diagrams of figure 1.6.2.2 . In each circuit Ct 

represents the specimen capacitance, -ý:: (Ca + Cb), Ck., _ is a discharge 

free coupling or blocking capacitor , Zm (Zm') is a measuring 

impedance and Z-is a discharge free low-pass filter in the h. v. supply 

connection. 

The a. c. bridge circuit shown is known as a balanced detector circuit-. 

At balance the ratio of the bridge arm impedances are equal and the 

power frequency- signals is reduced tö - 'zero - atI the detection 

amplifier terminals. Normally the detection impedances Zm and Zm' are 

a parallel resistor and capacitor combination which are adjusted to 
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obtain the balance condition. Any discharge in the test specimen will 

result in a pulse detected by the differential amplifier detector. 

These pulses may then be further processed and displayed. The bridge 

coupling capacitor: Ck must be discharged free to prevent spurious 

discharge detection . Ck need not have a capacitance value the same as 

the test specimen , Ct. 

An advantage in the use of this circuit arrangement is that spurious 

pulse or discharge signals conducted via the h. v. supply or 

electromagnetically coupled into the bridge arms are cancelled at the 

detector thus providing a degree of common mode interference 

suppression. 

The two other detector circuits are termed 'straight' partial 

discharge detector circuits. 

In the first circuit , the measuring impedance , Zm, is connected in 

series with the test specimen, Ct , both of which are in turn 

connected in parallel with a discharge free coupling capacitor Ck, 

across the h. v. supply. The impedance, Z, is a low pass filter which 
isolates the measurement circuit during a discharge event and affords 

protection against spurious pulses, from the h. v. supply, entering 

the detection circuit. The measuring impedance, Zm, is generally a 

passive resonant circuit comprising a parallel resistor R, inductor L 

and detection capacitance Cd, as shown in figure 1.6.2.3. When a 

discharge of magnitude, q, occurs in the test -specimen an 

'instantaneous change in voltage is produced across the detection 

capacitance Cd determined by the capacitive voltage distribution in 

the circuit [43] 
. 

A 'discharge q produces a change in voltage across the specimen given 

by, 

6vt = 
Ct + CkCd/(Ck + Cd) 

.... (1.16) 

since Cd and Ck are effectively in series across the specimen Ct. 
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This voltage is distributed across Cd and Ck in accordance with the 

expression, 

bid = Ck . 6vt 
Cd + Ck 

.... (1.17) 

Therefore the instantaneous detector voltage is given by , 

bvd = Q .... (1.18) 
Ct + Cd + Ct (Cd/Ck) 

The step in detector voltage is followed by a damped oscillation, as 

shown in figure 1.6.2.4 which is expressed in the time response 

across the detector terminals given by, 

Vd (t) =q eat [cosßt -a sin, Bt] 

Cý 
.... (1.19) 

where oc = 1/2RC ;ß= �/(1/LC - oc2 ) 

C is the total capacitance seen by the detector input and is given by 

C= Cd + Ct. Ck/(Ct + Ck) .... (1.20) 

In the second straight discharge detector circuit the measuring 

impedance is connected in series with the coupling capacitor across 

h. v. supply which is in parallel with the test specimen. This circuit 

responds to a partial discharge pulse in the same manner as the 

previous circuit and similar equations for the circuit response may be 

derived. The main difference and advantage in the use of this 

detector circuit is that the test specimen may be connected to earth 

at one terminal which might be a requirement of the apparatus being 

tested. 

The detected discharge pulses are amplified and -observed on an 

oscillographic display having an elliptical time base that depicts a 

cycle of the power supply voltage. Typical displays are shown in 

figure 1.6.2.5 .A positive and negative marker pulse indicate the 

position of the rising portion of the positive and negative half 

cycles of the supply respectively. The magnitude of individual 

discharges is quantified by comparing the peak crest amplitudes with 

Page 44 



I 

-r 

Figure 1.6.2.3 - Passive Resonant Detector Circuit 

Vd °C qQ (apparent charge) 

resolution time 

Figure 1.6.2.4 - Response of Detector Circuit 

Page 45 



Negative 
Corona 
Discharge 

Internal 
Discharge 
at inception 
Vi 

Internal 
Discharge 
at twice 
inception 
2 Vi 

Figure 1.6.2.5 - Typical Discharge Pulse Display Patterns 

from Resolved Discharge Detector 

Page 46 



that of a calibration pulse . The calibration pulse is derived by 

injecting a pulse of charge of known magnitude into the discharge 

detection circuit by means of a discharge calibration circuit. This 

circuit generally comprises a voltage step generator and. a series 

capacitance Co connected to the detection circuit in the positions 

shown in figure 1.6.2.6. The simulated discharge pulse has a magnitude 

of 

Qý = CCVC 

where V is the injected pulse voltage [44] . 

.... (1.21) 

Calibrators connected to the low voltage terminals of the detector 

circuit are classified as indirect calibrators whilst those connected 

to the high voltage terminals are termed direct calibrators. 

Secondary calibration standards , 
[45] 

, are also sometimes used and 

consist of real discharges generated in a point to hemi-sphere 

electrode system, (see photograph in figure 1.6.2.7). 

The discharges produced are negative point corona discharges and are 

characterised by their very regular magnitude. 

Two distinct advantages of a resolved pulse measurement system , using 

an elliptic time based display , is the ability to identify, from the 

trace, the following :- 

i. Partial discharge mechanisms. 
ii. Interference sources. 

Figure 1.6.2.5 shows the difference in pulse patterns obtained from a 

point corona source and a cavity discharge source by the magnitude and 

position with respect to the supply cycle. Other discharge mechanisms 

such as a'cavity adjacent--to a conductor, or-a surface discharge are 

identified by their characteristic pulse patterns which is useful in 

diagnostic work (46) . 

Secondly, the source of interference external to the discharge test 

circuit can be identified on the detector display by the pulse 

characteristics that are peculiar to the interference mechanism 

present. 
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Figure 1.6.2.7 - Point to Hemi-sphere Secondary 

Discharge Source 

Page 49 



Examples of three types of common interference pulse patterns are 

shown in the diagrams of figure 1.6.2.8 which include interference 

signals from radio broadcasts, thyristor controllers and fluorescent 

lighting. 

It is the level of interference that determines the ultimate 

sensitivity of the discharge detection system , and control of 

interference is therefore of prime importance ; especially in an 

industrial enviroment where noise levels are likely to be high. The 

interference originates from one of two sources : external signals and 

unwanted discharge signals generated in the test circuit . 

In the first category, the interference signal is coupled to the test 

circuit in one or more of four modes, (see figure 1.6.2.9 outlined 

as follows :- 

Electrostatic coupling - interference enters the test circuit via a 

path formed by stray capacitance. Circuits with low capacitance 

samples are most susceptible to this coupling mechanism. 

Electromagnetic coupling - the loop formed in the test circuit allows 

interference signals to be electromagnetically induced in the test 

circuit. 

Earth coupling - resistance in the earth path of the test circuit and 

multiple earth connections , causes unwanted voltages at the detector 

from interference currents-flowing in. the earth path. 

Coupling via the high voltage. supply - the path interference enters 

the test circuit is through the mains supply line. These signals may 

be eliminated by the use of a low pass filter in the high voltage 

supply line. 

Techniques to reduce and possibly eliminate interference signals 

include the extensive use of screening, single point earthing, mains 

filtering and discharge free components and are outlined in reference 

(47) . 

Special techniques have been developed which suppress interference 

which cannot be- reduced' by conventional methods to allow site 

measurements to be taken with greater sensitivity. One techinque 
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rejects unwanted signals which are random in nature by the use of 

signal averaging methods [48] . The main disadvantage of this method 

is that it cannot reject spurious pulses which occur at a fixed 

position on the supply cycle. 

Another technique that provides rejection of this type of interference 

is the pulse discrimination system , 
[49] -, which is based on a' 

balanced detection circuit. Common mode noise signals that pass 

through both arms of the detection circuit are rejected on a polarity 

discrimination basis by coincidence logic circuits. 

1.6.2.3 Partial Discharge Measurements in H. V. Machines. 

The value of using- partial discharge measurements to monitor the 

condition of stator winding insulation depends on the type of 

insulation system examined and more importantly the mechanism of 

deterioration. Older generation natural resin bonded mica flake 

insulation experiences degradation by discharge erosion of internal 

cavities. These internal discharges are most intense in the line end 

coils of the phase winding and the repetition rate is such' that 

individual discharges are not recognisable -due to the limited 

resolution of commercial discharge detectors such as the ERA Mk III 

which has a pulse resolution' time of about 20, usec. Superposition of 

discharge pulses makes it difficult to interpret- the measurements. 
However the photographs of the discharge patterns and measurements of 

the maximum discharge present can be compared over a period of time to 

yield information that indicates an increase-in the overall- discharge 

activity and peak level. 

Probably the more useful application of partial discharge testing is 

to modern synthetic resin bonded mica paper insulation systems. This 

type of insulation is more consolidated than natural resin bonded 

insulation and therefore exhibits a greater resistance to erosion by 

internal discharges. 

Failure is likely to occur through erosion of the mainwall insulation 

by slot discharges and surface discharges in the endwindings. High 

discharge magnitudes are indicative of slot discharge activity. 

Discharge peak magnitudes of between 1000 pC and 10,000 pC are 

characteristic of slot discharges from bare areas of-the partially 

conductive coating'and in excess , of 10,000pC, and as large as 100,000 
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pC, are associated with slot discharges that occur when the shield is 
isolated from the slot.. 

In addition, a feature which is indicative of surface discharges in 

the endwinding region is that surface discharges have large 

magnitudes, typically 50,000 pC , 
[50] 

, and occur intermittently on 

the positive half-cycle of the supply voltage. Surface discharges 

also have the characteristic that their magnitudes increase 

proportionately with the applied voltage stress [25] . 

Discrimination between slot, surface and internal discharge sources is 

therefore possible from their respective discharge pulse 

characteristics. Partial discharge measurements in this case have a 

distinct advantage over the dielectric loss analyser system as it is 

inherently insensitive in discrimination between different discharge 

mechanisms .- 

A recent development , [41] 
, in the dielectric loss analyser'by the 

addition of a discharge pulse detection facility, whereby discharge 

pulses are displayed superimposed on the normal D. L. A. loop trace , is 

seen as an attempt to improve its discrimination capability. 

Nevertheless, it is difficult to make quantitative measurements,, apart 
from peak discharge magnitudes, from normal elliptical time base 

displays on discharge detectors. One technique, when used in 

conjunction with discharge, detection systems, does provide 

quantitative information on partial discharge activity by recording 

the magnitudes and repetition frequencies, of all discharges present. 
Pulse height analysis as it is termed may provide the basis for a 

very useful diagnostic technique [57] . 

1.6.2.4 Pulse Height Distribution Analysis 

Pulse height analysis was developed fundamentally for use in nuclear 

pulse spectrometry in which the statistical behaviour of radiation 

particles is studied [51] . 

A pulse height distribution is basically a histogram of the frequency 

of occurence of a distribution of pulse heights or amplitudes in a 

train of pulses, .. whether these represent radiation particles having 

energies in-eVor partial discharges having magnitudes in pC. 
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The first to recognise the importance of pulse height analysis in 

partial discharge measurements was Starr and Johnstone [52] . 

In their system a single channel pulse height analyser is used to 

count the number of pulses whose amplitude lie in an interval or 

window about a preset pulse height. This process is repeated over a 

range of pulse heights to obtain the pulse amplitude distribution. 

The single channel analyser basically detects pulses within a voltage 

window (or channel ) of fixed width by means of upper and lower 

voltage level discriminators, and subsequently counts them. Modern 

pulse height analysers have multiple channels which are distributed 

over a given signal range, normally 10 Volts. Multi-channel pulse 

height analysers as they are termed are basically fast analogue to 

digital converters with a memory, to store the pulse counts for each 

channel. 

Commercially available analysers have typically, 1024,2048,4096 and 

8192 channels which permits very sensitive measurements of pulse 

amplitudes since channel apertures are extremely small. Resolution 

between individual pulses is governed by the 'dead time' of the 

analyser, which is the time taken to process a single pulse. 

Multichannel analysers are therefore'very suitable for use in partial 

discharge measurements. 

A practical example, of a pulse height distribution is shown in figure 

1.6.2.10 . The sample is a small air filled , cylindrical cavity with 

a diameter of 2 mm and depth of 1.5 mm which is formed by a circular 

hole in a sheet of synthetic resin-bonded paper , sandwiched between 

two sheets of synthetic resin-bonded mica flakes . It can be observed 

that the measured distribution is exponential in shape which would be 

expected of an internal cavity discharge . In contrast , the pulse 

height distribution obtained from a negative corona discharge source , 

as shown in figure 1.6.2.11 , shows the very regular discharge 

magnitude which characterises this type of discharge . This subject 

is treated in greater depth in references [54,55] 
. 

In this way the pulse height distribution in partial discharge 

measurements can be seen to provide a wealth of information on the 

discharge mechanism* and its' intensity since any change in the 

discharge process is reflected in the pulse height distribution. 
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So far single discharge sites have been discussed. However, in a= 

machine winding there are multiple discharge sources distributed 

throughout the winding, in particular in the line end coils where 

activity is the greatest. Pulse height analysis applied with 

discharge detection measurements at the machine terminals therefore 

results in a superposition of all discharge activity in one pulse 

amplitude distribution. Separation of each discharge distribution is 

impossible unless it is possible to examine localised areas of the 

winding. 

Functional ageing experiments on samples of machine coils and stator 

bars have shown that changes in the pulse amplitude 

distribution occur over a period of time. and that certain 

relationships between discharge pulse distributions and deterioration 

progression can be made [56] 
. Results on coil sections with no 

simulation of the stator core (packing and wedging), at electric 

stresses between 2 kV/mm and 8kV/mm indicate ýa change in the pulse 

amplitude distribution in which the maximum apparent discharge 

magnitude varies and the number of relatively large discharges changes 

with time . 

It is clear that pulse height analysis is potentially a very valuable 

tool, when used in conjuction with partial discharge detection 

techniques, to assess the condition of the insulation of high voltage 

machine windings. This- is born out by the fact that pulse 
distribution analysis has been successfully applied in an on-line 

insulation condition monitoring system to generators in Ontario Hydro, 

[57] " 

In this system the discharge pulses are coupled 'to 'the pulse height 

analyser by permanently installed capacitors connected to the line end 

of each phase of the generator, winding. Both positive and negative 

pulses are processed by the analyser. The pulse height distributions 

obtained are used as a fingerprint such that any deterioration of the 

winding insulation is gauged by a comparison' of pulse- distribution 

fingerprints. Generally- this means an overall-increase in the area 

under the distribution curve. This trend- analysis. technique' can 

successfully diagnose the. loss of insulation integrity. Furthermore 

the pulse height distributions permit-identification-of; the discharge 

mechanism causing the deterioration. 
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High intensity slot discharge, as outlined previously, is identified 

by the large magnitudes of discharge pulses and by a pulse 
distribution characteristic which is possibly load dependent. When 

the generator load is increased the partial discharge activity is 

increased . This is explained by the fact that increasing load causes 

increased stator bar vibration hence greater slot discharge activity. 

Associated with these features is a difference in the pulse 
distributions of positive and negative pulses. 

In a similar fashion, a low intensity slot discharge which occurs on 

bare areas of the semi-conducting coating is identified by the same 

polarity effect in the pulse distributions. However, these discharges 

exhibit no dependence on the generator load. Internal partial 
discharges are identified by the fact that the positive and negative 

discharge activity is very similar. 

As well as the use of pulse height distribution analysis to 

fingerprint partial discharge activity other-techniques such as pulse 
interval distributions, (which is the distribution of time intervals 

between consecutive pulses), and pulse phase distributions (which is 

the distribution of time occurrence. of pulses after the start of the 

supply cycle ), may contribute more information towards diagnosis of 

insulation health [58] 
. 

1.6.3 Frequency Spectrum Measurements. 

Frequency spectrum analysis is fundamentally the measurement of 

electromagnetic interference voltage levels over a broadband of 

frequency which can extend from 10kHz up to as high as 1500 MHz . - 
Measurement of EM interference is-performed by either a radio noise 

meter or a spectrum analyser. The radio noise meter. is designed to 

cover frequencies between 10kHz and 30MHz whereas the spectrum 

analyser operation extends up to ultra-high frequencies. 

A radio noise meter is basically a'tuneable narrow bandpass filter, 

( typically a9 kHz passband ), - based on. aýsuperheterodyne receiver. 

The output of the filter is fed to a quasi-peak voltmeter which 

provides an indication of discharge level in microvolts. It is 

possible in purely capacitive test objects to calibrate the detector 

voltage in picocoulombs of apparent charge [65] . However, the 

relationship between the voltmeter reading and the apparent charge is 
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dependent on the repetition rate of the discharge pulses. 

The interference voltage is not directly relatable to the apparent 

charge of a discharge within a stator_ winding since the frequency 

response of the winding is very complex. A partial discharge at a 

point within the winding is subject to frequency dependent attenuation 

before it is detected at the terminals and also excites resonances at 

certain frequencies, which makes calibration impracticable. 

Certain studies have developed successful models of the frequency 

response of large motors and generators based on lumped parameter 

circuits , 
[59] 

, and on simple transmission line resonance theory, 

[60] . These investigations aid the interpretation of frequency 

spectrum signatures from measurements on motors and generators. 

The true value of frequency spectrum analysis in partial discharge 

detection is to indicate the presence and intensity of any discharge 

activity by a comparison of-frequency spectrum signatures. 

One technique has been developed to detect on-line the presence of 

partial discharges and-in particular arcing faults in large turbine 

generators, caused by broken stator winding conductors, by monitoring 

the level of radio frequency noise over a band width between 10kHz and 

30 MHz [61] . The r. f. currents produced by discharges in the winding 

and external interference sources flow in the neutral connection of 

the generator winding and are sensed by a ... wide-band-- current 

transformer and radio noise meters which cover the frequency range 

required (see figure 1.6.3.1). Noise level is measured in microvolts 

quasi-peak over the frequency spectrum. Frequency spectrum signatures 

from different machines are compared and from this an average spectrum 

signature is obtained which represents the general noise level from a 

healthy machine. 

A very similar technique , 
[62] 

, employs a current transformer in the 

neutral connection of the generator and a spectrum analyser to measure 

the level of noise in the frequency range 14 kHz to 1000 MHz. In 

general. results show that machines generate a characteristic noise 

spectrum and similar machines produce similar spectra. 

Healthy machines generate spectra with relatively low levels of 

wideband noise. However, in machines which have high levels of slot 

discharge the amplitudes of spectral frequencies increase . 
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Measurements indicate that slot discharge activity may be identified 

by an increase in spectral frequency amplitudes in the low frequency 

range, below 1 MHz . 

A fundamental limitation of the system is the inability to 

discriminate between signals originating in the test machine and those 

generated in other equipment, (transformers, bus-sections and other 

machines), since externally generated noise signals are detected in 

the neutral line. Isolating a signal source requires additional 

testing. 

The system developed by the CERL , [31] , is applied to h. v. motors . 
A split-core current transformer is situated at the switchgear side of 

the feeder cable and radio frequency currents generated by discharges 

are detected over the frequency range 500kHz to 700 kHz and indicated 

as a quasi-peak voltage level. Slot discharges are the principal, 

deterioration mechanism monitored since an oscilloscope is used in 

conjuction with the radio noise meter, displays intermittent high 

level discharges. 

Another detection system developed by the CEGB , 
[63] 

, relies on the 

use of an r. f. loop probe , 
[64] 

, developed to detect noise voltage 

levels from discharges, over the frequency band from 300 MHz to 1500 

MHz. The probe is basically circular loop 70 mm in diameter which 

senses changes( in the magnetic field enclosed by the loop over a wide 

band of frequencies. It is inherently insensitive, (-60dB below 

midband), at frequencies below 1 MHz. In an on-line system the probe 

may be situated near to a line- end connection of the winding or a 

number of probes may be positioned'at intervals around' the winding 

to give a discharge-location capability. A spectrum analyser is used 

to determine the level of noise in the'frequency range. 

The u. h. f. band of 300 MHz to 1500 MHz is adopted since noise signals 

generated from slot'-discharges extend into this frequency range. 

Noise signals generated from corona discharges- and exciter sparking 

have- a much lower frequency content, and aerial borne interference 

from radio broadcast stations occur'in the v. h. f. band from 30 MHz to 

300 MHz which, to a great extent, 'is attenuated by the machines metal 

enclosure. Discharge activity-Is identified by a general increase in 

the spectral frequencies amplitudes. Changes by as much as'20dB in 



signal level have been detected by the technique. 

As can be seen from previous investigations frequency spectrum 

analysis provides useful diagnostic information and can supplement 

other on-line diagnostic techniques. 

1.6.4 Partial Discharge Location Techniques. 

As well as detecting the presence of partial discharges and providing 

an indication of the type and intensity of discharges it is 

potentially useful to be able to locate the position of discharge 

sources within a machine winding structure. Moreover, by examination. 

of regions of the stator winding a picture of the discharge activity 

distributed along the winding length can provide information that may 

permit diagnosis of a fault condition and its position on the winding. 
In addition to the diagnostic information provided, an advantage of a 

discharge location technique is that the level of interference 

signals, that cloud the discharge pattern, from other plant and 

external noise sources is greatly reduced. 

Existing location techniques appled to h. v. electrical machines are 

classified in one of two categories as follows :- 

i. Probe techniques. 
ii. Travelling wave techniques. 

1.6.4.1 Probe Techniques 

All probe techniques to measure partial discharges in the machine 

slot region are intrusive , as in most instances the rotor of the 

. machine must be removed to access the stator winding. The machine 

must therefore be off-line to perform tests . However , this is not a 

problem when the probes used are mounted in the endwindings [31] . 

An electromagnetic probe technique is described by Dakin et al, [66] , 

consists basically of a sensing coil wound on an iron , half-toroid, 

core which straddles the slot of a machine stator core as shown in 

figure 1.6.4.1. The iron of the stator core therefore forms the other 

half of the magnetic circuit. High frequency current pulses from 

discharges in the slot are detected by the coil. Hence the probe 

behaves like a high frequency current transformer with a single turn 
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primary, (the coil conductor), and multi-turn secondary. The probe 

coil inductance and associated cable and detector input capacitance 

are selected to obtain circuit resonance at a frequency of around 5 

MHz . At this frequency, pulses travelling in the winding from a 

discharge site , are attenuated rapidly such that the sensitivity of 

the probe falls quickly with distance from the discharge site. The 

probe is therefore sensitive to discharges in a small slot region in 

the vicinity of the probe. Adopting a lower resonant frequency of 1 

MHz, for example, has been shown to increase the probes sensitivity to 

discharges at localities further away thus reducing the probes 

location selectivity . 

The discharge pulses detected by the coil are fed to the detector 

amplifier which is tuned to the circuit resonant frequency, to obtain 

optimum sensitivity. A radio noise -meter is used to provide a 

quasi-peak voltage measurement. By scanning each slot in the machine 

sequentially a distribution of partial discharge activity is obtained 

which indicates the regions of highest discharge intensity. 

Calibration of the probe is achieved whilst the winding is 

de-energised, by injecting a calibration pulse through a foil 

electrode, coupling capacitor which is wound on a portion of the coil 

at the interface of the slot and-endwinding regions. Sensitivities 

obtained are approximately ' 0.019 JuV/pC . 

This technique is particularly suited to locating slot, discharges in 

machine windings and is used extensively in the U. S. A.. and Canada, 

[671 . 

A similar technique developed by the CEGB , [31] , allows measurement 

of discharge, levels in the endwindings of machine stators by 

measurement of the discharge currents in the intercoil connecting 

links. 

1.6.4.2 Travelling Wave Techniques 

The winding of an electrical machine is a distributed component and as 

such it behaves as a very complex transmission line at frequencies 

whose wavelength is comparable to the length of the winding conductor. 

Signals travel in the stator winding with a finite velocity. 'Knowing 

the time taken for a pulse to propagate from a location in the winding 
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to the winding terminals and the propagation velocity it is possible 

to determine the position of the pulse source. This principle 

provides the basis of all travelling wave location techniques. 

One technique, used to locate the source of discharges in a machine 

winding , 
[68] 

, relies on an analysis of the spectral frequency phase 

relationships in a discharge pulse observed at the winding terminals. 

An artificial discharge pulse is injected at one end of a stator bar 

and observed at the opposite end. A digital storage oscilloscope 

stores the pulse waveform detected at the output. Subsequently, the 

relative magnitudes of the harmonic components of the waveforms are 

evaluated along with their respective phase angles relative to the 

fundamental frequency of pulse. The phase angle of the nth harmonic 

relative to the fundamental frequency, along with a knowledge of the 

variation of the winding capacitance with frequency, is sufficient to 

determine the location of the discharge source. The particular nth 

harmonic chosen for analysis of the discharge position is the one 

whose magnitude is significantly higher than the next higher, 

((n+l)th), harmonic. The technique is dependent on the knowledge of 

. the variation of capacitance with frequency. 

Until now, no partial discharge location technique for electrical 

machine stator windings has been developed based on the time domain 

behaviour of pulses. Although, such techniques have been applied to 

the testing of transformers , [69,70] 
, in which the difference in 

time delays incurred by the pulses detected at the winding terminals 

is used to determine the position of the discharge source. 

It is the purpose of this study to develop a technique for the 

location of partial discharges in the stator windings of electrical 

machines to complement existing partial discharge measurements 
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CHAPTER TWO 

DISCHARGE PULSE PROPAGATION IN H. V. MACHINE STATOR WINDINGS 



2.1 Propagation of Partial Discharge Pulses in Stator Windings 

When a partial discharge takes place , -whether it is a surface 

discharge or an internal discharge in the slot or endwinding region , 
a rapid injection of electrical charge occurs , and results in current 

pulses flowing in conductors local to the point of discharge . These 

high frequency current pulses propagate to both, ends of a phase 

winding where they are transmitted and reflected at the respective 

junctions . 

A knowledge of the manner in which high frequency pulses propagate in 

high voltage stator windings is a necessary prerequisite in'partial 

discharge measurements to the following.: 

i. The development of a technique capable of locating the position 

of partial discharge sites in a phase winding . 

A. The accurate measurement -of partial discharge magnitudes from 

measurements made at the motor winding terminals . 

Until recently , there have been very few published investigations on 

the propagation of partial discharge pulses in the stator windings of 

high voltage machines . Studies have been performed in other high 

voltage systems which are subject to partial discharges such as h. v. 

transformers [76,77] and h. v. power cables [78] .- 

Similar studies have also been done on h. v. machine stator windings 

but with pulse waveforms representative of lightning and switching 

surges , 
[22] , which have provided much useful information . 

One investigation on the propagation of discharge pulses in waterwheel 

generator stator windings [79] gave some information on pulse 

attenuation in these windings but no detailed results on the 

propagation behaviour 
.. 

Another study by Miller et al. [80] , 

performed a frequency analysis of partial discharges propagating in a 

motor winding to give, details on the attenuation of harmonic 

frequencies of the pulse with distance of propagation . However , the 

investigation by Wilson et al. , 
[81] is the most detailed and the 

most relevant to the 'study of the behaviour -of- discharge pulses in 

machine stator windings. . In this study the basic mode of pulse 

propagation is outlined together, with information regarding pulse 
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velocities and attenuation . Tests were performed on a number of high 

voltage machines and results of experiments on a 6.6 kV ; form wound 

motor and on a 22 kV generator winding were discussed . 

Two basic modes of pulse propagation are identified . In the series 

mode the winding behaves like a simple transmission line in which the 

a pulse has a finite propagation velocity and is subject to 

attenuation. In the second mode ,a portion of the pulse travels 

through the winding virtually unhindered and without appreciable time 

delay . The path of propagation is through the endwinding conductors 

by electromagnetic coupling . This mode occurs at higher pulse 

frequencies , above a certain cut-off frequency . These results are 

similar to the . 
findings of -the study on the propagation 

characteristics of partial discharge pulses in motor windings 

described in the following sections . 

2.2 Stator Winding Test Rig 

The model phase winding used for experimentation is constructed from a 

group of fourteen ,7- turn coils supported in a wooden cradle which 

has the slotted profile of a stator core as shown in the photograph in 

figure 2.2.1 .A sheet of copper is formed over the teeth of the 

wooden frame to represent the iron core of a machine . This model is 

valid , since the depth of penetration of flux at a frequency of 100 

( conductivity of sheet steel is taken to be 3.6 Krim ). kHz is 53 um 

Therefore at higher frequencies, the ferromagnetic properties of the 

iron of a stator core has negligible effect on the propagation of 

electromagnetic signals within the stator winding . The inductance of 

the slot portion of a stator coil becomes independent of frequency 

above 100 kHz . 

The rotor of the machine is considered to have negligible influence on 

the pulse propagation behaviour at the frequencies encountered in 

partial discharge pulses due to the skin effect and the fact that an 

appreciable air gap exists between the stator and rotor surfaces 

Therefore the rotor is not simulated by the model . 

Each coil in the model is of a form wound construction in which 2 

'parallel conductors are wound to form a7 turn coil in a double-stack 

conductor arrangement . By connecting the parallel conductors at the 

coil ends the coil is made to behave electrically as a7 turn coil . 
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The coils are typical of those used in high voltage motors rated at 
6.6 kV and are insulated to class F standard with epoxy resin bonded 

mica paper tape to give an interturn insulation thickness of 0.62 mm 

and a main slot insulation thickness of 1.9 mm . The slot portion is 

painted with a colloidal graphite paint which extends 20 mm beyond the 

core ends . Voltage grading paint at the slot ends overlaps the 

graphite paint by 13 mm and extends a further 40 mm into the 

endwinding region . The endwinding is finished with one layer of 
flexible epoxy sealing tape . 

The coils are lap connected to form a double layer phase winding 

which has a coil pitch of 9 slots . Connections are made with a brass 

nut and bolt arrangement and short lengths of copper wire . In this 

manner access for oscilloscope measurements is achieved at test points 

on. the coil interconnections and winding terminations . 

Partial discharge pulses are simulated with a pulse generator which 
injects a train of rectangular pulses through a calibration 

coupling capacitor into the coil interconnections or the winding 

terminations . In some instances , pulses from the pulse generator are 
fed directly to the winding injection points to observe the behaviour 

of voltage pulses in the winding to enable identification of the 

important propagation characteristics . Pulse amplitudes from the 

pulse generator are variable in the range of 0 to 20 volts , and pulse 

rise time is adjustable from 10 nsec. to 1000 "nsec to allow 

simulation of most partial discharge pulse features . 

Voltage measurements are made with low capacitance oscilloscope 

probes whilst current measurements are made using a Rogowski coil , 
which is basically an air-cored current transformer , at the coil 

interconnections and winding terminals .A typical test arrangement is 

shown in the diagram of figure 2.4.1 
,( page 89 ). 

To simulate the effect of discontinuity of impedance at the winding 

terminations , the model phase winding is terminated- in a variable 

resistor at each end , which is adjustable in the range of 0 to-1000 

ohms . This covers the terminating conditions that are likely to occur 

in a machine . 

In a star connected winding , the line end will be connected to the 

power supply system through a length of power cable which has 
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typical surge impedance values of between 20 and 50 ohms [21] . This 

is much less than the effective surge impedance of machine windings 

which are typically between 100 and 5000 ohms [21]. The neutral end 

however is connected to the junction of the two other phase windings 

and so behaves effectively as an impedance of half the phase winding 

surge impedance ,( refer to figure 2.2.2 ),. 

In the case of a delta connected winding both terminals of a phase 

winding are at the junction of the two other phase windings and the 

supply cable as shown in figure 2.2.3 . The effective surge impedance 

at the winding termination is the resultant of these . 

The terminating resistors in the-phase winding model are not 

representative of the surge impedances of other phase windings or 

power cables in the strictest sense , since they do not simulate the 

effects of pulses reflected back into the phase winding from the 

opposite end of the power supply cable or the other phase windings . 
In the case of pulses reflected at the opposite ends of the other 

phase windings , it is sufficient to model these as a discrete 

impedance as attenuation of pulses in these windings is likely to 

reduce reflected pulses to an extent that, their influence is 

negligible . However , pulses reflected at the switchgear end of a 

supply connection cable undergo a small degree of attenuation since 

modern power cables exhibit low loss transmission characteristics . In 

addition , supply cables to high voltage motors are often 3-phase 

armoured cables so that the single phase connecting cable is not a 

simple transmission line but includes mutual impedances between the 

phase conductors . 

The use of a discrete impedance to model . 
the supply. cable is 

therefore of limited value for the reasons mentioned . However , this 

does not exclude the use of a discrete component to model the 

reflection characteristics of a junction of one or more surge 

impedances which is important in determining the pulse transmission 

behaviour in a machine stator winding . For the purposes of this 

investigation the phase winding model is sufficient in its 

representation of a phase winding in a real machine 
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2.3 Propagation of Steep-Fronted Pulses in a Single Stator Coil 

To gain an appreciation of how fast rise-time , short duration pulses 

such as partial discharge pulses propagate in high voltage motor 

windings , an examination of their behaviour in a single stator coil 

was undertaken initially . By doing so , the influence of the 

remainder of the winding could be ignored initially to allow an 

assessment of the main propagation characteristics . In addition , 
this approach makes it possible to explain more readily the complex 
behaviour of electromagnetic pulses travelling in a stator winding 

transmission system as a whole . 

Partial discharge pulses have widely differing shapes depending on the 

discharge mechanism present , which in, the stator winding of a h. v. 

motor may be an internal cavity type discharge ,a slot discharge or 

an endwinding surface discharge . However , common to each type of 
discharge is the rapid rise-time of the pulse which contains high 

frequency signal components .A rise-time as short as 1 nanosecond is 

possible for small internal cavity discharges refer to section 
1.6.2.1 of chapter one which corresponds to.. signal components 
having frequencies extending up to 1000 MHz .A more realistic 

rise-time which may be expected will be in the region of 10 nsec or 

greater which is associated with frequency components of around 100 

MHz and below . The durations of pulses vary considerably , from say 

100 nsec to a few tens of microseconds , which places the lower end of 

the frequency spectrum in to the 100 kHz region . The investigation 

must therefore determine the propagation of electromagnetic pulses 

with a frequency spectrum that extends over the signal bandwidth 

outlined above . This is achieved by using rectangular pulses having a 

short rise-time and reasonably long duration . 

Pulses derived from a pulse generator were injected at the source end 

of a stator coil and observed at the output which is terminated in a 

resistance of 300 ohms , see figure 2.3.1 . This resistance is 

approximately equal to the characteristic impedance of the stator 

winding and so represents the remainder of the winding . The pulses 

used had a rise-time of 10 nsec and a duration of 10 psec so that a 

wide bandwidth of signal frequencies are generated , from 100 kHz up 

to 100 MHz . Figure 2.3.2 shows the waveform observed at the output of 

a single coil when a rectangular pulse of the type described above was 
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It is apparent from the waveform that appears at the coil output that 

the pulse has incurred some time delay in passing through the coil . 
The wave therefore travels through each turn in the coil with a 

measureable speed of propagation . This is the main mode of 

electromagnetic wave propagation in a stator coil and therefore in a 

machine winding . 

2.3.1 Velocity of Propagation in a Stator Coil 

The propagation velocity of an electromagnetic wave in a stator coil 

is obtained from measurement of the transit time- tC of the pulse 

wavefront through a coil and relating this to the velocity using the 

simple expression , 

v=d 

tc 

where d is the length of the coil conductor . 

...... (2.1) 

The transit time through the coil , as measured from the waveforms in 

figure 2.3.2 , is approximately 90 nsec . Since the coil conductor 

length is 11.95 metres the corresponding propagation velocity is 133 

m/psec which is 44 percent of the speed of light in a vacuum . This 

is in the same region as has been found in similar -experiments in 

motor stator windings , 
[81] 

, which yielded a value of 156 m/psec in 

a phase winding comprising 18 coils of 2.8 metres in length . It is 

possible to relate this to a calculated value of velocity assuming 

that wave propagation is similar to that in a lossless transmission 

line . 

In a lossless transmission line a wave propagating in-the transverse' 

electromagnetic ,( TEM ), mode along a conductor surrounded by a 

medium having a dielectric permittivity , 
Er 

, and magnetic 

permeability ,r, will travel at a speed given by the expression , 

c 

8 1) Er. p r (c = 3x10 ms 
...... (2.2) 

At the signal frequencies of interest the value of X, =1, as eddy 

currents induced in the stator core will limit the extent of 

penetration of the magnetic field into the iron , or in the case of 
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the model , the copper . This depth is approximately 53 Nm at a 

frequency of 100 kHz for a core constructed of sheet steel , 
(refer to 

section 2.2 ). 

To calculate the propagation velocity therefore , it is necessary to 

determine the relative permittivity of the coil insulation . The 

manner in which this is done, is to compare the value of the 

capacitance of a single coil which is measured , with that calculated 

from a knowledge of the conductor/dielectric geometry. 

First, consider the calculated value of capacitance. It is only 

practical to calculate the capacitance to earth in the slot region of 

the coil since the geometry of the electric field around the slot 

conductors is well defined and uniform. 
-and---. 

approximates to that of a 

parallel plate capacitor arrangement. Consider the cross section of 

the slot as shown in figure 2.3.1.1. - The total capacitance of the two 

slot portions of a single coil is given by. the expression. 

C=2. (2. Eo. Er(ksw) + 7. Eo. Er(2ksa)) 

bi bi 
...... (2.3) 

The first term in the equation is the contribution to the capacitance 

of the electric field between top and bottom conductor/slot wall 

surfaces whilst the second term represents the contribution to the 

capacitance of each of the conductors to the adjacent slot wall. 

The above expression is an approximation and assumes that the 

insulation extends from the conductor to, the slot wall ; the electric 

field terminates at the outer surface of the insulation at the top of 

the slot and that electric field fringing effects are negligible. From 

the coil manufacturers specification and measurements the slot bar 

parameters are as follows :- 

a- conductor height = 4.075.10 m3 

b- interturn insulation thickness = 0.6096.10 
m 

b. - main insulation thickness = 2.1532.10 m3 

w- conductor width = 8.8916.10 
m--, 

ks - slot length = 0.270 m 
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a- conductor height 
b- interturn insulation thickness 
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Figure 2.3.1.1 - Stator Coil Slot Dimensions 
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The capacitance of the slot portion of a single coil from calculation 
based on these parameters is (180). Er pFarads . However, from 

measurement of the total coil capacitance using an a. c. bridge at a 
frequency of 10kHz the capacitance is 1244pF . Of course , some of 

this value must be attributed to the capacitance of the endwindings to 

earth which is estimated at 50pF ,(a value taken from the measured 

capacitance between adjacent coils ), so that the measured slot 

capacitance is taken to be 1194pF . It follows therefore, that the 

relative permittivity of the dielectricýis obtained by equating the 

measured and calculated values of slot capacitance hence : 

(180). Er = 1194 

� 
Er = 1194 = 6.6 

180 

Based on the dielectric permittivity. of 6.6, the calculated wave 

velocity in the slot is given by 

v=c=3.108 = 116.7 m/, usec 
VE-r 6.6 

In the endwinding region , the conductor is surrounded by the main 
insulation and an air space so that the effective relative 

permittivity in this region is between unity , for air , and 6.6 for 

the insulation . The velocity of propagation is therefore expected to 

be higher in the endwinding region as a result . The effective transit 

time through the coil and apparent wave velocity may be calculated 

assuming an air dielectric in the overhang . 

The transit time through a coil with a total conductor length of de in 

the endwinding and a total conductor length of ds in the slot is given 

by the expression , 

Tc =1 As + 1. de 
(cr, ) c 

For the coil de = 8.17 m and ds = 3.78 m, therefore, the transit time 

through the coil is 59.6 nsec . The apparent wave velocity in the coil 

as a whole is therefore 200 m/psec . This value may be calculated from 

the expression for the apparent wave velocity which is : 
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v=c. ( 1+ de/ds) 

(, /-E-r + de/ds) 

The measured wave velocity as determined previously is 132.9 m/Nsec, 

which is considerably lower than expected . Velocity in the endwinding 

conductors must therefore be closer to the velocity of propagation in 

the slot such that the effective dielectric permittivity in the 

endwinding region is similar to the slot region value . 

