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Abstract

This thesis examines the surfaces of polyacrylonitrile (PAN) based high strength

(HT) carbon fibres modified by electrochemical and ultra-violet ozone (UV/O3)

treatment methods. The surface and bulk study was conducted by x-ray

photoelectron spectroscopy, scanning electron microscopy, transmission electron

microscopy and Raman spectroscopy. In addition, immersion calorimetry in

polar and non-polar liquids, as well as dilute resins, is used to investigate fibre

surface energies while temperature programmed desorption (TPD) is used to

investigate adsorption of linear alcohols (C1 to C4) on the fibres. One of the

main aims of the work is to understand the reaction mechanisms that take place

between the surface oxygen functionalities on treated carbon fibres and the resin

molecules that are used in forming composites.

UV/O3 treatments were shown to produce significant levels of oxygen on the

fibre surface. Anodic treatments did not alter the surface morphology, while

UV/O3 treatments were seen to increase surface areas six fold. Immersion

calorimetry measurements showed similar trends to carbon black materials but,

due to the small surface areas of the fibre (typically 1 m2/g), the rush-in effect

and heat of ampoule breakage was found to overshadow the signal from the fibre.

TPD measurements showed that alcohol adsorption was considerably enhanced

by the presence of surface oxygen. In addition a relationship between the acidity

scale of the alcohols in the gas phase and the extent of their dissociative

adsorption at room temperature was established. Overall this work has shown

UV/O3 to be a successful surface treatment method, superior to electrochemical

treatments and TPD to be a promising method for investigating bonding.
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Success is the ability to go from one failure
to another with no loss of enthusiasm.

Sir Winston Churchill
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Symbols and Acronyms

ai Number of electrons of a particular binding energy

A Acid treated fibres

AES Auger electron spectroscopy

AFM Atomic force microscopy

Ai Area under a desorption peak in a desorption spectrum for

species, i

am Mean cross-sectional area of a molecule

As Adsorbent surface area

Ax Cross-sectional area of the fibre

β Heating rate of TPD system

b Width of test composite used in 3/ 4 point bend test

B Base treated fibres

BE Binding energy

BET Brunauer-Emmett-Teller

CA Contact angle

CCD Charge coupled device

CFi Correction factor for the desorption spectrum of a mass fragment,

i, in TPD

CFRP Carbon fibre reinforced plastic

CHA Concentric hemispherical analyser

CVD Chemical vapour deposition

 Angle of entrance of electrons to a hemispherical analyser
aG Free energy of adhesion

Gimm Change in surface energy due to immersion in liquid

Himm Enthalpy of immersion

p Change in pressure

d Depth of immersion of fibre in liquid

d002 Diffraction plane of the 002 crystal layer

D Disorder peak in Raman

DCM Dichloromethane

DDS Curing agent

DMSO Dimethyl sulfoxide

ε Strain

Ey Young’s modulus

E True energy of a peak in XPS analysis

Ea Activation energy of adsorption in TPD

E(B) Width in eV of the base of a peak in XPS analysis
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Eb Binding Energy

Ed Activation energy of desorption in TPD

EDX Energy dispersive x-ray microanalysis

EELS Electron energy-loss spectroscopy

Ek Kinetic Energy

F Force

FAT Fixed analyser transmission

Fm Mass fragment yield of desorbing particle in TPD

Fo Force acting on the fibre as it just touches the surface of a liquid

FRR Fixed retard ratio

FTIR Fourier transform infrared spectroscopy

FWHM Full width half maximum

FWHMD Full width half maximum of D peak in Raman

FWHMG Full width half maximum of G peak in Raman

LV Surface free energy of the liquid/vapour interface

d
LV Dispersive component of the surface free energy of the

liquid/vapour interface
p
LV Polar component of the surface free energy of the liquid/vapour

interface

S Surface energy of a solid in vacuum

d
S Dispersive component of the surface free energy of a solid in

vacuum
p
S Polar component of the surface free energy of a solid in vacuum

SL Surface free energy of the solid/liquid interface

SV Surface free energy of the solid/vapour interface

g Acceleration due to gravity

G Graphite peak in Raman

GC Gas chromatography

G/L Gaussian/ Lorenzian mix

Gm Correction factor in TPD for electron multiplier gain

h Planck’s constant

H Enthalpy

HM High modulus

HOPG Highly orientated pyrolytic graphite

HT High (tensile) strength

ID Intensity of D band in Raman spectra of carbon materials

IFSS Interfacial shear strength
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IG Intensity of G band in Raman spectra of carbon materials

IGC Inverse gas chromatography

Iλ Intensity of the emitted light at wavelength λ

IM Intermediate modulus

IUPAC International Union of Pure and Applied Chemistry

Ix Ionisation efficiency of desorbing particle in TPD

j Total angular momentum

air

185
 The absorption coefficient of UV light in air at 185 nm

ozone

254
 The absorption coefficient of UV light in ozone at 254 nm

k Boltzmann’s constant

KE Kinetic Energy

KM Polyaromatic ether sulfone based thermoplastic

λ Wavelength of light

l Angular momentum

L Path length of light

L1 Length of the composite at the initial load

L2 Length of the composite at the final load

L1 Length of the defect free part of the layer in a graphitic system

L2 The real length of the layer in a graphitic system

La The coherent length of a structural unit in a graphitic system

Lc The coherent height of a structural unit in a graphitic system

LM Low modulus

lpm Litres per minute

MW Molecular weight

MWNT Multi-walled carbon nanotubes

MY Type of epoxy resin

m/z Mass to charge ratio of an ion

ν Pre-exponential factor of desorption in TPD

D Frequency of D peak in Raman

G Frequency of G peak in Raman

n Principle quantum number

N The number of layers in the stack in a graphitic system

NT The total number of adsorption sites on the adsorbent

N Number of adsorbed molecules

airn Molecular concentration of air

Na Avogadro’s number

N/C Nitrogen to carbon ratio
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ne Number of electrons in a molecule

n Flux of photons of wavelength λ

nm Monolayer capacity, amount of adsorbate required to completely

cover the surface of 1g of solid with one layer of molecules
eq
ozonen Molecular concentration of ozone at equilibrium

NS The number of surface sites occupied by the adsorbate

O/C Oxygen to carbon ratio

 Work function

p Pressure

P1 Initial load on composite

P2 Final load on composite

PAN Polyacrylonitrile

Pb Breaking load of test composite used in 3/ 4 point bend test

PES Polyaromatic ether sulphone

pf Perimeter of fibre in Wilhelmy Plate method

po Saturation vapour pressure of the adsorptive

PY Type of epoxy resin

q1-qL Net heat of adsorption

Qdiss Gas-phase dissociation energy

qi Sensitivity factor for XPS to account for interaction cross sections

and instrumental factors

ρ Density of liquid

ρf Fibre density

r Interatomic spacing

R The universal gas constant

R0 Radius of the median equipotential surface in the CHA

R1 Radius of the inner hemisphere in the CHA

R2 Radius of the outer hemisphere in the CHA

σ Tensile strength

σS Interlaminar shear strength

σu Ultimate tensile strength

s Spin quantum number

S Pumping speed of TPD system

SEM Scanning electron microscope

S/N Signal to noise ratio

STEM Scanning transmission electron microscope

STM Scanning tunnelling microscope
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STP Standard temperature and pressure conditions

θ Surface coverage of the adsorbate on the adsorbent

θa Contact angle of advancing fibre in Wilhelmy Plate method

θm Measured angle formed between the liquid drop/ vapour interface

and the solid surface in contact angle experiments

τ Characteristic pumping speed of TPD system

t Thickness of test composite used in 3/ 4 point bend test

T Temperature

Tm Correction factor in TPD for quadrupole transmission

TEM Transmission electron microscopy

Tp Temperature of the peak of maximum desorption in TPD

TPD Temperature programmed desorption

 Frequency of x-rays

U Internal energy

UHM Ultra-high modulus

UST Untreated carbon fibres

UV/O3 Ultraviolet ozone treatment

V Volume

V1 Voltage of inner hemisphere in the CHA

V2 Voltage of the outer hemisphere of the CHA

Vf Volume fraction, volume of carbon fibres used in a composite

Vmol Molar volume

Vm The monolayer capacity as a volume

VOC Volatile organic compound

W1 Width of entrance slit in the CHA

W2 Width of exit slit in the CHA

XPS X-ray photoelectron spectroscopy

XRD X-ray diffraction

Y The relative yield of a desorbed species in TPD
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1 Introduction

1.1 Introduction

In the manufacturing industry, there is often a large demand for materials which

possess a high degree of strength but which are also lightweight. Carbon fibres

can provide this as they have a strength to weight ratio 15 times higher than steel

and have the added advantages that at normal temperatures they behave

elastically until failure, and are chemically inert [1,2]. Unfortunately, they are

also very brittle (i.e. allow propagation of cracks). This means that in order to

make use of the high strength, it is necessary to introduce the fibres into a matrix

of different mechanically tough material [2].

A prime example is carbon fibre reinforced plastic (CFRP) which is very light

and stiff and therefore much used in aerospace construction. The mechanical

properties of such a composite depend not only on the properties of the fibres and

the matrix, but also on how well the fibres attach to the matrix and thus how well

stress transfers between the two [3]. It is known that two factors affect this

process: chemical bonding and physical interactions, typified by mechanical

‘keying together’ of the matrix and the fibre surface [4,5]. The mechanical

process is well understood and is dominated by fibre surface roughness effects.

However few, if any, detailed models exist which directly relate the overall

interfacial chemical interactions (i.e. covalent, ionic and van der Waals) to the

composite properties. Neither have detailed attempts been made to identify key

specific interfacial interactions for specific fibre-matrix pairs i.e. to design fibre

surface chemistry to interact with specific matrix compounds. Table 1.1 lists

some of the characterisation techniques available to investigate the fibre-matrix

interface. This chapter gives background information on carbon fibres, surface

treatments, composites, and previous work relevant to this thesis.
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Table 1.1 Characterisation Techniques (after [6])
Technique Acronym Informs

X-ray Photoelectron Spectroscopy XPS Surface chemistry (including bonding)

Scanning Electron Microscopy SEM Surface topography

Immersion Calorimetry Surface energy

Atomic Force Microscopy AFM Topography, chemical and mechanical properties

Contact Angle CA Surface free energy, hydrophilic/ hydrophobic nature, acid-base interactions

Transmission Electron Microscopy TEM Atomic structure

Electron Energy-Loss Spectroscopy EELS Surface chemistry and structure

X-ray Diffraction XRD Atomic structure and crystalline orientation

Raman Spectroscopy Surface chemistry and structure

Fourier Transform Infrared Spectroscopy FTIR Chemical species

Auger Electron Spectroscopy AES Elemental composition

Scanning Tunnelling Microscopy STM Topography

Brunauer-Emmett-Teller adsorption BET Surface areas and porosity

Boehm Titrations Surface chemistry
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1.2 Carbon Fibres

1.2.1 Carbon

Carbon, with its atomic number of 6, has a ground-state electron configuration of

1s2, 2s2, 2p2 which allows it to bond with many other elements as well as itself in

a variety of arrangements [1]. The properties of a carbon material depend on the

bonding type. Well known configurations of carbon include diamond and

graphite. The high level of allotropy exhibited in carbon can be explained by

hybridisation theory. Three types of hybridised orbitals exist, generated by

promotion of an electron from a 2s orbital to a 2p orbital before hybridisation.

The bond types are sp3, sp2 and sp, describing single (σ), double (π, σ) and triple

(πy, πz, σ), bonds, respectively. In diamond, the hybridization follows Equation

1.1 [1]. The four sp3 bonds form a non-planar crystal network and the structure is

known to be extremely strong and isotropic. Graphite, on the other hand, follows

Equation 1.2, producing three sp2 bonds and one pure 2p orbital. Each carbon in

the ring is bonded to three other carbons by the overlap of sp2 bonds and the

remaining p orbital forms a shared π bond. The carbon forms planar layers of

hexagonal rings, the layers being held together by weak van der Waal forces that

can slip over each other giving graphite its well known lubricating properties [1].

The dissociated π electron also gives graphite high electrical conductivity.

Graphite has the highest level of anisotropy known in nature [1].

Equation 1.1

 432111121122 1222212221 spspppssppss ionhybridisat
zyx

promotion
yx   

Equation 1.2

  1322111121122 21222212221 z
ionhybridisat

zyx
promotion

yx pspspppssppss   

Graphite has a hexagonal unit cell containing 4 atoms with the dimensions c =

671 pm and a = 246 pm. In Figure 1.1, the unit cell atoms are labelled A, A', B,

and B'. The A atoms have neighbouring atoms directly above and below them on
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adjacent layers while the B atoms only have neighbouring atoms in the next layer

above or below them, 671pm away [7].

Figure 1.1 Structure of graphite [8].

Carbon black and carbon fibres are considered turbostratic forms of graphite.

Turbostratic forms of graphite are made from stacks of graphite layers which are

roughly parallel and equidistance, with interlayer spacing no less than 344 pm

but which are orientated randomly to the normal layer [1]. Some carbon

materials can be graphitized from this state by heating.

Carbon fibres consist of long winding ribbons of sp2 hybridized six-membered

carbon rings, held together by defects (i.e. some sp3 hybridized bridging bonds)

in the chain [9,10]. These defective layers are generally known as graphene [2].

The filaments of carbon are arranged in a regular but non-graphitized state [1].

1.2.2 Precursors and Fibre Production

There are three main precursors of carbon fibres for manufacture; pitch,

cellulose, or Polyacrylonitrile (PAN). PAN-based fibres are currently the most

popular due to the relative ease of manufacture [1,11].

The three main steps to produce a PAN fibre from a precursor are: spinning the

PAN, stabilisation of the PAN into a condensed heterocyclic ring structure and

carbonisation via high temperature heat treatment [11]. Figure 1.2 shows a

c
671 pm

a

A

A'

B

B'
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schematic of the process [12]. The PAN is first spun and stretched into a fibre.

This helps to align the polymer molecules along the axis. The polymer is then

stabilised by heating in an oxidizing atmosphere. The PAN is heated to 200-300

oC for 1-2 hours while being kept under tension to maintain alignment along the

fibre axis and to prevent shrinkage. The ladder polymers are then carbonized by

heating to high temperatures of between 1000 to 1500 oC for ~ 5 minutes. This

removes hydrogen and nitrogen from the fibres leaving relatively aligned

graphitic ribbons. Further heat treatment of the fibres at this stage up to

temperatures of approximately 3000 oC causes the ribbons to further align, i.e.

the fibre graphitizes [12]. Fibres can be aligned to produce a required Young’s

modus by careful choice of the graphitization heat [12,13].

Figure 1.2 Polyacrylonitrile fibre production process [12].

There are several methods available to spin polymer fibres, however wet

spinning is the standard for PAN fibres [5]. In this method, a highly concentrated

solution of polymer in, for example, a dimethylacetamide solvent is extruded into

a coagulation bath via a multi-holed spinneret. The coagulation bath forces the

polymer to precipitate in thin strands by extracting the solvent as the polymer is

forced out of the small spinneret holes. The fibres are then washed before further

processing [5]. The spinning process affects the fibre shape, size, morphology

and texture. For example, the extraction rate can cause concentration gradients to

occur in the coagulation bath resulting in non-circular fibre cross-section. Flaw
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development is also influenced by the extraction rate [14]. Figure 1.3 shows an

example wet spinning system.

Figure 1.3 Wet-spinning and washing set up for PAN fibres (after [14]).

1.2.3 Fibre Characterisation: Structure and Strength

Carbon fibres have been classified by the International Union of Pure and

Applied Chemistry (IUPAC) into five types [15]. These are listed in Table 1.2.

Previously fibres were classified into two main groups; Type I and Type II; high

modulus and high strength respectively although this classification has become

redundant as the range of fibres has increased to meet demand for specific

characteristics [16].

Polymer
solution
tank

Coagulation bath
and spinneret

Wash bath

To stretching and
heating treatment
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Table 1.2 Fibre Classification [15,17]

Classification Acronym
Young’s

Modulus (GPa)
Tensile strength

Ultra-high modulus UHM > 600

High modulus HM > 300
Strength to stiffness ratio

< 1 %

Intermediate

modulus
IM ~275 to 350

Strength to stiffness ratio

> 1 %

Low modulus LM As low as 100 Low strength

High strength HT 150 to 300
Strength to stiffness ratio

~1.5 to 2 %

A carbon fibre may be thought of as a composite system, built up of anisotropic

units [12]. Therefore the strength of the fibre will be dependent on the axial and

radial textures and gradients as well as intra-bonding and surface flaws [12,13].

The structures of various commercially available carbon fibres and precursors

have been investigated in the literature using several techniques including

transmission electron microscopy [12,18-20], x-ray diffraction [21-23] and

scanning electron microscopy [24]. Several models for the macro-structure of

fibres have been proposed based on the images acquired [16]. The current

favoured description of HT PAN-based carbon fibre texture is summarised in the

model proposed by Bennett et al., in 1976, shown in Figure 1.4 [16,25]. There

exists a difference in cross-sectional structure between the core of the fibre and

the outer layers, i.e. a skin. The graphene layers in the skin are generally aligned

and parallel to the surface of the fibre whereas the core shows a turbostratic

texture [1,5,25]. The heterogeneity can be due to the heat of the graphitization

treatment, heat gradients through the fibre during carbonization, and differences

in the stretching force felt by the skin compared to the core [5].
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Figure 1.4 Structural model for HT PAN-based carbon fibres showing a
skin-core heterogeneity (from reference [5]).

The micro-structure of all graphitic carbons can be described by the following

parameters which are shown graphically in Figure 1.5 [1]:

1. The length of the defect free part of the layer (L1)

2. The real length of the layer (L2)

3. The number of layers in the stack (N)

4. The coherent length (La)

5. The coherent height (Lc)

La and Lc define the coherent domain. These parameters can be retrieved from

TEM images or x-ray diffraction. Also of interest is the mean interlayer spacing

of the (002) basal planes (d002) which is also accessible from TEM or x-ray

diffraction. The d002 interlayer spacing is used as a means to compare the relative

degree of graphitization in a material although it has never been successfully

related to it directly [1].
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Figure 1.5 Paracrystalline structure of graphitic carbons showing the length
of defect free layer (L1), the real length of the layer (L2), the number of
layers in the stack (N), the coherent length (La) and the coherent height (Lc)
(after [1]).

The high specific strength of carbon fibres is due to the layers of graphene

ribbons tending to lie parallel to, but not always flat along, the fibre axis [5]. The

graphene layers have the highest elastic modulus known in nature due to the

covalent bonds being the shortest known to exist in a plane [1]. The high

strength, toughness, and low density of carbon fibres compared to traditional

engineering materials make them very attractive for manufacturing. In addition,

they also benefit from being very inert to most chemicals and low oxidising

atmospheres, have high thermal and electrical conductivity, and do not change

with reasonably high temperatures [5]. Unfortunately disadvantages include low

compressive strength, low impact strength, low elongation ratio to fibre axis, and

high manufacturing costs [5]. Fibres are generally used in composites as will be

discussed in Section 1.4 although activated carbon fibres (fibres with large

surface areas and pores) are increasingly being used for filtration, and catalyst

support among other applications [13].

The fibre’s tensile strength is equivalent to the stress at which it breaks and is

dependent on the frequency and severity of flaws within the fibres. The observed

strength of the fibres is therefore seen to be the strength of the weakest, most

flawed part of the fibre [14]. The tensile modulus, known as Young’s modulus or

the stiffness, is the ratio of the stress to strain applied to the fibre and is

dependent on molecular order of the fibre [2]. Macroscopic flaws result from

impurities incorporated into the fibre, surface damage or large voids created

during the manufacturing process. Microscopic flaws are more difficult to

Lc

LaL1

L2

N
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quantify but have been attributed to misalignment of the stacks of graphene (or

crystallites) which interlink to create voids [14]. Highly ordered fibres show

more sensitivity to crystallite misalignment so fibres with high moduli are more

likely to have flaws and low tensile strength. Thus it is difficult to optimise the

tensile strength and modulus of fibres at the same time [14].

1.2.4 Safety

A study into the effects of carbon fibre dust on rats has been undertaken by

Zhang et al., [26]. Rats were dosed with either carbon fibre dust or a control

substance. Control substances included saline, TiO2 (a biologically inert dust)

and quartz (a known toxic dust). The weight of the rats’ lungs was compared as

well as the presence and morphology of macrophages. The carbon fibre dust

showed similar effects to TiO2 and the authors concluded that the experiments

showed little evidence of toxicity in lungs due to carbon fibre dust [26]. Fibres

and dust still act as an irritant if inhaled or contacted with the skin but this is a

minor problem for an otherwise useful material.

1.3 Carbon Black

Carbon black is another common type of carbon that is used in composite

systems to alter the mechanical properties of materials, such as in car tyres [1].

The term carbon black is a generic name which covers many colloidal spherical

carbons and their aggregates when the aggregates are less than 1000 nm [1,17].

Carbon blacks are formed by thermal decomposition or incomplete combustion

of carbon and hydrogen based compounds [17]. Carbon black has a concentric

texture, the structure of which is determined by the growth temperature. The

structure can be categorised into one of four groups: isometric turbostratic,

columnar turbostratic, large distorted layered or large straight layered. The latter

two groups are fairly self explanatory. In isometric turbostratic carbon blacks the

coherent domain is symmetric, i.e. La ≈ Lc while for columnar turbostratic La <

Lc [1]. Figure 1.6 shows an example of each structure.
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Figure 1.6 Types of carbon black structure [1]. The coherent domain in the
isometric turbostratic pile and the columnar turbostratic are highlighted.
Isometric turbostratic piles have symmetric coherent domains while
columnar piles have elongated coherent domains.



1.4 Composites

1.4.1 Introduction

A composite is a material consisting of more than one phase, formed by the

artificial blending of two or more different materials [5]. It should encompass

significant properties of the constituent materials such that the final composite

will display significant improvements in characteristics compared to the

individual components [27]. Carbon fibres can be created in either long,

continuous tows (i.e. in long lengths) or as short discontinuous fibres to form a

variety of classes of composite, as Figure 1.7 shows [5,27]. Fibres are used to

reinforce metals, carbons, cements and ceramics as well as polymers [5,13]. This

section discusses carbon fibre reinforced plastics (CFRP) as used in the

aerospace industry.

1

T

p

a

a

a

v

Carbon fibre
composites

Continuous
(aligned)

Discontinuous
(short)

Unidirectional
(aligned)

Multi-
directional
(random)

Woven Non-woven
12

.4.2 Resins Matrices

he most common matrices used for CFRP are thermosetting polymers,

articularly epoxy resins [5,28,29]. Fibres set in thermosetting plastics are known

s thermoset composites. The popularity of epoxy resins for CFRP used in the

erospace industry is due to their low cost, low processing temperatures, good

dhesion, good mechanical properties, low shrinkage during curing, lack of

olatile solvents and low creep [5,30]. Epoxies can also cross link with many

Figure 1.7 Classification of carbon composites types (after [27]).
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different amines, anhydrides and acids as well as many other polymers [29].

Figure 1.8 shows the epoxide functional group. An epoxy resin normally

contains two or more epoxide groups [5].

In order to harden a thermosetting epoxy resin, it is normal to apply heat and

pressure to complete polymerisation and create cross-linking between epoxy and

hydroxyl groups [5]. To aid this, a cross linking agent and/ or a catalyst is added

to the resin. Figure 1.9 shows an example cross linking event between epoxy

molecules and a cross linking agent (ethylene diamine). The epoxide group

undergoes ring scission upon a nucleophilic addition of the amine groups [5].

Figure 1.9 Cross linking event in epoxy resins [5].

Thermoplastic composites, i.e. composites made with fibres set into

thermoplastic resins, are becoming more common as they have two main

advantages over thermoset composites which are: lower manufacturing costs and

Figure 1.8 Epoxy functional group in the epoxy resin.
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better performance [5]. Thermoplastic composites perform better, in that they are

less easily damaged than thermosets (increased toughness), are more ductile, and

can withstand high temperatures. Thermoplastics cost less to produce because

they [5]:

1. do not need to be cured

2. have unlimited shelf-life

3. can be reprocessed (i.e. repaired or recycled)

4. have less health issues associated with the processing chemicals, and

5. have low moisture content.

Disadvantages include limitations in processing methods, high processing

temperatures being required, and high viscosity at room temperature [5].

Thermoplastic polymers have also been shown to adhere less well to carbon

fibres than thermosetting polymers, although neither adheres well to untreated

fibres as will be discussed in Section 1.6 [29]. The difference in adhesion is

evident from SEM images of failed composites which show a layer of polymer

on the fibres for thermoset matrices but not for thermoplastic matrices, and from

mechanical testing of composites [31].

The exact nature of the resin matrix used in commercial production is proprietary

knowledge. Different epoxies can be blended as well as different curing agents

and catalysts used depending on the end use for the composite [32,33].

1.4.3 Manufacture of Composites

Using fibres in polymer matrices results in increased impact strength and facture

toughness for the composite [28]. Composites are manufactured by different

methods depending on the fibre type. Short fibres can be used with liquid resin to

form a slurry before being moulded into the desired shape and hardened. They

can also be formed into a mat or yarn before being impregnated with resin. Or

yarns can be formed using short carbon fibres and short thermoplast fibres which



15

melt upon application of heat and pressure to form the composite [5,27]. Since

fibres are electrically conducting, short fibres can be aligned in a composite by

applying an external electric field. Continuous fibres are normally made into

unidirectional tapes or woven fabrics before being impregnated with resin. In the

case of the skins used for aircrafts, the impregnated tapes or fabrics are bag

moulded, where a high pressure gas or a vacuum is applied to the impregnated

tapes/ fibres via a bag while they are held in a die [5,27].

1.4.4 Strength of Composites

When a load is placed on a composite, the energy can be dissipated by two

routes; the plastic matrix can absorb the force by deformation or the carbon

fibres can separate from the matrix [2]. Thus, the strength of the composite

depends on several factors [2]:

1. The fibre strength and elasticity

2. The matrix strength and elasticity

3. The fibre-matrix interface and therefore the interfacial bonding and

4. The volume of fibres used in the composite (known as the volume

fraction Vf).

If a fibre is bonded weakly to the matrix, the resulting composite will have

relatively low strength and stiffness as the applied stress can be absorbed through

debonding. Strong interfacial bonding results in composites that will be strong

and stiff but also brittle as there will be no mechanism to dissipate the applied

force.

The strength of the composite can be tested using a 3-point or 4-point bend test;

i.e. the composite test piece is placed on two stationary points and a third applies

a force in the centre of the test piece to force it to bend. A set of regular shaped

test pieces can be prepared from the composite. Equation 1.3 shows the

calculation for determining interlaminar shear strength (σS, in Pascal) where Pb is

the breaking load in Newtons, b is the width and t the thickness of the test pieces

[2]. This assumes the failure occurs parallel to the fibre axis.
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Equation 1.3

tb

Pb
S

75.0


The tensile strength, strain and modulus can be tested by applying a load parallel

to the fibres. Varying the load and measuring the resulting change in length of

the test specimen allows calculation of Young’s modulus (Ey) as described by

Equation 1.4, where σ is the tensile strength, ε is the strain, L1 is the length of the

composite at the initial load, P1, and L2 is the length of composite at the final

load, P2 [2].

Equation 1.4

12

12

LL

L

tb

PP
E y











Applying a load (P) to the test piece until failure allows calculation of the

ultimate tensile strength (σu) using Equation 1.5 [2].

Equation 1.5

tb

P
u 

1.4.5 The Fibre- Matrix Interface

As mentioned above, the interfacial bonding between the fibre and the matrix is

important for the end composite strength. Chapter 1.5 discusses some of the

theories behind the bonding and adhesion that occurs between the fibre and the

matrix. It is first important to define the interface where these interactions are

taking place. Figure 1.10 shows a schematic of the fibre-matrix interface. Region

A is a layer of functional groups on the surface of the fibre, B is the size, and C is

a region of the matrix different in structure to the bulk of the matrix in region D
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[34]. Size is normally a thin organic compound applied to fibres to aid handling

and is discussed further in Section 1.6.5.

1.5 Adhesion Theories

1.5.1 Introduction

There have been several theories proposed to explain and predict adhesion.

Traditionally the main four were mechanical, adsorption, diffusion and

electrostatic theory [36]. In mechanical theory, the physical roughness of the

surface causes interlocking. In adsorption, the matrix molecules adsorb onto the

surface. Diffusion theory considers the interface to be eliminated by the adhesive

molecules diffusing into the substrate while electrostatic theory considers the two

materials to be held together by electrostatic forces [36]. More recently, other

theories have been put forward. Table 1.3 summarises the current theories and

the scale on which they act. Adsorption theory is considered the most applicable

to real systems but generally a mix of mechanisms may be responsible for the

adhesion [35,36].

