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Abstract 

 

The present study focuses on the investigation of water dynamics inside a polymer 

electrolyte membrane fuel cell using two different modelling approaches:  Eulerian 

two-phase mixture and volume of fluid interface tracking models. The Eulerian two-

phase mixture model has provided overall information of species distribution inside a 

fuel cell and identified that the liquid water usually accumulates under the land area. 

The volume of fluid interface tracking model has then been implemented to 

investigate the emergence of water droplets from the gas diffusion layer into the 

cathode channel and the subsequent removal of water from the channel.  Further, the 

effects of the location of water emergence in the cathode channel on the dynamic 

behavior of liquid water have been investigated. The present study shows that the 

water emerging into the channel near the side walls greatly reduces the surface water 

coverage of the channel. In order to control the water path into the channel near side 

walls, a further discussion has been provided that a gas diffusion layer design based 

on hydrophilic fibres distributed inside a hydrophobic fibre matrix could provide a 

precisely controlled water path through the gas diffusion layer. 
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1.0 Introduction 

 

A polymer electrolyte membrane (PEM) fuel cell, which has been considered to be a 

suitable candidate for solving future energy crisis, converts chemical energy into 

electricity in a cleaner fashion. PEM fuel cells can be employed in many applications 

including automobiles, combined heat and power unit, stationary and portable power 

system [1]. Despite having many attractive benefits, the widespread deployment of 

PEM fuel cell has been hampered by high cost and durability. The high cost of a PEM 

fuel cell stems from using expensive platinum as catalyst to maintain electrochemical 

reaction. Much research has been directed to reduce platinum uses [2-3]. Another 

way to reduce the cost would be to increase the performance of existing design. In 

this respect, water management is a critical issue in enhancing the PEM fuel cell 

performance.  

 

A PEM fuel cell operates by combining oxygen and hydrogen and producing water as a 

byproduct. Moreover, water is also needed to keep the electrolyte membrane 

hydrated. This is done by hydrating both air and fuel streams. As a result, the cathode 

gas diffusion layer contains a large amount of water, which eventually flows into the 

cathode channel and is then carried away with the airstream [4]. In order to improve 

the performance, the water from the cathode channel should be removed quickly and 

the water coverage on the gas diffusion layer (GDL) surface should be small. This 

would allow more oxygen to diffuse through the gas diffusion layer to the reaction 
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sites. A thorough understanding of the process of water removal through the cathode 

channel is required in order to device a good water management strategy or to 

develop a new architecture of a PEM fuel cell.   

 

Because of the importance of water management, several studies have been reported 

that deals with the problem of water management through numerical modeling study 

by developing of two-phase models that takes into account phase changes in water 

vapour and liquid water, multi component species transport and electrochemistry. 

Natarajan and Nguyen [5] employed a pseudo three-dimensional model to investigate 

liquid water movement inside the cathode electrode. In the work of Wang et al [6], 

and You and Liu [7] both liquid and vapour phase of water flows have been 

considered, but only inside the cathode gas diffusion layer. In a follow-up paper, You 

and Liu [8] reported a two-dimensional, two-phase coupled PEM model, which showed 

that the liquid water also influenced the oxygen transport. Berning and Djilali [9] also 

developed a three-dimensional, multi-phase, multi-component model considering heat 

and mass transfer. In their study liquid water transport inside the GDL was 

numerically modeled by using viscous and capillary effects. This method was also 

implemented by Mazumder and Cole [10]. Min [11] developed a three dimensional, 

two-phase, non-isothermal model based on two-fluid model.  Meng [12] developed a 

mixed domain two-fluid PEM fuel cell model, where water transport through the 

membrane was calculated by solving a conservation equation for the water content in 

the membrane.  Further details in two-phase modelling of PEM fuel cell can be found 

in the recent review paper by Khan et al. [13]. 

  

Though all the two-phase modelling studies mentioned above provided significant 

contribution to knowledge, these models were unable to predict the dynamic behavior 

of the emergence of liquid water as droplet, and subsequent droplet growth, 
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coalescing and the formation of slug or water film in the channel. Several papers have 

appeared recently in literature concerning the dynamic behavior of water droplet 

movement through the cathode channel [14-26].  Experimental studies have provided 

visual description of water droplet egress from the GDL and subsequent slug 

formation in the channel [4, 23-24]. However, because of the use of transparent wall 

for visual access, the experimental technique cannot reproduce the key role played by 

channel walls in water removal [19].  In this respect, the application of the volume of 

fluid (VOF) method in the computational fluid dynamics framework has provided many 

insights into the water dynamics in the cathode channel [14-22]. Cai et al. [14] 

investigated the effects of surface wettability of GDL on movement of a single droplet 

and film and concluded that a combination of the hydrophobic GDL with hydrophilic 

side walls was beneficial for water removal. Zhan et al [15] also investigated the 

droplet and film movements through a serpentine channel and provided similar 

conclusion to Cai et al [14]. Jiao and Zhou [16] were focused on developing an 

innovative gas diffusion layer with microchannel linking the catalyst layer with the 

flow channel. Quan et al. [17] investigated the water dynamics inside a serpentine 

channel with various initial conditions of water presence in the channel. In a series of 

papers, Zhu et al [18-20] investigated the process of water droplet emergence, 

growth, deformation and detachment. Zhu et al [18] investigated the dynamics of a 

single water droplet in the cathode channel by implementing a VOF model. The 

simulation was carried out on a two-dimensional geometry which was not a realistic 

presentation of the actual physics. In subsequent papers, Zhu et al [19-20] modified 

the computational domain to a three-dimensional geometry. The detail description of 

water droplet emergence, growth, deformation and detachment of a single droplet has 

been provided through a parametric study of the effects of surface wettability, air flow 

velocity, water injection velocity and the size of the pore. Ding et al [21-22] have 

provided a more realistic representation of water droplet interaction by setting up  



5 
 

water emergence  into the channel through a number of pores. Their study shows that 

water droplets after emerging from pores, merge into larger slugs and then 

accumulate on the sidewalls before being driven out of the channel. 

