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Executive Summary 

EXECUTIVE SUMMARY 

Polycyclic aromatic hydrocarbons (PAHs) are prevalent throughout the marine 

environment and represent toxicological hazard to marine inhabitants and the general 
habitant through the food chain. The aim of this research project was to design a robust 

spatial sampling strategy that will give representative information on hydrocarbon 

contamination in sediment. This thesis presents the results of investigations carried out 
into the effect of oil exploration and production activity in the Fladen Ground (northern 

North Sea) using two statistical sampling regimes; a conventional grid sampling regime 

and a new random stratified sampling design. Both sampling regimes were used to 

assess the spatial concentrations and composition of hydrocarbons in the chosen study 

area. Sixteen (16) Zones were constructed equally and the numbers of samples which 
had to be collected were allocated based upon the proportion of the far field area (areas 

> 5km from multiple oil wells and > 2km from a single well). The results from the 

stratified random sampling design were compared with those from the grid design. A 

field study was designed based on the outcome of the stratified random sampling 
design. A composite random sampling was designed to estimate a within-stratum mean 

value for each of the chosen measurement parameters with more thorough coverage 
(better representation), better precision and less variance at lower analytical cost in the 

near-shore environment. 

The samples from the study area were analysed using a range of measurement 

methods to provide the data to assess the two sampling regimes. Two hundred and forty 

two (242) samples from the Fladen Ground, and twenty five (25) samples each from the 

Firth of Clyde and Firth of Forth sediments were analysed for particle size (PSA), total 

organic carbon (TOC), oil equivalents of Forties crude oil and diesel oil, total polycyclic 

aromatic hydrocarbon (PAH) concentration, total n-alkane concentration and 

geochemical biomarkers. Measurement techniques used included laser granulometry 

employing a Malvern Mastersizer E Particle Size Analyser (PSA), whilst TOC was 
determined using a Perkin Elmer CHN elementary analyser following acid treatment. 

Fluorescence analysis using ultraviolet visible absorption and fluorescence spectroscopy 
(UVF) was utilised for the oil equivalents of Forties crude oil and diesel oil. Gas 
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chromatography using mass spectroscopy (GC-MS) was utilised for PAHs and 

geochemical biomarkers and gas chromatography with flame ionisation detection (GC- 

FID) was used for the more general aliphatic hydrocarbon (including n-alkane) analysis. 
MINITAB 14 and SURFER 7 software's were used in the statistical and spatial analyses. 

The data from the new stratified random sampling regime showed that the total PAH 

concentrations (2- to 6-ring parent and alkylated PAHs including the 16 US EPA PAHs) 

were highest in the Zones with more oil installations and/or muddy sediments with high 

organic carbon content. Low PAH concentrations were determined in sandy sediments 

and in Zones with limited oil activities. PAH profiles were similar across the Zones, with 
heavier, more persistent, 5- and 6-ring compounds dominating and with a high 

proportion of parent PAH. PAH concentration ratios were consistent with the main 

source of these compounds, in most Zones, being pyrolytic. Small, high boiling 

unresolved complex mixtures (UCMs) from the aliphatic profile were indicative of limited 

petrogenic input in some Zones. The geochemical biomarker (triterpane and sterane) 

profiles from the sediment contained a small bisnorhopane peak and a high proportion of 

norhopane, indicating that there was contamination from both Middle Eastern and North 

Sea crude oils. 

The data obtained from the sediment samples collected using different sampling regimes 

were then compared. The stratified survey (2001) results were compared with the grid 

survey (2001) results. Also temporal trends were investigated by comparison with a 
1989 grid survey. There were no significant differences in the overall mean for the oil 

equivalent of Forties crude and diesel oil and total PAH concentration between the grid 

and stratified surveys. However significant differences were observed in the overall 

mean of the total n-alkane concentrations and also within the mean of some Zones for 

diesel (Zone 10), Forties crude (Zone 11) and total PAH concentrations (Zone 11). The 

stratified random sampling design gave much more reliable mean concentrations for all 
the parameters, achieving a much lower variance than the grid sampling design. For the 

temporal trend there was a reduction in concentration for all the four parameters 

compared between the 2001 stratified, 2001 and 1989 grid surveys; this could be due to 

a cessation of discharges of cuttings in the late 1990s and tighter control of discharges 

of produced water and the amount of flaring at the flare-stacks. 
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Spatial structure analysis show the existence of a trend in the variogram, and the spatial 

pattern in the contour maps of the parameters measured, shows that the regionalized 

variable were non-stationarity and non-ergodic 

The field study to investigate composite random sampling gave a mean value with less 

variance than the simple random sampling. The variations in the means of the composite 

random sampling are within the precision of the analytical methods for all the 

parameters. 
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Abstract 

THE DEVELOPMENT AND APPLICATION OFA STATISTICAL SAMPLING 
REGIME TO MAP HYDROCARBON DISTRIBUTION IN SEDIMENT 

A. S. AHMED 

This thesis investigates and develops a stratified random sampling design for sediments in an 
offshore oil field environment. The sampling area was partitioned equally into 16 Zones, 

stratification were based on the near field and far field areas, and the number of samples in each 
Zone was chosen by proportional allocation, i. e. proportional to the available appropriate area (far 
field). Measurement techniques applied to the samples included laser granulometry, ultraviolet 
fluorescence, gas chromatography using mass selective detection or flame ionisation detection 

and elemental analysis. 

The total PAH concentrations (2- to 6-ring parent and alkylated PAHs, including the 16 US EPA 

PAHs) in sediments were relatively low (< 100 pg kg" dry weight). The PAH concentrations, 
Forties crude oil equivalent and diesel oil equivalent concentrations were generally higher in 

sediment of fine grain size and higher organic carbon loading. PAH distributions and 

concentration ratios Indicated a predominantly pyrolytic input, being dominated by the heavier, 

more persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n- 

alkane profiles of a number of the sediments contained small, high boiling, UCMs, indicative of 

weathered oil arising from a limited petrogenic input. Spatial structure analysis shows the 

existence of a trend in the variogram, and also the spatial pattern in the contour maps of the 

parameters measured, shows that the regionalized variable exhibited non-stationarity and were 

non-ergodic. 

The stratified random sampling scheme showed significant advantages over a classical grid 

sampling scheme when applied to the same area. Specifically, the stratified random sampling 
design gave much more reliable mean concentrations for all the parameters, achieving a much 
lower variance than the grid sampling. 

A further composite random sampling scheme was designed for sediments in the near-shore. The 

aim is to estimate a within-stratum mean value for each of the chosen measurement parameters 

with more thorough coverage (better representation), better precision and less variance at lower 

analytical cost. This scheme was trialed in two near-shore environments, the Clyde Estuary and 
the Firth of Forth. The results show no significant differences between the mean and distribution 

profile of the individual samples and the composite samples for all the parameters measured. 

This work utilised the best modern chemical analytical methods for the quantification of a range of . 
hydrocarbon species, and utilised the results in a modem risk-based approach to environmental 

assessment. The new stratified random sampling design has been accepted for use in the 

national marine monitoring programme (NMMP) In the United Kingdom. 
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CHAPTER ONE 

INTRODUCTION 

1.1 BACKGROUND 

Hydrocarbon is a mixture of organic compounds having simple to complex structures made 

up of combinations of carbon and hydrogen, and often occurring in petroleum, natural gas, 

coal and bitumen. The complex mixture of compounds may be classified according to 

similarity of properties, the classification can be done in a variety of ways. The compounds 

are generally classified into aromatic and non-aromatic (aliphatic) compounds. The 

aromatic compounds absorb ultra-violet light and re-emit it as visible light and are more 

water soluble than the aliphatic ones, on an equal molecular weight basis (Cretney et al., 

2003). The aliphatic compounds do not interact with the visible light. The classification is 

useful for toxicity of the compounds; the aliphatic compounds are not inherently toxic. The 

aromatic compounds can exhibit a variety of toxic modes that generally have distinct 

threshold concentrations. The thresholds form a hierarchy of concentrations in an organism,. 

and some polycyclic aromatic compounds could have a "thresholds" of a single molecule 

(Gobas et al., 2001). The aromatic and aliphatic compounds can be further subdivided 

according to their volatility, solubility or molecular weight of their respective constituents. In 

general, the three properties vary within each of these groups, such that the lower 

molecular weight compounds are more volatile and soluble than the high molecular weight 

compounds. 
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1.2 POLYCYCLIC AROMATIC HYDROCARBONS (PAHs) 

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous organic contaminants that are 

present in coastal and marine sediments (LaFlamme and Hites, 1978; Gschwend and 

Hites, 1981; NOAA, 1988), and are listed on the OSPAR List of Chemicals for Priority 

Action (OSPAR Commission, 2002). Structures, number of rings and molecular weight of 

some of the polycyclic aromatic hydrocarbon are shown in Figure 1.1 and summarised in 

Table 1.1. The distribution and fate of PAHs in aquatic systems have received much 

attention due to the mutagenic and carcinogenic properties of some of the compounds 

(Grimmer, 1983; White, 1986; Harvey, 1991; Cerniglia, 1992; Law at al., 2002; Gowland et 

al., 2002). PAHs bioaccumulate in aquatic organisms, particularly invertebrates (Neff, 1979; 

Varanasi et al., 1985; Long et al., 1995). 

Due to their hydrophobic and stable chemical properties, the PAHs are not very soluble in 

the water phase. Solubility (expressed as octanol: water partition coefficient, Log K0N, ) 

decreases with increasing molecular weight and degree of alkylation's (Log Kota = 4.7 and 

7.66 for fluoranthene and indenopyrene, respectively) (Mackay et al., 1992; Meador of al., 

1995; de Maagd of al., 1998). Therefore PAHs sorbs rapidly onto particles (Karickhhoff et 

a/., 1979; Means of al., 1980). Upon entering aquatic systems, PAHs distribute between 

different phases including truly dissolved, colloids, suspended particulate matter, surface 

sediments and biota (Readman et al., 1987; Zhou et al., 1998). The way in which PAHs are 

distributed between these different phases is controlled by their intrinsic physicochemical 

properties including solubility, vapour pressure and lipophilicity (Zhou of al., 1998). Strong 

adsorption of PAHs onto sediment particles can reduce their bioavailability, subsequently 

slowing their biodegradation rates and aiding their preservation in sediments (McElroy of 

al., 1989; McGroddy of al., 1996). PAHs in sediments have the potential to transfer to biota 
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and biomagnification's of these toxic compounds may occur as they pass through the food 

chain (Neff, 2002), ultimately resulting in adverse biological effects. 
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Figure 1.1 Chemical structures of some polycyclic aromatic hydrocarbons. Alkylated PAHs 

are more abundant than the parent compounds in petroleum and produced water. The 

carcinogenic PAHs, such as benzo[a]pyrene, dibenz[a, h]anthracene, and 5-methylchrysene 

are present at low concentrations or are absent from the treated produced water. From 

Neff, (2002). 
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Table 1.1 Parent (Co) and alkylated (C, -C4) PAH showing the molecular weight and number 

of rings. From Wang and Fingas (2003). 

Compound Number of Rings Target ions 
Oil-characteristic parent and alkylated PAHs 

Naphthalenes 
Ca-naphthalene 2 128 
C1-naphthalene 2 142 
C2-naphthalene 2 156 
C3-naphthalene 2 170 
C4-naphthalene 2 184 

Phenanthrenes 
Co-phenanthrene 3 178 
C1-phenanthrene 3 192 
C2-phenanthrene 3 206 
C3-phenanthrene 3 220 

Dibenzothiophenes 
Co-dibenzothiophene 3 184 
C1-dibenzothiophene 3 198 

C2-dibenzothiophene 3 212 
C3-dibenzothiophene 3 226 

Fluorenes 
Co -fluorene 3 166 
C, -fluorene 3 180 
C2-fluorene 3 194 
C3-fluorene 3 208 

Chrysenes 
Co-chrysene 4 228 
C1-chrysene 4 242 
C2-chrysene 4 256 
C3-chrysene 4 270 

Other OSPAR priority PAH pollutants 
Acenaphthylene 3 152 
Acenaphthene 3 153 
Anthracene 3 178 
Fluoranthene 4 202 
Pyrene 4 202 
Benz[a]anthracene 4 228 
Benzo[a]fluoranthene 5 252 
Benzo[k]fluoranthene 5 252 
Benzo[e]pyrene 5 252 
Benzo[a]pyrene 5 252 
Perylene 5 252 
lndeno[1,2,3-cd]pyrene 6 276 
Dibenz[a, h]anthracene 5 278 
Benzo[ghi]perylene 6 276 
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1.3 SOURCES AND FORMATION OF PAHs 

There are three primary sources of PAHs to the marine environment (Baumard et al., 

1998): 

" Very rapid, high temperature incomplete combustion or pyrolysis of organic 

materials (pyrolytic PAHs). 

9 Very slow (millions of years) rearrangement and transformation of biogenic organic 

materials at moderate temperature (100 - 300°C) to form fossil fuels (petrogenic 

PAHs). 

" Direct biosynthesis by organisms (biogenic PAHs) 

PAH from pyrolytic and petrogenic sources are introduced into the marine environment 

through effluent discharges, urban run-off, atmospheric transport, and spillage or disposal 

of oil and petroleum products (Cereceda-Balic et al., 2002; Baumard et al., 1998). 

Environmental behaviour and bioavailability of PAHs are source dependent (Gschwend and 

Hites, 1981). Studies have shown that PAHs from pyrolytic sources tend to be more 

strongly associated with sediment and soot particles and more resistant to microbial 

degradation than PAHs from petrogenic sources (McGroddy and Farrington, 1995; 

Gustafsson et al., 1997). 

1.3. a Petrogenic Source 

Petroleum is a rich source of PAHs (Neff, 1990). Crude oil is derived from the thermal 

degradation and arrangement of organic polymers found in source rocks, often-sedimentary 

shales, in the subsurface (Tissot and Welte, 1984). The organic matter in the source rocks 

is usually derived primarily from sedimentation of dead plants and animals in freshwater 
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and marine environments. Most of the PAHs in crude oil are composed of two or three 

fused benzene rings e. g. naphthalenes and dibenzothiophenes (DBTs). The abundance of 

PAHs in petroleum usually decreases markedly with increasing molecular weight (Neff, 

1990). Higher molecular weight 4- to 6-ring PAHs are much less abundant than 2- and 3- 

ring compounds in crude oils (Kerr et al, 2001). Tables 1.2 and 1.3 shows the ranges and 

percentage frequency of detection of PAHs found in crude oils. 
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Table 1.2 Concentration ranges of several parent PAHs in 60 crude oil samples from 

throughout the world (% detection is percentage above detection limit). Under lined PAHs 

are known or suspected mammalian carcinogens. Concentrations are mg/kg oil. From Neff 

(2002). 

PAH Number of rings % Detection Range' e1 
rMekn 1 

Naphthalene 2 100 1.2 - 3700 423 

Acenaphthene 3 80 0-58 13.9 

Anthracene 3 40 0-17 3.4 

Phenanthrene 3 98 0-916 177 

Fluorene 3 100 1.4-380 73.6 
Fluoranthene 4 40 0-26 3.9 

Pyrene 4 97 0-84 15.5 

Benzfalanthracene 4 67 0-38 5.5 

Chrvsene 4 100 4-120 28.5 

Dibenz a h1anthracene 5 47 0-9.2 1.0 

Benzo[alpyrene 5 75 0-7.7 2.0 

Benzorblfluoranthene 5 100 0-14 3.9 

Benzofklfluoranthene 5 93 0-7 0.46 

Indenofl. 2.3-cdlDVrene 6 7 0-1.7 0.06 

Benzo[gh, ]perylene 6 63 0-9.6 1.53 
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Table 1.3 Concentrations of individual alkylated PAH in crude oils. Concentrations are 

mg/kg. From Neff (2002). 

PAH Number of rings Concentration (mg kg') 

C, -Naphthalene 2 3886 

C2-Naphthalene 2 4511 

C3-Naphthalene 2 2988 

C4-Naphthalene 2 1000 
C, -Fluorene 3 521 
C2-Fluorene 3 682 

C3-Fluorene 3 420 

C1-Phenanthrene/Anthracene 3 748 

C2-Phenanthrene/Anthracene 3 716 
C3-Phenanthrene/Anthracene 3 460 

C, -Dibenzothiopene 3 63 

C2-Dibenzothiopene 3 83 

C3-Dibenzothiopene 3 49 

C, -Chrysene 4 51 
C2-Chrysene 4 67 

C3-Chrysene 4 38 

I 

1.3. b Pyrolytic Sources 

Combustion of organic matter is a major source of PAHs containing 3- or more rings to the 

environment (Neff, 1979). Pyrolysis generates a wide variety of PAHs ranging from 

naphthalene to complex PAH polymers, particularly if combustion takes place in an oxygen- 

deficient atmosphere. During combustion in an oxygen-deficient atmosphere, the organic 

matter is oxidised to low molecular weight organic molecules that condense as the 

combustion mixture cools to form complex, new molecular structures by a process called 

9 



Chapter One 

pyrolysis or pyrosynthesis (Neff, 1979). The PAH yield depends on the composition of the 

organic matter, temperature, and the oxygen concentration. 

1.3. c Biogenic PAHs 

PAHs are synthesized by some organisms, particularly bacteria, fungi, higher plants and 

some insects (Mathey et al., 1994; Silliman of al., 1998; Jiang et al., 2000). Direct 

biosynthesis is not a quantitatively important source of PAHs in the marine environment. 

Under anoxic or hypoxic conditions, quinones, phenols and related oxygenated aromatic 

compounds may be reduced to the parent PAH (Wakeham et al., 1980; Hashimoto et al., 

1994). A five-ring PAH, perylene, is abundant in anoxic marine sediments, and its 

concentration tends to increase with depth in sediment cores (Wilcock and Northcott, 1995; 

Fernandez et al., 1996). 

1.4 MECHANISMS FOR PAH SYNTHESIS 

PAH are composed of two or more fused benzene rings (Neff, 1979). The formation of 

benzene can occur by the reaction of two propargyl (C3H3) radicals (Miller et al., 1992) and 

by the reaction of C4Hx with acetylene (Wang and Frenklach 1997; Walch, 1995). Three 

mechanisms have been proposed for the formation of additional rings. The first is due to 

Frenklach and co-workers (Wang & Frenklach 1994 & 1997, and Appel et al., 2000), who 

postulate the successive loss of ring hydrogen atoms followed by acetylene additions to the 

ring and subsequent ring closure reactions (Figure 1.2). The second is the Bittner-Howard 

mechanism (Bittner & Howard, 1981), and this also involves acetylene additions, but in this 

mechanism the second acetylene adds to the first, which then reacts with the existing ring 

to form an additional ring (Figure 1.2). The third mechanism involves the reaction of two 
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C5H5 rings followed by rearrangement to form two fused benzene (Ce) rings (Moriarty at al., 

1999). 

The mechanism of PAH formation in space could be very different from that in flame, as in 

space, reactions with oxygen atoms are much less likely to occur and also, depending on 

location, there might be much less thermal energy available to drive the reactions. 

Ultraviolet (UV) radiation is much more intense in space, and there is evidence that many of 

the PAH molecules in space are ionised due to the UV flux. However, PAH ions are 

common in flames as well (Weilmünster et al., 1998). 
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Figure 1.2 PAH synthesis proposed by Frenklach and co-workers, and the Bitter-Howard 

mechanism of PAHs. Source: Bauschlicher Jr. and Ricca (2000). 
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1.5 DEGRADATION OF POLYCYCLIC AROMATIC 

HYDROCARBONS 

PAHs in water and sediments are not persistent, the 4- to 6- ringed PAHs are slowly 

degradable, and because of their low water solubility and their strong binding to organic 

matter, they often fail to be readily available for biodegradation. Biodegradation primarily 

occurs in 2 and 3- ringed PAHs, which also have the highest water solubility. PAHs are 

degraded by various natural processes to various polar organic chemicals, and ultimately to 

carbon dioxide and water. The most important degradative processes for PAHs in the 

marine environment are photooxidation and biodegradation (Bongiovanni et al., 1989; 

Ehrhardt et al., 1992). 

1.5. a Photooxidation 

Exposure of PAHs to solar radiation leads to several reactions that produce a variety of, 

mostly, more polar organic compounds. Recent studies of photooxidation in the sea surface 

and water column, shows that light Arabian crude oil was photoxidised at a rate of about 

0.004% per day (Berthou and Vignier, 1986). Photooxidation substantially changes the 

physical and chemical properties of petroleum and its toxicity to marine organisms (Pelletier 

et al., 1997). 

The primary mechanism of photooxidation in PAHs is photo-oxygenation involving singlet 

oxygen (Thominette and Verdu, 1984; Syndes et al., 1985). In the presence of ultraviolet 

radiation, energy transfer from electronic excited states (usually triplet) of the aromatic and 

polar components of the oil to molecular oxygen generates singlet oxygen (Gorman, 1992) 

that can then react with aromatic hydrocarbons and heterocyclic sulphur compounds by 
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addition (Nicodem et al., 1997). The major photooxidation products are peroxides, 

aldehydes, ketones, alcohols, carbonyls, and fatty acids, all of which are more water- 

soluble than the parent compounds (Ehrhardt and Burns, 1990; Jacquot et al., 1996). 

Dibenzothiophene (DBT) and its C, - through C3-alkyl homologues are photooxidised to their 

respective sulfoxides and sulfones under natural conditions (Berthou and Vignier, 1986). 

Photodegradation rates of different PAHs vary widely. Degradation rates may depends on 

concentrations of PAHs and photosensitizers in the oil, and on the physical form of the PAH 

assemblage (Mill et al., 1981; Valerio and Lazzarotto, 1985). PAHs bound to soot particles 

are less sensitive than dissolved PAHs to photooxidation (Kamens et al., 1988). 

Naphthalene and its alkyl homologues and moderately weathered light Arabian crude oil 

are photooxidised rapidly in natural sunlight (Jacquot et al., 1996; Dutta and Harayama 

2000). Phenanthrene, DBTs and their alkyl homologues are more recalcitrant (Berthou and 

Vignier, 1986). DBTs and methyldibenzothiophenes in a weathered light Arabian crude oil 

were not photooxidised during a four-week exposure to artificial sunlight (Dutta and 

. Harayama, 2000), although 16-91% of more highly alkylated DBTs are photooxidised. The 

efficiency of photoxidation of methylphenanthrenes and dimethyifluorenes also is low, 

different monomethyl and dimethyl- phenanthrene isomers are photoxidised at widely 

different rates (Jacquot at al., 1996). Higher molecular weight, 4- through 6-ring, PAHs tend 

to be most sensitive to photooxidation (Mill at al., 1981). 

Direct photolysis increases with increasing molecular weight, for example the half-life of 

naphthalene (MW 128) in surface fresh water in sunlight equivalent to 40°N latitude in mid- 

summer, is 61 hours, compared to half-life of 8 hours for phenanthrene (MW 178) and 0.54 

hours for benzo[a]pyrene (MW 252). Most dissolved alkyl-PAHs are more sensitive to 

photolysis than the parent (unalkylated) PAHs (Ehrhardt et al., 1992). Ultraviolet light 
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intensity decreases logarithmically with depth, so the rate of photolysis of PAHs also 

decreases with depth of water. Under intense sunlight, hydrocarbons in solution can be 

photooxidised to a depth of about 25 meters in clear seawater (Jacquot et al., 1996). 

Sorption of PAHs to suspended matter, bottom sediments or colloids may decrease or 

increase photolysis rates. David and Boule (1993) showed that sorption to silica particles 

increase the rate of photolysis of anthracene, phenanthrene, and benz[a]anthracene. Ferric 

oxide, montmorillonite clay, and cellulose sorbents decrease photolysis rates. 

Photooxidation may also lead to polymerisation reactions to producing high molecular 

weight compounds that are not soluble in either water or oil, resulting in a phase separation 

in the oil slick (Darling, 1988; Nicodem et al., 1997). Studies of the Ekofisk crude oil in the 

North Sea in June when the daily solar radiation was at a maximum, showed that the high 

molecular weight resin/asphaltene fraction of oil reacted rapidly with oxygen. Lower 

molecular weight aromatic hydrocarbons, such as phenanthrene, were converted to polar 

oxidation products that tended to bind tightly, possibly covalently, to the resin/aspaltene 

fraction. 

1.5. b Microbial Degradation 

Nearly all-marine sediments contain populations of bacteria and fungi that are capable of 

biodegrading some PAHs. The rate of degradation depends on the physicochemical 

properties of the sediments and the hydrocarbon compound (Ahn et al., 1999; Ravelet at 

al., 2000). Low molecular weight n-alkanes with chain lengths of 10-22 carbons are 

metabolised most rapidly, followed by iso-alkanes and higher molecular weight n-alkanes, 

olefins, monocyclic aromatic hydrocarbons, PAHs, and finally, high condensed 

cycloalkanes, resins and asphaltenes. Degradation of DBT and its alkylated homologous 
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required mixed microbial assemblages and cosubstrates, that are usually present in oil 

contaminated sediments (Kropp et al., 1994; Dyreborg et al., 1996). 

Some of the metabolic products produced as intermediates in the enzymatic degradation of 

PAHs by procaryotes (bacteria and blue-green algae) and eukaryotes (fungi, plant, and 

animals) are toxic, mutagenic or carcinogenic. PAHs that can be enzymatically activated to 

mutagens or carcinogens, such as the 4-, 5- and 6-ring PAHs like benz[a]anthracene, 

benzo[a]pyrene, and dibenz[a, h]anthrancene, react with trans-diol-epoxides, which interact 

with cellular DNA to induce cancer or mutation (Figure 1.3). The prokaryotic pathway does 

not produce these epoxide intermediates. Therefore, the products of bacterial degradation 

of PAHs are less mutagenic and carcinogenic than the products of PAH degradation by 

fungi and higher organisms (Figure 1.3). 

1.5. c Prokaryotic Pathways 

In prokaryotes (single organism without nucleus), PAH are degraded first to a cis- 

dihydrodiol by a dioxgenase enzyme. The enzyme incorporates the two atoms into aromatic 

substrate to form a dioxethane intermediate (Figure 1.3). The dioxethane is oxidized further 

to a cis-dihydrodiol and then to various dihydroxy products, the most common of which are 

catechols (Cerniglia, 1994; Wilson and Jones, 1993; Pothuluri and Cerniglia, 1994; 

Sutherland et al., 1995). Sediment bacteria can also attack the alkyl side-group of alkyl- 

PAH, forming alcohols, aldehydes and carboxylic acids (Budzinski et al., 2000). 
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1.5. d Eukaryotic Pathways 

Most eukaryotes (organism with one or more cells with visible nuclei and organelles) use a 

mono-oxygenase system; the cytochrome P450 mixed function oxygenase system, to 

incorporate one oxygen atom into the aromatic substrate to form an arene oxide. The oxide 

either isomerizes spontaneously to form a phenol, or is hydrated by epoxide hydrase to 

form a trans-dihydrodiol or phenol (Cerniglia, 1993; Sutherland et al., 1995) (Figure 1.3). As 

in procaryotes, the dihydrodiol could be oxidized to a dihydroxyl product, such as a 

catechol. Some fungi, such as white rot produce extracellular lignin peroxidases that can 

oxidise PAHs by a single electron transfer to form quinones (Sutherland, 1992; Cerniglia, 

1993; Juhasz and Naidu, 2000). 
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Figure 1.3 Biodegradation of PAHs by prokaryotes (bacteria) and eukaryotes (fungi, algae, 

plants, and animals). Trans-dihydrodiols of some higher molecular weight PAHs are 
carcinogenic. (Adapted from Cerniglia, 1993; Rochkind-Dubinsky et al., 1987). 
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1.6 BIOACCUMULATION OF PAHs BY MARINE ORGANISMS 

Bioconcentration of PAHs from solution in water by marine organisms is directly 

proportional to their K,,,,, s (octanol/water partition coefficient). Bioaccumulation of PAHs from 

sediments and food is thought to involved an intermediate step in which the PAHs desorp 

or released into solution from the matrix and then partition into the lipid rich tissues of the 

marine organism. Thus, bioavailability of PAHs from sediments and food is less than that 

from solution in the water. Equilibrium bioconcentration factors (BCFs) which is the ratio of 

at equilibrium of concentration of a chemical in the tissues of the organism to the 

concentration of the chemical in solution in water to which the organism was exposed. 

There are many factors that affect the BCF/K0W relationship. Biotic factors include active 

metabolism and excretion of the chemical, animal species, liquid content and distribution in 

the animal and feeding status, which usually varies depending on age, sex and stage of 

reproductive cycle (Meador et al., 1995). Physical factors that affect the relationship 

between BCF and I< include temperature, salinity and the physical form of the chemical in 

the water of sediments. 

Studies have shown that PAHs associated with soot and other organic rich particles (e. g. 

organic carbon) in sediments are not bioavailable. Because of the high affinity of dissolved 

and particulate organic mater for PAHs, there usually is an inverse relation between 

concentrations of total organic carbon (TOC) in sediments and the bioavailability of PAHs in 

the sediments to marine organism (Neff, 1984). 
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1.7 TOXICITY OF PAHs TO MARINE ORGANISMS 

Some PAHs, accumulated into biota, have the ability to absorbed ultraviolet (UV) light 

energy. These photoactivated PAH can damage cellular membranes, resulting in biological 

impairment and death. PAH phototoxicity is caused by the transfer of UV (300-400nm) 

energy from a photoexcited PAH molecule to an oxygen molecule, creating oxygen radical 

that can disrupt cell membrane via lipid peroxidation (McDonald and Chapman, 2002). The 

excited PAH molecule may undergo two types of reactions, In the Type I reaction 

(photosensitization), the excited triplet state of the chromophore is reduced, leading to 

production of highly reactive free radicals that are capable of being oxidized to various 

photooxidation products or bind to biological molecules (Krylov at al., 1997). In the Type II 

reaction (photomodification), the chromophore absorbs the UV energy to form the excited 

triplet state and then transfers the energy to dissolved oxygen, generating singlet oxygen or 

hydroxyl radicals. 

Menkenyan et al. (1994) proposed that the relative phototoxicity of different photosensitive 

chemicals, such as PAHs, depends in the interaction of internal, structural factors (light 

absorption and compound stability) and external factors (UV exposure intensity and 

energy). They observed that the difference in the energies of the highest occupied 

molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO), the EHOMa 

LUMO gap, is a good predictor of the photoxicity of PAHs to small aquatic animals such as 

Daphnia magna. The HOMO-LUMO gap defines the energy required to elevate an electron 

from the HOMO to LUMO. The phototoxicity is related to the size of the HOMO-LUMO gap, 

with a HOMO-LUMO gap between 6.7-7.5 eV having the greatest phototoxic potential, but 

compounds with a HOMO-LUMO gap greater than 7.5 eV are not phototoxic, because the 

short wavelength of UV light required to excite these molecules are not present in natural 
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sunlight (Menkenyan at al., 1994; Veith et al., 1995). Sediments contaminated with 

combustion derived PAHs (pyrolytic) are more phototoxic than the sediments contaminated 

with petroleum derived PAHs (petrogenic) (Boese et al., 2000). 

