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Abstract. The Artificial Reaction Network (ARN) is a bio-inspired connection-

ist paradigm based on the emerging field of Cellular Intelligence. It has proper-

ties in common with both AI and Systems Biology techniques including Artifi-

cial Neural Networks, Petri Nets, and S-Systems. In this paper, properties of 

temporal dynamics and pattern recognition are combined within a single ARN 

control system for a quadrupedal robot. The results show that the ARN has sim-

ilar applicability to Artificial Neural Network models in robotic control tasks. 

In comparison to neural Central Pattern Generator models, the ARN can control 

gaits and offer reduced complexity. Furthermore, the results show that like 

spiky neural models, the ARN can combine pattern recognition and control 

functionality in a single network.  

Keywords: Artificial Neural Networks, Artificial Reaction Networks, Cellular 

Intelligence, Biochemical Networks 

1 Introduction 

Researchers have become increasingly interested in the array of complex behaviors 

displayed by the simple, commonly unicellular organisms called protists. Some can 

avoid light with photo-sensitive spots; some actively hunt prey; while others can build 

protective shelters [1]. Such complex behaviors have led researchers to investigate 

how such traits of primitive intelligence might arise. Well known examples of such 

work are that by Nakagaki and Yamada, who demonstrated that the slime-mould 

Physarum polycephalum was able to solve a simple maze [2]. Similar research by 

Saigusa et al showed that this same organism was able to learn and change its behav-

ior in anticipation of the next environmental stimuli [3]. These high level behaviors 

are mediated by Cell Signaling Networks (CSNs) [4]. Such networks are composed of 

interacting proteins within the cell’s cytoplasm. Several researchers have highlighted 

the processing capabilities of these networks and similarities between Artificial Neu-

ral Networks (ANNs) [4-8]. For example, it has been demonstrated that such net-

works can perform Boolean and fuzzy logic and are equivalent to a Turing machine. 

Furthermore CSNs contain topological features such as feedback loops and intercon-

nectivity, thus forming highly complex systems [9].  



The overall aim of our research is twofold. Firstly, to continue exploration of our 

previously developed connectionist representation of CSNs- the Artificial Reaction 

Network (ARN) [10], in terms of its possible application in AI. Secondly, to investi-

gate and elucidate mechanisms that contribute to high level behavior or “cell intelli-

gence”, which may help in the understanding of intelligence in its widest sense.  

This paper investigates the ability, of the ARN like a CSN, to combine pattern 

recognition and control within a single networked system. A complete control system 

for a quadrupedal robot is explored, where the ARN responds dynamically to input 

patterns by generating the associated temporal pattern or “gait”. The results are com-

pared with those of similar Artificial Neural Network (ANN) models.  

The paper is structured as follows: the first section provides an overview of the 

ARN representation; this is followed by experimental details and results, and finally 

conclusions. 

1.1 The Artificial Reaction Network Representation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Fig. 1. The Artificial Reaction Network (ARN)  

A brief summary of the ARN model is given below. A full account is provided in our 

previous paper [10]. The ARN, as shown in Figure 1, is a connectionist representation 

of a CSN, and is structured in a similar way to an ANN. It comprises a set of connect-

ed reaction nodes (circles), pools (squares), and inputs (triangles). The inputs are ex-

ternal and constant, each pool represents the current available protein species concen-

tration (avail) and each circle corresponds to a reaction unit, representing an interac-

tion (reaction) between a number of proteins. Figure 1 shows the reaction between 

species A and B to produce species C. Connections symbolize the flow of species into 

and out of reaction units and their weight (w) corresponds to reaction order. Flux 

(∆A/∆B/∆C) at ∆t is given by Equation (1). This is derived from the standard Rate 

Law equation [11], and is equal to the aggregate of connected incoming pools and 

connected outgoing pools raised to n powers of weighted connections and multiplied 

by rate constants. At time interval ∆t, each reaction unit’s temporal flux value is cal-

culated using Euler’s approximation as shown in Equation 1. This value is then used 
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to update the current concentration of each reaction’s connecting pools. Thus, the 

complete set of pool concentrations at time t, corresponds to the current state of the 

system.  
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Where: 

A, B, C = Species Concentrations                 W = reaction order (weight)              

avail = available species concentration        Kf  = Forward rate constant                

∆C = Change in species concentration C     Kr  = Reverse rate constant        

2 A Complete ARN System for Robotic Control 

By means of their CSNs, cells are able to dynamically recognize and respond to envi-

ronmental patterns [4]. The response is to update the spacio-temporal activations of 

intracellular species, which in turn encode the high level behavior of the cell [4, 8]. In 

the following experiments the computational properties and AI applications of such 

behaviors are explored using a quadrupedal robot. 

A single ARN system was created, as shown in Figure 2 and is functionally divid-

ed into 3 components: pattern recognition, control, and a connecting network. This 

section first discusses the setup, function, and results of each component separately 

before providing the results for the overall system. 