Figure 1.10 Fibre-matrix interface (after [34]). See text for definitions of
regions.
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Table 1.3 Theories of adhesion (after [36])
Scale of interaction Adhesion theory

Macroscopic Electrostatic

Microscopic Mechanical interlocking

Molecular Diffusion

Wettability

Adsorption

Weak boundary layer

Acid- base

Atomic Chemical bonding

The adhesion between carbon fibres and resin matrices is known to improve with

surface treatments on the fibres as will be discussed in Section 1.6, but the exact

reason for improvement is still under debate and is very much still being

investigated [29]. For example, recently Zaldivar et al., examined the adhesion

between plasma treated PAN-based carbon fibres and an epoxy-thermoplastic

resin [37]. XPS, AFM and SEM measurements showed the mechanical

interlocking contribution to be significantly less than the chemical effects [37].

This section will outline the two adhesion mechanisms relevant to this work;

namely wetting, and adsorption.

1.5.2 Wetting

In order to obtain the highest probability of bonding, the contact between the

liquid resin and the fibre surface should be maximized, i.e. the surface should be

easily wetted and voids avoided [38]. Increasing the surface energy of the fibre

increases the wettability and therefore much work has been done into measuring

the surface energy of fibres.

Traditionally, surface energies are measured using contact angle methods where

a drop of liquid of known surface tension (energy) forms an interface with a solid
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[39]. The resulting angle between the liquid surface and the solid surface can be

used to calculate the surface free energy of the solid using the well known

Young’s equation shown in Equation 1.6.

Equation 1.6

mLVSLSV  cos

Where SV is the surface free energy of the solid/vapour interface, SL is the

surface free energy of the solid/liquid interface, LV is the surface free energy of

the liquid/vapour interface and θm is the measured angle formed between the

liquid drop/ vapour interface and the solid surface.

The change in free energy per unit area when two bodies of differing material,

i.e. a solid and liquid, are brought together reversibly is known as the free energy

of adhesion ( aG ). It can be calculated using the Young-Dupré equation shown

in Equation 1.7 [40].

Equation 1.7

 mLV
a
SLG  cos1

Contact angle analysis is not straight forward for fibres due to their curved

surface and size [41]. The most appropriate method for contact angle analysis on

fibres is the Wilhelmy Plate method [42]. The fibre is suspended from a

microbalance and the force acting on the fibre as it just touches the surface of the

liquid (Fo) is measured. The contact angle of the advancing fibre (θa) can be

calculated using Equation 1.8, where pf is the perimeter of the fibre. As the fibre

submerges deeper into the liquid, a buoyancy force counteracts the surface

tension. The buoyancy force is accounted for in Equation 1.9, where ρ is the

density of the liquid, g is the acceleration due to gravity, Ax is the cross-sectional

area of the fibre and d is the depth of immersion. Plotting a graph of F against d,

and extrapolating back to zero depth gives the contact angle for the surface. The

fibre can also be pulled out of the liquid and a receding contact angle measured

in a similar fashion [42].
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Equation 1.8

aLVfo pF  cos

Equation 1.9
dAgpF xaLVf   cos

Even the Wilhelmy plate method is not ideal for fibres as it requires highly

sensitive balances and the fibre perimeter is normally assumed to be circular

which is not always the case. Measurements of several fibres would be required

to get an average and the measured angle can often vary due to the chemical

heterogeneity on the fibre surface. In the literature, other methods have been

proposed to look at fibre surface energy and are discussed in Section 1.7.4.

1.5.3 Adsorption

Adsorption is defined as the enrichment of a surface (the substrate) with one or

more components (the adsorptive). Molecules of gas or liquid adsorbed on the

surface are referred to as the adsorbates. [43-45]. Adsorption should not be

confused with absorption, where molecules enter the bulk of the solid. Equation

1.10 defines the fractional coverage (θ) for the adsorbate, where NS is the number

of surface sites occupied by the adsorbate and NT is the total number of

adsorption sites on the adsorbent. When θ = 1, the level of adsorption is referred

to as a monolayer [46].

Equation 1.10

T

S

N

N


If a molecule adsorbs on a surface without fragmentation it is known as

associative (or molecular) adsorption. When fragmentation occurs the adsorption

is referred to as dissociative [46]. Adsorption is a spontaneous process that
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occurs due to unbalanced attractive forces that exist in the surface molecules of a

solid. The gas or liquid molecules which adsorb on the surface help to rebalance

the forces [44]. The adsorbate has less freedom when adsorbed to the surface

than when in the adsorptive phase, resulting in a decrease in entropy and a

decrease in the free energy of the system. Thus adsorption is usually exothermic

[44,47]. Adsorption can be broadly classified into two types; chemisorption or

physisorption, depending on the magnitude and origin of the attractive forces.

Physisorption involves weak intermolecular forces (such as van der Waals

forces) acting between the adsorptive and the adsorbent [44-46,48]. Van der

Waal forces are caused by a combination of forces arising from molecules with

permanent dipoles (Keeson forces), dipoles induced by molecules with

permanent dipoles via polarisation (Debye forces), and forces from dipoles

induced instantaneously by the motion of the molecule’s electrons (London

forces) [49]. There is not a significant change in the electron orbital patterns and

any redistribution of electron density within the adsorbate and the adsorbent

occurs separately [45,46]. The process of physisorption is analogous to the

condensation of a liquid and the heat of adsorption for a physisorption process is

of the same order as the heat of condensation (< 35 kJ/mol) [44,46]. Figure 1.11

shows the potential energy diagram for a physisorbed inert atom or molecule on

a surface [48]. A useful example of physisorption is that of nitrogen or krypton

at 77 K adsorbed onto a carbon surface which can be used to determine the

surface area of the sample, as will be discussed in Section 1.7.3.
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Figure 1.11 One dimensional potential energy diagram for the physisorption
of a neutral atom or molecule on a surface. The contributing repulsive and
attractive potentials are shown by dashed lines [48].

Chemisorption on the other hand involves the overlap of one or more electron

orbitals between the adsorbate and the adsorbent [48] i.e. a monolayer of a

specific chemical compound is formed on the surface of the adsorbent [46]. The

heat of adsorption is generally greater than 35 kJ/mol. Figure 1.12 shows the

potential energy diagram for a diatomic molecule which chemisorbs

dissociatively to a solid surface [48]. In the diagram, Eb is the binding energy of

the dissociated atoms chemisorbed to the surface, Ed is the activation energy of

desorption, Ea is the activation energy of adsorption, Qdiss is the gas-phase

dissociation energy. As the molecule approaches the surface, it experiences van

der Waal attraction forces leading to a precursor state where the molecule is

physisorbed. As the distance, z, decreases to z’, the molecule’s electron orbitals

overlaps with that of the surface’s orbitals leading to a redistribution of electron

density in both materials which causes the cleavage of the molecule. The two

atoms can then chemisorb to the surface if they have enough energy to overcome

the activation energy (Ea). Since Ea is much smaller than Qdiss, dissociation is

much more likely to occur at the surface than in the gas phase [48]. Note that a

molecule can be trapped in a molecular adsorption form as it needs to cross an

activation barrier before being dissociated. Electron-electron repulsions are the

reason for the increase in the potential again when the molecule or atom are too

close to the surface. The balance between attraction and repulsion result in the

formation of the equilibrium distance.
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Figure 1.12 One dimensional potential energy diagram for the dissociative
chemisorption of a neutral diatomic molecule on a surface (solid line in
curve a) [48]. Curve a is a combination of the potential energy for the
physisorption of an undissociated molecule (curve b) and the potential
energy for two dissociated atoms chemisorbed to the surface (curve c).

Chemisorption can be used to investigate the chemical bonding of species of

interest on carbon surfaces. Like all surfaces, reactions do not occur across the

entire carbon surface but instead occur at discrete sites where the valency is not

satisfied, known as active sites [47]. In the case of carbon, these sites include

edges of basal planes, twin boundaries, and imperfections such as vacancies,

dislocations and impurity sites (e.g. oxygen functionalities). The active sites are

significantly more reactive than the atoms in the basal planes; ~1000 times more

for edge atoms [47]. Investigating the level of chemisorption occurring on a

surface indicates the level of active sites available which will be of use for full

understanding of the bonding processes that occur in composites.

1.6 Fibre Treatments

1.6.1 Introduction

The surface of unmodified carbon is generally unreactive with mainly weak

dispersion interactions taking place [50]. Indeed, as-produced carbon fibres do

not bond well with epoxy resins and other plastic matrices [29]. The interfacial

bonding between the fibre and the matrix has been found to depend on chemical

bonding, van der Waal interactions and mechanical keying [5]. Thus the

chemistry of the surface of the carbon fibre and the surface texture are important
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aspects [51]. The well ordered skin normally seen in PAN-based fibres is

detrimental to the surface chemistry as the presence of large, relatively low polar

graphene basal planes means the surface does not have many layer edge sites to

allow oxygen functionalities to attach to [2,12]. There are several features related

to the fibre that can be altered to improve bonding, namely increasing the surface

energy of the fibre, increasing the specific functional groups on the surface, and

increasing the surface roughness.

A wide range of surface treatments designed to improve the adhesion between

the fibre and the matrices have been described in the literature including:

 Chemical wet treatments [52-55], e.g. treating with nitric acid, potassium

permanganate, chromic acid, or sodium hypo-chlorite etc.

 Chemical dry treatments [56-60], e.g. oxidation by oxygen or ozone,

radio-frequency plasma treatment etc.

 Electrochemical methods [61-67], e.g. anodic oxidation in various

electrolytes such as nitric acid, ammonium salts, etc.

 Coating methods [68-73], e.g. pyrolytic graphite, silicon carbide

whiskers, nickel coating, etc.

Each treatment has its own advantages and disadvantages although currently

electrochemical oxidation is preferred in industry [62]. Manufacturers of carbon

fibres are naturally cautious about revealing details about the composition of

their products and of any surface treatments that are performed. This section

discusses some of the treatments examined in the literature.

1.6.2 Electrochemical

In practice, electrochemical oxidation, also known as anodic oxidation, is used

by industry to alter carbon fibres [62] as it is provides a quick, uniform treatment

that can be used in mass production [34]. Figure 1.13 shows an example set up

which allows for the continuous treatment of a fibre [5]. The fibres are passed
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through an aqueous electrolytic solution which contains a cathode, while a

current is applied to the fibres. The fibres act as an anode [67].

Figure 1.13 Electrochemical bath allowing continuous treatment of fibres
[5].

Many different electrolytes have been examined in the literature [34]. For

example, Bismarck et al., investigated the effect of alkaline electrolytes on

previously untreated and unsized PAN-based fibres [64]. They treated the fibres

using a 1:1 mixture of 0.1 M potassium hydroxide (KOH) with either 0.5 M

potassium carbonate (K2CO3) or 0.5 M potassium nitrate (KNO3). The treated

fibres were then analysed using XPS, contact angle (using the modified

Wilhelmy technique), SEM, single-fibre tensile tests, zeta (ζ)-potential

measurements, electrical conductivity measurements, and interfacial shear

strength (IFSS) [34]. ζ-potential measurements use an electrokinetic analyser to

assess the potential differences between the bulk electrolyte and the layer of

electrolyte that forms at the fibre surface (the double layer). XPS measurements

showed the untreated fibres to have ~ 4% oxygen on the surface which was

increased to ~ 15 % with 10 minutes of KOH/ K2CO3 treatment and ~ 24 % with

KOH/ KNO3 treatment. Peaks within the XPS carbon 1s spectrum were

attributed to alkoxide groups (–C-OH) and C-O-C, carbonyl groups (C=O) and

O-C-O, and carboxylic groups (O=C-OH) in addition to C-C and C-H bonds.

Most of the oxygen on the surface was found to be OH functionalities. The SEM
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images showed the treatments smoothed the fibre surface slightly. The contact

angle measurements with water showed an initial increase in wettability of the

fibre with treatment time but further treatment did not cause further increases.

The ζ-potential measurements confirmed this trend. The IFSS and single fibre

tensile strength were not affected by the treatments [34]. This study is a

particularly good example of the range of techniques that are required to fully

analyse carbon fibres.

Yue et al., also used KNO3 as an electrolyte on PAN-based fibres [74]. Their

investigations included XPS, FTIR and adsorption studies. The XPS revealed

similar levels of oxygen, ~24% to those found in reference [64]. The carbon

ratios (O/C), were between 0.23 - 0.27 while the nitrogen to carbon ratio (N/C)

did not vary from 0.04. Similar functional groups were found from the XPS peak

fits. Carboxyl groups were found to increase with increasing treatment time

which was confirmed with FTIR measurements [74].

While Bismarck and co-workers did not find an improvement in IFSS with

treatment [34], other work in the literature has shown a correlation. For example,

Gulyás et al., used a wide range of electrolytes to alter PAN-based fibres and

then produced composites using an epoxy resin [62]. The 21 resulting samples

were characterised by FTIR and the strength of the fibres was characterised by an

undisclosed method. The IFSS was investigated by fragmentation, where a load

is applied to the composite and the number of fragments in the fibre and their

length is determined by a microscope. SEM images were also acquired of the

fracture surface. Electrolytes included sodium hydroxide (NaOH), ammonium

bicarbonate (NH4HCO3), ammonium carbonate ((NH4)2CO3), sulphuric acid

(H2SO4) and nitric acid (HNO3) in concentrations between 3 to 20 wt. % and the

applied voltage was varied between 0.5 and 5 V. The fibre strength was

unaffected by any of the electrochemical treatments. The authors discussed the

difficulties involved in using FTIR to study the chemical composition of carbon

fibres; i.e. the high adsorption of infrared by the fibres, and the low levels of

functional groups on the surface (i.e. low signal to noise ratio). With this in mind,

a correlation between IFSS and certain bands present in the FTIR was found, for
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example the IFSS was found to increase with increasing carboxyl groups but

decrease with increasing sodium hydroxide. SEM images supported a change in

adhesion with treatment with long pulled out fragments of fibres showing at the

fracture surface for weakly bound fibres compared to short fragments for

strongly bound fibres [62]. It was concluded that the IFSS depends on the entire

surface chemistry of the fibre and not just one functional group. The functional

groups introduced to the fibre surface depended on the type of electrolyte while

the amount of groups depended on the concentration of electrolyte and the

voltage applied [62].

Other electrolytes tried in the literature include phosphoric acid (H3PO4) [75],

dichromates, and permanganates [34]. Ammonium bicarbonate (NH4HCO3) is

considered one of the most useful electrolytes as it does not leave a residue so

simplifies the washing and rinsing process. This can be particularly important in

order to improve fibre-matrix adhesion. Százdi et al., showed that sodium

hydroxide (NaOH) adsorbs to the surface of carbon fibres when used as an

electrolyte and this reduces the IFSS [76]. Removal of the adsorbed NaOH

produces improved composites [76].

The studies discussed above examine treatments applied in the laboratory setting.

Treatments applied by manufacturers have also been examined. Wang et al.,

investigated PAN-based fibres that had been treated industrially (IM7 Hercules

fibres) [61]. The fibres were also de-treated by heating in a vacuum before being

re-treated using nitric acid as an electrolyte. The fibres were analysed using XPS,

and voltammetry. The industrial treatment resulted in an O/C ratio of 0.36 while

de-treatment reduced the O/C ratio to 0.02. The fibres were found to be altered

by the de-treatment such that they produced different surface chemistry to fibres

treated directly [61].

Drawbacks for electrochemical treatments, as with any wet treatment, include

needing to wash and dry the fibre, thus increased processing time [59]. In

addition, the chemicals used for treatment require careful disposal and can pose a

health hazard. It is desirable for any oxidising treatment to be safe, simple, cost

efficient, and environmentally friendly.

http://en.wikipedia.org/wiki/Hydrogen
http://en.wikipedia.org/wiki/Phosphorus
http://en.wikipedia.org/wiki/Oxygen
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1.6.3 Ozone and UV/O3

Ozone oxidation has been examined by several studies as it is known to be able

to remove impurities from surfaces and introduce different oxygen functional

groups. Ozone has the added advantage that any residual gas can be converted

back into oxygen thus leaving no by-product [77]. One study by Park and Kim

used ozone concentrations of 10-40 mg/l to alter PAN-based fibres [77]. Using

XPS, they found the ozone introduced acidic functionalities to the surface of the

carbon fibre, (e.g. carboxyl and carbonyl groups) but the C-C peak decreased

with increasing concentration. They suggested the ozone was capable of breaking

the C-C bonds. No figure was given for the surface oxygen %. Contact angle

testing showed the fibre surface energy increased with treatment. Mechanical

testing, including the 3-point bend test, showed the ozone treatment improved the

adhesion between the fibre and an epoxy matrix [77].

Jin et al. treated pitch-based fibres with ozone gas at different temperatures (from

room temperature up to 160 oC) after applying a vacuum to the fibres [60]. The

resulting pressure of ozone was 0.4 Pa, while the flow rate was 0.12 m3/h.

Carbon fibre-carbon composites were manufactured. Mechanical tests showed an

increase in compressive and flexural strength with the heat of treatment up to 160

oC, when the ozone decomposition was too rapid to oxidise the carbon fibres and

the strength decreased [60]. SEM images of the fracture morphology confirmed

this. XPS measurements showed the six minute ozone treatment at 120 oC

doubled the surface oxygen present (~ 9% increased to ~ 23 %). Similar

functional groups were found on the surface as in the previous studies discussed.

AFM was used to examine the fibre surface. The surface roughness was shown to

increase with ozone treatment. Raman measurements also showed the surface

became less graphitic with treatment, reinforcing Park and Kim’s suggestions

that the C-C bonds are broken by the ozone [60].

Treatments on carbon surfaces using ultraviolet generated ozone (UV/O3) have

been examined in the literature. This method has previously been used to alter

wool fibres to improve wettability [78] and on polymer surfaces [79]. A study by

Sham and Kim used UV/O3 to alter the surface functionalities of multi-walled
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carbon nanotubes (MWNT) [80]. A Jelight UV/Ozone cleaning system was used

and nanotubes were treated for times from 2 minutes to 1 hour. Epoxy resin

composites were prepared with the treated nanotubes. TEM images did not show

any visible change in the structure of the MWNTs. XPS showed the UV/O3

treatment introduced increasing carboxylic groups to the surface with increasing

treatment time. The treated nanotubes showed improved dispersion in the

composites as the thermodynamic characteristics of the tubes changed from

hydrophobic to hydrophilic [80].

UV/O3 treatment has been applied to carbon fibres, although there is very little in

the literature. Rich et al. treated PAN-based and pitch-based fibres using a

specially built UV/O3 generator that pumped in extra ozone [81]. Treatment

times as low as 5 seconds were shown to improve the O/C ratio as measured by

XPS. An O/C of 0.27 was seen after 10 minutes of treatment. STM images

showed some slight surface roughening was caused by the treatment. Unlike

electrochemical treatments, the tensile strength of the individual fibre increased

by ~ 11 % with treatment. Rich et al. suggested this was due to removal of an

outer layer of defects on the fibre [81]. The IFSS of a fibre-epoxy resin

composite was also shown to increase substantially with UV/O3 treatment; ~ 15

MPa for a commercially treated fibre up to ~ 30 MPa for UV/O3 treated fibre

[81]. The study did not examine functional groups generated by the treatment.

Although the studies discussed here have shown UV/O3 to be a very promising

new treatment method with several advantages over electrochemical treatments,

very little research has been has been published on it. The work in this thesis

further examines the effects of UV/O3 treatment on fibres, including functional

group analysis.

1.6.4 Other Methods

Chemical wet methods suffer from similar disadvantages to the electrochemical

treatments and they are also time consuming, requiring treatments lasting from

15 minutes to hundreds of hours [34]. The fibres are generally boiled in the

chemical solution, for example Kaushik treated PAN-based fibres in a potassium
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permanganate (KMnO4) solution at 85 oC for up to 30 minutes. XPS

measurements showed the treatment increased the level of surface oxygen, with

10 minutes producing ~11% O [55]. In previous studies by other authors, it has

been suggested that this treatment prevents the fibres from having skin-core

heterogeneity. This is due to diffusion of MnO4 ions into the fibre which form

MnO4-C=N conjugation groups. These groups have a plasticising effect on the

fibre resulting in better molecular orientation [82]. While removing problems

associated with the skin-core difference (i.e. possible improvement in fibre-

matrix adhesion), the fibre itself suffers from a decrease in mechanical strength

as a result of extended treatment times [82]. Boiling nitric acid and sulphuric acid

have frequently been used in the past to treat fibres [34]. Nitric acid is still

frequently used to create activated carbon fibres [52,53,83].

Coatings for carbon fibres have been used to protect the fibres when they are

used in carbon-carbon composites that experience high temperatures in oxidizing

environments, e.g. shuttle shields or braking systems [72]. The coatings include

boron nitride, titanium carbide, and silicon carbide. The coating is normally

applied by chemical vapour deposition (CVD) or reactive-CVD (RCVD). Similar

adhesion problems to those seen in fibre-resin matrices exist for the coatings and

generally the same analysis techniques, e.g. XPS, or SEM, can be used [72].

Metal coatings, such as nickel, have also been used to improve metal matrix and

plastic matrix composites [71].

Plasma deposition offers several advantages over electrochemical treatments; the

main two being that the treatments are more environmentally friendly, and the

fibres do not degrade [57]. The effect of the treatment on the fibre surface can be

controlled by varying the power of the radiofrequency used to generate the

plasma, the treatment time, the reactor pressure and the gas used [24]. Gases such

as nitrogen, argon, oxygen or air can be used in low pressure vessels

[24,31,34,56,57,84], or low pressure liquids can be introduced such as ammonia

[85]. For example, Smiley and Delgass examined PAN-based fibres etched in

oxygen plasmas using AFM, SEM and XPS [24]. A power of ~ 25 W was used

for 2 to 60 minutes. O/C ratios were seen to increase immediately from ~0.16 to

~ 0.32 with 2 minutes of plasma treatment but further increases were slower; the
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60 minute treatment producing an O/C ratio of 0.38. The carbonyl and carboxyl

groups showed gradual increases with treatment time while alkoxide groups

showed a gradual decrease [24]. Pitting on the fibre surface was evident on the

SEM images after 15 minutes of treatment and AFM images showed short

treatments of 2 minutes roughened the surface while treatments of 15 minutes

smoothed the surface again [24]. Ho et al. has used atmospheric plasma

fluorination (APF) to treat fibres since atmospheric conditions are much more

suitable for industrial scale treatments [86]. APF was shown by XPS to introduce

fluorine to the fibre surface which led to improved wettability by poly(vinylidene

fluoride) (PVDF) as measured by the Wilhelmy contact angle technique. The

surface area of the fibres, measured by the BET (N2) technique, increased from

0.22 to 0.44 m2/g with plasma treatment [86].

Other, more unusual treatment methods have also been examined in the

literature. A study by Li et al. used a Co60 source to irradiate fibres held in a

glass container full of chloroepoxy propane by different radiation doses [87].

Using XPS, contact angle analysis and mechanical tests, they found that the

radiation could increase the oxygen containing functional groups on the surface

of the fibre and increase the wettability of the fibres by water as well as

increasing the surface roughness leading to improved mechanical interlocking.

The gamma rays create radicals in the chloroepoxy propane which attack the

fibre surface and attach functional groups to it [87]. Li et al. reported that

radiation treatment would mean fibres could be treated directly after leaving the

production line in a quick time (since dose rate did not affect the results) and the

process would not leave any pollutants, thus being environmentally friendly [87].

This is not entirely the case as the Cobalt source would require shielding for

safety, and would eventually reach the end of its useful life and need to be

disposed of safely. An alternative would be to use some form of linear

accelerator or kV x-ray unit to achieve the high doses electrically which would

negate the disposal problem but not the shielding and would still be costly.
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1.6.5 Sizing

Normally a thin coating is applied to the carbon fibres immediately after

production to make them easier to handle and to protect them before use .This is

known as a size and is generally made from an organic polymeric material. Two

such common sizes are epoxy resin and poly(vinyl alcohol) (PVA) [34] although

the choice of coating depends on the polymer matrix that the fibres will be used

in [5]. When epoxy resin is used, little to no curing agent is added meaning the

size layer is expected to be more brittle than the rest of the resin matrix [29]. The

thickness of the size layer has been found to range from 0.03 to 1 μm [5,34].

The effect of different sizes on composite strengths has been investigated in the

literature. Dilsiz and Wightman investigated polyetherimide and poly(thioarylene

phosphine oxide) sizings on PAN-based fibres [4]. Dynamic contact angle

analysis showed the size decreased the fibre surface energy and XPS showed it

also decreased the functional groups present at the surface. Both of these factors

would lead to reduced adhesion between fibre and matrix however AFM showed

the size increased the roughness of the fibres which could improve adhesion [4].

Size can be a hindrance for experimentation as it masks the surface chemistry of

the fibre. Size removal is, however, a complex process and it is therefore

preferable to receive the fibres unsized [28].

1.7 Fibre Characterisation

1.7.1 Introduction

Fibres present several problems for characterisation due to their size, colour,

surface area, handling difficulties and low concentrations of surface functional

groups [29]. In addition, electron beans and ion beams can damage the surface

depending on the intensity [28]. A range of characterisation techniques have been

used in the literature. In 1986 a working party of the International Union of Pure

and Applied Chemistry presented a review of the techniques used to characterise
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fibres; these included SEM, TEM, EELS, XPS, Raman Microscopy, FTIR, and

AES [11]. Some research has focussed on characterising only the fibres (e.g.

[3,4,88]), while other research has looked at characterising the interface between

the fibres and the matrix (e.g. [89,90]).

This Section discusses some of the different techniques used to investigate the

surface chemistry, surface texture, adsorption properties, surface energy, and

mechanical properties of carbon fibres as presented in the literature. Detailed

descriptions of the techniques used in this work are given in Chapter 2.

1.7.2 Functional Groups

As is probably clear from the preceding section on fibre treatments, x-ray

photoelectron spectroscopy (XPS) is one of the most commonly used techniques

for characterising the surface chemistry of fibres [29]. Several examples of the

use of XPS to identify and quantify surface elements were presented in Section

1.6. XPS can also be used to examine the fibre-matrix interface. For example,

Weitzsacker et al., used XPS to model the interaction between the fibre and

matrix [89]. A monolayer of a compound, chosen to model those used in

composites, was added to the fibre. The fibre was then heat treated as it would be

in production of the composite before the model compound was dissolved using

a solvent, leaving behind the altered fibre. The authors found the surface

composition of the fibres was altered depending on the model compound used

[89]. This method has limitations as the reaction between the modelling

compound and the fibre does not fully mirror the whole matrix material and

competing interactions are not taken into account.

Due to the low concentrations of surface groups on carbon fibres, the XPS

carbon signal can be overshadowed by the graphitic backbone [29]. Another

disadvantage of XPS is the subjectivity of the peak fitting and functional groups

assignment process [35]. Fourier Transform Infrared spectroscopy (FTIR) is also

used to analyse the functional groups present on the fibre surface. Several

examples of FTIR use to characterise surface treatments are mentioned in
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Section 1.6. Figure 1.14 shows the FTIR results from Yue et al.’s work where the

fibres were treated electrochemically in a KNO3 solution using different levels of

charge [74]. The treated fibres were prepared for FTIR by grinding to a powder

and were mixed in with KBr to form pellets for analysis. This means the analysis

was of the bulk composition and not just the surface layers. Two broad peaks are

visible in these results; one at approximately 1727 cm-1 and another that shifts

gradually from ~1628 to ~1606 cm-1 as the charge applied increases. The peak at

~ 1727 cm-1 was assigned to C=O stretching vibrations in ketones and/or

carboxyl groups. The other peak was assigned to aromatic (C=C) stretching

vibrations or the bending vibrations of physisorbed water. The C=O peak

increases in intensity with the increasing charge applied to the fibres which

shows the quantity of the functional group increases with treatment. No

explanation was suggested for the shift in the second peak but it could be as a

result of less C=C bonds being present after the treatment [74]. The pellet

method used by Yue et al. is not surface sensitive as the fibres are ground to a

powder but it is often the way fibres are prepared for FTIR analysis. The high

adsorption of infrared by the fibres, and the low levels of functional groups on

the surface (i.e. low signal to noise ratio) also add to limitations in the use of

FTIR.
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Figure 1.14 FTIR spectra for fibres treated electrochemically in a KNO3

solution using different levels of charge [74].

Temperature programmed desorption (TPD) has been used on fibres to determine

the total oxygen present as well as the functional groups present. If carbon is

heated in a vacuum or in a flow of nonreactive gas, chemisorbed oxygen reacts

with surface carbon giving carbon monoxide (CO) and carbon dioxide (CO2),

other sources of COx are decomposition of O containing functional groups . The

quantity of evolved gas can be monitored by a mass spectrometer [28,91]. TPD

has the advantage that quantitative values of compounds can be measured and the

surface chemistry for the whole of the fibres might be assessed [92].

