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Abstract

Bayesian network (BN) structure learning from data has been an active research

area in the machine learning field in recent decades. Much of the research has con-

sidered BN structure learning as an optimization problem. However, the finding of

optimal BN from data is NP-hard. This fact has driven the use of heuristic algorithms

for solving this kind of problem.

A major recent focus in BN structure learning is on search and score algorithms. In

these algorithms, a scoring function is introduced and a heuristic search algorithm is

used to evaluate each network with respect to the training data. The optimal network

is produced according to the best score evaluated. This thesis investigates a range

of search and score algorithms to understand the relationship between technique

performance and structure features of the problems.

The main contributions of this thesis include (a) Two novel Ant Colony Optimiza-

tion based search and score algorithms for BN structure learning; (b) Node juxtapo-

sition distribution for studying the relationship between the best node ordering and

the optimal BN structure; (c) Fitness landscape analysis for investigating the different

performances of both chain score function and the CH score function; (d) A classifier

method is constructed by utilizing receiver operating characteristic curve with the

results on fitness landscape analysis; and finally (e) a selective off-line hyperheuristic

algorithm is built for unseen BN structure learning with search and score algorithms.

In this thesis, we also construct a new algorithm for producing BN benchmark

structures and apply our novel approaches to a range of benchmark problems and

real world problem.

Keywords: Bayesian Network, Search and Score Algorithm, Ant Colony Op-

timization, Node Juxtaposition Distribution, Fitness Landscape Analysis, Off-line

Hyperheuristic, Receiver Operating Characteristic
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Chapter 1

Introduction

Bayesian networks (BNs) are probabilistic graphical models which are used to repre-

sent knowledge about uncertain domains. The theoretical basis of BN is derived from

the centuries-old Bayesian probability theory [Stigler, 1986]. The framework of a BN

includes directed acyclic graphs (DAG), whose nodes represent random variables and

whose edges represent conditional dependencies to the corresponding nodes [Heck-

erman, 1999] [Jensen, 1996]. From the late 1980s [Pearl, 1988] [Neapolitan, 1990],

BN structure learning has been an attractive area of research in data mining. It has

been proved that the BN structure learning from data is NP hard [Chickering, 1996].

With the problem complexity increasing, for large data size either in the number

of instances, or the number of attributes, automatically constructing a BN structure

presents a challenge for machine learning. In recent decades, learning BN structure

from data has been often treated as an optimization problem. The purpose of this

optimization is to seek a structure which can maximize a statistically defined score.

In this thesis, we first propose two novel approaches for BN structure learning.

One of them is ChainACO algorithm, which is based on a chain model structure

combining with Ant Colony Optimization (ACO) technique to search a best node

ordering (with best Chain score fitness). This node ordering will give a reduced

search space for K2 greedy algorithm to seek a BN structure. Another algorithm
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is K2ACO, which utilizes ACO to evolve a structure that maximizes a statistically

defined score, the CH score. We introduce standard benchmark problems for testing

these two novel approaches and comparing with other two existing algorithms which

are based on Genetic Algorithms.

We then conduct comparative analysis on these proposed algorithms using node

juxtaposition distributions for studying relationships between the best node ordering

and the optimal BN structure. We also introduce fitness landscape analysis for deeply

investigating the performance of two scoring functions in this project. The results

of fitness landscape analysis give us valuable inspiration for algorithm selecting on

unseen problem structure learning. Finally, with the results from above research, we

utilize receiver operating characteristic curve to construct a classifier method. This

classifier method helps us to build a selective off-line hyperheuristic algorithm for

unseen BN structure learning with search and score algorithm.

1.1 Thesis Outline

The whole thesis is divided into seven chapters.

Chapter 2 introduces the background of this research. It first reviews the BN

problem, particularly the BN structure learning. It then goes on to review the existing

BN structure learning algorithms, especially the search and score algorithms. It

also includes a brief depiction of topological node ordering and probabilistic logic

sampling for use in later chapters. Finally, it gives a summary of standard benchmark

problems which are referred to throughout the thesis.

Chapter 3 proposes two approaches based on ACO with K2 greedy search algo-

rithm, ChainACO and K2ACO. It indicates the details of each algorithm first and then

describes the properties of the ACO metaheuristic in both ChainACO and K2ACO

approaches. The chapter then looks at the experimental design and result analysis of

the two new algorithms ChainGA and K2GA algorithms.
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Chapter 4 This chapter investigates the performance of search and score algo-

rithms using node juxtaposition distributions.

Chapter 5 This chapter takes advantage of fitness landscape analysis around the

optimal solution to investigate the performance of two score functions, Chain score

and CH score with benchmark problems.

Chapter 6 builds an off-line hyperheuristic algorithm for unseen BN structure

learning with search and score algorithm.

Chapter 7 collects the original works in this thesis and draws conclusions and

discusses future possible research directions which could proceed from these findings.



Chapter 2

Literature Review

Bayesian Network (BN) structure learning from data has become an attractive and

active research area and has been attracting considerable interest over the last few

decades. In this chapter, we will give a review of BN structure learning and explore

the background to our research from some existing BN structure learning algorithms.

This mainly includes scoring functions, search and score algorithms based on evolu-

tionary computation techniques, Genetic Algorithm and Ant Colony Optimization.

The chapter also includes the introduction of topological node ordering, hyperheuris-

tic algorithms and probabilistic logical sampling which will be used for algorithm

evaluation and experimental data generation. The chapter concludes with a review

of eight standard benchmark structures which will be used in the experiments de-

scribed throughout the subsequent chapters.

2.1 Bayesian Network

2.1.1 Terminology

In Table 2.1, we describe the symbols used in this thesis. One special thing to be noted

is that we consider the terms ”node” and ”variable” ,”edge” and ”arc” interchangeably

in the following chapters of the thesis.
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Table 2.1: Symbols used throughout the thesis

symbol symbol meaning

D Data set studied
N Number of points in data set i.e. |D|
X,Y,Z, . . . One dimensional random variables
x, y, z, . . . The corresponding values of variables X,Y,Z, . . .
n The size of node set
E Set of edges of a BN
m Number of edges of the BN i.e. |E|
(G,P) Bayesian network, consisting of directed acyclic graph and parameters
Pai Set of parents of variable Xi

Pai j Set of values for value assignment j of each member of the set of parents Pai of Xi

ri Number of values of the discrete variables Xi

qi Number of configurations of values of the set of parents of Xi

2.1.2 Introduction to Bayesian Network

In probability theory, statistics and machine learning, a graphical model (GM) [Jor-

dan, 1999] [Murphy, 2001] [Bishop, 2006] is a graph that represents dependencies

among random variables. Probabilistic Graphical Models (PGMs) or probabilistic

networks [Koller and Friedman, 2009] [Borgelt et al., 2009] is one kind of GM useful

for reasoning with, or representing knowledge under uncertainty. Two general prob-

abilistic networks are Markov networks and Bayesian networks (BNs). PGMs with

undirected edges are generally called Markov networks. Markov networks are pop-

ular in fields such as statistical physics and computer vision [Edwards, 2000] [Koller

and Friedman, 2009] [Korb and Nicholson, 2010]. PGMs with directed acyclic graph

(DAG) are generally called BNs. In mathematics and computer science, a DAG is a di-

rected graph with no directed cycles. Each node Xi in a DAG represents a variable and

the arc represents dependency between these variables [Heckerman, 1999] [Jensen,

1996] [Daly and Shen, 2009] [Tsamardinos et al., 2006a].

For a given set of variables X = {X1,X2, . . . ,Xn}, a BN is composed of two aspects:

(1) a network structure G. Each variable of G has a finite set of states, and each



2.1 Bayesian Network 6

edge represents the direct dependency between two variables;

(2) a joint probability distribution (JPD) over the random variables Xi(i = 1, 2, . . . ,n).

According to the structure of a DAG in a BN, the JPD normally factorizes into a prod-

uct of conditional probability distributions (CPD). In particular, given a structure G,

the JPD for X is defined as equation (2.1)

P(X) =

n∏
i=1

P(Xi|Pai) (2.1)

Here, Pai indicates the set of parents of node Xi, and P(Xi|Pai) shows the CPD of each

node.

To deeply understand the above definition, a simple example of BN is introduced

in Figure 2.1 [Murphy, 1998].

Figure 2.1: A simple Bayesian Network with Binary Variables

We suppose all variables in this structure are binary, i.e., each variable has two

possible values denoted as T(true) and F(false). For a given BN problem, in addition

to the structure graph, it is necessary to specify the parameters of this model. We

use Conditional Probability Tables (CPT) to specify and understand the CPD of each

variable. Take the node WetGrass (W) as an example. This variable has two parents,

Sprinkler (S) and Rain (R), but one ancestor, Cloudy (C). From this relation, we can

assume that the WetGrass is only dependent on Cloudy through Sprinkler or Rain.

We see from equation (2.1) that the CPT of P(C), P(S|C), P(R|C), P(W|S,R) should be

specified. The details of the values are shown in Table 2.2a– 2.2d.

A BN is a complete model for the variables and their relationships. It can be used

to answer probabilistic queries about them. For example, we can use information of
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Table 2.2: Conditional Probability Tables

(a) P(C)

P(C = F) P(C = T)
0.5 0.5

(b) P(S|C)

C P(S = F) P(S = T)
F 0.5 0.5
T 0.9 0.1

(c) P(R|C)

C P(R = F) P(R = T)
F 0.8 0.2
T 0.2 0.8

(d) P(W|S,R)

S R P(W = F) P(W = T)
F F 1.0 0.0
T F 0.1 0.9
F T 0.1 0.9
T T 0.01 0.99

some variables to obtain the probabilities for other variables. This is a most common

task when using BN and is called probabilistic inference. This process can be expressed

as given values (prior probabilities) for some variables and a set of query variables,

to compute the posterior distribution over the query variables. In the example of

Figure 2.1, suppose we have observed that the grass was wet. Which reason is more

likely for it: raining or sprinkler? We can answer this by computing the posterior

probability of each explanation through Bayes’ rule as follows ( Here, 1 represents T,

and 0 represents F ):

P(S = 1|W = 1) = P(S = 1,W = 1)/P(W = 1) = 0.430 (2.2)

P(R = 1|W = 1) = P(R = 1,W = 1)/P(W = 1) = 0.708 (2.3)

We can get these probabilities by using the chain rule of probability. For instance,

P(W = 1) =
∑
c,r,s

P(C = c,S = s,R = r,W = 1) (2.4)

From the values of posterior probability in each event, we can see that the most

possible reason for the grass is wet is raining. The likelihood ratio for two reasons,

raining and sprinkler is 0.708/0.430 = 1.647.
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BN structure has the inherent characteristics for representing the probabilistic de-

pendencies between variables with a large degree of uncertainty. The ability of BNs to

perform reasoning tasks using both graph and probability theories has spread its us-

age for various applications. BNs have been widely applied in a range of areas. These

include statistics, machine learning, data mining and the artificial intelligence commu-

nities. BNs have became a useful tool for researchers. Some real world applications

are: modeling knowledge in bioinformatics, computational biology [Friedman et al.,

2000], marketing (Customer clustering, Market segmentation) [Battiato et al., 2010],

Finance/Banking (Credit scoring, Fraud detection ) [Neil et al., 2008], information

retrieval [de Campos et al., 2004], Healthcare (Diagnostic expert systems, Microarray

analysis) [Lucas et al., 2004] [Kabli et al., 2008] [Nikovski, 2000] [Rudini M. Sampaio

and Silva., 2008] and weather forecasting [Abramson et al., 1996].

2.1.3 Bayesian Network Structure Learning

In order to fully know and comprehend the structure of BNs and thus fully repre-

sent the JPD of all variables contained in it, both the structure and the parameters

of CPD associated with each variable Xi and its corresponding parents need to be

learned from data. Normally, the process of estimating the unknown condition-

al distribution including parameters from data is called parameter learning. Some

classical approaches for parameter learning are likelihood approach [Aldrich, 1997],

expectation-maximization algorithm [Dempster et al., 1977], etc. The other process

is called structure learning. The problem of learning BN structure can be stated as:

given a training set of data D = {D1,D2, · · · ,Dn}, find a BN structure G of the DAG

that best explains D [Margaritis, 2003].

Learning BN structure from data is NP-hard [Chickering, 1996] [Cooper, 1990].

It is known that the number of possible structures grows super-exponentially with

the number of nodes, and so evaluating all possible structures is infeasible in most

practical domains, where the number of variables is typically large. BN structure
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learning is computationally expensive. Robinson [Robinson, 1973] has proved that the

number of possible structures grows as O(n!2(n
2)) for a problem with n variables. For

example, the number of possible structures is 25 for problems involving 3 variables,

29,281 for 5 variables and 3,781,503 for 6 variables.

The research of finding appropriate methods for recovering BN structure from

large datasets is an area that has gained importance in recent years and is now

widespread. Traditional search algorithms have limitations both in space and time

for BN structure learning. A large number of improved approximation approaches

for structure learning have been introduced in recent years.

These algorithms are commonly classified into two main areas: methods based on

conditional independence(CI) tests, and methods based on search and scoring metrics.

The CI approaches perform a qualitative study to estimate whether certain conditional

dependence exists between the variables in the domain. A network is then built to

represent the observed dependencies and independencies as far as possible. These

dependency relationships are usually measured through statistical or information

theory tests. Measures such as Pearson’s product moment correlation coefficient,

the χ2-test and mutual information (MI) are often used [Pearl, 2000] [Glymour and

Scheinnes, 2000] [Campos and Huete, 2000] [Cheng et al., 1997]. The algorithm BNPC

[Cheng et al., 1997] applied a qualitative analysis of mutual information between the

variables in the studied field to build a structure G. Tests of conditional independence

are equivalent to determine a threshold for mutual information between couples of

involved variables. However, these algorithms have some shortcomings [Campos

and Huete, 2000] [Cheng et al., 1997]. In the condition of an insufficient number of

cases describing the observed domain, the statistical tests of independence are not

reliable. The number of tests to be independently carried out to cover all the variable

is huge. Since CI tests are computationally expensive and may be unreliable, people

try to avoid CI tests with large condition-sets and use as few CI tests as possible.

The search and score approach is more popular, which takes the BN structure
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learning as an optimization problem. It attempts to search for the best structure in the

space of possible structures, in combination with a predefined score metric measuring

the fit of each structure to the training data. Thus, metrics must be developed to score

the candidate structures. The scoring metric introduced to evaluate a network G with

respect to dataset D here, is a statistically motivated scoring function. This metric is

described as [Cooper and Herskovits, 1992]:

ScoreB(G : D) = P(G|D) (2.5)

In a search and score algorithm, the search method attempts to get the maximum

value of (2.5). By using Bayes’ law, the above formulation can be expressed as:

ScoreB(G : D) = P(G|D) =
P(D|G)P(G)

P(D)
(2.6)

In this formulation, the main part is the P(D|G), for P(D) > 0 and P(G) is the prior

probability. To calculate P(D|G), the Bayesian approach averages over all possible

parameters, weighting each by their posterior probability:

P(D|G) =

∫
P(D|G,p)P(p|G)dp (2.7)

then for multinomial local probability distributions, the Bayesian score will be in

[Cooper and Herskovits, 1992]:

P(D|G) = P(G)
n∏

i=1

qi∏
j=1

Γ(N
′

i j)

Γ(Ni j + N′

i j)

ri∏
k=1

Γ(Ni jk + N
′

i jk)

N′

i jk

(2.8)

here, P(G) means the prior probability of the graph G. n is the number of discrete

variables in the dataset. qi denotes the number of possible different instances in

the parents Pai of the variable Xi can take. Ni jk denotes the number of cases in the

dataset D in which Xi takes value k of its ri possible values when its parents Pai

have their j-th configuration of values. Ni j is the sum of all Ni jk for all values Xi can

take. N
′

i jk > 0(k = 1, 2, . . . , ri) are the hyper-parameters of the Dirichlet distribution



2.1 Bayesian Network 11

[Larrañaga et al., 1996]. N
′

i j is the sum of all N
′

i jk for all values Xi can take. Γ(.) is

the Gamma function, Γ(c) =
∫
∞

0 e−uuc−1du. It should be noted that if c is an integer,

Γ(c) = (c − 1)!.

The most frequently search approaches applied in search and score algorithms are

local search methods [Buntine, 1991] [de Campos et al., 2003] [Heckerman et al., 1995]

[Cooper and Herskovits, 1992]. However, with the increasing of data size and search

space, other more powerful heuristic search techniques have been introduced, such

as Genetic Algorithms (GAs) [Larrañaga et al., 1994] [Wong et al., 1999], Simulated

Annealing [Wang et al., 2004], Ant Colony Optimization (ACO) [Daly and Shen,

2009] [Pinto et al., 2009], Markov chain Monte Carlo [Castelo and Boutilier, 2001],

PSO [Shibata et al., 2011] [Du et al., 2005], and Estimation of Distribution Algorithms

(EDAs) [Blanco et al., 2003] [Romero et al., 2004].

Most of these algorithms employ the search space of DAGs. A range of other

alternative search spaces are usually used in algorithms on BN structure learning.

These spaces mainly focused on: the space of node orderings [Larrañaga et al., 1996]

[de Campos and Puerta, 2001] [Kabli et al., 2007], the space of BN equivalence classes

[Daly and Shen, 2009] and the space of possible edge incidence matrices [Pinto et al.,

2008a] [Pinto et al., 2009].

2.1.3.1 Scoring Functions on Bayesian Network Structure Learning

The general idea of a Bayesian scoring function is to evaluate the posterior probability,

through the known knowledge of prior probability distribution to the possible net-

works G, conditioned to data D, that is, P(G|D). For all possible structures, the term

P(D) here has the same value, so for comparative purpose, we only need to evaluate

the value of P(G,D). Moreover, as the probability value of P(G,D) is less than 1, it is

easier to compute in the format of logarithmic space, so in real application, the scor-

ing function P(G,D) is always replaced by the value log(P(G,D)). The most common

scoring metrics defined in search and score algorithms include the BDeu [Buntine,
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1991], BIC [Schwarz, 1978], AIC [Akaike, 1970], CH metric [Cooper and Herskovits,

1992] and Minimum Description Length (MDL) [Yang and Chang, 2002] [Heckerman

et al., 1995]. Here, we introduce some of them:

Cooper and Herskovits [Cooper and Herskovits, 1992] introduced the first used

scoring function the CH score. It is a particular case of Bayesian Dirichle (BD) score.

BD score is derived from some assumption of the network parameters distribution

[Heckerman et al., 1995], such as multinomiality, lack of missing values, parameter

independence, parameter modularity, and uniformity of the prior distribution of the

parameters given the structures.

BD(G,D) = log(P(G)) +

n∑
i=1

qi∑
j=1

(log(
Γ(N

′

i j)

Γ(Ni j + N′

i j)
) +

ri∑
k=1

log(
Γ(Ni jk + N

′

i jk)

Γ(N′

i jk)
)) (2.9)

In (2.9), once the BD score with the uninformative assignment N
′

i jk = 1, it is defined

as CH score function:

gCH(G,D) = log(P(G)) +

n∑
i=1

qi∑
j=1

[log(
(ri − 1)!

(Ni j + ri − 1)!
) +

ri∑
k=1

log(Ni jk!)] (2.10)

here, ri is the number of possible values assignments Xi has. In both (2.9) and (2.10), the

term log(P(G)) is quite common to assume a uniform distribution so that it becomes

a constant and can be removed in real applications.

BDe is another variant of BD score. On an assumption of equivalency of likelihood

is presented, this score has the advantage of preventing a particular configuration of a

variable Xi and of its parents Pai from being regarded as impossible. Buntine [Buntine,

1991] proposed a particular case of BDe score, called the BDeu score,

BDeu(G,D) = log(P(G)) +

n∑
i=1

qi∑
j=1

(log(
Γ( N

′

qi
)

Γ(Ni j + N′
qi

)
) +

ri∑
k=1

log(
Γ(Ni jk + N

′

riqi
)

Γ( N′
riqi

))) (2.11)

which appears when

P(Xi = xik,ΠXi = ωi j|G) = 1
riqi

,
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This score only depends on one parameter, the equivalent sample size N
′

.

BIC, AIC and MDL scores belong to information-theoretic scoring functions. They

are based on compression:

• The score of a BN G is related to the compression that can be achieved over the

data D with an optimal code induced by G.

• Shannon’s source coding theorem establishes the limits to possible data com-

pression.

In this compression, the score of BIC is defined as

BIC(G|D) = log(P(G)) +

n∑
i=1

qi∑
j=1

ri∑
k=1

Ni jk log(
Ni jk

Ni j
) −

1
2
|B| log N (2.12)

Here, |B| =
∑

qi(ri − 1) denotes the network complexity. It takes into account the

complexity of the model and the complexity of encoding data related to this model.

2.1.3.2 K2 Algorithm for Structure Learning

K2 greedy search algorithm, proposed by Cooper and Herskovits [Cooper and Her-

skovits, 1992], is one of the most widely-studied algorithms for recovering BN struc-

tures from data. K2 algorithm starts by assuming that all nodes are without parents

(i.e. independent), after which in every step it adds nodes incrementally to the parent

set Pai of each node Xi(i = 1, 2, . . . ,n). Assuming a uniform prior for P(G), the follow-

ing function score (2.13) is used to measure the conditional probability of each node

and its parents. With new nodes added to the set of parent Pai , it should maximize

the function (2.13) which is the main part in CH score function .

g(Xi,Pai) =

qi∏
j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏
k=1

Ni jk! (2.13)

The process stops adding the nodes to the set of parents when the addition of a

single parent cannot increase the probability g(Xi,Pai). A pseudo code representation

of K2 algorithm is shown in Algorithm 1.
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Algorithm 1 K2 structure learning algorithm

1: Input: A set of n nodes, an ordering on these nodes, an upper u on the number of
parents a node may have.

2: Output: for each node, a printout of the parents of the node.
3: Begin K2
4: for i← 1,n do
5: Pai = φ

6: Pold = g(i,Pai)
7: ok to proceed=true
8: while (ok to proceed) and (|Pai | < max parents) do
9: let z be the node in Pred(xi) − Pai that maximizes g(i,Pai ∪ z);

10: Pnew = g(i,Pai ∪ z)
11: if (Pnew > Pold) then
12: Pold = Pnew;
13: Pai = Pai ∪ z;
14: else
15: ok to proceed=false;
16: end if
17: end while
18: Write Node: xi, parent: Pai

19: end for
20: End K2
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In K2 algorithm, the search space is composed of node orderings. This contributes

to the reducing of computational complexity. The node ordering imported for K2

algorithm greatly affects the performance of K2 algorithm. The proper ordering will

generate the correct result, the improper order will result in a poor result. The ordering

required in K2 algorithm is such that if the node Xi comes in advance to the node X j

in the ordering, then the node X j can not be as a parent to the node Xi.

The algorithm stops when any of the following conditions are met:

• The maximum number of parents for that particular node has been reached.

• There are no more legal parents to add.

• No additional parent improves the score.

