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ABSTRACT

The theoretical analysis of the present work was based on a
thermodynamic approach, using the method of inference. An analysis
was made to find the macroscopic turbulence transport properties from
the description of microscopic behaviour of entities of varying shape,
size and velocity. Momentum and energy transport in a turbulent
fluid were investigated and expressions for the eddy diffusivities of
momentum and heat proposed. Communication theory has been success-
:fully used as a means for the interpretation of turbulence parameters.

Velocity profiles in simple shear flows, obtained with the
present analysis, were compared with those found by others, both
experimentally and theoretically. An overall heat transfer similarity
parameter was derived with the assumption of a constant turbulent
Prandtl number.

Measurement of mean velocity, microscale, turbulence intensity
and eddy diffusivities of momentum and heat were obtained in a water

Lunne1g Results were obtained for Reynolds numbers from 2 X 10° to
9 x 10 Pipes were roughened internally with paint mixgg with fine
and

part1c18§ and roughness ratio r/k ranging between 7.2 x 1
2.5 x 10° with absolute roughness height between 4um and 10um.

In the Tight of the present analysis, it is concluded
that the new and more realistic approach to turbulence
phenomenon is a useful concept for predicting turbulence
transport properties, as well as heat transfer characteristics
of a simple shear flow.

This is to declare that, while registered as a candidate for the
degree of Ph.D. (C.N.A.A.), the author has not been a registered
candidate for another award of the C.N.A.A., or of a University
during the research programme. The work described in the thesis
is the result of investigations conducted by the candidate during
the research study, except where specific reference is made to

other investigators.
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1. INTRODUCTION

Similarities between a collection of molecules in a gas and the
motion of a turbulent fluid have enabled many researchers in obtaining
useful concepts for turbulence phenomena which were related to those
found in dealing with the transport properties of a gas. Models
proposed by Prandtl {1} and Reynolds {2} were typical concepts for
predicting bulk behaviour of heat and momentum transport of
turbulent fluid flow. Although their utility in engineering design
is well known, one of the basic problems associated with the accurate
prediction of transport phenomena in a turbulent fluid is that, even
for a simple flow, the Prandtl's mixing length and Reynolds' momentum
flux vary through the flow field.

In the flow of a perfect gas, the bulk behaviour is the result
of a large number of individual fluctuating motions. In this
instance, the development of statistical thermodynamics provide a
framework within which predictions of the combined effect of molecular
motion can be made from the knowledge of individual molecules. In
fluid turbulence, there exists more complex phenomena than molecular
motion in a perfect gas.

-

One difficulty in making a thermodynamic approach to turbulence
is that of defining a suitable parameter equivalent to the temperature
of molecular motion. However, the method of Information Theory
allows us to be obtained a statistical parameter for the turbulent
fluctuations which is equivalent to the temperature of molecular
fluctuations, The usual methods of statistical thermodynamics are
difficult to employ because there exists no permanent entity comparable
with the molecule. Turbulent fluid also has the characteristic that
there exist particles of fluid of random size and shape moving relative
to the average motion. Hence, the statistical analysis must include
a random scale function and a random velocity function. In order to
be of practical value, the scale functions have to be determinable
throughout the flow field.

The validity of this analysis can only be judged by comparing the
end product with experimental results. Nevertheless, a theory of

1



turbulence is likely to be most acceptable in engineering applic-
:ations, if the basic concept is that of a flux of entities rather
than an artificial mixing length or a correlation function.



2. LITERATURE REVIEW

2.1 Theory of turbulence

It was shown by Bradshaw {3} that quite small velocity
fluctuations can produce large changes in flow resistance and
other properties. A fluctuation with zero mean, superimposed
on the mean velocity, produces a mean momentum flux of its own,
proportional to the mean square of the fluctuating velocity.

This is due to the fact that the momentum flux is the product of
mass flow rate and velocity and the fluctuation contributes to
both. This non-linearity of the relation between velocity and
momentum flux appears in the Navier-Stokes equations, and has been
the basic cause of their mathematical difficulty.

In turbulent flow, it is usually assumed that the instantaneous
velocity components satisfy the Navier-Stokes equations. By
substituting the expressions for the instantaneous velocity components
into the Navier-Stokes equations of an incomoressible fluid and taking
the niean values of these equations according to the Reynolds rules of
averages, a set of Reynolds equations of motion for turbulent flow of
an incompressible fluid may be obtained, as shown in Aprendix 1.

The additional terms over the Navier-Stokes equations are due to the
Reynolds stresses or turbulence stresses, T4 These stresses are
the representation of the rate of transfer of momentum across the
corresponding surface because of the turbulent velocity fluctuations.
The solutions of the Reynolds equations will represent properly the
turbulent flow.

However, one of the main difficulties in the theoretical
investigation of turbulent flow is the necessity to find additional
relationships between the characteristics of turbulence and those of
the mean flow, This is due to the fact that there are more unknowns
than the number of independent Reynolds equations. In order to
obtain some definite results from these equations, further hypotheses
about Reynolds stress nust be made.



Hinze {4} showed that, in comparing the turbulence stresses 1in
the equation of motion with the corresponding stresses caused by
viscosity effects, it could be assured that the turbulence stresses
behave 1ike viscous stresses and were directly proportional to the
velocity gradient. This was an assumption made by Boussinesq {5}
Tn as early as 1877, who introduced in the theory of turbulence a
turbulent exchange coefficient e, such that for a simple mean flow,

b

ToT — U
u'v = = =

(2.7)
where €u was called the turbulent or eddy viscosity. The overall
shear stress may then be written as
T=(u+€u)'ﬁg (2.2)
dy )
However, Pai {6} pointed out that, in general, the Boussinesq

hypothesis was a failure because for every new problem in fluid
dynamics, a completely new expression for e was required.

A successful semi-empirical theory of turbulence was Prandtl's
mixing length theory {7} 1in which Prandtl introduced the similarity
of the turbulent theory with the kinetic theory of aases. In the
mixing length theory, a length & was introduced similar to the mean
free path in the kinetic theory of gases so that certain quantities
in the turbulent flow were assumed to be preserved during the turbulent
mixing process throughout this Tength. Thus, this length was called
a mixing length. There were various mixing lenath theories based on
different models in which different quantities were assumed to be
preserved and a brief review of the mixing length theory is shown in

Appendix 2.

The main advantage of the mixing length theory over Boussinesq's
theory is that it is generally easier to make a plausible assumption
for & than for e. However, one of the defects of the mixing length
theory is that the mixing length deduced from the measurements of the
mean flow is not very small but of the same order of magnitude as the
dimension of the mean flow. Also, neither Prandtl's momentum



transport theory nor Taylor's vorticity transport theory {8} describe
the mechanism according to which the lumps of fluid adapt their
transferable property to their new environments.

Von Karman, in what was known as his similarity hypothesis {9},
attempted to find relations between the turbulent shear stress and
the mean velocity distribution which was independent of any special
model such as those of Prandtl or Tﬁy]or. Von Karman made the
following assumptions:

(a) the turbulence mechanism was independent of viscosity
except in the immediate neighbourhood of the walls.

(b) the Tocal flow pattern was statistically similar in
the neighbourhood of every point and only the time
and length scales were different.

The second assumption indicated a constant correlation between
the different components of the velocity fluctuations. From these,

von Karman found that for parallel mean flow,

(1) lu'l v vl ~ z-gg where [ was a characteristic length.

2
2 (du
(2) T = Q,.(?y-)
@, /d1
u u .
(3) 2= k. lay l Iay? | where k was a universal constant.

Thus, the von Karman formula for shear stress might be expressed as:

T = kz.p.(gg)%%zg (2.3)

The most important deduction from von Karman's similarity
hypothesis was the universal velocity distribution for the flow in
circular pipes. With the absence of pressure gradient along the
main flow direction, the universal velocity distribution or logarithmic
profile may be obtained by replacing the shear stress t with its value



on the wall, T, and inteagrating equation (2.3) as
- 1 7o
u = 1 —b— . 109 (“y/(S) (2.4)

where & is a constant determined by the value of To, p and v .
More generally, the above may be expressed as

u* = A + B log y* (2.5)
where u* = 4/To/p
and y* = y/to/0 /v

One defect of the result is that the boundary conditions on the wall
are not satisfied. The logarithmic velocity profile gives an
infinite velocity at the wall. Usually one can only say that the
result of such a theory does not hold true for a laminar sublayer
and a viscous layer which are near the wall,

In the theories advanced by Boussinesq, Prandtl, Taylor and von
Karman, a deductive method was followed. A hypothesis was made
concerning the turbulence shear stress or concerning the turbulent
diffusion coefficient, From it and with the aid of the equations of
motion and continuity, and with assumed similarity conditions,
velocity distributions were deduced. Reichardt objected to this
method, pointing out that relatively easily measurable quantities
such as mean velocities were derived on the basis of more or less
questionable hypotheses. Also, the usual scatter of the experimental
data used for comparison made any decision in favour of one hypothesis
or another difficult.

As against the deductive method, Reichardt {10}, {11} proposed
an inductive method based on directly measurable quantities. He
assumed that a turbulent-transport process was a statistical process
exactly analogous to molecular-transport process. By considering
simple two dimensional free turbulence, Reichardt proposed the
momentum-transfer law,

_ du® (2.6)



In the above equation, A has the dimension of length, but
mathematically it has the meaning of a diffusion constant;
physically, it has no definite meaning. Although A may be

a function of x and y, Reichardt assumed that it was a function
of x only, determined by the width of the mixing zone. The
momentum-transfer law may be interpreted as the rate of transfer
of u-momentum in the y direction is proportional to the change
of the momentum flux U? 1n that direction.

Although Reichardt's theory was somewhat rmore logical than
the mixing length theory, the result could hardly be expected to
predict an accurate distribution of the turbulent fluctuations
and to throw light on the physics of turbulent production phenomena,
because it was based on the measurement of the mean velocity. It
became just another semi-empirical phenomenological theory for the
determination of mean velocity distribution in free turbulence flow.

Even though the above theories had successfully predicted the
mean velocity distributions in many practical problems, the final
and Togical solution of the turbulence problem required the applic-
:ation of methods of statistical mechanics. In order to develop
successfully a statistical theory of turbulence, it is necessary to
define some quantities to describe the turbulence. Taylor {12},
{13} successfully developed a statistical theory of turbulence
which was applicable to continuous movements and satisfied the
equations of motion. The important new idea introduced by Taylor
was that of the studying of correlation, or coefficient of correlation
between the fluctuating quantities in the turbulent flow, The theory
has been further developed by von Karman {14}, Kolmogoroff {15},
Heisenberg {16}, Bathchelor {17} and others,

However, to define a random function, it is not sufficient to
give the correlation function and the spectral function. It is also
necessary to prescribe the probability distribution of the random
function and the joint probability distribution of the values of the
random function at different times and different positions in the
space. A complete statistical specification of a turbulent motion



thus requires a vast array of information. Since turbulent
fluctuations are random in nature, it is permissible to apply

the rules of probability calculus to them. Although the analysis
of turbulence is much more complicated than most of the problems
in statistical mechanics, it has been shown by Kempé de Fériet
{18} that the theory of random stationary functions gave many
useful theoretical results for the velocity field, especially

in incompressible homogeneous turbulence. Thus the theory of
random stationary functions provides a powerful tool for the
investigation of the kinematics of turbulence.

As turbulence produces additional rates of transport of
quantities other than momentum, such as temperature fluctuations,
there exists similar analysis for heat transfer where the total or
overall heat transferred in a turbulent fluid may be expressed as:-

3 o= kg -elp VT (2.7)

where (gq/A) s the total heat flux and o.Cp.v'T' is the enthalpy
flux. As suggested by Rohsenow and Choi {19}, the enthalpy flux
may be expressed, similar to the momentum flux, as:-

5T

oCp V'T'" = - poCp.eH. BV,

(2.8)
where ey is the eddy diffusivity of heat. Hence, the total heat
flux may be written as:-
aT
3 = (k+o0.Cp.gy) oy (2.9)

oCpey may be interpreted as the eddy conductivity.

Unlike u and k, the eddy viscosity and eddy conductivity are not
properties of the fluid and are dependent on the turbulence
characteristics of the flow. In nearly all cases of interest, such
as flow aver bodies, in tubes and ducts and between parallel plates



Reynolds stresses and other turbulent transport rates are much
larger than viscous stresses and other molecular transport rates,
which adds to the importance of turbulence phenomenon.

Among many methods that proposed to predict the turbulent heat
transfer were those of Dittus & Boelter {20}, McEligot et al {21},
Martinelli {22} and Kinney & Sparrow {23}. However, the validity
of all these methods were Timited as to the range of Prandt]
numbers mainly due to their unsatisfactory theory on the eddy
diffusivity of heat. Cebeci {24}, based on Prandtl's mixing length
concept, proposed a model for the eddy diffusivity of heat for
external boundary layer flows. His results agreed well with
available experimental data over a wide range of Reynolds and
Prandt] numbers. Following Cebeci's analysis, Na & Habib {25}
extended it to the investigations of heat transfer in turbulent
pipe flow. Their results compared quite well with experimental
temperature distribution over a wide range of Prandtl numbers.
However, their prediction of turbulent Prandtl number disagreed with
measurements of McEligot & Picket et al {26}, {27} who suggested that
the reason Ties in the empirical determination of adjustable constants
by Na & Habib as they relied on uncertain experimental data.

In studying transport phenomena in turbulent flows, it is
reasonable to ask whether the transport processes of different
quantities such as momentum, heat and turbulence energy can be
analogous. If an analogy existed between any pair of gquantities,
similar relations would be obtained for these quantities. It might
even be possible to express the parameters determining the transport
of one quantity in terms of the parameters determining the transport
of the other quantity. The question of the existence of analogies
was, therefore, raised very early and had been answered more or less
satisfactorily on the basis of existing theories,

Osborne Reynolds was one of the earliest scientists to recognise
the existence of a relationship between heat transfer and skin
friction. According to his theory {2} , the movement of heat
between a surface and a fluid followed the same laws as the movement



of momentum between the surface and the fluid, whether by
conduction or convection. By assuming the thermal diffusivity
equal to the kinematic viscosity and also the equality of eddy
diffusivities of heat and momentum, Reynolds proposed the
following equation which 1s known as the Reynolds analogy:-

h
oCp.U

= st = Ty, (2.10)

where h is the heat transfer coefficient; f is the friction
factor and St is the Stanton number which is the ratio of heat
production to heat transfer by convection.

Although Reynolds analogy agreed well with turbulent heat
transfer data on fluids which had a Prandtl number close to 1,
it failed for Pr#1. Furthermore, it did not take account of
the velocity distribution across the pipe. In 1910, Prandtl {1}
extended Reynolds work by considering the velocity distribution in
the laminar sublayer and obtained a relationship which involved the
ratio of the average velocity to the velocity at the edge of the
Taminar sublayer. Applying the Reynolds analogy for the turbulent
core, Prandtl obtained the equation which has generally been referred
to as Prandtl analogy:-

) f/2
?Cpts 1+ !Uil(Pr-1)

(2.11)

where ug§: is the velocity at the edge of the Taminar sub1ayer.

Prandtl analogy was based on the assumption of clear cut
division of the flow into a laminar boundary layer and a turbulent
core. Further research into the mechanism of turbulent flow has
brought the recognition of the existence of an intermediate layer
in which the molecular and turbulent transport phenomena were of
the same order of magnitude. Von Karman {28} obtained a further
improvement of Prandtl analogy on this basis by making use of the
universal velocity distribution., The resulting equation for the

10



Stanton number was:-
f/2

St = T35 /s [(W—l) + 2n (T +5/6 (Pr-T)) ] (2.12)

A useful empirical means of correlating convection heat
transfer data and showing the relationship to the friction factor
was developed by Colburn {29} who proposed the j factor,

Colburn investigated a large number of convection heat transfer
and pressure drop data and found that a correlation was obtainable,
thus making it possible to predict the heat transfer coefficient

from the friction factor. Colburn analogy gave the following
expression:-

: =273 -
St = Jy.Pr I 2 g 7 (2.13)

where jH is the j factor for heat transfer as defined by Colburn,

A graphical compartison of the analagies of Reynolds, Prandtl,
von Karman, and Colburn is shown in Figure 1, where the Nusselt number
is plotted versus the Reynolds number at constant values of the Prandt]
number, The top curves are for a Prandtl number of 10 and the lower
curves for a Prandt]l number of 0.01., When the Prandtl number is unity,
all equations become identical. A1l equations agree well at high
Prandtl numbers, At low Prandtl numbers, there is wide divergence of
the various analogies, those of Prandtl and von Karman giving much
Tower values of the Nusselt number. These results would indicate
that, for fluids with a high Prandtl number, the empirical equations
satisfactorily predict the heat transfer coeffictient., For low Prandtl]
number fluids, the large difference between empirical equations suggests
that the present empirical relationships are not suitable,

The use of the analogy between momentum transfer and heat
transfer for predicting heat transfer from momentum transfer depends
on the relationship between the eddy diffusivities of heat and momentum,
j.e. ey and ey, Most inyestfgators assume them to be equal, as
Reynolds {2}, Prandtl {1}, von Karman {28} and Colburn {29}did;
however, recent experimental work has shown they are not equal,

11



Therefore, a general relationship between ®H and &v is needed so

that the analogy between heat transfer and momentum transfer will
be most useful.

A1thpugh a number of workers have used Reynolds and Prandt]
analogies to predict the eddy diffusivity ratio, their results
were found to be unsatisfactory. Jenkins {30} altered Prandtl's
mixing length concept by allowing the moving particles to change
their energy and momentum while in flight. Diffusivities predicted
by Jenkins were known to be in error of 20% even for Prandtl number
of the order of unity, At high Prandtl numbers, his prediction

posed no upper limit for diffusivity ratio as the Prandtl number
increased.

Deissler {31}, {32} wusing a modified mixing length theory and
also a method based on correlation coefficients, produced reasonable
prediction for diffusivity ratio in the low Prandtl number range.
However, his theory required experimentally determined constants.
Rohsenow and Cohen {33} modified Deissler's analysis by considering
a spherical eddy travelling in a fluid whose temperature varied
Tinearly with time. They produced a diffusivity ratio for very low
Prandtl number range.  Apart from not taking into account the effect
of Reynolds number or turbulence intensity, their prediction gave
infinite value of heat transfer coefficient as the Prandtl number

increased.

Azer and Chao {34} based on the same analysis as Jenkin's concept
and assumed a continuous change of momentum and energy during the
flight of an eddy. Their prediction is valid in the case of pipe
flow only. Also, theyv provided two separate expressions for the
ratio of diffusivity for different Prandtl number regime. From
his measurements in boundary layer ajr flows, Rotta {35} proposed a
simple expression for diffusivity ratio across the boundary layer.
However, the trend that Prt decreases with the wall distance from
the value of 0.9 at the wall to 0.5 near the outer edge of the boundary
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layer is in opposition to the measurements of Quarmby & Quirk {36}
for pipe flow. Jischa & Ricke {371},{38} proposed a second order
closure model for the diffusivity ratio. Apart from having two

different expressions for different Reynolds number regime, it
also has two empirical constants.

Prior to the above analyses, Taylor in his Classical Vorticity
Transport Theory {8} produced a unique value for the diffusivity
ratio of 2.0. This is contrary to the large amount of available

experimental data and the more up-to-date analysis that it depends
on the Prandtl number,

Tyldesley & Silver {39}, {40} used an approach different from
the mixing length concept or one based upon correlation coefficients.
Their predicted values of diffusivity ratio was found to be well
compared with those experimental data supplied by Stromquist {41},
Trefethen {42}, Seban & Doughty {43}, Mizushima & Sasano {44} and
Isokoff & Drew {45}. Tyldesley & Silver's analysis was based on
the concept that the fluid consisted of eddies or entities of variable
shapes, sizes and velocities. A reasonably simply model for the
prediction of turbulent transport properties was proposed. Their
concept seemed to give a more realistic description of the flow of
turbulence. The present work is based on the concept by Tyldesley
& Silver whilst attempting to predict momentum and heat transport.

2.2 Flow in smooth and rough pipes

An extensive investigation on frictional resistance due to
roughened surface was carried out by Nikuradse {46}. In his
experiments, circular pipes were internally coated with sand grains
of uniform size. Roughness ratios (r/k) ranging from 15 to 507 were
used to correlate the relationship between friction coefficient or
resistance factor and Reynolds number. He found rather abrupt
transition from "smooth" law at low speed to "rouch" law at high
speed, A one-equation model for resistance factor with surface

roughness was then proposed as:-
A = (1.74 + 2 log "/k)? (2.14)
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Prior to these investigations, Heywood {47} and others had
carried out measurements of resistance factor on galvanized steel
pipe and wrought iron pipe with roughness ratios between 28 and
/0.  Their results could only be explained by a much more gradual
transition between the two resistance laws. Unlike Nikuradse and
Heywood, Colebrook & White {48} wused pipes with non uniform
roughness and obtained similar experimental data as Heywood.

Although Nikuradse's investigation was thorough and widely
accepted, it did not deal with the effect of roughness on heat
transfer. As indicated by Bradshaw {49}, there remained a
controversy as to whether or not roughening the surface of a pipe
would increase heat transfer for a given pumping power, A partial
explanation for this lack of information may lie in the difficulty
involved in obtaining accurate heat transfer measurements and in the
fact that for a complete study of heat transfer phenomena, the
influence of the Prandtl number has to be studied.