1.8 MUTAGENICITY AND CARCINOGENICITY OF PAHs 

Some of higher molecular weight PAHs (4- to 7- ring) are carcinogenic when activated by 

the mixed function oxidation (MFO) system (Meek et al., 1994; National Toxicology 

Program, 1998). The carcinogenicity of PAHs metabolites varies substantially, animal 

carcinogenicity PAHs depends on the two dimensional configuration of the PAH and 

presence and distribution of the alkyl carbons on the aromatic rings. Benzo(a)pyrene Is 

highly carcinogenic, but its isomer, benzo(e)pyrene, is not carcinogenic. 5-Methylchrysene 

has a carcinogenic potency and mutagenicity similar to that of benzo(a)pyrene; however, 

other monomethylchrysenes have low/or not carcinogenic potency (Hecht et al., 1976). 

Most of the PAHs of the types found at highest concentrations in crude oil are, low 

molecular weight aromatic hydrocarbons, such as naphthalene, phenanthrene and 

anthracene, are not carcinogenic. 

Fish have the metabolic ability to activate benzo(a)pyrene and some other carcinogenic 

PAHs to carcinogens (Stegeman and hahn, 1994). However, studies have shown that 

exposure to high concentrations (well above environmentally realistic levels) of the most 

potent higher animal carcinogens are required to induced cancers in fish in the laboratory 

(Neff, 1979). Chemicals that induce CYP1A in fish substantially increases the metabolism 

of the benzo(a)pyrene during exposure, fish produce PAH-DNA adducts in the liver and 

other tissues. DNA adducts produce genetic damage, sometimes leading to cancer. 

Hepatic microsomal preparations from a marine fish are able to produce mutagenic 
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metabolites of benzo(a)pyrene, dibenz(a, h)anthracene, and 7,12-dimethylbenzanthracene. 

However, there is no evidence that marine inverbrates can mobilize PAHs to mutagenic or 

carcinogenic products (Stegeman and Hahn, 1994). 

1.9 HUMAN TOXICITY OF PAHS IN SEAFOODS 

Risk-based concentrations (RBCs) based on oral cancer slope factors (CPSo) and oral 

reference doses (RfDo) for suspected carcinogens and non-carcinogens were established 

by the U. S EPA Region III (2000), and were estimated for carcinogens (Equation 1.1) and 

non-carcinogens (Equation 1.2). 

RB mg _ 
TR*BWa*ATc Equation 1.1 C /gJ 

IRF 
EFr Mot * CPSo 

10009 
kg 

Pmg 
l_ THQ * RJDo * BWa * Tn Equation 1.2 kg) 

EFr * Mot * 
RF 

10009 
kg 

Where 

TR = The target cancer risk. 

BWa = The adult body mass. 

ATc = The average time for carcinogenic effects. 

EFr = The exposure frequency. 

EDtot = The exposure duration. 
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IFR = The fish ingestion rate. 

CPSo The carcinogenic slope factor particular carcinogen. 

THQ = The target hazard quotient. 

ATn = The average time for non-carcinogens. 

RJDo =' The reference oral dose for particular non-carcinogen. 

Thus, the RBC concentrations in edible tissues of seafoods are unlikely to be harmful to the 

marine organisms themselves. The RBCs for suspected carcinogenic PAHs are intended to 

protect human consumers from their carcinogenic effects during long-term exposure in the 

food and are based in part on assumption of a high BCF and possible biomagnification's in 

food webs leading to man. However, most marine animals and terrestrial birds and 

mammals, including man, have the ability to rapidly metabolize and excrete high molecular 

weight PAHs ingested in food (Stegeman, 1981). The RBCs for non-carcinogenic PAHs 

are much higher than those for the carcinogens, reflecting their lower toxicity and low 

absorption efficiency from the human guts (Magee et al., 1996). 

1.10 AIMS OF THIS RESEARCH 

From the literature review it can be observed that hydrocarbons (e. g. PAHs) are mixture of 

complex compound that are toxic and/or carcinogenic to the marine organisms. This 

demonstrate the need for the development a stratified random sampling regime to aid 

analysis of the risk presented by hydrocarbons in the environment to selected target 

resources, as risk indicators. This is the overall aim of the current research project. Also 

quantitative risk assessment can be used to describe and rank environmental risks from 
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different sources and scenarios, covering different seasons and activity plans. The ranking 

can also be used to identify high priority resources and geographic areas for contingency 

actions. The variability in presence and vulnerability of natural resources gives the 

possibility of adjusting activity plans according to the time window providing the lowest 

environmental risk. 

1.10. a Objectives 

Design a robust spatial sampling strategy (stratified random sampling) that 

will give representative information on hydrocarbon contamination in an 

offshore oilfield 

Determine analytical techniques to evaluate hydrocarbon contaminants in 

the sediments 

Determine the correlation between the physical and chemical characteristics 

of the sediments and the hydrocarbon contaminants 

Determine the statistical significance within the Zones of the hydrocarbons 

parameters 

Describe the sources and spatial distribution of the hydrocarbon contaminant 

using the new stratified random sampling 

Determine any risk/effect associated with the activities oil production to the 

marine organisms 

Describe the spatial and temporal distribution of the hydrocarbon 

contaminant of the stratified random sampling design with the conventional 

grid sampling design and comparison of the statistical parameters. 
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1.10. b Milestones: 

" Investigation of statistical sampling regimes. (MPhil). 

9 Familiarisation with a range of analytical techniques; extraction of contaminant and 

analysis by gas chromatography with a flame ionisation detector (GC-FID) and gas 

chromatography using mass spectrometry (GC-MS) to be used to provide analytical 

results for sampling and temporal comparisons. (MPhil). 

" Analysis of hydrocarbons in sediment samples from the North Sea (Fladen Ground) 

collected in 2001, using a random stratified sampling regime. (MPhil). 

" Comparison of these analytical results with data obtained from samples collected in 

the same area at the same time using grid sampling. (MPhil). 

0 Interpretation of the data to evaluate and develop the statistical sampling regime. 

(MPhil). 

" Investigate temporal trends in hydrocarbons from field samples from the North Sea 

collected in 1989,1996,1998 and 2001. (MPhil). 

" Based on experience gained from the work in the North Sea, to design a field study 

to provide a statistical foundation for sampling regimes to map the dispersion of 

hydrocarbons in a marine/deltaic environment. (PhD). 
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9 Carry out field studies, possibly in Nigeria, including use of fluorescent in-situ 

instrumentation, to measure hydrocarbon concentrations in the field, to test the 

proposed sampling regimes. To collect and analyse samples for validation 

purposes. (PhD). 

9 Analysis of field samples, after extraction of contaminant, by GC-FID, and GC-MS 

followed by interpretation of the data. (PhD). 
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CHAPTER TWO 

DEVELOPMENT OF STATISTICAL SAMPLING REGIME 

2.1 INTRODUCTION TO STATISTICAL SAMPLING REGIME 

Sampling and monitoring to detect environmental impacts of human activities on the marine 

habitats in the oil and gas fields, require very careful thought. Much money, time and very 

substantial resources are often wasted because data are collected without carefully 

designing sampling so that statistical analyses and interpretation are valid and reliable. In 

the oil and gas production, large volume of produced water is discharged; the fundamental 

properties (Physical and chemical) of the produced water vary. The amount of produced 

water discharged from a single platform usually is less 1.5 million litres per day, whereas 

discharges from multiple oil wells may exceed 25 million litres per day (Neff, 2002). 

Following discharges to ocean, produced water undergoes a variety of changes (dilution, 

evaporation, adsorption/precipitation, biodegradation and photooxidation). The dispersion 

model studies of the produced water differ in specific details but all predict a rapid initial 

dilution factor of 30 - 100, within the ten metres of outfall, followed by a slower rate of 

dilution at greater distances (Stromgren et al., 1995; Brandsma and Smith, 1996). Factors 

that affect rate of dilution includes discharge rate, ambient current rate, turbulent mixing 

regime, water column stratification, water depth, difference in density (as determined by 

temperature and total dissolved solids concentration) and chemical composition of the 

produced water and sea water. 
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North North Sea Water 

Central North Sea Wa 

Figure 2.1 The generalised pattern of North Sea currents in relation to the Fladen Ground. 

Note the Fladen Ground is the centre of a semi-permanent cyclonic eddy, with currents 

sweeping round the outside. 

The Fisheries Research Services (FRS) utilised the conventional grid-sampling regime in 

the Fladen Ground (Figure 2.1) in 1989 to monitor the impact of cuttings discharges 

(Walsham et al., 2002). The survey was repeated in 2001 with the aim of assessing 

temporal changes in the hydrocarbon concentration and composition following the 

cessation of discharges of cuttings in late 1990s. Sediments were collected at 3km 

intervals along five transects, spaced 5km apart (Figure 2.2). The aim of this chapter is to 

develop a new robust sampling strategy that will accommodate the various changes that 

undergoes during sedimentation. 
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Figure 2.2 Location of common site of the 1989 and 2001 grid sampling (GS), indicating 

the Zones and oil platforms. Large grey circles are < 5km radius of multiple oil wells and 

small grey circles are < 2km radius of a single oil well. Black dots are grid samples site with 

labelled number. 

2.2 SAMPLING AND STATISTIC PROCEDURES 

Sampling consists of selecting some part of a population to observe so that one may 

estimate something about the whole population. The procedure by which the sample of 

units is selected from the population is known as the sampling design. In the basic sampling 

set-up, the population consists of a known, finite number N of units such as plots of 

ground (e. g. Fladen Ground). With each unit is associated a value of a variable interest, 

referred to as y -value of that unit. The data collected consist of the y -value for each unit 
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in the sample, together with the location of the sediment. In addition to the variable of 

interest, other variables such as depth and sediment type can be recorded. 

There are three major basic forms of point sampling in a geographic region (Clark and 

Hosking, 1986; Jassby of al., 1997; Haining, 1990; Webster, 1999), the simple random 

sampling, systematic or grid sampling, and the stratified sampling. 

2.3 SIMPLE RANDOM SAMPLING 

Simple random sampling is the sampling design in which n distinct units are selected from 

the N units in the population in such a way that every possible combination of n units is 

equally and likely to be selected. The sample may be obtained through n selections in 

which, at each step, every unit of population not already selected has equal chance of 

selection. 

Estimating the population mean; the sample mean y is an unbiased estimator of the 

population mean a. The population mean p is the average of the y -values in the whole 

population: 

N 

p y, Equation 2.1 
N 

., 

The sample mean y is the average of the y -values in the sample: 

1" 
7= - Yl 

n ,., 
Equation 2.1 
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Also with simple random sampling, the standard deviation s, and the sample variance s2 is 

an unbiased estimator of the finite population variance o2. The finite population variance is 

defined as 

N2 

Q2=1E (y, 
- p) Equation 2.2 

N-1 ,., 

The sample variance is defined as 

s Z= 
n11 

(yl -y )2 Equation 2.3 

The variance of the estimator y with simple random sampling is 

var(y)=l 
N-nl cr 2 

Equation 2.4 
NJn 

An unbiased estimator of this variance is 

V ar (, y) =rN- 
n). IL Equation 2.5 

Nn 

The square root of the variance or the estimator is its standard deviation; the estimated 

standard error (c) is in general not an unbiased estimator of the actual standard error. 
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S2 
E_- 

n 
Equation 2.7 

The quantity( 
- nl' or alternatively written as 

(1- I, is termed the finite population N 

correction factor. If the population is large relative to the sample size, so that the finite 

population correction factor will be close to one, and the variance of the mean y will be 

2 

approximately equal to -. 
r 

To estimate the population total r, where 

N 

r=N, u=2ýy1 
i=I 

Equation 2.8 

The sample mean p is multiplied by N. An unbiased estimator of the population total is 

N z=Ny=Nly, 
n ý., 

Equation 2.9 

Since the estimator i is N times the estimator 3;, the variance of z is N2 times the 

variance ofy . Thus, 

z 
var(i)= N2 var(y)= N(N - n)°- 

n 
Equation 2.10 
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An unbiased estimator of this variance is 

var() = N2 var(y) = N(N - n) 
ss Equation 2.11 
n 

2.3. a Benefits 

The primary benefit of simple random sampling is that it protects against bias selection, by 

guaranteeing selection of a sample that is representative of the sampling frame, provided 

that the sample size is not extremely small. Moreover, the procedures needed to select a 

simple random sample are relatively simple. 

Other benefit of random sampling includes: 

0 Statistical analysis of data is relatively straightforward because most common 

statistical analysis procedures assume that the data were obtained using a simple 

random design. 

0 Explicit formulae, as well as tables and charts in reference books, are available for 

estimating the minimum sample size needed to support many statistical analyses. 

2.3. b Limitations 

Simple random sampling has two primary limitations: 

9 Because all possible samples are equally and likely selected, by definition, the 

sample points could, by random chance, not be uniformly dispersed in space and/or 
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time. The importance of this limitation decreases as the size increases, but it 

remains a consideration, even with a large number of samples. 

9 Simple random sampling design ignores all prior information, or professional 

knowledge, regarding the site or process being sampled, except for the expected 

variable of the site or process of measurement. 

2.4 GRID SAMPLING 

Grid sampling, also called systematic sampling consists of collecting samples at locations 

or over time in a specified pattern. Grid sampling is used to ensure that the target 

population is fully and uniformly represented in the set of n samples collected. A probability- 

based design is made and an initial sampling location is chösen at random. Then the 

remaining (n -1) sampling locations are chosen so that all n are spaced according to some 

pattern. 

There are two major applications for systematic sampling: 

9 Spatial designs. Samples are collected in one, two, or three dimensions if the 

population characteristic of interest has a spatial component. Sampling along a line 

of transect (one dimension), sampling every node on a grid laid over an area of 

interest (two dimension). 

" Temporal designs. Samples are selected to represent a target population that 

changes over time, samples collected will use a one dimension, where every nth unit 

sample is collected at specific point in time. 

Grid sampling is suitable when there is no information about a population and the objective 

is to determine if there is pattern or correlation among units and estimate the shape or 
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strength of the correlation pattern. In grid sampling there is bias in the spatial pattern in the 

population. Therefore formulae for random samples may not be applicable, unless some 

assumptions are made. 

Assumptions 

0 No spatial or temporal trends in the variable 

0 No natural strata 

" No correlations among individual samples. 

Given these assumptions, a grid sample will, on average, estimate the true mean with the 

same precision as a simple random or a stratified random sample of the same size. 

2.4. a Benefits 

The grid sampling has the following benefits: 

" Provides the maximum spatial coverage of an area for a given number of samples. 

" The design and implementation is relatively straightforward and has intuitive appeal. 

" Regularly spaced or timed samples allow for spatial and temporal correlations to be 

calculated. 

" The design can be implemented with little or no prior information about a site. 

2.4. b Limitations 

Grid sampling may not be as efficient as other designs if prior information is available about 

the population. Such information could be used as a basis for stratification or identifying 

areas of higher likelihood of finding population properties of interest. If the population 
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properties of interest are aligned with the grid, the sampling raises the possibility of an 

overestimation or underestimation (bias) of a population characteristic. Another limitation of 

grid in the marine environment especially in the oil and gas production environment is that 

missing stations that arises from the buffer region (near field site) or bad weather at sea can 

make if difficult to accommodate. Also Number of samples can never be optimised the 

number of samples. Grid sampling cannot be used to get a completely valid estimate of the 

standard error of the mean, i. e., variance of the mean, without some assumptions about the 

population. This could result in an inaccurate calculation for the confidence interval of the 

mean. 

2.5 STRATIFIED SAMPLING 

Stratified sampling is a sampling design in which prior information about the population is 

used to determine groups called stratalzones that are sampled independently. Each 

possible sampling unit or population member belongs to only one stratum/zone. Because 

the selections in different strata/zones are made independently, the variances of the 

estimators for individual strata/zones can be added together to obtain variances of the 

estimators for the whole population. Since only the within-stratum/zone variances enter into 

the variances of the estimators, the principle of stratification is to partition the population in 

such a way that units in each stratumlzone are as similar as possible. When the 

strata/zones are constructed to be relatively homogenous with respect to the variables 

being estimated, a stratified sampling design can produce estimates of the overall 

parameters with greater precision than estimates obtained from simple random sampling. 

Let N. represent the number of units in stratum/zone h and nh the number of units in the 

sample from that stratum/zone. 

36 



Chapter Two 

The total number of units in that population is: 

L 

N=J: Nh Equation 2.6 
h-l 

And the total size is 

L 
n=E nh Equation 2.7 

h"l 

The total of the y-values in stratum/zone h is: 

N 

zn = Ynr Equation 2.8 
ý-I 

Whilst the mean for that stratum/zone is: 

Ph = 
-T Equation 2.9 
Nh 

The overall population mean is: 

p=z Equation 2.10 
N 
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Estimating the population total 

With any stratified design 

The unbiased estimator of the population total r is obtained by adding together the 

stratum/zone estimators. 

L 

Tsr = th 

h-t 
Equation 2.11 

The variance of the stratified estimator, because of the independence of the selections in 

different strata, is the sum of the individual stratum/zone variances: 

L 

var(z, r) _ var(zh 
h-l 

Equation 2.12 

An unbiased estimator of that variance is the sum of individual stratum/zone estimators; 

±ar(th) 
"ar(z�) _ Equation 2.13 

h. l 

With stratified random sampling 

If the sample is selected by simple random sampling without replacement in each 

stratum/zone, then 

Th = NJA Equation 2.20 
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Is an unbiased estimator of rh, where 

Yh =1i yhi Equation 2.14 
n, -i 

Is the sample mean for stratum/zone h. 

An unbiased estimator for the population total r is 

L 
zsý .Z Nh yh Equation 2.15 

n=1 

Having variance 

L ý2 
var(z�) =± Nh (Nh 

- nh) Equation 2.16 

h-I nn 

Where 

2 

ah 2=12 (Yh, 
-1(hý Equation 2.17 

Nh-1,., 

Is the finite population variance from stratum/zone h. 
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An unbiased estimator of the variance of z,, is 

L2 

var(z, 
ý 
J= Nh (Nh 

-nh) 
S- Equation 2.18 

h-ý n, 

Where 

Ilk 2 

sti =1 (VM 
- yti) Equation 2.19 

nh-1I I 

Is the sample variance from stratum/zone h. 

Estimating the population mean 

With any stratified design 

Since p_, the stratified estimator for p is 

Equation 2.20 
N 

Assuming that the selections in different strata have been made independently, the 

variance of the estimator is 

var(f 
31 

J=Z var(r" N 
Equation 2.21 
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With unbiased estimator of variance 

varýi� J=2 Var(i,, ) Equation 2.22 

With stratified random sampling 

With stratified random sampling, unbiased estimator of the population mean p is the 

stratified sample mean (overall mean): 

IL 
Y, º _ -ý Njh Equation 2.30 

N ti., 

Its variance is 

L22 

vary�) 
' Nti - nh a-ti Equation 2.23 

n-kN 
J Ne nn 

An unbiased estimator of this variance is 

L22 

var(ä 
, 1) =L 

(Nh)(Nh 
ti .. Equation 2.24 

Nh ne 

Standard error (c,, ) of the overall mean 
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L 
22 

L2 
Ah Eh 

2S h=1 
ph nh = A2 n=l 

Where 

ph = 
AL 

= The proportion of the h`h stratum/zone A 

A= The total far field area 

Ah = The far field area in the h`h stratum/zone. 

Ch = The standard error in the h`~ stratum/zone. 

2.5. a Benefits 

Equation 2.25 

The primary benefit of stratification is that it is cost and time effective and produces 

estimates with increased precision compared to other sampling designs. The stratified 

random sampling allowed the accommodation of missing stations that arise because of the 

near field site in the oil and gas environment. Also the stratified random sampling allowed 

the allocation of optimum number of samples in stratum/zone, which gives estimates with 

the lowest variance for a fixed total sample size. 

2.5. b Limitation 

Stratified sampling needs reliable prior knowledge of the population in order to effectively 

define the strata and allocate the sample sizes. The gains in the precision, or reductions in 

cost, depend on the quality of the information used to set up the design. Any possible 

increases in precision are particularly dependent on the strength of the correlation of the 

auxiliary, stratification variable with the variable observed in the study. 
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2.6 STRATIFIED RANDOM SAMPLING DESIGN 

It is Environmental Protection Agency (US EPA) policy (EPA, 2000) that all EPA 

organisations use a systematic planning process to develop acceptance of performance 

criteria for collection, evaluation, or use of environmental data. Systematic planning 

identifies the expected outcome of the study; the data quality objectives (DQO) process 

(Figure 2.3) is the agency's recommended planning process for decision-making or 

determining compliance with a standard. 
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State the problem 
Define the problem; identify the planning team; examine budget and schedule. 

Identify the decision 
State decision; identifying study question; define alternative actions. 

Identify the inputs to the decision 
Identify information needed for the decision (information source, basic action level, 
sampling/analysis method). 

Define the boundaries of the study 
Specify sample characteristics; define spatial/temporal limits, units of decision making. 

Develop a decision rule 
Define statistical parameter, specify action level; develop logic for action. 

Specify tolerable limits on decision errors 
Set acceptable limits for decision errors relative to consequences (health effects, costs) 

Optimize the design for obtaining data 
Select resource-effective sampling and analysis plan that meets the performance 
criteria 

Figure 2.3 The Data Quality Objectives (DQO) Process. 

In the development of the new stratified random design for the monitoring of the impacts of 

oil and gas production in the Fladen Ground, many factors determine the choice of the 

stratified random design (Figure 2.4). 
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Choice of Sampling Design 

Information about Data Quality Constraints 
the Process Information 

Conceptual Model of Purpose of Data Collection 
Potential Environmental " Spatial and Temporal Study 

" Sampling) Analysis Hazard " Preliminary Estimates of 
Sizelbreath of Area of 

Constrains 
" Variance 

Time/Schedule Concern " Statistical Parameter of 
" 

" Media of Concern Interest 
Constraints 

" Distributions of " Tolerance for Potential 
" Geographical 

Contaminant 
Constraints 

Decision Errors 
" Budget Constraints 

" Sources of Variability L Overall Precision 

" ChemicaVPhysical Requirements " Compositing 

Properties of " Sampling Support 
Constraints 

contaminant 

Figure 2.4 Factors in selecting a sampling design. 

Using the nature of the sampling area and behaviour of the variables, two areas are 

defined, near and far field areas. The near field are area within 5 km from a multiple oil 

wells and 2 km from single oil well, whilst the far field are areas above 5 km from a multiple 

oil wells and 2 km from single oil well (Figure 2.5). 
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Figure 2.5 Location of the stratified random sampling site, indicating the Zones and oil 

platforms. Grey circles are near field sites (big circle are multiple oil wells and small circles 

are single well). 

The near field area act as a buffer region, which accommodates the varieties of changes of 

the discharges, since the major sources of the contaminant in the oil field are the 

discharges of produced water, cuttings (stopped in the late 1990s), oil spillage and flaring of 

gases. The sampling area was partitioned equally into 16 Zones (Figure 2.5), these Zones 

are classified as Zones with multiple oil wells or single oil, Five Zones are classified single 

oil Zones and nine Zones are classified multiple oil Zones having at least one multiple oil 

wells. The number of samples in each Zone was chosen by proportional allocation, with the 

number of samples proportional to the available far field area (Table 2.1). 
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Table 2.1 Zones showing number of samples, proportion and area of the far fields. 

Zones Proportion of far field area Number of samples Area (km2) 

1 1.000 20 456.011 

2 0.984 20 448.715 
3 1.000 20 456.011 

4 0.810 16 369.369 

5 0.470 10 214.325 

6 0.440 9 200.645 

7 0.955 18 435.491 

8 0.652 14 297.319 

9 0.876 18 399.466 

10 0.462 11 210.677 

11 0.861 17 392.626 

12 0.475 9 216.605 
13 0.977 20 445.523 

14 0.668 14 304.615 

15 0.975 20 444.611 

16 0.653 13 297.775 

Overall N/A 242 5589.784 

N/A = Not Applicable. 

Total number of samples was calculated based on the sum of the proportion of the far field 

area by taking the nearest whole number. Sampling unit was calculated based on the 

dimension of the Day grab (30cm by 30cm). Therefore, sampling unit equals to the area of 

Day grab (0.09m2), the total far field area and total sampling units were 5589.78km2 and 

6.21 x 1010 units, respectively. Two hundred and forty two samples were collected with a 

range of 9-20 samples per Zone, and samples were collected randomly and independently. 
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2.7 CONCLUSIONS 

The aim of this current work was to design a robust spatial sampling strategy that will give 

representative information on contamination since one-off sampling can clearly give results 

that are unrepresentative of the site being studied. The stratified random design was 

chosen to assess the spatial composition and concentrations of hydrocarbons in the study 

area (Fladen Ground). Zones were constructed equally and numbers of samples were 

allocated based on the proportion of the far field area in the Zone. Near field are areas < 

5km from multiple oil wells or < 2km from a single well, whilst far field are areas > 5km from 

multiple oil wells or > 2km from a single oil well. A total of 16 Zones was then defined using 

prior information on the spatial variation in the physical and chemical characteristic of the 

sediments, in the field area. 
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' CHAPTER THREE 

THEORY AND INSTRUMENTAL TECHNIQUES 

3.1 INTRODUCTION 

The determination of hydrocarbons in sediments is frequently performed in the oil and 

gas exploration and production environment. Given the wide variety of hydrocarbon 

contaminants that are found in sediment, there is a need for methods that satisfactory 

separate and quantify these compounds. In this thesis, a modern risk-based 

assessment and quantification of a range of hydrocarbon species is presented. A 

range of analytical instruments has been used to'measure the data required, namely 

the polycyclic aromatic hydrocarbon determined by gas chromatography-mass 

spectrometry (GC-MS), the oil equivalents as determined by ultraviolet (UV) 

fluorescence techniques and the sum of individual n-alkanes determined by the gas 

chromatography with flame ionization detection (GC-FID) to determine the 

concentrations of the hydrocarbons in field samples. The theory of each technique is 

presented in this chapter. 

3.2 FLUORESCENCE 

Fluorescence is an analytically important emission process in which atoms or 

molecules are first excited by absorption of a beam of ultraviolet radiation, and then 

loose some energy by non radiative relation before relax to the ground state, giving up 

their excess energy as photons. As some energy has already been lost in non 

radiative decay fluorescent emission is always at lower energy (i. e. longer wavelength) 

compared to the excitation process. Absorption and emission occurs at specific 

wavelengths characteristic of the compound, or group of compounds, being measured. 
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This gives information on molecular configurations, electronic transitions and energy 

levels within the molecules. The information can be used to characterise particular 

compounds, possibly leading to identification and, with suitable calibration, can be 

used to determine the quantity present. Fluorescence with ultraviolet light source was 

used in determining the oil equivalent concentrations of the diesel oil and Forties crude 

oil. The oils are mixtures which often contain compounds that fluoresce; these 

compounds usually are aromatic rings or extended conjugated double bonds. The oil 

equivalent of the oil is quantified by UVF against standard dilution of the Forties crude 

and diesel oils. 

3.2. a Theory of Molecular Fluorescence 

In a partial energy diagram (Figure 3.1) for a hypothetical molecular species, three 

electronic energy states are shown S0, S, and S2, where So is the ground state and 

S, and S2 are the electronic excited states. Each electronic state is shown as having 

four excited vibration states. Irradiation of this species with a band of radiation made 

up of wavelengths., to . 14 results in momentary population of the four vibrational 

levels of the first excited electron state S, . Similarly, when the molecules are irradiated 

with a more energetic band of radiation made up of shorter wavelengths, the four 

vibrational levels of the higher electronic state S2 become briefly populated. 
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Single excited states Triple excited state 

Vibrational relaxation 
Internal 

conversion 

S s 
iü 
w S 
ýo 
c 

Absorption 
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k2 

Intersystem 
crossing 

'TT* º 

III Tj 

Fluorescence 
III I Phosphorescence 

ki k3 

Figure 3.1 Energy level diagram showing absorption, fluorescence and 

phosphorescence (Skoog et al., 1997). 

k4 

The lifetime of an excited species is brief, and the excess energy released as the 

species returns to its ground state can be lost by non-radiative relaxation and/or 

radiative relaxation. The non-radiative relaxations (i. e. vibrational relaxation and 

internal conversion) occur during collision between excited molecules and molecules 

of the solvent; the excess vibrational energy is transferred to solvent molecules in a 

series of steps (Figure 3.1). The gain in vibrational energy of the solvent is reflected in 

a slight increase in the temperature of the medium. The lifetime of an excited 

vibrational state is only about 10-15 s, whilst for internal conversion is between 10-6 and 

10-9 s. The mechanism by which internal conversion occurs is not fully understood. 

If radiative relaxation from any of the vibrational levels of the ground state takes place, 

giving a band of emitted wavelength A, 
, all these lines are lower in energy, or longer 
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in wavelength, than the excitation lines. The phenomenon whereby a photon is emitted 

from a molecule at a lower energy level S, than the incident photon is named Stokes 

fluorescence. Some of the energy in S, may cross to the excited triplet state T, 

(intersystem crossing), and again the molecule may undergo some non-radiative 

relaxation before a photon is emitted. Energy released as a photon from a triplet state 

to ground state is known as phosphorescence and occurs on a longer time (minutes or 

even hours after irradiation has ceased ) scale than fluorescence. 

3.2. b Fluorescence Characteristics 

Fluorescence can be characterised by four main parameters: 

¢ Energy 

> Lifetime 

> Quantum yield 

> Polarisation 

The energy during a transition can be calculated from the emission spectrum using the 

following equation: 

E=by= Equation3.1 

Where 

E= Energy of photon (J) 

h= Plank's constant (6.63 x 10-34,1s) 

v= Frequency of radiation (s) 

c= Speed of light in vacuum (2.99 x 108 ms-1) 
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A= Wavelength of radiation (m). 

Fluorescence lifetimes have in general been shown to follow first order exponential 

decay rate laws (Campbell and Dwek, 1984). This gives a general expression relating 

the fluorescence intensity, I, with the fluorescence lifetime, z, of: 

I= Ioer Equation 3.2 

Where 

I= The fluorescence intensity at any time 

lo = The maximum fluorescence intensity during excitation 

t= The time after the excitation source has been removed 

r= The average lifetime of the excitation. 

The quantum yield ((D)of a system is defined as the number of quanta emitted for 

every quantum absorbed. This is effectively a measurement of the efficiency of the 

photo-system and can be represented as: 

(D = 
number of fluorescence quanta emitted Equation 3.3 

number of absorbed quanta 

The polarisation of the emitted photon can be described by polarisation (r) and 

anisotropy (V)and given by the equations: 

L-11 
I. + Il 

Equation 3.4 
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d_ 
L-11 

L+ 2Ij. 

Where 

Equation 3.5 

I. = The fluorescence intensity parallel to the excitation UV light 

Il = The fluorescence intensity perpendicular to the excitation UV 

light. 

