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ABSTRACT 

The theoretical analysis of the present work was based on a 
thermodynamic approach, using the method of inference. An analysis 
was made to find the macroscopic turbulence transport properties from 
the description of microscopic behaviour of entities of varying shape, 
size and ve loci ty. ~1omentum and energy trans port ina turbu 1 ent 
fluid were investigated and expressions for the eddy diffusivities of 
momentum and heat proposed. Communication theory has been success­
:fully used as a means for the interpretation of turbulence parameters. 

Velocity profiles in simple shear flows, obtained with the 
present analysis, were compared with those found by others, both 
experimentally and theoretically. An overall heat transfer similarity 
parameter was derived with the assumption of a constant turbulent 
Prandtl number. 

Measurement of mean velocity, microscale, turbulence intensity 
and eddy diffusivities of mo~entum and heat were obtained in a water 
tunnel Results were obtained for Reynolds numbers from 2 x 105 to 
9 x 105. Pi pes were roughened i nterna 11 y wi th pa i nt m; xe.o wi th fi ne 
particle~ and roughness ratio r/k ranging between 7.2 x loJ and 
2.5 x l~ with absolute roughness height between 4~m and 10~m. 

In the light of the present analysis, it is concluded 
that the new and more realistic approach to turbulence 
phenomenon is a useful concept for predicting turbulence 
transport properties, as well as heat transfer characteristics 
of a simple shear flow. 

This is to declare that, while registered as a candidate for the 
degree of Ph.D. (C.N.A.A.), the author has not been a registered 
candidate for another award of the C.N.A.A., or of a University 
during the research programme. The work described in the thesis 
is the result of investigations conducted by the candidate during 
the research study, except where specific reference is made to 
other investigators. 
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1 . INTRODUCTION 

Similarities between a collection of molecules in a gas and the 

motion of a turbulent fluid have enabled many researchers in obtaining 
useful concepts for turbulence phenomena which were related to those 
found in dealing with the transport properties of a gas. Models 
proposed by Prandtl {l} and Reynolds {2} were typical concepts for 
predicting bulk behaviour of heat and momentum transport of 

turbulent fluid flow. Although their utility in engineering design 

is well known, one of the basic problems associated with the accurate 
prediction of transport phenomena in a turbulent fluid is that, even 
for a simple flow, the Prandtl 's mixing length and Reynolds' momentum 
flux vary through the flow field. 

In the flow of a perfect gas, the bulk behaviour is the result 
of a large number of individual fluctuating motions. In this 
instance, the development of statistical thernodynamics provide a 
framework within which predictions of the combined effect of molecular 
motion can be made from the knowledge of individual molecules. In 
fluid turbulence, there exists more complex pheno~ena than molecular 
motion in a perfect gas. 

~ 
One difficulty in making a thermodynamic approach to turbulence 

is that of defining a suitable parameter equivalent to the te~perature 
of molecular motion. However, the method of Information Theory 
allows us to be obtained a statistical parameter for the turbulent 
fluctuations which is equivalent to the temperature of molecular 
fluctuations, The usual methods of statistical thermodynamics are 
difficult to employ because there exists no permanent entity comparable 
with the molecule. Turbulent fluid also has the characteristic that 

there exist particles of fluid of random size and shape moving relative 
to the average motion. Hence, the statistical analysis must include 
a random scale function and a random velocity function. In order to 
be of practical value, the scale functions have to be determinable 

throughout the flow field. 

The validity of this analysis can only be judged by co~paring the 

end product with experimental results. Nevertheless, a theory of 
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turbulence is likely to be most acceptable in engineering applic­
:ations, if the basic concept is that of a flux of entities rather 
than an artificial mixing length or a correlation function. 
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2. LITERATURE REVIEW 

2.1 Theory of turbulence 

It was shown by Bradshaw {3} that quite s~all velocity 
fluctuations can produce large changes in flow resistance and 
other properties. A fluctuation with zero mean, superimposed 
on the mean velocity, produces a mean momentum flux of its own, 
proportional to the mean square of the fluctuating velocity. 
This is due to the fact that the momentum flux is the product of 

mass flow rate and velocity and the fluctuation contributes to 
both. This non-linearity of the relation between velocity and 
momentum flux appears in the Navier-Stokes equations, and has been 
the basic cause of their mathematical difficulty. 

In turbulent flow, it is usually assumed that the instantaneous 
velocity components satisfy the Navier-Stokes equations. By 
substituting the expressions for the instantaneous velocity components 
into the Navier-Stokes equations of an incompressible fluid and taking 
the mean values of these equations according to the Reynolds rules of 
averages, a set of Reynolds equations of motion for turbulent flow of 

an incompressible fluid may be obtained, as shown in Appendix 1. 
The additional terms over the Navier-Stokes equations are due to the 
Reynolds stresses or turbulence stresses, Tij' These stresses are 
the representation of the rate of transfer of momentum across the 
corresponding surface because of the turbulent velocity fluctuations. 
The solutions of the Reynolds equations will represent properly the 

turbulent flow. 

However, one of the main difficulties in the theoretical 

investigation of turbulent flow is the necessity to find additional 
relationships between the characteristics of turbulence and those of 
the mean flow. This is due to the fact that there are more unknowns 
than the number of independent Reynolds equations. In order to 
obtain some definite results from these equations, further hypotheses 

about Reynolds stress ~ust be made. 
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Hinze {4} showed that, in comparing the turbulence stresses in 

the equation of motion with the corresponding stresses caused by 

viscosity effects, it could be assuned that the turbulence stresses 

behave like viscous stresses and were directly proportional to the 

velocity gradient. This was an assumption made by Boussinesq {5}, 

in as early as 1877, who introduced in the theory of turbulence a 

turbulent exchange coefficient £, such that for a simple mean flow, 

pu'v' = Txy = au 
€ll • ay (2. 1 ) 

where €ll was called the turbulent or eddy viscosity. 
shear stress may then be written as 

T = ( dU 
II + €1l) '­dy (2.2) 

The overa 11 

However, Pai {6} pointed out that, in general, the Boussinesq 

hypothesis was a failure because for every new problem in fluid 

dynamics, a completely new expression for € was required. 

A successful semi-empirical theory of turbulence was Prandtl IS 

mixing length theory {7} in which Prandtl introduced the similarity 

of the turbulent theory with the kinetic theory of ~ases. In the 

mixing length theory, a length ~ was introduced similar to tne mean 

free path in the kinetic theory of gases so that certain quantities 

in the turbulent flow were assumed to be preserved during the turbulent 

mixing process tnroughout this length. Thus, this length was called 

a mixing length. There were various mixing len0th theories based on 

different models in which different quantities were assumed to be 

preserved and a brief review of the mixing length theory is shown in 

Appendix 2. 

The main advantage of the mixing length theory over Boussinesqls 

theory is that it is generally easier to make a plausible assu~ption 

for ~ than for £. However, one of the defects of the mixing length 

theory is that the mixing length deduced from the measurements of the 

mean flow is not very small but of the same order of magnitude as the 

dimension of the mean flow. Also, neither Prandtl IS momentum 
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transport theory nor Taylor's vorticity transport theory {8} describe 
the mechanism according to which the lumps of fluid adapt their 
transferable property to their new environments. 

Von Karman, in what was known as his similarity hypothesis {9}, 
attempted to find relations between the turbulent shear stress and 

the mean velocity distribution whic~ was independent of any special 
model such as those of Prandtl or Taylor. Von Karman made the 
following assumptions: 

(a) the turbulence mechanism was independent of viscosity 

except in the immediate neighbourhood of the walls. 

(b) the local flow pattern was statistically similar in 
the neighbourhood of every point and only the time 
and length scales were different. 

The second assumption indicated a constant correlation between 
the different components of the velocity fluctuations. From these, 
von Karman found that for parallel mean flow, 

(1) 

(2) 

(3) 

( )

2 
2 dU" 

T = p. t. dy 

)

2 au dU" 
,Q, = k. lOy I Idy2 I 

where t was a characteristic length. 

where k was a universal constant. 

Thus, the von Karman formula for shear stress might be expressed as: 

T = k2,p·(~)A~2 (2.3) 

The most important deduction from von Karman's similarity 
hypothesis was the universal velocity distribution for the flow ln 
circular pipes. With the absence of pressure gradient along the 
main flow direction, the universal velocity distribution or logarith8ic 
profile may be obtained by replacing the shear stress T with its value 
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on the wall, TO and integrating equation (2.3) as 

-u 
1 TO 

= K p · log (Y/o) (2.4) 

where 0 is a constant determined by the value of TO, p and v . 

More generally, the above may be expressed as 

u* = A + B log y* (2.5) 

where u* = U"/fol p 

and y* = y/Tol p /v 

One defect of the result • 1S that the boundary conditions on the wall 
are not satisfied. The logarithmic velocity profile gives an 
infinite velocity at the wall. Usually one can only say that the 
result of such a theory does not hold true for a laminar suolayer 
and a viscous layer which are near the wall. 

In the theories advanced by Boussinesq, Prandtl, Taylor and von 
Karman, a deductive method was followed. A hypothesis was made 
concerning the turbulence shear stress or concerning the turbulent 
diffusion coefficient. From it and with the aid of the equations of 
motion and continuity, and with assumed similarity conditions, 
velocity distributions were deduced. Reichardt objected to this 
method, pointing out that relatively easily measurable quantities 
such as mean velocities were derived on the basis of more or less 
questionable hypotheses. Also, the usual scatter of the experimental 
data used for comparison made any decision in favour of one hypothesis 

or another difficult. 

As against the deductive method, Reichardt {lO}, {ll} proposed 

an inductive method based on directly measurable quantities. He 
assumed that a turbulent-transport process was a statistical process 

exactly analogous to molecular-transport process. By considering 

simple two dimensional free turbulence, Reichardt proposed the 

momentum-transfer law, 

au2 

uv = - A d Y (2.6) 
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In the above equation, A has the dimension of length, but 
mathematically it has the meaning of a diffusion constant; 
physically, it has no definite meaning. Although A may be 

a function of x and y, Reichardt assumed that it was a function 
of x only, determined by the width of the mixing zone. The 

momentum-transfer law may be interpreted as the rate of transfer 

of u-momentum in the y direction is proportional to the change 
of the momentum flux UZ in that direction. 

Although Reichardt's theory was somewhat more logical than 
the mixing length theory, the result could hardly be expected to 
predict an accurate distribution of the turbulent fluctuations 

and to throw light on the physics of turbulent production phenomena, 
because it was based on the measurement of the mean velocity. It 
became just another semi-empirical phenomenological theory for the 
determination of mean velocity distribution in free turbulence flow. 

Even though the above theories had successfully predicted the 
mean velocity distributions in many practical problems, the final 
and logical solution of the turbulence problem required the applic-
:ation of methods of statistical mechanics. In order to develop 
successfully a statistical theory of turbulence, it is necessary to 
define some quantities to describe the turbulence. Taylor {12}, 
{13} successfully developed a statistical theory of turbulence 

which was applicable to continuous movements and satisfied the 
equations of motion. The important new idea introduced by Taylor 
was that of the studying of correlation, or coefficient of correlation 

between the fluctuating quantities in the turbulent flow. The theory 
has been further developed by von Karman {14}, Kolmogoroff {lS}, 

Heisenberg {16}, Bathchelor {17} and others. 

However, to define a random function, it is not sufficient to 

give the correlation function and the spectral function. It is also 
necessary to prescribe the probability distribution of the random 

function and the joint probability distribution of the values of the 

random function at different times and different positions in the 
space. A complete statistical specification of a turbulent motion 
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thus requires a vast array of information. Since turbulent 
fluctuations are random in nature, it is permissible to apply 

the rules of probability calculus to them. Although the analysis 
of turbulence is much ~ore complicated than most of the problems 
in statistical mechanics, it has been shown by Kempe de Feriet 
{18} that the theory of random stationary functions gave many 
useful theoretical results for the velocity field, especially 
in incompressible homogeneous turbulence. Thus the theory of 
random stationary functions provides a powerful tool for the 
investigation of the kinematics of turbulence. 

As turbulence produces additional rates of transport of 
quantities other than momentum, such as temperature fluctuations, 
there exists similar analysis for heat transfer where the total or 
overall heat transferred in a turbulent fluid ~ay be expressed as:-

q = k aT Cp viTI A · dy - p. . (2.7) 

where (q/A) is the total heat flux and p.Cp.v'T' is the enthalpy 
flux. As suggested by Rohsenow and Choi {19}, the enthalpy flux 

may be expressed, similar to the momentum flux, as:-

pCp V'T' = dT 
- pCp. E:H· ay 

where E:H is the eddy diffusivity of heat. 

flux may be written as:-

q = 
~ 

aT 
Ck + p. C P • E:H} dY 

(2.8) 

Hence, the total heat 

(2.9) 

pCpEH may be interpreted as the eddy conductivity. 

Unlike ~ and k, the eddy viscosity and eddy conductivity are not 

properties of the fluid and are dependent on the turbulence 
characteristics of the flow. In nearly all cases of interest, such 
as flow over bodies, in tubes and ducts and between parallel plates 
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Reynolds stresses and other turbulent transport rates are much 

larger than viscous stresses and other molecular transport rates, 
which adds to the importance of turbulence phenomenon. 

Among many methods that proposed to predict the turbulent heat 
transfer were those of Dittus & Boelter {20}, McEligot et al {2l}, 

Martinelli {22} and Kinney & Sparrow {23}. However, the validity 
of all these methods were limited as to the range of Prandtl 

numbers mainly due to their unsatisfactory theory on the eddy 

diffusivity of heat. Cebeci {24}, based on Prandtl 's mixing length 
concept, proposed a model for the eddy diffusivity of heat for 
external boundary layer flows. His results agreed well with 
available experimental data over a wide range of Reynolds and 
Prandtl numbers. Following Cebeci's analysis, Na & Habib {25} 
extended it to the investigations of heat transfer in turbulent 

pipe flow. Their results compared quite well with experimental 
temperature distribution over a wide range of Prandtl nu~bers. 

However, their prediction of turbulent Prandtl number disagreed with 
measurements of McEligot & Picket et al {26}, {27} who suggested that 
the reason lies in the empirical determination of adjustable constants 
by Na & Habib as they relied on uncertain experimental data. 

In studying transport phenomena in turbulent flows, it is 
reasonable to ask whether the transport processes of different 
quantities such as momentum, heat and turbulence energy can be 
analogous. If an analogy existed between any pair of quantities, 

similar relations would be obtained for these quantities. It might 
even be possible to express the para~eters determining the transport 

of one quantity in terms of the parameters determining the transport 
of the other quantity. The question of the existence of analogies 
was, therefore, raised very early and had been answered more or less 

satisfactorily on the basis of existing theories. 

Osborne Reynolds was one of the earliest scientists to recognise 

the existence of a relationship between heat transfer and skin 
friction. According to his theory {2} , the movement of heat 
between a surface and a fluid followed the same laws as the movement 
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of momentum between the surface and the fluid, whether by 

conduction or convection. By assuming the thermal diffusivity 
equal to the kinematic viscosity and also the equality of eddy 
diffusivities of heat and momentum, Reynolds proposed the 

following equation which is known as the Reynolds analogy:-

h = (2.10) 
PCp :IT 

where h is the heat transfer coefficient; f is the friction 
factor and St is the Stanton number which is the ratio of heat 
production to heat transfer by convection. 

Although Reynolds analogy agreed well with turbulent heat 
transfer data on fluids which had a Prandtl number close to 1, 
it failed for Pr;ll. Furthermore, it did not take account of 
the velocity distribution across the pipe. In 1910, Prandtl {l} 
extended Reynolds work by considering the velocity distribution in 
the laminar sublayer and obtained a relationship which involved the 
ratio of the average velocity to the velocity at the edge of the 
laminar sublayer. Applying the Reynolds analogy for the turBulent 
core, Prandtl obtained the equation which has generally been referred 
to as Prandtl analogy:-

h 

yCpt1 
= St = f/2 

1 + ~l CPr-l) 
U 

(2 .11 ) 

where UOI is the velocity at the edge of the laminar sublayer. 

Prandtl analogy was based on the assumption of clear cut 
division of the flow into a laminar boundary layer and a turbulent 
core. Further research into the mechanism of turbulent flow has 
brought the recognition of the existence of an intermediate layer 
in which the molecular and turbulent transport phenomena were of 
the same order of magnitude. Von Karman {28} obtained a further 
improvement of Prandtl analogy on this basis by making use of the 
universal velocity di'stribution. The resulting equation for the 
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Stanton number was:-

f/2 

St = 1 +5 jf/2 [CPr-l) + 2n C1 + 5/6 (Pr-l)) ] (2.12) 

A useful empirical means of correlating convection heat 
transfer data and showing the relationship to the friction factor 
was developed by Colburn {2~} who proposed the j factor. 
Colburn investigated a large number of convection heat transfer 
and pressure drop data and found that a correlation was obtainable, 
thus making it possible to predict the heat transfer coefficient 
from the friction factor. Colburn analogy gave the following 
expression:-

(2.13) 

where jH is the j factor for heat transfer as defined oy Colburn. 

A graphical compartson of the analogies of Reynolds, Prandtl, 
von Karman, and Colbu'rn is shown in Figure 1, where the Nusse1t number 
is plotted versus the Reynolds number at constant values of the Prandt1 
number. The top curves are for a Prandtl number of 10 and ~he lower 
curves for a Prandtl number of 0.01. When the Prandt1 number is unity, 
all equat~ons become identical. All equations agree well at nigh 
Prandtl numbers.' At low Prandtl numbers, tnere is wi de di vergence of 
the various analogies, those of Prandtl and von Karman giving much 
lower values of the Nusselt number. These results would indicate 
that, for fluids with a hi'gh Prandtl number, the empirical equations 
satisfactorily predict the heat transfer coefficient. For low Prandtl 
number fluids, the large difference between empirical equations suggests 
that the present empirical relationships are not suitable. 

The use of the analogy between mOr.lentum transfer and heat 
transfer for predicting heat transfer from momentum transfer depends 
on the relationship between the eddy diffusivities of heat and momentum, 
i.e. sH and sv. Most investigators assume them to be equal, as 
Reynolds {2}, Prandtl {l}, von Kaman {28} and Colburn {29}did; 
however, recent experimental work has shown they are not equal. 
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Therefore, a general relationship between EH and Ev is needed so 

that the analogy between heat transfer and momentum transfer will 
be most useful. 

Although a number of workers have used Reynolds and Prandtl 
analogies to predict the eddy diffusivity ratio, their results 

were found to be unsatisfactory. Jenkins {3D} altered Prandtl's 
mixing length concept by allowing the moving particles to change 
their energy and momentum while in flight. Diffusivities predicted 
by Jenkins were known to be in error of 20% even for Prandtl number 
of the order of unity. At high Prandtl numbers, his prediction 
posed no upper limit for,diffusivity ratio as the Prandtl number 
increased. 

Deissler {3l}, {32} using a modified mixing length theory and 
also a method based on correlation coefficients, produced reasonable 
prediction for diffus;vity ratio in the low Prandtl number range. 
However, his theory required experimentally determined constants. 
Rohsenow and Cohen {33} modified Deissler's analysis by considering 
a spherical eddy travelling in a fluid \oI/hose temperature varied 
linearly with time. They produced a diffusivity ratio for very low 
Prandtl number range. Apart from not taking into account the effect 
of Reynolds number or turbulence intensity, their prediction gave 
infinite value of heat transfer coefficient as the Prandtl number 
increased. 

Azer and Chao {34} based on the same analysis as Jenkin's concept 
and assumed a continuous change of momentum and energy during the 
flight of an eddy. Their prediction is valid in the case of pipe 
flow only. Also, theY'provided two separate expressions for the 
ratio of diffustvtty for different Prandtl number regime. From 
his measurements in boundary layer air flows, Rotta {35} proposed a 
simple expression for diffusivity ratio across the boundary layer. 
However, the trend that Prt decreases with the wall distance from 
the value of 0.9 at the wall to 0.5 near the outer edge of the boundary 
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layer is in opposition to the measurements of Quarmby & Quirk {36} 

for pipe flow. Jischa & Ricke {37},{38} proposed a second order 
closure model for the diffusivity ratio. Apart from having two 
different expressions for different Reynolds number regime, it 
also has two empirical constants. 

Prior to the above analyses, Taylor in his Classical Vorticity 
Transport Theory {8} produced a unique value for the diffus;vity 

ratio of 2.0. This is contrary to the large amount of available 
experimental data and the more up-to-date analysis that it depends 
on the Prandt1 number. 

Ty1des1ey & Silver {39-} , {40} used an approach different from 
the mixing length concept or one based upon correlation coefficients. 
Their predicted values of diffusivity ratio was found to be well 
compared with those experimental data supplied by Stromquist {41}, 
Trefethen {42}, Seban & Doughty {43}, Mizushima & Sasano {44} and 
Isokoff & Drew {45}. Ty1desley & Silver's analysis was based on 

the concept that the fluid consisted of eddies or entities of variable 
shapes, sizes and velocities. A reasonably simply model for tne 
prediction of turbulent transport properties was proposed. Their 
concept seemed to give a more realistic description of the flow of 
turbulence. The present work is based on the concept by Ty1des1ey 
& Silver whilst attempting to predict momentum and heat transport. 

2.2 Flow in smooth and rough pipes 

An extensive investigation on frictional resistance due to 
roughened surface was carried out by Nikuradse {46}. In his 

experiments, circular pipes were internally coated with sand grains 

of uniform size. Roughness ratios (r/k) ranging from 15 to 507 were 
used to correlate the relationship between friction coefficient or 
resistance factor and Reynolds number. He found rather abrupt 
transition from "smooth" law at low speed to "rough" law at high 

speed. A one-equation model for resistance factor with surface 
roughness was then proposed as:-

r -2 A = (1.74 + 2 log Ik) (2.14) 
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Prior to these investigations, Heywood {47} and others had 

carried out measurements of resistance factor on galvanized steel 

pi pe and wrought i ron pi pe wi th roughness ratios bet\'/een 28 and 

70. Their results could only be explained by a much more gradual 

transition between the two resistance laws. Unlike Nikuradse and 

Heywood, Colebrook & White {48} used pipes with non uniform 
roughness and obtained similar experimental data as Heywood. 

Although Nikuradse's investigation was thorough and widely 
accepted, it did not deal with the effect of roughness on heat 

transfer. As indicated by Bradshaw {49}, there remained a 
controversy as to whether or not roughening the surface 

would increase heat transfer for a given pumping power. 

explanation for this lack of information may lie in the 

of a pipe 
A partial 

difficulty 

involved in obtaining accurate heat transfer measurements and in the 
fact that for a complete study of heat transfer phenomena, the 

influence of the Prandtl number has to be studied. 

A number of workers such as Kay & Nedderman {50} and Goldstein 
{51} have suggested that a similarity para~eter k* = Ut~k existed 

in flow through rough pipes such that, for a certain kind of roughness, 
if k*<4 or 5, the surface might be considered to be hydraulically 
smooth. If k* >100, the surface might be considered completely rough. 

In the case where 4 or 5 < k* < 100, the effects of roughness and of 

viscosity were of equal importance. 

Over the years, it has long been recognised that the heat 
transfer coefficient in an incompressible fluid over a smooth surface 

might be expressed as:-

B C Nu = A.Re .Pr (2.15) 

where A, Band C were numerical constants. Different workers in 

the field have proposed different values for A, Band C. Schlichting 
{52} , Colladay {53} and Curle & Davies {54} all proposed values of A, 
Band C as 0.332, 0.5 and 0.33 respectively while Davies {55} proposed 
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values of 0.26, 0.6 and 0.3. With flows in circular pipes, 

Reynolds and Perkins {56} suggested different values of A, Band 
C for different Prandt1 number regime. For Pr > 20, their 

suggested values of A, Band C were 0.011B, 0.9 and 0.3 respectively. 
For 1.0 < Pr < 20, they proposed 0.0155, 0.B3 and 0.5 whereas for 
0.5 < Pr < 1.0, their suggested values were 0.022, 0.8 and 0.6 

respectively. In addition, for Pr < 0.5, they proposed a new 
expression for heat transfer as:-

0.827 
Nu = 4.B2 + 0.01B5.Pe (2.16) 

Although the different sets of numerical constants varied a 
great deal, the predicted heat transfer coefficients were quite 
similar in value. In addition, Sleicher & Rouse {57} suggested a 
correlati'on for the ranges 0.1 < Pr < 10 5 and 10 4 < Re < 10 6 , 

Nu = 5 + 0.015 Rem.Prn (2.17) 

where m = 0.B8 - 0.24/(4 + Pr) and n = 0.33 + 0.5 exp (0.6Pr). 

As the effect of wall roughness on the turbulence flow pattern 
1S negligible if the relative roughness is sufficiently low, one may 
expect that the transport of heat in a flow past a rough wall with 
low relative roughness will be like the transport of heat in a flow 
past a smooth wall, except perhaps for a sli0ht effect associated 
with the increased surface area of the rough wall. However, pipes 

which are sufficiently rough would increase heast transfer coefficients. 

Davies {55} suggested that, in rough pipes, the eddies set up in 

the wake of each roughness element penetrated into the viscous sub­
:layer where much of the resistance to heat flow normally occurred. 
Eckert {58} indicated that, because of the small laminar sublayer, 

the shearing stress at the wall for turbulent flow depended much on 
the roughness of the wall whereas, in laminar flow, the roughness had 

only a small influence. This could be explained as an increase in 

shearin0 stresses when the roughness was not filled out by the laminar 
sub layer. Reynolds {59} attempted to explain this by the presence of 
a recirculating flow within a cavity in the roughness layer. Heat 

across the layer, either entering the recirculatin0 flow or to be 
carried to the outer flow, could only be transferred by diffusion at 

the solid boundary. 
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Hinze {4} suggested that with increasing roughness, there was 
an increasing effect on the flow pattern; among other things, the 
effective thickness of the viscous sub1ayer would decrease. The 

decrease affected the transfer of heat across the boundary layer, 
for the roughness caused disturbances in the viscous sublayer 
which promoted turbulence transport. Rotta {60}, using 

Nikuradse's experimental results, deduced a relationship between 
viscous sub layer and surface roughness as shown in Figure 2, and 
showed that for U0k > 55, the effective thickness of the viscous 
sub1ayer became zero. 

It has been found experimentally that roughness increased the 
rate of heat transfer by up to three or four times. Davies {55} 
showed that the heat transfer coefficient over a rough surface 
might be given by:-

Nu = 0.08 . If7Z . RePr 0·5 (2.18) 

It was suggested that if the pipe was screw-threaded If/2 varied 
as (kiD) 0·3 but for sand-roughened pipes, the power of (kiD) would 
be 0.15. Although different assumptions were used during the 
derivation of smooth and rough pipe coefficients, the values of 
f/2 over the entire range from completely smooth to fully rough 
pipes might be valid in the same equation. Kolar {61} found that, 
ln practice, as a first approximation, the empirical equation:-

Nu = 0.05. IfJ2 . Re Pr o, s (2.19) 

gave quite a good representation of the heat transfer into fluids 
in both smooth and rough pipes. 