A number of workers such as Kay & Nedderman {50} and Goldstein
Uz .k
v

{51} have suggested that a similarity parameter k* = existed

in flow through rough pipes such that, for a certain kind of roughness,
if k*<4 or 5, the surface might be considered to be hydraulically
smooth. If k* >100, the surface might be considered completely rough.
In the case where 4 or 5<k* < 100, the effects of roughness and of

viscosity were of equal importance,

Over the years, it has long been recognised that the heat
transfer coefficient in an incompressible fluid over a smooth surface

might be expressed as:-

Nu = A.ReD.PrC (2.15)

where A, B and C were numerical constants. Different workers 1in

the field have proposed different values for A, B and C. Schlichting
{52} , Colladay {53} and Curle & Davies {54} all proposed values of A,
B and C as 0.332, 0.5 and 0.33 respectively while Davies {55} proposed
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values of 0.26, 0.6 and 0.3. With flows in circular pipes,
Reynolds and Perkins {56} suggested different values of A, B and

C for different Prandtl number regime.  For Pr>20, their

suggested values of A, B and C were 0.0118, 0.9 and 0.3 respectively.
For 1.0 <Pr <20, they proposed 0.0155, 0.83 and 0.5 whereas for
0.5<Pr<1.0, their suggested values were 0.022, 0.8 and 0.6

respectively, In addition, for Pr<o0.5, they proposed a new
expression for heat transfer as:-

0.827

Nu = 4.82 + 0.0185.Pe (2.16)

Although the different sets of numerical constants varied a
great deal, the predicted heat transfer coefficients were quite
similar in value. In addition, Sleicher & Rouse {57} suggested a
correlation for the ranges 0.1<Pr<10° and 10* <Re < 10°,

Nu = 5 + 0.015 Re™.Pr" (2.17)
0.88 - 0.24/(4 + Pr) and n = 0.33 + 0.5 exp (0.6Pr).

where m

As the effect of wall roughness on the turbulence flow pattern
is negligible if the relative roughness is sufficiently low, one may
expect that the transport of heat in a flow past a rough wall with
low relative roughness will be Tike the transport of heat in a flow
past a smooth wall, except perhaps for a slight effect associated
with the increased surface area of the rough wall. However, pipes
which are sufficiently rough would increase heast transfer coefficients.

Davies {55} suggested that, in rough pipes, the eddies set up in
the wake of each roughness element penetrated into the viscous sub-
:1layer where much of the resistance to heat flow normally occurred.
Eckert {58} indicated that, because of the small laminar sublayer,
the shearing stress at the wall for turbulent flow depended much on
the roughness of the wall whereas, in laminar flow, the roughness had
only a small influence. This could be explained as an increase in
shearing stresses when the roughness was not filled out by the laminar
sublayer. Reynolds {59} attempted to explain this by the presence of
a recirculating flow within a cavity in the roughness layer. Heat
across the layer, either entering the recirculating flow or to be
carried to the outer flow, could only be transferred by diffusion at

the solid boundary.
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Hinze {4} suggested that with increasing roughness, there was
an increasing effect on the flow pattern; among other things, the
effective thickness of the viscous sublayer would decrease. The
decrease affected the transfer of heat across the boundary layer,
for the roughness caused disturbances in the viscous sublayer
which promoted turbulence transport. Rotta {60}, using
Nikuradse's experimental results, deduced a relationship between
viscous sublayer and surface roughness as shown in Figure 2, and

showed that for !%E > 55, the effective thickness of the viscous
sublayer became zero.

It has been found experimentally that roughness increased the
. rate of heat transfer by up to three or four times. Davies {55}
showed that the heat transfer coefficient over a rough surface
might be given by:-

Nu = 0.08 . /F7/Z . RePr 0°5 (2.18)

It was suggested that if the pipe was screw-threaded /572 varied
as (k/D) °*3® but for sand-roughened pipes, the power of (k/D) would
be 0.15. Although different assumptions were used during the
derivation of smooth and rough pipe coefficients, the values of

f/2 over the entire range from completely smooth to fully rough
pipes might be valid in the same equation. Kolar {61} found that,
in practice, as a first approximation, the empirical equation:-

Nu = 0.05. /f/2 . Re Pr0'5S (2.19)

gave quite a good representation of the heat transfer into fluids
in both smooth and rough pipes.

One of the first studies of heat transfer in rough pipes was
conducted by Cope {62} in 1941. The roughness ratios achieved 1in
his experiments were between 8 and 45, His experimental results
showed that the effect of surface roughness of the kind tested was
positively detrimental to the efficiency of a pipe as a medium for
heat transmission.  Zukauskas & Slauciauskas {63} attempted to
explain this by suggesting that the increase in drag outweighed the
increase in heat transfer as the roughness was increased.
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Most rough surface heat transfer studies in the past have used
air as the test fluid not only because of its practical importance,
but also because its Prandtl number was nearly unity. The effects
of roughness on aerodynamic heating and boundary layer transition
have been studied by Dunn {64}. Heat transfer studies by
Bourgoyne et al {65}, Kemeny & Cyphers {66}, Sheriff & Gumley {67}
and Walker & Rapier {68} in conjunction with the United Kingdom
Atomic Energy Commission have provided experimental data for heat
transfer coefficients in turbulent flow in rough annuli with air.

Nunner {69} carried out heat transfer and pressure drop
measurements in roughened pipe flow. During his tests, artificial
roughness was created by fixing different ringforms on the surface
of the pipe. Roughness ratios obtained were between ? and 80.
Nunner then proposed an expression for rough surface heat transfer
as:-

Re.Pr . f/2
1+ 1.5R™ % P /" (Pr. f/Fs - 1)

Ny (2.20)

where f/fg was the ratio of rough to smooth friction factors at the
same Reynolds number. In deriving the above equation, Nunner
postulated that the viscous wall layer behaves almost exactly the
same way in a rough pipe as in a smooth one at the same Reynolds
number.  Therefore, only the resistance of the turbulent core was
affected by roughness,

Another expression for heat transfer which was frequently quoted
was that developed by Martinelli {22} as:-

Re. Pr //2 .
W= s pr v an (145 Pr) v aan( g5 - 7]

(2-21)

This equation differs from that derived by Martinelli for smooth

pipes only by the omission of the temperature ratio (Tw - Tc)/(Tw-Tb)
in the numerator. Martinelli suggested that the above equation might
apply to rough pipes as the effect of roughness entered the equation
simply through the increase in fraction factor. The omission of the
temperature ratio had relatively little effect as this term was
usually just slightly less than 1.0 and rarely fell below 0.8.
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As suggested by Gomelauri {70} that with the above two
expressions, the effect of Prandt]l number was not properly
predicted. Also a unique relationship between Nu and f
independent of roughness forms was proposed to the contrary
of the findings of Dipprey & Sabersky {71} and others. Dipprey
& Sabersky provided a set of experimental data on the friction
as well as heat transfer characteristics of rouch surfaces for
a relatively wide range of Reynolds numbers, roughness ratios and

Prandt] numbers. They proposed a heat transfer similarity law
based on heat transfer to water as:-

"y = Re.Pr. /2
f f k .
1+ 5 {y[ Re. v/ - (%/D)J-2ppo- e 8.48} (2.22)

where y was a numerical constant that depended on the roughness form
and roughness ratio was expressed as:-

1
£ =exp( 3.0 - ) 12.5]
The above equation refers to conditions in the 'fully rough' flow
regime.  They suggested that, for granular close-packed roughness,
Y = 5.19 and for two dimensional roughness such as that investigated
by Nunner, <y might be taken as 6.37. Arguments in support of the
above similarity law were well presented.

Gowen et al {72}, {73} also provided detailed experimental
results on turbulent heat transfer to both smooth and rough pipe
flows. During their investigations, temperature profiles, friction
factors and heat transfer coefficients have been measured with pipes
of roughness ratio between 11 and 48. A semi-theoretical equation
based on the temperature profiles obtained was presented and shown
to predict Nunner's results adequately, although it underestimated
the results of Dipprey & Sabersky. The effects of roughness on
free surface flows over smooth and rough boundaries were investigated
by Blinco & Parenthiades {74}. They found that the relative
turbulence intensity depended quite strongly on Reynolds number and

increased strongly with increasing roughness.
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Fujit et. al.{75} introduced extensive experinental results on
natural convectton with the influence of surface roughness. Althouqh
chiefly concerned with natural convection, they also suggested that 5
the rough surface in the forced convection would reduce the mean velocity
and the heat transfer coefficient would be increased just as much to
compensate the loss of the kinetic energy when compared under the same
pressure drop. Ramakrishma et al {76} attempted a theoretical
approach and provided a direct relationship between friction coefficient
and free convective heat transfer with different roughness ratios.

However, the prediction was only valid for fluids whose Prandtl numbers
were close to unity,

More recently, Cebeci & Chang {77} proposed a differential method
with near wall mixing-Tlength equations based on contributions by Rotta
{78}, A higher order closure model was presented by Adams & Hodge {79}
who used an integral form of the turbulent kinetic energy with a term
added to represent the generation of turbulence which occurs in the
wakes behind roughness elements. Hatton & Walklate {80} and Wassel &
Mills {81} also used the mixing length models for the prediction of
heat transfer in roughened pipes. A near-wall mixing-length equation
used for the prediction of skin friction and heat transfer in conjunction
with a wall temperature step and a turbulent Prandtl number distribution
was proposed by Ligrani et al {82}, {83}, along with the same mixing
length equation for the outer regions of smooth wall boundary layer.

With the present survey, it 1s evident that analyses and investig-
:ations so far have yet to provide a thorough theoretical and experi-
:mental criterion for predicting heat and momentum transfer under the
influence of surface roughness, Furthermore, correlations based only
on the heat transfer coefficient cannot generally and adequately predict
heat transfer rate from rough surfaces because such correlations ignore
the effect of roughness on the detailed structure of the resistance to
heat transfer, As indicated earlier, the concept proposed by Tyldesley
& Silver gave a more realistic description of the flow of turbulence -
it is thus possibly more realistic to study the effect of roughness on
heat transfer using the concept proposed by Tyldesley & Silver,
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2.3 Experimentation

It was suggested by Nikuradse {84} that turbulence would be
fully developed at a distance of 25 40 diameters downstream of an
abrupt change of pipe diameters. However, Logan & Jones {85}
showed that, in rough tubes, transition from a developed smooth to
a developed rough velocity profile required only 8 v 10 diameters.
Sleicher & Tribus {86} reviewed studies of several investigators
and concluded that 510 diameters were required for development
of constant heat transfer coefficients.

Until recently, most of the investigations on heat transfer
were confined to the heat transfer near the wall or in the boundary
layer where the temperature gradients were large. As indicated by
Kinney & Sparrow {87},.this has led to extensive experimental and
analytica1 predictions to wall heat transfer. However, there has
been Tittle or no experimental investigation on the heat transfer
to fluid flow with internal heat generation.

One of the earliest experimental and analytical works on
internal heat generation heat transfer was carried out by Poppendiek{88}
who assumed equal diffusivities of momentum and heat. Measurements
were made of the fully developed wall-to-bulk temperature differences
within an electrically heated fluid. Comparison between his
experimental data and analysis was only fair, as the scatter in his
data was about 30%. Miller {89} carried out tests on turbulent
heat transfer in an adiabatic pipe with internal heat generation,
but his results were not published. In addition, considerable
uncertainty was reported as due to heat Toss along the electrodes.

Recent experimental work by Inman {90} was performed for an
internally heat generating fluid in the laminar flow regime. Axial
wall temperature measurements along the adiabatic test section were
in good agreement with the predictions of laminar analysis. However,
measurements in the turbulent flow regime were not reported. Similar
investigations based on the classical eddy diffusivity model were
carried out by Petukhov and Genin {91}, Siegel & Sparrow {92} and
Michiyoshi & Nakajima {93}. However, all the above analyses led to
exact solutions for the heat transfer coefficient or wall temperature
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that were too involved for engineering computations,

Danckwerts {94} followed by Thomas et al {95},196} used a
different approach which made use of the principle of surface
renewal. As their analysis was derived on the basis of the
assumption that eddies moved into direct contact with the wall,
the application was restricted to moderate Prandtl numbers. Also,
assumption that eddies could be considered as semi-infinite further
restricted the analysis to the evaluation of wall temoerature for
cases in which internal heat generation was involved. Habib & Na
{97} and Na & Chiou {98} carried out a theoretical analysis to
turbulent heat transfer in pipes with internal heat generation.

The results from their theoretical studies agreed reasonably well

with available experimental data for moderate to Tow Prandt]
numbers.

A method for generating a uniform heat source to fluid flow
was introduced by Wilson {99} in as early as 1904. With his
method, heated fluid could be injected into the main flow through
a small injector and the injected fluid might be considered as a
moving point source of heat, provided that the injector size was
sufficiently small. An expression for the eddy diffusivity of
heat might be expressed as:-

_ Q - k (2.23)
oCpeH = Am AT (Xx-Xo0)

where Q was the heat source strength and AT was the rise in
temperature with respect to the distance (x-xg5). The method was
found to be in error mainly due to the effect of finite boundaries.
Although an analysis using Green's function might be carried out,

as suggested by Carslaw & Jaeger {100}, to modify the above
expression, such analysis was complex and therefore unnecessary for
experimental verification. Sheriff et al {101},{102}, {103}carried
out experimental investigation using the above expression. Their
results of eddy diffusivity of heat were found to be underestimates.
This was thought to be due to the finite boundaries in pipe flow.
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Until recently, the most universal device for studying
turbulent flows was a hot-wire anemcmeter, With the advent of
lasers, the possibilities of the development of more advanced
devices were opened up. In 1964, Yeh & Cummins {104} success-
:fully measured velocity profiles in a fluid by examining the
frequency shift in monochromatic coherent radiation scattered
from particles in the fluid. The analytical description of Laser
Doppler Anemometry was first shown by Rudd {105} as an uncontra-
:dictory method on the basis of a doppler or interference technique.
Many investigators such as Foreman et a] {106}, Pike et al {107},
Welch & Tomme {108} and Lumley et al {109 have applied this
technique to the measurement of mean square fluctuating velocities

and instantaneous velocities in the turbulent flow of gases and
Tiquids.

As listed by Durst & Zare {110},  a large number of articles
were available on the various aspects of LDA. Many papers dealt
with the specific applications of optical or electronic apparatus
available. Durst & Whitelaw{111} carried out measurements of
mean velocities, turbulence intensities and shear stresses in air
jet flow by turning the two input laser beams through 90°, thus
measuring the two velocity components. Bourke et al {112}, {113}
measured the Reynolds shear stresses in water flow using two
frequency trackers and an analogue correlator, It was shown that
the above measurements of velocity and turbulence intensity compared
favourably with those of hot wire measurements.

With laser doppler anemometry, it is necessary that particles
of appropriate sizes are suspended in the flow for Tight scattering.
With air or gas flow, it is usual to use some form of atomiser or
spray for seeding of particles. Melling & Whitelaw {114} discussed
the criterion which 1imited particle characteristics and assessed
the available method for particle generation. However, as mains
water generally contains enough contamination in the way of particles,
seeding in water flow is usually not necessary,
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Bates {115} carried out a number of tests on water flow using
the LDA on a ten inch perspex pipe and obtained results of ve]ociéies,
turbulence intensities, boundary layer thickness and skin friction
coefficients. It was shown that the LDA system was suitable and
useful in the measurements of properties of turbulent flows,

Bates {116} continued his investigations by analysing his results

on a PDP 11 minicomputer and found some discrepancies between his
analogue and digital results.

As suggested by Van Atta {117}, one method of reducing the error
of digital technique was by substantially increasing the sample size
and sample rate or frequency. Yanta et al {118}, {119} developed a
statistical analysis system incorporating a digital data processor
in which the data were punched onto cards to be analysed later on a
large computer. With a statistical definition of turbulence and
1ts mean square fluctuations, they found that, as shown in Figure 3,
for an accuracy of 1%, the number of data points needed to obtain
velocity measurement was given by:-

7_—!'2' 2
N = 40000 -‘%— (2.24)

A similar analysis was carried out to predict the number of data
points needed to obtain accurate measurements of turbulence intensity.
As shown in Figure 4, they found the number to be independent of flow
conditions.

Whiffen & Meadows {120} and Smith & Meadows {121} used an
improved system where the data was stored via a minicomputer onto
disc before subsequently processed on a large computer, Blake {122}
developed a frequency analysis system based upon a computing counter
linked to the photomultiplier via a preamplifier and bandpass filter.
A digital magnetic tape was obtained from a data logging device
connected to the counter and then analysed off-1line on a computer.
However, Bates & Hughes {123}, {124} showed that, provided the
turbulence intensity in the flow was Tow, the output from a frequency
tracker might be fed directly into a minicomputer and sampled in a
controllable manner to yield the required statistical information.
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A number of articles were available on the statistical analysis
of LDA signals and the errors involved therein. Greated & Manning
{125} , {126} derived mathematical expressions for the ambiquity
broadening due to finite flight time based on ; two dimensional
model.  George & Lumley {127}, {128} presented an exact theory for
the effect of ambiguities on measurements and presented a criterion
for minimising such doppler ambiguity,

Microscale is a measure of the average dimension of the eddies
that are mainly responsible for the dissipation of energy. As
indicated by Hinze {4} while discussing correlation coefficients,
the microscale might be expressed as:-

sl - & (2.25)

where g(y) was the lateral correlation coefficient defined by:-

ulg) -ulE+y (2.26)

g(y) = 3 AW

A could then be obtained by plotting the correlation coefficients
and fitting an osculating parabola as shown in Figure 5. As stated
by Hinze, the accurate measurement of the correlation curve was not
very simple, particularly at small values of y when the coefficient
was close to unity.

A second measurement method was suggested by Townsend 129 who
made use of Taylor!s hypothesis and proposed:-

1.7 -(a”)z (2.27)
A u

Thus, by introducing a differentiation circuit into the electronic
system, A could be measured. Laufer {130}and Liepmann {131}
proposed a zero-crossing method for the determination of microscale,
The microscale could be obtained from the knowledge of the average
number of zeros of the u fluctuations per unit time.  They proposed

the expression as:-
= U 2.28
A = N ( )
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where N was the number of zeros of u fluctuations per unit time.
The zero-crossing technique was the simplest of the three
techniques to perform, although it was found by Philip {132}
that this method sti11 needed modification,

2.4 Summary

The present Titerature survey has indicated that, although
there have been numerous researchers investigating the various
aspects of turbulence flow, there remained to be found a thorough
and realistic criterion for the prediction of momentum and heat
transfer. It would be more satisfying to have a theory that
allows the turbulent eddy shape, size and velocity to change with
respect to time. As suggested by Roshko {133}, understanding of
the physical processes actually occurring in turbulent flows is
indispensable for progress towards an analytical description of
them.  Even short of that, knowledge of these processes is helpful
for understanding and coping with practical problems in which
turbulent flow is prominent, It would also be more appropriate
to study the effect of roughness on heat and momentum transfer with
an approach that describes the detailed structure of the resistance
to heat transfer.

Experimentally, the method as introduced by !lilson and
described in the last section for the generation of a heat source
was found to be appropriate. The laser doppler anemometry technique
was found to be suitable for the measurement of turbulence character-
:istics. Digital techniques have been shown to provide simpler
and more controllable methods for turbulence measurements,
particularly with the advance of present-day digital computers.
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3.  THEORETICAL ANALYSIS AND DEVELOPMENTS

The theoretical analysis was based largely on the concept
proposed by Tyldesley & Silver {39},{40}. In their work, the
basic idea of entity concept was presented and eddy
diffusivities of momentum, heat and mass were proposed as
dependent on two variables, the entity scale and velocity.

The ratio of‘eddy diffusivity of momentum and heat, when
compared with other reserchers' experimental data, were
found to be well predicted. However, no rigorous derivation
of the expressions were presented. Neither were the

relationships between the entity scale and velocity clearly
defined.

The present work makes a rigorous presentation of the
theoretical concept of bntity model' of turbulence, In
discussing the two important parameters of the entity
concept, conditions for which Tyldesley & Silver's predicted
eddy diffusivities would hold, were discussed. Also, the
thermodynamic relationship between the two random variables,
R and Vr was presented. Solutions to the momentum and
energy equations under simple flow situations were proposed.
Furthermore, overall heat transfer characteristics in a
simple pipe flow were investigated using the turbulent
Prandtl number, originally proposed by Tyldesley & Silver.
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The present analysis was based on a thermodynamic approach,
using the method of statistical inference to provide a first order
theory. The transport properties of a turbulent fluid were
investigated using a simple model to represent the detailed fluid
behaviour which was attributed to the motions of fluid entities
of varying size, shape and velocity. An analysis was made to
find the effect on the whole system, of interaction and transport
between the individual entities. Information theory has been
successfully used as a means for the interpretation of turbulence
parameters. Using the present analysis, it has been possible to
predict characteristics of turbulence shear flow not vastly
different from those found in practice, with only a minimum amount
of information.