Compounds containing aromatic rings give intense and analytically useful molecular 

fluorescence emissions. They fluoresce in solution, with the quantum efficiency 

increasing with the number of rings and their degree of condensation. In most 

molecules, the efficiency of fluorescence decreases with increasing temperature 

because of the increased frequency of collision at elevated temperatures. 

3.2. c Effect of Concentration on Fluorescence Intensity 

The power of fluorescence radiation F is proportional to the radiant power of the 

excitation beam absorbed by the system: 

F= K"(P0 - P) Equation 3.6 

Where 

Po = the power of the beam incident on the solution 

P= the power after it traverses a length b of a medium 

K" = constant depending on the quantum efficiency of the 

florescence. 
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In order to relate F to the concentration c of the fluorescing particle, we write Beer 

Lambert's Law in the form. 

P 
=10-t'c Equation 3.7 

PO 

Where 

E= the molar absorptivity of the fluorescing species. 

But 

cbc =A Equation 3.8 

Where 

A= Absorbance 

By substituting Equation 3.6 into Equation 3.7, we obtain. 

F= KwF (1-10-cb`) Equation 3.9 

Expanding Equation 3.9 exponential term as a series 

ý2.3Ebc)2 
F= K"Po 2.3sbc- + 

(2.3cbc)2 
..... Equation 3.10 

2! 3! 
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Provided cbc =A<0.05, all of the subsequent terms in Equation 3.10, all of the 

subsequent terms in the brackets become small with respect to the first; under these 

conditions, 

F=2.3K"ebcPo Equation 3.11 

And, at constant Po . 

F= Kc Equation 3.12 

3.3 APPLICATION OF THE UVF ANALYSIS 

UVF analysis was used to measure the oil equivalents concentration of the diesel and 

Forties crude oil. Fluorescence methods are generally one to three orders of 

magnitude more sensitive than methods based upon absorption, because increasing 

the power or amplification of the detector signal affects the two measured quantities in 

an identical way and leads to no improvement. Fluorescence instruments (Figure 3.2) 

are usually double-beam in design in order to compensate for fluctuations in the power 

of the source. The beam to the samples first passes through a primary filter or a 

monochromator, which transmits radiation that excites fluorescence but exclude or 

limits radiation that corresponds to fluorescence wavelengths. The emitted radiation 

reaches a photoelectric detector after passing through the secondary filter, which 

isolates a fluorescence peak for measurement. The reference beam passes through 

an attenuator to decrease its power to approximately that of the fluorescence radiation. 

The signals from the reference and sample phototubes are then processed by a 

difference amplifier whose output is displayed on a meter or recorder. 
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Primary excitation 
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UV light monochromator Sample 

Beam 
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photomultiplier 
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Difference photomultiplier 
amplifier 

Readout 

Figure 3.2 Schematic of a spectrofluorometer (Skoog et al., 1997). 

3.4 CHROMATOGRAPHY 

Chromatography is widely used for separation, identification, and determination of the 

chemical components of complex mixtures. No other separation method is as powerful 

and generally applicable as is chromatography. Chromatography is defined as a 

technique in which the components of a mixture are separated based on the rates at 

which they are carried through a stationary phase by a gaseous or liquid mobile 

phase. The stationary phase is fixed in place either in a column or on a planar surface. 

The mobile phase moves over or through the stationary phase, carrying the analytes 

with it. 

3.4. a Theory of Gas Chromatography 

In gas chromatography the analytes are distributed between a liquid stationary phase 

and ideal gas as the mobile phase as schematically shown in Figure 3.3. 
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<V > 
Cf 

(t) 

GAS 

LIQUID ci (t) 

Figure 3.3 Schematic presentation of a gas chromatographic system. <v> is the 

average linear velocity of the mobile phase. ct (t) and c! (t) are the concentrations of 

the analyte, i, in the mobile (m) and stationary (s) phase, respectively. Both are 

functions of time. 

The distribution of the analytes (Kr) between the mobile and stationary phases is 

determined by the partition constant, given as usual by. 

Ki 
- m c 

Equation 3.13 

For the concentration in the liquid, the vapour pressure of the solute, i, over the binary 

mixture consisting of the liquid phase and analytes follows Henry's Law. 

pi =ayP lo = yý xi P1 Equation 3.14 

Where 

aH = the Henry constant, 
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X1 = the mole fraction of analyte, i, in the liquid phase, 

yi = the activity coefficient (at finite dilution), 

p° = the vapour pressure of the analyte (as pure compound) at given 

temperature. 

The partial pressure, p,, of the analyte in the ideal gas phase is given by Dalton's Law. 

S 

p. = 
Vg RT Equation 3.15 

T= the absolute temperature 

R= the gas constant 

Vg = the volume in the gas phase 

ng = the number of moles of analyte, i, in the gas phase. 

Substituting the volume concentration in Equation 3.15 (for the finite dilution) gives the 

expression for the partition constant 

K, = 
RT Equation 3.16 

Pro Yr V,. 
mor 

Where 

V,,, 
�o1 = the mean molar volume of the stationary phase. 

P10 = the vapour pressure of analyte as pure compound at 

temperature T 
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Y0 ,= the activity coefficient of the analyte in stationary liquid (at 

infinite dilution). 

Separation selectivity of two consecutively eluting components, i and j, is defined in 

chromatography by the selectivity factor, a1, 

Kj 

r 

Where 

Equation 3.17 

K. = the partition coefficient of the less retained species 

Kj = the partition coefficient of more retained species 

The capacity factor, P, describe as the migration rate of the elutes on column is 

defined as: 

k; = 
'yI 

Equation 3.18 
V. 

Where 

V�, = the volume of the mobile phase 

Substitution of equation 3.17 and analogous equation for eluting component j into 

equation 3.18 provides a relationship between the selectivity factor for the i and j 

components and their capacity factors: 

k' 
a., =, Equation 3.19 

I 
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The selectivity coefficient using Equation 3.16 is thus 

0 
a 

P0 'y' Equation 3.20 !t-- 
PJYJo 

0 

Therefore, the selectivity in GC is determined by ratios; 

0 The ratio of the vapour pressures of the analytes as pure compounds (at 

working temperature). 

The ratio of the activity coefficients the in stationary phase (at infinite dilution). 

Whereas the temperature only influences the first ratio, the second ratio reflects the 

difference in the chemical interactions of the two components with the stationary liquid. 

3.4. b Temperature Dependence of Distribution Constant 

In contrary to Equation 3.14 the distribution constant (K), and the capacity factor (k') 

as well, decreases with increasing temperature, because the linear dependence of K 

on T is more than overcompensated by the exponential increase of the vapour 

pressure, p! , with temperature, according to the Clausius-Claperon equation. 

d In p_ 'w, 
p Equation 3.21 

dT RT2 

Therefore the following linear approximation can be found: 

1ogK! resp. logk, a Equation 3.22 
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3.4: c Retention Index 'R 

In gas chromatography, the retention index provides a useful and generally accepted 

parameter for the identification of analytes. This parameter is based on the finding that 

logk' values of the members of a homologous series of organic compounds are 

commonly linearly dependent on the number of carbon atoms, n, in the molecules. 

Applied to the homologous series of n-alkenes this means that, 

log kn =A+B. n Equation 3.23 

A pair of n-alkanes exists for each analyte i with a certain capacity factor, between 

which the analyte is eluted in the chromatogram. This analyte is considered as a fictive 

n-alkene with a hypothetical number of carbon atoms. This number, multiplied by 100, 

is the Kovats retention index. The retention index of analyte i is normally determined 

as shown below, with higher accuracy than would be possible by graphical 

interpolation: 

log k; - logk ö 
IR, -100z +100n Equation 3.24 

log�+, -1og� 

Substitution of the capacity factors by the net retention times 

N tRi = tRi -tRo Equation 3.25 
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N 

IR; =100a 

logt Rý N 
Nt 

Rn -+100n Equation 3.26 
logtr(n+s) 

N tRn 

n= the numbers of carbon atoms of n-alkanes eluting before the 

analyte. 

(n + z) = the numbers of carbon atoms of n-alkanes eluting after the 

analyte. 

Z= Ion charges 

Therefore, the retention index is independent of certain varying experimental 

parameters: 

" Velocity of the mobile phase 

" Phase ratio 

" Length of the column. 

It depends on: 

" The nature of the stationary phase 

" Column temperature. 

3.4. d Dispersion in capillary GC 

As the two components travel through the chromatographic capillary column (capillary 

column are open tubes made from metal or glass; discussed in section 3.5. b), the 

distance between the band centres increases, and the bands broaden out. Resolution 

is defined as: 
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R, = 
tR2 -t'' Equation 3.27 Y (WI + WZ ) 

Where 

tRI = the retention time of peak 1 

tR2 = the retention time of peak 2 

W, = the basal peak widths of 1 

WZ = the basal peak widths of 2. 

The larger the value of R. , the better the separation. 

Gas chromatographic efficiency is affected by the amount of band broadening; the rate 

theorem of chromatography describes the shape and breadths of the elution peaks in 

quantitative terms based on a random-walk mechanism for the migration of molecules 

through a column. A detail discussion of the rate theory is beyond the scope of these 

studies. Two related terms are used as quantitative measures of the efficiency of the 

chromatographic columns, the plate height (H) and the number of theoretical 

plates (N). The two are related by the equation below: 

ýl . Equation 3.28 

Where 

L= the length of column (usually in centimetres). 

The plate height can be describe as the length of column that contains a fraction of the 

analytes, because the area under a normal error curve bounded by ±a is about 68% 
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of the total area, the plate height, as defined (the variance per unit length of column), 

contains (34%) of the analyte, and is used as a measure of column efficiency; 

H=°-z 
L. 

Where 

QZ = the variance of a Gaussian curve. 

Equation 3.29 

The number of theoretical plates N and plate height widely used as measured of 

column performance can be determined from a chromatogram as: 

s 

N=5.54 -LIR Equation 3.30 

y 

Where 

tR = the retention time 

Wj= the peak width at half its height. Y2 

The breadth of peaks in capillary GC separations is described by the model of the 

theoretical plate height, H. Four processes were found to contribute to the total plate 

height in chromatography. 

Hdiff describes the contribution from longitudinal diffusion 

Hcoplv that from convective mixture 
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Ham, 
� 

that stemming from kinetics of mass exchange from the mobile phase to 

the interface between mobile and stationary phase 

H., that from the kinetics of mass exchange from the stationary phase. 

Consequently the total plate height is the sum of the four contributions: 

H= Hd, ff + Hca�v + He 
,m+ 

Hex,, Equation 3.31 

The Hd; , that in direction of zone migration is caused by the concentration gradient 

occurring between the sample and its surroundings in this direction. According to the 

Einstein equation, the resulting peak variance in the space domain is given by, 

a; = 2Dm, it 

Where 

D.,, = diffusion coefficient. 

Equation 3.32 

The equivalent expression for the relation between plate height and variance is 

a= = Hz Equation 3.33 

The contribution is more pronounced the larger the diffusion coefficient of the analyte 

in the mobile phase, and the longer the period that is available for diffusion. This 

increment increases with decreasing velocity of the mobile phase, and is proportional 

tol/v. It follows that the plate height contribution due to longitudinal diffusion is, 
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Hdi = 
2D'"'' 

Equation 3.34 
v 

Longitudinal diffusion in the stationary phase does not significantly contribute to peak 

broadening. 

The radial velocity profile of the mobile phase through the column introduces an effect 

to peak broadening due to convective mixing. The flow profile can be analytically 

described as parabolic shape with zero velocity at the capillary wall, and maximum 

velocity at the centre of the tube with radius r,,. For a non-retained component, the 

contribution to the plate height is described by the Taylor dispersion equation. 

s 
Hconv = 24D 

2 
Equation 3.35 

m, l 

The amount of analyte exchanged between stationary and mobile phases has a finite 

rate of mass transport from the inner part of the mobile or stationary phase, 

respectively, to the interface between these two phases. A higher concentration than 

equilibrium concentration exists at the front of the peak in the mobile phase, and the 

reverse is the case at. the rear side. For these kinetic reasons, peak dispersion occurs, 

which increases with increasing velocity of the mobile phase. The effect in the mobile 

phase is related to the flow characteristics. Therefore, the contribution of the finite 

mass transfer rate in the mobile phase is combined with that stemming from the flow 

profile, and the combination of both effects leads to, 
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º º2 

Hconv= 
'm _1+ 

6k, + 11k, r2 2 
Equation 3.36 (1 + kr )2 24Dm. i 

The term which stems from the kinetics of mass transport in the stationary phase is 

given by, 

2 
__2 

k; df. 
HHex's 

31+ k' 2D 
rý s. r 

Where 

df= the thickness of the stationary phase layer 

D,,, = the diffusion coefficient in the stationary phase. 

Equation 3.37 

The Golay equation described the total height, given by the sum of the particular 

increments that contribute to peak dispersion: 

2D, 
�, 1+6k; +11k, 2 r2 2 k' df 

H=++v+- Equation 3.38 
v (1 + k! )Z 24Dm j3 

(1 +k; )Z D,,, 

3.5 APPLICATION OF THE GAS CHROMATOGRAPHY 

A gas chromatograph consists of several parts, which are schematically shown in 

Figure 3.4. The main elements of a GC system are the carrier gas supply, the sample 

inlet, the column (positioned in a column oven), the detector(s) and a device for data 

collection, acquisition and processing. 
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Figure 3.4 Schematic of a gas chromatograph instrument (Skoog et al., 1997). 

3.5. a Carrier Gas Supply 

Carrier gases must be chemically inert, and the most common carrier gases include 

helium, nitrogen and hydrogen. Associated with the gas supply are pressure 

regulators, gauges, and flow meters. In addition, the carrier gas system often contains 

molecular sieves to remove water or other impurities. The choice of the carrier gas 

depends on several demands, e. g. the appropriate operation of detector (He for 

combination with mass spectrometry), on separation efficiency and speed, on safety 

reasons (H2 is explosive), or on price (N2 is the cheapest). He gas was used for the 

analyses in this study for GC-MS, nitrogen for analysis by GC-FID. 

Flow 
controller 
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3.5. b Column Configurations and the Column Oven 

There are two general types of column, packed and capillary (open tubular). Packed 

columns contain a finely divided, inert, solid support material (diatomaceous earth) 

coated with liquid stationary phase. Most packed columns are 1.5 - 10 m in length and 

have internal diameter of 2-4 mm. capillary columns have an internal diameter of a 

few tenths of millimetre, most capillary columns are 5- 10 m in length. The capillary 

columns are either wall-coated open tubular (WCOT) or support-coated open tubular 

(SCOT). In WCOT the tube walls are coated with liquid stationary phase, whilst in 

SCOT the inner wall is lined with a thin layer of support material such as diatomaceous 

earth, onto which the stationary phase are absorbed. 

Packed columns are rarely used now, and have generally been replaced by the faster 

capillary columns for most applications. The capillary column has the advantages of 

physical strength, flexibility and much lower reactivity towards sample components 

(avoiding adsorption interactions between analytes and adsorption centre leading to 

tailing peaks). Zebron column with a 5% phenyl polysiloxane film, 30 m length, 0.25 

mm internal diameter and 0.25 Nm film thickness was used for the analyses in this 

study. 

For precise work, column temperature must be controlled to within tenths of a degree. 

The optimum column temperature is dependent upon the boiling point of the sample. A 

temperature slightly above the average boiling point of the sample results in an elution 

time of 2- 30 min. Lower temperatures gives good resolution, but increase elution 

times. Temperature programming is essential if the analytes cover a wide range of 

boiling points; the column temperature can be increased either continuously or in steps 

as separation proceeds. 
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3.5. c Sample Injection System 

For optimum column efficiency, the sample should not be too large, and should be 

introduced onto the column as a "plug" of vapour - slow injection of large samples 

causes peak broadening and loss of resolution. The most common injection method is 

by a micro-syringe, which is used to inject the sample through a rubber septum into a 

flash vapouriser port at the head of the column. For packed columns, the sample size 

ranges from tenths of a pL up to 20 I. A. Capillary column requires much less sample, 

typically around lyl. The injection can be used in one or two modes; split or splitless. 

The injector contains a heated chamber containing a glass liner into which the sample 

is injected through the septum. The carrier gas enters the chamber and leave by three 

routes (split mode). The sample vaporises to form a mixture of carrier gas, vaporised 

solvent and vaporised solutes. In this study, on-column injection was used; on-column 

injection has the advantages of avoiding mass discrimination effects, and its enables 

quantitative insertion of sample into the column (trace analysis) and labile components 

are not stressed thermally. With on-column technique the sample solution is directly 

inserted into the column with the aid of a syringe with a long, narrow needle, whereby 

the injector is maintained at low temperature. The capillary for the retention gap is 

mounted in the column oven, whose temperature must be adjusted to the boiling point 

of the solvent. If the temperature is below the boiling point, solvent trapping occurs. If it 

is selected slightly above the boiling point, cold trapping of the sample components 

occurs. In both cases the chromatogram must be developed with an adequate 

temperature program of the column, which is an essential step when using this 

injection type. 
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3.5. d Detectors 

The ideal detector for GC has the following characteristics: 

" Adequate sensitivity (10-8- 10'15 g/s) 

" Good stability and reproducibility 

" Linear response to solute extending over several orders of magnitude 

" Temperature range from room temperature to at least 400 °C 

" Quick response time, independent of flow rate 

" High reliability 

" Similarity in response towards all solutes 

" Non-destructive of sample. 

3.5. d. i Flame Ionization Detectors (FID) 

The flame ionization detector (FID) is the most widely used and generally applicable 

detector for a GC, with schematic diagram shown in Figure 3.5. The effluent from 

column is mixed with hydrogen and air and then ignited electrically. The FID couple 

with GC was used in the determination of the aliphatic hydrocarbons because of it high 

sensitivity for compounds containing carbon. Most organic compounds, when 

pyrolyzed at. room temperature by a hydrogen/air flame, produce ions and electrons 

that can conduct electricity through the flame. A potential of a few hundred volts is 

applied across the burner tip and a collector electrode located above the flame. The 

resulting current (-10-12 A) is then directed into a high-impedance operational amplifier 

for measurement. 
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Figure 3.5 Schematic drawing of a flame ionization detector (FID) (Skoog et al., 1997). 

3.5. d. ii Mass Spectrometer 

A mass spectrometer creates charged particles (ions) from molecules. It then analyzes 

those ions to provide information about the molecular weight of the compound and its 

chemical structure. There are many types of mass spectrometers and sample 

introduction techniques which allow a wide range of analyses. This discussion will 

focus on mass spectrometry as it's used in the powerful and widely used method of 

coupling Gas Chromatography (GC) with Mass Spectrometry (MS). The GC-MS was 

used in determination of PAHs and the geochemical biomarker analysis (sterane and 

triterpane). All mass spectrometers consist of three distinct regions: 

Ionizer 

Ion Analyzer 
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Detector 

Ionizer 

In the GC-MS, the charged particles (ions) required for mass analysis are formed by 

Electron Impact (EI) Ionization. The advantage of El over chemical ionization (CI) is 

molecular and fragment ions are created in El, whilst in CI no structural information is 

obtained due to lack of fragment ions. The gas molecules exiting the GC are 

bombarded by a high-energy electron beam (70 eV). An electron which strikes a 

molecule may impart enough energy to remove another electron from that molecule. 

El Ionization usually produces singly charged ions containing one unpaired electron. 

A charged molecule which remains intact is called the molecular ion. Energy imparted 

by the electron impact and, more importantly, instability in a molecular ion can cause 

that ion to break into smaller pieces (fragments). The molecule ion may fragment in 

various ways, with one fragment carrying the charge and one fragment remaining 

uncharged. 
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Detector 
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Figure 3.6 A schematic diagram of a quadrupole mass filter from Frauhofer-Institute 

for process engineering and packaging IW. 

Ion Analyzer 

Molecular ions and fragment ions are accelerated by manipulation of the charged 

particles through the mass spectrometer. Uncharged molecules and fragments are 

pumped away. The quadrupole mass analyzer (Figure 3.6) used in this study, uses 

positive (+) and negative (-) voltages to control the path of the ions. The quadropole 

mass filter can be operated in a scan or select ion monitoring (SIM) modes. In SIM, the 

mass filter is set to pass one selected mass to charge ratio (m/z), this provides the 

greatest sensitivity and is used for quantitative application, whilst the mass filter in the 

scan mode is set to sequentially pass a range of masses, and it has lower sensitivity 

because most of the ions strike the rods during scan. In this study El using SIM modes 

was used. Ions travel down the path based on their m/z. EI ionization produces singly 
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charged particles, so the charge (z) is one. Therefore an ion's path will depend on its 

mass. If the (+) and (-) rods shown in the mass spectrometer schematic were 'fixed' at 

a particular rf/dc voltage ratio, then one particular m/z would travel the successful path 

shown by the solid line to the detector. However, voltages are not fixed, but are 

scanned so that ever increasing masses can find a successful path through the rods to 

the detector. 

A derivation of the working equations for an ion analyzer is based upon a second- 

order differential equation known as the Mathieu equation (Equation 3.39) 

'u d 
+(a. - 2qw cos 2ý)i =0 Equation 3.39 

z 

And 

8eU 
aý = 

mr2ý2 0 

4eV 
q" - mrö S22 

Where 

Equation 3.40 

Equation 3.41 

u= position of the coordinate axes (x or y) 

= parameter representing S2t/2 

t= time 

e= charge on electron 

U= the applied DC voltage 

V= the applied zero-to-peak radio frequency (RF) voltage 

m= the mass of the ion 

r= effective radius between electrodes 
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S2 = the applied RF frequency. 

Detector 

There are many types of detectors, but most work by producing an electronic signal 

when struck by an ion. Timing mechanisms which integrate those signals with the 

scanning voltages allow the instrument to report which m/z strikes the detector. The 

mass analyzer sorts the ions according to m/z and the detector records the abundance 

of each m/z. Regular calibration (or tuning) of the m/z scale is necessary to maintain 

accuracy in the instrument. Calibration is performed by introducing a well known 

compound (six deuterated aromatic hydrocarbon standards were used in this studies 

d8-naphthalene, d, o-biphenyl, d8-dibenzothiophene, d, o-anthracene, d1o-pyrene and 

d12-benzo[a]pyrene) into the instrument and "tweaking" the circuits so that the 

compound's molecular ion and fragment ions are reported accurately. 

3.6 CONCLUSIONS 

UVF analysis was used in determination of the oil equivalent concentrations of the 

Forties crude oil and diesel oil, the GC-FID used in determination of the aliphatic 

hydrocarbon concentrations and the GC-MS used in the determination of the PAHs 

concentrations and identifications of the geochemical biomarker analysis. The choice 

of these techniques is important to determine the characteristics of the hydrocarbons 

in sediments. The concentrations are used in assessing and evaluating the sources 

and effects of the hydrocarbon contamination in the sediments to the marine and wider 

environment. 

The GC-FID method utilized separation properties of the GC with the identification 

ability of the FID, because the FID responds only to oxidizable carbon atoms, fully 
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oxidized carbon compounds (e. g., C02) and non-oxidizable compounds (e. g., 

polysulfides or S8) are not detected. Furthermore, the fact that the compounds are 

detected following the flame ionization means that while detector response is 

proportional to the amount of oxidizable material that was ionized, it is not impacted by 

the chemical nature of the compound itself. Thus, while the FID response can vary as 

a function of the amount of material being ionized in the flame, it does not vary 

significantly as a function of the chemistry of the compound; a Ce alkane (hexane) will 

exhibit an FID detector response similar to that of a C6 aromatic (benzene). 

Additionally, FID response has been shown to be linear over nearly 6 orders of 

magnitude differences in compound concentration. For these and other reasons (high 

sensitivity, great reliability, etc. ) the GC-FID was chosen for the determination of the 

aliphatic fraction of the hydrocarbon. 

In marked contrast to the GC-FID, detection using a GC-MS can be significantly 

affected by both the amount and the chemical nature of the compound. This is due, in 

part to the ionization potential of the specific compound. It is this attribute which makes 

the MS such a useful tool in characterizing specific compounds. 

Because of the significant differences in detector response as a function of the 

chemistry, quantification using mass spectrometry is usually done only when there is a 

specific standard for the compound of interest, and six deuterated aromatic standards 

(d8-naphthalene, d, o-biphenyl, d8-dibenzothiopene, d, o-antracene, d, o-pyrene and d12- 

benzo[a]pyrene) were used in this studies. 
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CHAPTER FOUR 

METHODOLOGY 

4.1 INTRODUCTION 

In order to evaluate the effects of hydrocarbon pollution to the ecosystem, it is essential 

to analyse the individual characteristics of the sediment. To compare sample sites, the 

origin and amount of contaminants has to be investigated. The analytical methods and 

the quality control procedures are described in this Chapter. 

4.2 MATERIALS 

Dichloromethane (DCM), iso-hexane, methanol and acetone were purchased from 

Rathburn Chemicals Ltd. (Walkerburn, Scotland). Anhydrous sodium sulphate (Na2 SO4) 

was of analytical grade from Fisher Chemicals (Loughborough, UK). 

4.3 SAMPLE COLLECTION 

Sediment samples were collected by Day Grab. The top 2 cm layer of sediment was 

scraped off each sample and the sediment was mixed before transferring (-200 g) to a 

solvent washed aluminium can which was labelled and stored at -20 ± 5°C until required 

for analysis. All sediments collected were analysed for ultra-violet fluorescence (UVF) oil 

equivalent concentrations, PAHs and n-alkanes while selected samples were analysed 

for steranes and triterpanes. 
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4.4 FREEZE-DRYING 

Freeze-drying is a process of separation of liquid water from a wet solid product, 

solution or dispersion of given concentration in a form of solid phase, ice, and its 

subsequent removal by vacuum sublimation, leaving the solute or substrates in their 

anhydrous, or almost anhydrous state. At low pressures and temperatures water in the 

form of ice can be converted directly into water vapour. By avoiding the liquid phase of 

water, boiling is inhibited, and the sample remains intact. 

4.4. a Freeze Drying of Sediments 

The freeze-drying of the sediment sample was performed on a Lyotrap Ultra 

LF/LYO/03/1 (serial-No L6831) (MLA SOP 0110) freeze drier. It is essential that the 

samples were frozen before being placed in the freeze drier. The samples need to be 

unsealed to allow the water vapour generated from the sublimation of the ice to escape. 

The samples were freeze-dried for 36 ±4 hrs below -30°C. 

4.5 PARTICLE SIZE ANALYSIS (PSA) 

The particle size analysis (PSA) is a method used to determine the particle size 

distributions of the sediments in the range 0.1-2000 microns. Two instruments were 

used 

4.5. a Principle of PSA 

The principle is based on the scattering of laser radiation by particles in a flow cell and 

the measurement of the intensities of the scattered light concentric circles at the focal 

length point of the optical detection system. The results were given as a histogram of 

the distribution and as the percentage of particles with diameter < 20 pm and < 63 pm. 
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4.5. b Analysis 

PSA was first performed on a Mastersizer/E, Malvern (Serial-No 7271), later a new 

Malvern instrument Mastersizer 2000 Compiles with 21CFR 1040 10 and 1040 11 

version 5.22 (Serial-No MAL 100570) was used for the rest of the samples. The freeze- 

dried sediment sample was sieved through a 500 and 2000 pm sieve for the old and 

new instrument, respectively, into the mixing cell and sonicated until a particle size 

reading was obtained before recording the measurement (MLA SOP 840). The particle 

size distributions were calculated by the Mastersizer computer (Powermate 425-PM - 

1222-2431). In the old instruments Mastersizer/E, Malvern (Serial-No 7271), manual 

sieving was used to calculate particle sizes above 500 pm. 

4.6 ANALYSIS OF CARBON, HYDROGEN AND NITROGEN 

(CHN) 

The CHN analysis is a method used to determine the organic carbon and nitrogen 

content of sediments in the range of 0.06-55.6 mg and 0.005-6.07 mg per sample for 

carbon and nitrogen, respectively. 

4.6. a Principle of the CHN analysis 

Sediment samples were acidified with HCl in silver cups, prior to analysis to remove the 

inorganic carbon fraction. The CHN analyser uses a combustion method to convert the 

sample elements into simple gases (C02, H2O and NO the sample is first oxidised in a 

pure oxygen environment; the resulting gases are then controlled at exact conditions of 

pressure, temperature and volume. Finally, the product gases are separated. Then, 

under steady state conditions, the gases are measured as a function of thermal 
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conductivity, and expressed as percentage of the whole sample and as C/N and N/H 

ratios. Acetanilide is used to calibrate the machine on start-up. Mess -2 and Tibet soil 

are used as system suitability checks for C and N respectively. "Clean" homogenised 

sediment from Raasay Sound is used as a laboratory reference material (LRM). 

4.6. b Analysis 

A freeze-dried sample of 10-20 mg of finely ground material was weighed on a 

Sartorious MC2106 Auto balance, into 12 mm silver capsules. The samples then 

underwent acidification (MLA SOP 170), by adding an initial 20 pl of HCI (15% v/v) and 

allowed to evaporate in a Teflon tray on a hotplate at 70°C. Another three portions at 15 

minutes intervals were added then follow by 4 additions at 15 minutes intervals of 30 pl 

of HCI (15% v/v). The samples were then transferred to an aluminium tray and left for an 

hour to remove excess HCI which may interfere with the CHN analyser when the 

sample is analysed. Nitrogen and the total organic carbon (TOC) content were 

determined using a Thermo Quest FlashEA 1112 elemental analyser (MLA SOP 885). 

4.7 PREPARATION OF GLASSWARE AND SODIUM 

SULPHATE 

All glassware were washed and dried in a GW 4000-glassware washer (Camlab Ltd., 

Cambridge, UK). Prior to use, all glassware was rinsed twice with DCM and then twice 

with iso-hexane, the latter being allowed to evaporate before proceeding. Anhydrous 

sodium sulphate, used for drying the organic extracts, was washed ultrasonically with 

DCM (2 x 500 ml) followed by iso-hexane (2 x 500 ml) and dried overnight at 150 °C. 
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4.8 EXTRACTION OF SEDIMENTS FOR FLUORESCENCE AND 

HYDROCARBON ANALYSIS 

This method describes the extraction of sediments for the determination of total 

hydrocarbons by fluorescence, aliphatic hydrocarbons by gas chromatography with 

flame ionisation detection (GC-FID) and PAHs by gas chromatography - mass 

spectroscopy (GC-MS). 

4.8. a Principle of the Method 

The hydrocarbons are extracted using a polar solvent mixture with sonication. The 

chlorinated solvent is isolated from the methanol by partitioning with water. The 

chlorinated solvent is dried and then diluted to a standard volume from which small 

aliquot is removed for fluorescence determination. The remaining solution is solvent 

exchanged to iso-hexane and the hydrocarbons fractionated into aliphatic and aromatic 

fractions by normal phase high performance liquid chromatography (HPLC). The final 

concentration is quoted on the basic of dry weight of sediment. 