One of the first studies of heat transfer in rough pipes was 
conducted by Cope {62} in 1941. The roughness ratios achieved in 
his experiments were between 8 and 45. His experimental results 
showed that the effect of surface roughness of the kind tested was 
positively detrimental to the efficiency of a pipe as a medium for 
heat transmission. Zukauskas & Slauciauskas {63} attempted to 
explain this by suggesting that the increase in drag outweighed the 
increase in heat transfer as the roughness was increased. 
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Most rough surface heat transfer studies in the past have used 

air as the test fluid not only because of its practical importance, 

but also because its Prandtl number was nearly unity. The effects 

of roughness on aerodynamic heating and boundary layer transition 
have been studied by Dunn {64}. Heat transfer studies by 

Bourgoyne et al {65}, Kemeny & Cyphers {66}, Sheriff & Gumley {67} 

and Walker & Rapier {68} in conjunction with the United Kingdom 

Atomic Energy Commission have provided experimental data for heat 

transfer coefficients in turbulent flow in rough annuli with air. 

Nunner {69} carried out heat transfer and pressure drop 
measurements in roughened pipe flow. During his tests, artificial 
roughness was created by fixing different ringforms on the surface 
of the pipe. Roughness ratios obtained were between 2 and 80. 

Nunner then proposed an expression for rough surface heat transfer 
as:-

Re.Pr . fj2 
(2.20) 

where flfs was the ratio of rough to smooth friction factors at the 

same Reynolds number. In deriving the above equation, Nunner 
postulated that the vtscous wall layer behaves almost exactly the 

same way in a rough pipe as in a smooth one at the same Reynolds 

number. Therefore, only the resistance of the turbulent core was 
affected by roughness. 

Another expression for heat transfer which was frequently quoted 
was that developed by Martinelli {22} as:-

Re. Pr If/2 
( 2·21) 

Nu = 5{ Pr + tn (1+5 Pr} + ~tn( ~ ·jf)] 

This equation differs from that derived by r1artinelli for smooth 

pipes only by the omission of the temperature ratio (Tw - Tc)/(Tw-Tb) 
in the numerator. Martinelli suggested that the above equation might 

apply to rough pipes as the effect of roughness entered the equation 

simply through the increase in fraction factor. The omission of the 

temperature ratio had relatively little effect as this term was 

usually just slightly less than 1.0 and rarely fell below 0.8. 
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As suggested by Gomelauri {70} that with the above two 
expressions, the effect of Prandtl number was not properly 
predicted. Also a unique relationship between Nu and f 
independent of roughness forms was proposed to the contrary 

of the findings of Dipprey & Sabersky {7l} and others. Dipprey 
& Sabersky provided a set of experi~ental data on the friction 
as well as heat transfer characteristics of rouoh surfaces for 

oJ 

a relatively wide range of Reynolds numbers, roughness ratios and 
Prandtl numbers. They proposed a heat transfer similarity law 
based on heat transfer to water as:-

Nu = Re.Pr. f/2 

(2.22) 

where y was a numerical constant that depended on the roughness form 
and roughness ratio was expressed as:-

k 
1) 

1 
= exp[ ( 3.0 - 1T72) /2.5 ] 

The above equation refers to conditions in the 'fully rough' flow 
regime. They suggested that, for granular close-packed roughness, 
y = 5.19 and for two dimensional roughness such as that investigated 
by Nunner, y might be taken as 6.37. Arguments in support of the 
above similarity law were well presented. 

Gowen et al {72}, {73} also provided detailed experimental 
results on turbulent heat transfer to both smooth and rough pipe 
flows. During their investigations, temperature profiles, friction 
factors and heat transfer coefficients have been measured with pipes 
of rouahness ratio between 11 and 48. A semi-theoretical equation 

oJ 

based on the temperature profiles obtained was presented and shown 
to predict Nunner's results adequately, although it underestimated 
the results of Dipprey & Sabersky. The effects of roughness on 
free surface flows over smooth and rough boundaries were investigated 
by Blinco & Parenthi'ades {74}. They found that the relative 
turbulence intensity depended quite strongly on Reynolds number and 

increased strongly with increasing roughness. 
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Fujii et. al.{75} introduced extensive experi~ental results on 
natural convection wtth the influence of surface roughness. Although 
chiefly concerned with natural convection, they also suggested tnat 
the rough surface in the fon:.ed convect; on waul d reduce the mean vel oci ty 
and the heat transfer coefficient would be increased just as much to 
compensate the loss of the ki"net1c energy when compared under the same 
pressure drop. Ramakrishma et al {76} attempted a theoretical 
approach and provided a direct relationship between friction coefficient 
and free convective heat transfer with different roughness ratios. 
However, the predtction was on1'y valid for fluids whose Prandtl numbers 
were close to unity~ 

More recently, Cebeci & Chang {77} proposed a differential method 
with near wall mixing-length equations based on contributions by Rotta 
{78}. A higher order closure model was presented by Adams & Hodge {79} 
who used an integral form of the turbulent kinetic energy with a term 
added to represent the generation of turbulence which occurs in the 
wakes behind roughness elements. Hatton & Walklate {80} and Wassel & 
Mills {8l} also used the mixing length models for the prediction of 
heat transfer in roughened pipes. A near-wall mixing-length equation 
used for the prediction of skin friction and heat transfer in conjunction 
with a wall temperature step and a turbulent Prandtl number distribution 
was proposed by Ligrani et a1 {82}, {83}, along with the same mixing 
length equation for the outer regions of smooth wall boundary layer. 

With the present survey, it is evident that analyses and investig­
:ations so far have yet to provide a thorough theoretical and experi­
:mental criterion for predicting heat and mOMentum transfer under the 
influence of surface roughness. Furthermore, correlations based only 
on the heat transfer coefficient cannot generally and adequately predict 
heat transfer rate from rough surfaces because such correlations ignore 
the effect of roughness on the detailed structure of the resistance to 
heat transfer. As indicated earlier, the concept proposed by Tyldesley 
& Silver gave a more realistic description of the flow of turbulence -
it is thus possibly more realistic to study the effect of roughness on 
heat transfer using the concept proposed by Tyldesley & Silver. 
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2.3 Experimentation 

It was suggested by Nikuradse {84} that turbulence would be 
fully developed at a distance of 25 ~40 diameters downstream of an 
abrupt change of pipe diameters. However, Logan & Jones {85} 

showed that, in rough tubes, transition from a developed smooth to 
a developed rough velocity profile required only 8 ~ 10 diameters. 
Sleicher & Tribus {86} reviewed studies of several investigators 
and concluded that 5 ~10 diameters were required for development 
of constant heat transfer coefficients. 

Until recently, most of the investigations on heat transfer 
were confined to the heat transfer near the wall or in the boundary 
layer where the temperature gradi'ents were large. As indicated by 

Kinney & Sparrow {87}, this has led to extensive experimental and 
analytical predictions to wall heat transfer. However, there has 
been little or no experimental investigation on the neat transfer 
to fluid flow with internal heat generation. 

One of the earliest experimental and analytical works on 
internal heat generation heat transfer was carried out by Poppendiek{88} 
who assur.1ed equal diffusivities of momentum and heat. Measurements 
were made of the fully developed wall-to-bulk temperature differences 
within an electrically heated fluid. Comparison between his 
experimental data and analysis was only fair, as the scatter in his 
data was about 30%. Miller {89} carried out tests on turbulent 
heat transfer in an adiabatic ptpe with internal heat generation, 
but his results were not published. In addition, considerable 
uncertainty was reported as due to heat loss along the electrodes. 

Recent experimental work by Inman {90} was performed for an 
internally heat generating fluid in the laminar flow regime. Axial 
wall temperature measurements along the adiabatic test section were 
in good agreement with the predictions of laminar analysis. However, 
measurements in the turbulent flow regime were not reported. Similar 
investigations based on the classical eddy diffusivity model were 
carried out by Petukhov and Genin {9l}, Siegel & Sparrow {92} and 
Michiyoshi & Nakajima {93}. However, all the above analyses led to 
exact solutions for the heat transfer coefficient or wall temperature 
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that were too involved for engineering computations. 

Danckwerts {94} followed by Thomas et al {95},{96} used a 
different approach which made use of the principle of surface 

renewal. As their analysis was derived on the basis of the 

assumption that eddies moved into direct contact with the wall, 

the application was restricted to moderate Prandtl numbers. Also, 

assumption that eddies could be considered as semi-infinite further 
restricted the analysis to the evaluation of wall temperature for 
cases in which internal heat generation was involved. Habib & Na 
{97} and Na & Chiou {98} carried out a theoretical analysis to 
turbulent heat transfer in pipes with internal heat generation. 

The results from their theoretical studies agreed reasonably well 
with available experimental data for moderate to low Prandtl 
numbers. 

A method for generating a uniform heat source to fluid flow 
was introduced by Wilson {99} in as early as 1904. With his 

method, heated fluid could De injected into the main flow through 
a small injector and the injected fluid might be considered as a 
moving point source of heat, provided that the injector size was 
sufficiently small. An expression for the eddy diffusivity of 
heat might be expressed as:-

Q - k 
4TI ~T (x-xo) 

(2.23) 

where Q was the heat source strength and ~T was the rise in 

temperature with respect to the distance (x-xo). The method was 
found to be in error mainly due to the effect of finite boundaries. 
Although an analysis using Green's function might be carried out, 
as suggested by Carslaw & Jaeger {100}, to modify the above 
expression, such analysis was complex and therefore unnecessary for 
experimental verification. Sheriff et al {101},{102}, {103}carried 

out experimental investigation using the above expression. Their 

results of eddy diffusivity of neat were found to be underestimates. 

This was thought to be due to the finite boundaries in pipe flow. 
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Until recently, the most universal device for studying 
turbulent flows was a hot-wire anemometer. With the advent of 
lasers, the possibilities of the development of more advanced 

devices were opened up. In 1964, Yeh & Cummins {104} success-
:fully measured velocity profiles in a fluid by exa~ining the 
frequency shift in monochromatic coherent radiation scattered 

from particles in the fluid. The analytical description of Laser 
Doppler Anemometry was first shown by Rudd {105} as an uncontra­

:dictory method on the basis of a doppler or interference technique. 
Many investigators such as Foreman et al {106}, Pike et al {107}, 

Welch & Tomme {lOB} and Lumley et al {10~ have applied this 

technique to the measurement of mean square fluctuating velocities 
and instantaneous velocities in the turbulent flow of gases and 
liquids. 

As listed by Durst & Zare {110}, a large number of articles 
were available on the various aspects of LOA. Many papers dealt 
with the specific applications of optical or electronic apparatus 
available. Durst & Whitelaw{lll} carried out measurements of 
mean velocities, turbulence intensities and shear stresses in air 
jet flow by turning the two input laser beams through 900 , thus 
measuring the two velocity components. Bourke et al {112}, {113} 
measured the Reynolds shear stresses in water flow using two 
frequency trackers and an analogue correlator. It was shown that 
the above ~easurements of velocity and turbulence intensity compared 
favourably with those of hot wire measurenents. 

With laser doppler anemometry, it is necessary that particles 
of appropriate sizes are suspended in the flow for light scattering. 
With air or gas flow, it is usual to use some for~ of atomiser or 
spray for seeding of particles. Melling & Whitelaw {114} discussed 
the criterion which limited particle characteristics and assessed 
the available method for particle generation. However, as mains 
water generally contains enough contamination in the way of particles, 

seeding in water flow is usually not necessary. 
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Bates {115} carried out a number of tests on water flow usinn 

the LOA on a ten inch perspex pipe and obtained results of velocities, 
turbulence intensities, boundary layer thickness and skin friction 

coefficients. It was shown that the LOA system was suitable and 
useful in the measurements of properties of turbulent flows. 

Bates {116} continued his investigations by analysing his results 

on a PDP 11 minicomputer and found some discrepancies between his 
analogue and digital results. 

As suggested by Van Atta {117}, one method of reducing the error 
of digital technique was by substantially increasing the sample size 
and sample rate or frequency. Vanta et al {118}, {119}developed a 
statistical analysis system incorporating a digital data processor 

in which the data were punched onto cards to be analysed later on a 
large computer. With a statistical definition of turbulence and 
its mean square fluctuations, they found that, as shown in Figure 3, 

for an accuracy of 1%, the number of data points needed to obtain 
velocity measurement was given by:-

N = 40000 
~ 2 

U (2.24) 

A similar analysis was carried out to predict the number of data 

points needed to obtain accurate measurements of turbulence intensity. 
As shown in Figure 4, they found the number to be independent of flow 
conditions. 

Whiffen & Meadows {l20} and Smith & Meadows {121} used an 
improved system where the data was stored via a minicomputer onto 
disc before subsequently processed on a large computer. Blake {122} 

developed a frequency analysis system based upon a computing counter 
linked to the photomultiplier via a preamplifier and ban~pass filter. 

A digital magnetic tape was obtained from a data logging device 
connected to the counter and then analysed off-line on a computer. 
However, Bates & Hughes {123}, {124} showed that, provided the 

turbulence intensity in the flow was low, the output from a frequency 
tracker might be fed directly into a minicomputer and sampled in a 
controllable manner to yield the required statistical information. 
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A number of articles were available on the statistical analysis 
of LOA signals and the errors involved therein. Greated & Manning 
{125} , {126} derived mathematical expressions for the ambiguity 

broadening due to finite flight time based on a two dimensional 

model. George & Lumley {127}, {128} presented an exact theory for 
the effect of ambiguities on measurements and presented a criterion 
for minimising such doppler ambiguity. 

Microscale is a measure of the average dimension of the eddies 
that are mainly responsible for the dissipation of energy. As 
indicated by Hinze {4} while discussing correlation coefficients, 
the microscale mtght be expressed as:-

2 

g(y} ~ 1 - tz. (2.25) 

where g(y} was the lateral correlation coefficient defined by:-

g(y} = (2.26) 

A could then be obtained by plotting the correlation coefficients 
and fitting an osculating parabola as shown in Figure 5. As stated 
by Hinze, the accurate measurement of the correlation curve was not 
very simple, parti'cularly at small values of y when the coefficient 

was close to unity. 

A second measure~ent method was suggested by Townsend 129 who 

made use of Taylor1s hypothesis and proposed:-

1 (Clu) 2 ~ = u2 U ,2 • at (2.27) 

Thus, by introducing a differentiation circuit into the electronic 
system, A could be measured. Laufer {13ffiand Liepmann {13l} 
proposed a zero-crossing method for the determination of microscale. 
The microscale could be obtained from the knowledge of the average 
number of zeros of the u fluctuations per unit time. They proposed 

the expression as:-

.\ = (2.28) 
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where N was the number of zeros of u fluctuations per unit time. 
The zero-crossing technique was the simplest of the three 

techniques to perform, although it was found by Philip {132} 
that this method still needed 8odification. 

2.4 Summary 

The present literature survey has indicated that, although 
there have been numerous researchers investigating the various 
aspects of turbulence flow, there remained to be found a thorough 
and realistic criterion for the prediction of momentum and heat 
transfer. It would be more satisfying to have a theory that 
allows the turbulent eddy shape, size and velocity to change with 
respect to time. As suggested by Roshko {133},understanding of 
the physical processes actually occurring in turbulent flows is 
indispensable for progress towards an analytical description of 
them. Even short of that, knowledge of these processes is helpful 
for understanding and coping with practical probleMs in which 
turbulent flow is prominent. It would also be more appropriate 
to study the effect of roughness on heat and momentum transfer with 
an approach that describes the detailed structure of the resistance 

to heat transfer. 

Experimentally, the method as introduced by Nilson and 
described in the last section for the generation of a heat source 
was found to be appropriate. The laser doppler anemometry technique 
was found to be suitable for the measurement of turbulence character-

:istics. Digital techniques have been shown to provide simpler 
and more controllable methods for turbulence measurements, 
particularly with the advance of present-day digital computers. 
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3. THEORETICAL ANALYSIS AND DEVELOPMENTS 

The theoretical analysis was based largely on the concept 
proposed by Tyldesley & Silver {39},{40}. In their work, the 
basic idea of entity concept was presented and eddy 

diffusivities of momentum, heat and mass were proposed as 

dependent on two variables, the entity scale and velocity. 
The ratio of eddy diffusivity of momentum and heat, when 
compared with other reserchers' experimental data, were 

found to be well predicted. However, no rigorous derivation 
of the expressions were presented. Neither were the 
relationships between the entity scale and velocity clearly 
defined. 

The present work makes a rigorous presentation of the 
theoretical concept of entity model' of turbulence. In 
discussing the two important parameters of the entity 
concept, conditions for which Tyldesley & Silver's predicted 
eddy diffusivities would hold, we're discussed. Also, the 
thermodynamic relationship between the two random variables, 
Rand Vr was presented. Solutions to the mOMentum and 
energy equations under simple flow situations were proposed. 
Furthermore, overall heat transfer characteristics in a 
simple pipe flow were investigated using the turbulent 
Prandtl number, originally proposed by Tyldesley & Silver. 
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The present analysis was based on a thermodynamic approach, 
Using the method of statistical inference to provide a first order 
theory. The transport properties of a turbulent fluid were 

investigated using a simple model to rerresent the detailed fluid 
behaviour which was attributed to the motions of fluid entities 
of varying size, shape and velocity. An analysis was made to 

find the effect on the whole system, of interaction and transport 
between the individual entities. Information theory has been 
successfully used as a means for the interpretation of turbulence 
parameters. Using the present analysis, it has been possible to 
predict characteristics of turbulence shear flow not vastly 

different from those found in practice, with only a minimum amount 
of information. 

3.1 Transport equations and eddy diffusivities 

3.1.1 Conservation of momentum transport 

Consider that u, v and ware the x, y and z components of the 
fluid velocity U. For a stationary control surface dSx in the fluid, 
the rate at which momentum is transported across this surface in the 

x-direction is given by:-

Mx = mu = pu.u dSx (3.l) 

Similarly, for control surfacesdSy and dS z in the fluid, the rate 
at which momentum are transported across these surfaces respectively 

in the x-direction are:-

My = pu.v dSy (3.2) 

Mz = pu.w dSz (3.3) 
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It was shown by Bradshaw {3} that a probability distribution 
may be defi ned such tha t Pu d u is the probabi 1 i ty that u 1 i es 

between u-~du and u+~du. Such a probability distribution satisfies 
the following conditions:-

CD 

J Pu d u = 1 -. 
Q) 

J u Pu du = <u> 
-co 

to 

and _J un Pu du n = <u > 

where < > denotes the expected value of. Similarly, joint 

probability distributions Puv and Puw may also be defined such tnat 
Puv dudv ;s the probability that u lies between u-~du and u+~du at 
the sar:le time that v 1 i'es between v-;dv and v+~dv; Puw dudw is the 
probability that u lies between u-~du and u+~du at the same time 
that w lies between w-~dw and w+~dw. Such probability distributions 

satisfy:-

co 

-40 

f Puv du = Pv 

GOQt 

If Puv dudv = 1 
-GI) .Qt 

GI>", 

umvndudv m n J f Puv = <u V > 
.<Id .(D 

III) 

and J Puw du - Pw 
-cD 

• CIa 

If Puw dudw = 1 
-CIt -. 

• CD m n 
If urn w n dudw Puw = <u W > 

.. ~ .-

Hence, the expected values of rate at which momentum are transported 

across the surfaces dSx, dSy and dS z are:-
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co 

<Mx> = f PU 2
• PU 2 dSx . du 

-GO 

CD (J) 

<My> = f f Puv puv dSy • dudv 
-(I) -Q:) 

Gr) ~ 

and <Mz> = If Puw puw dS z • dudw 
-Gr) -Gr) 

If a control volume dV is formed by the surfaces dS x, dSy and 
dS z ' the rate at which ~omentum ;s transported across the volume 
in the x-direction is thus the sum of the momentum flux through 
the boundary surfaces. Hence, 

<M> = <Mx> + <My> + <~1z> 

IC 
o:o~ 

• <M> Pupu 2du dSx + fJpuvpuv dudv dSy . . = 
dSxdSydS;;: _L -43-<t11 

lOCI) 

dS Z } +)1 Puw p uw dudw (3.4) 

Vlithin the control volume, the rate of change of ~omentu~ in the 

x-direction is given by vI d~tU) dV. Again, the expected value 

of the rate of change of momentum in the x-direction is: 

= vi d~ • 

GD 

J 3<u> p.dV J Pu .pudu dV at 
v -(I) 

For conservation of momentum transport to be satisfied:-

f d<U> .p dV + <M> = 0 at 
V 

. . 
(2) 

V J ddt j"pupu du dV + s1 {Jpu pu
2 

du dSx 

+ f(puv puv dudv dSy + ((PUW puw dudw dSZ} 
=-0 -a'o -<D -CD (3.5) 

Using Green's theorem for transforr.ing a surface integral into a 

volume integral, equation (3.5) becomes:-
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it [ r Pu.p u du ] 
-Q) 

CD 

+ ~[ J p 2 ] aX u. p u du 
-Q) 

a J~ 3 ... 
+ ay L P uv p uv dudv ] + 3z [J Puwpuw dudw j 

-CD 

= 0 

(3.6) 

Consider the flow of turbulence such that u = <u> + ul , 
v = <v> + Vi and w = <w> + w' . 
rules of average, 

Again, by applying the Reynolds 
we get:-

• . . 

<uz> = <U>2 + <u I 2> 

<uv> = <u><v> + <u'v'> 

<uw> = <u><w> + <UlW I > 

equation (3.6) becomes:-

p3<u> 
3t + <u> + <u>2 (p<u» 3x 

. "'I <u> + p<u> _0 __ 

ax 

+ <u> i-- (p<v» a <u> d +p<v> 3y + <u> 3z (p <\'/» y . 

3<u> 
+ p <w> 3z 

= 0 

+ d (p<u I V I» 
'dy 

(3.7) 

By considering the conservation of mass over the control volume 
dV in a similar manner as above, an equation of mass conservation or 

continuity may be obtained as:-

3p 
at + ~ (p<u» 3x + ~ (p<v» 3y 

3 + az (p<w» 

Therefore, equation (3.7) may be expressed as:-
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d<U> + p<U> 'd<U> 
p at ax 

+ a (p<U I2 » ax 

= 0 

Putting cr = p<U l2 > xx 

. . 

0xy = p<u1v'> 

a<u> 
at 

d<U> + <u>-­
dX 

= 1 
p 

a<U> d<U> + p<v> + p<w> ay ;z 

a (p<u I v' » +.1.. + (p<u1w'» 'dy az 

+ <v> _d_<_U_> 
ay + <w> 

'd<u> 
dZ 

+ a dy crxy + a ) dZ O'xz 

(3.9) 

(3.10) 

The above equation represents the equation of conservation of 
momentum in the x-direction and is analogous to the Reynolds 
equation with the (J terms anlaogous to Reynolds stresses. Sir.1ilar 
equations may also be obtained for the conservation of momentun in 
the y and z-directions. In general, the momentum equations may be 
expressed in tensor notation, as:-

a<ui> + <u.> a<ui> = 
at J aXj 

1 dOi· 
dXj J 

p 

3. 1 .2 Conservation of energy transport 

(3.11) 

Using a similar type of analysis as in the previous section, an 

energy transport equation may be obtained as:-

d a «ET> <U;» 
'd 

at <ET> + - + -<0·> 
dX· dX; " , 

d ( <U . ><0· . » = 0 (3.12) + -dX· J , J , 
where ET = ~p(U2 + v2 + w2 ) is the total energy of the fluid per unit 

1 Q,. ,'s the energy flux due to the turbulent motion and a~j vo ume. 
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is the shear stress. 

ET = ~p(U2 + y2 + W
2) 

= ~p«U>2 + Ul2 + 2<u>u ' + <V>2 + V 12 + 2 <v>v I 

+ <W>2 + WI2 + 2<w> Wi) 

. . . <ET> = ~~U>2+ <V>2 + <W>2 + <U l2 > + <Vl2> + <WI2» 

Putting <ET> = ~p<U>2 + <Ue> where ~p<U>2represents the kinetic 

energy per unit volume of the fluid motion and <Ue> is the expected 
value of internal energy per unit volume of the fluid, equation (3.12) 

becomes:-

implies, 

+ 'ddt <Ue> + <u.> ~(f <U>2) , 'dXi 2 

d <Ue> B. <U>2 d <U.> + <ue+ <Ui> + <U·> a + • dX; 2 1 X· , xi 1 

d d <U.+ a;j + a <Q.> + a .. a <U.>+ = 
X· . , 'J Xi J J Xi , 

d U <U,' > ~ <Ue> + <Ue> _d_ <Ui> + ~ <0'> at< e> + oXi dX; dXi' 

d + cr.· - <U·> = , J axi J 

<U>2<~.2E-
+ 2 1 aXi 

+ Uj d cri j ] 
dX; 

+ 

_[ <U>2 dP + 
2 'dt 

<U>2 a 
2 .p dXi<U;> 

d 
+ <Ui>'P' aXi 

(3.13) 

0 

Using the equations of mass transport (3.8) and momentum transport, 
it can be shown that the right-hand side of equation (3.13) is equal 

to zero, hence:-

ddt <Ue> 

= 0 

+ ~ « U;> <Ue> ) 
dX; 
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where the first two terms re~resent the rate of increase of energy 

in t~eu~urbulent fluid, a~~~> represents the energy diffusion and 
'. 0< J> 1 

01J aXi represents the dissipation due to turbulence fluctuations. 

As the energy of the turbulent fluctuations is continuously 
dissipated into thermal energy, an additional dissipation term ~, 
has to be included in the above equation. So far, the fluid has 
been considered to be free from surface forces or momentu~ flux due 
to molecular viscosity. In order to include such effect, a viscous 
stress or a dissipation term due to viscous stresses must also be 
included. Hence, for a turbulent fluid, the ~omentum and energy 
transport equations may be expressed as:-

a<Ui> 
at = - 1. [ aoi j + acr' i J' ] (3. 14) 

p aXj 8xj 

and a a 
at <Ue> + aXi «Ui > <Ue» a Q' + aXi< 1> 

+ ( I) a<Uj> 
0·· +cr· .. 

1J 1J aXi = ¢ (3.15) 

Although the equations obtained above are similar to those obtained 
by more classical methods, the approach in deriving these equations is 
different. It is perhaps more customary to obtain the momentum and 
energy equation by assu~ing that the instantaneous velocity field 
satisfies the Navier-Stokes equation. However, the method used in 
the present analysis avoids this assumption and enables the proble~ of 
turbulence to be treated as the flow of a particular fluid having 
unusual transport properties. The more detailed than usual derivation 
demonstrated that the similarities which existed between the governing 
equations of the turbulent fluid transport and molecular transport of 
gases were not by chance, but were the result of the systems being 
indistinguishable when described by average or expected values of 

their variables. 
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In order to solve the momentum and transport equations, the 
internal behaviour of the fluid has to be described. Furthernore, 

the diffusion and dissipation terms have to be investi0ated and 
solved. 