3.1 Transport equations and eddy diffusivities

3.1.1 Conservation of momentum transport

et ————

Consider that u, v and w are the x, y and z components of the
fluid velocity U. For a stationary control surface dSx in the fluid,
the rate at which momentum is transported across this surface in the

x-direction is given by:-
Mx = mu = ou.u dSy (3.1)

Similarly, for control surfacesdSy and dS; in the fluid, the rate
at which momentum are transported across these surfaces respectively

in the x-direction are:-

ou.v dSy (3.2)

1}

My

ou.w dSy (3.3)

Mz
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It was shown by Bradshaw {3} that a probability distribution
may be defined such that Pu du is the probability that u lies

between u-3du and u+idu. Such a probability distribution satisfies
the following conditions:-

fl;u du = ]
=0

-]
-aj uPudu = <u>

and dj un Pu du <un>

where < > denotes the expected value of. Similarly, joint
probability distributions Puv and Puw may alsc be defined such that
Puv dudv is the probability that u Ties between u-idu and u+idu at
the same time that v Ties between v-idv and v+idv; Puw dudw is the
probability that u lies between u-idu and u+idu at the same time
that w Ties between w-3dw and w+idw, Such probability distributions
satisfy:-

(- -]
[ Puy du = Pv
-0

O >
I f Pyy dudv = 1

-0 -~
® @
m m n
J f Puv u vVidudv = <u'v'>
-0

-00

and J Puyw du = Py

J?IP Puw dudw =1

2 MmN m n
j j Pyw U w dudw = <uw™>

Hence, the expected values of rate at which momentum are transported

across the surfaces dSx, dSy and dSz are:-
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<My> = ‘IPUZ. pu? ds, du
. ? @
<My> = | [Pyuy ouv dSy + dudv
-® -o
and <Mz = | IPUW ouw dSz + dudw

If a control volume dV is formed by the surfaces dSy, dS and
dS,, the rate at which momentum is transported across the vo]ume
in the x-direction is thus the sum of the momentum flux through

the boundary surfaces. Hence,
<M> = <l‘.4x> + <l‘;l_y> + <l\.42>
<M> = I{[PUpuzdu dSx + [JPuvpuv dudv dSy
dSxdSydSZ L= o0

+-J[J Puw ¢ uw dudw dSz}' (3.4)

Within the control volume, the rate of change of momentum in the

x-direction is given by VJ §%%E) dv. Again, the expected value
of the rate of change of momentum in the x-direction is:
3<u> [ -
I'——a-t— o.dV = ['a—f . J PU.pUdU dV
v V @

For conservation of momentum transport to be satisfied:-

J’a;z> .0 dV + <M> =0
\%

7]

J-QE J Pupu du dV + J’{ iPu ou? du dSx
-® S -

JJ,Puv pouv dudy dSy + J J’Puw puw dudw dSz}
=70 = (3.5)

Using Green's theorem for transforming a surface integral into a

volume integral, equation (3.5) becomes:-
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%[ j Pu.pudu] + a—ax
2

[
3y [.QJPUV puv dudyv ] + %[Jo Puwpuw dudw]

"
O

Hence -g%[p<u>] + -g%[p<u2>] + -——[p<uv>] + g%[ p<uw>] =0
(3.6)

Consider the flow of turbulence such that y = <u> + y!

V= <y> o+ y! and w = <w> + w!', Again, by applying the Reynolds
rules of average, we get:-

<u® = <u>? + <y'?s
<uv> = <U><v> + <y'ly's>
<UW> = <U><W> + <u'w'>

. equation (3.6) becomes:-

po<u> 3p P : 5 <u>
st + <u> = + <u>'3; (p<u>) + p<u> ™
3 9 <u>

3
+ e —
U> =2 (p<v>)  +p<v> o> (o <w>)

oy

d<u> 0 | J '
+ p <w> = + X (o<u'?>) + 3y (o<u'v'>)
2 (p<u'w's) =0 (3.7)
3z )

By considering the conservation of mass over the control volume
dV in a similar manner as above, an equation of mass conservation or

continuity may be obtained as:-

0 3 0 0 _
P + 'é‘i (p<u>) + .5_}.; (p<v>) + ?oz- (Q<W>) =0 (38)

ot

Therefore, equation (3.7) may be expressed as:-
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a<u>
st~ t p<u> d<u> + p<v> a<u> 4+ oaws d<u>
3y 5z
+ -,\—a-(p<ul2>) + i(p<ulvl>) + 3 .
3X 3y 52-(p<u w'>)
=0 (3.9)
i = 12
Putting Oy = O<u'®>
= Ty
Oyy = P<u'v'>
= bag!
OXZ p<U’'w' >
a<u> a<u> I<u> S<U>
—_ +
T W> ==+ <v> 5y + o> 2

1 /3 D 3
> {ax %x * By Oxy * a—zcxz} (3.10)

The above equation represents the equation of conservation of
momentum in the x-direction and is analogous to the Reynolds
equation with the o terms anlaogous to Reynolds stresses. Similar
equations may also be obtained for the conservation of momentum in
the y and z-directions. In general, the momentum equations may be
expressed in tensor notation, as:-

0~
I<ui> - d<ui> _ _ 1 ——91j
=t + <uj> 3 39X (3.11)
3.1.2 Conservation of energy transport

Using a similar type of analysis as in the previous section, an

energy transport equation may be obtained as:-

3 3 ] 9 _.0.
St <ET> * 'Si? (<ET> <U1>) * axi<Q‘>
___?._ ) . . = 0 3.12
+ X (<UJ><01J>) ( )

where E; = 1o(u? + v2 + w?) is the total energy of the fluid per unit

volume. 0i is the energy flux due to the turbulent motion and o ;
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is the shear stress.

Er = ip(u® + v? + w?)
= Rp(<u>® + u'? 4 2<udu' 4+ <v>? 4 v'2 4 2 cysy!
+ <aw>Z + w'2 o+ 2w w')
<Ep> = Loku>2+ <v>2 + <w>? + <u'2> + <y'2> 4+ o' 2>)

Putting <ET> = 1p<U>2? + <Ue> where 3ip<U>?represents the kinetic
energy per unit volume of the fluid motion and <Ue> 1is the expected

value of internal energy per unit volume of the fluid, equation (3.12)
becomes: -

'g% (30 <U>%) + -g% <Ue> + <Us> 5%?62 <U>2?)
+ <U;> 5%; <Ue> + -% <U>2, 53? <U;> + <Ue>§§? <Ui>
+ 3-)22—1-<Q1.> +O1‘j _8—>-a<T<Uj>+ <Uj>a_)8(.1__ oij =0
implies,
Ji<Ue> + <Ui>-—§— <Ue> + <Ue> —37 <Ui> + —ET <Qi>
ot OX i 90X 3Xq
R R o I SRS
<%;i/h%\ggi + pg% -5%;3 + <U;>.p. 831 <%;2
pouy 22 ] (3.13)

Using the equations of mass transport (3.8) and momentum transport,
it can be shown that the right-hand side of equation (3.13) is equal

to zero, hence:-

- 9 ' o  9Ui>
';f <Ue> + —é')?(_; (< Ui> <lUe> ) + _S_X_{ <Qi> + ij X
=0
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where the first two terms represent the rate of increase

s: of energy

. . <Q1>

in the Furbulent fluid, BST represents the energy diffusion and
.. 9<Uj> 1

91 T5%;

represents the dissipation due to turbulence fluctuations.

As the energy of the turbulent fluctuations is continuously
dissipated into thermal energy, an additional dissipation term o ,
has to be included in the above equation. So far, the fluid has
been considered to be free from surface forces or momentum flux due
to molecular viscosity. In order to include such effect, a viscous
stress or a dissipation term due to viscous stresses must also be
included. Hence, for a turbulent fluid, the momentum and energy
transport equations may be expressed as:-

a<Ui> .o 9<Ui> _  1r 3ci j do '
and Ji-<Ue> P (<U;> <Ue>) + —§—<Q1>
ot 9X4 1 oXi
: o<lji> _
+ (Ujj +o 1j) 3% ) (3.15)

Although the equations obtained above are similar to those obtained
by more classical methods, the approach in deriving these equations is
different. It is perhaps more customary to obtain the momentum and
energy equation by assuming that the instantaneous velocity field
satisfies the Navier-Stokes equation. However, the method used in
the present analysis avoids this assumption and enables the problem of
turbulence to be treated as the flow of a particular fluid having
unusual transport properties. The more detailed than usual derivation
demonstrated that the similarities which existed between the governing
equations of the turbulent fluid transport and molecular transport of
gases were not by chance, but were the result of the systems being
indistinguishable when described by average or expected values of

their variables.
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In order to solve the momentum and transport equations, the
internal behaviour of the fluid has to be described. Furthermore,

the diffusion and dissipation terms have to be investigated and
solved.

A ———————

3.1.3 Dissipation of turbulent energy

In turbulent fluid flow, particles of fluid tend to combine
together and move with a common velocity relative to the average
motion of the fluid. These particles or eddies are of random size,
shape and velocity in any particular region of the flow field and
the average of these quantities varies with position. The intro-
:duction of the entity shape and size presents difficulties when
discussing its motion. However, this may be overcome by considering
the slow motion of an ellipsoid of semi-principal axes (a,b,c) moving
as a solid with average velocity Vr = (Ur,Vr,Wr,) relative to the
fluid average velocity U = (u,v,w). Providing the ellipsoid is
small compared to the surrounding fluid and the relative velocity
is not too high, the force acting on the ellipsoid, as shown by
Lamb{134} and Landau & Lifshitz {135}, may be expressed as:-

F = 6mR Vr (3.16)

where R = R(a,b,c) is a function dependent on the shape and size of
the ellipsoid. As the above expression was originally treated by
Stokes, it has generally been referred to as the Stokes' fornula.

Introduce a factor © such that © = R/r and when a=b=c=r,0 =1.
g may be regarded as a factor that accounts for the effect of
distortion of the entity from a purely spherical shape. Considering
the rate of energy dissipation due to the ellipsoidal entity,

é% (3 mVr?) = -F.Vr

2
%ﬂﬁ@s 0 ac,lE ( :V-z-t ) = -67mr*.®Vr2
d Vr? _ 9 u ] 2
wF(7) = 2% v
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Hence,
d (Vr? 9 Ty2
<z (FP--3 Bt (3.17)

In order to proceed further, the correlation between velocity
and the size of entities have to be known. Although most
turbulent flows are inhomogeneous, the more important features of
energy transport process are the same whether the flow is homo-
:geneous or not. As indicated by Townsend {136}, if the time-
deldy correlation function was converted to a structure function
to give information about eddies of various sizes, the decrease of
maximum autocorrelation with time was caused mostly by the random
movements of eddy centres. If the random displacements were
small compared with the eddy diameters, the change in the structure
function would be produced substantially by simple translation by
a convection velocity. In homogeneous turbulence, the convection
velocity was constant for all sizes of eddies and equalled the mean
flow ve1ocity.

Taylor {137} suggested the structure function as:-

us(x,t) = UT(X - ut, t+7) (3.18)
for not too large values of T. Townsend showed that the above
relation was a good one if the random displacements of eddy centres
in T were small compared with the diameters of the smaller eddies.
Velocity variations due to eddies of size d were completely
uncorrelated for separation t large compared with d/U.

The use of structure function to obtain information about eddy
sizes is not restricted to homogeneous turbulence and it applies to
all flows whose variations of mean velocity and fluctuating velocity
are both small compared with the average velocity over the whole
flow field. Nevertheless, the condition is not satisfied in
turbulent jets and boundary layers as in these regions, the
convection velocities of the large scale pattern of velocity may be

considerably different from the local mean velocity.
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Although the above argunent was intended for obtaining the
structure function, it may be deduced from the analysis that,
providing the eddy velocity relative to the mean flow velocity is
small and random displacements of eddies are small compared to the

eddy sizes, the correlations between eddy size and its relative
velocity s considered weak,

Hence equation (3.17) becomes:-

d ,Vr?

HE<T = -% %‘ W> (3']9)

which 7s a version of the well-known von Karman-Howarth equation {138}
for the decay of energy with the term <r202> similar to the square
of the microscale » . As dissipation of energy is equivalent to the

rate of change of energy per unit volume, the dissipation term may
be expressed as:-

¢ - ol (B0

_ 9 <Vr2>
Hence > = - -2-11'2?2—@-2-> (3.20)
3.1.4 Surface stresses in a turbulent fluid

So far, the eddies have been taken as an ellipsoid of semi-
:principal axes (a,b,c) where R is a function of such axes. The
factor © was used to indicate the shape distortion of the entity from
a sphere. In flow situations remote from any physical boundary, it
may be assumed that the turbulence is isotropic as the effect of a
solid boundary which tends to generate disturbances is absent. It
may then be assumed that in such a flow situation the eddies are of
spherical shape. However, in flow situations not remote from
physical boundary, isotropy may not be assumed and the ellipsoidal
shape of the eddy has to be maintained,

For isotropic turbulence where a spherical entity is assumed,
a=b=c=R=r and 0 =1, For nonisotropic turbulence, it may be assumed

that the ellipsoid is in fact an elongated sphere with axes (a,a,b)
and volume 4/3 ma?®b.
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As indicated in the last section, the correlation between eddy size
and its relative velocity near a physical boundary might not be
weak. Predictions obtained might not be as accurate as those for
regions remote from physical boundaries. However, from the analysis

that follows, it is apparent that a definite shape of an eddy is of
minor importance in the analysis.

Consider an eddy of spherical shape as described above which
has an average velocity along the x-axis and uniform in any plane
perpendicular to the y-axis. In the case where the bulk flow 1is
unidirectional with constant velocity gradient, the bulk velocity
relative to some plane y=0 may be expressed as:-

T=( &£, 0,0 (3.21)
y

With the absolute entity velocity taken as V = (U,V,W), components
of forces acting on the entity are thus:-

= . - U
Fy =-6mur V
Considering the rate of change of momentum,

d<u>)

é%(m.U) ==6mur (U - Iy

-é%(m.V) ==6ryur V

Hence, d% - _,%% ’_QE (U - ygggi) (3.22)
¥=-¥.%v (3.23)
t o’ r

If the initial conditions are (U,V,W)O = (Uo,VoTWO) when y = 0,
it may be shown as in Appendix 3 that the solutions to the above

equations are:-
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_ | d<u> i
U=to (1-y/a*) + =% [y +x* (1-y/x*).;n(1-y/x*)}
(3.24)
V= Vo (1-y/x*) (3.25)
2pr? . :
where \* = Vo, ;; Ts the mean distance travelled by the entity

from the plane y = 0 before its momentum is entirely dissipated by
viscous action.

Equations (3.24) and (3.25) represent the expected or average
values of the velocity components of an entity which was created at
time t = 0 in the plane y = 0, Equation (3,25) indicates that only
the initial term is concerned with the value of Uo while the remaining
terms are independent of Uo and give the effect of the velocity gradient
2553 on the eddy velocity, As pointed out by Tyldesley & Silver {39}
since the decay of entity of momentum is exponential, an infinite time
7s required for the entity to travel the distance 3*. It thus
represents a 1imit which will be rapidly approached but never actually
achieved, Equation (3.24) also shows that the axial component of the
entity momentum ts influenced by the mean velocity gradient and thus

give rise to a shear stress,

3.1.4,1 Shear stress due to momentum flux and eddy diffusivity of
momen tun

Since an entity is identified by its motion relative to the mean
flow, it follows that entities are also created within the flow field.
Consider the flux of entities crossing the plane y = 0 and, in particular,
an entity that was created a distance A from the plane and is now
crossing it. The entity velocities relative to the average fluid

velocity are:-
Ur =X d<u> {UO(l—K/A*) + gggz_[ A+ x*(1-x/x*)zn(1-x/x*)1}

= -Uo (1- MA*) - 9553[ A(T-A/x*)an(1-A/2* )]

Vr -Vo (1-A/X*)



Here, Uo and Vo are the values of Ur and Vr at the creation of

the entity. The contribution to the kinetic shear stress from this
entity may be expressed as:-

ny = - p<Ur Vr>

Hence, o, = - o<Uo Vo (1-1/A%)2> - pd—j1;—><vO 1=/ 3%) 220 (1-1/2%) >

However,<:Uo Vo (1—x/x*i:>may be taken as zero, providing the creation
process favours neither positive nor negative values of Uo,

Ogy = =P <Vo A% (1-3/3%)2an(1-2/3%) >
2
. ?rg d<u><v 2 P2 (T-0/0%) 200 (1-A/2%)>
- 202 d<U> 2y/1n2
Oy = g g <VoXrA(1-3/4%)2in(1-3/2%)> (3.26)

As there is continuous production and dissipation of entities and

there is no mean flow in the transverse direction, the least prejudiced
assignment of probability density to the value of A/XA* when an entity
crosses the plane y = 0 is that the density is uniform for all values
of A\/A* between 0 and 1., Thus, all values of A /A* between 0 and 1

are equally likely. Hence:-
!

{(1-2/2%)2n(1-2/2%)) Ju-x/x*)zzn(l-x/x*) d(%*- )

o

1

9
% T %)ﬁi ' d<u> L Vo {ry. (- )

2 d
%flj-ﬂ (r3 oy, T<;>

As shear stress due to momentum flux may also be expressed as

d<u> : iscosit
- where ep is the eddy viscosity
Oxy ey —ay h u V)

eu

2o (royioz (3.27)
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The eddy diffusivity of momentum may be written as «¢., =
hence may be expressed as:-

2
v = BT - (rA(Voz) (3.28)

From the preceding analysis, the concept of eddy viscosity arises
naturally from the description of an entity in turbulent fluid. Its
value in any region of the fluid is dependent on the history of the
entities traversing the region and, in this respect, it cannot be
described as a local parameter.

3.1.4.2 Shear stress due to viscous forces

As discussed in section 3.1.2, the viscous effect in the turbulent
fluid which gives rise to a viscous stress term must also be considered.
This viscous stress term must be that of the average force per unit area
of the entity as the entities cross the plane y = 0. The force acting
on the spherical eddy is given by:-

F=6mur Ur (3.29)

The projected area of a spherical entity 1is mr? , hence the expected

value of viscous stress may be given by:-

-<6u )
Substituting the value of Ur as derived from the last section,
y =< 6ul AX(1-1/A%) an(1-A/2%) 9‘-5£>

Again considering the probability density distribution:-
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J (1=2/2%)an(1=2/2%)d( /%)

{(T=X/A%)an(1-1/2%))

]

. ' _ ) Zd<u>
+ Oy = 3P {ryVo) . Iy

Similarly to the shear stress due to momentum flux, the shear stress

due to viscous forces may also b ‘ Lo gty dw
N e written as o Xy e'u %
Hence e'u = %p {ry (Vo) (3.30)
]
or elv = 3 (r> oy (3.31)

Comparing equation (3.27) with equation (3.30), it can easily be
recognised that the shear stress due to momentum flux is much larger
than that due to viscous forces as already indicated in section 2.1.

3.1.5 Thermal energy transport in a turbulent fluid and eddy
diffusivity of heat

The process of thermal energy diffusion may be considered as
carried out by the migration of entities between regions of differing
energy. For consistency, an assumed uniformity of momentum within
the entity implies an assumption of a uniformity of temperature.

Hence, in thermal interactions, it is assumed that the entity has a
uniform internal temperature. Consider a spherical entity of uniforn
internal temperature T surrounded by a turbulent fluid of temperature Tf,
the heat transfer rate across the surface of the entity is given by:-

q= 4rr k (T - Tf) (3.32)
where k is the thermal conductivity of the fluid.

As in the case of momentum transfer, the interaction process is
assumed to be quasistatic so that the above'equation holds even when
the temperature of the surrounding fluid is changing. Also, the heat
transfer rate across the surface per unit volume of the entity may be
considered as the heat flux density when the temperature gradient in

the fluid is not Tlarge.
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Hence, q = -4/3 wr3,oCp dl (3.33)

Since the thermal energy flux must be from points at a high
temperature to those at a lower temperature, thus the negative sign

in equation (3.33). Comparing equations (3.32) and (3.33) gives:
dT _  _ k ]

Similar to the argument for momentum transfer in section 3.1.4, where
the temperature in planes perpendicular to the y-axis is uniform and
the temperature gradient is constant, then the expected value of fluid
temperature may be expressed as:-

d<Tf>
<TF> =
Y Ty
dT 3k ] d<Tf
E Com T (T—y—a-—< y>) (3.35)

If the initial condition is T = To when y = 0, it may be shown as in
Appendix 4 that the solution to the above equation f1s:-

b d<Tf Vv a/b d<Tf>
T = To(l-yan)®® wy S B [y P - (oynn)] S
(3.36)
9
where a = -Béﬁég and b = -??%;

As T represents the internal temeprature of an entity, the temperature
difference between the entity and the surrounding fluid as 1t crosses

the plane y = 0 may then be expressed as:-

a
Tr = To(+ya%)3/% 4 TV-QBT[ (1-3/3*)5 = (1-3/2*) ] %—;f—)

As indicated in section 2.1, the enthalpy flux may be expressed as:-

ay = o.CplVr-Tr>
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‘ d 4
ay = -oCp.<VoTo (T-a/23%)2 > ¢ Vo2
) p.< \d
Za-b)

a
[ (-aamB ¥ = (qoy 2] <TF>
( (-3 S32 >
Again,< Vo To (1-X/x*)5'+]>'may-be taken as zerc,.

d

- X

Hence qy = -eCp. <113—57[ B+] - (1-x/x*)2] g§;£>>
(3.37)

1 _ 2oCp.r?
HOWEVEY‘, _aTB = m)
and a _ 2k _ 2

b 3uCp -~ 3Pr

2
) szc 2 3— +] 2
W= ey < Vot rt [P (e ] 4T

2
202(p2 d<Tf> + :
(95Cpf6k7 & Vo2 ((1-3/A*TT - (TA/A%)>

Considering the probability density distribution,

1

2
]
J (1-3/3%) 3

2
< (1-a2%) TPFT - (1 oM D>

0

- (1 =A/2*) d(A/2%)

(3.Pr-2)
6(T+3Pr)

d<Tf>

Gy = 2 lppr ). <oy ST (3.38)

As the enthalpy flux may also be expressed as:-

0.Cp.e d<Tf>
9y Py —dy~

where €H is the diffusion coefficient of thermal energy or the eddy
diffusivity of heat.
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P 2 2
TR T (1+3Er) (ro}vo?) (3.39)

A diffusion coefficient has been generated using the present
analysis and its value is also dependent on the history of the entity
traversing the region, as would be expected. The analogy between
heat and momentum transport in turbulent flow may be investigated by
considering the ratio of their eddy diffusivities. Using equations
(3.28) and 3.39), the diffusivity ratio may be expressed as:-

*H 4.5 pr
e,  (T¥37Pr) (3.40)

A non-dimensional similarity parameter given by the reciprocal of the
above ratio is generally known as the turbulent Prandtl number, Pry -
Although, for flow in pipes, the turbulent Prandtl number varies across
the section of the pipe, fairly adequate predictions of heat transfer
may be made by the assumption of constant turbulent Prandtl number,

3.2 Interpretation of turbulence parameters

3.2.1 Distribution functions of the random variables

Up to now, two random variables R and Vr have been used to
describe the behaviour of a turbulent fluid. It has been shown that
it was necessary and sufficient to use only these two variables to
describe momentum and energy transport. In order to assess the
probability distribution of these variables, information theory may
be used to maximise the entropy of the analysis, subject to the

given information.