 

Based on the above literature review, it is clear that the water dynamics in a fuel cell 

has to be understood at multi-levels using models that include the entire detailed 

physics e.g. multi-phase interface tracking between gas-phase and liquid-water-

phase, multi-components, mass transfer, electrochemical reaction and water-phase 

change effects. In the present study, two different modelling approaches have been 

implemented to provide complete information of water dynamics in a fuel cell. The 

first modelling approach is based on the Eulerian two-phase concept, which takes into 

account all parts of PEMFC including the membrane, catalyst layers, GDLs and gas 

flow channels. In the second modelling approach, the interface of the liquid water and 

air phase has been tracked through a cathode flow channel by a VOF model.  

 
Water generated in the catalyst layer diffuses through the gas diffusion layer into the 

flow channel. A GDL is made of randomly distributed fibres and as such water flows 

through the random flow paths inside the GDL into the channel and it is very difficult 

to predict which flow path water would take into the channel. In reality, experimental 

studies [23-26] show that water enters the channel from the GDL preferentially 

through certain pores and the distance between the pore is quite large. In previous 

studies, the emergence of water into the channel from the GDL has been modelled by 

a single pore (inlet) [18-20], multiple pores but very closely packed to each other 

[21] and two pores across the width [22]. Obviously, the size and the distance 

between the water emerging pores would have major effects on the surface coverage 

of a GDL and the water fraction inside the flow channel. The present study seeks to 

provide a systematic study of water droplet dynamics for different pore distances and 
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pore sizes. The main objective of this study is to identify an optimum pore 

arrangement that would provide minimum water coverage on the GDL surface.  

 

 

2.0 Mathematical model 

 

The numerical simulation procedure in the present study is based on two different 

modelling approaches. In the first modelling approach, an Eulerian two-phase  

mixture model, that includes the transport of hydrogen, oxygen, water vapour and 

liquid water through the flow channels, the GDL,  the catalyst layers, the membrane, 

and the electrochemical reactions and the phase-change effects, has been developed. 

This modelling approach provides information regarding PEM fuel cell performance 

characteristics and species distribution inside the cell as average values. This method 

does not provide the crucial information regarding the dynamics of liquid water 

emergence, growth, coalescence and movement in the channel. Therefore, a second 

modelling approach based on the multi-phase volume of fluid (VOF) interface tracking 

between the air and liquid water phase has been employed to provide further insight 

into the liquid water transport inside the flow channel and to develop an effective 

water removal technique. 

 

2.1 Governing Equations for the Eulerian two-phase Mixture Model 

 

The governing equations for the PEM fuel cell model consist of continuity, momentum 

and species transport equations. These equations represent the transport 

phenomenon inside the catalyst layers, gas diffusion layers and the flow channels.  To 

represent the electrochemistry and the transport phenomena through the membrane, 

appropriate source terms are applied at the anode and cathode catalyst layers.  
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2.1.1 The mass conservation equation (continuity equation): 

 

∇ (ρu�⃗ ) = 0       (1) 

 

where 𝜌 is the fluid density and  𝑢��⃗  is the velocity vector. 

 

2.2.2 The momentum conservation equation: 

∇(𝜌𝑢�⃗ 𝑢�⃗ ) =  −∇𝑃 +  ∇(𝜇∇𝑢)����⃗ + 𝑆𝑢     (2) 

 

where 𝑃  is the pressure and 𝑆𝑢  is the source term.  

 

In the flow channel, 𝑆𝑢 is zero. In the gas diffusion layers and the catalyst layers 

Darcy’s law term is added to the momentum equations to represent the momentum 

related to the porous media. This source term is expressed as: 

 

𝑆𝑢 = −𝜇𝑢��⃗
𝐾

          (3) 

 

where, 𝐾 is permeability of the porous media (gas diffusion layers and catalyst 

layers). 

 

2.2.3 The species conservation equation:  

  

∇(𝜌 𝑢��⃗ 𝑋𝑘) = ∇�𝐷𝑘
𝑐𝑓𝑓𝜌∇𝑋𝑘� + 𝑆𝑘    (4) 
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where index 𝑘 refers to oxygen, hydrogen, water vapour and liquid water.  𝑋𝑘 is the 

molar concentration of species 𝑘 and  𝐷𝑘
𝑐𝑓𝑓 is the effective diffusion coefficient of 

species 𝑘.  

 

The source terms  𝑆𝑘 in the species conservation equation (4) are defined as zero for 

all regions of the model except at the catalyst layers. Species source term for anode 

and cathode catalyst layers are expressed as below: 

 

Consumption of hydrogen due to electrochemical effects at the anode catalyst layer 

𝑆𝐻2 = − 𝐼𝐴
2𝐹
𝑀𝐻2          (5) 

 

Consumption of oxygen due to electrochemical effects at the cathode catalyst layer 

 

𝑆𝑂2 = − 𝐼𝐴
4𝐹
𝑀𝑂2         (6) 

 

Production of water and the flux of water due to electrochemical effects at the cathode 

catalyst layer 

 

𝑆𝑐𝑤 = [1+2𝛼]𝐼𝐴
2𝐹

𝑀𝐻2𝑂        (7) 

 

The Flux of water due to electrochemical effects at the anode catalyst layer 

 

𝑆𝑎𝑤 = −𝛼𝐼𝐴
𝐹
𝑀𝐻2𝑂         (8) 

 

where, 𝐴 is the area of the catalyst layer. The current density 𝐼 and net water transfer 
coefficient  𝛼 are used to determine these source terms.  
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To account for phase changes between water vapour and liquid water, the following 

source term has been added in the species transport equation for liquid water and 

water vapour (4) according to [27] 

 

𝑆𝑤𝑐𝑝 = −𝑆𝑤𝑣𝑝 = (𝑃𝑤𝑣−𝑃𝑤𝑣𝑠𝑎𝑡)
𝑅𝑇

× 𝑀𝐻2𝑂 × 𝑘𝑐     (9) 

 

Where  𝑘𝑐 is the water vapour condensation rate. 