3. 1 .3 Dissipation of turbulent energy 

In turbulent fluid flow, particles of fluid tend to co~bine 

together and move with a common velocity relative to the average 
motion of the fluid. These particles or eddies are of random size, 
shape and velocity in any particular region of the flow field and 
the average of these quantities varies with position. The intro­
:duction of the entity shape and size presents difficulties when 
discussing its motion. However, this may be overcome by considering 
the slow motion of an ellipsoid of semi-principal axes (a,b,c) moving 
as a solid with average velocity vr = (Ur,Vr,Wr,) relative to the 
fluid average velocity "IT = Cu,v,w). Providing the ellipsoid is 
small compared to the surrounding fluid and the relative velocity 
is not too high, the force acting on the ellipsoid, as snown by 
Lamb{134} and Landau & Lifshitz {135}, may be expressed as:-

F = 67TlJR Vr (3.16) 

where R = R(a,b,c) is a function dependent on the shape and Slze of 
the ellipsoid. As the above expression was ori9inally treated by 
Stokes, it has generally been referred to as the Stokes' fornula. 

Introduce a factor e such that e = R/r and when a=b=c=r,e =1 . 

e may be regarded as a factor that accounts for the effect of 
distortion of the entity from a purely spherical shape. Considering 

the rate of energy dissipation due to the ellipsoidal entity, 

d 
C~ m Vr2) = -F .'ir 

at 

~7Tr3e3 . d ( V;2) - 2 
• . p • at = -67TlJr. eVr 

d - 2 9 11 1 (¥ ) Vr2 . . = -2p . r 2e2 
dt 

33 



Hence, 

(3.17) 

In order to proceed further, the correlation between velocity 
and the size of entities have to be known. Although most 

turbulent flows are inhomogeneous, the more important features of 
energy transport process are the same whether the flow is homo­
:geneous or not. As indicated by Townsend {136}, if the time­
~elay correlation function was converted to a structure function 
to give information about eddies of various sizes, the decrease of 
maximum autocorrelation with time was caused mostly by the random 
movements of eddy centres. If the random displaceMents were 
small compared with the eddy dia~eters, the change in the structure 
function would be produced substantially by simple translation by 
a convection velocity. In homogeneous turbulence, the convection 
velocity was constant for all sizes of eddies and equalled the mean 

flow ve loci ty. 

Taylor {137} suggested the structure function as:-

ui(x,t) = ui(x - UT, t+T) (3.18} 
for not too large values of T. Townsend showed that the above 
relation was a good one if the random displacements of eddy centres 
in T were small compared with the diameters of the smaller eddies. 
Velocity variations due to eddies of size d were completely 
uncorrelated for separation T large compared with diU. 

The use of structure function to obtain information about eddy 

sizes is not restricted to homogeneous turbulence and it applies to 
all flows whose variations of mean velocity and fluctuating velocity 
are both small compared with the average velocity over the whole 

flow field. Nevertheless, the condition ;s not satisfied in 

turbulent jets and boundary layers as in these regions, the 

convection velocities of the large scale pattern of velocity may be 

considerably different from the local mean velocity. 
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Although the above argument was intended for obtaining the 
structure function, tt may be deduced from the analysis that 

providing the eddy velocity relative to the mean flow velOCi~y 1S 

small and random displacements of eddies are small compared to the 
eddy sizes, the corre 1 ati·ons b t dd e ween e y size and its relative 
ve loci ty i's cons idered weak. 

Hence equation (3.171 becomes:-

= (3.19) 

which is a version of the well-known von Karman-Howarth equation {138} 

for the decay of energy with the term <r 282 > similar to the square 
of the mtcroscale ~. As dissipation of energy is equivalent to the 
rate of change of energy per unit volume," the dissipation term may 
be expressed as:-

Hence 

3. 1 .4 

9 <Vr2> 
- 7 11 <r 2 8 2 > 

Surface stresses ln a turbulent fluid 

(3.201 

So far, the eddies have been taken as an ellipsoid of semi­
:principal axes (a,b,cl where R is a function of such axes. The 
factor 0 was used to indicate the shape distortion of the entity from 
a sphere. In flow s i tua tions remote from any phys i ca 1 bounda ry, it 
may be assumed that the turbulence is isotropic as the effect of a 
so 1 i'd boundary whi'ch tends to genera te dis turbances is absent. It 
may then be assumed that in such a flow situation the eddies are of 
s phertca 1 sha pe. However, in flow s i·tua ti ons not remote from 
physi'cal boundary, isotropy may not be assumed and the ellipsoidal 

shape of the eddy has to be maintained. 

For isotropic turbulence where a spherical entity is assumed, 

a=b=c=R=r and 8=1. For nonisotropic turbulence, tt may be assumed 

that the ellipsoid is in fact an elongated sphere with axes (a,a,b) 

and volume 4/3 TIa 2 b. 
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As indicated in the last section, the correlation between eddy size 

and its relative velocity near a physical boundary might not be 

weak. Predictions obtained might not be as accurate as those for 

regions remote from physical boundaries. However, from the analysis 
that follows, it is apparent that a definite shape of an eddy is of 
minor importance in the analysis. 

Consider an eddy of spherical shape as described above which 
has an average velocity along the x-axis and uniform in any plane 
perpendicular to the y-axis. In the case where the bulk flow is 

unidirectional with constant velocity gradient, the bulk velocity 
relative to some plane y=O may be expressed as:-

u = (y d<u> 0 0) dy , , (3.21) 

With the absolute entity velocity taken as V = (U,V,W), components 

of forces acting on the entity are thus:-

6 ( d<u> - U) Fx = TI~.r y dy 

Fy =-6TI 11 r V 

Considering the rate of change of momentum, 

d d<u» (ftC m • U} = - 6 TI ~ r C U - Y dy 

.ft.c m • V) = -6 TI ~ r V 

Hence, dU 9~ 1 (U 
d<u» 

(ff=-Zp0 r2 - Y dy (3.22) 

dV 9~ ..l.v Qf=-Zp0 r 2 
(3.23) 

If the initial conditions are (U,V,W)o = (Uo,Vo,Wo) when y = 0, 

it may be shown as in Appendix 3 that the solutions to the above 

equations are:-
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U = Uo (1 - y/A.*} + d<u> [ * 
dy Y + A. (l-y/\*) . In (l-y/", *) ] 

(3.24) 

V = Vo Cl-yJA*) (3.25) 

where A* = Vo. 2:~2 ts the mean distance travelled by the entity 

from the plane y = 0 before its mo~entur.l is entirely di'ssipated by 
viscous action. 

Equations ().241 and (3.251 represent the expected or average 
values of the velocity components of an entity which was created at 

tine t = 0 in the plane y = 0, Equation (3.25J indicates that only 
the initial term is concerned with the value of Uo while the renaining 
terms are independent of Uo and give the effect of the velocity gradient 
dd~> on the eddy velocity. As poi'nted out by Tyldesley & Silver {39} 

since the decay of entity of momentum ts exponential, an infinite time 
1'S required for the enti-ty to travel the distance :\*. It thus 
represents a limit which will be raptdly approached but never actually 

achi'eved, Equa ti on (3.24) a 1 so shows that the axi a 1 component of the 
entity momentum ts influenced by the mean velocity gradient and thus 

give rise to a shear stress. 

3.1.4,1 Shear stress due to momentum flux and eddy diffusivity of 
mornenturrl 

Since an entity is identified by its motion relative to the mean 
flow, it follows that entities are also created within the flow field. 

Consider the flux of entities crossing the plane y = 0 and, in particular, 
an entity that was created a distance A from the plane and is now 
crosslng it. The entity velocities relative to the average fluid 

velocity are:-

Ur =A dd~> -{UOC1-A/A*) + dd~> [ A + A*Cl-V\*ltnCH/A*>J} 

= -Uo (1- A./:\*) - d~~>[ :\*(l-:\/:\*)£n(l-:\/:\* ) ] 

Vr = -Vo (l-V:\*l 
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Here, Uo and Vo are the values of Ur and Vr at the creation of 

the entity. The contribution to the kinetic shear stress from this 
entity may be expressed as:-

o = - p <Ur Vr> xy 

However,<:Uo Vo (l-A/A*~rnay be taken as zero, providing the creation 
process favours neither positive nor negative values of Uo, 

• • 0xy = - pdd~><VO A* (1-A/A*)2,Q,n(1-A/A*» 

= ~~2 dd~> <V02 r 2 (l-A/A*j2£n(l-A/A*» 

o == -xy 

As there is continuous production and dissipattdn of entities and 

there is no mean flow in the transverse direction, the least prejudiced 
assignment of probability density to the value of A/A* when an entity 
crosses the plane y = 0 is that the density is uniform for all values 
of A/A * between 0 and 1. Thus, a 11 va 1 ues of f... If... * between 0 and 1 

are equally likely. Hence:- , 
< (1- A/A*) 2 £n( 1- AlA *) = J (l-A/A*) 2 £n( 1-AlA *) de-£. ) 

. . 

1 = - 9 

dd~> . <V02) <r2). (-~) 

d<u> 
dy 

As shear stress due to momentum flux may also be expressed as 
~ d<u> where ~'1 ,'s the eddy viscosity 0xy = c.1-I dy c.t-" 

= (3.27) . . 
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The eddy diffusivity of momentum may be written as E,) = E:~/2, and 
hence may be expressed as:-

(3.28) 

From the preceding analysis, the concept of eddy viscosity arises 
naturally from the description of an entity in turbulent fluid. Its 
value in any region of the fluid is dependent on the history of the 
entities traversing the region and, in this respect, it cannot be 
described as a local parameter. 

3.1.4.2 Shear stress due to viscous forces 

As discussed in section 3.1.2, the viscous effect in the turbulent 
fluid which gives rise to a viscous stress tern ~ust also be considered. 
This viscous stress term must be that of the average force per unit area 
of the entity as the entities cross the plane y = O. The force acting 

on the spherical eddy is given by:-

F=67f11rUr (3.29) 

The projected area of a spherical entity is TIr2 , hence the expected 

value of viscous stress may be given by:-

I 
(J xy 

Substituting the value of Ur as derived from the last section, 

1 d<u> > 
(J' xy = < - 6 11 r· A * C 1 - AI A *) 9Jn ( 1 - AI A *) dy 

4 ) d<u> = - 3 P(r) <Vo>«l-AIA*),Q,n(l-A!A* > dy 

Again considering the probability density distribution:-
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I 

« 1-A/A *) 9,n( 1-A/A *) = J (l-A/A *) 9,n( l-A/A *) d( A/j*J 

• 
• • 

, 
cr xy 

1 = 1 - "4 
= JP < r) (Vo). d<u> 

dy 

Similarly to the shear stress due to momentum flux, the shear stress 
due to viscous forces may also be written as crt = EI~ d<u> 

xy dy 

Hence 1 
= 3P < r) < Vo) (3.30) 

or E'V 
1 = 3. <r> (Vo) (3.31) 

Comparing equation (3.27) with equation (3.30), it can easily ~e 
recognised that the shear stress due to momentum flux is ~uch larger 
than that due to viscous forces as already indicated in section 2.1. 

3. 1 .5 Thermal energy transport in a turbulent fluid and eddy 
diffusivity of heat 

The process of thermal energy diffusion may be considered as 
carried out by the migration of entities between regions of differing 
energy. For consistency, an assumed uniformity of momentum within 
the entity implies an assumption of a uniformity of temperature. 
Hence, in thermal interactions, it is assumed that the entity has a 
uniform internal temperature. Consider a spherical entity of uniforn 
internal temperature T surrounded by a turbulent fluid of temperature Tf, 
the heat transfer rate across the surface of the entity is given by:-

q = 4 'IT r k (T - Tf) (3.32) 

where k is the ther~al conductivity of the fluid. 

As in the case of momentum transfer, the interaction process is 
assumed to be quasistatic so that the above equation holds even when 
the temperature of the surrounding fluid is changing. Also, the heat 

transfer rate across the surface per unit volume of the entity may be 

considered as the heat flux density when the temperature gradient in 

the f1 ui'd is not 1 arge. 
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Hence, q = 3 C dT 4/3 Tr r · p p Of (3.33) 

Since the thermal energy flux must be from points at a high 

temperature to those at a lower temperature, thus the negative sign 

in equation (3.33). Comparing equations (3.32) and (3.33) gives: 

dT k 1 at = - 3 pCp' ~ (T - Tf) (3.34) 

Similar to the argument for momentum transfer in section 3.1.4, where 
the temperature in planes perpendicular to the y-axis ;s uniform and 
the temperature gradient is constant, then the expected value of fluid 

temperature may be expressed as:-

• . . 

< Tf> 

dT 
crt 

d<Tf> 
=y--dy 

_ 3 k 
- - pCp 

1 (T _ d<Tf» 
~ y dy (3.35) 

If the initial condition is T = To when y = 0, it may be shown as in 

Appendix 4 that the solution to the above equation 1s:-

where a = 3 k 
pCpr 2 

(3.36) 

and b 

As T represents the internal temeprature of an entity, the temperature 
difference between the entity and the surrounding fluid as it crosses 

the plane y = 0 may then be expressed as:-

alb Vo [ )~ (1-'./'*) ] dci;f> T r = To ( 1-1( A * ) + ( a _ b )" ( 1 - A / A * U - f\!\ 

As indicated in section 2.1, the enthalpy flux may be expressed as:-
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• 
• • 

. a + 1 
qH = -pCp. <VoTo (1-AIA*)D > _ V0 2 

pCP·«a_o) • 
a 

[ (1 - AI 1..* ) 0 + 1 
- (1-A/A*) 2J d<Tf> > 

dy 
a +1 

Again,< Vo To (1-1../1..*)0 > may be taken as zero,. 

However, 1 2pCp.r 2 

a:o = (6k-91lCp) 

and a 2k 2 
b = 31lCp = "3l5r 

(3.37) 

2 

- (1 A/A *) 

Considering the probability density distribution, 

2 J1 2 1 <: (l-A/A*) 3Pr+l - (1 -A/A*)2> = (1-A/A*)3pr+ 
o 

= 

2 
- (1 -A/A*) d{A/A*) 

(3.Pr-2) 
6(l+3Pr) 

(3.38) 

As the enthalpy flux may also be expressed as:-

d<Tf> 
qH = P.Cp.cH· dy 

where cH is the diffusion coefficient of thermal energy or the eddy 

diffusivity of heat. 
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• • = p Pr 
9il (1 +3Pr} (3.39) 

A diffusion coefficient has been generated using the present 
analysis and its value is also dependent on the history of the entity 
traversing the region, as would be expected. The analogy between 

heat and mo~entum transport in turbulent flow may be investigated by 
considering the ratio of their eddy diffusivities. Using equations 
(3.28) and 3.39), the diffusivity ratio may be expressed as:-

= 4.5 Pr 
(1+3 Pr) (3.40) 

A non-dimensional similarity para~eter given by the reciprocal of the 
above ratio is generally known as the turbulent Prandtl number, Prt . 
Although, for flow in pipes, the turbulent Prandtl number varies across 
the section of the pipe, fairly adequate predictions of heat transfer 
may be made by the assumpti'on of constant turbulent Prandtl number. 

3.2 Interpretation of turbulence parameters 

3.2. 1 Distribution functions of the random variables 

Up to now, two random variables Rand Vr have been used to 
describe the behaviour of a turbulent fluid. It has been shown that 
it was necessary and sufficient to use only these two variables to 
describe momentum and energy transport. In order to assess the 
probability distribution of these variables, information theory may 
be used to maximise the entropy of the analysis, subject to the 

given information. 

In 1948, Shannon {13~} presented a thorough account of his 

communication theory which provided the relationship between various 

independent random signals. As turbulence signals are generally 

random in nature, it gives a first indication that they may be analysed 

using Shannon's theory, or communication theory, in general. Jaynes 
{140} as well as Reza {141} proposed the method of least prejudiced or 

biased probability for random signal analysis. In fact, Tribus {142} 

showed that, in the case of a simple gas, the communication theory ~ay 

be used to predict accurately its macroscopic behaviour. 
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In order to analyse the randoM variables in a turbulent flow, 
the method of Jaynes may be used. A summary of Jaynes' formalism 
is given in Appendix 5. In communication theory, the aQount of 
information in an average message is given by the equation:-

«) 

S. = -K ~ Pi £n Pi = -K f Pi 2n Pi di 1 , (3.41) 
-ell 

where Pi is the probability of the occurrence of the event Ei and 
K is an arbitrary constant. The solution to the problem may be 
obtained by maximising the entropy Si subject to the given 
i nforma tion. 

Consider, firstly, the velocity variable of an entity Vr. The 
entropy of its distribution is thus given by:-

cD 

Svr = -K J PYr 2n PYr " rlv'r (3.42) 
-<I) 

The probability distributions introduced in section 3.1.1 provide 
the constraints to the entropy, thus: 

(3.43) 

ao 

J PYr " Vr2" dVr = < Vr2 > (3.44) 

.c» 

Jaynes' method, as outlined ln Appendix 5, suggests that SVr is a 

maximum when 

Pvr = exp [ - oJ. - SVr ] 

where 0< and ~ are referred to as Langran0ian multipliers, and 

may be expressed as:-
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BVr2 
d Vr ] 

Using a table of definite integrals, f
a) -ax2 
e dx = 

-<0 

. . 01.= 10 (7r) 
2

Nn S 

and 

Applying the above to the constraint equation (3.44), 
(II) 

< Vr 2> = f ( ~ f~ . 
.... 

Q) 

J e-ax~X2dX = Again, from a table of integrals, 
-QI 

.4. 
1 

( ~ ) 
2 1 • . < Vr2.) ( 7r ) 2 = -2"6 · 7r S 

or (Vr
2> = 1 

2s 

IE a 

(3.45) 

Hence, the square of the relative entity velocity may be expressed 
in terms of a variable S which is identified as the "temper" of the 
velocity distribution. It may be seen that, from equation (3.45), 
S is inversely proportional to the internal ener9Y of the turbulent 
flow. 

Consider now the variable R that describes the shape and size of 
the entity. The entropy of its distribution is also given by:-

(3.46) 

As the creation process of an entity favours neither the positive 

nor negative direction, it may be assumed that the following constraints 
hold, 
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(3.47) 

fPR R2 dR = {R2) (3.48) 
-<D 

Using identical argument as previously for the velocity distribution, 
the square of the entity size distribution may be expressed as:-

1 
W (3.49) 

where S' represents the 'temper' of the entity size distribution. 

3.2.2 Relationship between the 'tempers' 

Two new variables have been introduced during the investigation 
of the distribution functions. In order to obtain a relationship 
between the tempers Sand Sf, further analysis using Jaynes' 
formalism has to be carried out. For a system with two independent 
random variables, the entropy of the system has a maximum when each 
individual random variable has a maximum entropy. The entropies of 
Vr and R are given by:-

CD 

SVr = -K J PVr 2n PVr <lvr 

SR = - K I r PR 2n PR dR 
-(I) 

SUDstttuting the probability distributions into their respective 
entropy equations yields:-

(1j _1 _ 2 

_ 
-K fe ~ 1.~2 e-~vr. [ 

SVr t-J - ~ SLn C: 1 - B'Jr2 ] dVr 
-<:0 

- ~ [.tn (i1 ~ 1 ] 
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Since for any function f(x,y) to 
~f(x,y) must be equal to zero. 

be at a ~aximurn, its gradient 
Hence dSv"r + aSR 

as asr = 0 is the 
condition for the maximum entropy 

• 
• • 

or 

K 
2S 
S sr 

+ 

= 

K' 0 -W- = 

K C -l(T -

of the system. 

where C is again an arbitrary constant. 

(3.50) 

It has just been shown that, if Vr and R are the only two variables 
necessary for the description of turbulent flow, in discussing the 
maximum entropy of the system or the expected values of the variables, 
the ratio of the tempers of the distributions is a constant. So far, 
the momentum and energy transport in a turbulent fluid have been 
considered. The diffusion and dissipation process have been 
investigated in particular and found to be related to a simple parameter, 
the temper of its probability distribution. The analysis is reasonably 
simple, however, the validity of the analysis or, more preci-se1y, the 
va 1 i di ty of the assumption taken duri ng the ana 1ys is, depends on its 
capability in solving the momentum and energy equations. 

3.3 Solutions to the momentum· and energy equations 

3.3.1 Simple flows remote from solid boundaries 

Mean velocity profile for the case of a simple shearing flow in a 
region away from solid boundary may be investigated using the results 
obtained in previous sections. Consider that the mean flow is steady, 
its velocity component is in the x-direction only and the turbulent 
fluctuations are functions of y only, the momentum and energy transport 

equations become:-

1 d Co-xy :1- a' ) + 1 dP 0 - - dy - Ox = p xy p (3.51) 

and d<Qx> 
+ (aXY 

+ at ) d<u> 
<I> dy dy = xy (3.52} 

As shown . sections 3.1.4.1,3.1.4.2 and 3.1.5, ln 

2 p2 <r2><Vo2> d<u> 
0 xy = 8T dy 1.1 

(3.53) 
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1 d<u> 
cr'Xy = '3 p. <r>~Vo) dy (3.54) 

and Q = p2 Cp ( Pr ) <r2) IV0 2> d<Tf> 
9 111+3 Pr · · " dy (3.55) 

As already discussed in section 3.1.3, the analysis that followed 
was the same whether the shape of an entity was taken to be a 
sphere or an ellipsoid. The only parameter. needed to be altered 
is the term r2 or R2 into r 2e2. Hence without the loss of 
generality, <r2) and (Vo2)may be expressed as:-

1 = 2S 

where 13 is the temper of the velocity distribution at the initial 
condition. Similar to equations (3.45) and (3.49), the expected 
values of the velocity and size of an entity may be deduced and 

expressed as:-

(Vr) = 1 1 
Sand < r) = 13' 

where 13 and 13' are the tempers of the Vr and R distributions. 

Hence equa ti ons (3.53) - (3.55) become:-

2 p2 1 1 d<u> 
crxy = m zsr' "2B • dy 1.1 

I 1 1 1 d<u> 
(J xy = "3 ']1 • S· dy 

and Q 
p2Cp Pr 1 1 d<Tf> 

= 91.1 • ( 1 +3 Pr)' W 2S dy 

As indicated in section 3.2.1 S is inversely proportional to the 
internal energy or the temperature of the turbulent fluid, and it 

may be deduced that:-

< Tf) ex:: ~ 

or d<Tf> = K. d(~) 
dy cry 
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Introducing a set of constants such that 

1jJl = 

= .£ C 
3 

where C is the constant as derived in equation (3.50). 
equations (3.51) and (3.52) becone:-

1 d [ ~l d<u> + 1jJ2 d<u> ] 1 
-pay p' dy W dy + -p 

1 

dP 
ax 

and d ( 1jJ3 d( S)) + [~ d<u> 02 d<u>] 
Oy V· dy + V dy dy S 

Therefore, 

= 0 (3.56) 

d<u> 
dy = <P 

(3.57) 

A si~ple and perhaps rather trivial solution to the above 
equations is when there ;s no pressure gradient present in the flow 
field and S is a constant. Hence, equation (3.56) implies, 

or = o 

giving <u> = A y + B (3.58) 

The above equation gives a linear velocity profile typical for that of 

Couette flow. 

For a more general solution, with symmetry about the y-axis, 

it may be assumed that:-

1 
1 1 [ Y 2] 2 - = - 1 + (-r;.-) S So rl 

where So and h are constants introduced so as to non-dinensionalise 

sand y respectively. Equation (3.56) gives:-
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= dP 
Ox 

A dP. f . f s ax 1S a unctl0n 0 x only, integrating the above yields:-

• 
• • 

d<u> 
dy = 

dP 
= Ox' y (3.SS) 

Expanding the expression Y[ 1 + (Y/h)j-l using Taylor's series and 
considering the region where (Y/h)«l, terms with higher than second 
order of (Y/h) may be neglected. Hence:-

d<u> 
dy 

<u> 

S 2 dP 0 
= dx· (~1jJ-l +-1jJ-2 ) • y 

with <u> y=O = Uo, the velocity profile is thus given by:-

<u> (3.60) 

The above equation gives a velocity profile for the core region of 
the flow under the influence of a pressure gradient. Hinze {143} 

provided experimental evidence to indicate that the mean velocity in 
the core region may be described by a velocity defect law of the form, 

n <u> = Uo + A.y (3.61) 

where A and n are constants determined by experimental data. The 

value of the exponent n generally lies between 1.4 and 2.1 which 
agrees fairly well with the above result. 
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3.3.2 Flow near a plane solid boundary 

Although many of the assumptions taken in the present analysis 
indicate that it is not valid in a flow region near a solid boundary 
or in a turbulent jet, investigation is still attempted so as to 
explore the limitations to the analysis. 

Near a plane solid boundary, isotropic turbulence may not be 
assumed and it is unlikely that representation of an eddy with a 
sphere will be satisfactory. It is likely that an eddy is better 
described by an ellipsoidal shape having symmetry about an axis 
perpendicular to the boundary. This stretching of the eddies was 
also suggested by the experi~ents of Comte-Bellot {144}. 

Consider an ellipsoidal eddy having semi-principal axes (a,a,b) 
at a distance y from the limiting boundary of the turbulent region. 
The symmetric scale b will depend on both a and y, hence b may be 
expressed as a function of a and y:-

b = b(a,y) (3.62) 

It is assumed tha t a di stance h can be found such that for y» h, 
the eddies are again spherical. As the wall ;s approached, the 
ratio b/a decreases monotonically, tending to zero as y tends to 

zero. Hence, the parameter b may be expressed as:-

b = ay/h (3.63) 

such that at y = h, b = a and as y tends to zero, b also tends to 

zero. 

It was shown by Lamb {134} that, to a reasonable degree of 
approximation, the force acting on the ellipsoidal eddy of axes 
(a,a,b) may be taken to be independent of b and expressed as:-

F = 6 TIll a • Vr 
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The mass of the ellipsoid does, however, depend on the value of b 
and can be expressed as:-

m= p. 34rra2 b p4 a 3Y = 1 rr 'r 

Considering the rate of energy dissipation due to the ellipsoidal 
entity: 

d (1 <fEZ m Vr 2) = -F.Vr 

• • ~ (Vr2) 9 11 h Vr2 
dt 2 = -2 - ~-p y a 

Hence 
= (3.64) 

As already discussed in section 3.1.1, the expected value of a2 may 
be expressed in terms of its distribution as in equation (3.49), 
therefore: -

1 = W 

Using results obtained from equations (3.45) and (3.50), the 
dissipation term<p may be obtained as:-

(3.65) 

The above equation indicates that dissipation is inversely proportional 
to the distance from the wall, which is a reasonable conclusion. 