In 1948, Shannan {139} presented a thorough account of his
communication theory which provided the relationship between various
independent random signals. As turbulence signals are generally
random in nature, it gives a first indication that they may be analysed
using Shannon's theory, or communication theory, in general. Jaynes
{140} as well as Reza {141} proposed the method of least prejudiced or
biased probability for random signal analysis. In fact, Tribus {142}
showed that, in the case of a simple gas, the communication theory may
be used to predict accurately its macroscopic behaviour.
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In order to analyse the random varjables in a turbulent flow,
the method of Jaynes may be used. A summary of Jaynes' formalism
is given in Appendix 5. In communication theory, the amount of
information in an average message is given by the equatibn:-

@

S; -KZPi 2n Pi = =K JP'I 2n Pi di (3.41)

-0

where Pi is the probability of the occurrence of the event Ei and
K is an arbitrary constant. The solution to the problem may be

obtained by maximising the entropy Si subject to the given
information.

Consider, firstly, the velocity variable of an entity Vr, The
entropy of its distribution is thus given by:-

@®

S'Vr = =K JP-VY' n PVY' . dvr (3.42)

-®
The probability distributions introduced in section 3.1.1 provide
the constraints to the entropy, thus:

@®

fP—Vr.dVr =1 (3.43)

-0

I'er’ Vr2, dVr = (Vr2) (3.44)

-0

Jaynes' method, as outlined in Appendix 5, suggests that SVP is a
maximum when

Py = exp[ -4-8Vr]

where « and @ are referred to as Langrangian multipliers, and
may be expressed as:-
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@

-ax?
. _ /T
Using a table of definite integrals, 'JEE dx = a

-D

-EVr2
.2

2
Tp2S>S = T =3 -gVr
< Vr2> J( 3 ) . e Vl"zdvr

o 2
-ax- s _ 1 i
Again, from a table of integrals, /[E? XTAX = o /G;

i
2

<y = (£ -7]-8-.(%)%
T T (3.45)

Hence, the square of the relative entity velocity may be expressed
in terms of a variable B which is identified as the "temper" of the
velocity distribution. It may be seen that, from equation (3.45),
B 1is inversely proportional to the internal energy of the turbulent
flow.

Consider now the variable R that describes the shape and size of
the entity. The entropy of its distribution is also given by:-

®

Sp = - K 5[ Pp 2n PR dR (3.46)
As the creation process of an entity favours neither the positive

nor negative direction, it may be assumed that the following constraints
hold,
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IPR dy =1 (3.47)
-®
JPR RZ dR = (R (3.48)

Using identical argument as previously for the velocity distribution,
the square of the entity size distribution may be expressed as:-

(R2) = ?%r (3.49)

where B' represents the 'temper' of the entity size distribution.

3.2.2 Relationship between the 'tempers'

Two new variables have been introduced during the investigation
of the distribution functions, In order to obtain a relationship
between the tempers 8 and B', further analysis using Jaynes'
formalism has to be carried out. For a system with two independent
random variables, the entropy of the system has a maximum when each
individual random variable has a maximum entropy. The entropies of
Vr and R are given by:-

=]

Syp = K J’PVr i Py Gy,
- - L}
SR = K J' PR n PR dR

-@

Substituting the probability distributions into their respective
entropy equatijons yields:-

o
Sypo = K tel o



and Sp = K—z'[zn (_%) +1]

Since for any function f(x,y) to be at a maximum, its gradient

Vf(x,y) must be equal to zero. Hence SSVr-+ 3SR - 0 is th
—-—88 -a—Br = 1S e

condition for the maximum entropy of the system,

. K K!
o 728 T =0
or & =4 = (3.50)

where C is again an arbitrary constant.

It has just been shown that, if Vr and R are the only two variables
necessary for the description of turbulent flow, i1n discussing the
maximum entropy of the system or the expected values of the variables,
the ratio of the tempers of the distributions is a constant. So far,
the momentum and energy transport in a turbulent fluid have been
considered, The diffusion and dissipation process have been
investigated 1in particular and found to be related to a simple parameter,
the temper of its probability distribution. The analysis is reasonably
simple, however, the validity of the analysis or, more precisely, the
validity of the assumption taken during the analysis, depends on its
capability ir solving the momentum and ehergy equations,

3.3 Solutions to the momentum and energy equations

3.3.1 Simple flows remote from solid boundaries

Mean velocity profile for the case of a simple shearing flow in a
region away from solid boundary may be investigated using the results
obtained in previous sections. Consider that the mean flow is steady,
1ts velocity component is in the x-direction only and the turbulent
fluctuations are functions of y only, the momentum and energy transport
equations become:-

1 d \ 1 dP _
- 6 ay (O‘XY + 0 xy) + —5 ax 0 (35])
d<Qx> ; d<u>  _
and ——a"y— + (O'Xy + C Xy) ""a')—/"' o (3'52)
As shown in sections 3.1.4,1, 3.1.4.2 and 3.1.5,
_ 2 pz 2 2 d<u>
OXY = g‘r —1.1- <r<><Vo<> T}T— (3.53)
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olyy = 3P (ryNoy &y (3.54)
2
and Q = '%T -%? QTigtFF)' {r?. <V02>~9§§£3 (3.55)

As already discussed in section 3.1,.3, the analysis that followed
was the same whether the shape of an entity was taken to be a
sphere or an ellipsoid. The only parameter needed to be altered
is the term r? or R? into r262, Hence without the loss of
generality, (rz) and (Vo®may be expressed as:-

{r?) = -7%7 and {(Vo%?) = é%

where B is the temper of the velocity distribution at the initial
condition. Similar to equations (3.45) and (3.49), the expected
values of the velocity and size of an entity may be deduced and
expressed as:-

]

(Vr) = and {r) = 3

1
3

where 8 and B8' are the tempers of the Vr and R distributions.
Hence equations (3.53) - (3.55) become:-

_ 2 p? 1T ] d<u>
9%y T BT @ 2@ B/ Tdy
\ _ 1 1 1 d<u>
o) Xy = 3 - E‘l ’ g ’ ——-a'y
2
_ po°Cp Pr 1 1 d<Tf>
and 0 = rlmmee)-@ o B o

As indicated in section 3.2.1 B is inversely proportional to the
internal energy or the temperature of the turbulent fluid, and it
may be deduced that:-

1

<T'F> o I3

1
or 9§§fi = K.d&%'
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Introducing a set of constants such that

U)l = '1%21—1 . C
b2 = 5C
2
Y3 = %EB . (T_’EP—YP‘?).C,K

where C is the constant as derived in equation (3.50). Therefore,
equations (3.51) and (3.52) becone:-

1 U1 d<u> Y, d<u> 1 dP _
A B ro a8 0 (3.5
d y;  d( B) by d<u> Uy d<u>] d<u>
and v () +[38)7_3)7_+'é7 dchfy -0
(3.57)

A simple and perhaps rather trivial solution to the above
equations is when there is no pressure gradient present in the flow
field and B is a constant. Hence, equation (3.56) implies,

-l .% + .-IUJT. g;_igf- = O

P
or d’<u>  _ 0
dy
giving <u> =Ay+8B (3.58)

The above equation gives a linear velocity profile typical for that of
Couette flow.

For a more general solution, with symmetry about the y-axis,
it may be assumed that:-

'|_'| yzz
33 L1+ @]
where B, and h are constants introduced so as to non-dimensionalise
B and y respectively. Equation (3.56) aives:-
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0]

dpP ., .
As ax is a function of x only, integrating the above yields:-

(¥14y,) 21 d<u> dp

éo e ]—dy— = Y (3.59)
d<u> dP Bo 2 y, 2 -1
- T Ix ., — Y1+ )

Y X (Y1+y2) [ " ]

Expanding the expression,y[ 1 + (y/h)ﬁ'] using Taylor's series and
considering the region where (y/h)<<1, terms with higher than second
order of (y/h) may be neglected. Hence:-

d<u> _ dP Bo
dy~ dx * (V1+02) * Y

_ dP 302 yz
"R (7oA I S

with <u> y=0 Uo, the velocity profile is thus given by:-

_ dp B y?
<u> = Uo + X (0.0, 2 (3.60)

The above equation gives a velocity profile for the core region of

the flow under the influence of a pressure gradient. Hinze {143}
provided experimental evidence to indicate that the mean velocity in
the core region may be described by a velocity defect law of the form,

<u> = Uo + A.yn (3.61)
where A and n are constants determined by experimental data. The

value of the exponent n generally lies between 1.4 and 2.1 which
agrees fairly well with the above result.
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3.3.2 Flow near a plane solid boundary

——————

Although many of the assumptions taken in the present analysis
indicate that it is not valid in a flow region near a solid boundary
or in a turbulent jet, investigation is still attempted so as to
explore the limitations to the analysis.

Near a plane solid boundary, isotropic turbulence may not be
assumed and it is unlikely that representation of an eddy with a
sphere will be satisfactory. It is Tikely that an eddy is better
described by an ellipsoidal shape having symmetry about an axis
perpendicular to the boundary. This stretching of the eddies was
also suggested by the experiments of Comte-Bellot {144},

Consider an ellipsoidal eddy having semi-principal axes (a,a,b)
at a distance y from the 1imiting boundary of the turbulent region.
The symmetric scale b will depend on both a and y, hence b may be
expressed as a function of a and yi-

b = b(a,y) (3.62)

It is assumed that a distance h can be found such that for y>>h,
the eddies are again spherical. As the wall is approached, the
ratio b/a decreases monotonically, tending to zero as y tends to
zero. Hence, the parameter b may be expressed as:-

b = ay/h (3.63)

such that at y = h, b = a and as y tends to zero, b also tends to

zero.

It was shown by Lamb {134} that, to a reasonable degree of
approximation, the force acting on the ellipsoidal eddy of axes
(a,a,b) may be taken to be independent of b and expressed as:-

F=6ma.Vr
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The mass of the ellipsoid does, however, depend on the value of b
and can be expressed as:-

Considering the rate of energy dissipation due to the ellipsoidal
entity:

F G = FTr
_g_ (VY‘Z) _ --9— u h _Y..Z
dt V' 72 T2 oy aT
Hence d ,Vr? 9 Vr?
(at 0 = 5L b %‘zyar) (3.64)

As already discussed in section 3.1.1, the expected value of a2 may
be expressed in terms of 1ts distribution as in equation (3.49),
therefore:-

1
<a2> = -?—B—r
Using results obtained from equations (3.45) and (3.50), the
dissipation term® may be obtained as:-

u

o =‘—2— .C (3.65)

<=z

The above equation indicates that dissipation is inversely proportional
to the distance from the wall, which is a reasonable conclusion,

It was shown by Laufer {145} that, in turbulent flow near the
walls of a channel, the energy diffusion term is small compared with
the production and dissipation terms. Again, considering the mean
flow to be steady and unidirectional, the momentum and energy equations

become: -
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1 d
o ay["xy *0'xy] =0 (3.66)

d<u> _ _ % h
and [cxy+o'xy].1-y—— =0 = -5 . (3.67)
Equation (3.66) yields:-
! -

~UXY to xy) = C
Hence:-

C d<u> _ _ 9u h C

dy 2y

u> = - %%- h.-gr gny + K

or <u> = --%; h.K.an y + K' (3.68)

The above equation gives a logarithmic velocity profile near
a plane solid boundary. The analysis described above compares
well with both experimental evidence and other researchers' analysis
for regimes near the wall, as well as away from the wall (i.e. the
law of the wall and the power law respectively). The only parameter
differences in the analysis for the two flow situations is the
different shapes in the eddies in the two regions.

3.4 Heat Transfer in circular pipes

Most analyses of heat transfer in turbulent flow assume the
equality of eddy diffusivities of heat and momentum. However,
modern versions of the analogy between heat and momentum transfer
state that, for any particular fluid, the ratio of eddy diffusivity
of heat to the eddy diffusivity of momentum is in general a function
of Prandt] number. Analysis in section 3.1 has resulted in the
presentation of a turbulent Prandtl number given by:-
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1 €H 4,5 Pr
S 3.69
L T3 Pry (3.69)

t €y

Although the turbulent Prandtl number varies across the section of
the pipe, it has been indicated that fairly adequate predictions of

heat transfer may be made by the assumption of a constant turbulent
Prandtl number,

The momentum and heat transfer equations across the nipe may
be expressed as:-

T_ (1 - _Y'XO-) = (v + e\)) %-)TU (3.70)
d dT
an f%)0(1 - -%%) = -(k + p szzH)ay (3.71)

The above equations may be integrated across the pipe to obtain
temperature distributions as a function of y. To carry out the
integrations, universal velocity distributions are used. As shown

by McAdam {146}, the manipulation led to the temperature distributions

as:-
* . _ (q/A) *
yt <6 ¢ (T, -T) = 0O . Pr.y (3.72)
0 p.Cp?To7p
*
Ao y
5ey*<30:  (T,-T) = —2LA/A) o 14Ppt. Pr(d- 1)
‘ Prt. OCP’/ o/ [ = )
(3.73)
*
30y’ 1 (T,mT) = 1 25(a/A)o '5 o (Re /f¥'
Prg - on[_g/- Nz
(3.74)

where the suffices 0, 1 and 2 denote conditions at y*=0, y* = b,
and y* = 30 respectively and F is the diffusivity ratio given by:-
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F = ey ¥ k/oCp

Adding the above equations across the pipe yields:-

Ty = —9(a/A)
(Ty-Te) = 5Pt-OCPj%S75 [ PryPr + a0 (145 Pry Pr)
F'
+ o .n 6%%).]2? ] (3.75)

The heat transfer parameter of the flow, Nusselt number, may
be expressed as:-

o DD _ D (g[
k- (To-Tw)  \3Y/,

f
P /F' Re. Pr
Hence, Nu = (T—:T 't 12

To_Tm) 5[ PryPp + 2 (145PpPr) + 5on(RY j;; ]

o c
i ro ;
where T Th ) 1 E_.;Q:%_ 2mr dr (3.76)

As the eddy diffusivity ratio, F, is given by:-

EH )
N G 7/ 0) (3.77)

and over a large part of the flow, eH>>k/pCp, it may be assumed F = 1,
Comparing with Martinelli's experimental results indicates that the
above assumption is reasonable for Pe >10°, Values of F for less
restricted values of Pe are shown in Table 1(a). Also, values of
(To-Tm)/(To-Tc) are shown in Table 1(b), Hence, using equation
(3.69), the heat transfer parameter, Nu, may be expressed as:-

(28 Re. |3
Nu =
To-T 1+3P 5+15P R f
T2y o[ B g s S Ly 2y [T
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where /f/2 may be obtained experimentally or from empirical
relations proposed by Drew et al {147} as,

f = 0.0014 + 0.125.Re" "2 (3.79)

for Reynolds numbers between 3,000 and 3,000,000 or

.2

f = 0.046.Re (3.80)

over a limited range of Raynolds numbers between 5,000 and 200,000.

Nusselt numbers obtained using the above equation (3.78)
are slightly higher than those obtained using the assumption
of equal eddy diffusivities. This trend is as expected and
thus further supports the investigation of a non-unity turbulent
Prandt1l number,

3.5 Concluding Remarks

The entity concept proposed by Tyldesley and Silver has
been thoroughly presented. In particular, the relationships
between the two random variables in the analysis, R and Vr,
have been investigated. Further development of the entity
concept has enabled solutions to the momentum and energy
equations to be made under simple flow conditions. The main
limitation to the analysis was the assumption of isotropic
turbulence. |

It seems that the present type of approach is capable of
describing the behaviour of a turbulent fluid to a degree of
accuracy comparable with other theories in common use. It is
more satisfying to be able to discuss the structure of turbulence
using an analysis closely related to the well established
formalism of statistical thermodynamics.

In the analysis, Shannon's communication theory which was
originally proposed for investigating the electronic communication
signals has been successfully used for the interpretation of
turbulence parameters, Therefore, the communication theory
becomes a powerful tool in studying turbulence phenomena. The
comparative simplicity of the model and the subsequent analysis
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makes application to problems in turbulence tractable and it seems
likely that it will be possible to describe the behaviour of
turbulent fluid in most problems for which a laminar solution is
possible.

It is concluded here that the described model of turbulence
is a useful concept for predicting the transport behaviour 1in
simple turbulent flow. However, the general limitation of a
concept derived from a 'varied mixing-length' or 'eddy
diffusivity' model is that of its simplicity, and thus only
capable of predicting simple shear flows.
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4. EXPERIMENTAL FACILITIES

In order to enable a study of turbulent transport properties,
a vater circuit which was originally designed by Philip {132} and
subsequently modified was used. The circuit was of the open-return
type, consisting of four pipelines of different diameters, As part
of the turbulence measurements were to be made using a DISA Laser
Doppler Anemometer, the working sections were designed to be of

clear perspex pipes to allow the admission of laser beams through
the flow.

The test sections could 3also te removed and replaced with
artificially roughened pipes. In the middle of each test section,
an injector was fitted to allow the injection of pre-heated fluid
into the main flow so as to carry out direct heat transfer measure-
:ments.

4,1 Main structure of Water Tunnel”

The main recirculating section of the test rig was made of 76 mm
internal diameter polypropylene pipes and fittings. Polypropylene
was chosen for its resistance to attack from most fluids and chemicals,
thus allowing the rig to be used with various fluids in the future.

A schematic diagram of the tunnel is shown in Figure 6. As the
material is resistant to most chemicals, it could not be joined by
glueing or using solvents as with other plastic pipes. The best
jointing method was found to be the fusion welding technique.

Water was stored in a main sump-tank of Im® capacity. A
galvanised tank coated with bitumen paint was used, so as to keep the
contamination of water to a minimum., The return line into the sump
tank had an 'elephant's foot' fitted and there was a baffle in the
middle of the tank. These helped in destroying the momentum of
the fluid, thus ensuring a calm and airfree suction for the pump.

The main circulating pump was a WEIR SNA3 MONOGLIDE type,
single stage centrifugal pump, capable of delivering a maximum flow
rate of 30 litres/sec at 17 metres head. This pump was found to be
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adequate in providing the level of flow rate desired in the test
section.  Although the perspex pipes in the working section could
sustain pressure of up to 5 bars, some of the joints were found to
be weaker. A butterfly valve immediately downstream of the pump
was installed, so as to relieve some of the pressure on the perspex
working sections of the rig. 1In each of the four main branches, a
butterfly valve was fitted so that each, and any number of lines,
might be selected or closed. The flow returned via a main control
gate valve to the sump tank. Control of the flow rate was carried
out using the main butterfly valve as well as by opening or shutting
lines other than the one being used for measurements.

An orifice plate situated upstream of the four branches was
used to monitor the bulk fluid flow rate. This measuring device,
as designed in accordance with BS1042 {148}, was found to be necessary
so that flow rates and hence velocities measured using the Laser
Doppler Anemometer could be checked.

4,2 Perspex working section

The central test section was manufactured from clear, extruded
acrylic tubes. Four different diameters were used, namely 25 mm,
38 mm, 50 mm and 63 mm nominal internal diameters. Flanges and
spigots were fitted in all the joints in the perspex sections to
ensure a smooth transition of flow past the joints. '"TENSOL'
cement was used to join all the perspex pipes.

As indicated by Nikuradse {84}, a minimum entry of 25 diameters
was required for fully developed turbulent flow, a minimum of 35
diameters downstream of the beginning of the working section was
reached before an injector was placed into the main stream. The
injector was used for the injection of pre-heated fluid for direct
heat transfer measurements, There were entry ports for ten thermo-
:couples downstream and one upstream of the injector, so that axial
temperature distributions could be obtained downstream of the injector,
The thermocouple entry ports were perspex saddles made from similar
sheet as the pipe flanges. They were drilled and tapped for a plug
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and included a small well for a rubber grommet under the threaded
hole. The centre of each plug was drilled so that a thermocouple
could be inserted and firmly held by screwing onto the grommet.
One view of the perspex section is shown in Figure 7, The
injector which was a 1 mm internal diameter stainless steel
hypodermic tube was also glued onto one of the saddles,

It was essential that all the perspex sections were kept
clean and polished, because any scratch or dirt on the perspex
surface could impair the setting up and operation of the laser
doppler anemometry.

4.3 Injection Circuig

An injection system with a flow-meter was incorporated so
that flow rate of up to 0.75 litre/min through a 1T mm internal
diameter injector could be achieved and measured. This could
produce velocities of up to 15 m/s through the injector. The
fluid for injection was contained in a 100 litre capacity, fully
insulated tank, The temperature of the fluid was controlled by
means of a variable thermostat via a contactor. The capacity of the
tank contained sufficient fluld for a continuous injection of up to
2 hours at maximum flow rate, thus allowing sufficient time to carry
out a series of temperature measurements,

As mentioned in the Tast section, the injector was manufactured
from 1T mm internal diameter stainless steel hypodermic tubing. The
injector was fitted to the perspex test section by means of a saddle
similar to those used for the thermocoupie entries. A copper tube
extended back from the injector for approximately 10 cm and ended in
a tee fitting to which a nylon tube from the injection pump could be
fitted. The other junction of the tee was fitted with another
thermocouple entry, so that the temperature of the heated fluid
entering the injector could be measured. The area around the tee
junction and the entire copper tubing was covered with insulating
material, so that deviation from the temperature measured at the tee
junction and the temperature of heated fluid entering the injector

was negligible.
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The prime mover of the injection circuit was a small qun
metal gear pump driven by a 0.4 kW D.C. motor, which was, in turn,
controlled by an electronic variable potentiometer type speed
control. The flow rate was measured by means of a variable
area flowmeter. The fittings in the circuit were connected by
means of nylon tubings and 'ENOTS' type couplers. The flowmeter
was calibrated relative to the injector size in terms of flow
velocity, rather than flow rate, so that injection velocity could

be directly adjusted to be the same as the bulk fluid velocity at
the test section,

4.4 Roughened pipes

To study fully the effects of surface roughness on heat
transfer, it is required to separate the regions such that k*<5,
5<k*<55 and k*>55, Although it is generally accepted that the
turbulence flow pattern is not affected by the surface roughness
in the case that k*<5, as indicated in section 2.2, the increase in
surface area of the rough wall inside the laminar sublayer could
still affect the heat transfer slightly.