 

The diffusion coefficient of species can be expressed as [11]: 

 

𝐷𝑘 = 𝐷𝑘,𝑑𝑐𝑓 �
𝑇

𝑇𝑟𝑒𝑓
�
3
2�

(𝑃𝑟𝑒𝑓
𝑃

)       (10) 

 

where,  𝐷𝑘,𝑑𝑐𝑓 is the reference value at 𝑇𝑑𝑐𝑓 and   𝑃𝑑𝑐𝑓.  The diffusivity values obtained 

from equation (10) needs to be corrected for porous regions. 

 

The diffusion coefficient in the porous regions can be expressed as  

  

𝐷𝑘
𝑒𝑓𝑓 = 𝑓(𝜖)𝑔(𝑠)𝐷𝑘        (11)  

 

Tomadakis and Sotirchos model has been shown to provide the best representation of 

effective diffusivity and this percolation theory based diffusion model for random 

fibrous porous medium is given by [28] 

 

𝒇(𝜺) =  𝜺 �𝜺−𝜺𝒑
𝟏−𝜺𝒑

�
𝜶
        (12) 
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where  𝜀𝑝 is the percolation threshold and equal to 0.11. 𝛼 is the empirical constant 

which depends on the direction. 𝛼 is 0.521 and 0.785, for in-plane and through-plane 

diffusion, respectively.  

 

The effects of saturation on the effective diffusivity of species can be generally given 

by power law model according to [28], 

 

𝑔(𝑠) = (1 − 𝑠)2        (13) 

 

A number of auxiliary equations need to be solved to model the electrochemical 

reactions and determine the local current density and net water transfer coefficient. 

The auxiliary equations are based on the assumption of using Nafion 117 membrane, 

and are taken from the work of Springer et al. [29].  

 
 
2.2 Auxiliary Equations 

The auxiliary model equations, needed to be solved to determine the net water 

transfer coefficient and cell voltage at an average current density, are summarised 

below:  

 
2.2.1 Water Transport in the membrane: 

When electrochemical reaction takes place inside a fuel cell, water molecules are 

dragged through the membrane from the anode to the cathode with protons. This is 

known as electro-osmotic drag. In addition, some of the water produced at the 

cathode transports through the membrane from the cathode side to the anode side 

due to concentration gradient, known as back-diffusion. Hence, the amount of water 
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transported across the membrane is equal to the difference in water transported by 

the back-diffusion and that by electro-osmotic drag [30]. 

 

In order to reduce complexity in the model development, it is assumed that the water 

transport across the membrane is one-dimensional and can be approximated by a 

single step linear difference in concentrations at the cathode and anode side. The final 

expression for the net water transfer coefficient per proton is [30]: 

 

𝛼 = 𝑛𝑑 −
𝐹𝐷𝐻2𝑂[𝐶𝐻2𝑂𝑐−𝐶𝐻2𝑂𝑎]

𝐼𝜕𝑚
      (14) 

 

Where 𝐷𝐻2𝑂 represents water diffusion coefficient, and  𝐶𝐻2𝑂𝑎 and 𝐶𝐻2𝑂𝑐 represent the 

molar concentration of water at the anode and cathode side respectively, 𝐼 is the 

average current density and 𝑡𝑚 is the membrane thickness and 𝐹 is the Faraday’s 

constant.  

 

Electro-osmotic drag coefficient describes the amount of water dragged by each 

proton across the membrane from the anode to the cathode side and expressed as, 

[30] 

 𝑛𝑑 = 0.0049 + 2.02𝑎𝑎 − 4.53𝑎𝑎2 + 4.09𝑎𝑎3  ;  𝑎𝑎 ≤ 1 

𝑛𝑑 = 1.59 + 0.159(𝑎𝑎 − 1);                               𝑎𝑎 > 1          (15) 

 

where, water activity is defined as, [30] 

𝑎𝑘 = 𝑋𝐻2𝑂,𝑘𝑃
𝐷𝐻2𝑂,𝑘
𝑠𝑎𝑡

 

        (16) 

where 𝑃 is the cell pressure and 𝑋𝐻2𝑂.𝐾 is the mole fraction of water on either the 

anode or cathode side.  
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Water diffusion coefficient is expressed as, [30]
          

 

𝐷𝐻2𝑜 = 5.5𝑒−11𝑛𝑑exp [2416 � 1
303 −

1
𝑇�]

      (17)
 

Water vapour saturation pressure [30] 

𝑃𝐻2𝑂
𝑠𝑎𝑡 = �0.000644367 + 0.000213948(𝑇 − 273) + 3.4329𝑒−5(𝑇− 273)2 − 2.70381𝑒−7(𝑇−

273)3 + 8.77696𝑒−9(𝑇− 273)4� − 3.14035𝑒−13(𝑇− 273)5 + 3.82148𝑒−14(𝑇− 273)6]1.013𝑒5

            (18)

 

Water concentration on the anode and cathode side, [30] 

𝐶𝐻2𝑂,𝐾 = 𝜕𝑚,𝑑𝑟𝑦

𝑀𝑚,𝑑𝑟𝑦
�0.043 + 17.8𝑎𝑘 − 39.8𝑎𝑘2 + 36.0𝑎𝑘3�; 𝑎𝑘 ≤ 1  

𝐶𝐻2𝑂,𝐾 = 𝜕𝑚,𝑑𝑟𝑦

𝑀𝑚,𝑑𝑟𝑦
(14 + 1.4(𝑎𝑘 − 1)); 𝑎𝑘 > 1        (19) 