It was shown by Laufer {145} that, in turbulent flow near the 
walls of a channel, the energy diffusion term is small compared with 
the production and dissipation terms. Again, considering the mean 
flow to be steady and unidirectional, the momentum and energy equations 

become:-
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1 d [ a + 0" ] = 0 p Qy xy xy 

and [ ] 
d<u> 

crxy + a'xy • dy = ~ = -~ 

Equation (3.66) yields:-

I + crt xy) C' ~crxy -

Hence:-

C' d<u> 91-1 .b. C dy = "2 Y 

911 C + K' <u> = -- h. V- tn y 2 

or <u> = 91-1 
-7 h.K.tn y + K' 

!!. C y. 

(3.66} 

(3.67) 

(3.68) 

The above equation gives a logarithmic velocity profile near 
a plane 'solid boundary. The analysis described above co~pares 

well with both experimental evidence and other researchers' analysis 
for regimes near the wall, as well as away from the wall (i.e. the 
law of the wall and the power law respectively). The only parameter 
differences in the analysis for the two flow situations is the 
different shapes in the eddies ;n the two regions. 

3.4 Heat Transfer in circular pipes 

Most analyses of heat transfer in turbulent flow assume the 
equality of eddy diffus;vities of heat and momentum. However, 
modern versions of the analogy between heat and momentum transfer 
state that, for any particular fluid, the ratio of eddy diffusivity 
of heat to the eddy diffusivity of momentum ;s in general a function 

of Prandtl number. Analysis in section 3.1 has resulted in the 

presentation of a turbulent Prandtl number given by:-
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1 

~ 
= 4.5 Pr 

(1+3 Pr) (3.69) 

Although the turbulent Prandtl number varies across the section of 

the pipe, it has been indicated that fairly adequate predictions of 
heat transfer may be made by the assumption of a constant turbulent 
Prandtl number. 

The momentum and heat transfer equations across the pipe may 
be expressed as:-

T 
~(1 - L) 

p ro = (3.70) 

and ( * ) (1 - 1.) = - (k + pep S H )~yT 
o ro 

(3.71) 

The above equations may be integrated across the pipe to obtain 
temperature distributions as a function of y. To carry out the 
integrations, universal velocity distributions are used. As shown 
by McAdam 046} , the manipulation led to the temperature distributions 

as:-

y* <5 

" 5<y <30: 

* 30<y 

(T,-T) 

(3.72) 

= 

(3.73) 

= 

(3.74) 

d " t * 0 * 5 where the suffices 0, 1 and 2 denote con ltlons a y = ,y = , 
and y* = 30 respectively and F is the diffusivity ratio given oy:-
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Adding the above equations across the pipe yields:-

(T -T ) = o c 

(3.75) 

The heat transfer parameter of the flow, Nusselt number, may 
be expressed as:-

Nu = ¥ = 
D 

Hence, Nu = 

where T -T ro 
To-T o m 1 I u 
To-Tc 

27Tr dr (3.76) 
To-Tc = 7Tr2 "IT 

0 

As the eddy diffusivity ra ti 0, F, is given by: -

F = 
sH 

(3.771 (sH + k/ pCp 1 

and over a large part of the flow, sH»k/pCp, it may be assumed F = 1. 
Comparing with Martinelli's experimental results indicates that the 
above assumption is reasonable for Pe >10 5 , Values of F for less 
restricted values of Pe are shown in Table l(a) .. Also, values of 
(To-Tm)/(To-Tc) are shown in Table 1(0). Hence, using equation 
(3.69), the heat transfer parameter, Nu, may be expressed as:-

Nu = 
( 1 +3Pr) R j f 

4.5 .' e. 2 

( To -T m ) 5 [ 1 +3 P r + 1 n (1 + 5+ 1 5 P r ) + 1 i ( R e) {f ] 
To-Tc .• 4.5 4.5 2 n 00' rZ 

(3.78) 
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where If/2 may be obtained experimentally or from empirical 
relations proposed by Drew et al {147} as, 

_0.32 
f = 0.0014 + 0.125.Re (3.79) 

for Reynolds numbers between 3,000 and 3,000,000 or 

~O.2. 

f = 0.046.Re (3.80) 

over a limited range of Raynolds numbers between 5,000 and 200,000. 

Nusselt numbers obtained using the above equation (3.78) 
are slightly higher than those obtained using the assumption 
of equal eddy diffusivities. This trend is as expected and 
thus further supports the investigation of a non-unity turbulent 
Prandtl number. 

3.5 Concluding Remarks 

The entity concept proposed by Tyldesley and Silver has 
been thoroughly presented. In particular, the relationships 
between the two random variables in the analysis, Rand Vr, 
have been investigated. Further development of the entity 
concept has enabled solutions to the momentum and energy 
equations to be made under simple flow conditions. The main 
limitation to the analysis was the assumption of isotropic 
turbulence. 

It seems that the present type of approach is capable of 
describing the behaviour of a turbulent fluid to a degree of 
accuracy comparable with other theories in common use. It is 
more satisfying to be able to discuss the structure of turbulence 
using an analysis closely related to the well established 
formalism of statistical thermodynamics. 

In the analysis, Shannon's communication theory which was 
originally proposed for investigating the electronic communication 
signals has been successfully used for the interpretation of 
turbulence parameters. Therefore, the communication theory 
becomes a powerful tool in studying turbulence phenomena. The 
comparative simplicity of the model and the subsequent analysis 
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makes application to problems in turbulence tractable and it seems 
likely that it will be possible to describe the behaviour of 
turbulent fluid in most problems for which a laminar solution is 

possible. 

It is concluded here that the described model of turbulence 
is a useful concept for predicting the transport behaviour in 
simple turbulent flow. However, the general limitation of a 
concept derived from a 'varied mixing-length' or 'eddy 
diffusivity' model is that of its simplicity, and thus only 
capable of predicting simple shear flows. 
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4. EXPERIMENTAL FACILITIES 

In order to enable a study of turbulent transport properties, 
a v/ater circuit which was ori-gi'nally designed by Philip {l32} and 

subsequently modified was used. The circuit ",as of the open-return 
type, consisting of four pipelines of different diameters. As part 
of the turbulence measurements were to be ~ade using a DISA Laser 
Doppler Anemometer, the working sections were designed to b2 of 
clear perspex pipes to allow the admission of laser beams through 
the flow. 

The test sections could &lso be rer.oved and replaced with 
artificially roughened pipes. In the ~iddle of each test section, 
an injector was fitted to allow the injection of pre-heated fluid 
into the Qain flow so as to carry out direct heat transfer measure­
:ments. 

4.1 t1lain structure of Water Tunnel" 

The main recirculating section of the test rig was made of 76 mm 
internal diameter polypropylene pipes and fittings. Polypropylene 
was chosen for its resistance to attack from most fluids and che~icals, 
thus allowing the rig to be used with various fluids in the future. 
A sche~atic diagram of the tunnel is shown in Figure 6. As the 
material is resistant to most chemicals, it could not be joined by 
glueing or using solvents as with other plastic pipes. The ~est 

jointing method was found to be the fusion welding technique. 

Water was stored in a main sump-tank of 1m 3 capacity. A 
galvanised tank coated with bitumen paint was used, so as to keep the 
contamination of water to a minimum. The return line into the su~p 

tank had an 'elephant!s foot' fitted and there was a baffle in the 
middle of the tank. These helped in destroying the mOMentum of 
the fluid, thus ensuring a calm and airfree suction for the pump. 

The main circulating pump was a WEIR SNA3 MONOGLIDE type, 

single stage centrifugal pump, capable of delivering a maximum flow 
rate of 30 litres/sec at 17 metres head. This pump was found to be 
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adequate in providing the level of flow rate desired in the test 

section. Although the perspex pipes in the working section could 
sustain pressure of up to 5 bars, some of the joints were found to 

be weaker. A butterfly valve im~ediately downstream of the pump 

was installed, so as to relieve some of the pressure on the perspex 

working sections of the rig. In each of the four main branches, a 

butterfly valve was fitted so that each, and any number of lines, 

might be selected or closed. The flow returned via a ~ain control 
gate valve to the sump tank. Control of the flow rate was carried 
out using the main butterfly valve as well as by openin9 or shutting 
lines other than the one being used for measurements. 

An orifice plate situated upstream of the four branches was 
used to monitor the bulk fluid flow rate. This measuring device, 
as designed in accordance with BS1042 {148}, was found to be necessary 
so that flow rates and hence velocities measured using the Laser 
Doppler Anemometer could be checked. 

4.2 Perspex working section 

The central test section was manufactured from clear, extruded 
acrylic tubes. Four different diameters were used, 
38 mm, 50 mm and 63 mm nominal internal diameters. 
spigots were fitted in all the joints in the perspex 
ensure a smooth transition of flow past the joints. 
cement was used to join all the perspex pipes. 

namely 25 mm, 
Flanges and 
sections to 

'TENSOL' 

As indicated by Nikuradse {84}, a minimum entry of 25 diameters 
was required for fully developed turbulent flow, a Minimum of 35 
diameters downstream of the beginning of the working section was 
reached before an injector was placed into the main stream. The 

injector was used for the injection of pre-heated fluid for direct 

heat transfer measurements. There were entry ports for ten thermo­
:couples downstream and one upstream of the injector, so that axial 
temperature distributions could be obtained downstream of the injector. 

The thermocouple entry ports were perspex saddles made from similar 

sheet as the pipe flanges. They were drilled and tapped for a plug 
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and included a small well for a rubber gro~et under the threaded 
hole. The centre of each plug was drilled so that a thermocouple 
could be inserted and firmly held by screwing onto the grommet. 
One view of the perspex section is shown in Figure 7. The 
injector which was a 1 ~ internal diameter stainless steel 
hypodermic tube was also glued onto one of the saddles. 

It wa~ essential that all the perspex sections were kept 
clean and polished, because any scratch or dirt on the perspex 
surface could impair the setting up and operation of the laser 
doppler anemometry. 

4.3 Injection Circuit --
An injection system with a flow-meter was incorporated so 

that flow rate of up to 0.75 litre/min through a 1 mm internal 
diameter injector could be achieved and measured. This could 
produce velocities of up to 15 m/s through the injector. The 
fluid for injection was contained in a lOa litre capacity, fully 
insulated tank. The temperature of the fluid was controlled by 
means of a variable thermostat via a contactor. The capacity of the 
tank contained sufficient fluid for a continuous injection of up to 
2 hours at maximum flow rate, thus allowing sufficient time to carry 
out a series of temperature measurements. 

As mentioned in the last section, the injector was manufactured 
from 1 mm internal diameter stainless steel hypodermic tubing. The 
injector was fitted to the perspex test section by means of a saddle 
similar to those used for the thermocouple entries. A copper tube 
extended back from the injector for approximately 10 c~ and ended in 
a tee fitting to which a nylon tube from the injection pump could be 
fitted. The other junction of the tee was fitted with another 
thermocouple entry, so that the temperature of the heated fluid 
entering the injector could be measured. The area around the tee 
junction and the entire copper tubing was covered with insulating 
material, so that deviation from the temperature measured at the tee 
junction and the temperature of heated fluid entering the injector 
was negligible. 
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The prime mover of the injection circuit was a small gun 

metal gear pump driven by a 0.4 kW D.C. motor, which was, in turn, 
controlled by an electronic variable potentiometer type speed 
control. The flow rate was measured by means of a variable 
area flowmeter. The fittings in the circuit were connected by 
means of nylon tubings and 'ENOTS' type couplers. The flowmeter 
was calibrated relative to the injector size in terms of flow 
velocity, rather than flow rate, so that injection velocity could 
be directly adjusted to be the same as the bulk fluid velocity at 
the test section. 

4.4 Roughened pipes 

To study fully the effects of surface roughness on heat 
transfer, it is required to separate the regions such tnat k*<5, 
5<k*<55 and k*>55. Although it is generally accepted that the 
turbulence flow pattern is not affected by the surface roughness 
in the case that k*<5, as indicated in section 2.2, the increase in 
surface area of the rough wall inside the laminar sublayer could 
still affect the heat transfer slightly. 

The full effects of surface roughness on the heat transfer 
were not studied with the present work, as this would require 
extensive experimental work. Instead, the experimental investigation 
was confined to roughness height such that k*<5. This would provide 
the first critical experimental assessment of the theoretical analysis 
carried out in section 3. 

In order to make such an investigation, internal surfaces of 
perspex pipes were coated with a thin layer of paint. Before 
coating, the paint was mixed with fine particles of less than l25~m 
diameter. To obtain different relative roughness on the pipe wall, 
different quantities of particles were mixed. The method of coating 
was very similar to that of Nikuradse {4~ except that, in his work, 
lacquer and sand grain were used. As perspex material is resistant 
to paint, special adhesive chemical was added to the paint by the 
manufacturer/ 
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so that, when coated, the paint formed a permanent layer on the pipe 
surface. 

As mentioned earlier, because the test sections had to be 
clear, so as to allow the admission of laser beams, two stripes of 
draughting tapes of 10 mm and 20 mm wide were adhered to the internal 
surface of the perspex pipe longitudinally before coating. After 
the paint was dried, the tapes were peeled off, leaving the test 
section'with two parallel sections clear. A cross-section of one 
of such coated pipes as well as a picture are shown in Figures 8 
and ~ respectively. The roughness height of each pipe was 
measured accurately using a RA~~K 'TALYSURF' roughness measuring 
system. Typical outputs of such roughness measurements are shown 
in Figure 10(a) - 10(c). The diameters of each pipe were measured 
accurately using micrometers and the relative roughness ratios 
derived from these measurements. The relative roughness ratio, 
r/k, obtained for the experimental investigation was between 
7.2 x 103 and 2.5 x 10

5 
with absolute roughness height between 

~m and lQJrn. This level of roughness height was not sufficient 
to be projected beyond the laminar sublayer, so that k*<5. 
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s. EXPERIMENTAL TECHNIQUES 

S.l Velocity and turbulence intensity measurements 

The measurements of velocity and turbulence characteristics 
during the present work were carried out using a DrSA 55L Laser 
Doppler Anemometer. Laser doppler anemometry is a highly 
advanced system for scientific measurements of local flow velocity 
and possesses outstanding advantages in flow measurement. 

The most notable advantage is the non-contact probing, 
which does not disturb the flow. Only light is needed to be 
transmitted to the point of interest and the light from a laser 
can be focused onto a very small volume where the velocity is 
required. The consequent resolution, typically 20- 100pm exceeds 
that obtainable by any other method. As it is a high resolution 
fast response technique, it is in the field of turbulence that its 
potentialities are fully realised. On the other hand, this 
technique is not well suited for measurement of bulk flow as this 
requires an integration over a cross-section. 

One of the main limitations of the laser doppler technique is 
its dependence on the presence of particles or seedings in the flow. 
However, measurements in water flow is far less of a problem than 
air flow, as mairowater generally contains sufficient contamination 
in the way of particles for laser doppler anemometry, so that 
seeding is usually not required. A list of the advanta~es and 
disadvantages of the laser doppler technique was suggested by Drain 

{14~ and is shown in Table 2. 

S.l.l Principle of LOA 

In any form of wave propagation, frequency changes can occur 
owing to movement of the source, receiver, propagating mediun, or 
intervening reflector or scatter. These shifts of frequency are 
generally called 'Doppler' shifts after the Austrian physicist who 

first considered the phenomenon in 1842. 
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In order to utilize the measuring principle based on the 
Doppler effect, a monochromatic light source enitting coherent 
light waves must be used to produce theincident beam to the flow. 
The laser fulfils these require~ents of the light source and, with 
its high intensity, is well suited for this purpose. When the 
laser beam passes through the flow, the light is scattered by 
particles suspended in the fluid. The scattered light contains 
information about the velocity which is interpreted by optoelectronic 
means. 

The optical and optoelectronic equipments used in laser 
anemometry are, besides the laser itself, a beam splitter, lenses, 
apertures, a filter and a photodetector These components may be 
arranged for different modes of operation, namely the reference beam 
mode, the differential-doppler mode and the dual beam mode. Durin~ 

the course of the present experimental work, the differential-doppler 
mode was chosen as it has a considerable signal to noise advantage 
over the other modes. Also, with this mode, scattered light may be 

collected over a wide aperture, whereas with the reference beam 

technique, the useful aperture is extremely restricted. 

A simple differential doppler arrangement ;s illustrated in 
Figure 11. The two illuminating beams derived from the laser are 
focused onto a small region conveniently by a single lens. Scattered 
1 i ght from thi s regi on ; s focused onto the photodetec.tor. Since 1 i gh t 
scattered from the beams reaches the detector simultaneously, a beat 
is obtained of a frequency equal to the difference in Doppler shifts 
corresponding to the two angles of scattering. It may be shown that 
the beat frequency is independent of the receiving direction and ;s 

given by:-

f 
2u • e 

D = -y::' sln"2 ( 5. 1 ) 

where u is the velocity of particles passing through the measuring 
volume, A is the wave length of the laser light and e;s the angle 

between the two illuminating beams. 

Hence, the velocity of particles through the measuring volume 

or, in fact, the velocity of the flow, ;s thus:-
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u = fO .'A 
2 sin e 

2" 
(5.2) 

As the region where the two beams cross is full of interference 
fringes as shown in Figure 12, the modulation of the intensity at 

tne pnotodetector ;s simply due to the variation in the illumination 
of particles as they cross light and dark fringes. For this reason, 
the technique is sometimes called the 'intensity modulation' or the 
I rea 1 fri ng:' method. 

5.1.2 Measurements using LOA 

The laser doppler anemometry equipment used in the experimental 
study consisted of a SPECTRA PHYSICS 15 mH Helium-Neon laser, a DrSA 
55L optical unit, a photomultiplier, a high voltage supply, a doppler 
signal processor with a preamplifier, a frequency tracker and a meter 
unit, and an ADVANCE 44 digital voltmeter. The output signal from 
the signal processor was linked directly to a DEC PDP 11/10 computer. 
A schematic diagram of the LOA measurement chain is shown in Figure 13. 

The laser beam was passed into the optical unit housing where 
it was split by means of a biprism into two beams of equal intensity, 
one passing througn the biprism, and the other being deflected 
through 900 as in Figure 11. The other beam was then deflected again 
by means of an adjustable surface mirror so that it ran parallel to 
the original beam, but separated from it. The two beams were then 
focused onto an intersection point by means of a plano-convex lens 
at the front of the housing. In order to ensure that the two beams 
intersected perfectly, a test objective was used to project tne 
intersection volume onto a screen as in Figure 14. Adjustment of 
the intersection was made via the two adjustment screws on the mirror 
housing of the optical unit. These screws turned the glass wedge 
plates adjusting the direction of one of the beams. With correct 
intersection adjustment, the screen showed two overlapping spots 

with interference fringes. 

The beams were introduced into the flow and positioned using 

a traversing mechanism. Together with the experimental rig, a 
special gantry and traverse mechanism was built to enable the 
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measuring volume to be traversed across the flow without disturbinn 
the fine adjustments. Such a traversing mechanism is shown in 

..; 

Figure 15. The photomultiplier was then set focused onto the 

measuring volume. It simply detected the doppler shift of the light 
scattered from the measuring volume and amplified it to an accertable 
level for the electronic instrumentation. The high voltage required 
for the photomultiplier cathode was supplied by the high voltage unit 
with the anemometry. 

The output from the photomultiplier tube was passed to the 
preamplifier in the signal processor via the high voltage unit. 
The signal was amplified and filtered before passing to the frequency 
tracker. The tracker followed the doppler frequency and gave a D.C. 
output voltage directly proportional to the frequency. Apart from 
displaying this frequency on the meter unit, it was also sent in 
parallel to two BNC sockets on the front of the meter panel. The 
output from the meter unit was monitored on a digital voltmeter as 
well as connected to the minicomputer for on-line data sampling. 

5.1.3 Computer Link 

The processing of results by digital means was carried out by 

a DEC PDP 11/10 computer. The small digital computer has 16 K store, 
part of which was used to support the programming language, BASIC. 
The voltage output from the frequency tracker was collected using 
the ARll analogue/digital converter unit in the computer. Data was 
stored and then analysed when sa~pling was completed. Using BASIC 
to control the sampling, it was found that the largest and fastest 
optimised sample size and rate was 1200 at 2.5 kHz. As a sample size 
of 1200 was found to be insufficient for the investigation, the 
ensembled or time averaged technique which ~ade an average over 
repeats of an experiment was used to sample 1200 data ten times, 
assuming that conditions remained constant during the process, thus 

making the total number of samples 12,000. 

The analogue input of the ARll operated in a bipolar mode 

betv/een -2.5V and +2.5V. As the output from the tracker was 
0-10 V, it was necessary to include a voltage divider in the system. 
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With the output of the ARll between 0 and 1024 non-dimensionally, 

the ARll together with the voltage divider had to be calibrated. 
The calibration was carried out using a frequency generator and 
the signal processor in its manual mode as a DC supply. The 
calibration with subsequent least square fit of the data produced 
a first order polynomial for converting the ARll digital output 
into a voltage for the calculation of doppler frequency. This 
calibration was checked from time to time to ensure stability of 
the voltage divider. 

5.1.4 Calibration of measurement chain 

The accuracy of the LOA depends on an accurate measurement 
of beam separation angle, which may be obtained simply from careful 
measurement of the optical set-up geometrically. However, the 
accuracy and reliability of the whole measurement chain requires 
verification. 

First of all, calibration tests were carried out to obtain 
the optimised sample size for accurate measurements of velocity and 
turbulence intensity. Figure 16 shows the results of some slich 
tests. It indicated that, with a sample size of 12,000 or more, 
results converged with an error band of less than 2%. Hence, 
a sample size of 12,000 was chosen for the main tests. 

Having established the number of samples required for 
accurate velocity measurements, tests were carried out to verify 
the accuracy of the measurement chain. As the LOA only allowed 
the measurements of velocity at a point, a velocity traverse had 
to be carried out and integrated over the cross-section to obtain 
the mean bulk fluid velocity. As suggested by Boadway & Karahan 
{150} , refraction at optical surfaces changes the paths of the laser 
beams, thus moving both their point of intersection and the angle 
between the beams. It was therefore necessary to evaluate the 
actual distance of the beam intersection from the inside of the 
pipe wall relative to the virtual distance of the beam intersection. 
This is shown in Appendix 6. 
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As mentioned in section 4.1, an orifice plate was used to 
monitor the bulk fluid flow rate. Using the BS 1042 {148}, 
pressure drop across the orifice plate was used to calculate the 
flow rate and hence the mean velocity of the flow. Figure 17 
shows the results of such a velocity traverse. The mean velocity 
calculated from the velocity traverse measurements co~pared well 
with that obtained from orifice plate results. The 4% discrepancy 
between the two indicated that the entire measurefrlent chain nay be 
considered accurate to within 4%. Computer programs for the above 
calibration tests are listed in Appendices 7 and 8. 

5.2 Microscale measurements 

Microscale is a measure of the average dimension of the eddies 
that are mainly responsible for the dissipation of energy. It may 
also be considered as a measure of the dimension of eddies which, at 
the same intensity, produce the same dissipation as the turbulence 
considered. The measurement of microscale was carried out using a 
method based on the zero-crossing technique proposed by Laufer {130} 
and Liepmann{13l}. 

With the zero-crossing technique, the microscale of turbulence 

It/as given by:-

U A = Tr"J{ (5.3) 

where U was the mean velocity and N was the average number of zeros 
of the u fluctuations per unit time. The derivation of this 
expression assumed u to be a pure har~onic such that:-

*. 2TI't u = u Sln I (5.4) 

Although Laufer and Liepmann suggested that the expression was also 
true for a real turbulence, a number of the high frequency fluctuations 
were bound to be ignored due to the nature of turbulence characteristics. 
However, it may be shown that the number of maxima and minima of u 
fluctuations per unit time ;s equal to the number of zeros with a 

harmonic wave form. Furthermore, counting the nu~ber of maxima and 
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minima, or the inflexion counting technique, also takes the high 
frequency fluctuations of the turbulent signal into account. 

The evaluation of microscale was carried out with the 
measurement chain as described in section 5.1.2 using the inflexion 
counting technique. A computer program, as shown in Appendix 9, 
was written which compared the slopes of two consecutive pairs of 
results and incremented every time it changed slgn. A lack of 
available experimental data on microscale has prevented a direct 
verification of the method. However, values of microscales obtained 
during the tests were found to be aboot 1 ~2 mm, which was considered 
to be of the correct order of magnitude. 

5.3 Temperature 

In order to carry out temperature measurements, thermocouples 
situated upstream and downstream of the injector were used. One 
thermocouple was placed in the injection circuit just before the 
injector, so as to measure the temperature of the injection fluid. 

The thermocouples were PYROTENAX TIOHT? nickel chromium/ 
:constantan insulated thermocouples with a bonded hot junction. The 
thermocouple e.m.f. were sampled with a SOLARTRON 3230 data transfer 
unit coupled to a DVM and driven by a TS 50/3232 low level scanner, 
as shown in Figure 18. Although the data transfer unit was capable 
of sampling at a rate of 25 Hz, the teletype printer which was used 
for outputting the data, had a much slower printing speed. Hence, the 
sample rate during the temperature measurements had to be greatly 
reduced to approxi-mately 2Hz. 

Twelve thermocouples in all were used for temperature measure­
:ments and were calibrated individually in an oil bath for the range of 
l5 0 C "u BOoC. A second order po lynomi a 1 was deri ved for each thermo-
:couple, usi'ng the method of least square. The computer program 
written for the derivation is listed in Appendix 10. Coefficients 
of each polynomial are shown in Table 3. 
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One of the thermocouples was placed in the injection circuit 
to monitor the temperature of the injection fluid. Although the 

area just before the injector was insulated, temperature loss along 
the stainless steel hypodermic injector due to convection still 

existed and resulted in the thermocouple giving a higher reading. 

In order to verify this loss against theoretical prediction, another 
thermocouple consisting of fine copper/constantan wires of 0.16 mm 
diameter was placed inside the injector just before the injection 
point, so as to measure an accurate temperature of injection fluid. 
Thi s thermocouple was also ca 1 i bra ted between 150 C 'V 800 C and 
results found to be almost identical to that provided in BS 1828 
{l51}. Figure 19 shows the result of such calibrations. 

Tests have shown that the temperature loss along the injector 
was well predicted by the theoretical analysis as outlined in 
Appendix 11. Therefore, during the ~ain experiments, the fine wire 
thermocouple was not used, so as not to restrict the injection flow 
rate. Injection temperature was thus evaluated from readings obtained 
using- the thennocouple situated before the injector. 

5.4 Heat Transfer 

Apart from obtaining heat transfer measurements from velocity 
and turbulence intensity measurements as described in section 3.1.5, 
heat transfer measurements were also deduced from temperature 
distribution along the centreline after the injection of heated fluid. 
By keeping the injector size as small as possible, the injected fluid 
could be considered as a moving point source of heat. 