2.2 Genetic Algorithm for Bayesian Network Structure Learn-
ing

2.2.1 Genetic Algorithm

In the field of Evolutionary Algorithms, GA is one of the most widely applied heuristic

algorithms which was first introduced by Holland in 1975 [Holland, 1975]. GA is

used to generate optimal solution to optimization problems through taking some

inspirations from natural evolution. These techniques include selection, mutation

and crossover.

In a GA, the search space is composed of a certain number of individuals, which

is represented by character strings. The purpose of a GA is to find the best individual

from search space to get the best objective function. The score function defined in GA

is to assess the quality of the possible solution.

The evolution of a GA usually works as follows [Whitley, 1994] [Goldberg, 2002]:

Initialization: It starts from an initial population constructed with randomly

generated individual solutions. The quality of this population is determined by all of

these individuals. The size of the initial population depends on the property of the
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problem, through hundreds to thousands of the potential solutions to cover the entire

range of the problem.

Selection: A certain percentage of the individuals are selected from the search

space to produce a new search space for later evolving. The individuals are chosen

according to a certain kind of select method, for example the fitness-based process,

stochastic universal sampling, tournament selection, etc.

Reproduction: Crossover and Mutation operations are applied to the chosen

individual solutions to form a new solution population. Both crossover and mutation

processes can help to expand the search space, avoid producing local optimal and

improve the average quality of the population.

The GA iterates the selection and reproduction processes. The termination condi-

tion of GA is either the generation number reaching the maximum number or when

a satisfactory score value has been achieved.

Algorithm 2 describes the pseudocode of the GA.

Algorithm 2 The pseudocode of Genetic Algorithm

1: Begin GA
2: Make initial population at random
3: while (termination conditions not met) do
4: select parents from the population.
5: produce children from the selected parents.
6: Mutate the individuals.
7: Extend the population by adding the children to it.
8: Reduce the extended population.
9: end while

10: Output: the best individual found.
11: End GA

GA has been utilised in solving real world problems in many fields with success,

such as bioinformatics [Imade et al., 2004], image processing [Naik and Murthy, 2006],

data mining [Minaei-Bidgoli and Punch, 2003] and real time systems [Wegener et al.,

1997].
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2.2.2 Genetic Algorithm for Bayesian Network Structure Learning

We have known that K2 algorithm has been applied over the space of node orderings

for BN structure learning problem. However, as a greedy search algorithm, it has

the disadvantage of converging to a local optimum. The advantages of GA make

it a feasible choice for solving the optimization problem in BN structure learning.

These advantages are mainly: (1) the initial individuals in the search space represent

several possible solutions. With the selection and iteration, it contributes to reduce

the risk of convergence on a local optimum. (2) The mutation operator can explore the

area of solutions, enlarge the robustness of GA to a single local optimum. For these

reasons, in recent decades, GA has already been successfully used in various forms on

BN structure learning problem. Some research as [Larrañaga et al., 1994] [Larrañaga

et al., 1996] [Wong et al., 1999] [Muruzabal and Cotta, 2004] [Acid and de Campos,

2003] [Brouard et al., 2008]. Among these works, we are mainly interested in the

research [Larrañaga et al., 1996], for in this thesis, we will use it as comparison to our

results.

In [Larrañaga et al., 1996], the authors proposed to search for the best ordering in

the space of node orderings using a GA. In this approach, the K2 algorithm is used to

retrieve the BN structure on each node ordering. In this thesis, we name it as K2GA

algorithm. The pseudocode of K2GA algorithm is shown in Algorithm 3.

2.3 Ant Colony Optimization for Bayesian Network Structure
Learning

2.3.1 Ant Colony Optimization

Ant Colony Optimization (ACO) [Dorigo and Stützle, 2002] [Gambardella et al., 2002]

[Dorigo et al., 1996] is a relatively new paradigm of natural inspired algorithms. In the

early 1990s, it was first proposed by M. Dorigo and his colleagues as a novel naturally

inspired metaheuristic for solving combinatorial optimization problem [Dorigo and
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Algorithm 3 Pseudocode of K2GA Algorithm

1: Begin K2GA
2: Make initial population P(t) at random, t = 0;
3: Train model by K2 algorithm and evaluate BN score S(t) with CH score;
4: while (termination conditions not met) do
5: t = t + 1;
6: Select a sub-population for offspring production P′ = selectparentsP(t);
7: Recombine the individuals of selected parents recombine P′(t);
8: stochastically Mutate the individuals P′(t);
9: Evaluate its new fitness evaluate P′(t);

10: Select the survivors from actual fitness P = {surviveP,P′(t)};
11: end while
12: Output: the best individual found, the BN score and structure.
13: End K2GA

Blum, 2005]. So far, there are some different kinds of ACO algorithms, such as Ant

System (AS) [Dorigo et al., 1996], Ant Colony System (ACS) [Dorigo and Gambardella,

1997] and MAX-MIN Ant System (MMAS) [Stützle and Hoos, 2000].

ACO is inspired by cooperative behaviour in real ant colonies which have been

observed to find shortest paths when seeking food. When ACO is used for optimiza-

tion, artificial ants walk a random path on a graph, depositing pheromone. Following

ants use pheromone levels on edges of the graph to bias their walk. In the absence of

pheromone, ants choose randomly. The more ants choose a path, the more pheromone

is deposited on it. After a number of iterations, paths with high pheromone will be

selected with a high probability [Dorigo and Caro, 1999].

2.3.1.1 The Framework of Ant Colony Optimization

Algorithm 4 is a description of a basic framework of ACO [Dorigo and Gambardella,

1997].

We explain each of the component as follows:

Ant Based Solution Construction: Any ant constructing a solution starts from

the empty solution, then moves through the nodes of the construction graph. At
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Algorithm 4 Ant Colony Optimization metaheuristic

1: while termination conditions not met do
2: ScheduleActivities
3: Ant Based Solution Construction()
4: Pheromone Update()
5: end ScheduleActivities
6: end while

each step, the ant selects the following node in the construction graph by using the

stochastic local decision rule, which is composed of the heuristic information and the

pheromone values. One of the possible stochastic local decision rules is Ant System.

The transition probability is (2.14)

Pi j =
(τi j)α(ηi j)β∑
l∈u(τil)α(ηil)β

(2.14)

where τi j is the pheromone value, ηi j represents heuristic information about the

problem. α and β are two positive parameters, whose values determine the relative

influence of the pheromone and the heuristic, u denotes the set of candidate solutions

to be chosen.

Pheromone Update:

As the ants are walking, in good or favorable solutions, the values of the pheromone

are increased. On the contrary, the pheromone values on the bad ones will be de-

creased. These processes are pheromone updating. This updating process includes:

(1) increasing pheromone level to a certain selected good path Sgood by a value ∆τ; (2)

decreasing pheromone level to all the path solutions. This is a pheromone evapora-

tion process. The aim of this process is to avoid a fast convergence of the algorithm

to a local optimum. A typical pheromone updating rule is expressed in (2.15),

τi j ←


(1 − ρ)τi j + ρ∆τ(i, j) if τi j ∈ Sgood,

(1 − ρ)τi j otherwise.
(2.15)
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where ρ ∈ (0, 1] is the evaporation rate. Global pheromone updating and local

pheromone updating are two main pheromone updating rules. Once an ant has

completed its own construction step, a certain amount of pheromone is deposited to

its corresponding path. This is a local updating pheromone rule. Once all ants have

finished constructing their tours, a certain percentage of pheromone evaporates to

all paths, and then the fraction of pheromone deposit to the path belongs to the best

tour. This process is the global pheromone updating [Dorigo et al., 1996] [Dorigo and

Gambardella, 1997]. One definition of the local pheromone updating rule is described

as (2.16)

τi j ← (1 − ρ)τi j + ρ∆τ(i, j) (2.16)

where ρ ∈ (0, 1] is the evaporation rate. The value of ∆τ is related to the specific

problem studied or by other methods.

2.3.1.2 Ant Colony Optimization Application

ACO algorithm has shown very good performance when applied to solving combina-

torial problems such as the traveling salesman problem (TSP) [Dorigo and Gambardel-

la, 1997] [Bianchi et al., 2002], which is one of the first problems studied. Recently,

researchers have expanded the application of ACO algorithm to the fields of data

mining [Parpinelli et al., 2002], multi-objective problems [Guntsch and Middendorf,

2003], Bioinformatics problems [Shmygelska et al., 2002] and dynamic or stochastic

problems [Guntsch and Middendorf, 2001]. Many applications on other fields have

been proposed including the quadratic assignment problem [Tsutsui, 2008], routing

problems [Cicirello and Smith, 2001], sorting problems [Hartmann and Runkler, 2007]

and industrial problems [Dorigo et al., 2002].
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2.3.2 Ant Colony Optimization for Bayesian Network Structure Learning
from Data

It is a natural choice for applying ACO to the problem of determining BN structures.

Some researchers have used ACO on solving BN structure learning. These approaches

include ACO-E [Daly and Shen, 2009], MMACO [Pinto et al., 2008b] [Pinto et al., 2009],

ACO-B [de Campos and Puerta, 2002] and ACO-K2SN [de Campos et al., 2002]. These

approaches typically integrate with other greedy construction heuristic algorithms,

such as Algorithm B [Buntine, 1991], K2SN algorithm [Campos et al., 2001] and

the local discovery algorithm MMPC [Tsamardinos et al., 2006a]. The experimental

results with some benchmark problems have shown that ACO based algorithms can

achieve better results than other techniques, such as GAs, Max-Min Hill Climbing

(MMHC), EDAs, etc.

The ACO based algorithms, which have been developed so far for BN struc-

ture learning, have focused on the program of representations to the problem, the

definition of heuristic information, pheromone updating rules and the probabilistic

transition rule to help ants move from one stage to the next stage. We now compare

these existing ACO based algorithms, in terms of search space, heuristic information,

score metrics and pheromone initialization.

2.3.2.1 ACO-E

ACO-E [Daly and Shen, 2009]

Search Space: The space in ACO-E algorithm is composed of equivalence classes.

Two DAGs are equivalent if and only if they have the same skeletons and the same

set of v-structures [Verma and Pearl, 1990]. The skeleton is the undirected graph

that results in un-directing all edges in a DAG and a v-structure is the head-to-head

meeting of two arcs.

Heuristic Information: the heuristic information defined in ACO-E is the similar
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to the definition in the TSP problem. It is

ηi j =
1

| f (X j,Pa j)|
(2.17)

in ACO-E, the heuristic information is dynamic. It depends on the current state of

the ant. The value of the heuristic information is given by the score gained for each

edges correctly inserted, or inserted in reverse.

Pheromone Update: Two ways for pheromone updating: Local evaporation rule,

whereby pheromone is removed from a path as an ant traverses it.

τm = (1 − ρ)τm + ρτ0 (2.18)

Global pheromone update rule that deposits new pheromone on the best-so-far-path

τm = (1 − ρ)τm +
ρ

|Score(P+)|
(2.19)

here, P+ is the best-so-far solution. Score is the score fitness for the BN structure.

Probabilistic Transition Rule: the rule normally uses the values given by the

heuristic information and pheromone to inform the choice of which node to pick. An

ant chooses component cm, where m is given by

τi j ←


argmaxm∈N(x)τm[ηm]β, if q < q0,

random proportional, otherwise.
(2.20)

here, N(x) is the set of components that an ant at state x can move to, given the

problem constraints Ω. τm and ηm are the pheromone and heuristic information, β is

a parameter that says how much to favor the heuristic over the pheromone. If the

number q is greater than q0, then a random proportional rule is used to select which

component to visit next. This rule is

pm =
τm[ηm]β∑

u∈N(x) τu[ηu]β
(2.21)
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It can be seen that the probability that an ant moves to component cm is directly

given by τm[ηm]β, normalized over the other possible moves so that it is in the range

[0, 1].

Initial pheromone: the initial pheromone for the local pheromone rule is defined

as

τ0 =
1

n|Score(P+)|
(2.22)

n is the number of variables that are in the data.

2.3.2.2 ACO-B

ACO-B [de Campos and Puerta, 2002] is built through arranging the behavior of ants

on a different BN structure learning algorithm, as in Algorithm B [Buntine, 1991].

Search Space: the algorithm conducts the search in the space of DAGs.

Heuristic Information: the heuristic component is defined as

ηi j = f (xi,Pai ∪ x j) − f (xi,Pai) (2.23)

here f is the scoring metric being used, and Pa j , the parents of X j are found by K2

algorithm.

Pheromone Update: it uses the classical local and global pheromone updating

rules, as expressed in (2.15) and (2.16).

Probabilistic Transition Rule: the next node to be visited in the sequence is

selected in the same way as expressed in (2.14).

Initial pheromone: in ACO-B, the initial amount of pheromone is calculated as

τ0 =
1

n| f (SK2SN)|
(2.24)

SK2SN is the solution obtained by the algorithm K2SN, and f (SK2SN) is the score of this

solution.
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2.3.2.3 ACO-K2SN

ACO-K2SN [de Campos et al., 2002] uses local changes in the space of DAGs. These

changes include arc addition, arc deletion and arc reverse. It uses CH metric as the

scoring function to evaluate the search performance.

Search Space: the space of ordering of the DAGs is searched in ACO-K2SN

algorithm.

Heuristic Information: the heuristic information is defined as

ηi j =
1

| f (X j,Pa j)|
(2.25)

Pheromone Update: it uses the classical local and global pheromone updating

rules, as expressed in (2.15) and (2.16). In these equations, the update value for the

pheromone is given by

∆i j =
1

| f (S+)|
(2.26)

here S+ is the best-so-far structure.

Probabilistic Transition Rule: the next node to be visited in the sequence is

selected in the same way as expressed in (2.14).

Initial pheromone: in ACO-K2SN, the initial amount of pheromone is calculated

as

τ0 =
1

n| f (SK2SN)|
(2.27)

SK2SN is the solution obtained by the algorithm K2SN, and f (SK2SN) is the score of this

solution.

2.3.2.4 MMACO

This algorithm is built on the local discovery algorithm MAX-Min Parents and Chil-

dren (MMPC) and ACO. MMPC is used to construct the skeleton of the BN, and ACO
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is used to orientate its edges. With these processes the final structure is built. The

main description of this algorithm is as below [Pinto et al., 2008b] [Pinto et al., 2009]:

Search Space: the search space is the set of possible edges in this algorithm.

Heuristic Information: in MMACO algorithm, the heuristic information is de-

fined as

ηi j = 1 + f (sk∪ < Ei j, e >) − f (sk∪ < E ji, e >) (2.28)

here f is the scoring metric found by BDeu score function, sk is the partial solution of

the problem, sk∪ < Ei j, e > is the partial solution of the problem after assigning the

value e to edge Ei j.

Pheromone Update: two ways of pheromone updating during the optimization

process. First, the pheromone matrix is updated step-by-step after each ant chooses

an edge to visit,

τi j ← τi j(1 − ρsbs) (2.29)

here, ρsbs is the evaporation coefficient of the step-by-step pheromone update. Second,

the global pheromone is conducted at the end of iteration Niter, by the best solution

found so far. The rule is

τi j(N + 1) = τi j(N)(1 − ρ) + δi j
k (2.30)

here, δi j
k is defined as δi j

k = 1
| f (G)| . f is the BDEu score.

Probabilistic Transition Rule: the probability of edge Ei j being assigned the value

e is given by

pe =
τe
αηe

β

τeαηe
β + τēαηē

β
(2.31)

here, β andα are two parameters which control the importance of heuristic information

and pheromone respectively. e is 0 or 1, and ηe is 0 or 1 with the quality of the solution
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increasing or decreasing respectively.

Initial pheromone: in MMACO, the initial amount of pheromone is calculated as

δi j
k =

1
| f (G)|

(2.32)

here, f is the BDEu score.

2.4 Topological Node Ordering

In computer science and data mining, a topological node ordering of a graph G = (V,E)

is defined as a linear ordering of its variables as X1,X2, · · · ,Xn. For every edge from

node i to node j, i comes before j in the ordering, i < j [Thomas H. Cormen, 2001] [Arge

et al., 2003]. In [Vernet and Markenzon, 1997] it is proved that:

• If a graph G is a DAG, a topological node ordering can be constructed, and the

number of topological orderings is at least one.

• If G is a DAG, then G has a node with no incoming edges.

• If a DAG has two or more topological node orderings, in the case where there

exist two consecutive nodes that are not connected by an edge it is always

possible to form a second topological ordering by swapping these consecutive

nodes.

An example of a DAG and any two of the corresponding topological orderings are

present in Figure 2.2.

Breadth first search (BFS) and depth first search (DFS) are two typical sorting

methods for a DAG. The BFS algorithm starts from the root variable and then looks

through all the neighbor variables. For each of those variables which are the nearest

ones to the selected variable, BFS looks through its unexplored neighbor variables

till it achieves the final goal [Diekert and Gastin, 1995]. One of the best-known BFS

algorithms is the Kahn algorithm, described by Kahn [Kahn, 1962]. It works by
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Figure 2.2: DAG and topological sorts

selecting variables in the same level, after each level, it then continues to select from

the next level till the last one to construct a topological ordering. In this thesis, we

call the ordering made by Kahn algorithm as Kahn ordering. The details of how to

construct a Kahn is described in Algorithm 5.

Algorithm 5 Pseudo code of Kahn algorithm

1: L← Empty list that will contain the sorted elements.
2: S← Set of all nodes with no incoming edges.
3: while (S is non-empty) do
4: remove a node Xi from S
5: for (each node X j with an edge E from Xi to X j) do
6: remove edge E from the graph
7: if (Xi has no other incoming edges) then
8: insert Xi into S
9: end if

10: end for
11: end while
12: Output: message (proposed to topologically sorted order: L)

One of the best-known DFS algorithms is the Tarjan algorithm, described by

Tarjan [Tarjan, 1976]. The algorithm starts with variables in the first level of the graph,

then through unexplored variables, which is its ancestor, or a descent connected with

edges. The DFS stops when it hits any variable that has already been chosen. We
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name the topological ordering built by DFS algorithm as DFS ordering. A pseudo

code representation of Tarjan algorithm is described in Algorithm 6.

Algorithm 6 Pseudo code of Tarjan algorithm

1: L← Empty list tat will contain the sorted nodes.
2: S← Set of all nodes with no incoming edges.
3: for (each node X j in S) do
4: visit (Xi)
5: FUNCTION visit(node (Xi))
6: if (Xi has not been visited yet) then
7: mark (Xi) as visited
8: for (each node X j with an edge E from Xi to X j) do
9: visit (Xi)

10: add (Xi) to L
11: end for
12: end if
13: end for
14: Output: message (proposed to topologically sorted order: L)

Figure 2.3 represents an example of two topological node orderings, comparing

with the true edges on the BN structure. This structure has 20 true edges. The

Kahn sort is 0-1-3-5-4-2-6-7-8-10-11-13-12-9, and the Tarjan sort is 0-6-2-1-4-5-7-9-12-

13-3-8-11-10. We can find that different topological sorts has different node ordering.

However, they have the same number of arcs. This appearance makes it very complex

to investigate the characteristic of topological orderings. However, we know, through

both Kahn and Tarjan node ordering, we can get the best BN structure through K2

algorithm, for they all are the best node ordering to K2 greedy algorithm.

2.5 Probabilistic Logic Sampling

Probabilistic Logic Sampling is the simplest and the first proposed sampling algorithm

for BNs [Henrion, 1988]. In this algorithm, the nodes are sampled in the order which

are consistent with the partial orders of the structure, so that by the time a node is
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Figure 2.3: DAG and topological sorts

sampled the values for all of its parents are also known. We can then sample from the

distribution defined by the CPD and by the chosen values for the node’s parents. Note

that the algorithm requires that we have the ability to sample from the distributions

underlying our CPD. Such sampling is straightforward in the discrete case [Koller

and Friedman, 2009]. Algorithm 7 is the pseudo code of a probability logic sampling

algorithm.

Algorithm 7 Pseudo code of Probability Logic Sampling

1: Order the nodes X1,X2, · · · ,Xn according to their topological order.
2: for i← 1,Nuber o f Case do
3: for j← 1,n do
4: if (root nodes) then
5: select state with probability P(X = X j);
6: else
7: select state with probability P(X = X j|Pa j);
8: end if
9: end for

10: return x1, x2, · · · , xn;
11: end for

For a given structure in Figure 2.1, the topological node ordering of four nodes
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are C-S-R-W for Kahn algorithm, and C-S-W-R for Tarjan algorithm. In each ordering,

the root node is C, so select C=F with probability based on value of probability 0.5.

Select value of S with probability based on value of the C, if C=F select S=F with

probability 0.5 and S=T with probability 0.5. However, for the third node, select the

value of R based on S in Kahn ordering, and select the value of W based on S in Tarjan

node ordering. The process continues similarly for the last node W or R. In spite of

two different topological node orderings, the data sampled from them have the same

effect in BN structure learning.

2.6 Hyperheuristics

Metaheuristic algorithms are very widely used to optimize problems in operation

research, for the greatest quantity of these problems are NP hard and exhaustive search

in large search space. It is hard to develop problem specific heuristic algorithms for

these kind of computational problems. In recent years, a novel concept, hyperheuristic

has been provided in the area of search and optimization problems which helps to

overcome the problem of such drawbacks in metaheuristics [Özcan et al., 2008] [Bilgin

et al., 2006] [Kendall, 2001]. A hyperheuristic algorithm is constructed through a

specific heuristic search algorithm integrated with some data mining methods. These

data mining methods are applied as selecting, generating and adapting to the simple

heuristic algorithm in order to produce an efficient algorithm for solving the complex

optimization problem.

The search space for a hyperheuristic is the space of heuristics. This differs to

the heuristic algorithm, whose search space is all possible solutions of the problem.

Therefore, the objective of using a hyperheuristic is not to solve the problem itself, but

to seek an appropriate heuristic algorithm to the problem. Moreover, the motivation

for investigating hyperheuristics is to search for a generally applicable methodology

rather than solving a single problem instance.

Hyperheuristic algorithms can be grouped into two categories according to whether
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they are based on constructive or perturbative search [Bader-El-Den and Poli, 2008].

The first one is on-line learning hyperheuristics. In this case, the problem couldn’t

provide any prior knowledge to the learning algorithm. The learning process usually

occurs through gaining properties of problem dependent as well as the problem in-

stance they are working on purely by trial and error. A typical on-line Hyperheuristic

algorithm is using the reinforcement learning skill for heuristic selection and accord-

ing to metaheuristics approach as a search strategy on a search space of heuristics

algorithms [Kaelbling et al., 1996].

The second type is off-line learning hyperheuristics. This kind of process needs

a set of training problems provided before it is actually used. The hyperheuristic

then tries to gather knowledge through some methods from these problems. The

knowledge is expressed as some kind of rules or programs. All this knowledge

achieved will be applied to solve unseen problems outside the training instances.

Some examples of off-line hyperheuristics learning approaches are: from rules or

learning classifier [Marı́n-Blázquez and Schulenburg, 2007] [Ross and Hart, 2002],

over case-base reasoning [Burke et al., 2006] and genetic programming [Ross and

Marı́n-Blázquez, 2005] [Terashima-Marı́n et al., 2005].