2.1 Control Component 

The control component is responsible for generating particular temporal patterns, 

which correspond to robotic gaits. Terrestrial locomotion of limbed animals is 

achieved by multiple phase locked patterns of limb movements known as gaits. For 

example, quadrupeds commonly walk, trot and gallop [12]. The gait phase is a value 

that ranges from 0 to 1 as the cycle proceeds, and thus each limb can be described 

relative to the cycle. The ideal quadrupedal gaits are described by Dagg [12] and oth-

ers [13], and are used as a standard for comparison here and similarly in other studies 

[14]. The walk gait is characterized where each leg is a quarter cycle out of phase 

with each other. In the trot gait each pair of diagonal limbs move half a cycle out of 

phase with one another. Here, the ARN control component was implemented, to gen-

erate the trot and walk gaits of a Lynxsmotion dual-servo quadruped 2 (Q2) robot. 

Each robotic leg is controlled by two servo motors, one for each degree of freedom 

(DOF), where one raises the leg, the other moves it. Further details of the robot legs 

are given by Toth and Parker [15]. Signals are sent by the ARN to each motor and 

control the angle of the rotor for each DOF, using a simple position to pulse width 

modulator interface circuit to control the servo. The ARN control component is 

shown in Figure 2 and consists of two copies of the same network- one for walk, the 

other for trot (each labeled). It comprises four identical modules (one module is 



shown enclosed in a dotted line), where each controls the two motors (one for each 

DOF) of a separate leg.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. The complete ARN control system comprising 3 smaller network components: Pattern 

recognition, Connection and Control. 

A module comprises 3 reaction units, and 3 pools: A, B and C. Pool A controls the 

up/down (U/D) motor, Pool B the back/forward (B/F) motor and Pool C controls the 

off period for both motors. Pool activity is regulated by a series of excitatory and 

inhibitory connections between reaction units and represents properties of specialized 

regulatory proteins common to CSNs such as enzymes. The entire structure is orga-

nized as a closed loop, thus chemical species are recycled to the first module, and 

generate a temporal oscillatory pattern. The network structure and parameters were 

hardcoded so that the outputs could be directly compared with other published work 

on similar Central Pattern Generators (CPGs). However, there is no reason why con-

nection weights cannot be set using an Evolutionary Algorithms as will be shown 

later. The gait produced by this network is modified by adjustment of the initial pool 

values. For example, initializing one C pool generates a walk gait, where the C pool 

chosen will determine the starting leg, and the value determines the angle to which the 

leg is raised (the DOF angle). Similarly, a trot gait is achieved by initializing 2 C 

pools within alternate modules. The output for the walk subunit is displayed in Figure 

3, and shows legs are a quarter cycle out of turn, with phases of 0.0, 0.25, 0.5, 0.75 

between limbs in clockwise order from front left (FL) leg. Similarly, the trot gait re-
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sults were half a cycle out of turn with phases respectively of 0.0, 0.5, 0.0, 0.5. Both 

phase locked limb patterns match the standard, and compare well with other connec-

tionist models. For example, Billard and Ijspeert present a CPG (central pattern gen-

erator) based neural controller for a quadrupedal AIBO robot with 2 DOFs for each 

leg [16]. The network is composed of 8 coupled non-linear oscillators and each oscil-

lator consists of 6 leaky integrator neurons (total of 96 neurons). Each neuron imple-

ments an activation approximately as complex as the ARN reaction unit function. 

Thus the complexity of this network is equivalent to approximately 96 ARN reaction 

units. Similar correspondence is found in other sources. For instance, Collins explores 

a CPG based neural controller for a quadrupedal robot with 1 DOF per limb, and 

compares 3 types of activation function models. The controller is composed of a net-

work of 4 coupled non-linear oscillators [14], where each oscillator controls a sepa-

rate limb. These models produce gaits within 10% of the standard, whereas the ARN 

matches the standard for both gaits. Each model has approximately twice the com-

plexity as the ARN reaction unit, and all require a pulsing signal to drive the network.  

 

Fig. 3. Output generated by ARN controller for walk gait. Solid lines are legs up/down motor, 

dashed lines are back/forward motor. Legs move independently in order: FL, FR, RR, RL. 

2.2 Pattern Recognition Component 

The pattern recognition component serves as the interface between the environ-

ment and the ARN system. Here external concentrations are processed, where particu-

lar patterns switch off or on robotic gaits through the connecting network. The net-

work was trained to recognize 3 patterns, each comprising 4 inputs (triangles 0-3) and 

these were associated with 4 output values. Each pattern comprised values of either 

0.1, representing low concentration or 1 corresponding to high concentration. This 

component (shown in Figure 2) consists of 4 inputs, 7 pools, and 7 reaction units or-

ganized into 2 layers. The associated output generated corresponds to the steady state 

values of the final layer of pools (squares 3-6). The input and associated output pat-

terns are given in Table 1. A genetic algorithm (GA) was used to train the network to 

associate the required outputs before being connected to the other components. In this 

GA a population of 100 solutions was randomly initialized, where each comprised a 

complete set of network parameters including the forward and reverse rates for each 

unit and the weights for each connection. Due to its temporal properties, the network 

was run for 100 cycles (a cycle ends when the complete set of pools are updated once) 

in order to obtain steady state output values. The solution fitness was then calculated, 

where fitness was the error on output. The least fit half of the population was discard-



ed, and the remainder was subject to rates of 0.4 single point crossover and 10% uni-

form mutation and trained to the target error value of 0.01. On completion of training, 

the network was able to associate all 3 patterns within the target error. Although there 

is not room for a full comparison, multilayer perceptron ANNs (MLPs) [17] produce 

comparable results. However, MLPs lack an explicit time dimension, whereas the 

ARN processes continuous inputs over a time period.  