Unfortunately group assignment is again, not straight forward. Surface functional

groups can interact before decomposition, and secondary interactions can also

occur skewing the results [91]. In some instances, TPD group assignment can be

as difficult as XPS group assignment. Figure 1.15 shows CO2 and CO spectra

gathered by Zielke et al. for a fibre treated by an unknown industrial method
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before washing (a) and after washing (b) [93]. While it may be difficult to assign

groups to these peaks, it is clear the act of washing does affect the spectra.

Figure 1.15 TPD spectra for carbon dioxide (solid lines) and carbon
monoxide (dashed lines) of a) treated fibres and b) treated and washed
fibres [93].

Boehm titrations, so named after Hans Boehm who first proposed the method,

use a base of known concentration to neutralise the acid sites on the fibres [91].

The resulting solution is then filtered and the remaining base is neutralised with

an acid by titration. This allows the number of acid sites on the fibre to be

calculated. Different bases can be used to examine different acidic groups and

acids may be used in a similar manner to determine the basic sites [91]. A

number of authors have used this method to characterise activated carbons [94-

97] and activated carbon fibres [83,98]. Wang et al. examined pitch based

activated carbon fibres using Boehm titration, FTIR and XPS [98]. Fibre samples

of 0.25 g were submerged in 25 cm3 of 0.05 N NaOH, 0.1 N Na2CO3, or 0.1 N

NaHCO3 and sealed in a vessel which was shaken at room temperature for 48

hours. It was assumed that NaOH neutralized carboxylic, phenolic and lactonic

groups; Na2CO3 carboxylic and lactonic; and NaHCO3 only carboxylic groups.

Thus the concentration of each group could be calculated. Hydrochloric acid was
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used on the fibre to determine the number of surface basic sites on the fibre. A

good correlation between the total oxygen as measured by XPS and Boehm

titrations was found. FTIR measurements agreed with the type of groups

identified by the Boehm titrations [98]. The activated fibres had < 5% oxygen on

the surface and the surface area was greater than 1000 m2/g. The titration

yielded ~ 1 meq(H+)/g of oxygen groups on the surface [98]. From these

numbers, it seems unlikely the Boehm method would be practical for carbon

fibres with areas ~ 1 m2/g as titrations would involve very dilute acids/ bases.

Pittman et al. used NaOH uptake to try to calculate surface areas on carbon fibres

[99]. They found the sodium hydroxide penetrated into the fibre, swelling some

of the internal surfaces and overestimating the surface area compared to BET

measurements with CO2 [99]. This suggests Boehm titrations may see more

oxygen functionalities than other methods if the oxygen is contained within

pores.

It is generally accepted that to fully characterise the surface chemistry of carbon,

several complimentary techniques are required. Although functional group

analysis by XPS is not definitive, it is by far the most convenient and reliable of

the methods outlined in this section. XPS is used in this work to quantify total

percentages of oxygen on fibre surfaces and to identify functional groups present.

1.7.3 Morphology, Structure and Surface Area

Several studies described in Section 1.6 used SEM to examine the effect of

treatment on fibre texture or the mechanism of composite failure. For example,

Bismarck et al. treated PAN-based fibres anodically and examined the effect on

the surface roughness using SEM [65]. Figure 1.16 shows an example from

Bismarck et al.’s work. The fibre displays large flakes breaking away from the

surface, demonstrating that electrochemical treatments are able to cause

substantial roughening to the fibre surface so it is important to examine the

surface morphology [65]. Energy dispersive X-ray microanalysis (EDX) was also

used to determine the elements present on the fibre surface, and the spectra for
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fibres treated by different times are shown in Figure 1.16b). The EDX shows an

increase in oxygen but also several other contaminants (e.g. K and Na) with

increasing treatment time. SEM images were not used to investigate the adhesion

between the fibres and composites, instead wetting measurements using water

were performed to determine surface energies. The contact angle decreased, i.e.

the wettability increased, with increasing treatment time for a KNO3/KOH

solution [65]. Examining the damaged fibre in Figure 1.16, one might not be

inclined to take the wettability as a good predictor of adhesion to a resin. In this

case, the treatment has caused large flakes to appear on the surface which may

only be loosely bound and would reduce the strength of the composite. In the

absence of mechanical testing, SEM can give an indication of how the surface

treatment may affect the composite strength.

Figure 1.16 a) SEM image of PAN-based carbon fibre treated for 15 minutes
using KNO3/KOH electrochemical solution and b) EDX spectra for fibres
treated using a range of times [65].

Jin et al. used SEM to evaluate the adhesion between pitch based carbon fibres

and a carbon matrix in addition to contact angle analysis [60]. Fibres were set

into a composite, the composite was fractured and the fracture surface imaged.

Figure 1.17 shows two of the images [60]. The untreated fibres had ~10 %

surface oxygen while the treated fibres had ~23 %. Contact angle analysis with

water showed the surface energy of the treated fibres increased with increasing

surface oxygen, similar to the work of Bismarck et al in reference [65]. The SEM

images show the untreated fibre pulls out cleaner than the treated fibre during

a)
b)
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fracture, suggesting a lower adhesion between fibre and matrix [60]. It was also

reported that ruptures were visible in the matrix and interface for the treated fibre

but only the interface for the untreated fibre [60].

The surface morphology can also be imaged using scanning tunnelling

microscopy (STM) or atomic force microscopy (AFM) [28]. Lee and Drzal

showed that proprietary electrochemical treatments roughen surfaces to ~ 1.5

times the untreated surface roughness [100]. Liu and Lu used AFM to measure

surface roughening on PAN-based fibres subjected to nitrogen plasma treatments

[101]. They found the surface roughness doubled with 7 minutes of treatment

[101]. Gao et al, used AFM to measure the surface roughness of carbon fibres

and fracture surfaces of composites [102]. The surface roughness of the fibres

was found to correlate with adhesion level [102]. The work by Jin et al, [60]

described in Section 1.6.3 used AFM and SEM to show ozone treatment caused

surface roughening at the microscopic level as well as the macroscopic level.

Figure 1.17 shows the AFM images for an untreated high modulus pitch based

fibre and a fibre treated to 6 minutes of ozone at 120oC by Jin’s group [60].

Pitting very obviously occurs with the treatment. This figure also shows the SEM

images of the fibre after pullout from the composite as described earlier.
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Figure 1.17 AFM images of a) unmodified and b) 6 minutes, 120oC ozone
treated HM pitch based fibre and SEM images (c and d) of the same fibres
respectively in composites [60].

Surface areas reported in the literature for non-activated PAN-based fibres

measured using nitrogen adsorption, range from 0.2 to 2 m2/g [86,93,103-106].

TEM images have been used to show lattice imperfections in carbon fibres [20],

the structure of fibres [12], the structure of fibre precursors [19], the effect of

surface treatment on the fibres [107] and the adhesion of fibres to a composite

[90]. Figure 1.18 shows an example TEM lattice fringe image of a PAN-based

carbon fibre sliced longitudinally; a defect in the fibre is highlighted [109]. TEM

images are not a common investigation for fibres as the fibres are difficult to

prepare for imaging. Normally fibres are set into a resin and ultramicrotomed

[108] but adhesion between the fibres and resin is subject to similar problems as

experienced between fibres and composite resins. For example, Figure 1.19

shows a TEM image of a PAN-based activated carbon fibre set into a resin and

sliced through the cross-section [110]. Although the fibre shows areas of

debonding from the matrix, this image is useful to show that this fibre has two

structurally different regions; a core and a skin.

a b

c d



Figure 1.18 Lattice fringe TEM image of longitudinal section of a PAN-
based type II carbon fibre showing lattice defects (highlighted by box) [109].
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interface between the fibre in image a) and the matrix is quite rough compared to

the interface in image b) suggesting greater adhesion. The top most interface

between the fibre in image b) and the SiC matrix shows signs of debonding

which was attributed to the ion-milling process and was taken as evidence of

lower adhesion between fibre and matrix. The level of adhesion was confirmed

using bend tests and SEM fracture images on composites [111]. In this case,

although the sample was damaged by the preparation process, the TEM images

still contributed to the understanding of the adhesion process.

Figure 1.20 TEM images of a) a disordered fibre and b) a highly graphitic
pitch based carbon fibre set into a silicon-carbide composite [111].

Raman can be used to measure the structural characteristics of carbon surfaces.

There are two main peaks of interest that appear for non-perfect carbon

materials; the disorder (D) peak and the graphite (G) peak. A ratio of the

intensities of D and G (or the ratio of the intensity of D to the sum of the

intensity of D and G) allows a relative assessment of the level of graphitization

on the surface [112-114]. Figure 1.21 shows the Raman spectra for the ozone

treated fibres from Jin et al.’s work [60] shown above in Figure 1.17. Two extra

peaks, which were not identified in the paper, are present meaning some peak

fitting was required. In this example, the Raman showed the treated fibres to be

less ordered than the untreated fibres which matched the AFM images [60].

a b
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Montes-Morán and Young examined the effect of plasma treatment on the fibre

surface structure using Raman and compared the results to x-ray diffraction

(XRD) d002 spacings [115]. They found a relationship between the width of the G

band and the interlayer spacing. Figure 1.22 shows a plot of the G band width

against XRD measured d002 spacing using data taken from this reference. The

plot makes the relationship clear; as the interlayer spacing increases, i.e. the

surface becomes more disordered; the width of the G peak also increases. The

plasma treatment was found to disrupt the surface layers of the fibres [115]. The

D to D+G intensity ratios reported in the literature for fibres vary considerably,

for example, in references [63,115,116] the ratios vary from 0.2 to 0.80 .

Figure 1.21 Raman spectra of a) unmodified and b) 6 minutes, 120oC ozone
treated HM pitch based fibre [60].

G D G D
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Figure 1.22 Width of Raman G peak as a function of the interlayer spacing
d002 extracted from data in reference [115].

It is important to examine the effect of any fibre treatment on the surface

roughness of the fibre in order to fully understand any increase in bonding

between fibre and matrix. AFM is difficult to perform on fibres due to their size

so was not performed. SEM, nitrogen surface areas and laser Raman were used

to investigate the effect of surface treatment on the surface morphology.

Although difficult to perform, TEM images were acquired to examine the level

of crystallinity in the fibres following treatment.

1.7.4 Surface Energy

Several different methods have been used in the literature to estimate the surface

energy of carbon fibres and other carbon materials including contact angle

analysis (CA) [4,85,93,117-120], inverse gas chromatography (IGC)

[38,39,56,121-123], and calorimetry [50,94,96,124-128]. As discussed in Section

1.5.2, contact angle measurements are difficult to perform on fibres. Several

authors used the modified Wilhelmy plate method, as described in Section 1.5.2,

to measure surface energies of carbon fibres, and the polar and dispersion

contributions to the surface energy [93,117-120]. A two liquid method has also
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been investigated for contact angle analysis [4,85]. This uses two immiscible

liquids; one polar, such as formamide, and one non-polar, usually a linear alkane

to form two interfaces. The force of the fibre as it is immersed in the two liquids

can be related to the dispersive and non-dispersive components of the fibre

surface energy in a similar manner to the Wilhelmy method [4,85]. Song et al.

proposed a generalized model for measuring the contact angle of a drop of liquid

on a fibre (the drop-on method) in order to overcome the reproducibility issues

found with the Wilhelmy plate method [41]. A drop of liquid is placed on the

fibre and the shape it forms is mathematically analysed [41]. The method

requires a good imaging system, and the ability to form drops of liquid small

enough that gravity can be neglected (i.e. < 50 μm in diameter).

Using the Wilhelmy plate contact angle method, Bradley et al. found the surface

energy of untreated high modulus PAN-based carbon fibres increased from ~54

mJ/m2 to ~ 65 mJ/m2 when anodically treated with ammonium bicarbonate as the

electrolyte [117]. The dispersion contribution remained constant at ~50 mJ/m2

but the polar contribution increased from ~ 4 to ~14 mJ/m2, this coincided with

the increase in oxygen and nitrogen on the fibre surface as measured by XPS

[117].

Inverse gas chromatography measures the retention time of solute molecules in

an inert carrier gas as they are passed over a column packed with the solid

surface of interest [123]. The standard free energy and enthalpy of adsorption can

be calculated from the retention volume. By using probes of differing polarity

and those which only interact via dispersion, the polar and dispersion

components of the surface energy can be calculated [123]. Montes-Morán et al.

[56] and Vickers et al. [38] both found the dispersive component of the surface

energy for untreated PAN-based fibres to be ~100 mJ/m2. Vickers et al. quoted

the surface oxygen level to be ~ 4% from XPS measurements [38]. Montes-

Morán et al. applied plasma treatments to the fibres and found the dispersion

increased with the treatment [56] while Vickers et al. applied an industrial

electrochemical treatment and found the dispersion contribution decreased [38].

Both groups suggested the addition of functional groups to the surface caused the

difference [38.56]. Vickers et al. also used contact angle analysis on the fibres
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and found the dispersion contribution from this method to be ~ 37 mJ/m2 [38].

The difference was attributed to the IGC technique being more specific to high

energy sites while the contact angle technique acts at the macroscopic level,

measuring all the energy sites on the fibre [38].

Lindsay et al. furthered this method by using resin analogues, such as acetone or

ethyl acetate, as probe liquids [121]. All resin analogue probes showed greater

polar contributions to the work of adhesion with increasing surface oxygen level.

They concluded that hydrogen bonding and acid-base interactions between the

fibre and the resin components are likely to be the dominating source for

adhesion [121].

Several authors have used immersion calorimetry to investigate the surface

energy/ polarity of carbon surfaces as it negates the problems associated with the

surface geometry in contact angle measurements [125]. Immersion of a degassed

sample into a liquid will normally result in a release of heat, known as the

enthalpy of immersion. The change in enthalpy of immersion can be plotted

against the oxygen level on the carbon surface. For example, previous work by

Bradley et al. used immersion calorimetry to characterise ozone modified carbon

blacks [124]. A polar probe liquid (water) was used on carbon blacks with

various levels of oxygen on the surface. It was found that the heats of immersion

had an approximately linear relationship with the surface oxygen levels on the

carbon blacks and that the enthalpy of immersion for an oxygen free surface (i.e.

dispersion only interactions) would be 35 mJ/m2 [124]. Other workers have

found similar results [50,128]. The dispersion contribution to surface energy for

carbon blacks is lower than the dispersion values found for carbon fibres using

CA and IGC. It has already been suggested that IGC methods are more sensitive

to high-energy sites; similarly contact angle analysis suffers from variations due

to chemical heterogeneities on the fibre surface. Immersion calorimetry provides

an average value over the whole surface which could lead to an improved

method for surface energy analysis for fibres.

Immersion calorimetry has also been used in conjunction with the Boehm

titration method. Lopez-Ramon et al. measured the quantity of NaOH required to
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neutralise the surface groups on carbon blacks and successfully related it to the

enthalpy of immersion of the carbon black in NaOH [96]. The level of surface

groups were confirmed by TPD measurements. This means calorimetry can not

only provide surface energy data but could also allow functional group

identification and quantification [96].

In addition to carbon black, immersion calorimetry has also been used on

activated carbon cloths which are a product of activated carbon fibres. The cloths

have high surface areas of ~200 -800 m2/g [126]. Although immersion

calorimetry offers a reasonably quick and straight forward method of measuring

surface energies and surface chemistry, it has not been performed on non-porous

carbon fibres. Immersion calorimetry on carbon fibres is investigated in this

work in an attempt to measure surface energies.

1.7.5 Mechanical Strength

The strength of the bond between the fibre and the matrix has been investigated

by SEM images, where fractured surfaces are examined for fibre pull out

characteristics as shown in Section 1.7.3 [60]. Fibres that pull out clean are

considered to have bonded weakly to the matrix while those that have a layer of

resin still on them are considered to be bonded strongly although the origin of the

fracture can not be determined from the images [34]. Light microscopy has also

been used to image the fragmentation of a fibre. A single fibre is held in a plastic

resin and a force is applied until all the fragments are approximately the same

length, known as the critical length. The average length of the fragments is

inversely proportional to the fibre-matrix adhesion strength [31]. Bascom and

Yon used this method to show the differences between thermoset and

thermoplastic adhesions to fibres [31]. Figure 1.23 shows a fragmentation test for

an untreated pitch based carbon fibre and a 90 second treated UV/O3 fibre from

the work by Rich et al [81]. The UV/O3 treated fibre shows more fragments

suggesting improved adhesion to the matrix [81].



Figure 1.23 Microscopy images (above) and associated birefringe patterns
showing stress around fracture points (below) for untreated and UV/O3

treated fibres [81].

Drzal has used TEM to image the mode of failure between both untreated and

industrially treated PAN-based carbon fibres and an epoxy [90]. Images showed

that not only did the untreated fibre separate from the matrix but some surface

layers of the fibre failed as well, separating from the fibre itself. Treated fibres

showed failure of adhesion occurred in the matrix, rather than at the interface

[90]. Figure 1.24 shows the TEM images for the untreated and treated fibres in

the resin after a 6% strain was applied.
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1.8 Objectives of Thesis

This work examines the effect of ultraviolet generated ozone treatment methods

on the surface properties of carbon fibres and compares it to commercial anodic

treatments. Surface chemistry is examined using XPS as well as surface texture

using SEM. TEM and laser Raman spectroscopy are used to investigate the effect

of the treatment on the structure of the fibres. A thermodynamic based approach

is used to model the interactions between carbon fibres of varying surface

reactivity and a small range of epoxy resins and molecules of varying polarity

using immersion calorimetry. The adsorption kinetics of alcohols of varying

polarity on carbon fibre surfaces are investigated using TPD. The overall aims of

this project were to investigate the effects of UV/O3 treatment as a practical

industrial method and to develop a new approach to identify first-principle

methods for controlling interfacial bonding and stress transfer using fibre surface

state and matrix reactivity, hence predicting and optimising composite properties.

The materials, equipment and methods used in this study are detailed in Chapter

2 along with background theory on the methods. Chapters 3 to 5 present the

results along with discussion. Chapter 6 summarises the results and gives

suggestions for future work.
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2 Materials and Methods

2.1 Introduction

The interfacial bonding between the fibre and the matrix largely depends on the

chemistry of the surface of the carbon fibre but also on the surface texture [1]. It

is therefore important to have a detailed knowledge about several aspects of the

surface. Various methods exist to characterise surfaces, however the

investigation method should be chosen by considering the type of material to be

analysed and the end use of that material [2]. This Chapter outlines the theory

behind the techniques used in this project and sets out the experimental details

used.

2.2 Carbon Materials

2.2.1 Untreated Fibres

The carbon fibres used in this study are T80-400, high strength, intermediate

modulus, PAN based carbon fibres (Cytec Engineered Materials Ltd., Wilton,

UK). Three batches of untreated, unsized, fibres (UST) were studied. Table 2.1

lists some of the properties quoted by the manufacturer for standard treated

fibres.

Table 2.1 Characteristics of T80-400 fibres
Characteristic Value

Tensile Strength 5.52 GPa (800 ksi)

Tensile Modulus 276 GPa (40 Msi)

Fibre diameter 5.1 μm

Surface Area 0.85 m2/g
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2.2.2 Carbon Black

Carbon black was used as a model surface for some calorimetric experiments due

to the small surface areas available on fibres. The carbon black was N330 (Cabot

Co., Boston, USA). It is non-porous. The manufacturers quote a surface area of

77 m2/g and other BET studies using nitrogen have returned surface areas of 80

(± 8) m2/g [3].

2.3 Electrochemical Treatments

2.3.1 Theory

Electrochemical treatments, also known as shear or anodic treatments, are

currently the most used treatment method in industry [4], although details of the

process are rarely released due to the commercial sensitivity of the information

[5,6]. Generally, a current is applied to the fibres while they are passed through

an electrolytic solution. The fibre acts as an anode, while carbon electrodes also

inserted into the electrolytic bath act as cathodes [7]. During the process, the

cathode undergoes reduction (gains electrons) while the anode undergoes

oxidation (loses electrons), thereby modifying the fibre surface [7]. The rate at

which this occurs is related to the current density by Faraday’s law of electrolysis

which states that the mass of reactants converted at the electrode is proportional

to the charge applied [8,9].

A range of electrolytes can be used including acid and bases. Ammonium

bicarbonate is one of the most useful bases as it does not leave a residue so

simplifies the final cleaning process [10]. It is generally accepted that progressive

oxidation of a carbon surface can be summarised as in Equation 2.1 [11,12]. In

the case of a base treatment, surface atoms on the fibre will react with hydroxyl

ions. Equation 2.2 shows a likely process for the base-fibre interaction. The OH

ion reacts with surface carbons (Cs) to form -CsOH groups. Continuing oxidation

by a second OH ion would make -Cs(OH)2 that will lose one molecule of water

and make -Cs=O. A subsequent attack of a third OH ion will make a carboxylic

acid that may de-protonate to give a more stable carboxylate.
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Equation 2.1
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In acid treatments, the surface is modified by protons. The acid involves H+ ions

in an aqueous environment (H3O
+). Equation 2.3 shows a likely process for the

acid-fibre interaction. H3O
+ can react with a surface carbon, transferring an

electron to one H+ to make one C-H bond, and producing HCsOH2. This may

give an alkoxide group that can be further oxidised to carbonyl. Carbonyl can be

oxidised in acid conditions giving rise to the carboxylic acid.

Equation 2.3
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2.3.2 Equipment and Experimental Set-up

Unsized PAN based carbon fibres, described in Section 2.2.1, were treated by

Cytec Engineered Materials Ltd. (Wilton, UK) using an industrial anodic

process. The fibres were used as anodes and were modified using two electrolytic

baths consecutively; an oxygen bath and an ammonium bath. In the oxygen bath,

an aqueous solution of an acid or base was used. The second bath, the

ammonium bath, contained an aqueous solution of an ammonium compound

with a pH of at least 8. The ammonium bath produces nitrogen containing

compounds some of which may react with the surface of the fibre making –NHx

[13].
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The charge applied to the fibres (i.e. the coulombs per gram) affects the oxygen

and nitrogen concentration generated on the surface. The charge applied to the

base treated fibres was varied from 0.2x up to 6x, where x is the standard charge.

The acid modified fibres were treated at 3x. Five batches of each treatment were

produced. Acid (A) and base (B) treatments are identified by the charge level

followed by the letter A or B respectively, e.g. 3A.

2.4 UV Ozone Treatments

2.4.1 Theory

As described earlier in Chapter 1.6.3, ultraviolet light and ozone can be used to

alter the chemistry and near surface composition and structure of a material. In

ultraviolet/ozone (UVO3) treatments, the reactions in the ambient air and on the

surface of a carbon sample can be simplified as follows [14]:

Equation 2.4 ][2
)9.184(

2 OO
nmhv
 



Equation 2.5 32][ OOO 

Equation 2.6 2
)7.253(

3 ][ OOO nmhv   

Equation 2.7 xs
nmhv

s OCOOC    )7.253(
3/][

where [O] stands for atomic oxygen, s stands for surface and near surface, and x

is the number of oxygen atoms in the functional group.

Edge planes on the surface of the carbon fibres react with the ozone and atomic

oxygen allowing the formation of functional groups [15]. Three mechanisms of

interaction between carbon and ozone have been postulated [16]; (i) the ozone

interacts with C=C bonds to form epoxide (Equation 2.8), (ii) the ozone interacts

with C=C bonds to form ozonides which go on to partially oxidise the surface

(Equation 2.9 and Equation 2.10), (iii) the ozone converts olefinic bonds to

ozonides, again oxidizing the surface but to a higher level, i.e. 2 moles of gas are

produced for every 1 mole of ozone (Equation 2.11).
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Equation 2.8 2)(13)( OOCOOC syxsyx   (Epoxide)

Equation 2.9 COOCOOC syxsyx   )(213)(

Equation 2.10 2)(113)( COOCOOC syxsyx  

Equation 2.11 COCOOCOOC syxsyx   2)(23)(

While UV light in the range of 185 to 255 nm does not have enough energy to

break carbon-carbon bonds in the ring structure (binding energy per atom =7.4

eV [17]), it is possible for chemical scission to occur at incomplete rings and end

groups and radicals generated by the UV light can break the C-C bonds by

electrophilic addition thus making more sites for oxidation to occur at.

2.4.2 Equipment and Experimental Set-up

Fibres were treated in a Jelight UVO cleaner/oxidizer; Model 42-220 (Jelight

Company Inc., California, USA), shown in Figure 2.1. The cleaner/oxidizer uses

a low pressure mercury vapour grid lamp to produce the UV. It has high

transmittance, emitting 184.9 nm and 253.7 nm wavelengths and a quoted output

of 28 mW/cm2 at 254 nm, 6 mm distance. Fibres were mounted on an XPS stub

and irradiated for a range of times (1-120 minutes) after allowing the lamp to

warm up for at least 15 minutes. Fibres were held at a distance of 3 cm from the

lamp where temperatures in the cleaner can reach 90 oC, as measured by a K-

type thermocouple [18]. Due to the design of the XPS stub only a circle of ~6

mm diameter of fibres were exposed to the light. Long tows of fibres (~1.5 g) for

TPD measurements were also treated for 4 hours with the fibres being regularly

turned to achieve all over treatment.

(Ozonides partially
oxidize surface)

(Further oxidation
by ozonides)
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Figure 2.1 Ultraviolet ozone cleaner.

The concentration of ozone produced by the UV/O3 cleaner is quoted as 500-

1000 ppm by the manufacturer. However, this assumes a blower is attached to

the unit, removing the ozone before destruction by the 254 nm light which is not

the case in our set up. A model to estimate the amount of ozone produced by a

low pressure mercury lamp has been proposed by Voronov, [19]. The model

covers situations without air flow such as the one here. The molecular

concentration of ozone can be calculated by solving Equation 2.12.

Equation 2.12

  254185
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185 112 nene air
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ozoneozone
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L 


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
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












Where
air

185
 is the absorption coefficient in air at 185 nm,

ozone

254
 is the absorption

coefficient in ozone at 254 nm, L is the path length of the light, n is the flux of

photons of wavelength λ (nm), eq
ozonen is the molecular concentration of ozone at

equilibrium, and airn is the molecular concentration of air in the chamber.

Rearranging Equation 2.12 and substituting
hc

In 


 where Iλ is the intensity

of the emitted light at wavelength λ and h is Planck’s constant gives Equation

2.13.
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Equation 2.13
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The following values were used,
air

185
 = 0.1 cm-1 [20],

ozone

254
 = 309 cm-1 [21], L =

3 cm, I185 = 5.6 mW/cm2, and I254 = 28 mW/cm2. At standard temperature and

pressure (STP), this would give a molecular concentration of 2.27x1015

molecules/cm3 or 140 ppm. However, the cleaning unit can reach temperatures of

90 oC. The unit is not sealed so according to the ideal gas law, only the number

of molecules in the treatment chamber will change. At 90 oC, the molecular

concentration of air will be 0.81 times the concentration at STP so the molecular

concentration of ozone will be 1.84x1015 molecules/cm3 or 110 ppm. The

absorption coefficients also vary with temperature but they do not alter the

calculation significantly.

Addition of ozone gas from an ozone generator (Ozonia Triogen Ltd, East

Kilbride, UK, model TOGC2) was also flowed into the UV/O3 generator during

UV irradiation. The generator consists of a ceramic dielectric tube with a

stainless steel electrode in the centre. Oxygen was flowed into the tube and a

voltage applied to the electrode. The potential difference between the electrode

and the ceramic tube increases until it eventually reaches the breakdown voltage

of the oxygen which goes on to form ozone in a manner similar to Equation 2.4

and Equation 2.5 [22]. The manufacturers quote a maximum of 8 g/hr (0.133

g/min) of ozone generated using an input flow of 5 litres/min of oxygen (≈ 1.7

x1021 ozone molecules/min or 18000 ppm).
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2.5 Resin Molecules

2.5.1 Background

Epoxy resins are one of the most popular polymer matrices used in the aerospace

industry due to their low cost, low processing temperatures, good adhesion, good

mechanical properties, low shrinkage during curing, lack of volatile solvents and

low creep [23,24]. As with surface treatments, the exact nature of the resin

matrix used in commercial production is proprietary knowledge. Different

epoxies can be blended as well as different curing agents and catalysts used

[25,26].

2.5.2 Materials

Four components of a typical industrial resin were examined in this study; two

epoxies (PY and MY), one thermoplastic (KM), and a curing agent (DDS) (Cytec

Engineered Materials Ltd., Wilton, UK). The thermoplastic is a polyaromatic

ether sulfone (PES) based polymer with the general structure as shown in Figure

2.2.

Figure 2.2 PES thermoplastic generic structure.