2.7 Benchmark Structures

A number of test benchmark structures are commonly used to evaluate the perfor-

mance of novel approaches in a BN structure learning problem. Normally, once the

benchmark structure is selected, a database of the cases D is simulated from these

benchmark structures for later experiments. The dataset D here implies the relation-

ships of conditional independence within the variables. The proposed approaches

are then applied to the database D to retrieve a structure G∗, which can achieve the

maximum value of the probability P(D|G). The fitness of the solutions G∗ found is

evaluated to measure the performance of the algorithm proposed. Figure 2.4 shows

the process of benchmark and database in BN structure learning. These test prob-
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lems are designed mostly from real-world problems and can be used to predict an

algorithm’s performance. We should clearly know that an algorithm which has good

performance in relation to one problem can not be guaranteed to fit to another.

Figure 2.4: The process of proposed approach for structure learning from simulated
database of cases

All benchmark structures described here are discrete problems without missing

values. There are two reasons for selecting these benchmark structures. Firstly, all

problems have been used as standard benchmarks for other proposed algorithms on

BN structure learning. The results have proven these structures are useful for testing

these algorithms. This is important as it allows comparison to be made between the

novel algorithms and the existing algorithms. Secondly, the structures cover a wide

range of fields, for example, medicine, industry, commerce, etc. When sampling data

from benchmark structures, different sampling methods may be used, according to

the demands of the problem. The number of cases in these problems are different and

the size of each case is not fixed. This size can be changed according to the specific

problem and the algorithm itself.

In the following chapters, we use GeNIe&SMILE [GeNIe and SMILE, ] software

as a tool to generate databases from selected benchmarks. GeNIe&SMILE (Structural

Modeling, Inference, and Learning Engine) is developed at the Decision Systems

Laboratory, University of Pittsburgh. In the following experiments, some data cas-
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es are sampled using likelihood sampling, which is a kind of stochastic sampling

algorithm [Fung and Chang, 1989]. The likelihood sampling algorithm makes an

attempt at improving the efficiency of the probabilistic logic sampling algorithm by

instantiating only non-evidence nodes [Shachter and Peot, 1990]. Other data cases

are simulated through probabilistic logic sampling [Henrion, 1988] in the Genie tool

software [GeNIe and SMILE, ].

2.7.1 Asia Structure

The Asia [Lauritzen and Spiegelhalter, 1988] structure is a simple BN network but is

popular used for BN structure learning, which is present in Figure 2.5.

Figure 2.5: The structure of the Asia network

Asia structure is a simple BN model used in patient diagnosis. Each variable in

the Asia network represents a special condition of the patient, for example, ”Visit to

Asia” indicates whether the patient recently visited Asia. An edge between any two

nodes indicates a probabilistic relationship between the states of the corresponding

variables. The detailed states of each node in this structure are listed in Table 2.3.

In our following experiments, for the sake of convenience, we number each vari-

able as: VisittoAsia = 1, tuberculosis = 2, Smoker = 3, Lungcancer = 4, Lungcanerortuberculosis =

5, PositiveX − ray = 6, Brochitis = 7, Dysponoca = 8. In this situation, the database

simulated from the structure is present as Figure 2.6

In the above database, both 0 and 1 indicate the states of each variable. For
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Table 2.3: States of each node in the Asia structure

Node state:01 state:02

Visit to Asia visit no visit
Tuberculosis present absent
Smoking smoker no smoker
Lung cancer present absent
Lung caner or tuberculosis true false
Positive X-ray abnormal normal
Brochitis present absent
Dysponoca present absent

Figure 2.6: The database of the Asia network simulated

example, 0 in variable ”1”(= VisitToAsia) means VisitToAsia = visit, and 1 in variable

”1”(= VisitToAsia) means VisitToAsia = noVisit.

To describe other benchmark structures in the following section, we will not use

the original name but instead use a number in each structure. This kind of expression

for the name will not effect the experimental results.

2.7.2 Credit Structure

Credit structure is another simple model for assessing the credit worthiness of an indi-

vidual, developed by Gerardina Hernandez [GeNIe and SMILE, ] as a class homework

at the University of Pittsburgh. It has 12 nodes and 12 edges. All parentless nodes
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are described by uniform distributions. This is a weakness of the model, although it

is offset by the fact that all these nodes will usually be observed and the network will

compute the probability distribution over credit worthiness correctly. The structure

is present in Figure 2.7.

Figure 2.7: The structure of the Credit network

2.7.3 Tank Structure

Tank Structure is a network used for diagnosing possible explosions in a tank, de-

veloped by Gerardina Hernandez [GeNIe and SMILE, ] as a class homework at the

University of Pittsburgh. It has 14 nodes and 20 edges. The structure is present in

Figure 2.8.

Figure 2.8: The structure of the Tank network
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2.7.4 Car Structure

The Car Diagnostic Network consists of 18 nodes and 17 edges. It can be applied

to diagnose the malfunctioning of self-propelling vehicles. We got this structure and

data sets from [Kabli et al., 2007] and [Javabayes, ]. The structure is present in Figure

2.9.

Figure 2.9: The structure of the Car network

2.7.5 B Structure

Alex Kozlov generated B network at random. It contains 18 nodes but 39 edges.

Some variables have a high density in edges [Kozlov and Singh, 1996]. The structure

is present in Figure 2.10.

2.7.6 Boerlaga Structure

The Boerlaga network has 23 nodes and 36 edges. All variables in this structure has

two discrete states [Boerlage, 1992]. The structure is present in Figure 2.11.

2.7.7 Insurance Structure

Insurance structure [Binder et al., 1997] is a model for assessing risks in car insurance.

This network has 27 nodes and 52 edges. The number of states number of each
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Figure 2.10: The structure of the B network

variable range from 2 to 5. In all 27 nodes, only 15 are observable, and over 1400

parameters. Three of the observable nodes are designed as ”outputs”. The structure

is present in Figure 2.12.

2.7.8 Alarm Structure

The Alarm network is a commonly used network which is a representative of a real

life Bayesian network. It is a medical diagnostic system for patient monitoring in

intensive care. This structure was originally described by Beinlich [Beinlich et al.,

1989]. The Alarm network consists of 37 nodes, with 8 diagnoses, 16 findings and 13

intermediate variables. Some nodes have two states, others have three or four states.

The structure of Alarm is present in Figure 2.13.
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Figure 2.11: The structure of the Boerlaga network

Figure 2.12: The structure of the Insurance network
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Figure 2.13: The structure of the Alarm network



Chapter 3

ACO with Chain Structure Model

and K2 Greedy Search for BN

Structure Learning

In this chapter we look at two proposed novel ACO based approaches on BN structure

learning. The first one is using ACO to carry out searching with chain structure

model in the space of node ordering, which we will call ChainACO algorithm. In

the second approach, ACO is introduced to look for the best BN structure when

the K2 greedy heuristic algorithm searches in the node ordering space. We will

name it as K2ACO algorithm. Afterwards, we implement a series of experiments

with results demonstrating the performance of each approach, comparing with other

existing methods on some benchmark problems. We execute analysis and draw

conclusions to explore the general questions: firstly, how the choice of metaheuristic

(ACO and GA) and scoring function (scoring model, chain and CH) relate to the

benchmark problems; secondly, what the trade-off is between structure complexity

and the approach selected. Some results of this chapter have been published in [Wu

et al., 2010b].
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3.1 Why ACO ?

We propose two novel approaches using ACO metaheuristic. The first is with chain

model structure to generate the best node ordering, afterward the K2 greedy search

is executed for BN structure learning. The second one makes use of ACO to optimize

the BN structures inducing by K2 search algorithm. We call these algorithms as

ChainACO and K2ACO respectively.

There are two reasons for us to select ACO in our approaches. The first one is in

both the chain model and the K2 greedy search, the search space is node orderings.

The search for an optimal node ordering in this space is similar to the research of

the Traveling Salesman Problem (TSP): for a set of cities, the distance between any

two cities are known, look for the shortest tour that accesses each point precisely

once and return to the starting city at last. We have known that the first successfully

application of ACO is to solve this typical NP hard benchmark problem [Dorigo and

Gambardella, 1997] [Bianchi et al., 2002]. The second reason is in a lot of previous

research, ACO has been selected to solve BN structure learning problem.

The TSP is often assumed to be symmetrical. For example, in seven cities TSP, that

means: the sort (1 2 3 4 5 6 7) is assumed to represent the same tour as the string (4 5 6 7

1 2 3). However, the node orderings in our problem do not have this property. Even a

tiny change will lead to a complete difference between nodes and their corresponding

parents. The similarities between TSP and our problem make us utilize the ACO for

our problem. On the other hand, the difference requires us to update the ACO to our

problem.
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3.2 ACO with Chain Structure Model on BN Structure Learn-

ing

3.2.1 Chain Structure Model

From Chapter 2 we know the K2 greedy search is a popular and widely-studied search

and scoring algorithm for BN structure learning. The node ordering of variables

provides a reduced search space for improving the efficiency of K2 algorithm. Either

poor or wrong node ordering will mislead the K2 algorithm, inducing a weak quality

solution. For most of BN structure learning problems, the input node ordering is

usually unknown. To improve the performance and make the K2 algorithm search

more effective, in [Kabli et al., 2007], it proposed a chain model structure, from which

to identify nodes ordering from the experimental data.

The main objective of chain structure modeling is to evaluate an initial topological

node ordering as input node ordering for K2 greedy algorithm. It is based on the fact

that any topological sort corresponds to a chain structure (Figure 3.1), which contains

an ordering providing a sufficiently good scoring function to locate highly scored

regions in the space of node orderings. In Figure 3.1, the specific chain structure is

built by adding edges between successive nodes. Thus, Xi−1 is the sole parent of Xi

, and the arrow expresses the edge from Xi−1 to Xi. The simplicity of chain model

structure makes it cheap for generating the best node ordering on a given database,

with evolutionary algorithms or other heuristic search algorithms. The best node

ordering generated with higher possibility ensures all parents in the node ordering

occur prior to their children in the node ordering (Figure 3.2). This will also make the

K2 search algorithm cheap in term of computation.

Figure 3.1: Chain mode structure
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Figure 3.2: Chain mode structure

Normally, a score metric needs to be defined to evaluate the quality of the chain

structure when we search it from the space of node orderings. We call it chain score

function. The chain structure is still a DAG, can be regarded as a special BN structure.

That is, each node in this structure has a sole parent in the chain model. So the chain

score looked at the sum of probabilities on each pair of nodes in the chain model from

the definition of conditional probability equation(2.13) in the last chapter. In this case,

the chain score metric is formulated as (logarithmic format):

fchain = log(
n−1∑
i=1

(η(Xi,Pa(Xi)))) = log(
n−1∑
i=1

(
qi∏

j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏
k=1

Ni jk!)) (3.1)

Here, n is the length of chain structure, η(Xi,Pa(Xi)) is the probability when node Xi

has the sole parent Pa(Xi). The best node ordering is the one which has the best chain

score value, that is, the closer of the value is to 0, the better the chain model is.

3.2.2 Chain Structure Model with K2 Greedy Search on BN Structure

Learning

Once we have used the chain structure model to achieve the best node ordering from

the database, this ordering can then be regarded as prior input nodes, which will be fed

into the K2 greedy algorithm for inducing the best overall BN structure. This two-stage

algorithm contains searching in the space of node ordering and heuristic search for BN

structure. However, some empirical experiments have identified that it outperforms

other K2 based algorithms and can get a significant reduction in computational cost

for large data sets [Kabli et al., 2007].
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The pseudocode of Chain-based algorithm is shown in Algorithm 8.

Algorithm 8 Chain model based algorithm of BN structure learning algorithm

1: Input: A set of n node with database.
2: Output: for each node, a printout of the parents of the node.
3: Begin chain algorithm
4: Initialize population (Pold)n, fmax = −∞ ;
5: Chain structure scores ( fold)n;
6: for i← 1,n do
7: if ( fmax < ( fold)i) then
8: fmax = ( fold)i

9: best node ordering = (Pold)i

10: end if
11: end for
12: while (terminate=false) do
13: generating new population (Pnew)n from (Pold)n using M;
14: calculate new chain structure scores ( fnew)n

15: for i← 1,n do
16: if ( fmax < ( fnew)i) then
17: fmax = ( fnew)i

18: best node ordering = (Pnew)i

19: end if
20: end for
21: end while
22: Implement K2 algorithm on best node ordering to induce the BN structure
23: Write Node: Xi, parent: πi

24: End chain algorithm

Here, M signifies a metaheuristic, which can be GA, ACO, etc.

3.2.3 Chain Model Genetic Algorithm for BN Structure Learning

In order to seek out the best node ordering with chain model structure from the

space of node orderings, in [Kabli et al., 2007], they regarded this problem as an

optimization problem and employ GA to evolve the best solution. This algorithm is

named as ChainGA. In ChainGA, the GA starts by preselecting orderings, rejecting

insufficiently good orderings. The ChainGA then adds on another step at the end of

each evolution where K2 is run on a percentage of the best orderings to search for a
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good structure. The structure of ChainGA is illustrated in Algorithm 9.

Algorithm 9 Pseudo code of ChainGA algorithm

1: Initialize population P, each individual as a chain structure model.
2: Calculate chain score fitness of each individual.
3: while (terminate=false) do
4: select two individuals from P based on some Fitness criterion.
5: apply crossover operator.
6: apply mutation operator.
7: extend the population by adding the children to it.
8: evaluate each individual’s fitness.
9: end while

10: Select best solution from the population generated.
11: Implement K2 algorithm on best solution to learn the best structure.

3.2.4 Chain Model Ant Colony Optimization Algorithm for BN Structure
Learning

We introduce ACO metaheuristic with the chain model structure model for BN struc-

ture learning. The problem of learning BN structure with ACO can be stated as

(S, f ,Ω). The specific characteristics of each composition in the ChainACO approach

as follows:

• S, the set of all candidate solutions, is the set of all node orderings with all

variables in the investigated database. When the number of variables is n, the

size of search space will be n!.

• f , the objective function is the function used to score a candidate chain structure

(X1−X2− · · ·−Xn). This function would be the fchain as defined in equation(3.1).

• Ω, the set of constraints, makes sure that the node ordering generating to an

new one, which has improved fitness score.

Given the statements to this problem, the structure of ChainACO is illustrated in

Algorithm 10. Algorithm 11 describes the process of how to select the first node.
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Algorithm 12, is the description of how an ant is able to construct a node ordering

with the transition rule once the first node x0 has been selected. The algorithm can

be described by some properties. These properties relate to ChainACO approach

described in the following section.

Algorithm 10 Pseudo code of ChainACO algorithm

1: Initialize pheromone; number of ants: m
2: Initialize heuristic information.
3: Initialize: each ant anti is positioned on a selected (or randomly selected) staring

node X0.
4: while (terminate=false) do
5: for i← 1,m do
6: Each ant anti applies a state transition rule to incrementally build a solution

Si.
7: A local pheromone updating rule is applied to Si.
8: end for
9: A global pheromone updating rule is applied to Smax.

10: end while
11: Implement K2 algorithm on best solution to learn the best structure.

3.3 ACO with K2 Greedy Search on BN Structure Learning

As a greedy search algorithm, when K2 is used in BN structure learning for each node

in the database, it iteratively makes one greedy choice after another, reducing the

search space into a smaller one. The algorithm itself never reconsiders its choices so

far. This makes the K2 algorithm fail to produce the optimal solution, or produce the

unique worst possible solution.

Here we propose a new approach which combines ACO and K2 greedy search

algorithm to improve the performance of K2 algorithm on BN learning. We name

this approach as K2ACO. In this approach, ACO is introduced to look for the best

BN structure when the K2 greedy heuristic search in the node ordering space. The

similar method is the K2GA approach described in the last chapter. In K2ACO, the
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Algorithm 11 Pseudo code of starting nodes selected for each ant in ChainACO
algorithm

1: NodesTovisit = {X1,X2, · · · ,Xn};
2: Initialize pheromone τ0i(i = 1, 2, · · · ,n);
3: Initialize heuristic information η0i(i = 1, 2, · · · ,n).
4: for i← 1,n do
5: if (q ≤ q0)(q ∈ [0, 1]) then
6: max = −∞

7: if (τ0i ∗ [η0i[β) > max then
8: max = (τ0i ∗ [η0i]β),X0 = Xi

9: end if
10: else
11: prob[i] = (τ0i ∗ [η0i]β)
12: Normaliseprob,Xs = draw(prob),X0 = Xs

13: end if
14: end for
15: Output: the selected node X0 as the starting node.

initial individuals in the population are randomly created node orderings which are

then optimized by a colony of ants in this space until a good ordering is found.

During the ACO process, the fitness of each ordering is calculated by running the K2

search algorithm on it. Once the optimization terminates, as with K2GA, the structure

corresponding to the best ordering found is automatically obtained.

In K2ACO approach, the specific characteristics of each composition in the tripe

(S, f ,Ω) are described as follows:

• S, the set of all candidate solutions, is the set of node orderings with all variables

in the investigated databases. When the number of variable is n, the size of

search space will be n!.

• f , the objective function is the function used to score a candidate BN structure

B. This function would be the CH score function defined in equation(2.12).

• Ω, the set of constraints, makes sure that the BN structure generating to an new
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Algorithm 12 Pseudo code of an ant for the construction of an ordering in ChainACO
algorithm

1: Best node ordering = Φ.
2: Visitednodes = {X0}; NodesTovisit = {X1,X2, · · · ,Xn}.
3: while (|NodesTovisit| > 0) do
4: for i← 1, |NodesTovisit| do
5: if (q ≤ q0)(q ∈ [0, 1]) then
6: max = −∞

7: if (τ0i ∗ [η0i]β) > max then
8: max = (τ0i ∗ [η0i]β),X0 = Xi

9: Visitednodes = Visitednodes ∪ {Xi}

10: NodesTovisit = NodesTovisit \ {Xi}.
11: Best node ordering = Best node ordering ∪ {X0}.
12: end if
13: else
14: prob[i] = (τ0i ∗ [η0i]β)
15: Normaliseprob,Xs = draw(prob),X0 = Xs

16: Visitednodes = Visitednodes ∪ {Xi};
17: NodesTovisit = NodesTovisit \ {Xi}.
18: Best node ordering = Best node ordering ∪ {X0}.
19: end if
20: end for
21: end while
22: Output:Best node ordering
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one, which has improved fitness score of the structure.

The Pseudo code of K2ACO is illustrated in Algorithm 13. The process of how to select

the first node and how an ant to construct an node ordering with transition rule once

the first node X0 has been selected are described in Algorithm 11 and Algorithm 12

respectively.

Algorithm 13 Pseudo code of K2ACO algorithm

1: Initialize pheromone; number of ants: m
2: Initialize heuristic information.
3: Initialize: each ant anti is positioned on a selected [or randomly selected] staring

node X0.
4: while (terminate=false) do
5: for i← 1,m do
6: anti applies a state transition rule to incrementally build a node ordering Si.
7: Implement K2 algorithm to Si to learn the corresponding BN structure and

the CH score.
8: A local pheromone updating rule is applied to Si.
9: end for

10: A global pheromone updating rule is applied to the best solution Smax.
11: end while

3.4 Properties of ACO Metaheuristic in ChainACO and K2ACO

In this section, we give a detailed description on the main components of the two

ACO based algorithms. It contains the heuristic information, the initial pheromone,

the node transitions rules, the pheromone updating rules and the starting nodes

selected in node ordering. We mainly describe how these components are defined.

Some of these are defined commonly as the definition in TSP, others, however, are

only from the specific problem we discuss.
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3.4.1 Heuristic Information

In ACO algorithm, normally, the heuristic information is static and calculated before

any ants is launched. In the chain structure model problem, the heuristic information

that has to be considered when studying the possibility of node i is the sole parent of

node j, ηi j(i, j = 0, 1, · · · , (n − 1)). We record all the values of heuristic information ηi j

as a n × n matrix:

ηi j =



η00 η01 · · · η0,n−1

η10 η11 · · · η1,n−1

· · · · · · · · · · · ·

ηn−1,0 ηn−1,1 · · · ηn−1,n−1


when i = j,

ηi j = ηii = 0,

If i , j, we assign the value of ηi j with the value

P(xi, x j) =

qi∏
j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏
k=1

Ni jk!. (3.2)

because we use the logarithmic format of this equation, it is a negative value. In this

case, the value of ηi j is set as

ηi j =
1

|P(xi, x j)|
(3.3)

3.4.2 Pheromone Initialization

In ACO algorithm, a small amount of pheromone τ0, is deposited in every link of the

graph. Normally, this value is calculated through a quick method, for example, greedy

algorithm, before the ants’ operating. In our case, the initial amount of pheromone is

achieved as
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τ0 = 1
n| f (GK2GA)|

where n is the number of variables, and f (GK2GA) is the score of BN structure obtained

by K2GA algorithm. The reason of expression | · | for fitness score is that the f (GK2GA)

always is negative. The closer of this absolute value to zero, the better the score

is. The best score of f (GK2GA) means the highest initialization pheromone value τ0.

In order to ensure accuracy and fairness, within independent repeated trials in our

experiments, we design the initialization pheromone τ0 as a fixed value.

3.4.3 Node Transitions Rules

Ant in node i moves to node j according to the probabilistic state transition rule,

s =


argmax j∈JK(i){τi j[ηi j]β} if q ≤ q0,

S if q > q0.

(3.4)

where τi j is the pheromone amount deposited on the arc which connects node i with

node j. ηi j represents heuristic information, which is a weighting function that assigns

at each construction step a heuristic value to each feasible solution between any two

nodes. q is a random number uniformly distributed in [0, 1] , q0(0 ≤ q0 ≤ 1) is a param-

eter that determines the relative importance of exploitation versus exploration, β is a

parameter which control the relative importance of pheromone verse the probability,

and S is a random variable selected according to an normalize probability function,

S = draw(prob). This probability given in equation(3.5), here α = 1

Pi j =


(τi j)α[ηi j]β∑
l∈u(τil)α[ηil]β

if j ∈ JK(i),

0 otherwise.
(3.5)

3.4.4 Local and Global Updating Rules

Ants prefer to move to nodes which are connected by high possibility and a high

amount of pheromone. Every time that an edge is chosen by one ant, the amount of
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pheromone is changed by applying the local updating rule:

τi j ← (1 − ρ)τi j + ρτ0 (3.6)

The local updating rule is intended to avoid a very strong edge being chosen by

all the ants. Once all ants have completed their tours a global pheromone updating

rule (3.7) is applied:

τi j ← (1 − ρ)τi j + ρ∆σi j (3.7)

where

∆σi j =


1

C(S+) if i j ∈ S+

τi j if i j < S+

In (3.6) and (3.7), both ρ and α are parameters which control the pheromone evapora-

tion and C(S+) is the cost associated with the best solution.

3.4.5 Starting Nodes Selected in Node Ordering

The starting node is the root node of a sequence for each ant. It will influence the

selection of other nodes on the subsequent steps. If the starting node can be selected

in advance, the possible search space for all ants will be narrowed from the set of n!

to (n − 1)! . To select the starting node, we investigate the chain structure model, and

suppose it has an empty node as the parent to the first node (Figure 3.3). We note this

first node as X0.