In a recent study , [23] 
,a single stator coil is modelled as 

a multi-conductor transmission line system, with junctions at the 

interface between the slot and overhang regions . In the analysis a 

single velocity of propagation is assumed , that is a velocity based 

on the relative permittivity of"- the coil insulation . Predicted 

waveforms correlate closely with those measured and therefore indicate 

that the wave velocity in the coil overhang is much lower than would 
be expected and indeed approaching the velocity in the slot . 

An experiment performed which supports this , entailed extending the 

earth plane of the core over the endwinding conductors by wrapping the 

coil endwinding in an aluminium foil which is in contact with the 

core . This effectively makes the dielectric permittivity constant 

along the entire coil length such that , assuming a relative 

permittivity of 6.6 , the expected transit time through the coil is 

102 nsec 

A rectangular fast risetime pulse was input at one end of the coil and 

observed at the other terminal as before . Figure 2.3.1.2 shows the 

output waveform obtained for the extended earth coil , along with the 

waveform obtained from a normal coil . 

It can be seen from a comparison of the two , that there'is little 

measureable difference in the waveforms . The pulse transit time 

through the coil with the extended earth is 105 nsec., which 

corresponds to a wave velocity of 113.8 m/psec . This compares well 

with the calculated value of 102 nsec . However, the difference 

between the transit time through the normal and the extended earth 

coil is only 15 nsec . If this difference were due to the increase in 

speed of-propagation in air in the endwinding region then it would be 

approximately 42.4 nsec . This is the difference between the transit 
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time through the coil with the extended earth , 102 nsec. , and the 

transit time through a coil with an endwinding having a relative 

permittivity equal to that of air , (59.6 nsec) . Since this is not 

the case , the speed of propagation in the endwinding must be 

significantly less than the velocity through a conductor situated in 

air . This confirms that electromagnetic waves travel at a speed 

approaching the speed of propagation in the slot region of a stator 

coil . 

2.3.2 Frequency Response of a Single Stator Coil 

The waveform observed at the output of a single coil in response to 

the injection of a fast rise time rectangular pulse shows a 

significant increase in the wavefrant, duration from 10 nsec to around 

200 nsec . This is- characteristic of. a low pass filter circuit in' 

which signals above a certain passband of frequencies are attenuated 

progressively-, as the signal frequency increases . To confirm that 

this is the case, the frequency response of the coil was obtained by 

measuring the ratio of the output signal amplitude to the amplitude of 

a sinusoidal input signal over a frequency range from 100 kHz to 30 

MHz . The test circuit arrangement is identical to the circuit in 

figure 2.3.1 with the exception that a sinusoidal signal generator is 

used as the source . 

The normalised frequency response characteristic in figure 2.3.2.1 

shows that the coil does indeed behave like a low pass filter 

circuit. Signals in the frequency range below 1.2 MHz pass through the 

coil virtually unattenuated . However , as the frequency is increased 

above 1.2 MHz the signal is attenuated , which is observed as a fall 

off in the gain as the frequency increased . The gain in the 

response of the stator coil continues to decrease over a 2MHz 

frequency band until at a frequency of 3 MHz the signal is attenuated 

to approximately 15 % of the input amplitude . 

The cut off frequency of the-stator coil is -defined as the frequency 

at which the gain is 0.707 times (, -3 dB below -), the low frequency 

gain . From figure 2.3.2.1 the cut off frequency is. 1.45 MHz and 

defines the signal bandwidth of the stator coil . 

As the frequency is increased further a number of resonances occur at 

frequencies of 7 MHz, 10 MHz and 24 MHz . These resonant frequencies 

Page 82 



1/0 % 
V 
"in 

. Frequency Response of a Single CO 

_---, MEMO 
Rfl 

esonant 

3#ýýý3ý}li4iliilýifi4lýi ýýýý#IIEIýltfllEUIINHlUý1311i1iý ý1ll1 t1ý49ý 
ý 

__« 111 ýil[f ýt farm , porn aiffil" k. 11 

10 
_.. =x Resorºonces '` ! 

.ýý.....,., ý 
M-M Cut-off 

(-3rr 
IIR 

., -ý .�. - "+++++Niiltwlil ..... .- 

"t. 
ýý -_ý1I1_iý 

'ý, Ulu i 

0.5 

+-rr MUND 
_-_ 

-- I f lllup-gtuu .- 
TIM 

M 

-milli 
` 

--__ "iý, 

0 
IAitI¢11R111 

i-- 

.1 
x- N 

-S"- 

ý 
.". "" r0 

i 
H 

Figure 2.3.2.1 - Frequency Response ofra Single 

Stator Coil 

.... g 
3 

Frequency N 

Page 83 



are manifested in the observed coil output waveform as high frequency 

oscillations . The resonant oscillations, however , are not coil 

resonances but are associated with the earth circuit since these 

remain on the output waveform even when the coil terminals are 

connected together to prevent propagation through the coil . 

It is also observed that the frequency response peaks at a frequency 

of 700 kHz which corresponds the resonant frequency of the coil . The 

frequency response characteristic can be explained with reference to 

the very simplified equivalent circuit for a single stator coil which 

is shown in figure 2.3.2.2 , in which L is the series coil inductance 

and C is the capacitance to ground in the slot portion of the coil 

The resistance R is the termination. resistance which is 300 ohms 

The circuit has a tranfer function given by equation (2.4) below , 

Vo (s) = 1/LC 

Vi (s) s2 + (1/CR)s + 1/LC 
.... (2.4) 

which can be expressed by the -characteristic equation for a second 

order system , 

VO (s) = w2 
Vi (s) s2 + 2ý4j s+ 

where w= 1/ (LC) and- _ (LC)/2R 

.... (2.5) 

w is the natural frequency of the circuit and 
ý is the damping 

factor . 

The frequency response of the simplified equivalent circuit fora 

second order system is very similar to the measured response in that 

it has a low pass characteristic with a resonant peak close the upper 

frequency limit . The resonant frequency 'can be calculated from the 

equation for c4 .L is the , coil self inductance and has a measured 

value of 49jpH and C is the slot capacitance which is 1194 pF . The 

resonant frequency of the coil is therefore given by , 

f =. 
&' 

2Tr 
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which , for the values of L and C, is approximately 658 kHz . 

This compares well with the frequency of 700 kHz obtained from the 

frequency response characteristic and shows this resonant frequency is 

due to the interaction of the coil self inductance , L, and the coil 

capacitance to earth in the slot ,C. 

The presence of a resonant condition in the frequency response is 

indicative of a system with little damping . In the equivalent circuit 
for the stator coil the level of damping is controlled principally by 

the circuit terminal resistance R, which is expressed in the term for 

the damping factor , 
4. Thus reducing the circuit resistance R causes 

the damping factor and hence system damping to increase . This is 

shown in the frequency response characteristic in figure 2.3.2.3 in 

which the terminal resistance is 20 ohms ., There is no indication 

of resonance in the response due to the increased damping in the 

circuit . 

The degree of damping in the circuit affects the pulse rise time ; by 

increasing the damping the rise time is increased . In the case when a 

resonant oscillation occurs on the pulse response waveform the rise 

time is difficult to measure , however the time to the peak of the 

oscillation is approximately one quarter cycle of the natural 
frequency which is given by the equation , 

T=1 

44º 

For a natural frequency of 700 kHz , the rise time to the first peak 

is 350 nsec, which correlates with the value of 360 nsec observed on 

the waveform in figure 2.3.1.2 . 

It is shown in this section that a single stator coil behaves like a 

low pass filter such that signals are subject to frequency dependent 

attenuation due to the self inductance and the'slot capacitance of the 

coil . However , this does not --take into account the effect of 

interturn: mutual inductance and interturn capacitance, in determining 

the response of a stator coil . 
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In the study of steep fronted wave propagation in the line end coil of 

a machine by Wright et al , [23] , two modes of wave propagation are 
identified within a single stator coil . Waves travel along the coil 

conductor as in a transmission line in the first mode of propagation . 
In the second mode , the interturn capacitance and mutual inductance 

are responsible for the coupling of signals between adjacent turns of 

the coil . This coupling between turns is stronger at higher 

frequencies since the reactance of the interturn capacitance and 

mutual inductance is small . For example, the capacitance between two 

adjacent turns in the stator coil is given by the expression , 

C= Eo. Erw. l .... (2.6) 

bi 

where 1 is the length of a turn conductor . The turn capacitance is 

1.45 nF based on the coil dimensions in figure 2.3.1.1 . 
At a frequency of 1.57 MHz the impedance between two adjacent'turns 
due to interturn capacitance becomes comparable with the impedance 

of the turn self inductance ,(7 pH ) 

2.4 Propagation of Steep-Fronted Pulses in a Phase Winding 

In the same manner as for a single stator coil , the transmission 

characteristics of a complete phase winding may be obtained from the 

response of the winding to a fast rise time rectangular pulse . Pulses 

derived from a pulse generator were injected at the source end of the 

phase winding and observed at the inter-coil connections along the 

winding on a 60 MHz bandwidth oscilloscope , see figure 2.4.1. Both 

ends of the winding were initially terminated in a resistance of 300 

ohms . This value of resistance was selected to be representative of 

the characteristic impedance of the winding so that reflections at the 

terminals of the winding were eliminated . The pulses injected in this 

first experiment had a duration of 100 »sec and a rise time of 10 

nsec. , so that the winding was subjected to signal frequencies in 

the range 10 kHz up to 100 MHz 
. Figure 2.4.2 shows the 

waveforms observed at the coil interconnections when a fast-fronted 

pulse was injected at the source end of the winding . 

A general observation which can be made from the waveforms in figure 

2.4.2 , is that the main pulse propagates along the winding with 

finite velocity as in a simple transmission line . As the pulse 
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propagates through the winding structure the wavefront grows less 

steep and increases in duration . This is a result of the cumulative 

effect of a number of stator-coils-connected in series , each of which 

acts like a low pass filter to the spectrum of signals contained in 

the pulse . 

In addition to the main pulse wavefront , the'waveforms in figure 

2.4.2 show that another pulse of opposite polarity precedes the main 

wavefront as it passes through the winding'. This negative polarity 

pulse begins to develop after the main pulse wavefront has travelled 

through the first three coils 'in the winding . It'is seen to have a 

much steeper wavefront than the main pulse and this short rise time is 

virtually constant as the negative wavefront travels through the 

winding . This behaviour indicates that the negative pulse contains 

relatively high frequency components which propagate through the 

winding with a higher velocity than the main pulse . 

Considering the forementioned transmission characteristics of the 

negative pulse , it can be deduced that a second mode of wave 

propagation must take place in the stator winding . Further 

investigation shows that higher frequency signals travel through the 

endwindings of the stator coils by electromagnetic coupling between 

adjacent coil endwindings . This is discussed in greater depth in 

section 2.5 of this chapter . 

Three separate modes of wave propagation are therefore identified and 

are as follows :- 

i. Simple transmission line propagation in which waves travel 

in the TEM ( Transverse Electromagnetic ) mode'. 

ii. Interturn mutual capacitive and inductive coupling within a 

single stator coil . . '-" .-ýII -I 

iii. Intercoil * electromagnetic coupling through adjacent 
endwindings . 

Consider first of all the main transmission line mode of wave 

propagation .` The "basic parameters that define propagation behaviour 

in'this mode are wave velocity and attenuation over the frequency 

range of interest . 
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Velocity of propagation based on time interval measurements taken from 

the waveforms in figure 2.4.2 , is very difficult to estimate since 

the pulse is considerably distorted as it penetrates the winding, by 

secondary modes of wave propagation and by the dispersion in the wave 

velocity that occurs with frequency . If the transit time through a 

coil or number of coils is defined by the time interval between the 

moment the pulse wavefront enters the winding to the point on the wave 

at which the main wavefront begins to rise , the velocity of 

propagation can be estimated over the winding length . Based in this 

definition of transit time the velocity of propagation is calculated 

at every second coil along the winding and is shown in figure 2.4.3 . 
fý 

Coil No. Transit time Velocity 

('usec. ) (m/psec. ) 

2 200 119.5 
4 400 119.5 
6 610 117.5 
8 890 107.4 

10 1100 108.6 
12 1500 95.6 
14 1800 92.9 

Figure 2.4.3 - Estimated Wave Velocities through 

a Phase Winding 

The estimated velocities in figure 2.4.3 indicate that the wave 

velocity is reduced with increasing depth of travel into the winding . 
Since the higher frequency signal components of the pulse are 

attenuated through each coil in the winding , it is the low frequency 

components that pass through the winding with little attenuation along 

the conduction path . It is these lower frequency components that form 

the main pulse , and predominate increasingly as the wave travels 

deeper into the winding . This would suggest that low frequency 

signals travel at a lower velocity, - since there is a reduction in the 

wave velQcity with greater depth of penetration into the winding 

Measurement of the wave velocity of sinusoidal signals over the 

frequency range 10 kHz to 3.4 MHz is shown in figure 2.4.4 and 

confirms this to be the case . Propagation velocity is measured by 
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recording the transit time of a sinusoidal signal , derived from a 

sinewave generator , through the phase winding at certain 
frequencies. Progression of the sine 'wave can be observed at each of 

the coil interconnections along the winding . 

At frequencies below 200 kHz signals travel at a speed of 

approximately 38 m/psec . As the frequency is increased', the velocity 

rises almost linearly up to a frequency of 2 MHz Thereafter the 

characteristic shows the wave velocity, increases less rapidly and 

reaches a ceiling value of 103 m/psec at -a frequency of 3.4 MHz . 
Above this frequency , signals undergo considerable attenuation such 

that no useful measurement of wave velocity can be made since the 

upper limit of signal propagation is reached . 

The velocity of propagation at the upper frequency limit approaches a 

velocity of 116 m/, usec which corresponds to propagation in a conductor 
having an insulation with a relative permittivity of 6.6 , that of the 

winding insulation . 

At much lower frequencies , below 200 kHz , the velocity of 

propagation ( 38 m/, usec ) is much lower and represents a velocity of 

travel determined by the lumped effect of the winding self inductance 

and the slot capacitance to earth . This is in the region of values 

quoted in studies of surge propagation in machine windings , [21,22] , 
and may be calculated using the equation developed by R. Rudenberg [82] 

which is , 

v=n. (k + s) 
LC 

o '. o 

where, n- number of turns per coil. 
k- length of slot conductor (m) 

s- length of one endwinding section (m). 

'L - self inductance of one endwinding section (uH). 

C- capacitance to earth of a single slot section (pF). 

For a single coil the total measured self inductance is 49 pH and the 

total measured capacitance to earth in the slot is 1194 pF, which 

result in values of 24.5puH and 597 pF respectively for L and ,C. The 

parameters k-and s have lengths of 0.27 m and 0.583 m respectively . 
This gives a calculated wave velocity of 49.4 m/psec, which is, in-the 
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region of the measured value of 38 m/usec . 

It can be seen therefore , at low frequencies the velocity of 

propagation is determined by the lumped effect of endwinding 
inductance and slot capacitance , and is similar to propagation in an 

artificial transmission line constructed from discrete elements of 

series inductance and shunt capacitance . The variation in wave 

velocity over the frequency range of 100 kHz to 3.4 MHz is therefore 

seen as a transition in the mode of wave propagation . At low 

frequencies , the endwinding inductance and slot capacitance behave 

like lumped elements in- a transmission line . As- frequency is 

increased the influence of electromagnetic coupling in the 

endwindings increases . The winding also behaves more like a 

distributed structure since the wavelength of higher frequency 

components becomes comparable to or less than the length of the 

winding . Thus the gradual increase in the wave velocity indicates the 

increased influence of the endwinding coupling mode of wave 

propagation . 

2.4.1 Frequency Response of a Motor Phase Winding 

A phase winding has a similar response over a wide bandwidth of signal 
frequencies to a single stator coil, in that it behaves like a low 

pass filter network . 

As before, a sinusoidal wave generator was connected to the source end 

of the winding and a 300 ohm resistor at the other end as shown in 

figure 2.4.1 . The frequency response characteristic was obtained by 

measuring the ratio of the output voltage , Vo , to the input voltage, 

Vin , over a range of frequencies extending from 10 kHz up to 30 

MHz. The frequency response characteristic obtained is shown in figure 

2.4.1.1 . 

The response clearly indicates an increase in the attenuation of the 

signal through the winding as the-signal frequency'is increased until 

at a frequency of around 3.8 MHz virtually no signal is detected at 

the winding output . This represents a distinct cut-off frequency :. 

Wave propagation is permitted by the winding structure at frequencies 

below this cut-off , but no wave penetration takes place in the 

winding above this frequency . This low pass characteristic is the 

cumulative effect of the stator coils connected in series , each of 
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which behaves like a low pass filter circuit due to the series self 
inductance and shunt capacitance of a coil . The frequency response 

of a phase winding is therefore generally similar to the response of 

a single stator coil . 

Superimposed on the frequency response characteristic are three peaks 

which correspond to winding resonances , and occur at 120 kHz, 350 

kHz, and 700 kHz . These are transmission line resonances which occur 

when the winding is terminated at either end by an impedance that is 

not equal to the characteristic impedance of the winding . In this 

case the winding was terminated at both ends in an impedance value 

lower than the characteristic impedance such that resonant 

oscillations had half wavelengths that were multiples of the winding 

length . This is discussed in greater detail in section 2.4.2 . 

At frequencies of 7 MHz, 10 MHz and 24 MHz resonance peaks are 

observed in the response characteristic in figure 2.4.1.1 . Indeed 

these are signal resonances and appear as high frequency oscillations 

on the pulse waveforms in figure . 2.4.2 at the instant the input pulse 

is injected into the winding and are observed at each of the winding 
interconnections Since these " high frequency signals occur 
instantaneously at 'each coil connection it must follow that they 

travel by an alternative path other. than along the winding conductor . 
It is the earth path that supports the propagation of these signals 

since the signals are affected by any changes in the. earth path . 
These resonant peaks on the frequency response must therefore be 

ignored in the analysis of the propagation phenomena . 

2.4.2 Influence of Winding Termination Impedance 

The phase winding has an effective characteristic impedance of around 

300 ohms . The value of this characteristic, impedance can, be 

calculated'approximately- from the 'equation (2.8) ", assuming the 

winding acts as a simple transmission line. Obviously this is an 

over-simplification and does not take into account the effect of 

endwinding and interturn coupling within'a winding. 

Z=L 

C 
:... (z. s) 
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L is the self inductance of the winding per unit length and is 

calculated as follows :- 

-6 L= Total winding: inductance = 14.49.10 = 4.1 iH/m 
Winding length 167.3 

C is the shunt capacitance of the winding per unit length and is 

obtained as follows :- 

-12 C= 
. 
Total shunt capacitance = 14.1194.10 = 99.9 pF/m 
Winding length 167.3 

The characteristic impedance is calculated at 202.6 ohms and is 

reasonably close to the measured value of around 300 ohms . 

When the winding is terminated in a resistance equal to the winding 
impedance there is minimum reflection of the pulse at the terminals 

and so little distortion appears, on the pulse waveform . If however , 
the terminating resistance is altered from the characteristic 
impedance value , reflection of the main pulse occurs at the 

discontinuity . The magnitude of the reflected wave depends on the 

ratio of the terminal impedance to the winding impedance . Figure 

2.4.2.1 shows the response of the phase winding to a step input pulse 

when the terminal impedance at one end of the winding is an 

open-circuit . This represents a terminating condition in which the 

winding is effectively a free boundary at one end to electromagnetic 

waves . In this condition the step input wave excites the winding into 

a state of resonance . 

On the waveforms observed there appears to be a number of resonant 

oscillations superimposed on the response . The main resonant 

oscillation is seen in the waveform in figure 2.4.2.1 to have a period 

of oscillation of 18 psec corresponding to a frequency of 55.5 kHz . 
The other single frequency oscillations observed occur at higher 

frequencies than the fundamental 
. These resonances are clearly shown 

on the frequency response characteristic in figure 2.4.2.2 in which 

the winding is terminated in one end= in an' open-circuit Four 

distinct resonance peaks occur at frequencies of 55 kHz, 180 kHz, 290 

kHz, and 750 kHz . 
The amplitude of each resonance decreases with 

increasing signal frequency . These represent transmission line 

resonances due to the internal reflection of waves-within the winding. 
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Since the winding is open-circuited at one end and terminated in a very 
low impedance at the other by the signal generator source impedance , 
the winding presents a free boundary at one end and a fixed boundary 

at the other to electromagnetic waves . Under these terminating 

constraints the winding will exhibit, transmission line resonance at 
frequencies when the electrical length of the winding is an odd 

multiple of one quarter wavelength of the signal oscillation . 

The first resonance at 55 kHz occurs when the winding length equals 

one quarter wavelength of the wave oscillation . This can be 

calculated from the fundamental relationship ;v=f. > . The velocity 

of propagation at lower frequencies has been measured at 38 m/psec for 

the fundamental mode of wave propagation and the length of the 

fourteen coil winding is 167.3 metres . Therefore if one quarter 

wavelength equals the winding length , then the wavelength of the 

signal at resonance must be 669.2 metres . The calculated resonant 

frequency is therefore , 

f=v= 38.106 = 56.8 kHz 

A 669.2 

If the same calculation is applied to successive odd multiples of one 

quarter wavelength , it can be shown that the winding resonances 

observed occur at n=1,3,7 and 14 quarter wavelengths . The measured 

and calculated resonant frequencies are given in table 2.4.2.3 . 

No. of Quarter Wavelength Measured Resonant' Calculated Resonant 

Wavelengths Frequency Frequency 
(n) (m) (kHz) (kHz) 

1 669.2 55 56.8 

3 223.0 176 170.3 - 
7 95.6 395 397 .5 

14 47.8 765 794.9 

Figure 2.4.2.3 - Calculated and Measured Resonant Frequencies 

in a Phase Winding 

The observed winding resonances occur at integral multiples of the 

number of stator coils with the, exception of the one at 3 quarter 

wavelengths . At a resonant frequency of 765 kHz a one quarter 
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wavelength is equal to the length of a single stator coil . 

Similar behaviour is observed when the stator winding is terminated in 

both ends by a low impedance compared to the winding impedance .. To 

obtain any voltage measurements the winding is terminated in a 

resistance of 20 ohms which is considered to represent a short-circuit 

condition at that termination . 

Figure 2.4.2.4 shows the response of the winding when it is subjected 

to a step input wave . The main wave is distorted by single frequency 

oscillations superimposed on the wave as it progresses through the 

winding structure . These oscillations are transmission line 

resonances caused by internal wave reflections and have a period of 

oscillation related to the transit time through the winding and hence 

to the winding length . Also present on the first few waveforms is a 

decay in the amplitude of the rectangular pulse . 

The winding at low frequency behaves fundamentally as a lumped 

inductance element which in this case is connected to earth at one 

terminal and in series with a low impedance to the signal source at 

the other (see figure 2.4.2.5 ). The circuit behaves like a high pass 
filter since the winding reactance increases with frequency . This 

explains the decay in the waveform . The time constant of this decay 

is determined by the ratio of the winding inductance to the circuit 

resistance . 

The transmission line resonances are obtained from the measurement of 

the frequency response characteristic for the winding which is seen in 

figure 2.4.2.6 .A number of winding resonances occur over the 

frequency range 10 kHz to the upper frequency limit of wave 

propagation , 3.4 MHz . These winding resonant oscillations have half 

wavelengths that are multiples of the winding length since the winding 

terminations represent fixed boundaries to electromagnetic waves 

Only half wavelengths are possible therefore 

The first resonance is at a frequency of 115 kHz and corresponds to an 

oscillation which has a half wavelength that is equal to the winding 

length . To confirm this , the resonant frequency is calculated as 

before, using the expression ;v=f. A and a measured wave velocity of 

38 m/psec . The half wavelength is 167.3 metres and therefore the 

wavelength is 334.6 metres . This gives a calculated resonant 
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frequency of 113.5 kHz , which correlates well with the measured 
value . The fundamental resonance in the winding occurs at this 
frequency as can be seen by the predominant oscillation in the 

waveforms in figure 2.4.2.4 . 

The other resonant frequencies can be shown to occur when n= 
1,3,5,9,11, and 15 times the half wavelength of the' resonant 

oscillation . Calculated and measured values for these resonant 
frequencies are given in the table in figure 2.4.2.7 for comparison-. 

No. of Half Wavelength Measured Resonant Calculated Resonant 

Wavelengths Frequency Frequency 

. 
(n) (m) (kHz) (kHz) 

1 334.6 

3 111.5 

5 66.9 

9 37.2 

11 30.4 

15 22.3 

115 113.5 
310 340.7 
605 568.0 

1000 1022.0 
1210 1249.2 
1700 1703.5 

Figure 2.4.2.7 - Calculated and Measured Resonant Frequencies 

in a Phase Winding 

The winding resonances that occur at n=1,3, and 5 half wavelengths 

coincide with the resonant peaks observed in figure 2.4.1.11 . This 

implies that both winding termination impedances are lower than the 

winding impedance at these frequencies- Therefore the impedance 

discontinuity at each end of the winding is responsible for resonances 

observed at these frequencies in figure 2.4.1.1-. 

Another observation from the frequency response 'characteristic in 

figure 2.4.2.6 , is that below 100 kHz , signals measured at the end 

close to the short-circuit termination are small in relation to the 

main input signal amplitude . At these lower frequencies each coil 

behaves like a lumped inductance element with an associated reactance 

at the signal frequency . Consequently there is a linear distribution 

in the voltage to earth across. the winding ; from the source terminal 

to the terminal at earth potential-. The signal observed at each coil, 

interconnection is therefore a fraction of the input signal amplitude. 
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2.5 Electromagnetic Coupling in the Endwindings 

It has been established that an electromagnetic pulse travels along 
the winding conductor with a finite speed of propagation , however a 

portion of the pulse arrives at the output of each coil a short time 
before the main travelling wave pulse and with a negative polarity . 
In the following discussion , simple experiments show that this 

negative pulse is tranferred through each coil by a 

complex interaction of conduction along the winding conductor and 

electromagnetic coupling between the endwinding conductors of adjacent 

coils in the winding . 

The simplest way to determine if significant coupling exists between 

coils is to eliminate conduction along-the winding conductor by 

creating an open-circuit between any two coils 
In the circuit arrangement in figure 2.4.1 an open-circuit was 
introduced between the first and second coils in the winding . Both 

disconnected terminals were terminated in a 300 ohm resistor to 

minimise the influence of pulse reflections on the pulse waveforms to 

give a clear picture of the pulse transfer mechanism involved . 
A pulse having a fast rise time of 10 nsec and a duration of 100 psec 

was injected at the input to the first coil in the winding-from a 

pulse generator with low source impedance . 

The response at the input to coil 2, in figure 2.5.1 , shows that a 

significant portion of the injected pulse is coupled from the first, 

coil to the second coil . The amplitude of the coupled pulse is 30 

percent of the amplitude of the injected pulse which indicates a 

strong mutual coupling between the first two coils in the winding . 
Since the core is an effective barrier to electrostatic fields and 

magnetic fields at high frequencies , there is negligible coupling 

between the slot conductors of adjacent coils and so the only path 

available to signals is through the endwinding turns of adjacent 

coils. 

The question of which coupling mechanism is operative , electric or 

magnetic field coupling arises , and to what extent. each contributes 

to the mutual coupling between coils . It is expected that the 

electric field coupling between neighbouring coils is weak because the 

air gap separating two adjacent coil conductors in the-overhang region 

is relatively large ,( 15 mm ), compared to the dielectric 
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thickness, ( 2.5 mm such that the intercoil coupling capacitance 

is small . Measurement of this capacitance gives a value of 50 pF . On 

the other hand the magnetic field coupling is stronger due to the 

close proximity of turn conductors in the overhang which means the 

mutual inductance between neighbouring coils must be relatively high 

in comparison with the coil self inductance . Bridge measurement ,( at 

a frequency of 100 kHz ), of the mutual inductance between adjacent 

coils in a coil group supports this assumption . The results are 

shown in the table in figure 2.5.2. 

Between Measured Mutual Ratio of 
Coils Inductance (uH) M/L 

1-2 23.3 0.475 

1-3 15.8 0.322 

1-4 10.4 0.212 

Figure 2.5.2 - Mutual Inductance between adjacent coils- 

The measured self inductance L, is 49 AiH at 100 kHz . 

These measurements show that the mutual inductance between adjacent 

coils is a significant percentage of the coil self inductance , even 

between coils 1 and 4 which are displaced by 3 slots . 

To support these assumptions , the first coil in the winding was 

wrapped in an aluminium foil which acted as an electrostatic shield 

but allowed penetration of the magnetic field . Pulses were fed into 

the input of the first coil and the pulse waveform at the input to 

coil 2 was recorded , see figure 2.5.3 . There is no appreciable 

change in the amplitude or form of the mutually coupled pulse compared 

to figure 2.5.1, and it is therefore be concluded that there is 

negligible electric field coupling between adjacent coils in a winding 

of this type . The mechanism of pulse transfer between coils is almost 

entirely through magnetic field coupling . Figure 2.5.4 shows how 

significant magnetic coupling-is still, present-when-the-first coil is 

moved away a short distance (100 mm) from the second coil. 

Further investigation of the electromagnetic coupling mechanism 

between adjacent coils provides an understanding of the second mode of 

wave propagation . The previous test arrangement was used as shown in 
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Figure 2.5.3 - Response at Input to Second Coil when 
First Coil is Electrostatically Shielded 
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Figure 2.5.4 - Response when First Coil is Moved 

Away from Second Coil 
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figure 2.4.1 , and the pulse waveforms at the outputs of coils at 
intervals along the winding are recorded as shown in figure 2.5.5 

. 

The first trace in the sequence shows , as before in figure 2.5.1, 
that a very signifcant portion of the pulse injected into the winding 
is transferred to the second coil in the group , and occurs 
instantaneously . It is then followed by a number of oscillations 
which arise from a transmission line resonance effect . In addition to 
these oscillations there is a reflection of the coupled pulse at the 
end of the winding, which has undergone considerable attenuation and 
distortion . The time between the-beginning of the coupled pulse and 
its reflection from the end terminal is approximately 3.0 psec which 
for a distance travelled of 310.7 metres ( twice 13 coil lengths ) 

corresponds to a velocity of propagation of 103.5 m/, usec . This value 
for velocity compares with the value of 108.6 m/usec computed from 

measurement of the time between the wavefront of the pulse observed at 
the outputs of coils 2 and 4, which is 220 nsec . 

It is seen therefore , that the pulse transferred by magnetic coupling 
to the second coil, travels through the remainder of the winding with a 
velocity approaching :v= c//r. 

However , if the output waveform of coil 4 is examined it can be seen 
that a pulse having negative polarity appears almost immediately and 
follows the initial pulse induced in coil 2 which has travelled 
through coils 2 and 3. This pulse must have been electromagnetically 
induced in coil 4 by currents circulating in the endwinding turns of 
both coils 1 and 2. The amplitude of the pulse is 13.5 percent of the 
injected pulse amplitude which confirms that the mutual inductive 

coupling between coil 1 and coil 4 is weaker than between coil 1 and 
coil 2, approximately 50 percent which is in line with the measured 
mutual inductances given in figure 2.5.2 . This is expected , since 
the area of overlap between endwinding conductors ,( hence mutual 
inductance ), in coils 1 and 4 is smaller as the coils are displaced 

by three slots. 

Similar- behaviour is observed at the output of coils 10,12 and 14 

where a progressively smaller pulse is induced in these coils almost 
instantaneously in time : --,. For example , The-wavefront of the induced 

pulse in the last coil in-the winding is. seen to appear only 200 nsec 

after the wavefront of the . injected pulse at the source end 
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of the winding . 

Each of the pulses induced simultaneously in a number of coils , 
propagate in both directions within the winding at a velocity of 

approximately 110 m/usec . These travelling pulses then interfere 

either constructively or destructively with other pulses such that a 

number of oscillations are observed on each of the waveforms in figure 

2.5.5 . 

2.5.1 Frequency Response of Endwinding Coupled Signals 

From an examination of the waveforms of figure 2.5.5 it is possible to 

infer two properties of the signals that take part in the second mode 

of wave propagation in windings . The; first observation is that the 

signals transferred by endwinding coupling are limited to -a narrow 
bandwidth of frequencies as can be seen from the pulse induced in the 

second coil in the winding in the first trace in figure 2.5.5 . This 

pulse has the appearance of a damped oscillation which is 

characteristic of the response of a narrowband circuit to a step 

input . The second is that signals are relatively high frequency, 

which is deduced from the period of oscillation of the coupled pulse 

which corresponds to a frequency of approximately 1.4 MHz . 

Frequency response measurements support these observations from 

waveforms. Measurements were performed on the same circuit arrangement 

as in figure 2.4.1 with the exception that a sinusoidal wave generator 

was used in place of the step wave generator . Figure 2.5.1.1 displays 

the frequency response of the winding which is normalised to the 

amplitude of the input signal 

Signal propagation through endwinding coupling is indeed restricted to 

a narrow bandwidth of signal frequencies . As is shown in the 

frequency response, endwinding coupling begins at signal frequencies 

just above 100 kHz . The amplitude of the induced signal rises with 

increasing frequency up to a maximum at a frequency of around 1.5 MHz 

and falls off thereafter more rapidly until at a frequency of 3.6 MHz 

there is no endwinding Coupling". ' 
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The gradual rise in the amplitude of the coupled signal with increase 

in frequency is expected , as the induced e. m. f. in the second coil 
due to the magnetic flux linking the first and second coils is 

proportional to the rate of change in the currents flowing in the 
first coil which is expressed in the relationship , 

e=M. di 

dt 
...... (2.9) 

Since i(t) =I sin(wt) the equation becomes 

e=M. [). I cos(wt) 

The induced voltage in the second coil is therefore proportional to 

the mutual inductance and the frequency w. 

The upper frequency cut-off is a result of the low pass filter 

characteristic of each stator coil . 

The peak in the frequency response corresponds, to the damped 

oscillation observed in the waveform in figure 2.5.5 which has a 

frequency of oscillation of approximately 1.5 MHz . It is possible, to 

relate the wavelength at this frequency to the length of, the winding 

through the relationship :v=f. A 
, assuming the velocity of 

propagation is given by ,v= c/j As before , the boundary 

conditions at the ends of the winding can be defined . At the input to 

the second coil in the winding is an open-circuit, and at the opposite 

end, the winding is terminated in a 300 ohm resistor which 

represents a low impedance. The total length of the winding involved 

is therefore 155.35 m, ( 13 coils length ), which is the length of 

winding, between the two boundaries 
. Under these terminating 

conditions , only resonances with quarter wavelengths that are 

'multiples of the winding length can exist .., -i 

The wavelength of' the. signal at a frequency of 1.5 MHz moving at a 

velocity of 116 m/, psec is 77.3 metres which is half the effective 

length of the winding , 155.35 m. Two wavelengths of the signal at 

1.5 MHz occupy the winding length . 

Other resonance peaks are observed in the frequency response and these 

have wavelengths which can be related to the effective winding length 
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and the given boundary conditions and are summarised in the table in 
figure 2.5.1.2 . 

Number of Wavelengths Frequency Frequency 

calculated measured 

3/4 560 kHz 550 kHz 

5/4 933 kHz 900 kHz 

2 1.49 MHz 1.5 MHz 

4 2.98 MHz 2.9 MHz 

Figure 2.5.1.2 - Relationship between calculated and measured 

resonant frequencies and wavelengths in motor 

winding . 

This resonance behaviour is even more distinct if the winding is 

open-circuited at each coil interconnection . The frequency response 
for this condition is shown in figure 2.5.1.3 . 

It is observed that there are a greater number of resonance peaks in 

the response which are evenly spaced along the frequency axis . The 

positions of the resonant frequencies can be calculated as before 

assuming a wave velocity of 116 m/psec as before . However in this 

case the effective boundary conditions are difficult to define since 

open-circuits exist at each coil interconnection on the winding . It 

is therefore assumed , intuitively , that the boundaries are at the 

winding ends and that these terminations , the signal generator source 

impedance of 50 ohms and the 300 ohm resistor represent fixed 

boundaries at the frequencies concerned . The length of conductor 

between the boundary points is therefore the length of the winding 

which is 167.3 m. 

The table in figure 2.5.1.4 shows that the resonant frequencies have 

wavelengths and half wavelengths which are integral multiples of the 

length of the winding 
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No. of Wavelengths Frequency Frequency 

calculated measured 
(MHz) (MHz) 

3/2 1.05 1: 10 
2 1.38 1.30 

5/2 1.73 1.80 

3 2.31 2.20 

7/2 2.43 2.60 
4 2.77 2.90 
5 3.28 3.30 

Figure 2.5.1.4 - Calculated and measured resonant frequencies 

related to wavelengths in motor winding . 

Calculated resonant frequencies compare fairly well with those of the 

measured values and each successive resonance occurs when every half 

wavelength is an integral multiple of winding length so that the 

assumption of two fixed boundaries at the winding terminations is 

justified. 

Another general feature of the frequency response is that the lower 

cut-off frequency is considerably higher at 1 MHz than in the case 

when only one open-circuit exists . In addition the slope of the 

response as the frequency is increased from 900 kHz to 1.1 MHz is 

extremely steep . The upper cut-off frequency is the same as in the 

case of a single open-circuit between the first and second coils , and 

is the upper frequency limit of signal propagation in a single coil . 
The passband for signals coupled through the endwindings between 

adjacent coils is therefore limited to a well defined range of 

frequencies between 1 MHz and 3 MHz . 

The frequency response outlined in the preceding paragraphs is 

reflected in the pulse waveforms recorded at the output of each coil 

in the winding as shown in figure 2.5.1.5 . In the first trace , which 

is taken at the output of the second coil , it is possible to observe 

a few of the oscillations that are associated with the resonant 

frequencies seen in the frequency response characteristic . The first 

oscillation to occur has a period of 550 nsecwhich corresponds to a 

predominant resonant frequency, of ,; 1.8 MHz This is followed 

by a higher frequency oscillation with a period of 
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450 nsec which is corresponds to a frequency of 2.2 MHz . Similarly 
the much lower frequency oscillation observed is at 1.1 MHz . 

Finally , in the frequency responses obtained from both circuit 
arrangements , the resonant peaks at 7,10 and 24 MHz due to earth 
path propagation are still present and bare no relation to the second 
mode of wave propagation . 

2.6 Partial Discharge Pulse Propagation in a Phase Winding 

For the purpose of investigating the propagation characteristics of 
partial discharge pulses ,a repetitive , regular discharge source is 

required which therefore excludes the use of a real discharge source 
Partial discharges were therefore simulated by a low voltage 
rectangular pulse generator . The circuit used to derive artificial 
discharge pulses is shown `in figure 2.6.1 and comprises a pulse 
generator that feeds rectangular pulses through a 500 pF coupling 
capacitor and coaxial cable into the winding . The capacitor 
effectively differentiates the step pulse to give a fast rise time 
pulse with an exponential decay on the pulse tail A signal diode 

eliminates the negative polarity pulse created by the differentiation 

of the falling edge of the rectangular input pulse . The circuit 
therefore provides a source of regular , positive polarity , discharge 

shaped pulses . Initially the winding is terminated at both ends by 

the characteristic impedance of the winding , 300 ohms , and the 
discharge pulse source is connected at one end of the winding 

The waveforms in figure 2.6.2 show the discharge pulse as it 

propagates through the winding at each coil interconnection . At the 
input, the pulse has the ideal discharge pulse shape and has a 
duration of approximately 1 usec and a rise time of 10 nsec . 

Propagation of this type of, pulse is very similar to the behaviour of 
a fast-fronted rectangular pulse as described in section 2.4 . The 

lower frequency components of the pulse propagate in the transmission 
line mode at a velocity of 38 m/psec as observed from the pulse 
transit time through coils . As the main low frequency portion of the 

pulse travels through the winding it exhibits a progressive 
deterioration in the pulse wavefront and a gradual increase in the 
duration of the pulse . The frequency dependent attenuation is 

responsible for this behaviour since the winding has a low pass filter 
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characteristic . The high frequency components of the pulse travel 

through the winding with a much greater velocity of approximately 105 

m/usec and form the fast rise-time , short duration , negative wave 

seen-on the waveforms . Propagation of the high frequency wave must 

therefore be through the endwinding path created by the 

electromagnetic coupling between coils . Two distinct modes of wave 

propagation with differing wave velocities can be distinguished 

therefore . 