The mean molecular cross-sectional area, am, of each molecule was

approximated using Equation 2.14 [27]. Resins were used in dilute forms for

calorimetry see Section 2.11.4.

Equation 2.14
3/2

2
3 










a

mol
m

N

V
a

Where Vmol is the molar volume, and Na is Avogadro’s number.
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2.6 X-ray Photoelectron Spectroscopy

2.6.1 Theory

X-ray photoelectron Spectroscopy (XPS) utilises the photoelectric effect and the

unique binding energy (BE) of core electrons in an element to provide

information about the surface chemical composition of a sample [29]. It is

currently considered the most successful technique for examining the surface

chemistry of carbon fibres [5]. The x-ray photoelectron spectrometer consists of

three main parts; the x-ray source, the energy analyser and an electron detector

[29]. Figure 2.3 shows a schematic of a Kratos spectrometer (Kratos Analytical

Ltd., UK). A sample is placed on a small stub and degassed before being

transferred into the analysis chamber. The analysis chamber is maintained at a

vacuum of ~10-7 Pa to ensure emitted electrons are not scattered before reaching

the detector and to ensure the sample surface does not become contaminated with

gas molecules. The sample is then irradiated with monochromatic x-rays [29,30].

Figure 2.3 X-ray photoelectron spectrometer schematic, fitted with an x-ray
source, a concentric hemispherical analyser, and a multiple channel detector
(after [28]).
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The x-rays are generated by accelerating electrons towards a high voltage target

which releases x-rays when the electrons strike it. The electrons are often

generated thermionically from a tungsten filament. The target is chosen to

produce x-rays that have energy high enough to eject core electrons from a large

range of elements but a narrow characteristic x-ray emission line to prevent

broadening of the measured spectra. Very few materials meet these requirements

and only two are currently used, namely the Magnesium Kα line (energy 1253.6

eV, width 0.7 eV) and the Aluminium Kα line (energy 1486.6 eV, width 0.85

eV). In some spectrometers, such as the one used in this study, a monochromator

is fitted to further narrow the line width of the x-rays and to reduce the

bremsstrahlung background [29,30].

The emitted x-rays are directed at the surface of the sample and electrons are

ejected from the inner core shells of the atoms. This is known as the

photoelectric effect. The kinetic energy of the ejected electron (Ek) is measured

and the binding energy of the electron (Eb), which is unique to that element, is

calculated using Equation 2.15 [29,30].

Equation 2.15

  kb EhE

where h is Planck’s constant,  is the frequency of the x-rays, and  is the work

function which depends on the sample and the spectrometer.

In XPS, it is customary to use spectroscopist’s notation to identity which

electrons in the elemental atom are being examined. The ejected electron is

labelled nlj, where n is the principle quantum number, l is angular momentum

and j is the total angular momentum, (i.e. j = l + s, where s is the spin quantum

number). The principle quantum number can take integer values of 1, 2, 3 etc., s

can take values of  ½, and l can take integer values of 0, 1, 2, 3 etc. although l

is more normally assigned a letter; s, p, d, and f for each integer listed

respectively [30]. For example, in the case of carbon, the most important
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transition is from the 1s shell. Figure 2.4 shows the photoelectric transition for a

1s electron.

Following removal of a core electron, another electron from an outer shell fills

the vacancy releasing a quanta of energy which is removed from the atom. This

relaxation occurs through either characteristic x-ray emission or Auger electron

emission. Neither is used for analysis in XPS but the latter is the basis of Auger

electron spectroscopy [31].

The ejected electrons are focused via a series of electrostatic lenses towards the

energy analyser which removes any electrons that do not have the kinetic energy

of interest before they reach the electron detector. The energy analyser is

normally a concentric hemispherical analyser (CHA) [29]. Figure 2.5 shows a

schematic of a CHA. The CHA consists of two concentric hemispheres with the

inner hemisphere radius being R1 and the outer radius being R2. The inner and

outer hemispheres are held at different potentials; -V1 and -V2 respectively with

V2>V1. Electrons enter the analyser through the first slit (1) and are deflected by

the potential difference. Electrons with too high, or too low, of energy will not be

focussed correctly for the exit slit (2) and will not reach the detector but a small

range will. The absolute resolution of the analyser in terms of the base width of a

chosen peak (E(B)) is given by Equation 2.16 [29].

Figure 2.4 Photoelectric emission from the 1s shell in a carbon atom (after [32]).
α represents the vacuum level.
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Equation 2.16 2

0

21

2

)(







R

WW

E

BE

Where E is the correct energy of the peak, W1 and W2 are the widths of the

entrance and exit slits respectively, R0 is the radius of the median equipotential

surface, and  is the angle of entrance of electrons with respect to a path

tangential to R0. The resolution can therefore be increased by increasing the

radius of the median surface, i.e. increasing the size of the spectrometer. It is

normally more convenient to retard the energy of the electrons, i.e. decrease the

pass energy [31].

The voltages of the hemispheres are altered to allow electrons of different energy

through to the detectors. The CHA can be operated in one of two modes; fixed

analyser transmission (FAT) or fixed retard ratio (FRR). In FAT mode, all

electrons are retarded to a set pass energy [29,30,31]. This means the resolution

is the same for all binding energies being analysed. The voltages of the

hemispheres will be altered linearly by a constant value. In FRR mode, the

electrons are retarded to a set fraction of their initial kinetic energies resulting in

the absolute resolution varying with the binding energy under analysis. The

voltages of the hemispheres will be altered linearly by a value that varies with

incoming kinetic energy. It is normal to use FRR in Auger spectroscopy but FAT

mode is more useful for quantification in XPS [31].

The spectrometer can be operated using a variety of pass energies and can

perform survey scans or narrow scans. A survey scans across all the kinetic

Figure 2.5 Concentric Hemispherical Analyser (after [31]).
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energies relatively quickly using a high pass energy. This means the analyser

allows a large transmission (many counts) but has low resolution. In narrow

scans, a small pass energy is chosen and the dwell time is increased to improve

the resolution. Narrow scans are normally used to obtain detailed chemical shift

information. The scans, which are in the form of kinetic energy distributions, are

conventionally converted to binding energies using Equation 2.15 to give a

spectrum of the type shown in Figure 2.6.

Figure 2.6 Example FAT survey scan.

By counting the number of electrons of a particular binding energy, ai, (i.e.

calculating the area underneath a peak following a background subtraction) and

multiplying by a sensitivity factor, qi, to account for interaction cross sections

and instrumental factors, the relative quantity of the element within the surface

can be calculated as in Equation 2.17 [30]. Sensitivity factors can be determined

theoretically or experimentally.

Equation 2.17
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2.6.2 Chemical Shifts

From the inception of XPS, it was clear that emitted electrons from elements

within an analysed sample showed different energies depending on the

surrounding environment of the emitting atom or molecule [33]. These “chemical

shifts” can have several origins, e.g. a difference in oxidation state or a difference

in bonding [29]. Indeed, the more bonds between an electronegative element and

the element under investigation; the more positive the chemical shift will be [30].

For example, the C-C bond has a binding energy of 284.6 eV while the carbonyl

group (C=O) has a higher binding energy of 289.1 eV due to the double bond

[34].

Due to the linewidth of the x-ray source and the small chemical shifts involved, it

is not always possible to resolve individual peaks attributed to different atom

environments [30]. To derive surface chemistry information, curves are

mathematically fitted to the narrow scans to determine how much of the carbon

peak is due to certain types of bonding. This is an iterative process performed by

a software package. As such, the results depend on the background subtraction

method, the fitting algorithms and the fitting parameters chosen by the operator.

Many chemical shifts have been reported in the literature. Table 2.2 lists a review

of some of the shifts reported for the carbon peak in carbon fibres.

Table 2.2 Review of literature values for chemical shifts (in eV) from the
carbon to carbon bond peak (284.6 eV) [35-47]

C-C or C-H

C-OH or

C-OR or

C=N

C=O &

O-C-O

COOH or

COOR

CO3
-, π

π* shake

up

Plasmon

Maximum and

minimum shift
1.0-1.7 2.7-3.8 3.5-4.8 5.75-6.2 6.1-6.9

Corresponding

regions (284.6)

285.6-

286.3

287.3-

288.4

288.1-

289.4

290.35-

290.8

290.7-

291.5

Average shift 1.5 3.0 4.2 6.0 6.6
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2.6.3 Equipment and Experimental Set-up

XPS experiments were performed on a Kratos Axis HSi spectrometer at a

residual vacuum of 10-7 Pa, using a monochromatic Al Kα source (energy 1486.6

eV). Figure 2.7 shows the XPS used. The vacuum for the analysis chamber was

maintained by an ion diffusion pump. The vacuum in the introductory chamber

was maintained by a turbomolecular pump (Pfeiffer, Asslar, Germany, Type

TPU 060) backed up by a 8 vane rotary pump (Edwards, West Sussex, UK,

model number RV8).

Figure 2.7 Kratos Axis x-ray photoelectron spectrometer and (inset)
constant height stub.

Fibres were mounted on a “constant height” stub such that the analysed surface

was completely composed of fibres (shown as inset in Figure 2.7). Narrow scans

(pass energy = 20eV) for C1s, O1s, N1s and Si2p were performed three times

and averaged at three positions on each sample. The average surface composition

was determined from the area beneath the elemental peaks following a Shirley

background subtraction and using relevant empirical atomic sensitivity factors;

C1s (0.25), O1s (0.66), N1s (0.42), Si2p (0.23) and Na1s (2.3) (Kratos Analytical

Ltd., Manchester, UK). The sensitivity factors are a combination of photoelectric

cross section, transmission function and inelastic mean free path factors

referenced to F1s = 1.00. Curve fitting was performed using XPSPEAK 4.1 (Dr

Kwok, Chinese University of Hong Kong). The Gaussian/ Lorentzian (G/L) mix
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was fixed to 0.2 for the graphite peak and 0.5 for all the others. Peak shifts were

fixed in relation to the graphite peak.

Treated fibres were placed in the XPS vacuum directly after treatment, except

where the effect of ageing was examined. In this case, two sets of UST fibres

were treated for 40 minutes by UV/O3 at the same time. One set was examined

immediately after treatment and the other left for 1 month at room temperature

and at atmospheric pressure before XPS analysis.

2.7 Scanning Electron Microscopy

2.7.1 Theory

In addition to surface chemistry; surface morphology of carbon fibres can also

play a part in the bonding process. It is therefore of interest to know how

treatments affect the surface of the fibres physically.

The scanning electron microscope (SEM) provides highly magnified

topographical images of the samples. A beam of electrons is scanned across a

sample resulting in several interactions taking place that lead to the emission of

electrons or photons from the surface. The exiting electrons can be measured and

the signal used to form an image of the surface [48,49]. The SEM consists of

three main stages; the electron source, the beam steering and the detector. As

with the XPS, the SEM must be kept at a high vacuum to allow the electrons to

reach the detector without further interaction, however the vacuum only needs to

be ~1 Pa. Electrons can be generated by heating a tungsten filament to ~2700 K

until thermionic emission occurs. The resulting electrons are accelerated towards

an anode with an aperture in it. The electrons pass through the aperture into the

beam steering/ focussing section. Electrostatic lenses (condensers) narrow the

electron beam to ~ 5nm in diameter. Electromagnetic scanning coils raster the

electron beam across the sample surface [48,49]. Figure 2.8 shows a schematic of

the whole SEM system while Figure 2.9 shows a schematic of the electrostatic

lens system and an example lens. The lens consists of an electromagnetic coil

encased in iron which generates a magnetic field at a gap in the casing (known as
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a polepiece gap). The magnetic field deflects the incoming electrons, focussing

those of the same energy to a single point [48].

Figure 2.8 Schematic of a scanning electron microscope [49].

Figure 2.9 a) Schematic of SEM electrostatic lens system [49] b) simplified
lens coil (after [48]).
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Electrons can interact with the sample in a combination of ways [48,49]:

1) The electrons pass through the sample unscattered (particularly in the

case of thin samples) or

2) The electrons are scattered elastically in all directions including back

towards the source by the atomic nucleus (particularly materials with high

atomic number) or

3) The electrons are scattered inelastically by the atomic electrons

(particularly materials with low atomic number).

Inelastic collisions can produce secondary electrons if enough energy is

transferred to eject an atomic electron. By convention emitted electrons with

energies < 50 eV are called secondaries [49]. Most of the secondary electrons

detected are produced within the first few nm of the surface as deeper

secondaries are subject to further collisions preventing their escape. Elastically

scattered electrons are referred to as primary electrons. Backscattered electrons

have energies >50 eV, comparable to primary electron energies. Backscattering

is more likely to occur with increasing atomic number so a natural contrast

occurs with different elements [49].

Inelastically scattered electrons produce a number of effects in addition to

secondary electrons, some of which are not used for imaging but can be used to

gain other information (e.g. chemical information). These effects include Auger

electron emission, x-ray emission and phonon production (vibrations in the

molecular lattice). Images can be formed using the signal from secondary

electrons or backscattered electrons or from the sum of both signals [48,49].

The detectors used will be either photomultiplier tubes or, more recently,

semiconductor detectors. The intensity of the signal of detected electrons is then

scanned across a monitor forming a magnified image of the sample surface. The

magnification can be calculated using Equation 2.18 [48].

Equation 2.18

diameterbeam

resolutionscreen
ionMagnificat 



81

Approximately 90% of the interactions between the electrons and the sample

generate heat [48]. Thus it is important for the sample to be able to conduct the

heat away to avoid damage. If the sample is non-conducting, there is also the

problem of charge accumulation which can distort the image. Samples which are

non-conducting can be sputter coated with gold, or other conducting material, so

that the topography is unchanged via the coating process but the conduction

properties will be changed [49].

The choice of accelerating voltage varies with the need to protect the sample. A

high voltage reduces the chromic aberration present in the image, thus producing

the best resolution, but it can damage the sample. Voltages are normally in the

kV range [48].

The overall resolution varies with several factors [48]:

a) Beam diameter: a larger spot size produces more signal but more noise at

high magnifications.

b) Accelerating voltage: a high voltage reduces chromic aberration.

c) Scan speeds: a long scan speed increases the signal but does not amplify

the noise, improving the signal to noise ratio (S/N).

d) Working distance: a small distance between the sample and the final lens

produces as higher resolution as there is less beam divergence.

Generally, the resolution can be considered to be approximately equal to the spot

size [48].

Carbon fibres and carbon blacks are conducting so do not need to be sputter

coated. They are also tolerant to high energy electrons and heat meaning SEM is

a practical tool to image the surface.

2.7.2 Equipment and Experimental Set-up

SEM images were acquired for all treated and untreated fibres using a Leo S430

electron microscope (Zeiss, Nano Technology Systems Division, Cambridge,

UK). The vacuum was provided by a 12 vane rotary pump (Edwards, West
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Sussex, UK, model number RV12). The microscope uses a semiconductor

detector for backscatter collection and an Everhart-Thornley detector coupled to

a photomultiplier tube for secondary electron detection. The Leo S430 can

provide a maximum resolution of approximately 50 nm.

Fibres and carbon black samples were attached to a stainless steel stub using a

carbon tab. It was not necessary to sputter coat the samples. Fibres were

degassed to approximately 10-3 Pa. A spacer bar was used to reduce the working

distance to ~ 10 mm or less. Images were acquired at various magnifications for

fibres and for the carbon black.

2.8 Transmission Electron Microscopy

2.8.1 Theory

While SEM can provide surface morphology of samples, transmission electron

microscopy (TEM) can provide atomic scale images, and diffraction patterns of

the microstructure of very thin samples.

The TEM has three main components, similar to the SEM; the electron source,

beam steering and the detectors. Electrons can be generated using a tungsten

filament, LaB6 crystal or a field emission gun. In TEM, the electrons are

accelerated towards an anode up to higher energies (typically 100-400keV)

before interaction with the sample and very thin samples are used to allow the

beam to pass through the sample [50]. The equipment is maintained at vacuum to

prevent scattering of electrons before entering and after exiting the sample. The

electron beam can pass through the sample unaltered or can be diffracted. The

resulting diffraction pattern can be imaged on a fluorescent screen beneath the

sample or recorded on a CCD, allowing the crystal spacing to be measured

[50,51]. Bright field and dark field images can be recorded using just the

transmitted beam and diffracted beam signals respectively. The beams can also

be used together to form a high resolution image of the sample with resolution

down to ~0.2 nm [50,51]. Some TEM are capable of scanning the electron beam

across a sample and are referred to as scanning transmission electron
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microscopes (STEM). Figure 2.10 shows a typical axial TEM image of a carbon

fibre. This will be discussed in detail in Chapter 3.

Because thin samples are required for this technique, the sample preparation is an

important factor which can limit the range of materials investigated. Samples are

typically required to be less than 0.2 μm thick. This can be performed via

dispersion in a solvent for powders or ultramicrotomy for larger specimens [51].

Figure 2.10 Typical TEM image of a carbon fibre.

2.8.2 Equipment and Experimental Set-up

All TEM images were recorded on a JEOL JEM-2011 high resolution (HR) TEM

(JEOL Ltd., Tokyo, Japan). The electrons were produced by a LaB6 crystal and

accelerated up to 200 kV. The TEM is capable of producing a beam diameter as
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small as 0.5 nm, with 0.19 nm resolution. Magnification up to 1,500,000x was

possible. Images were recorded on a Gatan 794 CCD camera (Gatan Inc.,

Pleasanton, California, USA).

Carbon black samples were gently ground in a pestle and mortar and dispersed in

acetone. The dispersion was then dropped onto a copper mesh grid and the

acetone was allowed to evaporate leaving behind the carbon black. Fibres were

also prepared by this method and by ultramicrotomy. Fibres were set in an Epon

resin and ultramicrotomed using a diamond cutter to ~100 nm width. The slices

were then placed on the copper grids.

2.9 Raman Spectroscopy

2.9.1 Theory

Laser Raman has several uses in surface characterisation. It can be used to

fingerprint unknown samples which can then be compared against spectra

databases to aid identification. It can also be used to identify when changes occur

in the order of crystals as a function of temperature [52]. In the field of graphitic

materials, Raman has long been known as a method to characterise the degree of

graphitization in a sample [53,54].

Raman spectroscopy measures molecular vibrations induced by irradiating a

sample with monochromatic light. Modern Raman spectroscopes use lasers as

the light source. When the laser light enters the sample, a combination of three

processes can occur [52]:

1) The light passes through the sample without interaction or

2) The light is scattered elastically by molecules in the sample, leaving the

sample with the same frequency as it entered (Rayleigh scattering) or

3) The light is scattered inelastically by molecules in the sample (Raman

scattering).
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In Raman scattering, the laser can either excite vibrational modes in the

molecules; reducing the energy returned in the light, or it can annihilate existing

thermally activated vibrational modes and gain energy. These two processes are

known as Stokes and Anti-Stokes scattering respectively [52]. Anti-Stokes

scattering is rarely used in analysis as it is strongly temperature dependent. The

difference between the wavelength of the incident light and the scattered light is

known as the Raman shift and is normally measured in cm-1 [52].

By comparison to the elastic Rayleigh scattering, Raman scattering is very weak

and appears in a spectrograph as weak lines either side of the Rayleigh line

(Figure 2.11).

Figure 2.11 Example spectrum showing all scattering processes of light in
the Raman technique [52].

Coupling a laser Raman system to an optical microscope allows very small

samples to be examined to a resolution of a few micrometers. This is particularly

useful for carbon fibres. Figure 2.12 shows the optics system for a Raman

microscope. The laser light is directed towards the sample through the

microscope objective via a series of mirrors and a beam splitter. Backscattered

light from the sample is then collected via the microscope lens and directed
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towards the spectrometer [56]. Several designs of spectrometer are available but

all perform the same function; that is to reject unwanted light and direct light of

different wavelengths to separate detectors. Most modern Raman microscopes

use a CCD as the detector [55]. Figure 2.13 shows the spectrometer used in

Renishaw Raman microscopes (Renishaw plc, Gloucestershire, UK). The

diffraction grating rotates in small steps that focus each wavelength on a different

detection element of the CCD allowing a large range of wavelengths to be

measured.

Figure 2.12 Raman microscope optics [56].

Figure 2.13 Ray path diagram for SynchroScan spectrometer (after [57]).

Diffraction grating

Collimating lens

Mirrors

Focussing lens

CCD
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The analysis region is a volume, the depth of which depends on the sample and

the laser wavelength. For carbon materials and a laser with a visible wavelength,

this depth has been estimated to be in the region of ~10-50 nm [58-60].

There are several optical phonon modes possible for graphite. Table 2.3 lists the

symmetry species possible and the associated mode of activation. Raman spectra

for carbon materials generally have two main bands of interest; one at ~ 1330

cm-1 and one at ~1585 cm-1. These bands have traditionally been referred to as

the D (disorder) band and the G (graphite) band respectively [58]. The E2g2 mode

corresponds to the G peak. Less is known about the E2g1 mode which is predicted

to occur at ~ 210 cm-1 [61]. Although seen experimentally for over 30 years, it is

only in the last 10 years that a reason for the defect band has been formulated

that encompasses all of the experimental observations [62].

Thomson and Reich proposed that the vibrations in the disorder band are due to

double resonance events occurring in the material [63]. That is to say, two

resonances occur from one incoming photon. The incoming light generates an

electron hole pair in the material. The electron is then scattered to a different

energy band (first resonance) before being elastically scattered back (second

resonance) by a defect in the lattice to recombine with the hole releasing a

photon [54,62,63]. The energy band that the electron is scattered to depends on

the energy of the incoming light thus the Raman shift of the D peak will vary

with the laser type, as seen experimentally.
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Table 2.3 Optical vibration modes for graphite [61]
Symmetry species E2g1 E2g2

Raman Active

Symmetry species E1u A2u

Infrared Active

Symmetry species B1g1 B1g2

Silent

Table 2.4 summarises the main peaks visible in the Raman spectra for carbon

fibres and gives a basic explanation of molecular vibrations they are attributed to.

Several other peaks are reported in the literature but not all are evident in certain

carbon materials.
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Table 2.4 Raman peaks in carbon materials (after [60]) [58,60,64-67]
D G D’ G’

Location (cm-1) 1330-1360 1575-1600 ~1620 2660-2730

Due to:

Edge planes

and breakdown

of the lattice

symmetry

Doubly

degenerate

vibrational

mode of

graphite cell

(E2g)

Edge planes

and breakdown

of the lattice

symmetry,

related to D

band

Overtone of the

D peak

In pure graphite, only the G band will be evident in the first-order spectrum.

Figure 2.14 shows an example spectrum of highly orientated pyrolytic graphite

(HOPG). The ratio of the intensity of the D band to the intensity of the G band

(ID/IG) was first introduced as a measure of the graphitization in 1970 by Tuinstra

and Koenig reporting the investigation of graphite by Raman for the first time

(cited in [68]). In their paper, they reported a relationship between the reciprocal

of the crystallite size (1/La) and the ratio of D/G bands intensities. However,

more recent research [68] has shown this to be a tenuous link, with the equation

producing errors as large as 100%, and it is more suitable as a starting point for

the crystallite size than a direct measurement.

Figure 2.14 Raman spectrum of a pure graphite sample showing the G-band
at ~1580 as a very sharp peak and secondary vibrational modes which are
generally overtones of the primary region.
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The ratio ID/IG, or ID/( ID+IG) as is considered more suitable for highly disordered

carbons, is still used as a measure of the graphitic order of a carbon material. The

higher the ratio, the more disordered a sample is considered to be. In addition to

the ratio, the width of the G peak has been linked to the graphitization. An

increase in the width of the G peak indicates a reduction in the graphitic nature of

the surface and in the case of fibres, a reduction in the Young’s modulus [60, 58,

68].

2.9.2 Equipment and Experimental Set-up

Changes in the graphitization of the surface layers were investigated by laser

Raman using a Renishaw InVia Raman microscope spectrometer (Renishaw plc,

Gloucestershire, UK). Raman spectra were collected using the 514 nm (green)

line of a Helium Neon laser through a x50 objective. Fibres were mounted on an

XPS stub and six positions were examined for each set of treated fibres. Ten

cumulative scans were acquired for each position. Peaks were fitted to the data

using the WIRES software provided with the microscope, allowing unrestrained

G/L mixing. Raman spectra were also collected for carbon black, and carbon

nanotubes for comparison.



91

2.10 BET Surface Area

2.10.1 Theory

Increasing the surface area on a carbon fibre can increase the area of fibre-matrix

interface. It is therefore of interest to investigate the effect of surface treatment

on the surface area. Surface areas are normally estimated by gas adsorption

techniques; the most popular being the Brunauer-Emmett-Teller (BET)

theoretical model [10]. The BET method has come under extensive criticism in

the literature but it continues to be the most widely used model for non-porous

solids [69].

If a gas of known pressure is introduced to a clean sample in a closed system, the

pressure will decrease as adsorption occurs on the sample surface until

equilibrium is reached. If an inert gas is used then only physisorption will take

place. The pressure decrease can be measured and the amount of gas adsorbed

determined or the increase in sample weight can be measured; known as the

volumetric or gravimetric method respectively [70]. An adsorption isotherm can

be created by plotting the volume of gas adsorbed (V) at a set temperature against

either the pressure (p), or the pressure relative to the saturation vapour pressure

of the adsorptive (p/po) [70]. In general, isotherms can be fitted into one of six

groups from the BDDT classification system [69,70,90]. Figure 2.15 shows the

types possible. Type I isotherms are produced by microporous samples whereas

Type II isotherms are characteristic of monolayer and multilayer adsorption on

non-porous or macroporous samples. Type IV is characteristic of mesoporous

samples and Type VI represents stepped multilayer adsorption on a non-porous

sample. Types III and V are uncommon but are associated with weak adsorbent-

adsorbate interactions [71].
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Figure 2.15 The six different types of isotherms used for classification [70].

From the adsorption isotherm it is possible to estimate the monolayer capacity

(nm) of the sample; that is, the amount of adsorbate required to completely cover

the surface of 1g of solid with one layer of molecules. If an inert gas of known

physical dimensions is used as a probe, then the specific surface area (As) of the

sample can be calculated using Equation 2.19 [70]. The specific surface area is

the surface area of 1g of the sample.

Equation 2.19

amms NanA 

where am is the average area occupied by a molecule of the adsorbate in a

monolayer and Na is Avogadro’s number.

The BET method is based on the Langmuir kinetic model which assumes the

surface is an array of adsorption sites and that a dynamic equilibrium exists
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where the rate of adsorption is equal to the rate of evaporation [90]. Equation

2.20 shows the BET equation for a volumetric system written in a form

convenient for plotting.

Equation 2.20

  ommo p

p

cV

c

cVppV

p 11 




where p is the pressure, po is the saturation pressure, V is the volume of gas

adsorbed, Vm is the monolayer capacity as a volume and c is normally taken to be

equal to Equation 2.21, where (q1-qL) is the net heat of adsorption, R is the

universal gas constant (J/mol) and T is the temperature [70].

Equation 2.21
  RTqq Lec /1

Thus by plotting p/V(po-p) against p/po a straight line should be produced with a

slope =
cV

c

m

1
and an intercept =

cVm

1
. The c term can be eliminated from the

equation so that the monolayer capacity can be calculated using Equation 2.22

and the specific surface area using Equation 2.19 [70].

Equation 2.22

terceptinslope
Vm




1

In practice the plot is usually only linear in a small range and typically BET plots

are performed for relative pressures between ~0.05 and ~0.35 [70].
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There are only a small number of adsorptives suitable for surface area studies as

the molecules need to meet the following conditions [70]:

a) The adsorptive must be chemically inert towards the chosen solid,

b) The saturation vapour pressure must be large enough to allow sufficient

accuracy in relative pressure measurement (~0.001 < p/po < ~0.5) at the

chosen temperature,

c) Temperatures less than the boiling point of the adsorptive should be

achievable in a lab setting (e.g. 77K for N2), and

d) The adsorptive will ideally have a spherical shape to minimise the effect

of orientation on the measurement of am.

Generally, nitrogen is the recommended and standard gas used in surface area

calculations [71]. Due to large correction factors required to account for

unadsorbed gas in the dead-space of the experimental equipment, nitrogen is, in

practice, only useful for specific surface areas greater than ~ 1 m2/g [70]. As

carbon fibres are known to show little uptake of N2, other adsorptives may be

more suitable for determining the surface area. For example carbon dioxide at

273 K or Krypton at 77 K [70,72]. Krypton is particularly useful for small

surface areas because it has a low saturation pressure (~ 270 Pa) and therefore a

small dead-space correction [70].

2.10.2 Equipment and Experimental Set-up

Specific surface areas were measured for untreated fibres (UST), the most treated

electrochemical fibres (6B), and UV/O3 treated fibres using the BET method and

krypton at 77K. Nitrogen isotherms were also acquired for the UST and 6B

fibres. The UV/O3 fibres were treated for 4 hours as described in Section 2.4.2.