Figure 3.3: Chain mode structure with empty starting node

We can then calculate the value of the heuristic information within the empty

parent node X0 and the first node X1 . In equation(3.2), if Pa(X1) = φ, then qi = 0, the

product ranges from j = 1 to j = 0. The standard convention for a product with an
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upper limit smaller than the lower limit is that the value of the product is equal to 1.

Hence, the heuristic information function for CH score will be

ηoj =
1

|P(xi, φ)|
=

1

| log( (ri−1)!
(Ni j+ri−1)!

∏ri
k=1 Ni jk!)|

. (3.8)

We suppose each node Xi(i = 1, 2, · · · ,n) has the same chance to have an empty

parent, and then we can calculate the corresponding value of heuristic information

η(0, j)(i = 1, 2, · · · ,n) through equation(3.8). We then utilize the node transitions rules

to decide which node will be the first one in the node ordering.

3.5 Experimental Methodology

In this section, we design and run a number of experiments that apply with ChainA-

CO and K2ACO approaches on benchmark structures. We also run comparative

experiments on ChainGA and K2GA algorithms. One of the objectives is to measure

the performance of the two proposed algorithms. These include measuring the com-

putational complexity and the accuracy of the algorithms. We are also interested in

the differences between algorithms based on ACO (ACO algorithms) and GA (GA

algorithms), algorithms based on Chain (Chain algorithms) and K2 (K2 algorithms)

respectively.

As previously described, we know both ChainACO and ChainGA algorithms

have two phases. K2ACO and K2GA algorithms, on the other hand, each has a single

phase. In this experiment, we set a fixed number of iterations on the ACO and GA

processes in the ChainACO and ChainGA approaches. The node ordering generated

then transits to the second. For K2ACO and K2GA algorithms, we specify a stopping

condition T0 according to previous experimental results in [Kabli et al., 2007]. We

run the ACO and GA iterations under the condition of the fitness of BN structure

less than T0 respectively to construct the best structures and get the best fitness at the

same time.
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We design two series of experiments according to the different data sampling

method utilized. They are experiment A, by the likelihood sampling method, and

experiment B, through probabilistic logic sampling.

For each algorithm, we record and compare the algorithms in terms of the follow-

ing outcomes:

1. The value of the CH metric (log version) in equation (3.9). We know that this

score is associated with the best structure, as the score is the logarithm of a

probability, and so it is a negative number. The closer to zero, the closer the

probability is to 1. The higher the probability, the better the network.

gK2(G,D) =

n∑
i=1

qi∑
j=1

[log(
(ri − 1)!

(Ni j + ri − 1)!
) +

ri∑
k=1

log(Ni jk!)] (3.9)

2. The number of factor evaluation (F.E.). F.E. is utilized to evaluate the efficiency

of the algorithms. It is defined as being the count of times the term (3.10) is

accessed when Formula (3.9) is used. Equation(3.10) is the function used in K2

algorithm. The logarithmic version of this is

fK2(Xi,Pai) = log{
qi∏

j=1

(ri − 1)!
(Ni j + ri − 1)!

ri∏
k=1

Ni jk!} (3.10)

In ChainACO algorithm, the F.E. comes from three parts: the evaluations need-

ed to generate initial heuristic information ηi j for node transitions rules, the

evaluations needed to calculate chain structure scores in phase 1, and the e-

valuations needed in the K2 search phase for obtaining the structure score. In

ChainGA, the F.E. score is made up of two parts: the evaluations needed in the

chain structure phase and those in the K2 search phase. In K2ACO, the number

of F.E. includes those needed for the initial heuristic information ηi j for node

transitions rules and those needed for the CH score evaluations. In K2GA, the

F.E. score is calculated solely from the CH score evaluations needed.
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3. Comparison of structure difference between the learned network and the o-

riginal network. This includes the number of arcs deleted (D), added (A) and

inverted (I), comparing with the original network (Figure 3.4). The total number

of H = D + A + I, called structural hamming distance (SHD) [Tsamardinos et al.,

2006b] that counts the number of differences in the completed partially DAG of

the true network and the learned one.

Figure 3.4: Process of one arc deleted, added and inverted

3.5.1 Experiment A

We use three benchmarks, Asia, Car and Alarm, in our experiments. The dataset sizes

for Asia, Car and Alarm are 5000, 10000 and 3000 cases respectively. In all cases the

scoring metric used to evaluate the search is the CH metric. The parameters used in

ChainACO and K2ACO approaches are shown in Table 3.1. The parameter settings

of ChainGA and K2GA are shown in Table 3.2. These parameters are the same, for

the GA algorithms, as those used in [Kabli et al., 2007].

We have carried out 30 runs of each algorithm for each benchmark problem con-

sidered. The best score, F.E and their corresponding standard deviation are averaged
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Table 3.1: The ACO Parameters Settings

ACO Setting Asia Car Alarm

Number of ants 6 8 8
Number of iterations 30 30 30
q0 0.8 0.9 0.95
β 2 2 3
ρ, α 0.1 0.1 0.1
Number of runs 30 30 30

Table 3.2: The GA Parameters Settings

GA Setting Asia Car Alarm

Evolution type Steady State
Number of offspring 1
selection Rank selection
Crossover Cycle Crossover, rate:0.9
Mutation Displacement Mutation, rate:0.1
Population size 100 20 10
Number of runs 30 30 30

over 30 runs. Success rates (S.R.) are obtained through the comparison of the score

of the best structure in each run with the target score. In our experiments, the tar-

get is the stopping condition T0 , for example, in Asia, Car and Alarm networks,

T0 = −11150.00, T0 = −23175.00, T0 = −30110.00 respectively. The arcs which we

achieved correspond to the best-ever score obtained by each algorithm.

Table 3.3 displays the results obtained for the Asia, Car and Alarm networks,

respectively. Table 3.4 displays normalized structural differences from the original

network for each algorithm on each benchmark. This includes arcs added (A), arcs

deleted (D), and arcs inverted (I). ”Normalized” means here that, on each problem,

the absolute number of each structural difference measured is divided by the corre-

sponding number for ChainACO. Thus, a normalized value smaller than 1.00 denotes

the corresponding approach performs better than ChainACO, whereas a value greater

than 1.00 indicates a weaker performance than ChainACO. With the aim of comparing
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Table 3.3: EXPERIMENTAL RESULTS

Structures Approach Avg.Score F.E. S.R. SHD

Asia

ChainACO −11167.33 ± 18.89 128.0 ± 4.54 0.50 8
K2ACO −11146.22 ± 1.85 1166.3 ± 630.05 0.95 8
ChainGA −11153.95 ± 12.16 1133.43 ± 197.24 0.57 8
K2GA −11145.99 ± 1.22 2468.73 ± 15.33 1.00 8

Car

ChainACO −23186.77 ± 18.04 2083.1 ± 263.17 0.30 23
K2ACO −23163.83 ± 4.07 2707.83 ± 1784.1 0.60 20
ChainGA −23270.00 ± 126.75 964.83 ± 198.46 0.25 20
K2GA −23163.17 ± 7.52 1774.63 ± 468.07 1.00 20

Alarm

ChainACO −29814.20 ± 90.99 2480.07 ± 1252 1.00 54
K2ACO −30073.3 ± 094.99 7225.07 ± 3405.1 0.57 68
ChainGA −30443.6 ± 220.96 1235.93 ± 205.85 0.10 68
K2GA −30087.4 ± 182.31 2596.97 ± 497.15 0.53 63

overall computational efficiency, Table 3.5 displays the success rates per 10000 F.E. for

each algorithm. Figure 3.5, Figure 3.8 and Figure 3.11 plot the best score values over

all runs for each algorithm for the Asia, Car, and Alarm networks respectively. The

best structure graphs got by ChainACO, K2ACO, ChainGA and K2GA on Asia and

Car networks are present in Figure 3.7a– 3.7d and Figure 3.10a– 3.10d respectively.

We now make detailed observations on the results for each benchmark problem:

3.5.1.1 Asia Structure

For the Asia dataset, we carried out a one way ANOVA test using the Bonferroni

correction with the four algorithms to compare the averaged score [Field, 2009]. The

results indicate that there is a significant difference between the ChainACO approach

and the other three approaches, F(3, 116) = 22.819,P < 0.05. In spite of the K2GA

obtaining the best average structure score, the result of ANOVA test indicates that

there is not a significant difference between it and the K2ACO approach. Figure 3.5

shows the scatter points of these values. The Box plots of the best scores found for the

four algorithms across all experiments are displayed in Figure 3.6. This figure shows
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Table 3.4: Normalized structural differences within four algorithms to three bench-
marks model

ChainACO K2ACO ChainGA K2GA

Asia

A 1.00 1.00 1.00 1.00
D 1.00 1.00 1.00 1.00
I 1.00 0.25 0.25 0.25

Car

A 1.00 0.50 0.63 0.50
D 1.00 0.50 1.00 0.50
I 1.00 1.00 1.00 1.25

Alarm

A 1.00 1.25 1.29 1.18
D 1.00 0.95 1.00 1.00
I 1.00 1.67 0.67 1.00

Table 3.5: Success Rates per 10, 000 F.E.

Approach Asia Car Alarm

ChainACO 39.06 1.44 4.03
K2ACO 7.72 2.22 0.79
ChainGA 5.03 2.59 0.81
K2GA 4.05 5.64 2.04

K2 algorithms have the highest structure score, also a very high number of values on

K2 algorithms within a very small segment of the sample.

With respect to the number of F.E., K2GA costs the biggest evaluation, almost

twenty times that required by ChainACO. ChainACO is the cheapest one; however,

the success rate is the lowest. In order to show the trade-offs between efficiency

and success rate, the success rate per 10000 function evaluations is shown across all

experiments in Table 3.5. We observe that ChainACO provides the best trade-off for

the Asia network.

Comparing the Chain algorithms and K2 algorithms, we can find that the former

is cheaper in the consumption of F.E.. This result is in accordance with the hypothesis

that a chain model is a sufficiently good model to locate node orderings of which a

good BN structure can be built. The best structure graphs of each approach achieved



3.5 Experimental Methodology 59

Figure 3.5: Best found Structures at Each Run for all Algorithms to Asia Network

are shown in Figure 3.7a– 3.7d. These graphs indicate that each algorithm finds the

same number of arcs. However, the structure achieved by ChainACO is far away

from the original one, it has more inverted arcs than the three others. In these figures,

an edge with the same direction arrow added means the original arc found by the

approach; an edge with the opposite direction arrow represents this original edge

found but invested. A dotted arrow is the edge added to the true structure, and

the solid directed edges with no central arrow represent edges that occur in the true

structure but are not achieved by the corresponding approach. Table 3.4 shows these

differences on arcs.

3.5.1.2 Car Structure:

For the Car diagnosis problem, the comparative results shown in Table 3.3 are no-

tably different from those obtained on the Asia network. The one way ANOVA

Bonferroni test with the four algorithms to compare the averaged score show that

there is a significant difference between the K2 approaches and the Chain approaches,

F(3, 116) = 18.035,P < 0.05. The former performs better than the latter. Figure 3.8

shows the scatter points of these values. Box plots of the best scores over all runs

for each algorithm are displayed in Figure 3.9. This box plot shows that the val-
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Figure 3.6: Box-plots of the Best found Structure Score for Asia at each run for all
algorithms

ues achieved by all approaches other than ChainGA are concentrated within a very

narrow range.

The success rates in Table 3.3 are also observably different. Comparing with K2GA,

ChainACO and ChainGA have very low success rates. Therefore we might need to

re-start these algorithms three and four times respectively to get the same quality

of result as K2GA. From Table 3.5, the success rate per 10000 function evaluations

indicates that the K2GA performs better than the three others. ChainACO obtained

the lowest rate; the value is only 1.44.

The structural arcs found in Table 3.3 and Table 3.4 show that ChainACO has more

added and deleted arcs than the other three algorithms. Figure 3.10a– 3.10d show the

structures obtained and the difference among these approaches.

From above analysis, we can conclude that the results for the Car problem are that

the GA outperforms ACO in computational effort and structure quality.

3.5.1.3 Alarm Structure:

For the Alarm problem, the difference is apparent in the averaged best score, F.E, suc-

cess rate, and the arc found between ChainACO and other three algorithms. ANOVA
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(a) (b)

(c) (d)

Figure 3.7: Learned Asia Structures with All Algorithms

tests using the Bonferroni correction show there is a significant difference between

the ChainACO approach and the other three approaches, F(3, 116) = 80.726,P < 0.05.

Figure 3.11 shows the scatter points of these values. The comparison of best scores

found for the four algorithms are displayed in Figure 3.12. This plot-box differs from

the one on Aisa and Car structures. All of them are relatively wider, however, it shows

that ChainACO has a significant performance on a highest BN score value, and the

distribution of these values with a thinner peak.

From Table 3.4, we can find that the structural errors between ChainACO and the

other three algorithms also have significant differences.

Table 3.5 shows that ChainACO obtained the best trade-off. It is interesting to note

that K2ACO and ChainGA have significant differences in factor evaluation and suc-

cess rates but very similar ratios. Both of them are only one fifths of the ChainACO’s

result. The experimental results for Alarm data also show that the K2 algorithms need

more time in factor evaluation than Chain algorithms. The number of F.E. in K2ACO
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Figure 3.8: Best found Structures at Each Run for all Algorithms to Car Network

is nearly three times that for ChainACO, and in K2GA is nearly twice to ChainGA.

All results in Alarm show that the Chain algorithm with ACO metaheuristic

outperforms GA based algorithms.

3.5.2 Experiment B

We select the eight benchmark problems which we discussed in the last chapter

in experiment B. All the data sets to these benchmarks are sampled from the Ge-

NIe&SMILE [GeNIe and SMILE, ]tool, but using the probabilistic logic sampling

method. We use the same experimental parameters setting as in experiment A. The

data size for Asia is 10, 000, for all other problems, the size are 3, 000.

We have carried out 30 runs of each algorithm to each benchmark problem con-

sidered. Main results are shown in Table 3.7 ∼ Table 3.9. These results indicate all

the values of CH score, F.E. with the averaged and corresponding standard deviation.

The value in brackets is the best one in each algorithm, and the bold value is the best

one within the four algorithms.

We compare the results of the score fitness on learned BN structures first. To inves-

tigate these structures, we carried out a one way ANOVA tests using the Bonferroni

correction with the four algorithms to compare the averaged score in each structure.
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Figure 3.9: Box-plots of the Best found Structure Score for Car at each run for all
algorithms

The results indicate, at the 0.05 level, that there is no significant difference between the

ChainACO approach and the K2 based approaches in Asia, Car, Boerlaga and Alarm

structures. There are significant differences between the ChainGA approach and the

K2 based approaches in all structures, except in Car structure there is not significant

difference. Within K2 based algorithms, the results show there is no significant differ-

ence between ACO algorithms and GA algorithms. In structures Credit, Tank, B and

Insurance, the ANOVA results indicate that there is significant difference between

Chain based algorithms and K2 based algorithms. K2ACO and K2GA algorithms

perform better in recovering the structures. The values of these ANOVA testing are

present in Table 3.6.

Table 3.6: The values of bonferroni ANOVA testing on benchmarks

Structure Asia Credit Tank Car B Boerlaga Insurance Alarm

F0.05 9.127 16.402 20.009 0.692 21.162 8.078 26.525 8.350

A very clear performance from comparing F.E. in all structures that can be found is

that the chain structure model algorithms are cheaper than K2 based algorithm. The

values of F.E. within four algorithms have a significant difference. With the increasing
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(a) (b)

(c) (d)

Figure 3.10: Learned Car Structures on All Algorithms
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Figure 3.11: Best found Structures at Each Run for all Algorithms to Alarm Network

of nodes in structures, this difference becomes larger. The amount in K2 algorithms

is 50 times larger than that in the Chain algorithms with Car and Boerlaga problems.

Within all chain based algorithms, ACO performs better than GA in all structures.

Within K2 based algorithms, in most of these problems, ACO takes more time than

GA in time consumption. In all these structures, ChainACO is the cheapest approach

and K2ACO is the most expensive one in computing consumption. Figure 3.13 shows

F.E. to the comparison of all algorithms with the eight benchmarks.

We do not intend to give the detailed graphs of the structure learned by each

approach. Instead of these we present the values of structural hamming distance

(SHD), which includes the arcs deleted (D), invested (I), and added (A) in Table 3.7 ∼

Table 3.9.

We append the ANOVA testing results and the Box-plot graphs on each problem

in appendix A.

3.6 Summary

In this chapter, we present two new search and score algorithms for BN structure

learning. Each of them utilizes the ACO metaheuristic to guide the search of node
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Figure 3.12: Box-plots of the Best found Structure Score for Alarm at each run for all
algorithms

orderings. ChainACO uses ACO evolving on the chain structure models. This

reduces the computational expense of the search but with a penalty on the success

in retrieving structure on known benchmarks. K2ACO also searches node orderings

using the K2 algorithm directly to construct and score locally optimized structures.

K2ACO is more computationally expensive but in general has a higher success rate

in recovering the known structures.

We applied our approaches to eight different benchmark problems of varying

complexities, which simulated through two different kinds of sampling methods.

We also compared our methods to two existing approaches which also search node

orderings but utilizing GA.

Comparing the results in experiments both A and B, one obvious result is there

is not significant difference between likelihood sampling and probabilistic logic sam-

pling. The performance of each algorithm, such as in score fitness, F.E., is not affected

by the sampling methods. We drew some conclusions from these experiments as

follows:

These results indicate that there is a high degree of problem dependency both

in the effectiveness and the efficiency of the approaches used. Both the choice of
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Figure 3.13: Comparing of F.E in each structure for all algorithms

metaheuristic (ACO and GA) and the choice of scoring method (Chain scoring and

CH scoring) can significantly affect performance. ACO with Chain model, is the

cheapest one in all algorithms. ACO with K2 greedy search becomes very expensive,

although sometimes can achieve a better BN score. The reason for it is that mostly the

K2 is a heuristic search algorithm, it needs large numbers of iterations in the process

of operation. GA is relatively cheap comparing to ACO when they are applied with

the K2 greedy search algorithm, but the difference in fitness score is not significant. To

all structures, the chain scoring based algorithms are always more computationally

efficient, but with a penalty on the success in retrieving structure. The results also

indicate in some situations the chain scoring approach is likely to be unsuccessful

in producing high quality structures (for example, in Credit, Tank, B and Insurance

structures, there are significant difference between the Chain based approaches and

the K2 based approaches to score values), and so the relative benefit of reduced

computational time is lost. However experiments on the overall distribution and

success of the four algorithms showed that the scoring approach, as opposed to the

choice of metaheuristic, is the dominant influencing factor. This motivates analysis
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of the interaction between scoring metric and problem structure.

We also conclude that, for some problems, repeated restarts will be beneficial. This

suggests that one way forward is to develop hyperheuristic approaches that adapt

themselves to a particular problem as they learn. An important aspect of this will be

to understand how particular structural features interact with particular heuristics to

either promote or inhibit learning.

There are some parameters provided for ACO based algorithms in our experi-

ments. We understand that the results achieved from these experiments are related

to the setting of these experiments in some degree. In the future research, we should

consider these different parameters.

The pheromone initialisation parameters provided for ChainACO and K2ACO are

based on a single prior run of K2GA. This was done for convenience and consistency

between experiments but raises questions about the independence of ChainACO and

K2ACO from K2GA. In fact, other approaches exist to generate the initial pheromone

value τ0 that we could equally well have used. In particular, in [de Campos et al.,

2002], the K2SN algorithm is used to generate initial pheromone values. The possible

alternative method to set this value is to use the greedy search algorithm, K2 algorithm

before starting the ACO process.

The results in this chapter illustrated that both the choice of metaheuristic (ACO

and GA) and the choice of scoring method (Chain scoring and CH scoring) can

significantly affect performance. In the following chapters, we will investigate how

the pheromone depends on each problem for specific benchmark structures.
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Chapter 4

Comparative Analysis of Search

and Score Metaheuristics using

Node Juxtaposition Distributions

In this chapter we focus on further investigating the information gained in previous

chapters about the property of problem-dependency in search and score algorithms,

the chain model approaches and K2 greedy approaches. All these algorithms search

on the space of node orderings to the specific problem. The effectiveness and the effi-

ciency of these approaches are very different connecting each problem. The objective

of this analysis is to study the relationship between problem features and algorithm

performance, for benchmark problems with known structures.

We will design experiments around the proposed algorithms involving four com-

binations of search (GA or ACO) with scoring (K2 or Chain) approaches. We relate

node juxtaposition distributions over a number of runs to the known problem struc-

ture, the algorithm performance and the detailed algorithmic processes. The experi-

mental results explore, to some extent, that both the choice of metaheuristic and the

choice of scoring method can significantly affect performance.

Finally, we simply describe the application of ACO based algorithms to learning



4.1 Node Juxtaposition Distribution 73

BN models of RIG operation in the gulf of Mexico, and also perform analysis on node

juxtaposition distributions to investigate the relationship on different approaches.

This provides us with some comparison on empirical experiment results and a real

problem application to study the approaches proposed. Some results of this chapter

have been published in paper [Wu et al., 2010a] [Fournier et al., 2010].

4.1 Node Juxtaposition Distribution

The aim of our experiments is to investigate the behaviour of GA and ACO meta-

heuristics searching the space of node orderings using chain and K2 evaluation meth-

ods. We know from the last chapter that both chain and K2 evaluation methods evolve

and utilize the best node ordering as the input topological ordering (Figure 4.1) for

inducing the BN structure through K2 greedy heuristic algorithm. The structure and

the quality of the node ordering have the most important effect to the final structure

learned. Therefore, we try to explore the relationship between arcs derived from node

juxtapositions in the best orderings found and arcs in the original structure by all the

approaches.

Figure 4.1: Chain structure on best node ordering with arcs

A n × n matrix En×n = (ei j)n×n for any n-variables node ordering S is defined to

indicate the arcs in this structure. Where:

ei j =


1, if Pa j = i, (i, j = 1, · · · ,n)

0, otherwise.
(4.1)

to express the situation of where arcs exist within the chain model.

We know, for one specific chain structure model, the number of ei j = 1 is n − 1,

and all these values of 1 lie in different rows and different columns. Table 4.1 is an
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example that shows the node juxtaposition distribution of one best node ordering

(3-5-8-7-6-4-1-2) in the Asia structure. Here n = 8, and the bold number in the first

row and the first column represents the node in the Asia network.

Table 4.1: Node Juxtaposition Distribution for one node ordering on Asia

1 2 3 4 5 6 7 8

1 0 1 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 0 0 0 1 0 0 0

4 1 0 0 0 0 0 0 0

5 0 0 0 0 0 0 0 1

6 0 0 0 1 0 0 0 0

7 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 1 0

4.2 Experimental Design

In this section, we design and run a series of experiments to study the proposed task.

The framework of the study considered in this chapter is described in Figure 4.2.

Figure 4.2: Experimental framework with best node orderings

We therefore make runs of each metaheuristic with each evaluation method,



4.2 Experimental Design 75

ChainACO, ChainGA, K2ACO and K2GA. Note that in these experiments, for ob-

taining the best node ordering, we only require to run the first phase of ChainACO

and ChainGA algorithms, as the search of ordering space ends at this point - the

second phase is deterministic. We are not comparing the computational efficiency or

the scores of final networks produced as that has been covered in earlier work. These

best node orderings obtained can then be used for further analysis in our experiments.