With a continuous point source of heat at the centre of the 
pipe, the rise in temeprature along the centreline may be expressed 

as:-

(5.5) 

where Q is the heat source strength, kt is the total diffusivity of 

heat and (x-xo) is the distance from the injector. Re-arranging 
equation (5.5), the eddy diffusivity of heat may be expressed as:-
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E: = 
H 

U ·d2 ~8 1 
, 6 . M · (x - xo) 

\) 

Pr (5.6) 

where U is the mean velocity of injection fluid, d is the diameter 

of injector, 68 is the difference of ambient and injection 

temperation and ~T is the temperature rise along distance (x-xo). 

Along the axis of the flow, it may be assumed the eddy 
diffusivity of heat to be uniform with x. Therefore, for a 
particular flow condition, ~T- . (1 ) could be assumed constant 

01 x -xo · 
However, experimental results as in Figure 20 indicated that the slope 

~8 of ~T/(x-xo) failed to be constant in two regions. As already 
suggested by Sheriff & OlKane {lOll this could be caused by the 
assumptions of single point source of heat and infinite boundary 
not being satisfied. Particularly, in the region very near to the 
injector, momentum change in the injected fluid immediately after 
injection caused by the difference in temperature, density, viscosity 
and even velocity led to a finite distance or time required for 
developed flow. Also difference in temperature could lead to 
irregularity in flow pattern due to buoyancy effect. Further 
downstream, the effect of the pipe wall became apparent and thus 

affected the temperature difference. 

The above problem was overcome by least square fitting a 

straight line through the points in the graph of -~{'/lx-xo) vs 
distance from injector. Either point from the two extremes which 
lay outside a 5% error band was neglected and a new straight line 
fitted. The process was performed iteratively until all the points 
lay within the band. The slope of the final straight line was then 
used for the evaluation of eddy diffusivity of heat. A computer 
program, as listed in Appendix 12, which applied the above process 
and evaluated the eddy diffusivity of heat, was written for the 

analysis. 

As the theoretical analysis in section 3.1.5 suggested that 

the eddy diffusivity of heat could be expressed as:-

where <r2> is the expected value of the square of half the microscale 

and <V02> is the expected value of the square of the initial relative 
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entity velocity. The <r2> term was obtained as discussed in 

section 5.2. In the centre of the pipe, assumption of isotropy 
allowed the assumption of <V02> = <U0 2>. Although <Uo 2>could 
not be measured directly using the LOA, it could be deduced fro~ 
the instantaneously and mean velocity ~easurements as u'=u-u. 
Hence <V02> was given by:-

n 

j(U
N

U)2 
(5.8) 

As listed in Appendix 13, a computer program was written for the on­
:line processing of velocity, turbulence intensity, microscate, 
entity velocity and hence the eddy diffusivity of heat. 

5.5 Pressure measurements 

As mentioned in sections 4.1 and 5.1.4, pressure drop across 
the orifice plate had to be obtained in order to verify the bulk flow 
rate. A NATIONAL SEMICONDUCTOR LX1603DF fluid filled differential 
pressure transducer was used for the measurements. Although the 
response of the transducer was rather slow, it was found to be well 
suited for monitoring bulk or mean pressure difference. The trans­
:ducer was an electronic chip type, containing a bridge circuit and 
required only a l5V D.C. power supply. The transducer was calibrated 
using a vacuum pu~p and a mercury manometer. As shown in Figure 21, 

the calibration was found to be consistent with the design data 
supplied by the manufacturer. 
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6. RESULTS AND OBSERVATIONS 

6.1 Velocity, turbulence intensity and microscale 

A series of experiments was carried out to obtain the 
~easurements of velocity, turbulence intensity and microscale. A 

longitudinal traverse of the pipe was undertaken to investigate the 
variation of the turbulence characteristics in the spatial direction. 
As all the measurements were taken at least 32 diameters downstrea~ 

of the beginning of the perspex working section, turbulence was 
expected to be fully developed, hence, velocity, turbulence intensity 
and microscale measurements were expected to be constant in the 
spatial direction. As indicated in Table 4, the deviation of 
velocity, turbulence intensity and microscale ~easurements in the 
spatial direction was s~all and, in all cases, lie well within the 

error band as discussed in Appendix 14. 

Velocity traverse in the radial direction across the pipe was 
also carried out. The velocity profile across the pipe, as shown 
in Figure 22, compared well with the power laws. Apart from the 
well-known 1/7 power law, as Reynolds number was generally greater 
than 10 5 , the 1/10 power was also plotted. The close agreement 
between experimental data and the power laws further indicated that 
the flow was fully developed in that region. Therefore, measure~ents 
in the present experimental work were taken 32 diameters downstrea~ 

from the beginning of the working section. 

There was no direct control of the level of turbulence intensity 

as it was only promoted by the sudden change of diameter at the 

beginning of the working section. Figure 23 showed that the 
turbulence intensities achieved in the tests were between 3% to 8~~. 
Measurements of microscales were also taken and Figure 24 indicated 
that an increase of Reynolds number led to an increase of microscale. 

The relationship between initial eddy velocity, as also described by 

von KarMan & Lin D52}, and ~icroscale was shown in Figure 25 and 

indicated that a larger energy dissipation eddy generally 
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had a greater initial eddy velocity. The microscales obtained 
durtng the experiment were found to be b t 0 e ween .75 mm to 2.25 Mm 

which was the correct order of magnitude to be expected. 

Figures 22 - 25 also indicated that, within the error bands, 
the turbulence characteristics were not influenced by the relatively 
low roughness ratio. As expected, v/hen k*~, the pipes could be 

constdered hydraulically smooth and turbulence characteristics such 
as velocity, turbulence intensity and ~icroscale were not expected 
to vary with relative roughness ratio. 

6.2 Eddy diffusivity of momentum and heat 

Measurements of , eddy diffusivity of momentum were obtained using 
the expression as discussed in section 3.1.4. Figures 26(a) and (b) 
showed the distribution of eddy diffusivity of momentu~ obtained along 
the centreli'ne of pipes of two different diameters. The Reynolds 
number achieved for the tests were between 2 x 10 5 to lOn, thus 
representing a typical range of Reynolds number for turbulence flow. 
Results influenced by different roughness height were plotted. It 
could be seen that the small roughness height coated in the pipes had 
no effect on the eddy diffusivity of momentum, within the specified 

error band. As expected, the values of eddy diffusivity of momentum 

obtained were a few orders of magnitude larger than the kinematic 
viscosity of the fluid. noreover, as both the m;croscales and initial 
eddy velocities increased with Reynolds number, the eddy diffusivity 

of momentum also increased sharply with Reynolds number. 

Figures 27(a} and (b) showed the eddy diffusivity of heat obtained 

with the expressions as discussed in sections 3.1.5 and 5.4. It could 
be seen that the results obtained with the thermocouple readings were 

generally lower than those obtained with the LOA. Again, within the 
estimated error band, the roughness height had no effect on the eddy 
diffusivity of heat. Similar to that of the momentum transfer, the 
values of eddy diffus;vtty of heat, obtained with either the thermocouples 

or the LOA, were a few orders of magnitude larger than the molecular 

thermal diffus;vity, k/pCp, of the fluid. 
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7. ANALYSIS AND DISCUSSIONS 

7.1 Principle of similarity in mo~entum and heat transfer 

In order to analyse the experimental quantities of eddy 
diffusivity of momentum and heat, tne principle of similarity was 
applied. The existence of similarity parameters discovered on 
the basis of the study of a model would apply, not only to the 
original syste~, but also to an infinite nUMber of other systems, 
provided they were physically similar to the model. 

As indicated by Grober et al {153}, the method of similarity 
allowed the researchers to generalise the experimental results with 
the aid of the model rules. The determination of the model rules 
reduced itself to the establishment of dimensionless parameters 
which were in the form of products of powers of dimensioned quantities 
such as length, temperature and velocity. The dinensionless para­
:meters of a given system can be determined in a number of ways. A 
well-known technique called the Buckingham IT method was used in 
Appendix 15 to obtain a set of non-dimensional parameters which 
satisfied the principle of similarity in turbulent momentum and heat 
transfer. The similarity parameter could be expressed as:-

ITs 

= -\) 

s 
\) = -

\) 

(7 • 1 ) 

(7 . 2) 

(7.3) 

(7.4) 

(7.5) 
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It was interesting to note that both the ratios of ~ to ~ 
~- 2 .-1 

and ITs to IT4 gave the famil~r similarity para~eter, the Reynolds 

number. A 1 so, the rati 0 of IT4 to IT.l or IT 5 to I:2 wa s, in fact, 
the turbulent Prandtl number. Since ITs was the ratio of the 

eddy diffusivity of momentum to the absolute viscosity and IT3 was 

the ratio of eddy diffusivity of heat to the molecular diffusivity 

of heat, both IT3 and ITs were expected to be very large. Lastly, 

the ratio of IT3 to ITz gave another familiar similarity paraMeter, 
the Prandtl number. 

As Ih, Ih and TI3were closely related in the non-dimensional 
analysis of turbulent heat transfer, Ih and ~5 were closely 

related in the non-dimensional analysis of turbulent momentuM transfer, 
it would be sufficient to discuss only one of the parameters in each 
group. 

Figure 28 shows the variation of ITs against Reynolds number. 
For each pipe configuration, it could be seen that the height of 
roughness elements had no effect on the ratio of eddy diffusivity of 
momentum to the absolute viscosity. It could also be seen that Ejv 
increased sharply with Reynolds number with an approximate slope of 
4.0. 

The ratio of eddy diffusivity of heat to thermal diffus;vity 
obtained using the LOA was shown in Figure 29. Similar to the 
diffusivity of momentum, ~ .pCp increased sharply with Reynolds 
number. As indicated in section 2.2 and 4.4 that while the roughness 
elements lie entirely within the laminar sublayer, the transport of 
heat in such roughened pipes would be like the transport of heat in 
smooth pipes, except for a slight effect associated with the increased 

surface area of the rough wall. However, within the estimated error 
band, no effect on the heat transfer could be seen. 

Figure 30 shows the ratio of eddy diffusivity of heat to thermal 

diffusivity obtained using the thermocouples. As shown in Arpendix 14, 

the heat transfer ~easurements obtained with the thermocouples had a 

narrower error band. This was shown to be the case as Figure 30 
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indicated less scatterin0 in experimental data. However, no 

sig~ificant effect of the roughness elements on the heat transfer 

could be seen. Although the ratio of eddy diffusivity of neat to 
thermal diffusivity still increased with Reynolds number, the rate 
of increase was much smaller, compared with that obtained with the 

LOA with an approximate slope of 2.0. As suggested by Sheriff 
et al{lOl},{102} who carried out measurements with thernocouples 
using the similar technique that heat transfer data were likely to 
be underestimated due to finite boundaries of the pipe. Apart 
from the two different slopes deduced from the two different 
measurement techniques, the ratio of eddy diffusivity of heat to 
the thermal diffusivity obtained with the two techniques compared 

reasonably, particularly with lower Reynolds number. 

7.2 Overall heat transfer 

No overall heat transfer measurements were taken with the present 

work, as this would involve eddy diffusivity measurements across the 
pipe. However, as shown in section 3.4, overall heat transfer could 
be fairly adequately predicted by the assumption of a constant 
turbulent Prandtl number, sv/sH. Figure 31 shows the heat transfer 
similarity parameter, Nusselt number predicted using equation (3.78) 
as derived in section 3.4. Semi-e~pirical relations for Nu derived 
by other researchers such as Reynolds {2}, Martinelli {22}, 

Colburn {29} and Reynolds & Perkins {56}were also presented. 

In order to make a comparison with other researchers' predictions, 

Prandtl numbers of 10, 1 and 0.01 were used. As expected, the Nusselt 
number predicted with the present work was slightly higher than that 
predicted by other semi-empirical relations. This could be mainly due 
to the assumption of constant turbulent Prandtl number across the pipe. 

As most of the researchers proposed the heat transfer parameter 
of the form, Nu = A Reb. Pr c, it would also be possible to correlate 

the prediction obtained with equation (3.78) of section 3.4. Such 

correlation gave the heat transfer similarity parameter as:-
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Nu = 0.0125. Re OeS9Pr Oe27 
(7.6) 

The above relation has numerical constants fairly close to those 
proposed by Davies {55} and Reynolds & Perkins {56.} 

7.3 Remarks and Comments 

Since the internal surfaces of the pipes were not completely 
coated, as shown in Figures 8 and 9, pipes of different diameters 
were no longer geonetrically similar. Hence k/r, although widely 
recognised as a similarity parameter, could only be used when r 
was constant. With the pipes coated with roughness ele~ents of 
non-dimensional roughness height k*<5, the elements lie within the 

laninar sublayer, the change of roughness ratio was not expected to 
influence the momentum and heat transfer. Although the increase in 
surface area could still give rise to an increase in the heat transfer, 
this possible increase being slight and the estimated error band 
being around 20% to 40%, such increase was not evident. 

Experimental data has shown that the turbulent momentum and heat 
diffusivities were a few orders of magnitude larger than their 
respective molecular diffusivities. Results obtained with the LOA 
were found to be higher than those obtained with the thermocouples, 
as expected. Another reason for this discrepancy could be due to the 
assunption taken in deriving the expression for eddy diffusivities in 
section 3. In their derivation, isotropic turbulence was assumed. 
Although this would be a reasonable assu~ption for the flow of 
turbulence along the centre of the pipe, small departure from isotropy 
would make the assumption of spherical eddy no longer valid. With 
the spherical eddy being stretched into a somewhat ellipsoidal eddy, 
it was expected that the expected value of the effective size of 
dissipation eddy be reduced. This would indicate an overestimate 
of the prediction of turbulence transport parameters when the flow 

was departed from local isotropy. 

Experimental scatter for Measurements taken in the pipes of s~aller 

diameter was found to be greater than that taken in the pipes of larger 

diameter. This was expected as in a small pipe, the condition of 
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isotropy was less likely to be satisfied and, hence, led to a further 
overestimate of the turbulence transport parameters. A comparison 
between Figure 27(a) and (b) shows that the discrepancy between 

measurements with the LOA and thermocouples was greater with the pipe 

of smaller diameter. This further demonstrated the above argument 
as well as the suggestions of Sheriff et. ale {lOl}, {l02} that 
finite boundaries of the pipe led to the eddy diffusivity of heat 
obtained with thermocouples being underesti~ated. 

With the aS$umption of a constant turbulent Prandtl number which 
was itself a function of Prandtl number only, overall heat transport 
parameter was proposed with the present work. It was found to be 
reasonable, compared with predictions suggested by many other 

researchers. In accordance with most other workers, a simple relation 
for Nusselt number was also proposed as:-

Also, the emergency of the above relation was based on a concept 
that attempted to describe the detailed behaviour of turbulence character­
:istics and, hence, provided a more realistic and acceptable prediction 
for engineering applications. 

The results of the experimental work have shown that the expressions 
for the eddy diffusivities of momentum and heat derived in section 3 were 
valid for the prediction of momentum and heat transfer. Experimental 
evidence obtained both with the LOA and thermocouples confirmed that 
roughness elements, while lying completely within the laminar sublayer, 
have no influence on the momentum and heat transfer. As the data 
reduction of the measurements were made using the theoretical expressions, 
this further indicated that the expressions derived theoretically in 
section 3 were v.alid. Particularly, the eddy transport of heat was 
shown to be dependent on the eddy scale and velocity parameters only and 

independent of temperature. 

A single heat transfer similarity expression was proposed without 
restrictions on Prandtl number. As most other researchers' empirical 
predictions for heat transfer involve a number of equations for different 
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Prandtl number or Reynolds number regimes, the present universal heat 
transfer equation (3.78) has a significant advantage over the others. 
Limitations to the use of this equation are the level of turbulence 
intensity and isotropy, as the derivation of the equation required 
the turbulence intensity to be low and flow conditions to be isotropic. 
Departure from these conditions is likely to give overestimates to 

heat transfer rates. 
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8. CONCLUSIONS 

~'Jith a basic concept of a flux of eddies of random shape, size 

and velocity, rather than an artificial mixing length or a correlation 
function, a thorough and realistic criterion for the prediction of 

momentum and heat transfer has been proposed. The analysis was based 
on a thermodynamic approach using the stochastical theory of turbulence. 
The macroscopic turbulence transport parameters were derived from the 
descri~t;bn of microscopic behaviour of eddies. 

Ja~nes and Shannon's communication theory, originally used for 
the investigation of electronic communication signals, has been 
successfully used for the interpretation of turbulence parameters. 
The comparative simplicity of the concept and its analysis made the 
derivation of an analytical solution to most problems in turbulence 

possible. 

With the present investigation, the following conclusions could 

be made:-

(i) it is necessary and sufficient to express the eddy diffusivities 
of momentum and heat in terms of two independent pa rameters, enti ty 

velocity and scale. 

(ii) using the analysis, velocity profiles for simple shear flows 

could be obtained. 

(iii)ratio of eddy diffusivities or the turbulent Prandtl number 
could be predicted without the use of any adjustable constants. 

(iv) overall heat transfer prediction could be obtained with a single 

equation for all ranges of Prandtl number. 

However, a number of limitations still existed in the theoretical 

analysis. Departure from isotropic turbulence would result in the 
assumption of spherical eddies not satisfied and, hence, an over-

t Moreover the assumption :estimation of eddy transport parame erSt ' 
. b t eddy size and velocity would restrict of weak correlatl0ns e ween 

h flow velocity to be small and 
the eddy velocity relative to t e mean 
indicated better prediction with lower turbulence intensity. 
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Also, with an eddy viscosity model of turbulence, only simple flows are 
likely to be predicted. 

The laser doppler anemometer has been used for all turbulence 
measurements, except temperature, which was measured with thermocouples 
and a data scanner. The experimental techniques ;:nvolved in the 
investigation have been shown to be satisfactory. However, with the 
method of roughening the pipes during the present investigation, pipes 
of different diameters were not geometrically similar, thus making 
the introduction of roughness ratio similarity more restricted than 
customary. 

It could be said that a new and realistic approach to turbulent 
transport was thoroughly presented. The information or communication 
theory provided a useful means for studying turbulence phenomena. As 
a recommendation for future work, more refinement in the description 
of eddy shape could be made. Particularly near a plane solid 
boundary, the more detailed flow pattern will have to be investigated 
and analysed. Experimentally, distribution of eddy diffusivities 
could be measured across the pipe to derive a more accurate overall 
heat transfer similarity parameter. In roughening th Ellipes, geometrical 

similarity would have to be maintained as far as possible. Finally, 
the process of mass transfer in relation to heat and momentum transfer 
could also be investigated using the present concept. 
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Table l(a) Values of F for limited values of Pe 

Re 

Pe 

102 

10 3 

104 

10 5 

10 6 

O. 18 

0.55 

0.92 

0.99 

1 .00 

97 

0.098 

0.45 

0.83 

0.985 

1 .00 

0.052 

0.29 

0.65 

0.980 

1 . 00 



laDle I(b) Values of (To-Tm)/(To-Tc) for values of Re and Pr 

~ 10 4 10 5 10 6 10 7 

Pe 

a 0.564 0.558 0.553 0.550 

10- 4 0.568 0.560 0.565 0.617 

10- 3 0.570 0.572 0.627 0.728 

10- 2 0.589 0.639 0.738 0.813 

10- 1 0.692 0.761 0.823 0.864 

1 . a 0.865 0.877 0.897 0.912 

10 0.958 0.962 0.963 0.966 

10 2 0.99-2 0.993 0.993 0.994 

10 3 1.00 1 .00 1 .00 1 .00 
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Table 2 Ve1:ocity Measurement by the Laser Doppler Technique 

Advantages Disadvantages 

Does not disturb the flow 

High spatial resolution 

Fast response 

Response linear and easily 
calibrated 

99 

Medium must be transparent 

'Artificial seeding may be 
needed 

Optical access is required 

Not suitable for measurement 
of total flow as this requires 
a tedious integration over a 
cross-section 



Table 3. 

Thermocouple 
Number 

1 

2 

3 

4 

5 

6 

7 

8 

9-

10 

1 1 

12 

13 

14 

Polynomials for Thermocouples 

A B 

-0.216324 17 . 1919 

-0.220018 17.2620 

-0.211522 17.1575 

-0.218163 17.2232 

-0.210146 17 . 1660 

-0.218138 17.2077 

-0.208166 17 . 1485 

-0.207287 17 . 1727 

-0.215007 17.2124 

-0.212972 17.2206 

-0.220443 17.2473 

-0.213515 17.2076 

-0.218622 17 . 2125 

Polynomial of each thermocouple is expressed as:-

T = A.V2 + B.V + C 

where V is the voltage output in millivolts, 

and T is the temperature measured in OCt 

100 

c 

-0.330355 

-0.451493 

-0.307668 

-0.417665 

-0.318308 

-0.342309 

-0.193740 

-0.343504 

-0.467030 

-0.471656 

-0.473862 

-0.438195 

-0.370868 



Table 4. Spatial Variation of Turbulence Characteristics 

V(rnls) V(rnls) V-V x 100% V (nil s) V(rnls) V~V x 100 e
; 

V 

6. 11 0.87 3.10 1 .27 

6.07 0.21 3. 13 0.32 
6.058 3. 140 

6.06 0.04 3. 17 0.96 
. 

5.99- 1 • 11 3. 16 0.64 

Tu-Tu xl00% Tu(%} 
Tu-Tu x100~~ 

Tu(%) Tu(%) Tu(%) Tu Tu 

4.25 1 .73 5.17 3.45 

4.31 0.35 4.B7 2.55 

4.325 4.9-98 
" 

4.36 O.Bl 5.04 0,89 

4.38 1 .27 4.9-1 1 .75 

- o (rnm) o - <) x 1 OO~ 8- <) xlOO% o (mm) o (mm) 5(mm) ~ 
IS' 

1.263 0.34 0.577 3.55 

1 .261 O.lB 0.600 0.29 

1 .259 0.598 

1 .265 0.50 0.620 3.64 

1.246 1 .01 0.596 0.38 
I 
I 
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APPENDIX 1. NAVIER-STOKES EQUATIONS AND REYNOLDS EQUATION OF MOTION 

For an incompressible flow, the Navier-Stokes equations may be 

expressed as:-

d~i Cui) = 0 (Al.l) 

(Al.2) 

As the instantaneous velocity may be expressed in terms of mean and 

fluctuating velocities:-

U + U. 
I 

u. = · , , , (A 1.3) 

Similarly, 

p _ p + pI 

Hence CA1.l) and (Al,2) become:-

(Al.4) 

CA1.5) 

The Reynolds rules of averages have the following properties:-

Al 



( 1 ) f + g = 1+g 

(2) cf = c.? (c being a constant) 

(3) fg = 1 9 

( 4) Lim fn = Lim (fn} (fn oeing a sequence of function) 

Therefore equation (Al.4} may be written as:-

= 0 

Taking the mean value of this equation implies 

= 0 

As ~'i = 0, hence the conservation of mass equation may now be written 
as:-

a u; 
- = 0 a x, , 

Equation (Al.5) becomes:-

au. au., 
[ ' 1 P ar+-n+ 

= 
_ a p 

d Xi 

_ d_P' + 11'72 U,' a x. 
1 

(Al.6) 

Again, taking the mean value of the above equation and putting ui '=0 

and iJ1 = 0, 

p[a ui + ...L (u.u.) 
at a x . 1 J 

J 

d 
+ -a x. 

J 

A2 

( U,IU.I)J= , J 



• • 

or d U. 
P [TI + d 

fi:" 
J 

a (' I I) -p - u·'u. 
d Xj - 1 J 

-
= - ~ ~ + f1\l2 Ui 

(Al.7) 

Equations (Al.6} and CA1.7) are the Reynolds equations of motion for 
the turbulent flow in an incompressible flutd. 
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APPENDIX 2. MIXING LENGTH THEORY 

For simplicity, the mean value of the transferable quantity q 
may be considered to be a function of y only. A body of fluid which 
originally belongs to a layer y=y moves to a layer y=y+~. Since the 
fluid preserves its value of ~ during the turbulent mixing process 
over the path 1 , at the new layer the fluctuating value of q will 
be given by:-

(A2 . 1 ) 

Expanding ~(y+t) tn a Taylor series about y, the above equation becomes:-

I q I I - ~. ~ ,j- ~. ~;~ + .... (A2.2} 

As t may be considered a small quantity, it yields 

I q' I (A2.3} 

In actual analysis, further hypothesis about the vartatton of the 

mixing length ~ has to De made. 

In Prandtl ~s original rni-xing length theory, tt was assumed that 

the momentum of the flow was a transportable quantity, Thus, for 

pa ra 11 e 1 flow, 

lu I I au 
= t. cry (A2. 4) 
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By further assuming that the verttcal velocity fluctuation VI to be 
proportional to u t and the turbulent shear stress pUTV proportional 
to their product, Prandtl obtained the formula for the snearing 
stress of nearly parallel turbulent flow, 

(A2. 5} 

For actual appltcattons, the mixing length ts a function of spatial 
co-ordinates and the constants of proportionality in these cases 
ca n on 1 y be detenn i'ned from experimenta 1 da ta . 

Taylor pointed out that no physical reason justified the 
assumption of the conservatton of f.'lomenturn during the turbulent 
mixing process used by Prandtl. Instead, he suggested the use of 
the theorem of the conservatton of vorticity or conservation of the 
momentum as a starting point upon which to build up a more adequate 
model for the mechanism of turbulent flows. On this basis, he 
developed the vorticity transport theory. 