The full effects of surface roughness on the heat transfer
were not studied with the present work, as this would require
extensive experimental work. Instead, the experimental investigation
was confined to roughness height such that k*<5. This would provide
the first critical experimental assessment of the theoretical analysis
carried out in section 3.

In order to make such an investigation, internal surfaces of
perspex pipes were coated with a thin layer of paint. Before
coating, the paint was mixed with fine particles of less than 125um
diameter. To obtain different relative roughness on the pipe wall,
different quantities of particles were mixed. The method of coating
was very similar to that of Nikuradse {46} except that, in his work,
lacquer and sand grain were used. As perspex material is resistant
to paint, special adhesive chemical was added to the paint by the
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so that, when coated, the paint formed a permanent layer on the pipe
surface,

As mentioned earlier, because the test sections had to be
clear, so as to allow the admission of laser beams, two stripes of
draughting tapes of 10 mm and 20 mm wide were adhered to the internal
surface of the perspex pipe longitudinally before coating. After
the paint was dried, the tapes were peeled off, leaving the test
section with two parallel sections clear. A cross-section of one
of such coated pipes as well as a picture are shown in Figures 8
and % respectively. The roughness height of each pipe was
measured accurately using a RANK 'TALYSURF' roughness measuring
system. Typical outputs of such roughness measurements are shown
in Figure 10(a) - 10(c). The diameters of each pipe were measured
accurately using micrometers and the relative roughness ratios
derived from these measurements, The relative roughness ratio,
r/k, obtained for the experimental investigation was between
7.2 X 10°  and 2.5 x 10S with absolute roughness height between
4um and 10um.  This level of roughness height was not sufficient
to be projected beyond the laminar sublayer, so that k*<5,



5. EXPERIMENTAL TECHNIQUES

5.1 Velocity and turbulence intensity measurements

The measurements of velocity and turbulence characteristics
during the present work were carried out using a DISA 55L Laser
Doppler Anemometer. Laser doppler anemometry is a highly
advanced system for scientific measurements of local flow velocity
and possesses outstanding advantages in flow measurement.

The most notable advantage is the non-contact probing,
which does not disturb the flow. Only light is needed to be
transmitted to the point of interest and the 1ight from a laser
can be focused onto a very small volume where the velocity is
required. The consequent resolution, typically 20 — 100um exceeds
that obtainable by any other method. As it is a high resolution
fast response technique, it is in the field of turbulence that its
potentialities are fully realised. On the other hand, this
technique is not well suited for measurement of bulk flow as this
requires an integration over a cross-section.

One of the main limitations of the laser doppler technique is
its dependence on the presence of particles or seedings in the flow.
However, measurements in water flow is far less of a problem than
air flow, as mainswater generally contains sufficient contamination
in the way of particles for laser doppler anemometry, so that
seeding is usually not required. A 1ist of the advantages and
disadvantages of the laser doppler technique was suggested by Drain
{149} and is shown in Table 2.

5.1.1 Principle of LDA

In any form of wave propagation, frequency changes can occur
owing to movement of the source, receiver, propagating medium, or
intervening reflector or scatter. These shifts of frequency are
generally called 'Doppler' shifts after the Austrian physicist who
first considered the phenomenon in 1842.
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In order to utilize the measuring principle based on the
Doppler effect, a monochromatic 1ight source enitting coherent
Tight waves must be used to produce theincident beam to the flow.
The laser fulfils these requirements of the light source and, with
its high intensity, 1s well suited for this purpose . When the
laser beam passes through the flow, the 1ight is scattered by
particles suspended in the fluid, The scattered 1ight contains

information about the velocity which is interpreted by optoelectronic
means.

The optical and optoelectronic equipments used in laser
anemometry are, besides the laser itself, a beam splitter, lenses,
apertures, a filter and a photodetector These components may be
arranged for different modes of operation, namely the reference beam
mode, the differential-doppler mode and the dual beam mode. Durina
the course of the present experimental work, the differential-doppler
mode was chosen as it has a considerable signal to noise advantage
over the other modes. Also, with this mode, scattered 1ight may be
collected over a wide aperture, whereas with the reference beam
technique, the useful aperture is extremely restricted.

A simple differential doppler arrangement is jllustrated in
Figure 11. The two 1lluminating beams derived from the laser are
focused onto a small region conveniently by a single lens. Scattered
light from this region is focused onto the photodetector. Since 1ight
scattered from the beams reaches the detector simultaneously, a beat
is obtained of a frequency equal to the difference in Doppler shifts
corresponding to the two angles of scattering. It may be shown that
the beat frequency is independent of the receiving direction and is

given by:-
= & sin3 (5.1)

where u is the velocity of particles passing through the measuring
volume, A is the wave length of the laser light and © is the angle

between the two illuminating beams.,

Hence, the velocity of particles through the measuring volume
or, in fact, the velocity of the flow, 1is thus:-
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u=___—_
. 0 5.2
2 sin3 (5.2)

As the region where the two beams cross is full of interference
fringes as shown in Figure 12, the modulation of the intensity at
the photodetector is simply due to the variation in the illumination
of particles as they cross 1ight and dark fringes. For this reason,

the technique is sometimes called the 'intensity modulation' or the
'real fringe' method.

5.1.2 Measurements using LDA

The laser doppler anemometry equipment used in the experimental
study consisted of a SPECTRA PHYSICS 15 mW Helium-Neon laser, a DISA
55L optical unit, a photomultiplier, a high voltage supply, a doppler
signal processor with a preamplifier, a frequency tracker and a meter
unit, and an ADVANCE 44 digital voltmeter. The output signal from
the signal processor was linked directly to a DEC PDP 11/10 computer.
A schematic diagram of the LDA measurement chain is shown in Figure 13.

The laser beam was passed into the optical unit housing where
it was split by means of a biprism into two beams of equal intensity,
one passing through the biprism, and the other being deflected
through 90° as in Figure 11. The other beam was then deflected again
by means of an adjustable surface mirror so that it ran parallel to
the original beam, but separated from it. The two beams were then
focused onto an intersection point by means of a plano-convex lens
at the front of the housing. In order to ensure that the two beams
intersected perfectly, a test objective was used to project the
intersection wvolume onto a screen as in Figure 14. Adjustment of
the intersection was made via the two adjustment screws on the mirror
housing of the optical unit. These screws turned the glass wedge
plates adjusting the direction of one of the beams. With correct
intersection adjustment, the screen showed two overlapping spots

with interference fringes.

The beams were introduced into the flow and positioned using
a traversing mechanism. Together with the experimental rig, a
special gantry and traverse mechanism was built to enable the
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measuring volume to be traversed across the flow without disturbinc
the fine adjustments. Such a traversing mechanism is shown in
Figure 15, The photomultiplier was then set focused onto the
measuring volume. It simply detected the doppler shift of the 11ght
scattered from the measuring volume and amplified it to an acceptable
level for the electronic instrumentation. The high voltage required

for the photomultiplier cathode was supplied by the high voltage unit
with the anemometry,

The output from the photomultiplier tube was passed to the
preamplifier in the signal processor via the high voltage unit.
The signal was amplified and filtered before passing to the frequency
tracker. The tracker followed the doppler frequency and gave a D.C.
output voltage directly proportional to the frequency. Apart from
displaying this frequency on the meter unit, it was also sent in
parallel to two BNC sockets on the front of the meter panel. The
output from the meter unit was monitored on a digital voltmeter as
well as connected to the minicomputer for on-line data sampling.

5.1.3 Computer Link

The processing of results by digital means was carried out by
a DEC PDP 11/10 computer. The small digital computer has 16 K store,
part of which was used to support the programming language, BASIC.
The voltage output from the frequency tracker was collected using
the AR17 analogue/digital converter unit in the computer., Data was
stored and then analysed when sampling was completed. Using BASIC
to control the sampling, 1t was found that the largest and fastest
optimised sample size and rate was 1200 at 2.5 kHz. As a sample size
of 1200 was found to be insufficient for the investigation, the
ensembled or time averaged technique which made an average over
repeats of an experiment was used to sample 1200 data ten times,
assuming that conditions remained constant during the process, thus
making the total number of samples 12,000,

The analogue input of the AR11 operated in a bipolar mode

between -2.5V and +2.5V. As the output from the tracker was
0-10 V, it was necessary to include a voltage divider in the system.
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With the output of the AR11 between 0 and 1024 non-dimensionally

the AR11 together with the voltage divider had to be calibrated,
The calibration was carried out using a frequency generator and
the signal processor in 1its manual mode as a DC supply. The
calibration with subsequent least square fit of the data produced
a first order polynomial for converting the AR1] digital output
into a voltage for the calculation of doppler frequency. This

calibration was checked from time to time to ensure stability of
the voltage divider.

5.1.4 Calibration of measurement chain

The accuracy of the LDA depends on an accurate measurement
of beam separation angle, which may be obtained simply from careful
measurement of the optical set-up geometrically. However, the
accuracy and reliability of the whole measurement chain requires
verification.

First of all, calibration tests were carried out to obtain
the optimised sample size for accurate measurements of velocity and
turbulence intensity. Figure 16 shows the results of some such
tests. It indicated that, with a sample size of 12,000 or more,
results converged with an error band of less than 2%. Hence,

a sample size of 12,000 was chosen for the main tests.

Having established the number of samples required for
accurate velocity measurements, tests were carried out to verify
the accuracy of the measurement chain. As the LDA only allowed
the measurements of velocity at a point, a velocity traverse had
to be carried dut and integrated over the cross-section to obtain
the mean bulk fluid velocity. As suqggested by Boadway & Karahan
{150} , refraction at optical surfaces changes the paths of the laser
beams, thus moving both their point of intersection and the angle
between the beams. It was therefore necessary to evaluate the
actual distance of the beam intersection from the inside of the
pipe wall relative to the virtual distance of the beam intersection.

This is shown in Appendix 6.
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As mentioned in section 4.1, an orifice plate was used to
monitor the bulk fluid flow rate. Using the BS 1042 {1483,
pressure drop across the orifice plate was used to calculate the
flow rate and hence the mean velocity of the flow. Figure 17
shows the results of such a velocity traverse. The mean velocity
calculated from the velocity traverse measurements compared well
with that obtained from orifice plate results. The 4% discrepancy
between the two indicated that the entire measurement chain may be
considered accurate to within 4%. Computer programs for the above
calibration tests are listed in Appendices 7 and 8.

5.2 Microscale measurements

Microscale is a measure of the average dimension of the eddies
that are mainly responsible for the dissipation of eneray. It may
also be considered as a measure of the dimension of eddies which, at
the same intensity, produce the same dissipation as the turbulence
considered. The measurement of microscale was carried out using a
method based on the zero-crossing technique proposed by Laufer {130}
and Liepmann {131},

With the zero-crossing technique, the microscale of turbulence
was given by:-

| U
A= N (5.3)

where T was the mean velocity and N was the average number of zeros
of the u fluctuations per unit time, The derivation of this
expression assumed u to be a pure harmonic such that:-

u = ursin 7 (5.4)
Although Laufer and Liepmann suggested that the expression was also
true for a real turbulence, a number of the high frequency fluctuations
were bound to be ignored due to the nature of turbulence characteristics.
However, it may be shown that the number of maxima and minima of u
fluctuations per unit time is equal to the number of zeros with a
harmonic wave form. Furthermore, counting the number of maxima and
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minima, or the inflexion counting technique, also takes the nigh
frequency fluctuations of the turbulent signal into account,

The evaluation of microscale was carried out with the
measurenent chain as described in section 5.1.2 using the inflexion
counting technique. A computer program, as shown in Appendix 9,
was written which compared the slopes of two consecutive pairs of
results and incremented every time it changed sign, A lack of
available experimental data on microscale has prevented a direct
verification of the method. However, values of microscales obtained
during the tests were found to be abaut 1 2 mm, which was considered
to be of the correct order of magnitude.

5.3  Temperature

In order to carry out temperature measurements, thermocouples
situated upstream and downstream of the injector were used. One
thermocouple was placed in the injection circuit just before the
injector, so as to measure the temperature of the injection fluid.

The thermocouples were PYROTENAX TIOHT7 nickel chromium/
:constantan insulated thermocouples with a bonded hot junction. The
thermocouple e.m.f. were sampled with a SOLARTRON 3230 data transfer
unit coupled to a DVYM and driven by a TS 50/3232 low level scanner,
as shown in Figure 18. Although the data transfer unit was capable
of sampling at a rate of 25 Hz, the teletype printer which was used
for outputting the data, had a much slower printing speed. Hence, the
sample rate during the temperature measurements had to be greatly
reduced to approximately 2Hz,

Twelve thermocouples in all were used for temperature measure-
:ments and were calibrated individually in an oil bath for the range of
15°c~80°C, A second order polynomial was derived for each thermo-
:couple, using the method of least square. The computer program
written for the derivation is listed in Appendix 10.  Coefficients
of each polynomial are shown in Table 3.
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One of the thermocouples was placed in the injection circuit
to monitor the temperature of the injection fluid, Although the
area just before the injector was insulated, temperature loss along
the stainless steel hypodermic injector due to convection stil]
existed and resulted in the thermocouple giving a higher reading.
In order to verify this loss against theoretical prediction, another
thermocouple consisting of fine copper/constantan wires of 0.16 mm
diameter was placed inside the injector just before the injection
point, so as to measure an accurate temperature of injection fluid.
This thermocouple was also calibrated between 15°C ~80°C and
results found to be almost identical to that provided in BS 1828
{151}, Figure 19 shows the result of such calibrations.

Tests have shown that the temperature loss along the injector
was well predicted by the theoretical analysis as outlined in
Appendix 11.  Therefore, during the main experiments, the fine wire
thermocouple was not used, so as not to restrict the injection flow
rate, Injection temperature was thus evaluated from readings obtained
using the thermocouple situated before the injector.

5.4 Heat Transfer

Apart from obtaining heat transfer measurements from velocity
and turbulence intensity measurements as described in section 3.1.5,
heat transfer measurements were also deduced from temperature
distribution along the centreline after the injection of heated fluid.
By keeping the injector size as small as possible, the injected fluid
could be considered as a moving point source of heat.

Mith a continuous point source of heat at the centre of the
pipe, the rise in temeprature along the centreline may be expressed

as:-

(5.5)

(T-To) = Hﬁkt.%k =X0)

where Q is the heat source strength, k¢ is the total diffusivity of
heat and (x-xo) is the distance from the injector, Re-arranging
equafion (5.5), the eddy diffusivity of heat may be expressed as:-
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S U'dz A0 1 Vv
H™ 76 AT " (X=x5) ~ Pr (5.6)

where U is the mean velocity of injection fluid, d is the diameter
of injector, AG© is the difference of ambient and injection
temperation and AT is the temperature rise along distance (x=Xg) -

Along the axis of the flow, it may be assumed the eddy
diffusivity of heat to be uniform with x. Therefore, for a

A

particular flow condition, %7 - x1-xo) could be assumed constant.

However, experimental results as in Figure 20 indicated that the slope
of %%/(x-xo) failed to be constant in two regions. As already
suggested by Sheriff & 0'Kane {101} this could be caused by the
assumptions of single point source of heat and infinite boundary

not being satisfied. Particularly, in the region very near to the
injector, momentum change in the injected fluid immediately after
injection caused by the difference in temperature, density, viscosity
and even velocity led to a finite distance or time required for
developed flow. Also difference in temperature could lead to
irregularity in flow pattern due to buoyancy effect. Further
downstream, the effect of the pipe wall became apparent and thus
affected the temperature difference,

The above problem was overcome by least square fitting a
straight line through the points in the graph of '%%'/(x-xo) A
distance from injector, Either point from the two extremes which
lay outside a 5% error band was neglected and a new straight line
fitted. The process was performed iteratively until all the points
lay within the band. The slope of the final straight line was then
used for the evaluation of eddy diffusivity of heat. A computer
program, as listed in Appendix 12, which applied the above process
and evaluated the eddy diffusivity of heat, was written for the
analysis. '

As the theoretical analysis in section 3.1.5 suggested that
the eddy diffusivity of heat could be expressed as:-

_ Pr a2 2 5.7
€, = ‘?ﬁf%igﬁFT <r2><Vo?> (5.7)

where <r2> is the expected value of the square of half the microscale
and <Vo2> is the expected value of the square of the initial relative
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entity velocity., The <r?> term was obtained as discussed 1n
section 5.2, In the centre of the pipe, assumption of isotropy
allowed the assumption of <Vo2> = <Uo2> . ATthough <Uu?>could

not be measured directly using the LDA, it could be deduced from
the instantaneously and mean velocity measurements as u'=u-u.
Hence  <Vo?> was given by:-

<Vo2> = _ (5.8)

As Tisted in Appendix 13, a computer program was written for the on-
:1ine processing of velocity, turbulence intensity, microscale,
entity velocity and hence the eddy diffusivity of heat.

5.5 Pressure measurements

As mentioned in sections 4.1 and 5.1.4, pressure drop across
the orifice plate had to be obtained in order to verify the bulk flow
rate. A NATIONAL SEMICONDUCTOR LX1603DF fluid filled differential
pressure transducer was used for the measurements. Although the
response of the transducer was rather slow, it was found to be well
suited for monitoring bulk or mean pressure difference. The trans-
:ducer was an electronic chip type, containing a bridge circuit and
required only a 15V D.C. power supply. The transducer was calibrated
using a vacuum pump and a mercury manometer. As shown in Figure 21,
the calibration was found to be consistent with the design data
supplied by the manufacturer,
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6. RESULTS AND OBSERVATIONS

6.1  Velocity, turbulence intensity and microscale

A series of experiments was carried out to obtain the
measurements of velocity, turbulence intensity and microscale. A
longitudinal traverse of the pipe was undertaken to investigate the
variation of the turbulence characteristics in the spatial direction.
As all the measurements were taken at Teast 32 diameters downstream
of the beginning of the perspex working section, turbulence was
expected to be fully developed, hence, velocity, turbulence intensity
and microscale measurements were expected to be constant in the
snatial direction. As indicated in Table 4, the deviation of
velocity, turbulence intensity and microscale measurements in the
spatial direction was small and, in all cases, lie well within the
error band as discussed in Appendix 14,

Velocity traverse in the radial direction across the pipe was
also carried out. The velocity profile across the pipe, as shown
in Figure 22, compared well with the power laws. Apart from the
well-known 1/7 power law, as Reynolds number was generally greater
than 105, the 1/10 power was also plotted. The close agreement
between experimental data and the power laws further indicated that
the flow was fully developed in that region. Therefore, measurements
in the present experimental work were taken 32 diameters downstrean
from the beginning of the working section.

There was no direct control of the level of turbulence intensity
as it was only promoted by the sudden change of diameter at the
beginning of the working section. Fiqure 23 showed that the
turbulence intensities achieved in the tests were between 3% to 8%.
Measurements of microscales were also taken and Figure 24 indicated
that an increase of Reynolds number Ted to an increase of microscale.
The relationship between initial eddy velocity, as also described by
von Karman & Lin {152}, and microscale was shown in Figure 25 and
indicated that a larger energy dissipation eddy generally
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had a greater initial eddy velocity. The microscales obtained
durtng the experiment were found to be between 0.75 mm to 2.25 mm
which was the correct order of magnitude to be expected.

Figures 22 - 25 also indicated that, within the error bands,
the turbulence characteristics were not influenced by the relatively
low roughness ratio. As expected, when k*<5, the pipes could be
constdered hydraulically smooth and turbulence characteristics such

as velocity, turbulence intensity and microscale were not expected
to vary with relative roughness ratio,

6.2 Eddy diffusivity of momentum and heat

Measurements of eddy diffusivity of momentum were obtained using
the expression as discussed in section 3.1.4. Fiqures 26(a) and (b)
showed the distribution of eddy diffusivity of momentum obtained along
the centreline of pipes of two different diameters. The Reynolds
number achieved for the tests were between 2 x 10° to 10°%, thus
representing a typical range of Reynolds number for turbulence flow.
Results influenced by different roughness height were plotted. It
could be seen that the small roughness height coated in the pipes had
no effect on the eddy diffusivity of momentum, within the specified
error band. As expected, the values of eddy diffusivity of momentum
obtained were a few orders of magnitude larger than the kinematic
viscosity of the fluid. Moreover, as both the microscales and initial
eddy velocities increased with Reynolds number, the eddy diffusivity
of momentum also increased sharply with Reynolds number.

Figures 27(a) and (b) showed the eddy diffusivity of heat obtained
with the expressions as discussed in sections 3.1.5 and 5.4. It could
be seen that the results obtained with the thermocouple readings were
generally lower than those obtained with the LDA. Again, within the
estimated error band, the roughness height had no effect on the eddy
diffusivity of heat. Similar to that of the momentum transfer, the
values of eddy diffusivity of heat, obtained with either the thermocouples
or the LDA, were a few orders of magnitude larger than the molecular

thermal diffusivity, k/,Cp, of the fluid.
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7.  ANALYSIS AND DISCUSSIONS

7.1 Principle of similarity in momentum and heat transfer

In order to analyse the experimental quantities of eddy
diffusivity of momentum and heat, the principle of similarity was
applied. The existence of similarity parameters discovered on
the basis of the study of a model would apply, not only to the
original system, but also to an infinite number of other systems,
provided they were physically similar to the model.