Measurements were made on a Micromeritics ASAP 2020 instrument

(Micromeritics, Georgia, USA). The ASAP is a volumetric analyser. Fibres, of

masses 1.5 to 2.0 g, were degassed at 573K for 10 hours before measurement.

The vacuum system was provided by a turbo pump and degassing pressures

reached ~60 Pa.
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2.11 Immersion Calorimetry

2.11.1 Theory

When a solid held in a vacuum is immersed into a pure liquid at a constant

temperature and pressure, a new interface is formed between the liquid and the

solid at the expense of the solid and liquid surfaces, resulting in an energy

change [2]. In the case of an isothermal calorimeter, a heat sink is employed to

maintain the temperature of the system and the energy used to return the system

to the initial temperature is a measure of the energy change involved [73]. The

only variations in the energy measured will be due to differences in surface area

or surface energy of the solid [74].

The enthalpy of a surface (H) is related to the internal energy (U) by Equation

2.23.

Equation 2.23
pVUH 

where p is the pressure and V is the volume of the system. The pV term is

negligible so enthalpy is approximately equal to internal energy [74]. The change

in surface energy due to immersion in the liquid ( Gimm ) is given by Equation

2.24.

Equation 2.24

SSLimmG  

where S is the surface energy of the solid in vacuum and SL is the surface

energy of the solid/liquid interface. Using a Gibbs-Helmholtz relationship, the

enthalpy of immersion ( Himm ) can be related to the free energy change by

Equation 2.25.
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Equation 2.25

P

imm
immimm

T

G
TGH 














And substituting in Equation 2.24 to Equation 2.25 gives Equation 2.26, the

standard equation describing immersion enthalpy. The solid surface energy is the

dominant term in this equation so the immersion enthalpy will be of the same

order of magnitude as the surface energy [74].

Equation 2.26

 
 

P

SSL
SSLimm

T
TH 

















In 1962, Fowkes proposed that the energy at a surface consisted of contributions

from different intermolecular forces which combined additively [75]. In the case

of water, the surface energy could be written as in Equation 2.27.

Equation 2.27

p
LV

d
LVLV  

where LV is the surface energy of the liquid in equilibrium with it’s vapour, and

the d and p superscripts refer to the surface energy contribution from dispersion

forces, and hydrogen bonding, or polar interactions, respectively. The dispersion

forces are a combination of forces arising from molecules with permanent

dipoles (Keeson forces), dipoles induced by molecules with permanent dipoles

via polarisation (Debye forces), and forces from dipoles induced instantaneously

by the motion of the molecule’s electrons (London forces) [76]. It is possible to

express the surface energy of the solid/ liquid interface in terms of additive
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forces using an empirical geometric mean equation of state as shown in Equation

2.28 [77,78].

Equation 2.28

   2

1

2

1

22 p
LV

p
S

d
LV

d
SLVSSL  

Substituting Equation 2.28 into Equation 2.26 and applying the product rule

gives Equation 2.29. The temperature, LV , d
LV , p

LV ,
T

LV


 are all known

and the immersion enthalpy can be measured calorimetrically. It is, however,

more difficult to obtain the temperature coefficients of d
LV , p

LV , d
S , p

S [79].

Equation 2.29

   
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



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Equation 2.29 can be simplified to Equation 2.30 if a non-polar liquid is used.

Equation 2.30

         



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
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



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
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






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We assume the polar nature of a liquid which is non-polar at room temperature

does not change with temperature, i.e. remains non-polar.
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The temperature coefficient of d
S can be estimated from the fourth power of the

density [80]. The surface energies of many solids do not change greatly with

temperature [81] and the temperature coefficient of d
S only contributes to 2% of

the measured immersion enthalpy [82]. Zettlemoyer used a value of -0.07

mJ/m2/K for
T

d
S


 for hydrocarbons on low energy surfaces [80]. Using this

value in Equation 2.30 and a non-polar probe liquid, it is possible to calculate the

dispersive component of the solid surface energy.

In immersion calorimetry, the sample is degassed and sealed in an ampoule. The

ampoule is placed in a probe liquid and allowed to equilibrate before being

broken and the resulting heat measured. The degassing process is not intended to

clean or alter the surface; it is in place to prevent adsorbed gases from blocking

the probe liquid from reaching the surface [2].

When the ampoule breaks, several effects add to the heat measured including the

heat of vaporisation in the ampoule (the rush in, or PV, effect), the heat of

breaking the ampoule, the heat of vaporisation as the volume changes in the cell,

and the heat of interaction between the sample and the liquid [2,83]. The heat of

the ampoule breaking can be minimised by producing weak ampoules that are

easy to break. Large interactions between the sample surface and the probe liquid

will mask any small differences due to experimental variation in these quantities.

2.11.2 Probe Liquids

Using a series of alcohols with increasing alkyl chain length as probes, it is

possible to track the transition from mixed specific-dispersion interactions to

dispersion interactions only [3]. As the alkyl chain increases, there will be less

specific interactions with surface groups resulting in a lower enthalpy being

measured. Using a non-polar probe (e.g. toluene), it is possible to calculate a

value for the dispersion component of the solid surface energy as described in

Section 2.11.1. Table 2.5 lists the surface tension components and temperature
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dependant components found in literature for the probe liquids used in this

investigation.

Table 2.5 Surface tension values for probe liquids (mJ/m2) [81,84-86]

Liquid LV p
LV d

LV
T
LV





T

d
LV





Water 72.8 51.0 21.8 0.148 0.09

Methanol 25.5 4.3 18.2 0.077 -

Ethanol 21.4 2.6 18.8 0.083 -

Propan-2-ol 23.0 3.5 19.5 0.079 -

Toluene 28.5 - 28.5 0.119 0.119

2.11.3 Carbon Black as a Model

Non-activated carbon fibres are difficult to perform experiments on because of

their small surface areas and hence small surface concentrations of functional

groups. In some cases it was necessary to use carbon black as a model for the

fibre surface; the differences in structure have been described earlier in Chapter

1.7.3.

2.11.4 Equipment and Experimental Set-up

All calorimetry experiments were performed on a Setaram Isothermal C80

calorimeter (Setaram Instrumentation, Caluire, France). A glass ampoule was

made of Schott Duran borosilicate glass with an external diameter of 11 mm and

internal diameter of 10 mm (Schott UK Ltd, Stafford, UK). The ampoules were

made such that the end was very narrow and weak and could be easily broken.

Figure 2.16 shows an empty ampoule prior to filling and sealing. The empty

ampoule was weighed three times before fibres were packed into it and weighed

again three times after packing to record the average mass of fibres used. The

ampoule was then degassed for 1 hour at room temperature before being sealed.

The pressure in the sealed ampoule was approximately 5 Pa.
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Figure 2.16 Glass ampoule before sealing.

The C80 calorimeter has two chambers; one for a reference and one for the

sample. A cross section of the calorimeter is shown in Figure 2.17. Several

different cells are available for use in the chambers. Figure 2.18 shows the cell

used in this investigation, an identical cell was placed in the reference chamber.

Figure 2.17 Isothermal calorimeter and cross section [87].

Measurement
chambers

Heat sink

Insulation
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Figure 2.18 Ampoule cell for a Setaram calorimeter [88].

The ampoule was placed in the stainless steel cell along with 7 ml of the probe

liquid and then left in the calorimeter for 2 hours to equilibrate. Once the cell

came to thermal equilibrium with the calorimeter, the rod was pushed down to

break the ampoule; allowing the probe liquid to be drawn into the ampoule. The

rod is sealed into the cell via a series of tight fitting o-rings to prevent any

variation being caused by vaporization of the probe liquid. The calorimeter

recorded the heat flow between the sample and the heat sink. Integrating the heat

flow against time, after applying a linear background subtraction, gave the total

energy for the interactions (i.e. the enthalpy change).

The following pure liquids were used to investigate the carbon fibre surface:

distilled water, methanol, ethanol, isopropanol and toluene (purity >99%). Dilute

solutions of resin and the resin components were also used as probe liquids. The

resin components were dissolved in acetone, dichloromethane (DCM) or

dimethyl sulfoxide (DMSO) in varying concentrations. A series of dilute

solutions of resin was also prepared by adding the individual components to

DCM in the following order KM (20% by weight), PY (40 %), MY (20%) and

DDS (20%). Initial tests with fibres showed no measurable interaction so carbon

black was used as a model surface.
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2.12 Temperature Programmed Desorption

2.12.1 Theory

As discussed earlier in Chapter 1.5, the type of functional group present on the

surface of the carbon fibres is of interest, as well as the type and strength of

bonds formed between the fibres and resin matrix when fibres are used in a

composite. The kinetics and chemistry of adsorbed molecules present on the

surface can be analysed using temperature programmed desorption (TPD). This

method has been widely used since first described by Apker in 1948 [89]. In

principle, when a gas is introduced to a clean surface free of adsorbed molecules,

the surface will begin adsorption until equilibrium is reached [70]. In TPD, a

sample is first cleaned by gentle degassing to remove any physisorbed species

already attached to the surface. The surface (the adsorbent) is then dosed with a

vapour of interest (the adsorptive) and allowed to equilibrate before any excess is

pumped out. The temperature is then increased, ideally linearly, until there is

enough energy to break surface bonds and the quantity of desorbed gas is

recorded via a mass spectrometer. Plotting the mass fragments as a function of

temperature produces a series of desorption spectrums [90].

The rate of desorption per unit area of adsorbent is calculated using Equation

2.31 [89,91].

Equation 2.31
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where θ is the surface coverage (molecule/unit area), V is the volume of the

chamber, k is Boltzmann’s constant, T is the temperature, As is the adsorbent

surface area, p is the change in pressure, and S is the pumping speed

(volume/second). The equation can be rearranged and simplified to:

Equation 2.32
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where a = kTAs/V and τ = V/S and represents the characteristic pumping speed.

When the pumping speed is very low (τ  ∞) the desorption rate is proportional

to the first derivative of the change in pressure with time. When the pumping

speed is very high (τ  0) the desorption rate is conveniently proportional to the

change in pressure [89]. Therefore, the area under a desorption peak in a

desorption spectrum (Ai) is proportional to the quantity of species, i, desorbed

from the surface.

In order to quantitatively analyse the different species desorbing from the

surface, it is necessary to take into account the differences in ionisation

efficiency (Ix) and mass fragment yield (Fm) for the desorbing particles. In

addition, the effect of the mass spectrometer must be accounted for in terms of

quadrupole transmission (Tm) and electron multiplier gain (Gm). Ko et al.,

proposed the following method to determine a correction factor (CFi) for the

desorption spectrum of a mass fragment, i, relative to carbon monoxide (m/z =

28) [92].

The ionisation efficiency is mainly dependent on the number of electrons in the

molecule (ne) and can be calculated, relative to CO, using Equation 2.33. The

electron multiplier gain and the quadrupole transmission are both dependent on

the molecular weight of the ion (MW) and can be calculated relative to CO using

Equation 2.34 and Equation 2.35 respectively. If the mass fragment pattern and

percentage yield is known from either experimental methods or from literature

values, the correction factor for a particular mass fragment can be calculated

using Equation 2.36 [92]. The fragment patterns for the probe liquids used in this

study were taken from the literature and are shown in Table 2.6.

Equation 2.33

4.0
14

6.0 







 e

x

n
I

Equation 2.34

2

1

28










MW
Gm



104

Equation 2.35
  155/3010 MW

mT  if MW > 30

or

1mT if MW ≤ 30

Equation 2.36


fragmentsmass mm

m

ixim

i
TG

F

IF
CF

,,

11

Table 2.6 Fragmentation patterns of probe liquids [93]
m/z

Probe 15 26 27 28 29 31 39 41 42 43 45 55 56 59 60 74

Methanol 12 - - 5 45 100 - - - - - - - - - -

Ethanol 7 10 22 3 30 100 - 1 5 11 51 - - - -

1-propanol 2 6 16 6 18 100 7 9 14 4 2 1 - 11 7 -

1-butanol 10 14 57 20 38 98 25 88 43 68 8 28 100 - - 1

The relative yield (Y) for a desorbed species, i, can then be calculated using the

sum of all the mass fragments as shown in Equation 2.37 [94].

Equation 2.37




n

j jj

ii
i

CFA

CFA
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Since the system is constantly being evacuated, the temperature of the peak of

maximum desorption (Tp) corresponds to the maximum desorption rate. By

varying the heating rate of the TPD or the surface coverage of adsorptive, the

activation energy of desorption (Ed) can be calculated using Equation 2.38 for a

system with first order desorption (n = 1) or Equation 2.39 for a second order

system (n = 2) [90,91].

Equation 2.38
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Equation 2.39
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where R is the universal gas constant (J/mol), ν is a pre-exponential factor, β is

the heating rate (K/s), and N is the number of adsorbed molecules. This is known

as the “Redhead method”. This method has it’s limitations as it requires a value,

independent of coverage, to be assumed for the pre-exponential factor; usually

1013 s-1 is chosen for first order systems [90].

A simple approximation for the activation energy of desorption in kJ/mol is

shown in Equation 2.40 and allows estimation of Ed to ± 20 % [90,95].

Equation 2.40

4

p

d

T
E 

The order of a system can be inferred from the shape and the position of the peak

desorption temperature using a series of desorption spectra with varying

adsorptive coverage or heating rates. In the case of first order kinetics, the

desorption peak is independent of coverage so will only increase in intensity with

increasing coverage. In addition, the peaks are asymmetric, bias towards the

lower temperature side. For second order kinetics the peak temperature decreases

with increasing coverage and the curves are symmetric around the peak

temperature [90,91,95]. Figure 2.19 shows an example of the two types of

system. In the case of a multilayer system (not shown) the kinetics will be zero-

order. The spectra will show a secondary peak at lower temperature

corresponding to the multiple layers. With increasing coverage, this peak will not

saturate. The peak temperature will also increase indefinitely [90].
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Figure 2.19 TPD curves showing first order (n = 1) and second order (n = 2)
systems [95].

Detailed analysis of the activation energy has not been performed in this work.

Instead a series of alcohols were used to probe carbon fibres with increasing

surface oxygen content in a manner similar to that used for the calorimetry

experiments (Section 2.11.2). The amount of alcohol binding to the fibre surface

as a function of surface oxygen was investigated as described in Section 2.12.2.

Introducing an adsorptive to a surface and recording the resultant desorption

spectrum is a well known technique used in catalysis. In the case of carbon

fibres, TPD has been used to quantify the functional groups on the fibre

following surface treatments and the method is considered particularly useful as

it provides average surface chemistry for the whole of the fibre [96]. No

adsorptive is added and the fibres are heated to approximately 1200 oC. The

quantity of carbon monoxide and carbon dioxide released as the functional

groups decompose can be measured and an estimate of the total amount of

oxygen containing groups made [97]. The functional groups decompose at

different temperatures, allowing some insight into the nature of the groups [97].

Unfortunately, the assignment of the different peaks is somewhat ambiguous in

the literature due to the fact that the peak temperatures are known to be affected

by the porous nature of the carbons, the heating rate, and the experimental set up,

and it is useful to complement TPD data with other methods [98]. A good review

of decomposition temperatures was included by Szymanski et al., [98] in their
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paper on activated carbons; a smaller review is shown in Table 2.7 which agrees

with the temperature ranges collected in reference [98]. Although there is

substantial variation of group assignment, the following general points can be

made [43,97,98]:

 The CO2 peaks generally occur at lower temperatures than the CO peaks.

 For the CO2 spectra, carboxylic acid is evolved at low temperatures while

anhydrides, lactones and lactols decompose at higher temperatures.

 Carboxylic anhydrides release both CO and CO2 peaks simultaneously.

 Carbon monoxide is also generated by phenols, ethers, quinones, and

carbonyls.
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Table 2.7 Temperatures of desorption of surface groups on carbons
Gas Surface group Temperature (K) Reference

CO2 Carboxyl 400-623 [97]

548 [96]

550-650 [99]

590 [100]

473-523 [43]

Carboxylic

anhydride

623-673 [43]

698 [96]

710 [100]

Peroxide 793 [96]

823-873 [43]

Lactones at different

sites

600-950 [99]

623-673 [43]

960 [100]

623-823 [97]

893, 1013, 1153 [96]

CO Adsorbed CO 523 [96]

Aldehydes/ Ketones 530 [100]

Carboxylic

anhydride

673-723 [43]

698 [96]

800 [100]

Hydroxyl 823 [96]

Phenolic and

hydroquinonic

873-973 [43]

Ether or carbonyl 923 [96]

Carbonyl

(semiquinone)

980 [100]

1053 [96]

1073-1173 [43]

1150 [99]

Pyrone-type 1203 [96]
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2.12.2 Equipment and Experimental Set-up

The TPD set up is shown in Figure 2.20. It consisted of a U shaped quartz glass

reactor bed, a vacuum system, a furnace, a temperature controller and a mass

spectrometer. The vacuum was provided by a Duoseal rotary vane pump, (WM

Welch Manufacturing Company, Chicago USA), and a vapour diffusion pump

(Edwards, West Sussex, UK, model number EO2) backed by an Edwards 5 vane

rotary pump (model number E2M5). The base pressure in the system was

typically 4 x10-5 Pa. Pressures were measured using Dynavac model CG8 cold

cathode gauge (Dynavac Engineering Pty. Ltd, Victoria, Australia). The

temperature of the glass lined furnace was monitored using a K type

thermocouple and was ramped by a Kaif digital temperature controller (Kaif

Digital, Arizona, USA) at a linear rate of 20 K/min. The thermocouple was

placed as close to the sample as possible in order to get accurate temperature

readings of the sample. The mass spectrometer was a Spectra Vision quadrupole

(LEDA Mass Ltd, Cheshire, UK) and was capable of measuring 12 masses

simultaneously in the range 1 to 200 amu.

Figure 2.20 Temperature programmed desorption set up.
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Long lengths of carbon fibres, weighing between 0.4 and 0.7 g were packed into

the reactor. The fibres were degassed at 150 oC for 2 hours to remove any

physisorbed gases. In the case of alcohol adsorption experiments, 1 μL of

methanol, ethanol, 1-propanol or 1-butanol (purity > 99 %) was then injected into

the system via the dosing line at room temperature with the sample isolated from

the vacuum system. The sample and the injected alcohol were allowed 15

minutes to come to equilibrium before any excess was pumped out. The

temperature of the system was raised from room temperature to 450 oC and the

appropriate mass fragments for each alcohol, listed in Table 2.6, were monitored.

For the functional group TPD experiments, the dosing step was omitted and the

temperature was raised from room temperature to 800 oC. The masses for carbon

monoxide (m/z = 28), carbon dioxide (m/z = 44), water (m/z = 18), nitrogen (m/z

= 14 & 28), oxygen (m/z = 32 & 16), and nitrogen oxides (m/z = 30) were

recorded with temperature and the resulting desorption spectra were analysed

using Table 2.7 as a guide.

The effect of heat treatment on probe uptake was also investigated using 3B

fibres. The fibres were heated to 600 oC in the vacuum. Once cooled, a small

sample was removed for XPS study and the fibres were degassed again for 1

hour at 150 oC. The fibres were then dosed with either methanol or 1-propanol at

room temperature. Once the excess adsorptive was removed, the temperature was

raised to 800 oC and the appropriate mass fragments were recorded. Fibres were

again cooled and another sample removed for XPS before the dosing, degassing

and TPD process was repeated.

The area under each peak was calculated by integration using the trapezoid rule

after applying a linear background subtraction. The areas were corrected using

the factors listed in Table 2.8 which were calculated using mass fragmentation

yields from reference [93] and Equation 2.36.
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Table 2.8 Adsorbent correction factors
Adsorbent CF

Methanol 2.4

Ethanol 2.4

1-propanol 1.5

1-butanol 4.7
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3 Surface Modification

3.1 Overview

Intermediate modulus PAN-based carbon fibres have been treated by an

industrial electrochemical treatment and by ultraviolet generated ozone as

described in Chapters 2.3 and 2.4. Acidic and basic electrochemical treatments

produced five batches each of the following treatment levels, 0.2B, 3B, 6B, and

3A. Three batches of untreated fibres are referred to as UST (1, 4 and 5).

Untreated and treated fibres have been examined by XPS, SEM, TEM, nitrogen

and krypton adsorption, and laser Raman as outlined in Chapter 2. The UV/O3

treatment was found to increase the surface oxygen level of the fibres to that of

the most treated electrochemical fibres within 5 minutes of treatment. XPS

O1s/C1s ratios as high as 0.3 were produced, with saturation occurring at

approximately 40 minutes exposure. The main functional groups introduced

were, in addition to hydroxyl species, alkoxides (ca. 286.5 eV), carbonyl (288.0

eV), and carboxyl (289.5 eV). Examination of the full width half maximum of

the graphite peak from XPS C1s showed some disorder was introduced to the

first few layers of the fibre with treatment but the effect was not evident in the

Raman, i.e. in the bulk of the fibre.

3.2 Surface Chemistry

3.2.1 Elemental Analysis

The main elements present in the XPS survey scans are carbon, oxygen and

nitrogen. Figure 3.1 shows some example survey scans for the electrochemically

treated fibres. Table 3.1 lists the average surface compositions, oxygen/carbon

ratio (O/C) and the nitrogen/carbon ratio (N/C) for all batches of the untreated

fibres and the electrochemically treated fibres found on initial XPS examination.

The untreated fibre contains about 1.6% of Si. The Si concentration decreases

upon treatment indicating that it is most likely at the surface and near the surface,
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and not in the bulk of the materials. While the untreated fibre did not contain Na,

trace amounts were found on the surface of the base and acid treated fibres.

Statistical analysis of the O/C ratio shows fibres 3B, 6B and 3A have

significantly different surface compositions to the non-treated fibre (P< 0.05, t-

test), whereas fibre 0.2B does not. Fibres 0.2B, 3B and 6B have been treated with

increasing levels of charge using the same treatment solution and there is a trend

of a slight increase in the O/C ratio. Treatments 6B and 3A are equivalent in

terms of quantity of surface oxygen produced (both double the amount of surface

oxygen) and, as discussed in the next section, are also equivalent in terms of

chemical species and the effect they have on the structure of the fibre. Further

XPS measurements, performed further along the tow and two years after the first

set of measurements suggest a slight difference in O/C ratio between the 3A and

6B fibres depending on the batch. This is discussed in Section 3.2.3.

Figure 3.1 XPS survey spectra for untreated and electrochemically treated
fibres.

O1s

C1s

N1s
Si2p
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Table 3.1 XPS surface compositions (atomic %) for electrochemically
treated fibres; numbers in bold highlight the higher or lower value in the
series and the base treated series is outlined in the table.

Treatment
% Ratio

C O N Si Na O/C N/C O/N

UST 92.1 5.1 1.2 1.6 0.00 0.06 0.01 4.24

0.2B 93.3 4.3 1.4 1.1 0.00 0.04 0.01 3.14

3B 90.6 7.3 1.7 0.4 0.00 0.08 0.02 4.36

6B 87.6 10.0 1.8 0.6 0.05 0.11 0.02 5.60

3A 88.8 9.2 1.7 0.3 0.08 0.10 0.02 5.54

The UV/O3 altered fibres were treated for times between 1 minute and 120

minutes while held in an XPS stub. Figure 3.2 shows the O/C ratio for previously

untreated fibres (UST) subjected to UV/O3 treatment as a function of treatment

time. The O/C ratio initially increases linearly with treatment time. A saturation

point was reached after approximately 40 minutes of treatment. Error bars

represent the average 90% confidence interval. Long tows of UST fibres were

also treated for 4 hours in the UV/O3 equipment with the tow being turned

regularly to ensure all the surfaces of the fibres were treated. The O/C ratio for

these fibres also varied between the saturation values of 0.25 to 0.3.
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Figure 3.2 XPS O1s/C1s ratio as a function of UV/O3 treatment time on
previously untreated fibres (UST).

Previous work on UV/O3 treatments by Rich et al. treated fibres with UV and

additional ozone gas at a concentration of 700 ppm for times ranging from 5

seconds to several minutes. They reported that a near plateau of 0.22 in surface

O/C ratio was reached after 90 seconds but extended treatments of 10 minutes

produced a further increase to 0.27 [1]. In Figure 3.2, the treatment times

required to achieve this level of oxidation are higher (~40 minutes) and the level

of saturation is also higher; about 0.3. The difference in treatment efficiency

could be due to differences in lamp output, distance of fibres to the lamp, the

fibre composition and structure, air flow, and the fact that additional ozone was

used in the other study. Without the additional ozone in the system, Rich et al.

produced much lower O/C ratios (~0.04 for 90 seconds).

The molecular concentration of ozone in our equipment was estimated in Chapter

2.4.2 to be ~ 1.84x1015 molecules/cm3 or 110 ppm. The amount of ozone in our

set up is therefore substantially lower than in reference [1]. To further investigate

this, additional ozone from a dielectric source was flowed into the UV/O3

equipment at 5, 10, and 15 litres per minute (lpm) for a treatment time of 30

minutes. At 5 lpm of dry oxygen, this is equivalent to 18000 ppm of ozone.

Increasing the ozone present did not alter the O/C ratio significantly.



124

Figure 3.3 shows the XPS O1s/C1s ratio for electrochemically treated fibres

subjected to the additional treatment of UV/O3. The 3B and 6B fibres show very

similar trends to each other; there being very little difference between the O/C

results for each treatment time. There is a small advantage to be gained by

starting with a fibre that has more oxygen on the surface; however it is lost when

higher treatment times are used and starting with an untreated fibre allows more

control over the end level of oxygen desired.

Figure 3.3 XPS O1s/C1s ratio as a function of UV/O3 treatment time on
untreated and electrochemically treated fibres.

Fibres were also altered using only the dielectric generated ozone. The ozone

was flowed into a glass tube containing the fibres at a flow rate of 5 lpm for 20,

40, and 60 minutes. The untreated fibres were measured beforehand to have an

O/C ratio of 0.03 while the ozone only treated fibres all produced O/C ratios of

0.06 no matter what the treatment time was. From this, we can see that the UV

light provides a significant advantage over ozone alone.
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3.2.2 Functional Groups

Peak fitting was performed on the Carbon 1s spectra as described in Chapter

2.6.3. Figure 3.4 presents the different components of the XPS C1s peak upon

peak fitting while Figure 3.5 shows peak fitting for three different UV/O3 treated

fibres. The best fit was obtained when allowing for the most common functional

groups (χ2 ≤ 5). Five non-graphitic peaks, shifted from the graphite peak

(~284.6eV) by 1.2, 2.6, 4.2, 6.0 and 6.6 eV and corresponding to alkoxide/

ethers/ C=N, carbonyl, carboxyl, carbonate/ adsorbed CO/CO2, and Plasmon

loss, respectively, were present. The area under each peak was used to calculate

relative concentrations of each functional group. Attempts were made to analyse

the oxygen 1s spectra with two and three peak models, however it was not

possible to achieve a consistent result. Oxygen is more electronegative than

carbon so the chemical shift is less sensitive to the bonding present [2]. Most

functionalities are within 2 eV of the main oxygen peak [3], so it is more difficult

to resolve overlapping peaks.

Figure 3.4 Example peak fit for carbon fibre showing 6 peaks fitted.
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C=O
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Figure 3.5 Peak fit of XPS C1s of UST fibre treated for 0, 15 and 60 minutes
with UV/O3.

60 minutes

15 minutes

0 minutes
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Table 3.2 lists the curve fitting results for the electrochemically treated fibres

while Table 3.3 lists those for the UV/O3 treated UST fibres. The UV/O3 treated

3B and 6B fibres did not show significantly different functional groups compared

to the UST fibres at oxygen saturation levels, so the results have not been listed.