 

2.2.2  Polarization Characteristics 

 

When electrical energy is drawn from the cell, the cell experiences various losses 

(polarization, overpotential and overvoltage losses) and a result the cell potential 

drops.  The cell voltage can be expressed by the following equation [11]: 

𝑉𝑐𝑐𝑐𝑐 = 𝐸 − 𝜂𝑎𝑐𝜕 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑛𝑐        (20) 

where  𝐸  is the equilibrium thermodynamic potential which is calculated using the 

Nernst equation [11]: 

 

𝐸 = 1.23 − 0.9 × 10−3(𝑇 − 298) + 2.3 𝑅𝑇
4𝐹

log (𝑝ℎ2𝑝𝑜)R      (21) 
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𝜂𝑎𝑐𝜕 is the activation overpotential, 𝜂𝑜ℎ𝑚is the ohmic overpotential and 𝜂𝑐𝑜𝑛𝑐 is the 

concentration overpotential.  

Activation overpotential (𝜂𝑎𝑐𝜕): 

The activation overpotential is a function of local current density, exchange current 

density and concentration of oxygen. The activation overpotential is expressed by 

Butler-Volmer equation, [11] 

 

𝑖𝑎 = 𝑖𝑎,𝑑𝑐𝑓 �
𝐶ℎ

𝐶ℎ,𝑟𝑒𝑓
�
1
2
�𝑒𝑥𝑝 �𝛼𝑎𝜂𝑎𝐹

𝑅𝑇
𝜂𝑎𝑐𝜕,𝑎� − 𝑒𝑥𝑝 �− (1−𝛼𝑎)𝜂𝑎𝐹

𝑅𝑇
𝜂𝑎𝑐𝜕,𝑎��  

 

𝑖𝑐 = 𝑖𝑐,𝑑𝑐𝑓 �
𝐶𝑜

𝐶𝑜,𝑟𝑒𝑓
�
1
2
�𝑒𝑥𝑝 �𝛼𝑐𝜂𝑐𝐹

𝑅𝑇
𝜂𝑎𝑐𝜕,𝑐� − 𝑒𝑥𝑝 �− (1−𝛼𝑐)𝜂𝑐𝐹

𝑅𝑇
𝜂𝑎𝑐𝜕,𝑐��

   (22)
 

 

Where  𝑖𝑎,𝑑𝑐𝑓  and  𝑖𝑐,𝑑𝑐𝑓  are the exchange current density multiplied by specific area, 
𝑛 is electron number of reaction at anode or cathode and 𝛼 is the transfer coefficient.  
 

Ohmic Overpotential (𝜂𝑜ℎ𝑚): 

The ohmic overpotential occurs due to the resistance to electron and ion transfer and 

can be expressed as [11]: 

 

𝜂𝑜ℎ𝑚 = 𝜂𝑜ℎ𝑚𝑐𝑐 + 𝜂𝑜ℎ𝑚
𝑝𝑑𝑜 = 𝐼�𝑅𝑐𝑐 + 𝑅𝑝𝑑𝑜�       (23) 

 

Where 𝑅𝑐𝑐  is the resistance to electron transfer and 𝑅𝑝𝑑𝑜 is the resistance to proton 

transfer. In general, the resistance to electron transfer is difficult to predict and to 

avoid complexity in the present model.    𝑅𝑐𝑐 =  0.1 Ω cm2 is assumed according to the 

work of Min [11]. The resistance to ion transfer, 𝑅𝑝𝑑𝑜 is calculated using following 

expression [11]: 
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𝑅𝑝𝑑𝑜 = 𝜕𝑚
𝑘𝑚

          (24) 

 

where, 𝑡𝑚 is the height of the membrane and 𝑘𝑚 is the phase conductivity of the 

membrane. The membrane phase conductivity depends on the temperature and water 

concentration at anode side and expressed as  

 

𝑘𝑚 = 100[0.00514 �𝑀𝑚,𝑑𝑟𝑦

𝜕𝑚,𝑑𝑟𝑦
� 𝐶𝐻2𝑂𝑎 − 0.00326] × exp �1268( 1

303
− 1

𝑇
)�   (25) 

 

Concentration Overpotential (𝜂𝑐𝑜𝑛𝑐): 

At high current densities, polarization losses are dominated by concentration 

overpotential which is caused by slow diffusion of gas through the porous regions. 

These losses can be determined by, [11]: 

𝜂𝑐𝑜𝑛𝑐 = −𝑅𝑇
𝑛𝐹

ln �1 − 1
𝐼𝐿
�         (26) 

where 𝐼𝐿 is the limiting current density [11]:    

𝑖𝐿 = 𝑛𝐹𝐷ℎ𝐶𝑘,𝑜
𝐻𝑑           (27) 

where, 𝐷ℎ is the diffusion coefficient of hydrogen and 𝐶𝑘,𝑜 is the molar concentration of 
hydrogen before entering the gas diffusion layer,  𝐻𝑑 is the height of the diffusion 
layer. 
 

2.2 Governing Equations for the Volume of Fluid Method 

 

The two-phase volume of fluid (VOF) method used in the present study was developed 

by Hirt and Nichols [31] for modelling time-dependent flows of multiple immiscible 

fluids. In the VOF method, the position of the interface of the fluids of interest is 

tracked via a surface tracking technique on a fixed Eulerian mesh [31]. A volume 
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factor indicator is used to determine the location of the interface and a surface 

reconstructing technique is used to determine the shape of the interface [32].  Under 

the VOF method, the surface tension force between the fluids as well as the wall 

adhesion can be included through a surface force based on the continuum force 

approach [33].  