4.8. b Hydrocarbon Extraction 

20 ± 0.5 g of the sediment sample was weighed into a centrifuge tube, and 200 ±3 NI of 

the aliphatic hydrocarbon internal standards (heptamethylnonane and squalane) (MLA 

SOP 1605) and 100 ±1 pI of the six deuterated aromatic hydrocarbon standards (d8- 

naphthalene, d1o-biphenyl, d8-dibenzothiophene, d1o-anthracene, d1o-pyrene and d12- 

benzo[a]pyrene) (MLA SOP 1605) were added. The hydrocarbons were extracted twice 

using 20 ±2 ml dichloromethane/methanol with sonication and centrifugation, the 

halogenated solvent isolated and dried over Na2SO4. The DCM fraction was made to a 

known volume (100 ml) and an aliquot (10 ml) removed for UVF analysis. The remaining 
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extract was solvent exchanged to iso-hexane and the extract reduced in volume by 

rotary evaporation prior to concentration to a small volume (-500 NI) under a scrubbed 

nitrogen stream (MLA SOP 1600). 

4.8. c Sample Fractionation 

The aliphatic and aromatic hydrocarbons were separated by isocratic high performance 

liquid chromatography (HPLC). An aliquot (150 NI) of the iso-hexane extract was 

injected on to a previously calibrated Genesis SIL 4 Nm HPLC column (25 x 4.6 cm id; 

Jones Chromatography, Mid Glamorgan, UK) and eluted with iso-hexane at a flow rate 

of 2 ml min-'. The two fractions collected were concentrated (- 50 NI) prior to 

chromatographic analysis. The extracts were analysed by gas chromatography with 

flame ionisation detection (GC-FID) for aliphatic hydrocarbon analysis and gas 

chromatography - mass spectroscopy (GC-MS) for PAHs and biomarkers (MLA SOP 

1600). 

4.9 ULTRA-VIOLET FLUORESCENCE (UVF) ANALYSIS 

This method described the determination of oil equivalents in sediments using ultraviolet 

UV radiation as source of excitation. Calibration standards were prepared for reference 

diesel fuel oil and reference Forties crude oil; these were analysed with each batch of 

samples. A stock solution of oil, each was prepared (- 100 Ng ml"'). From this, aliquots 

were removed and dilutions prepared covering the concentration range 0.02 -5 Ng ml"'. 

The samples were introduced, via a cuvette, into a Perkin Elmer LS 5 

spectrophotometer (Perkin Elmer, Beconsfield, UK). 
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4.9. a Principle of the Method 

The principle of fluorescence was described in Chapter 3. The oil equivalent of the oil is 

quantified by UVF against standard dilution of the Forties crude and diesel oils. 

4.9. b Analysis 

The optimum excitation and emission wavelengths were determined for both Forties 

crude oil and diesel fuel. Diesel calibration standards were read with the spectrometer 

set with an excitation of 270 nm and an emission of 330 nm, while Forties calibration 

standards were read with an excitation of 310 nm and an emission of 360 nm. Samples 

were read against the wavelength settings for both diesel fuel oil and Forties crude oil. 

The instrument was set with a fixed scale of 1 and a slit width of 5 nm. Fluorescence 

analyses at high concentrations are susceptible to self-quenching. Self-quenching 

results from the collisions of excited molecules, it increases with concentration due to 

the increased probability of collisions. To account for any self-quenching samples were 

measured at each wavelength and then diluted (50%) in dichloromethane and re-read. 

This step was repeated until readings were almost half that of the previous reading. 

4.10 ANALYSIS OF ALIPHATIC HYDROCARBONS 

This method describes the quantitative determination of aliphatic hydrocarbons, 

specifically n-alkanes, from sediment samples by gas chromatography with flame 

ionisation detection (GC-FID). 

4.10. a Principle of the Method 

The principle is base on separation of volatile and semi-volatile compound by the GC 

column, and subsequent burning of the compound in small hydrogen flame (chapter 3). 
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Ionic fragments and free electrons formed in the combustion are collected via an 

electrostatic field surrounding the flame, and an electronic current proportional to the 

amount of sample entering the flame is created. 

4.10. b Analysis 

The n-alkane distribution was determined by Gas Chromatography with Flame 

Ionisation Detection (GC-FID) using an HP 5890 Series II gas chromatograph (Hewlett 

Packard Ltd, Stockport, England), equipped with an HP 7673 automated, cool on- 

column injector and fitted with a non-polar, Ultra 1 column (25 mx0.2 mm id, film 

thickness 0.33 Nm; Agilent Ltd, Stockport, England). The carrier gas was ECD grade 

nitrogen (16 psi). Injections were made at 60°C and the oven temperature held at this 

for 3 minutes. Thereafter the temperature was raised at 4°C min" up to 280°C and held 

at this temperature until the end of the run. The detector was maintained at 300°C 

throughout. Data were collected using a PE Nelson 600 series link box and processed 

using Turbochrom Navigator software (Perkin-Elmer Ltd, Beaconsfield, England) (MLA 

SOP 1610). 

4.11 ANALYSIS OF GEOCHEMICAL BIOMARKERS (STERANES 

AND TRITERPANES) 

This method described the qualitative analysis of steranes and triterpanes in sediment 

samples; the geochemical biomarker profile can be used to identify oil contamination 

from weathered or bacterial oxidised oil. 
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4.11. a Principle of the Method 

The principle is based on separation of volatile and semi-volatile compounds on the GC 

column, and subsequent identifications of the sterene and triterpane of the crude oil 

(aliphatic fraction) unaffected by weathering, by the MS (Chapter 3). 

4.11. b Analysis 

The sterane and triterpane compositions were determined by GC-MS using an HP6890 

Series gas chromatograph interfaced with an HP5973 MS and fitted with a cool on- 

column injector. A Zebron column with a 5% phenyl polysiloxane film was used for the 

analyses (ZB5,30 mx0.25 mm id, 0.25 Nm film thickness: Phenomenex, Cheshire, 

UK). Injections were made at 60°C and the oven temperature held constant for 0.5 min 

after which it was increased at 40°C min-' up to 150°C. This was followed by a slower 

ramp of 5°C min"' up to a final temperature of 300°C and held at this temperature for 22 

min. The carrier gas was helium set at a constant flow of 0.7 ml min-'. Geochemical 

biomarker analysis was carried out using the selective ion monitoring mode (SIM) to 

enhance sensitivity according to UNEP/IOC/IAEA (1992). Triterpanes were monitored 

using m/z 177 and 191 and steranes monitored using m/z 217 and 218 with a dwell time 

of 80 msec and a delay of 10 msec. 

4.12 ANALYSIS OF POLYCYCLIC AROMATIC 

HYDROCARBONS (PAHs) 

This method describes the determination of polycyclic aromatic hydrocarbons (PAHs) in 

sediments by the gas chromatography - mass spectroscopy (GC-MS). The analysis 

incorporates two- to six-ring, parent and branched PAHs. This does not cover all of the 
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many PAH compounds that exist. The concentration range of the method is from the 

limit of detection to 10 g kg ". 

4.12. a Principle of the Method 

The principle is based on separation of the volatile and semi-volatile compounds on the 

GC column and subsequent identification by MS (Chapter 3). Deuterated PAH 

standards (D8-naphthalene, D10-biphenyl, D8-dibenzothiophene, D10-anthracene, D, o- 

pyrene and D12-benzo[a]pyrene) are used as internal standards, and are added to the 

sediment before the extraction. The GC-MS is calibrated using seven different 

concentrations of a solution containing 33 PAHs. 

4.12. b Analysis 

The concentration and composition of the PAHs were determined by GC-MS using an 

HP6890 Series gas chromatograph interfaced with an HP5973 MS and fitted with a cool 

on-column injector. A Zebron column with a 5% phenyl polysiloxane film was used for 

the analyses (ZB5,30 mx0.25 mm id, 0.25 Nm film thickness: Phenomenex, Cheshire, 

UK). The carrier gas was helium set at a constant flow of 0.7 ml min-'. Injections were 

made at 50°C and the oven temperature held at this for 3 minutes. Thereafter the 

temperature was raised at 20°C min-' up to 100°C. This was followed by a ramp of 4°C 

min" up to a final temperature of 270°C. The MS was set for selective ion monitoring 

(SIM) with a dwell time of 50 ms. A total of 29 ions plus the six internal standard ions 

were measured over the period of the analysis. Thus the analysis incorporated 2- to 6- 

ring, parent and branched PAHs (Table 3.1) (Webster et al., 1997a; Topping et a/., 

1997; Whittle et al., 1997; Moffat et al., 1998). The limit of detection was found to be 

less than 0.1 pg kg '' for benzo[b]fluoranthene and less than 0.2 pg kg " for 
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benzo[a]pyrene. Recoveries of greater than 70% were achieved for sediments spiked to 

give a concentration of 1 pg kg" dry weight of individual PAHs (MLA SOP 1625). 
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Table 4.1.1-ist of ions determined by GC-MS. 

Polycyclic Molecular Weight/Da 
Aromatic 

Hydrocarbon Parent Alkylated PAH 

(PAH) PAH 
C1 C2 C3 C4 

Naphthalene 128 142 156 170 184 

Phenanthrene/Anthracene 178 192 206 220 

Dibenzothiophene 184 198 212 226 

Fluoranthene/pyrene 202 216 230 244 

Benzo[c]phenanthrene/Benz[a]anthracene/ 
Benz[b]anthracene 
Chrysene+Triphenylene 

228 242 256 

Benzofluoranthene/benzo[e]pyrene/ 
benzo[a]pyrene Perylene 

252 266 280 

Benzoperylene/Indenopyrene 276 290 304 

Acenaphthylene 152 

Acenaphthene 154 

Fluorene 166 

Dibenz[a, h]anthracene 278 
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4.13 QUALITY ASSURANCE AND METHOD VALIDATION 

The assessment of environmental impacts to the aquatic system by the oil and gas 

production is dependent on good quality analytical data, especially where detection 

levels are at very low concentrations, usually parts per billion (ppb). At these 

concentrations, the potential for contamination and adsorption losses are magnified and 

special care is required in all aspects of the handling and analysis. In order to support 

the PAH, total organic carbon and particle size analysis methods were accredited by the 

United Kingdom Accreditation Services (UKAS). As part of the procedures, items such 

as balances are calibrated against a known "check" weight and recorded before use to 

prove the accuracy of the balance (MLA SOP 240). Similarly all samples are stored at 

appropriate temperatures and deviations in these temperatures monitored automatically. 

In addition, all operation of instruments is recorded, allowing cleaning and maintenance 

to be carried out at the scheduled time. 
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Figure 4.1 Shewhart charts of the LRM (Raasay) for the CHN analysis. 

x= mean, LWL = lower warning line, UWL = upper warning line; LCL = lower control line; UCL 

= upper control line. 
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Figure 4.2 Shewhart charts of the LRM for the PSA, 

x= mean, LWL = lower warning line, UWL = upper warning line; LCL = lower control line; UCL 

= upper control line. 
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Figure 4.3 Shewhart charts of the LRM (142) for one of the compounds (Naphthalene) 

of PAHs, 

= mean, LWL = lower warning line, UWL = upper warning line; LCL = lower control line; UCL 

= upper control line. 

Internal quality control procedures include the use of laboratory reference materials 

(LRM) and certified reference materials (CRMs) in each batch of samples. Procedural 

blanks were also analysed with each batch, and the concentrations adjusted 

accordingly. The data obtained from the LRM and CRMs were transferred onto NWA 

(Northwest Analytical) Quality Analyst and Shewhart charts produced with warning and 

action limits at ±2X and ±3X the standard deviation of the mean (Figures 4.1,4.2 

and 4.3). Data are used only if it passes the quality control values. Further quality 

control was assured through successful participation in the QUASIMEME (Quality 

Assurance of Information for Marine Environmental Monitoring in Europe) Laboratory 

Performance Studies (MLA SOP 1310). 
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4.13. a Uncertainty of Measurement 

Sampling 

Sampling not part of method. Samples are analysed and results reported on the 

samples as received - outwith uncertainty calculations. 

Sub-sampling 

Processing - Error due to inhomogeneity of sample is minimised by mixing thoroughly 

in sample container - negligible contribution to uncertainty. 

Injection on Rheodyne - Assume sample in vial is homogenous - negligible 

contribution to uncertainty. 

Injection on GC-MS - Assume sample in vial is homogenous - negligible contribution 

to uncertainty. 

Storage 

Samples are stored deep frozen to minimise degradation. 

Reagent purity 

All solvents are from Rathburn Chemicals and of at least HPLC Grade, considered 

sufficient - uncertainty accounted for in validation data. 

Other chemicals are at least Analar quality, considered sufficient - uncertainty 

accounted for in validation data. 

Chemical standards used in the preparation of calibration solutions are of the highest 

purity available at time of purchase. Final concentrations of the calibration solutions 

have been corrected for purity- uncertainty accounted for in the validation data. 
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Instrument effects 

All syringes are solvent washed between samples. 

Weight - Tolerance of balance - balances check weight tolerances 0.05% and 

0.002%, 2,3 and 4 decimal places used, sufficient for accuracy required. Uncertainty 

accounted for in validation data. 

Volume - Pipettes used for calibration standards calibrated to < 1%. Uncertainty 

accounted for in validation data. 

Temperature - Thermometer to measure rotary evaporator water bath temperature 

calibrated to < 1°C. Uncertainty accounted for in validation data. 

Timer - Timer for HPLC flow calibrated to <2 sec. Uncertainty accounted for in 

validation data. 

Environmental conditions 

Contamination is minimised by the use of dedicated accommodation, equipment and 

glassware for organic analysis. Glassware is " also separated during cleaning - 

uncertainty accounted for in validation data. 

Computational Effects 

Integration of peaks by means of instrument software. Concentrations calculated by 

means of internal standard using instrument integrations. Manual checks of peak 

integrations are made for each sample, negligible contribution. 
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Blank Correction 

A procedural blank is analysed with each batch of samples. No contribution to 

uncertainty. 

Operator Effects 

Only trained personnel may perform method unsupervised. Variations between 

operators are accounted for by control chart data. Uncertainty accounted for in 

validation data. 

Random Effects 

These will be accounted for by validation data. 

4.13. b Precision of the Methods 

The precision of an analytical method is the amount of scatter in the results obtained 

from multiple analyses of a homogeneous sample. The precision study was performed 

using the exact sample and standard preparation procedures. Two types of precisions 

were performed, the first type of precision studies comprise much of what historically 

has been called ruggedness. Intermediate precision (UKAS analytical precision) was 

the precision obtained when the assay is performed by multiple analysts, using 

multiple instruments, on multiple batches. Different sources of reagents and multiple 

lots of columns should also be included in this study. Intermediate precision results are 

used to identify which of the above factors contribute significant variability to the final 

result. The second type is repeatability or intra-assay precision. Intra-assay precision 

(calculated precision) data are obtained by repeatedly analysing, on one batch, 
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aliquots of a homogeneous sample, each of which has been independently prepared 

according to the method procedure. 

The intermediate precision (UKAS analytical precision) was performed using the LRM 

samples; whilst the intra-assay (calculated precision) was performed using 4 replicates 

the sediment samples. The precisions were calculated using the coefficients of 

variance between the samples. Table 4.2 shows the results of the two precision types, 

UVF analysis (Forties crude and diesel oil) and aliphatic analysis (n-alkanes) are not 

UKAS accredited, therefore are not included in the intermediate precisions. The result 

shows that there was more precision in the intra-assay precision than the intermediate 

precision. 

Table 4.2 Precisions of the UKAS accredited analyses and calculated analyses. 

Analytical 
Method 

UKAS Analytical 
Precision (%) 

Calculated 
Precision (%) 

CHN 2.5 0.8 

PSA 2.5 1.6 
Diesel oil N/A 8.6 
Forties crude oil N/A 10.4 

PAHs 20.0 9.8 

n-alkanes N/A 10.6 

N/A = Not applicable. 
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CHAPTER FIVE 

EFFECTS OF OIL EXPLORATION AND PRODUCTION IN THE 

FLADEN GROUND USING STRATIFIED RANDOM SAMPLING 

REGIME 

5.1 BACKGROUND 

The North Sea has been the focus of offshore oil and gas production over the past 30- 

40 years, with estimated reserves of ca 1267 million tonnes (9886 million barrels) of oil 

and condensate (DTI Brown Book, 2004). As a result of these activities, hydrocarbons 

have historically been discharged to the area during drilling, production and flaring 

operations. Since the amount of produced water increases as a field matures, present 

regulatory attention in the Convention for the Protection of the Marine Environment of 

the North-East Atlantic (OSPAR) is being directed towards a tighter control of this 

discharge, with permitted oil in water level < 40 mg/kg (ppm) (Wills and Sakhalina, 

2000). In 2003, the industry average total oil in produced water in the North Sea was 20 

mg/kg (DTI Brown Book, 2004a), Table 5.1 summarises the average amount of oil in 

produced water discharged "between" 1991 to 2003. One source of PAHs in the Fladen 

area of the North Sea, and indeed any other oil and gas exploration or production 

environment, is the flaring of unwanted gases. The incomplete combustion of these 

gases at the flarestacks on production platforms produces high temperature, pyrolytic 

polycyclic aromatic hydrocarbons (PAHs). Atmospheric discharges of hydrocarbons via 

fall out from inefficient flaring are difficult to assess. However, they are thought to be a 

relatively small proportion of the combined oil and gas inputs and indeed comprise only 

a small proportion of overall atmospheric input compared to other sources in UK (Van 
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den Hout, 1993; OSPAR, 2002). Figure 5.1 shows the volume of gas flaring "between" 

1977 to 2002 in cubic meter per tonne of oil produced in the North Sea; an average of 

14.135 cubic meters per tonne of oil produced was flared at offshore installations in 

2002. The proportion of the gas flared to oil production fell during the mid 1980s. The 

rise thereafter was consequence of the Piper Alpha and subsequence safety work, it fell 

steeply in 1985, and continue to decline since then. The current low level of the gas 

flared reflects the increasing utilization of the gas produced as part of the oil production 

over the years, (DTI Brown Book, 2004b). 

Table 5.1 Oil Discharged with Produced Water 1991 - 2003 (DTI Brown Book, 2004a). 

This data was last updated on: July 2004 and is due to be updated on: may 2005. 

1991 1992 1993 994 1995 1996 1997 1998 1999 2000 2001 2002 2003 

Total Oil 
Discharged 5490 4850 4232 4418 5855 5706 5767 5692 5641 5395 5613 5590 5190 
(tonnes) 

Total Water 
Discharged 153 135 148 147 192 210 234 253 261 244 261 272 266 
(million 
tonnes) 
Number of 
Installations 
Permitted to 39 43 46 52 55 60 64 64 73 68 74 74 85 
Discharge 
Oil 

Average Oil 
in Water 35 36 28 30 30 27 25 22 21.5 21.5 21 21 20 
Content 
(mg/kg) 
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Figure 5.1 Gas Flaring relative to oil production, 1977 - 2002 in cubic metre per tonne of 

gas produced. Source: DTI Brown Book, 2004b 

The Fladen Ground is situated approximately 160 kilometres north east of Aberdeen, 

Scotland in the northern part of the North Sea (Figure 2.1). It is an area of relatively 

deep water (120 - 150 metres) and is characterised by fine muds and high sediment 

organic carbon levels of between 0.5 and 1.8% (Bailey et al., 1993). This results in 

generally increased levels of benthic productivity (Basford and Eleftheriou, 1989) that 

serve as the base of the food chain, culminating in abundant commercial fish and 

shellfish stocks. As a consequence, the Fladen Ground is one of the most intensively 

fished areas of the North Sea (Walsham et al., 2002; Russell et al., 2004). 

There are three principal routes of water inflow to the northern North Sea; eastwards 

through the Fair Isle passage, southwards along east Coast of Shetland and 

southwards along western edge of the Norwegian Trench. The circulation pattern of the 

northern North Sea is influenced by the Atlantic inflow east of Shetland and the Fair 

Isle/Dooley current system and includes a semi-permanent cyclonic eddy over the 

Fladen Ground (Figure 2.1). The aim of this study is to assess the effects of oil 
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exploration and production in the Fladen Ground on sea bed sediments and to identify 

any areas of environmental concern using the developed stratified random design. 

5.2 METHODS 

The methods used for the analyses are given in Chapter 4. 

5.2. a Sediment Sampling 

Sediment samples were collected by Day Grab from the FRV Scotia III at the locations 

shown in Figure 2.5, with near field (< 5km from multiple wells or platform site and < 

tkm from a single well) and far field (> 5km from multiple wells or platform site and > 

2km from a single well). All the samples were collected in the far-field area 

(5589.78km2) out of total sampling area of 7295.59km2 using the developed stratified 

random sampling regime. Two hundred and forty two (242) samples were collected in 

sixteen different Zones. The top 2 cm layer of sediment was scraped off each sample 

and the sediment was mixed before transferring (-200 g) to a solvent washed 

aluminium can which was labelled and stored at -20 i 5°C until required for analysis. All 

sediments collected were analysed for ultra-violet fluorescence (UVF) oil equivalent 

concentrations, PAHs and n-alkanes while selected samples were analysed for steranes 

and triterpanes. Full details of the sampling locations are given in Appendix 1. 

5.2. b Statistical Analyses 

Data were analysed using the MINITAB® software version 14. Analysis of variance 

(ANOVA) at significance level of 5% was used to detect significant differences among 

the means of percentage of TOC, and PSA, and the oil equivalents of the Forties crude 

and diesel, PAHs and n-alkanes concentrations of the Zones. Spearman' Rank 

correlation was used to determine linear relationships among the parameters measured. 
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5.3 RESULTS AND DISCUSSION 

5.3. a Data Summary 

The data are tabulated in Appendices 2-7 and summarised in Tables 5.2,5.3,5.5 - 5.7 

and 5.10 - 5.12. In particular, the summary tables give mean values with standard 

errors for the far-field in each Zone and for the whole far-field area. The mean value y� 

for the whole far-field is estimated by 

Ys" =1 AnYti Equation 5.1 
A h=, 

With the standard error SE(ys1) 

SE(ys1) =1 (Ah SE(yh ))2 Equation 5.2 
A ti., 

Where, y, is the mean far-field value in Zone h, and SE(yh) is the standard error of 

the mean in Zone h, Ah is the far-field area in Zone h and A is the total far-field area. 

5.3. b Physical and Chemical Characteristics of the Sediments 

Physical characteristics of the sediment samples are tabulated in Appendix 2, 

summarised in Tables 5.1 and 5.2, and shown spatially in Figure 5.2. Percentage of the 

individual total organic carbon (TOC) varied between samples from 0.09 to 1.89%; 

mean TOC varied between Zones from 0.62 to 1.31 %; and the mean TOC for the whole 

far-field was 0.91% (SE = 0.01%). 
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Table 5.2 Summary of percentage total organic carbon in dry weight sediments. 

Zones 
sam 

No of 
les Min Mean Mod Max SD CV Var SE 

1 20 0.29 0.64 0.60 0.98 0.18 29.03 0.03 0.04 
2 20 0.09 0.90 0.94 1.27 0.10 14.80 0.02 0.03 
3 20 0.62 0.98 1.00 1.43 0.22 22.19 0.05 0.05 
4 13 0.41 0.97 1.09 1.61 0.38 38.64 0.14 0.10 
5 10 0.43 0.71 0.81 0.92 0.21 29.81 0.05 0.07 
6 9 0.54 0.89 0.89 1.17 0.18 20.54 0.03 0.06 
7 18 0.89 1.10 1.04 1.47 0.17 15.58 0.03 0.04 
8 10 0.52 0.80 0.86 1.05 0.17 21.06 0.03 0.05 
9 18 0.41 0.62 0.63 1.01 0.16 25.44 0.03 0.04 
10 11 0.42 0.93 1.02 1.28 0.29 31.73 0.09 0.09 
11 17 0.91 1.31 1.24 1.89 0.26 19.62 0.07 0.06 
12 9 0.54 0.76 0.71 1.06 0.16 20.99 0.03 0.05 
13 20 0.51 0.69 0.68 0.89 0.12 17.02 0.01 0.03 
14 14 0.83 0.98 0.96 1.22 0.11 11.28 0.01 0.03 
15 20 0.97 1.19 1.19 1.47 0.13 10.94 0.02 0.03 
16 13 0.67 0.91 0.89 1.21 0.21 23.43 0.05 0.06 

Total 242 0.09 0.91 N/A 1.89 0.20 23.35 0.04 0.01 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variance; Var = Sample Variance; SE = Standard Error of the mean. 

Since small size fractions contain mainly silt and clay minerals, and organic matter 

associated with these fractions are mainly humic substances absorbed onto mineral 

surfaces (Mayer, 1999). Using the particle size data, sediment samples were classified 

as coarse silts, sandy medium-coarse silts and fine sands. The percentage of the 

individual < 63 Nm particle size (PSA) varied between samples from 25.1 to 89.0%; 

mean PSA varied between Zones from 48.9 to 85.7%; and the mean PSA for the whole 

far-field was 67.6% (SE = 0.8%). 
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Table 5.3 Summary of percentage < 63 pm fraction particle size (dry weight). 

Zones 
No of 

Samples 
Min Mean Med Max SD CV Var SE 

1 20 25.1 48.9 46.4 75.8 11.5 23.6 133.2 2.6 
2 20 46.1 73.1 76.1 84.2 9.8 13.4 96.1 2.2 
3 20 36.1 68.6 69.0 85.0 13.5 19.7 182.0 3.0 
4 13 29.1 63.2 77.7 83.6 22.3 35.3 495.8 5.7 
5 10 38.9 64.1 68.6 75.0 13.3 20.8 177.7 4.2 
6 9 46.4 73.9 77.1 85.0 10.9 14.8 119.1 3.6 

7 18 69.6 79.6 79.4 86.7 5.3 6.7 28.1 1.2 

8 10 34.1 59.3 61.9 80.8 14.5 24.5 210.5 4.6 

9 18 32.9 51.4 49.1 73.7 13.7 26.7 188.5 3.2 
10 11 28.7 64.8 77.5 86.6 25.0 38.6 626.3 7.5 
11 17 82.5 85.7 85.4 89.0 1.6 1.8 2.5 0.4 
12 9 42.9 67.9 71.7 85.6 15.6 23.0 243.5 5.2 
13 20 45.0 58.0 57.5 68.9 6.8 11.8 46.9 1.5 
14 14 56.2 75.5 77.9 83.7 8.6 11.4 74.8 2.3 
15 20 75.6 82.3 82.8 88.6 3.8 4.6 14.1 0.8 

16 13 52.0 65.5 64.2 82.9 10.8 16.5 116.1 3.0 

Total 242 25.1 67.6 N/A 89.0 10.9 17.3 152.5 0.8 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variance; Var = Sample Variance; SE = Standard Error of the mean. 

TOC and PSA were generally lowest in the west of the survey area (Zones 1,5,9,13) 

and highest in the centre-east of the survey area (Zones 3,7,11,15) (Figure 5.2). 
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Figure 5.2 Spatial distribution of (a) particle size (< 63 pm [%]) and (b) total organic 

carbon (%). Large grey circles are < 5km radius of multiple oil wells and small grey 

circles are < 2km radius of a single oil well. Green circles are proportional to percentage 

content of particle size and TOC. Note the relationship between PSA & TOC especially 
the second column Zones from the right. 
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Figure 5.3 Plot of the mean zonal values showing significant correlation between the 

physicochemical properties, where numbers symbolised Zones. 

Sediments with a higher proportion of fine material and a higher organic carbon content 

can accumulate significant concentrations of hydrophobic contaminants such as PAHs. 

As expected, TOC and PSA measurements were positively correlated with each other 

and with the corresponding oil equivalent, total PAH and total n-alkane concentrations 

(Table 5.4a, Figures 5.3). To investigate differences in hydrocarbon concentrations that 

are not due to the physical characteristics of the sediment, it is therefore necessary to 

normalise the concentrations to e. g. TOC. Note that, even having normalised to TOC, 

the oil equivalent, total PAH and total n-alkane concentrations are still positively 

correlated (Table 5.4b). This just means that, even having accounted for the physical 

characteristics of the sediment, samples with higher oil equivalent concentrations also 

tended to have higher total PAH and total n-alkane concentrations. 
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Table 5.4 Spearman' Rank correlation coefficient (a) Real data, (b) Normalised data to 

sediment total organic carbon (TOC). Values greater than 1 or less than -1 are 5% 
significant to 242 sediment samples. 

(a) 

TOC PSA Forties Diesel PAHs n-Alkane 

TO C - 0.7 0.4 0.3 0.4 0.4 

PSA 0.7 - 0.5 0.4 0.4 0.3 

Forties 0.4 0.5 - 0.8 0.5 0.4 

Diesel 0.3 0.4 0.8 - 0.7 0.4 

PAHs 0.4 0.4 0.5 0.7 - 0.5 

n-Alkane 0.4 0.3 0.4 0.4 0.5 - 

(b) 

PSA Forties Diesel PAHs n-Alkane 

PSA - 0.1 -0.1 -0.1 -0.1 
Forties 0.1 - 0.7 0.5 0.4 

Diesel -0.1 0.7 - 0.7 0.5 

PAHs -0.1 0.5 0.7 - 0.5 

n-Alkane -0.1 0.4 0.5 0.5 - 

5.3. c Ultra-Violet Fluorescence (UVF) Analysis 

Ultraviolet fluorescence (UVF) determination is a rapid, low cost method for screening 

large numbers of samples. Estimates of 'total hydrocarbon' concentrations are 

expressed as 'oil' equivalents of crude (Forties crude) or diesel oil and can be used to 

select samples for more detailed analysis by GC-MS. Forties crude oil equivalents of 

around 50 pg g'' dry weight are typical of muddy sediments (Waisham et at., 2002; 

Russell et al., 2004) in areas remote from oil and gas activity. Concentrations in offshore 

sediments above this background value are generally associated with offshore oil 

exploration and production activity. 