If the vorticity is assumed to be the transportable quantity, 

then:-

~ 
- t. Or CA2.6t 

For parallel flow and neglecting the viscous term, Reynolds equation 

reduces to:-

Cp..2.7t 
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Hence, 

1 eadi ng to 

(A2.8) 

when the mixing length is independent of y, expression (A2.8) 
is i dent; ca 1 to that oota i·ned by us; ng Prandtl' s momentum transport 
theory. In general, these two theories give different results. 
Even in the case where the mean velocity distributions given by 
these two theories are the same, there is a difference between 
the temperature distribution for the two corresponding cases. 
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APPENDIX 3. SOLUTIONS TO EQUATIONS OF MOTION 

The equations of motion for a spherical entity moving in a 
turbulent fluid was given in section 3.1.4 as:-

dU 
at = 

dV 
at = 

dW 
at -

9v 1 (U d<u> , 
2p? -Ydyl 

911 1 
- 2p' rz. V 

~ 
2p • 

1 vI rz· 

(A3.l) 

(A3.2) 

(A3.3} 

with initial conditions that CU,V,Nly=o = (Uo, Vo, t{o). 
t=O 

Equations (A3.2) and (A3.3) become:-

-911 
V - 2t = vo.e 2pr 

-911 t 
W = VOl e 2pr2 

for steady flow, 
dV V dv 

HO~Jever , OI - Qy 

• VdV 91J • • .V dy - 2pr L 

dV 911 
Qy - - 2prL 

V = - 91J .y + C 2prL 

y=O gives V = Vo implies C = Vo 
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• v = Vo -~ y-t • pr • 

y = 
2pr2 

evo - vt g1-1 

Hence, y= 2t2 
Vo ll-e 

- 9-11 
2prL tl 

CA3,41 

As the minimum value of e -~t is 0, there is a maximum value of 
y given by:-

• 
• , 

or 

Equation 

• • 

y* = 
2pr2 

• Vo 9:1-1 

Y .:: y* (J- e 

- 9t1 t e 2prZ" -

(A3. 1 ) becomes:-

dU 911 
at - -"2prz-

9-11 - - 2pr2 

1 

- 91l 
2p'r2 tl 

- y}y* 

[ 2pr2 u - 911 

d<u> U + Vo dy 

= V d<u> 
o dy 

- 911 
VO (J -e 2prL 

- 911 t 
(l-e 2prL 1 

V 
d<u> 

o dy 

(A3,51 

CA3,62 

CA3.71 

tl d<u>] 
· dy 

CA3. 8) 

Since the ordinary differential equation ~ + Plx)y ~ Q(xl gives 
the solution of the form 

fPdX J fPdX 
y.e = Q.e dx+C 

Therefore equation (A3.8) becomes:-

A8 



= Vo d<u> 2pr2 9-11 t dy e 2prz • g: 11 Vo 

t = 0 gives U = Uo implies 

• 
• • 

C = Uo - V d<u> 2pr2 
o dy' 91-1 

- 9-1-1 
U = Uo e 2prL t _ Vo d<u> 2pr2 ( - 9~ t 

dy 911 e 2pr""2" 

d 911 
- Vo d~> t.e 2prz t 

- 91-1 
As e 2prL t = 1 _ y/y* 

and 

• 
• • 

-91-1 t 
2prL = £n (1 - y/y*) 

t 2pr2 
= - ~11 .£n (1 - y/y*) 

u = Uo (1 - y/y*) + Vo dd~> 

d<u> 
dy t + C 

d<u> 2pr2 
+ Vo dy (1 - y/y*). 91-1 .£n (1 - y/y*) 

As Vo 2pr
2 

= y* 
911 

U = Uo (1 - y/y*) + y. d~~> + y* dd~> (1 - yly*).£n (1 - y/y*) 

As y* represents the mathematical maximum value of y, it would be 
more appropriate to look at the physical maximum of y. By considering 
the mean distance that an entity travels from the plane y = 0 before 
its momentum is entirely dissipated, \* may be put in place of y*. 
Hence, the solutions to equations of motion (A3.l) to (A3.3) may be 

expressed as:-
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d<u> [ ] U = Ue (1 - Y/A*) + dy y + \* (1 - Y/\*) £n (1 - y/\*) 

CA3.l0) 

v = Ve (1 - y)\ *) (A3.11) 

W = We (1 - y/\*) (A3.12) 
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APPENDIX 4. SOLUTIONS TO THE EQUATION OF THERMAL ENERGY 
TRANSPORT 

The equation of thermal energy transport for a spherical entity 

moving in a turbulent fluid was given in section 3.1.5 as:-

dT 
at = 3 k 1 (T _ d<T f>, 

pcp rz Y dy 1 

with initial condition that Ty=O = To. 
t=O 

(A4.1} 

3 k 
Using equation (A3.61 in Appendix 3, and putting a =pCprz 

- ~~ b b - 2pr2 , the above equation ecomes:-

. . 

dT 
CIt = 

= 

[ 
-bt d<Tf>] 

a T - y* (1 - e ) dy 

T * d<Tf> (1 - e -bt) - a + ay dy 

dT * d<Tf> dt + aT= a y dy 
(A4.2) 

and 

Using the standard result of (A3.9), the solution of the above equation 

becomes:-

T at .e = J * d<Tf> eat (1 _e-bt ) dt + C 
a y dy 

f 1 t d<Tf> 1 (a-b)t 
= * d<T > e a - a y* dy C a -6} e a y dy · a 

= 
* d<Tf> [e at _ ( a )e (a-b)t] + C 

y dy ~ 

t=O gives T=O implies:-

d<Tf> [ ( a )] 
C = To - y* dy 1 - ~ 

* d<Tf> ( b 1 = To + y dy a:o 

All 

+ C 



• • y* d<Tf> [ eat _ (~\ Ca-b 1 t] 
dy ~_ble + To + y* d<Tf> 

dy 

or T = ~* d<Tf> [ 1 a -bt b -at ~. dy - Ca:o} e + (a:b ) e ] + Toe -a t 

= y* d<Tf> + y* d<Tf> [c b -at a bt 
dy dy :a:o)e - (a:o}e - ] + To e -at 

However, equation (A3.6) implies y* = y + y*e- bt 

T = y d~Tf> + y* d<Tf> [ ( b ie-at + e-bt _ ( a ) -bt] T -at 
y dy ~ a:-o e + 0 e 

• . . 

= y dd~f> + y* d<Tf> [( b 'e-at (b) -bt] -at dy ~a:o 1 - a _ b e + Toe 

= y d<Tf> + y* d<Tf> (b lee-at -btl T -at dy dy a:o - e + 0 e 

2pr2 Vo As y* = Vo = --91-1 • b 

Hence d<Tf> Vo T = y. + dy -a---6-· d<Tf> (e~at _ e~bt) + To e-at 
dy 

Since e-bt 
= (1 - y/y*) , it may be deduced that e-at = (1 _ y/y*)a/b. 

Therefore, the above equation becomes:-

T = To (.1 _ y/y*)a/b d<Tf> Vo 
+ y. dy + (a-b)' 

[ (1 - y /y*) alb _ (1 _ y /y*)] d<~;> (A4.3) 

Again, considering the mean distance that an entity travels fro~ the 

plane y=O before its thermal energy is entirely dissipated, A* ~ay 
be put in place in y*. Hence, the solution to the equation of 

thermal energy transport (A4.1) may be expressed as:-

T = To (1 - y/'A*)a/b + y dd~f> + 

- (1 - Y/A*)] d<~;> 

where a 3 k 
= -pC~p-r-""2 and b 

A12 
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APPENDIX 5, JAYNES l FORl'IALISl1 OF INFORMATION THEORY 

As Jaynes' formalism of information theory and statistical 
mechanics gave good estimates for the probabilities of random 
variables, the method of application is summarised as follows:-

Cal Enumerate each microstate and assign a symbol for its 

probab11 i ty. 

(b) Enumerate what ;s known about the "averages" associated 

with the system. 

ecl Express the averages in the form of equations, as follows:-

<g > = E p.g (xil 
r i 1 r = 

co 

J Pi 9r lXi 1 di CA5.') 

-'" 
where x is a property that serves to identify a state and 
x. is the value of x identified with state i. gr(xl is a , 
function of x. <g > is a known average. r 

Cd} Making use of the equattons that represent the averages and 

the additional equation, 

III) 

1: p. - JP. d · = 1 • T 1 1 
1 

tel Maximise the entropy 

s = K.E p. £n Pi 
i ' 

cJ) 

= -K J Pi 
-CD 

£n p. d. 
1 1 

(f} The resulting probability distribution is thus given by:-

The "zeroth" Langrangian multiplier is given by:­(g) 

A13 

J J'" -Srgr(x i ) .} 
= Q,n led, 
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(h) The expected values, 

<g >= r 

<9r > are given by:-

(il The variance in gr is given by:-

(j) The entropy or uncertainty is given by:-

Smax = K. 0( + K. L: S <g > 
r r r 

Q) 

= K. ~ + K. J B <g > d r r r 
-ClIO 

(k) If the function gr (but not gl, g2' ...• gr-
t

' 9r+
1

) depends 
upon another parameter, say Y, i,e. 

As indicated by Tribus {126} that there was no way of proving 
Jay.nes t formalism, it should be taken as an axiom for a system of 
inductive logic. It represents the best that one can do under the 
rules for rational thi~k;ng that have been postulated. If the 
output conclusions do not agree with observations, one is forced to 
conclude that the input information is incorrect. If the output 
information ;s vague, one concludes that the input data are 
insufficient. If the output conclusions are correct, it ~ay then 
be concluded that the input data are sufficient for esti~ating the 

probability distributions of random variables, 
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APPENDIX 6, CORRECTION OF LASER DOPPLER AND'1or~ETER READINGS 
DUE TO REFRACTION 

Consider the laser beams from the optical unit of the LDA 
entering the perspex working section as shown in Figure A6.' . From 
the figure, 

AP = ~ - b tan ;1 , 

a e = "2" - b tan 2 

c~--
p 

!---b --~r- ~I----- X ----.-, 

AIR 

Figure A6.' 

DQ = x tan r2 

el 

= x tan -2 

WATER 

REFRACTION OF LASER BEAMS 
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However, AP may also be expressed as:-

AP = tltan;2 + DQ 

Hence, titan 12 + x tan e' a 
b tan e = 2" -~ ~ (A6.l) 

x tan ~' a - b tan e - t tan • - ~ , 2 2 

• a tan e tan e' • • x = (2 - b - t tan i 2)! (A6.2) "2 2 
e 

a t tan e' tan -Z or x = (2 - i 2)/tan "2 - b. (A6.3) 
tan 2' 

(. 

For a particular beam separation distance, a and e are cons tants. 
tis also constant as it is the thickness of the perspex pipe wall. 

When the optical unit (lens) is moved a distance ob towards 

the pipe, the corresponding distance moved by the intersection point 

away from the pipe wall is thus ox. As equation (A6.3) relates the 
distance of the optical unit from the outer pipe wall to the distance 

of the intersection point from the inner pipe wall, the following 

expression holds:-

(x + ox) = 

Equations (A6.3) and 

ox = ob . tan 

e' 
tan 2" 

(A6.4) . g1ve:-

e 
"2 

tan e "2 
- (b - cSb) -~el 

tan "2' 

(A6.4) 

(A6.5) 

However, when light beam travels from one medium with refract~ve 

index nl into another medium with refractive index n2, the fol'owirg 

relation holds:-
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where I and R are the angles of' 'd 
lnCl ence and refraction respectively. 

Hence, 

(A6.6) 

(A6.7) 

where a, p and w denote air, perspex and water respectively. As 
i2 = rl , equations (A6.6} and (A6.7) g1ve:-

or 

• 
• • 

n sin G 
a 2 

8' 
2 

tan 8' 
2 

. 8' = nw s1nT 

_1[ na 8 ] = sin - sin 2" 
nw 

= tan [ sin- 1 (na sin ~)] 
nw 

Therefore, equation (A6.5) becomes:-

OX = ab. tan ~ • cot [ sin- 1 (na sin ~ )J 
nw 

(A6.8) 

As na and nw may generally be expressed as 1 and 1.33 respectively, 

In addition, as the formula V = 
measurements in air (vacuum). 

is only valid for 

For measurements in water as shown in Figure (A6.1), the velocity 
may be expressed as:-

All 



fO A 
V • w = 8' 

2s; n-z 

However, the laws of refraction are given by:-

= Ap.np = A n w. w 

d 8. , 8' 
an na·si~ = np.s 1n rl = nw·sln 2 

Equation (A6.10) becomes:­

fO.Aaona/nw 
V = 8 

2 sin "2" na Inw 

Hence, V= fo·A.a 

2 sin ~ 

(A6. 10) 

(A6.l1) 

8 where 2 is the half intersection angle of the laser beam before 
introducing into the flow. 
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APPENDIX 7. PROGRAr1 TO ESTABLISH THE OPTIt,1UM SAMPLE SIZE 

n {)., ('; () 
" • .: 'u ••• ,' ',. 

oo:,~~oo 

00300 
() () iJr 0 () 
\. .. .-1 •• 

OO~50() 

00600 
OO?OO 
00800 
OO?OO 
0:1.000 
''':1 '1 ''\'' ' .. .J ., .• 1,_, ' .. j 

')'1 1· ... ·"\ I ._, I \" J 
••• I ....... 

{)., ·,:,",0 
\ ., .... ' \.- ... 

01'.:·:"00 
{) '1 q {'I {) 
'. .... ' ... '.~ .... 

():1. ']00 
02000 
02:!.OO 
02200 
()2300 
02400 
02!SOO 
02.::)00 
02:·:-'00 
02BOO 
02900 
0:.3000 
O:3:f.()O 
O:3:~.::OO 

() :.3 3 () () 
O]":lO() 

O:::~!SOO 

." .. y._, .,) (~ I.J .. :")."" i., .) 

() :~) ~:~ () () 

() :.3 ~.:f () () 
040()() 
.~ :, '/ ..... :, 
I • .I • .:., I .r 1,.1 
•• 1 ....... 

o ,;'{. 2 I:) () 
() .. :l :':~ () () 
C)4·.;'~·OO 

04!SOO 
." ., .' ", (" i.) ":'1 (::. I,,.' ... 

() .. ::;. ::? () () 

() () :1. () (~; 

, .. r:- ~ . 1'\ ::. I"l PROGRAM TO TEST CONVERGENCE OF RESULTS 
DIM A(600),Z(1200) 
I:, I:;.' '1' \J 'T' "I \J I::" "T' .:~. 1<0 • I:{ ]. I::' \J T I .•. 1. ..1.... 1111 ..... 1. 

'1' \J I::' I J l' 'r .. , ... '1-,::-,\'1 F' E-" 1:;,' .~ 1"/ J r' 1::- I l-• .J "'I E G' I::' E r. C " '- '" rl., I .. \._ . I' . .L 1, _ i_ , ~ 

F:Ef'1 
1:;',:.- 'vI 

...~ '\t,,~ • or· 'r· .. f·· (" /'. I r' L II "'-,::. ",-1-'1:' I.) .,. ~:::' (" n ::-.. /. -r '\' 0' F tJ ATE· r.:.' ., '001 ..... , • '" I'" 00, '" ...oJ, ... .;) . . r I . I . r', . 
, ... /" 

'

"'I''' "1 "'. ::.1' *
,1, '1.' 
··"f· 'I" 

\/ ,.- ( (") .J, ( ( '') 00") ...., ./ ':;- • .L·r) / ") ._, -X ./ I:' ') ) _ •. ", -X 6 l.·1 ).... "!,;:.! ." .;:) 0 
•••••• ..... " ".:. 0'" • '. .0':'. I \.c) ~ ...... J I /' ,': •• 00' " ... 1 .,. .• ... J.. .-:.. .:;. _ .• ",' u' '0.) oJ. • .' .:. • .. .J w u I,} / .' 

N=(N6tN7+S.478)*lE-7 

*** 

, .. , .. ""j'r 11'1'11/,",)'1- 1''''''''oo,C) F·"\')t· ... ,,- "rA\J 'r "'1 /-"[1"'[ ("[:" If ("'t-)·'lc·r':'>.IT" .. ' .\ .. 1\ .. , ...... ' .. - ,'\, ::. '.:.- .•.. j .. tI' .. :J ,::. ~. .. I _ ./ .. :,. ? .... j" • .' .. i-1 ~ :' '.' ,_. I' ..... .' i-I i .. 

INPUT F? I:;.~!I P!I t.) 

PRINT "NO. OF SAMPLES 
FCF~ I :::::1. TO :1. ~:; 
f:::::O 

IJ .' M ~(". ) . :")"" '.::' . 

c; ::::() 
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"'''''1 I IIIJe"'-II',"" C "1 _. _. ~. ,:;.::. ',i"i'" 
.. , (.. I I II ,'" 'r"'~ II . "- () '1 :t '" 0 .) ,., '. L ':1 _. '" .\ b (, I-I !I .. !' ., ;1 ••• -::.. t. !! .::' .! 
,-' '\ lin .::~ I::' -r I:;' II ( ~ '/ '1 ., ,:~. ) . ., I", .... _ ' .. J ... , • ,.. . '" •• 
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I .• , H " ... "' .. J .~:'. '001 ~ l.. I, .... , } 

'j' ,::- .::~ { I) ":- () T 1 .. 11::- >-•• J ':> "7 {) () ... ." ... -, '_ ... ,' •• ~ .... J'.. ~.. •• , • 

.. , 1'1 11'-'.1 r .. )(;) I'.'" {'J I F Z ( . ...1 ) :::: .... :...... .. ::. f''( ._. ~J ,} ,_ 

PRINT "BAD DATA AT EVENT";J 
B::::B+:Z: (...I) 
)...j ,::- :-.... 1.. . I I. ....... ... 

r'" _. ';':. ..'., ,.~ {', {) 
_." ._ ... ~ .. i •• 0 ........ ~. •••• ',</ 

." .. ,' I'~ ... , ._, ........ 
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1 .. ·· .. ll .. ·((" ···l'''''{)'I I· :::: :::. l.. "'. . .:1 / • ..::. U" , .... ! I , ...... [1 I , ..... I ... ,_ 
, .. , ... ',"" ''', r::- n / It'" I::' 1\'<1 r::' j~~' ',\.1 I.) '::'1 i-J r~ T T '( !.' i \00' , . .,: .1.:-• . J 1 ... i::. ;'. L I::. 1',' .. r I :::< * * .1..' I .... \..... ., ,_. • 1_. '. . ...... \. .. •.• 

'. ... '[ , f l' I'" '.j ,... '1' .,- v .. ··. :'-J n p r;' '.j r..i P' 'i"l (;~ (' U i'i 2 1::: \:;: n [: rit >:<;{{::¥. . 1\ I::' J\ .:::. ,!. I, '''I i'.... '. '_. 1 .. .oj -'" ... 

111 ::::H /1'':':* 1 00 
0i=(~*F/V*63208E-7)1(2tSIN(ATN(R)) 
'-":l .... 1 .. 1 .... ,.:' \1(" (" {) .::) .... •••• ,/ .... J'! • ••• '\/ 'H" 

I ' .......... I j r) .. t I ' 'j .. ) .......... \ ...... - .... ', .. 
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". {) 

.j v 1 ~.J ... , 

0020() 
00300 
00"400 
/'; {"II::' ('j () 
\ .. '.' .. J ..... 

() () (~l () () 

00'700 
00:300 
OO?OO 
{"Il () { .. , 0 
._~ .. "0; .. " 

..... :l :l ("Ii") 'J .. . ,,'-
{'1 :::. {'I ') .. J. : ....... ~ .• 

01:300 
0140() 
('l1t::.ii'.i) 
-" .. '\... '." .. 
ot.;~:·O(). 

O:!.700 
01BO() 
O:l.?OO 
02000 
02:1.00 
('; ') ':> 10 0 
' .. : ....... \,.... .. 

()2500 

,.. "7. -1 {. ("I (j .. .i.l •. j .... 

() ~::) :~:~ 0 () 
O::~:3()O 
():)400 
03~500 

():5:? () () 
() :.0:) !::) (j t) 

o:::)? () () 
04000 

042(~O 
o ·4:,3()0 
::)·4 i ;·00 

PROGRAM TO CALCULATE MEAN VELOCITY FROM 12,000 
SAMPLES USING THE ENSEMBLED OR TIME AVERAGED 
TECHNIQUE 

F~EM *** 
F.' F;' r '\J l' n'[ i\j j::'lJ '1' I.) i) I 'T' (::. (~ I:' q 1::- 1':1 n , .•. 1. ..1. . . ... . 100 - ~.. .. 

INPUT T:1. 

',~ ( .. d'l .•• .. ( .. .., 00., My 1 .::. I 'f'\ ) .' '"' ..... 'oy j I:' \.) r, '3""1) .. ....,,. i I' " \:) l ... :~:: , t. ..... ~ oT- t.. ",':. l o.:j ~. • oJ •• ,. ......l ~ .. / 0.) ,. .. .. J}.'- .... :. ~ ~: C) \~) .... 0' ./ ~ '" (:. U 1.)"7 ... 

N 6 ::: ( .; :':) ~:5 2 * X:.f:: * B ) 'M' ( ,- !:S:3 3 * X * * '7 ) + ( + :l.:2 4 ;}~ ><:t :{:. 6 ) -- ( ~ 357 ~~)\' :~~ * ) 
" I .... .\ "1 .. "., ,I, 'o,.' oJ., ,~, ... ) ("") ():i:1 "-I, 'V ,.1, ,1, -y ) .L (-Y :I ("L ".' '0,/ ' .• , ·.1, '") ) (4 c c' 1 .. 1; v ~ r'~ / :::: ., ~ .. :_ .. J J. ir-. f. ;f' 'I' At.·- .\ .... ) .... \. "1 ;" .... \ .. j\ :1"''':). 'r '. ,J y •• (.). "i'· /\ il" ·"1'. ::- .. '-', " ._.' d .. ·1' .'~ .. ' 

1~'!={~\'J-"I~I'17"ILI"'~A47R)'I{'LI::--7 " ., \0 t"{ "( .. ••• ..... , ..- • 

f~~- ()'\-1 ~~;~{-r'I~~~'- Q~~70~lM4L~'IOA 77 .. ~ l _ y. • • •• 1 •• "., ~Ut (::. '1' '0 •• ~1\ ",".-a:... } (. 4..,- -.J .'.~. ',.J I ,Of\ .1. l "'1 •• ... "'j" ~. " -.J 

...... (\., Mf t \., ... \ n ."\ ... ) " -7" I oj (') ,.. 0 K. ""i':::: .. \" ,.:.1' • "" ... ~ ..•. ,:' :: ..... \.. ~ '·'Y./ ....: .1. '\ t.,} • 

\
::' (;) .. _)1-.J '1 ... It·, r") 0 () 'I' L-'"7 i , ..... II ._' .••• ' •.• ,'I' •.• \ '" '" "'f'~ '",' .. 'f 

PRINT Tl,NlyP9,C7,K4 
- A l-. J ·lM ." ", 1M, .\. 1M• E' II I'>' . f ('" n 10., leT .:~. j'.) T ~ P n I NTH F H E 0 y F~ ~I N G E:. ~1 T J-I 1-.. I .. ::. , - .' -::. . 1"1 .. '! '.. . ... _·l '-.' I t 

INPUT r1, r.;~, F:1.;1 j'.! 

Y j ::::("1 ., . ., 
\( r) _.j") 

:.: .... - 4_ 

v··.r .M' {"i •.... 1·_· ".1' 

., .[ , . ., ( ~. (' ''1' ""/"1 ") {\ ('I) I-I ( '1 '::. () C .. 'I l.I. r'l (")" (.j J (. ,) ~} i ... \ ., .~ ....... '-' .' !'.. , ... ,..... ... : 

10M .. ) F' 1""\ -_.\ T 0 :l r"l .. t. 0\ \ ., ...... ' ." .... 

I "l,"'I'M

" ( ....... ) C PI L - .. ~:) ::. . I-I : 

CALL "SETR"(3,1,4) 
FOF: I :;::0 TO :1.:1. ~.7q 
CALL "RDB"«A,Z(I» 
T r '! ( "[ ) ····0 THE"N ":\ j ()() 
:I:~ ~;:[.~:-~ T~II;~~~;~O 
•• ,.' .-::.~. i~ •• .' •• - .'.~ I I ._ J '. ,."., ........ • 

I"I"'[~IT "I~~rl III~I'T'lt1' I~T EVENT";! 
•• ' '\~ .' !""! :.' H .1..' 

- \":")"Y"I'\ t:,:::: .• :,{ 1-": .. (, ., ) 

10..1'::' ~<'f '1' 1··.1.... . .• 

(
'" .... 'f' .... '1 ':, (i { ... 
•• ' ... 0 •• \, .... , .... _ .... '.~ . ., -- .. ,. \. -'\ '\ 'I {... .., '7 {, -, 1-=.::::: ( .:. 0 2 0 ,) () ..:.~ ~.)' .:,{ L } .. - .. \} '" .... ' ... ' ..... ,/ 

\"; ..... t:' ·.JI M, . / I·\··j • ..- .. , "l" f'" • 

.... . _ ... , "r i\! ... I:" 'I ;::. .... too! , " ~., 
•.•• ...... -J \. ,' •.. -, "" (" "[ ~.l ;" I:~ ) \ 

'y' _ i' 1:1 "'f .~. ~'j . : .. ll·, ._. ./ } .. :' t, . ..:.. .•. :,'\. .. -::1 .. ,1 ". . ... 1" l 
: .• _.... ,'I, ................ : "u _. . 

._.. ", ·1····) 1" n ., J .;:) c,> I.. t) \.\ .. ::00 (. \.. ....!, . .. .. ",'.' - .. 
.. - ...... , T ,'. '1 i'l ' .. ,\ .. 

1'-'\ .... { {'t ., (j q {'t ,;'.I. , •• ;. ;.;{.... t .i. } } .- .' .... .) ........ , .j ..-
f::. J ......... l' '<.,,' • .:.. '.~ .. .... I .' ••• - • 

I:: ":l :::: I::'" .... 'I":' ! .... ,.. 1 .... /. • 

\
... I'" rOt ",1.1 ... ~. r) 
u :::: ::.0';;'" /,".:'f' ..... _ 

..... ._'" J I'" t;};::: l:}T ., 

II( I )::::E:2 
=-II::-VT 'j' I'· .... !" I ., 
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" ·It.-Oo I,.} ....,J ' .. 

04600 
04?OO 
04BOO 
04900 
() 1::' .. ) () ('; v,J\ ',".' 

O~il0() 

O~520() 
{J' 1::''''' C) f'I • .,J.;) '., 

('\ I::' il () 0 
oJ .... ) 'v 
{) I::' I::' () () ' .. ,.},J, 

0 1::',' ')('1 
.,JO'-.. ... 

05?OO 
05800 
O~59()O 

06000 
06100 
Ob200 
") , "}' ('t () 
CC)';:'", • 

06400 
06500 
06600 
() " .~() .. ) 
\. 0/ .. t" 

1_/ :::: O· /'1 ~:),-, 0 . .... ,,_v .. 
. J :::: ~:: ('.) I::' ( /.J ) ... _J.... -I • 

lJo)::::J*:J. 00/1, 
I '1- 'T' 'J" F:I. .' (d :I •• ,,0", - .... ,.. . /" '.1 .. 

F' I~ I NT" ~"I:' ~, \! V /::-1 ('J" r' ]. 'Y", '1' C 11 _. f II '. ....... _'. IT .. '.J 

P F< I NT U T 111:;'·f.'{ l J L 1::- \J f' I:' T \J ""'j:' ~,.i ,::; ]. '1" '.J I _. \ •••• _ I . _.. ... .1. I . I ... , t ' .. J. , 

PRINT "CENTRE LINE REYNOLDS 
PF,: I NT 
B::-.:O 
0::::0 
\ ":J - ,( .. / L l' i ........ "I 

\/ ':) :::: '( ':Lt W I .,.. ""_ 

-..' .• ,. ''/'')! L L ., f ,.."j :::: I ... :> .af - it 

I'···j /::- X '}- I'" ·t 
• m. • \. 