 

The governing equations, solved in the present study via the commercial software 

Fluent 12.1 for the VOF model are given below [32]: 

 

Continuity: 

 𝜕𝜕
𝜕𝜕

+ ∇. (𝜌𝑢�) = 0        (28) 

 

Momentum: 

 

𝜕(𝜕𝑢� )
𝜕𝜕

+ ∇. (𝜌𝑢�𝑢�) = −∇𝑃 + ∇.𝜇(∇𝑢� + ∇𝑢�𝑇) + 𝜌�̅� + 𝐹   (29)   

  

 

The surface tension force in equation (29) is represented by 𝐹. The surface tension 

force which is expressed as a volume force, is added to the momentum equation as a 

source term. 

 

To track the interface between phases, a volume fraction continuity equation for one 

of the phases (water in this case) is solved along with the above equations: 

          

𝜕𝛼𝑞
𝜕𝜕

+ 𝑢� .∇𝛼𝑞 = 0        (30) 

where subscript 𝑞 represents each phase component.  
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Air volume fraction is obtained from the relation ∑ 𝛼𝑞 = 12
𝑞=1 .  

 

The properties appearing in the transport equations are determined by the presence 

of the component phases in each control volume. For example, the density is 

considered to be: 

𝜌 = ∑ 𝛼𝑞𝜌𝑞2
𝑞=1          (31) 

 

 

The surface tension effects between the liquid water and air have been considered by 

using the continuum surface force (CSF) model [33]. According to this model, the 

volume force is added to the momentum source in Equation (29) as, 

 

𝐹 = 𝜎 � 𝜕𝑘1∇𝛼𝑙
1/2(𝜕𝑙+𝜕𝑔)

�        (32) 

Where, 𝜎  is the surface tension coefficient, and 𝜅1 is the surface curvature of the 

liquid droplet defined in terms of the divergence of the unit normal and is given by, 

 

𝑘1 = ∇.𝑛�1          (33) 

 

The unit normal vector, 𝑛1 is calculated from the local gradients in the surface normal 

at the interface as, 

 

𝑛�1 = ∇𝛼𝑙
|∇𝛼1|          (34) 

 

Wall adhesion effects are accounted for by adjusting the surface curvature near the 

wall, where the gas-liquid interface meets the solid wall. The local curvature of this 

interface is determined by the contact angle, 𝜃𝑤, which represents the angle between 
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the wall and the tangent to the interface at the wall. The surface normal vector at the 

wall is give by, 

 

𝑛� = 𝑛�𝑤𝑐𝑜𝑠𝜃𝑤 + �̅�𝑤𝑠𝑖𝑛𝜃𝑤        (35) 

 

Where, 𝑛�𝑤 and �̅�𝑤 are the unit vectors normal and tangential to the wall, respectively. 

 

2.3 Solution Technique for the Eulerian Two-phase Mixture Model 

 

The numerical methodology involves solving a set of partial differential equations of 

continuity, momentum, species concentrations involving oxygen, hydrogen, water 

vapour and liquid water (Equations 1, 2, 4). This set of equations is supplemented 

with auxiliary equations to take into account electro-chemical reactions. The 

continuity and momentum equations (Equations 1 and 2) are solved through Ansys 

Fluent CFD code, while species concentration equations (Equation 4) are solved under 

user defined scalar (UDS) scheme [32].    The convection terms in the governing 

equations (Equation 2) are discretised by the 2nd order upwind scheme and the 

pressure velocity coupling is achieved by SIMPLE algorithm [32]. The electro-

chemistry has been treated explicitly with the specification of an average current 

density of the cell and all relevant parameters are calculated from the auxiliary 

equations (Equations 14-27) after obtaining concentration of species from their 

respective governing equations (Equation 4). 

 

2.3.1 Computational domain and physical parameters 

 

A representative section a three-dimensional straight channel has been considered in 

the present study (Figure 1). The geometry is similar to the computational work of 
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Min [11] and Liu [34]. Physical dimensions of the computational domain as well as the 

relevant fuel cell parameters are given in Table 1. The computational domain has 

been meshed with quadrilateral grids of 12700 cells. A grid sensitivity test using up to 

60000 cells has resulted in similar performance characteristics curve (V-I curve) and it 

has been concluded that the grid size of 12700 cells is sufficient to provide grid 

independency. Simulations have been carried out on a quad core Xeon workstation 

running on serial server.  Each simulation took approximately 2500 iterations to 

converge in approximately 30-40 minutes of run time for the case of 0.1-0.6 Acm-2 

current density, however, it increased to approximately 90 minutes for 1.0 Acm-2 

current density. The solution has been considered converged when the residual of all 

the governing equations (continuity, momentum and species concentrations) has 

reached below 1 X 10-6. 

 

Dirichlet boundary conditions are applied at the cathode and anode inlet. The inlet 

velocity is a function of stoichiometric flow ratio,  , geometrical area of membrane 𝐴𝑚 

and cross-section area of gas channel, 𝐴𝑐ℎ, reference current density, 𝐼𝑑𝑐𝑓 and 

concentration of reactants [11], 

𝑢𝑐,𝑖𝑛 = 𝜁 𝐼𝑟𝑒𝑓
4 𝐹

1
𝑥𝑂2,𝑖𝑛

𝑅𝑇
𝑃

𝐴𝑚
𝐴𝑐ℎ

          (36)  

𝑢𝑎,𝑖𝑛 = 𝜁 𝐼𝑟𝑒𝑓
2 𝐹

1
𝑥𝐻2,𝑖𝑛

𝑅𝑇
𝑃

𝐴𝑚
𝐴𝑐ℎ

         (37) 

 

At the outlet of the fuel cell, a pressure outlet boundary condition has been applied 

with a value of zero. A symmetry boundary condition is applied on the side surfaces of 

the porous regions (Figure 1). No slip condition is applied to the external walls. 