108 



Chapter Five 

All the sediments were screened for total hydrocarbons, using this method. The total 

hydrocarbons, measured as Forties crude oil equivalents and diesel oil equivalent 

concentrations are reported in Appendix 2. Tables 5.5 and 5.6 summarises the mean of 

the Forties crude and diesel oil equivalent concentrations in each of the Zones. The 

Forties crude oil equivalents were all below 'background' varying from 4.0 pg g'' dry 

weight in a sample in Zone 4 to 41.2 pg g'' dry weight in a sample in Zone 10. The 

mean Forties crude oil equivalent across the Zones ranged from 7.4 pg g'1 dry weight 

(SE = 0.4 pg g" dry weight, n= 20) in Zone 13 to 22.2 pg g'' dry weight (SE = 1.7 pg g'' 

dry weight, n= 17) in Zone 11. The mean Forties crude oil equivalent for the whole far 

field area was 13.8 pg g"1 dry weight (SE = 1.2 pg g'1 dry weight, n= 242). The diesel oil 

equivalents ranged from 1.6 µg g" dry weight in a sample in Zone 13 to 14.4 pg g'' dry 

weight in a sample in Zone 8. The mean diesel oil equivalent across the Zones ranged 

from 2.2 pg g'1 dry weight (SE = 2.8 pg g'1 dry weight, n= 20) in Zone 13 to 7.0 pg g", 

dry weight in Zones 4 and 5 (SE = 0.2 and 0.6 pg g"' dry weight, n= 13 and 10, 

respectively). The mean diesel for the whole far field area was 5.1 pg g'1 dry weight (SE 

= 0.4 pg g'1 dry weight, n= 242). 
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Figure 5.4 Spatial distribution of (a) Forties oil equivalent concentrations (µg g-' dry 

weight) and (b) Diesel oil equivalent concentrations (Ng g" dry weight). Large grey 

circles are < 5km radius of multiple oil wells and small grey circles are < 2km radius of a 

single well. Green circles are proportional to concentrations of Forties or diesel oil 

equivalents. 
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Chapter five 

Higher Forties crude and diesel oil equivalent were found in Zones with fine sediment 

material and high organic carbon content (Figures 5.4a and b). The Zones are further 

classified into two, single oil well (Zones with no platform) and, multiple oil wells (Zones 

with at least one platform), and all the concentrations of the Forties crude and diesel oil 

equivalent were plotted against the classification. The boxplots (Figures 5.5a and b) 

shows Zones with multiple oil wells (Zones 4,5,6,8,10,11,12,14 and 16) had higher 

mean concentrations in both Forties crude and diesel oil than Zones with a single oil 

well (Zones 1,2,3,7,9,13 and 15). These differences were significant for both Forties 

crude and diesel oil equivalent concentrations (p < 0.05; ANOVA). 
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Figure 5.5 Boxplots showing oil equivalent (Ng g-' dry weight) for, (a) diesel oil and (b) 

Forties crude oil. The line within the box denotes the median and the symbol is the 

mean, the asterisk shows extreme values. Note Zones with multiple oil wells or 

platforms had mean Forties and diesel oil equivalents higher than Zones with single 

wells. 
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The oil equivalents, normalised for TOC, show no clear spatial pattern, although there is 

a suggestion of lower concentrations in the north-east (Zones 3 and 4) and south 

(Zones 13 and 15) of the survey area (Tables 5.5 and 5.6). 

5.3. d Polycyclic Aromatic Hydrocarbons (PAHs) Analysis 

The input of polycyclic aromatic hydrocarbons (PAHs) to the marine environment is one 

of the consequences of offshore oil and gas production. The concern about PAHs in the 

marine environment relates to their toxicity, particularly of the 5- and 6-ring compounds, 

some of which are carcinogenic and mutagenic especially benzo[a]pyrene and 

dibenz[a, h]anthracene (OSPAR Commission, 2002; Law et al., 2002). PAHs are on the 

OSPAR List of Chemicals for Priority Action due their ability to accumulate in aquatic 

organisms, particular the invertebrates, and their toxicity and persistence. 

The total PAH concentrations (2- to 6-ring parent and alkylated PAHs) including 16 

United State Environmental Protection Agency (US EPA) PAHs are reported in 

Appendix 3. Table 5.7 summarises the average total PAH concentrations and total PAH 

concentration normalised for TOC sediments. The total PAH concentration ranged from 

29.0 pg kg"' dry weight in a sample in Zone 9 to 404.7 pg kg'' dry weight in a sample in 

Zone 4. The Zone mean total PAH concentration range from 53.9 pg kg' dry weight (SE 

= 2.8 pg kg' dry weight, n= 20) in Zone 13 to 206.6 pg kg'' dry weight (SE = 23.0 pg kg' 

dry weight, n= 13) in Zone 4. The mean total PAH concentration for the whole far field 

area was 108.2 pg kg'' dry weight (SE = 9.2 pg kg"' dry weight, n= 242). The mean total 

PAH concentrations varied widely between Zones; most of the PAHs were detected with 

only acenaphthylene, acenaphthene and fluorene being not detected in a few samples. 
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Chapter Five 

The sample with the highest total PAH concentration, also contained higher total n- 

alkane concentration (314.3 pg kg-1 dry weight), Forties crude oil equivalent (24.3 pg g-1 

dry weight) and diesel oil equivalent concentrations (12.7 pg g-1 dry weight). This 

sample was situated in a Zone with multiple wells (Zone 4) and was characterised with 

fine sediment (83.6% of the < 63 pm fraction) and high organic carbon content (1.61%). 

The sample with the lowest concentration was situated in a Zone with a single well 

(Zone 9). This sample had lower total n-alkane concentrations (44.2 pg kg-' dry weight), 

Forties crude oil equivalent (4.6 pg g-1 dry weight) and diesel oil equivalent (1.9 pg g-1 

dry weight), and was characterised as sandy sediment (44.2% of the < 63 pm fraction) 

with low organic content (0.48%). 
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Figure 5.6 Spatial distribution of PAHs (pg kg-' dry weight), showing higher total PAH 

concentrations in Zones with higher organic carbon and proportion of the < 63 pm 

particle size. Also samples close to oil platform have high total PAHs concentration 

value. Large grey circles are < 5km radius of multiple oil wells and small grey circles are 

< 2km radius of a single oil well. Green circles are proportional to concentrations. 
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Significantly higher mean total PAH concentrations (> 100 pg kg-1 dry weight) were 

found in sediments in Zones with multiple oil wells (p < 0.05; ANOVA) (Figure 5.6) 

and/or more muddy character with a high organic content (> 0.98%). However, there 

was no significant difference in the boxplot of the normalised data with TOC between 

the overall single and multiple oil installations (Figure 5.7). 

700- 
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0 = 300 

ö 200 

100 

0 
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Figure 5.7 Boxplot showing total PAH concentration normalised to TOC of the single 

and multiple oil wells. There was no significant difference in PAHs inputs between the 

single and multiple oil installations. 

The presence of oil installations was found to have an influence on the total PAH 

concentrations observed in the eastern Zones of the Fladen Ground (Zones 1,5,9 and 

13). Also similar results were observed in both Forties crude and diesel oil equivalent 

concentrations in those vertical Zones. These Zones had similar lower values of both 

percentage fraction size (48.9 - 64.1%) and organic carbon content (0.62 - 0.71%) 

(Figures 5.2a and b). However, the mean total PAH concentration (133.9 pg kg -1 dry 
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weight), Forties crude (14.5 µg g"' dry weight) and diesel oil equivalent (7.0 µg g" dry 

weight) in Zone 5 were higher than their overall means (stratified mean) (Tables 5.4,5.5 

and 5.6). Also the means were significantly different from the rest of the Zones (p < 

0.05; ANOVA). As Zones 1,9 and 13 all had single oil well installation, and all had 

mean values less than 100 pg kg " dry weight for total PAH concentrations, 10.5 p. g g'' 

dry weight for Forties crude and 5.1 µg g" dry weight for diesel oil equivalents, 

respectively. These high concentrations in Zone 5 could be attributed to presence of 

multiple oil wells in the Zone. 

Highest total PAH concentrations were observed in Zone 4 (Table 5.5) ranging from 

96.1 to 404.7 pg kg" dry weight (mean = 206.6 pg kg" dry weight, median = 214.1 pg 

kg" dry weight, SE = 23.0 pg kg'' dry weight and n= 13). The mean diesel oil equivalent 

concentration was also the highest in this Zone and the mean total n-alkane 

concentrations the second highest, however the mean Forties equivalent concentration 

was close to the stratified mean (overall mean). Sediments in this Zone were relatively 

muddy with high total organic carbon content (> 0.97%). Since sediments with a higher 

proportion of fine material and a higher organic carbon content have the potential to 

accumulate significant concentrations of hydrophobic contaminants such as PAHs. 

Difference in PAH concentrations between Zones were investigated by a mixture of 

graphical and multivariate techniques. Throughout, total PAH concentration were 

normalised by the TOC content, to account for the increased accumulation of PAHs by 

the sediments with high carbon content. The mean total PAH concentration (normalised 

for TOC) at each Zone, together with the 95% confidence limits on the mean, is shown 

in Figure 5.8. Significant difference is declared for each of Zone, if and only if their 

intervals do not lap. The results of the normalised data shows that Zone 4 remained the 

highest in the Fladen ground with a range of 138.1 to 545.3 pg kg " dry weight 

normalised to TOC (mean = 228.0 pg kg "1 dry weight normalised to TOC, median = 
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190.1 pg kg -1 dry weight normalised to TOC, SE = 28.9 and n= 13; Table 4.7). There 

are clearly significant differences in total PAH concentration between the north-east 

Zones (Zones 4 and 8) and the Zones in the south of the Fladen Ground (Zones 13-16) 

(p > 0.05; ANOVA). However, there were no significant differences in the upper top of 

the survey area (Figure 5.8). The PAHs input were generally higher in the north of the 

survey area, and lower in the south of the survey area, in particularly, southern end of 

the survey area. The graph also had shown a diagonal relationship in the mean PAH 

concentration of the Zones, with mean concentrations decreasing down easterly and 

westerly except for Zones 2 and 5, and Zones 3 and 8, were mean concentrations 

increases. These differences can readily be attributed to the circulation pattern in the 

Fladen Ground (Figure 2.1). Therefore, the accumulation of PAHs may be due to a 

higher input of hydrocarbon, and the sediment type, and generally, influence by the 

circulation pattern in the Fladen Ground. 
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Figure 5.8 The mean total PAH concentration (normalised for TOC) at each Zone, 

together with 95% confidence limits on the mean. 
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5.3. e Comparison to Background Reference Concentrations (BRCs) 

The Oslo and Paris Commission (OSPAR) previously established Background 

Reference Concentrations (BRCS) and Ecotoxicological Assessment Criteria (EACs) to 

assess chemical monitoring data and identify areas of environmental concern (OSPAR 

Commission, 2000). BRCs are the typical range of concentrations found in OSPAR 

area (north-east Atlantic). The highest PAH concentrations in sediments are normally 

found in estuaries, river mouths and areas of regular shipping, oil production 

transportation. The BRCs for the northern North Sea are higher than other regions in the 

OSPAR area (Table 5.8). Concentrations of benzo[a]pyrene, fluoranthene and pyrene in 

the Fladen Ground sediments collected in 2001 were lower than the ranges for the 

northern North Sea. 

Table 5.8 Background Reference Concentrations (BRCs) for specific PAHs in sediment 

(pg kg-1 dry weight) established by OSPAR for three areas in the North East Atlantic, 

along with the Fladen Ground 2001 values for comparison. 

Geographical 
location Fluoranthene Pyrene Benzo[a]pyrene Benzo[b]fluoranthene 

Northern North 
Sea/Skagerrak 14-160 11-128 8.8-112 46 - 434 
Southern North 
Sea 0.72 - 97 0.6 - 78 <0.2 - 51 1.1-142 
Arctic 
Ocean/Iceland 7.4-30 1.7-6.4 1.0-3.8 7.4-30 
Sea 
Fladen Ground 0.5-9.0 10.3-6.1 0.5 -7.2 2.8 -101.9* 

*Total benzofluoranthene 

OSPAR has recently revised these Background Reference Concentrations (BRCs) and 

Ecotoxicological Assessment Criteria (EACs) (OSPAR Commission, 2005). The 

terminology for BRCs has been changed to Background Concentrations (BCs) and 
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EACs have been changed to Environmental Assessment Criteria. For naturally 

occurring substances, such as PAHs, BCs are the typical ranges of concentrations 

found in uncontaminated waters in the OSPAR area (North-East Atlantic). To assess 

whether concentrations are near background or close to zero a statistical method using 

Background Assessment Criteria (BACs) was developed. OSPAR has established 

provisional BACs for PAHs in sediment, normalised to 2.5% organic carbon to 

determine whether concentrations in a particular area are close to background (Table 

5.9). To enable this comparison, individual PAH concentrations in the Fladen Ground 

were normalised to 2.5% organic carbon and the mean and 95% confidence limits 

(yk ±1.645SE) calculated, where 3 is mean for hth Zone and SE is the standard error. 

The upper bound concentration for the overall Fladen Ground for the ten PAH, for which 

BACs have been established (naphthalene, phenanthrene, anthracene, fluoranthene, 

pyrene, benz[a]anthracene, chrysene, benzo[a]pyrene, indenopyrene and 

benzoperylene), were below the provisional BACs in the Fladen area (Table 5.9). Along 

the Zones, Zone 1 had the highest naphthalene mean and upper bound limit value (8.4 

and 10.7 pg kg" dry weight, normalised to 2.5% organic carbon) higher than the BAC 

naphthalene value, also Zone 8 had chrysene/triphenylene close to provisional BAC 

chrysene value. The Provision BAC established were generally lowest in the north of the 

survey area (the Fladen Ground), in particular Zones 13,14,15 and 16. The highest 

were in Zones 4,5 and 8, and this is in consistent with the amount of hydrocarbon 

observed in the Forties crude and diesel oil equivalent concentrations. 
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Table 5.9 Provisional Background Assessment Criteria (BACs) for specific PAHs in 
sediment (µg kg-1 dry weight) normalised to 2.5% organic carbon established by 
OSPAR. The mean PAH concentration ranges (normalised to 2.5% organic carbon) for 
the Fladen Ground has been included for comparison. The figures in brackets are the 
95% upper confidence bound. 

Nap Phe An FI Py B[a]An Chr B[a]Py Bper Ind 

BC 5 17 3 20 13 9 11 15 45 50 

Provisional 
8 32 5 39 24 16 20 30 80 103 BAG 

Zone 1 8.4 6.3 0.9 7.9 5.5 3.9 7.8" 7.2 48.3 51.3 
(10.3) (6.4) (1.1) (8.5) (5.9) 4.2 8.3" (7.6) (51.1) (54.2) 

Zone 2 1.7 5.3 0.4 6.9 4.7 3.7 6.7" 6.3 40.9 45.7 
(1.9) (5.9) (0.5) (7.7) (5.4) (4.2) 7.5" (7.1) (47.6) (52.9) 

Zone 3 1.7 3.6 0.5 3.6 3.4 3.5 5.2" 4.9 28.4 37.6 
(1.8) (3.8) (0.5) (4.0) (3.6) (3.6) 5.4" (5.1) (29.5) (39.0) 

Zone 4 3.1 9.2 1.1 13.5 8.3 8.0 12.111 9.7 56.8 79.0 
3.6 (10.4) (1.4) (15.4) (9.1) (9.0) 13.6^ 10.8 (60.1) (84.0) 

Zone 5 4.5 8.6 1.0 9.6 6.9 4.9 10.24 9.4 68.0 72.0 
(5.4) (9.8) (1.1) (11.0) (7.9) (5.6) 11.7" (10.5) (78.6) (83.2) 

Zone 6 1.4 3.8 0.5 4.6 3.2 2.4 4.8" 5.5 33.8 38.3 
(1.6) (4.3) (0.6) (5.1) (3.5) (2.7) (5.3A) (7.1) (37.3) (42.3) 

Zone 7 1.2 4.1 0.4 4.4 3.1 2.3 4.4^ 7.8 52.6 55.4 
1.3 (4.4) (0.4) (4.7) (3.4) (2.5) 4.7^ (8.3) (55.9) (58.3) 

Zone 8 2.5 7.3 0.7 8.8 6.0 5.1 15.0" 9.3 46.8 66.2 
(2.8) (7.9) 0.8 (9.8) (6.6) (5.8) 19.3" (10.0) (51.2) (74.2) 

Zone 9 1.3 3.7 0.5 4.9 3.2 2.2 4.6" 6.0 34.3 35.4 
(1.4) (4.0) (0.5) (5.2) (3.4) (2.3) 4.9" (7.1) (36.1) (37.2) 

Zone 10 1.5 5.8 0.8 7.0 5.2 3.0 6.411 7.1 40.1 44.5 
1.7 (6.6) (1.0) (7.9) (6.0) (3.4) 7.1^ (7.8) (43.5) (50.3) 

Zone 11 1.3 4.2 0.5 5.2 3.7 2.7 5.3" 5.7 34.5 35.5 
(1.4) (4.4) (0.5) (5.5) 3.9 (2.8) 5.6" (6.1) (36.0) (37.0) 

Zone 12 1.6 4.8 0.6 5.8 4.1 3.1 5.9" 6.1 36.1 37.4 
1.8) (5.1) (0.6) (6.2) (4.4) (3.4) (6.4A) (6.5) (39.0) (40.4) 

Zone 13 1.1 3.3 0.5 4.3 3.0 2.4 4.111 4.3 24.9 25.1 
(1.2) (3.6) (0.5) (4.6) (3.1) (2.5) 4.3" (4.3) 26.1 (26.3) 

Zone 14 0.9 3.3 0.3 7.3 2.8 2.1 4.1" 3.9 26.5 27.4 
(1.0) (3.5) (0.4) (9.5) (3.0) (2.4) 4.4^ (4.2) (28.4) (29.3) 

Zone 15 1.3 3.2 0.4 4.1 3.0 2.3 3.9^ 4.0 25.3 25.9 
(1.4) (3.4) (0.5) (4.4) (3.2) (2.4) 4.1^ (4.2) (26.1) (26.8) 

Zone 16 1.4 3.7 0.5 4.7 3.4 2.5 4.7" 4.3 27.6 28.4 
1.5) (3.9) (0.6) 5.0 (3.6) (2.6) 4.9^ (4.6) (29.4) (30.2) 

Total Fladen 2.2 4.9 0.6 6.3 4.2 3.4 6.4" 6.2 38.4 43.3 
Ground (2.6) (5.3) (0.7) (6.9) (4.6) (3.6) (7.1^) (6.7) (41.3) (46.8) 

Nap = Naphthalene; Phe = Phenanthrene; An = Anthracene; Fl = Fluoranthene; 
Py = Pyrene; B[a]An = Benzo[a]Anthracene; Chr = Chrysene; B[a]Py = Benzo[a]Pyrene; 
^ Chrysene/Triphenylene. 
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5.3. f. Sources of the PAH 

Kinetic and/or thermodynamic criteria and the nature of organic matter govern the PAHs 

distribution in the environment. PAHs have different distribution patterns according to 

their production sources; difficulties exist in identifying their origins in sedimentary 

medium, owing to the possible co-existence of several sources (various pyrolytic 

sources, petrogenic contaminant, and biogenic). In addition, physical-chemical 

properties of some PAHs, like chemical reactivity (photooxidation and oxidation), can 

contribute to modify the original distribution pattern of the emission sources (Butler and 

Crossley, 1981). In the marine ecosystem, PAHs can undergo degradation by 

photooxidation on the surface water layer (Mill et al., 1981), solubilization, evaporation 

(Hunt, 1996), and by microbial activities into the sediment (Cerniglia and Heitkamp, 

1989). However, PAHs ubiquity in the sediments indicates that accumulation 

phenomena dominate degradation processes in sedimentary matrices (Readman et al., 

1984; Smith and Levy, 1990); therefore, some PAHs could exhibit comparable evolution 

kinetics. 

Molecular indices based on PAH physical-chemical behaviour co-variability were 

developed to assess the various origins of these pollutants (Soclo, 1986; Baumard et 

al., 1998). With simultaneous association of various molecular indices, it is possible to 

determine which process generated such hydrocarbons in the studied matrices (Lake et 

al., 1979; Neff, 1979; Budzinski et al., 1997). Study of PAH distributions and PAH 

concentration ratios can be used to distinguish PAHs of petrogenic and pyrolytic origin 

(Fernandes et al., 1997; Baumard et al., 1998a, 1998b and 1999; Webster et al., 2001 

and 2003). Petrogenic sources yield mainly alkylated 2- and 3-ring compounds and 

thermodynamically favoured isomers (naphthalene and phenanthrene) whereas PAHs 

from pyrolytic sources are mainly the 4- to 6-ring parent compounds. 
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Chapter Five 

Figure 5.9 shows the PAH distributions by Zone. The mean PAH percentage profile for 

the 16 Zones showed a similar pattern, being dominated by the heavier 4- to 6-ring 

compounds. The proportion of the percentage parent PAHs was high in all the 

sediments, ranging from 42.2% to 81.0 %, both samples in Zone 16 (stratified mean = 

56.6%, SE = 0.7%, n= 242) (Table 4.10 and 4.11). The mean proportion of percentage 

parent PAHs was higher, (> 54%) than the alkylated PAHs in all the Zones. A high 

proportion of parent PAH (> 40%) and heavier 4- to 6-ring PAH profile is typical of 

pyrolytic sources. The profiles of the 3- to 4-ring compounds shows the alkylated 

compound is much greater than the parent compound for the total naphthalene and total 

178 (phenanthrene-anthracene), these suggested, there was petrogenic input in the 

Fladen Ground area, since the alkylated PAHs are more abundant than the parent 

compounds in petroleum. The 1989 and 2001 grid survey sediments gave a similar 

pattern with the 4- to 6-ring PAHs dominating the profiles and the proportion of the 

parent PAHs being > 40% in all sediments (Russell et al., 2004). Generally the heavier 

PAH compounds are more likely to be transported to sediment bed due to their 

increased sorption and resistance to degradation (King et al., 2003). 
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Table 5.10 Summary of the total parent PAH concentrations in pg kg" dry weight (2- to 
6-ring PAHs including 16 EPA). 

Zones No of 
Sam es 

Min Mean Med Max 

I 

SD CV Var SE 

1 _ 20 37.5 53.6 52.8 74.9 10.3 19.2 105.6 2.3 
2 20 28.9 52.9 51.9 89.7 17.1 32.3 292.9 3.8 
3 20 29.6 56.2 54.4 115.0 20.0 35.6 399.9 4.5 
4 13 55.0 112.9 116.1 218.8 44.7 39.6 2002.5 12.4 
5 10 46.2 73.3 66.4 151.4 29.7 40.5 880.6 9.4 
6 9 31.4 50.7 45.2 71.6 13.4 26.5 180.0 4.5 
7 18 49.9 94.7 86.0 160.4 29.1 30.7 847.0 6.9 
8 10 43.6 85.9 65.9 191.8 46.4 54.0 2150.0 14.7 
9 18 18.0 36.3 38.1 56.4 10.3 28.3 105.9 2.4 
10 11 31.7 61.4 61.2 85.0 16.2 26.4 263.2 4.9 
11 17 54.6 78.3 77.1 102.9 12.8 16.3 163.2 3.1 
12 9 24.5 8.1 46.4 86.0 17.9 219.9 319.0 6.0 
13 20 18.8 30.2 30.1 43.1 6.6 21.7 43.0 1.5 
14 14 31.5 45.4 38.6 97.5 17.7 39.1 314.0 4.7 
15 20 34.5 53.2 49.9 77.7 12.1 22.7 145.8 2.7 
16 13 20.2 52.3 42.2 137.5 30.8 58.9 948.7 8.5 

Total 242 18.0 61.4 N/A 218.8 20.2 38.9 541.6 1.6 

Parent PAHs = sum of naphthalene, phenanthrcene, anthracene, dibenzothiohene (DBT), 

fluoranthene, pyrene, benzo[c]phenanthrene, benz[a]anthracene, chrysene/tripheylene, 
benz[b]anthracene, benzofluoranthenes, benzo[e]pyrene, pyrelene, indonopyrelene, 

benzopyrelene, acenaphthylene, acenaphthene, fluorene, dibenz[a, h]anthracene. 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variance; Var = Sample Variance; SE = Standard Error of the mean. 
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Table 5.11 Summary of the percentage total parent PAHs concentration (2- to 6-ring 

PAHs including 16 EPA) in dry weight. 

Zones 
No of 

Sam les Min Mean Med Max SD CV Var SE 

1 20 52.5 55.9 55.8 60.8 2.0 3.5 3.8 0.4 
2 20 51.2 55.9 55.9 61.9 2.3 4.2 5.5 0.5 
3 20 48.1 54.2 54.9 56.4 2.1 3.8 4.3 0.5 
4 13 51.4 54.8 54.9 57.2 1.6 2.9 2.5 0.4 

5 10 52.2 54.7 54.7 57.8 1.6 3.0 2.6 0.5 
6 9 54.5 56.9 56.7 59.7 1.6 2.8 2.5 0.5 

7 18 55.8 60.4 61.9 65.2 2.9 4.8 8.2 0.7 
8 10 53.3 57.6 55.5 69.5 5.2 9.0 26.9 1.6 

9 18 52.0 59.2 58.7 63.3 2.6 4.5 6.9 0.6 

10 11 55.2 58.3 58.0 61.5 2.2 3.8 4.9 0.7 

11 17 55.0 57.2 57.2 62.6 1.9 3.4 3.7 0.5 
12 9 53.5 55.4 55.0 58.2 1.5 2.7 2.2 0.5 

13 20 52.6 56.3 56.1 65.4 2.8 5.1 8.1 0.6 
14 14 53.3 55.7 55.4 65.1 2.9 5.3 8.6 0.8 

15 20 54.4 55.9 55.3 59.6 1.5 2.8 2.4 0.3 

16 13 42.2 57.1 55.6 81.0 8.3 14.5 68.9 2.3 

Total 242 42.2 56.6 N/A 81.0 2.6 4.7 9.5 0.2 

Parent PAHs 
Parent concentration *100 

Total PAH concentration 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variance; Var = Sample Variance; SE = Standard Error of the mean. 
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Plotting PAH concentration ratios can aid sources identification (Webster et at, 2003). 

Plotting the fluoranthene/pyrene (FI/Py) ratio against the phenanthrene/anthracene 

(P/A) ratio or methylphenanthrene/phenanthrene (MP/P) ratio, pyrolytic or petrogenic 

zones can be identified. The zones defined by high FI/Py ratios and low P/A or MP/P are 

characteristic of pyrolytic PAHs (top left quadrant), and low FI/Py ratios and high P/A or 

MP/P are characteristic of petrogenic PAH (bottom right quadrant). The other two 

quadrants may be indicative of a mixed source of PAHs (Figures 5.10a and b). 

A plot of the ratios showed most of the samples falling within the pyrolytic zone (Figures 

5.10a and b). The FI/Py against MP/P ratios plot (Figure 5.10a) shows nearly all 

samples clustered in the pyrolytic zone, with only one sample from Zone 9 in the mixed 

zone, having MP/P ratios > 2. The FI/Py against P/A ratios is more dispersed, 21 

samples about 23% of samples with measurable anthracene, fell in the mixed zone due 

to the P/A ratios being greater than 10. The remaining samples were in the pyrolytic 

zone (Figure 5.10b); the high P/A ratios suggest a possible petrogenic source of PAHs, 

however, a low proportion of anthracene can often be found at remote sites if the main 

source is atmospheric deposition as a result of photooxidation during atmospheric 

transportation (Li et al., 1998). The majorities of samples in this mixed zone were from 

Zones 4,7 and 8 and also had the highest mean total PAH concentrations. All these 

Zones, except Zone 7 had oil platforms or multiple wells and are situated close to each 

other in the top right hand corner of the Fladen Ground (Figure 2.5). In addition the 

current flow (Figure 2.1) in the Fladen Ground could result in the accumulation of 

hydrocarbons in this area. High boiling unresolved complex mixtures (UCM) 

characteristic of petrogenic contamination, were also observed in the GC-FID 

chromatograms of samples from these Zones (4,7 and 8). Furthermore, the 

geochemical biomarker analysis showed evidence of low levels of crude oil 

contamination from their triterpane profiles (see sections 5.2g and h). 
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Figure 5.10 PAH concentration ratios used to assess the sources of PAHs in the Fladen 

Ground sediments collected in 2001. The Zones identified by high fluoranthene/pyrene 

(FI/Py) ratios and low phenanthrene/anthracene (P/A) ratios and high FI/Py and low 

methylphenanthrene/phenanthrene (MP/P) ratios were characteristic of pyrolytic PAHs. 

(a) Plot of FI/Py ratios against P/A ratios. (b) Plot of FI/Py ratios against MP/P ratios. 
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Further statistical analysis was done to looked at the parent and branched (alkylated) 

PAH distributions. Principal Component Analysis (PCA) was used to examine spatial 

differences in the PAH profiles along the Zones. The results were simplified by 

summarising the multivariate data set using relatively few components. Clustering only 

occurs if samples have similar properties and does not include any information on the 

group membership (e. g location of the sample). PAHs the same distance from centre 

and with the same direction are positvely correlated, those in opposite directions are 

negatively correlated, and those perpendicular are not correlated. Specifically, PCA 

was applied to the parent and alkylated concentrations normalised to the total PAH 

concentration (proportion of total concentration). Minitab 14 was used for the analysis. 

The results of the analysis were viewed by plotting the principal components (PC1 and 

PC2) with the greatest variance against one another. PC1 and PC2 accounted for 

33.7% and 15.3% of the variance present in the data set, respectively. The first 

component was a contrast between the heavier and lighter PAHs with the alkylated PAH 

being positive correlated with the corresponding parent compound (Figure 5.11a) and is 

consistent with that found in the concentration ratios, and the high proportion of parent 

PAH (> 40%) in all the sediments had indicated predominantly pyrolytic sources. The 

second component was a contrast between naphthalenes (128), parent 202 and 252 

and all other PAHs. 
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Figure 5.11 Principal component analysis of the survey by ring group parents and 

alkylated. (a) Loading plot of %128-%276, showing the lighter PAH compounds with a 

negative first component, and the 5- and 6-ring with a positive first component. (b) Score 
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5.3. g Aliphatic Hydrocarbons Analysis 

The composition of hydrocarbon compounds found in sediments reflects the relative 

contributions from different sources: biogenic and petrogenic. Biogenic n-alkanes are 

dominated by odd number carbons, shorter chain n-alkanes (nC12 - nC25) reflecting 

phytoplankton input and longer chain n-alkanes (nC21 - nC33) a terrestrial or vascular 

plant input (Bray et al., 1961; Wu et al., 2001; Webster et al., 2001 and 2003). The 

Carbon Preference Index (CPI) is a measure of the relative abundance of odd versus 

even carbon numbered n-alkanes, and can be used to identify plant wax contribution 

and fossil fuel contamination. Typically, n-alkanes from a petrogenic source have CPI 

value -1, while n-alkanes from biogenic sources have CPI value >1. For this report the 

modified carbon preference index of Bray and Evans (Bray et al., 1961) by Allan and 

Douglas (Allan et al., 1977) in equation 5.3 was used: 

(C23 
+ C33) + 2(C25 + C27 + C29 + C31) 

CPI = Equation 5.3 
2(C24 +C26 +C28 +C30 +C32) 
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Chapter Five 

The total n-alkane concentrations (nC12 - nC33) ranged from 23.7 pg kg -1 dry weight in a 

samples in Zone 5 to 490.6 pg kg -' dry weight in a sample in Zone 8 (Table 5.11 and 

Appendix 4). The Zone mean total n-alkane concentration ranged 55.4 pg kg " dry 

weight (SE = 7.6, n= 20) in Zone 13 to 206 pg kg'' dry weight (SE = 49.5 pg kg'' dry 

weight, n= 10) in Zone 8. The mean total n-alkane concentration for the whole far field 

area was 97.2 pg kg "1 dry weight (SE = 11.7 pg kg-1 dry weight, n= 242). The CPI value 

ranged from 0.7 in samples in Zones 5,8 and 15 to 4.5 in a sample in Zone 13 (mean = 

1.4, SE = 0.1 and n= 242) (Table 5.12). 

Table 5.13 Summary of the Carbon preference index (CPI). 