The most significant change produced by the electrochemical treatments was in

the level of carboxyl groups (289.5 eV). Presence of the carboxyl group and

hydroxyl groups allows strong bonding to occur between the fibre surface and

the epoxy resin and is a desirable effect of treatment [4]. Increasing the charge of

the base treatment increased the carboxyl, alkoxide and carbonyl groups but also

reduced the level of carbonate and the level of Plasmon loss occurring. The

trends were all linear. Kettle et al., showed carboxylic acid and amine groups are

more desirable than alkoxide groups as they have stronger bonding [5]. The 3A

treatment produced similar levels of each functional group to the 6B treatment

suggesting the acid is a more oxidising chemical since the voltage applied was

half that applied to the base treatment. There is no difference between the 3B, 6B

and 3A treatments in terms of effect on functional group make-up; i.e. the acid

and base treatments are no more or less specific at adding carboxyl groups.
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Table 3.2 % of the carbon functional groups as determined by XPS C1s on
electrochemically treated fibres (highest observed reaction products are
indicated in bold

%

Treatment UST 0.2B 3B 6B 3A

Graphite

(~284.6 eV)
75.1 74.5 71.7 72.1 71.7

Alkoxide/ phenolic/ ether

(285.8 eV)
14.1 14.5 15.4 15.8 15.3

Carbonyl/ quinine

(287.2 eV)
4.1 3.9 5.6 5.5 5.6

Carboxyl/ ester

(288.8 eV)
2.7 2.8 3.7 4.1 4.1

Carbonate/ adsorbed CO/CO2

(290.6 eV)
2.0 1.9 1.4 1.0 1.0

Plasmon

(291.2 eV)
2.0 2.4 2.2 1.6 2.3

Ratio -COH to -COOH 5.2 5.2 4.2 3.9 3.7

Ratio total COx to graphite 0.30 0.31 0.36 0.37 0.36

The UV/O3 treatment significantly altered the level of functional groups at even

the lowest treatment time of one minute. As can be seen from comparing Table

3.2 and Table 3.3 one minute of UV treatment is equivalent to the strongest

electrochemically treated samples. At 70 minutes treatment time, the carboxyl

groups increased threefold. Overall, the treatment did not affect the level of

carbonate and a small decrease in Plasmon loss occurred. A small decrease in the

Plasmon peak suggests increase in surface disorder since the  orbitals will be

disrupted and reduced. The increase in carboxyl groups shows a strong linear

relationship with treatment time (R2 = 0.99). It is also to be noted that the ratio

of a single oxidation (-COH) to that of double oxidation (-COOH) has decreased

considerably using the UV ozone treatment. The long tows of fibres treated for 4

hours were not significantly different to the fibres treated for 70 minutes.
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Table 3.3 % of the carbon functional groups as determined by XPS C1s on

UV/O3 treated UST fibres

Relative Concentration (%)

UV/O3 time (minutes) 0 5 15 30 60 70

Graphite

(~284.6 eV)
75.7 70.8 68.4 67.5 64.9 64.7

Alkoxide/ phenolic/ ether

(285.8 eV)
14.2 15.0 15.4 15.6 15.3 16.6

Carbonyl/ quinine

(287.2 eV)
3.8 6.1 7.1 7.2 8.2 7.1

Carboxyl/ ester

(288.8 eV)
2.8 4.1 5.1 6.3 8.5 9.3

Carbonate/ adsorbed CO/CO2

(290.6 eV)
1.2 1.4 1.3 1.2 1.4 0.5

Plasmon

(291.2 eV)
2.3 2.64 2.9 2.7 1.9 1.9

Ratio –COH/COOH 5.1 3.7 3.0 2.5 1.8 1.8

Ratio total COx to graphite 0.29 0.38 0.42 0.45 0.51 0.52

3.2.3 Treatment Ageing and Homogeneity

A selection of electrochemically treated fibres was examined by XPS again, two

years after the initial measurements. The new samples came from substantially

further along the tow. Some slight differences in O/C ratio were observed

between old and new fibres from the same batch, as shown in Table 3.4. Values

in bold are significantly different from the old measurements for the same batch

but are not significantly different from the treatment average values presented in

Table 3.1. The functional groups present did not change with time. The small

difference in O/C ratio may be due to either fibre aging or simply a difference in

surface chemistry along the tow. With the untreated fibres, it is possible that the

outer fibres were exposed to more air and moisture than the inner ones resulting

in an exaggerated oxygen level.
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UV/O3 treated fibres were examined 1 month after a 40 minute treatment and

showed no significant difference in elemental composition or function group

make-up.

Table 3.4 O/C ratio after 2 years storage (figures in bold are significantly
different to old values)

Treatment
O/C Ratio

Old New

UST 1 0.05 0.03

0.2B 1 0.05 0.04

3B 3 0.07 0.09

6B 1 0.12 0.13

3A 1 0.08 0.10

3.3 Surface Morphology

3.3.1 SEM

Figure 3.6 shows a SEM image of an untreated carbon fibre. Fibres were a mix

of kidney shape and circular cross sections with a diameter of ~5 μm. All fibres

showed striations typical of the fibre manufacturing process and were relatively

smooth. Examination of several images of each batch of fibres showed no visible

alteration to the surface tomography with electrochemical treatment or UV/O3

treatment. The striations seemed unaltered and no pitting occurred or debris

generated.

Figure 3.7 shows a SEM image of a sheared 6B treated fibre. The internal

structure of the fibre shows layers approximately aligned with the fibre axis as

would be expected for a PAN fibre.
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1 mm

25000X

Figure 3.6 SEM image (25,000x magnification, 20kV) of untreated fibre.

Figure 3.7 SEM image (15,000x magnification, 20kV) of 6B treated fibre.
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3.3.2 BET Surface Areas

Nitrogen adsorption studies on the untreated and 6B treated fibres showed Type

2 isotherms, characteristic of non-porous or macroporous surfaces. Figure 3.8

shows the nitrogen isotherm for the 6B fibres. Surface area measurements from

the nitrogen isotherms (molecular cross section 0.16 nm2) gave areas of ~1 m2/g

for both the UST and 6B fibres. BET surface area measurements from the

krypton isotherms (molecular cross-section 0.21 nm2) also showed little

difference between the untreated and 6B treated fibres; both gave areas of ~ 1

m2/g. Figure 3.9 shows the BET plots. Taking the SEM images into account, the

combined results suggest the electrochemical treatments cause little damage to

the fibre surface. The fibres treated with UV/O3 for 4 hours returned a surface

area of 6.3 m2/g using Krypton; a substantial and significant increase.

Figure 3.8 Nitrogen isotherm for 6B fibres.
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Figure 3.9 BET plot of UST, 6B and UV/O3 treated fibres for Krypton.

3.3.3 XPS and Raman

The full width half maximum (FWHM) of the fitted graphite peak has been

shown to correlate with the graphitic order of the surface [6,7]. The average

FWHM for the electrochemically treated fibres obtained from the XPS peak fits

was 1.00 ± 0.01 eV. No significant differences in FWHM were evident for any of

the electrochemical treatments (P > 0.05, t-test). Figure 3.10 shows the effect of

the UV/O3 treatment on the FWHM for the untreated fibres. The FWHM

increases with increasing treatment up to a plateau suggesting the surface is

becoming less graphitic and more disordered. This was also the case for the 3B

and 6B fibres treated with UV/O3. To gain more insight on the effect of this

treatment on the surface versus bulk, further investigation with Raman was

conducted.
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Figure 3.10 Effect of UV/O3 treatment time on FWHM of XPS C1s (284.6
eV) attributed to graphite peak for UST fibres (untreated).

Four peaks were discernable in the Raman spectra for the carbon fibres at

approximately 1360, 1600, 1200, and 1500 cm-1. Figure 3.11 shows three peak

fitted spectrums of fibres treated with different UV/O3 times. The 1360 and 1600

cm-1 bands are attributed to the D and G band respectively as discussed earlier.

The broad peaks at ~1200 and 1500 cm-1 are most likely due to aliphatic

structures [8] and amorphous sp2-bonded forms of carbon [9] respectively. The

area under the curves was measured and used to calculate the ratio ID/ID+IG.

Table 3.5 lists the average values for the curve position (), FWHM and ID/ID+IG

ratio. The ID/ID+IG ratio does not vary significantly with treatment and the

position of the G band does not change; both are used as indicators of a change in

the graphitic order [8]. However, the FWHM’s of the D and G peaks decrease

with all of the electrochemical treatments suggesting the graphitic order increases

with treatment. Any increase in graphitic order is likely to be due to small debris

being removed from the fibre surface with treatment.
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Table 3.5 Average values from curve fit for Raman of electrochemically
treated fibres

D (cm-1) G (cm-1) FWHMD (cm-1) FWHMG (cm-1) ID/ID+IG

UST 1369 1601 179 94 0.64

0.2B 1368 1600 169 94 0.63

3B 1365 1601 167 89 0.64

6B 1362 1601 162 83 0.65

3A 1366 1600 166 89 0.63

Figure 3.11 Raman spectra of UV/O3 treated U fibres with four curves fitted
as a function of time. Inset shows FWHM for D and G peaks.

0 min

30 min

60 min
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Figure 3.11 shows the Raman results for the UV/O3 treated UST fibres. There is

no observed change in the peak profile or their FWHM (inset) with UV treatment

with time. The results suggest the UV/O3 treatment does not alter the graphitic

order of the material. This does not correlate with the XPS data or the BET data

but Raman probes deeper into the structure than XPS. For carbon, Raman is

estimated to probe ~100 nm into the bulk [10] whereas information provided

from the O1s lines is roughly from 2 nm deep in the carbon [11] or about 6

layers. An alteration in the surface disorder but not the bulk can be a desirable

effect as more sites will be available for chemical bonding [12] but the

mechanical properties of the fibre, will be unaffected [4].

The average ID/ID+IG ratio for the fibres was ~0.64. To provide some kind of

comparison, carbon black, and multiwall carbon nanotubes (MWNT) were also

examined. Carbon black gave a similar ratio to the fibres of ~0.63 while the

MWNT gave a ratio of ~0.16. MWNT are inherently more graphitic than fibres

so it is possible to distinguish large differences in graphitic order using this

method.

3.4 Structure (TEM)

Untreated and treated fibres were examined by TEM as described in Chapter

2.8.2. Fibres were prepared by grinding and dispersing in acetone or by

embedding in resin and ultramicrotoming. Neither method produced images of

sufficient quality for in-depth study. Figure 3.12 shows a longitudinal image

from the core of a UV/O3 treated fibre prepared by ultramicrotomy. It is possible

to distinguish ribbons of carbon which are generally aligned to the fibre axis.

Figure 3.13 shows a transverse image of the fibre. The ribbons of graphene have

a twisted, random, structure in the radial direction. These images are typical of

PAN fibres [13,14].
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2 TEM image of UV/O3 treated fibre prepared by an
tome showing the alignment of carbon ribbons to the fibre axis.

3 TEM image of UV/O3 treated fibre prepared by an
tome showing the twisted layer structure typical to PAN fibres.

Fibre Axis
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Theoretical diffraction patterns were generated from the TEM images and the

interlayer spacing (d002) was calculated from the diffraction patterns. Figure 3.14

and Figure 3.15 show examples of UST and 6B fibres respectively and their

associated diffraction patterns. Table 3.6 lists the average interlayer spacing

taken from several images for the three types of fibres examined. The error

quoted represents the 90% confidence interval.

Table 3.6 Interlayer spacing from TEM
d002 (nm)

UST 0.386 ± 0.015

6B 1 0.370 ± 0.017

UV/O3 0.373 ± 0.019

An ideal graphitic material would have an interlayer spacing of 0.335 nm [6].

The fibres therefore display a high level of turbostratic structure. From the error

involved in these measurements, it is not possible to tell if there is a difference

between fibres. It is unlikely that the treatments would change the internal

structure of the fibre, although the BET and XPS suggest the surface layers may

be altered. Ideally the surface layers of the fibres would be visible in the images

and it would be possible to qualitatively and quantitatively examine the fibre

surface layers.
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Figure 3.14 TEM image of UST fibre prepared by dispersion and (inset)
associated diffraction pattern.

Figure 3.15 TEM image of 6B fibre prepared by dispersion and (inset)
associated diffraction pattern.
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3.5 Discussion

Various proprietary treatments have been examined by other researchers using

several techniques including XPS and SEM. For example, Dilsiz and Wightman

examined proprietary treatments on unsized PAN based fibres using XPS [15].

The Hercules AS-4 fibres had an O/C ratio of 0.12; similar to the highest level of

base treatment presented here or to 15 minutes UV/O3 treatment [15]. While

there are variations in the assignment of fitted peaks to XPS data throughout the

literature, in general similar groups have been found on treated fibres to those

presented here, namely Alkoxides/amines , carbonyl, carboxyl, and the π π*

shake up.

Bismarck et al., examined a variety of salts and bases to treat PAN based fibres

using SEM among other methods [16]. They found no changes in the surface

morphology in the SEM images until treatment times reached 10 minutes and no

differences in surface morphology were observed between the types of

electrolytes [16]. Jin et al., used ozone to treat a set of carbon fibres in a heated

environment [17]. XPS showed an increase in O/C ratio from 0.1 to 0.3.

Functional group analysis suggested the main increase was in carbonyl group

followed by the carboxyl group [17]. The same authors also used micro-Raman

to investigate the graphitization. Four peaks were fitted to the D and G peaks. A

decrease in the IG/ID ratio (0.5473 to 0.4983) was reported with ozone treatment

suggesting there was a slight increase of the surface disorder; AFM images

supported this [17].

The SEM images presented in this work did not show any obvious differences in

surface roughness for the anodic treatments or the UV/O3 treatments. The BET

data and the XPS FWHM of the graphitic peak do suggest the surface is altered

when treated with UV/O3. Further investigation with AFM and STM would be of

interest.

To the author’s knowledge, Rich et al., is the only group to have published data

on UV/O3 treatments on carbon fibres [1] although there is a Japanese Patent

[18]. In the Rich et al. study, untreated PAN fibres were treated with ultraviolet
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light and ozone [1]. The UV light was generated by a 300W pulsed Xenon flash

lamp and the emitted light had a wavelength of less than 200 nm. Approximately

700 ppm of ozone was passed over the sample in addition to the UV light. XPS

showed the fibres had an initial O/C ratio of 0.02 which increased to 0.12

following just 5 seconds of UV/O3. A 10 minute treatment produced an O/C ratio

of 0.27 [1]. As presented in Section 3.2.1, our UV/O3 took longer to produce

these levels of oxygen, most likely due to the difference in lamp intensity as

adding more ozone during the treatment did not alter the oxidation level

significantly. Types of functional groups generated were not investigated by Rich

et al. though [1]. The surface roughness was measured using STM and compared

to a commercially treated Hexcel fibre (AS4). UV/O3 treatment increased the

surface roughness marginally (~10%). It was suggested that the UV/O3 treatment

removed a weakly bound, incoherent layer on the fibre surface and this was

backed up by measurements of fibre diameter [1]. In this work, the BET data and

XPS results suggested a small amount of disorder was created at the surface of

the fibres due to the UV/O3 treatment but it did not affect the bulk. In addition,

the electrochemical treatments examined, did not affect the surface structure.

It is not simple without in situ spectroscopic studies to understand the formation

of carboxylates, carbonyls and alkoxides upon acid or base treatments on the

surface of the fibre carbon. It is however clear that the process involves reaction

with protons (acid) and hydroxyl ions (base) as has been indicated previously by

other researchers [19]. Mechanisms for the progressive oxidation of carbon by

acids and bases were outlined in Chapter 2.3.1. Generally, the progression

involves a single oxidation (-COH) being eventually further oxidised to a double

oxidation (-COOH). As can be seen from Table 3.2 the main reaction product for

anodic treatment is that of alkoxides and/ or alcohols and this indicates that

further oxidation of alkoxides is not efficient with this type of treatment.

The UV treatment under O3 involves radical reactions [20]. As discussed in

Chapter 2.4.1, O atoms are also formed. Excitation of the surface with UV also

results in the formation of hydroxyl radicals since the work was conducted on

fibre carbons that were not out-gassed and that contained hydroxyl species. This,

in addition to the inevitable presence of water, would result in OH radicals under
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UV excitation. Therefore both the O atoms directly and O atoms from O3

decomposition on the surface, and hydroxyl radicals contribute in the sequential

oxidation of the surface to alkoxides, carbonyls and carboxylates. While the

reaction mechanism is beyond the scope of this work it is highly likely that water

will affect the photoreaction rates and this would be needed to optimise the

process.

The main difference in the functional groups present on the surface of the fibre

upon UV/O3 treatments is the relative distribution of the alkoxide to carboxyl

groups. Figure 3.16 compares this ratio of partial oxidation (the

alcohol/alkoxide) and total oxidation (the the carboxyl group). The data of the

UV/O3 treatment is taken after 60 minutes to emphasize the activity; as seen

from Table 3.2 and Table 3.3, the total oxidation is already pronounced after 5

minutes of treatment. This result suggests the UV/O3 treatment could be used as

an efficient alternative to electrochemical treatments.

Figure 3.16 Partial versus total oxidation of the surface of fibre carbon as a
function of different prior treatment. UST= untreated, xB=base treatment,
3A=acid treatment. The ratio –COH/-COOH represents the partial/total
oxidation ratio as determined from XPS C1 peak areas ratios. The UV/O3

value is taken after 60 minutes of exposure.



143

3.6 Conclusions

The oxidation of carbon fibres using ultraviolet radiation generated ozone was

studied and compared against a series of electrochemical shear treatments.

Treatment times of a few minutes of UV/O3 produced a marked increase in the

surface oxygen containing organic compounds. Five minutes of UV/O3

treatment can produce similar O/C ratios to a high level electrochemical shear

treatment. There was no evidence of fibre aging one month after treatment. The

UV/O3 treatment does not alter the bulk structure of the fibre at the μm level as

studied by Raman. It does, however, alter the graphitization of the first few

atomic layers of the surface (as studied by XPS C1s and BET), creating a more

disordered surface at the atomic/molecular level. Significant increases in

hydroxyl, carbonyl and carboxyl groups occurred with UV/O3 treatment;

however the relative proportions of the different groups matched that of the

electrochemical treatment. Electrochemically treated fibres subjected to

additional UV/O3 treatment showed increases in O/C ratio with treatment time.

UV/O3 fibres showed a six fold increase in BET surface area, as measured by

krypton. TEM images showed both anodic and UV/O3 fibres to have a structure

typical to PAN based fibres with an interlayer spacing of ~0.38 nm. Overall the

UV/O3 treatment method was shown to produce high levels of oxygen containing

functional groups (up to a third of the surface carbon was oxidised). The high

level of O containing species on the surface is poised to enhance the adhesion to

the resin matrix. Further surface characterisation using techniques such as AFM

and STM would be of use in the future to determine the exact effect of the

UV/O3 treatment on the surface roughness.
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4 Calorimetry

4.1 Overview

Immersion calorimetry was performed on carbon fibres of differing surface

oxygen level using probes of decreasing polarity as described in Chapter 2. The

fibres were characterized extensively in Chapter 3. Interactions between dilute

resin components and carbon surfaces were also examined. Carbon black was

used in the resin experiments as fibres, due to their very low surface areas (about

1 m2/g), produced exotherms which were too small to allow statistically

meaningful interpretation of the calorimetry data. Carbon black is characterized

in this chapter using XPS, SEM, TEM and Raman, and the results of the

immersion calorimetry experiments are presented. Immersion calorimetry of

fibres in water showed a relationship between heat of immersion and fibre

surface oxygen level. The rush-in effect was found to substantially affect the

results. Differences in surface oxygen level, functional group make-up, and

surface texture were found between the carbon black and fibres. Immersion of

carbon black into dilute resin solutions was not successful, most likely due to

concentration gradients in the solution.

4.2 Fibre Interactions with Polar Liquids

Fibre interactions with water, methanol, ethanol, isopropanol, and toluene were

investigated using immersion calorimetry. Figure 4.1 shows an example

exotherm recorded for untreated fibres immersed in water. A small endothermic

region signifies the work put into breaking the glass ampoule. Ideally this energy

would be small compared to the signal and would be of the same size in each

experiment. This was not the case due to the small surface areas, and hence

signal, involved and due to the manufacture of the ampoules. Figure 4.2 shows

exotherms for carbon black and UV/O3 treated fibres, plotted separately to the

UST fibres for clarity. The UV/O3 treated fibres were part of a long tow exposed

to 4 hours of UV/O3 as described in Chapter 3. The enthalpy of immersion was

calculated by applying a linear background subtraction and integrating the heat

flow.
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Initial measurements were performed on two different weights of fibres, ~0.3 g

and ~0.4 g, for three fibres with different surface oxygen levels. It was found that

the measured enthalpy varied with the weight of the fibre used. The difference

was found to be significant (P<0.05, t-test). This is probably due to differences in

the heat of vaporisation; more fibres means less liquid will vaporise. Thus the

enthalpies cannot be considered absolute but instead must be considered relative

to each other. Figure 4.3 shows the spread of enthalpies against weight calculated

for 6B fibres immersed in water. Comparison of the two weights showed that the

lighter sample produced more consistent enthalpies with lower 90% confidence

intervals. Further experiments were performed using the lower mass.

The undulations of approximately ±0.01 mW in heat flow that appear at

equilibrium in Figure 4.1 represent the limits of the temperature control of the

instrument in the particular lab environment. The calorimeter needs a stable room

temperature at least 5 K below its running temperature. The room temperature

was controlled by an air-conditioning unit normally resulting in less than a 0.002

K variation in calorimeter temperature. For larger signals, e.g. the carbon black

signal, the variance appears less pronounced purely due to scale. The undulations

were present in immersion studies on empty ampoules so they are unlikely to be

caused by the type of sample.
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Figure 4.3 Enthalpy vs. weight of 6B fibres immersed in water.

During this investigation, the ampoules used were obtained from different

sources. The first set of ampoules (type 1) had two turns in the end piece

meaning they were very easy to break and when broken would leave a small tube

for the liquid to be drawn through. The second set (type 2) were more simplistic

and only had one turn meaning they were more difficult to break and a large

opening was created on breaking for the liquid to enter. In order to get

reproducible results when working with small signals, it is necessary to have

consistent ampoules. Measurements were made for both sets of ampoule and are

compared here.

The reproducibility of the measurements with methanol and ethanol was judged

to be inadequate as considerable deviations occurred from one experiment to the

other. On the contrary it was possible to obtain reproducible measurements for

water, toluene and isopropanol. Figure 4.4 shows the heats of immersion per

gram of fibre in water as a function of surface oxygen for the first set of

ampoules. The series shown is that of a base treated one (i.e. UST, 3B, and 6B)

as it gave the most consistent results.
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Figure 4.5 shows the heats of immersion per gram of fibre in water, isopropanol,

and toluene as a function of the surface oxygen for the second set of ampoules.

The fibres used for that series were UST, 3B, 6B and the 4 hour UV/O3 treated

fibres. As can be seen, the values for the heats of immersion in water between the

two sets of ampoules were significantly different for all the fibres. The first set of

ampoules produced more consistent results with substantially lower confidence

intervals, most likely due to the consistent manufacture of ampoules. The treated

fibres show significantly different values to the untreated fibres. The second set

of ampoules was less reliable with only the most treated UV/O3 fibres being

significantly different to the untreated fibres. While the absolute energy involved

is different between the ampoules, the gradients of the trend lines are practically

the same suggesting the trends are real.

Figure 4.4 Heat of immersion for untreated, 3B, 6B, and 3A treated fibres in
distilled water using type 1 ampoules.
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Figure 4.5 Heat of immersion for untreated, 3B, 6B, and UV/O3 treated
fibres in distilled water, toluene and isopropanol using type 2 ampoules.
The purpose of this figure is to indicate the inadequacy of this set up to
obtain a reliable trend.

Extrapolating from the trend lines, the non-specific interaction between an

oxygen-free carbon surface and water gives a value of 230 mJ/g or 716 mJ/g for

the first and the second set of ampoules respectively. Using the exact BET

surface area of 0.85 m2/g, this would be equivalent to 270 mJ/m2 and 842 mJ/m2

respectively. Other workers have performed similar experiments on carbon

blacks and found the non-dispersion interactions to be approximately 35 mJ/m2

[1-3]. As already discussed, the measured enthalpy cannot be considered to be

absolute. The signal for carbon fibres is small enough to be affected by noise, the

heat of the ampoule breaking, the rush-in effect, and the heat of evaporation of

the liquid in the cell and ampoule as the volume of liquid changes. In addition,

the liquid will be interacting with the glass. Since the overall volume was not

altered between sets of ampoules, the difference is likely to be caused by a

change in the rush-in effect, and/ or the heat of the glass break.

The acid treated fibres show a slight difference in immersion enthalpy for water

compared to the base treated fibres with the same level of oxygen. The overlap is

within the error margins; however we can also take into account the functional
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groups on the fibres. The function groups for these fibres have been outlined in

Chapter 3.2.2. Plotting the immersion enthalpy against the percentage of each

functional group present showed one clear linear relationship for carboxyl

groups. Figure 4.6 shows this relationship. The higher enthalpy for the 3A treated

fibres may well be real.

Figure 4.6 Heat of immersion for untreated, 3B, 6B, 3A and UV/O3 treated
fibres in distilled water as a function of the amount of carboxyl on the
surface.

In an attempt to reconcile the current data with that in the literature, further

investigations into the signal contributions were carried out. A set of empty type

2 ampoules of different sizes were degassed and sealed before being used for

calorimetry in water. Due to the different sizes, different masses of water were

drawn into the ampoules upon breaking. Figure 4.7 shows the energy released on

immersion as a function of the mass of water.
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Figure 4.7 Energy of immersion for empty ampoules of different volumes in
water.

The relationship between the heat released and the mass of water drawn in is

clearly linear and the magnitude of the energy is high enough to interfere with

the signal from the fibre interaction. If the volume of the ampoules varied during

manufacture, the mass of water being draw in, and hence the energy involved

would also vary thus adding to the experimental error. Ideally each ampoule

could be measured following immersion and the mass of liquid calculated and

accounted for. This was not always possible due to the nature of the break in the

ampoule and due to evaporation effects. The few that could be measured showed

masses of liquid between 1.1 and 1.4 g were involved. Figure 4.7 only looks at

the mass of water involved; due to the set up of the experiment, it does not fully

take into account the evaporation effects or the surface area of glass involved.

Since the volume of the ampoules was altered to change the mass of water

involved, the surface area of glass present and the volume available for

evaporation will also have changed. Additionally, when fibres are involved the

energy measured caused by the liquid rushing in will be affected. The fibres

reduce the volume of space available to the water to evaporate into and provide

frictional surfaces for the water to pass over. The overall system is complicated

and would benefit from further investigation.
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4.3 Carbon Black as a Model Surface

Initial experiments using dilute solutions of resin were performed with carbon

fibres. Due to their low surface areas, the fibres produced exotherms which were

too small to provide meaningful data. Carbon black was used as a model surface

instead. Several characterisation techniques including XPS, SEM, and TEM were

performed on the carbon black sample and the results are detailed below.

4.3.1 Elemental Composition and Functional Groups

Only carbon (98.1 %) and oxygen (1.9 %) were found on the carbon black

sample using XPS. The oxygen level is lower than that of the untreated carbon

fibres. Functional group analysis was performed on the carbon 1s peak using the

same fitting techniques performed on the fibres. Table 4.1 shows the functional

groups present on the carbon black and the untreated fibres for comparison.

Table 4.1 % of the carbon functional groups as determined by XPS C1s on
carbon black (CB) compared to untreated fibres (UST)

%

Temperature (oC) CB UST

Graphite

(~284.6 eV)
73.5 75.1

Alkoxide/ phenolic/ ether

(285.8 eV)
11.6 14.1

Carbonyl/ quinine

(287.2 eV)
4.5 4.1

Carboxyl/ ester

(288.8 eV)
4.0 2.7

Carbonate/ adsorbed CO/CO2

(290.6 eV)
3.1 2.0

Plasmon

(291.2 eV)
3.4 2.0

Ratio -COH to -COOH 2.9 5.2

Ratio total COx/graphite 0.32 0.30
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The carbon black has a different functional group make up to the fibre. While

having similar levels of carbonyl, it has substantially more double oxidations to

single oxidations than the untreated fibre. The ratio of total oxidizations to

graphite is similar however. From Figure 4.6, it was found that the level of

carboxyl on the surface of the fibre played a significant role in the measured

immersion enthalpies. The increased level of carboxyl on the carbon black

compared to that of the fibres may result in a difference in the liquid-surface

interaction. Ideally the carbon black would have a similar proportion of

functional groups to the fibre, however since the carbon was not altered for this

set of experiments but the probe liquids were, a difference in functional groups

was considered acceptable.

4.3.2 Surface Structure

Carbon black N330, like the fibres used here, is non-porous. The manufacturers

quote a surface area of 77 m2/g and other BET studies using nitrogen have

returned surface areas of 80 (± 8) m2/g [1]. The relatively large surface area

means it is more suited for calorimetric measurements than the fibres.

The carbon black was examined by SEM. Figure 4.8 shows an extended view

(magnification 140x) of the carbon black along with a carbon fibre for

comparison. The fibres are obviously much smaller in size than the carbon black.

Further magnification to 1000x in Figure 4.9 shows the carbon black has a rough

and pitted surface with high levels of small debris across it unlike the fibre

surface.

The FWHM of the carbon 1s peak in the XPS was 0.94 eV. The untreated fibres

had a FWHM of 1.01 eV. Carbon black is probably more graphitic on the surface

than the fibres. The plasmon level is also higher for the carbon black again

suggesting a more structured surface.



Figure 4.8 SEM image (140x magnification, 20kV) of carbon black and a
single carbon fibre.