As indicated by Gréber et al {153}, the method of similarity
allowed the researchers to generalise the experimental results with
the aid of the model rules. The determination of the model rules
reduced itself to the establishment of dimensionless parameters
which were in the form of products of powers of dimensioned quantities
such as length, temperature and velocity. The dimensionless para-
:meters of a given system can be determined in a number of ways. A
well-known technique called the Buckingham II method was used in
Appendix 15 to obtain a set of non-dimensional parameters which
satisfied the principle of similarity in turbulent momentum and heat

transfer. The similarity parameter could be expressed as:-
mo= H (7.1)
UD
o= 2 (7.2)
My = E,?— oCp (7.3)
I, = 5;6 (7.4)
Is = -i} (7.5)
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It was interesting to note that both the ratios of T, to -

and Ts to T, gave the familar similarity parameter, the Reynolds

number.  Also, the ratio of TIo t0 m ormy to r, was, in fact
the turbulent Prandt] number. Since MIs was the ratio of the
eddy diffusivity of momentum to the absolute viscosity and 1, was
the ratio of eddy diffusivity of heat to the molecular diffusivity
of heat, both N3 and 15 were expected to be very large. Lastly,

the ratio of 13 to 1, gave another familiar similarity parameter,
the Prandtl number.

]

As 1, 1, and Iswere closely related in the non-dimensional
analysis of turbulent heat transfer, I, and 5 were closely
related in the non-dimensional analysis of turbulent momentum transfer,
it would be sufficient to discuss only one of the parameters in each
group.

Figure 28 shows the variation of IIs against Revnolds number.
For each pipe configuration, it could be seen that the height of
roughness elements had no effect on the ratio of eddy diffusivity of
momentum to the absolute viscosity. It could also be seen thatgv/v
increased sharply with Reynolds number with an approximate slope of
4.0,

The ratio of eddy diffusivity of heat to thermal diffusivity
obtained using the LDA was shown in Figure 29. Similar to the

diffusivity of momentwn,géi.pCp increased sharply with Reynolds
number. As indicated in section 2.2 and 4.4 that while the roughness

elements lie entirely within the laminar sublayer, the transport of
heat in such roughened pipes would be 1ike the transport of heat in
smooth pipes, except for a slight effect associated with the increased
surface area of the rough wall., However, within the estimated error
band, no effect on the heat transfer could be seen.

Figure 30 shows the ratio of eddy diffusivity of heat to thermal
diffusivity obtained using the thermocouples. As shown in Appendix 14,
the heat transfer measurements obtained with the thermocoupies had a
narrower error band. This was shown to be the case as Figure 30
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indicated less scattering in experimental data. However, no

significant effect of the roughness elements on the heat transfer
could be seen. Although the ratio of eddy diffusivity of heat to
thermal diffusivity still increased with Reynolds number, the rate
of increase was much smaller, compared with that obtained with the
LDA  with an approximate slope of 2.0. As suggested by Sheriff
et al{101},{102} who carried out measurements with thermocouples
using the similar technique that heat transfer data were likely to
be underestimated due to finite boundaries of the pipe. Apart
from the two different slopes deduced from the two different
measurement techniques, the ratio of eddy diffusivity of heat to
the thermal diffusivity obtained with the two techniques compared
reasonably, particularly with lower Reynolds number.

7.2 Overall heat transfer

No overall heat transfer measurements were taken with the present
work, as this would involve eddy diffusivity measurements across the
pipe. However, as shown in section 3.4, overall heat transfer could
be fairly adequately predicted by the assumption of a constant
turbulent Prandtl number, Sv/EH. Figure 31 shows the heat transfer
similarity parameter, Nusselt number predicted using equation (3.78)
as derived in section 3.4. Semi-empirical relations for Nu derived
by other researchers such as Reynolds {2}, Martinelli {22},

Colburn {29} and Reynolds & Perkins {56}were also presented.

In order to make a comparison with other researchers' predictions,
Prandtl numbers of 10, 1 and 0.01 were used. As expected, the Nusselt
number predicted with the present work was slightly higher than that
predicted by other semi-empirical relations. This could be mainly due
to the assumption of constant turbulent Prandtl number across the pipe.

As most of the researchers proposed the heat transfer parameter
of the form, Nu = A Reb. Pr C, it would also be possible to correlate
the prediction obtained with equation (3.78) of section 3.4.  Such
correlation gave the heat transfer similarity parameter as:-
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Nu = 0.0125, Re °*8%pp 027 (7.6)

The above relation has numerical constants fairly close to those
proposed by Davies {55} and Reynolds & Perkins {56.}

7.3 Remarks and Comments

Since the internal surfaces of the Pipes were not completely
coated, as shown in Figures 8 and 9, pipes of different diameters
were no longer geometrically similar. Hence k/r, although widely
recognised as a similarity parameter, could only be used when r
was constant. With the pipes coated with roughness elements of
non-dimensional roughness height k*<5, the elements lie within the
Taminar sublayer, the change of roughness ratio was not expected to
influence the momentum and heat transfer. Although the increase in
surface area could still give rise to an increase in the heat transfer,
this possible increase being slight and the estimated error band
being around 20% to 40%, such increase was not evident.

Experimental data has shown that the turbulent momentum and heat
diffusivities were a few orders of magnitude larger than their
respective molecular diffusivities. Results obtained with the LDA
were found to be higher than those obtained with the thermocouples,
as expected. Another reason for this discrepancy could be due to the
assumption taken in deriving the expression for eddy diffusivities in
section 3. In their derivation, isotropic turbulence was assumed.
Although this would be a reasonable assumption for the flow of
turbulence along the centre of the pipe, small departure from isotropy
would make the assumption of spherical eddy no Tonger valid. With
the spherical eddy being stretched into a somewhat ellipsoidal eddy,
it was expected that the expected value of the effective size of
dissipation eddy be reduced. This would indicate an overestimate
of the prediction of turbulence transport parameters when the flow

was departed from local isotropy.

Experimental scatter for measurements taken in the pipes of smaller
diameter was found to be greater than that taken in the pipes of larger
diameter. This was expected as in a small pipe, the condition of
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isotropy was less likely to be satisfied and, hence, led to a further
overestimate of the turbulence transport parameters. A comparison
between Figure 27(a) and (b) shows that the discrepancy between
measurements with the LDA and thermocouples was greater with the pipe
of smaller diameter. This further demonstrated the above argument
as well as the suggestions of Sheriff et, al. {101}, {102} that

finite boundaries of the pipe led to the eddy diffusivity of heat
obtained with thermocouples being underestimated,

With the assumption of a constant turbulent Prandtl number which
was itself a function of Prandtl number only, overall heat transport
parameter was proposed with the present work, It was found to be
reasonable, compared with predictions suggested by many other
researchers, In accordance with most other workers, a simple relation
for Nusselt number was also proposed as:-

Nu = 0.0125,Re®8°% pp0-27

Also, the emergency of the above relation was based on a concept
that attempted to describe the detailed behaviour of turbulence character-
:istics and, hence, provided a more realistic and acceptable prediction
for engineering applications.

The results of the experimental work have shown that the expressions
for the eddy diffusivities of momentum and heat derived in section 3 were
valid for the prediction of momentum and heat transfer. Experimental
evidence obtained both with the LDA and thermocouples confirmed that
roughness elements, while lying completely within the laminar sublayer,
have no influence on the momentum and heat transfer. As the data
reduction of the measurements were made using the theoretical expressions,
this further indicated that the expressions derived theoretically in
section 3 were valid. Particularly, the eddy transport of heat was
shown to be dependent on the eddy scale and velocity parameters only and

independent of temperature.

A single heat transfer similarity expression was proposed without
restrictions on Prandtl number. As most other researchers' empirical
predictions for heat transfer involve a number of equations for different
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prandt] number or Reynolds number regimes, the present universal heat
transfer equation (3.78) has a significant advantage over the others.
Limitations to the use of this equation are the level of turbulence
intensity and isotropy, as the derivation of the equation required
the turbulence intensity to be low and flow conditions to be isotropic.

Departure from these conditions is likely to give overestimates to
heat transfer rates.
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8.  CONCLUSIONS

With a basic concept of a flux of eddies of random shape, size
and velocity, rather than an artificial mixing length or a correlation

function, a thorough and realistic criterion for the prediction of

momentum and heat transfer has been proposed. The analysis was based

on a thermodynamic approach using the stochastical theory of turbulence.
The macroscopic turbulence transport parameters were derived from the
description of microscopic behaviour of eddies.

Jaynes and Shannon's communication theory, originally used for
the investigation of electronic communication signals, has been
successfully used for the interpretation of turbulence parameters.
The comparative simplicity of the concept and its analysis made the

derivation of an analytical solution to most problems in turbulence
possible.

With the present investigation, the following conclusions could
be made:-

(i) it is necessary and sufficient to express the eddy diffusivities
of momentum and heat in terms of two independent parameters, entity
velocity and scale.

(ii) using the analysis, velocity profiles for simple shear flows
could be obtained.

(iii)ratio of eddy diffusivities or the turbulent Prandtl number
could be predicted without the use of any adjustable constants.

(iv) overall heat transfer prediction could be obtained with a single

equation for all ranges of Prandtl number,

However, a number of limitations still existed in the theoretical

analysis. Departure from jsotropic turbulence would result in the
1 eddies not satisfied and, hence, an over-
Moreover, the assumption

assumption of spherica

:estimation of eddy transport parameters.
of weak correlations between eddy size and velocity would restrict
the eddy velocity relative to the mean flow velocity to be small and

indicated better prediction with lower turbulence intensity.
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Also, with an eddy viscosity model of turbulence, only simple flows are
likely to be predicted.

The Taser doppler anemometer has been used for all turbulence
measurements, except temperature, which was measured with thermocouples

and a data scanner. The experimental techniques involved in the

investigation have been shown to be satisfactory, However, with the

method of roughening the pipes during the present investigation, pipes
of different diameters were not geometrically similar, thus making

the introduction of roughness ratio similarity more restricted than
customary.

It could be said that a new and realistic approach to turbulent
transport was thoroughly presented, The information or communication
theory provided a useful means for studying turbulence phenomena. As
a recommendation for future work, more refinement in the description
of eddy shape could be made. Particularly near a plane solid
boundary, the more detailed flow pattern will have to be investigated
and analysed. Experimentally, distribution of eddy diffusivities
could be measured across the pipe to derive a more accurate overall
heat transfer similarity parameter. In roughening theipes, geometrical
similarity would have to be maintained as far as possible, Finally,
the process of mass transfer in relation to heat and momentum transfer
could also be investigated using the present concept.
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Table 1(a) Values of F for Timited values of Pe

Re
be 10* 105 108
102 0.18 0.098 0.052
103 0.55 0.45 0.29
10 0.92 0.83 0.65
105 0.99 0.985 0.980
106 1.00 1.00 1.00
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lable I(b) Values of (To-Tm)/{To-Tc) for values of Re and Pr

Re
‘ > 10" 10° 10° 107

0 0.564 0.558 0.553 0.550
10°% 0.568 0.560 0.565 0.617
1073 0.570 0.572 0.627 0.728
102 0.589 0.639 0.738 0.813
1071 0.692 0.761 0.823 0.864
1.0 0.865 0.877 0.897 0.912
10 0.958 0.962 0.963 0.966
0% 0.992 0.993 0.993 0.994
10° 1.00 1.00 1.00 1.00
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Table 2 Velocity Measurement by the Laser Doppler Technique

Advantages Disadvantages
Does not disturb the flow Medium must be transparent
High spatial resolution ‘Artificial seeding may be
needed
Fast response Optical access is required
Response linear and easily Not suitable for measurement
calibrated of total flow as this requires

a tedious integration over a
cross-section
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Table 3. Polynomials for Thermocouples

Pemeesle e c
1 -0.216324 17.1919 -0.330355
2 -0.220018 17.2620 -0.451493
3 -0.211522 17.1575 -0.307668
4 -0.218163 17.2232 -0.417665
5 -0.210146 17.1660 -0.318308
6 -0.218138 17.2077 -0.342309
7 -0.208166 17.1485 -0.193740
9 -0,207287 17.1727 -0.343504
10 -0.215007 17.2124 -0.467030
11 -0.212972 17,2206 -0.471656
12 -0.220443 17.2473 -0.473862
13 -0,213515 17.2076 -0.438195
14 -0.218622 17.2125 ~-0.370868

Polynomial of each thermocouple is expressed as:-
T =AVZ + BV +C
where V is the voltage output in millivolts,

.0
and T is the temperature measured in C.
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Table 4.

Spatial Variation of Turbulence Characteristics

V-7

Vm/s) | V(m/s) S5k 1008 | (/s | Vo) YV« 100
6.11 0.87 3.10 .27
6.07 0.21 3.13 0.32
6.058 3.140
6.06 0.04 3.17 0.96
5.99 1.11 3.16 0.64
= Tu-Tu o
Tu(%) Tu(%) TU-TU yr009  Tu(%) | Tu(®) o X100
Tu u
4.25 1.73 5.17 3.45
4.31 0.35 4.87 2.55
4.325 4.998
4.36 0.81 5.04 0.89
4.38 1.27 4.91 1,75
5-8 1nne | 8 (mm) | § (mm) ® =8 1002
S (mm) S(mm) — x100% m 3 ©
3
1.263 0.34 0.577 3,55
1.261 0.18 0.600 0.29
1.259 0.598
1.265 0.50 0.620 3.64
1.246 1.01 0.596 0.38
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Fig.2
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Effect of wall roughness on the
laminar sublayer according to
Nikuradse’'s experiments with
uniform sandgrain roughness.
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g(y)

Fig.5 Osculation parabola of the lateral
correlation coefficient gly) and
the microscale A.
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Fig.8 Cross-section of a typical
roughened pipe.
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Output of roughness measurements.
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Fig. 11 A differential doppler velocity measurement system.
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drop across the orifice plate.
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Fig. 19 Calibration of Cu-Con thermocouple.
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Fig.20 Distribution of temperature
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Fig.21 Calibration of National Semiconductor
differential pressure transducer.
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Fig.22 Radial distribution of velocity
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APPENDIX 1. NAVIER-STOKES EQUATIONS AND REYNOLDS EQUATION OF MOTION

For an incompressible flow, the Navier-Stokes equations may be
expressed as:-

0

[, ] 2
Pl3t * X (uiuj)]— Ay T Vuy (A1.2)

As the instantaneous velocity may be expressed in terms of mean and
fluctuating velocities:-

U = U +u-l (A1-3)

Similarly,

0 Cﬁi + ui') = 0 (A1.4)

5 2 ! Al.5
+P')+HV('U_1-+U1- ) ( )
The Reynolds rules of averages have the following properties:-

Al



() f+g9g = f+73

(2) cf = c¢.f (c being a constant)

(3) fg = fg

(4) Lim fn = Lim (fn) (fn being a sequence of function)

Therefore equation (A1.4) may be written as:-

T o1
a_ui + au-i = O
axi ax1

As U‘i = 0, hence the conservation of mass equation may now be written
as:-

Q
c|

— = 0 (A1.6)

@
x

Equation (A1.5) becomes:-

3—1 aU-il 3 - — — = by
. .3p . oap! 27 2
= 32 A TR A

i

Again, taking the mean value of the above equation and putting U;1=O

and p' = 0,

A2



. T
lot * o @] ok (W = - e
J ] 3
d u, —
or 1 9 . _3p - ——r
P[ 5t X (UTUJ)] S T A 3 X; (=puyu;’)

Equations (A1.6) and (Al,7) are the Reynolds equations of motion for

the turbulent flow in an incompressible fluid.
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APPENDIX 2. MIXING LENGTH THEORY

For simplicity, the mean value of the transferable quantity q
may be considered to be a function of y only. A body of fluid which

originally belongs to a layer y=y moves to a layer y=y+2,  Since the
fluid preserves its value of q during the turbulent mixing process

over the path £ , at the new layer the fluctuating value of q will
be given by:-

|a'| = Qly#2l -9 () (A2.T)

Expanding q(y+9#) in a Taylor series about y, the above equation becomes:-

dq 2% d 5
|q||,= g_a% + Ta—fj F ... (A2.2)

As g may be considered a small quantity, it yields

0a
lqll = 9. a% (A2.3)

In actual analysis, further hypothesis about the variattion of the

mixing length g has to be made.

In Prandtl's original mixing length theory, it was assumed that
the momentum of the flow was a transportable quantity, Thus, for

parallel flow,

=

lu'] = 2. H; (A2.4)

Ad



By further assuming that the vertical velocity fluctuation v' to be
proportional to u' and the turbulent shear stress ou'v proportional

to their product, Prandtl obtained the formula for the shearing
stress of nearly parallel turbulent flow,

T = p.42.

dal : % (A2.5)

For actual appitcattions, the mixing length is a function of spatial
co-ordinates and the constants of proportionality in these cases
can only be determtned from experimental data.

Taylor pointed out that no physical reason justified the
assumption of the conservation of momentum during the turbulent
mixing process used by Prandtl, Instead, he suggested the use of
the theorem of the conservatton of vortictity or conservation of the
momentum as a starting point upon which to buiid up a more adequate
model for the mechanism of turbulent flows. On this basis, he
developed the vorticity transport theory,

If the vorticity is assumed to be the transportabie quantity,
then:-

dw
lwll = 9. a_‘;_f (AZ.G)»

For parallel flow and neglecting the viscous term, Reynolds equation

reduces to:-

R AN (A2.7)
X
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Hence,

dp _ dw
leading to
d d%u
& = el g (h2.8)

when the mixing length is independent of y, expression (A2.8)

is identical to that obtained by using Prandtl's momentum transport
theory. In general, these two theories give different results.
Even in the case where the mean velocity distributions given by
these two theories are the same, there is a difference between

the temperature distribution for the two corresponding cases.
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APPENDIX 3. SOLUTIONS TO EQUATIONS OF MOTION

The equations of motion for a spherical entity moving in a
turbulent fluid was given in section 3.1.4 as:-

du _ _ 9u 1 d<u> A3.1
T 7 =Wy =) (A3.1)
dV 9
SRR R (A3.2)
Ho- - —Zlé L (A3.3)
with initial conditions that (u,v,w)y=0 = (Uo, Vo, Wo).
t=0
Equations (A3.2) and (A3.3) become:-
-9u
V = Vo,€ Zpr?
-9y :
W = Vo,e 2pr?
H for steady fI -y
owever, for steady flow, g = V gy
vdv _ -.gE_Z V
dy 2or
dv. _ _ Su
dy Zor?
. -9
Vs eyt

y=0 gives V = Vo implies C = Vo

A7



v V = Vo - ?%%7 WY

2 2
y= g (o-v)
2 - 9y
Hence, y = —2-8—;— Vo (1-e Zor? t) (A3,4)

As the minimum value of € Zp'a‘zt s 0, there is a maximum value of
¥y given by:-

2o0r?
y* = Sg . Vo (A3,5)
. . ot
U Yy =y*(0-e Zor7 ") (A3,6)
..914 ¢
or e Zor? = 1 - y/y* (A3.7)

Equation (A3.7) becomes:-

.-gu

dy _ _ 9n _ 2pr? 50z ty d<u>
dF '26?2' [ U —9-1'1- Vo (1-e 2pr ). —a-y— ]
- | - Ju
= - Tﬁg)%z U+ VYo 'd%'}u?z (1 -2 ZQP t)
- Y
T * 7o = Vo ARk
(A3.8)

Since the ordinary differential equation % + P(x)y = Q(x) gives
the solution of the form :

Ide dex )
y.€ = JQ.e dx + C (A,3.9)

Therefore equation (A3.8) becomes:-

d<u>

9y 9
VI t d<u> IS t
ue Zor =J(VOW e pr -VOT) dt + C

A8



d<u>  2pp2

9u
= Vo . t d<u>
dy T & 27 Vo SFtsc
t = 0 gives U = Uo implies

- _ d<u> Zprz
C =Uo - Vo " O

= 7z t d<u> 2pr2 “ Uy
U= Uoe or N dy M (e or _]) _
9
d<u> H 4
- Vo 1}/_ t.e 2pr2
As © 2or? = 1 - y/y*
- 91-1 t
Zor® * = an (1 - y/y*)
and t = --ggﬁi (1 - y/y*)
U *
- d<u> 2pr? vy
d<u> ) x  2pr? ) .
+ Vo qy (1 - y/y*). TR (1 - y/y*)

d<u> d<u> _ * - *
U = Uo (T - y/y*) +y,. +  y* Xy (1 - y/y*).an (1 - y/y*)

As y* represents the mathematical maximum value of y, it would be

more appropriate to look at the physical maximum of y. By considering
the mean distance that an entity travels from the plane y = 0 before
its momentum is entirely dissipated, XA* may be put in place of y*,
Hence, the solutijons to equations of motion (A3.1) to (A3.3) may be

expressed as:-

A9



)
- y/)\*
(1
Uo
)
- y/x*)
1
Vo ( o
(1
Wo

+

>
u
d<

dy

A10

*)]
22
-y

2n (1

*)

/A

y

1 -

+ % (
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APPENDIX 4. SOLUTIONS TO THE EQUATION OF THERMAL EMERGY
TRANSPORT

The equation of thermal energy transport for a spherical entity
moving in a turbulent fluid was given in section 3.1.5 as:-

dT 3k ] d
T -3 L -y _gg;ii) (A4.1)

with initial condition that Ty
t

. . . . _3k
Using equation (A3.6) in Appendix 3, and putting a = Tpr? and

_ 9qu . .
b = Tort the above equation becomes:

dT _ bty d<Tf>
?Fc' = -a[T-y* U e )T]
= -aT+ ay*~9§§£3 (1 -e bty
dT _ L w 4<TF> _eo"bt Al .2
H-E +al=aYy T (1 e ) ( )

Using the standard result of (A3.9), the solution of the above equation

becomes : -

"
<
*»
&2*
—
1))
e}
d
=
ot}
5

t=0 gives T=0 implies:-

d<Tf> a
C=To - ¥* gy [1- 05:5?]
d<Tf> b



at _ d<Tf>[ eat ) —EEQe(a'b)t]
e

T.e - Y dy + To + y* T C_Tﬂ

= gx O<TF> a , _-bt - -
or T = y*‘"“ay‘ [ 1-(ggle ™ + ngg)e at] + To 72t

d<Tf> N d<Tf>

Iy VS (G

- (g%g)e-bt] + To e-at

However, equation (A3.6) implies y* = y + y*e'bt

T=y d;;f> by d<£§>[ (a?B)e-at + e-bt _ CE%B)G-bt]+ To -t
= _lef> + y* d;;f>»[(a25)e-at ) (E%E)e-bt] + To o2t
=y Eggfz + y* d;;f> (a%)(e-at - e_bt) + To e8¢
As y* =4285i . Vo = %?
Hence T=y. d<g§> + aYg : d<g§> (e73% - 7Pty 4 1o 7B
Since e_bt = (1 - y/y*), it may be deduced that e™at _ (1 - y/y*)a/b.