In addition to the characteristics discussed , reflections of"the 

pulse at the winding terminals are also observed on the waveforms . On 

the input pulse ,a positive polarity pulse reflection is seen after 

about 3.2 psec which corresponds to two wave transit times through the 

winding . The progressive movement of this reflection towards the main 

pulse is observed at consecutive coil connections until at coil 14 the 

reflected pulse is seen to precede the main travelling pulse 

2.6.1 Influence of Winding Terminating Impedance 

Pulse reflections inevitably occur when the winding is terminated in 

an impedance other than the winding impedance . Figure 2.6.1.1 shows 

the waveforms seen at each of the coil interconnections when a 

discharge pulse is injected at one end of the winding whilst the other 

end is terminated in an open-circuit . 

Immediately it can be seen that pulse reflections occur at the 

impedance discontinuity . In the first trace , the input pulse appears 

initially and is followed by two separate pulse reflections . The 

first reflection has a higher frequency content and occurs after a 

time delay of 3.2 psec which corresponds to twice the travel time 

through the winding at a velocity of 105 m/psec . This must therefore 

be the reflection of the wave that travels through the endwinding 

structure . The much lower frequency , longer duration , pulse follows 

the main input pulse after a time delay of approximately 6 psec and 

corresponds to the slower travelling wave reflected at the 

open-circuit terminal . Both pulse reflections travel in the opposite 

direction 'to 'the main pulse since both reflected pulses occur at a 

smaller time delay after the main pulse as it progresses deeper into 

the winding . At-about half way-into the winding ,` the first high 

frequency pulse reflection converges with the main travelling pulse . 
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Similar behaviour is observed when the winding is terminated at one 

end in a short-circuit . Figure 2.6.1.2 shows the waveforms recorded 

at each coil interconnection when a discharge pulse is injected at*the 

input to coil 1. 

The main pulse is followed by two separate pulse reflections . The 

first has a higher frequency content than the second and occurs 3.2 

psec after the main pulse . This must be the reflection , at the 

short-circuit terminal, of the wave that travels through the 

endwindings. The reflected pulse that follows this occurs at a time 

delay of 6 psec after the main pulse and is reflected with negative 

polarity at the short-circuit terminal . This is the reflection of the 

low frequency wave which travels at a lower velocity , around 38 

m/psec . 

Reflections of this nature can be expected when real discharges take 

place in a machine winding since a phase winding is always terminated 

by two other phase windings or by the supply feeder cable to the 

machine . The influence of these reflections on pulse location within 

a phase winding are discussed in chapter four.. 

2.7 Partial Discharge Measurements in Motor Windings 

The stator winding of an electrical machine is a distributed 

circuit, and as a result, partial discharge pulses are subject to 

distortion and attenuation before they reach the winding terminals . 
The degree of this attenuation is dependent on frequency . Above a 

certain cut-off frequency , measured at 3.4 MHz , virtually no wave 

propagation takes place in the winding and therefore the bandwidth of 

any partial discharge system is limited to this range . 

Below the upper frequency limit , the greatest sensitivity in the 

measurement of partial discharge magnitude may be obtained . The 

sensitivity is a maximum in the frequency range 10 kHz to 100 kHz 

since attenuation of the signal is less than - 1.9 dB, ( a reduction of 

20 % in the signal ), as shown in the frequency response 

characteristic in figure 2.4.1.1 . Signals above 100 kHz. experience a 

gradual increase in the level of attenuation up to the upper frequency 

3.4 MHz . The lower limit of signal detection is limited only by the 

level of signal interference generated by low frequency disturbances , 

typically from harmonics of the power.. supply. -frequency . Commercial 
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instruments such as the ERA discharge detector have a lower frequency 

limit of around 20 kHz . 

Since the most suitable frequency range for discharge measurements has 

been established the choice remains whether to adopt a narrowband 

detector or a wideband detector and what type of detection device to 

use at the motor terminals . The latter is discussed in greater depth 

in chapter three of this report . 

If a narrowband detector is selected the resonant frequency of the 

detection impedance may be varied over the frequency range 10 kHz to 

100 kHz to obtain maximum signal sensitivity . Commercially available 

detectors, such as the ERA Mk III discharge detector, have a resonant 

frequency that may be set at a frequency in the range 30 kHz to 100 

kHz and an amplifier which has a bandwidth between 10 kHz and 250 kHz. 

This type of detector is most suitable for the measurement of 

discharge pulse magnitude . However , there are difficulties in 

applying partial discharge measurements to stator windings using a 

narrowband detector Figure 2.7.1 shows the response of this type of 

detector to a source of negative point corona discharge pulses 

injected at each of the coil interconnections along the winding . In 

this case the winding is terminated in an impedance of 150 ohms at the 

neutral end to represent a star connected phase winding . The detector 

is an ERA Mk III discharge detector located at the line end of the 

winding which is terminated in an impedance of 300 ohms . 

As the discharge source is positioned progressively farther away from 

the detector , the measured peak signal magnitude falls from 100 % to 

142%' at a distance of 10 coils from the detector terminal . When the 

source of discharges is connected at a distance greater than 10 coils 

from the detector, the measured signal magnitude is increased until at 

the neutral end the observed signal magnitude is, greater than the 

injected value . This characteristic is due to the constructive 

interference of the pulse reflected at the neutral terminal with the 

pulse that travels directly to the detector terminal from the 

discharge source . This behaviour has been reported by other 

investigators [. 81] . Obviously care must be taken in the 

interpretation of partial discharge measurements in motor windings 

using a narrowband detector for the forementioned reasons . 
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Figure 2.7.1 - Response of Narrow and Wide Band Detectors 

to Partial Discharge Pulses 
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Wideband detection is much less affected by pulse reflections but 

experiences greater attenuation of the signal through the winding . 
Figure 2.7.1 shows the amplitude of a negative point corona discharge 

pulse with distance from the detection terminal . 

Attenuation of the pulse is greatest over the first six coils in the 

winding . In this length of winding the pulse is reduced to 30 % of 

the initial discharge amplitude ,( -10.45 dB of attenuation ). After 

this, attenuation is much less with increasing distance from the 

detector terminal . By this time the pulse has travelled more than six 

coils length and the high frequency components of the pulse have been 

attenuated, leaving the low frequency pulse which incurs a much lower 

degree of attenuation . This may not be prohibitive in measurements of 

partial discharges since most discharge activity takes place in the 

line end coils of a machine due to the linear distribution of supply 

voltage across the winding . 

Both narrowband and wideband discharge, measurements can be applied to 

high voltage motor windings knowing the limitations involved with 

either system . 

2.7.1 Basis for a Discharge Location Technique 

The travelling wave behaviour of high frequency pulses in machine 

stator windings can be used as a basis for a location technique for 

partial discharges . The results of experiments with artificial 

discharge pulses show that two separate modes of wave propagation 

exist . Both of these phenomena provide scope for the development of a 

location technique based on pulse transit time through the winding . 
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CHAPTER THREE 

THE ROGOWSKI COIL IN PARTIAL DISCHARGE MEASUREMENTS 



3.1 Partial Discharge Couplers 

A partial discharge detection system requires the use of non-invasive 
devices to couple the discharge signals_from, the test apparatus to the 

ground station . These partial discharge couplers can be located at 

the line and neutral ends of the motor phase windings . 

Operation of these devices rely on the changes in the electric, 
(capacitive measurement), or magnetic, (inductive measurement), field 

coupling caused by the discharge signal. 

3.1.1 Capacitive Couplers 

Capacitive couplers have been in service in the power generation 

utilities of Ontario Hydro , Canada , as part of an insulation 

diagnostic system since 1976 , [57]. The couplers are permanently 

installed to allow on-line testing of the machine . Two types are in 

existence at present : 

Loop type - These are fabricated from a length of single core, h. v., 

armoured power cable which is formed into a loop. The core conductor 
is connected to the machine terminals at a convenient point. The 

cable armour then acts as the low voltage side of a capacitor. It is 

typically 1-2m long and has a capacitance of around 80-160 pF. 

End-cap type - This is a conventional foil capacitor contained in a 

moulded plastic housing which is taped to the stator endwinding and 
has much smaller dimensions for installation in confined areas. - 

In both devices, a matched coaxial cable is used to connect the 

capacitive coupler to the signal processing instrument. - Power 

frequency signals are also, to a large extent, filtered outýby., the 

coupler. 

3.1.2 Inductive Couplers 

Until recently, the ferrite cored current transformer has been used as 

an inductive coupler in partial-discharge measurements . ,A 
broadband 

response is attainable, between 100 kHz and 10 MHz , with adequate 

sensitivity. It has however, certain disadvantages and these are : 
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i. Sensitivity depends on the permeability of the magnetic core and 
any air gap in the iron path severely reduces the current transformer's 

output . It is therefore necessary to machine the faces of the core 
at the slit position, and to provide an adequate clamping arrangement. 

ii. Power frequency currents in the secondary winding are high and 
will subsequently affect the amplifier stage. 

A device which is gaining acceptance as a partial discharge coupler 
is the Rogowski coil. The Rogowski coil is basically an air-cored 

current transformer and consequently requires a large number of turns 
to provide comparable sensitivity . It has the advantage of a simple 

construction, since it may be wound-on any non-magnetic former , and 

exhibits superior power frequency signal rejection. These useful 

qualities of the Rogowski coil makes it desirable for use in a 
discharge detection system. 

Most publications have examined the behaviour of the Rogowski coil as 
a current monitor in measurement" systems involving high-energy 

electron beams [83]. The following sections represent a detailed 

investigation on the theory and application'of the Rogowski coil in 

partial discharge detection. 

3.2 The Rogowski Coil 

The Rogowski coil, sometimes referred to as the Rogowski loop , is a 
device which allows non-intrusive measurement of fast rise-time pulsed 
currents [83,84,85] . It was first developed by W. Rogowski in 1912 
[86]. 

As its name suggests, the Rogowski coil is essentially a thin solenoid 
bent round to form a closed loop, normally a toroid, making an 

aperture through which the current to be measured is passed. -A 
voltage is electromagnetically induced in the coil by any time varying 

current threading the loop aperture which, provided the coil is 

properly terminated, is an analogue of the current pulse. 

The Rogowski , coil offers distinct advantages over other current 

monitoring devices in that: 

The loop is only sensitive to currents that thread the"aperture, and a 
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fixed relationship exists between the current to be measured and the 
developed voltage, which makes the Rogowski coil simple to 
calibrate . 

No direct connection to the monitored circuit is necessary, allowing 
complete isolation from high voltages and spurious earth loop 

currents. 

No significant energy transfer takes place in measurements permitting 
non-invasive measurements to be made. 

It has the inherent ability to reproduce the voltage analogue of a 
current pulse. with a rise time in the nanosecond or even 
sub-nanosecond range. 

3.3 Rogovski Coil Theory 

Consider the toroidal Rogowski coil , in figure 3.3.1 , which has a 
total of N minor turns each with cross-sectional area S and assume : 

i. The magnetic flux density. -B is constant over the whole of the 

section S. 

ii. The coil is uniformly wound such that the winding density N/1 is 

constant. 

iii. Each turn is normal to the magnetic field vector H. 

Any time varying magnetic field, established by a current ip threading 
the loop aperture, will link with- the minor turns of the loop and 
induce an e. m. f. given by-: 

N. do 

dt 

which can be shown from the-Biot-Savart law-to be.: 

e= Juo. ýur. N. S. dip 

1 dt 

.... (3.1) 

where po. ur. N. S/l is the mutual inductance of the closed loop , from 
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which, 

e=M. Lp 

dt 
.... (3.2) 

This equation shows that the voltage induced-in the coil is the time 

derivative of the current ip being monitored. Some integration 

process is therefore required to obtain a signal which is proportional 

to the current 

Let the coil be terminated by loading resistance R for which an 

equivalent circuit is shown in figure 3.3.2 . 

An induced voltage e(t) will drive a coil current ip (t) through the 

self inductance L and coil resistance Ro of the loop and develop a 

voltage vm (t) across the burden resistance R. The circuit neglects 

the effective stray capacitance shunting R from subsequent signal 

processing circuitry. 

A differential equation can be'written from Kirchoff's voltage law 

which describes the circuit behaviour given by ; 

e(t) = vi(t) + vm(t) 

which is 

M. diP = L. dis +- is. (R + Ro) 

dt dt 
.... (3.3) 

From this equation it may be seen that, depending on the relative 

magnitudes of the voltages vi(t) and vm(t) and hence on the respective 

values of inductive reactance and circuit resistance, the coil current 
is(t) can be made proportional either to the driving-current ip(t) or 

to its time derivative dip/dt. 

If, first of all, the coil reactance dominates the circuit impedance, 

hence voltage distribution, then w L>>(R + Rol and we can assume that 

is. (R + Ro) = 0. This results in'-the expression : 

M. dip = L. dis 

dt dt 
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Figure 3.3.1 - Rogowski Coil 
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which on integrating w. r. t. time becomes 

M. ip(t) = L. is(t) 

Since the self inductance of the coil is L =, uo *jr . N. S. /1, and a 
similar expression exists for M, then it follows, to a good 
approximation, that : 

is(t) = ip(t) 

N 
.... (3.4) 

This represents the basic relationship between the primary and 
secondary currents in a current transformer with a 1: N turns ratio. 

The resultant voltage across the load resistor R becomes 

vm(t) = is(t). R 

and so , 

vm(t) = ip(t). R 

N 
.... (3.5) 

Thus, the measured voltage vm(t) is made proportional to the monitored 
current ip (t) through the turns . ratio- and the load resistance value. 

This particular mode, of operation is associated with a 'Self 
Integrating' Rogowski coil. 

If, on the other hand, the load resistor is large and dominates the 
circuit impedance, then , (R + Ro)P WL , and it can be assumed that, 

L. dis = 0 

dt -I, 

from which 

M. dip(t) = is(t). (R + R0) 
dt 

k 
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This results in an expression for vm(t), 

vm(t) = M. dip(t) 

dt 
.... (3.6) 

The voltage vm(t) is therefore equal to the induced voltage, e(t) and, 

is proportional to the time derivative of the current ip(t). 

In this mode of operation the coil is termed a 'Differentiating' 

Rogowski coil. 

Although this simple analysis of the Rogowski coil behaviour indicates 

that two distinct modes of operation exist; differentiating and self 

integrating , in practice, the category into which one places a 

particular coil configuration depends on the coil circuit parameters 
(R, R0 , and L) and on the duration of the pulse . This statement is 

best illustrated by a discussion of the coil's response to a 

rectangular pulse with an instantaneous rise time. 

Consider the equivalent circuit of the Rogowski coil and load in which 

each element is replaced by its Laplace transform representation. 

The corresponding circuit equation is given by : 

E(s) = sM. Ip(s) sL. Is(s) + IS(s). (R + R0) 

however, Vm(s) = IS(s). R and so, 

Vm(s) = sM. R 

IP(s) sL + (R + Ro) 

is obtained, which is the transfer function of the coil. 

.... (3.7) 

Applying a step in the primary current Ip (s) = Ip/s, and deriving 

the time domain solution , the response of the coil"is found to be : 

vm(t) - IP. R. exp(-R. t/L), 
N 

.... (3.8) 

True differentiation of a step function results in an impulse (Dirac - 
delta) function with the same amplitude as the step . However, the 
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response of the Rogowski coil'only approximates to this case with an 
exponentially decaying pulse, the shorter the time constant 
L/(R + R0), the closer the approximation to an impulse. 

On the other hand, if the time constant of the coil is large in 

comparison to the duration of the applied step the response will be an 

approximate reproduction of the pulse with a degree of pulse 'tilt'. 

These properties are demonstrated in the photographs of oscilloscope 
traces in figure 3.3.3 . 

The traces show the response of a Rogowski coil with self inductance 

L= 50. uH and load resistance R= 50.01 to a primary current pulse of 
1.5, usec duration . 

3.3.1 Frequency Response 

The response of the Rogowski coil to a step function reveals that the 
device has a poorer response at lower frequencies, as predicted . 

The frequency domain transfer function of the Rogowski coil is 

obtained from the circuit equation (3.7) by the substitution s= jw to 

give : 

Vm(w) = .. jw. M. R 
Ip(w) jwL + (R + Ro) 

The transfer function IZ(w)I may then be expressed in decibels by, 

ý Z(ca)l = R/N 

(1 + (w o/w) )1/2 
.... (3.9) 

From this expression it follows that the amplitude response (Z(w)I 

falls with decreasing frequency at a rate of - 20db per decade At the 
frequency where the coil reactance equals the loop resistance there is 

a- 3db drop from the constant midband value of gain (Z(w)I which'is 
R/N, see figure 3.3.1.4 . In terms of time domain response, this 

corresponds to a. 'sag' or 'tilt' in -the coils response to a 

rectangular pulse ip given by the expression 
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Figure 3.3.3 - Pulse Tilt in Rogowski Coil 

Response 

IZ(N)I 
fdB! 

% 

-3dB 

O dfl WO 
40ý 
N 

frequmcy (rQd f ser) 

r 

is 
, -20 dBj 

Figure 3.3.1.1 - Frequency Response of Rogowski Coil 
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tilt = R. tp x 100 

L 

where tp is the width of the input pulse . This is typical of the 
behaviour of a high pass filter circuit. 

The high frequency cut-off region is difficult"to define since stray, 

capacitances and inductances can result in spurious resonances before 

reaching the cut-off frequency. These unwanted signals are normally 

eliminated by placing the Rogowski coil in a metallic shield. 

3.4 Shielding the Rogowski Coil 

The Rogowski coil is normally encased in a metallic shield which is 

connected to earth potential for two reasons which are discussed here. 

3.4.1 Electrostatic Coupling 

Voltage fluctuations on conductors in the region of the Rogowski coil 

cause variations in the local electric field . These interference 

voltages are coupled into the coil circuit via the mutual capacitances 

that link the neighbouring circuits, giving rise to currents flowing 

in the coil in addition to the main induced current. Diagram 3.4.1 

shows these interference signals electrostatically coupled from the 

primary current conductor as well as external sources. '; ' 

To prevent capacitive coupling of signals, the coil is situated in a 

metallic housing which is connected to earth potential thus providing 

a path for unwanted signals to earth. The electrostatic shield must 

allow magnetic flux associated with the primary current to link with 

the coil and this is achieved by incorporating a continuous slit in 

the shield wall, (see figure 3.4.2) . 

3.4.2 Transmission Line Behaviour 

When the toroidal Rogowski coil is placed in a conductive shield, a 

the coil has a uniformly distributed capacitance to the shield which, 

for fast rise time primary current pulses, makes the coil behave like 

a transmission line, so that signals induced in the winding take a 

finite time to propagate to the coil terminations . 
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The rise time of such a coil is less than the transit time through a 

single turn of the winding, provided that the coil is uniformly wound, 

the coil is concentric with the primary conductor and the loading 

resistance is small. The rise time is in the sub-nanosecond range 

which corresponds to the response time of a single turn due to 

non-uniform flux density across the coil section . 

If on the other hand, the coil has no shield, the distributed 

capacitance between the winding and earth is non-uniform so that a 

rapidly changing primary voltage causes transient oscillations in the 

response of the Rogowski coil. These oscillations in the coil 

response are accentuated if the coil is asymmetrically excited. 
Photographs in figure 3.4.3 show this behaviour in. the coil output 

waveform. 

A more detailed analysis of the high frequency response of the 

Rogowski coil may be found in references [83,84,85] 
. 

3.5 Tideband Current Measurement 

For truly wideband current measurement the Rogowski coil must 
faithfully pass all frequency components in the monitored pulse with 

equal amplitude and phase properties , at both high and low 

frequencies such that fast rising edges and wide pulses are reproduced 

accurately in the analogue voltage signal vm(t). These requirements 

can be met by both the differentiating and the self integrating 

Rogowski coil with certain constraints. 

3.5.1 Differentiating Rogowski Coil 

It is possible to use a differentiating coil as a wideband current 

monitoring device if an integration is performed on the output signal. 

The integrator can be a passive RC circuit or an active circuit . 
However, practical difficulties arise in the implementation of such a 

system and these are outlined as follows : 

i. Active integration ; 

Amplifier drift due to an offset input signal results in errors in the 

integrated signal. 
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ii. Passive integration ; 

This method suffers from very low sensitivity due to attenuation from 

the high resistance and capacitance values required in the 
integrator. 

Another problem common to both systems is in the choice of load 

resistance across the coil since any stray capacitance shunting the 

resistor will eventually dominate the load impedance and place a 

restriction on the upper limit in load resistance value, and hence 

maximum signal level. 

3.5.2 Self Integrating Rogowski Coil 

From experience the self integrating coil is the simplest to implement 

and is very suitable for monitoring rapid events .A full analysis of 

its behaviour is therefore presented in the following section , with 

a special emphasis on the characteristics which make the self 

integrating coil useful in partial discharge studies. 

3.6 Partial Discharge Measurements 

Partial discharges give rise to rapid movements of charge within an 

associated electrical circuit. Discharges are detected by monitoring 

the current pulses that originate from the discharge site. These 

pulses are ideally exponential decays having rise times less than a 

few nanoseconds and fall times ranging from a few nanoseconds to tens 

of microseconds .A Rogowski coil can be designed to have a frequency 

response characteristic appropriate to the measurement of such pulses. 

3.6.1 Response of Self Integrating Coil to a Discharge Pulse 

It is beneficial to know the exact transient response of a self 

integrating coil to a typical discharge signal for the purpose of 

extracting meaningful information as well as establishing confidence 

in the ability of the coil to process correctly such signals. 

A decaying exponential pulse is taken as fairly representative of most 

real discharge current pulses. Simulation of different discharge 

mechanisms is achieved by varying the amplitude and the decay time of 
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this type of pulse. 

Experiments were performed on a test circuit utilising a squarewave 

pulse generator to drive an RC network to simulate a discharge pulse 

as shown in figure 3.6.1.1 . 

The pulse generator also had a facility to change the pulse rise time, - 

and the pulse decay time was controlled by the circuit time constant, 

determined by the values of resistance R and capacitance C. 

The typical response of a self integrating Rogowski coil with a1 usec 

time constant, (L= 50mH and R= 50(1), to an exponential pulse with 

a time constant of 75 nsec is shown in the oscilloscope trace in 

figure 3.6.1.2. This demonstrates the negative 'dip' that occurs on 

the response when driven by a current pulse with a decay time much 

less than the time constant, L/(R + R0), of the Rogowski circuit. 

This property of the response is derived theoretically from the time 

domain solution of the Rogowski coil equivalent circuit voltage 

equation (3.3) excited by a function of the form : 

ip(t) = Ip. exp(t/Tl) .... (3.10) 

where T, is the time constant of the simulated discharge pulse, 
----and, 

Tz is the time constant of the coil. 

The solution for the output voltage vm(t) is given by 

vm(t) = IP. R. -exp(-t/Tl) - exp(-t/T2) .... (3.11) 

N ý(T /T -1) (T /T -1), 12ýt 

T1 # T2 

NL , (T, /T2-1) (T2/Tt -1) 

Examination of equation (3.11) shows that the output voltage has two 

exponential components. The first component is dependent on the 

pulse time constant, and the second, on the coil self inductance and 

burden resistance. 
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If the condition when T2 i T, is examined it can be seen that 
(T1/T2-1) = -1 and (T2 /TI-1) = T2/T1 so that the second term is 

negligible and the expression reduces to : 

vm(t) = IP. R. exp(-t/Tl) = ip(t). R 
NN 

which is a direct analogue of the measured signal. 

When the original pulse Ip. exp(-t/T1) is compared with the coil 

waveform it is seen that the output signal vm(t) differs in magnitude 

and time constant. The coil response to the artificial discharge 

pulse is characterised by reduced amplitude , more rapid decay and 

negative overshoot . 

These properties are displayed in the graph ofthe coils response as a 
function of the ratio the pulse and coil time constants T2/T1, (see 

figure 3.6.1.3) . 

The zero crossing point, to, is"calculated by equating the expression 
(3.11) to zero. The result for Tj/ T2 is given by , 

to = Tj. T2: in -(Tl /TZ-1) 
.:.. (3.12) 

(TI-T2) (T2/T1-1) 

Similarily the point of the negative minimum is- obtained by 

differentiating equation (3.11) and equating the, result to zero from 

which, for T, 96 T2, 

tmin = Tj. T2. in -Tj . (TI /T2-1) 

(TI -T2) T2. (T2/Tl-1) 
.... (3.13) 

The negative overshoot is then found by'substitution into equation 
(3.11) . 

The design of a self integrating coil for a particular application is 

achieved by the use of equations 3.11,3.12, and 3.13 . 
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3.6.2 Charge Measurement with the Rogowski Coil 

Modern discharge detection techniques invariably calibrate the 

magnitudes of detected pulses in terms of picocoulombs of charge since 

this is independent of the actual discharge current pulse shape . It 

is also reasonable to expect that damage to the insulation is related 

to the quantity of charge transferred in the? °discharge. I 

In wideband detection systems the charge content, q, is found by 

integrating the current signal ip(t) in the manner-: 

iP(t). dt 

0 

This is achieved with a self integrating Rogowski coil by-integrating 

the voltage signal vm(t) with a passive RC integrator circuit which 
has a time constant Ti , much greater than the duration of the 

discharge current pulse ý 1. - 

Consider the charge measurement scheme in. figure 3.6.2.1 in. which the 

output signal vm(t) is coupled via a coaxial cable from the point of 
measurement to a passive integrator circuit. 

Assuming vfi (t) is a true analogue of-the discharge current pulse 
ip(t), and that the integrator has a high enough input impedance to 

ignore loading effects then , 

If 

U(t)' =1 
rvm(t). 

dt 
RCi 0 

where t'is the pulse duration . However, 

vm(t) = iP(t). R 

N 

Ji(t). 
dt U(t) R 

N. Ri. Cj 0 
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The output voltage of the integrator is therefore proportional to the 

charge contained in the pulse qC . The charge qC is given by the peak 

value of the output voltage U(t), so that : 

Qý = Upeakit) 

Typical waveforms of the current pulse signal" vm (t)' and the 

corresponding output signal U(t) of the integrator circuit to an 

exponential type discharge pulse are shown in figure -, 3.6.2.2 . The 

peak value of U(t) gives the charge contained in the discharge pulse 

which is the area under the pulse vm(t). 

3.7 Practical Design of a Wideband Rogowski Coil 

The Rogowski coil is very simple to construct since any suitable 

non-magnetic material can be used to form the core . In the design 

used in this study , enamelled copper wire is wound on to a synthetic 

resin-bonded paper tube to form the coil which is then enclosed in a 

copper shield. The leads extending from the coil ends are 

twisted to cancel any stray field components which might couple 

unwanted signals into the coil circuit. Alternatively, a thin 

coaxial cable may be connected to the coil ends very close to the 

winding. 

The parameters used to design a Rogowski' coil 'for a particular 

application are discussed in the following sections ., 

3.7.1 Calculation of Self and Mutual Inductance 

Owing to the simple geometry of the coil, expressions for self and 

mutual inductance of the toroid may be developed which form useful 

design parameters. 
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The general expression for the-self inductance is : 

L=N. ß 
1 

.... (3.14) 

which is the magnetic flux per unit current i, linking N turns 

of the conductor. 

If an elemental annulus with infinitesimally small width dr, is 

considered the field strength may be obtained from Amperes law , 

� 
dH. dl = N. I 

thus, 

H=N. I 

21rr 

therefore the flux density must be 

B= uýuýN. I 

2irr 

The flux passing through the elemental section is : 

21rr 

.... (3.15) 

The total flux in the coil is found by integrating dd between the 

limits r=a and r= b-which is : -, ,. < 

bý 

_ PoAr N_I. 1 
% 

dr 
2 Tr ar 

= 2. N. I. 1. ln(b/a) 

10ý 

Substituting this result into the expression; (3.14), the equation for 
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the self inductance of the toroid is given by : 

L=2. N? 1 ln(b/a) 

10ý 

The mutual inductance is given by : 

M= N2.2 

Iý 

.... (3.16) 

but since there is no leakage flux perfect coupling dictates that 

NI. II = N2. I2 

from which, 

M=N . 
52. N 

12 N2 N2. 

The mutual inductance is simply the self inductance divided by the 

turns ratio N1/N2 and is therefore : 

M=2. N. 1 ln(b/a) 

10, 

3.7.2 Decay Time Constant 

.... (3.17) 

The time constant of the coil is crucial in the measurement of fast 

current pulses since it has been shown that it determines the maximum 

signal pulse duration without pulse tilt . In most cases it may be 

calculated quite accurately from the relationship : 

T= L' = 2. N. 1 - 1n(b/ä) 

(R + Ro) ``(R + Ro). 10ý 

provided the load resistance" is much larger than'. the coil resistance. 

However, in the situation in which coil size is limited, limiting the 

self inductance L'value", and-'a good"'low frequency"'response' is 

desired, the load resistance may be of the order of the coil 

resistance or less. This necessitates calculation of the effective 
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coil resistance at frequencies at which the current flow is restricted 
to a layer at the surface of the conductor due to skin effect . The 
depth of this layer is frequency dependent and is given by the 
expression at a frequency f: _ 

s= 1 

Q. rr. p. f 6- conductivity (tim1) 

If the winding conductor is regarded as a planar slab of material of 
uniform dimensions, a depth of S, and assuming negligible interaction 
between adjacent coil turns, the effective coil resistance is 

expressed as : 

R= length of slab 
conductivity x cross sectional area 

L 

2.6. rr. r. S 

N. (1 + (b-a)) 
.... (3.18) 

Q. n. r. S 

If the pitch of the winding is small-then an additional increase in 

the effective coil resistance will occur from an eddy current 
modification of the current density distribution in ones. turn due to 
the magnetic fields established by neighbouring turns - proximity 
effect .A full treatment of the calculation and measurement of coil 
resistance is supplied in reference [87] 

. 

3.7.3 Power Frequency Sensitivity 

A prerequisite for-on-line partial discharge detection systems =, is 

the ability to attenuate power frequency related signals to 

sufficiently low levels to prevent unduly large signals entering 
sensitive low voltage circuits . The response of the self integrating 
Rogowski coil to low frequencies, power frequency and associated 
harmonic components, is discussed in this section . 

Computation of the peak and r. m. s. magnitude of the power frequency 

and power harmonic signals can be obtained readily from the frequency 
domain transfer function of the coil, 
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Vm = Ip. lZ(4j)l 

= Ip. R/N 

(1+ Wo /ý) )ý/2 

In the design of a Rogowski coil it may be necessary to compromise 

between the requirement to reject power frequency related signals and 

that to capture the low frequency end of the pulse spectrum . 

3.7.4 Design Parameters 

The design parameters for one particular coil, (figure 3.3.1), are 

N= 200 turns R= 50. a 

aa= 11.25.10 m Ri = 15 kn 
b= 14.75.103m Ci = 100 pF 
1= 21.10 m., ( mean circumference of coil ) 

These values with the equations in the earlier-part ofýthe chapter 

yield : 

Parameter Calculated 

Self Inductance'(L) 45.5puH 

Time Constant (L/R) 0.89 Jisec' 

Current Sensitivity (Vm/Ip)' 0.312 mV/mA 

Charge Sensitivity (U/qc) 

to 

tmin 

210.0 nsec 
420.0 nsec"-' 

Measured - 

45.8 pH-0.85 

psec 
0.309 mV/mA 
5.67 pV/pC 
250.0 nsec 
450.0 nsec 

The simple geometry of the coil'is such that calculated and measured 

performances are in very close agreement 
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3.8 Narrowband Current Measurement 

In certain instances it may be desirable to perform current 

measurements in a: restricted bandwidth of signal frequencies. This 

is achieved with the 
_aid _. of, a Rogowski coil connected to an energy 

storage element ,a capacitor, and a resistive damping element . 

The response will be a damped oscillation in response to a current 

impulse, the frequency of oscillation being dependent on the reactive 

components, 

f= 1 

2Tr LC 

This type of measurement has the advantages of greater sensitivity, in 

terms of output signal level for a given current pulse amplitude and 
freedom from spurious external and circuit resonances, (provided these 

exist at frequencies well above or below the centre frequency of the 

coil circuit ). The amplitude response depends essentially on the 

peak value of the primary current and not on pulse shape . 

Narrowband current monitoring devices using Rogowski coils are simple 

to construct, and two circuit configurations may be adopted for this. 

The Rogowski coil may be connected as the inductive element in either 

a series or parallel resonant circuit , (see figure 3.8.1). Choice 

of which circuit to be used depends on the particular centre frequency 

desired, whether a high or low frequency. This is outlined in the 

following discussion. 

The effect that stray capacitance, Cst, has on each circuit determines 

which of the two configurations is to be adopted since the combination 

of Ct and the fixed capacitance, 
C, 

along with the self inductance, L, 

of the loop , determines the resonant frequency. 

In the parallel resonant circuit the total capacitance is given by : 

C =C+ st 

Csf will limit the lowest value of - effective capacitance C and so 

place a restriction on the upper limit in resonant frequency . The 
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parallel circuit is therefore most applicable to 

relatively low resonant frequencies. 
measurements at 

The series resonant circuit on the other hand, has a total circuit 

capacitance of, 

Ii C=C. Cst =C 
(C'+ Cst ) (1 + CýCst ) 

It is seen from the equation above, that as the stray capacitance 
increases the denominator approaches unity and the total capacitance 
C= Cý. The series configuration may therefore be used when a high 

centre frequency is desired without any appreciable effect from stray 
capacitance. It may be noted that any stray capacitance across the 

terminating resistor, R, will restrict the maximum value of'R since it 

will dominate the load impedance as R is increased , thus limiting 

signal sensitivity. 

3.8.1 Calibration of Narrowband Coils 

The peak magnitude of the first half cycle in the oscillatory response 

of a narrowband Rogowski coil is related to the peak value"of, primary 

circuit current. This relationship differs for the two circuit 

configurations and may be determined from a Laplace transform 

treatment of each circuit to obtain the transient response to a step 
function in the monitored current ip(t) . 

3.8.1.1 Parallel Circuit Response 

The parallel circuit transfer function, derived from an examination, of 

the equivalent circuit is given by, 

Vm(s) = IP(s). k. s 

s2+ (1/RC)s + (1/LC) 
.... (3.19) 

where k= 1/N. C , -C is the total circuit-capacitance and N is the 

number of coil minor turns. 

Solution of 'this equation to a step in current Ia(s) = Ip/s will 

result in an overdamped or underdamped response depending on the 

quadratic in the denominator. If the roots are complex : 
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The transient solution to the equation is then given by , 

vm(t) = Ip . exp(-at)sin(4Jt) 

w. N. C 

where, W= 1- 1 and a 
2RC LC 2RC 

This response function is shown in figure 3.8.1.1 . 

.... (3.20) 

It is a damped sinusoidal function for which v (t) =0 at time t=0, 

rising to a first peak at t= 7r/2Gj of, 

vm(t) = Ip . exp(- rrc)/RC) 

w. N. C 
.... (3.21) 

which is the expression used to calibrate the device in terms of the. 

peak value of output signal vm(t) corresponding to the peak value in 

the monitored current ip(t). 

3.8.1.2 Series Circuit Response 

A similar expression for the transfer function of the series circuit 

can be`obtained and is given by : 

Vm(s) = Ip(s). k. s2 .... (3.22) 

S2-+ (R/L)s + (1/LC) 

where k= R/N 

Again the solution of this equation depends on the roots of the 

quadratic in the denominator. The underdamped solution has complex 

roots when, 
.f 

R 
2- 

1 
1h<0 

1Li)L LC 

ýý 

Page 158 



and is given by equation, 

vm(t) = Ip. R. exp(-at)(cos(w t) -a sin(gt)) 

NW 

where a= R/2L and w= R 
2_ 

1 
1t1 

2L LC 

In this function, vm(t) has an instantaneous value of Ip. R/N at time 

t=0, (see figure 3.8.1.2 ), and follows a damped cosinusoidal, 
function thereafter. This follows from the assumption of an 

instantaneous rise in primary, current ip (t), inducing an infinite 

voltage across the circuit inductance L allowing current through L to 

develop a voltage Ip . R/N across the terminating resistor R. Of 

course a real current pulse will have finite rise time and will 

therefore modify the resultant waveform. However, at sufficiently 

rapid rise times in ip (t), (negligibly ; small in comparison to the 

period of oscillation), C will contribute negligible circuit impedance. 

The self inductance L will dominate circuit impedance and voltage 
distribution such that a current is(t), (secondary circuit current), 

will be made proportional to ip (t). A voltage Ip. R/N will result 

across R. 

For longer current pulse rise times the output signal vm (t) will 

appear to rise in step with the monitored signal from zero and follow 

a damped sinusoidal function form thereafter, similar to the response 

of the parallel circuit . The oscilloscope traces in figure 3.8.1.3 

illustrate this ambiguity in oscillatory pulse shape for different 

pulse rise times. 

The calibration of the series circuit can be achieved with the aid of 

the equation : 

A= Ip. R 

N 
.... (3.24) 

which relates the initial peak in', the signal'vm(t) to the peak: value 
in the current monitored, ip(t). 
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3.9 Charge Measurement with Narrowband Coils 

Charge is defined as the integral of the current i(t), and if the 

current is a pulse, the integration time must exceed the pulse 
duration. The charge contained in the waveform depends, on, the shape 

of the current pulse which requires faithful reproduction of the 

current i(t). The narrowband Rogowski coil does not,. possess this 

ability and accurate charge measurements are not possible although, 

under certain conditions semi-quantitative measurement can be made. 

In the following discussion only the series resonant circuit response 

is considered for brevity since conclusions drawn from the analysis 

are applicable to the parallel circuit. 

For a rectangular current pulse Ip of duration T the charge contained 
is simply the product of these two variables. The transient time 

domain response of the resonant circuit to a step, however, is a 
damped oscillation the amplitude of which is related only to the peak 

current ip(t) through equation (3.24) 
. The amplitude of the 

oscillatory pulse contains no information regarding the time duration, 

T, of the monitored current ip (t), and charge measurement is 

therefore not possible . If the current ip (t) were an 

exponential function 
, ip(t) = Ipexp(-t/T) with a time constant, T, 

the charge in the pulse would, from the integration, 
_be 

fIp. 
exp(t/T)dt q= 

0 

be , 

qc = IP. T. (1 - exp(-t/T)) 

Assuming the integration time t is longer than the pulse duration, the 

charge transferred would be given by the simple expression, 

qc = IP. T 

In partial discharge measurements this relationship could be used to 
A 

calibrate the peak amplitude in the narrowband coil response, vm(t), 

provided that 
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i. The partial discharge current pulse has an exponential decay form 

with an instantaneous rise time. 

ii. Current pulses all have the same time constant of decay. 

This is difficult to establish in practice and care must be taken in 

the interpretation of results based on these assumptions . 
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CHAPTER FOUR 

DEVELOPMENT AND PERFORMANCE OF A`PARTIAL DISCHARGE LOCATION SYSTEM 



4.1 Principle of Location Technique. 

As discussed previously, a partial discharge generates two 

electromagnetic pulses which propagate from the discharge site to the 

two ends of a phase winding .A motor winding connected to a high 

voltage supply will have a large number of discharge sites distributed 

along its length . Pulses generated at these sites travel to the line 

and neutral ends of the winding . An observer at the terminals will 

see a train of pulses which are random in height and spacing in time, 

(as shown in figure 4.1.1). The correlation of these two pulse trains 

forms the basis of the location technique 

Consider, as shown in figure 4.1'. 1', a discharge. occurs at a site on 

the winding close to one end . The pulses generated at the discharge 

site will arrive at the line and neutral terminals after time delays 

of 4. 1.2 and 1 , respectively .A delay difference of (f - iz) separates the 

two pulses and it is this relationship which is used to locate the 

position of the discharge source. 