Firstly, they will be applied to learn the node juxtaposition distribution among the set

of orderings. Secondly, the arcs that exist in the best node ordering will compare to

the true structure to explore the relation of the choice of metaheuristic and the choice

of scoring method with the structure learned.

A pseudo code representation of node juxtaposition distribution built on best node

orderings in chain and K2 evaluation is shown in Algorithms 14.

Algorithm 14 Pseudo code of node juxtaposition distribution built on best node
orderings in chain and K2 evaluation algorithms

1: Input: A set of n nodes with database D;
2: Input: M=Iteration number.
3: Begin algorithm
4: Initialize En×n ← (0)i j;
5: for i← 1,M do
6: Implement a proposed approach on D to achieve a best node ordering Si;
7: Construct matrix (Ei)n×n from Si;
8: En×n ← En×n + (Ei)n×n;
9: end for

10: Output: En×n.
11: End algorithm

The previous eight well known benchmark problems have been selected in the

experiment: Asia, Credit, Tank, Car, Boerlaga, B, Insurance and Alarm. The data

size for Asia is 10, 000, for all other problems, the size is 3, 000. In all cases, the

scoring metric used to evaluate the node ordering is the CH metric. For ChainACO

and ChainGA we carry out 200 experimental runs each. For K2ACO and K2GA we
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carry out only 50 runs each due to time complexity. The parameters used for ACO

and GA based algorithms in the experiments are the same as those used in previous

experiments in chapter 3.

4.3 Results and Discussion

We present the experimental results of four algorithms on all benchmark problems in

this section. In each benchmark, we record the corresponding matrix En×n from the

four approaches and use the gray scale visual table to intuitively describe the Node

Juxtaposition Distributions. We then execute statistical analysis to study these results

to explore the potential relations between proposed approaches and problems. We

describe these results according to each benchmark problem as follows:

4.3.1 Asia Benchmark Structure

First of all, we consider the Asia structure. Table 4.2a– Table 4.2d presents the distri-

bution of node juxtapositions recorded from the best ordering found in all algorithms

on the Asia network. In these tables, the row index indicats the first node in a juxta-

position. The column index indicates the second. The run number of ChainACO and

ChainGA is 200, and 50 for K2ACO and K2GA. For example Table 4.2a shows that in

65 of the runs, the node juxtaposition 1-2 appeared 65 times, and the node juxtaposi-

tion 2-1 appeared 135 times. This means that, in all runs of ChainACO on Asia, nodes

1 and 2 were juxtaposed in the best ordering found, with a 135:65 preference for node

2 preceding node 1. In all of these cases, the ordering will have been evaluated using

a chain structure inserting a directed edge between these nodes. It is not of course

necessary that any particular juxtaposition will appear in all experimental runs. Each

ordering found will contain n − 1 juxtapositions where n is the number of nodes.

The sum of entries in the ordering distributions table will therefore in general be

r· (n− 1),where r is the number of runs. In this case, the entries sum to 1400 = 200× 7.
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Table 4.2: Node Juxtaposition Distribution for 200 runs of ChainACO, ChainGA, and
50 runs of K2ACO, K2GA on Asia Structure

(a) ChainACO

1 2 3 4 5 6 7 8
1 0 65 0 135 0 0 0 0
2 135 0 19 21 9 7 0 0
3 10 76 0 3 12 4 0 4
4 44 0 4 0 0 145 0 0
5 0 9 65 0 0 0 2 31
6 0 3 0 37 0 0 158 2
7 0 0 0 0 0 42 0 158
8 0 2 3 0 155 0 40 0

(b) ChainGA

1 2 3 4 5 6 7 8
1 0 100 6 74 5 2 0 4
2 100 0 17 23 24 10 2 10
3 11 20 0 23 48 22 2 13
4 66 15 24 0 16 22 5 10
5 9 17 38 16 0 8 12 51
6 4 16 19 22 7 0 85 25
7 1 2 1 1 15 105 0 72
8 1 14 15 14 43 21 92 0

(c) K2ACO

1 2 3 4 5 6 7 8
1 0 1 5 0 6 5 17 16
2 0 0 1 0 0 2 4 26
3 18 4 0 4 2 5 14 3
4 6 0 21 0 3 5 8 2
5 3 3 2 32 0 8 2 0
6 5 6 6 4 27 0 0 1
7 13 23 8 1 2 1 0 2
8 2 13 1 5 0 0 2 0

(d) K2GA

1 2 3 4 5 6 7 8
1 0 14 6 5 7 0 7 11
2 0 0 4 4 1 2 1 3
3 4 6 0 6 8 8 9 3
4 17 1 6 0 9 1 6 3
5 6 3 6 5 0 14 14 1
6 7 1 9 14 8 0 8 2
7 6 4 4 5 2 2 0 27
8 7 21 5 8 5 2 2 0

It is noticeable from Table 4.2a– Table 4.2d that the distribution of node juxta-

positions are very different within the four approaches. Table 4.2a shows that in

ChainACO the distribution of node juxtapositions is concentrated on a relatively s-
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mall subset of possible node juxtapositions. This indicates that ChainACO is highly

consistent in the node orderings it produces and suggests a strong convergence prop-

erty of the search. Table 4.2b– Table 4.2d, however, show the distribution of node

juxtapositions are scattered over the whole space of the possible node juxtaposition-

s. These clearly reveal that the corresponding approaches have weak convergence

property of the search.

In Figure 4.3, we present a visual representation of the node distributions produced

by all four algorithms on Asia. Here, the instance counts have been replaced by a

normalized grayscale representation running from white (juxtaposition occurs on 0%

of runs) through to black (juxtaposition occurs on 100% of runs). The results are

arranged gridwise according to the scheme (Chain, K2) × (ACO, GA) to align visual

contrast with variation in search and score approaches. It is easy to observe from

Asia that there is a marked difference in distribution between ChainACO (top-left)

and K2GA (bottom right). ChainACO produces a high contrast image consisting of

mostly very dark or very light pixels whereas the K2GA image is much more diffuse.

It is hard to visually detect much of a difference in contrast between K2ACO and

ChainGA other than that they lie somewhere in between the other two. Moreover the

dark areas for ChainACO do not particularly coincide with those for K2GA. However

results in the previous section show that each algorithm reliably reproduces the Asia

network.

To properly understand the node distributions, we present a quantitative descrip-

tion on node juxtaposition frequencies for all four algorithms on the Asia problems as

Box-plot in Figure 4.4. These frequencies come from all the arcs with node juxtaposi-

tion, so in the Asia network, the size of these values for each approach is 8 × 7 = 56.

Here the effect of the ChainACO approach manifests as a low median frequency

(which is almost zero) for most possible juxtapositions with three high frequency

outliers, which are not included between whiskers. ChainGA approach has the same

median score as the two K2 approaches, and also three high frequency outliers. We
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Figure 4.3: Grayscale Grids of the Edges Occurrences in Asia Network within the
Four Algorithms

are interested in the outliers, because in this kind of problem more outliers indicate

that the corresponding approach produced more arcs which have higher frequencies.

Comparing median and outliers on chain approaches and K2 approaches from the

table, we can conclude that the former perform better on concentrating than the latter.

Figure 4.5 is a diagram of the known true structures for Asia, annotated with the

best orderings found by each approach. Figure 4.5a– Figure 4.5d corresponds to

ChainACO, ChainGA, K2ACO and K2GA respectively. For each node juxtaposition

occurring in the best ordering that corresponds with an edge in the true structure, an

arrow is added in the middle of the edge in the direction of the node juxtaposition. If

there is no edge in the true structure corresponding to the node juxtaposition, a dotted

arrow is added to the diagram. Solid directed edges with no central arrow therefore

represent edges that occur in the true structure but are not represented by node

juxtapositions in the best ordering found. We also annotate each node juxtaposition

with the overall percentage of runs in which it appeared in the best ordering for that

run.
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Figure 4.4: Comparison of frequencies of each edges found in Asia network within
four approaches

In Figure 4.5a, the best ordering is 2-4-7-6-5-3-0-1. The diagram shows that all

but two of the node juxtapositions in the best ordering found by ChainACO for Asia

coincide with true arcs. Of these three out of six are correct and three are reversed.

The solution adds one node juxtaposition corresponding to a spurious arc and omits

two arcs. The percentage of the three correct arcs are 0.185, 0.22 and 0.325. These are

relatively high values to ensure that the true structure is learned by K2 in the second

phase of the algorithm. In Figure 4.5b, the best node ordering is 2-5-6-7-3-0-1-4. It

shows that four node juxtapositions in the best ordering found by ChainGA for Asia

are correct arcs comparing to Asia structure, and three added node juxtapositions are

produced. In this case, three true arcs are deleted. We can find that the percentage

of the four correct arcs are higher than in ChainACO. They are 0.425, 0.36 , 0.33 and

0.50. These results mean it is stable for generating the best node orderings in K2

phase and the true BN structure is hard to produce. We also investigate Figure 4.5c

and Figure 4.5d. The best node orderings in these two diagrams are 4-5-2-3-6-0-7-1

and 4-5-6-3-2-0-1-7 respectively. A very clear result is in K2ACO. The number of
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(a) (b)

(c) (d)

Figure 4.5: Asia Structures annotated by best node orderings on four algorithms

correct node juxtapositions is zero and the deleted arcs is seven. K2GA has two

correct arcs produced and five omitted. The nodes corresponding to these deleted

arcs in both algorithms are chaotic sequence. These will give K2 a disordered node

ordering and make K2 poorly in BN structure learning. The above analysis shows

that it is possible to create chains closely aligned to the structure. This explains why

ChainACO and ChainGA perform well on Asia. Table 4.3 is the arc statistics on Asia

with four approaches.

Table 4.3: Node Juxtaposition Distribution for one node ordering on Asia with four
approaches

Correct Reversed Added Omitted
ChainACO 3 3 1 2
ChainGA 4 0 3 4
K2ACO 0 0 7 8
K2GA 2 0 5 6
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4.3.2 Credit Benchmark Structure

From Credit structure onwards, in the following description on other benchmarks we

do not intend to display all the data as in Table 4.2a– Table 4.2d. We present the visual

table which has equivalent data for all approaches in Figure 4.6. Here, the image of

K2ACO looks more marked. There exist 7-8 nodes with heavy color. This means the

ordering has concentrated distributions on the ACO metaheuristic with K2 greedy

search. From the images, both ChainACO and ChainGA algorithms have similar

distributions, but the best node orderings in them are not clear. K2GA, however, is the

most uniform on gray distribution. Comparing the experimental results in chapter

3, K2ACO has the best performance on Credit either in fitness score or structure

hamming distance. Figure 4.6 can explain how the best node ordering from the

K2ACO generated, which is very important for K2 heuristic search algorithms. In

spite of failing to produce the best node orderings in K2GA, the approach got a

satisfactory result in our previous experiments. Figure 4.7 presents the quantitative

Figure 4.6: Grayscale Grids of the Edges Occurrences in Credit Network within the
Four Algorithms
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description on node juxtaposition frequencies for all four algorithms on the Credit

problem. K2ACO in this case has the most and the furthest outlier compared to other

three approaches. This is consistent with the visual table in Figure 4.6. These outliers

correspond to the arcs found in chain orderings. Three frequencies of these outliers

are very close to 1.00. This can give an absolute result of best arcs both in node

ordering and in the final BN structure.

Figure 4.7: Comparison of frequencies of each edges found in Credit network within
four approaches

Table 4.4: Node Juxtaposition Distribution for one node ordering on Credit with four
approaches

Correct Reversed Added Omitted
ChainACO 5 2 4 5
ChainGA 2 4 5 6
K2ACO 1 0 10 11
K2GA 2 2 7 8

Figure 4.8 depicts the best node ordering generated in K2ACO compared to the

true Credit and Table 4.4 indicates arcs statistics on Credit with the four approaches.
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Figure 4.8: Credit- annotated by best K2ACO ordering 8-7-3-9-1-0-4-2-5-11-6-10.

These include the arcs deleted, added and reversed. From Figure 4.8 we can find that

only one correct edge can be found by this node ordering. However, from Table 4.4,

we know ChainACO achieved five correct edges. These explore the complexity of K2

based search and score algorithms. The node ordering which has more true edges is

not the topological node ordering for K2 searching.

4.3.3 Tank Benchmark Structure

The visualization is very clear in Figure 4.9 on Tank structure with four approaches.

This is consistent to the performance of K2ACO and K2GA in our previous experi-

ments. We notice the best node orderings in these two approaches are not fixed in the

same nodes. This is because the best node orderings of the structure are not unique.

Figure 4.10 presents the quantitative description on node juxtaposition frequencies

for all four algorithms on the Tank problem. ChainACO in this problem achieved the

most and the farthest outlier compared to the other three approaches. However, the

median is nearly zero. K2GA also has a similar median but the number of outliers is
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Figure 4.9: Grayscale Grids of the Edges Occurrences in Tank Network within the
Four Algorithms

Figure 4.10: Comparison of frequencies of each edges found in Tank network within
four approaches
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only one. Both ChainGA and K2ACO have higher medians and a smaller number of

outliers. Notably, the ChainACO approach got a large amount of outliers relating to

specific edges in the best node ordering, but the performance of ChainACO was poor

from previous experiments. To explain this performance, we draw the best edges on

ChainACO from Figure 4.9. These edges are 0 → 6, 1 → 5, 1 → 8, 3 → 2, 7 → 12,

8→ 1, 11→ 4,12→ 7, 13→ 9 and 13→ 12. Four of these edges are the correct arcs in

the true structure. They are 0→ 6, 1→ 5, 1→ 8 and 7→ 12. Four of them are added

to the true structure and two are reversed (8→ 1 and 12→ 7). Table 4.5 indicates arcs

statistics on Tank for the four approaches. We know, in the Tank problem, for a node

ordering, the number of arcs within variables is 13. This table shows the difference

in number of correct, reversed and added arcs for each approach is not significant

within four approaches.

Table 4.5: Node Juxtaposition Distribution for one node ordering on Tank with four
approaches

Correct Reversed Added Omitted
ChainACO 3 1 8 16
ChainGA 1 1 11 18
K2ACO 2 2 9 16
K2GA 3 1 9 16

4.3.4 Car Benchmark Structure

We present the visual table which has equivalent data for all approaches in Fig-

ure 4.11. Here there are more possible node juxtapositions and the visual contrast is

more marked. In order from highest to lowest visual contrast, the images are ordered

ChainACO, K2ACO, ChainGA and K2GA. This ordering is consistent with a hypoth-

esis that both the Chain scoring approach and the ACO metaheuristic result in more

concentrated distributions than the K2 scoring approach and the GA metaheuristic

respectively.
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Figure 4.11: Grayscale Grids of the Edges Occurrences in Car Network within the
Four Algorithms

Figure 4.12: Comparison of frequencies of each edges found in Car network within
four approaches

The statistical analysis with Box-plot are shown in Figure 4.12. In this case, the

data size in each approach is 18∗17 = 306. It is noticeable that ChainACO achieved the
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lowest median with most outliers while K2ACO is the second. K2 based algorithms

both have a higher median and a small number of outliers. This means that all

the possible node juxtapositions distributions are relatively even. The possibility to

converge on a node ordering becomes very low in this condition. The box-plot results

give a quantitative description of each approach and verify the performance of the

chain based algorithm with ACO.

Figure 4.13: Car - annotated by best ChainACO ordering 17-16-12-18-14-7-6-10-11-5-
9-8-13-2-4-1-3-15.

Figure 4.13 shows that only six of the seventeen node juxtapositions in the best

ordering found by ChainACO for Car coincide with true arcs. Of these only one out

of six is correct and five are reversed. The solution adds eleven node juxtapositions

corresponding to spurious arcs and omits ten arcs. It is noticeable that the true Car

structure contains nodes such as 4, 7, 14 and 18, each of which is a hub for a cluster

of tightly-bound nodes. The binding between these clusters is loose. Such a topol-

ogy is not amenable to the construction of chains where many node juxtapositions

correspond to a true arc from independent parents. For example, only one node can

be positioned before node 18, which immediately excludes at least three true arcs
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in any ordering. Therefore in this case, the chain approach finds spurious arcs that

can coexist as node juxtapositions in a single ordering and give a better score than

orderings that include correct node juxtapositions. This inherent difficulty in aligning

chains of node juxtapositions with the true structure explains why ChainACO and

ChainGA perform poorly on Car. Table 4.6 indicates the arcs statistics for all four

approaches with the Car structure.

Table 4.6: Node Juxtaposition Distribution for one node ordering on Car

Correct Reversed Added Omitted
ChainACO 1 5 12 12
ChainGA 1 4 13 13
K2ACO 0 0 18 18
K2GA 1 0 17 17

4.3.5 B Benchmark Structure

Figure 4.14: Grayscale Grids of the Edges Occurrences in B Network within the Four
Algorithms

Figure 4.14 gives the visual table with equivalent data for all approaches. In
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Figure 4.15: Comparison of frequencies of each edges found in B-network within four
approaches

Figure 4.16: B- annotated by best BK2ACO ordering.

this table, K2ACO is the highest visual contrast. The other three approaches have a

similar lower visual contrast. This matches the performance of K2ACO on B structure
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in previous experiments. The best node ordering produced in K2ACO leads to the

best BN structure found in K2 algorithm. In Figure 4.15, the quantitative description

on node juxtaposition frequencies for all four algorithms on the B problem shows that

K2ACO got the most and farthest outliers compared to the other three approaches.

In this problem, all approaches have the same median, all close to zero. Figure 4.16

indicates the structure learned in comparison to the true B problem by K2ACO. There

are seven correct arcs found in this 17 nodes long best node ordering. In spite of

this K2ACO get the best node ordering, the values of frequency to correct edges are

relatively low. The highest one is 0.433. Most of these are less than 0.10.

4.3.6 Boerlaga Benchmark Structure

We know in Boerlaga structure, the ChainACO has the best performance in all four

approaches. The best orderings to four approaches are reflected in the visual table

in Figure 4.17. This is a very significant result of the comparison of the edges cor-

responding to the black points in these tables. The ChainACO here is the highest

contrast in comparison to the other three. With the same display in other structures

discussed above. This ordering can show that both the chain scoring approach and

the ACO metaheuristic result in more concentrated distributions than the K2 scoring

approach and the GA metaheuristic respectively.

The Box-plot graph in Figure 4.18 is significantly different to the above structures.

The median in ChainACO is zero, and the width of box is also zero. This means that

except for the 8 outliers, all other values of probability, including the smallest and

median, are all very small. We investigate these 8 outliers. The edges they represent

are 2→ 18, 4→ 10, 8→ 4, 9→ 11, 12→ 13, 13→ 12, 17→ 22, 18→ 2. Out of these

edges, 5 is the correct arcs, 3 is the reversed to the true structure. It shows the ability of

chain structure with ACO metaheuristics in searching the best node ordering. Three

other approaches also have the same median, but the number of outliers are lesser

and lower possibility values. Figure 4.19 shows through the chain structure model
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Figure 4.17: Grayscale Grids of the Edges Occurrences in Boerlaga Network within
the Four Algorithms

produced, the ChainACO achieved 9 correct edges and 5 reversed edges. The values

of probability of these edges are larger; the biggest one is 0.8. These relatively large

number of edges of topological node orderings will give the following K2 algorithm

very valuable information to generate the BN structure.

4.3.7 Insurance and Alarm Benchmark Structures

Both Insurance and Alarm have a larger number of variables. The equivalent diagrams

for them are shown in Figure 4.20 and Figure 4.21. In both of them, as they have

many more possible node juxtapositions, the diagram has a finer granularity but the

same effects are observable. ACO based algorithms produce contrasting grayscale.

Although other approaches have some marked points, the number of these points is

clearly less than in ChainACO approach.

We present node juxtaposition frequencies for all four algorithms for the Insurance

and Alarm problems as Box plots in Figure 4.22 and Figure 4.23. These essentially

show the same information. Here in both Figures, the effect of the ChainACO ap-

proach manifests as a low median frequency for most possible juxtapositions with a
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Figure 4.18: Comparison of frequencies of each edges found in Boerlaga-network
within four approaches

Figure 4.19: Boerlaga- annotated by best ChainACO ordering 21-3-8-4-10-9-11-18-2-
1-5-0-14-15-12-13-16-20-17-22-7-6-19.

large number of high frequency outliers. Conversely, for K2 approaches, and K2GA

in particular, there is a higher median node distribution frequency and a small dis-
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Figure 4.20: Grayscale Grids of the Edges Occurrences in Insurance Network within
the Four Algorithms

Figure 4.21: Grayscale Grids of the Edges Occurrences in Alarm Network within the
Four Algorithms

tribution of frequencies in the interquartile range, corresponding to the more diffuse

visual pattern observed earlier. However, we can notice that in Alarm, the highest
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frequency value in ChainACO is nearly 1.0. This is a very big number in distribution.

It means, nearly every run, this fixed edge definitely emerged. The highest frequency

in Insurance is only 0.2 in 200 runs. This can explain why both in Insurance and Alar-

m, ChainACO got the best node orderings, but compared to the BN structure learning

in K2 stage, it performs worse in Insurance, better in Alarm. GA based algorithms in

Alarm acquired a very small number of outliers. The frequency of these points are

also very low.

Figure 4.22: Comparison of Frequencies of Each Edges Found in Insurance Network
within four Algorithms.

Overall, there appears to be a small reduction in variability of the final ordering

produced deriving from the use of ACO rather than GA, but the dominant difference

in behavior derives from the choice of scoring approach. We observe that the chain

scoring approach concentrates the search on a smaller set of node juxtapositions, and

hence node orderings, than the K2 scoring approach does. This is because, for any

particular ordering, chain only inserts edges between juxtaposed nodes whereas K2

may insert an edge between any two nodes. Thus it is possible to discover valuable

interactions from a wider range of orderings with K2 than with chain. Conversely, it
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Figure 4.23: Comparison of Frequencies of Each Edges Found in Alarm Networks
within four Algorithms.

takes longer to evaluate orderings with K2 because a large number of possible edges

have to be considered in turn for each ordering. Therefore, the relative merits of Chain

and K2 for any particular problem lie in how amenable the dependencies in the data

are to discovery using the Chain approach.

4.4 Search and Score Algorithms to Learning Evolved Bayesian
Network Models of Rig Operations in the Gulf of Mexico

The operation of drilling rigs is highly expensive [ODS-Petrodata, ]. It is therefore im-

portant to be able to identify and analyze variables affecting rig operations. Fournier

et al. [Fournier et al., 2010] have applied the ACO based approaches we proposed

with other search and score algorithms to study BN structure model with the data

achieved from the Gulf of Mexico used by ODS-Petrodata Ltd. [ODS-Petrodata, ]. The

research is interested in exploring the relative performances of different search and

score heuristics and consider trade-offs between best network score and computation
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time from an industry standpoint. We describe the main results below:

4.4.1 Performance of the Algorithms

The mean structure scores (log format of CH score) and the significance tests on all

pairs of means for each algorithm are presented in Table 4.7 and Table 4.8 respectively.