Therefore, the above equation becomes:-

a/b ry d<Tf> . Vo |
" Tdy (a-b)
[ (- vy - (1 - /y*>]d—<%§3 (A4.3)

T=To (1 - y/y*)

Again, considering the mean distance that an entity travels from the
plane y=0 before its thermal energy is entirely dissipated, A* may
be put in place in y¥*. Hence, the solution to the equation of

thermal energy transport (A4,1) may be expressed as:-

(1 . b
T=To 1=y 4y 8520 Lo - v
Tf>
- (1 - y/k*)]gf—d-y— (A4.4)
3k _ 9
wherea=5—c—p—rz and b = 75rc
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APPENDIX 5. JAYNES' FORMALISM OF INFORMATION THEQRY

As Jaynes' formalism of information theory and statistical

mechanics gave good estimates for the probabilities of random
variables, the method of application {s summarised as follows:-

(a)
(b)

(c)

(d)

(e)

(f)

(9)

Enumerate each microstate and assign a symbol for its
probab{lity.

Enumerate what is known about the "averages" associated
with the system,

Express the averages in the form of equations, as follows:-

9> = § p;9pa(x4)l = ingr(xi)di (AS.1)

where x is a property that serves to identify a state and
X3 is the value of x identified with state i, g.(x]) is a
function of x, <g.> is a known average.

Making use of the equattfons that represent the averages and
the additional equation,

Ipy = jpidi =
1 -

Maximise the entropy

o

S = K.g pi an pi = =K J Py 2N Py dT

1 -&

The resulting probability distribution is thus given by:-
py = exp[ - - 3,901 ]

The "zeroth" Langrangian multiplier is given by:-

« = 2n{§ exp[ _Br‘gr‘(x‘i)J} = 2n { fe-grgr(xi)di}

i -0

A13



(h) The expected values, <g.> are given by:-

_ .o«
<gY'>- 3@;

(i) The variance 1in g,. s given by:-

2 3%
o) (gr) = ‘a?r-z

(J) The entropy or uncertainty is given by: -

@

Smax = K,o( + K.E Br<gr> = K, + K, J' Br<gr> dr

-0

(k) If the function 9. (but not gy, g5,.... s Ipy ) depends
upon another parameter, say Y, 1i.e. 1 1

gr = gr(X’Y): then

As indicated by Tribus {126} that there was no way of proving
Jaynes' formalism, it should be taken as an axiom for a system of
inductive logic, It represents the best that one can do under the
rules for rational thinking that have been postulated. If the
output conclusions do not agree with observations, one is forced to
conclude that the input information is incorrect. If the output
information is vagque, one concludes that the input data are
insufficient. If the output conclusions are correct, it may then
be concluded that the input data are sufficient for estimating the
probability distributions of random variables,
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APPENDIX 6, CORRECTION OF LASER DOPPLER ANEMOMETER READINGS
DUE TO REFRACTION

Consider the laser beams from the optical unit of the LDA
entertng the perspex working section as shown in Figure A6,1, From
the figure,

AP

= -% - b tan-%

a .
5 - b tan i1 .

A=
NN

AlR PERSPEX WATER

Figure A6.] REFRACTION OF LASER BEAMS
DQ = x tan r2
= x tan 5

AT5



However, AP may also be expressed as:-

AP = t,.tan i, + DQ

ol
Hence, t.tan i, + x tan-% = %-- b tan-% (A6.1)
0! a
X tan 7 = 3 - b tan-% -t tan i,

. a :
X = Cg -b tan-% - t tan 1,)/ tan-% (R6.2)

' 0

a .

or X = Qf - t tan 12)/tan-% - b.-Eiﬁ%%. (A6.3)

tan =

Z

For a particular beam separation distance, a and © are constants.
t is also constant as 1t is the thickness of the perspex pipe wall,

When the optical unit (lens) 1s moved a distance &b towards
the pipe, the corresponding distance moved by the intersection point
away from the pipe wall is thus Sx. As equation (A6.3) relates the
distance of the optical unit from the outer pipe wall to the distance
of the intersection point from the inner pipe wall, the following
expression holds:-

a 0! tan %
(x + 8x) = (% - t tan i,)/tan5 - (b - 8b) ,
2 2 t 0
an =
(A6.4)
Equations (A6.3) and (A6.4) give:-
0
- tan =
8X = 8b = 2 (A6.5)
tan—z—
However, when Tight beam travels from one medium with refractive

index n: into another medium with refractive index n,, the followirg

relation holds:-
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np sTn TZ = le S1n Y‘?_ (A6.7)

where a, p and w denote air, perspex and water respectively. As
i2 = r; , equations (A6.6) and (A6.7) give:-

Ny sin i = n, Sinry
.0 . O
or n, sinx = n, s1n-%r
0 . =rMa g
= sin | — sin
;omlaed
Ok - . - a . ©
tan = = tan [ sin’? (ﬁ; s1n-?)] (A6.8)
Therefore, equation (A6.5) becomes:-
§x = 6b. tan 2 . cot [ sin ! (25 sin 2 )]
’ 2 ° N, 2

As ny and n, may generally be expressed as 1 and 1.33 respectively,

A @ = ] ) @
Hence, &x = &b , tan % . cot [ sin 2 (7733- sin ?)] (A6.9)

fo A

D.
ZSin?

o3

In addition, as the formula V = is only valid for

measurements in air (vacuum),

O]

For measurements in water as shown in Figure (A6.1), the velocity

may be expressed as:-

Al7



<
]
O
>4

5" (A6.10)

N

0 I
and Siny = n_,si = i
T]a n? T']p sin r; T]w.S'ln >

Equation (A6.10) becomes:-

v fD.xa’na/nw
' 6
2 sin 2uﬂa/ﬂw
- oA
Hence, V 9 g (A6.11)
2 sin =
where -% is the half intersection angle of the laser beam before

introducing into the flow,
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APPENDIX 7. PROGRAM TO ESTABLISH THE OPTIMUM SAMPLE SIZE

00100 REM  kkk  FROGRAM TO TEST CONVERGENCE NF FESULTS
GOI00 OIM ACAO0Y e Z012200)
DOZ00 PRINT "INFUT AMBIENT TEMPERATURE IN DEGRES (. °
DOAN0 TMPUT T : ) wll S R
D0HO0  REM  dokk CALDULATE THE VISCOSITY OF WATER ok
00400  REM  kokk FROM TEMFERATURE REATITNG KKK
00700 RERN :

20800 %wccrkffvzzh;f¢T>fﬂv7 15)) =2, 3441 )

T oo LN
SEE099
FIR b

.l'
P

QOF00 Mz O, FHDHOCKKED ) — (L SRTACHED ) : (o 1AM MRE D ~ 0, TETu L u ke
-y -\i e » s-' sany :::: Ky '. ’ - ' - . K . bl
‘:.-i 1 (..- ')f\. fj 4 f 1 & l # J"k |" ‘-} ) 7. * f\) .{]’ ,:‘} ,{f‘:,""\é( ,%, | . ! & ’ «)‘. (? :‘.? N f _,‘ . '_’_‘_, '9. : *\< .

DLLG0 Hﬂiﬂé+ﬂ?+5¢w?3)$lhmf

01200 FRINT CTHMPUT FRED. RANDETAM T/2:FTRE OTa, U COMS
1300 THEUT FoRrofal)

014460 FRIMT "MO. OF SAaMPLES iMas) T.0. {32
SLEQCG FOR T=1 TO 15

01 &G0 R

1700 REEY

OLE00 kM dedek COMMEMNMCE SaMPLIMNG HoKK

D1LF00 Calll "USE"(8:

GR2G00 Call, "BTSY(Av0s 12120020

G2100 Call, "SETR"(Z.1 40

DR300 FOR J=0 TO 1199

D2E0G Call, "ROB" (A 8000

24400 IF Egd)yﬁ THEM 2700

QEEG0 TFOZC e THERN 2800

“fﬂﬁﬁ FRINT "““U natTea AT EVEMNMT" .

Q27006 Balid T 00

Tl ﬁ MEXT

GEYC0 OB 1200

GI00Q0 R s QROP0OAFKEI~1L0 . 7307

FEM HEH CALDULATE THE STaAMDARD DEVIATIONM el
lﬂh S0 T L LR

NEXT
HeB0R (671201
REM Rk T
REM kol I
L eH AL 00

o R Tk R R Y I W
Lom T AU AER L EE Ty AU RNBTHIATH R

Sl L0
U241

..... it ey e P T e Ty
UCE MEAM VELODITY. TURBULEIZMOCL B
j

PN TE 7RV
¢

1
MTEHNSTTY NI REYMDLDE pdrze

\ A

-~

H1200 Uy BeR

W T
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APPENDIX 8.

QGiﬁO
(‘\3\5(‘.
DA00
GOHO0
DOAGD
D0 00
O3 SO0
ATORRALE
QLG00
01100
G1200
1300
D1 A00
DLEG0
0 AD0

r.l 1'}1"1
Olﬁ@ﬁ
31900
"”‘Ot’\{\
DRL00
SO0

L A AT A
l‘ S 2l \) \’
(‘r '.:’ .:..‘.l l_“
R T & \-‘ -
R A ta
D2500
G

'-“‘5}

i c'z(x

el ioly;
{3 I
DEGDO
03100
BEROO
AE00
QEAQD
DREO0
DEE00
OO0
0y T OO0

el

PROGRAM TO CALCULATE MEAN VELOCITY FROM 12,000

SAMPLES USING THE ENSEMBLED :
SAIPLES | ED OR TIME AVERAGED

REM  #KX FROGRAM TO CALCULATE MEAMN VELDCITY FKK
FRIMT *IMPUT YOLTASGE OF T1°
IMPUT T

Tom—, 210622 T L2+ 1

Ko (DKL (DT, 5T /27315 ‘EM;ABﬁSW\’eKé
2
174

" - onpe rage w Cad S
e Lf.l “d¢ i } - ..'I':‘l:";‘. ."3:'"\

wed 7T%

CYED Y als W e (Y704 ]
s EBEIRK MRy - { ¢ SR EROUNE

Mg *
M7=, 23Rk~ (2,0 4%#3H¢¥"3+{ o & LA
M MM EE L, ATRYLET
Q?$¢011346%iflKk“‘~.8ﬁ23?$T1+41?ﬂ+?3
Hlm(Tl*Hfﬁiu'\xg,aslﬁ

K@%, SRKL 1800, POk KD

Kﬂwﬁ“ah:"anl'*“*ﬁm'T~4A%<H1:ma>

A7) /1000

R S SN & —;-\.15,,43

h,‘q.....f’]"r{-l"‘ O,

prevepd l(}()(jfkl",',’l 4

PR IMT T1eMLePPeO7 7elid

FRIMT "FREQ. RAMGE » TAM T/« FIFE UlA. o CONSTAMT®
THFUT MeReF1sM

Yl 1§

2=

Y Em O

NIM ACSE00Y »E L1200 YD LE000
FOfR Kil=1 T0 10

el "Uﬂr“fmﬁ

Call, TRTSE" (A Dl e 120022
Calll, "HETRT (ij.vw.

Fog T=0 T 1199

Call "RORT (A ZoTYd

TF 41y xQ THEM 3100

TE T ys=-d THEM J200

PRIMT "RAT T aT EE T L
YR A

MNEET L

el S 1200

o L OR0F0A sy - 0L FEQY
oMM

‘; ur\!\.h
T FREID . BE-T )

FoR T=0 TO tlﬁ@
.id}l’\ﬂ‘].'}’\‘ l',‘k’:i:.! l’*ll\

-' 'nuf‘-'l‘\,‘}. ..| _

TENT
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GASC0
Q4500
34700
4800
04200
Q5006
D51 00
5200
05300
QELAQ0
DHHQO
QE5600
QE700

800
05200
Q45000
06100
)-‘_‘320(‘)
OQGQU
Qo300
O&LHEQQ
Q&a700

H=G/1200
S=G0R (H'l
W Jk 100
Lod=THF L H.
FRINT "MEAM VELOCITY I3 TETE MG
FRIMT "TURBULENCE INTENSITY I R E I
FRINT "CENTRE LINE REYHOLDE MUMBER TS @ ER
FRIMT
Li=0
G0
TL=Y1+T
'\."i....\('"! ,}_w
T3=Y3+L.4
HMEXT K1
Yi=Y1/10
2210
Y3m= 'l.,/ 10

PRINT "ENSEMELE AVERAGED RESULTS FOR 12000 SAHPLES:

FRINT

FRINT MEAN VELOCITY =713 M/5"
FRINT " TURBULENCE INTENSITY =
FRINT FLOW REYNOLDS NO. =03v3
ENII

'/.'-\ A s
om

e ee X
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APPENDIX 9. SUBROUTINE FOR THE INFLEXION COUNTING TECHNICUE

GO0 BEM kld TNFLEYION COUNTING SURPRDCRAM
Qi DGO ISR '}
DRG0 (51 =k U

-_
e
o

A0A00  BR=GL¥E.ZREE-T7/DRSTMOATMOR)
aomon  FOR Ts0 T0O 1197

a0&00  Bl=ZilHl) -0

anTon  BRCIOIE-TITEL

ponoe  PL=8ENEL) FEENIRD)

A0900  IF Fle=-2 THEM 1200

piooo  TF FL=2 THEN 1200
oLion  FusPIEl

DLR00 MEXT T
GLEQD  PasRRs A8

N1LAGO RETURN
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APPENDIX 10. ~ PROGRAM TO DERIVE A POLYNOMIAL FOR EACH THERMOCCL®: -

00100 REM ¥4k FROGRAM TO FIT REST
GEOO DIM TR

nufmn FRINT "WHICH THERMOGOURLE =
40400 INFUT F

OGHE00  FOR I=1 TO 20

00600  READ T(I)

f\n’)"?n"‘l() MEXT T

00800  N=2D

00900 AL=MNAR=0NAZ=D

JLO00  BL=0\R2=0ONEZ=N

01100 (1~O\C:~U ,ﬂ;o

01200 Dil=0N02=0%03=0

01300 FOR I=1 TO ;2

01400 READ X

01500 AR=AR4Y

GLEOD  AT=AZ 0K

01700  Bl=Ri4X
01800 BR=BI4( Xk
01900 B3

02000  Cl=C1.
02100  C2=03

1.
T
g
T
5.
1
2200 CE=08+ K @ )
3

SOLYHOHMT AL Xy

r¥$ﬂ?\

Cedey
{" /-.hs,{f"z

L S

ot hud

OR300 Y=T(I
D400 TL=01 -~y

Q2S00 =134 0 aX

D500 RCESUCE R RS & JED N

G700 MEXT I

G800 L= 0B3RCI )~ (BERCIT Y yeal
DRAPGO frd= i E’ HOEY - CBERC l : "" =W

QIGO0 3w g (RLRED )~ CH2HEL Y 2HAS
D31L00 oA=L -E24ES

03200 Fls=( (RIRNE)Y~(0IR0E) 1 HAR
DAZ00 FRud {B2403)-0D2NMCE2)YHA3E
)

i
.l Y T . .
(AN Ay~ CARLE Y ) 1

DESG0 [F s
\M::r."'.x(j !.T‘...#“'L { '::.. :..3

N
e ..4."' :'_l
Sl=ER A

v - . e A T
Dl (RINIOI - TRCT v adal

O2%CLrEas

Sy ymnd

G DL EDE Y -~ (L
Uﬁﬁl*UJ““'ﬁ"fkb?
Frém=—-G1+02-50
”wEQﬂE%

Hi={{B2HDII~- (L I AR
Me ( CRLRDTE ) - (0L dEad
HE3= ¢ (RLC2y - (R0 %l

7l -H2 S

Ga=E7 S E 3 e
FRINT "POLYMOMIAL FOR THERMDCOURLE i

n3gnm FRINT )
LR \'l(., \_.:{ ) 1 LA I Bt 3 g

pagan  FRINT *T = "§83
IT

I B A S 1]
R e

o3

X

e

Q00 FR
GELQO R
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APPENDIX 11 THEORETICAL PRE
N ————— ] DI

A simplified model of the actual temperature varfation may be
assumed to be as illustrated in Figure Al0.1, The heat transfer
process on the inside of the tube may be assumed to be satisfied by
the empirical equation as:-

= 0.0155,Pr0"5 Ro 0+83
ro*s Re (A11.1)

Hence, the heat transfer coefficient on the 1inner surface of the tube

3 — Nuod
- 0.00775Pr0's Reodre3
or hiy = (A11.2)

where r; is the interna] radius of the tube,

L\\X\\\\\\\ 1 AMANNN

Fy

L} rl

\\\\\\\\\\\\\\
AANN NN KNI OSNOTRTNRSRNKSXK

T2

Figure 17.1 SIMPLIFIED MODEL OF INJECTION TUBE

On the other surface of the tube, it becomes an external flow
Hence, the above heat transfer coefficient is not
The heat transport similarity parameter

situation,
expected to be valid.
however may be assumed to be:-

A24



Nu = 0.193 x Pr?+3% Re0-61s

Again, this is an empirical formula quoted by Reynolds & Perkins {50}

The heat transfer coefficient on the outer surface may therefore be
expressed as:-

X _ 0.0965 Pr®*33 pa0-s13
out s (A11.3)

where r, 1is the half the outside diameter of the tube.

With the overall heat transfer process, Kay & Nedderman {44}
suggested that the temperature distribution could be represented by:-

(To = T,) = (Ty - TO).eXp.;- E%E .mDL) (A11.4)

where D could be taken as 2r;, L being the total length of the
injection tube, m being the mass flow rate of the injector and h
being the overall heat transfer coefficient which could be expressed
as:-

1 r r ri 1

] "2
= —— 3} an (._._) + —, —
F h1n E ri rs hOUt

(A11.5)

The middle term on the right in equation (A11.5) represents the
conduction term across the injection tube wall. Hence, k is the

thermal conductivity of the stainless steel hypodernic tube,

Therefore, the actual temperature of the injection fluid at the

point of injection may be expressed as:-

h
( - EETTDL)

T, = TO + (Tl - To)e (A.H'6)

where T; is the temperature of injection fluid at the upstream end of

the injection tube, T0 1s the ambient temperature of the main fluid

stream and m may be expressed as:-
. %fgi T (A17.7)
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APPENDIX 12,

QG100
GO200
DO300
00400
20500
QOL00
D0700
Q0800
D0Y00
01000
01100
012060
21300
01400
213500
01400
d17G0
Q18060
Q1200
Q2000
02100
D200
02200
02400
0200
DE2EQQ
DA700
22800
02700
QI000
03100
GEAN0
n*"na
03400
;Tsao
NE5H00
ﬂf?}ﬁ
OERO0
'5““@
Q40GCO
54100
Q4200
DAZ00
04400
0A%H00
DAAQ0
DATO0
D480

REM ok FROGRAM FOR THE FPROCES =2IMG OF
REM kol THERMOCOURFLE READINGS

DIM TC14), PO s HOLAY S RO10Y v FCLOD

LDIHM X501

OIM GaCLO«11) s X640
DIM BROC20)Y vy CEL20)
OIM E7CL4)

READ A7.7T9

READ Deds Sl oL,
REAT E9Q
FOR K=1 T0O
REAT X5{K
MEXT K
FOR A9=]
REAT B9 e M
READ U U2
FRINT R?
FRIMNT "RUM NO.
FRINT "VELOCITY
FRIMT "VELOCITY
Cl=Ukdx. 16

Py
RO=0
MB=0
80
=
FOR

pYE(A0Y 04620

H1(14),8 1l1&§“

T2

T A7

"R
OF JET I8 "iUs"M/e"
OF MAIN FLOW IS "iU2s"M/5"

A CY e 1

AR=1 TO M
FOR I=1 TO A¢
READ WD
MEXT I

T Ys=—y 2

lM s
FOR&E

.A’l .1 4""5

j{.’: "\1-’1!’-'\,4,“(3 \

P N

P LETOMY (D) -

L v

&2V

PROGPAM TO EVALUATE THE EDDY DI
FROM THERMOCOUPLE READINGS FERIVITY OF HEAT

X

I

T(E)ﬂM\;JDOIﬂ””'“)kn +
SLLE22V T e+

L ARV CAd ok

T{E mme,

T(AYm—, 218

? b

17
1
' 4 .k
-1
17
1
1

LETGHNEY - 3074

"W”RU'Q‘“04]73L5

TEEYme , 2101 AR T MR LT 1 SA0HUIT) -, 318308
TG me, R1RITERY (LI KA 7207 THY (60— 3ADTE
TPy, 200 LAEEU (T IREDELT L LARTHU T - 17740

Ti@) =0
T 9%
Til@)m“\f1ﬁﬁu
TCd 1 yume
TOLDyme- 2204455001
TELEY=0

w!l-"

P Y

Tl A sy DIREDDRV (LAY RKIHLT L 2125 (1)~ 3T

I=1
s (DTS T

L 1EET

By -

'...\ o

i\.! If’:' e { CERD YA {J ‘.' x,l' .
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’*1¥h$$4)wng

NP= (L. 23

10YRk2+17 . 4

T

TS

R

~y

CROTRRTRVCSIRRTHLT,

Rl Bal-bink AVEGH AN I &S00 o RV
2y%k24+1

33 f:yﬂ-?