Since the pulse trains are time varying functions v1(t) and v2(t), a 

cross-correlation function between the two can be defined as a 
function of the delay difference This is given by the 

relationship : 

T/' 

R12 (r) = lim 1J v1 (t). v2(t +T')dt 
T4'OO T0 

4.1) 

Assuming that the winding is lossless and distortion free and a 

partial discharge source generates a signal f(t) and v1(t) and v2(t) 

are the voltage signals detected at the line end and neutral end 

respectively, then ; v1 (t) = f(t -1 1) and- v2 (t) = f(t -f2) . The 

cross correlation function is then, 

ff(t 
R12() = -t1). f(t -1ý+'f)dt ..... (4.2) 

T--sw T0 

If now a change of variable t! =t- rI is made , the integral becomes 
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Figure 4.1.1 - Discharge Pulse Trains from Phase 
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ff(t'). 
f R12() = lm 1 (t'+ + (f, -12))dt ..... (4.3) 

T-i 04 T0 

The cross-correlation function is defined as a function of the time 

delay difference (t1 -'(`2). 

If the discharge source is in the centre of the winding , then 

f, 1 = r2 and T becomes zero . This transforms the expression (4.3) 

into the autocorrelation function given by , 

T 

Rff (1`) = lim '1 
ff(t'). 

f(tl--t, )dt ..... (4.4) 
T-ioOT 0 

The autocorrelation function has the property that it always becomes a 

maximum at 1' =0. I 

To illustrate the properties of the cross-correlation function 

consider the signals observed at the winding terminals, originating 
from a single discharge source , to be ideal- impulses that are 

rectangular in shape and separated by a time difference The 

resulting cross-correlation function is simply the area under the 

curve v(t). v(t +1'-) graphed as a function of the, variable, t 
. This is 

shown diagramatically in -figure 4.1.2 -which shows the 

cross-correlation function is a maximum at M. - t')* -The 

cross-correlation function is therefore a shifted. auto-correlation 

. 
function R ff (1` 

2 +11) , which peaks at a delay 1 -, T2) .A 
display of the cross-correlation function will therefore indicate the 

delay difference (T -I2), which is the basis of the location 

philosophy. 

If d, represents the distance of the discharge source from- the 

line-end terminal and v is the velocity of pulse propagation then , 

T`ý - and 'T= (L - d1 ) ..... (4.5) 

VV_ 

where L is. the length of the winding . _ý 
The delay difference i` is 
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given by , 

Y-1- =(L-2dý) ..... (4.6) 

A simple rearrangement of the above expression yields the distance of 

the discharge source from the line end . 

d, =L -1'2 ). v ..... (4.7) 

2 

The value of L and v may be measured while the cross-correlation 
function provides( T1 -12). Thus a display of the cross-correlation 
function, essentially determines the location of discharge sources in- 

a winding from the position of the correlation peaks . 

Partial discharges occuring external to the winding will also produce 

correlation peaks in the cross-correlation function . However these 

discharge sources and other spurious noise sources may be ignored if 

only those time delay differences'less than I` = L/v are considered . 
More precisely , delay differences in the interval - 1'/2 <0>+ T'/2 

since 7' =0 represents the centre-'of the motor winding . 

So far, the principle of cross-correlation as a location technique has 

been discussed in relation to ideal pulses travelling in a distortion 

free , 
lossless transmission line . In practice , as has been 

demonstrated-in-chapter two , discharge pulses propagating in a motor 

winding undergo considerable distortion and frequency dependent 

attenuation causing the wavefront of the pulse to lengthen . Added to 

this is the influence introduced by pulse reflections at winding 

terminations and the superposition effects of pulses separated by very 

short time intervals . Under-these conditions the pulse shape is 

distorted considerably and would necessarily mean that derivation of a 

cross-correlation function would be impractical . However,: since it 

is only the time delay difference 
, ', between the arrival of pulse 

pairs that is of concern in the location of discharges , the only 

information required is that of the time at which pulses : occur . In 

other words the instant in time that the leading edge of the pulse 

occurs relative to the other discharge pulses .1 11 

The way in which this information is obtained is to 'detect the 
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position in time when the pulse waveform rises above a certain 

threshold level . This is termed threshold detection in that the 

threshold level is set at a pre-determined level between the expected 

upper-limit of noise level and well below the pulse peak . Thus a 

train of pulses emerging from a winding terminal is threshold detected 

, amplified and limited to produce a train of unipolar, rectangular 

pulses , of varying widths but with the time position information 

preserved . This type of operation relates to a class of detectors 

referred to as non-parametric detectors . Non-parametric detectors do 

not depend on the parameters of the process which are subject to 

unknown variations and widely varying characteristics [88] . 

Returning to the cross-correlation function in expression (4.2) the 

voltage signals v1(t) =f (t -T) and v2(t) ="xf(t -T2) are replaced by 

the threshold detected functions SGN1(t) and SGN2(t) . Consider the 

two signals described by 

scrrI (t-tj) = 0, t<Tl ,_ 
=1, 't'j' < t<f11+Tj) 

=0, t 1(1 'l + Tl) 

and SGN 2( t- "2 )=0, t< 'r2 

=1, r2 <t <('f`2-+ T2) 

=0, t> (f-2 + T2) 

...... (4.8) 

..... (4.9) 

which are typical .T land T2are the pulse durations of SGN1(t-t', ) and 

SGN2(t-t`2) respectively . 

The resulting cross-correlation function R12(1`) is-described by the 

function , 

R 12 ('P) =0, t- (T -'i`2) - T1 ...... (4.10) 

=1 /T 4`2 )- T1<T<('P -'r2 ) 

= T1 /T, (r -t-2)< t` <(Z`2-? -j) + (T2-T1) 

_ -1/T, (11 - T) + (T2-T1 )< f' <(? 2 -? 1) + T2 

=0, ?"> ('! 2-? -, )+ T2 

as shown in figure 4.1.2 . The function is a trapezoid with a base 

(T I+ T2) and top (T2 - TI). If the pulses have equal widths, (T1 =T2) , 
then T2- Tl= 0 and the function becomes a triangle which has its apex 

at i` _ (i`2 - 1ýý . This is the auto-correlation function Rff 
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Although information regarding the shape of the partial discharge 

signals has been ignored it remains that the cross-correlation of the 

threshold detected signals provides an indication of the time delay 

difference (t -t), which then may be related to the location of the 

discharge source in the winding 

4.2 Implementation of Cross-Correlation 

In order to obtain the cross-correlation function it is necessary to 

compare the polarities of the pulses detected at the two ends of the 

winding as a function of delay T, between the two channels . The 

way in which this is achieved is described with reference to the 

schematic block diagram in figure 4.2.1 , which shows the whole 
instrument system . 

The analogue pulse signals emerging form the line and neutral ends of 

the winding are detected by the Rogowski coils . These signals are 

then amplified and transmitted to the signal- processing 
instrumentation via two separate fibre optic transmission links , 
where they are directed in to a programmable delay line ,' one in each 

channel . Each programmable delay line delays the analogue signal in 

the range 0 to ? 'MaX, (T: 
mnx 

being the maximum delay in the delay line), 

in delay increments of Tinc-. In this manner , the differential delay 

t` =(r -T. 
) may be varied in the range fmax <0 < f- max, in steps of 

rnc. Thus , for a given delay setting , 
4`5 

, pulse signals in 

channels 1 and 2 will be delayed(? 2 -*"1) with respect to one another 
Consequently , pulses originating from a location on the winding 

corresponding to a delay difference (t2 _ 
t) at the line and neutral 

terminals , will arrive at the same instant in time at the outputs of 

the programmable delay lines . 

The pulse trains are passed to a time coincidence unit which indicates 

the presence of two pulses arriving at the same instant in time . 
When two pulses are coincident in time , corresponding to a particular 

point on the winding , one pulse is passed through by a coincidence 

logic pulse to a multi-channel analyser that counts the coincident 

pulses , and stores the result in memory . All other non-coincident 

pulses , corresponding to discharge sources at other positions on the 

winding , are ignored . In this way time correlation of pulse trains 

provide the location of the discharge source 
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A microcomputer is used to supervise the delay line switching sequence 
so that the range of time delay differences corresponding to a 
distribution of set positions on the winding is covered . At each 
individual delay setting, (location on the winding), the number of 
coincident pulses are counted in the multi-channel'analyser in a 
memory channel corresponding to that particular delay setting, hence 

discharge location. The dwell time on each delay setting is 
determined by the micro-computer which may be programmed to any value 
in increments of 1 millisecond to allow sufficiently long samples 
times 

rý ý.. 

By sequential switching of the programmable delay lines to observe 
incremental points on the winding, it is possible to scan the entire 

winding . From a scan a histogram of correlated pulse counts against 
differential delay (t2 - t) 

, and therefore winding location, is 

produced. In doing so , the cross-correlation function is derived 

which provides an indication of partial discharge activity with 
position along the length of the motor winding . This is shown on the 
display of the multi-channel analyser in figure 4.2.2 for a single 
discharge source generated artificially. The following sections 

outline the design of the main components of the location instrument 

system as shown in the schematic diagram in figure 4.2.1 . 

4.2.1 Discharge Detection Unit 

Partial discharge current pulses are detected by a Rogowski coil. 
The signals are amplified in a 120 MHz wideband amplifier which has 

two complimentary outputs . Current signals are taken from the 

inverted output via a short length of coaxial cable whilst 

non-inverted signals are fed into a passive R-C integrator circuit 

to derive signals proportional to the apparent charge, q. The gain 

of the amplifier is continuously variable over a range of 10 to 400 . 
A voltage follower circuit forms the subsequent stage to minimise 
loading of the integration capacitor and provide a sufficiently low 

output impedance to drive long lengths of coaxial cable and subsequent 

stages. A fibre-optic link is used to connect the detection unit to 

the ground station equipment and provides the necessary high-voltage 

isolation requirement and eliminates earth loop interference . Figure 

4.2.1.1 shows the detection unit in block diagram form . 
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The fibre-optic transmitter and the amplifier circuits require 

isolated power supplies at voltages of +5V/OV and +5V/-5V 

respectively. These are provided by two separate battery supplies 

mounted with the fibre-optic transmitter and pulse amplifier in an 

integral unit shown in the photograph in figure 4.2.1.2 . The 

fibre-optic link receiver is mounted in the pulse location instrument 

and has a voltage follower circuit with sufficient capability of 
driving directly the programmable delay line unit. 

4.2.2 Programmable Analogue Delay line. 

The delay of an electrical signal is most easily done in a two-wire 

transmission line in which the signal travels as an electromagnetic 

wave at a finite speed . The velocity of propagation is a 

characteristic of the transmission line configuration and is always 
below that of light in a vacuum ,c. 

In general, a signal will travel at a speed 

v=1 (ms-1 ) 

in a two-wire transmission line with inductance L and capacitance C 

per unit length of line . If the relative magnetic permeability 1-'r is 

assumed to be unity then the speed of propagation will be dependent on 

the geometry of the line and on the relative permittivity of the 

dielectric Er . The delay time therefore, of a signal in a length of 

transmission line x is 

T=x. ( sec. ) 

Various configurations of the two conductor line are commercially 

available, however only three geometries are of particular use in the 

construction of an. analogue delay line for relatively wideband signals 

and these are ; 

i. Coaxial -line 
ii. Helical line 

iii. Microstrip line 
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Figure 4.2.1.2 - Discharge Detection Unit 
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The eventual selection of delay medium depends not only on delay time 

considerations but on an appraisal of each line on the basis of other 
criteria such as attenuation , signal bandwidth 

, frequency dependent 
distortion, ease of termination and volume occupied per unit 'of length 

of delay. The relevant characteristics of each of the forementioned 

delay lines are examined in the following sections . 

4.2.2.1 Coaxial line. 

The coaxial line construction has the advantage that electric and 
magnetic fields are restricted to within the sheath thus eliminating 
radiation losses and shielding the line from external interference 

signals . 

Modern coaxial cables have dielectrics of polystyrene, polyethylene or 
P. T. F. E. (polytetraflouroethene) 

, which have relative permittivities 
of about 2.3 . This corresponds to a propagation velocity of about 
0.2 m/nsec , which is a time delay of 5 nsec per metre run of cable . 
The coaxial cable is well suited to small delays whilst for long 
delays the length and weight of line can be prohibitive , ie. a1 jisec 
delay requires a 200 metre cable . 

The coaxial line also has a broad bandwidth for signal frequencies of 

up to a few hundred megahertz for short cable runs, (a few metres) , 
while for longer lengths the rise time of the signal is progressively 
increased due to the transmission line losses in the cable 

Nevertheless , the coaxial line does provide a suitable medium for 

discharge type pulses which are processed prior to the delay line 

stage in the instrument . 

4.2.2.2 Helical line 

The helical line is basically of the same'' construction as the coaxial 

cable with the exception that the inner conductor is replaced with a 
helical conductor formed on a dielectric or ferrite core . 

This configuration allows construction of lines with `very high 

characteristic impedance and very long delays per unit length of cable 

since the self inductance L can be made a relatively large value . 
Typical commercially available cables have impedances ranging from 
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Z' = 100fito 4000j,, and delays of T= 23 nsec/m to 3.3 psec/m which 
have dielectric and ferrite loaded cores . These delay times and 
impedances seem very impressive but these cables are restriced in 

their available bandwidth since they suffer from phase distortion due 

to the interturn capacitive coupling which is frequency dependent . 
The maximum effective bandwidth of these cables with no appreciable 
distortion is about 1 MHz [89,90] 

. 

Another problem associated with helical lines is the manner in which 

the line is terminated since at the cable ends the effective 

inductance decreases hence the characteristic impedance falls towards 

the ends . There are techniques to compensate for this mismatch at 
low frequencies but reflections inevitably occur at high frequencies . 

4.2.2.3 Microstrip line" 

The microstrip line has a very simple construction in which a copper 

track or conductor is etched on the dielectric substrate of a double 

sided printed circuit board . The conducting plane on the other board 

side is utilised for the earth conductor .A long line may be 

fabricated on a large board by 'meandering' the track taking care that 

adjacent tracks have sufficient separation ; This is to prevent pulse 
feed forward by the capacitive and inductive coupling between 

adjacent conductors , resulting in pulse distortion [91]. 

Propagation is not strictly- TEM and characteristic parameters are 

usually designed using computer programs . However ,a good 

approximation to the characteristic impedance may be given by the 

expression [92] :- 

Z aL= 377 hI 

C tr w Y 

where h is the dielectric thickness, ( in metres ), and w is the width 

of the'track conductor, ( in metres ) 

The velocity of propagation depends on-the relative permittivity of 

the dielectric used for the printed circuit board . For a dielectric 

of ", 'epoxy-resin/ glass fibre , Er = 2.6 , which gives a velocity of 186 

m/usec and a delay of 5.4 nsec/metre [92] 
. 
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An advantage of this type of transmission line system is the 
flexibility in design and the ease of mounting components directly on 
the line whereas in coaxial lines there is some difficuly as to what 
technique is best for termination . There is however.., little to be 

gained in terms of storage space for large delay lines . In addition 

to this , there is no shielding from external interference (radiated 

or closely coupled signals) Apart from this the stripline 

constitutes a viable option for the delay of electromagnetic signals . 

4.2.2.4 Fibre-Optic Transmission Line 

The use of a fibre-optic cable to delay an analogue signal has the 

advantage that it is free from electromagnetic interference , which is 

a necessity in partial discharge measurements . Bandwidth is virtually 

unrestricted and attenuation is in the region. of -5 dB/km . However, 

due to the multiple modes of internal reflection within a cable and 
frequency dependent velocity of propagation , distortion of the pulse 
in the form of pulse 'jitter' occurs when long distances'öf travel are 
involved . In addition to this , transmitter and receiver devices 

are required at the ends of the optical cable for signal conversion 

From a comparison of the analogue signal delay lines available , the 

coaxial cable is selected as the delay- medium on its overall superior 

characteristics . 

The programmable delay line developed, comprises eight, -binary weighted 

lengths of low loss (6.23 dB/km) , coaxial cables which are connected 

by a set of sixteen relay contacts . These are mercury-wetted relays 

which have a very low contact resitance of 75 mtl to prevent excessive 

pulse amplitude attenuation in the delay line . The-circuit in figure 

4.2.2.1 of the programmable delay line shows'that each of- the cable 

lengths can be switched into or out of the delay line by a pair of 

single-pole changeover contact relays . Connections are made from 

the cable ends to the relay contacts via a coaxial plug and socket 

arrangement . In this manner the length of the delay is varied from 

zero to the maximum in 256 steps . Each delay increment corresponds 

to the delay in the. smallest length of cable which is: 4.39 nsec and 

the maximum delay is therefore 1.68pseconds 
.. 

Over the maximum length of the delay line some frequency dependent 

distortion of the pulse does occur in the form of an increase in the 
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rise time ,( hence fall time ), of the pulse . Oscilloscope traces 
in figure 4.2.2.2 show the influence of 382.5 metres of delay cable on 

a 10 4sec, (20nsec rise time), pulse . Rise time has increased to 
400 nsec thrdugh the line This does fnöt 'adversely' effect the 
location technique as the pulse is distorted in the winding and 

post-integrated before it enters the delay line. 

Control of the programmable delay line is achieved by a microcomputer 

through a specially designed interface circuit . Communication 

protocol between the microcomputer and the interface circuit is that 

of the IEEE - 488 instrument bus standard . The interface circuit 

basically allows the microcomputer to change the status of each pair 

of relay contacts connected to an appropriate delay line section 

An 8- bit binary code entered from the microcomputer terminal is 

received by the interface circuit and subsequently presented on 8 

control lines to relay coil driver circuits , see diagram 4.2.2.1 .A 
set of two relay drivers are controlled by a single control line . 
These two relay drivers in turn energise or de-energise the coils of 

two relays which terminate the ends of a length of delay line 

Therefore, a single logic level 1 on a control line switches a binary 

weighted delay line section into the delay line whilst a logic level 0 

bypasses the delay line section . The least significant bit (LSB) of 

the binary code controls the shortest delay line section whilst the 

most significant bit (MSB) controls the longest delay line section . 

4.2.3 Coincidence Unit 

A time coincidence detector is basically a logical AND gate, see 

figure 4.2.3.1 , whose inputs are two (or more) ideally rectangular 

logic pulses . These store the time information regarding the position 

in time of the discharge pulse in their leading or trailing edges 

When two pulses from separate pulse trains are coincident in time a 

logic pulse is output from the gate . 

If 61, and 62 are the widths of the pulses then the coincidence 

resolution time: is simply given by , 

-t-c '=6 I+ 62 
.... (4.11. ) 
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The implementation of this principle is described with reference to 

the block diagram of the coincidence unit in figure 4.2.3.2 
. Each 

section of the coincidence unit is described in more detail in the 
following paragraphs . 

4.2.3.1 Polarity Selection 

The analogue pulses from the output of the programmable delay line are 
developed across a 75 ohm matched terminating impedance . Pulses are 
then passed through a unity gain amplifier which has complementary 

outputs . The two outputs are connected to a -'single-pole changeover, 

analogue switch . This provides the coincidence unit with the 
facility to select either positive or negative polarity pulses, which 
is desirable in a partial discharge measurement system . 

4.2.3.2 Threshold Detection 

After polarity selection- , the pulses are- passed- to a time 

discrimination circuit which detects the occurrence of the leading edge 

of the analogue pulse . Several techniques can achieve this [93,94], 

however the method adopted here relies on the detection of the instant 

in time when the positive rising edge of the pulse exceeds a threshold 

level . This level is normally-just above that of the noise level in 

the system 

The threshold detector is basically a high- speed comparator circuit 

which amplifies and limits the differential signal at its input . The 

inverting input is set at a d. c. voltage level which is variable . 
This is the threshold level control . The non-inverting input receives 

the pulse signals for comparison purposes .A positive signal 

transition above the threshold at the input results in the output 

going to saturation level . Conversely 
, the output level falls to 

zero when the input signal falls below the threshold level . The 

result is a logic pulse of duration dependent on threshold crossing 

interval . 

This technique of level discrimination is problematic when noise is 

superimposed on the signal . Noise signal transitions at the 

threshold level results in multiply transitions at the output of the 

discriminator, which results in what is termed pulse jitter . The 

manner in which this is overcome is to apply positive feedback to the 
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comparator . In doing so , hysteresis is introduced into the devices 

operation . Once a positive transition above the lower hysteresis 

level takes place at the input, the output rapidly switches to a 

saturation level . Should the input signal fall : below the upper 

threshold level and fail to reach the hysteresis lower limit , as in 

the case of spurious noise the output will remain as before . Only 

when the signal falls through the hysteresis upper limit and below the 

threshold level can the output revert to zero logic level, (see figure 

4.2.3.2.1 . This hysteresis- band , in-which signal-excursions at the 

input about the threshold level do not affect the output state , is 

variable between 10 mV and 50 mV about the threshold level depending 

on the noise present . 

4.2.3.3 AND Gate Coincidence Circuit 

The variable width pulses from the threshold detector are converted to 

logic pulses with constant duration ,6, by a monostable 

multi-vibrator circuit . Resolution of the coincidence operation is 

26 which is 20 nsec since ä is set at the minimum duration of 10 

nsec. 

Pulses from the monostable circuit in the two channels are directed to 

a logic AND gate which produces a logic pulse when the . two pulses at 

the inputs are coincident . The width of the gated pulse is equal to 

the overlap interval of the two input pulses `, (see 'figure 4.2.3.1 ). 

In practice the input pulses from the monostables are not rectangular 

but have a finite rise and fall time . As a consequence the overlap 

period is shorter and the corresponding coincidence resolution time is 

less, approximately 15 nsec . 

The logic pulse from the AND gate is- used to control a high speed 

analogue switch . When the switch receives a gating signal from the 

AND gate the discharge pulses from the output of one of the 

programmable delay line channels is directed through a cable driver 

circuit to the multi-channel analyser . Discharge signals are fed to 

the gated switch through, a fixed delay line which delays the, signals 

to compensate for the propagation delays of logic signals 

through the coincidence circuit , (approximately 90 nsec. ). 
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4.2.3.4 Amplitude and Rise Time Walk 

Two detrimental effects on the accuracy of leading edge time 

discrimination are amplitude and rise time walk [93] 
. These 

effects are described with reference to the diagrams in figure 

4.2.3.4.1 . 

Amplitude walk occurs when pulses have different amplitudes, and are 

coincident in time, cross the threshold level of the discriminator at 
different times . As a result the output logic pulses differ in time 

of origin as the amplitude changes . Rise time walk is a similar 
behaviour in leading edge discriminators in which pulses are 

coincident and are of constant amplitude . However, due to different 

rise times, the pulses cross the threshold level at different times 

and result in timing errors in the logic pulses ., The. graph in figure 

4.2.3.4.2 shows the discriminator's characteristics when pulses of 

variable height and rise times are discriminated at a constant 

threshold level of 100 mV- . As would be expected the smallest time 

errors (or walk) occurs with pulses whose rise time is short and whose 

amplitude to threshold level ratio is great . 

The effects of amplitude and rise time walk are seen as not being a 

real problem to the coincidence circuit since it is the relative time 

error, (between channels), that affects the coincidence operation . 
Only when pulses presented to the discriminators in each channel 

differ greatly in amplitude and rise time . 

Techiques to reduce walk error include constant fraction timing and 

extrapolated leading edge timing methods outlined in reference 93. 

4.2.4 Multi-Channel Analyser : Modes of Operation 

The two modes in which multichannel analyser operates are : - 

i. Multi-Channel Scaling 

ii. Pulse Height Analysis 

The first of these , multi-channel scaling is when the analyser 

stores the number of pulses above a preset amplitude threshold level 

within a specified time interval , termed the instrument's dwell time. 

This is repeated for consecutive time intervals in a sample period 
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until all memory positions, (channels), are filled 
. In the 

correlation scan of the winding each of the memory channels are used 
to store the number of pulses at a particular location on the winding. 
To perform this function the analyser requires three signals ; an MCS 
(multi-channel scaling) start; an MCS reset and a channel advance 

signal . These control signals are derived from the micro-computer 
interface cicuit . 

The MCS start and reset signals are taken from the address handshake 

line which goes to a logic zero when the interface is addressed, and 
to a logic one (high) when reset. However, the interface is 

addressed each time a byte of data is sent , for a period of 4 msec, 
(see logic timing diagram in figure 4.2.4.1 .- To prevent premature 
MCS reset an inhibit circuit, (, see figure 4.2.4.2 ), ignores the 

transition of the address handshake line to reset status for a period 
of 4.5 msec. Two output monostable circuits control the duration of 
the MCS start and reset signals ; approximately 2 psec . 

The channel advance signal is derived from the interface receive 

status signal line. When the interface is addressed this signal"line 
is asserted and a monostable circuit is triggered . The output of 
the monostable controls the channel advance function and has a pulse 
duration of around 2 'usec. 

Therefore each time the programmable delay line is addressed to change 
the delay setting , the multi-channel analyser receives a signal to 

step to the next channel . In this manner each delay setting 

corresponds to a separate channel in the analysers memory such that a 

scan of the winding can be performed . Sequential stepping through 

every delay setting is software controlled from the microcomputer . 

In the pulse height analysis mode, pulses are counted according to 

their amplitude. The pulse amplitude range is sub-divided into a 

number of pulse height intervals ; this number depends on the number 

of memory channels in the multi - channel analyser. The result is a 
frequency distribution of pulse amplitudes . The amplitude may be 

calibrated in picocoulombs of charge for partial discharge 

measurements . 

It is the intention to utilise the pulse height analysis technique to 

- assess the magnitude and severity of a particular discharge mechanism 
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having used the scanning technique to ascertain the point on the 

winding which has the highest level of discharge activity. 

Discussion of this is given in more detail in chapter one . 

4.2.5 Data Transfer and Presentation 

Multi-channel scaling and pulse height distribution data is 

transferred from the multi-channel analyser to the microcomputer via 

an RS-232 data highway , (at 19200 baud) .A high speed buffer 

memory in the microcomputer interface stores the data from a single 

analyser distribution under the control of a data aquisition program 

A special image specifier program is then used to retrieve the useful 

data from the buffer memory by removing the control and data 

sequencing characters . The scan or. distribution is then stored in a 

permanent storage medium in a' specified data file for subsequent 

processing . Once stored , the data file may be retrieved for 

display on the microcomputer screen or to produce a hard copy on a 

plotter . 

The instrumentation system , M. I. C. A. : Machine Insulation Condition 

Analyser , described in the preceding sections is shown in the 

photograph in figure 4.2.5.1 
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Figure 4.2.5.1 - MICA : Machine Insulation Condition 

Analyser 
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4.3 Results from Correlation Experiments 

The following sections detail the results of tests designed to assess 

the behaviour: of MICA with respect to accuracy of location under 

various modes of pulse injection and terminating impedance 

configurations.: 

Investigation is restricted to tests performed on a model winding 

comprising six stator coils. The experimental circuit is shown in 

figure 4.3.1 , where intercoil connections , 
(points of pulse 

injection), are numbered from, cl to c7 and the terminating impedance, 

Z, is variable in the range 0 to 1000 ohms . 

Tests are divided-into two categories as follows :- 

i. Pulses injected from an artificial source. 
ii. Pulses injected from a high voltage source. 

4.4 Artificial Discharge Source Injection 

Discharge pulses are derived from the circuit shown in figure 4.3.1. 

The artificial discharge pulses are unipolar, decaying-exponential, 

pulses; the charge content, of which , is determined'by the coupling 

capacitance and the peak voltage of the rectangular input pulse. 
Thus, a 5000 pC discharge is produced with a pulse amplitude of 10 

volts and 500 pF capacitor . 

4.4.1 Matched Termination Impedances. 

In this first test, the winding is terminated at both ends in a 

matched impedance of 330 ohms . The correlation scan of the winding is 

shown in figure 4.4.1.1 which represents the superposition of separate 

correlation scans of the winding for pulses injected at each of the 

coil interconnections and at the terminations. 

The location peaks are equally spaced along the axis and the width of 

the peaks are : no greater than 2 delay line increments. Temporal 

resolution of location is therefore no greater than 13 nsec 

propagation' time in the winding which corresponds to a spacial 

accuracy of approximately 1.4 metres of the winding length . 
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Figure 4.3.1 - Discharge Injection Test Circuit 
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The position of the discharge source may be related to the location 

peak on the scan through a simple expression . It is recalled that at 

a particular discharge source location, pulses will arrive at the 

winding terminals with a differential delay time, td . For 

coincidence to occur this delay difference must equal the differential 

delay in the programmable delay lines. Therefore it can be stated 

that : 

± td =t1 (D 
1-D 2) 

where, D, - delay line setting in channel A. 

D2 - delay line setting in channel B 

... (4.12) 

The delay through a unit length of cable (delay increment) , tj , is 

fixed at the measured value of 6.5 nsec. The differential delay, td, 

may have positive or negative values depending on which half of the 

winding the discharge source is located . Since there are 256 possible 
delay settings in each of the programmable delay lines it follows that 

D2 = 256 - DI. Rearranging the expression 4.12 , we obtain : 

± td = tj (2D, - 256 ) 

from which it follows that, 

D, _± td 128 
2tß ... (4.13) 

Therefore, knowing the differential delay, td, from pulse propagation 

measurements it is possible to calculate the expected delay setting. 

The delay setting corresponds to channel position on the scan plot on 

the multi-channel analyser'. 

The maximum delay difference is equal to the propagation time through 

the complete winding. Substitution of this value into equation 4.13 

for positive and negative differential delays, determines the channel 

positions of the winding terminals, hence the boundaries of the 

location scan. 

In the scan of a winding with six coils the delay through the winding 

is observed to be approximately 750 nsec. This places the terminals 

of the winding at channel positions 70 and 185. The channel 
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positions of the remaining peaks on the location scan in figure 

4.4.1.1, are given in table 4.4.1.2 . 

To verify the accuracy in the position of these peaks the actual time 
differences between the arrival of the pulses in either channel were 

obtained from waveform observations, and are given in table 4.4.1.2 . 
From the time delay differences - expression. 4.13 is used to 

calculate an expected channel position for each pulse source location. 

Pulse injection Channel Position Delay difference td 
Point Observed Expected observed (nsec) 

cl 72 61 770 

c2 90 89 520 

c3 111 110 230 

c4 131 128 0 

c5 152 145 230 

c6 170 168 520 

c7 186 187 770 

Figure 4.4.1.2 - Calculated and Measured Scan Locations 

Error in the observed location peak positions is on average 3 channel 

positions which corresponds to a temporal error of 19.5 nsec and a 

spatial error of 2.1 m of the winding length. This -error 

approximately 2.9 % of the total length of the winding. 

In each of the correlation `scans performed the pulse repetition 

frequency is 4.2 kHz which is a pulse repetition period of 238 usec. 

The sample period at each channel position during a scan is 250 

cosec (set by the microcomputer); so thatýthe expected pulse count at 

the location peaks is 1050 pulse, 'i. e. 

n=p. r. f. x channel sample time ... '. (4.14) 

The observed pulse count-for one of the peaks, which is representative 

of each of the other peaks, is 1090 pulses. This difference in pulse 

count is due to errors in the measurement of the values of channel 

sample time and pulse repetition rate . 
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4.4.2 Effect of Discrimination Levels on Discharge Location 

In this experiment the influence of varying the discrimination levels 

in the coincidence detector on the accuracy of the location technique 
is investigated. As in the experiment detailed in section 4.4.1. a 

scan is obtained for each position of pulse injection, with the 

exception that the discrimination level on one channel input to the 

coincidence unit is changed. 

In the experiment of section 4.4.1 the discrimination voltage levels 

were as follows :- 

Channel A- 150 mV. 
Channel B- 120 mV. 

which is a discrimination level difference of 30mV . In this 

experiment the level in channel A is increased to give settings of : 

Channel A- 200 mV. 
Channel B- 120 mV. 

The effect which is expected from a change in discrimination level in 

one channel is explained with reference to the diagrams in figure 

4.4.2.1 . 

In the first diagram, pulses originate close to channel A and as a 

result pulses with fast rise times are seen at channel A and slower 

rise time pulses at channel B, due to pulse distortion through the 

winding. By increasing the, discrimination level on channel A the 

point of coincidence is effectively, --, shifted by time tc which 

corresponds to a shift in delay -setting to obtain coincidence. This 

results in a shift of the position of the location peaks towards the 

position of channel B on the location scan. 

When pulses are injected closer to" the" termination monitored by 

channel B the pulses observed in channel A have longer rise times. 

As a consequence, a greater shift in the location peaks is expected 
due to the longer wavefront of pulses, observed in channel, A. The shift 

in the position of peaks, is likewise, towards the position of the 

winding termination connected to channel B. This is due to the fact 

that the delay introduced into channel A must be reduced to 
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obtain pulse coincidence. 

The scan shown in figure 4.4.2.2 does indicate a shift in the spectrum 

of location peaks towards the position of channel B, but does not 

show a progressively larger shift of peaks when pulses are injected 

closer to channel B. The reason for this is explained as follows. 

When pulses are injected close to channel B, longer pulse rise times 

are seen at the terminal connected to channel A. It is this 

difference in pulse rise time that results in the greater shift in the 

position of location peaks . However , pulses'in'channel B are delayed 

for a proportionately longer time than pulses in channel A to obtain 

coincidence , so that at the output of the programmable delay lines 

there is a considerably smaller difference in pulse rise times in each 

channel. The compensating effect of the delay lines is to produce a 

smaller shift in the location peak distribution . 

In each of the correlation scans the pulse repetition frequency of 

injected pulses is 4.2 kHz , which for a sample period at each delay 

increment of 250 msec gives an expected maximum pulse count at the 

location peaks of 1050 pulses . The observed value is 1084 pulses 

which is approximately the same value for each of the location peaks 

showing good repeatability in the instruments pulse interval 

resolution . 

4.4.3 Influence of Winding Terminations on Location 

In a star connected high voltage motor the phase winding is not 

terminated in an impedance which matches its own , but at one 

terminal, by two other phase windings and at the. other terminal by the 

cable connecting the motor to the supply . It is therefore necessary 

to investigate ý the behaviour of MICA under different terminating 

conditions to assess the usefullness of the device in a practical 

situation . Two tests are performed to determine the effect of 

mis-matched termination impedance on the location capabilities of the 

instrument 
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The experiment in section 4.4.1 is repeated for terminating impedance 

configurations as follows :- 

i. Terminal cl is terminated in a 20 ohm impedance, which is 

representative of a power cable characteristic impedance. 

Terminal c7 is terminated in the winding impedance of 300 

ohms . 

ii. Terminal cl is terminated in an impedance of 20 ohms 
Terminal c7 is terminated, in an impedance of 150 ohms 

which represents the junction of the other two phase 

windings at the star point . 

The result of the collective location scans for the first terminating 

impedance configuration is shown in the scan in figure 4.4.3.1 . The 

reason , that only six location peaks are recorded , is that , at the 

point where the pulses are injected across a 20 ohm impedance the 

pulse generator is overloaded . 

The repetition frequency of injected pulses is as in the previous 

tests , 4.2 kHz , which for a sample period at each delay position of 

250 msec. , gives an expected pulse count of 1050 pulses . The maximum 

pulse count observed is 1079 which is approximately the pulse count in 

all of the location scan peaks . 

The position of the location peaks are given in the table in figure 

4.4.3.2 for both the expected and observed values . Expected location 

positions are calculated from expression 4.13 which assumes a 

knowledge of pulse propagation characteristics for the termination 

conditions described . 
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Pulse Injection Channel Position Delay Difference t 
Point Observed Expected Observed ( nsec. ) 

c2 89 85 505 

c3 108 105 300 

c4 127 128 0 

c5 148 148 260 

c6 167 171 560 

c7 182 183 720 

Figure 4.4.3.2 - Calculated and Measured Locations 

A comparison of the positions of corresponding, location peaks in the 

scans for matched terminationsin figure 4.4.1.1 and these-, results 

show- that the introduction of a low impedance termination at one end 

of the winding causes a shift in the true location peak positions 
towards the low impedance terminal position . This, shift in location 

peaks is progressively larger for pulse injection points closer to the 

matched impedance terminal . 

The magnitude of this shift indicates the error in the location 

position introduced by the low impedance , which is given in the table 

in figure 4.4.3.3 . 

Pulse Injection Location Peak Location Error 
Point Shift (metres) 

c2 1 0.7 

c3 3 2.1" 

c4 4 2.8 

c5 4 2.8 

c6 3 2.1 

c7 -42.8 

Figure 4.4.3.3 --Error in. Scan Locations 

A maximum shift of 4 channel positions occurs , which corresponds to 

an error in the true location of 2.8 metres of the winding length 

(or two coil turns ). 
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In this second experiment , the winding is terminated in an impedance 

of 20 ohms at one end and 150 ohms at the other . Pulses are injected 

at a pulse repetition frequency of 4.2 kHz to give an expected pulse 

count of 1050 pulses 
. For a delay setting dwell time of 250 msec the 

measured pulse count is 1086 , which is approximately the pulse count 
in each scan . 

The distribution of the location peaks from each of the winding scans 
is shown in figure 4.4.3.4 . Similar to the previous scans the width 

of the location peaks is no greater than two delay increments , which 
is 1.4 metres of the winding length . The positions of the location 

peaks on the scan are close to the predicted positions taken from the 

pulse propagation measurements for the particular terminating 

impedance conditions . The observed and expected locations are given 
in the table in figure 4.4.3.5 . 

Pulse Injection Channel Position Delay Difference t 
Point Observed Expected ( nsec. ) 

c2 88 85 560 

c3 107 105 300 

c4 126 128 0 

c5 145 151 300 

c6 165 171 560 

c7 182 186 750 

Figure 4.4.3.5 - Calculated and Measured Locations 

By introducing an impedance of 150 ohms at one end of the winding and 

a 20 ohms impedance at the opposite'end , the effect on the resulting 

scan is a shift in the positions of the location peaks towards the low 

impedance terminal of the winding . This displacement of the location 

peaks is slightly greater than in the previous experiment which leads 

to the conclusion that the presence of asymmetric terminating 

impedance accentuates the displacement of the location positions of 

discharge sources towards the low impedance end of the winding . The 

magnitudes of the; shift in the location peaks relative to the matched 

termination case , taken as reference , is shown in figure 4.4.3.6 . 
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Pulse Injection Location Peak Location Error 
Point Shift ( metres ) 

c2 2 1.4 

c3 4 2.8 

c4 5 3.5 

c5 7 4.9 

c6 5 3.5 

c7 4 2.8 

Figure 4.4.3.6 - Error in Locations 

As seen from the table , the error in discharge location is a maximum 

two coils distance from the high impedance terminal of the winding . 
It is an error of 4.9 metres of winding length which is about three 

coil turns . The reason for this behaviour is due entirely to the 

influence of the terminating impedances on the shape of the injected 

pulse , in particular its wavefront . 

It is concluded from these experiments that any discontinuity in 

impedance at the winding terminals results in a displacement of the 

location positions of discharge sources on the scan . In addition this 

displacement is governed by the presence of a relatively low impedance 

at one winding terminal which causes a shift in the scan location 

peaks towards the low impedance terminal position . 

4.4.4 Effect of Endwinding Pulse Injection 

Hitherto , artificial discharge pulses have been injected into the 

coil interconnections In this experiment the` pulses are injected 

into the winding at an intermediate point in each coil 

endwinding opposite the coil connections . The purpose of this test is 

to determine what effect the mode of pulse injection has on the 

position of discharge locations on a scan . 

Pulses from a pulse generator are coupled into the endwinding of a 

coil through a coupling capacitor constructed from a narrow strip of 

aluminium foil wrapped around the coil conductor stack . The width of 

the foil section is 40 mm and the distance around the periphery of the 

coil conductors is 115 mm . 
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It is assumed that for these dimensions and at the signal frequencies 

of concern ,( less than 200 MHz ), the coil conductor stack may be 

regarded as a single conductor . In this case the foil will act as 
one electrode of a parallel plate capacitor with the coil conductors 

acting as the other electrode . From these assumptions the following 

expression may be used to. calculate the value of the coupling 

capacitance . 