Y:l::::Yl./10 
y ... ) .... '." ... ) / 1 {)' 

• .:.. .... 1 • .:.." '. 

Y3::::'{3/ 1 0 

./ ... ~.: 

... "._1 

, J l J ' '1" ,_. I" 1\ I"" .• :.. .~' .• ... _I. I (". . ,;) u ~ L4 

PI=\: I NT II ENSEi\·iI·:LE tl l,')ERAGED F;~E~:;l.JI ... TS FOr~~ 12000 ::3,-;j·vjPI...E::::):: _. iI 

PI:::INT 
/ .. I" '1' l\1.... H .. ' .,: .. I"~ I :-'/1::- ..... ~ .. J I I F I (', (" '1' ')- '" I II." 1"11. v .. " ... '." ..... • I ::;: " !; "'( 1 ;~ If M .. / S U 

F· /'" ./. '.1· .. • II .. ' ·"' .. N I 'l··t J'" ... lJ I ,_. '. I .... E- ]. ;.. I .... ,_. ". J ,'''. T .... '. ,. • /-o.:.l::: _ :.I\L - .I'{ I ::.J'.,:::,.,. I ' 
PF~INT II 1=, OW 1~I=v~IU-1 ns ~n. - , ... I I'{ _ ... '- 1._, 

END 
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APPENDIX 9. 

O()lOO 
00200 
o () ~)()O 
O()400 

00600 
O()~?OO 

00:300 
00900 
OjO(!O _ ....... _ u 

" 'L of (")('1 I). J •..••.... 

(','f ':) {) n .... .I .... _ ...... ' 
... I .... , r\ .... 

J...i : ... :'; \} ( .... 

o l..:'~·OO 

SUBROUTINE FOR THE INFLEXION COUNTING TECHNI:l!E 

F: [: f-i '1' j\J \=-I 1=-'/'[ iJ f ... .1 r"lll J I\J T 'j' ,;".J., (~ LP:-~ \::' r:;"J :-:, F' i; 11 
.. ... n ......... _ \ \.....0 _0... .. i .... . \.: "0" .l-~ r\ I., '>- .. 

\
,.,. ) .... "J .:.: ...... I"J 

t·'.'):l ·-'I .. \'·.I( c' ./ l. J .. ,... .',., " ',' 

\::- f'\ \:-. '\' ::;: {) "1- (') j'\ q-; .oJ \. ... '\. .. ......... . 

'1':"'\ ::::'7 { .\' .. L·\ 'J ..... ;: .. ( .\. ') 
.... " ...... ', .. I ow, ...... 0 .. 

,~' ,'" ( .". , .[ ..l ")" "::"]"'L ", x.{ .\': •• . l. I.. • • J .... ~. ) .... ,<"0 J. •.• 'or. .' 

I.. Ie"", . -}'1 ') , f' (" ;,., I ' ,':J ,', ) u' : .. :::; .. ::a l.:.t r·,. ( }:.I .• .. "i' ,.:) 'rJ 1 ... I .. .(.., .-:.: ... 

'[f: !~i=_~ 'T'IJC~ '1~00 .. , .I. ..... -, 1.: •• I. .., O!O_.~ .. 

. \' r" I::' i .... r) 'r 1 .. 11::' \J '1 ',) (""'I (; .. ' .. .I, ..... '-. I I ... !. .,...... .. 

''', "", .... I .. • ...... f 'L 1''' ..•. : ... u ... ,-.::. ·'f- .. 

\, 1::' '/ l" T I .. _.\ .. 

F" ...... -1"· ... ',/ /1 (:) . ·,;t ......... '." .• ~ <. •••• ,. '..J 

PETUF:N 
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APPENDIX 10. PROGRAM TO DERIVE A POLYNOMIAL FOR EACH THE~10CCLPL~ 

00100 
() ("1 .,::. () () ......... ~\ ... 

00300 
00400 

00600 
OO'?OO 
OOBOO 
00900 

0:1.100 
(\'I '") () {) J .. .l_ '\.; ... 

()'l'7{);') 
'_ • W \ ........ 

n 'l /\ 10' () ...... ~ '\. 

0:1I::"{)C) ,. "..J '" 

{'I 'l L {'. {) ....... \..) v .. , 

1"\ 1 .., (\ r. '.j. / ,}.) 

() ,t <:) () i') v. U _ '\.,; 

01'700 
(,'\ '") 0 .... (' 
oJ..:.. U ,,) 

02:l.00 
02200 

o .,) .,;~( i') (I ... A... .. ... 

02~5()O 

o :::.~ {::. 0 () 
02700 
(i ,,:;. () ('I (') 
'\.' ...... r...J '.'/ 'oJ' 

0:::2700 
0:';:;000 
I" "1 :I. ;") "'1 .j . ..) \. C 
(i "X ') {) 0 
"" • ..J A.. V 

()33t.)() 
.. -v :} .-... '\. () ",.' I,.' I.} ..... - .. 

() 3 ~.~; () () 
03600 
()3"700 
03E300 
03900 
0·4000 

04200 
O..:'~·300 

., 11"'''' ." '" I' .• i II t 
•••• h • .... ..1 \". •••• 

... . , "'1 .,. ~ 

() .·;·t ..... () I.) 

() .. ;'.} :~:~ () () 

o ..:'.!. \.Y' () () 

o~)O()O 

() !.~; 1 () () 

PROGRAM TO FIT BEST 
DIi'1 T(22) 
PF:INT III,J.JHICH THEJ;:MDCDUPLE ? II 

INPUT P 
FOF: I :" .. -::1. TO 22 
PEAD T(I) 
NEXT I 
N::::')·') , ., ... ' ... 
1~1 'l =:: ,\.1 \ I'~ ') :::: () \. I~:'I :.\ :::: I',') . ~ '. ,.'.- .. . ... . 
I), 1 :::: (') \ I'~ ') :::: ~) \. r..: ".=') ;::: () 

• • , ... A... . .1.: ,. ... 

C:1. ::::()\C2::::0 \"C:.':j::::0 
D 1 :::: 0 \" D 2 :::: 0 \, D ~} :::: 0 
F I] r.~ I :::: :I. T 0 :2 2 
I .. 1::- ")- V 
'\ C. FI .0,.1 '/" 

i:;::'~::::A2+:::< 
r ..... '\..." L . ' ...... I( ,~'.... '. 
H ,::' :::: ("I .... 1 "(' <. /', il' 'I' .. ;;. } 

E:I I"J'l I \.1 .. { :::: '. "," / ... . .. ... " 

y.) .", .... r;,·'" l { \/ ,I, 'K..... ) .\.' ... :.: . __ .. :", • ..::. 'yo " ,/", ,oj'" eO! .... :.. 

'0 ..., .... I""" I {'" ,I, ' .. '.' '7 ) .c' ,..;;. .... 0: • ...:;. u,u .. ..'\, o'j\ 0'1". ,._1 ,0 

,... :1. .. ···l"··,. .!< ·1,' .... ) l.... ;::: L. 'T \ .,:-". ;', .. :)'. .,-;. .. 

('" .... , .... C' r, "I.. { ·v· '.I,' o,J., -.r ... .., ... :'. _.. . .. :.! '0 4"'\ •• 0, .......... J " 

t· ... ".r :::: ,-.. ".\ .1,. ( \{ >',oV" .. ~ ) .., .... J , .••• '\... • ./ • '., • 

\,/ .... T(T) J .... .J. .. 

:01:.-::D:I."~·Y 

I .. ·' '- [I...... I .. './ '.1,' './ ) I .. ::. ...... '::'T ' .. 1 ··I··r, 

I· -Y i''', ... , t (' ,.( '.'" ( v"" ,.'., ..... ) " J .. :') :::: ... :) -.... ':i"" /\ ,/,\ ·i-, ":.:. " 

~' .. J I::' ':.::"1" ]. J .. _~.. o. 

1''''1 .... { ... 1.1 .", ".1/ , ...... X ) -. ( '8 "X .}! f"::::' ') ) * I~'I 1. ::. .. , •••• " .... ,(." •• "' ••• ,'1', '-" .... J • " .... , '1\ ••• .•••• • 

t::' ,., ... , { { 'r:':1 '.1, t'" .'{ ~.... ,": . ", .. / l. .I! .. \\ H A:' ... { r: ": ... , .. , '/ ' , ,I, .' '" 
C. A'.: .... ... ., .l:' .• "," ....... 1 ~ ... _ ... . ... . 

.. ... . y' .", .. J .. , '/ ' ~ '.', /\ .. ;c E ... .,. .... (' ( r7 .• J ·,t,,") ) -- ( \': .. ' .:)( I , .J .... 'f' /"1 ,:.' o. ~) ._. . \ ,I • ""', •• ~ A... • \ •• •••• ., •• 

... '.J ;" 
I::.J\ . ..1 
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APPENDIX ". THEORETICAL PREDICTION OF TEMPERATURE LOSS ALOrlG INJECTION TUBE 

A simplified model of the actual temperature variation may be 
assumed to be as illustrated in Figure A1D.l. The heat transfer 
process on the inside of the tube may be assumed to be satisfied by 
the empirical equation as:-

Nu = O.0155.Pro' 5 Re 0'83 
(All.l) 

Hence, the heat transfer coefficient on the inner surface of the tube 
is h = Nu.c( 

2rl 

(All.2) 

where rl ;s the internal radius of the tube. 

\ 

T2 

Fi gu re 11. 1 SI~1PLIFIED ~lODEL OF INJECTION TUBE 

On the f of t he tube it becomes an external flow other sur ace , 
Hence, the above heat transfer coefficient is not s i tua ti on. 

expected to be valid. The heat transport similarity parameter 

however may be assumed to be:-
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Again, this is an empirical formula quoted by Reynolds & Perkins {50;. 
The heat transfer coefficient on the outer surface may therefore be 
expressed as:-

0.0965 PrO. 33 • Re O • 613 

r2 

where r2 ;s the half the outside diameter of the tube. 

(All.3) 

With the overall heat transfer process, Kay & Nedderman {44} 
suggested that the temperature distribution could be represented by:-

(Al1.4) 

where D could be taken as 2rl, L being the total length of the 
injection tube, m being the mass flow rate of the injector and h 
being the overall heat transfer coefficient which could ~e expressed 

as:-

1 1 
11 = h;n + 

(All.S) 

The middle tenn on the right in equation (All.S) represents the 
conduct; on tenn across the i njecti on tube ltIa 11 . Hence, k is the 

thermal conductivity of the stainless steel hypoder~ic tube. 

Therefore, the actual temperature of the injection fluid at the 

point of injection may be expressed as:-
h 

( - mCp 'IT DL) 

T2 = To + (Tl - To)e (All.6) 

where Tl is the temperature of injection fluid at the upstream end of 
the injection tube, To is the ambient temperature of the main fluid 

stream and m may be expressed as:-

7T.D2 
m = p. 4 • 11 

(All.7) 
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APPENDIX 12. PROGPAM TO EVALUATE THE EDDY DIFFUSrVITY OF HEAT 
FROM THERMOCOUPLE READINGS 

00100 
00200 
00300 
(' () II ('0 ,),. ToJ 

{\ 0 '::;{) 0 
,/. 'oJ' , 

00600 
00700 
00800 
00900 
01000 
0:1. lOO 
tlj"')('() " . ...: .. ) ' .. 
01:.300 
0:1.400 
01500 
01600 
{'I'J 700 ...... , \. -
01BOO 
01900 
02000 
.) "\ j () () ( .,::. ... 

02300 
02400 
02~5()() 

(,'j .I.·.0() 
..... 0-_\..,1 '\.: 

02800 
02900 
0:.3000 
() '7:l () {'I 
........ 1 • _ '.~ 

('."':-- .", {'I (\ 
·.l .. _' .,;,. •..•.. ./ 

·...,·7"""( '''''0 1... ... :;, • ..;; \ •• , ," 
"""/t.) .. tJ .. :) "'r (. 0 
{': '7 t::" t"'· t) 
.J ' .. J ,.J ,/ \ 

03(;00 
0:.3700 
() ::;~ i3 () () 
() :::) ~~ () () 

0·4000 
t·; .. ;1 :l () I,') 
"..I I ..... 

' ... :} "yo ..... i 1.·;. -\ II, J .. " ',- .. 
04400 
O·--j;~.iOO 

O·4(~)OO 

0·47'00 
0·4:300 

REM *** PROGRAM FOR THE PROCESSING OF 
REM *** THERMOCOUPLE READINGS 
DIM T(14)~V(14)'H(14)?R(10),E(10) 
Dli'1 X5(:l.O) 
DIM G6(10,11),X6(40),Y6(40),06(20) 
DIM B6(20),C6(20),Hl(14),Sl(14) 
DIM E7(14) 
f;:Et-ID (=i ~7 , T9 
F~:EAD II!,.J~}.J 1 ? t.. 
I:;· E: ~I II 1< Q ' . •• I··!. . I 

FOP 1'~::::1. TD Ti.:? .. ··2 
I"I-AI VIOH(I'" .\ ::.1""1.1 1'",:), \..1 

~J'-XT , .. , I·. ::.... \ 

FOR ~19:::: :1. TO ~~ 7 
F\Ef=iD F~?~} t1 
F\Ef.·,D U!, U9 
PF;~ I NT 1~9 

PRINT "RUN NO. n,R9 
PRINT "VELOCITY OF JET IS ";U;RM/S R 

PI~INT u 1,,)ELDeITY OF M .. I-< ••• L v, . ~ ..., A '[~I FIDI.J I(""o 0 .~U9. ~. aM/~1I 

C3::::U*..J* . ...!/1 <S 
~I"-O 
I:;.: B:::: () 
NB::::() 
PB::=() 
P9::::() 

FOF\ (~18:::: 1 TO ~'f 

FOF\ :[:::::1. TO i~~9 

I:;~EAD ~) ( I ) 

NEXT I .) -~~O'Q 'r ' 'J ' I") 'L n .' '") .") '/( I I ( 'L ) """ 'U .'") .. t:l '7 . ,:)., ') 5 *~) ( 1 , .... .> .. :) ."" I .•• ' \ .. ' 0:::0 o::} .... ., } :::: ... - .) ... :.. (j (~:a A- .... - .-j. ...•• • "1" ,'1 .... '- 1 • e' yo .\- ., '\-. - (- 3 
... , •• ,. '-)' ,", (' .. I" , • ..., ) .•.• ...1 c. .. 4 .J , •. ( -"'\ ) ."' •. ", ('I 0 ./ g ' .. 1" t ( . ) 'l '.1 .. ~.... ) + 1 .' ~ . 6 ,.' .' ,,.·.·v I.. ..:... .' v. ,J .I. .. , 

.-::. .' :::: - .} . .;:. .. ~: " •• \ "I" V : .-:.. .' "1' '1' ~.. :~, .~ ••• :.~; L~'" t""1) _ '1" 0 '7 A /::,:=! 'r ( -" - ,., 1 'll:!") r) .'") ,.~< U ,. '".\ ) * * ? + I .... + .:. ~I ./ ,.J .}" I..... I.. ..... • t .... ' ..... ."."._ ".... J ::.. .... -} ~. . .... . ....... ":.:J ~ .. "'eo • • • eo '" • 4 j 7 / 'L--

( : ') : .... / , .. )., ,'"""( \1' t) ;' .... ) ,f., ~.I.- .,:~ "ll.:1 ""1 .' ~:) ~:) ~ 2 * I) ( -4 } .. - ~ , .: (;).;j ,j 'r ,', .... .... " '·1 ,'''j OJ 1',' '\ ,,,., 'I"' -,,, ,'._ .... e' 'I'._ .. _ ._ . 
• "y. .... .).A_ .... .... ... ........ ,....... / ,.. .. I, I I ... 1::-" 't _. "."!", 0 ~ r'! p 

• .. ·1 ..... :J A .. ' oJ, I I .. r.;- ) \!< w .) 1l " .. ' . 1 .", c. ' . .I '.'1'- '.0' I, ,J .' .; .. _' .. ' .. J .... '.' '.oJ 'r ( r.:; ) .... .... . .' I' .<.\ ..... I,'." I. , .. I . ..,. "' .. ,_ ••.. " .. ~.. .. .. ,... 
.. .... e' .... • .:. ..... ....., .. I.... ,'....., .--. () .. ~ . .., , .. ~ f , ( .t. \1'- 7. 1~ '"') ~-::~ () "0;' 

. • . . ) ..... :1 n '1 '"l ('''.1.- ~ J ( l. ) ':'(""t~ :Lt· , ,. ~ .;:. _ .... .... ..... './ ..... .,.> ._. .,....." r f. (;:. .' :::: ..... ~ :.~: .. \:: ........... 1"1' .' , ...... '1 .... -. '''.:'' . .':) l:!" ,j, t I .' '-J ) j C '7'" .,1 () 
'T' .. "'J ) .... :.) {'l n·, .(.. «(.. ~",( t . .1 ( 7 ') * * 2 + :l / ~ :I. -4 C .. ,..' .. j'" V ~ .' .' .- .;. ..' '_.' ... 

10:. /' ........ - .; •• ,,~ ..... ', • .1 ... I ••• eo' • ': ... • 

'T'{q)=~ _ -r.;-~A 

*** :~** 

\ \.... .... • ...- -'1 1 '7 '! """:' "'.~ {J ( (:) ) - ", ·4.:': ... :') '.) "y 
• • • .. ... ('- •• , "'j ,,'j •• , ' .... I t i q ) :.!( :J< ) .. L 1 . .'.. ..' .,:.. i .!.: '. .,. y_. 'r ( <:) " :::: .... .......... C~ ....... " ..... , .. .. .•.. ) .,.. 1 • • , '. /.~ (' ..., 0 

' .. .' y ....... . ..... -. ''"\:1 ,., .; .. j, I I.. 1 0 ) - .':~ ,J.' ,} .: . .... jl- ..... ,,···'o,J.'l t;':1 i"l 'l ,« ... ",'! .. 1 .. 1 .. ' + •. ' ....... : .. ,. ....... ,. .. .. ,.. -
T ( :I n ) :::: - ,. '.;.: .. .:) !.j U ./ '1'"./ " .. '\.' .. .', '1"::.. I .. '-' .- . ) " .., j .:. ,::- I 
I ..• ,.'. '"\ f 1 -., ...,.'"\."1 (··Id' i :t j -'. ~'('" ..... ...JO . .-) 'I ,., (e) ""1 ") .J .... f , ( t j ", .. }( ';~~ .. ' .. ,....! ... .» ..... _ .... :.~ t .• ,; ':"';1 _I', ~. .. .. •• .' . • 'r ( 'j :1 ) :::: .... ~ .. :.. .... ::' '.:' ..... -:.. ."1" V \. • I '1' ·1· .,- . . _'.,"\ \ .1 ...,..., 'R. ,;'. '") 

'10 •• •• • 1 -, ,,"",.-l'.., '7 .. I, t) ( .. .' 1'-.. ..... .' "" ~ ' .. .'.~ 
" ., '"' 0\ ... ... "!.- I I (' of '-) ) ,~{ '.It ') J.. .... ~ .. ' ~ .. ' .. ::' .;..... ...1 •. ,-.. .. _ .. '1" ~ 'I .-\ ) .u. ,- . ..' ~.I ( J ;;.\ ·4 . '\1/1' V • 1..A. •. ' ,0' " .... ~ J o· .-f .... , ....... : ,.... ,," o~ ..... _' I .,. 

'T' ( '1 'c~ ) :::: 0 ~"I I . 1 ") "~~ (\ ,::) l. ,_! 
• 0 ..... " ." _ ... ok ..... L 1 7 OJ of ''J "': "1!. ( o·:.~ - + .. :''''' J '._' I .. .' I. •. t • '-' ...... , t • 1 A ... ·,,1' ... .' I . .. ·1"/ . _. . • '1" ... / .. '\ 'I .... _. I)., q i", ,,'.' >;-:. ' .... ~ . ,;t,} 'I' "1 .-:... I ~.. . ... \00 ••• _ ... l. ... '0'. ,0 .... ..~ ""'0 .• \_ .0 ... ":0 ••• \.0 

'[ :::: '1 .. , '. .-, "y... ':~'I ~.... ..~ /' ... -::. 0 (;) q . . . . ... ~ .. .-, ._, -r '1 I.. 'I I - .' (0 - ... ,.. :" .. ' ..... , .• • 

...... .... ( (r) '.{' , ( .. ) -::! :'.\ ... :l. ~.5 + T ( J. ) .' / .. :.~ ... ..;} " ... .J .... :- '.- ..... ... .. , ,_,. ... _ .., '" I::" '.I:' ~., L"!" 1 
... . .... , , .' 'f' ~ \ ...... .., . ) + ( j'" 1 ", '., .,/( ,.v.'_ I - '. .', I, ",. , . I . i'- ... J 

~6=(;352*X**8)-(:~3~~~!~::~~::;~~~~;~~t2)~~4.i81~X' ... "j ,.) ..... j .. ", \ .... '.1/ '-!< .~~ ) ._ I. ..' t ,} :.y A, .. ,' ...... ". ':'. '.. .. I . , •. ~~ ./ :::: ( •• .:. ., .. ,:. • .'1·· ... · . .'1' ·'1 '. . • .. •• 
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04')00 
05()OO 
0 '::'" t\n ... J J, .J._ 

(', ,::' ':) () t) .. ~ .. J"",- "0. , 

/)r.:,,··ro~ 
" ,.J '_' .J 
/) r.:' 1,\ () () 
10• -•• J r".J• l' .... 

05500 
O~5bOO 

O~.)?()O 

O!5BOO 
0~=j900 

06000 
06:1.00 
('\ .l, .,:> () 0 
J '-J '"'- ... , .. 

" " -y () 0 oo,,)t· . 

0<S400 
Ot.J::'("\O ~ O-.J ,/ .1 

06600 
06700 
06800 
06<;'>00 
O?OOO 
('t .. '7 j ('Ii) ... ., '\.-

07400 
07~:;OO 

0:':-' 600 
07700 
O?BOO 
0'7900 
08000 
'''t:).J('''') t-' t::J .1. J ' ... 
n c> .') {" 10 
...... 1 ..... ' •. _ V 

OB400 
08500 
08<:>00 
()8?OO 
()8BOO 
i"O) t~ (:,l {'I 0 
..... 1_0, ~ •••• 0° 

09000 
(),::;o'f no 
.~ , .. \. .. 
() I~? 2 () () 
O':?300 
0940() 
O?~::;OO 

N=(N6fN7+5.4?8)*lE-7 
C7=.Ol1446*T(1)**2-+85239*TCI)t4149.73 
""'1 .... ('r (" ./. ) )..·· ..... ?-r 1'::') ''''-''-T 1 r.:' I .... ; --, ,...., .,-;,..' ":'J '" .... J /,;:.. / ,;:. '" .::; 

I,·, r) .... ,., n -x q L":" '.', I'" 1 "1-' () 0 -, ,II (" I" 1 w , '" ' \ ...:. •• - ~::. (:> -.J'~ ~ ,.J "1\ \. -- .j . .;:' \.. (0 I .... 1'. .. ....... "1\ ~j~ • .::' ) 

K3=52S.77*<Kl**3)-?3.44*<K:I.**4) 
K=(K3+K2-922.47)/l000 
P::::I"'~* 1. OOO*C7 IK 
F::::N/P 
1~~:1. ::::J*U/N 

N:I.=+0155*Rl**~83*P**~33 
HE::::N2*t\/J:J. 
H3=J/K9*LOG(Jl/J) 
H4=1/«:l./H1)+(J/J1/H2)+H3 
J ':> :-.:: J \.0.10_ .... 

M 1 -"J .,) (") 0 ' . .\,1 U * . ..., :I 4'1 J::' .-\ ," J '1 '" ,.-) I ;l I -- .. 1...1... fl" ,:) '>. • • -.J . .., . .y •• ,. A'" '1' .... ....... 'i" 

T(2)=T(1)t(T(2)-T(1»*EXP(El) 
I-I ( I )::::TC2)'-T( 1) 
I··· 0 F" I" - . "l 'r fl T C) :I •• '"\. ..:. c"::' ••• '7 - •.• 

He I )::::T( 1+1 )--Te 1) 
NEXT I 
FOF~ I:::::I. TO T<»'-2 
F~ ( I ) :.-.:/--1 ( I ) 11--/ ( I + 1 ) 
NEXT I 
I~· 1.-':. I~'.IC I, •• 1 , ., ~'j\ ~.~ ~l~ LEAST SQUARE ROUTINE 
F: .i.,::::{) .... , .. 
Y"tl .<',:::' '1 ., \.. ' .. 
N6::::T9-2 
N 4 :::: i"" .6 -' :I. 
FOr< K::::O TD 1,"4 
X ' ( k' )' .... ,,. r.:- " ,.:' _L:l ) .. ' Ci ,,', ····1\ -.J \ .,! ... 

Y 6 ( 1"< ) :::: F~ ( 1< +:1. ) 
~I'-YT I" I. :: .. \ \ 

FOr< 16=0 TO 2*D6:C6(16)=O:NEXT 
~Uk 16::::0 TO D6:B6(I6)=O:NEXT 
FOR K6=O TO N4:S6=1 

'r'~''''''I') r·('I/·'l ..... ; F () F~ I 6 :::: ;:) T [) ~.~ ~)< I \~) <- L';;;' ( ..• ~.) , :::: .... (.J t. .. CI .' "j .::) (.j 

]'1- ]·'/·-r.I~ 'rl-II~~I~ R~J'(I6)::::B6(16)+S6tY6(K6) .. C)··· .. ·• .... -" ._ ..... , . 

ci6::::i6~X~(K6):NEXT 16:NEXT K6 
FOR 16=0 TO D6:FOR J6=O TO D6 .. _, . 

/-""'1- I( "l· ... { 'I' fJ' ..L·t I-~" (I····) 
l.... ~ i' ",. ,. I (, ) .... to, l. ( "" l) ·t.. f /') ) : ~.J - r... • .... c:: .; .:t (.) t, .. (j ~.' ._ I::' I ,1. .' ...• '_,I.... ' . .J. 
j{:) ... . ' (j.!} .... ":.j " .. ··t .••••.•• ' " ... \.. .. .... ,.. • _ •• 

~!EXT 16 
,.- ('11'" T" .-. 0 Ton .<, _ .. j 
.. ... "'. .L "J _.. -' .... ,... . . .., _ .. I~ II "\ ..... , 

F- (.) 1:. I ~: " .. '1' .f. .. L '1 'T' '0 Y'I i., ~ J F G 6 ( ..J 6 !' ]..~ ) :::: 0 T H I:. l'~ ). C) \./ '-' " ...... .... \ .. ' ...... '.J I .. ...\. \.. ~ . 

I~ C) I~' f.( ,l, :::: '1' ,l-. + :I. T Cl It (S . ... ."' J , T' I"" 
, j' \ u. .." -' . '.. I ~ . " I' ]. 1 J' I ~ I ..... u ...' 

