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Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. This paper discusses the tem-

poral aspects of the ARN model using robotic gaits as an example and com-

pares it with properties of Artificial Neural Networks. The comparison shows 

that the ARN based network has similar functionality.  
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1 Introduction 

When Artificial Intelligence (AI) researchers want to develop connectionist models of 

intelligence, it is only natural that they should look to the brain for inspiration. The 

result, of course, is the Artificial Neural Network (ANN). However, as discussed in 

this paper, there is an alternative, biologically inspired, connectionist paradigm based 

on the emerging field of Cellular Intelligence – the Artificial Reaction Network 

(ARN) [1].  

In recent years, researchers have become increasingly interested in the behaviors 

displayed by single celled organisms, in particular protists. These eukaryotes, display 

an astonishing array of complex behaviors. Some can avoid light with photo-sensitive 

spots; some actively hunt prey; while others can build protective shelters [2].  

These complex behaviors have led researchers to investigate how such traits of 

primitive intelligence might arise. Well known examples of such work are that by 

Nakagaki and Yamada, who demonstrated that the slime-mould Physarum 

polycephalum was able to solve a simple maze [3]. Similar research by Saigusa et al 

showed that this same organism was able to learn and change its behavior in anticipa-

tion of the next environmental stimuli [4].  

These high level behaviors are mediated by Cell Signaling Networks (CSNs) 

which, as this paper will discuss, are analogs to ANNs. Such networks are composed 

of interacting proteins within the cell’s cytoplasm that function to regulate virtually 

all cellular activity. 

The ARN is a new representation based on CSNs. This paper explores the ARNs 

ability to generate temporal oscillations in protein species – a common theme in 



CSNs. It discusses its similarities and differences to ANNs by comparing them in 

similar applications - specifically in the generation of robotic gaits. The aim of this 

research is firstly, to explore the mechanisms of cell intelligence in order to broaden 

understanding of intelligence in its widest sense as well as have possible applications 

in biological modeling. Secondly, to investigate the resulting representation in terms 

of its possible application for use as an AI technique. 

1.1 Mechanisms of Cellular Intelligence  

CSNs consist of different protein species, the interactions of which are shown by 

connecting lines in a similar way to a neural network. Via a system of complex mech-

anisms, CSNs adjust their set of protein activation levels to fine tune cellular activity 

appropriate to current conditions. An instantaneous set of these protein concentrations 

serves like a memory, containing an imprint of the current environmental state [5]. 

Individual spatio-temporal activation patterns of protein concentrations emerge from a 

multitude of low level interactions and result in a range of cellular responses and be-

haviors [6-8]. The network therefore represents cascades of numerous protein coupled 

interactions with topological features such as feedback loops and interconnectivity, 

forming highly complex systems [5, 8].  

Bray claims that the processing performed by individual CSN units is similar to 

Boolean and fuzzy logic and further speculates that these networked logical units can 

perform computational processing equivalent to a Turing machine [5]. Similar reports 

were documented by a number of other researchers [9-11]. 

Many researchers highlight the similarities between CSNs and ANNs [5-7, 12]. 

Bray, observes both networks are made up of highly connected parallel distributed 

units, where each unit simultaneously integrates and processes signals. Both are able 

to recognize patterns, and provide the correct response in the presence of noise and 

loss of units, and are therefore robust [5, 12]. One difference is that while simple tra-

ditional ANNs like the perceptron lack an explicit time dimension, CSN functionality 

incorporates this in a similar way to spiking neuron models. Bhalla notes that the high 

level cellular behavior is encoded by temporal spatial patterns of intracellular species 

generated in this way [12]. One such common motif is oscillating patterns, resulting 

from feedback structures and cyclic loops [8].  

2 The Artificial Reaction Network 

2.1 Techniques Used to Develop Model  

The ARN representation was designed to incorporate the previously discussed mech-

anisms of cell intelligence. Our previous paper provides a complete description, and 

verification of the ARNs accuracy and biological plausibility [1] 

There are many methods used to model biochemical reactions, some are very sim-

ple Boolean-based techniques, others complex quantum mechanical abstractions [13], 

here the two most relevant adopted techniques are described. The first is S-Systems; 

these have proven themselves accurate and provide a similar degree of system ab-

straction to an ANN. They comprise sets of ordinary differential equations (ODEs) 



that exploit a power law representation to approximate chemical flux [13]. Similarly 

to traditional rate law [13], each ODE is equal to the difference between two concep-

tually distinct functions; the first function includes all terms contributing to system 

influx, the second to decay. S-systems provide simple but accurate representations of 

temporal dynamics, including both steady and transient state. However, in their gen-

eral form, terms are highly coupled, and therefore are difficult to manipulate without 

interference.  