 

2.4 Solution Technique for the VOF Model 
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The set of governing equations (28-30) has been solved in commercial CFD software 

FLUENT version 12.1. The CFD techniques basically involves discretising of  Equations 

(28)-(30) in algebraic form using a control volume method and then solving the set of 

algebraic equations iteratively. Further details on the computational fluid dynamics 

technique can be found in [35].  Getting a converged solution for the two-phase 

volume of fluid method is very challenging   and the accuracy of the solution depends 

on the interface tracking algorithm [32]. Several optimized algorithms have been 

selected in the Fluent 12.1 software to aid convergence and to ensure the accuracy of 

the volume of fluid model. These algorithms include the pressure-velocity coupling 

through the PISO scheme and the interface tracking between gas-liquid through geo-

reconstruct scheme [32]. The PISO scheme involves solving the continuity and 

momentum equations iteratively (Equation (28) and (29)) with solving an additional 

pressure correction step [36]. Though the PISO scheme takes more computational 

time per solver steps, it significantly reduces the total number of iterations required 

for the convergence [32].  In geometric reconstruct scheme, the interface between 

the air and water is determined by a piecewise linear interface calculation method 

[32]. It is based on the assumption that the interface between each phase inside a 

computational cell can be approximated by a straight line with an appropriate 

inclination and the slope of the interface line can be calculated based on the calculated 

volume fraction and its derivative at each cell. Once the interface is reconstructed, the 

fluid volume passing between adjacent cells in the computational domain can be 

calculated from the discretised form of the equation (30). Further details on the 

geometric reconstruction can be found in [37]. 

 

 

2.4.1 Computational domain and boundary condition for the VOF model 
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In the present study, a cathode channel of a PEM fuel cell has been represented by a 

250 µm x 250 µm x 1000 µm section as shown in Figure 2. This computational domain 

is similar to the study of Zhu et al [19] and Ding et al [21]. The bottom wall is the 

GDL surface and is treated as a solid rather than a porous wall. The GDL surface is 

specified as hydrophobic with a static contact angle of 140O, whereas the side and top 

walls are treated as hydrophilic with a static contact angle of 45O. This combination of 

surface wettability has provided the best water removal through the cathode channel 

in previous studies [19, 21]. Two different water inlet diameters of 50 µm and 20 µm 

have been used in the present study and the distances among the water pores have 

been varied by 200 µm, 150 µm, 100 µm and 75 µm.  

 

The computational domain has been meshed with 442,566 hexahedral cells. A 

minimum mesh size of 5.5 µm has been used to mesh the domain. Instead of carrying 

out a grid independency test, the grid independency has been insured by comparing 

grids with similar reported studies. For a similar geometry, Ding et al [21] used a 

minimum mesh size of 10 µm and obtained a grid independent solution with 82,625 

hexahedral cells.  Zhu et al. [19] used 62,835 hexahedral cells for a similar geometry.  

Therefore, it is expected that the use of 442,566 hexahedral cells would be enough to 

provide grid independent results in the present study. Inlet air velocity has been set 

at 10 ms-1. In many previous studies an air velocity of 10 ms-1 has been used [16, 19, 

21]. In contrary, different values of water velocity have been used for similar studies. 

Zhu et al [19] have used a value of 1 ms-1 for the base case and have provided a 

parametric study of inlet water velocity varying from 0.05 ms-1 to 2ms-1. They have 

shown that the effects of water velocity become negligible for water velocity below 1 

ms-1. Ding et al [21] on the other hand used a value of 0.0625 ms-1. The water 

generation rate can be calculated using the electrochemical reaction formula 𝑆 =

�𝐼+2𝛼
2𝐹

�𝑀𝐻2𝑜. At 1.0 Acm-2, the net water transfer co-efficient has been obtained to be 
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0.85 in the in the present study using the Eulerian two-phase model. Therefore, the 

water generation rate has been calculated to be 2.518 X 10-4 gs-1 cm-2, which yields a 

velocity of 2.49 x 10-4 ms-1 through the 50 µm diameter pores with the assumption 

that all the produced water has been condensed to liquid water. The present 

simulation results using the Eulerian two-phase mixture model also gives an average 

velocity in the order of 10-4 ms-1 in the catalyst layer/GDL layer (discussed in section 

3.1). The water generation rate and therefore the water injection velocity would also 

be influenced by the relative humidity of the air and hydrogen streams as well as 

modelling parameters used. However, specifying such a small water injection velocity 

in the volume of fluid model would require a large computational time for the water to 

accumulate in the channel.  Ding et al [21] has shown that due to the large difference 

in air and water velocity, a several order of magnitude increases in water velocity 

would not fundamentally change the water dynamics, but would expedite the 

computation. In the present study, therefore, the water injection velocity has been set 

at 0.0625 ms-1 for the base case following the work of Ding et al. [21]. The time step 

used in the calculation was 1e-6 second. 

 

3.0 Results and Discussion 

 

3.1 Simulated Results from the Eulerian Two-phase Mixture Modelling 

 

3.1.1 Performance Characteristics  

 

A common practice in developing computational fuel cell model is to verify the 

simulated results of V-I performance characteristics curve against experimental data. 

Figure 3 shows the computed V-I characteristics curve and experimental data from 

Ticianelli et al [38]. The V-I characteristic curves presented in Figure 3 shows that the 
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computational model provides a very good agreement with the experimental data up 

to a current density of 0.8 Acm-2. At higher current density, the present model 

overpredicts the voltage. The experimental data of Ticianelli et al [38] has been 

widely used as a kind of benchmark for validating numerical modeling [34, 39]. 