Table 1. Patterns applied to the pattern recognition network and their outputs (output is the 

input to connection component). Connection component output and expected gait generated. 

Pattern Pattern 

Recognition 

Network 

Input Pool 

No. 

Pattern 

Recognition 

Network 

Input Value 

Connection 

Network Input 

Pool No. 

Connection 

Network Input 

Value  (also output 

of the pattern 

ecognition 

network)  

Connection 

Network 

Output Pool 

No. 

Connection  

Network 

Output 

Value 

Gait  

1 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 

2 1 2 0 5 0 Trot 

3 0.1 3 0 

2 0 0.1 0 0 4 0 Walk 

1 1 1 0 

2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 

3 0 1 0 1 4 1 Inhibit 

Walk 1 0.1 1 1 

2 0.1 2 1 5 1 Inhibit 

Trot 3 1 3 1 

2.3 Connection Component and Results for the Complete System 

The connecting module functions to process the output from the pattern recognition 

network, and produce a signal which switches off/on the required gait. This module 

comprises 6 pools and 2 reaction units, as shown in Figure 2. Each input (pools 0-3), 

is linked directly to a corresponding output pool of the pattern recognition network 

(pools 3-6). Essentially the network operates as two parallel Boolean AND gaits, 

where a value of 1 at pools 0 and pool 1 outputs a value of 1 at pool 4, as will a value 

of 1 at pools 2 and 3 output a 1 at pool 5.  

Table 2. Pattern applied to the network and expected durations of gaits. 

Pattern Walk ARN 

Network 

Trot ARN 

Network 

Start Time End Time Duration 

2 On Off 0 210 210 

1 Off On 210 440 230 

2 On Off 440 560 120 

1 Off On 560 700 140 

3 Off Off  700 800 100 

 

Two negative feedback connections between the connecting network and both ARN 

control system sub units (shown as dashed line connections) are responsible for 

switching between the gaits. Therefore if a value of 1 is output at pool 4, it will inhibit 

all the reaction 2’s of the ARN trot subunit, thus stopping the trot gait from being 

generated. Conversely if a value of 0 is output at pool 4 the trot will be generated. In 

the same way pool 5 controls the switching on/off of the walk control subunit. Table 1 



shows the input, and associated output of this component and the range of behaviors 

that should be generated in response to particular outputs. The complete system was 

tested to confirm its ability to both generate the correct behavior and automatically 

transition between the behaviors in response to firing input patterns 0-3. The time 

periods in which patterns were applied, and the expected output states are shown in 

Table 2. As shown in Figure 4 the on/off periods of both trot and walk gaits are in 

agreement with the expected durations displayed in Table 2 with a slight transitional 

delay, in order: walk, trot, walk, trot, off. The gait transitions are now compared with 

the same models used to compare the ARN controller, and gait phases in section 2.1. 

The results given for the Billard and Ijspeert model [16], show smooth transitions 

from walk to gallop in approximately 4 leg cycles. The ARN similarly transitions 

from walk to trot smoothly within 1 leg cycle. In the Collins paper [14], gaits transi-

tion quickly within approximately 2 leg cycles, whereas the transitions are very irreg-

ular in contrast to the ARN and the Billard and Ijspeert model.  

 

 

Fig. 4. The output of the complete ARN control system over 800 seconds. 

3 Conclusions 

The ARN is a bio-inspired connectionist representation based on properties and 

mechanisms found in CSNs that together result in emergent behavior or “cell intelli-

gence”. A complete ARN based control system was constructed to dynamically re-

spond to external patterns, where each pattern triggers a specific gait of a quadrupedal 

robot. This system was designed to exploit topological features found in CSNs includ-

ing negative feedback, and cycles. It was demonstrated that the ARN, like a CSN, is 

capable of both recognizing patterns and controlling overall behavior in a single net-

work. With the exception of spiky models few ANNs can easily achieve this func-

tionality, and thus the ARN provides an alternative in similar applications. The gait 

phases and transitions compared well with CPG neural controllers and showed that 

the ARN has application in similar robotic control tasks where it can offer lower 



computationally complexity. These experiments illustrate how a CSN might perform 

the complex processing associated with the high level behaviors displayed by single 

celled organisms. Furthermore it shows that abstractions of both neural networks and 

CSNs operate in similar ways, and have comparable functionality. Thus this work 

illustrates a close relationship between emergent neural intelligence and emergent cell 

intelligence.  

In future work, it is intended to further explore the AI applications of the ARN, in-

cluding more complex networks that can recognize patterns and control simultaneous 

behaviors. 
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