•• , ~ ( ,,' I." I ) .- L"'~ l, (' '·S II t·:· 6 ) - G 6 ( I 6 :' I,{ 0:::0 } \~ l:J 6 t ..... ,~ :-' .• c;. , .. .J (... , .1. ·oJ. .• '.J . L1 (J , .... C) !1 I \.:::. .' .... ,\.. , •.• \. , '.. . 

:\·'1:: ''''r ,.( (~~. , 1) 
I .... - r, , ... .- . I 1 '. :'qJ l. ( !c"" T~, ) /' (] h ( L \~" < . .. , . .' I' i",·' t:l ) .... j'~ i.;" J .;'. \. n /i + j ) .... G f.) { I.:::. 'I .1..1 6 "j' .." . ..... ,-.' ... '" • . l:J \~, t.. .... I:!:' ~J .t. (J. ..... .... _. \_; .. ._ I .. ,' . ... 04 ., 
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09800 
09900 
10000 
10100 
:l ()',or. • \J,.\;"., _ v 

10300 
10400 
10500 
·1 (') ,. Of) .L .0 , 

10700 
1 ()R{) ..... ; 

~~ •• _, \.: \ . .r 

10~i'OO 

J oj fl()(') 
• .I. '.' • 

:l1100 
11200 
1 :l 700 .1. .... J 'oJ 

11400 
11 1::'00 \oj __ 

l1t>OO 
11700 
11800 
:1.:1.900 
12000 
12100 
.! ~:)'" ( .... 0 .L ._4_ .1_ 

12400 
:l ') I::' {\ () . , ... ..J . .,J , 

'l ':> ." ('I '0' . "- 0 ... 

12700 
'1 ":>P()() 
.......... ~_J .." " 

·t .. ) Q(';() 
• ~ •• " 'J V 

1".'( {' () v" 
,,J ,} " 

1 "z:J "'r, .... ,.; .1,.1 ... 

132()() 

l ~:)~} () () 
·t :''\ l:~ i"i () .. ....... ,OJ _ 

13!:;OO 

:t :.3700 

., "·'(90(\ 

.r. . ..; ..... J 

14000 
of l) :I il(j) .I. 'I ."" • . 

1·4200 
:I .. i",? ('It) 
... I .... J ...... 

'1 'l, ,'j C") (j 
•• At .. y ...... 

, 
NEXT . .J6! NEXT 16 
06(D6)::::G6(D6?D6tl)/G6(D6?D6) 
FOr~ 16::::0 TO D6·-:1.: 1'=.:6::::D6- I 6-1 : L6::::1'~6+ 1 
FOF~ J6::::Lc) TO D<S 
G6(K6,D6tl)::::G6(Kt>,D6tl)-06(J6)*G6(K6,J6) 
NEXT ,.J6 
06(K6)::::G6(K6?D6t1)/G6(K6?K6) 
NE'/T '[' I .:.), . 6 

For~ r~6::::0 TO ~··.!4 
<=\ .t., :::: 1 .... C~ 

"'.1 E-- \/ 'T' ). .(. "f _/'. . \oj 

E6 (1':~6 ) :.-::26- Y 6 (K6) 
,- -'I ( I" 6 ) -I'" 6 ( / .. , , ) '.11 '." • .., I::' /" \... "..::. \ b .. ii" 'I' .:.. 
.. , '7 S·'·7.L E- "., ( I'" 6 '. ~ :.-:: Y:'/,\ . .J 

(:'9::::0::''''1/ (" 1 .... 6-') ) ... i .• ,i/ . . I'~ .'-. 

]. F- (" ("\ .,:1. 0 'r' I E' >. J j r) ,-. ('I 0 .' .::. '7 ':'" ~ I" :. J... . , .,~. \:) .... 

IF (ABS(E6(O)/Y6(O»+ABS(E6(N4)/Y6(N4»)·~:.1 THEN 12800 
N4=r·l·4- :I. 
)'F- I-~ .. ~)· /1-~'~f~~1) THI-_-,~ 8-~vftO ." ::. / ',',} ....:. / ~ I·{ "1 I ... .' (~ _ 

FOR I{::::O TO N4 
.,. 'I" ... · .... (·/··+1' )\ 6 \ ';,) :::: .. =<, <.,:. \ } 

Y 6 .: /": ) :::: Y 6 ( I'':~ -+- 1 ) 
'.II::-vT K' r, _I' . 

.., '1 'T' () (;\ -.r (' () bU \:> .... ' ,)" 

Hl(A8)=C3*06(1)-F 
1~7::::U9*D/N 

(~::::(.~1+H 1 ( tl8 ) 
F~B::.-:1::':8+/~7 

F-:' (3 .... I::· .:> .. t·I:· 
\."" \oj I 

NEXT A8 
.• ". ,\ .' 'j'1 f-j : ... 1"1 -' . 

F~8:.-::I:;~:3/M 

'
'', (J · .. ·1::' ':> /1 '·Ii ,- \.J .... \.} .. I 

F'9=F~B*P8 
N:J:::N2::f<P8 
F'I:;~INT 1/ 

PF~INT u 

PF;~INT 1/ 

F'I:~ I NT H 

PF:INT /I 

>'1,"· '.-.' 'r ,-:\ <;:' j''{ ::. •. ", , • 

EDDY DIFFUSIVITY 
F~E"{N()LD~) NU,··1BE/i 

N-D FACTOR FOR HEAT 
P F~ f.',N II T L. N U p'l B E r;.: 

PECI...ET NUMf::E::;.: 

J. C; 
. ". 

I ,"'· .:;, 

'·1'" .1..:;) 

I <:. 
... .' 

'1 .. :"":~O() END ., ? .... .. 
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APPENDIX 13. PROGRAM FOR ON-LINE SAMPLING AND PROCESSING OF 
VELOCITY, TURBULENCE INTENSITY, tlICROSCALE AND 
EDDY 01 FFUSIVITY OF MOMENTUM AND HEAT 

00100 
00200 
OfY'Z (j 0 •• ... J J 

O()400 
.. , OC"O "­i.J. ~ '...1 

00600 
(\ 0 ",' ('I " . ./ / ,~~) 

OOBOO 
00900 
01000 
01100 
01200 
01300 
01400 
01500 
01600 
OJ,700 
01800 
01?00 
02000 
02100 
02200 
02300 
02·400 
02500 
02600 
02700 
02800 
02<?OO 
o .. z: () ('liD 
"_ •• ..J v .. " 

03,{·~OO 

03500 
03600 
.:> :3 -;/ () () 
0:3800 
03900 
O·4()()() 

04100 
04::.:~OO 

0":+300 
04"::,}OO 
() .,,:}, ~jOO 
04.:':)00 
0··4700 

REM *** PROGRAM FOR ON-LINE SAMPLING AND 
REM *** PROCESSING OF LDA READINGS 
PRINT "INPUT VOLTAGE OF Tl" 
INPUT T1 
T2=-.216324*<T1**2)+17.1919*T1-.330355 
X ( i ,").Jt ( (,..,·7..... '1 r.- 1 'f,,» ''')........ ·tt::") , ") ....... l' . ..., ....... "9 

:: ... .-:.. ",_. '. ,'::' ... ";1 ~ ., .::i "r ,:.. '/.-:.. j ':i • .'::J ) .-. .:... ,. ...":06 6 }./ •. .J 6 6 tj 7' . 

*** *** 

),,1 ·7 .... {'I ,.., "1 1 ", V ·.1; ,!/ 4 'I (.", r.. 4 /.1 '.1, " '.1/ ·J.I "! ) + (..., j I 1 '.11 'J ··l, ," U) '.1. r.:' ,"" 1 'v './ \ 
I'i l .... , J. ~ . .::. ... ,. I,' /" I" Ii' ,-', .. -:' ~ I .. ) 'y Ii' 1\ ';' .1'. ;.1 -J ~ . b. ii" ...... 'T' ij'. - \ • ~ ...) ,::' .... ;\ .. 

Nl=(N6tN7tS+478)*lE-7 
C7=>011446*(T2**2)-.85239*T2+4194.73 
1
"1 . ·f").1 .-, ..... .., j c·· /·-,-)'"1 'l r.:' 
\. :::: ~ .\'_ • ," 4.. / .. :) + .,,)).1 A· ... ' ... J ",:. ,_J 

K
" ,') '") 8 "r 9 c' .J! k' " 1 r, 0 r. 7 * ( \., j ' .. 1/ -11 ") ) .-:...:::..:...~. ,J ~ .::J ;1""" .1.'- • c .. " I.J +. '. \ . II' ','.,;... . 

~- r~~ 7'7~(~1~~7' '7 7 4~*(~j*~~') I-..... ~:::.: .:) ~ .:J + if'. 1-\ "."\.rf' ... J 0'·- .... 1 +. 1
0" 1'\ ~. ,.-( .. .Ii'" o'-i • 

K4=(K3+K2-922.47)/1000 
P9=N 1. * 1. OOO*C7 .11',4 
PRINT T2,Nl~P9,C7,K4 
PRINT RINPUT FREQ. RANGE~TAN T/2,PIPE DIA+~V CONSTANT-
INPUT M;JI~!1Fl,N 
Yl=O\Y2=O\Y3=O\Y4=O\Y5=O\Y6=O\Y7=O\Y8=O 
DIM A(600)~Z(1200),D(1200) 
FOR K:I.:::::1. TO 10 
CI~L.L "l.H3E U ( (..) ) 

CALL "RTS"(A~O,1,1200,2) 
CALL "SETR U (3,1,4) 
. r\ ..... " J.J ... F-Or.:. .[ -{) TO '\'j 0::)9 
CALL "RDB"(A,Z(I» 
IF 2:(1):>0 THEN 3000 
IF Z(I)=-2 THEN 3100 
PRINT HBAD DATA AT EVENTO;! 
Y:{ ::;: Y:l .. L '7 ( '1' ) x; J.... i .. _ ." 

j'·lEXT I 
C:-.::B.I:!.200 

~ ,-) i -" '1 () -"''l:tj'''J 1"<::-.: ( " 0 2 0 9 U l.? ~.; ~~ L ... ..- J. I, ~"" ... J" " 

P::::I·.:~*~1/N 
S::::I~TN (f~) . .., , E ....).",.' '." C .[ j~.l { (" ) 'I 

T 
.. - ( \:. ··ll !... .'!) 0::, .. -.: .: t. ...:.: /j<' ,... • '.' ,j, , 
.'_", -'1' 1_, 0) ..... f ....... '... ••• • •• 

r':'l-) I:;' .[ :-.:: () TO 11. ')' <1 , "., .. •. -, -y ''''i -.. 
rj-( {)~00()~Q*7(r))-:1.0.!~~! I:' ... _. .,.... 0'.:- .... l ...... ' '',,' .\- ..... 

1::-·-:>:-.::I::·:1-K .... .s.... ._ ... 

G::::G+F 
D<I)::E2 
NE·'..'T I ... A 

H::::G,/:I. 200 
...I::::SClF: ( H ) 
lJ,I::: '"'* 1. 00 /1< 
.. , '\ I ,I, " / 1\1 I b .' = ..... j ... 1'1 " '( .. .' ." . -~nf:- ~!(~~~I~IJ(~)) r" .',",\ "-1';"1 -. .1'.': .. ,; .. ,' ,',", •. u_ :' ,,' :~. "I" J .' .. '\ "- . . 
1.:.1 .. ::. .......... I"~. \.) ., · .. i ...... ~.... .' 
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04900 
Or.:"(\OO ... ..J U .. .• 

05100 
{'oj t:~ ':> t') {) 
V '10..: •• " '\.. 

05300 
05400 
05500 
05600 
O 1.-:·7()O ,.J. . _ 

O~5800 

05900 
06000 
06100 
O(.~2()0 
{)6-Y O() .... ..-;.' '.' 
()6400 
06500 
O·:!>600 
06700 
06800 
069()0 
O-';-'OO() 

07100 
07200 
O"?"Xf){\ 

.~ •••• 1 \.- ~J 

07400 

{' ... , " ')0 U,. 0 I, •• 

O?700 
07800 
O?900 
08000 
08100 
08200 

OB400 
''I {'~ c:' ." () 
/.... ':J ,,} ',., , 

08600 
08?O() 
OBBOO 
Of:3?OO 
09000 
09100 
09200 
". I" -Y ."\ f) 
() .? ":)~"" '. 

09400 
,.) (:) I::' {'I () 
.. .' \ .. 1 .......... 

OSj600 
() t:~> 7' () () 

FOF~: I ::::0 TO 11?7 
B'I ::::7 ( "":1' --'7 ( I') '" L. .. T.} ...... 

B2::::Z( I+2)·-Z< 1+:1.) 
Pl=SGN(B1)+SGN(B2) 
IF Pl=-2 THEN 5600 
IF Pl=2 THEN 5600 
I:' ':> :::: I:' 'J .1 •. , .'\- .,,;,.. T •• 

NEXT I 
I::' ... 1 :::: I:' ':) I ' it 8 

I .'It... './, \. 

PI:::INT P4 
I::'':> ::::0 ..... 
1 :I '-'r '11:1 0 () ", / " '7 :l'1 :I. ,::' 9 ,,,, F' .... ) ._ ..... _ .. "' ..... ~.v/ · .... )..;. .. ~·r. ,,-I. /r. l'..'l" 

l .-) -- (' I :I ..... "~{'-) ) wI',":'" 'Y '.'~.,' I ( :I. L. '" ,,,, l',1 1 ' .... :1 E ' , 
- .,'- .- '- •• '1\ .', . ..:... "" , "J .,~. 'I" "", .. : .. ). " (j .. ::' 'i' P( i/, . • . ,;:. ) 

L 3:::: ( / ... 1 * * 2 ) * G 2 / ( :t. 8>1< N 1 * :I. 000 ) 
L t.' .. _·[,J'F:l '1'.111 ., •• - ~I\ .•• 1 \ 

L6::::(Ll**2)*(G2**2)/(36*Nl*lE6)*(P9/(lt3*P9» 
PRINT "MEAN VELOCITY IS ";r;"M/S" 
I-,~, I ), I T n 1'lJ F" r.} III ,:-. lI.l C E I N 1-'- ). 1 C' I l' v I (" R ~ W • " 8/ " - f\ I'~ 'J ... ,:, • _.(:./'( • -:. ..I. :'_I"( wI .. ';:> .. '1 i .. 

PRINT "CENTRELINE REYNOLDS NUMBER IS ";L4 
PRINT "ENTITY REYNOLDS NUMBER IS R;L5 
I::' F'\' .'1'. N'r "M .[ (' I'" ('<:- C A I ,_. ]. (" H ~ L 1 ~ "M M. " . ..'\ .. ' .. J ,",._ ::. . . .;:> , , 

PRINT "EDDY VISCOSITY I~3 "?L2; "M**2/S U 

PRINT "MEAN EDDY DISTANCE IS H;L3;IMM." 
PRINT "EDDY DIFFUSIVITY OF HEAT IS ";L6;"M**2/S· 
PF;~ I NT 
F' I:;~ I r·.! T 
B::::() 

G::::O 
,.( 'l oo- "'1 .. t 'T' . -" , .. , 
'( ':>:::: Y':> ·t·t·1 

A.. • ... _ "I 

'.1·3· .. ·'I' .. ·~··tl 4 1 ,-" ,~, .. ' 

." ""I~IC:' Y ":'r:::: T "v",' ... 'oj 

vc:, .. _vr.:; .. tl :I 1,.)-"1,_1_ .. 
.... , ". '-I "., {c:,:::: '16'1 ... ..::. 

'(0 .. 1 ~~-, I -Y . l :::: " •. ' .,.. i ." I,; ...... 1. •• 

'/8::::Y8+L6 
:"·.11:' 'X 1- / .. :' ., I. _.. . , .. 
\.,., :::: '1':1 ."1 {'I 
, .. ..1 J ...... 

" .. ., .... \.'., l:l () 
I ... · .. ·-,~; .... ( ... \.· 
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APPENDIX 14, ERROR ANALYSIS 

The evaluati'on of error 1 imits must be based, to some extent, 
on the experi'menter t s judgement; hence, such an eva 1 ua t ton ; s 
necessartly somewhat suojective. Nevertheless, an attenpt has 
5-een made to set 1 irnits whl'ch are cornpatib 1 e wi th the observed degree 
of agreement among redundant measurements and the degree of 
reproduc1oo i 1 tty among repeated measurements. The error 1 im; ts 
discussed tn thts Appendtx are taken to represent a high confidence 
coeffictent for the reported values of the respective measurements. 

The equatton used for the determination of the velocity, using 

the LOA, was:~ 

-u -

, 
• t 

-u 

f 0, 1:\ 

'2' si~ 

- . d fO:t dA 
o f T-

o 
d (s;n~l 

si n l~ 1 

(A14.1} 

(A14.2) 

As indicated by the instruction manual of the LOA supplied by DISA, 
the dopp 1 er frequency is measured i n general wi th a n accuracy of l7~ 
and the wavelength of laser light is gi~en with an accuracy of 0.04%. 

d t t ' te t~e accuracy involved in the measurements of the In or er 0 es 1ma Il 

beam intersection angle, consider the geometry formed by the laser 
_ eo F' A14 1 As the angle e was in general of the beam as 1n 19ure ,.p 

order of 50, it could be assumed that:-

,8 8 
s 1 n -z:::; ta n -z 

bj2 --a 
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• 
• • 

Fi gure A 14. 1 

d (sin ~ ) 

sin 8 '2 
= 

Intersection of laser beam 

db 
T 

da - -a 

As a and b could be measured with an accuracy of about 0.5~, the order 
of magnitude associated with the error in the measurement of sin 8 2 
could then be assumed to be of 1%. Hence, the overall accuracy of 

velocity measurements may be expressed as:-

du 
= 0 (1%) +0(0.04%) +0(1%) 

11 

· · au ::: 0 (2%) 
u 

Statistically, the error associated with sampling 12,000 data for the 
velocity measurement, as shown in section 2.3, was considerably less 
than 1%. Hence, the combined accuracy of the velocity measurements, 

using the LOA, may be taken as 2 per cent, ;.e.:-

- = 0 (2%) 
(A14.3) du 

u 

The equation used for the determination of the microscale was:-

u (~,14.4) 

= -:rr:N 
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where N was the number f 
o maxima and minima of u fluctuations 

unit time. The above equation yields:- per 

do 
T = au _ dN 

N -u 

Although there was n di 
o rect way of evaluating the accuracy of ~j, 

the large values of N d dN 
suggeste a value of 11 comparatively sMaller 

than 1%. Therefore, the accuracy of the m;croscale measurements 
could be taken to be the same order as the measurements of velocity. 

• • ~o = 0 (2%) (A14.5) 

The equation used for the evaluat,'on f dd o e y diffusivity of 
momentum was given by:-

E: 
V 1 2 2 

- 162" ·v· o · Vo 

where Vo 2 = U'7 and 0 was the microscale. 

• • 2 do + 2 dVo 
• 0 Va 

dv -v 

(A14.6) 

As u' was obtained in the same way as u using the LOA, the accuracy in 
their evaluation could be considered equal. Hence:-

dVo 
Va 

du I = = U' 
du 
-u 

For the accuracy of the evaluation of viscosity, although the eighth 
order Chebyshev polynomial was expected to give very accurate values of 
viscosity, temperature change during a test would lead to an error in 
the evaluation of viscosity. ~Jith a temperature change of 30 e, It/hich 
was found to be the maximum rise in ambient temperature during one 
single test, the error associated with the evaluation of viscosity was 
found to be about 10%. Hence, the combined accuracy with eddy 

diffusivity of momentum could be expressed as:-
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~ = 2·0C2%} 2 0 0 E:
v 

+ • (2~~) + (lO~~) 

• ~ =0 (20%) E:v (A14.7) • • 

The equation for the eddy diffus;v;ty of heat was given by:-

1 Pr 
. eS 2 

• Vo 2 E:H = 10V Cl + 3 Pr) (A14.8) 

• dE:H 2 do + 2 dVo dv • • dPr 3dPr 
t:Fr = - + -· eS • Va v Pr l+3Pr 

3dPr dPr As 3Pr»1, it could be assumed that l+3Pr::: Pr' However, as the 
Prandtl number was evaluated using the expression, Pr - ~.Cp - V.O Cp - k - k 
and the variation of p, Cp and k were small over a teneprature 
difference of 30 C, it could be assumed that:-

• 
• • 

dPr 
"""P""r" 

dv = -v 

dE:H deS dYo dv 
SH = 2. T + 2. Yo + 3·v 

= 2. 0 (2 % ) + 2.0 ( 2 ~~ ) + 3.0 ( 1 0 ~b ) 

Hence, the overall accuracy of the eddy diffusivity of heat derived 

from LOA measurements could be taken as 40% • 

• 
• • = 0 (40%) (A14.9) 

For the heat transfer measurements using the thermocouples, tne 

total diffusivity of heat was given by:-

= 
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where tJ0 - Tf - Ta and 6T = T - Ta, 

• • 

Assume the accuracy associated with each 
be of the order x%. 

, 
• • 

• • 

dTf 
TT 

dTf 

= dTa 
Ta 

= Tf.x% 
dTa = Ta.x% 
dT - T .x% 

dT = T = x%. 

dTf - dTa = (Tf - Ta}.x% 

and dT - dTa = (T - Ta)x% 

• • d68 (}f - Ta) .- x% 68 = (Tf - Ta) 

and d6T (T - Ta) 0 

M = (T - Ta) .x% 

(A14.11) 

temperature measurenent to 

As the accuracy associated with the temperature measurement, with 
careful calibration, could be assumed to be of the order of lC~, the 
accuracy associated with the measurements of diameter d and distance 
x could be taken to be about 0.5%. Hence:-

~ ErT = 0 (2 ~6 ) + 2 .0 ( 0 • 5 ~j ) + 0 (0. 5 % ) + 0 (1 ~~ ) + 0 (1 %) 

= 0 (5.5%) 
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In addition, an error band of 5% was imposed for the evaluation of 

~ lx, as indicated in section 5.4. Hence the overall accuracy of 
total diffisuv;ty of heat obtained using the thermocouples could be 

taken as 10%. The eddy diffusivity of heat could be expressed as:-

(A14.l2) 

As the total diffus;vity of heat is in general much larger than the 
molecular diffusiv1ty of heat, in addition the variations of k, p and 
Cp could be assumed to be small compared with the overall accuracy of 
ET, hence the accuracy of the eddy diffusivity of heat obtained using 

the thermocouples could also be taken as 10% . 

• 
• • = 0 (1 O~S) (A14.13) 

For the Reynolds number of the flow, it could be expressed as:-

Re = Li.O -v 
(A14.14) 

dRe du + dO dv 
= --Re - D v u 

giving 

• 
• • dRe = 0 (2%) +0(0.5%) +0(10%) 

Re 

Therefore, the accuracy associated with the Reynolds number evaluated 

with measurements using the LOA could be taken as:-

dRRee = 0 ( 1 2. 5 %) 
(A14.l5) 
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APPENDIX 15, DERIVATION OF DIMENSIONLESS PARAMETERS 

The Buckingham IT method presents a general approach of dimensional 

analysis which may be used even in problems for which the governing 

equations have not been formulated. Assume, first of all, the 
important parameters in heat transfer are as follows, with their 

dimensions g;ven:-

diameter of pipe 0 [ L J 

mean velocity of the fluid u ( L T -1] 

absolute viscosity of fluid 11 (ML -1 i-I] 

specific heat Cp [L 2T-2e- 1] 

eddy diffus;vity of heat sH [L 2T- 1
] 

thermal conductivity k (ML T- 38- 1] 

dens; ty p [~1L -3 ] 

A dimensionless parameter must be of the form:-

x ]X [ 1 I]X3 -[L 2T- 2 e-1 ]X4. Hence, the product, [L] 1.( LT- 1 2. ~1L- T-
[L2r11XS .[ML r'e-1f 6 .[ML- 3 X7] is dimensionless. The dimensions 

of length, time, mass and temperature may be equated to zero 
respectively and obtain the following four equations for the unknown 

exponents. -' 

For the dimension of length [L], 

= 0 (A1S.l) 

For the dimension of time, [T], 

- 3X6 = 0 
(~,15.2) 

For the dimens i on of mass [r~], 
(A~5.3) 

X3 + X6 + X7 = 0 
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For the dimension of temperature (2], 

(~lS.J) 

As there are seven unknowns 'th 
Wl four equations, it is necessary to 

have three exponents chosen bit 
ar rarily. Equations (A1S.l) to (AiS.'+) 

become:-

X6 = 

= 

= 

= 

= 

Hence, the dimensionless parameter becomes:-

The three arbitrary exponents can be disposed by setting each in turn 
equal to 1 and simultaneously setting the remaining two exponents equal 

to zero. Thus, for 

-1 1 D.u.sH is non-dimensiona 
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for X3 - 1, X2 = X4 = 0 

-1 -1 

11. E:H • P ; s non-d inens i ona 1 

for X4 = 1, x 2 = X3 = 0 

C -l. 
P·E:H·k p is non-dimensional 

For turbulent momentum transfer, it may be assumed that the 
important parameters are:: 

diameter of • 
[ L] plpe D 

mean velocity of the fluid u ( LT- 1 ] 

absolute viscosity of the [ML-1T- 1] fluid 1.1 

eddy diffusivity of E:\) [ L 2T-1] momentum 
density [ ~1L - 3 ] 

The dimensionless parameter must be of the form:-

Hence, the product, [L ]Yl.[ LT- 1]Y2. [ML- 1 T- 1]Y3. [L 2T- 1]Y4. [ML- 3]Ys 

is dimensionless. As previously, equate the dimensions to obtain three 
equations for the unknown exponents: 

For the dimension of length [~, 

Y 1 + Y 2 - Y 3 + 2y 4 - 3 Y 5 = 0 ( A 1 5 • 5 ) 

For the dimension of time [ rJ, 

(A15.6) 

A40 



• , 

For the dimension of ma s s [ M] , 

Y3 

Y5 

Y4 

+ Y5 = 0 

= -Y3 

= -Y2 - Y3 

- -Y2 + Y3 + 2Y2 + 2Y3 - 3Y3 
= Y2 

Hence, the dimensionless parameter becomes:-

(A1S.?) 

Again, by setting each of the exponents in turn equal to 1, non­
:d1mensional parameters may be obtained, Thus:-

For Y2 = 1, Y3 = 0 

O -1 ,u,S 
V 

is non-dimensional 

For Y3 = 1, Y2 = 0 

~.S -lp-l is non-di~ensional 
v 

So far, five non-dimensional similarity parameters have been 
established associated with turbulent heat and momentum transfer. 
They could be expressed in terms of the eddy diffusivities of heat 

and momentum as:-

(A1S.8) 

'!i sH sH 
(;dS.9) 112 = -,p = -

1-1 V 

E3 = sH (;j,lS.l:) 
k! pCp 
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(A15.11) 

TIs - (A15.12) 
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