Mean run times for each algorithm are presented in Table 4.9.

Through comparing the results in Table 4.7, K2GA produces on average signifi-

cantly better scoring structures than all of the other algorithms. Although significantly

different, we can see that the results from K2ACO and ChainACO are much closer to

K2GA than ChainGA, and they also benefit from a smaller standard deviation, show-

ing their stability compared to ChainGA’s. Table 4.8 confirms that K2GA, K2ACO

and ChainACO are much closer to each other, in term of scoring, than ChainGA. The

difference in the mean score of all pairs formed from K2GA, K2ACO and ChainACO

is less than 1000 while all pairs involving ChainGA have a difference in mean score

around 7000. It is to be noted that, as discussed in [Fournier et al., 2010] and [Kabli

et al., 2007], the performance of ChainGA relating to K2GA appears to be highly

problem-dependent. In terms of mean run times, from Table 4.9, the ChainGA run-

time is about a quarter of the K2GA runtime. K2ACO requires a significantly different

but closer time to ChainGA. However, ChainACO completes with run times divided

by a factor of 10 when compared to K2ACO or ChainGA and by a factor of 40 when

compared to K2GA.

Table 4.7: Means and Standard Deviations of Best Individuals CH Scores

N Mean Score Standard Deviation
K2GA 45 -56197.44 205.2

ChainGA 45 -66434.34 1237.7
K2ACO 41 -56265.43 297.8

ChainACO 40 -56556.41 254.7

The score of ACO-based algorithms being much closer to K2GA than ChainGA,
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Table 4.8: Paired t-test of best Individuals CH score across all runs

Pair N Paired Mean Score Paired Standard Deviation P
K2GA-ChainGA 43 7721.6793 954.3604 < 0.0005

K2ACO-ChainACO 40 308.3900 109.7554 < 0.0005
K2GA-K2ACO 41 410.3674 298.7311 < 0.0005

ChainGA-ChainACO 40 -6885.6652 653.7462 < 0.0005
K2GA-ChainACO 40 694.2759 234.9186 < 0.0005
ChainGA-K2ACO 41 -7220.7185 658.1467 < 0.0005

Table 4.9: Time Statistics per run over all runs

Average Standard Deviation
K2GA 42h28m 5h9m

ChainGA 11h01m 01h11min
K2ACO 11h50m 0h41m

ChainACO 1h39m 0h5m

the loss of quality compared to the gain of time is statistically significant, but smaller

than the loss of gain obtained by ChainGA. The long computation times required on

this problem are in a large part due to the number of distinct values taken by many of

the variables. Considering the vast amount of data available to us, K2GA might not

be feasible in some cases for building larger models whereas ChainACO will allow

us to build a model taking into account more of the data available.

4.4.2 Expert Evaluation of the Model

Figure 4.24 illustrates the best BN models learned from data using the algorithms. In

this figure, as in [Fournier et al., 2010] we can see some matching relationships formed

in the models created by K2GA, ChainGA, K2ACO and ChainACO.

We can find that all the algorithms discovered interactions between Rig Capabil-

ities, Rig Types and Water Depth nodes. Experts highlighted that those are linked

because specific rig types typically operate at a specific range of water depth. An-

other group of interactions is identifiable between Well Result, Well Status and Well
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Figure 4.24: Superposition of networks

Type. Only ChainACO omitted that link; however, as the search is non-deterministic,

another run of ChainACO might find it.

4.4.3 Analysis of the Node Juxtapositions

Figure 4.25 represents the occurrences of node juxtapositions as a grayscale grid.

The vertical axis represents the first node; the horizontal axis represents the second

node. The shade is darker proportionally to the number of occurrences of node

juxtapositions within the best ordering of each run for all four algorithms.

Figure 4.25 shows that K2GA explores the search space more broadly without

focusing on any specific link. This explains why it finds better solutions, but this is

an expensive behaviour. ChainGA seems to focus the exploration on the most likely

chains. However, its score is lower than that of other algorithms. K2ACO reduces

even further the thoroughness of the search but performs better than ChainGA. ACO

based algorithms on this problem, seem to be more stable than ChainGA, and also

focus more quickly onto the most important part of the ordering compared to GA-

based algorithms. ChainACO clearly focuses on some important nodes, converging

quickly and consistently towards a good solution.
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Figure 4.25: Grayscale representation of node juxtapositions

4.5 Summary

In this chapter we have conducted experiments to investigate the behaviour of GA

and ACO metaheuristics searching the space of node orderings using the Chain and

K2 evaluation methods. We have explained problem-dependent performance trade-

offs between cost and structure quality in terms of the relationship between the Chain

scoring mechanism, which relies on ordering node juxtapositions, and true arcs in the

original structure. In all problems investigated, the Chain scoring approach focused

the search on a narrower range of orderings than did the K2 scoring approach. A

lesser effect was also observed in that ACO-based methods appeared to concentrate

the search more than GA-based methods.

Through the above discussion on all benchmarks, there exist different effects be-

tween Chain scoring function and K2 scoring on producing the best node orderings.

In most of these benchmarks, for example in Asia, Tank, Car, Boerlaga, Insurance and

Alarm, the ChainACO got best node orderings, the distribution of frequency are more

dispersed in these benchmarks. However, ChainACO performs poorly in Tank and

Insurance. One possible reason is, to some extent, this kind of best node ordering can
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not be guaranteed to be the topological node orderings for K2 algorithm to search

the best BN structure. In some case, the chain model of best node ordering send

insufficient nodes relationships between variables to the K2 greedy search algorithm.

This leads to the poor BN structure.

A generalization of the Chain scoring approach that could detect shorter series

of well-aligned node juxtapositions combined with a coarse-grain version of the K2

algorithm could potentially assemble high quality structures at reduced cost, even in

situations where a single ordering would not admit a set of well-aligned arcs. ACO

is a promising approach for more generalized construction approaches.

The comparative results of both GA and ACO algorithm based on node orderings

with different approaches to explore and assess methods for the discovery of BN from

rig operations data in this chapter indicate the variances among these algorithms.

From the perspective of industry experts, the four algorithms have found credible

network structures. Comparison of node juxtapositions in the best orderings showed

that, for different reasons, the choice of the Chain function as a scoring mechanism

or ACO as a metaheuristic, tended to focus the search on a narrower set of orderings.

This is consistent with the conclusion drawn from the previous benchmark problems.

This proved beneficial for this problem but may not do so in general. However, the

computational effort required for ChainACO is a fraction of the effort needed for

K2GA.



Chapter 5

Fitness Landscape Analysis of

Bayesian Network Structure

Learning

We have seen over the previous chapters that search-and-score algorithms using

nature-inspired metaheuristics are an important strand of BN structure learning re-

search. However, performance is variable and strongly problem-dependent both in

the effectiveness and the efficiency of the approaches used. Both the choice of meta-

heuristic and the choice of scoring method can significantly affect performance. In

all structures, the chain based algorithms are always more computational efficient,

but with a penalty on the success in retrieving structure. The results also indicate, in

some situation, that the chain scoring approach is likely to be unsuccessful in produc-

ing high quality structures (for example, in Credit, Tank, B and Insurance structures,

there are significant differences between the chain based approaches and the K2 based

approaches to score values), and so the relative benefit of reduced computational time

is lost.

In this chapter we mainly focus on studying the performance of the two score

functions in search-and-score approaches. We aim to understand to which degree the
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choice of different fitness functions affect the effectiveness of the BN structure learning

algorithms. The main contribution is to show that landscape analysis around multiple

optima (topological orderings) relates structural properties of particular problems to

the relative performances of algorithms using chain and CH scoring. We conduct

fitness landscape analysis to explain previously observed performance differences

between particular search-and-score algorithms. By analyzing the characteristics of

each fitness landscape over a range of benchmark structures, we will explore existing

empirical performance comparisons with further potential for understanding the

relative difficulty of benchmark problems and the robustness of particular algorithms.

We introduce fitness landscape analysis to explain empirically-observed perfor-

mance differences between particular proposed search-and-score algorithms. We

define random walk and fitness functions in our specific problem. We investigate

the average landscape discovered by random walks around optimal points in the

space of BN node orderings. Differences in algorithm performance are explained in

terms of these landscapes, which in turn are related to properties of the BN structures.

These initial findings suggest that fitness landscape analysis is a promising approach

for explaining existing empirical performance comparisons with further potential for

understanding the relative difficulty of benchmark problems and the robustness of

particular algorithms. In the next chapter, we will use the conclusions achieved from

fitness landscape analysis for determining how important selecting chain scoring or

CH scoring is to a particular structure.

5.1 Fitness Landscape Analysis

5.1.1 Definition of Fitness Landscape Analysis

Fitness landscape analysis is a useful tool for representation analysis, either in em-

pirical methods or theory-based analysis [Manderick et al., 1991] [Rothlauf, 2006]. It

focuses on investigating the structure from the search space, to visualize the relation-
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ship between search space and the solution space in evolutionary algorithm [Wright,

1932]. The search space is regarded as a landscape. An algorithm is seen as a navi-

gating search on the landscape in order to find the highest peak. The points which

the algorithm finds represents the dynamics of this algorithm, which is used to show

how the algorithm performs its search in the space and how the difficulty of the corre-

sponding landscape. Therefore the technique of fitness landscape analysis can help to

analyze and understand the performance of specific algorithms to search problems. It

also can provides information for designing an evolutionary algorithm and predicting

the performance of the algorithm.

Figure 5.1: Fitness landscape

To construct the fitness landscape for a specific problem, it requires that the global

optimum or a very near-global optimum solution is known. It also needs to define a

search space first. Every point in the search space has a fitness value assigned. Then

some standard mutation operations (random walk) are used to generate a continuous

fitness distribution. Typical mutation operations include: bitflip mutation, integer

mutation and uniform mutation. The distance between the known optimal solu-

tion and the candidate solutions increases with the number of mutation operations

increasing.
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5.1.2 Measure for Fitness Landscape Analysis

There are several properties for a fitness landscape. They are very important factors to

evaluate the performance of corresponding algorithms. For example, the distribution

of the fitness function, the number of local optima, landscape ruggedness and the

correlation between neighboring points in the search space [Hordijk, 1996] [Stadler,

1995] [Merz and Freisleben, 2000] [Slaný and Sekanina, 2007]. There are several

statistical measures for evaluating these properties. For example, if the landscape

has several peaks, and if it lacks correlation from two neighbor points, it is said to be

rugged. We describe two main related statistical methods proposed to measure the

properties of a fitness landscape [Jones and Forrest, 1995] [Hordijk, 1996].

5.1.2.1 Fitness-distance Correlation (FDC).

We suppose ŝ is the global optimal solution for a given problem, and s is a local

minimum solution. For each local optimum solution si, the distance of si to the

nearest global optimum is defined as di. FDC measures the degree to which the

distance from si to ŝ is a predictor of the fitness s. The correlation coefficient of FDC

value is computed as:

r =
1
n
∑n

i=1( fi − f̄ )(di − d̄)
S f Sd

(5.1)

f̄ , d̄, S f and Sd are the mean and the standard deviations of F and D. F =

{f1, f2, . . . , fn} is a set of fitness values and D = {d1, d2, . . . , dn} is the corresponding

distance to the global optimal. In [Jones and Forrest, 1995] a classification of problem

difficulty based on FDC coefficients is suggested. When r = −1.0, it represents that

the fitness and the distance to the optimum are perfectly related. When r = 1.0, it

represents the fitness and the distance to the optimum are not related at all. We

also know, r ≥ 0.15 indicates that the fitness tends to increase with distance from the

global optimum, −0.15 < r < 0.15 indicates there is little correlation between fitness



5.1 Fitness Landscape Analysis 106

and distance from optimum, r ≤ −0.15 indicates that the fitness tends to increase as

the global optimum is approached.

5.1.2.2 Landscape Correlation Length (LCL).

A landscape with a few local peaks and small fitness differences between neighboring

points in called smooth. A landscape with a lot of local peaks and large fitness

differences is called rugged [Hordijk, 1996]. Different landscapes perform differently

in their ruggedness. Landscape correlation length (LCL) presents the ruggedness of a

fitness landscape. The ruggedness of the landscape to a given problem measures the

degree of correlation between neighboring states in a random walk [Hordijk, 1996].

LCL is computed as:

l = −
1

ln |(ρ(1))|
(5.2)

Where

ρ(1) = 1
σ2( f )(m−1)

∑m−1
t=1 ( ft − f̄ )( ft+1 − f̄ )

is used to measure the degree of correlation between consecutive points on the land-

scape [Angel and Zissimopoulos, 1998]. In this equation, σ2( f ) denotes the variance

of the fitness, m denotes the length of the random walk, ft is the fitness score in time

t, and f̄ denotes the mean fitness. The degree depends on the difference between the

fitness values of the points. For example, similar fitness values make the landscape s-

moother and the search for a specific algorithm easier. The higher of the value of LCL,

the smoother the landscape is; the lower the value of LCL, the more rugged the land-

scape. From performance of value of LCL, the fitness landscape structure can reflect

how easy or difficult it is for a search algorithm to find a good solution [Manderick

et al., 1991] [Reeves, 2000] [Mitchell et al., 1992].
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5.2 Topological Node Ordering on Bayesian Network Struc-

ture

From our previous results, we know that search-and-score approaches using nature-

inspired metaheuristics (GA and ACO) have been successfully applied to BN structure

learning. However, the difficulty of structure learning makes the choice of suitable

algorithms and scoring functions for certain problems play an important role on the

design of approaches. We have investigated both the chain model and K2 greedy

search based algorithms with node juxtaposition distribution on benchmark struc-

tures. The results indicate that the chain approach is able to yield high quality solu-

tions with significantly less computational effort than the K2 approach in problems

where the true structure of the data is amenable to alignment of node juxtapositions

in a single ordering. In problems where such alignment is not possible, the chain

scoring approach is likely to be unsuccessful in producing high quality structures and

so the relative benefit of reduced computational time is lost. When we have a bench-

mark BN structure, the topological node orderings of this structure can be generated

according to the Kahn or Tarjan algorithms. These kind of orderings are the best node

orderings for a K2 algorithm to induce the BN structures. We regard these orderings

as the best solutions to the specific studied problem. The fitness score according to

these orderings then become the global optimum to the structure. The topological

sorts give us the way to achieve the global optimum in BN learning. In spite of this

problem is a NP hard problem. So in our research, we take them to yield topological

node orderings which will be applied to investigate the fitness landscape analysis.

5.2.1 Kahn and Tarjan Topological Node Ordering on Car Structure

We use both Kahn and Tarjan algorithms to generate topological node orderings on

benchmark structures. The CH and chain score based on these node orderings will

explore the different performances of each search and score algorithm on related
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Figure 5.2: The true structure and group levels in Car network

structures. As an example, we describe the details of topological node orderings on

Car benchmark structures below.

From the previous chapter, we know that when K2 algorithm is used to induce

the BN structure, a node ordering on the variables is assumed. In the benchmark

examples we consider here, the true structure of the network is already known. In

this section we consider orderings that are consistent with this structure in the sense

that, starting with the ordering, K2 is capable of recovering the true structure. We

will refer to such an ordering as a true ordering. In general, there are many distinct

orderings consistent with the true structure. The key property is that K2 is able to

add each correct edge. In other words, if there exists an edge from node i to node

j, then i must precede j in the ordering (though not necessarily as an immediate

predecessor). This is precisely the property that the ordering is a topological sort of

the nodes based on structural dependence. Figure 5.2 shows the true structure and

level groups of Car network [Kabli et al., 2007]. We note that Car, an 18-node network,

has a level-set size of 10 and 5 levels of dependency. In Figure 5.3, we show a random

breadth-first(Kahn) representation node ordering of the Car network. In Figure 5.4,

it is a random depth-first (Tarjan) representation node ordering of the Car network.

In Figure 5.3 and Figure 5.4, the dotted lines indicate the true edges to the original

structures.

In Figure 5.2, Level 1 contains all independent nodes. Subsequently, for n > 1,
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Figure 5.3: Topological node ordering in Car network on Kahn Algorithm

Figure 5.4: Topological node ordering in Car network on Tarjan Algorithm

Level n contains all nodes that become independent only when nodes of level l < n

are removed. Any ordering that internally preserves the order of node level groups

is automatically a true ordering. In Figure 5.3, when the Kahn algorithm is applied, a

node ordering is produce. This sort is 1-7-16-12-0-15-2-11-14-4-5-3-6-9-8-10-13-17. In

the Kahn algorithm, we note that any node exchange within each of the level groups

0-1-2-4-7-11-12-14-15-16, 3-5, and 10-9-8-13 will remain true orderings. For example,

node 1-0-2-4-7-11-12-14-15-16-3-5-6-10-9-13-8-17 comes from the swapping of any two

pairs of nodes in level 1 and level 4. K2 will induce the same BN structures and return

the same CH score. This indicates plateaux in the fitness landscape for K2 around

breadth-first sorted true orderings. The position for chain is more complicated. To

evaluate a chain we force an edge between juxtaposed nodes. Clearly within level



5.2 Topological Node Ordering on Bayesian Network Structure 110

groups this inserts edges between independent nodes and so low scores will be

associated with such arcs. A chain structure imposes a total order on the nodes

whereas a topological sort imposes a partial order on the nodes. Search methods

based on chain score would therefore be expected to perform well when the network

structure admits topological sorts ”close to” total orderings.

In Figure 5.4, when the Tarjan algorithm is applied, one node example is the

ordering 1-14-2-15-11-16-0-3-4-5-6-10-12-13-17-9-7-8.This node is not limited to the

same level any more as it exceeds from each level to another one. A significant

property in this case is that it has more edges that correspond to edges in the true

structure (0-3, 4-5, 5-6, 6-10, 12-13,13-17,7-8). In this sense an ordering produced by

the Tarjan algorithm, which we term a Tarjan ordering, is likely to be more amenable

to chain-based search-and-score methods. We notice that Car is broad and relatively

narrow as a structure and so the breadth-first orderings produced by Kahn are more

likely to dominate.

5.2.2 Kahn and Tarjan Topological Node Ordering on Alarm Structure

Figure 5.5 is another example that shows the true structure and level groups of the

Alarm network [Beinlich et al., 1989]. Alarm by contrast is a 37-node network with

a larger level-set size of 12 and 11 levels of dependency. We note that Alarm is

relatively narrow and deep in comparison to Car. Intuitively we expect that the

ratios of level-set size and number of levels to the overall number of nodes in the

network and to each other will relate significantly to the performance of K2 and chain

based search-and-score algorithms. In Alarm, we can get node orderings using the

Kahn algorithm as in Car structure. The possible maximum number of true edges

in all these orderings is 10; this is because the structure has 11 levels. However,

the Tarjan algorithm can easily achieve a larger number of true edges. For example

in the random ordering 31-20-37-36-35-33-32-34-11-30-3-29-28-24-26-25-23-17-16-27-

22-21-19-18-15-14-13-12-10-4-1-2-9-8, the true edge number now is 13 (35-33,30-3,29-
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28,26-25,25-23,17-16,27-22,22-21,21-19,19-18,18-15,15-14,14-13,13-12,12-10,9-8).

Figure 5.5: The true structure and group levels in Alarm network

From analyzing in this section, we notice that the different values of width and

depth to each structure will affect the Kahn and Tarjan type orderings. We also expect

that the total number of true edges in different original structures will lead to the

different performance of landscape to each ordering. To understand the structures

and generate topological node orderings for our experiments in a later section, we de-

scribe properties to all eight benchmark structures we studied previously in Table 5.1.

These structures are: Asia, Credit, Tank, B, Boerlaga, Insurance, Car and Alarm. The

properties in Table 5.1 include the number of width, depth, true edges, the ratio of

width to true edges and depth to edges, and the percent values of true arcs produced

by Kahn and Tarjan algorithms. We got these percent values through randomly gener-

ating 1000 node orderings on Kahn and Tarjan algorithms respectively, comparing the

number of trues edges that emerged in these orderings to the total number of edges
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Table 5.1: Properties of Group Level on Benchmark Structures

True Arcs

Structure N E W D W⁄E D⁄E Kahn Tarjan

Asia 8 8 3 4 0.37 0.50 0.31 0.52

Credit 12 12 7 4 0.58 0.33 0.13 0.35

Tank 5 20 14 4 0.25 0.20 0.14 0.39

Car 18 18 10 5 0.55 0.27 0.14 0.27

B 18 39 5 6 0.12 0.16 0.20 0.52

Boerlaga 23 36 3 14 0.08 0.39 0.41 0.71

Insurance 27 52 5 10 0.09 0.18 0.18 0.44

Alarm 37 46 12 11 0.26 0.24 0.13 0.34

in the original structures. These values show the difference between each algorithm

on producing the true edges. In Table 5.1, N represents the nodes number of each

structure, E is the number of original edges in the structure, W indicates the width,

and D shows the depth of the specific structure.

5.3 Experimental Methodology

We carry out experiments to conduct fitness landscape analysis on the two score

functions of BN structure learning. The two previously discussed two basic topolog-

ical sorts, Kahn and Tarjan, are utilized to each benchmark problem for producing

fitnesses. Some details of the implementation and parameters are provided below.

5.3.1 Random Walks with Bubble Swapping with Topological Node Or-

derings

The search space in our problem is composed of all node orderings. These include

the Kahn and Tarjan topological node orderings. We take both Kahn and Tarjan
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node orderings as starting node orderings as they are the optimal solutions for each

approach. A standard mutation with random walk is defined for constructing the

fitness landscape in the search space. Since swaps of consecutive nodes in a topological

sort retain the property of being a topological sort, consecutive node swaps are selected

as our minimal random mutation operator. As consecutive item swaps are well-

known in the Bubble-sort algorithm, we here term them bubble-swaps for brevity.

Figure 5.6 shows a sequence of bubble-swaps on topological sorts that produce a path

from the global node ordering. In Figure 5.6, X0 represents an optimal solution, and

X1,X2, ...,Xt are a series of node orderings after bubble swapping. d1, d2, ..., dt indicate

the number of bubble swaps in this process.

Figure 5.6: Bubble-swaps and distance to a topological sort ordering

5.3.2 Experimental Design

To structure fitness landscapes within this space, firstly, we randomly generate topo-

logical sorts, both Kahn and Tarjan, for each structure. All these node orderings will

be regarded as the global optima solutions X0 to the fitness landscape in the space

of orderings for a particular BN structure problem. Afterwards, random swaps of

consecutive nodes in each topological sort will be executed to get a series of node or-

derings X1,X2, ...,Xt, corresponding fitness score (chain score and CH score) achieved
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to these sorts. After a certain number of swappings, fitness landscapes are then

constructed according to the walks from the global solutions. A general template of

random walk with swapping is shown in Algorithm 15.

Algorithm 15 Pseudocode of Random Walk with Random Bubble Swapping

1: Begin Random Walk
2: S←Optimal node ordering (length=n) from Kahn or Tarjan topological orderings

for each approach.
3: d← 0, d is distance to optimal solution.
4: Chain score, CH score on (S) and d.
5: for i← 1, MaxNumberofWalk do
6: Select a random position j(0 < j < n) on S.
7: S← bubbleSwap (S, j) with S.
8: d + +.
9: Record Chain score, CH score on (S) and d.