Zones No. of 
samples min mean mod max SD CV Var SE 

1 20 0.8 1.6 1.2 3.8 0.9 22.4 0.8 0.4 

2 20 0.8 1.9 1.2 4.3 1.2 22.4 1.4 0.4 

3 20 0.8 1.4 1.2 2.7 0.6 22.4 0.4 0.3 

4 13 0.8 1.3 1.2 2.0 0.4 27.7 0.2 0.4 

5 10 0.7 1.2 1.0 2.0 0.5 31.6 0.3 0.4 

6 9 0.8 1.5 1.4 2.7 0.6 33.3 0.4 0.5 

7 18 0.8 1.3 1.2 2.0 0.4 23.6 0.2 0.3 

8 10 0.7 1.2 1.1 2.1 0.4 31.6 0.2 0.4 

9 18 0.8 1.2 1.1 2.0 0.4 23.6 0.2 0.3 

10 11 0.8 1.2 1.1 2.0 0.4 30.2 0.2 0.4 

11 17 0.8 1.3 1.2 2.0 0.4 24.3 0.2 0.3 

12 9 0.8 1.2 1.1 2.0 0.3 33.3 0.1 0.4 

13 20 0.8 1.6 1.2 4.5 1.0 22.4 1.0 0.4 

14 14 0.8 1.4 1.2 2.0 0.5 26.7 0.3 0.4 

15 20 0.7 1.4 1.2 3.0 0.6 22.4 0.4 0.3 

16 13 0.8 1.3 1.2 2.0 0.4 27.7 0.2 0.4 

Total 242 0.7 1.3 N/A 4.5 0.7 24.4 0.5 0.1 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; CV = Coefficient of 

Variance; Var = Sample Variance; SE = Standard Error of the mean. 
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Table 5.12 shows Zones with higher mean total n-alkanes concentration (>100 pg kg" 

dry weight) had multiple oil wells (Zones 4,6,8,10,11 and 16) and/or fine sediment 

and organic carbon content (Zones 3,7 and 11). These Zones are situated closely 

together on the central and top right corner of the Fladen Ground with the exception of 

Zone 16. These Zones also had higher concentrations of Forties crude, diesel oil 

equivalents, and total PAH concentrations. 

The odd carbon-number compounds in the range of nC25 - nC33 predominate, and nC29 

and nC33 are the major (Cmax) component in most samples. This distribution pattern is 

indicative of a prominent terrigenous input derived from higher plant waxes (Brassell et 

al., 1978). However, since the plant wax is more resistance to biodegradation, their 

proportion may represent to a certain extent an overestimate of the terrigenous influx in 

the sampling area as a result of evaporation, dispersion, dilution, and degradation 

(Dutta and Harayama, 2000). 

From Figure 5.12 it can be seen that higher concentrations of n-alkane were found in 

the north east of the Fladen Ground (Zones 4,7 and 8). Also these Zones had the three 

highest total PAH concentrations (Table 5.7) and were in the mixed zone of the PAH 

concentration ratios of FI/Py against P/A (P/A >10; Figure 5.10b). Zone 4 had the 

highest mean diesel oil equivalent value and a mean Forties crude value lower than the 

stratified mean, whilst Zones 7 and 8 had oil equivalents values greater than the 

stratified mean for diesel. For the Forties crude oil Zone 8 had oil equivalent value less 

than stratified mean value whilst Zone 7 mean value was greater than the stratified 

mean (Tables 5.5 and 5.6). In addition Zone 7 had a higher percentage of organic 

carbon and proportion of fine material (< 63 µm fraction) (Tables 5.1 and 5.2). 

Therefore, the accumulation of n-alkanes may be due to a higher input of hydrocarbon 

due to the oil installations in Zones 4 and 8, and fine sediment materials and higher 
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organic carbon content for Zone 7. Another possible explanation for the higher 

concentrations in these Zones could be due to circulation pattern in the Fladen Ground. 
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Figure 5.12 Spatial distribution of total n-alkane concentration (nC12 - nC33) (pg kg -1 dry 

weight), showing higher concentrations of samples in Zones with multiple oil wells or 

platform, and/or higher organic carbon content and proportion of the < 63 pm particle 

size. Large grey circles are < 5km radius of multiple oil wells and small grey circles are < 

2km radius of a single oil well. Green circles are proportional to concentrations. 

Non-biodegraded crude oils contain a range of n-alkanes, which decrease in 

concentration with increasing carbon number, and show no odd carbon predominance. 

After exposure, the oil gradually degrades (weathers) with the lighter n-alkanes being 

lost first, through biodegradation, evaporation or dissolution into the water column. 

Eventually almost all n-alkanes will be lost and only a hump will be observed in the GC- 

FID chromatogram (Webster et al., 2000 and 2001). This is known as an unresolved 

complex mixture (UCM) and comprises of a mixture of alicyclic compounds (Gough and 

Rowland, 1990; Killops and Al-Juboori, 1990) and has a well-known linkage to degraded 
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or weathered petroleum residues (Venkatesan et al., 1980; Readman et al., 1987), 

However, some UCM distributions, mainly in the lower molecular weight range, can be 

attributed to bacterial degradation of natural organic matter such as algae detritus 

(Venkatesan and Kaplan, 1982). A high boiling unresolved complex mixture (UCM) in 

the nC17 - nC33 region with a maximum between nC27 - nC33 was present in some of the 

Zones (Zones 4,6,7,8 and 10; Figure 5.13). However, the aliphatic profiles of the 

majority of the samples showed little evidence of petrogenic contamination. The 2001 

grid samples also showed similar aliphatic profiles with high boiling UCMs present in 

some of the samples (Russell et al., 2004). The distribution of UCMs in the 2001 

stratified samples differs from the Zones of higher concentrations of Forties crude and 

diesel oil equivalents, total PAHs and total n-alkane (Zones with mean greater than the 

stratified mean). Zones 4 and 8, which had multiple oil wells, had some UCMs in some 

of the samples with high Forties crude and diesel oil equivalent, total PAHs and n- 

alkanes values. Whereas samples in Zone 11, which had multiple oil wells had no 

visible UCMs in samples with high Forties crude and diesel oil equivalent, total PAHs 

and n-alkanes values. As the values of TOC and particle size of the samples with 

UCMs are not different from the samples without UCMs, then the conclusion must be 

that there was a higher petrogenic input to these areas (Zones 4 and 8) than the rest of 

the Fladen Ground. 
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Retention time (min) 

Figure 5.13 Chromatograms of aliphatic hydrocarbon profiles of typical sediment 

sample (Zone 4). Note the bimodal unresolved complex mixture that suggests 

petrogenic contamination. The internal standards were squalane and 
heptamethylnonane (HMN). Squalane was used for quantification. 

5.3. h Geochemical Biomarkers Analysis 

Crude oils give a characteristic geochemical biomarker profile, which can be used to 

identify oil contamination. Identification of petrogenic sources of PAHs using PAH 

concentration ratios alone can be difficult, due to weathering or bacterial oxidation which 

alters the PAH and the n-alkanes profile of crude oil (Venkatesan et aL, 1990; Webster 

et al., 2003). The geochemical biomarker profiles of crude oil are unaffected by 

weathering or bacterial oxidation. The double peaks in the m/z 191 mass chromatogram 

(triterpane profile) are due to the 22S and 22R diastereoisomers of each of the C31-C35 

homohopanes and are characteristic of all crude oils (Figures 5.14a and b). These 

doublets decrease in size with increasing carbon number. North Sea and Middle 
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Eastern oils can be identified from their triterpane profiles. North Sea oil (Figure 5.14b) 

contains a characteristic triterpane, bisnorhopane (two less methyl groups than hopane), 

and C29 hopane in lower abundance compared to the C30 hopane. Middle Eastern oil 

does not contain bisnorhopane and the ratio of C29 hopane to hopane is higher than 

found in North Sea oils (Webster et al., 2001). 

The aliphatic fraction of the sediments identified as having petrogenic contamination 

(Figure 5.13) from the GC-FID aliphatic profiles were further analysed by GC-MS for 

geochemical biomarkers (triterpanes and steranes). All the samples analysed contained 

a high proportion of the natural triterpanes such as diploptene and the natural 

homohopane diastereoisomers 22R, 17a, 21ß-homohopane, with diploptene dominating 

the profiles (Figure 5.14a). In addition, the triterpane profiles also showed low levels of 

crude oil contamination (Figure 5.14a). There was a small bisnorhopane peak indicating 

the presence of North Sea oil. However, the proportion of the bisnorhopane to 

norhopane was smaller than normal North Sea oil (Figure 5.14), and similar to Middle 

Eastern oil. Therefore, the geochemical biomarker profiles indicated that most sediment 

samples had been exposed to both North Sea and Middle Eastern crude oils. The 

presence of the Middle Eastern oil could be as a result of shipping activities as it is used 

in bunker fuel. 
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Figure 5.14 (a) Triterpane profile of a typical sediment collected from the Fladen 

Ground in the 2001 stratified survey. The largest peak in the chromatogram was due to 

the naturally occurring triterpene diploptene. Homohopane doublet peaks indicate there 

was petrogenic contamination. The high ratio of C29 hopane and the small bisnorhopane 

(BNH) peak indicate the contaminations was due to a combination of North Sea and 
Middle Eastern crude oils. (b) Triterpane profile of Gulfaks crude oil containing C29 

hopane (NH), hopane and the doublet peaks due to the C31 - C35 homohopane 

diasteroisomers (C31-H to C35-H), the North sea oil specific marker bisnorhopane(BNH) 

can also be seen. 
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5.4 CONCLUSIONS 

The total PAH concentrations (2- to 6-ring parent and alkylated PAHs including the 16 

US EPA PAHs) in sediments were relatively low (Table 5.14). Also the level of the ten 

PAH individual concentrations were relatively lower in comparison with the OSPAR 

background assessment concentrations (BACs) for the northern North Sea. The PAHs 

input were generally higher in the north of the survey area, and lower in the south of the 

survey area, in particularly, southern end of the survey area. The PAH distribution profile 

and concentration ratios indicated a predominantly pyrolytic input, being dominated by 

the heavier, more persistent, 5- and 6-ring compounds, and with a high proportion of the 

parent PAH. Also the distribution of the mean PAHs showed a significant correlation 

between the sediment organic content and particle size, suggesting the importance of 

particulate organic coatings in PAH sorption. Estimates of 'total hydrocarbon' 

concentrations expressed as 'oil' equivalents of crude (Forties crude) or diesel oil were 

relatively low (Table 5.14). 

The n-alkane profiles of a number of the sediments contained small, high boiling point 

UCMs, indicative of limited petrogenic input from weathered oil. The geochemical 

biomarker profiles of the sediments containing UCMs showed a small bisnorhopane 

peak and a high proportion of norhopane to hopane, indicating that there was 

contamination from both Middle Eastern and North Sea oils, and therefore not solely as 

a result of any oil exploration activity in the area. The most likely source of petrogenic 

contamination was from shipping activity. 

Temporal changes in the distribution and composition of hydrocarbon in the Fladen 

Ground will be assessed using the 2001 stratified random survey and the data obtained 

from the 1989 and 2001 conventional grid surveys in the next chapter. In addition, there 

is comparison of the stratified random and conventional grid regimes. 
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Table 5.14 Summary of the overall particle size analysis (PSA), total organic carbon 
(TOC), oil equivalent concentrations of diesel and Forties crude oil, total polycyclic 

aromatic hydrocarbon concentration and total n-alkane concentration (nC12-nC33). All 

concentrations are in dry weight. 

Min Mean Max SD CV Var SE 

PSA (%) 25.1 67.6 89.0 10.9 17.3 152.5 0.8 

TOC % 0.09 0.91 1.89 0.20 23.35 0.04 0.01 

Diesel (pg g"') 
1.6 5.1 14.4 1.5 29.0 2.9 0.1 

Forties crude 4.0 13.8 41.2 4.6 34.1 24.5 0.3 

Total PAH 29.0 108.2 404.7 34.9 31.3 1595.6 2.7 
kg") 

Total n-alkane 23.7 97.2 490.6 44.5 44.3 2887.5 3.7 
kg-1) 

Min = Minimum; Max = Maximum; SD = Standard Deviation; CV = Coefficient of 
Variance; Var = Variance; SE = Standard Error of the mean 
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CHAPTER SIX 

INVESTIGATION OF TEMPORAL TRENDS IN THE FLADEN 

GROUND AND COMPARISON OF GRID AND STRATIFIED 

RANDOM SAMPLING REGIMES 

6.1 BACKGROUND 

In 1989, part of the Fladen Ground was surveyed to monitor the impact of cutting 

discharges (Walsham et al., 2002). Sampling followed a systematic, or grid, design, with 

sediments collected at 3 km intervals along five transects spaced 5 km apart. The grid 

design was chosen to give good spatial coverage of the survey area. The survey was 

repeated in 2001 to assess any changes in hydrocarbon concentrations and 

composition following the cessation of cutting oil based muds discharges in the 1990s 

(Figure 2.2). A second survey of the Fladen Ground was conducted in 2001, using the 

random stratified sampling design (Figure 2.5). This considered a much wider area than 

the grid survey and focussed on hydrocarbon concentrations and composition in the far- 

field. 

To investigate for temporal trends, of data between the 1989 grid, 2001 grid and 2001 

stratified random surveys, only the far field Day Grab samples from the 1989 and 2001 

grid surveys were used. Forty samples of the 1989 and 2000 grid surveys could be 

classified as common areas with the stratified Zones of 5,6,10,11,12 and 16, shown in 

Figure 5.1. In 2001 all samples were analysed for PAHs, however in 1989 only 25 were 

analysed for PAHs. Therefore 40 of the 2001 grid samples and only 6 of the 25 samples 

analysed for PAHs in the 1989 grid survey could be used in the comparison of the PAH 

temporal trend. 
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The aim of this chapter is to assess any changes in distribution of hydrocarbon 

concentrations and composition 1989-2001 in the Fladen Ground, especially, after the 

cessation of the oil based cutting mud in the late 1990s. In addition to allow the 

comparison of conventional grid and the new stratified random sampling regimes. 
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Figure 6.1 Location of Common site of the grid sampling (GS; 1989 and 2001) and the 

2001 stratified random sampling (RS), indicating the Zones and oil platforms. Grey 

circles are near field sites (big circles are multiple oil wells and small circles are single 

oil well). Black dots are grid samples site with labelled number and red stars are the 

stratified random sites. Note only samples from the far field areas are used in 

comparisons. 
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6.2 TEMPORAL TRENDS OF THE SEDIMENT CONTAMINATION 

It is difficult formally to compare the results of the stratified random survey with those of 

the 1989 and 2001 grid surveys because of their differing objectives, design and 

coverage. However, a sensible comparison can be made by: 

9 Restricting attention to Zones 5,6,10,11,12 and . 16 where there is reasonable 

overlap between the grid and stratified random survey areas (Figure 6.1) 

9 Treating the forty grid samples in the far-field in Zones 5,6,10,11,12 and 16 as 

if they were from a stratified random survey. 

This allows us to estimate the mean far-field concentration in Zones 5,6,10,11,12 and 

16, with approximate 95% confidence intervals, for all three surveys. 

The estimation (using equations 5.1 and 5.2 suitably modified to reflect the different 

number of Zones) is straightforward except for PAH and n-alkane concentrations in 

1989. Only six of the forty grid far-field samples were analysed for PAHs and n-alkanes 

in 1989, which makes it impossible to compute standard errors. A pragmatic solution is 

to combine Zones 5 and 6, Zones 10 and 11, and Zones 12 and 16, each of which then 

have two samples. The mean far-field concentration with approximate 95% confidence 

intervals is then computed as if the data had come from a stratified random survey of 

these three larger Zones. 

The means and 95% confidence intervals are shown below (Figures 6.2 and 6.3). 
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Figure 6.2 The far-field mean concentrations for the 1989 and 2001 grid, and the 2001 

stratified random surveys of (a) Forties crude oil equivalent (pg g"), (b) diesel oil 

equivalent (pg g-1). All samples are in dry weight, open circles are means, labels are 
median values and vertical lines are the 95% confidence intervals. 
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Figure 6.3 The far-field mean concentrations for the 1989 and 2001 grid, and the 2001 

stratified random surveys of (a) total PAH (Ng kg-1) and (b) total n-alkane (pg kg-1). All 

samples are in dry weight, open circles are means, labels are median values and 

vertical lines are the 95% confidence intervals. 
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Forties crude oil equivalent, diesel oil equivalent, total PAH and total n-alkane 

concentrations have all significantly decreased since 1989. Neither the mean Forties 

crude nor the mean diesel oil equivalent concentrations differ significantly between the 

2001 grid survey and the 2001 stratified random survey. However, both the mean total 

PAH and the mean total n-alkane concentrations were significantly lower in the 2001 

stratified random survey than in the 2001 grid survey. The difference in mean total n- 

alkane concentration is marked. Both the grid survey and the stratified random survey 

were conducted on the same cruise and analysed following the same accredited 

procedures. Of course, as mentioned at the outset, the design and purpose of the grid 

survey have been compromised in this comparison by only using the far-field part of the 

grid. 

The 1989 and 2001 grid, and 2001 stratified random surveys, PAH profile of were 

dominated by the heavier, more persistent, 4-, 5- and 6-ring compounds (Figure 6.4) 

indicating a predominately pyrolytic input. However, there was a slight increase in 

percentage of the 2- and 3-ring compounds in the 1989 compared to 2001. Suggesting 

either a greater petrogenic input in 1989, or a greater degradation of the 2- and 3-ring 

PAHs in 2001. 
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Figure 6.4 PAH profile for the common areas for the 2001 stratified random and the 

1989,2001 grid surveys. 

6.3 COMPARISON OF SAMPLING SURVEYS 

In comparison of the 2001 grid and 2001 random stratified sampling (Appendix 5), there 

were no significant differences (p > 0.05; ANOVA) in spatial distribution in both the 

percentage organic carbon (TOC) and percentage of < 63 pm fraction of the particle 

size (PSA) (Figures 6.5a and b). 
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Figure 6.5 Spatial distribution of (a) PSA of < 63 pm (%) (b) TOC (%). Large grey 

circles are < 5km radius of multiple oil wells and small grey circles are < 2km radius of a 

single oil well. Yellow and blue circles are proportional to percentage content in the grid 

and stratified sampling surveys. Note there were no differences between the 2001 grid 
(GS) and 2001 stratified random (RS) surveys. 
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The Forties crude and diesel oil equivalent concentrations for the common areas of the 

2001 grid and random stratified surveys are reported in Appendix 6 and the total PAH 

and n-alkane concentration are reported in Appendix 7. Table 6.1 summarises the 

results of the Forties crude and diesel oil equivalents, total PAH and n-alkane 

concentrations. 
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The boxplots of Forties crude and diesel oil equivalents shows no significant differences 

in the mean concentrations of the 2001 grid and 2001 stratified random surveys 

(Figures 6.2a and b). However, there was significant difference in the mean of the total 

PAH and total n-alkane concentrations, for the 2001 grid and 2001 stratified random 

surveys (Figures 6.3a and b). Figure 6.6 shows spatial distribution of total PAH and n- 

alkane concentrations in the common areas of the stratified random and grid surveys, all 

the samples in the stratified random survey had concentrations below 200 pg kg" dry 

weight for the total PAH and n-alkane concentrations. However, in the grid survey 

considerable amount of sediments samples had concentration above 200 pg kg" dry 

weight for both total PAH and n-alkane, especially in Zone 11, where some samples had 

concentrations above 400 pg kg'' dry weight for both total PAH and n-alkane. Sample 

from this Zone had to be re analysed to find out, if there was any lost in hydrocarbon 

due to storage, the result shows no lost due to storage. Therefore, the conclusion is 

that there was a higher input of hydrocarbon in that particular site. 
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Figure 6.6 Spatial distributions in pg kg-1 dry weight of (a) total PAH and (b) total n- 

alkane (nC12 - nC33) comparing the 2001 grid (GS) and 2001 stratified (RS) surveys. 
Large grey circles are < 5km radius of multiple oil wells and small grey circles are < 2km 

radius of a single oil well. Yellow and blue circles are proportional to concentrations in 

the grid and stratified sampling surveys. Note the significant difference between the grid 

and stratified surveys in Zone 11 (p > 0.05; ANOVA). 
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For precision of the two sampling regimes, the standard deviation was plotted against 

the Zones, and significant variation was observed in Zone 10 for the diesel, Zone 11 for 

Forties crude and Zones 10 and 11 for the total PAH and n-alkane concentrations 

(Figure 6.7; Table 6.1). 
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Figure 6.7 Variation of the sample population over the Zones shown within grid and 

stratified sampling, (a) Forties, (b) diesel, (c) PAHs and (d) n-alkanes. 
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The high variations in Zone 11 for the Forties crude, total PAH and n-alkanes may be 

due to high concentrations value in three sediments samples of the grid survey (43,44 

and 45). These samples had diesel oil equivalent concentrations close to the overall grid 

average (7.2 gg g" dry weight). Also the percentage of the total organic carbon (TOC) 

and percentage > 63 p. m fraction of the particle size (PSA) of these sediments are not 

different with the rest of the samples in that Zone. Therefore, the conclusion must be 

that there was a higher hydrocarbon input to these samples and the grid design was 

able to identify the hotspot areas. Therefore, the stratified random sampling design 

clearly gave less mean concentrations for all the four parameters, achieving a much 

lower variance than the grid sampling design. 

The grid design has the advantages of more complete spatial coverage, and is more 

practical and convenient to implement in the field than the random stratified design 

(especially when little or no previous information exists on which to optimise a random 

stratified design). The grid design also has the advantage of being able to identify 

hotspots, as observed. Perhaps more importantly, it would be possible to estimate the 

probability of detecting hotspots of particular sizes. Because sampling in a grid design is 

inherently biased, it is possible to overestimate or underestimate a population 

characteristic aligned with the grid as observed in the analyses. The grid design often 

requires statistical analysis that is based on assumptions that are difficult to 

substantiate. The stratified design can be cost and time effective, and can produce 

estimates with increased precision and lower variance (Figure 6.7) compare to the grid 

design. However, optimal design of stratified sampling programmes requires reliable 

prior knowledge of the population in order to effectively define the Zones and to allocate 

the most appropriate sample numbers to Zones. 
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The increase in precision, or alternatively reductions in time and cost, obtainable 

through stratified random sampling, depends on the quality of the information used to 

set up the design. Any possible increases in precision are particularly dependent on 

strength of the correlation of the auxiliary stratification variable with the 'variable 

observed in the study. In this study, stratification was primarily made on arbitrary 

geographical grounds (defining sampling Zones). As a secondary step, samples were 

confined to far-field areas. This secondary step was based upon the concept that 

concentrations of the variables of interest (primarily hydrocarbons) might well be greater 

close to discharges from oil installations. This is undoubtedly true, in that many surveys 

have shown accumulation of cuttings and associated hydrocarbons close to oil 

installations and that the main area of interest was the potential contamination of the 

seabed out with the immediate surroundings of installations. However, there may be 

some scope for reconsideration of the criteria used to define near and far field sites. 

A potentially more powerful form of stratification might be designed around the 

relationships between chemical contaminants and supporting variables such as particle 

size, organic carbon and water depth. However, while these approaches may be 

statistically attractive, designs which require the collection of defined numbers of 

samples of particular particle size (for example) could present significant practical 

difficulties in the field. 

6.3. a Sample size 

The following table (Table 6.2) illustrates how the precision (expressed as the 

coefficient of variation) of estimates of mean concentration depends on the total sample 

size (n) based on the variability observed in the 2001 stratified random survey. 
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Table 6.2 Summary of the precision of the estimation of mean concentration on the total 
sample size, express as the % coefficient of variable. 

n % coefficient of variation 
Forties crude Diesel Total PAH Total n-alkane 

16 8 8 10 15 
32 6 5 7 10 
48 5 4 6 9 
100 3 3 4 6 
242 2 2 2 4 

The choice of sample size will depend on the objectives of the survey. But to illustrate, 

consider a long-term surveillance monitoring programme to detect a 100% increase in 

hydrocarbon concentrations (should it occur). Sixteen samples per year would estimate 

the mean concentration of all four types of hydrocarbons with a coefficient of variation of 

15% or better. And this would allow us to detect a 100% increase in concentration over 

ten or twenty years if the between-year coefficient of variation is 12% or 24% 

respectively (Nicholson et al., 1997). (The between-year coefficient of variation is a 

measure of random fluctuations in mean concentrations from year to year due e. g. to 

fluctuating environmental conditions. It is difficult to estimate without a long time series, 

but UK National Marine Monitoring Programme data suggest that the between-year 

coefficient of variation for total PAH concentrations is typically somewhere between 10 

and 30%). 

Small sample sizes would necessitate some revision of the stratification to ensure 

sufficient. samples within each stratum to estimate variances, standard errors etc. In the 

illustration above, an obvious change would be to combine the sixteen strata into four 

larger strata, i. e. Zones 1,2,5,6, Zones 3,4,7,8, Zones 9,10,13,14, and Zones 11, 

12,15,16. 
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6.3. b Sample allocation 

In the 2001 stratified random survey, the number of samples in each Zone was chosen 

by proportional allocation, with the number of samples proportional to the available far- 

field area. However, there are other criteria that can be used to allocate numbers of 

samples to strata. In particular, knowing the variation in concentration between samples 

within Zones means that the number of samples can be chosen by optimal allocation. 

This allocation gives more samples to Zones with high variability and maximises the 

precision of the estimate of mean concentration for the whole far-field given a fixed total 

sample size n. If a. is the standard deviation in concentration between samples in Zone 

h, Ati is the far field area in Zone h, then the optimal allocation is 

nA,, a,, 
nn - 1s FAkßk 

k=1 

Equation 6.1 

Optimal allocations for estimating the mean concentrations of Forties crude, diesel, total 

PAH, and total n-alkanes, assuming a total fixed samples size of 242, are shown in 

Table 6.3. They suggest increasing the numbers of samples in Zones 4 and 8 and 

reducing the numbers of samples in Zones 13 and 15. 

Note that strict adherence to optimal allocation can lead to problems for two reasons. 

First, the estimates of variability are themselves subject to error and will be inflated in 

some Zones just by chance. Second, when the total sample size is relatively small, the 

optimal allocation can give only one or two samples in some Zones, which makes it 

difficult to estimate levels of variability in these Zones. 
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Table 6.3 Optimum allocation of samples between strata/Zones to provide estimates of 
the population mean or total with the lowest variance for PAH, Forties crude, diesel and 

n-alkane analyses, assuming a fixed total number of samples (242). The numbers of 

samples for each of the variables are assessed individually, and are combined 
(averaged) to give an optimal number per Zone, treating all variables as of equal 

weight/importance. 

Zones Proportional Opti mum allocat ions (equation 4 
allocation as 
performed 

PAH Forties diesel n-alkanes Average 

1 20 11 16 24 13 17 
2 20 17 19 27 31 22 
3 20 22 11 14 18 19 
4 13 38 21 31 22 29 
5 10 14 7 11 4 10 
6 9 6 8 7 7 8 
7 18 26 25 14 20 18 
8 10 28 21 25 45 25 
9 18 9 13 11 7 13 
10 11 7 18 15 6 14 
11 17 12 19 15 16 14 
12 9 8 10 7 7 9 
13 20 7 7 6 15 10 
14 14 12 13 10 10 10 
15 20 12 17 12 11 12 
16 13 14 17 14 9 13 

Total 
sample 

size 
242 242 242 242 242 242 

6.4 CONCLUSIONS 

This study has highlighted the benefits and limitations of both sampling regimes in the 

oil and gas exploration and production areas. The grid design has the benefits of more 

spatial coverage, and is more practical and convenient to implement in the field than the 

stratified random design. The grid design was also able to identify hotspots, and, 

perhaps more importantly, it would be possible to estimate the probability of detecting 

hotspots of particular sizes. But because sampling in a grid design is inherently biased, 

it has the disadvantage that it is possible to overestimate or underestimate a population 

characteristic aligned with the grid. Also the grid design often requires statistical analysis 
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that is based on assumptions that are difficult to substantiate, and also missing stations 

arising, for example, from bad weather at sea or being located in near field areas are 

difficult to accommodate in the statistical analysis. 

The stratified sampling design gave much more reliable mean concentrations for all the 

four parameters, achieving a much lower variance than the grid sampling design. The 

stratified design is cost and time effective, and produces estimates with increased 

precision (lower variance) compared to the grid sampling design. The increase in 

precision, or alternatively reductions in variance, time and cost, obtainable through 

stratified random sampling, depends on the quality of the information used to set up the 

design. Any possible increases in precision are particularly dependent on strength of the 

correlation of the auxiliary stratification variable with the variable observed in the study. 

Spatial analysis will be applied in studying the pattern on spatial structure features of the 

hydrocarbon contaminated sediments in the Fladen Ground, using the stratified random 

surveys in chapter 7. 
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CHAPTER SEVEN 

SPATIAL ANALYSIS FOR QUALITY ASSESSMENT OF THE 

HYDROCARBONS 

7.1 INTRODUCTION 

Geographical distribution of the concentration and composition of hydrocarbons is an 

important element of an assessment of the quality of the marine environment. A number 

of mathematical methods are available for carrying out such study using data obtained 

through sampling and chemical determination of hydrocarbons. Among the methods, 

spatial structure analysis has been widely identified as a useful tool in illustrating the 

spatial patterns of the variables (Wang and Qi, 1998). It is also an important basis for a 

number of other spatial analysis procedures, such as kriging analysis. Descriptive 

statistics and histograms (Figure 7.1) will not give information on the spatial patterns of 

the hydrocarbons (Caeiro et al., 2003). One can fit trend surfaces to spatial data of ever 

increasing order, and eventually analysis by ANOVA at some specified level of 

significance, trend surfaces of increased order will not provide a statistically significant 

improvement in the fit to the data. The weights and neighbourhood of trend is dependent 

upon the variogram of the data. The degree of spatial continuity of the data (regionalized 

variables) is given by the variogram. In this chapter, spatial analysis was applied to the 

pattern of spatial structure features of the hydrocarbon contamination in sediments from 

the Fladen Ground. The aim of this chapter is to explore patterns in the structural analysis 

of the hydrocarbons contamination measured in the Fladen ground. 
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Figure 7.1 Histogram of the parameters measured for the whole Fladen Ground. 

7.1. a Statistical Distributions 

Statistical parameters describe the shape of a random variable's probability density 

function (PDF). The Skewness is a measure of the degree of asymmetry of a distribution. 

A distribution, or data set, is symmetric if it looks the same to the left and right of the 

center point. Kurtosis is a measure of the degree of peakedness of a distribution. A 

distribution with a high peak (> 0) is termed leptokurtic, a flat-topped curve (< 0) is termed 

platykurtic, and the normal distribution (kurtosis = 0) is mesokurtic. 

For univariate data, the formula for skewness is: 
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N 

(y -y)3 
skewness = ``' Equation 7.1 (N-1)s3 

And the formula for kurtosis is; 

N 
_j (y, 

y)4 

kurtosis =" -3 Equation 7.2 (N-1)s` 

Where 

y= The mean 

yl = The y`h sample 

s= The standard deviation 

N= The number of samples. 