However, the exact geometry of the fuel cell used in the experiment of Ticianelli [38] 

is unknown. The operating pressure, temperature and the Nafion 117 membrane used 

in the Ticianelli et al experiment [38] have been utilised in the present study. Where 

the relevant parameters are not known from the Ticianelli et al experiment [38], these 

have been taken from previous reported modelling studies [11, 34, 39] and are given 

in Table 1. There are many other reasons for the discrepancy in the simulated result 

at higher current densities including uncertainty in using explicit electrochemistry 

model, the value of constant in the condensation rate equation, and the kinetic 

parameters used such as the exchange current density and the charge coefficients. 

Another important factor that may influence the accuracy of the simulation is the 

assumption of isothermal condition. In actual operation of fuel cells, due to 

electrochemical reaction, heat is generated at the catalyst layer, which leads to a 

temperature gradient across the GDL from the catalyst layer to the channel. The 

simulation results by Berning et al [39] and Min [40] show that the temperature at 

the catalyst layer on the cathode side is approximately 3OC higher than that in the 

flow channel. This non-uniform temperature distribution would not only influence 

nearly all the fuel cell empirical properties, but also would influence water saturation 

in the GDL. Therefore, further improvement in the accuracy of the prediction could be 

made by including a heat transfer model in future work.  

 

 

3.1.2 Velocity field 
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The velocity vectors along the length in the gas channels are shown in Figure 4(a) at 

a current density of 1 Acm-2. The flow takes on a parabolic profile due to the 

assumption of wall no slip conditions and becomes fully developed on both the sides 

of the PEM fuel cell. However, it is important to note that the GDL channel interface 

does not enforce a no-slip boundary condition since the interface is porous. However, 

the interface imposes significantly reduced rate of transport resulting in the parabolic 

velocity profile in the channel. The velocity in the cathode channel is significantly 

higher than that in the anode channel to meet the stoichiometric balance of the 

reactants required to maintain the electrochemical reaction at the catalyst.  In GDL 

and CL, much slower velocity magnitude was observed.   

 

Figure 4 (b) shows the vector plot at the mid plane of the assembly. In this plot 

vector lengths are kept constant as the velocity varies widely among different zones. 

The high speed gas channel flow affects the GDL flow field considerably. The velocity 

direction in the cathode GDL is mainly longitudinal caused by the high convective 

velocity in the flow channel. In the anode channel, the velocity vectors become lateral 

to the main flow directions, especially at the downstream.  

 

In GDL and CL, much slower velocity magnitude was observed. This suggests the 

transport limitations of fresh reactants through the porous regions. The transport of 

reactants through the porous zones are one of the critical parameters as it determines 

the reaction rates, thus, defines the overall power output of the cell.  Unfortunately, 

there is no experimental data available in the literature to verify the velocity fields. 

The results presented here is qualitatively very similar to the velocity fields presented 

in Dawes et al’s [41] numerical study. It is important to note that Dawes et al [41] 

used slightly different fuel cell geometry and operating conditions.  
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3.1.3 Species concentrations 

 

Figure 5 shows the contour plots of mass fraction of oxygen, water vapour and liquid 

water in the cathode side at a current density of 1.0 Acm-2. Oxygen diffuses from the 

cathode channel through the gas diffusion layer towarsd the catalyst layer, where the 

oxygen is consumed. The diffusion of oxygen through the GDL and into the land area 

is shown by curved contours. The mass fraction of oxygen under the land area at 

downstream locations is small, where the mass transport limitations are more 

prominent.  The mass fraction of oxygen drops along the flow channel as oxygen is 

consumed and also due to the increased volume fraction of water.  It should be noted 

that the detailed description of reactions distribution inside a PEM fuel cell measured 

in situ has not been reported in the literature. However, the oxygen distribution 

presented here is very similar to the reported modeling study of Berning et al. [39] 

and Dawes et al. [41]. It is observed from the figure that the water vapour mass 

fraction increases along the channel due to water produced by electrochemical 

reaction and water coming from the anode side to the cathode side by electro-osmotic 

process. Again, more water vapour is produced under the land area because of the 

low velocity of air under the land allows more humidification of dry air. This water 

vapour then condenses to produce liquid water. The figure shows that the liquid water 

is mostly trapped under the land area. Therefore, special attention is necessary to 

manage water trapped under the land area.   

 

The simulation results show that a large amount of liquid water is trapped under the 

land area, whereas the amount of liquid water in the channel is very small. The 

Eulerian two-phase modelling only provides overall average values and this technique 

cannot predict the dynamic behavior of the emergence of liquid water as droplet, and 

subsequent droplet growth, coalescing and slug or water film formation in the 
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channel.  Therefore, a VOF based interface tracking model, which is capable of 

providing information regarding the dynamic behavior of water flow has been 

implemented and the simulation results have been presented in section 3.2. The 

results from the Eulerian model, however, highlight that the area under the land is 

critical for water management and effective design or operating parameter should be 

found to remove this trapped liquid. 

 

3.2 Simulated Results from the VOF Multiphase Modelling 

 

Due to electrochemical reaction in a PEM fuel cell taking place at 60-80OC, the 

produced water often condenses in the GDL and is then transported through the GDL 

pore network into the flow channel. Due to the complex nature of GDL pore network it 

is very difficult to simulate the water transport through the pore network into the 

channel. In the present study, the water emergence into the channel has been studied 

with various locations of water pore distribution on the GDL-channel interface. This 

approach is similar to the work of Ding et at [21-22]. Figure 6 shows a schematic 

drawing of the arrangement of the pores on the gas diffusion layer surface. In the 

figure L1 is the inter pore distance in the longitudinal direction, L2 is the distance from 

the wall to the pore in the lateral direction and L3 is the inter-pore distance in the 

lateral direction. Table 2 gives the various combinations of water inlet diameter and 

inter-pore spaces that have been used in the present study. 