C= EoEr A 

d 

d- main insulation thickness in the endwinding which is 2mm. 

A- area of the foil capacitor plate . 

The estimated coupling capacitance is therefore 135 pF . Pulses from 

the pulse generator have an amplitude of 53 V which produces discharge 

pulses with a charge content of 7155 pC.. 

The winding is terminated in its characteristic impedance at one 
terminal and a 20 ohm impedance at the other . Pulses are injected at 

a frequency of 4.2 kHz with a scan interval at each delay increment of 
250 cosec 

Figure 4.4.4.1 shows the location scans at each of the injection 

points collectively . It is readily seen from this result that the 

way in which pulses are injected greatly effect the performance of 
MICA . Location peaks are no longer uniform in shape and the pulse 

count at each location varies markedly . The observed and expected 

channel positions of pulse locations are given in the table in figure 

4.4.4.2 along with the pulse count at each location peak . 
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Pulse Injection Channel Position Delay Difference Pulse 
Point Observed Expected t( nsec. ) Count 

cl 82 87 520 

c2 89 94 440 

c3 112 112 200 

c4 129 141 180 

c5 153 163 460 

c6 173 178 650 
193 -- 

Figure 4.4.4.2 - Error in Locations 

678 

887 

488 

473 

931 

1112 

287 

A spurious discharge location peak occurs at a position close to the 

end of the winding which is terminated in the winding impedance . It 

is likely that this irregularity is due to changes in the shape of the 

pulse causing accidental coincidence triggering . 

To obtain a clear understanding of the results it is necessary to 

compare the scan obtained in this experiment with the scan produced in 

figure 4.4.3.1 for the same termination conditions . This is shown on 
the composite scan in figure 4.4.4.3 

. 

The position of the location peaks from the first scan indicate the 

positions of the coil 
. 
interconnections and serve as a reference to 

assertain the true location peaks of pulses injected in the 

endwindings . The positions of location peaks 5 and 6 are at the 

intermediate positions as expected , however 
, the location peaks 

2,3, and 4 are almost in line with location, peaks 1,2, and 3 in the 

previous experiment which are at the coil inter-connections . This 

error in locations represents a shift in the location peaks towards 

the low impedance terminal . Location peak 1 is closer to the low 

impedance terminal position than the first loaction peak in the 

previous experiment , which is consistent with what is expected . 

Although the scan , showing pulses injected at the coil endwindings , 
appears to have irregularities in the location and shape of peaks and 

variations in the pulse counts it must be appreciated that the mode 

of pulse injection is complex , since each of the conductors in the 

coil are excited simultaneously by the injected pulse . In a motor in 

which partial discharges take place it is reasonable to say that 
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internal partial discharges and surface discharges are unlikely to 

affect more than two coil turns since the area of the region in to 

which charge is transferred is very small . 

In the light of these findings 
, the performance of the location 

technique is promising . 

4.4.5 Simultaneous Discharge Pulse Injection 

In an electrical motor connected to a high voltage supply , partial 
discharges will normally take place , some of which will inevitably 

occur at or around the same moment in time . It is reasonable to 

expect that the number of instances of simultaneously occuring 
discharges will reduce for larger discharges since these are fewer in 

number-. The object of this series of experiments is to assess the 
behaviour of the instrument MICA to the presence of simultaneous 
discharges in a machine winding . 

Simultaneous discharges are simulated-by injecting, artificial 
discharge pulses from a single pulse source-into two different points 

on the test winding through a, coupling capacitor of 500 pF , as shown 
in figure 4.4.5.1 . The pulses injected at the two points are time 

coincident with a fixed repetition rate so -that- stationary 

oscilloscope traces may be observed and used to explain the resulting 
behaviour of the location instrument . 

In the following experiments the winding is terminated in a 20 ohm 

resistance at terminal cl, and a 150 ohm resistance at terminal c7 
The coincidence threshold levels are as follows :- 

Channel A: 100mV. 

Channel B: 30mV. 

Pulses are injected at a frequency of 8.4 kHz . One source is located 

at point c7 whilst the other source is connected in turn to positions 

c6, c5, c4, c3, and c2 . The purpose of this is to demonstrate the effect 

coincident pulses injected at different points on the winding has on 

the accuracy of pulse location 

In the first test , pulses are injected at points c6 and c7 on the 

Page 212 



Figure 4.4.5.1 - Simultaneous Pulse Injection Circuit, 
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winding . The corresponding location scan shown in figure 4.4.5.2 
indicates that there is only one source of discharges at channel 
position 87 . This is the location of the pulse source at point c6 on 
the winding . 

To explain why only the pulse source at c6 is sucessfully located it 
is necessary to examine the current waveforms observed at either of 
the winding terminals . These waveforms are displayed in the 
oscilloscope traces in figure 4.4.5.3. The current waveform observed 
at c7 shows the pulse injected at c7 arrives at the terminal 
immediately . This pulse is the amalgamation of the pulses from both 

sources since they are separated by a small time interval of only 100 

nsec . The rising edge of this pulse is of the pulse injected at 
position c7 since this is the first pulse to arrive at terminal c7 
This pulse is followed 1300 nsec later by a much smaller pulse which 
is the reflection of the initial pulse at the low impedance terminal 

cl . 

The waveform observed at terminal cl is similar .A single pulse 
arrives at terminal cl after a delay of 650 nsec . This pulse is also 
the combination of the two pulses injected at c6 and c7 and has longer 
duration due to transmission line distortion 

. Again the the rising 
edge of this pulse is that of the pulse injected at position c6 since 
this pulse arrives at=terminal-, cl first'. This pulse`is'followed by an 
attenuated pulse about 1300 nsec. later which is the reflection of the 

same pulse at terminal c7 . 

From the waveforms it is clear that only one pulse location can be 
determined since the coincidence detector is unable to discriminate 

between two amalgamated pulses . The reason the location peak 

appears, at position c6 is simple to explain . The coincidence 
detector sees on one input the rising edge of the pulse injected at c7 
and at the other input , the rising edge of the pulse injected at c6 

since , as stated previously , these fronts arrive at the respective 
terminals c7 and cl first . It is on these edges that the coincidence 
detector discriminates . 

For a delay dwell time of 250 msec and a pulse frequency of 8.4 kHz 

the expected pulse count is 2100 pulses compared to an actual count of 
2016 pulses . 
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The spurious location on channel 253 is unaccounted for since it is 
difficult to see any possible pulse coincidence from the current 

waveforms observed in figure 4.4.5.3 . 

In this next scan , the pulse sources are positioned at the coil 
connections c7 and c5 ,a distance of two coil lengths apart . The 

corresponding location scan is shown in figure 4.4.5.4 . 

Only one location peak is detected 
, which is at a delay setting of 

98. This location appears half way between expected locations at 72 

and 107. The reason for this behaviour is explained with reference to 

the signal waveforms shown in figure 4.4.5.5 

It is seen from the signal observed at terminal c7 that a pulse 

arrives at c7 immediately , followed by the pulse injected at c5 which 
is approximately 240 nsec later . Soon afterwards the reflection of 
the pulse injected at c5 is detected 

, which is followed closely by 

the pulse injected at c7 . The pulse lattice diagram in figure 4.4.5.6 

shows the sequence of pulse events . Similarily at terminal cl the 

pulse injected at c5 is observed initially 
, followed 240 nsec. later 

by the pulse entered at c7 . The subsequent reflections of these 

pulses follow . 

As regards the location instrument these two pulses are still 

sufficiently close as to appear as a single: pulse . The origin of this 

pulse is determined from the time delay difference between the rising 

edges of the pulses which arrive first at the end terminals . At 

terminal c7 the first pulse front is detected immediately whereas at 

terminal cl the first pulse front is detected after approximately 440 

nsec. , which is the transit time of the pulse injected at c5 
travelling to terminal cl... The time -delay difference is therefore 

-440 nsec . By using the expression 4.13 the position of the location 

peak which corresponds to this delay difference is expected to be at a 
delay setting of 94 which is very close to the recorded position . 

The measured pulse count of 2070 also compares well with the 

calculated value of 2100-pulses . 

The experiment is repeated with the two pulse sources injected at 

connections c7 and c4 on the winding . 
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Similar to the previous results the location scan in figure 4.4.5.7 
identifies a single discharge source at the channel position 107 . 
Expected location peaks are at channel positions 72 and 126 . The 

corresponding current waveforms are displayed in figure 4.4.5.8, along 
with the pulse lattice diagrams , in figure 4.4.5.9, which provide the 
pulse timing relationships . 

As before, the pulse entered at c7 is detected immediately, followed 3 

coil transit times, ( 330 nsec ) later, by the pulse injected at c4. 
After 660 + 330 nsec. , the reflection at terminal cl of the pulse 
injected at c7 arrives at c7 . Likewise at terminal cl the waveform 
shows the arrival after 330 nsec. of the pulse injected at c4 followed 
by the pulse-injected at c7 , 330 nsec. later . The first pulse 
injected at c4 follows 660 nsec. later , after being reflected at 
terminal c7 . 

Even with a separation of 330 nsec. of propagation delay between the 
two injected pulses the location instrument is unable two discriminate 
between these two adjacent pulses at the given discrimination levels 
in the coincidence detector 

. 

The pulse front arriving first at terminal c7 is that of the pulse 
injected at that point and the pulse front which arrives initially at 
terminal cl is that of the pulse injected at c4 . This corresponds to 

a time delay difference of 330 nsec. as'observed by the coincidence 
detector . From expression 4.13 , the expected location position of 
the apparent, single pulse source detected by MICA is calculated to be 

at channel position 103 . This compares well with the measured 
location at channel position 107 .. The pulse count of 2112 at the 
location peak also compares well with the expected-, value of 2100 

pulses . 

In this next scan the separation of the two pulse sources is 4 stator 

coils in which the pulse sources are injected at points c7 and 

c3 on the winding .A scan of the winding yields the locations of two 
discharge sources at channel positions 72 and 117 which are 

shown in figure 4.4.5.10. The first location at channel position 72 is 

the correct location of the pulse source entered at terminal c7 . 
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However , the second location is not the true location of the pulse 

source at connection c3 which is expected to be at channel position 
145 . The pulse waveforms observed at the winding terminals, shown in 

figure 4.4.5.11, are used to explain this characteristic-. 

At terminal c7 , the pulse injected at that point arrives initially , 
followed 4 coil transit times ( 440 nsec. ) later by the pulse 

originating at point c3 . Subsequently, the reflection at terminal cl 

of the pulse injected at point c3 , arrives after a delay of 440 

nsec. Further pulse reflections occur . Similarily , at terminal cl 

the first pulse arrives from the source at point c3 after a period of 
220 nsec . After a further 440 nsec. , the pulse injected at terminal 

c7 arrives . This pulse is followed 220 nsec. later by. the pulse from 

c3 which is reflected at terminal c7 . This pulse reflection process 

continues as shown in figure 4.4.5.11 

In this experiment the results are more difficult to explain since 

the correlator"is able to discriminate between the two simultaneous 

pulses . However, at a delay setting of 72 , the pulse fronts which 

are discriminated are of the pulse injected at terminal c7 observed at 

terminals cl and c7 . This results in the correct location of the 

pulse source at c7 . The location peak at a delay setting of 117 

implies that the coincidence detector discriminates on the rising 

edge of the following pulses. - ,r 

i. The pulse injected at terminal c7 which is detected at 

terminal c7 , and , 
ii. The pulse injected at point c3 which is detected at 

terminal cl . 

The time interval between the arrival of these pulses at their 

respective terminals is around 220 nsec. When substituted into 

expression 4.13 the location should be at a delay setting of 112 

This is comparible with the location on the scan , 117 . 

The pulse count for the location peaks at channel positions 77 and 117 

are 2085 and 2102 respectively ; both of which are close to the 

calculated value of 2100 pulses 

In the final scan of this experiment the two pulse sources are 

injected at points c7 and c2 on the winding . The scan of the winding 
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shown in figure 4.4.5.12 indicates the location of two pulse sources 

at channel positions 77 and 128 . The first of these is the 

approximately the location of the pulse source injected at terminal c7 

and the latter is the location of a discharge source at point c4 which 
is the mid point of the winding 

The waveforms observed at either terminal are shown in figure 

4.4.5.13. The waveform at terminal c7 indicates that the pulse 
injected at that terminal arrives initially , followed 559 nsec. after 
by the pulse from the source at point c2 . Likewise , at terminal cl 

the pulse from the source at c2 is detected after a time delay of 110 

nsec. This current pulse is greater in amplitude since it is developed 

across one coil and the low 20, ohm terminal resistor . The initial 

pulse is followed 550 nsec. later. by the pulse injected at point c7 

At a delay setting 6f'77, the fronts of thexpülse injected at c7 which 
is observed at the winding terminals, are time coincident giving 

the correct location . In addition, the threshold level at the input 

of the correlator which monitors terminal cl is marginally below that 

of the peak of the pulse which travels from c7 to cl . Thus , any 

small variation of the pulse amplitude from the pulse generator 

results in no coincidence , which explains the low pulse count of 158 

at that particular location . 

When the delay is set at 128 , the pulse fronts which are coincident 

at the correlators inputs are those from-the pulse injected at c7 and 

observed at that terminal, and the pulse injected at point c2 and 

observed at terminal cl . The difference in delay between these two 

pulse fronts is approximately 110 nsec. , which is the delay through 

one coil . Using expression 4.13 the expected delay setting for 

coincidence is 120 which is close to the location obtained . The pulse 

count at this position is correct at a value of 2065 counts 

From this group of experiments with simultaneously injected pulses it 

is possible to form the following general conclusions :- 

i. Two pulse sources separated by a distance of 3 coils or less will 

interfere and produce a single pulse . In the tests undertaken the 

transit time between 3 coils is comparable with the width , 
of the 

injected pulses . 
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ii. At a distance between sources of 3 coils and greater ,( or when 
the transit time between sources exceeds the injected pulse width the 
correlation of the two pulse sources is possible . 

iii. These sources will not correspond in general to their true 

positions since the coincidence correlator will examine the pulse 
fronts of both pulse sources to produce a false coincidence and not 
the pulse fronts of each individual source observed at the winding 
terminals . 

iv. Pulse sources located at "points equidistant from the winding 
terminals will appear to originate from the centre of the winding 
since the pulse fronts that arrive first at the terminals are 
coincident in time . 

4.4.6 --Injection of Two Random Discharge Sources 

In practice-partial discharge sources are entirely independent: 'of-each 

other . In such a situation the phase relationships , with respect to 
time , between partial discharge sources are random"and-thelikelyhood 
therefore , of simultaneously occuring discharges is-very small . It 

is the purpose of the next series . of experiments to simulate as 

closely as possible the condition when random discharges are-present 
in a winding and to'*investigate the behaviour of the correlator 

In this first set of experiments , only two independent pulse sources 

are injected into the winding , as shown in figure 4.4.6.1 . The pulse 

repetition frequencies for the two pulse sources are set at different 

levels in order to distinguish each source in the-location scan°. In 

addition to the difference in pulse repetition frequency the magnitude 

of the discharges differ by a ratio of 2: 1 . The pulse source details 

are as follows :- 

i. Discharge pulse source (a) : 1600 Hz . (T = 600 )1sec. ) 

Discharge magnitude : 10000'pC. (20V 
, 500 pF. ) 

Expected pulse count : 416 pulses . 

ii. Discharge pulse source (b) : 5000 Hz . (T = 200, usec. ) 

Discharge magnitude : 5000pC. (10V 
, 500 pF. ) 

Expected pulse count : 1250 pulses . 
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The threshold voltage levels at the coincidence detector inputs are 
65 mV and 75 mV respectively for channels A and B, and the channel 
dwell time is 250 msec . 

The winding is terminated as a typical star connected motor with a 150 

ohm resistor at the neutral end and a 20 ohm resistor at the line end 
to represent the surge impedances at these terminals . Discharge 

source (a) is injected at point c2 whilst discharge source (b) is 
injected at point c6 on the winding . 

The resulting scan as seen in figure 4.4.6.2 shows the location of the 
two discharge sources at channel positions 87 for source (b) and 170 
for source (a) 

, which correspond well with the expected positions as 
determined from the previous experiment ,( with similar terminating 
impedances ), as described in section 4.4.2 . The values from this 

experiment were, for the same injection points , 88 and 165 

respectively . If pulses from both sources were to be injected 

simultaneously at, some instant then it is `expected that coincidence 
detection would indicate the location of a spurious pulse source at 
the centre of the winding and hence the scan . This is clearly not the 

case in this test since there are no accidental coincidences 
detected. It is reasonable to assume therefore that the probability of 
simultaneous pulse injection from two independent sources is extremely 

small . 

Pulse counts for sources (b) and (a) are 1167 pulses and 380 pulses 

respectively compared with the corresponding expected values of 1250 

and 416 pulses . This represents at least 93% and 91% correlation of 

all the incident pulses 

To increase the probability of accidental coincidences from 

simultaneously occuring pulses , the pulse repetition frequency of 

source (a) is increased to 8000 Hz T= 125 . usec. ), to give an 

expected pulse count of 2000 pulses . The scan in figure 4.4.6.3 

indicates the locations of the same two' pulse sources at channel 

positions 87 and 170 for sources (b) and (a) as before with the 

exception of a much higher pulse count for pulse source (a) of 2029 

pulses . This shows that all the incident pulses are processed by the 

correlator . More importantly there are no accidental pulse 
coincidences at the centre position on the scan plot 
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It is recalled , from the previous discussion in section 4.4.5 on 

simultaneous pulse injection , that pulse sources separated by transit 

times close to the width of the injected pulses merge to form a single 

pulse source due to pulse interference . In this next test two 

independent pulse sources are injected at positions c3 and c5 which 

are a distance of 2 coil lengths 
, hence 2 coil transit times , apart. 

Pulse source (a) is injected at point c5 and source (b) at point c3 . 
The same termination conditions and discharge amplitudes are preserved 

whilst the pulse repetition frequencies are as follows :- 

i. Pulse source (a) : 10000 Hz T= 100 µsec. ) 

Expected count : 2500 pulses 

ii. Pulse source (b) : 8000 Hz ,(T= 125psec. ) 

Expected count : 2000 pulses . 

The scan in figure 4.4.6.4 shows two pulse source locations at channel 

positions 111 and 154 which correspond to the positions of sources at 

points c5 and c3 respectively . The expected locations from the 

previous scan performed with the same terminating impedances in 

section 4.4.2 , are 107 and 145 which indicates errors of 4 and 9 

channel positions . Translated into distance, along winding these 

values are approximately 2.8 metres and 6.3 metres ( one coil length 

is 11.5 metres ). The error therefore'in the location is greatest 

towards the low,,, impedance end of the winding , the line end , as 

demonstrated before . It is thought that the pulse injection circuits 

effect a change in the transmission characteristics of the winding . 
The addition of the coupling capacitance must alter the shunt 

capacitance of the winding . 

The measured pulse counts for the two pulse locations are' 2083 and 

1866 pulses which correspond to 84% and 93% of the expected values . 
The scan also indicates that there are no accidental pulse 

coincidences from pulses occuring close together in time since no 

spurious location peaks are observed . 

To further this investigation the two discharge sources are injected 

into the winding a distance of a single coil length apart and a scan 

of the winding is performed . This proceedure is repeated with the two 

pulse sources injected one coil apart at regularly spaced intervals 

of one coil length along the entire winding . 
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There are five scans which correspond to the injection of pulse 

sources (a) and (b) into the winding at the following positions : c7 

and c6 ; c6 and c5 ; c5 and c4 ; c4 and c3 ; c3 and c2 . These 

scans are shown in figures 4.4.6.5 , 4.4.6.6 , 4.4.6.7 , 4.4.6.8 , and 

4.4.6.9 . 

The discharge source parameters for this experiment are as follows :- 

i. Discharge source (a) frequency : 10000 Hz (T = 100 psec. ) 

Discharge magnitude : 5000 pC. , 
(10V 

, 500 pF. ) 

Expected pulse count : 2500 pulses 

ii. Discharge source (b) frequency : 5000 Hz , (T = 200 psec. ) 

Discharge magnitude : 10000 pC. , 
(20V 

., 
500 pF. ) 

Expected pulse count : 1250 pulses 

iii. Threshold VoltageYLevels : Channel A= 65 mV. 
Channel B- 75 mV. 

Location positions and pulse counts for sources (a) and (b) are given 

in the table in figure 4.4.6.10 for ease of comparison between scans . 

Injection point Channel location Pulse count 
(a) (b) (a) (b) (a) (b) 

c6 c7 95 75 2718 2151 

c5 c6 118 96 2287 761 

c4 c5 136 117 2149 636 

c3 c4 155 136 2090 1540 

c2 c3 175 156 2240 1323 

Figure 4.4.6.10 -. Location Positions and Associated 
Pulse-Counts 

One can readily' see from these results that the locations of the pulse 

sources (a) and (b) injected at each position on the winding compare 

well , and lie within 1 channel position 0.7 metres ) between each 

other at the most . To assertain the accuracy of these location 

positions , it is necessary to compare the values with those obtained 

from the first -experiment in which a single pulse source is used with 

identical terminating conditions'. Figure 4.4.6.11 tabulates the 
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correct locations obtained from-the scan in figuren4.4.3.4 in section 
4.4.3 and indicates the differences between these and the values in 
figure 4.4.6.10 above .' 

Injection point, Expected location Error 
(a) (b) (a) (b) 

c6 c7 88 72 

c5 c6 107 88 

c4 c5 126 '107 

c3 c4 145' 126 

c2 'c3 165 145' 

(a) (b) 

73 

11 8 

10 10 

10 10 

10 10 

Figure 4.4.6.11 - Errors in Scan Locations 

The difference between the expected locations 

and the values obtained is a maximum of 11 

metres of 
impedance 

behaviour 

from previous results 
channel positions , 7.7 

winding . Error in location is greater towards 
end of the winding . The only explanation; ' 

is that the addition of one pulse injection circuit 

the low 

for this 

causes a 
significant change in the transmission characteristics'of the winding 
which alters the discharge source locations on the winding scan 

Another observation from these scans'is that significant-errors appear 
in the measured pulse counts , particularily those from pulse source 
(b) when injected at 'points c5' and c6'. Pulse counts of 636 and'761 

respectively are roughly half the expected value of 1250 .A possible 
explanation. for this behaviour is that the threshold level in channel 

A of the coincidence detector is too low to discriminate the'attenuated 
discharge pulse which travels'from the sites at c5 anUc6 to terminal 

cl . 

In summarising , it is fair to say" that' 'MICA' 'is"able to locate the 

positions of two independent discharge sources injected a single coil 
distance apart to reasonable accuracy . Although locations are 
different from those obtained from a single discharge source , 
locations of discharge sources at each coil interval are spaced 

correctly , with respect to each other , on the winding scan . One 

must also take into account the effect an additional pulse injection 

circuit has on the transmission characteristics of the winding 
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4.4.7 Injection of Three Independent Discharge Sources 

In this set of experiments three independent discharge pulse sources 

are injected into the winding which is terminated at the line end by a 

20 ohm resistor and at the neutral end by a 150 ohm resistor . The 

discharge sources are applied to the winding ,a distance of one coil 

apart . The magnitudes of the discharge pulses are of the same order 

whilst the pulse repetition frequency for one of the sources is five 

times lower than the other two to help identify the pulse source . The 

characteristics of the three pulse sources are given in the table in 

figure 4.4.7.1 . Coincidence detector threshold levels are as before : 

channel A is 65 mV and channel B is 75mV . 

Discharge Source 'Discharge Magnitude Pulse Frequency 

(a) 6000 pC. 1000 Hz. 

(b) 5000 pC. 5000 Hz. 

(c) 5000 pC. 5000 Hz. 

Figure 4.4.7.1 - Pulse Source Characteristics 

In the first test discharge sources (a), (b), and (c) are injected at 

positions cl, c2, and c3 respectively on the winding . The winding 

scan for this test is shown in figure 4.4.7.2 . The pulse sources are 

then displaced one coil to points c2, c3, and c4 on the winding . 
Figure 4.4.7.3 shows the resulting scan of the winding . The three 

pulse sources are again moved along one'coil to the next position ,a 

scan is performed and the process is repeated until source (c) is 

positioned at c6 on the winding . Figures 4.4.7.4 and 4.4.7.5 show the 

winding scans for these cases . 

The pulse source location and pulse count data associated with the 

scans obtained are given in. the table in-figure 4.4.7.6 . 

Page 237 



lea. r 

-6p 
0 U 

" 

CL 

B. 

Locotion Scan of Stotor Winding 

(b) (c) 

AI 
I 

II 
25 5e 

Ca) 

J L8, J;,,, 
75 188 125 150 175 200 225 250 
Oýloy Saýtsny 

Plot Index sTRE80 Noxious Count 1 2248 

Figure 4.4.7.2 - Scan of Winding with Pulse 

Sources at cl, c2 and c3 

10Br 

ý x .. 
ý 
S 
0 u 

" 

0 

Location Scan of Stator Windinq, 

(b) 
, º, (C) 

(a) 

w 
A) 

Plot Index tTR£Bl 

75 100 125 
Delay Sekli. g 

150 175 

Maxiwue Count a 2256 

Figure 4.4.7.3 - Scan of Winding with Pulse 

Sources at c2, c3 and c4 

Page 238 

225 250 



IM- 

ý K 
ý 
0 u 
" 

IL 

0-4" 
0 

Location Scan of Stator Winding 

(b) 

(a) 

i--1 117Il1 

25 50 75 100 125 
Delay Setting 

(C) 
A 

4-1 
1S8 

ý-+- 
175 

Plot Index tTREB2 Maxirie Count v 2306 

Figure 4.4.7.4 - Scan of Winding with-Pulse 
Sources at c3, c4 and c5 

Location Scan of. Stator Winding 

100.. _ 

-0 

0 
U 

" 

e 

fbl (I c} 

(a) 

75 100 125 
Delay Setting 

Plot Index sTREB3 

Ise 175 

llax i. u. Count a 2280 

Figure 4.4.7: 5 - Scan of Winding with Pulse 

Sources at c4, c5 and c6, 

250 

Page "239 



Injection Points Channel Position 

Source Source 

(a) (b) (c) (a) (b) (c) 

123 75 98 119 

2 34 

Pulse Count 

Source 
(a) (b) (c) 

551 2173 2248 

514 2240 2256 

544 2306 2161 

543 2111 2189 

345 111 136 158 

456 132 155 176 

Figure 4.4.7.6 - Pulse Source, Location and Pulse Count 

Data 

90 117 138 

From the scans , source (a) is easily identified by the lower pulse 

count at its peak whilst the other two sources-have consistently 

similar peak pulse counts . 

The accuracy of discharge source location is assessed by comparing the 

results in figure 4.4.7.6 with the location positions obtained from 

the previous experiment with single pulse source injection on a 

winding with identical terminating impedances ,( refer to section 
4.4.3 ). The expected discharge source locations are given in the 

table in figure 4.4.7.7 . 

Injection Points 

Source 
(a) (b) (c) 

123 

234 

345 

45. ý6 

Channel Position 

Source 

(a) (b) (c) 

72 88 107 

88 107 126 

107- 126,145 

126 }145 , 165 

Figure 4.4.7.7 - Comparison of-Measured, and Actual Locations', 

From a comparison of the discharge source locations in figures 4.4.7.6 

and 4.4.7.7 it follows that the observed positions are biased towards 

the low impedance terminal of the winding by an average of 10 channel 

positions 7 metres of winding length . This is a shift in the 

expected location spectrum of approximately three quarters of the 

length of a coil . This shift can only be explained by the fact that 

the amalgamated impedance of the pulse injection circuits 

significantly changes the pulse propagation characteristics of the 

winding so as to alter the location properties of the correlator 



Although a shift in the discharge location spectrum occurs , the shift 
is linear and discharge locations at coil connections are correctly 

positioned with respect to one another . The technique is therefore 

able to locate the discharge sources in the winding accurately since 

only the reference position of the scan changes . 

In each of the winding scans a spurious pulse count occurs at a 

position midway between the locations of discharge sources (b) and 
(c). Because the spurious peak occurs between the locations of sources 
(b) and (c) 

, it is assumed that it is due to the interference of 

pulses from these sources which happens randomly . 

In all the winding scans the observed pulse count at the location 

peaks for each discharge source is double the value expected since for 

a channel dwell period of 250 msec the pulse counts expected for pulse 
sources (a), (b), and (c) are 250,1250, and 1250 respectively . This 

behaviour is explained with reference to the waveform diagrams . in 
s 

figure 4.4.7.8 . 

The rectangular pulse from the pulse generator is differentiated with 

respect to time by the injection coupling capacitor C to produce a 

positive and negative polarity pulse .A signal diode clips the 

negative pulse at the forward bias voltage of the diode , 

approximately 0.7 volts . This waveform enters the winding and travels 

to the winding terminals after undergoing some intermediate distortion 

in shape . The resultant signal is then differentiated with respect to 

time again by the Rogowski coil before it is passed through the 

programmable delay line to the coincidence detector . After the second 

stage differentiation at the Rogowski coil the negative polarity pulse 

exhibits a overshoot . This overshoot appears to the coincidence 

detector as a small positive polarity pulse since the peak amplitude 

is above the threshold level of the detector . Therefore for 

every rectangular pulse' , pulse cycle from the pulse generator two 

positive polarity discharge pulses will be produced which is reflected 

in the pulse counts obtained . 
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4.4.8 Injection of Six Independent Discharge Sources 

In this final experiment with artificial discharges six independent 

discharge pulse sources (a), (b), (c), (d), (e), and (f) are injected 

into the winding at coil connections cl, c2, c3, c4, c5, and c6 . The 

discharge pulse magnitude developed at each source is 5000 pC ,( 10 V 

through 500 pF ), and the pulse repetition frequencies for each 

source is shown in the table in figure 4.4.8.1 . 

Discharge Source Pulse Frequency 

(Hz) 
(a) 9000 
(b) 4600 
(c) 4600 
(d) 9000 
(e) 9000 
(f) 4600 

Figure 4.4.8.1 - Discharge Source Repetition Rates 

The threshold voltage levels in the coincidence detector for channels 

A and B are 65 mV and 75 mV respestively . 

Figure 4.4.8.2 shows the-scan of the winding which 'indicates the 

location of all the pulse sources injected . The channel positions of 

these location peaks and the expected source locations are given in 

the table in figure 4.4.8.3 , along with the pulse counts for each 

source . 

Discharge Channel Expected Pulse 

Source Location Location Count 

(a) 63 72 2081 

(b) 87 88 860 

(c) 108 107 1058 

(d) 135 126 2236 

(e) 159 145 1988 

(f ) 181 165 1080 

Figure 4.4.8.3 - Expected and Measured Locations and Pulse 

Counts 
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From these results it can be seen that correlation between location 

positions and expected positions for the discharge sources (a), 3 (b), 

and (c) are good . However , as in previous experiments errors occur 

in locations of sources closer to the low impedance terminal of the 

winding , the maximum error being 16 delay settings or 11.2 metres of 

winding . Although this discrepancy is of the order of one coil length 

the technique is still able to indicate the approximate positions of 

the discharge sources relative to the winding terminals and to each 

other . The errors in the locations are due to the influence of the 

additional coupling capacitance of each discharge circuit on the 

transmission characteristics of the winding . 

Pulse counts for each source is close to the expected values of 1150 

and 2250 pulses for 4600 Hz and 9000 Hz sources respectively . 

4.5 High Voltage Discharge Source 

The correlator has been shown to be effective in the location of 

artificially generated discharge pulse sources within a model stator 

winding . As a natural progression in the assessment of the correlator 

as discharge location technique , the next series of experiments 
demonstrate the behaviour of the location instrument when partial 

discharges derived from a high voltage source are injected into the 

winding model . This is as close to a real motor in which there are 

partial discharges as is possible with a model representation of a 

stator winding . 

The source of high voltage discharges is a spark gap in series with a 

parallel plate capacitor as shown in the photogragh in figure 4.5.1 . 
The magnitude of the partial discharges produced is controlled by 

varying the separation between the plates of the capacitor thus 

varying the injection capacitance C. The breakdown voltage at which 

discharges occur is controlled by the separation between the two 

needle electrodes in the spark gap , the closer the distance between 

the electrodes the lower the breakdown voltage . An equivalent circuit 

for the components of the discharge injection circuit is shown in 

figure 4.5.2 . 

From the circuit ,V is the supply voltage and 6V is the discharge 

breakdown voltage as dictated by the spark gap separation d. C is 

the capacitance of the parallel plate capacitor and CS is the 
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capacitance of the spark gap . Assuming that the capacitance of the 

gap CS is completely discharged at the breakdown voltage of the gap 
then the magnitude of the discharge is given by 

Q= CS. bV 

This is equivalent to the charge on the plates of the variable 

capacitor C which is ; 

bv) 

Both the supply and discharge breakdown voltages can be measured 

whilst the capacitance C can be calculated to give the discharge 

magnitude produced in the spark gap . If D is the diameter of the 

plate capacitor and d is the plate separation then the capacitance is 

given by the expression : 

C=E. n. D2 

4d 

D is 70 mm and the capacitor plate separation is variable in the range 
2 mm to 30 mm-, so that the range in capacitance is from 1.15 pF to 

17 pF . 

In the high voltage experiments the supply voltage is the nominal 

phase voltage 3.8 kV, ( 6.6 kV line voltage ). The discharge 

breakdown voltage is measured at 2.5 kV . From these parameters the 

range in discharge magnitude is 2875 pC to 4250 pC . The, plate 

separation, of the capacitor C is 20 mm which corresponds to a 
discharge magnitude of approximately 2200 pC . 

In the first experiment the discharge source is connected in series 

with the stator winding across the H. V. supply as shown in figure 

4.5.3 . In doing so most of the voltage is developed across the 

discharge source - circuit since the combined capacitance of the 

plate capacitor and the spark gap is less than 2 pF . Therefore , no 
discharges canýbe generated in the winding since the voltage from the 

winding to earth is to small . The main conducted source of high 

voltage discharge must be the spark gap . The winding terminals are 

terminated in resistors which match the characteristic impedance of 
the winding which is 330 ohms . 
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In the first scan the discharge source is connected to cl on the 
winding . The scan of the winding is displayed in figure 4.5.4 which 
shows a location peak at channel 73 which is close to the expected 
position of a source at cl for the matched terminating impedance case 
( channel 72 ). However , there are two other distinct location peaks 
at channel positions 208and 242 which are outwith the limits of the 

scan plot for a six coil winding since these locations correspond to a 
delay time difference of greater than the transit time through six 
coils . That is to say that these spurious discharge sources must have 

originated outwith the six coil winding . However 
, since this is not 

possible it must be deduced that these spurious counts must be due to 
the effects of interference on the location instrument . It may be the 

case that the interference pulses generated by the spark gap cause 
erroneous switching of the relays in the programmable delay line 

circuit . 

The manner in which the interference pulses enter the instrument must 
be via the interface cable conductors which links MICA to the 

microcomputer and the multi-channel analyser . Figure 4.5.5 
demonstrates the probable mode of interference coupling . This problem 
is highlighted by the fact that very frequent spurious switching of 
relay contacts occurs when a high voltage discharge source is in 

close proximity to the interface cable , controlling the programmable 
delay line from the microcomputer . Under such conditions it is not 
possible to perform a scan of the winding since interference pulses 
trigger the channel advance signal to the multi-channel analyser . 
This is eliminated to an extent that only signals from the 

microcomputer advance the channel position on the multi-channel 

analyser scan by minimising the loop area formed by the interface 

cables . Clearly some mode of interference coupling remains since 

spurious location peaks are obtained , however 
, the mechanism by 

which these peaks occur is difficult to assess . 

The discharge pulse count at the location peak is 61 pulses which 
corresponds to 244 pulses per second which is approximately 4-5 

discharges every cycle of'the mains supply . This is the expected 
discharge pulse,, rate which is derived from the model of the discharge 

injection circuit in figure 4.5.2 and the resultant voltage waveform 
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across the spark gap , as shown in figure 4.5.6 .A spark gap 

capacitance of 2 pF is assumed and the measured discharge inception 

voltage is 2.5 kV . Since the parallel plate capacitance for the test 
is 11 pF , then 85 % of the supply voltage is developed across the 

spark gap 

In the next test the scan is performed with the discharge source 
injected at point c2 on the winding . The results are displayed in the 

scan in figure 4.5.7 . Similarily 
, the test is repeated with the 

discharge source injected at positions c3, c4, c5, c6, and c7 . The 

respective scans for these are shown in figures 4.5.8,4.5.9,4.5.10, 

4.5.11, and 4.5.12 . Positions of the location peaks are summarised in 

the table in figure 4.5.13 along with the pulse count of the largest 

peak for each scan . .ý 

Injection Point Location Positions 

c2 

c3 

c4 

c5 

c6 

Pulse Count 

81 214 42 
90 215 63 
53' 136 97 67 
27 56 72 226 64 
35 58 189 54 

6 35 149,162 196 61 

Figure 4.5.13 - Location Scan Data 

In the previous experiment with artificial pulses injected into a 

winding with matched impedance terminations , section 4.4.1 , the 

limits of the scan for a six coil-winding-are 72 and 186 for points cl 

and c7 respectively . It may then- be deduced that location peaks at 

positions on the scans outwith these limits are false and are due to 

interference . 

The remaining locations are listed in the table in figure 4.5.14 along 

with the expected locations of discharges injected at the coil 

connections . 
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Injection Point Location Positions Location Positions 
Observed Expected 

cl 73 72 

c2 81 90 

c3 90 111 

c4 97 136 131 

c5 72 152 

c6 189 170 

c7 149 162 186 

Figure 4.5.14 - Expected and Measured Discharge Locations 

Locations for discharges at positions cl and c2 are reasonably close 
to the expected values . An error of 9 delay increments , half a coil 
length , occurs in the location of the source at point c2 on the 

winding . This error, in location increases to 21 delay increments -, 
that is just over one coil length or 18 % of the total winding 
length, for the source injected at point c3 . The location peak at 
this position is the most definitive one and must be the discharge 

source , however , the error in the location of this source can only 
be explained-in terms-of the effects of interference . 

It is also observed that there is a high level of spurious pulse 
counts over the scan from the largest peak up to channel 255 , which 

suggests a high interference susceptability . 

In the next. scan in. which discharges are injected at point'c4 on the 

winding , one location peak appears only 4 channel positions from the 

expected location which is, equivalent to 2.8 metres form the true 
location . One much smaller location peak occurs at channel position 
97 , and. another distinctive peak outside the limits on the scan for a 

six coil winding which must bean interference effect . 

When discharges are injected at position c5 , two main location peaks 

are detected at channels 56 and 226 on the scan which are outwith'the 
limits for -a six coil winding and must-therefore be regarded as- 

spurious interference counts .A discharge location does occur at the 

position where. pulses injected at point cl on the winding are 
expected, ( channel 72 ), however this must be regarded as a spurious 
count since pulses are injected at the opposite end of the winding . 
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The observed location for discharges injected at point c6 is 19 

channel increments from the expected value which is an error of 13.3 

metres or just over one coils length . Although the error is 

substantial the peak on the scan must correspond to the discharge 

source . Two other location peaks appear outside the limits for the 

winding and are therefore products of interference pulses . 

Finally , when the discharge source is positioned at point c7 , five 

distinct pulse location peaks occur , the nearest to the expected 

discharge location being 10 channel. positions -away- and also 

being the location with the lowest pulse count . It is however 

difficult to determine which of these' is the true location 

Interference effects seem to be, more severe when discharges are 

positioned at this point on the winding . 

4.5.1 Influence of Discharge Source Circuit 

In this series of tests the influence of the high voltage test ciruit 

on the generation of interference and hence the resultant effects on 

the discharge location scans are discussed . The tests are essentially 

the same as the previous with the exception that changes are made in 

the high voltage circuit. - ., In each of the scans the discharge source 

is connected to point c4 on the winding , the centre . 

In the first scan the high voltage source and spark gap are moved to a 

location 5 metres from the instrument and the connection between the 

spark gap and the winding is made by a length of coaxial cable as 

shown in figure 4.5.1.1 . The scan of the winding obtained is 

displayed in figure 4.5.1.2 . 