10: end for
11: Output:Chain score and CH score
12: End Random Walk

To construct and measure the performances of fitness landscapes, we record some

metrics. These metrics are:

CH and chain scores. We will use CH and chain fitness scores to each topolog-

ical orderings X0 and the series of orderings generating through bubble swapping

X1,X2, ...,Xt to construct the fitness landscape to each structure respectively.

Distance from the global optimum. We define the distance d in relation to the

number of Bubble-swaps from the global optimum. The value of d equals the number

of random swaps to the optimal node ordering. Greater values of d means a longer

distance from the optimum.

In our experiments, we set the total walk length (MaxNumberofWalk in Algorith-

m 15) as 5 times the length of each node ordering. This is mainly because of the

time consumption. From previous results, once the random walk step is large, it is

very expensive for score function operations, especially for CH score function. For
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example, for the Alarm network, the node number is 37 so the steps for swap will

be 185. So the minimum distance is dmin = 1, and the maximum distance is the total

swapping number dmax = 185. In all cases, we carry out 100 experimental runs each

to get the averaged results.

5.4 Results and Discussion

To compare the fitness landscape on two score functions, we describe all the results in

this section. Figures 5.7a– 5.7h and Figures 5.9a– 5.9h indicate the fitness landscapes

for chain score and CH score to all benchmark structures respectively. In each of

these figures, the fitness landscapes come from Kahn type orderings and Tarjan type

orderings respectively. From Figure 5.7a to Figure 5.7h and Figure 5.9a to Figure 5.9h,

each figure indicates the results of Asia, Credit, Tank, Car, B, Boerlaga, Insurance and

Alarm respectively. In these figures, the X axis represents the walk distance (steps of

random Bubble swaps) in the search space, and the Y axis expresses the chain score

and CH score values.

We also give properties of FDC and LCL to these fitness landscapes. These prop-

erties can help us to distinguish the landscapes and understand the difference of

Kahn and Tarjan node orderings on chain and CH score functions. We compare the

values of FDC and LCL in Figure 5.8a– 5.8b and Figure 5.10a– 5.10b respectively. The

histogram in these figures indicate the coefficient of FDC and LCL to each algorithm

and the labels ’1’–’8’ in each figure represents the structure Asia, Credit, Tank, Car, B,

Boerlaga, Insurance and Alarm.

5.4.1 Fitness Landscape on Chain Score Function

We consider the fitness landscape of Kahn orderings first. We find in Figures 5.7a– 5.7d

and Figure 5.7g that the graphs look really flat as the random walk moves away from

their corresponding optimal orderings. These results indicate that algorithms using

chain score will struggle to converge optimally in these structures. In Figure 5.7f
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and Figure 5.7h, the graphs have a clear gradient, these explain that the algorithms

using chain score in these two structures will tend to promote small changes that lead

toward the optimal. However, the graph in Figure 5.7e is increasing as the distance

to global optimal increases. It indicates that chain score to Kahn ordering will mean

that it is impossible to converge on optimal in B structure.

We then investigate the graphs of Tarjan orderings on chain score to benchmark

structures. In spite of some structures, such as Asia and Car, where the graphs

express fluctuation, all the graphs in these figures are clear gradient as the distance to

the optimal increases. This performance is very different from the Kahn algorithm on

chain score. It indicates that when the Tarjan algorithm is applied to generate node

orderings they will give more attractive than Kahn orderings in close proximity to the

optima.

Figure 5.8a indicates the difference of FDC between Kahn and Tarjan node order-

ings to each benchmark structure on chain score. We can see that in structure B, the

values of FDC on both Kahn and Tarjan are very large and positive. This means that

the problem is misleading and the algorithms on chain score will be led away from

the global optimum. This result is explanatory of the observed performance of B in

Table 3.8. Both chain and K2 based algorithms have poor performance in recovering

the true structure. The FDC value on Kahn algorithm in Credit and Tank structures,

are also positive. The value on Tarjan algorithm are negative, so we know the Tarjan

algorithm should perform better than Kahn algorithm. Comparing values of FDC

on other structures, the common performance is that all values are negative and the

values for the Tarjan algorithm are better than for the Kahn algorithms, except on

Alarm, where the value for the Tarjan algorithm is a little lower. These can explain

why the performance of the chain score function is sensitive to Tarjan algorithm but

not to Kahn algorithm in Figure 5.7a– 5.7h.

Figure 5.8b indicates the difference of LCL between Kahn and Tarjan orderings

to each benchmark structure on chain score. We see that the Kahn orderings have a
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(a)

(b)

(c)

Figure 5.7: Comparative chain score fitness landscapes around Tarjan and Kahn
orderings on benchmark structures
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(d)

(e)

(f)

Figure 5.7: Comparative chain score fitness landscapes around Tarjan and Kahn
orderings on benchmark structures
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(g)

(h)

Figure 5.7: Comparative chain score fitness landscapes around Tarjan and Kahn
orderings on benchmark structures
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(a)

(b)

Figure 5.8: Comparative of FDC vlaue on chain score and CH score around Tarjan
and Kahn orderings on benchmark structures



5.4 Results and Discussion 121

smoother performance than the Tarjan orderings only on the B and Alarm structures.

The values indicate that there are significant differences between the two orderings. In

all other structures, the Tarjan orderings perform well and get smoother plots. These

properties can demonstrate why the search process is easy in specific node orderings.

Results on Figures 5.7a– 5.7h are explanatory of the observed performances of

chain based search and score algorithms on these structures. We tested the algorithms

using two different node orderings, Kahn and Tarjan type orderings. The experimental

results show that there are clear different performances to chain approaches. Kahn

type orderings present uncertainty and problem dependent to chain approaches.

Tarjan orderings looks more effective and stable to chain score function approaches.

In nearly all structures, the algorithms show strong abilities to converge to optimal

solutions. This manifestation will motivate us to search suitable node orderings when

we apply chain algorithms for large datasets.

5.4.2 Fitness Landscape on CH Score Function

When we compare all landscape graphs on Kahn orderings, only in Figure 5.9c is the

landscape almost flat with the distance to the global optimal increasing. Other graphs,

however, have the similar gradient tendency. In the starting node, the graph gets the

best. With the increasing of random walk the score gradually decreases clearly. These

indicate that algorithms using CH score will tend to promote small changes that

lead towards the optima. Out of all landscapes of Tarjan orderings in these figures,

only Figure 5.9c shows a very different tendency compared to other graphs. In this

graph, the score function increases with the number of swaps increasing. This result

indicates the Tarjan orderings using CH score will search randomly with very poor

chances of reaching optimal. Other structures demonstrate a similar tendency in spite

of some different gradients among them. For example, in Figures 5.9e, 5.9f and 5.9h,

the graphs suggest that Tarjan orderings might be slightly more attractive than Kahn

orderings for CH score in close proximity to the optima. In Figures 5.9b 5.9d and 5.9g
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the graphs’ tendency on Kahn and Tarjan orderings reveal that in some stage, Kahn

orderings are easy for access to the optimal. In other stage Tarjan orderings find it

easy to do this.

The comparative analysis of FDC in CH score gave us more clear results. We

can see the values on both Tank and B structures are positive and closer to 1.0. In

these cases, the fitness score and the distance has strong relation. However, this

relation leads the algorithms to perform worse to the optimal solution both in Kahn

orderings and Tarjan orderings. This means that the two algorithms find it hard to get

good results when using the CH score function. This conclusion is consistent to the

experimental results shown in Table 3.7∼Table 3.9. The value of FDC on the rest of the

structures are all negative, both on Kahn and Tarjan orderings. These large negative

fitness distance correlations (r < −0.15) tell us that the problem is straightforward and

the algorithm will find the global optima with relatively good performance.

The values of LCL are described in Figure 5.10b on CH score. The comparative

results show only in Credit and Tank structures that the Tarjan type ordering achieved

a smoother plot. In all other structures, the Kahn type orderings got smoother plots.

The results above show the performance difference of Kahn ordering and Tarjan

ordering on chain score and CH score based algorithms. On chain score algorithms,

from the FDC results, we know that there is a significant difference between Kahn

and Tarjan orderings to specific structures. This result indicates that the selection of

different kinds of node orderings in chain score algorithm has a vital affect on the

BN structure learning. On CH score algorithm, Fitness Landscape results show both

Kahn and Tarjan type orderings have similar performances to all structures. There

is not a significant difference between Kahn and Tarjan orderings to any structure.

Although they have a slight difference, the Kahn type orderings could make the search

algorithm faster and easier from the FDC results. The results suggest CH score based

algorithms have more attraction than chain algorithms to any kind of node ordering.

How can these differences be explained? We can explain these based on the
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(a)

(b)

(c)

Figure 5.9: Comparative CH score fitness landscapes around Tarjan and Kahn order-
ings on benchmark structures
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(d)

(e)

(f)

Figure 5.9: Comparative CH score fitness landscapes around Tarjan and Kahn order-
ings on benchmark structures
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(g)

(h)

Figure 5.9: Comparative CH score fitness landscapes around Tarjan and Kahn order-
ings on benchmark structures



5.4 Results and Discussion 126

(a)

(b)

Figure 5.10: Comparative of LCL value on chain score and CH score around Tarjan
and Kahn orderings on benchmark structures
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definition of topological node orderings. From the previous section, we know that

both Kahn and Tarjan algorithms generate node orderings by using node groups and

levels of the structures. The depth and width of the structure affect the Kahn and

Tarjan node orderings. More value of depth means more possibility of true edges

produced when generating the Tarjan node ordering. This possibility also depends

on the total true edges in specific structure. The value of D/E in Table 5.1 shows the

relative results of depth to the total true edge of each structure. We sort these structures

on the values from high to low: Asia, Boerlaga, Credit, Car, Alarm, Tank, Insurance

and B. Comparing these orderings to results in previous results on each approach, we

can find that chain based algorithm (ChainACO) got better results on structures with

a higher value of D/E : Asia, Boerlaga, Car and Alarm. This performance can test

and explain why in chain score algorithms, the Tarjan node orderings perform better

in some structures. The structure of Credit has a higher value of D/E, but is poorer on

chain based algorithm. The reason of this is that the value of W/E is relatively higher.

Table 5.1 also tells us that in all benchmark structures, the Tarjan orderings can

get a higher percentage of true edges compared to Kahn orderings. When randomly

swapping operations are executed to these specific node orderings, the true edge

that exists in Kahn orderings is destroyed easily. However, the Tarjan ordering can

still keep a higher percent number of the true edges. The change to chain score

corresponding is not as dramatic as in the Kahn orderings. Simultaneously, the

performance of LCL on CH score indicates that even with a higher number of true

edges in the node orderings, the CH score model can’t guarantee to get the smoother

plot in some structures. This is mostly because of the computational complexity of

K2 greedy algorithm.

5.5 Summary

In this chapter we proposed how to construct fitness landscape analysis for chain and

CH score function based on two different topological node ordering; Kahn and Tarjan
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sorts. We also investigated the performance of landscape around optimal orderings to

related search and score algorithm on BN structure learning. The results have shown

that empirically-observed differences in performance for search and score algorithms

can be understood in terms of the relative breadth and depth of the DAG structure

being learned.

Our results found that fitness landscape based on chain and CH score from Kahn-

type topological sorts or Tarjan-type sorts have significant differences. Chain score

functions can maintain the characteristic of Tarjan sorts when conducting random

swapping. This makes the search process smoother and easier. CH score based land-

scapes, however, on the Kahn node orderings performs better sometimes. However

we know, this process is to be expensive on most of the benchmark problems.

The space of node orderings is widely used for BN structure learning and so

this technique has the potential to be applied to other search and score algorithms

on other benchmarks. Our results also suggest that a characterisation of optima in

terms of depth or breadth first topological sort may be useful in understanding the

relative attractiveness of particular optima to particular scoring functions. Our results

gave us some useful inspiration when learning BN structure using search and score

approaches. The results indicate that the structure of node orderings will affect the

search and score algorithms to a large extent. The Tarjan type orderings is suggested

to be good for both of the algorithms discussed in this paper.

We know that search and score algorithms are popularly applied on BN structure.

The feature of NP hard problem on BN structure learning makes it hard to choose a

suitable approach for a specific new problem when the topological node orderings

are unknown. However, the empirical results in this chapter can provide useful

inspiration to us. The parameters of FDC and LCL on different node orderings

have different characteristics. This behavior is consistent to the performance of each

corresponding approach. For example, to all the chain scoring based algorithms, the

values of FDC are negative. Except in B structure where both chain and CH scoring
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algorithms perform very poorly. In the next chapter, we will investigate this kind of

relationship to study how to make a decision on scoring based approach according to

the results achieved in this chapter.



Chapter 6

Off-line Hyperheuristic Bayesian

Network Structure Learning on

Unseen Problems

In previous chapters, we have investigated the performance of chain scoring and CH

scoring algorithms. We have empirically investigated trade-offs between computa-

tional cost and solution quality and have shown that the pattern of search is strongly

related to the choice of search and score technique. Studied results on benchmark

problems have shown that both chain and CH scoring based algorithms are problem

dependent. It is therefore problematic to recommend a specific choice of scoring

function for an unseen problem where the structure is not known. In the last chapter,

we looked into the fitness landscape analysis through introducing topological node

orderings on specific benchmark problems. The results have indicated that this con-

cept is a useful tool for testing and explaining the existing empirical performance in

search and score algorithms. The results also inspired us to deeply consider with the

valuable parameters achieved for more complex research problems.

In this chapter, we propose to use the technique of Receiver Operating Charac-

teristic (ROC) curve to construct a classifier method based on utilizing the fitness
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landscape analysis to randomly select the node orderings on specific problems. We

aim to use the parameter of FDC on chain score landscapes as a continuous classifier

for unseen BN structure learning problems. This will help us to build a selective

off-line hyperheuristic algorithm for unseen BN structure learning with search and

score algorithms. This is a special case of the widely-recognized difficulty of us-

ing performance on benchmark problems as an indicator of performance on unseen

problems [Corne and Reynolds, 2011].

The main contribution in this chapter is that we define the process of how to

construct ROC curves with parameters of fitness landscape analysis on BN structures.

We apply an iterated series of bubble swaps to the randomly generated node orderings

to produce the value of correlation between fitness and distance (FDC). We also

design algorithms for generating new benchmark problems from previous standard

structures to ensure a precise ROC curve is produced.

6.1 Hyperheuristics

This chapter describes a off-line hyperheuristic algorithm which is specifically de-

signed from our previous experimental results on some benchmark structures. The

main goal of this work is to develop a hyperheuristic which makes use of the prop-

erties of low-level heuristic algorithm (ACO, GA, K2, etc) in BN structure learning.

Through investigating the performance with chain and CH scoring algorithms indi-

vidually and integrating with the parameters of fitness landscape analysis on specific

problems, we will create a classifier rule for predicting the algorithm selection to

some unseen problems. The hyperheuristic hopes to be successfully applied to a

wide range of datasets for BN structure learning. The framework of hyperheuristics

in BN structure learning are summarized in Figure 6.1
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Figure 6.1: The framework of hyperheuristic on BN structure learning

6.2 Previous results of search and score algorithms on Bayesian

Network Structure

In this section, we give a short summary on previous experimental results. This

mainly includes the performance comparison of chain scoring algorithms and CH

scoring algorithms and the results of fitness landscape analysis on these two kinds of

algorithms. Table 6.1 provides a detailed comparison from the above aspects.

Table 6.1 presents the results of eight standard benchmark problems. Here ’*’

means the specific scoring algorithm that gives the best performance in terms of

structure recovery. ’−’ and ’+’ represent that the value of FDC as negative and

positive respectively. The results show the difference of performance between chain

and CH scoring algorithms to these structures. The table also demonstrates that fitness

landscapes based on chain and CH score algorithms have significant differences.

Comparing FDC values to the performance of both chain and K2 algorithms, we

observe informally that chain score FDC is consistent with the performance of chain
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scoring algorithms to a large extent. For example, chain scoring algorithms perform

better on four benchmarks (Asia, Car, Boerlage and Alarm), whose values on FDC are

negative both on Kahn and Tarjan optima. In the remaining four problems, except

Insurance, the FDC values are positive. In a CH score based landscape, the CH score

FDC is inconsistent with the performance of CH scoring algorithms. The FDC values

on 6 of the 8 benchmarks are negative. However, CH scoring algorithms perform

well on only 2 of them. The FDC values on Tank are positive but, counter-intuitively,

CH scoring algorithms perform better on it.

The above investigation on the performance of search and score algorithms and

fitness landscape analysis suggest that the FDC measure for chain score algorithm

may be the basis for a useful classifier. This classifier is hoped to have the ability of

automatically provide decisions on how to select the suitable algorithm for specific BN

structure learning problems. Previous experimental results have indicated that chain

algorithms are cheap in all benchmark problems. This means that the calculation of

FDC feasible for a large number of bubble swaps to benchmark problems. This will

contribute to the classifier model constructing easily and expand the applicability of

this model. We give the details of related knowledge in the following sections.

6.3 Receiver Operating Characteristic with Bayesian Network

Structure Learning

6.3.1 Receiver Operating Characteristic

Receiver operating characteristic (ROC) curves are a popular way for organizing clas-

sifiers and visualizing their performance [Martin et al., 1997] [Metz, 1978]. They

are commonly used in medical decision making and diagnostic tests [Swets et al.,

2000]. In 1989, Spackman [Spackman, 1989] first adopted it in machine learning

problems, and demonstrated the value of ROC curves in evaluating and compar-

ing algorithms. After that, ROC was increasingly applied in the machine learning
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Table 6.1: Properties of Group Level on Benchmark Structures

Performance result Chain FDC CH FDC

Structure Chain CH Kahn Tarjan Kahn Tarjan

Asia * − − − −

Credit * + + − −

Tank * + + − −

Car * − − + +

B * + + + +

Boerlage * − − − −

Insurance * − − − −

Alarm * − − − −

and data mining research fields [Spackman, 1989] [Fawcett, 2008] [Flach and Wu,

2005] [Flach, 2003]. ROC plots the tradeoff between a test’s sensitivity and its false

positive rate. The analysis has appeared to offer more robust evaluation of the relative

prediction performance of alternative models than traditional comparison of relative

error [Obuchowski, 2003] [Webb and Ting, 2004].

We assume that ROC analysis is applied to evaluate the expected performance of a

model with two classes. These classes are usually denoted as positive ’p’ and negative

’n’ class labels. A classifier model is a mapping from instance to predicted classes.

There are four possible outcomes in prediction classes from this binary classifier. They

are true positive (TP) if the outcome from a prediction is p and the actual value is

also p; false positive (FP) if the actual value is n ; true negative (TN) when both the

prediction outcome and the actual value are n, and false negative (FN) when the

prediction outcome is n while the actual value is p. The 2 × 2 confusion matrix with

four outcomes is described in Figure 6.2.

Some important numeric measures for a classifier are defined in a given test

set once the four above outcomes are achieved. They are true positive rate(also as
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Figure 6.2: The confusion matrix with four outcomes

sensitivity), TPR = TP/P, means the proportion of positive instances that are correctly

classified as positive. False positive rate, FPR = FP/N defines how many incorrect

positive results occur among all negative samples available during the test. Accuracy =

(TP + TN)/(P + N), indicates the proportion of instances that are correctly classified.

Here, P = TP + FN, N = FP + TN.

The TPR and FPR of different classifiers on the same test set are often represented

diagrammatically by a ROC curve. The ROC curve is obtained by selecting a series

of thresholds first, with these thresholds used to produce a series of corresponding

FPR and TPR values. The ROC curve is built through plotting the value of FPR on

the horizontal axis and the values of TPR on the vertical axis. It depicts relative

trade-offs between benefits and costs. Each point in this curve can be written as a

pair of values (x, y) indicating that the FPR has value x and the TPR has value y. This

point corresponds to a classifier that can be obtained using a given decision threshold.

Some important points in ROC are worth concern. The point (0, 1) represents perfect

classification. All the points lie in the diagonal line y = x joining the bottom left and

top right-hand corners corresponds to random guessing, which mean both the TPR

and FPR will be 0.5. In ROC, one classifier is better than another if its corresponding

point is to the north-west of the others. An example of a ROC curve with TPR versus

FPR is described in Figure 6.3.

One of the most popular measures of the accuracy of a diagnostic test is the area

under the ROC [Hanley and McNeil, 1982] [Green and Swets, 1966]. The Area Under
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Curve (AUC) is equal to the probability that a classifier will rank a randomly chosen

positive instance higher than a randomly chosen negative one. A test with AUC = 1.0

means that it will be perfectly accurate result because the sensitivity is 1.0 when the

FPR is 0.0. On the contrary a test with AUC = 0.0 is perfectly inaccurate [Hanley,

2008]. Recently, more and more researchers use ROC AUC as a statistic tool for model

comparison [Bradley, 1997] .

Figure 6.3: An example of ROC curve with TPR versus FPR

6.3.2 Receiver Operating Characteristic with Bayesian Network Structure

It is known that the optimal choice of scoring technique is problem dependent. Chain

algorithms on some problems are cheap and can achieve better results. K2 algorithms,

however, are expensive and may be poor on structure retrieval. Previous work using

fitness landscape analysis on benchmark structures have shown that the values of the

landscape that measure FDC are related to the performance of chain scoring algo-

rithms. All these results inspire us to apply fitness landscape analysis techniques to

predict the approach chosen for specific unknown structure in BN structure learning.

We achieve this through constructing a classifier method with ROC curves gener-

ated from fitness landscape analysis as follows. First we perform random walks from

random starts on a training set where we know which particular scoring function
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performs best. The random walks yield a set of FDC values r for chain score. We then

use these to construct a continuous classifier on r. Finally we develop a hyperheuristic

algorithm that selects either chain or CH scoring based on a chosen threshold for r.

This is compared against an algorithm that makes blind choices of scoring technique

on a test set of unseen BN structure learning problems.

Figure 6.4: Predictive Outputs with best threshold on ROC model

In more detail, we give some hypothesis for constructing the model in this paper.

If chain scoring algorithms perform better than CH scoring algorithms for a specific

problem, we call this a positive instance and label it as ’p’. Otherwise it is a negative

instance, labeled ’n’. From the fitness landscape analysis results described above, for

a given threshold rbest, if the classifier output value r is under the threshold r < rbest,

the classifier then produces a positive prediction ’p’, else a negative prediction’n’. The

outcome is true positive (TP) for an actual positive p class, is FP for an actual negative

n. Each threshold value produces a different point in ROC space. If we generate a

certain number, for example m of FDC values from all problems studied, the size of

candidate thresholds is m , the range of a threshold will be from−∞ to +∞ and tracing

a curve through ROC space. Figure 6.4 shows a ROC model with some thresholds

and the corresponding output’s instance.
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6.4 Data Preparation and New Benchmark Structures Gener-

ating

We used the previously described eight benchmark structures in our experiment.