Figure 4.9 SEM image (1000x magnification, 20kV) of ca

100 µm

140X

1000X
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rbon black.
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The average ID/ID+IG ratio for the fibres from laser Raman measurements was

~0.64. Carbon black gave a similar ratio of ~0.63. The XPS FWHM and the

Raman suggest that while the first few layers of the carbon black surface may be

more graphitic than the fibres, deeper into the sample they are alike.

4.3.3 Internal Structure

The carbon black was examined using TEM after grinding by pestle and mortar

and dispersion in acetone. Figure 4.10 shows an example image and the

associated diffraction pattern. Examining the layer patterns of the carbon black,

the structure can be described best as a turbostratic columnar pile [4]. The

average interlayer spacing (d002) calculated from the diffraction patterns was 0.36

± 0.04 nm. Practically the same as the fibres (~0.38 ± 0.02 nm).

Figure 4.10 TEM image of carbon black prepared by dispersion, and (inset)
associated diffraction pattern.
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4.3.4 Discussion

Carbon black provides a substantial improvement in surface area compared to

carbon fibres while still being non-porous. The level of surface oxygen is not as

high as on the carbon fibres but there are more carboxyl groups present on the

carbon black. Slight differences in functionality were not deemed important for

the initial experiment. XPS suggests the carbon black is more graphitic than the

carbon fibres while TEM and Raman revealed the internal structures have similar

levels of order. The internal structure should not play a part in the calorimetry

measurements as the interactions should be limited to the surface. Overall, there

are differences between the carbon black and fibre surfaces but these can be

ignored for the initial experiments. Ideally if further research is performed on this

technique the model surface should be more similar.

4.4 Carbon Black Interactions with Resin Molecules

4.4.1 Solution Concentrations

The cross-sectional areas of the component molecules (am) for the resin were

estimated using Equation 2.14 as described in Chapter 2.5.2. The number of

molecules, and hence the weights of components, required to cover 0.2 g of

carbon black in one monolayer were calculated using the BET area. Table 4.2

lists the results of the calculations for each resin component.

Table 4.2 Estimated cross-sectional areas for resin components and amount
required for one monolayer coverage on 0.2g of carbon black

am

(10-19 m2)

Number of
molecules (1019)

MY 5.75 2.78

KM 54.2 0.30

PY 6.61 2.42

DDS 5.07 3.15
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Initially, each resin component was dissolved in DCM, with the exception of the

MY epoxy which was dissolved in acetone. A dilute form of the resin was

produced by dissolving all the components in the same solution of DCM. The

choice of solvent that can successfully dissolve all the components is limited.

Problems arose with acetone and DCM in that they readily evaporate at room

temperature so solution concentrations may change with time. Further

experiments were performed with DMSO as the solvent since it has a higher

boiling point. The experiments with DMSO were performed with the type 2

ampoules while the rest were performed with type 1.

4.4.2 Heats of Immersion

Table 4.3 lists the immersion enthalpies of carbon black in water and the pure

solvents. The enthalpy of immersion in water (equivalent to -53 ± 2 mJ/m2) is a

magnitude of order larger than for the fibres. Acetone, DCM and DMSO all

show higher levels of interaction with the carbon black than water. The liquids

show similar levels of confidence intervals except for the DMSO which was

substantially higher. This could be partly due to a difference in the ampoule used

as discussed earlier.

Table 4.3 Immersion enthalpy for carbon black (error represents 90 %
confidence intervals)

- h (J/g)

Water 4.3 ± 0.2

Acetone 7.3 ± 0.2

DCM 6.3 ± 0.2

DMSO 9.0 ± 1.4

Figure 4.11 shows the heats of immersion for different concentrations of the

resin components in DCM and acetone solutions. Due to evaporation effects,

most of these measurements were only performed once. Where measurements

were repeated with the same concentration of solution, 90 % confidence intervals
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were as high as ± 1.2 J/g. The increase in error associated with the measurements

could be due to uncertainty in the solution concentration or concentration

gradients near the carbon black surface. Since the errors involved are so large, it

is not possible to determine any trends from this data other than a general

decrease in the enthalpy as the concentration increases.

Figure 4.11 Heats of immersion for carbon black in DCM solutions of the
resin components.

Figure 4.12 shows the heats of immersion for different concentrations

(referenced to the MY molecule) of the dilute resin in DCM. Again errors were

higher than measurements with the pure liquid (± 0.8 J/g) and it is difficult to

determine a trend. Measurements with DMSO as the solvent did not improve the

results. Figure 4.13 shows the heats of immersion for different concentrations of

the MY epoxy and the DDS curing agent in DMSO. The errors involved for the

DDS averaged ± 1 J/g while for the MY they averaged ± 2.5 J/g. Further work

was not carried out using this method as it is likely that concentration gradients

are too influential and the technique itself may not be sensitive enough.
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Figure 4.12 Heats of immersion for carbon black in DCM solutions of the
resin.

Figure 4.13 Heats of immersion for carbon black in DMSO solutions of the
resin components.
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4.5 Discussion

As discussed in Chapter 1, immersion calorimetry has been applied to many

different carbon surfaces including activated carbon fibres [5] but never to fibres

with surface areas as small as these. Previous research by several different

authors using immersion calorimetry found the non-dispersion interactions on

oxygen free carbon surfaces to be approximately 35 mJ/m2 [1-3,6,7]. The

surfaces investigated included various carbon blacks, and graphite. While

difficult to perform, measurements of the surface energy of carbon fibres using

contact angle analysis have been undertaken in the literature. For example Ho et

al., measured the contact angles of water on PAN fibres using the modified

Wilhelmy technique [8]. The fibres had a N2 BET surface area of 0.22 m2/g and

18% surface oxygen. They found the dispersion contribution to the surface

energy was 38.6 ± 1.7 mJ/m2; the overall surface energy being 49.8 ± 2.8 mJ/m2

[8]. Bradley et al., also used the Wilhelmy technique on PAN fibres with oxygen

levels between 3 and 9 % [9]. The dispersion contribution ranged between 48.2

and 50.8 mJ/m2 [9]. The contact angle determined values of the dispersion

contribution are close to the calorimetric determined values; reinforcing the

argument that the immersion enthalpies measured in this investigation on fibres

cannot be absolute.

Due to the surface areas involved with fibres, the calorimetry signal is heavily

influenced by experimental factors. The calorimeter has a resolution of 10 μW.

For the water interaction on an untreated fibre, approximately 0.14 Joules were

measured in 1500 seconds giving an average heat flow of 93 μW which is very

close to the limits of detection. As discussed earlier in addition to the heat of

interaction between the sample and the liquid, the calorimeter signal also

includes the rush-in effect, the heat of breaking the ampoule, and the heat of

vaporisation of the immersion liquid [10,11].

Previous researchers have investigated the effect of the ampoule break.

Morimoto and Kiriki filled ampoules with different pressures of nitrogen, and

nitrogen saturated with water [10]. They also filled ampoules with different
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masses of water. The heats of immersion for breaking the ampoules in water

were then recorded. It was found that the ampoules that were filled with only

nitrogen produced lower heats than the ampoules with water saturated nitrogen.

The difference of 0.21 J was attributed to the endothermic heat of vaporisation of

the water. Extrapolating from the graph of water mass vs. heat of immersion, the

heat of breaking was found to be – 0.28 J. By subtracting these values from the

total heat for an empty ampoule, - 0.53 J, the rush-in effect was calculated to be -

0.46 J which was higher than theoretically expected. They concluded that the

rush-in effect must also include dynamic interactions such as collisions between

molecules in the immersion liquid as well as collisions with the walls of the

ampoule and friction effects [10].

In Figure 4.7, the mass of water was plotted against the heat of immersion and a

straight-line relationship was found. The slope of the line is proportional to the

vaporisation energy and the rush-in effect, and the intercept represents the

average heat of breaking [10,11]. From Figure 4.7, the average heat of breaking

for the type 2 ampoules was -0.019 J, substantially lower than in reference [10].

However, it is recommended that the heat of the ampoule breaking is less than -5

mJ [11]. The large heat of breaking will add significantly to the final signal.

From Morimoto and Kiriki’s work, it is evident that the rush-in effect is the

largest factor affecting the heat measured [10]. The rush in effect and the

endothermic vaporisation energy increase with increasing ampoule size. Since

the trends of immersion enthalpy with oxygen in Figure 4.4 and Figure 4.5

overestimate the level of non-specific interaction on an oxygen free carbon

surface, it is likely the rush-in effect plays the most significant role in these

measurements as well.

In the calorimetric work by Bradley et al., Equation 4.1 was found to describe

the heat of carbon black immersion in water ( )( 2OHH , in mJ/m2), where

[O]T is the XPS measured surface oxygen concentration (at. %) [3].
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Equation 4.1
  3514)( 2  TOOHH

In the case of untreated carbon fibres (O = 2.42%), the enthalpy of immersion

would be 68.9 mJ/m2 or 0.08 J/g, a magnitude smaller than what was measured.

For a fibre sample weighing ~0.3 g, this would result in a measured heat of –

0.02 J, the same magnitude as the average heat released on the glass break. The

first set of ampoules showed significant differences between fibres with different

oxygen levels in water and the trend was reproduced using the second type of

ampoules. It is likely that the trends are real.

Calorimetry work by Rodríguez-Reinoso et al., showed a linear relationship

existed between the amount of CO desorbed from the surface of activated

carbons (measured by TPD) and the heat of immersion in water [12]. Detailed

functional group analysis was not performed but the CO groups were attributed

to anhydrides, phenol groups and quinones. Surfaces that desorbed more CO, i.e.

had more anhydrides etc. present, showed greater heats of immersion. The

relationship between the heat of immersion and the desorbed CO2, attributed to

carboxyl groups, showed a steep increase followed by levelling off; i.e. surfaces

with high levels of carboxyl groups showed similar immersion enthalpies [12].

The work in reference [12] also showed that the enthalpy of immersion in water

was not affected by porosity. Further investigation into the porosity and surface

area of the UV/O3 treated fibres would be useful in the future.

Calorimetry using solutions of resin and resin components was not successful.

Denoyel et al., noted that pure liquids must be used for calorimetry in order to

avoid concentration gradients unless stirring can be achieved [11]. The success of

an adsorption process from solution can also be determined by measuring the net

concentration of the solute left after interaction [11]. The resin components could

not be used in calorimetry in their pure form due to either their natural state

being unsuitable (e.g. powder) or the viscosity being too high. Another

investigation on PAN fibres reported in the literature used inverse gas
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chromatography to investigate interactions between fibres, and polar and non-

polar liquids [13]. The dispersive surface energy component for fibres examined

with long chain hydrocarbons, such as hexane and heptane, varied between 74

and 80 mJ/m2 [13] which is similar to calorimeter determined values for toluene

on carbon black [1]. Water was not used as a polar probe but acetone, ethyl

acetate, methyl glycidyl ether and butyl oxirane were used as resin analogues

[13]. Methyl glycidyl ether has low viscosity [14] and could be used in

calorimetry measurements on fibres if reproducibility can be improved.

4.6 Conclusions

Immersion calorimetry using water, toluene, and isopropanol has been used to

characterise electrochemically treated and UV/O3 treated fibres. Measurements

with water showed increasing heats of immersion with increasing surface oxygen

content while the non-polar toluene probe was unaffected. The signals were

found to be largely influenced by the rush-in effect and heat of ampoule

breaking. Due to the small heats involved, it was not possible to get absolute

values for the dispersion and polar components. Carbon black was examined as a

model surface for the fibres using XPS, TEM, SEM and Raman. Differences in

elemental composition and level of graphitization were found. The carbon black

was still used as a model surface to examine whether calorimetry could be used

to investigate carbon surfaces with dilute solutions of resin, as only proof of

concept was required. Large variations in signal were found when dilute

solutions of resin and resin components were used as probe liquids. This was

attributed to concentration gradients in the solution.

Calorimetry using pure probe liquids of differing polarity or resin analogues

could be useful for carbon fibres if issues of reproducibility can be resolved. This

could involve a combination of improvements such as: increasing the sensitivity

of the calorimeter, increasing the mass of fibres used, decreasing the mechanical

energy released during ampoule break, and increasing the reproducibility of

ampoule manufacture.
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5 Temperature Programmed Desorption

5.1 Overview

The adsorption properties of untreated and treated carbon fibres were

investigated using TPD as described in Chapter 2. Probes of decreasing polarity

were used with electrochemically treated fibres of differing surface oxygen level.

Fibres treated with UV/O3 for 4 hours were also examined. TPD spectra were

acquired of several mass fragments after fibres were dosed with an alcohol.

Qualitative analysis on the spectra shape as well as quantitative analysis of peak

area was performed and the amount of alcohol desorbed was correlated to surface

oxygen level. Alcohol desorption from the fibre surface appears to be second

order in nature indicating a re-combinative desorption type. The surface uptake

as determined from alcohol-desorption was found to increase with the level of

oxygen on the surface of the fibres giving further evidence for a dissociative

adsorption. Electrochemically treated fibres (3B) were heat treated up to 1073 K

(800 oC) and further adsorption studies using methanol and propan-1-ol were

performed. XPS was used to examine the effect of the heat treatment on the

surface groups. Heating to 1073 K reduced the overall level of surface oxygen as

evidenced by the change in the carbon functional groups. The level of alcohol

adsorption was also shown to decrease with increasing heat treatment; i.e. with

decreasing surface oxygen.

5.2 Interactions with Alcohols

All fibres were heated to 423 K (150 oC) under vacuum to remove reversibly

adsorbed water and other weakly adsorbed contaminants, unless otherwise

indicated. Upon cooling to room temperature the base pressure in the system

was typically 4 x10-5 Pa. Fibres were dosed with 1 µL of the alcohol and allowed

15 minutes for equilibrium before any excess and weakly bound alcohol was

pumped out. The fibres were degassed until the pressure reached approximately

the pre-dosing level. The time for degassing varied between 30 minutes and 2

hours depending on the alcohol. Butan-1-ol took the longest time to degas
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following dosing. Table 5.1 presents the number of moles in 1 l of liquid for the

series of alcohols used. Because the surface area of the carbon fibre is about 1

m2/g and a densely packed carbon hexagonal structure with 0.25 nm carbon to

carbon distance contains about 5 x 1018 sites/g (one site is taken as half the total

number of surface carbon sites because the van der Waals radius of the adsorbed

alcohol is larger than the 0.25 nm distance), the number of alcohol molecules

used is enough for surface saturation. In other words the analysis of the results

will assume that surface coverage is not affected by the amount of molecules

exposed prior to TPD.

Table 5.1 Molecules of probe in 1 l of liquid and computed radius

Liquid kg/m3 g/mL MW g (x 10-4) moles molecules
Radius

(nm)*

Methanol 786.5 0.787 32 7.87 2.46 x 10-5 1.5 x 1019 0.22

Ethanol 785.1 0.785 46 7.85 1.71 x 10-5 1.0 x 1019 0.26

n-Propanol 800.0 0.800 60 8.00 1.33 x 10-5 8.0 x 1018 0.29

n-Butanol 809.7 0.810 74 8.10 1.09 x 10-5 6.6 x 1018 0.31

* Computed radius of alcohol molecules using B3LYP Density Functional Theoy (DFT) with

631+G* basis set as implemented by the Spartan 08 code.

All fibres dosed with an alcohol, showed desorption spectra similar to that shown

in Figure 5.1. The spectra show two desorption domains. The first domain

found at about 450 K consists of masses related to the alcohol (with the parent

ion mass of m/z 31 –CH2OH+) as well as its reaction products. The second

desorption above 600 K consists mainly of decomposition products of the

functional groups present on the fibre (water (m/z 18), carbon monoxide (m/z

28), and carbon dioxide (m/z 44)). Blank desorption spectra of fibres (i.e. where

there was no alcohol dosing) did not show the first desorption domain. We will

focus on the first peak for m/z 31 as it is the most representative of the alcohol-

fibre interaction since it is composed exclusively of products resulting from the

alcohol desorption/reaction and not from the decomposition of the function

groups on the fibre surface. When peak areas are discussed they will refer to

peaks in the 450 K region.
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Figure 5.1 TPD for methanol on 6B fibres showing selected m/z. Inset:
expanded lower temperature region.

Figure 5.1 presents the main desorption products of methanol on the 6B fibre. It

can be seen that methanol desorbs in the two domains as described earlier. The

first is composed of methanol and formaldehyde (see below for more details)
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while the second one contains, in addition, the decomposition products. In order

to understand the reaction, quantitative analysis of masses was conducted. Peak

areas were calculated for several mass fragments and the percentage desorbed

with respect to m/z 31 was calculated and compared against those of pure

molecular desorption. It should be noted that errors due to changes in base

pressures between experiments and peak integrations are typically 10 to 15%.

Table 5.2 shows the results of this calculation for m/z 29 for a selection of the

fibres. M/z 29 is the main fragment of aldehydes (-CHO) that can be formed by

dehydrogenation of the linear alcohol. It can be noted that for methanol, ethanol

and propan-1-ol a greater level of desorption of m/z 29 than that provided from

the alcohol occurs. Methanol shows the greatest deviation at over twice the

percentage expected. Butan-1-ol shows the least deviation, with levels being

approximately equal to those of the parent alcohol.

Table 5.2 Mass fragment yield (%) of m/z 29 with respect to m/z 31
Methanol Ethanol Propan-1-ol Butan-1-ol

UST 96 40 23 31

3B 121 49 28 33

6B 110 56 31 38

UV/O3 109 46 23 21

Theoretical 45 30 18 39

Deviation for
6B

65 26 13 -1

Ratio* 2.4 1.5 1.8 0.5

*Ratio of % measured to % expected m/z 29 for UV/O3 treated fibres.

In the case of methanol, formaldehyde is the corresponding aldehyde the

structure of which is shown in Figure 5.2. A likely formation mechanism of

formaldehyde from methanol (CH3OH) on an oxidized carbon surface is

presented in Equation 5.1, where VO is an oxygen vacancy, the subscript s

represents surface molecules or atoms and the subscript a represents adsorbed



molecules or atoms. Such a mechanism is described as oxidative

dehydrogenation [1]. Equation 5.2 shows the mechanism of oxidative

dehydrogenation for ethanol; similar reactions would occur for the higher

alcohols to a lesser extent.

Equation 5.1

ssa CHOCOHCH 3

Equation 5.2

ssa CHOCOHCHCH 23

Methanol showed the great

measured to expected aldeh

from propanol and butyrald

number of carbons in the chai

of one hydrogen atom and tw

group. This hydrogen atom,

making H2 that may, in a tran

and leave the two electrons

described by Equation 5.3 an

intermediate.

Equation 5.3

HCCCOCH ss  [ )(3

C

H H

O
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Osass VCOHHCHOHOCO  23

Osass VCOHCHOCHHOCOCH  2323

est degree of aldehyde production. The ratio of

ydes (acetaldehyde from ethanol, propionaldehyde

ehyde from butanol) decreased with increasing

n. The driving force for this reaction is the removal

o electrons in the alpha position from the functional

removed as hydride, will react with the hydroxyl

sition state, react with surface oxygen to give H2O

in the lattice to complete the reduction process as

d Equation 5.4, where the [ ]* indicates a reaction

HCCgHCHOHCCHO ssss  )(*]

Figure 5.2 Formaldehyde.
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Equation 5.4

Osssass VCOHOCHHOHC  22 ]*[

In the case of methanol all the three hydrogen atoms are equivalent, while in the

case of ethanol one of them is replaced by -CH3 that in addition to its steric effect

will have an inductive effect. As the number of carbons in the molecule

increases, i.e. as the structure and charge changes, the probability of

dehydrogenation occurring will also change. Figure 5.3 shows this trend for the

UV/O3 treated fibres. It is clear that increasing the chain, decreases the

dehydrogenation reaction. The other reaction that may also occur is a

dehydration reaction to make an olefin, except in the case of methanol where the

dehydration reaction may only occur via a bi-molecular interaction to make

dimethyl ether. Equation 5.5 shows the dehydration reaction for ethanol. To

monitor this reaction m/z 27 is the main pattern (CH=CH2), see Equation 5.5.

Table 5.3 lists the expected quantity of m/z 27 compared to m/z 31 (%) and the

percentage actually measured.

Figure 5.3 Ratio of % measured to % expected m/z 29 with carbon chain
length for UV/O3 treated fibres.
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Equation 5.5

    sassassa
COHHCHOCOHCOCOHHC  2425252

Table 5.3 Mass fragment yield (%) of m/z 27 with respect to m/z 31
Ethanol Propan-1-ol Butan-1-ol

UST 21 24 44

3B 21 29 47

6B -* 30 49

UV/O3 19 13 21

Theoretical 22 16 57

*Due to errors during data acquisition the peak area of m/z 27 could not be

computed with accuracy.

The percentages listed in Table 5.3 do not deviate, within experimental errors,

from those for the parent molecule suggesting that the dehydration reaction is

unfavoured compared to the dehydrogenation reaction.

Figure 5.4, Figure 5.5, and Figure 5.6 show the TPD spectra of m/z 31 for the

alcohol series on untreated fibres, 6B fibres, and fibres treated to 4 hours of

UV/O3. The order of desorption can be inferred from the TPD curves. All the

TPD curves acquired generally showed similar shapes; broadly symmetric curves

with a bias towards higher temperatures. The desorption is likely to be second

order; i.e. recombinative desorption. In other words, dissociative adsorption

occurs at room temperature as generalised in Equation 5.6.

Equation 5.6

ROH(g) + Os-Cs  RO-Cs + Os-H at 300K

Upon heating, energy is given to the adsorbate providing the activation energy

needed for the association of H, from Os-H, to the alkoxide. Because the
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molecular adsorption would be largely unstable it desorbs upon formation. The

tail at high temperature is due to stronger interactions occurring with the surface

at lower coverages. This is because at high coverage, lateral interactions

between adjacent molecules may result in slight destabilisation due to repulsive

interactions taking place.

5.3 Quantitative Analysis of the Series of Linear Alcohols on the

Series of Carbon Fibres

Figure 5.4 shows the m/z 31 TPD spectra for the series of alcohols desorbing

from the untreated carbon fibre surface. Figure 5.5 and Figure 5.6 show the same

results for the 6B and UV/O3 treated fibres. The UST fibres show very low levels

of m/z 31 desorption for methanol and ethanol compared to the 6B and UV/O3

treated fibres. As can be seen for the UST and 6B fibres, the intensity of the m/z

31 peak for butan-1-ol is greater than the intensity of the other alcohols. For the

UV/O3 treated fibres, propan-1-ol shows the largest peak in the raw data. The

general trend is for larger peaks to occur as the carbon chain in the alcohol

increases.

In the case of the 6B fibres in Figure 5.5, the second desorption domain is very

noticeable. The desorption of m/z 31 is concomitant with other masses resulting

from further reactions and decomposition of surface functional groups. While it

is beyond the scope of this study to understand these high temperature reactions

some additional information will be provided in Section 5.6
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Figure 5.4 TPD alcohol series for UST fibres, m/z 31.

Figure 5.5 TPD alcohol series for 6B fibres, m/z 31.
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Figure 5.6 TPD alcohol series for UV/O3 treated fibres, m/z 31.

Peak areas for the m/z 31 spectra were calculated by integrating the curve and

then applying a correction factor, as described in Chapter 2.12.1. Table 5.4 lists

the results for all the fibre and probe combinations.

Table 5.4 Integrated peak areas for m/z 31 for alcohol series per gram of
carbon fibre or approximately per m2 (BET surface area = ca. 1m2/g)

% O Methanol Ethanol Propan-1-ol Butan-1-ol

UST 2.4 8.0 x 10-9 2.8x 10-8 4.8 x 10-8 7.1 x 10-7

0.2B 4.0 2.4 x 10-9 2.0 x 10-8 7.0 x 10-8 1.8 x 10-7

3B 7.9 3.5 x 10-8 1.3 x 10-7 3.9 x 10-7 1.2 x 10-6

3A 8.5 8.9 x 10-9 4.4 x 10-8 4.0 x 10-7 1.5 x 10-6

6B 11.4 1.7 x 10-7 1.3 x 10-7 4.2 x 10-7 2.3 x 10-6

UV/O3 21.9 7.5 x 10-6 2.1 x 10-5 4.3 x 10-5 4.4 x 10-5
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As seen in Table 5.4, the surface uptake, as monitored by the main desorption

fragment of each alcohol, increases with increasing alkyl chain length of the

probe, which is opposite to what occurs in immersion calorimetry (liquid phase).

As the alkyl chain increases for an organic molecule, the dipole moment

decreases, i.e. the molecule becomes less polar [2]. For liquids, this would result

in less polar interactions occurring at the surface and dispersion interactions

becoming the dominant force, as seen in the calorimetry results in Chapter 4 [2].

In the case of gases however, the polarizability of the molecule becomes the most

important factor [3].

The chemisorption of a molecule on a surface can be treated as a series of bond

breaking and bond making processes. The adsorbate must have free electronic

density to make a bond with the surface [4] or empty electronic states to accept

electrons from the surface or both. Dissociative adsorption will therefore be

affected by how easily the bonds in the adsorbate break, how strongly it bonds to

the surface, and whether interactions occur between the adsorbed species [3].

How easily the bonds in a molecule break is related to the acidity which for gases

is determined by the polarizability of the molecule [3]. As the polarizability

increases, the acidity also increases, i.e. it becomes easier to dissociate the

hydrogen atoms from the molecule. Table 5.5 lists the polarizabilities of the

alcohols used in this study. The polarizability increases linearly with the number

of carbons in the molecule. Therefore as the chain length increases, the

likelihood of dissociation occurring increases. From Table 5.4 and Table 5.5, it

seems probable that the molecules with longer alkyl chains are being polarized

more than those with shorter chains. The alcohol molecules on the surface of the

fibre in the TPD experiments are most likely at monolayer coverage. Multilayer

formation can be described as resembling condensation of the adsorptive into a

liquid on the surface [5]. Therefore at the point of multilayer formation in

adsorption experiments, the adsorbate will act as a liquid and the dipole moment

will again be the determining factor in the level of interaction between the

surface and the adsorbate such as in calorimetry. Since the alcohol molecules on
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the fibre are only at monolayer coverage, the interactions between the molecules

and surface will be dominated by the polarizability and not the dipole moment.

Table 5.5 Polarizability of probes [6]
#C Polarizability (10-24 cm3)

Methanol 1 3.29

Ethanol 2 5.41

Propan-1-ol 3 6.74

Butan-1-ol 4 8.88

Figure 5.7, Figure 5.8, Figure 5.9, Figure 5.10, Figure 5.11, and Figure 5.12

show the trend in the peak area of m/z 31 per gram of fibre for the alcohol series

on the UST, 0.2B, 3B, 6B, 3A and UV/O3 treated fibres respectively . The

untreated and electrochemically treated fibres all showed exponential trends with

increasing alkyl chain while the UV/O3 treated fibres showed a linear trend with

chain length. The exponent of the trend lines for the electrochemically-base

treated fibres decreases with increasing treatment level suggesting the trend

becomes more linear as the oxygen on the fibre increases. While the

polarizability of the adsorbate will play a significant part in the amount adsorbed

on the fibre, from these figures it seems likely that other factors are influencing

the adsorption or desorption. For example, delocalised π-electron rich areas on

the carbon basal layers have been found to act as Lewis base sites on carbon

catalysts [7,8]. On an oxygen free fibre surface, a background level of adsorption

would still occur at the basal sites. As the oxygen level increases on the fibre

surface, the number of delocalised π-electrons will decrease and therefore the

number of these weak base sites will also decrease. Indeed for the base treated

fibres the Plasmon level in XPS measurements decreases, as shown in Table 5.6

presented below, suggesting less delocalised electrons exist. The decrease in

weak, background base sites with the increase in strong localised base sites could

account for the gradual change from the exponential to linear trend in peak area

of m/z 31 with increasing alkyl chain length although further investigation would

be of interest.
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Figure 5.7 Peak area of desorbing alcohol (measured by m/z 31) per gram of
UST fibres as a function of the number of carbons in the alcohol.

Figure 5.8 Peak area of desorbing alcohol (measured by m/z 31) per gram of

0.2B fibres as a function of the number of carbons in the alcohol.
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Figure 5.9 Peak area of desorbing alcohol (measured by m/z 31) per gram of
3B fibres as a function of the number of carbons in the alcohol.

Figure 5.10 Peak area of desorbing alcohol (measured by m/z 31) per gram
of 6B fibres as a function of the number of carbons in the alcohol.
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Figure 5.11 Peak area of desorbing alcohol (measured by m/z 31) per gram
of 3A fibres as a function of the number of carbons in the alcohol.

Figure 5.12 Peak area of desorbing alcohol (measured by m/z 31) per gram
of UV/O3 treated fibres as a function of the number of carbons in the
alcohol.