Like an ANN, Petri Nets (PNs) offer a modular approach. PNs are a graphical and 

mathematical modeling tool used to study processes characterized as parallel, distrib-

uted, concurrent, and asynchronous [14]. They are used extensively in several types of 

information processing, including modeling CSNs. Each PN is a networked structure 

of separate self-maintaining units called “places”, where movement between connec-

tions is defined by separate transitions, thus PNs exploit benefits of modularization.  

2.2 The Artificial Reaction Network Model 

The authors combined the continuous mathematical nature of S-systems, the modular 

properties of PNs, and weighted connections of ANNs. The ARN, as shown in Figure 

1, is a modular and expandable S-System. It comprises a set of connected reaction 

nodes (circles), pools (squares), and inputs (triangles). Each pool represents the cur-

rent available protein species concentration (avail) and each circle corresponds to a 

reaction unit, representing an interaction (reaction) between a numbers of proteins. 

For example, Figure 1 shows the reaction between species A and B to produce species 

C. Connections symbolize the flow of species into and out of reaction units and their 

weight (W) corresponds to reaction order. This structure can be compared to a percep-

tron, where the pools correspond to inputs, the reaction units to the weighted sum 

function, and these are joined together by weighted connections. Both are instances of 

highly connected parallel distributed networks, where units simultaneously integrate 

and process signals.  
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Where: 

A, B, C = Species Concentrations 

avail = available species concentration 

W = reaction order  

∆C = Change in species concentration C 

Kf  = Forward rate constant 

Kr  = Reverse rate constant 

∆t = time step 

 

Each reaction unit calculates flux (∆A/∆B/∆C) at ∆t as given by Equation (1), and 

is equal to an aggregate of connected contributing (incoming) pools and connected 

decay (outgoing) pools raised to n powers of weighted connections and multiplied by 

pseudo rate constants. This can be compared to the Sigma-pi ANN model, where the 



output depends on a function of the product of the inputs. Unlike the feedforward 

perceptron, species can flow in either direction, depending on the sign of the flux 

calculated by Equation 1. Dissimilarly to a perceptron, the ARN incorporates a tem-

poral dimension, where at time interval ∆t, each reaction unit’s temporal flux value is 

calculated, which then is used to update the current concentration values of each reac-

tion’s connecting pools. Thus the complete set of pool concentrations at time t corre-

sponds to the current state of the system. Euler’s approximation was adopted in favor 

of other evaluation methods because it supports modularization. Its disadvantage is 

that net error accumulates with every cycle; however by decreasing step size error is 

reduced. The intention however, is to characterize high-level system properties and 

thus requires only sufficient low level detail to represent its contributing mechanisms 

such as temporal dynamics and complex network topologies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. The Artificial Reaction Network (ARN) 

3 Experiments 

As previously discussed, complex mechanisms found in CSNs lead to stable temporal 

patterns of species concentrations, where each relates to a high-level behavior. One 

way to investigate the ability of the ARN to produce such temporal oscillatory pat-

terns is by applying it to generate those associated with robotic gaits. Furthermore, 

this allows comparison with similar results obtained using ANN models.  

Terrestrial locomotion of limbed animals is achieved by multiple phase locked pat-

terns of limb movements known as gaits. For example, depending on speed of loco-

motion and terrain, quadrupeds commonly walk, trot and gallop [15]. The gait phase 

is a value that ranges from 0 to 1 as the gait cycle proceeds. Therefore, the motion of 

each limb can be described relative to the gait phase. The ideal quadrupedal gaits are 

described by Dagg [15] and others [16], and are used as a standard for comparison 

here and similarly in other studies [17]. The walk gait is characterized where, each leg 

is a quarter cycle out of phase; in the trot gait each pair of diagonal limbs move half a 

cycle out of phase with one another. An ARN based robotic controller was imple-

mented, to produce trot and walk gaits of a simulated Lynxsmotion dual-servo quad-

ruped 2 (Q2) robot. The structure of the ARN controller was designed to include ab-
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stractions of regulatory mechanisms found in CSNs including inhibitory/excitatory 

reactions, cyclic loops, and feedback structures.  

3.1 The Robot and the ARN Controller 

Each robotic leg is controlled by two servo motors, one for each degree of freedom 

(DOF), where one raises the leg, the other turns it. Signals are sent by the ARN to 

each motor and control the angle of the rotor for each DOF, using a simple position to 

pulse width modulator interface circuit to control the servo. The physical structure 

and control are described in detail in other papers [18]. 

 

 

 

 

 

 

 

 

 

Fig. 2. The ARN based controller displayed contains 4 identically structured modules, a mod-

ule is shown surrounded by a dashed line. 