We also derived some new benchmark structures utilizing a mutational technique

from these problems for training in this chapter. Some of these new structures are

used as a training set to generate a ROC curve and the remainder as an unseen

set to test the predictive efficiency of ROC models. To create new problems, we take

encoding documents (.xdsl) of each BN structure file from GeNIe&SMILE tool [GeNIe

and SMILE, ]. The file includes the parameters of conditional probability for the

original benchmark structure. We randomly selected each conditional probability Pi j

at rate Pselect, and give it slight modification with increment Pincrement. A normalization

process is then executed to these modified values, making the sum of all of them

is 1.0 to each specific variable. These new conditional probabilities are used to the

GeNIeSMILE tool for generating new datasets of specific benchmark problem. The

detailed description of how to modify the conditional probabilities for each new test

problem is presented as Algorithm 16.

We run and compare both chain and CH scoring algorithms on this new data

for BN structure recovering. The performance results of the chain scoring function

relative to the CH scoring function based on fitness score of the best solution found

on these new generated structures, are presented in Table 6.2. In this table, all the

structures are divided into 6 groups, with 7 structures in each group. Each group

has its own parameters of Pselect and Pincrement. Structures in group 1 are added with

the former 8 structures for constructing the ROC curve. In order to conveniently

describe in the following section, we number the structures, in this case from 9-15.

The structures in other groups are used for testing the ROC model later.
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Algorithm 16 Algorithm for modifying the parameters in conditional probability
distribution

1: Input: rate Pselect, mutation rate in conditional probability distribution;
power Pincrement, mutation power in conditional probability distribution;
m, the number of nodes in specific structure;
n, the number of conditional probability of node i.

2: for i← 1, m do
3: Psum = 0
4: for j← 1, n do
5: if (RandomNumber01 < r) then
6: lower = Pi j ∗ (1 − p)
7: upper = Pi j ∗ (1 + p)
8: Pi j = lower + RandomNumber02 ∗ (upper − lower)
9: end if

10: Psum = Psum + Pi j

11: end for
12: for j← 1, n do
13: Pi j = Pi j/Psum

14: end for
15: end for
16: Output: Pi j

17: End Algorithm
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6.5 Experimental design

As explained above, the off-line hyperheuristic algorithm for BN structure learning in-

cludes the phases of search and score algorithm investigation, FDC and ROC learning

phases and Testing phases. To construct it, we designed the experiments below:

Our experiments follow three stages. First, we perform a fitness landscape analysis

on benchmark structures to get parameter values of FDC. Second, we construct a ROC

curve with these results and known relative performance to get the best threshold.

This threshold is used to parameterise a hyperheuristic algorithm that performs an

initial random walk analysis before deciding whether to select either the chain or the

CH scoring function. Finally we evaluate the hyperheuristic on a test set of unseen

problems.

In detail, the first stage is specified as follows: for each benchmark problem, we

randomly generate a certain number n of node orderings. Swaps of randomly-selected

adjacent nodes are then repeatedly applied T times to each of the node orderings to

produce corresponding chain fitness scores and distance. These values are applied to

calculate the FDC. An average value r of FDC over all node orderings is then returned

for each problem. The pseudocode of this process is presented as Algorithm 17. An

example of some steps in a typical random walk is shown in Figure 6.5. We produced

a series of FDC values r for all benchmark problems considered. Parameters used in

Algorithm 17 are: n = 100, T = 1, 000. We repeat each experiment 20 times to get the

averaged value for later use.

Once we obtained all these FDC values, we sort them from smallest to largest.

All these values are regarded as the thresholds in this case. With these thresholds

and the hypothesis, for all benchmark structures, we can produce all the values of

corresponding FTR and TPR. These are used to build the ROC curve. The detailed

process of how to build the ROC is depicted as Algorithm 18.

In the final stage of the experiment, we will use some unseen Bayesian structures
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Algorithm 17 Algorithm of FDC achieved on fitness landscape analysis to one bench-
mark problem

1: Input: T, the number of bubble swaps;
m, the number of random node ordering;

2: Randomly generate node orderings Si(i = 1, 2, ,n) on search space.
3: for i← 1, n do
4: for t← 1, T do
5: Excuting Bubble swaps on node ordering Si;
6: Recording chain fitness score ft and distance dt;
7: end for
8: Calculating FDC value ri to Si on ft and dt;
9: end for

10: Average value of FDC r = (r1 + r2 + + rn)/n;
11: Output r.
12: End Algorithm

to test and verify the predictive classifier model we have established in the second

stage. The details of this experiment are as follows: we evaluate the performance

of both chain and CH scoring algorithms to these structures first, simultaneously we

apply the best threshold achieved to these structures to predict whether chain scoring

or CH scoring is suitable for one unseen structure. Through comparing to what extent

the empirical experiment result and the predictive classifier conclusion are consistent,

we can get an intuitive evaluation to this ROC classifier on BN structure learning.

Algorithm 19 indicates the detailed description of this process on how to test the

enhanced algorithm.

6.6 Results and Discussion

Table 6.3 presents the averaged values of FDC achieved from Algorithm 17 over all 15

training problems. We also display the results of chain scoring function performance

relative to the CH scoring function based on the CH score of the best solution found.

Each r value defines a fixed classifier and so we can construct a ROC curve from this
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Algorithm 18 Algorithm for ROC curve generated from binary discrete classifier

1: Input: r[m], the sorted FDC values of m structures;
c[m], the performance of chain scoring algorithm values of m structures;
N,the number of Y in c[m];
P,the number of N in c[m];

2: Add point(0, 0) to ROC curve.
3: for i← 1, m-1 do
4: FP←− 0
5: TP←− 0
6: T0 = r[i] + (r[i + 1] − r[i])/2
7: for j← 1, m do
8: if (r[ j] < T0) then
9: if (c[ j] == Y) then

10: TP←− TP + 1
11: else
12: FP←− FP + 1
13: end if
14: end if
15: end for
16: Add point(FP/N,TP/P) to ROC curve.
17: end for
18: Add point(1,1) to ROC curve.
19: End Algorithm
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Algorithm 19 Algorithm for testing the predictive efficiency of ROC model.

1: Input: Dm, the data size of m unseen structures;
r0,the best threshold in ROC curve;
FP←− 0,TP←− 0,TN←− 0,FN←− 0.

2: for i← 1, m do
3: Run chain scoring algorithm and CH scoring algorithm on data Di, get fitness

score of BN structure fchain and fCH;
4: if ( fchain > fCH) then
5: instance=Y
6: else
7: instance=N
8: end if
9: Execute Algorithm 17 on data Di to get FDC ri

10: if (instance = Y and ri < r0) then
11: TP←− TP + 1
12: end if
13: if (instance = Y and ri > r0) then
14: FN←− FN + 1
15: end if
16: if (instance = N and ri < r0) then
17: FP←− FP + 1
18: end if
19: if (instance = N and ri > r0) then
20: TN←− TN + 1
21: end if
22: end for
23: Output: FP,TP,TN.FN;
24: End Algorithm
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Figure 6.5: Example of Bubble swaps and distance to a topological node ordering

data.

Figure 6.6 shows the ROC curve generated according to Algorithm 18 on all

the FDC values. In this problem, the TPR means the proportion of samples that

are correctly classified as ”chain scoring algorithm better” by the value of FDC. The

FPR means the proportion of samples that are incorrectly classified as ”chain scoring

algorithm better” by the value of FDC. The FPR and TPR are expressed as percentages

by multiplying the rate by 100. The curve is a step function curve. It indicates the

thresholds and the corresponding classifier to a single point in all the considered

problems. The best predictive accuracy value is 0.7333, which exists at point A with

coordinates A(0.3750, 0.8571) and the value of AUC, which in this case is 0.720. This

value shows a strong relationship between FDC values and the outcomes of the

algorithm classification performance on the training set. The true positive rate is

0.8571; this means it has a higher rate to classify positive instances correctly in just

under 86% of cases. This is desirable since a correct positive classification means that

the cheaper scoring function can be used without penalty (and possibly with benefit)

to solution quality. To identify each threshold in this curve, we compare the points in

the curve to the sorted FDC values which are predicted. Figure 6.7 shows all values
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Figure 6.6: Roc curve generated from 15 benchmark structures

Figure 6.7: Sorted values of FDC in 15 benchmark problems

of r calculated from experiments arranged along a number line corresponding to the

continuous classifier represented in the ROC curve. The thresholds are increased

from −∞ to +∞ in our discrete classifier problem. We can see the threshold r which

has the value corresponding to the best accuracy point A is r0 = −0.00059, which is

marked by an arrow in Figure 10.

We run experiments to test the best threshold achieved as described on Algorithm

19 . In this experiment, we employ 35 new problems, which we generated through

Algorithm 16 as described above. Table 6.4 depicts the results on 35 new benchmark

problems. In this table, the value of FDC (r) achieved from landscape analysis on

the specific problem is presented. If the value of FDC (r) is less than the threshold

r0 = −0.00059, the chain scoring algorithm performs better. This is indicated as

∗, otherwise, it is space. The values of TN, FP, FN and TP are calculated through
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comparing the testing prediction to the corresponding true performance of chain

scoring algorithms on specific problems. Table 6.5 shows all the results from the

above 5 groups. In this table, T represents the number of true positive classes in each

group; N indicates the number of true negative classes in each group, T + N = 35. The

values of TN, FP, FN and TP are the sum of all the corresponding values of TN, FP,

FN and TP in Table 6.4. These are introduced for generating the parameters of FPR,

TPR and accuracy corresponding to the hyperheuristic algorithm.

We also run experiments to investigate the values of parameters FPR, TPR and

accuracy under the condition of randomly selecting algorithm for specific problems.

In this case, we choose either chain scoring algorithm or CH scoring algorithm at

random to each structure, and study the relationships to the performance of chain

scoring algorithm or CH scoring algorithm in Table 6.2 for producing relatively TN,

FP, FN and TP. The values of FPR, TPR and accuracy achieved here are compared to

the output through best threshold and the testing algorithm described above. Table

6.6 indicates values of FPR, TPR and the accuracy for the training set, the test set

using the classifier experiment and the test set using random selection of scoring

function. As expected, classification performance on the test set is poorer than on

the training set but is notably better than random selection of scoring function. The

enhanced algorithm achieved an accuracy of 0.6285. Given that we are sampling from

a very heterogeneous set of unseen problems, this can be regarded as a significant

success. In particular, TPR was 0.7222 which means that, in 72% of cases where using

the cheaper chain scoring function gave a benefit, the enhanced algorithm selected

that option. Given the computational costs of the search, this is a significant result.

Conversely, of course, a false positive result means that the chain scoring function is

used when it does not provide a benefit. However, at 0.4705, the FPR for the enhanced

algorithm is comparable to that of 0.4592 achieved by random selection so there is no

real disadvantage here.
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6.7 Summary

In this chapter, we have proposed a hyperheuristic BN structure learning algorithm.

It uses a fitness landscape analysis-based classifier, learned from a training set of

benchmark problems, to select the most suitable scoring function to use on unseen

problems based on an initial random walk. We have also described a process for

generating new unseen problems from known benchmarks and have generated a

test set of 35 new problems. Our experimental results demonstrate that the selective

hyperheuristic using the fitness landscape-based classifier has a significant advantage

over blind selection of scoring function on unseen problems.

This chapter has also demonstrated that the ROC curve technique is very useful

for binary classification in BN structure learning problems. The results in Figure 6.6

intuitively gave us a selected interval of all probable thresholds. This interval depends

on the accuracy we need in prediction and the balance of TPR and FPR. In addition this

chapter has shown that bubble swapping in fitness landscape analysis can provide

valuable information from the specific studied problem. The node orderings for

bubble swapping in this chapter are generated at random. This approach is different

to the study in the last chapter, where we needed both Tarjan and Kahn node ordering.

This means that it is feasible to produce fitness landscape analysis for any problems

when we do not know its structure beforehand.

BN structure learning is an important problem. As interest in analyzing large data

sets continues to increase, there is a growing need for approaches that can be adapted

to new problems with some confidence. These initial findings suggest that fitness

landscape measures such as FDC will prove useful in selecting suitable algorithms

for unseen structure learning problems.
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Table 6.3: Results of FDC Values on Each Benchmark Problem

Instance Chain CH FDC(r)
1 * -0.00478
2 * 0.00240
3 * 0.00041
4 * 0.00002
5 -0.00211
6 * 0.00033
7 * -0.00186
8 * 0.00021
9 * -0.00059
10 * 0.00221
11 * 0.00212
12 * -0.00288
13 * 0.00105
14 * 0.00628
15 * -0.00165
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Table 6.4: Results of fitness landscape analysis(FDC value, r) and the predict per-
formance of if chain scoring algorithm is better through comparing r to threshold
r0 = −0.00059 achieved on specific structure problems.

Structure FDC(r) Chain TN FP FN TP

Group 2

Asia 0.00183 1 0 0 0
Credit -0.00179 * 0 0 0 1
Tank -0.00117 0 1 0 0
Car 0.00161 * 0 0 1 0
B -0.00063 * 0 0 0 1

Boerlaga -0.00064 0 1 0 0
Alarm -0.00759 * 0 0 0 1

Group 3

Asia -0.00017 0 0 0 1
Credit -0.00320 * 0 1 0 0
Tank -0.00072 1 0 0 0
Car 0.00113 * 1 0 0 0
B -0.00483 * 0 0 0 1

Boerlaga -0.00470 0 1 0 0
Alarm -0.01153 * 0 0 0 1

Group 4

Asia -0.00247 0 0 0 1
Credit 0.00237 * 1 0 0 0
Tank -0.00035 0 1 0 0
Car 0.00385 * 1 0 0 0
B -0.00063 * 0 0 0 1

Boerlaga 0.00021 1 0 0 0
Alarm -0.00282 * 0 0 0 1

Group 5

Asia -0.00471 0 0 0 1
Credit 0.00179 * 0 0 1 0
Tank 0.00465 0 0 1 0
Car -0.00113 * 0 1 0 0
B -0.00063 * 0 0 0 1

Boerlaga 0.00113 1 0 0 0
Alarm 0.00619 * 0 0 1 0

Group 6

Asia 0.00378 0 0 1 0
Credit 0.00398 * 1 0 0 0
Tank -0.00369 0 1 0 0
Car -0.00240 * 0 1 0 0
B -0.00573 * 0 0 0 1

Boerlaga 0.00128 1 0 0 0
Alarm -0.00573 * 0 0 0 1
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Table 6.5: Comparison of Accuracy on Three Experiments

TN FP FN TP T N
Group 2 1 2 1 3 4 3
Group 3 2 2 0 3 3 4
Group 4 3 1 0 3 3 4
Group 5 1 1 3 2 5 2
Group 6 2 2 1 2 3 4

Total 9 8 5 13 18 17

Table 6.6: Results of Testing Experiments on 35 Structures

Accuracy FPR TPR
ROC 0.7333 0.3750 0.8571

Test Set with Hyperheuristic 0.6285 0.4705 0.7222
Test Set with Random Selection 05038 0.4592 0.4944



Chapter 7

Conclusions and Future Work

This chapter outlines the contributions and draws the conclusions of the thesis from

the previous chapters. This is followed by the possible future work which could

continue from this research.

7.1 General Conclusions

In this thesis, we have developed two novel approaches based on Ant Colony Op-

timization for Bayesian network structure learning. Both of them evolved optimal

structures on the search space with node orderings. The empirical results on eight

standard benchmark problems have described that the performance of these two

approaches are problem dependent.

We have investigated a number of themes related to these approaches, including

the scoring function (chain score and CH score) and the heuristic algorithms (GA

and ACO). We have defined node juxtaposition distribution to all topological node

orderings with specific algorithms. The application of this technique helps us to gain

a deeper understanding of the capability of chain model structure to achieve the final

best node ordering.

We have been able to develop a measure of the fitness landscape analysis with two

topological node orderings to evaluate the performance of approaches proposed. We
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have defined random bubble swapping in search space for producing time sequences

of fitness. We can now describe the chain model structure that can produce more

Tarjan kind of topological ordering, which can induce a better value of FDC than the

Kahn kind of topological ordering. This result has given us inspiration for selecting

a suitable algorithm for unseen problem structure learning.

We have extended the application of fitness landscape analysis for randomly gen-

erated node orderings. This is a relatively cheap process with chain model structure.

We have also been able to build off-line hyperheuristic models for unseen Bayesian

network structure learning from the results of fitness landscape analysis. We have uti-

lized the receiver operating characteristic to select the threshold value for controlling

the accuracy of prediction and the balance of TPR and FPR.

In general, we have been able to develop novel approaches for Bayesian net-

work structure learning problems. The comparative analysis with node juxtaposition

distribution and fitness landscape analysis to these algorithms have verified the char-

acteristics of these new algorithms. These results have provided a strong basis for

further research on BN structure learning problems.

7.2 Main Contributions

The main contributions in this research are:

1. Review of BN structure learning and fitness landscape analysis: A review of

algorithms incorporating ACO probabilistic techniques and fitness landscape

analysis model has been presented.

2. Extension of Chain model BN structure learning with ACO: The ChainA-

CO approach has been proposed, and experiments have been executed with

ChainACO.

3. Extension of K2 heuristic algorithm for BN structure learning with ACO: The

K2ACO approach has been proposed, and experiments have been executed with
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ChainACO.

4. Comparative analysis between Chain model and K2 heuristic search and

score algorithms: A comparative analysis using node juxtaposition distribution

between Chain model algorithms and K2 model algorithms with GA and ACO

approaches.

5. Introduction of fitness landscape analysis with topological node ordering:

An deep investigation has been carried out on Chain model score and CH score

with GA and ACO search approaches.

6. Introduction of receiver operating characteristics: The ROC technique has

been introduced for building classifier models with chain model approaches for

prediction of algorithm selection.

7. Introduction of data generating on modifying conditional probability: The

new data have been generated with minor modification of conditional proba-

bility for producing new comparative benchmark problems.

8. Applications: Chain model and K2 based algorithms have been applied to a

number of benchmark problems and real world problems in oil rig data.

9. Off-line hyperheuristic Bayesian network structure learning: This off line

hyperheuristic algorithm has been constructed for unseen problem BN structure

learning.

7.3 Future Work

The main possible distributions of future work are:

7.3.1 Different score functions

From the descriptions in Chapter 2 and Chapter 3, we know that the K2 algorithm

is one of the most successful algorithms for BN structure learning. The basic idea
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of K2 algorithm is to calculate the joint probability of a BN structure given data,

accompanied by a topology node ordering by maximizing the joint probability. The

score function applied for measuring the joint probability of a BN structure with data

plays a key rule in K2 algorithm.

In Chapter 2, we reviewed some different score metrics. All these metrics are

proposed with some assumptions of the network parameter distribution. Some re-

searchers have studied the performance of these score metrics with K2-like algorithm-

s [Yang and Chang, 2002]. Experimental results show there exist differences among

these metrics with K2 algorithm.

Our further research is interested to explore the two novel ACO based approaches

with more score metrics. They are MDL [Buntine, 1991], BDeU [Buntine, 1991],

BIC [Schwarz, 1978] and AIC [Akaike, 1970] scores. The objective is to investigate

(1) Which score metric would be expected to generate the best performance with

chain model structure and K2 structure respectively? (2) Is it possible to deduce the

relationship with score metrics and data size in benchmark problems?

7.3.2 Deeply investigate Chain model structure on BN structure learning

The results presented in Chapter 3 illustrate that the chain model structure for BN

structure learning can achieve better joint probability in some of the benchmark

problems. It performs cheaper in all of these cases, both with GA and ACO algorithms.

The chain structure model is a kind of topological linear node orderings. Both Tarjan

and Kahn node orderings described in Chapter 5 two typical ordering. They imply

the best node ordering for K2 greedy search algorithm to learn the best BN.

It would also be interesting to deeply investigate the characteristics of Tarjan and

Kahn ordering in standard problems. This would reveal some linkages and correlation

between nodes from statistical analysis to known BN structure. The results can give us

inspiration on designing the existing chain structure model. We expect it can provide

constraints on score function, help us to adapt and update our chain structure model
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as a multi-objective optimization problem.

7.3.3 Improving the efficiency of hyperheuristic on BN structure learning

The hyperheuristic algorithm proposed in this thesis has provided us with a theoretical

application for unseen BN structure learning problems. This algorithm is based on

the characteristics of fitness landscape analysis. In order to improve the efficiency of

the hyperheuristic algorithm, we still need to deeply investigate the performance of

fitness landscape analysis on BN structures. This investigation can provide a more

accurate prediction of problem difficulties. Except for the local properties and global

properties we have utilized in this thesis, the further study with fitness landscape

analysis will focus on two new properties [Watson, 2000] [Mattfeld and Bierwirth,

1999]:

Distance between solutions: this distance is defined as an operator-independent

distance measure. It uses the normalized disjunctive graph measure D(si, s j) to deter-

mine the distance between two arbitrary solutions si and s j. The average distance in

the solution pool reflects the hard or easy property of the specific problems.

Solutions Entropy: [Mattfeld and Bierwirth, 1999] defined solutions entropy in

1999 for Job-shop problems. The entropy is an another measure in fitness landscape for

capturing the solutions commonality. When the entropy E = 1, it means a completely

random set of solutions and E = 0 represents a completely homogeneous set of

solutions.

We are able to compare these new properties with the previous properties, to

produce balanced evaluation on the performance of each algorithm.
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[Pinto et al., 2008a] Pinto, P. C.; Nägele, A.; Dejori, M.; Runkler, T. A.; and da Cos-

ta Sousa, J. M. (2008a). ”Learning of Bayesian networks by a local discovery ant

colony algorithm”. In IEEE Congress on Evolutionary Computation, pages 2741–2748.
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Appendix A

Figures- Comparison of search and
score algorithms on benchmark
structures

The figures in this chapter relate to the experiments discussed in Chapter 3. In

Figure A.9 ∼ Figure A.16, the labels ’1’–’4’ in each figure represents the algorithm

ChainACO, K2ACO, ChainGA and K2GA respectively.

Figure A.1: ANOVA test using the Bonferroni correction on Asia structure
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Figure A.2: ANOVA test using the Bonferroni correction on Credit structure

Figure A.3: ANOVA test using the Bonferroni correction on Tank structure
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Figure A.4: ANOVA test using the Bonferroni correction on Car structure

Figure A.5: ANOVA test using the Bonferroni correction on B structure



177

Figure A.6: ANOVA test using the Bonferroni correction on Boerlaga structure

Figure A.7: ANOVA test using the Bonferroni correction on Insurance structure
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Figure A.8: ANOVA test using the Bonferroni correction on Alarm structure

Figure A.9: Box-plots of the Best found Structure Score for Asia at each run for all
algorithms
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Figure A.10: Box-plots of the Best found Structure Score for Credit at each run for all
algorithms

Figure A.11: Box-plots of the Best found Structure Score for Tank at each run for all
algorithms
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Figure A.12: Box-plots of the Best found Structure Score for Car at each run for all
algorithms

Figure A.13: Box-plots of the Best found Structure Score for B at each run for all
algorithms
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Figure A.14: Box-plots of the Best found Structure Score for Boerlaga at each run for
all algorithms

Figure A.15: Box-plots of the Best found Structure Score for Insurance at each run for
all algorithms
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Figure A.16: Box-plots of the Best found Structure Score for Alarm at each run for all
algorithms
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