This result appears to be worse than the previous test result in the 

scan- in figure 4.5.9 . Location peaks occur at positions 51,103, 

119, and 239 . Peaks at 51 and 239 are false since they are outwith 

the limits of the six coil winding . The nearest peak to the expected 

value is at channel 119 which is 17 channel positions in error 
( equivalent to 11.9 metres ). Clearly., removing the high voltage 

source circuit-from the close vicinity of. the location instrument does 

not improve the performance of the instrument with respect to pulse 
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interference . 

In the second test , the characteristics of the source circuit are 
altered by the inclusion of a second discharge source in the form of a 
spark gap across the high voltage supply .A scan of the winding for 
this test is shown in figure 4.5.1.3 

, in which it can be seen that 
there is a marked increase in the number of location peaks . The 
location peaks on the scan are at channel positions 20,45,54,104, 
121,160,214, and 239 . 

This experiment simply emphasises the fact that the location 
instrument is susceptible to external, radiated interference since 
increasing the effective number of discharges injected at the same 
position on the winding does not increase the pulse count at the 
location of the discharge source but serves to increase the effects of 
interference 

4.5.2 Effect of Screening High Voltage Circuit 

To eliminate as far as possible the effect of radiated interference 

the high voltage source and spark gap are placed in a screened 
enclosure which is connected to earth potential . The spark gap 
discharge source is connected to the winding via a coaxial cable as 
shown in the diagram in figure 4.5.2.1 

In this experiment the discharge source is injected into each of the 

coil interconnections cl, c2, c3, c4, c5, c6, and c7 sequentially and 

a scan is performed for each position . The scans obtained are 
superimposed on a single scan plot as displayed in figure 4.5.2.2 . 

It is apparent that there is still a significant level of interference 

present since there are spurious pulse counts across the whole scan 
base , however this level has been reduced from the previous by the 
fact that very pronounced location peaks occur at regularly spaced 
intervals in the scan . The first three peaks correspond to the 

positions of discharges injected at points c5, c6, and c7 which are at 

channel positions 76,89, and 102 respectively . The expected. channel 

positions are 72,90, and 111 which represents errors in these 
locations of 4,1, and 9 channels a maximum error of 6.3 metres ). 

The results of the scans of discharges injected at the remaining 

positions are not so favourable 
, as the scan in figure 4.5.2.2 shows 
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a cumulative pulse count at channel 132 for discharge sources at these 

positions . The reason for this is not clear , however , since the 

pulse counts occur at the same channel positions for each source it is 

assumed that interference pulses have affected the relays which 

control the programmable delay line or the coincidence detector 

circuit , both of which operates from a relatively low voltage power 

supply of 5 volts . 
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CHAPTER FIVE 

THEORETICAL MODEL OF A STATOR WINDING WITH ENDWINDING COUPLING 



5.1 Review of Previous Investigations. 

All previous investigations have been concerned with the study of the 

surge voltage distribution ( especially interturn voltage 
distribution), within the line end coils of stator windings . Surges 

originate from switching operations and lightning strokes, and in 

general have rise times as low as 100 nsec followed by a long tail 

which lasts tens of microseconds. Although these surges are slower 

rising and longer duration waveforms than most partial discharge 

pulses, their behaviour in windings are similar . Therefore models 

developed to describe their transmission within machine windings may 

be used to demonstrate the propagation of discharge pulses in the same 

winding structures 

Until very recently, the stator winding has been treated either as a 

simple transmission line or as a ladder network of lumped parameter 

sections, each section representing a single coil or coil turn. 

Earliest investigations were directed to a more fundamental study 'of 

the behaviour of surges 'in coils- and"' windings which was more akin to 

transformer windings. Analyses developed were extended, with certain 

additional assumptions and modifications to motor coils and windings. 

The concepts of travelling waves in coils and windings was first 

applied by R. Rudenberg [951 .A distributed parameter model 

(figure 5.1.1) -, was based on single layer coil which incorporated 

mutual inductance and capacitance between adjacent turns. The 

following partial differential equations were derived for voltage and 

current in the coil. 

-di = p. öe - k. w. öe 

aX at atax 

-ae = l. -di 

äX ät 

where p- slot capacitance per unit length 

k- interturn capacitance per unit length 

w- length of winding element or turn 

1- self inductance per unit length 

..... (5.1) 

Page 264 



kL 
1J11 ' 

I 
_mri_ 

nnnnnnnnn TP 

Iron core 

0 

r T9 

I 

0000 00000 
r__ý 

Coil turn 

Figure 5.1.1 - Rudenberg's Distributed Parameter 

Model 

Page 265 



The solution to these equations was given by a set of travelling waves 

which oscillate in time with frequency, w, and propagate along the 

conductor with a velocity, v, given by : 

2 2ýh Va1ýk. r. ý1% 

p. l p 
..... (5.2) 

This is true for sinusoidal waves below a critical frequency , tic 

given by, 

wc =1 
w k. 1 

..... (5.3) 

In the 'sub-critical' frequency range the coil behaves like a lossless 

transmission line . However, at 'super-critical' frequencies , the 

voltage to current ratio becomes imaginary and the coil acts as a 

capacitance network. In this frequency range no travelling waves 

penetrate the coil 'but, rather'results in an exponential attenuation 

of the voltage from the terminal to the coil interior. 

In the analysis of machine windings Rudenberg [82] 
, treated each coil 

as an elemental section of the transmission line representing the 

winding ,( see figure 5.1.2 ) -This approach is -questionable 

since machine coils are- distributed around a cylindrical iron core 

whilst the analysis is founded upon closely spaced concentric 

coils/turns like those in a transformer. In addition validity of the 

analysis is doubtful with, regard to- machine windings since the 

assumption is made in deriving the model that the equations " are 

valid to a good degree of approximation if the number of turns, or 

layers, or coils is relatively large " [95] . It is thought that there 

are an insufficient' number of coils in a-phase winding for this to be 

true . There is also no provision for the endwinding coupling that 

exists between adjacent coils in a winding . The analysis is however , 

useful in giving the general behaviour 'of' low frequency waves within 

machine windings_. 
--. - 

A comprehensive analysis of single turn coils was undertaken by 

Robinson , 
[96] 

, in which the basic section of the network 

representing a winding was a single coil, (figure 5.1.3). Each coil 

section comprised a capacitance to ground C, ,a mutual capacitance Ct 

between adjacent coils in the same slot, a capacitance C2 to the coil 

p. l p 
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in the adjacent slot (through the endwindings), a self inductance L 

and a mutual inductance M between coils in the same slot. Partial 

differential equations were derived in a similar fashion to Rudenberg. 

The velocity. of propagation of travelling sinusoidal waves was 
determined and a critical frequency defined. 

Whilst it is useful for turbo-generator windings, -the major draw back 

with this analysis is that it cannot be extended to model multi-turn 

coils which are found in. large induction motors 

Lewis [97] 
, developed a ladder network of lumped parameter sections 

to represent a machine winding, (figure 5.1.4). The section comprised 

a self inductance L, 
, 
the_ slot capacitance to ground Cg, and mutual 

capacitance Cs, between adjacent coils. Equations were solved using 

transformation methods and solutions were expressed in either an 

ensemble of sinusoidal, standing or travelling waves. Results 

similar to the previous studies were obtained in which the velocity of 

propagation was defined along with a critical frequency. 

Unfortunately, propagation within individual coils was not taken into 

account in the treatment . 

Even if this analysis was extended to model a single coil using a turn 

as a section of the network no provision is made to include mutual 

inductive coupling between sections, hence coils and turns. This 

makes the analysis unsuitable for the present purpose. 

A much simpler ladder network was adopted by Meyer [98] , in which a 

coil formed the lumped parameterT - section , (figure 5.1.5)', in an 

artificial transmission line. Only the slot capacitance to earth and 

coil self inductance was considered, all other mutual field couplings 

being assumed to have negligible effect on surge propagation. The same 

general results were derived in which a cut off frequency and velocity 

of propagation were derived. 

A comprehensive experimental investigation into surge distribution 

within the line end coils of two motors was carried out by Parrot 

[22] . In this study, a comparison was also made of previous 

theoretical analyses [95,96,97,98) 
. This led to the conclusion that 

the results from these methods "differ considerably from 

measurements". 
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A comprehensive study was carried out by Adjaye and Cornick [99] in 

which two-port networks were used to represent a complete system of 

source , supply switchgear , connecting cables and the motor 

winding In addition the frequency dependence of inductances and 

the effects of dielectric losses were included in the analysis. 

Again however the basic unit modelled was a coil and no provision for 

mutual inductance and capacitance between coils and turns was made 
(figure 5.1.6 ). 

A very similar investigation was-done by' V. Chura, [100], in ; which 

procedures for determining the frequency dependence. of circuit 

parameters were established. 

In all of the forementioned treatments the influence of mutual 

inductance linking turns and adjacent coils on surge propagation has 

been neglected. In addition , no distinction has been made between the 

slot region where conductors are'embedded in a highly permeable iron 

core and the endwinding region where conductors are situated in an 

air dielectric. The first investigation to incorporate these features 

into a mathematical model was done by Wright et al., [23] . An 

entirely new approach was made to the representation of a coil through 

the application of multi-conductor transmission line theory with 

junction scattering matrices. 

The coil was considered to comprise five distinct sections of lossless 

multi-conductor transmission line corresponding to the different 

physical regions; the endwinding, the slot, and the coil'terminals, 

( figure 5.1.7 ). A Scatter matrix was developed to characterise each 

of the five junctions in order to determine the magnitude and polarity 

of reflected and refracted impulses impinging on a junction. The 

response of the coil model to a single idealised impulse was found. 

This was then convolved numerically with an impulse input function to 

obtain the overall response of the coil. In this way the behaviour 

of a coil to a surge of any, general shape was-achieved. Analysis was 

performed entirely in the time domain. The -treatment could be 

extended to model a whole machine' winding by connecting -'a 'chain* of 

multi-conductor coil sections. Accuracy' was also improved by 

including resistive and dielectric losses as. lumped parameters at the 

junctions of the lossless lines such that predicted and computed 

waveforms differed by a few percent. 
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Oraee & McLaren [101] followed the work by Wright et al with a 

multi-conductor transmission line coil model similar to the previous 

with the exception of an extra section due to the transposition of the 

conductors in the coil endwinding region, ( figure 5.1.8 . The 

mathematical analysis however was entirely different. Modern 

multi-conductor transmission line theory, [102], was applied to solve 

the voltage and current at any point in the coil. Each 

multi-conductor section of the coil was considered as a two port 

network described by the partial differential equations; 

öv = [Z]. [Y]. v = [R+jwL]. [G+jwC]. v 

a x2 

a2i = [Y]. [Z]. i = [G+jwC]. [R+jwL]. i 

a X2 

..... (5.4) 

0 .... (5.5) 

[Z] and [Y] are the complex impedance and admittance matrices which 

characterise the lines at a particular frequency A mathematical 

transformation on equations 5.4 and 5.5 results in a set of 

independent differential equations. Solution of these equations yield 

the expressions for voltage in each section ; 

V= [S]. exp(-[J]x)[S]ý[V] + [S]. exp([W]x)[S]ý[Vr] ..... 
(5.6) 

V and V are the sending and receiving end voltages respectively, and 

[g] and [S] are the eigenvalue and eigenvector matrices of [Z] and 

[Y]. Analysis requires the determination of the network voltages at 

each particular frequency, in a Fourier series representing the input 

waveform. The Fourier integral is then used to transform the 

solution into 'the time domain. 

From a comparison of both multi-conductor models of a stator coil , 

the one developed by Wright et al. is-the simplest. -to apply to a given 

system for the following reasons . 

i. Formulation of the model is considerably simpler since only the 

capacitance parameters describing the coil are required. 

Inductance values have to be determined at a number of 

frequencies in McLarens model . This necessitates the calculation 

of the magnetic field distribution at different frequencies with 

Page 272 



'- Conductor 
transposition 

I 
I 

5 

Slot Endwind ing 

Figure 5.1.8 - Multi-conductor Model of Coil 

with Endwinding Transposed 

Page 273 



a complex , electromagnetic , finite-element computer program. 

ii. Solution is considerably easier in the time domain than in the 
frequency domain , 

[103], for comparable study times. There is no 

need, with the time domain approach , to evaluate eigenvalue and 

eigenvector matrices for each frequency of interest, for each 

section of transmission line. 

iii. A better understanding of pulse propagation in coils is 

obtainable , since analysis is entirely in the time domain. 

iv. Storage requirements on computer is considerably less . 

The model developed by Wright et al. is selected as' the basis for the 
development of a model for a complete phase winding since interturn 

coupling is incorporated in the analysis , and the model can be 

extended to include the effects of inter-coil' coupling in the 

endwinding region . 

5.2 Development of Lossless Multi-conductor Coil Model 

Certain assumptions have to be made before development of a 

mathematical model can take place and these are discussed in the 

following paragraphs. 

5.2.1 Iron Core Flux Barrier 

At high frequencies the stator iron core behaves in a completely 
different manner to that at power frequencies. It becomes 

effectively a barrier to magnetic flux since eddy currents induced in 

the slot wall iron - modify the resultant magnetic field (skin 

effect), so that its depth of penetration into the iron is limited . 
The skin depth may be calculated at the frequency of interest, -f, from 

the skin effect equation', 

d=1 

o'. n. N. f) 

- conductivity of steel (n m-1 ) 

,u- permeability ( Hm-1) 

d- depth of penetration (m) 

...... (5.7) 
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If the conductivity of steel is taken to be 3.6 n 
m_1 

, (resistivity 

of 270 nm ), the calculated skin depth is : 

53.1 }gym at 100 kHz 

16.7 }un at 1 MHz 

5.3 pm at 10 MHz 

1.6 dun at 100 MHz 

Clearly, at a relatively , 
low frequency ( 100 kHz ) there can be 

very little magnetic field coupling between adjacent slot conductors 

and so the iron behaves as a impenetrable earth sheath. 

Machine stator cores are laminated structures in which each iron 

lamination is separated from an adjacent lamination by a thin layer of 
insulation. Some justification is required to explain how a laminated 

structure supports current flow at right angles to the laminations. At 

high frequencies under consideration there is close capacitive, 

coupling between iron laminations which provides a low impedance path 
for axial return currents. - In the insulation- the current is a 
displacement current and has equivalent effect to the conduction 

current in the iron [101]. 

5.2.2 Rotor Effects 

Since at the frequencies of concern the magnetic field does not 

penetrate iron appreciably, the rotor will have negligible effect on 

pulse propagation in the winding . This is especially true when 

magnetic wedges are installed in slots . 

5.2.3 Mode of Wave Propagation,. - 

The rise time of a partial discharge pulse is unlikely to be less than 

1-nsec so that the maximum frequency contained in the pulse is about 

1000 MHz . At this frequency, the wavelength of propagation with an 

epoxy resin / mica dielectric, with a typical relative permittivity of 

6.6 , 
is 0.117 metres . The minimum wavelength in the dielectric 

region is therefore of the order of a few centimetres , 11.7 cm , 
whilst the separation between the conductor and the slot is generally 

only a few millimetres ,2-5 mm approximately. Consequently, the 

principle mode of propagation which needs to be considered is the TEM 
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mode -(transverse electromagnetic mode ), as any transverse electric 
(TE), or transverse magnetic, (TM), modes-are not supported [104] . 

5.2.4 Multi-conductor Transmission line theory 

Any lossless transmission line formed by N conductors and a reference 

earth conductor can be represented mathematically by the "generalised 

telegraphers " equations [105] : 

a [Vn(X. t)] _- [Lnm] a [Im(X, t)]' 
ax at 

ä IIn(X, t)] _- [Cnm] ö [vm(X, t)J 
8x at 

where n=1,2,..., N and m 

..... (5.8) 

..... (5.9) 

[Lnm] and [Cnm] are the" per unit length. inductance and capacitance 

matrices, respectively. D'Alembert's solution to these equations 

takes the form of a set of forward-and backward travelling waves 

expressed as :- 

[vn(x, t)] = [F, 6(x-vmt)] + [F25(x+vmt)] .... (5.10) 

[in(x, t)] = [Fi6(x-vmt)]/Znm+ [F25(x+vmt)]/Znm .... (5.11) 

6 is the delta -impulse function and F, and F2. are arbitrary 
functions. -- I 

In -general, -yfor-: a-=, uniform., multi-conductor transmission line with, 

insulated conductors having different dielectric materials and 

geometries ,N conductors and a ground--, there are N modes of wave 

propagation, each having a, unique propagation velocity, vm These 

modes are separated , in time as they travel. ein, the transmission line 

conductors 
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In a system with a single dielectric , propagation modes degenerate to 

a single mode with a single velocity of propagation : 

V= CC 

-Er 

5.2.5 Multi-conductor Coil Sections 

..... (5.12) 

A stator coil occupies two distinct regions: the endwinding and the_ 

slot region, where the coil is situated in air and iron respectively. 

This forms four sections of a multiconductor line . However, one of 

the endwinding sections is interrupted by the coil terminals at or 

close to the coil evolute . The coil can therefore be subdivided into 

a series of five multi-conductor transmission line sections as shown 

in the diagram of figure 5.2.5.1 . 

5.2.6 Multi-conductor Junction in a Stator Coil 

A junction is formed at the interconnection of two multi-conductor 

line sections and there are five of these junctions in a lossless coil 

model. There are two forms of junction in a stator coil . the 

slot/endwinding region junction and the terminal junction. The 

slot/endwinding junction-ris-a, Junction of two dissimilar N conductor 

lines of which there are"four in a single coil. This is shown for a 
.. 7 turn coil in figure 5.2.6.2 .., The-, terminal junction comprises the 

junction of two similar N conductor lines and two single conductor 

lines and is shown for a7 turn stator coil in figure 5.2.6.1 

5.3 Scatter Matrix Analysis of a Lossless Coil 

The behaviour of a stator coil to a fast risetime pulse, is determined 

by the reflections and refractions of the pulse wave at the 

transmission line junctions and by interturn coupling .A scatter 

matrix, for a junction, embodies the relationships between the 

incident and reflected voltages and currents ), and from it, the 

magnitudes and polarities of reflected and transmitted waves are 

obtained . 
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Endwinding 

Junction 2 

Junction 1 

Figure 5.2.5.1 - Multi-conductor Model of 
7-turn Coil 

Junction 3 

Slot 

Juni tion 4 
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I 

Figure 5.2.6.1 - Coil Terminal Junction 

7654321 

Figure 5.2.6.2 -<S1ot/Endwinding Junction 
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5.3.1. Derivation of Scatter Matrix 

Scatter matrices derived in this section, define the relationship 
between incident and reflected voltages. The same procedure applies to 
the definition of scatter matrices relating conductor currents. 

Consider first, the terminal junction of 'a 7 turn stator coil as in 
figure 5.2.6.1 . Using Kirchoffs law, the relationships for voltages 

at the junction are given by: 

v0 -vi =0 ; v2-v3 =0; v4 -v5 =0 and so on. 

Expressed in matrix form this becomes : 

VD 
Vi 

V2 

v3 

V4 

v5 

v6 
[VJ = v7 and [Cv] _ 

V8 
V9 

v10 

v11 

°12 

V13 

ý14 

r1 5l 

ý I 
1-1 00.. 

.010000 0-1 0 

.. 0100000-10.. 

.010000 0-1 0.. 

.010000 0-1 0.. 

.010000 0-1 0.. 

.010000 0-1 0.. 

0 1-1 

[Ce] is the voltage-connection matrix for the junction, and is related 

to the voltage matrix [V] by the expression : 

VI-IV] =o .... ( 5.13) 

Similarly, for the junction currents, taking positive current flow as 

towards the junction and applying Kirchoffs current law we can say, 

iý + iý =0; i2 + i3 =0; i4 + i5 =0;..... and so on. 
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Again expressing in matrix form we have : 

0 
i1 

i2 

i3 

i4 

is 

i6 

[I] - 1' 

i8 

i9 

110 

i11 

'12 

113 

114 

'15 

and [Ci ]= 

-l 
1100... 

001000010.. 

.01000010.. 

.. 01000010.. 

.. 01000010.. 

.. 01000010.. 

.. 01000010. 

... 0011 
t 

[CI] is the current connection matrix and is related to the junction 

currents in the expression, 

[Cý]. [I] =O .... (5.14) 

Voltage and current vectors at the junction can then be decomposed 

into their incident and reflected components : 

Iv] = IV] 
in 

+ IV] re 

[I, _ EI3; n 
+ EI3re 

.... (5.15) 

.... (5.16) 

The relationship between [V] and [I] is embodied in the characteristic 

admittances similarly the impedances) , of the multiconductor 

transmission lines at the junction. Considering the diagram for the 

terminal junction in figure 5.2.6.1 this relationship for the incident 

voltages is expressed as follows : 
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rvol" [yo 0 

V 

"ýI I0 yiyn 
v2 i2 y2 y23 

v3 Y23y3 g34 

°4 Y34y4 y45 

°5 y45y5 y56 

V6 y56y6 y67 

°7 = y67y7 y78 
V8 y78ya y89 
°9 y89y9 y910 
V1o yqjo y1ot1 

"il II ; 111 yr12 

Ift - 

°13 yZ3y13y1314 

V14 
1y314 V+ 0 

V15 0 Y15 

12 1I W12 y1213 1 

that is: [I]n = [y]. [V]in 

and, [I]re = [Y]. rVjre 

0 
i1 

i2 

i3 

i4 

5 
i6 

i8 

i9 

110 

111 
i12 

113 

114 

115 
J 

in 

..... (5.17) 

..... (5.18) 

Alternatively , the impedance matrix may be used in which case, 

in 
[Vi" = IZI. III 

[V]re _ 

where, 

-1 [Y] = [Z] 

Once these basic relationships have been defined it only remains to 

express them in a single expression to describe voltage scattering 

Taking equations (5.15) and (5.13) the expression , 

[Cy]. [V] _ [Cy]-[V]in +-[Cv]. [V]re =0 

is obtained . From this we have, 

re 
[Cyý. [ýýin __ [ýy)"[ýJ ..... (5.19) 
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Similarly, 

in re 
[CyJ"[IJ =- [C 

y]"[i] ..... (5.20) 

Substituting equations (5.17) and (5.18) into equation (5.20), it 

follows that, 

Vjin _ EC 
'I -lYi. [Vlre ..... (5.21) 

Thus two expressions relating [V]i" and [V] are derived , (5.19) and 
(5.21), neither of which allows extraction of [V] re 

as a function of 
IV] 

in 
since matrices [C1] and [C. ] are not symmetrical . However, 

combining these equations we find : 

-[Cyl [v]re = [Cr] [v]in [[C11. [Y]j [C; ]"['] 

Since these matrices are now square we obtain from rearrangement , 

(V]re = [cy) icYI IV]" 
[[1]. 

[Y]] 
" Ecil"[Yi 

which is, [VIre = [S]. [Vlin 

..... (5.22) 

..... (5.23) 

[S] is the voltage scatter matrix for the junction which was developed 

by A. K. -Agrawal et al [105] 
., In this fashion 

, the scatter matrix 

completely describes the voltage reflection and transmission 

properties of a junction. 

By considering the diagram in figure 5.2.6.2, the scatter matrix can 

be obtained for a slot/endwinding junction . By inspection the current 

and voltage connection matrices are : 

[C1] = 

.. 

10000001 

10000001 

10 00000 1- 

10000001 

1 0.0 00001 

10000001 

10000001 
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1000000 -1 
1000000 -1 

1000000-1 

1000000 -1 
1000000 -1 

1000000 -1 
1000000 -1 

The admittance matrix is, 

[Y] = 

YtY12 

Y12 y2 Y23 
Y23Y3 Y34 

y34y4 y45 

y45y5 y56 
y56y6 y67 

y67y7 y78 

y78 Y8 YO 
9 

y8gy9 Y910 

y9A1oy10i1 , 
ylMT11 y1r2 

7112yn yt213 

W3 y1314 

ty314y14 

The same analysis may be performed to derive the scatter matrix for 

this and the remaining junctions. 

In general for a stator coil with N turns, [S] will be a (2N+2)x(2N+2) 

matrix for the terminal junction', and a (2N) x (2N) order matrix for 

the slot/endwinding junction 

5.3.2 Computation-of Capacitance Matrix. 

In order to derive the admittance ,( or impedance ), matrix for the 

junction , only the capacitance parameters for the junction need to be 

determined. 

For a lossless multiconductor- transmission line it has been shown 

[104] that, 
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[L]. [C] =1 

v2 

and that [Z] = v. [L] , 

Hence, 

-1 [Z] =1 . [C] 

V 

It follows that the admittance matrix is given by , 

[Y] = v. [C] =c . [C] 
..... 

(5.24) 
Fe 

The great advantage of this technique over frequency domain analysis 

is that the inductance parameters need not be evaluated in the 

formation of the admittance matrix 

The shape of the conductors of high voltage stator coils are 

sufficiently regular , to permit the conductor stack to be represented 

by an arrangement of parallel plate capacitors, (see figure 5.3.2.1) . 
The equivalent circuit of figure 5.3.2.1 can be further reduced to 

that shown in figure 5.3.2.2 to simplify the analysis . 

Derivation of the capacitance matrix-is performed from the equivalent 

circuit and using the simple relationship 

q = cv 

Consider the charge 

by the expression, 

q1 , on the first conductor . It can be defined 

q' = CS1 V1 +C i* 
(V1 - V2 ) 

(Cs1+ Cd-V1 - C1V2 

similarly the charge , q2 , on the adjacent conductor is given by, 

q=2 (Cs2+ C1). V2 = CiV3 - CiV1. 
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Expressing this in matrix form we have : 

V1 

V2 

v3 

This process is repeated to obtain the complete capacitance matrix 

[C] 

[C] = 

[ql = 
[C1+ Ci - Cý 0 A, 

q2 - Ci Cs2+ Cý - Ci v2 
' v3 

r 

CSl+C i -C i 

-C i Cs2+C i -C i 
-C i C2+C i -C i 

-Ci Cs2+Ci -Ci 

-Ci CS2+Ci -Ci 

-C i Cs2+Ci -C i 
-Ci i1+C i 

Y 

When calculating the interturn capacitance, Ci , field fringing may be 

neglected owing to the large conductor width to interturn separation 

ratio . With reference to figure 2.3.1.1 of chapter two, the 

capacitance Ci is given by : 

Ci = EoEýw (Farads/metre) 

b 

Similarly r the slot. capacitances ', Csl and Cs2 ,- are given by : 

CS1 = EoErtw+2a) Cs2 = EoEr2a (Farads/metre)` 
bb 
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5.4 Computer Analysis 

A suite of FORTRAN programs were developed to model a single lossless 

coil initially, as the basic unit in"a winding model . The programs 

can be separated into three distinct sections: 

i. Formulation of scatter matrices . 
ii. Determination of the impulse response of the coil 
iii. Convolution of the impulse response with, the "input function to 

give the actual response of the coil to a discharge-pulse . 

5.4.1 Scatter Matrix Formulation 

The scatter matrix is defined in equation (5.22) as ; 

[S] = -[Cy] '[Cv] 
[C1]-[Y [Ci]"[Y] 

Construction of [S], the scatter matrix, takes place in two stages. 

i. Input and storage of the matrices [C. ], [C) and [Y] 

ii. 'Inversion of the sub - matrix -[Cr] 
rC'I: JY] 

followed by the multiplication of the two sub - matrices. 

A routine called ENTER, ( see appendix A ); allows the operator to 

define the current and voltage connection, and admittance matrices , 
(Ci , C. and Y), for -a coil with a limit of 9 turns. This is an 

arbitrary limit and- may be increased to accommodate a coil with'a 

greater number of turns. These matrices, for a particular junction; 

are then stored in a data file on a permanent storage medium for use 
in the subsequent stage. 

The second stage is handled by a routine called TOM, (listed in 

appendix A ). The matrices [C1 
, [Cy] and [Y], are read from data 

file, after which the scatter, snb-matrices are constructed. A 

Gaussian-elimination technique is then used to find the inverse of the 

sub-matrix . For this purpose a routine, F04 AEA, was used, which was 
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part of a set of the NAG, (Numerical Algorithm), package within the 

computer library. 

To check the accuracy of the inversion process the sub-matrix- is 

pre-multiplied by its-inverse to give the identity matrix. The zero 

elements on the off diagonals are no greater than 0.465 x 1013 for 

single precision arithmetic, giving an inversion which is acceptable. 

The scatter matrix, having been constructed, is stored in a data file 

and the process is repeated for each junction . The scatter matrices 
for each of the five junctions in the single coil model are given in 

appendix B. 

5.4.2 Time Convolution Analysis 

Any arbitrary time function x(t) can be approximated by a series of 
ideal impulses, which over the time interval : -oo to oo, is expressed 

as :f 

00 

x(t) = 
fx(A). 

6(t_X)d 
.... (5.25) 

.. p 

The function x(t) is thus represented as the summation (integral) of a 

continuum of impulses where each impulse is of the form 

x(a). b(t- X)dX 

Using the -concept of impulse response, h(t), for a linear,, time - 
invariant system, it is possible to determine the system output for an 

arbitrary input. The response of the system, (in this case the coil 

multiconductor transmission line), to.. each elementary impulse is, 

h(t-1) multiplied by the. --magnitude of the impulse x(A)d A. The 

output response y(t) is the summation of all the elementary 

responses which-is given by, 
- 

00 

y(t) = J(X). h(t_)d 

00 
I,, 

..... (5.26) 

The integral expression (5.26) is termed the convolution of x(t) and 
h(t). 
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Therefore, by computing the response of the coil transmission line 

system to each member of a continuum of impulses which represent an 

arbitrary input function, and summing up these responses, the output 
function may be obtained . 

5.4.3. Impulse Response of a Lossless Coil 

The Bewley Lattice technique , 
[106], for time domain analysis of 

transmission lines provides the means of obtaining the impulse 

response h(t) of a coil to a single impulse input. The Bewley Lattice 

technique is basically a timetabling exercise in which the path of 

every impulse travelling in a complex transmission line system is 

documented. 

The coil is characterised by a series of lossless transmission lines, 

with impulse transit times calculated from equation (5.12) as 
indicated in figure 5.4.3.1 . Each junction' is numbered as shown and 
has a scatter matrix associated with it. 

When a single impulse enters the coil terminal, it results in a number 

of impulses propagating from junction 0 towards junctions 1 and 4 

determined by the voltage scattering at that junction. These 

impulses arrive at junctions 1 and 4 at time t+ to seconds later. 

Each of these impulses result in sets of reflected and transmitted 

impulses scattered at junctions 1 and 4, and the process continues . 
Therefore the impulse response at a particular point on the coil is a 

series of relatively small impulses which are separated in time by 

unequal time intervals , (see figure 5.4.3.2 ). 

The program developed to incorporate this anaylsis is called IMPL1 and 

constitutes the largest routine in the program suite, (see appendix 
A). The function of the program, is- best. described with reference to 

the flow diagram in figure 5.4.3.3 . 

Each voltage scattering operation at a junction is done in 

chronological order . The reflected and transmitted impulse 

magnitudes are stored in an array STORE along with the number of the 

junction to which they travel and the corresponding time of arrival, 
(the current time plus the line transit time) . 
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Figure 5.4.3.1, - Coil Section, Transit Times 
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Figure 5.4.3.2 - Typical Impulse Response 
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Figure 5.4.3.3 - Flow'Diagram For Impulse Response 
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An entry in the array STORE comprises a location for the junction 

number, a location for the time of arrival, t, and 2N +2 locations 

for the impulse magnitudes . The location size 2N+2 corresponds to 

the number of impulses generated at the terminal junction. : This is 

shown in figure 5.4.3.4 . 

Jt Vý V2 ....................... °... V2N*2 

/% 
\i 

-- junction no. time impulse magnitudes 

Figure 5.4.3.4 - Single Entry in STORE 

Initially time is set to zero and the unit impulse is incident on 
junction 0. Voltage scatter takes place and the first entry is 

placed in STORE. 

Section 2 of the program searches STORE "for the next scattering 

operation to take place in time, by finding the'entry with the lowest 

time t. This operation is outlined in the flowchart in figure 

5.4.3.5. Provision must be made for entries. which have identical times 

t but different junction numbers 

The impulse magnitudes in STORE are then transferred to "another array 

VIN which forms the incident voltage vector Vin in equation (5.22) 

The store is searched again for impulses that arrive at the particular 

junction at or about the same time t. These impulses are added to 

the incident voltage array VIN, for use in the next section. 

In section 3 the scatter matrix for the-Junction and the incident 

impulses in VIN are multiplied to obtain the scattered voltages 
[V] , which are placed in an array VRE. This is performed by a 

subroutine TIMES. It remains to put the impulse data in array VRE into 

an appropriate position in STORE for the purpose of data retrieval. 

This operation is best described by example. Consider the junction 

and conductor configuration in figure 5.4.3.6 

In a voltage scattering operation at junction 2, sets of impulses will 

be reflected towards junctions 1 and 3 which means two entries will be 

placed in STORE. It is the function of a subroutine, STORE 2, to 

transfer the impulse voltages in array VRE to the appropriate 

positions in the entries (a) and (b) . This depends on the numbering 
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Figure 5.4.3.5 - Flow Diagram For STORE Program 
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Figure 5.4.3.6 - Impulse Scattering atJunction 2 
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system for conductors in the coil model . By specifying a number of 
parameters in the subroutine when it is called from the main program, 

controls the way impulse voltages are mapped from the array VRE to the 

arrays in STORE . This flexibility allows any numbering system to be 

used. For slot/endwinding junctions ,2 entries are placed in STORE 

whilst 3 entries result in STORE for the terminal junction. The entire 

process is repeated until the specified time of study elapses. 

To store every event in permanent storage would be wasteful and so 

only the impulse response at a particular point (junction) on the coil 
is retained .A data file RESPONSE is used to store the impulse 

response used in the next stage of the"anaylsis. 

5.4.4 Impulse Convolution. 

The predicted response of the coil to an arbitrary waveform is 

obtained by convolving the impulse response with-'the input function. 

This operation is described mathematically by equation (5.26) 
. 

Having obtained the impulse response --h(t)it follows that the input 

x(t) must be defined. A program INPUT allows one to define the 

input function by specifying the magnitude and time of occurrence of 

each impulse which constitutes the input-function . These parameters 

are stored in a data file for subsequent use 

Convolution , in this context, is basically the summation of the 

responses of the coil to each impulse in the input function which is 

performed by a program CONVL, (see appendix A). The process of 

convolution is divided into five stages. 

In the first stage the input waveform and coil impulse response are 

extracted from the appropriate data files. 

In the second stage the weighted impulse response to each impulse in 

the input waveform is obtained . This is achieved by multiplying the 

impulse response by the normalised magnitude of the impulse in the 

input waveform and storing the resultant weighted impulse response in 

an array OUTPUT along with the corresponding impulse times . Impulse 

times are computed-from the addition'of the- input impulse time, ti, 

with the times, to associated with the impulse, 'and stored in an array 
TIME . 

This is shown in the flow diagram in figure 5.4.3.7 . The 
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variables xi and hn are the impulse magnitudes of the input function 

and impulse response respectively. The resulting weighted impulses are 

not in the order in which they occur in time . 
;r 

In stage three, a subroutine called SORT, rearranges the impulses into 

chronological order . To sort impulses into chronological order, 

after determining all the weighted impulse responses, would require 

repeated searches throughout the entire array store TIME . Instead 

the subroutine SORT is called by the main program after each weighted 

impulse response is computed . This saves a large amount of computer 

time . 

Impulse data is further compressed by searching - the =array store for 

impulses which occur simultaneously in time or within a small time 

interval of each other This forms the fourth stage of the 

convolution process . The resulting impulse data represents the 

convoluted function which is the predicted response of the coil. 

The impulse data which is obtained is excessive in size and-is 

compressed, to a more useable length for ease of information- 

presentation . The data- is effectively filtered by selecting either 

every second or third impulse data from the array store. This 

completes the impulse convolution stage.. 

5.5 Extended Model to Include Intercoil Coupling 

Previous investigations have concluded that intercoil electromagnetic 

coupling has a negligible influence on the propagation of 

steep-fronted surges in machine windings . However, experimental 

evidence (see chapter 2 ), has shown that coupling between adjacent 

coils in a winding has a significant effect on the shape , 
(hence 

behaviour), of short duration pulses travelling in a winding, .A 

portion of the pulse is transferred instantaneously from one coil to= 

the terminals of an adjacent coil by a route other than the conduction 

path . In this section, a model is proposed which attempts to take into 

to account the intercoil coupling effect on pulses propagating in a 

winding. 

Experimental evidence shows that intercoil coupling is strongest 

between adjacent coils in a winding . The effect of intercoil coupling 

between one coil and the next adjacent coil 'is not so significant and 

Page 298 



is neglected in the analysis . Therefore intercoil coupling is only 

considered for two adjacent coils in a winding group. 

In the slot region of a stator core, two adjacent : coils are 

electromagnetically isolated from each other due to eddy current. flow 

in the iron . Any field coupling must exsist in the endwinding 

regions of the coils . It is this assumption which provides a basis 

for the two coil model . 

Consider the two adjacent coils in the diagram of figure 5.5.1 . The 

coils are in close proximity to one another, being situated in 

adjacent core slots. Conductors numbered 1 and 8 through to 

conductors 7 and 14 run parallel to one another in the endwinding 

region, separated by a short air space , 
(normally a few millimetres). 

In addition, the two coils are connected in series 

In this configuration, the two, -7 turn, coils may be regarded as a 

single 14 turn coil. Applying the same, philosophy, as in a single 

coil model, this coil may be divided into five multiconductor 

transmission line sections with corresponding junctions . The scatter 

matrices for each junction are derived in the following sections . 

5.5.1 Terminal Junction Scatter Matrix. 

The diagram in figure 5.5.1.1 depicts the terminal junction for the 

two coils. Analysis is identical to the single coil case in which 

the voltage and current connection matrices are defined first. Both 

will have dimensions (N+l)x(2N+2) which is (15x30). 

In order to derive the admittance matrix for the junction it is 

necessary to obtain the capacitance matrix . In the endwinding region 

the coil conductors run parallel to one another. It is assumed that 

the influence of the transposition of conductors in the endwinding 

section on the electric field is negligible , along the length of the 

section. 

With this assumption the two coil conductor stacks may be regarded as 

a system of parallel plate capacitors . Figure 5.5.1.2 shows the 

cross section of the two coils in the endwinding region 
. The 

corresponding capacitance equivalent circuit is exactly the same for 

two, 7-turn, coils as it is for a single, 14' turn, double stack coil. 
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The only difference is the inclusion of an air dielectric in the 

calculation of the capacitances Ci2 and Ci3 . The capacitance matrix 
[C] may be derived directly from the equivalent circuit and is given 
in figure 5.5.1.3 . Matrix capacitances are as follows : 

Co : terminal lead capacitance. 
C1 : Cs1, + Cif + CO 

C2 : Cs2 + 2Ci1 + Ci2 

C3: -Ci1 
C4 :- Ci2 

C5 :- CO 

Calculation of these capacitance values is difficult and requires the 

exact electric field solution for the conductor/dielectric system. 

The scatter matrix is obtained by following the same route as 
described previously. 

5.5.2. Slot/Endwinding Junction Scatter Matrix 

The slot/endwinding junction is shown in figure 5.5.2.1 . The same 

assumptions are made for the endwinding conductors, for which, the 

equivalent circuit is given , 
(see figure 5.5.1.2 ). In the slot 

region, the two coil conductor systems are electromagnetically 

isolated so that the resulting equivalent circuit is that shown in 

figure 5.5.2.2. 