Figure 2 illustrates the structure of the ARN controller, it comprises four identical 

modules (a module is highlighted by a dashed line) each controlling the motors for a 

separate leg. Each module contains 3 reaction units, and 3 pools: A, B and C. Pool A 

controls the up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C 

controls the off period for both motors. The activity of pools is regulated by a series 

of excitatory and inhibitory connections between reaction units. These connections 

represent properties of specialized regulatory proteins common to CSNs such as en-

zymes. The connection weights were hardcoded using the same method as used in the 

Billard and Ijspeert model [19]. The entire structure is organized as a closed loop, 

allowing chemical species to be recycled to the first module, and thus generate a sta-

ble repeating temporal pattern. The type of robot gait is easily modified by a simple 

adjustment of the initial pool values. For example, by initializing a C pool, a walk gait 

will be generated, where the C pool chosen will determine the starting leg. Similarly, 

a trot gait is achieved by initializing 2 C pools within alternate modules. In this par-

ticular design, the value to which the C pool(s) are initialized determines the DOF 

angle and were set specifically for the physicality of the particular robot, although it 

can be freely varied.  

4 Results 

The ARN controller was considered to generate a specific gait if the relative phases of 

the respective oscillatory signals were within 2% of the standard gait cycle described 

previously. Higher values of 10% were used in other studies [17], and this was con-
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sidered reasonable due to the variation found in real animal gaits [20]. In each case, 

the controller first generates the U/D motor oscillation and on reaching the maximum 

value the B/F motor is initiated. As can be seen the walk gait results (Figure 3) show 

legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75 between limbs 

in clockwise order from FL leg. Similarly the trot gait shows opposite legs are half a 

cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both phase locked limb 

patterns match the standard, and compare well with other connectionist models. For 

example, Billard and Ijspeert present a CPG (central pattern generator) based neural 

controller for a quadrupedal AIBO robot, similarly with 2 DOFs for each leg [19]. 

Here, the network is composed of 8 coupled non-linear oscillators and each oscillator 

consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron implements 

an activation approximately as complex as the ARN reaction unit function. Thus the 

complexity of this network is equivalent to approximately 96 ARN reaction units.  

The oscillatory signals produced by this network for both walk and trot gaits show 

that the limb phases correspond to the standard and to those produced by the ARN. 

Similar correspondence is found in numerous other sources. For instance, Collins 

explores a CPG based neural controller for a quadrupedal robot with 1 DOF per limb, 

and compares 3 types of activation function models. The controller is composed of a 

network of 4 coupled non-linear oscillators [17], where each oscillator controls a sep-

arate limb. The reported limb phases correspond to the standard, although those re-

ported for the trot were within 10% of the ideal, whereas the ARN matches the stand-

ard for both gaits. Each model has approximately twice the complexity of the ARN 

reaction unit and, unlike the ARN, all require a pulsing signal to drive the network. 

Overall the ARN affords a higher degree of accuracy where fine tuning of parameters 

can provide finite levels of control. For instance, the frequency of oscillations and 

therefore the gait speed can be easily modified by uniform increase or decrease of Kf 

of each unit. Similarly, independent variation of speed for each type of DOF (B/F or 

U/D) or for a specific leg DOF motor. These results show the ARN has a very similar 

capacity in robotic control tasks as other connectionist robotic controllers, where it 

can offer reduced computational complexity. Furthermore the ARNs ability to pro-

duce gaits illustrates how cellular networks can generate the complex temporal pat-

terns necessary in emergent behavior.  

 

 

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor, 

dashed lines are back/forward motor. Legs move independently in order: FL (front left), FR 

(front right), RR (rear right), RL (rear left).  



 

Fig. 4. ARN controller output for trot gait. Diagonal legs are in phase and operate in order FL 

and RR then FR and RL. 

5 Conclusions 

The ARN is a bio-inspired connectionist representation based on mechanisms found 

in CSNs that contribute to the emergence of cell intelligence. One feature of CSNs is 

the ability to generate high level behavior by regulating temporal activation patterns 

of its component proteins. The ARN was tested as a means to artificially produce 

similar pattern regulation, and its potential applicability was explored. Here an ARN 

based control system was designed to exploit topological features such as negative 

feedback, and cycles found in real CSNs. The controller was applied to produce the 

temporal oscillatory patterns associated with quadrupedal trot and walk gaits. The 

results confirmed the ability of the ARN to regulate temporal oscillating patterns with 

applicability in robotic control. These results are in good correspondence with ANN 

models, where both generate very similar spatial temporal patterns. A significant 

number of parallels between ARNs and ANNs were highlighted, suggesting the na-

ture of cell intelligence may not be that different from neural intelligence. These simi-



larities highlight the potential of single celled organisms to produce complex behavior 

similar to that produced by a neural network. This will be explored further, in particu-

lar by generating more complex temporal patterns, regulating composite behavior and 

chaotic components. 
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