In addition to alkyl chain length, the peak area of m/z 31 recorded also increased

with increasing surface oxygen on the fibre as can be seen in Table 5.4 . Figure

5.13 shows the TPD spectra of m/z 31 for the untreated fibres and the 3B, 6B,
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and UV/O3 treated fibres after dosing with ethanol. Figure 5.14 and Figure 5.15

show the TPD spectra for mass fragments 27 and 29 respectively. The peaks of

m/z 27, 29, and 31 are small for the untreated fibres compared with the 6B fibres;

suggesting less adsorption occurs on the untreated fibres. These peaks are much

bigger for the UV/O3 than any other fibre, suggesting even greater uptake of

ethanol compared to the electrochemical treatments. This trend was seen for all

the alcohol molecules.

Figure 5.13 TPD of m/z 31 from ethanol desorption on UST, 3B, 6B and
UV/O3 treated fibres.



184

Figure 5.14 TPD of m/z 27 from ethanol desorption on UST, 3B, 6B and
UV/O3 treated fibres.

Figure 5.15 TPD of m/z 29 from ethanol desorption on UST, 3B, 6B and
UV/O3 treated fibres.
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5.4 Correlation with Surface Oxygen

Figure 5.16, Figure 5.17, Figure 5.18, and Figure 5.19 show the quantity of

methanol, ethanol, propan-1-ol and butan-1-ol desorbed per gram of fibre as a

function of surface oxygen respectively. The trends are best described by

exponential curves so the plots are provided on a logarithmic scale.

Figure 5.16 Logarithmic plot of the peak area of m/z 31 for methanol
desorption (arbitrary units) as a function of surface oxygen. Error bars
represent estimated 20% error in peak area measurements and maximum
95 % confidence interval for oxygen level.
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Figure 5.17 Logarithmic plot of the peak area of m/z 31 for ethanol
desorption (arbitrary units) as a function of surface oxygen. Error bars
represent estimated 20% error in peak area measurements and maximum
95 % confidence interval for oxygen level.

Figure 5.18 Logarithmic plot of the peak area of m/z 31 for propan-1-ol
desorption (arbitrary units) as a function of surface oxygen. Error bars
represent estimated 20% error in peak area measurements and maximum
95 % confidence interval for oxygen level.
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Figure 5.19 Logarithmic plot of the peak area of m/z 31 for butan-1-ol
desorption (arbitrary units) as a function of surface oxygen. Error bars
represent estimated 20% error in peak area measurements and maximum
95 % confidence interval for oxygen level.

It is very clear that more alcohol adsorbs on fibres with greater levels of oxygen.

The average functional groups for each treatment type were reported earlier in

Chapter 3.2.2. Table 5.6 lists the functional groups on the surfaces of the fibres

used in the TPD experiments as found from the peak fitting performed on the

XPS C1s spectra. Plotting the change in the percentage of functional groups

against the quantity of m/z 31 desorbed, produces exponential trends for all of

the oxygen containing groups with the exception of carbonate which did not

show a relationship. One possible reason is that unlike the alkoxides (R-Os) and

carboxylate (RCOOa) groups, the carbonate groups (OCOOa) may not allow for

adsorption as they are the most stable.
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Table 5.6 Functional groups on fibres used in TPD as determined by XPS
C1s

%

Treatment
UST

1

0.2B

1
3B 3 6B 1 3A 2

UVO

2

Graphite

(~284.6 eV)
74.8 73.5 73.3 73.4 75.6 64.9

Alkoxide/ phenolic/ ether

(285.8 eV)
14.2 14.5 14.9 16.0 13.8 17.7

Carbonyl/ quinine

(287.2 eV)
4.1 4.5 5.1 5.2 4.0 6.6

Carboxyl/ ester

(288.8 eV)
2.9 3.0 3.3 3.6 3.0 8.0

Carbonate

(290.6 eV)
1.4 2.3 0.9 1.2 1.1 1.0

Plasmon

(291.2 eV)
2.6 2.3 2.4 0.7 2.6 1.9

Carbon 94.8 93.1 89.6 86.7 89.2 73.9

Oxygen 2.4 4.0 7.9 11.4 8.5 21.9

How strongly the adsorbed species is held on the fibre can be estimated from the

temperature of peak desorption. If the strength of the bond increases, the

temperature of desorption should also increase. Figure 5.20 and Figure 5.21 show

the variation in temperature with level of oxygen present on the fibre surface for

propan-1-ol and butan-1-ol respectively. The trends for methanol and ethanol

were less clear and reliable so are not presented. There is a trend however for

propan-1-ol and butan-1-ol. This suggests the surface species from propan-1-ol

and butan-1-ol adsorption are more tightly bound when there is more surface

oxygen present.
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Figure 5.20 Temperature of peak desorption of propan-1-ol as a function of
surface oxygen. Error bars represent estimated ± 10 K error in temperature
and maximum 95 % confidence interval for oxygen level.

Figure 5.21 Temperature of peak desorption of butan-1-ol as a function of
surface oxygen. Error bars represent estimated ± 10 K error in temperature
and maximum 95 % confidence interval for oxygen level.
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5.5 Effect of Heating on Functional Groups

Untreated, 3B treated, and 6B treated fibres were heated without dosing and TPD

spectra were recorded. Figure 5.22 shows the TPD spectra for several mass

fragments of interest released from heated 3B fibres. The untreated and 6B fibres

showed similar spectra. Products desorb at about 800 K in one large peak

preceded by a shoulder at about 700 K.

Clear desorption of CO and CO2 is seen but in addition, desorption of m/z 31, 29,

42, and 14 is also seen. M/z 31 is the fingerprint of CH2OH+ species while m/z

29 could be from formyl radicals (CHO) and/ or ethyl radicals (CH3-CH2-). It is

possible that ketene (CH2=CO) is also being formed as shown by m/z 42 and 14;

although 42 can also be due to propene (CH3-CH=CH2) and 14 can be due to

nitrogen. Ketene is the main desorption product following the decomposition of

acetates (CH3CO2
-) on many surfaces [9]. The peak fitting of the XPS C 1s

spectra in Chapter 3 showed carboxyl groups were on the fibre surfaces which

could take the form of acetates.
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Figure 5.22 TPD spectra for blank 3B fibres heated to 1073 K (800 oC).
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Figure 5.23 and Figure 5.24 respectively show the amount of carbon monoxide

(m/z 28) and carbon dioxide (m/z 44) released from the fibre surfaces. The

untreated fibres were only heated up to 923 K (650 oC) while the 3B and 6B

fibres were heated up to 1073 K (800 oC). Heating beyond 1073 K was not

possible with the furnace available. As can be seen, the amount of CO and CO2

released increases with fibre treatment level, i.e. with the level of oxygen present

on the surface.

Comparing the data to the discussion in Chapter 2.12.1, it is possible to make

some general statements about the desorption. The peak temperature of CO

desorption is higher than that of CO2 as is seen previously by others [10-12].

Desorption of functional groups is not complete at 1073 K as evidenced by the

intensity of the spectra. The peak temperature of both CO and CO2 is lower for

the 6B fibres than for the UST fibres (marked by a dashed line on the graphs)

suggesting a different chemical composition on the fibres. This was visible in the

XPS data in Chapter 3. The wide desorption with multiple peaks indicates the

complexity of the desorption profile that originates from the removal of

functional groups. The objective of the heat treatment is to see into the effect of

removal of these functional groups on the adsorption of alcohols.

In order to monitor the decomposition products, ex-situ XPS measurements were

made on 3B fibres heat treated to 873 K (600 oC) and 1073 K. Peak fitting was

performed on the C 1s peak. Table 4.1 shows the percentage of functional groups

identified; it has been assumed that the 473 K heated fibres used in the TPD are

unchanged from the unheated fibres used in XPS. This assumption is based on

the fact that heating to this low temperature mainly affects reversibly adsorbed

water. XPS results indicate that the 1073 K treatment has resulted in a slight but

noticeable decrease in some of the functional groups, although the alkoxide

group remains unchanged. Table 5.8 shows the XPS elemental analysis. The heat

treatment has removed some oxygen and nitrogen from the surface of the fibres;

the surface oxygen has decreased over two fold upon heating to 1073 K.
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Figure 5.23 Carbon monoxide (m/z 28) released on heating selection of
fibres.

Figure 5.24 Carbon dioxide (m/z 44) released on heating selection of fibres.
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Table 5.7 % of the carbon functional groups as determined by XPS C1s on
heat treated 3B fibres

%

Temperature (K) 473 873 1073

Graphite

(~284.6 eV)
73.3 74.0 74.1

Alkoxide/ phenolic/ ether

(285.8 eV)
14.9 14.8 14.9

Carbonyl/ quinine

(287.2 eV)
5.1 5.3 4.3

Carboxyl/ ester

(288.8 eV)
3.3 2.1 2.6

Carbonate

(290.6 eV)
0.9 1.0 0.9

Table 5.8 XPS surface compositions (atomic % from computed areas of C1s,
O1s, N1s and Si2p peaks) for heat treated 3B fibres (estimated error ~10%)

Temperature

(K)

% Ratio

C O N Si O/C N/C O/N

473 89.6 7.9 1.8 0.7 0.09 0.02 4.39

873 92.6 5.0 1.7 0.8 0.05 0.02 2.94

1073 95.2 3.3 1.3 0.3 0.03 0.01 2.54

5.6 Effect of Heating on Alcohol Uptake

Following heat treatment up to 873 K, and subsequent removal of a sample for

XPS, the 3B fibres were dosed with methanol or propan-1-ol. The fibres were

then heated again up to 1073 K. The amounts of m/z 31 and several other mass

fragments desorbed were recorded. The dosing and measurement steps were then

repeated for methanol. For propan-1-ol, the fibres were heated directly up to

1073 K, avoiding the 873 K step.
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XPS shows the oxygen level on the fibres decreases with increasing heat

treatment. Figure 5.25 shows the TPD spectra of m/z 31 for the desorption of

methanol from the heat treated 3B fibres. The fibres heated to 473 K, i.e. those

only cleaned of physisorbed gases, showed greater levels of m/z 31 desorption

than the heat treated fibres. A second peak due to fibre decomposition starts at ~

600 K and is absent from the spectra of the heated fibres. This is probably

because the heated fibres have already had some functional groups removed that

would have otherwise contributed to further stabilization of the methanol. Table

5.9 shows the integrated areas for several mass fragments, uncorrected for mass

spectrometer sensitivity. The levels of m/z 31 desorption and hence methanol

adsorption corresponds to the levels of oxygen on the fibres as seen in section

5.4. The fibres with the highest level of oxygen, the 473 K fibres, desorbed

substantially more m/z 31 than the 873 and 1073 K heated fibres. Mass fragment

15 shows a similar trend and m/z 29 shows it to a lesser extent.

Figure 5.25 TPD of m/z 31 from methanol desorption on 473, 873, and 1073
K treated fibres.
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Table 5.9 Integrated peak areas per gram of carbon fibre for methanol
desorption from heat treated fibres

Temperature

(K) 15 18 29 31

473 4.2 x 10-9 -- 1.9 x 10-8 3.4 x 10-8

873 3.6 x 10-9 1.1 x 10-10 4.7 x 10-9 5.4 x 10-9

1073 2.6 x 10-9 1.9 x 10-9 6.9 x 10-9 4.8 x 10-9

Figure 5.26 shows the m/z 31 TPD spectra for the fibres dosed with propan-1-ol.

In this case, the 473 K heated fibres also show greater intensity in the m/z 31

peak than the 873 K and 1073 K heated fibres. Due to the shape of the peaks, it is

difficult to integrate the areas. An attempt was made however and Table 5.10

lists the results for several mass fragments, uncorrected for the mass

spectrometer sensitivity.

The heat treated fibres show less m/z 31 desorption than the 473 K fibres

suggesting that adsorption of propan-1-ol increases with increasing surface

oxygen. Similarly mass fragments 27 and 29 also decrease with increasing heat

treatment. Figure 5.27 and Figure 5.28 show the desorption spectra of several

mass fragments for the 873 K and 1073 K heated fibres respectively.



197

Figure 5.26 TPD of m/z 31 from propan-1-ol desorption on 200, 600, and 800
oC treated fibres.

Table 5.10 Integrated peak areas per gram of carbon fibre for propan-1-ol
desorption from heat treated fibres

Temperature

(oC) 14 16 18 27

473 -- 9.3 x 10-10 -- 7.9 x 10-8

873 7.1 x 10-9 3.7 x 10-9 2.5 x 10-9 3.3 x 10-8

1073 2.6 x 10-9 1.2 x 10-10 6.5 x 10-10 2.8 x 10-8

28 29 31 44

473 -- 7.3 x 10-8 2.5 x 10-7 --

873 1.1 x 10-8 2.7 x 10-8 6.7 x 10-8 -6.6 x 10-10

1703 5.4 x 10-9 2.7 x 10-8 1.1 x 10-7 6.1 x 10-10
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Figure 5.27 TPD spectra for 3B fibres heat treated to 873 K and dosed with
propan-1-ol.
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Figure 5.28 TPD spectra for 3B fibres heat treated to 1073 K and dosed with
propan-1-ol.
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5.7 Discussion

The TPD study of the series of C1 to C4 linear alcohols on carbon fibres

modified by electrochemical and UV/O3 methods has shown the following:

1. All products desorbed in two temperature domains. The first temperature

domain at 450-500K mainly consisted of the reactant desorption while the

second temperature domain (> 600K) mostly consisted of decomposition

products (e.g. CO, CO2, and ketene among others).

2. At the low temperature domain, a small fraction of the adsorbed alcohols

was dehydrogenated to the corresponding aldehydes. The extent of

dehydrogenation was inversely proportional to the number of carbon

atoms in the alcohol. The dehydration reaction to olefins was not

observed.

3. The surface uptake showed dependence on the nature of the alcohols; it

increased with increasing number of carbon atoms. This increase was co-

related to the increase in the acidity of the molecule in the gas phase

where the polarizability is the main factor.

4. The surface uptake also increased with increasing surface oxygen atoms.

This was understood as being due to the dissociative adsorption nature

whereby two sites are needed: one to accommodate the O atom of the

alcohols (surface carbon atom site) and the other to accommodate the

hydrogen ion of the alcohol (a surface oxygen site).

5. Heating the carbon fibre to 873K and 1073K resulted in a noticeable

decrease of surface oxygen as evidenced by the decrease of the XPS O1s

peak when compared to the XPS C1s peak. This decrease resulted in

reducing the surface uptake farther validating point 4 above.

A literature search reveals that TPD desorption of alcohol probes on carbon fibre

surfaces has not been reported on so there is limited work to compare these

results against. The blank TPD spectra, i.e. heated fibres that were not dosed with

alcohols, are similar to those in the literature, an example of which was presented

in Chapter 1.7.2, Figure 1.15. Adsorption of volatile organic compounds (VOC)



201

on carbon materials has been investigated in the literature [13,14]. VOCs are

known to cause health problems such as respiratory irritation and cancer, and

their removal from the environment is desirable [13]. Porous carbons are

generally used due to their large surface areas. For example, TPD investigations

of the adsorption of n-butanol, toluene, and butylacetate on activated carbons

(surface area ~1200 m2/g) were performed by Popescu et al., [14]. Figure 5.29

shows the desorption profile for butan-1-ol leaving the carbon surface. Only one

temperature domain is visible but it coincides with the first temperature domain

seen in this thesis. No information is given regarding the functional groups

present on the activated carbon which precludes a discussion on the absence of a

second, higher temperature, peak [14].

In the study by Popescu et al., [14] the heats of desorption for the toluene and the

butylacetate were only slightly greater than the heat of vaporisation for the pure

liquids and therefore the molecules were considered to be physisorbed. The heat

of desorption for n-butanol was found to be greater that the heat of vaporisation.

Temperature (K)

373 473 573 673 773 873 973 1073 1173

373 473 573 673 773 873 973 1073 1173

Figure 5.29 TPD spectra of butan-1-ol desorption and oxidation products
from a study on activated carbon surfaces [14].
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In one case the enthalpy of desorption was found to be 98.8 kJ/mol; more than

twice the enthalpy of vaporisation (43.7 kJ/mol). This suggests a reaction

occurred between the adsorbed butan-1-ol and the surface oxygen groups. The

authors found aldehydes, particularly formaldehyde (assigned to m/z 31) and

butyraldehyde (m/z 72), were produced as well as oxalic acid (m/z 90), formic

acid and ethanol (m/z 46) but they concluded further work was required to fully

understand the mechanisms involved [14]. This agrees with the findings

summarised in point 2 above.

Yi et al., also investigated VOC adsorption, looking at the adsorption of benzene,

toluene, methanol, and ethanol on activated carbon fibres by examining the

increase in weight of degassed fibres exposed to the VOC vapour [13]. Methanol

was seen to adsorb more than ethanol, unlike the results presented here (point 3),

however the vapour pressures were high and coverage was likely to be greater

than monolayer. The trend was attributed to differences in vapour pressure,

molecular polarity and molecule size. Mixtures of benzene and toluene showed

greater levels of adsorption than when each liquid was used pure suggesting

different adsorption sites were on the fibre. The authors proposed that as the

surface oxygen level increased, the fibre polarity increased thus more polar

molecules adsorbed on the surface. The activated fibres had surface areas of

~1700 m2/g and also a network of pores [13]. The gravimetric method applied by

Yi and co-workers is straight forward and does not rely on measuring the

desorption products, thus avoiding any ambiguity caused by dissociative

desorption, however characteristics are for a multilayer system.

In work undertaken by Andreu et al., gravimetric adsorption studies on untreated,

non-porous, carbon black showed similar trends to those summarised in point 3

in the adsorption isotherms for methanol, ethanol and isopropanol at low

pressures [2]. The isopropanol adsorbed the most on the carbon black while

methanol adsorbed the least. At increased pressures, the level of adsorption

changed; the methanol showing greater levels of adsorption than the isopropanol.

The point of change was approximately at the knee of the isotherm, i.e. the point
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of monolayer completion. After the monolayer was completed, multilayer

formation took place [2]. This furthers the argument that adsorption on the fibres

in this study is at monolayer coverage.

Carrott et al., also examined methanol adsorption on non-porous carbon blacks

gravimetrically [15]. BET areas were calculated from the adsorption isotherms.

The mean area associated with an adsorbed methanol molecule was found to be

much larger than the molecular area calculated from liquid density

measurements. Their results showed between one-in-eight to one-in-four of the

surface oxygen atoms were covered depending on the carbon type. This suggests

certain types of surface oxygen interact more strongly with the methanol, but

specific groups were not investigated [15]. In the results presented here, a direct

relationship between the peak desorption temperature and surface oxygen was

not found for methanol. This could be due to the peak temperature varying with

specific functional groups on the surface rather than total oxygen level. Further

investigation would be of interest.

Oxidative dehydrogenation and dehydration has been studied on carbon materials

of high surface areas for use as catalysts. Carrasco-Marín et al., examined the

catalysis of ethanol on activated carbons using gas chromatography (GC) in an

attempt to account for contradictions in catalysis mechanisms proposed in the

literature [7]. The activated fibres were oxidised to various levels and a He/

ethanol gas flowed over them. The resulting products were recorded by the GC.

On the unoxidised carbons, only dehydrogenation occurred; the sole product

being acetaldehyde. The oxidized carbons showed dehydrogenation and

dehydration with ethene, ether, 1,3-butadiene, and ethyl acetate being recorded in

addition to acetaldehyde. The level of dehydrogenation taking place increased

with increasing oxygen level on the fibre. The unoxidised carbons were mainly

basic in nature whereas the oxidised carbons were acidic as measured by Boehm

titrations [7]. Carrasco-Marín et al., concluded that dehydrogenation reactions

could occur on acid and basic sites but dehydration could only occur on acid sites

and the occurrence would increase with the total acidity of the surface. The
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catalysis was ascribed to carboxyl acids on the carbon surface [7]. As stated in

point 2 above, dehydrogenation was observed in this study but dehydration was

not. The complexity of the spectra could have masked any dehydration event that

took place or, as Carrasco-Marín et al. suggested, water produced from the

dehydrogenation reaction could have inhibited the dehydration process [7].

Work by Pittman et al., on electrochemically oxidised fibres showed adsorption

of toluene, ethanol and ammonia increased with increasing surface oxygen on the

fibres [16] as seen in this work (point 4 and 5). They used a gravimetric

technique to weigh the fibres while dosing them with a vapour [16]. This gives

further confidence in the quantitative analysis of alcohol uptake.

In addition to alcohol adsorption/desorption, other investigations using TPD

could be performed on carbon fibres. Damjanovíc and Auroux reviewed TPD as

a method to investigate the acid/ base properties of zeolites using ammonium and

other basic molecules [17]. The peak temperature of desorption is related to the

energy of acid sites on the zeolite while the area under the peak is related to the

total number of acid sites. Figure 5.30 shows example TPD spectra for ammonia

on two different zeolites. M/z 16 is normally used for quantification rather than

the parent peak (m/z 17) since it is heavily influenced by water [17]. The

zeolites have very different spectra suggesting different strengths of acid sites. It

is, however, not possible to determine the nature of the acid sites (e.g. Brönsted

or Lewis) without addition investigation such as inline infra-red characterisation

[17]. For example, Niwa et al., measured the amount of ammonia desorbing from

NH4β zeolite and an H-type zeolite as 1 mol/kg and 0.8 mol/kg respectively [18].

Two types of acid sites were assumed to exist based on the IR results; strong

Brönsted, and weak Brönsted and TPD data was fitted on this assumption.

Brönsted acid sites in zeolites are at hydroxyl groups that bridge Si and Al atoms

in the structure and their strength will vary with the layout of the zeolite. The

NH4β zeolite had a ratio of 0.14 weak to strong sites while the H-type zeolite had

a ratio of 0.46 [18]. Applying this method to carbon fibres could investigate the

exact nature of the strengths of function group-adsorbate interactions.
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Figure 5.30 Ammonia (m/z 16) TPD spectra for two different zeolites [17].

Physisorption could also be investigated by reducing the temperature of the

system to below room temperature. Zacharia examined the adsorption of

ethylbenzene (C8H10) onto graphite and carbon nanotubes using a liquid cryogen

to reduce the TPD system to 30 K and found benzene interactions on graphite

were mainly caused by van der Waal forces [19].

5.8 Conclusions

Temperature desorption spectroscopy has been used to investigate the chemical

nature of the surfaces of carbon fibres. Alcohol desorption from the fibre surface

appears to be second order in nature which means that the adsorption was

dissociative. Two main factors affected the linear alcohols adsorption on the

carbon fibre surface: (i) the number of carbon atoms present in the alcohol and

(ii) the amount of oxygen present on the surface. (i) The interactions between

the alcohols and the fibre surface are heavily influenced by the polarizability of

the alcohol molecules with longer chain alcohols behaving more acidic than

shorter chains. (ii) Increasing the level of oxygen on the surface of the fibres was

shown to increase the level of adsorption of alcohol groups as expected from an

acid (the alcohol molecules) -base (the surface oxygen atoms) type of interaction.

However the relationship between these two points was found to be more

complex. The extent of the increase in alcohol uptake with increasing chain

length was found to reduce with increasing oxygen level. This might be due to
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repulsive interactions which can be linked to preferential oxidation sites of the

carbon fibre at step edges and defects. The temperature of peak desorption

increased linearly with surface oxygen for propan-1-ol and butan-1-ol implying

the alcohols were more tightly bound with increasing oxygen. Overall the TPD

study showed the method to be promising for further examinations using alcohol

probe molecules to understand the surface properties of carbon fibres.
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6 Conclusions and Future Work

6.1 Conclusions

This thesis has examined the effects of different industrial electrochemical

treatments and UV/O3 treatment on the surface chemical composition and surface

structure of PAN-based HT carbon fibres using XPS, SEM, TEM, Raman and

BET surface areas. It also examined immersion calorimetry as a technique to

measure the surface energies of the fibres and fibre-resin interactions. Carbon

black was used as a model surface for examining the resin interactions where

dilute solutions of resin were used as the probe liquids. TPD was used to

investigate the adsorption of polar molecules on the surface of carbon fibres. The

results of this work are summarised below.

 Increasing the charge applied in the electrochemical treatments was

shown to increase the level of oxygen present on the fibre surface.

 UV/O3 treatments increased the O/C ratio with time from ~ 0.06 to a

saturation of ~ 0.30 after approximately 40 minutes treatment.

 Five minutes of UV/O3 treatment was shown to produce levels of oxygen

equivalent to the highest electrochemical treatment and fibre ageing did

not occur one month after treatment.

 UV/O3 treatments were found to increase the disorder of the surface but

not the bulk structure.

 The heat of immersion of treated fibres in water showed similar trends to

those reported in the literature; it increased with increasing surface

oxygen level while it remained unchanged for immersion in the non-polar

probe of toluene.

 Due to the small surface areas involved, the calorimetry signals were

found to be overshadowed by the rush-in effect and heat of ampoule

breaking and it was therefore not possible to measure surface energies.
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 Immersion calorimetry measurements with dilute solutions of resin and

resin components for carbon blacks showed too much variation due to

concentration gradients in the probe liquid.

 TPD spectra for the main mass fragment for each alcohol probe showed

two desorption peaks, one at ~450 K which was taken to be desorption of

the pure probe and the other in the 600- 700 K region which was taken to

be a mixture of desorbing alcohol, reaction products and decomposition

of surface functional groups.

 The desorption kinetics inferred from the shape of the first desorption

domain were best described as being second order.

 Dehydrogenation of the adsorbed alcohols to the corresponding aldehydes

occurred on the fibre surface but dehydration to olefins was not observed.

 Adsorption of the alcohols increased with increasing length of the carbon

chain in the alcohol. This was attributed to the polarizability of the

alcohol, and hence the alcohol acidity and probability of dissociation

occurring, increasing with increasing chain length.

 The relationship between alcohol adsorption and chain length changed

from exponential to linear with increasing surface oxygen suggesting a

complicated system that needs further investigation.

 The level of adsorption of any one alcohol increased exponentially with

increasing level of surface oxygen.

 The peak temperature of desorption, i.e. the bond strength between the

probe liquid and the fibre surface, increased linearly with increasing

surface oxygen for propan-1-ol and butan-1-ol.

Overall, this thesis has shown UV/O3 to be a promising treatment method for

altering the surface of carbon fibres. Immersion calorimetry and TPD have also

been shown to be promising techniques for the characterisation of carbon fibres

and further study into each method would be of considerable interest. TPD is of

particular interest as it uses relatively small quantities of fibres and has not been

used on carbon fibres in this way before.
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6.2 Future Work

UV/O3 treatment offers several advantages over the standard electrochemical

treatment including environmental benefits and improved processing times.

Further investigations into the exact nature of the treatment would be of interest.

Ideally a purpose built UV/O3 treatment unit could be created to treat fibres to

different levels of surface oxygen and BET surface area data, including pore

sizes, acquired. This would allow tracking of the development of the surface area

with treatment time. Mechanical tests on individually treated fibres and fibres

embedded in resins would show whether the UV/O3 treatments alter the fibre

strength and adhesion capacity.

Immersion calorimetry in pure liquids could prove useful for measuring surface

energies if either more fibres could be examined at once, or if the sensitivity of

the method could be improved. In order to perform immersion calorimetry

measurements using resin solutions, a stirring mechanism would be required to

remove uncertainties in the concentration gradient of the solution and

measurements of the solution concentration before and after immersion would

also be needed. In preference to this, liquids analogous to the epoxy resins could

be used although this would only be useful if the sensitivity issue was overcome.

The method of TPD investigation presented in this thesis has not been applied to

non-porous carbon fibres before. Here, it has been shown to be a very promising

technique to examine bond strength on fibres as samples of less than 1g in weight

produced measurable results. Further work using varying levels of surface

coverage, non-polar probes, and resin analogues would be of interest.

Varying levels of surface coverage could be used to calculate the activation

energy of desorption and would allow bond strengths to be estimated. Resin

analogues, such as methyl glycidyl ether, could be used to examine in-depth the

interactions of epoxy groups with surface functional groups. Using such

analogues and fibres with different surface chemistries, the exact nature and
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strength of the bond between the resin and the functional groups could be

identified from the peak temperature of desorption and XPS data.

Acidic or basic probes could be used to identify the exact number and nature of

acid/ basic sites on the fibre surface. Examining the effect of the delocalised π-

electrons on the basic nature of the fibre surface would be of particular interest to

help explain the change in the relationship between alcohol chain length and

level of alcohol adsorption. Non-polar probes could be used to examine the

dispersive interactions on the fibres.

Careful calibration of a system would allow quantitative measures of the

adsorption/ desorption system. Ideally insitu measurements by XPS or by a

calibrated mass spectrometer would allow the exact surface composition of the

fibres to be examined after heat treatment and the relationship between strength

of bond and exact surface functional groups examined.

Overall, this thesis has shown several promising avenues of research that will

hopefully help further the understanding of the bonding regime between carbon

fibres and resin matrices.
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