Comparision of the two circuits reveals the difference between two 

closely coupled coils situated in both air and iron . This difference 

is the inclusion of the intercoil capacitances Ci2 and Ci3 . Derivation 

of the capacitance matrix for the junction follows directly from the 

equivalent circuit and is shown in figure 5.5.2.3 . 
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The matrix capacitances are as follows : 

C1 : Cs1 +Cil, +Ci3 
C2 : Cs2 + 2Ci1 ,+ Ci2 

C3 :- Ci1 

C4 :-CR 
C5 :- CO 

C6 : CS1 + Ci 

C7 : Cs2 + 2Cj 

C8 :- Ci 

Once the admittance matrix is obtained , the scatter matrix for the 

junction can be derived . 

t 
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CHAPTER SIX 

CONCLUSIONS 



6.1 Conclusions 

The work presented in this thesis was concerned with the development 

of an on-line technique for detecting and locating partial discharges 

in the stator windings of high voltage machines . This technique is to 

form part of an on-line health monitoring strategy for the insulation 

of high voltage machine stator windings . 

The introduction has presented an outline of existing techniques for 

assessing the state of. machine stator winding insulation and systems 

used for detecting partial discharges 'in high voltage equipment . 

It was shown that there is a requirement for a diagnostic system to 

monitor the condition of high voltage machine insulation . In 

addition, there is also a requirement for a partial discharge location 

technique for application to high voltage machine stator windings to 

aid diagnosis of the insulation condition . This objective has been 

achieved on a model phase winding of a machine. 

Before developing a system to detect and locate partial discharges in 

a stator winding , an investigation was made of the propagation 

characteristics of high frequency pulses within the model phase 

winding . In the investigation , time and frequency measurements were 

made with typical partial discharge pulses generated artificially . 

The results prove that a machine phase winding behaves like a low pass 

filter circuit to high frequency pulses so that propagation is only 

supported at signal frequencies below a certain cut-off frequency , 

which for the model winding was approximately 3.5 MHz . Below the 

cut-off frequency , three modes of wave propagation have been 

identified and are listed as follows :- 

i. Transmission"line wave propagation 

ii. Electromagnetic and electrostatic 'coupling between adjacent 

turn conductors within a single coil . 

iii. Electromagnetic coupling between the endwinding conductors of 

adjacent coils in a winding . 

Studies have shown" that the velocity of propagation of waves is 

dependent on frequency . At relatively low frequencies ( below 900 

kHz ), associated with the transmission line mode of wave propagation, ` 

Page 307 



the velocity is approximately 38 m/psec and can beýcalculated from the 

relationship : 

v=1 
VTC 

L is the winding : inductance -per unit - length and C is the 

winding slot capacitance per unit length 

At higher frequencies , electromagnetic waves travel by a combination 

of transmission line propagation and endwinding coupling . This occurs 

at a higher velocity' of approximately '116 m/, usec which can be 

calculated using the expression : 

V=c 
(c- velocity of light in a vacuum ) 

Investigation has also shown that wave propagation through the 

endwinding conductors of coils takes place within a relatively narrow 

bandwidth of signal frequencies, between 900 kHz and 3.5 MHz . 

Frequency response measurements have indicated that transmission line 

resonance occurs in a phase winding which is terminated at one or both 

ends by an impedance other than the characteristic impedance of the 

winding . The frequencies at which resonance occurs is when the half 

or quarter wavelength of the wave oscillation is a multiple of the 

winding length . This effect depends on the terminating conditions . 
These resonant frequencies have been calculated from the relationship, 

v=fA, where the velocity is the transmission line value of 38 

m/psec . 

Identical behaviour occurs when waves propagate through the 

endwindings However , calculation has shown that transmission line 

resonant frequencies associated with this mode of propagation can be 

calculated from the expression ,v=fA but the velocity of 

propagation in this case is around 116 m/psec 

In addition to these findings on the propagation of high frequency 

pulses , two properties of pulse propagation have been identified 

which can provide the basis for a partial discharge location 

technique. The time delay of signals travelling through a winding from 
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a discharge source to the. -winding-terminals can be used to. determine 

the location of the source . The time delay measured depends on the 

mode of wave propagation selected for the location, technique , which 

is either the transmission line mode. or the endwinding coupling mode . 

In the development of a location technique ,a means of-detecting the 

partial discharge signals, at the machine terminals is required . An 

investigation of the Rogowski coil for use in a partial discharge 

detection scheme was therefore undertaken 

The study has shown that the Rogowski coil can provide wideband 

measurement of partial discharge current pulses in the 

self-integrating mode . In this mode the risetime of the coil is in 

the sub-nanosecond region . --The Rogowski coil must be enclosed in a 

metallic housing in order., to provide a uniform distribution of 

capacitance to, earth around the coil ., Otherwise severe resonance 

occurs in the response, of the coil to high frequency pulses . 

Charge measurement was achieved using: an , integration circuit in which 

the peak value of the integrated signal from the Rogowski coil is 

related to the discharge magnitude . 

When the Rogowski coil. is,, connected to a capacitor and a damping 

resistor , the-response to a discharge pulse is a. damped oscillation 

The peak amplitude of the first. oscillation is related to the. peak 

discharge current . Two types of narrowband detection circuits can be 

implemented , in which the Rogowski coil is connected in series or in 

parallel with the capacitor. and damping, resistor . Higher resonant 

detection frequencies can, -be achieved with the series circuit since it 

is less affected by the stray capacitance that. exists across the load 

resistor . ., --.. 

The disadvantage of the use, of the narrowband Rogowski coil detector 

is that, it is unable to be calibrated in terms of discharge magnitude. 

Charge measurement is not possible since the oscillatory response of 

the narrowband detector does not preserve , 
the shape of the current 

pulse, and, integration to obtain charge magnitude cannot be done . 

The wideband -self, integrating Rogowski coil is therefore the most 

suitable for partial discharge measurements . 
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A partial discharge location instrument has been developed in which 

the location of a discharge source 'is obtained by correlation of the 

time delay difference between the high frequency pulses detected at 

the winding terminals , that propagate from the discharge site 
Investigation of the `performance' of the location system with 

artificial discharge pulses injected into a winding comprising six 

stator coils has been undertaken .' 

Results show that when the winding is terminated at both ends in the 

characteristic impedance , the location of a discharge source injected 

at each of the coil interconnections' can be, determined to within a 
distance of 2.1 metres ,(2.9 % of the winding length ). 

Experiment has shown , that the introduction of a high or low 

impedance at one`end of the winding causes aýshift in the measured 
discharge source locations on' the winding- scan from the expected 
locations . In the case of the low impedance termination the shift-is 

towards the low impedance terminal',. This shift is progressively 
larger for sources connected away from that terminal . 

The discharge source was also injected into the coil endwindings 
through an aluminium foil coupling capacitor . The discharge sources 

were successfully located but errors occurred in a few of the 

locations due to the'mode of pulse injection , since all of the turn 

conductors were excited simultaneously by the discharge pulse 

injected. 

An investigation with two simultaneous discharge sources injected` at 

various points on the winding showed that pulse sources separated by 3 

coils distance- apart or less appear as a single pulse source . This 

single discharge source"does not' correspond to either of the two 

injected discharges but rather occurs at a false location determined 

by the' time difference between the wavefronts of each of the discharge 

pulses observed at the winding terminals . 

An experiment with six independent discharge sources positioned at 

each of-the coil inter cönnections has shown- that the technique can 

locate these sources successfully . Small errors occurred in the 

locations due to the effect the coupling capacitance of each discharge 

injection circuit has on the pulse propagation characteristics of the 
winding 

.` 
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Tests were performed using a single high voltage discharge source 

Results showed that- the system is susceptible to interference from 

high voltage discharges , causing maloperation of the location 

instrument . Interference was. manifested in the form of spurious 

location peaks appearing on the winding scan . However , when the 

source of high voltage discharge was placed in a shielded enclosures, 

the positions of the discharge source injected at. three of the coil 

interconnections were located successfully . 

The location technique has been proven to be capable of locating the 

positions of partial discharges within'a stator winding comprising six 

coils . 

In the final stage of the -work .a theoretical model of a single 

stator coil was developed based on an existing model . This model was 

then developed to include inductive and capacitive coupling between 

two adjacent coils in _a winding . However , time constraints did not 

permit completion of the analysis . 

6.2 Future Work 

The results of the work carried out provide scope for the future 

investigation and development of the partial discharge location 

system. 

At present the discharge location system , MICA, is capable of 

locating discharges within a six coil stator winding ,( approximately 

72 metres of winding ). Development work is required to improve the 

performance of the location system to allow successful'location in a 

winding of greater length . This would require investigation of the 

two modes of wave propagation in a winding , transmission line or 

endwinding coupling , to determine which of the two provides the most 

useful basis for development of the location technique . 

Some investigation is required to determine the behaviour of the 

location system when used in conjunction with a narrowband Rogowski 

coil detector 

Further study of the application of high voltage discharge sources is 
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necessary to obtain an understanding of the mechanisms of interference 

coupling . The results of such a study could be used to develop the 
location system for use in an industrial environment where high levels 
of interference are present'. Ultimately , the' technique needs to be 

proven on a real high voltage machine on-line 

Development of a-ý theoretical model to predict the propagation 

characteristics of discharge pulses in a stator winding is required 
This model must incorporate the electromagnetic coupling between 

adjacent coils in a machine winding'. ' The theoretical model should 

represent a complete phase winding and should be valid over the 
frequency range of partial discharge signals . 

Finally, further work could include an'investigation into'the possible 
diagnostic measurements that may be used in assessing the condition of 

stator winding insulation . The partial discharge pulse information 

provided by the location instrument could be presented in the form of 
a pulse height analysis . This could then be related to the condition 

of the insulation . 
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C ###########*#*#*#*#***#####**#*################*######* 
C* THE CURRENT AND VOLTAGE 'CONNECT ION MATRICES AND THE * 
C ADMITTANCE MATRIX FOR EACH SCATTERING JUNCTION-IS * 
C* ENTERED FROM THE. TERMINAL AND STORED ON DISK. * 
C *#####*##################*######################*####### 
C 

DOUBLE PRECISION CI(2O, 2O), CV(20, C`, Y(2O, 20), FILE 
INTEGER MºN. NT, L, NSºNUM 
WRITE(5i10) 

10 FORMAT(1H-VENTER THE NUMBER OF TURNS PER COIL : ', $)' 
READ(5i20)NT 

20 FORMAT(I) 
KCOUNT -01 HUM - 20"' 

C 
C 
C 
C 
C 
22 

* CHECK FOR THE TERMINAL JUNCTION 0* 

IF (KCOUNT. GT. O) GOTO 25 
L=NT41 I N=(2*NT)t2 
GOTO 23 

25 L=NT f N=2#NT 
C 
C *#*#####**k#*##*#####**#*k######*###*###*##*##***###### 
C* ENTER JUNCTION MATRIX PARAMETERS.. 
C ######*###*####k##########*#*######*****#*##*#****##**#* 
C 
23 WRITE(5.26)KCOUNT 
26 FORMAT(IH-. 'JUNCTION NUMBER'. I) 

WRITE(5t27) 
27 FORMAT(1H". '------------------- ') 
C 
C *#****#*###*##**#*#**#***#***####*#*******#****#*#***#*# 
C* ENTER THE CURRENT CONNECTION MATRIX # 
C #*#*##*####**#*##*#**#*******##**###****#**###****#*#*#* 
C 

WRITE(5r29) 
29 FORMAT(1H #'ENTER CURRENT CONNECTION MATRIX°? ') 

WRITE(5r31) 
31 FORMAT(1H r'TYPE : 1- YES OR 2- NO 

READ(5r32)NS 
32 FORMAT(I) 

IF (NS. EQ. 2) GOT0 51 
WRITE(Sº30) 

30 FORMAT(1H0r' CURRENT CONNECTION MATRIX DATA FILE NAME : ', $) 
READ(5r45)FILE 

45 FORMAT(A) 
46 OPEN(UNIT-NUMrIIEVICE-'DSK'rFILE-FILE) 

DO 50 I=1, L 
READ(5r40)(CI(IrJ)rJ=1rN) 
WRITE(NUMr40)(CI(IrJ)iJ=1, N) 

40 FORMAT(G) 
50 CONTINUE 

CLOSE(UNIT=NUMrDEVICE='DSK'rFILE=FILE) 
WRITE(5r47) 

47 FORMAT(1H r'CORRECT MATRIX Y') " 
WRITE(5Y31) 
READ(5t32)NS j{ 
IF (NS. EQ. 1) GOTO 51 
WRITE(5r52) ` 

52 FORMAT(1H ''RE-ENTER'THE MATRIX ELEMENTS') 
GOTO 46 

51 NUM-NUM+1 

Figure A. 1 - Program to Enter Scatter 

Matrix Parameters - ENTER 
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C 
C s#t###ttt#t######ttt#t#####tt######t##########t########t 
Ct ENTER THE VOLTAGE CONNECTION MATRIX # 
C ttt####t######t#####t##############t################t### 
C 

WRITE(5.53) 
53 FORMAT(1H . 'ENTER VOLTAGE CONNECTION MATRIX ? ') 

WRITE(5P31) 
READ(5t32)NS 
IF (NS. EQ. 2) GOTO 81 
WRITE(5p60) 

60 FORMAT(1H0. 'VOLTAGE CONNECTION MATRIX DATA FILE NAME: '. f) 
READ(5p65)FILE 

65 FORMAT(A) r° °' -``" .- 
66 OFEN(UNIT=NUM. DEVICE='DSK'. FILE=FILE) 

DO 80 I=1. L 
READ(5.70)(CV(I. J). J-1. N) 
WRITE(NUM. 70)(CV(I. J). Js1. N) 

70 FORMAT(G) 
80 CONTINUE 

CLOSE(UNIT=NUH. DEVICE='DSK'. FILE=FILE) 
WRITE(5P47) 
WRITE(5p31) 
READ(5P32)NS 
IF (NS. EQ. 1) G0T0 81 
WRITE(5t52) 
GOTO 66 

81. NUM=NUM+1 
C 
C ####################################*#######*#*######### 
C# ENTER THE ADMITTANCE MATRIX # 
C ##########################################*#*########### 
C 

WRITE(5i88) 
88 FORMAT(1H , 'ENTER ADMITTANCE MATRIX T') 

WRITE(5v31) 
READ(5t32)NS 
IF (NS. E0.2) GOTO 111 
WRITE(5990) 

90 FORMAT(1HO, ' ADMITTANCE MATRIX DATA FILE NAME-3', $) 
READ(5P95)FILE 

95 FORMAT(A) dy 
96 OFEN(UNIT=NUM, DEVICE='DSK', FILE=FILE) 

DO 110 I=1, N 
READ(5,10O)(Y(I, J), J=1, N).,, 
WRITE(NUM, 100)(Y(I, J), J=1, N) 

100 FORMAT(G) 
110 CONTINUE 

CLOSE(UNIT=NUM, DEVICE-'DSK', FILE=FILE) 
WRITE(5,47)' 
WRITE(5r31) 
READ(5,32)NS 
IF (NS. EQ. 1) GOTO 111 
WRITE(5P52) 
GOTO 96 

111 NUM=NUM+1 
C 
C ######################################################## 
C# REPEAT MATRIX STORAGE FOR EACH OF THE COIL JUNTIONS # 
C #####################################*#########*####### 
C 

NCOUNT=NCOUNT+1 
IF (KCOUNT. LT. 5)'GOTO 22 
END 
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C 
C ########*#############################################*# 
C* DEFINE ALL PROGRAM VARIABLES AND DIMENSION ARRAYS # 
C ########**##*#******#*#**#############*##*****##*#*##*## 
C 

REAL CI(2Or20)PCV(2Ox2O)PY(20r2O), A(20r2O), B(20r20) 
REAL U(20r2O)pD(2Ot2O), C(20r2O)PS(2Op2O)tT(20r2O) 
REAL AA(20920), BB(2O, 2O), UKSPCE(40), ST, STORE 
DOUBLE PRECISION FILE 
INTEGER IA, IB, ICrIAA9IBBrM, NrIFAIL, NT, LrNUMrCHAN 

C 
C *#*****#***#***#*####*##*****#*#**#*###*****##*#*#*#**** 
C* THIS PROGRAM FORMULATES THE. MULTICONDUCTOR JUNCTION * 
C* SCATTER MATRICES OF AN H. V. STATOR WINDING COIL. # 
C ##*###******#**##*#*#*#######*##**#**#*#*********#****** 
C 

WRITE(5,5) 
5 FORMAT(IH-, 'THIS PROGRAM FORMULATES THE MULTI-) 

WRITE(5,7) 
7 FORMAT(1H , 'CONDUCTOR JUNCTION SCATTER MATRICES OF A') 

WRITE(5,8) 
8 FORMAT(1H , 'STATOR WINDING COIL. ') 

WRITE (5,10) 
10 FORMAT(IH-, 'ENTER THE NUMBER OF TURNS PER COIL t', $) 

READ(5,20)NT 
20 FORMAT(I) 

NCOUNT =01 NUM=20 s CHAN=50 
C 
C ***###**#***##**#**#**######*#*#*###************#*##*### 
C* CHECK FOR THE TERMINAL JUNCTION * 
C *###*###****#**####*#*****#*#*##**##**#*#*#*#*#*###***## 
C 
22 IF (KCOUNT. GT. O) SOTO 25 

L-NT+1 i N=(2*NT)+2,, 
SOTO 23 

25 L=NT ¢ N=2*NT 
C 
C #*#***####**##*##****#**####*#*#*###*##*####*#*#**#*#**# 
C* ENTER JUNCTION MATRIX PARAMETERS FROM DISK * 
C *****#**#***###**#********##**#**#*#*##*#*###*#**##**#** 
C 
23 WRITE(5,26)KCOUNT 
26 FORMAT(IH-, 'JUNCTION NUMBER', I) 

WRITE(5v27) 
27 FORMAT(1H , '--------------------) 
C 
C ####*#***###*#*##########**####*******#*#*#***##**#*#*** 
C* ENTER 'THE CURRENT CONNECTION MATRIX * 
C *####*##****#####**#****###***#**#*#*##*#*#**####*#***** 
C 

WRITE(5r30) 
30 FORMAT(1HOr' CURRENT CONNECTION MATRIX, DATA'FILE NAME : ',:; 

READ(5v45)FILE 
45 FORMAT(A) 

OFEN(UNIT-NUM, DEVICE='DSK', FILE=FILE) 
AO 50 I=1, L 
kEAD(NUM, 40)(CI(I, J)'J=1, N) 

40 FORMAT(G) 
50 CONTINUE 

CLOSE(UNIT=NUM, [IEVICE='DSK', FILE=FILE) 
NUM=NUM+l 

C **##*##**#######**##**#***###*####*######**##***#****#** 
C* ENTER, THE VOLTAGE CONNECTION MATRIX 
C *****##****#****##*#*#*****#*#*###*###**#*#*#**##*#**#** 
C 

WRITE(5P60) 
60 FORMAT(1HO, 'VOLTAGE CONNECTION MATRIX DATA FILE NAME: ', $) 

READ(5r6S)FILE 
65 FORMAT(A) 

OPEN(UNIT=NUM, DEVICE-'DSK'. FILE=FILE) 
DO 80 I=IiL 
READ(NUM. 70)(CV(I, J). J=19N) 

70 FORMAT(G), 
80 CONTINUE 

CLOSE(UNI1T=NUM"DEVICE='DSK'PFILE=FILE) 
NUM=NUM+1 

Figure A. 2 - Program to Form Scatter 
Matrices - TOM 
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C 
C **##*#**#**#*########*#*####**#***#####**###*####**###*# 
C# ENTER THE ADMITTANCE MATRIX * 
C ##*#***#*#***#####*#***##*#*####*##**#**###*##*#*##*#### 
C 

WRITE(5P90) 
90 FORMAT(1HOr' ADMITTANCE°MATRIX DATA FILE NAME--: 'Pt) 

, READ(5p95)FILE 
95 FORMAT(A) 

OPEN(UNIT=NUMrDEVICE='DSK'PFILE=FILE) 
DO 110 I=1. N 
READ(NUMr100)(Y(I, J)+J=1, N) 

100 FORMAT(G) 
110 CONTINUE 

CLOSE(UNIT=NUMrDEVICE='DSK'rFILE=FILE) 
NUM=NUM+1 

C 
C ****###*###****#*****#***####*########*##*######*#*##### 
C* FORM THE INTERMEDIATE MATRICES :* 
C** 
C* MULTIPLY-MATRICES Cl $Y# 
C #####*##**####*#**#*#***###*###*###*##*#**###*********#* 
C 

DO 149 I=1rL 
DO 149`J=1. W 
D(I. J)=0.0 

149 CONTINUE 
ST=0.0 3 STORE=0.0 TEMP-0.0 i TOL=0.0 
DO 150 I=1. L 
DO 150 J=1rN 
DO 150 K=1rN 
ST = CI(I. K)*Y(KrJ)-" ° 

'D(I. J) = D(I. J) + ST 
150 CONTINUE 
C 
C ###############################################*######## 
C# FORM FIRST SUB-MATRIX OF SCATTER MATRIX # 
C ######################################################## 
C 

DO 160 IL1rN 
DO 160 J=1rN 
U(IrJ)=0.0 

160 CONTINUE 
DO 170 I=1. L 
DO 170 J=1rN 

-U(IrJ) = CV(IrJ) 
170 CONTINUE 

DO 180 I=1rL 
110 180 J=1rN 
U(I+LrJ) = D(I+J) 

180 CONTINUE_ 

C 
C ####***#**####*#**#*****#######*#####*####*#**#######*## 
C* FORM SECOND SUB-MATRIX OF SCATTER MATRIX * 
C** 
C* INVERT THE VOLTAGE CONNECTION MATRIX 
C ****####****#**#**#*#*#*#*###***#**********#**#*#####*** 
C 

DO 195 I=1. N 
DO 195 J=1rN 
A(IrJ)=0.0 

195 CONTINUE 
DO 190 I=irL 
DO 190 J=1rN 
A(IrJ) _ -CV(IrJ) 

190 CONTINUE 
DO 200 I=1rL 
DO 200 J=1rN 
A(I+L. J)=D(IrJ) 

200 CONTINUE 
DO 999 I=1rN 
WRITE(5r991)A(Irl)rA(Ir2)rA(Iº3)rA(I94)rA(I95)rA(Ir6)rA(Ir7) 

I rA(I98)rA(I99)rA(Ir10)ºA(Ir11)rA(Ir12)rA(Ir13)rA(Ir14)rA(Ir15) 
i A(Ir16) 

991 FORMAT(16F8.5) 
999 CONTINUE 
ý 
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c ****###******#****#**#***##*####**##*********: ****#**** 
C* 

INVERT SCATTER SUB-MATRIX A(I, J) 

C* INITIALISE SUBROUTINE PARAMETERS 
C #****#**#*#####********#*###*****####*#*#*###*###**#*#*# 
C 

C #*******#*#*####***********#*#******#*#***#####*##*****#* 
C 
C 
C 

202 
201 
c 

* FORM THE UNIT MATRIX 9 WITH M RIGHT-HAND SIDES # 

DO 201 I=1rN 
DO 201 J=1rN 
8(I. J>=0 

, IF (I. EO. J) GOTO 202 
GOT0 201 
B(I. J)=1.0 
CONTINUE 

C ###***#**###*********###############*######*##*#######*# 
C* DIMENSION MATRICES A tB +C rAA PBB 
C *#######*####*###*###*##*####**##*##*#*#****#*#*****#**# 
C 

C 
C 
C 
C 
C 
C 

IA=20 0 ID-20 1 IC=20i IAA=20 I IRR=20 i M=N4 
,, I 

# INTEGER IFAIL CONTAINS ERROR CODE FOR F04AEF * 
* 0- NO ERROR, 1- ROUNDING ERROR, 2- ILL CONDITIONED 

IFAIL=1 

C **##****#******##**#*###*#*#######*#*#########***#*#*##* 
C* CALL MATRIX INVERSION SUBROUTINE F04AEF 
C #######*###**##**#*##*##***#*##*##*#######*#####***#*##* 
C 

CALL FO4AEF"(ArIA. BrIBrNrM. CrICrWKSPCErAArIAArBBrIBB. IFAIL) 
C 
C *##****#*###########*#****#*###**#**##########*##*#*#*#* 
C* CHECK FOR FAILURE OF LIBRARY ROUTINE F04AEF # 
C #####*###*##*#**#*#*####**###*####**#*##*##*#**########* 

IF (IFAIL. EQ. O) GOTO 101 
WRITE(5r98) IFAIL 

98 FORMAT(1H r'ERROR IN F04AEF : 'rI) 
GOTO 280 

C 
C ##***#*#*#############*######*####*#*#*##########*#####* 
C# FORM THE SCATTER JUNCTION MATRIX S(I, J) # 
C ###*#*#**#*#######**#****####*############*############# 
C 
101 DO 209 I=1, N 

DO 209 J=1, N 
S(I, J)=0.0 

209 CONTINUE 
DO 210 I=1, N 
DO 210 J=1, N 
DO 210 K=1, N 
STORE = C(I, K)*U(K, J) 
S(I, J) - S(I, J) + STORE 

210 CONTINUE 
C 
C #***##**##*#**#**##*****#***#####**#*********##*****#*** 
C* CHECK ON INVERSION ACCURACY USING A. A-1=I * 
C ##***#**###*##***##*#*#******#####*##**#####**###**#**** 
C 

DO 78 I=1, N 
DO 78 J=1, N 
T(I, J)-0.0 

78 CONTINUE 
DO 77 I=1, N 
DO 77 J=1, N 
DO 77 K=1, N 
TEMF'=C(I, K)*A(K, J) 
T(I, J)=T(I, J)tTEMP 
IF (K. LT. N) G0T0 77 
IF (I. EQ. J) G0T0 77 
IF (ABS(T(I, J)). LT. TOL> GOTO 77 
TOL=ARS(T(I, J)) 

77 CONTINUE 
WRITE(5,88)TOL 

88 FORMAT(1H , 'MAXIMUM OFF DIAGONAL ELEMENT : ', G) 
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C 
C ###########*#****#########*#####*##*##########*###*###*# 
C# ASK, FOR THE DATA FILE NAME FORTHE JUNCTION # 
C #*****#*#*#*****#*#***#*******##*******##*##*#*######## 
C 

WRITE(5t250) 
250 FORMAT (IM , IH . 1H 'GIVE A NAME FOR THE DATA FILE : ', $) 

READ(5t260)FILE 
260 FORMAT(A) .,, 
C 

C* OPEN THE DATA FILE FOR SCATTER MATRIX DATA 
C ###*##*#*##**#**#**#***#****##*#***#*****####****#**#*## 
C 

OFEN(UNIT=CHANPDEVICE='DSK'PFILE=FILE) 
DO 270 I=1, N 
WRITE(CHAN1265)(S(I'J)1J=1rN) 

265 FORMAT(G) 
270 CONTINUE 
C 

C* CLOSE THE DATA FILE, AND SAVE THE-, DATA ON DISK, 

C 
CLOSE(UNIT=CHAN. DEVICE='DSK'. FILE=FILE) 

CHAN=CHAN+1 
C 
C ###*#########*#*#*##*#*#***##*#######*######*#########*# 
C* REPEAT PROCESS FOR THE NEXT SCATTER JUNCTION * 
C ######*****#*###**#***#*#**#**#***#**#******##*****#**** 
C 
280 KCOUNT = KCOUNT+1 

IF (PCOUNT. LT. 5) GOTO 22 
END 

._Is, >I e'. , .. 
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C 
C ##**#***#*#***#####**######*########*#####*####*#######i 
C* THIS PROGRAM CALCULATES THE'RESPONSE OF A SINGLE # 
C* `STATOR COIL TO AN IMPULSE FUNCTION USING THE * 
C* BEWLEY LATTICE TECHNIQUE WITH SCATTER MATRIX # 
C* THEORY. * 
C **###*##*#**#**##*#**##**####*##*****#*#######**#####*#* 
C 
C **####**##*##****##*#*##*#****#**#*****#*********#****** 
C* DIMENSION ARRAYS AND INITIALISE PROGRAM VARIABLES. * 
C ***#********#******###*****#*#*#********#*****#*******#* 
C 

COMMON/BLOCKT/STORE(20,5000), STACK, TIME 
COMMON/BLOCK/VIN(20) 
COMMON/BLOCK3/VRE(20) 
DIMENSION S0(20,20), S1(20,20), S2(20,20) 
DIMENSION S3(20º20)ºS4(20,20)ºS(20,20) 
REAL TIME, TIMEND, TOºT1ºT2ºT3, TEMP, JUNC, JUNCT, TEMPO 
INTEGER L, NºCHAN, STACK, POINT, KI, K2, J1, J2, ADD, MARK, M, STEP, INCºN' 

CHAN=50' 
C 
C ###################################**##*##########*##**# 
C# INITIALISE IMPULSE FUNCTION ON TERMINAL JUNCTION 0# 

C 
VIN(1)=1.0 
DO 5 I=2,20 
VIN(I)=0 

5 CONTINUE 
C 
C ############################################*##*######## 
C# ENTER THE NUMBER OF TURNS IN A STATOR COIL. # 
C ########*################**########*###**#*######**##*## 
C 

WRITE(5r6) 
6 FORHAT(IH-P'ENTER THE NO. OF TURNS IN A COIL ...... 'tf) 

READ(5s30)NT 
N=2*NT 0 L=(2*NT)t2 

C 
C ######################################################## 
C# ENTER TRANSIT TIMES FOR EACH OF THE COIL SECTIONS # 
C ####################################################*### 
C 

WRITE(5F7) 
7 FORMAT(1HO, 'ENTER TRANSIT TIME BETWEEN SOURCE AND ') 

WRITE(5P8) 
8 FORMAT(1H , 'JUNCTION 1 .......... ', $) 

READ(5r30)TO 
WRITE(5rlO) 

10 FORMAT(1H0, 'ENTER TRANSIT TIME BETWEEN JUNCTION 1 AND') 
WRITE(5,2O) 

20 FORMAT(IH , 'JUNCTIONS 215.......... ', S) 
READ(5p30)T1 

30 FORMAT(G) 
WRITE(5P40) 

40 FORMAT(1H0º'ENTER TRANSIT TIME BETWEEN JUNCTIONS 21 3') 
WRITE(5r50) 

50 FORMAT(1H , 'AND JUNCTIONS 415 '+f) 

60 
1) 

READ(5.30)T2 
WRITE(5960) 
FORMAT (1H0. 'ENTER TRANSIT TIME BETWEEN JUNCTIONS, 3, I 4 ....... ' 

READ(5P30)T3 
C 
C ###*####*###########*################################### 
C* ENTER MAXIMUM TIME LIMIT FOR THE SIMULATION. # 
C #**#####*########################**#*###############**#* 
C 

WRITE(5t70) 
70 FORMAT(1HO, 'ENTER TIME LIMIT ON SIMULATION .......... 'r! ) 

READ(5s30)TIMEND 
C 
C *#***********#****#*************#*************#*##****** 
C* READ IN ALL JUNCTION *SCATTER MATRICES FROM DISK DATA * 
C* FILES AND STORE THEM IN SEPARATE ARRAYS I S0, Sir S2 * 
C* S3s S4. # 
C ***#****#*****##******#******t**##********#**##*###**#** 
C 

Figure A. 3 - Program to Find Impulse 
Response of Coil - IMPL1 
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C READ IN SCATO. DAT AND TRANSFER S TO SO 
C 

OPEN(UNIT=CHAN, DEVICEs'DSK', FILE='SCATO. DAT') 
DO 80 I=i. L 
DO 80 J=1, L 
READ(CHAN, 85)S(I, J) 

85 FORMAT(0) 
SO(I, J)=S(I, J) 

80 CONTINUE 
CLOSE(UNIT=CHAN, DEVICE='DSK', FILE='SCATO. DAT') 
CHAN=CHAN+1 

C 
C READ IN SCATI. DAT AND TRANSFER S TO Si 
C 

OPEN(UNIT=CHAN, DEVICE='DSK', FILE='SCATI. DAT') 
DO 90 I=i, N 
DO 90 J=i, N 
READ(CHAN. 95)S(I, J) 

95 FORMAT(G) 
S1(I, J)=S(I. J) 

90 CONTINUE 
CLOSE(UNIT=CHAN, DEVICE='DSK', FILEa'SCATI. DAT') 
CHAN=CHAN+1 

C 
-C READ IN SCAT2. DAT AND TRANSFER S TO S2 
C 

OPEN(UNIT=CHAN, DEVICE='DSK', FILE='SCAT2. DAT') 
DO 100 I=1, N 
DO 100 J-1, N 
READ(CHAN, 105)S(I, J) 

105 FORMAT(G) 
S2(I, J)=S(I, J) 

100 CONTINUE 
CLOSE(UNIT=CHAN, DEVICE='DSK', FILE='SCAT2. DAT') 
CHAN=CHAN+1 

C- 
C READ IN SCAT3. DAT AND TRANSFER S TO S3 
C 

OPEN(UNIT=CHAN, DEVICE='DSK', FILE='SCAT3. DAT') 
DO 110 I=1, N 
DO 110J=1, N 
READ(CHAN, 115)S(I, J) 

115 FORMAT(G) 
S3(I, J)=S(I. J) 

110 CONTINUE 
CLOSE(UNIT=CHANºDEVICE='DSK', FILE='SCAT3. DAT') 

CHAN=CHAN+1 
C 
C READ IN SCAT4. DAT AND TRANSFER, S TO S4 
C 

OPEN(UNIT=CHANTDEVICE='DSK', FILE='SCAT4. DAT') 
DO 120 I=1, N 
DO 120 J=1. N-" 
READ(CHANr125)S(I, J) 

125 FORMAT(G) 
S4(I, J)=S(IPJ) 

120 CONTINUE 
CLOSE(UNIT=CHANTDEVICE='DSK', FILE='SCAT4. DAT') 
CHAN=CHAN+1 

C 
C **####*#****###*#**#*#*#######*#*#*#*###*#*##***#*##*#*# 
C* SET UP STACK AND STORE ENTRY POINTERS AND * 
C* PLACE THE INPUT IMPULSE VECTOR VIN 'STORE'. * 
C #**#*###***#*##****#*#*####**##****#**#*******#********# 
C 

121 
C 

FOINT=1 I STACK=1 
STORE(1r1)=1.0 
STORE(2r1)= TO 
DO 121 I=1 r 16 
STORE(I+2r1)=VIN(I) 
CONTINUE 
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c 
c 
c 
c 
c 

# SEARCH FOR THE NEXT JUNCTION' SCATTERING OPERATION TO # 
# TAKE PLACE IN TIME .* 

TIME=TO 
77 DO 130 I-POINTºSTACK 

TEMPO-ABS(STORE(2ºI)) 
DIFF-ABS(TEMPO - TIME) 
IF (DIFF. LT. 0.0001) GOTO 132 

130 CONTINUE 
TIME=TIME +0.2 i POINT=1 
GOTO 77 

132 JUNC=STORE(1ºI) I MARK=I 
IF (JUNC. NE. 6.0) GOTO 133 
POINT=MARK+1 
GOTO 77 

C 
C *****##*#*********************##*#*#*#####**##*#####*### 
C* PLACE ENTRY FROM'STORE IN THE'INCIDENT IMPULSE * 
C* VOLTAGE VECTOR VIN AND SET TIME EQUAL TO TMIN. * 
C *#*####***************#***#***##**#*##*#***###**######## 
C 
133 DO 140 1=1,16 

VIN(I)=0.0 
IF (JUNC. EQ. 1.0) GOTO 145'- 
IF (JUNC. EQ. 0.0) GOTO 145 
VIN(I) - STORE(I+3, MARK) 
GOTO 140 

145 VIN(I) - STORE(I+29MARK) 
140 CONTINUE 
C xr 
C ***#*************#**#***#***#*##*###***##*#*##*#*#**#**# 
C* FIND OTHER IMPULSE WAVES THAT ARRIVE AT THE JUNCTION * 
C* SIMULTANEOUSLY AND'ADD THESE TO IMPULSES IN VIN. * 
C #*********************#***###**##*#*#**#*#***#***#****#* 
C 
88 P0 155 I=MARK+1ºSTACK 

SUE=AF+S(STORE(2rI)-TIME) 
IF (STORE(191). NE. JUNC)'GOTO 155°"'"" 
IF (SUEt. GT. 0.1 ) G0T0 155 
PO 160 K=1.16 
IF (JUNC. EQ. 1: 0) G0T0 165 
IF (JUNC. EQ. 0.0) GOTO 165 
VIN(K) = VIN(K) + STORE(K+3ºI) 
STORE(K+3ºMARK)=STORE(K+3ºMARK) + STORE(K+3ºI) 
GOTO 160 

165 VIN(K) = VIN(K) + STORE(K+2ºI) 
STORE(K+2ºMARK)=STORE(K+29MARK) + STORE(K+2ºI)= 

160 CONTINUE 
LOCK=I 
DO 157 K=LOCKrSTACK-1 
DO 157 J=1.20 
STORE(J"K)=STORE(JºK+1) 

157 CONTINUE 
DO 158 J=1.20 
STORE(JPSTACK)-0.0 

158 CONTINUE 
STACK-STACK-1 
GOT0 88 

155 CONTINUE 
F"OINT-MARK+1 

C 
C ###***##*##****##*#*###*##*###*#*##*#**#****##****#*#*#* 
C* MULTIPLY INCIDENT IMPULSE VOLTAGE VECTOR VIN WITH * 
C* THE JUNCTION SCATTER MATRIX TO FIND THE REFLECTED * 
C *, VOLTAGE VECTOR VRE . `* 
C *******##*#***********##******#*#*******#************#** 
C 

IF (JUNC. EQ. 1.0) CALL TIMES(SO, L) 
IF (JUNC. EQ. 2.0)-CALL TIMES(S1, N) 
IF (JUNC. EQ. 3.0) CALL TIMES(S2, N) 
IF"(JUNC. EQ. 4.0) CALL TIMES(S3, N) 
IF (JUNC. EQ. 5.0) CALL TIMES(S4, N) 
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C 
C 
C 
C 
C 
C 

* SEND THE REFLECTED IMPULSE VOLTAGES VRE TO THE 
* APPROPRIATE JUNCTIONS AND STORE THEM IN 'STORE'. * 

IF (JUNC. EQ90.0) GOTO 170 
IF (JUNC. EQ. 1.0) GOTO 180 
IF (JUNC. EQ. 2.0) GOTO 190 
IF (JUNC. EQ. 3.0) GOTO 200 
IF (JUNC. EQ. 4.0) GOTO 210 
IF (JUNC. EQ. 5.0) GOTO 220 

C 
C *##*###*####*****#*###*#*#####*#**#########*#######*#### 
C* REFLECTIONS FROM THE SOURCE TRAVEL TO JUNCTION 1 
C* WITH A TRANSIT TIME TO. * 
C s*##***#*##***##*******#***###*****##*#************#***# 
C 
170 CALL STOREO(TO. 1.0) 

GOTO 99 
C 
C #####################################*###########*###### 
C* REFLECTIONS FROM JUNCTION 1 TRAVEL TO JUNCTIONS 0# 
C*2tS WITH TRANSIT TIMES T0. T2 I T5. # 
C ##########k##################################*########## 
C 
180 CALL STOREI(T0,0.0) 

CALL STORE2(T1r2.0,4,10,11,17, -2,1,0) 
CALL STORE2(T1, S. 0,17,11,4,10, -8, -1,1) 
CALL STORE6(0. Or6.0) 

GOTO 99 
C 
C ####*###*####**#####*#################################* 
C* REFLECTIONS FROM JUNCTION 2 TRAVEL TO JUNCTIONS 1$ 3* 
C* WITH TRANSIT TIMES TI $ T2. * 
C ##*###*#**###*##########*#*######**#****#***#***##*#***# 
C 
190 CALL STORE2(T1,1.0,4,1O, 11,17, -3,1,0) 

CALL STORE2(T2,3.0,4,10,11,17,4,1,0) 
GOTO 99 

C 
C ##*###*#***###*#####*###*############################### 
C* REFLECTIONS FROM JUNTION 3 TRAVEL TO JUNCTIONS 
C*2Z4 WITH TRANSIT TIMES T2 A T3 RESPECTIVELY. * 
C ****##*#*#*##**#*#####*####*#*##########*#####*#####*### 
C 
200 CALL STORE2(T2,2.0,11, l7,4,10, -10,1,0) 