The calculated values of the skewness (Table 7.1) and kurtosis (Table 7.2) shows that the 

bulk sediment characteristics (i. e. organic carbon content and particle size) are normally 

distributed (Figure 7.1) with a low coefficient of variance (see section 5.3. d). However, the 

PAHs and n-alkanes concentrations (Figure 7.1), showed a sharp peak (Table 7.2), highly 

skewed to the right (Table 7.1), weak continuity and a large coefficient of variance (see 

sections 5.3. f and 5.3. i). Similar results were observed in the distributions of Forties crude 

oil equivalents and of diesel oil equivalents, but with less marked peaks. The highly 
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skewed results show that there are outlier values, which may cause erratic and unstable 

estimates of the variance. 

The descriptive statistics and histograms do not incorporate the spatial locations of the 

data into their defining computations, as shown above. The variogram is a quantitative 

descriptive statistic that can give graphical representation and characterise the spatial 

continuity (i. e. roughness) of data (Christakov, 2001). 

167 



Chapter Seven 

Table 7.1 Skewness of the TOC, PSA, diesel, Forties crude, PAHs and n-alkanes for 

each of the Zones and the Overall sediment samples for the stratified random sampling in 

the Fladen Ground. 

Zones No of 
samples 

TOC PSA Diesel Forties PAHs n-alkanes 

1 20 0.31 0.30 1.60 1.34 0.39 0.65 
2 20 0.44 -1.30 0.77 0.86 0.50 1.30 

3 20 0.21 -0.79 0.62 0.20 1.45 0.62 

4 13 -0.11 -0.60 0.26 0.19 0.80 2.67 

5 10 -0.39 -1.13 -0.34 0.35 2.17 -0.95 
6 9 -0.40 -2.35 -0.32 -0.30 0.61 0.98 
7 18 0.82 -0.20 0.. 00 1.36 0.47 1.24 

8 10 -0.58 -0.56 2.60 1.93 1.73 0.97 

9 18 0.55 0.21 0.19 0.26 -0.13 1.83 

10 11 -0.55 -0.71 1.26 1.29 -0.13 0.46 

11 17 1.01 0.30 0.83 1.15 0.45 2.37 
12 9 0.73 -0.12 0.37 0.40 0.88 1.30 
13 20 0.29 -0.11 0.40 0.85 0.18 2.87 

14 14 0.90 -1.45 0.23 1.76 2.48 0.89 

15 20 0.33 -0.16 0.25 0.86 0.50 0.21 

16 13 0.26 -0.11 1.83 1.75 1.0 0.03 

Total 242 0.34 -0.71 1.08 1.10 1.85 2.89 
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Table 7.2 Kurtosis of the TOC, PSA, diesel, Forties crude, PAHs and n-alkanes for each 

of the Zones and the Overall sediment samples for the stratified random sampling in the 

Fladen Ground. 

Zones 
sam 

No of 
les TOC PSA Diesel Forties PAHs n-aikanes 

1 20 -0.44 0.54 3.72 1.66 -0.53 -0.66 
2 20 2.01 1.81 0.01 0.09 -0.24 1.69 

3 20 -0.50 0.34 0.24 -0.63 3.49 0.17 

4 13 -1.00 -1.77 -0.64 -0.96 1.72 8.12 

5 10 -2.04 -0.18 -1.22 -1.01 5.58 2.65 

6 9 1.03 6.50 -1.30 -1.43 -0.36 1.20 

7 18 -0.42 -0.93 0.70 3.84 -0.10 1.45 

8 10 -0.45 -0.25 7.22 3.69 3.50 -0.70 
9 18 0.81 -1.63 -0.48 -0.35 -0.57 5.63 

10 11 -0.67 -1.62 2.90 2.69 0.22 0.84 

11 17 0.72 1.61 1.50 1.65 -0.01 7.41 

12 9 -0.36 -0.95 -1.72 -1.65 0.63 1.09 

13 20 -1.12 -0.54 -0.41 0.89 -0.13 9.53 
14 14 0.42 1.33 -0.03 3.87 6.97 0.22 

15 20 -0.21 -1.21 0.21 0.09 -0.49 0.01 

16 13 -1.58 -1.40 5.64 4.49 0.11 -0.86 
Total 242 0.12 -0.59 2.17 1.71 5.66 13.60 

7.2 DATA ACQUISITION AND ANALYTICAL METHOD 

7.2. a Data Acquirement 

The 2001 Fladen Ground stratified random sampling survey data were used. Data were 

analysed using the SURFER® Golden software version 8 for the experimental variance 

and theoretical variogram using the linear model. MINITAB® software version 14 was used 

create contour maps (Kriging analysis). 
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7.2. b Analytical Method 

The variogram characterizes the spatial continuity or roughness of a data set (Webster 

and Oliver, 2001). In kriging, a variogram is first constructed using a spatial set of data 

e. g. the sediment data from the Fladen Ground. A variogram has two parts: an 

experimentally-derived component data and a theoretical (model) component (Houlding, 

2000). An experimental variogram is constructed by first calculating the variance of each 

point in the data set with respect to each of the other points. The experimental variogram 

consists of the plotted variances versus the distance between each data point at the site. 

The model variogram is curved line through the experimental variogram points. The model 

represents a simple mathematical function modeling the trend in the points of the 

experimental variogram (Chiles and Delfiner, 1999). The variogram applied in kriging can 

be used to calculate the expected error of the estimation at each target interpolation point 

since the estimation error is a function of the distance to surrounding data points. The 

mathematical definition of variogram is (the average squared difference of values 

separated approximately by lag distance (h): 

7(AX, ey)= 2e[{z(x+ez, y+ey)-z(x, y)}2] Equation 7.3 

Where 

Z(x, y) = value of the variable at location (x, y) 

x= Longitude 

y= Latitude 

e= the statistical expectation operator. 
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There are also theoretical variograms which model the structure of the underlying 

correlation between data points: 

Exponential Model 

y(h) = c° +c 1- e 
JAa )) 

Equation 7.4 

Spherical Model 

y(h) = co +c2h-2 
h3 ' 

Equation 7.5 
a a] 

Linear Model 

y(h) = co + bh Equation 7.6 

Where, 

CO = the nuggets 

c= the sill 

a= the range of the variogram model 

h= lag distance 

b= the slope. 

Three parameters define the variogram: 
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Nugget(c0): represents unresolved, sub-grid scale variation or measurement error and is 

seen on the variogram as the intercept of the variogram. 

Range (a): The scalar that controls the degree of correlation between data points, usually 

represented by as a distance. 

Sill (c): the value of the variance as the lag (h) goes to infinity; it is equal to the total 

variance of the data set. 

The relationship between the variogram and covariance is: 

1. Correlation is zero when the variogram value approaches the sill 

2. The correlation is positive when the variogram value is less than the sill 

3. The correlation is negative when the variogram exceeds the sill. 

7.2. c Variogram Behaviour 

The primary variogram behaviours are as follows: 

= Randomness or lack of spatial correlation: The variations have no spatial 

correlation, and these random variations are the results of deterministic process. 

The processes are highly non-linear and chaotic leading to variations that have no 

spatial correlation structure. Typically, only a small portion of the variability is 

explained by random behaviour. This type of variogram behaviour is called nugget 

effect. 

Sediment trends: All environmental processes impart a trend in the distribution of 

physical properties, e. g., particle size. Such trends can cause the variogram to 

show a negative correlation at large distances. In fine/coarse sediments, the 

sediments size is negatively correlated with the availability of the hydrocarbons 
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due to their hydrophobic and stable chemical properties. The large negative 

correlation can cause the variance to increase beyond the sill variance. 

Areal trends: These have an influence on the vertical variogram, i. e., the vertical 

variogram will not encounter the full variability of the sediments property being 

considered. There will be a positive correlation below the sill variance for large 

distances in the vertical direction. This type of behaviour is called zonal anisotropy. 

7.3 RESULTS AND DICUSSION 

The experimental variograms obtained from the Fladen ground data are shown in Figures 

7.2 - 7.4. As illustrated in Figures 7.2 and 7.4, the sediments experimental variograms 

shows a well defined structure with variogram increasing with lag distance for TOC, PSA, 

and Forties crude and diesel oil equivalents and total PAHs concentrations. But in the total 

n-alkane concentrations there was lack of spatial correlation structure (Figure 7.4b). 

Nugget effects were observed in all the variogram of the PSA, TOC, Forties crude and 

diesel oil equivalents, total PAHs and total n-alkane concentrations. There were trends in 

the results of the PSA, TOC, Forties crude and diesel oil equivalent, and as well as the 

total PAH concentrations. The existence of a trend was suggested by lack of attainment of 

a sill in the variogram. As the distances between data pairs increase, the differences 

between data values also systematically increase. Therefore the experimental variogram 

does not have a sill value (it is infinite); they cannot be used in simulation algorithms such 

as sequential Gaussian simulation (exponential and spherical models). 

The linear model of the variograms was chosen as the theoretical variogram, because a 

linear model gives the best results when using a real experimental data which contain 

experimental errors (Glover et al., 2004). In this model, the data do not support any 
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evidence for a sill or range but rather appear to have increasing variance as the lag 

distance increases. This is a key sign that the proper choice for a particular data set is the 

linear model. The linear model is concerned with the slope and intercept of the 

experimental variogram (Equation 7.6). The slope (b) is nothing more than the ratio of the 

sill (c) to the range (a). 

The slope of the linear model of the parameters measured were 2.5 for the PSA and 0.1 

for TOC, 12.3 for the oil equivalents of Forties crude and 2.1 for the oil equivalents of 

diesel. The total PAH concentrations has slope of 742.0 and 0 for and total n-alkane 

concentrations. There was no correlation between the variogram and the covariance for 

the total n-alkane concentration, because the value of the slope was 0, this shows that the 

variogram was equal to the nugget for the total n-alkane concentrations. 
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Figure 7.2 Experimental variogram with linear model for (a) PSA (b) TOC, at direction 0.00 

and tolerance 90.00 
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Figure 7.3 Experimental variogram with linear model for the oil equivalents of (a) Forties 

crude (b) diesel, at direction 0.00 and tolerance 90.00. 

176 

Column E: Forties Crude oil 

Column F: Liasal oil 
ýiraction: 0.0 Tolerance: 90.0 



Chapter Seven 
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Figure 7.4 Experimental variogram with linear model for the (a) total PAH concentration 

(b) total n-alkane concentration crude, at direction 0.00 and tolerance 90.00. 
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The contour maps were computed using the universal kriging spatial interpolation (used 

under anisotropic conditions, when variogram is a function of both the distance and the 

direction of the distance intervals; a trend is contained). The kriging spatial interpolation 

estimating the value of at un-sampled sites within the area covered by existing 

observations (Smith and Zhu, 2004), Kriging is a B. L. U. E (best, linear, unbiased 

estimator). The weights are chosen to minimize the mean squared prediction error subject 

to an unbiasedness constraint. Kriging using the fitted variogram models is relatively 

robust to the type of database and the method of estimating the experimental variogram. 

The kriging estimates consistently improve with increasing number of neighbours. The 

results from kriging with a linear variogram model worked very well for elevation data 

bases. Figures 7.5 - 7.7 shows the contour maps of the parameters measured for the 

Fladen Ground. The contour maps show similar patterns of hydrocarbon contaminants in 

the survey area. Higher concentrations of PAHs and n-alkanes were found in the east of 

the survey area (Figures 7.7a and 7.7b), and the concentrations of Forties crude and 

diesel oil equivalent of were also relatively high in these area (east of the survey area; 

Figures 7.6a and 7.6b). In the physical characteristics of the sediments, PSA and TOC 

were higher in the central area of the survey. The spatial analysis gave spatial view of the 

distribution of hydrocarbon contaminants in the Fladen Ground, and helps in discovering 

and understanding spatial relationships in data. This discovery and understanding can be 

as simple as viewing the data. 
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Figure 7.6 Contour maps showing the distribution pattern of the oil equivalent of (a) diesel 

oil (b) Forties crude. All concentrations are in pg g-' dry weight. 
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Figure 7.7 Contour maps showing the distribution pattern of (a) total PAH concentration 

and (b) total n-alkane concentration. All concentrations are in pg kg-' dry weight. 
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The existence of a trend in the variogram and spatial pattern in the contour maps of the 

parameters measured shows that the regionalized variable were non-stationary and non- 

ergodic (positive recurrent aperiodic state of stochastic systems: tending in probability to a 

limiting form that is independent of the initial condition). The existence of a trend can be 

discounted only if the variogram achieves a well-defined sill at large lags and the spatial 

data have a normal distribution, which the Fladen data do not. De-trending is necessary 

only when local stationarity cannot be demonstrated; thus kriging of the hydrocarbon 

concentrations does not require removal of the trend as long as the scale of variation of 

the concentrations is appropriate to both the variogram structure and the nearest-neighbor 

search distances employed in the kriging. 

7.4 CONCLUSIONS 

Spatial interpolation is important in environmental studies. The variogram represents the 

modeler's quantitative understanding of the spatial variability of the hydrocarbons in the 

Fladen Ground. The interpretation methods presented in this paper are reminiscent of the 

revolution and the development of a rigorous analysis methodology based on the 

principles of model identification and model verification. Even though the importance of 

the variogram model is generally acknowledged, the practice of variogram analysis is 

often done half-heartedly. 

The spatial analysis gave a view of the distribution hydrocarbon contaminant over the 

Fladen Ground, the spatial analysis assists in discovering and understanding spatial 

relationships in data. This discovery and understanding can be as simple as viewing the 

data. The spatial analysis can be able to perform other functions such as finding distance, 

assigning proximity, calculating density, creating contours, and deriving slope. Therefore 
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spatial interpolation is a valuable way to illustrate the accumulation of hydrocarbons in 

environment (sediments). 
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CHAPTER EIGHT 

A FIELD STUDY TO INVESTIGATE COMPOSITE RANDOM 

SAMPLING 

8.1 INTRODUCTION 

Based on the outcome of the stratified random sampling design used in the Fladen 

Ground, a field study was designed based around the relationships between chemical 

contaminants and supporting variables such as particle size, organic carbon and water 

depth. The original intention had been to carry out a field study in the deltaic region of 

river Niger, in southern Nigeria. However, conditions in Nigeria at the time prevented this 

from being done. Instead, areas of the Firth of Forth (Figure 8.1) and Firth of Clyde 

(Figure 8.2) were selected, based on their sediment characteristics and water depth. The 

areas were offshore of the estuarine areas, with an average water depth of 80 and 45 

meters, in the outer parts of the Firths of Clyde and Forth, respectively. Both chosen sites 

were offshore and subject to general shipping traffic and were expected to have similar 

sediment compositions. Composite random sampling design was used. Initial samples 

were collected using random sampling design and analysed, and then the samples were 

divided into a mixture of sub-samples. The number of samples in each area was chosen 

by optimal allocation, with the number of samples collected, based on the area and 5% 

standard deviation of the mean of the water depth, i. e. 25 samples were collected in 

areas roughly equal to the areas of near and far fields in each of the Fladen Ground 

Zones (456.01 km2). The aim of the work is to estimate a within-stratum mean value for 

each of the chosen measurement parameters. The objective is to determine 
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experimentally whether this can be done with more thorough coverage (better 

representation), better precision and less variance at lower analytical cost, by using 

composite random sampling. 

8.1. a Sampling Design 
Composite sampling involves physical combination of homogenised samples to form a set 

of new samples (i. e., composite samples). The chemical analyses are then performed on 

the aliquots of the composite samples. Because the compositing physically averages the 

individual samples, averaging the analytical results of the smaller number of composite 

samples can produced an estimated mean that is more precise than, or at least as precise 

as, one based on many more individual sample results. 

Composite sampling will generally be an appropriate strategy when all of the following 

conditions hold: 

The anticipated concentrations for most composites will exceed detection limits 

= The process of compositing will not affect the sample integrity 

Analytical costs are high relative to*costs associated with sampling 

= There are no practical difficulties that impede the selection of multiple samples of 

units, where each sample is selected according to a given statistical design 

There are no practical difficulties in undertaking the necessary compositing. 

The main benefit of composite sampling is that it may achieve better precision of an 

estimated mean at less cost, and data analysis is usually straightforward. The limitation of 

composite sampling is that it yields a reduced amount of information on variability; for 
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example composite sampling loses information on individual samples and on spatial (or 

temporal) patterns. 

8.1. b Sampling Areas 

The Firth of Forth (Figure 8.1) is the estuary or firth of the River Forth, where it flows into 

the North Sea between Fife to the north, and West Lothian, the City of Edinburgh, and 

East Lothian to the south. A large number of towns line the shores, as well as the 

petrochemical complexes at Grangemouth and Burntisland, the commercial docks at 

Leith, oilrig construction yards at Dalgety Bay and Methil and the naval dockyard at 

Rosyth, with numerous other industrial areas including the areas around the Forth 

bridges. The Firth is important for nature conservation. The Firth of Forth Islands SPA 

(Special Protection Area) is host to over 90,000 breeding seabirds every year. There is a 

bird observatory on the Isle of May. 
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Figure 8.1 Map of the Firth of Forth showing location of the sampling area. 

The Firth of Clyde (Figure 8.2) on the west coast of Scotland serves a greater human 

population than any other Scottish coast water area. Inputs of waste and domestic and 

industrial effluent are correspondingly large. The primary sources of hydrocarbon 

contamination include effluent from military (e. g. Holy Loch), domestic, municipal and 

industrial facilities. 

187 



Chapter Eight 

Figure 8.2 Map of the Firth of Clyde showing location of the sampling area 
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8.2 METHODS 

The methods used for the analyses are given in Chapter 4. 

8.2. a Sediment Sampling 
Sediment samples were collected by Day Grab from the FRV Clupea at the locations 

shown in Figures 8.1 and 8.2, using the simple random sampling regime. The locations for 

the individual samples were selected by a random number generation. Twenty five (25) 

samples were collected at each of the two sites. The top 2 cm layer of sediment was 

scraped off each sample and the sediment was mixed before transferring (-200 g) to a 

solvent washed aluminium can which was labelled and stored at -20 ± 5°C until required 

for compositing and analysis. 

The 25 individual sediment samples collected by simple random design and were used to 

form 5 composite samples of 5 individual samples each in each of the two sampling 

areas. All the individual (simple random sampling) and the composite random sampling 

sediments samples were analysed for particle size (PS), total organic carbon (TOC), ultra- 

violet fluorescence (UVF) oil equivalent concentrations, PAHs, n-alkanes, steranes and 

triterpanes, as described in Chapter 4. Full details of the sampling locations are given in 

Appendix 8. 

8.2. b Statistical Analyses 
Data were analysed using the MINITAB® software version 14. Analysis of variance 

(ANOVA) at significance level of 5% was used to detect significant differences among the 

means of TOC%, and PSA, and the oil equivalents of the Forties crude and diesel, PAHs 
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and n-alkanes concentrations of the Zones. Spearman's Rank correlation was used to 

determine non-parametric correlations among the parameters measured. 

8.3. RESULTS AND DISCUSSION 

8.3. a Results of the Simple Random Sampling (SRS) Design 

8.3. a. i Physical Characteristics of the Sediments 

Physical characteristics of the sediment samples are tabulated in Appendices 9- 12 and 

summarized in Table 8.1. 

In the Firth of Clyde sediments, the percentage of total organic carbon (TOC) varied 

between samples from 0.3 to 2.0%; and the mean TOC was 1.41% (SE = 0.09%). The 

percentage of < 63 pm fraction in the sediment (PSA) varied between samples from 22.7 

to 99.7%; and the mean PSA was 86.6% (SE = 4.27%) (Table 8.1). 

Percentage total organic carbon (TOC) in the Firth of Forth sediments varied between 

samples from 0.4 to 4.2%; and the mean TOC was 1.02% (SE = 0.15%). The PSA varied 

between samples from 18.7 to 61.5%; mean PSA was 41.2% (SE = 2.63%; Table 8.1). 

The Firth of Clyde sediments had higher percentage of the fine material and the organic 

content than the Firth of Forth, as expected by their difference in water depth. In general, 

TOC tends to be higher in the deep sediments. 
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Table 8: 1 Summary of the individual simple random sampling (SRS) design of the TOC; < 
63 pm fraction (PSA), diesel and Forties oil equivalent concentrations, total PAH and total 

n-alkane concentrations. Concentrations are on a dry weight basis. 

Variables Stations Min Mean Mod Max SD SE CV 

TOC Clyde 0.3 1.4 1.5 2.0 0.43 0.09 30.4 
N Forth 0.4 1.0 0.7 4.2 0.75 0.15 73.8 

PSA Clyde 22.7 86.6 95.9 99.7 21.34 4.27 24.6 
N Forth 18.7 41.2 38.1 61.5 13.17 2.63 32.0 

Diesel Clyde 8.1 63.2 59.5 120.9 34.99 7.00 55.4 
(p9 91) Forth 7.8 27.6 19.2 72.6 17.69 3.54 64.2 

Forties Clyde 47.8 404.1 385.1 791.7 222.10 44.40 55.0 
('g g1) Forth 47.1 161.8 116.3 351.5 100.10 20.00 61.9 

Total PAH Clyde 116.0 1858.0 1871.0 3405.0 979.00 196.00 52.7 
(, ug kg") Forth 173.8 532.4 454.1 1200.0 294.40 58.90 55.3 

n-Alkanes Clyde 63.8 489.6 487.6 1238.1 242.00 48.40 49.4 

(p9 kg") Forth 49.8 349.1 322.2 743.1 . 169.40 33.90 48.5 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variation; Var = Sample Variance; SE = Standard Error of the mean. 

TOC and PSA in the Firth of Clyde measurements were positively correlated with each 

other and with the corresponding total PAH and total n-alkane concentrations (Table 

8.2a). However, there were no correlation between the oil equivalent concentrations and 

TOC, the corresponding total PAH and total n-alkane concentrations. TOC and PSA in the 

Firth of Forth measurements were positively correlated with each other and with the 

corresponding oil equivalent, total PAH and total n-alkane concentrations (Table 8.3a). To 

investigate differences in hydrocarbon concentrations that are not due to the physical 

characteristics of the sediment, it is necessary to normalise the concentrations to e. g. 
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TOC. Note that, even having normalised to TOC, the oil equivalent, total PAH and total n- 

alkane concentrations are still positively correlated in the Firth of Forth (Table 8.3b), whilst 

in the Forth of Clyde there was no correlation between the oil equivalent, and total PAH 

and total n-alkane (Table 8.2b). This just means that, even having accounted for the 

physical characteristics of the sediment in the Firth of Forth, samples with higher oil 

equivalent concentrations also tended to have higher total PAH and total n-alkane 

concentrations. 
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Table 8.2 Spearman's Rank correlation coefficients of the 25 sediment samples from the 

Firth of Clyde (a) Raw data, (b) Data normalised to total organic carbon (TOC). Values 

greater than 0.40 or less than - 0.40 are significant at the 5% level or better. 

(a) 

(b) 

TOC PSA Forties Diesel PAHs n-Alkane 

TOC - 0.76 0.42 0.44 0.91 0.73 

PSA 0.76 - 0.53 0.56 0.73 0.64 

Forties 0.42 0.53 - 0.98 0.31 0.42 

Diesel 0.44 0.56 0.98 - 0.32 0.46 

PAHs 0.91 0.73 0.31 0.32 - 0.85 

n-Alkane 0.73 0.64 0.42 0.46 0.85 - 

PSA Forties Diesel PAHs n-Alkane 

PSA - 0.35 0.40 0.61 0.47 

Forties 0.35 - 0.99 0.01 0.34 

Diesel 0.40 0.99 - 0.03 0.37 

PAHs 0.61 0.03 0.03 - 0.64 

n-Alkane 0.47 0.34 0.37 0.64 - 
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Table 8.3 Spearman's Rank correlation coefficient of the Firth of Forth (a) Raw data, (b) 

Normalised data to sediment total organic carbon (TOC). Values greater than 0.40 or less 

than - 0.40 are 5% significant to 25 sediment samples. 

(a) 

TOC PSA Forties Diesel PAHs n-Alkane 

TOC - 0.87 0.74 0.80 0.80 0.71 

PSA 0.87 - 0.61 0.63 0.66 0.59 

Forties 0.74 0.61 - 0.97 0.84 0.85 

Diesel 0.80 0.63 0.97 - 0.87 0.88 

PAHs 0.80 0.66 0.84 0.87 - 0.96 

n-Alkane 0.71 0.59 0.85 0: 88 0.96 - 

(b) 

PSA Forties Diesel PAHs n-Alkane 

PSA - 0.10 0.07 -0.01 -0.32 
Forties 0.10 - 0.98 0.67 0.56 

Diesel 0.07 0.98 - 0.60 0.72 

PAHs -0.01 0.67 0.60 - 0.86 

n-Alkane -0.32 0.56 0.72 0.86 - 

8.3. a. ii UVF Analysis 

The diesel oil equivalent concentrations in the Firth of Clyde sediments varied between 

samples from 8.1 to 120.9 pg g" dry weight; with a mean concentration of 27.6 pg g' dry 

weight (SE = 7.0 jig g'1 dry weight). The Forties crude oil equivalent concentrations varied 

between samples from 47.8 to 791.7 jug g'' dry weight; with a mean concentration of 

404.1 Ng g'' dry weight (SE = 44.4 Ng g" dry weight; Table 8.1). 
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The diesel equivalent concentrations in the Firth of Forth sediments varied from 7.8 to 

72.6 pg g"' dry weight; mean diesel oil concentration was 27.6 Ng g" dry weight (SE = 3.5 

Ng g'' dry weight). The Forties crude oil equivalent concentrations varied between 

samples from 47.1 to 351.5 Ng g"' dry weight; and mean Forties crude oil concentration 

was 161.8, ug g'' dry weight (SE = 20.0 Ng g"' dry weight). 

As observed in the sediment characteristics (section 8.3. a. i), the concentrations of Forties 

crude and diesel oil equivalents were generally higher in the Firth of Clyde sediments than 

in the Firth of Forth. 

8.3. a. iii PAHs Analysis 

The total PAH concentrations (2- to 6-ring parent and alkylated, including the 16 US EPA 

PAHs) in the Firth of Clyde sediments varied between samples from 116.0 to 3405 Ng kg" 

dry weight; the mean total PAH concentration was 1858.0 pg kg" dry weight (SE = 196.0 

Ng kg-1 dry weight). 

The total PAH concentration in the Firth of Forth sediments varied between samples from 

173.8 to 1200.1 pg kg'' dry weight with a mean total PAH concentration of 532.4 pg kg-' 

dry weight (SE = 58.9 Ng kg" dry weight) (Table 8.1). 

Sources of the PAHs 

The proportion of parent PAHs was lower than that of the alkylated PAHs in all the 

sediments of the two sites (i. e. Firth of Clyde and Firth of Forth), values less or greater 

than 40% are associated with petrogenic and pyrolytic sources, respectively. The 
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proportion varied from 39.9 to 44.4% (mean = 42.6%, SE = 0.2%) for the Clyde 

sediments, whilst for the Firth of Forth it varied from 32.2 to 41.6% (mean = 35.2%, SE _ 

0.5%; Table 8.1). Petrogenic sources are dominated by 2- and 3-ring alkylated PAHs, 

whereas pyrolytic sources are characterized by heavier, parent PAHs. The PAH 

distribution profile for both the Firth of Clyde and Firth of Forth were found to be 

dominated by the heavier, more persistent, 4- to 5-ring compounds (Figure 8.3), indicative 

of predominately pyrolytic sources. However, the lower proportion of parent PAHs in the 

Forth of Forth (< 40%) compared to the Clyde (> 40%) may indicate that there is a greater 

petrogenic input in the Firth of Forth. The Firth of Forth also has a slightly higher 

percentage of 2 and 3-ring PAHs than the Firth of Clyde. However, there were no 

significant differences between the proportions of the parent PAH for the Firth of Clyde 

and Firth of Forth sediments (p > 0.05; ANOVA). 
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Figure 8.3 PAH profile of the Firth of Clyde and Firth of Forth. 

Total naphthalenes (parent and C1-C4); total 178, phenanthrene/anthracene (parent and C1-C3); 

total DBT, dibenzothiophenes (parent and C1-C3); total 202, fluoranthene/pyrene (parent and C1- 

C3); total 228, benzanthracene/benzophenthrenes/chrysene/tnphenylenes (parent and C1-C2); total 

252, benzofluoranthene/benzopyrene/perylene and total 276, indenopyrene/benzoperylene (parent 

and C1-C2). 

PAH concentration ratios were used in distinguishing PAHs sources as described in 

section 5.3. h. It was observed (Figures 8.4a and b) that all the Firth of Clyde sediment 

samples had concentration ratios of P/A and MP/P below 10 and 2, respectively, and 24 

of the samples had FI/Py ratio greater than 1. These suggest that PAHs are of a 

predominately pyrolytic origin in the Firth of Clyde. 
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Figure 8.4 PAH concentration ratios used to assess the sources of PAHs. The Zones 

identified by high fluoranthene/pyrene (FI/Py) ratios and low phenanthrene/anthracene 

(P/A) ratios and high FI/Py and low methylphenanthrene/phenanthrene (MP/P) ratios were 

characteristic of pyrolytic PAHs. (a) Plot of FI/Py ratios against P/A ratios. (b) Plot of FI/Py 

ratios against MP/P ratios. Black dots represent Firth of Clyde sediments and red squares 

represent Firth of Forth sediments. 
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The concentration ratio of the Firth of Forth (the plot of FI/Py against P/A; Figure 8.4b) 

show that 21 of the 25 samples cluster on the mixed zones, due to FI/Py ratio less than 1, 

the remaining samples fell on either the pyrolytic zone or within the reference line (FI/Py 

ratio = 1). All the sediments samples had P/A ratio less than 10 (Figure 8.4a). A plot of 

FI/Py against MP/P ratios shows that most of the samples cluster in the mixed zones and 

petrogenic zones, this suggest there was greater petrogenic input in the Firth of Forth. 

The PAH profile of the Firth of Clyde and Firth of Forth were investigated further using 

PCA (Figure 8.5), for details of PCA (see section 5.3. h). The first two components 

accounted for 64 and 20% of the variance in the data respectively. The first component 

was a contrast between the heavier (4- to 6-ring PAHs) and lighter PAHs (2- and 3-ring 

PAHs) with the concentrations of alkylated compounds being positively correlated with the 

corresponding parent compound (Figure 8.5a). The score plot shows separations by site, 

all the Firth of Clyde are in the negative first component of the score plot (Figure 8.5b), 

whilst most of the Firth of Forth sediments are in the positive first component of the score 

plot with only one sediment in the opposite component (i. e. sample 4165/04). These 

samples contained a higher proportion of the lighter PAH compound, indicative of greater 

petrogenic input in the Firth of Clyde sediments. 
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Figure 8.5 Principal component analysis of the Firth of Clyde and Firth of Forth using ring 

group, parent and alkylated compounds. (a) Loading plot, showing the lighter PAH 
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with negative first components. (b) Samples in the left half of the graph were all from Firth 

of Clyde and samples from the right half of the graph were from the Firth of Forth and 
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and F symbolize Firth of Clyde and Firth of Forth sediments, respectively. 
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8.3. a. iv Aliphatic Hydrocarbons Analysis (n-alkanes) 

The total n-alkane concentration (nC12 - nC33) in the Firth of Clyde varied between 

samples from 63.8 to 1238.1 pg kg"' dry weight with a mean concentration of 489.6 Ng kg- 

' dry weight (SE = 48.4, ug kg-' dry weight). The total n-alkane concentration in the Firth of 

Forth varied between samples from 49.8 to 743.1 pg kg" dry weight with a mean 

concentration of 349.1 pg kg'' dry weight (SE = 33.9 pg kg" dry weight) (Table 8.1). The 

odd carbon-number compounds in the range of nC25 - nC33 predominate, and nC29 and 

nC33 are the major (Cmax) component in most samples. The CPI value ranged from 1.1 - 

2.7 in samples in the Firth of Clyde (mean = 1.8, SE = 0.1 and n= 25), whilst in the Firth 

of Forth the CPI value ranged from 2.3 - 4.2 (mean = 3.0, SE = 0.1 and n= 25). There 

were UCM in the aliphatic profiles of most sediment especially the Firth of Forth sediment 

samples. 