[PRN Pl
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04200
QLO0G
05100
GHI00
DHE00
5400
OSSO0
DEALGD
QE70O0
OO .0
OB

@ﬁUUQ
06100
Q&200
G300
QAHA00
06500

Q?QQQ

07100
Q720 {)

DFEL00
Q7700
G700
700
OR0O00
28100
GR200
R3O0

Z'-ﬂﬂiilf"'
GEP00
GRG0
B2 LG0
DR200G
G EGO
"Qﬂﬁﬁ

YREOO

hY
J’,?.’«;!""J
DTN

Mz (NSHNT+E . 478 %

1E~7

Lf~+011‘4u$r Iy~ s BOATPAT (T YAA1a9 .73
'....(Tfl) \2.:..:4- .‘.‘)/a..:"“.tolr'

I”’ QU3 ORKL-1800, 7R 1k
h3“32h./ HORTRAZ)Y~73, 44 (K1 %
R (K3HR2-922.47)Y /71000
FaNEL000X07 /K

FaMAP

Rl kUM
Ml=, Q1 5EKRA
HE=NZ$%K/J1
M3=J/R2¥L0GCIL /D)
Ha=1/CCl/HL+ (17

LN

MLI=1000¥UX3, 1415
El=—Ha¥3, 14189k J2
T2=T(2)
TC2y=TCL3+ (T2~
HODY=T(2¥y-T(1)
FOR I=2 T0O T9-1
H{IY=T(I+1)-T(1)
NEXT 1

FOR I=1 TO T9-2
ROLY=HOTY /HOT+1)
MEXT I

REM ek
Fahm=d

HE N
Me=TY-2
MNamplgh—1
FOR K=0 TO 14
Yéfﬁ G
YA K ymPe R4
NhXT K
FUOR T&a&=0
FOR Téa=0
FOR Ké&=0

Kok 4 )

ey
vw.-)'«-.}

L1k, B3Pk

H2)+H3

2R I2/4
AHML/C7

R R
*.f
\

TCIMYKEXFCEL)Y

LEAST SOUARE ROUTIME W

D&HEOTAHY=0 P NEXT
Y=Q I MEXT

T0
T0
T0

204
ﬁA’Bu~lﬂ
Maihs=]

Tr Ty ede [l FAR IS B ¢ Loy L
F U f\' l i{? '-.. i “ 4\ ~":"~ Dw : Ledo A I- ¥ \ ""r.:--._.' 1 T Hrvod
oy SN L :
Sumld THEM RA(T&EY=RSELAYHELEY S IRS)

TF Ié '
mGaEERARSY INEXT Tu»Nr”T R
T&H=0 T “uof"”l Tl-] 0s

' -:|-llr- ]L)‘l _,¢.)‘j 0;"!" I Fart ‘:. "

..‘ |"‘|

FOR Ta=0 TU UHsblly 30
GaHTTE» LS
NEXT T&
FOR La=0
FOR J(" T
FOR K=
Ga (. fu'u'(.’.
MEXT Ké

JE e DE+1 Y =0E

Tid1
7O L&tk

TU Né ‘
Jas &Y -0HC1a

H+1 GA{JE 16Y=0 THEN

(L]

£
pIE Ul.\

K& DA

Ja e NG+ 1y -GA 0T Db RS

.,
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{)l"\f"l()o
DP¢00
LOQGO
10100
10200
19300
10400
10500
10600
10700
LO200
102960
L1000
L1100
L1300
11300
11400
11500
11600
11700
11800
L1900
12000
12100
12206
12360
12400
12500
L2400
12700
128030
12260

12000
1E1G0

NEXT JAINEXT T4
D& (NS =GH(NE D6+ FACT R QA
FOR T4=0 TO D&~11Ke=D4~
FOR Jé=6 TO Dé
GOKSE» &+ 1) =G (K& T -04¢ ¥G&IN&Ey Jé&
NEXT e Né6+1) D&CJEIVXGETKSE s Jb)
Qé(ﬁé)mﬁéfﬂéyﬂé+1)fGé(Ké?Ké)
NEXT 16
857=0
FOR
Gém=]
2&=0)
FOF Lé=0 TO D&
Lo=THPN5 (14624848
d(ﬁ""s)'ﬁ AXE(RE)
MEXT Té&
E&S(REY =6~ Y%(Ké)
E7{KAY=ES(KS Y KK
S7=87FET (RS
MEXT Ké
G9=057 7 (N6&~2)
IF 8901.0 THEM
IF (aBs
Ng=pMy-1
IF E7(0)<E7 (Ma+1)
FOR K=0 TO N4
XS5 K GOR+HL
’ﬁ’l) Yéff+1)
MEXT K
GOTO 8300
H1(aBY=C3xQs(1L)~F
75K N
A= L CA8)
RE=R8+R7

y 16 )
Té=12L6=RKe+1

Ro=0 TO M4

12800

(FE&COI/YECO) I HARSIESINAYAYSIMNA Y, L THEN 12800

THEMN 8300

13200  FB=FE+F

13300 NEXT A8
13400 A=AsM

13500 g=RE/M

15600 F8=F8/M
s

FO=REXFE
NB=N2KFB

FRINT
PRINT
FRIMT "
NEXT a9
END

O FACTOR

PRAMNTT
ETOMUMEES

FECL
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E0ROHEAST
L MUMBE®R

ulb I

T

-0 Gy G 03 e

3500 FRINT Enny DIFFUSIVITY ? A PHukDE
FO00 FRINT ¢ FEYMOLDS NMUMEBER f iﬁ



APPENDIX 13.

o0 100
§] J""(‘tu
00300
50400
20300
0600
DQT700
QO8G0
HOFOC
01000
OL1G0
01200
01300
01400
01500
01600
D1700
01800
01200
N2000
02100
Q2200
ORZ300
DZAGO
02500
DR24H00

i
S

fd G4 P B T3
G 3

SR JEw IR 3 R
= O

HEALO0
'-’3 SA1e

ZR0O0G
u"\ L0
ﬁwQQJ
04100
04200
SA300
54400
ﬁ*ﬁﬁﬂ
(; 00

.:QJ
0am00

PROGRAM FOR ON-LINE SAMPLING AND PROCESSING OF

VELOCITY, TURBULENCE INTENSITY, MICROSCALE AND

EDDY DIFFUSIVITY OF MOMENTUM AND HEAT

REM kX FROGRAM FOR ON-LIME SAWMFLING A&ND AokX

REM ﬁ?? FROCESSING OF LIDFA i :
PRINT *IMPUT VOLTAGE OF T1F i READINGS o
INMFPUT T1

T?-~.’1¢1“4#(T1”k2;+1 > 1919%T1~.330350

X“((jy{ (273, I':.HT"’):’ 7Z.LE) -2 -.3(’:'(31‘503@00{:"(?

MA={  ISNARKEY - (353 TREKEKT )4 L 24Kk E) - (0337 XX XXS
M7=0L . 231 RM%ke )~ (2 ‘"’4’“)(4’47)4“(\3@1\'1?:1; 1'*‘5’\"3—\4e5t—‘1"

ﬂl”(Nu%N’*” 478 4R1E~7
2OLL ALK ITERKI) — B5239%T24+4194.73
T?%BT? 15y /273,15
2030 Hhkk ] -1800 ., 7R ONLKN2)D
Fsrjﬁﬂ J/K(hlkﬁ3\~7u+4ﬁ*(ﬁ1¥$4l
Kam (E34R2~622,471 /1000
FO=NTXLO00KRCT7 /KA
FRIMT T2eMLP?TC7 R4
FRINT "INFUT FREQ. FANGE s TAM T/2,FIFE OTA, Y CONSTANTT
ITMFUT MeReFLsN
leO\Y2~0\Y3~0‘Y4“0‘Y =0ONY H=0NY7=0NY8=0
0DIM ﬁ(éOO)vZ(iJQO);Df1“OO)
FOR Ki=1 TO 10
CaLL "USE"(A)
Call. "TTC“{ﬁpo 11200020
CALL "SETR®(3:1> s )
FOR T=0 T0 1199
Coll RROET (A 2T
TF Z(Ty:=0 THEN 3000
TF Z(1y=-2 THEM 3100
FRINT *BAD nDAaTA AT FUENT" 31
B=R+ZC0D
MEXT T
C=RA1200
W, Q2090490 =10, 7R07
F”!ﬁﬁ M

=R TMOR)
T“ffk%¢$?qF“?3
FofR T=0 T0 11 ”Q
=, fyﬂﬁcwuxﬂgwiflkﬁ Q. 7ECT
Foa=fl-K
Fa 2wk
=it F
G y=E2
NEXT 1
i3/ 1200
J=GOR(H?
W= Jk 1008
Gi1= M. /M
[jj "'hi X

l’a"

ARSIMOE)

ﬂmy-fg(ﬁﬁﬁlﬁﬂﬁ))
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049G0
OROG0
OG0
GEA200
DS200
O5400
Q5500
ah00
H3700
D380C0
Q5200
34H0G0
346100
D&200
05300
0%4@“
DEHOO
vthQ
&70Q0
R&BO0Q
Q&H&PO0
Q7Q00
Q7100
Q7200
O7FI00
7400
P E O
D760
07700
Q7200
G7200

OROOO

D100
DRING

[ L VR V)

O2300

1"1{‘.-.1(\!"\

D8E00

OB700
(‘f -~,|')’"’

02000
09100
DR2O00
G9I00
DCLAO0
DPEH0
DS &O0
GRTO0

FOR I=0 TO 1197
Bl=Z(I+1-2¢1)
BR=Z (142020141
F?"gthﬁ13+5ﬁNfr
F Pl=-2 THEN SéOO
IF F1=2 THEN 5800
FPR=R24+1
MEXT I
FaA=FD/, 48
FRINT P4
FR=0
LI=TRLIO00/ (3, 14159%F4)
L= (LI G2k2 ) 7 CLATRNLXLES)
L3=Cl1kk20 G2/ 018%N1%1000)
La=T¥F 1M1
L= (Ll kk20 % CE2%
FRINT "MEAN UELOCITY IS
FRINT "TURRZBULENCE INTEMSITY IS
FRINT "CEMTRELIMNE REYMOLDS
FRIMT "ENTITY REYMOLDS
FRINT "MICROSCALE IS
FRIMT "E0nyY VISCOSITY IS
FRINT "MEAN EXDDY DISTANCE IS
FRINT "EODY DIFFUSIVITY OF
FRIMT

FRIMT

H=0
G=0
Yl=Y1+T

f“ Y 24+

¥ X3=Y 3404
Yad=Ya4+5

Y=Yl

¥ Y &L 2
Y7EY7HLE
YB=YRH.4
NEXT K1

CR2Y/CIHANIKLES Y %

NUMEBER

\_.- 1 ”_.\[] _/:l o
¥a=Y2/10

Y3=2Y3/10
YamYa A0
Y S5=YE710
Ya=YaE/10
Y7=Y7/10
Y8=Y8,10
MP=Y& Y1 F 1
MO=Y@BKFP N
PRy IgfFe

PFRINT "ENSEMBLE AVERAGED

A30

(FR/ACL+3%F9))

NUMBER I8
15

HEAT IS

RESULTS FOR

CETHUM/S"
1 TAFA

Ja
“;! *q
"ALE
"sL1y
ﬂ;L")‘

MM

\'L.u

"MM.
"MKk

Sﬂ

TEL6E TMkK2/E"

12000 SAMF



29800
09200
10000
10100
10200
10300
10400
103500
126G0O
10700
10800
10900
11060
11100

FRIMT
FRINT
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APPENDIX 14, ERROR ANALYSIS

The evaluation of error 1imits must be based, to some extent,
on the experimenter's judgement;

necessarily somewhat subjective,

hence, such an evaluation is

Nevertheless, an attemnt has
been made to set limits which are compatible with the observed degree

of agreement among redundant measurements and the degree of
reproducibility among repeated measurements, The error 1imits
discussed in this Appendix are taken to represent a high confidence
coeffictent for the reported values of the respective measurements,

The equatton used for the determination of the velocity, using
the LDA, was:-

T o= A (A14.1)

o" @. = d fD:}' d)\ - d (Sin%).
Il A

~f
D sin C% )

(A14.2)

As indicated by the instruction manual of the LDA supplied by DISA,
the doppler frequency {is measured in general with an accuracy of 1%
and the wavelength of Tlaser 1ight is given with an accuracy of 0,084%.
In order to estimate the accuracy involved in the measurements of the
beam intersection angle, consider the geometry formed by the laser
beam as in Figure Al4.1, As the angle © was in general of the
order of 5°, it could be assumed that:-

0 _b/2
s‘in-g-z tan» =7~
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Figure AT4,1 Intersection of laser beam

: .0
d (sin 5 ) db  da
sin-% b a

As a and b could be measured with an accuracy of about 0.5%, the order
of magnitude associated with the error in the measurement of sin-%
could then be assumed to be of 1%. Hence, the overall accuracy of

velocity measurements may be expressed as:-

du - e +(Q(0.08%) +Q0%)

u

4= ()

1]

Statistica11y; the error associated with sampling 12,000 data for the
velocity measurement, as shown in section 2.3, was considerably less
than 1%. Hence, the combined accuracy of the velocity measurements,

using the LDA, may be taken as 2 per cent, j.e.i-

d = O (2%) (_A.(43)

u
The equation used for the determination of the microscale was:-

U (214.4)
§ =TN
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where N was the number of maxima ,
. : 2 and minima of ;
unit time. The above equation yields:- u fluctuations ner

S%Q _ ggg 1?
u
Although there was no direct way of evaluating the accuracy of N
the large values of N suggested a value of %? comparatively sm;;1er
than 1%, Therefore, the accuracy of the microscale measurements
could be taken to be the same order as the measurements of velocity.

ds
5 = 0 (A14,5)

The equation used for the evaluation of eddy diffusivity of
momentum was given by:-

€ ]
Vv = T67 .\).52 . V02 (A]4.6)

where Vo® = U' and § was the microscale,

As u' was obtained in the same way as u using the LDA, the accuracy 1in
their evaluation could be considered equal. Hence:-

T - o - = 0@
For the accuracy of the evaluation of viscosity, although the eighth
order Chebyshev polynomial was expected to give very accurate values of
viscosity, témperature change during a test would lead to an error in
the evaluation of viscosity, With a temperature change of 3°C, which
was found to be the maximum rise in ambient temperature during one
single test, the error associated with the evaluation of viscosity was
found to be about 10%. Hence, the combined accuracy with eddy

diffusivity of momentum could be expressed as:-
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d
= = 20@ +2.00 +0 (e

= =0 (A14,7)

The equation for the eddy diffusivity of heat was given by:-

- ] Pr
T Ty (TF3pr) - VO (A14.8)

T

de
- ds dVo _ dv dPr  3dPr
i I v T Pr T Te3br

: 3dPr _ dPr
As 3Pr>>1, it could be assumed that 0 = Howevgr, as thg
Prandt] number was evaluated using the expression, Pr = HyzB = 2:p =8

and the variation of p, Cp and k were small over a temeprature
difference of 3°C, 1t could be assumed that:-

dr o dv

Pr V

de

H _ ds dVo dv
- < 2.5 t2.p 35

2. Q(2z) +2.0(2) + 3.0(10%)

Hence, the overall accuracy of the eddy diffusivity of heat derived
from LDA measurements could be taken as 40%,

d
“H -0 o (A14.9)

For the heat transfer measurements using the thermocouples, the

total diffusivity of heat was given by:-

_u,d® a6 (A14.10)
€T ° Téx &
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where 20 = Tf - Ta and AT =T - 7.

deT m
. du dd _dx | dae  daT
T U+2'T 3~ & (A14,11)

Assume the dccuracy associated with each temperature measurement to
be of the order x%,

.. dTf _ dTa _ d7 o
REd T2 = T = X%
dTf = Tf.x%
dTa = Ta.x%
dT = T.x%
dTf - dTa = (Tf - Ta).x%

and dT - dTa = (T - Ta)x%
dao  _ (Tf - Ta) .

T T (TF-Ta) * **

dAT  _ (T - Ta) _,
and —AT = CT-—_—T—é') X%

As the accuracy associated with the temperature measurement, with
careful calibration, could be assumed to be of the order of 1%, the
accuracy associated with the measurements of diameter d and distance

X could be taken to be about 0,5%, Hence:-

del - Qe + 20050 +Q©.5) +Q0% Q09

O (5.5%)
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In addition, an error band of 5% was imposed for the evaluation of
AO / i nd d

=T /%> as in icated 1n section 5.4, Hence the overall accuracy of
total diffisuvity of heat obtained using the thermocouples could be

taken as 10%. The eddy diffusivity of heat could be expressed as:-

s - K
T oCp (A14,12)

As the total diffusivity of heat is in general much larger than the
molecular diffusivity of heat, in addition the vartations of k, p and
Cp could be assumed to be small compared with the overall accuracy of

€ hence the accuracy of the eddy diffusivity of heat obtained using
the thermocouples could also be taken as 10%.

deH  _ .
5 O (10%) (A14.13)

For the Reynolds number of the flow, it could be expressed as:-

Re = L2 (A14.14)

giving dRe du _db _dv
u

%%2 02 +Q0.52) +(10%)

Therefore, the accuracy associated with the Reynolds number evaluated
with measurements using the LDA could be taken as:-

EiRREQ_ =O(]2'5%) (A]4.15)
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APPENDIX 15, DERIVATION OF DIMENSIONLESS PARAMETERS

The Bu?kwngham I method presents a general approach of dimensional
analysis which may be used even in problems for which the governing
equations have not been formulated, Assume, first of all, the

important parameters in heat transfer are as follows, with their
dimensions given:-

diameter of pipe D [ L]

mean velocity of the fluid  u (LT
absolute viscosity of fluid wu [(ML™i774)
specific heat Cp [L2T2071]
eddy diffusivity of heat ey [Ler]
thermal conductivity k ML T7%67Y)
density p (M2 ]

A dimensionless parameter must be of the form:-

X X X X X X X
1 2 ,%3.Cp v oo X5 X6 g 7

D™.u

H

Hence, the product, [L]Xl-[ LT-1] %2 -[ML’IT‘l]X3 fLar-2 @"}X“'
[LZT'l]X5 .[ML 7-3g1fs . [ML? X7] {s dimensionless. The dimensions
of length, time, mass and temperature may be equated to zero
respectively and obtain the following four equations for the unknown

exponents.-

For the dimension of length [L],

X7 + X2 - Xz ¥ 2%, + 2Xs5 * Xe T 3x, =20 (A15.1)
For the dimension of time, (1,
~Xp - X3 =2Xy = X5 7 3xg =0 (A15.2)
For the dimension of mass [,

(A75.3)

X3 + Xs 7t X7 =0
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For the dimension of temperature [2]

(A15.4)

As '
there are seven unknowns with four equations, it is necessary to

have three exponents chosen arbi
trarily,  Equation e
become:- 4 s (A15.1) to (A15.4)

Xe = =Xy

X7 = =X3 = Xe
= X3 t Xy

X5 = =X = X3 = 2X, - 3Xe
= =X5 - X3 - ZXu + 3Xq

X1 = =Xz + X3 = 2X4 = 2Xs5 = Xg + 3x-
= =X2 4+ X3 - 2X4 + 2X2 +2X3 - 2Xq + Xy - 3X3 + 3Xx.
= X2

Hence, the dimensionless parameter becomes:-

X =Xo=X3+X =X -X3+X
D2 27A3TAY “,p 3ITAY

RTUCIRTAE Cp™“. ¢

H

The three arbitrary exponents can be disposed by setting each in turn
equal to 1 and simultaneously setting the remaining two exponents equal

to zero, Thus, for

Xp = ], X3 = Xy = 0

D.u.s:H-1 is non-dimensional
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for X3 = ], X2 = X,

u.sH 0 is non-dinensional

for xu = 1, X2 = X3 = 0

CP.EH.k-lp 1S non-dimensional

For turbulent momentum transfer, it may be assumed that the
important parameters are::

diameter of pipe D [ L]

mean velocity of the fluid u [L7-1]

absolute viscosity of the -17-
fluid d u LS

eddy diffusivity of € -
momentum v [LZT ﬂ

density o (ML)

The dimensionless parameter must be of the form:-

Yo Ys

dylu.YZUY3. ey’ t. 0

Hence, the product, [L JYL[LT72) Y2, [MLmi7-1]Ye, [Lart]Ye, [ ML-9)Ys
is dimensionless. As previously, equate the dimensions to obtain three

equations for the unknown exponents:

For the dimension of length [L],

Y1 + Y2 = ys +2ys - 3¥s =0 (A15.5)
For the dimension of time [T],
- Y2 = Y3 = Yu = 0 (A15.6)
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For

Y3 +ys =0
v Ys = -y;
Yo = =Y2 - ¥,
Yi T -¥Y2 * Y3 - 2y, + 3ys
= Y2t Y3 + 2y, + 2y,
Hence, the

DYZ.uYzMY3.€V‘YZ'Y3'p‘Y3

the dimension of mass [M] ,

(A15.7)

- 3y3

dimensionless parameter becomes. -

Again, by setting each of the exponents in turn equal to 1, non-

:dimensional parameters may be obtained,

For yo =1, y3 =20
-1
D.u.ev
For ys =1, y» =90
-1 _-1
u.ev P

Thus: -

is non-dimensional

is non-dimensional

So far, five non-dimensional similarity parameters have been
established associated with turbulent heat and momentum transfer,
They could be expressed in terms of the eddy diffusivities of heat

and momentum as:-

Hl =

A4l

(A15.8)

(A15.9)

(215.12)
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