CALL STORE2(T3,4.0, I0,4,11r17, -2, -1,1) 
GOT0 99 

C 
C **#*#*##***##*#***#**#****#####*##*#**###****#***###**## 
C* REFLECTIONS FROM JUNCTION 4 TRAVEL TO JUNCTIONS: 
C*3$5 WITH TRANSIT TIMES T3 $ T2 RESPECTIVELY. * 
C *#####**#*#****#*#######*###*##***#***###**#####*#*##*## 
C 
210 CALL STORE2(T3,3.0,17,11,4,10, -16, -1,1) 

CALL STORE2(T2,5, O, 4,1O, 11,17,4,1,0) 
GOTO 99 

C 
C *##***#*####*#**#######################*####*########### 
C* REFLECTIONS FROM JUNCTION 5 TRAVEL TO JUNCTIONS: 
C*114 WITH TRANSIT TIMES TI I T2 RESPECTIVELY. * 
C *#*##**#*##***###*#######*#*#**#***#*#*#**##**##*#*#*### 
C 
220 CALL STORE2(T1,1. O, 17,11,4,10, -9, -1,1) 

CALL STORE2(T2,4. O, 11.17,4,10, -10,1,0) 
GOT0 99 

C 
C ################################***#**###**##**##*##*### 
C# CHECK FOR STOPPING CRITERIA .# C #*#############****#####**##*tt#####*#######*##########* 
C 
99 IF (TIME. GT. TIMEND) G0T0 230 

IF (STACK. GT. 4999) G0T0 230 
GOTO 77 
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C 
C ##########*#**###*############*##*###*#*#####*#*####***# 
C# PLACE ARRAY 'STORE' IN A DATA FILE 'RESPONSE'. # 
C ########*###**#******#**###*###**###*##***####**####### 
C 
230 WRITE(5,221) 
221 FORMAT(1H-, 'CHOOSE THE POSITION ON THE COIL WHICH') 

WRITE(5p222) 
222 FORMAT(1H r'IS TO BE ANALYSED. ') 

WRITE(5r223) 
223 FORMAT(1H , 'ENTER JUNCTION NUMBER ......... ', $) 

READ(5,235)JUNC 
OPEN(UNIT=CHAN, DEVICE='DSK', FILE='RESPONSE') 
WRITE(CHAN. 235)JUNC 
WRITE(CHAN, 235)TIMEND 
WRITE(CHAN, 350)STACK 

235 FORMAT(G) 
KCOUNT=0 
ISO 240 I=1, STACK 
IF (STORE(1. I). NE. JUNC) GOTO 240 

KCOUNT=KCOUNT+1 
240 CONTINUE 

WRITE(CHAN, 350)KCOUNT 
350 FORMAT(I) 

DO 290 1=1iSTACK 
IF (STORE(1, I). NE. JUNC) GOTO 290 
WRITE(CHAN, 295)(STORE(J, I)rJ=1,20) 

295 FORMAT(G) 
290 CONTINUE 

CLOSE(UNIT=CHAN. DEVICE='DSK', FILE='RESPONSE') 
WRITE(59310)TIMEND 

310 FORMAT(IH-. 'FOR A SIMULATION TIME....... 'rF4.1) 
WRITE(5,320)STACK 

320 FORMAT(IH , 'THE N0. OF ENTRIES IN 'STORE' WERE...... ', I) 
WRITE(5,330)JUNC 

330 FORMAT(1H , 'AT JUNCTION ........ 'rF3.1) 
WRITE(5.340)KCOUNT 

340 FORMAT(1H , 'THE NO. OF ENTRIES WERE ....... ', I) 
END 

C ***********#**#**#*#****#*##**#**#*#**#*#******#****#*## 
C* SUBROUTINE TO MULTIPLY INCIDENT VOLTAGE VECTOR WITH 
C* THE APPROPRIATE JUNCTION SCATTER MATRIX TO GIVE THE # 
C* REFLECTED VOLTAGE VECTOR. * 
C ******#**###*#**#*##**#*##**#*##*#*#**#*#***#*****#***** 
C 

SUBROUTINE TIMES(S, NO) 
DIMENSION S(20,20) 
COMMON/BLOCK2/VIN(20) 
COMMON/BLOCK3/VRE(20) 
REAL TEMP 
TEMP=0.0 

C RESET REFLECTED VOLTAGE ARRAY VRE. 
DO 300 J=1,20 
VRE(J)=0.0 

300 CONTINUE 
DO 500 I-l, NO 
DO 500 J=1, N0 
TEMP - S(I, J)*VIN(J) 
VRE(I) a VRE(I) + TEMP 

500 CONTINUE 
RETURN 
END 

"I 
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C 
C **************#**: ***********: *#**#*********#**#*#**: *** 
C* THE FOLLOWING`SET OF SUBROUTINES STORE THE REFLECTED 
C* IMPULSE WAVES IN 'STORE' ALONG WITH THE JUNCTION TO * 
C* WHICH THEY TRAVEL AND THE TIME OF ARRIVAL THERE. * 
C ****#**#*##*#**#********#***#***#*#*#****#**#*###*#*###* 
C 

SUBROUTINE STOREO(T, JUNCT) 

COMMON/BLOCKT/STORE(20PS000). STACK, TIME 
COMMON/BLOCK2/VIN(20) 
INTEGER STACK 
REAL TIME. T. JUNCT 
STACK=STACK+1 
STORE(19STACK)=JUNGT 

STORE(2. STACK)- TIME +, T 
STORE(3, STACK)= VIN(1) 
DO 250 K=4 r 18 
STORE(KrSTACK)= 0.0 

250 CONTINUE 
RETURN 
END 

SUBROUTINE STOREI(T, JUNCT) 

COMMON/BLOCK1/STORE(20r5000)'STACK, TIME 
COMMON/BLOCK3/VRE(20) 
INTEGER STACK 
REAL TIME, TrJUNCT 
STACK=STACK+1 
STORE(1rSTACK)- JUNCT 
STORE(2, STACK)= TIME +T 
STORE(3rSTACK)='VRE(1) 
DO 260 K=2x16 
STORE(K+2, STACK)=0.0 

1160 CONTINUE 
RETURN 
END 

SUBROUTINE STORE2(T, JUNCT, KI, K2ºJ1, J2, M, STEPºINC) 

COMMON/BLOCK1/STORE(20r5000)rSTACK, TIME 
COMMON/BLOCK3/VRE(20) 
INTEGER STACK, MPINC, STEP, ADD 
REAL TIMEPTPJUNCT 
STACK=STACK+1 
STORE(1? STACK)= JUNCT 
STORE(2, STACK)= TIME +T 
ADD =0 
DO 270 K=K1rK2, STEP 
STORE(K. STACK) = VRE(K+M+ADD) 
ADD=ADD+INC+INC 

270 CONTINUE 
DO 280 J-J1rJ2 
STORE(J, STACK)- 0.0 

280 CONTINUE 
RETURN 
END 

SUBROUTINE STORE6(1 JUNCT) 

COMMON/BLOCKI/STORE(20r5000)rSTACK, TIME 
COMMON/BLOCK3/VRE(20) 
INTEGER STACK 
REAL TIME, T, JUNCT 
STACK=STACK+I 
STORE<1, STACK)= JUNCT 
STORE(2rSTACK)- TIME+T 
STORE(18, STACK)= VRE(16) 
RETURN 
END 
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C m. ý. C #*#***#*********##*#*#*##***##****#*#*******#**********# 
C* THIS PROGRAM PERFORMS A TIME DOMAIN CONVOLUTION OF 
C* THE IMPULSE RESPONSE OF STATOR COIL MULTI-CONDUCTOR * 
C* TRANSMISSION LINE WITH AN INPUT IMPULSE FUNCTION OF * 
C* ANY GENERAL FORM TO GIVE THE OUTPUT FUNCTION. * 
C #*#**#####**#***###****#*****#*******#***#************** 
C 

DIMENSION STORE(20r2000). TIMES(50) 
COMMON/BLOCKT/TEMPT(1000). TEMPO(1000)PTIME(50000). OUT(50000) 
COMMON/BLOCK2/NUM, KPILE, NPILE. INsKC1 
DOUBLE PRECISION FILE - INTEGER CHAN, STACK, NPILE+KFILE, NUM, IN, KC1, KC2 
REAL INPUT(50)PTIMEND+JUNCsPROD 

C 
C 
C 
C 
C 

# READ THE IMPULSE RESPONSE FROM DATA FILE 'RESPONSE' * 

CHAN=55 

OPEN (UNI T-CHAN. DEVICE- 'DSN', FILE= ' RESPONSE. PAT') 
READ(CHAN. 21)JUNC 

READ(CHANr21)TIMEND 
READ(CHAN. 15)STACK 
READ(CHANv15)K000NT 

21 FORMAT(G) 
15 FORMAT(I) 

DO 10 I=1. KCOUNT 
READ(CHANr20)(STORE(J, I)PJ=1+20) 

20 FORMAT(G) 
10 CONTINUE 

CLOSE (UNIT -CHAN, DEVICE ='USK'rFILE='RESF'ONSE. DAT') 
CHAN=CHAN+I 

C 

C* READ THE INPUT FUNCTION FROM DATA FILE 'INPUT'. # 
C #**#*#**#*#**##**##**#*#*##**##*#####*###*##*#####*##### 
C 

OPEN (UNI T=CHAN, DEVICE='DSK', FILE='INPUT') 
READ(CHANr25)KTOP 

25 FORMAT(I) 
DO 30 1=1, KTOP 
READ(CHANr40)INPUT(I)rTIMES(I) 

40 FORMAT(2G) 
30 CONTINUE 

CLOSE(UNIT=CHANrDEVICE='DSK', FILE='INPUT') 

WRITE(5t41)TIMEND 
41 FORMAT(1H-, 'FOR A SIMULATION TIME OF....... '9F5.1) 

WRITE(5P42)STACK 11 
42 FORMAT(iH , 'THE NO. OF ENTRIES IN 'STORE' WERE...... ', I) 

WRITE(5,43)JUNC 
43 FORMAT(1H , 'AT JUNCTION........ ', F3.1) 

WRITE(5,44)KCOUNT 
44 FORMAT(1H , 'THE NO. OF IMPULSES WERE....... ', I) 

IF (JUNC. EQ. 6.0) NTURN=18 
IF (JUNC. E(2.0.0) NTURN=3 
GOTO 55 
WRITE(5P46) 

46 FORMAT (1H-, 'ENTER COIL TURN NO. TO BE ANALYSED. -.... ', f) 
READ(5947)NT 

47 FORMAT(I) 
NTURN=NT+2 

Figure A. 4 - Program to Perform 

Convolution - CONVL 
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C 
C 
C 
C 
C 
55 

222 

# CONVOLUTION OF INPUT FUNCTION WITH IMPULSE RESPONSE. # 

NPIIE=0 i NUM=0 I KPIIE=0 
MRITE(5.222)NTURN 
FORMAT(I) 
DO 50 IN=19KTOP 
DO 60 K=1lKC0UNT 
TMOD=A8S(STORE(NTURNiK)) 
IF (TMOD. GT. 0.0000001) GOTO 65 
NTURN=NT+9 

65 PROD=INPUT(IN)*STORE(NTURN. K) 
IF (ABS(PROD). LT. 0.001) GOT0 60 
TEMPO(K)=PROD 
TEMPT(K)=STORE(2, K)+TIMES(IN) 
WRITE(5r888)TEMFO(K)PTEMPT(K) 

888 FORMAT(3X. G. 3X, G) 
NUM=NUM+1 

60 CONTINUE 
CALL SORT 

50 CONTINUE 

C 
C 
C 
C 
C 

80 
70 
C 
C 
C 
C 
C 
555 

# ADD SIMULTANEOUS IMPULSES IN THE OUTPUT RESPONSE. * 

G0T0 555 
DO 70 I=1rKPILE-1" 
SUB=ABS(TIME(I)-TIME(I+1)) 
IF (SUB. GT. 0.1) G0T0 70 
0UT(I)=OUT(I)+OUT(I+1) 
OUT(I+1)=0.0 I TIME(I+1)=0.0 
DO 80 J=I+1rKPILE 
OUT(J)=OUT(J+1) 
TIME(J)=TIME(J+1) 
CONTINUE 
CONTINUE 

# FILTER THE OUTPUT FUNCTION BEFORE IT IS PLOTTED. * 

DO 77 I=1r200 
WRITE(5r88)TIME(I)POUT(I) 

Be FORMAT(2G) 
77 CONTINUE 

C 
C 
C 
C 
C 

END 

# SUBROUTINE TO ARRANGE IMPULSES IN CHRONOLOGICAL ORDER* 

SUBROUTINE SORT 
COMMON/BLOCK1/TEMPT(1000), TEMF'0(1000), TIME(50000), OUT(50000) 
COMMON/BLOCK2/NUM, KPILE, NPILE, IN, KC1 
INTEGER NUM, NPILE, KPILE, IN, KCI, KC2 
KC2=1 I KC1=1 : NPILE=NPILE+NUM 
IF (IN. EQ. 1) GOTO 100 
WRITE(5,111)IN, NUM 

111 FORMAT(2I) 
GOTO 120 

110 KC1=KC1+1 
130 IF (KC1. GT. KPILE) GOTO 100 
120 IF (TEMPT(KC2). GT. TIME(KC1)) GOTO 110 

I+0 140 I=NPILE, KC1 
TIME(I+1)=TIME(I) 
OUT(I+1)=OUT(I) 

140 CONTINUE 
TIME(KC1)=TEMPT(KC2) 
OUT(KC1)=TEMPO(KC2) 
KC2=KC2+1 i KPILE=KPILE+1 
GOTO 120 

100 DO 150 J=KC1, NF'ILE 
" TIME(J)=TEMPT(KC2) 

OUT(J)=TEMF'O(KC2) 
KC2=KC2+1 i KPILE=KF'ILE+1 

150 CONTINUE 
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NUM-0 
DO 1000 J=1rNFILE 
WRITE(5.1001)OUT(J)vTIME(J) 

1001 FORMAT(3X. F15.12r3XvF15.12) 
1000 CONTINUE 

RETURN 
END 

c 
c 
c 
c 
c 
cý 

c- 

**###*#**X#X K*##*X*##*;. ***'K:: **XX R**N**t'X k*X###t: ý * K*: ( *#*: K 
# THIS FROGF: AM FUf: hULATES 1"HE INF'U"1 1MF'lJl: "E FUP: CTIUN * 
# FOR USE IN THE CONVOLUTION f'ROGF. Ari CCº1` : ýL ". * 
*###########*##*#*#**#*A: **#*: KXX**#*ýK: K;. #kt. K.: # **"Kk: k*K:. t 1:: K'Y,. 1A 

REAL INPUT(50), TIMES(50) 
DOUBLE PRECISION FILE 
INTEGER CHAN 
CHAN=56 
WRIFE(5,10? 

10 FORMAT( 1H-, 'THIS PROGRAM FOF: hIULfITES THE INPUT IMF"ULCE') 
WRITE(C, 20) 

2Q FORMAT(1H , 'FUNCTION FOR i)SE: IN THE COi;! 'JCLUTION F'RC1Gf: AM. ') 
WRITE(5,30). 

30 FORMAT (1H-, 'ENTER THE NO. CIE IMPULSES WHICH FORM') 

71 FORMAT(1H , 'THE INF'UF FUNCTION : ', t) 
REAG(5,35)N 

35 FORMAT(I) 
WRITC(5,40) 

40 FOhMAT(1H-, 'E: NTER THE MAGNITUDE AND TIME OF EACH lnF'IJLLC: ; JHI 
WF; ITE(5,50) 

50 FORMAT(1H º'FORM THE IIlPIIF FUNCTION PONE Al A TIME : ") 
DO 60 I=1, N 
REAG(5,45)IiJF"UT(I), TIME£ti IJ 

45 FORMAT(2G) 
60 CONTINUE 
C 
C ýi*KkKRK#"R4**K***KýKý{: KzXr:;: R4: KýKýkA1>wý'K'tKkK'Y. 'IxcRaý>.: K*4KK**ý 
C* STORE THESE VALUES IN A VATA FILE 'INPU1'. * 
C **KKK****#**ý****#: K1K4ýR*4K*Je: ký(4kK: R: k7KK4*1(KWii. Y. 3C: kkFý: K**i7k 
C 

KTOF=N 
OFEN(UNIT=CHAN, DEVICE='IISK', FILE='INPUT') 
WRITE(CHAN, 73)KIOF 

75 FORMAT(I) 
DO 70 1=1, N 
WRITE(CHAN, 80)INFUT(I), TIMES(I) 

8G FORMAT(2G) 
70 CONTINUE 

CLOSE(UNIT=CHAN, DEVICC=IDSK', FILE='INP'UT') 
END 

Figure A. 5 - Program to Form Input 

Impulse Function - INPUT 
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Appendix B 
Scatter Matrices 



MOOAAR TO PRINT SCATTER MATRICIS. 
ENTER no. Of COIL TURKS Il 

(MT(A 1ATA rIl( MAA[ t1CAT0 

-1.02034 1.02071-". 47SSr 0.00000 0.00000 0.00000 

". 97944 0.12034-e. 47350 0.00000 0.00000 0.00000 

o. 777n-e. 77)n 0.79791 0.00000 0.00000 0.00000 
1.49"71-e. 4r471 0.35352 0.00000 0.00000 0.00000 
". 41H"-". NN" 0.31717 0.10000 0.00000 0.00000 
o. s3704-O. S3204 0.21249 0.00000 0.00000 0.00000 
0. "9044-9. "9041 0.25100 0.00000 0.00000 0.00000 
/. 43"9"-1.47494 0.22256 0.00000 0.00000 0.00000 
". 77775-0.77773 1.79791 0.00000 0.00000 0.00000 
O. IH71-O. N471 0.73332 1.00000 0.00000 0.00000 
0.41H"-0.41914 0.31717 0.00000 1.00000 0.00000 

0.33204-e. 33204 0.212"9 0.00000 0.00000 1.00000 
p, 49041-0. "9p44 0.25101 0.00000 0.00000 0.00000 
0.47494-0.43494 0.22254 0.00000 0.00000 0.00000 

0.74740-0.74740 0.17512 0.00000 0.00000 0.00000 
0.34740-0.74340 0.17302 0.00000 0.000110 0.00000 

(Junction 11 
0.00000-0.17502 0.47559 0.00000 
0.00000-0.11502 0.47559 0.00000 
0.00000-0.22256 0.60202 0.00000 
0.00000-0.75100-0.35552 1.00000 
0.00000-0.20269-0.31710 0.00000 
O. oooo0-0.3 Vtl-o. 20269 0.00000 
0.00000-0.35552-0.25100 0.00000 
0.00000-0.39790-0.22256 0.00000 
0.00000-0.22256-0.39790 0.00000 
0.00000-0.25100-0.35552 0.00000 
0.00000-0.20269-0.31710 0.00000 
0.00000-0.3I710-0.2BN1 0.00000 
1.00000-0.35552-0.25108 0.00000 
0.00000 0.60202-0.22256 0.00000 
0.00000 0.67559-0.17502 0.00000 
0.00000 0.67559-0.17502 0.00000 

0.00000 0.00000 0.00000 0.17562-0.34360 0.34360 

0.00000 0.00000 0.00000 0.17542-0.34360 0.74360 

0.00000 0.00000 0.00000 0.22251-0.434/4 0.63496 

0.00000 0.00000 0.00000 0.2310e-0.69066 0.69066 

1.00000 0.00000 0.00000.0.24269-0.55206 0.55206 

0.00000 1.00000 0.00000 0.31717-0.61906 0.61996 

0.00000 0.00000 1.00000 0.35552-0.6+674 0.6+470 

0.00000 0.00000 0.00000 I A+N9-O. 7777s 0.77775 

0.00000 0.00000 0.00000 0.22256-0.43494 0.43494 

0.00000 0.00000 0.00000 0.25106-0.49066 0.49061 

0.00000 0.00000 0.00000 0.29249-0.55206 0.55206 

0.00000 0.00000 0.00000 0.31717-0.61964 0.61994 

0.00000 0.00000 0.00000 0.35552-0.69679 0.6947e 

0.00000 0.00000 0.00000 0.39710-0.77775 0.77775 

0.00000 0.00000 0.00000-0.47559 0.02036 0.97964 

0.00000 0.00000 0.00000-0.4755+ 1.02036-0.02036 

ENTEN DATA MILE NAHE 16CATI (Junction 2) 
0.620)0-0.11532-0.10160-0.07117-O. OSI01-0.01731-0.03966 1.42870 0.14552 0.30160 0.07147 0.05104 0.03753 0.05966 0.00000 0.00000 

-0.29023'0.10759-O. 13097-0.0921]-0.06579-O. OIB]8-0.07691 0.29823 1.16759 0.13097 0.09213 0.06579 0.01839 0.07691 0.00000 0.00000 

0.20022-0.13097-0.17012-0.125: 9-0.08917-0.06579-0.10157 0.20822 0.13097 1.17012 0.12529 0.00947 0.06579 0.10459 0.00000 0.00000 

-0.11617'0.09211-0.12329-0.17516-0.12329-0.09213-O. I1117 0.14647 0.09213 0.32529 1.17346 0.12529 0.09213 0.14667 0.00000 0.00000 

-0.101St-0.06579-0.00917-0.12329-0.17012-0.13097-0.20022 0.10459 0.06579 0.00947 0.12529 1.17912 0.13097 0.20822 0.00000 0.00000 

'0.07691-0.0103E-0.06579-0.09213-0.13097-0.10739-0.29823 0.07691 0.04039 0.06579 0.09213 0.13097 1.10759 0.29923 0.00000 0.00000 

0.05966-0.93753-0.05104-0.07147-0.10160-0.14552-0.42870 0.05966 0.03753 0.05106 0.07167 0.10160 0.16552 1.12070 0.00000 0.00000 

0.57130-0.16552-0.10160-0.07117-0.05101-0.03733-0.05966 0.42870 0.14552 0.10160 0.07117 0.05104 0.03753 0.05966 0.00000 0.00000 

-0.29973 0.01211-0.17097-0.09213-0.06379-0.01038-0.07691 0.29823 0.18759 0.13097 0.09213 0.06579 0.04839 0.07691 0.00000 0.00000 

-0.20022-0.13097 0.02100-0.12529-0.08917-0.06579-0.10159 0.20822 0.13097 0.17112 0.12529 0.08947 0.06579 0.10159 0.00000 0.00000 

0.11617-0.09217-0.17529 0.02156-0.12529-0.09213-0.11617 0.14647 0.09213 0.12529 0.17516 0.12529 0.09213 0.14647 0.00000 0.00000 

0.10139-0.06579-0.00917-0.12529 0.02188-0.13097-0.20022 0.10459 0.06579 0.09417 0.12529 0.17012 0.13097 0.20822 0.00000 0.00000 

-0.07691'0.01030-0.06379-0.09213-0.! 
]097 0.81211-0.29823 0.07691 0.06938 0.06579 0.09213 0.13097 0.19759 0.29823 0.00000 0.00000 

-0.05966-0.03753-0.03101-0.07117-0.10160-0.16552 
0.57130 0.05966 0.03753 0.05106 0.07167 0.10160 0.14552 0.42670 0.00000 0.00000 

ENTEN DATA VILE NAME : 8CAT2 
( Junction 3) 

0.62870 1.16552 0.10160 0.07147 0.05104 0.03753 0.05966 0.57130-0.16552-0.10160-0.07117-0.05101-0.03753-0.05966 0.00000 0.00000 

0.29023 0.16759 0.13097 0.09213 0.06579 0.01836 0.07691-0.29023 0.11211-0.13097-0.09213-0.06379-0.01838-0.07691 0.00000 0.00000 

0.20622 0.13097 0.17912 0.12529 0.08947 0.06579 0.10459-0.20822-0.13097 0.62199-0.12529-0.09917-0.06579-0.10159 0.00000 0.00000 

0.11617 0.09213 0.1529 0.17566 0.12529 0.09213 0.11617-0.16667-0.09213-0.12529 0.92654-0.12529-0.09213-0.16647 0.00000 0.00000 

0.10459 0.06579 0.00967 0.12529 0.17912 0.13097 0.20922-0.10159-0.06579-0.08917-0.12529 0.82199-0.13097-0.20622 0.00000 0.00000 

0.07691 0.01630 0.06579 0.09213 0.13097 0.10759 0.29023-0.07691-0.06836-0.06579-0.09213-0.13097 0.91241-0.29823 0.00000 0.00000 

0.05966 0.03733 0.05104 0.07147 0.10160 0.14552 0.12870-0.05966-0.03753-0.03101-0.07117-0.10160-0.11552 0.57130 0.00000 0.00000 

1.42070 0.14552 0.10160 0.07147 0.05104 0.03753 0.05966-0.12870-0.16532-0.10160-0.07117-0.05101-0.03753-0.05966 0.00000 0.00000 

0.29123 1.10759 0.13097 0.09213 0.06579 0.04938 0.07691-0.29023-0.10759-0.13097-0,09213-0.06579-0.04839-0.07691 0.00000 0.00000 

0. "622 0.13097 1.17012 0.12529 0.00947 0.06579 0.10159-0.20922-0.13097-0.17012-0.12529-0.08917-0.06579-0.10159 0.00000 0.00000 

0.16617 0.09213 0.12529 1.17546 0.12529 0.09213 0.11617-0.11617-0.09213-0.12529-0.17516-0.125: 9-0.09213-0.11617 0.00000 0.00000 

0.10159 0.06579 0.09917 0.12529 1.17012 0.13097 0.20622-0.10159-0.06579-0.08917-0.12529-0.17612-0.13097-0.20822 0.00000 0.00000 

0.07691 0.04036 0.06579 0.09213 0.13097 1.19759 0.29623-0.07691-0.01031-0.06579-0.09213-0.13097-0.18759-0.29123 0.00000 0.00000 

0.05966 0.03753 0.05101 0.07167 0.10160 0.11552 1.12070-0.05966-0.03751-0.05101-0.07117-0.10160-0.1155: -0.12870 0.00000 0.00000 

ENTEN DATA FILE NAME : SCAT3 
(Junction 4) 

-0.12170-0.11552-0.10160-0.07117-0.05101-0.03753-0.05966 1.42870 0.11552 0.10160 0.07167 0.05104 0.03753 0.05966 0.00000 0.00000 

-0.29023-0.10759-0.13097-0.09213-0.06579-0.01838-0.07691 0.29623 1.10759 0.13097 0.09213 0.06579 0.04638 0.07691 0.00000 0.00000 

-0.20022-0.13097-0.17612-0.12329-0.06167-0.06379-0.10159 
0.20822 0.13097 1.17612 0.12529 0.00947 0.06579 0.10459 0.00000 0.00000 

-O. l1117'0.09213-0.12329-0.17566-0.12529-0.09213-0.11617 0.16617 0.09213 0.12529 1.17516 0.12529 0.09213 0.14647 0.00000 0.00000 

0.101396371-0.00917-0.12529-0.17012-0.13097-0.20922 0.10459 0.06579 0.00917 0.12529 1.17612 0.13097 0.20622 0.00000 0.00000 

-0.07691-0.0103E-0.06379-0.09213-0.13097-0.10759-0.29023 0.07691 0.01039 0.04579 0.09213 0,13097 1.111759 0.29823 0.00000 0.00000 

-0.05966-0.03753-0.03101-0.07167-0.10160-0.11552-0.62070 0.05966 0.03753 0.05104 0.07147 0.10160 0.14552 1.12870 0.00000 0.00000 

0.57130-0.11552-0.10160-0.07117-0.05101-0.03753-0.05966 0.42870 0.11552 0.10160 0.07147 0.05104 0.03753 0.05966 0.00000 0.00000 

-0.29923 0.01211-0.13097-0.09213-0.06579-0.01031-0.07691 0.29123 0.10759 0.13097 0.09213 0.06579 0.06038 0.07691 0.00000 0.00000 

-0.20122-0.13097 0.92161-0.12529-0.00967-0.06579-0.10159 0.20822 0.13097 0.17912 0.12529 0.00947 0.06579 0.10459 0.00000 0.00000 

. 0.11647-0.01213-0.12529 0.62151-0.12529-0.09213-0.16617 0.14647 0.09213 0.12529 0.17546 0.12529 0.09213 0.14667 0.00000 0.00000 

0.10159-0.06579-0.06917-0.12329 0.8210E-0.13097-0.20822 0.10459 0.06579 0.00947 0.12529 0.17912 0.13097 0.20922 0.00000 0.00000 

-0.07691-0.06036-0.06579-0.09213-0.13097 
0.81241-0.29923 0.07691 0.04830 0.06579 0.09213 0.13097 0.10! 59 0.29823 0.00000 0.00000 

-0.0194-0.03733-0.05101-0.07167-0.10160-0.11552 0.57130 0.05966 0.03753 0.05104 0.07147 0.10160 0.14552 0.42870 0.00000 0.00000 

ENttN DATA FILE NAME : SCAT4 
! Junc tion 51 

0.42070 0.14552 0.10160 0.07147 0.05104 0.03753 0.05966 0.57130-0.14552-0.10160-0.07147-0.05104-0.03753-0.05966 0.00000 0.00000 

0,29023 0.10759 0.13097 0.09213 0.06579 0.04830 0.07691-0.29823 0.81241-0.13097-0.09213-0.06579-0.04038-0.07691 0.00000 0.00000 

0.20622 0.13097 0.17012 0.12529 0.00947 0.06579 0.10459-0.20122-0.13097 0.62106-0.12529-0.06947-0.06579-0.10159 0.00000 0.00000 

0.14647 0.09213 0.12529 0.17346 0.12529 0.09213 0.14647-0.14647-0.09213-0.12529 0.02454-0.12529-0.09213-0.14647 0.00000 0.00000 

0.10459 0.06379 0.00947 0.12529 0.17012 0.13097 0.20822-0.10439-0.06379-0.09447-0.12529 0.82189-0.13097-0.20822 0.00000 0.00000 

0.07691 0.04438 0.06579 0.09213 0.13097 0.18759 0.29923-0.07691-0.01638-0.06579-0.09213-0.13097 0.01241-0.29123 0.00000 0.00000 

0.05966 0.03753 0.05104 0.07147 0.10160 0.14552 0.42870-0.05966-0.03753-0.05104-0.07117-0.10160-0.11552 0.57130 0.00000 0.00000 

1.42070 0.14552 0.10160 0.07147 0.05104 0.03753 0.05966-0.62870-0.16552-0.10160-0.07117-0.05101-0.03733-0.05966 0.00000 0.00000 

0,29023 1.11759 0.13091 0.09213 0.06379 0.04638 0.07691-0.29823-0.18759-0.13097-0.09211-0.06579-0.04830-0.07691 0.00000 0.00000 

0,20022 0.13097 1.17112 0.12529 0.09947 0.06579 0.10459-0.20022-0.13097-0.17812-0.12529-0.00947-0.06. '. 79-0.10459 0.00000 0.00000 

0.14647 0.09213 0.12529 1.17566 0.12529 0.09213 0.11617-0.11617-0.09213-0.12529-0.17516-0.12329-0.09213-0.11617 0.00000 0.00000 

0.10459 0.06579 0.01947 0.12520 1.17012 0.13097 0.20822-0.10459-0.06579-0.00947-0.12529-0.17812-0.13097-0.20022 0.00000 0.00000 

0.07691 0.04639 0.06579 0.09213 0.13097 1.10759 0.: 9823-0.07691-0.010]6-0.06579-0.09213-0.11097-0.16759-0.29823 0.00000 0.00000 

0.05966 0.03753 0.03104 0.07147 0.10160 0.14552 1.62870-0.05966-0.03733-0.05101-0.07117-0.10160-0.14532-0.42170 0.00000 0.00000 

Figure B. 1 - Scatter Matrices. 
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A TECHNIQUE FOR THE LOCATION OF PARTIAL DISCHARGE IN 
THE STATOR WINDING OF A HIGH-VOLTAGE MOTOR, 

JG Buchan and DG Edwards 
Robert Gordon's Institute of Technology, Aberdeen 

1 INTRODUCTION 

If a large electric motor fails in service the cost of repair is 
often secondary to the loss of production which, ensues. This is 
especially so in high-cost operations such as offshore oil and gas 
production where the harsh environment and. severe duty cycles have 
contributed to a higher than expected failure rate of high power 
drives (1). For this reason, there is an increasing interest in on- 
line condition monitoring techniques applicable to large electric 
motors. Some monitoring techniques, based on measurement of 
vibration and temperature, are well established, and, more recently, 
it has been shown that spectral analysis of the supply current wave- 
form can give information on rotor problems-(2,3). A survey has 
shown that almost a half of all large motor failures are due toý 
insulation breakdown, but there is, as yet, no generally, available 
on-line technique for monitoring stator winding insulation. Some off- 
line diagnostic techniques are well established (4), but the majority 
of insulation failures which have occurred in machines with epoxy- 
mica insulation systems have been the result of degradation processes 
which have developed too rapidly to be predicted by tests carried out 
during routine maintenance shut-down periods.,, - 

ýA 
The most obvious basis, for a condition monitoring technique for high 
voltage insulation is a measurement of partial discharge activity, 
since the discharge characteristic of the insulation structure may be 
expected to change with the development of any one of a number. of 
possible degradation processes. An on-line technique should be non- 
invasive so that it cannot itself detract from the drive. reliability. 
Furthermore it should be able to separately identify the discharge 
characteristic of one machine in a situation where several high- 
voltage motors are connected to the same supply busbars via short 
lengths of cable, and it should preferably give information con- 
cerning the location of high-energy discharge sites in the stator 
winding structure. 

2 GENERAL CONCEPT 

The new technique developed for detection and location of partial.; 
discharges. in: the stator winding structure is based upon the 

, 
behaviour of the winding as a transmission line when subjected to 
high-frequency disturbances. Signals arriving at the line and 
neutral ends of.. the phase winding are detected by means of Rogowski 
coils and transmitted via fibre optic links to a processing unit. A 
block diagram of the system is shown in Figure 1. 

Each of the programmable delay lines has a maximum delay equal to the 
propagation time for a pulse to travel the length of the phase- 
winding. The delay. lines are switched in synchronism,, under control 
of a microcomputer, and in a manner such that the sum of the two 
delays is always just equal to the winding propagation time. Thus 
for a 

'given 
combination of delay line settings, the coincidence unit 
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will only recognise pulses originating from one local area of the 

phase winding. 

The output from the coincidence unit is fed to a multichannel 
analyser which has options of multichannel scaling or pulse height 

analysis modes. The MCA also operates under control of the micro- 
computer and, when multichannel scaling is implemented in synchronism 
with delay line switching the resultant display on the MCA screen is a 

scan of discharge activity along the phase winding. 

In the multichannel scaling mode the system can only count pulses 
above a chosen threshold level, but when an area of interest has been 

located by the scan technique the discharge'activity at, this locality 

can be examined in greater detail by freezing the scan at that point 
and implementing pulse height analysis mode on the MCA. 

Since the technique rejects pulses from all positions on the winding 
other than the one focussed by the delay line settings, it follows 

that pulses originating from discharge. sources external to the machine 
under examination will also be rejected. Accidental coincidences will 
occur but the resolution of the coincidence unit can be fine enough to 

ensure that this is not a serious problem. 

3 EXPERIMENTAL SYSTEM 

For the purposes of development of the location technique, a model 
winding was constructed of a group of 6.6 kV, 7-turn-coils supported 
in a cradle of sheet copper which had the correct slotted profile of 
a stator core. Since the pulse penetration depth for-steel is less 
than 50 pm at 100 kHz, 

-it was not considered necessary to include; an 
iron core in the, model. A similar conclusion has been reached by 

previous workers (5). The model winding was terminated in a resis- 
tance representative of the surge impedance of the supply cable. 

The Rogowski coils were wound onto polythene formers and enclosed in 

copper screening cans. Each coil had 200 turns and was terminated by 

a resistor of sufficiently low ohmic value to give the coil a self- 

, 
integrating characteristic. 

The programmable delay lines were made up of binary weighted lengths 

of-low-loss coaxial cable. Each line had a total delay of 1.6 micro- 
seconds and was variable in 256 steps of 6.3 nanoseconds each. An 
IEEE bus system was used to interconnect the microcomputer, the delay 
lines, and the digital plotter. Control of the multichannel analyser 
was via an RS 232 link. 

Pulse generators were capacitively coupled to the model winding as 

required to simulate partial discharge sources. 

4 PULSE. PROPAGATION IN A STATOR WINDING 

The, success of the location technique is dependent on the winding 
behaving as 4 transmission line to high-frequency disturbances and 
the pulse still being identifiable at the termination after frequency- 

selective attenuation in the winding. A study of pulse propagation 
in the model winding was therefore undertaken prior to the develop- 

ment of the location technique. 
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Each coil behaves as a multiconductor transmission line to high speed 
transients (6) and the precise mode of propagation is complex., The 
speed of travel, in the slot portion of the winding will be somewhat 
lower than in the end winding region, but an effective propagation 
velocity can be established to form the basis of a location technique. 
Figure 2 shows. an idealised pulse which was injected into the model 
winding at a point six coils away from one termination and the resul- 
tant pulse detected at the termination after a delay of 660 nano- 
seconds. The effective propagation velocity is therefore 120 metres/ 
microsecond based on the coil dimensions. 

5 DISCHARGE LOCATION TEST RESULTS 

The scan plots of Figures 3-5 illustrate the results of tests carried 
out on a group of six 6.6 kV coils. Artificial discharge sources were 
applied as necessary to the intercoil connection points. For the 
first test, a single source was connected to each of the intercoil 
links and to each end of the winding in turn. A location scan was 
carried out in each case and all seven results are plotted for con- 
venience of comparison in Figure 3. Full scale on the Channel 
position axis represents 256 delay increments, each, of 6.3 nanoseconds, 
so that the well-defined peaks on the plot indicate the positions of 
connection of the pulse source to within 2-3 delay increments, or, in 
terms of position, of the order of one turn of the coil. The 
precision of , 

location is governed essentially by the resolution of the 
coincidence unit (15-20 ns). 

Figure 4 shows the result of applying two pulse sources to the winding 
simultaneously. A source of 5 kHz repitition frequency was applied to 
the link between coils 1 and 2, and a second source of 1.6 kHz 
repetition frequency was connected to the link between coils 5 and 6. 
The positions of the peaks accord with predicted positions and the 
amplitudes, in terms of pulse count, are 1167 and 380 respectively, 
which are reasonably close to the pulse counts of 1250 and 416 cal- 
culated from the dwell time of 250 milliseconds for each channel 
position. The dwell time was.,, arbitrary for this test, but in a 
situation where- a motor winding is excited by a power frequency test 
voltage, or normal supply source, the dwell time for each scan 
position should be an integral multiple of the period of the supply 
waveform. Thus for a 256 position scan and a 50 Hz supply, the mini- 
mum value of total scan time would be 256 x 0.02 = 5.12 seconds. In 
practice it would be desirable to have a dwell time of several supply 
cycles to allow for random variations in discharge generation, so that 
a typical scan time for 256 channels might be of the order, of one 
minute. 

Figure 5 shows the result of a scan test with six independent sources 
of different repetition frequencies connected to the model winding. 

6 CONCLUSIONS 

A new technique has been described for the location of partial dis- 
charge sites 

, 
in the stator winding of a high-voltage motor. The, 

method has been shown to be accurate and reliable when applied to. a 
model winding under controlled conditions with artificial discharge 
sources. 
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Further development of the work will be aimed at proving the technique 
on a real stator winding with partial discharges generated by a high- 
voltage source. Owing to the multiplicity of discharge sites in a 
machine in normal service, it is not anticipated that the technique 
will be able to give an accurate scan of low level discharge activity 
throughout the winding, but it essentially counts pulses above a 
chosen energy threshold level and should therefore find application 
particularly in the location of local areas of high-energy discharge 
activity in an otherwise reasonably healthy winding. A requirement for 
this facility has been highlighted previously (1,7). 

Although the new location technique, when fully developed, should be a 
useful addition to the range of off-line diagnostic procedures 
currently applied during routine maintenance shut-down periods, 
potentially its greatest value is as an on-line condition monitoring 
technique which would give early warning of a developing problem. 
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