8.3. a. v Geochemical Biomarkers Analysis 

All the sediments samples were analysed for geochemical biomarkers. The geochemical 

biomarkers profiles are used in identification of petrogenic sources as described in section 

5.3. j. All the samples analysed contained a high proportion of the natural triterpanes such 

as diploptene and the natural homohopane diastereoisomers 22R, 17a, 21 ß- 

homohopane, with diploptene dominating the profiles. Also there were presence 

homohopane doublets, indicative of the Gulfaks crude oil. 

8.3. b Results of the Composite Random Sampling (CRS) Design 

The composition of the composite samples for the Clyde and Firth of Forth are given in 

Table 8.4.5 ± 0.1 g of each of the freeze dried sediment samples were mixed for TOC 
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and PSA analysis, whilst for the fluorescence, PAHs, aliphatic analysis and geochemical 

biomarker determination, 40 ± 1.0 g of each of the sediment samples were mixed 

together. Four replicates samples were analysed for the TOC and PSA analyses, whilst 

two replicate samples were analysed for oil equivalents of Forties and diesel oils, total 

PAH and total n-alkane concentration. The data are tabulated in Appendices 11-13 and 

summarised in Tables 8.5. In particular, the summary tables give mean values with 

standard errors for the Firth of Clyde and Firth of Forth composite sediments. 
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Table 8.4 Compositions of the composite samples, 

Composite 
sample 

Samples Identification 

731105 4110104 4114/04 4116/04 4127/04 4131/04 
732105 4109104 4113/04 4120/04 4125104 4128/04 

Firth of Clyde 733105 4111/04 4123/04 4124104 4129/04 4132/04 
734105 4108/04 4117/04 4118/04 4126/04 4130/04 
735105 4112/04 4115/04 4119104 4121/04 4122/04 

736/05 4149/04 4151/04 4155104 4156/04 4166/04 
737/05 4143/04 4146104 4153/04 4161/04 4162/04 

Firth of Forth 738105 4145/04 4154/04 4159/04 4164/04 4165/04 
739/05 4147/04 4152104 4157/04 4163/04 4167/04 
740/05 4144/04 4148/04 4150/04 4158/04 4160104 

Percentage TOC varied from composite sample between 1.3 to 1.5%, and the mean was 

1.4% (SE = 0.02%; Table 8.5), and the percentage of < 63 Nm of the PSA varied from 

composite sample between 85.8 to 91.7%; mean PSA was 89.0% (SE = 2.14%; Table 

8.5) for the Firth of Clyde sediments. The percentage TOC varied between composite 

samples from 0.8 to 0.9%; mean TOC was 0.9% (SE = 0.01%; Table 8.5), and the 

percentage of < 63 pm of the PSA varied between composite sample from 38.8 to 44.4%; 

mean PSA value was 41.3% (SE = 0.89%; Table 8.5). 
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Table 8.5 Summary of the TOC, PSA, oil equivalents of Forties and diesel, total PAH and 
total n-alkane concentrations for the composite random sampling for Firth of Clyde and 
Firth of Forth. All concentrations are in dry weight. 

Variables Sampling Min Mean Median Max SD SE CV (%) 

TOC Clyde 1.3 1.4 1.4 1.5 0.05 0.02 3.5 
(%) Forth 0.8 0.9 0.8 0.9 0.03 0.01 3.7 
PSA Clyde 85.8 89.0 88.9 91.7 2.41 1.08 2.7 
(%) Forth 38.8 41.3 40.8 44.3 2.00 0.89 4.8 

Diesel Clyde 59.5 69.5 73.4 75.0 6.98 3.12 10.0 
(N9 91) Forth 21.4 23.7 22.7 27.5 2.50 1.12 10.6 
Forties Clyde 375.3 472.3 500.8 524.2 63.20 28.30 13.4 
(N9 91) Forth 132.4 156.5 162.7 177.1 17.47 7.81 11.2 

Total PAH Clyde 1331.0 1745.0 1811.0 2071.0 270.00 121.00 15.5 
(p9 k91) Forth 395.7 511.6 530.0 603.3 83.60 37.40 16.4 

n-alkanes Clyde 485.8 576.9 566.8 636.9 63.10 28.20 10.9 L 
(N9 k9') Forth 256.0 297.5 284.1 379.6 49.50 22.20 16.7 

Min = Minimum; Med = Median; Max = Maximum; SD = Standard Deviation; 

CV = Coefficient of Variation; SE = Standard Error of the mean. 

The Firth of Clyde sediments Forties crude oil equivalent concentrations varied for 

composite samples between 375.3 and 524.2 Ng g'1 dry weight with a mean concentration 

of 472.2 Ng g" dry weight (SE = 63.2 pg g" dry weight; Table 8.5), and the diesel oil 

equivalent concentration varied from a composite sample from 59.5 to 75.0 Ng g" dry 

weight with a mean concentration of 69.5 Ng g" dry weight (SE = 6.98 Ng g'1 dry weight; 

Table 8.5). 

The Firth of Forth sediment Forties crude oil equivalent concentrations varied between 

composite samples from 132.4 to 177.1 Ng g" dry weight, mean value was 156.5 pg g'' 

dry weight (SE = 7.8 Ng g"1 dry weight; Table 8.5), and the diesel oil equivalent 
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concentration varied from a composite sample between 21.4 to 27.5 Ng g'1 dry weight; 

mean value was 23.7 pg g"1 dry weight (SE = 2.5 pug g"1 dry weight; Table 8.5). 

The total PAH concentration, which is the sum of the parent and alkylated 2- to 6-ring 

including the 16 US EPA PAHs, varied in the Firth of Clyde composite samples between 

1331.0 to 2071.0 pg kg'' dry weight; mean total PAH concentration was 1745.0 Ng kg"' dry 

weight (SE = 121.0 Ng kg"' dry weight; Table 8.5), and the Firth of Forth had total PAH 

concentration varied from a composite sample between 395.7 to 603.3 Ng kg'' dry weight; 

mean total PAH concentration was 511.6 Ng kg'' dry weight (SE = 37.4 Ng kg" dry weight; 

Table 8.5). 

The total n-alkane concentration (nC12 - nC33) varied from a composite sample between 

485.8 to 636.9 Ng kg'' dry weight; mean total n-alkane concentration was 576.9 Ng kg'' 

dry weight (SE = 63.1 lug kg'' dry weight; Table 8.5) for the Firth of Clyde sediments, 

whilst for the Firth of Forth sediments, the total n-alkane concentration varied from a 

composite sample between 256.0 to 379.0 Ng kg" dry weight; mean total n-alkane 

concentration was 297.5 Ng kg" dry weight (SE = 16.7 /fg kg"' dry weight; Table 8.5). 
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Table 8.6 Summary of the individual simple random sampling (SRS) and composite 

random sampling (CRS) designs of the TOC; < 63 pm fraction (PSA), diesel and Forties 

oil equivalent concentrations, total PAH and total n-alkane concentrations. Concentrations 

are on a dry weight basis. 

Simple Random Sample Composite Random 
Variables Stations (SRS) Samples (CRS) 

Mean SE Mean SE 

TOC Clyde 1.4 0.09 1.4 0.02 
N Forth 1.0 0.15 0.9 0.01 

PSA Clyde 86.6 4.27 89.0 1.08 
(%) Forth 41.2 2.63 41.3 0.89 

Diesel Clyde 63.2 7.00 69.5 3.12 
(/Jg 91) Forth 27.6 3.54 23.7 1.12 

Forties Clyde 404.1 44.40 472.3 28.30 
(p9 91) Forth. 161.8 20.00 156.5 7.81 

Total PAH Clyde 1858.0 196.00 1745.0 121.00 
(p9 kg") Forth 532.4 58.90 511.6 37.40 

Total Clyde 489.6 48.40 576.9 28.20 
n-Alkane 
(pg kg") Forth 349.1 33.90 297.5 22.20 

SE = Standard Error of the mean. 

In principle, the average of the composite random sampling sediment samples should be 

equal to the average of the individual (simple random sampling) sediment samples, i. e. 

with zero systematic error. In all the parameters measured, there were no significant 

differences between the mean values of the composite random sampling and the 

simple random sampling (p > 0.05; ANOVA) for both the Firth of Clyde and Firth of 

Forth sediments (Table 8.6). The 95% confidence interval for all the parameters in the 
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Firth of Clyde and Firth of Forth shows no significant differences (Figure 8.6) between the 

composite random sampling and the random sampling. 
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Figure 8.6 The 95% confidence interval for the means of TOC (%), PSA (%), diesel (Ng g- 
' dry weight), Forties (pg g-' dry weight), total PAH concentrations (pg kg-' dry weight), 

and total n-alkane concentrations (pg kg-' dry weight). CRS represent composite random 

sampling and SRS is simple random sampling. 
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Further statistical analysis based on the precision of each analytical method was used to 

determined if the differences. between the mean variance of the two sampling regime are 

within the analytical precision of each analysis. The coefficients of variance between the 

sampling regimes were calculated using the following formula: 

CV(%ý = 
SD 100 

Mean 
Equation 8.1 

Where 

SD = Standard deviation of the mean, 
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Table 8.7 Precisions of the UKAS accredited analyses, calculated analyses and the 

coefficients of variance of the two sampling for the Firth of Clyde and Firth of Forth. 

Analytical UKAS Analytical 
Calculated 
Precisi f 

Coefficient of Variance % 
Method Precision % 

on o 
replicate Firth of Clyde Firth of Forth 

analyses % 
CHN (%) 2.5 0.8 0.21 1.64 
PSA (%) 2.5 1.6 1.88 0.15 

Diesel (%) N/A 8.6 6.78 10.67 

Forties (%) N/A 10.4 11.01 2.36 

PAHs (%) <10 9.8 4.44 2.82 

n-alkanes (%) N/A 10.6 11.58 11.29 

N/A = Not applicable. 

Table 8.6 gives the coefficient of variance of the composite random sampling and the 

random sampling for both the Firth of Clyde and Firth of Forth sediments. All the 

coefficients of variance of the Firth of Clyde and Firth of Forth samples are below the 

stated precision of the UKAS accredited methods (i. e. CHN, PSA and PAHs analysis). 

The coefficients of variance were also compared with the calculated precisions of replicate 

analyses. The calculated precisions are the precisions of the four replicate samples 

(Section 4.13. a). The coefficients of variance for the parameters measured were also 

lower or slightly higher than the calculated precisions (Table 8.6). 

Comparisons of the distribution of the total PAH concentration shows that there were no 

significant differences in the PAH profiles (PAH composition) of the composite random 

sampling and the random sampling for both Firth of Clyde and Firth of Forth sediments (p 

> 0.05; ANOVA: Figures 8.7). Also the geochemical biomarkers profiles shows no 

significant differences in the statistics of the abundance of the steranes and triterpane 
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profile between the composite random sampling and the random sampling for both the 

Firth of Clyde and Firth of Forth (p > 0.05; ANOVA). 

Therefore, in all the parameters measured, there was no significant difference in the mean 

values of the composite random sampling sediments and the random sampling sediments 

for both the Firth of Clyde and Firth of Forth. Also the composite random sampling gave 

mean values with less variance at lower cost and in less time. 
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Figure 8.7 Profiles of total PAH concentration by ring classes (a) Firth of Clyde (b) Firth of 

Forth, showing the similarities in the distributions of the composite random sampling 

(CRS) and the simple random sampling (SRS) of the two survey areas. Error bars 

represents the standard deviation of the mean. 

Total naphthalenes (parent and C1-C4); total 178, phenanthrene/anthracene (parent and C1-C3); 

total DBT, dibenzothiophenes (parent and C1-C3); total 202, fluoranthene/pyrene (parent and C1- 

C3); total 228, benzanthracene/benzophenthrenes/chrysene/triphenylenes (parent and C, -C2); total 

252, benzofluoranthene/benzopyrene/perylene and total 276, indenopyrene/benzoperylene (parent 

and C1-C2). 
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8.4 COMPARISON OF THE OFFSHORE (FLADEN) AND NEAR- 

SHORE (FORTH AND CLYDE) SEDIMENTS 

Comparisons of the Fladen Ground sediments, Firth of Clyde sediments and Firth of Forth 

sediments were made. As mentioned in chapter 5, the Fladen Ground is an offshore 

oilfield area, whilst the Firth of Clyde and firth of Forth are near-shore areas. To enable 

comparisons the mean concentration with approximate 95% confidence intervals of the 

diesel oil (Ng g"' dry weight), the Forties crude oil (Ng g'' dry weight), the total PAH (Ng kg' 

' dry weight) and total n-alkane (Ng kg-' dry weight) were then computed. The means and 

95% confidence intervals are shown below (Figure 8.8). 
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Figure 8.8 The mean concentrations for the Firth of Clyde, Firth of Forth and Fladen 

Ground surveys of the Forties crude and diesel oil equivalent, total PAH and total n-alkane 

concentration. All samples are in dry weight, open circles are means and vertical lines are 

the 95% confidence intervals. 

There were significant differences in hydrocarbon concentrations in the three areas. The 

concentrations of hydrocarbons in the Fladen Ground sediments were significantly lower 

than in either the Firth of Clyde or Firth of Forth sediments. The concentrations were 

normalized to TOC to remove any effects caused by the organic carbon content in the 

sediment. Even having normalized the concentrations of the hydrocarbon to TOC, still 

there were significant differences in the normalized data (Figure 8.9) of the Fladen Ground 

and the Firth of Clyde and Firth of Forth. 
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Figure 8.9 The mean concentrations normalized to TOC for the Firth of Clyde, Firth of 
Forth and Fladen Ground surveys of the Forties crude and diesel oil equivalent, total PAH 

and total n-alkane concentration. All samples are in dry weight, open circles are means 

and vertical lines are the 95% confidence intervals. 

The low concentrations of hydrocarbons in the Fladen Ground may be attributed to one 

main source of the contaminant (also might be others such as atmospheric) i. e., activities 

of the oil and gas industry. In the estuary, however, the legacy of riverine inputs and direct 

discharges from past industrial and transport activities and, at some restricted localities, 

the inputs of dredged material and sewage sludge dumping operations will all have 

contributed to the estuary high hydrocarbons concentrations. 
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8.5 CONCLUSIONS 

The composite random sampling gave a mean value with less variance than the simple 

random sampling. Statistically, there were no significance differences between the means 

of the composite random sampling and the simple random sampling for all the parameters 

measured in the Firth of Clyde and Firth of Forth sediment samples, as variations in the 

means of the composite random sampling and simple random sampling were within the 

precision of the analytical methods for all the parameters. The composite random 

sampling also has reduced the cost and time in the analytical procedures. 

Although some information on individual samples is lost in the composite random 

sampling, there were no significant differences in the 95% confidence intervals of the 

means of all the parameters measured. Therefore, the composite random sampling, 

coupled with the stratified sampling, will achieve better representation better precision of 

an estimated mean, at less cost, and data analysis is usually easy. 
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CHAPTER NINE 

CONCLUSIONS 

9.1 Conclusions 

The aim of this work was to design a robust spatial sampling strategy that will give 

representative information on contamination of sediments since one-off sampling can 

clearly give results that. are unrepresentative of the site being studied. The stratified 

random design was chosen to assess the spatial composition and concentrations of 

hydrocarbons in a study area. Zones were constructed equally and numbers of samples 

were allocated based on the proportion of the far field area in the Zone. Near field are 

areas <5 km from multiple oil wells or <2 km from a single well, whilst far field are areas 

>5 km from multiple oil wells or >2 km from a single oil well. A total of 16 Zones was then 

defined using prior information on the spatial variation in the physical and chemical 

characteristic of the sediments in the field area. In addition to providing data to allow the 

comparison of conventional grid and the new stratified random sampling regimes, this 

research work has also provided important data on composition and concentrations of 

hydrocarbons in sediments of the chosen area. The Fladen Ground has been the focus of 

offshore oil and gas production over the past 30-40 years and is a key fishing area in the 

northern North Sea. 

This study has highlighted the benefits and limitations of both sampling regimes in the oil 

and gas exploration and production areas. The grid design has the benefits of more 

spatial coverage, and is more practical and convenient to implement in the field than the 

random stratified design. The grid design was also able to identify hotspots, and, perhaps 
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more importantly, it would be possible to estimate the probability of detecting hotspots of 

particular sizes. Because sampling in a grid design is inherently biased, it has the 

disadvantage that it is possible to overestimate or underestimate a population 

characteristic aligned with the grid. The grid design often requires statistical analysis that 

is based on assumptions that are difficult to substantiate, and also missing stations 

arising, for example, from bad weather at sea or being located in near field areas are 

difficult to accommodate in the statistical analysis. 

The samples from the study area had to be analysed using a range of measurement 

methods to provide the data to assess the sampling regimes. Two hundred and forty two 

(242) sediments samples were analysed for particle size (PSA), total organic carbon 

(TOC), oil equivalents of the Forties crude and diesel oils, total polycyclic aromatic 

hydrocarbon (PAH) concentrations, total n-alkane concentrations and geochemical 

biomarkers. Measurement techniques used included laser granulometry employing a 

Malvern Mastersizer E Particle Size Analyser (PSA), whilst TOC was determined using 

Perkin Elmer CHN elementary analyser following acid treatment. Fluorescence analysis 

using ultraviolet visible absorption and fluorescence spectroscopy (UVF) was utilised for 

the oil equivalents of the Forties crude and diesel oil. Gas chromatography using mass 

specific detection (GC-MS) was utilised for PAHs and geochemical biomarkers and gas 

chromatography with flame ionisation detector (GC-FID) was used for the more general 

aliphatic hydrocarbon analysis (n-alkanes). 

The total PAH concentrations (2- to 6-ring parent and alkylated PAHs including the 16 US 

EPA PAHs) in sediments were relatively low (e. g. 108.2 pg kg" dry weight). Also, the 

concentrations of the ten individual PAH (naphthalene, phenanthrene, anthracene, 

fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[a]pyrene, benzoperylene and 
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indenopyrene) were relatively low in comparison with the OSPAR background 

assessment concentrations (BACs). The total PAH concentrations of sediments samples 

collected from the 2001 stratified survey were lower than in sediments samples collected 

from the 2001 grid survey, and considerably lower compared with the sediments samples 

collected in 1989 grid survey. The PAH distribution profile in the Fladen Ground indicated 

potential source dependence, as the levels were generally higher in the Zones of higher 

percentage < 63 gm particle sizes fractions and organic carbon content. Suggesting the 

importance of particulate organic coating in PAH sorption, consistent with the commonly 

accepted hydrophobic partition theory. In addition, non-point sources, in particular 

pyrolytic, were dominant sources in the area. PAH distribution and concentration ratios 

indicated a predominantly pyrolytic input, being dominated by the heavier, more 

persistent, 5- and 6-ring compounds, and with a high proportion of the parent PAH. 

However, the 1989 sediments had a higher proportion of the 2- and 3-ring compound 

compared to the 2001 grid and stratified sediments, suggesting that there was greater 

petrogenic input in 1989. 

The n-alkane profiles of a number of the 2001 stratified sediments contained, small, high 

boiling point UCMs, similar to the 2001 grid sediments, indicative of limited petrogenic 

input from weathered oil. The geochemical biomarker profiles of the 2001 stratified 

sediments (containing UCMs) contained a small bisnorhopane peak and a high proportion 

of norhopane to hopane, indicating that there was contamination from both Middle Eastern 

and North Sea oils. 

There were no significant differences in the overall mean between the Forties crude and 

diesel oil equivalents and total PAH concentration in the 2001 stratified random sediments 

compared to the 2001 grid sediment. However, there was a significant difference in the 
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total n-alkane concentrations; the 2001 grid total n-alkane concentrations were higher 

than the 2001 total n-alkane concentrations. Significant differences was observed within 

the mean of some Zones for Diesel in Zone 10, Forties in Zone 11 and total PAH 

concentrations in Zone 11. In comparison of the temporal trend between 1989 - 2001, 

there were significant differences in the hydrocarbon composition and concentrations 

following the cessation of discharges of cuttings in the Fladen Ground in the late1990s. 

The reduction was also due to tighter control of discharges of produced water and amount 

of flaring at the flarestacks. There were reduction of more than 60% in Forties crude, in 

Diesel oil, total PAHs and total n-alkane concentrations in the 2001 sampling surveys 

compared to the 1989 survey. 

The stratified random sampling design gave much more reliable mean concentrations for 

all the four parameters, achieving a much lower variance than the grid sampling design. 

The stratified random design is cost and time effective, and produces estimates with 

increased precision (lower variance) compared to the grid sampling design. The increase 

in precision, or alternatively reductions in variance, time and cost, obtainable through 

stratified random sampling, depends on the quality of the information used to set up the 

design. Any possible increases in precision are particularly dependent on strength of the 

correlation of the auxiliary stratification variable with the variable observed in the study. 

For optimum allocations of samples among Zones, the optimisation process allocates 

more samples to those variable/Zone combinations that show relatively high variance, and 

lower numbers of samples to those where the variance is relatively low. In general, there 

tends to be a degree of covariance between the numbers of samples allocated to each 

variable. For example, the numbers allocated to Zones 4 and 8 are mainly high in 
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comparison to those allocated to Zones 6 and 12. This suggests some similarity in the 

distribution of variance between Zones for all the variables measured. 

In the spatial analysis of the Fladen Ground data, a nuggets effects were observed in the 

variograms for all parameters The variograms indicated trends in the PSA, TOC, total 

PAH concentrations and in the forties crude oil equivalent and diesel oil equivalents 

because of the lack of attainment of a sill in the variograms for these variables. The 

spatial analysis gave an Ariel view of the hydrocarbon contamination in the Fladen 

Ground, and assisted in discovering and understanding of the spatial relationships in the 

data. This discovery and understanding can be as simple as viewing the data in the more 

convenient and readily appreciated form. The spatial analysis can perform other functions 

such as finding distance, assigning proximity, calculating density, creating contours, and 

deriving slopes. Therefore spatial interpolation is a useful way to explore the accumulation 

of hydrocarbons in the environment (sediments). 

A field study was designed, based on the outcome of the stratified random sampling 

design, to investigate a composite random sampling design, and to estimate a within- 

stratum mean value for each of the chosen measurement parameters with more thorough 

coverage (better representation), better precision and less variance at lower analytical 

cost in the near-shore environment (Firth of Clyde and Firth of Forth). The study showed 

that the composite random sampling gave a mean value with less variance than the 

simple random sampling. Statistically, there were no significance differences between the 

means of the composite random sampling and of the simple random sampling for all the 

parameters measured in the Firth of Clyde and Firth of Forth sediment samples, as 

variations in the means of the composite random sampling and simple random sampling 
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were within the precision of the analytical methods for all the parameters. The composite 

random sampling also reduced the cost and time in the analytical procedures. 

Although, the information on individual samples was lost in the composite random 

sampling, there were no significant differences in the 95% confidence intervals between 

the means of all the parameters measured. Therefore, the composite random sampling, 

couple with the stratified sampling, will achieve better representation, and better precision 

of estimated means at less cost, and data analysis is usually easy. 

9.2 Recommendations 

Clearly, any recommendations for future survey design depend on the objectives of the 

survey. The 2001 stratified random survey has shown that far-field concentrations in the 

Fladen Ground are much lower than in 1989 and that the concentrations of the ten 

individual PAHs for which Background Concentrations have been established are all near 

background. This suggests that any future decreases in hydrocarbon concentrations in the 

far-field will be small and that there is little point in investing heavily in trying to detect such 

changes in the far-field. Future monitoring of the far-field in the Fladen Ground would 

therefore be for surveillance purposes; i. e. to detect any increases in hydrocarbon 

concentrations. 

Grid surveys or stratified random surveys 

In principal, grid surveys (with a random starting point) and stratified random surveys both 

can provide unbiased estimates of mean hydrocarbon concentrations (Cochran, 1977). 

Further, given the same sample size, grid surveys are often more precise than stratified 
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random surveys in practice (Cochran, 1977), although it is harder to estimate the precision 

of a grid survey. However, grid surveys are not well suited to irregular survey areas such 

as the Fladen far-field. It is also much easier to adapt a stratified random survey to deal 

with missing values arising from bad weather etc. A stratified composite random survey is 

therefore recommended for future surveys of the hydrocarbon contaminants. 

Sample size 

The choice of sample size will depend on the objectives of the survey. But to illustrate, 

consider a long-term surveillance monitoring programme to detect a 100% increase in 

hydrocarbon concentrations (should it occur). Sixteen samples per year would estimate 

the mean concentration of all four types of hydrocarbons with a coefficient of variation of 

15% or better (base on the Fladen data). And this would allow us to detect a 100% 

increase in concentration over ten or twenty years if the between-year coefficient of 

variation is 12% or 24% respectively (Nicholson et al., 1997). (The between-year 

coefficient of variation is a measure of random fluctuations in mean concentrations from 

year to year due e. g. to fluctuating environmental conditions. It is difficult to estimate 

without a long time series, but UK National Marine Monitoring Programme data suggest 

that the between-year coefficient of variation for total PAH concentrations is typically 

somewhere between 10 and 30%). 

Small sample sizes would necessitate some revision of the stratification to ensure 

sufficient samples within each stratum to estimate variances, standard errors etc. In the 

illustration above, an obvious change would be to combine the sixteen strata into four 

larger strata, i. e. Zones 1,2,5,6, Zones 3,4,7,8, Zones 9,10,13,14, and Zones 11,12, 

15,16. 
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Sample allocation 

In the 2001 stratified random survey, the number of samples in each Zone was chosen by 

proportional allocation, with the number of samples proportional to the available far-field 

area. However, there are other criteria that can be used to allocate numbers of samples to 

strata. In particular, knowing the variation in concentration between samples within Zones 

means that the number of samples can be chosen by optimal allocation. This allocation 

gives more samples to Zones with high variability and maximises the precision of the 

estimate of mean concentration for the whole far-field, given a fixed total sample size n. If 

ah is the standard deviation in concentration between samples in Zone h, then the 

optimal allocation is 

nAhah nh-, 
8 

. kak 
k-I 

Equation 9.1 

Optimal allocations for estimating the mean concentrations of Forties crude, diesel, total 

PAH, and total n-alkanes, assuming a total fixed samples size of 242, can be triple using 

the stratified composite random sampling, so that less samples will be analysed. 

Note that strict adherence to optimal allocation can lead to problems for two reasons. 

First, the estimates of variability are themselves subject to error and will be inflated in 

some Zones just by chance. Second, when the total sample size is relatively small, the 

optimal allocation can give only one or two samples in some Zones, which makes it 

difficult to estimate levels of variability in these Zones. 
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Abstract 
The distribution and composition of hydrocarbons in sediment from the Fladen Ground 

oilfield in the northern North Sea have been investigated. The total PAH concentrations 
(2- to 6-ring parent and alkylated PAHs, including the 16 US EPA PAHs) in sediments 

were relatively low (< 100 Ng kg-1 dry weight). The PAH, the Forties crude and diesel oil 

equivalents concentrations were generally higher in sediment of fine grain size and 

higher organic carbon concentration. PAH distributions and concentration ratios 

indicated a predominantly pyrolytic input, being dominated by the heavier, more 

persistent, 5- and 6-ring compounds, and with a high proportion of parent PAHs. The n- 

alkane profiles of a number of the sediments contained small, high boiling point, UCMs, 

indicative of weathered oil arising from a limited petrogenic input. The geochemical 
biomarker profiles of the sediments that contained UCMs showed a small bisnorhopane 

peak and a high proportion of norhopane relative to hopane, indicating that there was 

contamination from both Middle Eastern and North Sea oils. Therefore contamination 

was not directly as a result of oil exploration activity in the area. The most likely source 

of petrogenic contamination was from general shipping activity. 
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Abstract 
A composite random sampling design was used to estimate the concentrations of 
hydrocarbon contaminants in two near shore areas of Scotland. The aim of this work is 
to estimate a mean value for each of the chosen measurement parameters, and to 
determine experimentally whether this can be done with more thorough coverage (better 

representation), better precision 'and less variance at lower analytical cost through a 
composite random sampling scheme rather than a simple random sampling scheme. 
Initial samples were collected using simple random sampling design and analysed, and 
then the samples were divided into a series of composite sub-samples. Sediment 

samples were analysed for particle size distribution, total organic carbon (TOC) and UVF 

oil equivalent concentrations, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. 
This study demonstrated that the composite random sampling gave a mean value with 
less variance than the simple random sampling, at significantly reduced analytical effort 
(and cost). Statistically, there were no significance differences between the means of the 

two sampling design for all the parameters measured. 

Keywords: Composite random sampling, Simple random sampling, PAHs, Firth of Clyde, 

Firth of Forth. 
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Abstract 
Contaminant inputs from hydrocarbons discharge, a major source of contamination to 
the Fladen Ground, have declined drastically during the last two decades as a result of 
improved treatment processes and better source control. To assess the contaminant 
temporal changes in the Fladen Ground sediments, a study was initiated in 2001, in 

which samples were collected using a stratified random sampling design and a 
conventional grid sampling design. Five Zones corresponding to the 1989 grid surveys. 
Samples were analyzed for particle size, total organic carbon (TOC) and UVF oil 
equivalents concentration, polycyclic aromatic hydrocarbons (PAHs) and n-alkanes. 
Sediment hydrocarbon concentrations decreases from 1989 - 2001 and were similar in 

the PAH distributions, concentrations ratios indicated a predominantly pyolytic input, 

being dominated by the heavier and more persistent 4- to 6-ring compound, and 

containing a high proportion of parent PAH, however, there was greater petrogenic 
inputs in the 1989 grid survey, due to a higher proportion of the 2- and 3-ring compounds 

compare to the 2001 stratified survey. The study further investigates the effect of 
interaction between the sampling designs and the spatial pattern of the contaminants. 
Statistically, there were no significant differences in the parameters measures between 

the two sampling regimes, however, the stratified random sampling gave less variance In 

all. The study also highlighted the benefit and limitations of each design. 

Keywords: PAHs; Stratified random sampling; Grid sampling; Fladen Ground. 
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