 

 

3.2.1 Water dynamics for the base case 

 

In the base case simulation, 50 µm diameter pores have been distributed on the GDL 

surface at 75 µm interval in both longitudinal and lateral directions. Figure 7 shows 
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the water flow pattern inside the cathode channel. From the figure, three stages of 

water transport can be observed: (i) emerging and merging of droplets (ii) formation 

of slug (iii) accumulation of slugs on the side and top walls and detachment from the 

top wall. 

 

In the initial phase, water droplets emerge from the pores, merge with each other and 

then form slugs. Slugs are pushed downward by air pressure as shown at 1.75 ms. At 

2.5 ms, the two slugs merge into a larger body and at 3.25 ms, the front of the slug 

leaves the channel. At the same time, the back of the slug body touches the side walls 

and due to hydrophilicity of the wall, the water body spreads as a film on the wall. 

The water film gets wider and thicker with the passage of time due to continuous 

inpouring of water from the pores. Eventually the water film on the side wall reaches 

the top wall (4 ms) and then detach from the main body along the top wall (5 ms). At 

the same time, a second water film starts to grow on the side wall. This water film is 

pushed along the side wall (8 ms) and eventually flushed out of the channel. The 

whole cycle then repeats itself at an interval of 10 ms with the formation of slug 

similar to at 1.75 ms.  It is worth noting that though the growth and detachment of 

slugs are non-linear cyclic process, the water emergence and mergence are 

continuous. Another observation from the simulation is that the hydrophilicity of the 

side and top walls play a key role in water removal. The hydrophilic side and top walls 

allow water to form film, to spread out and then to be driven out from the channel 

quickly.  

 

The importance of side and top walls on water transport is clearly observed from the 

simulation results presented in this section. The key finding from this section is that 

the hydrophilic wall allows the liquid water to spread as film and removes water 

quickly from the GDL surface. Though the present study uses a different pore 
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structure, the present study corroborates the benefit of hydrophilic side walls for 

water removal as presented by Ding et al. [21, 22]. 

 

3.2.2 Effects of water inlet structures 

 

It is clear from the base case simulation that a large proportion of the GDL surface is 

covered with liquid water, which would prevent fresh oxygen to diffuse through the 

surface and thus reducing the fuel cell performance. In order to optimize water 

dynamics in the channel, further simulations have been carried out with different inlet 

pore structures. 

 

Figure 8 shows the two-phase flow pattern for the case 2, where water pores are 

staggered with the longitudinal distance between the two consecutive pores is 150 

µm. Because of the higher inter pore distances, the droplets after emerging from the 

pores, get more spaces to grow in larger sizes as seen in Figure 7 at 1 ms. At this 

stage, the droplets are nearly spherical due to the hydrophobic nature of the GDL 

surface. At 1.75 ms, the droplets coalesce with each other and form a large number of 

smaller blobs of water on the GDL surface as well as on the side and top walls. At 

2.25 ms, these individual blobs of water flows further downstream and form a large 

slug on the GDL surface and a thin film on the top wall. At 3.0 ms, the slug body is 

almost flushed out from the channel by the air pressure. At 4.0 ms, the water film at 

the top wall re-merges with the slug, blocking the air flow. At 6.0 ms, the slug is 

flushed out and at the same time, smaller bob of water body starts to form again.  

With this pore arrangement, the simulation results show that there is less surface 

coverage of the GDL by water and this would make more surface area of GDL 

available for oxygen diffusion. However, still a large portion of the GDL surface is 
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covered by water slug and further optimization of the pore arrangement is required to 

reduce the surface coverage of the GDL. 

 

In order to take advantage of water removal characteristics of the hydrophilic side 

walls, further simulations have been carried out with water pores arranged in two 

columns at a distance of 62.5 µm from the side walls and with different longitudinal 

inter-pore distances. Figures 9-12 show the water flow patterns for inter-pore spaces 

of 75 µm, 100 µm, 150 µm and 200 µm respectively. The qualitative water flow 

patterns in these four cases are quite similar. In every case, the droplets emerge from 

the pores and grow in sizes while retaining their spherical shape due to the 

hydrophobicity of the GDL surface.  Droplets then coalesce with each other forming a 

slug. The slug then touches the side wall and because of the hydrophillicity of the side 

wall, spreads quickly in the form of a water film. The water film on the side wall 

eventually reaches the top wall and is then driven out of the channel.  It is observed 

from Figures 9-12 that the higher the inter pore distances, the lower the surface 

coverage of the GDL. 

 

It is clear from the simulation results that the water inlet structures have significant 

effects on the liquid water transport through the channel and controlling the water 

inlet structures on the GDL surface could be one of the methods for optimising water 

management.  

 

3.2.3 Effects of pore diameter 

 

Figure 13 shows the dynamic water behavior for the case where the pore diameter of 

is 20 µm and the  inter-pore space is 200 µm. Compared to 50 µm diameter pore, the 

simulation results show that the smaller pore diameter leads to an early detachment 



29 
 

of droplets from the pores. With smaller pore diameter, there is less connectivity of 

the water droplet with the pore resulting in a smaller surface tension force. Therefore 

the shear and pressure force on the droplets overcome the surface tension force early 

and the size of droplet at detachment is smaller compared to those droplets emerging 

from larger pores. The smaller droplet size at detachment has also been observed by 

Zhu et al. [19]. Further details on the forces acting on a single droplet and the effects 

of droplet aspect ratio, channel dimension and air velocity can be found in [42-44].   

Early detachment of droplets leads to a lesser interaction of droplets with each other 

and which results in lower surface coverage of GDL with water. This is evident by 

comparing Figures 6 and 12. As shown in Figure 6 at 4.0 ms, the droplet is still 

growing when emerging from 50 µm pores, while at 4.0 ms, the droplets emerging 

from 20 µm pores are already sheared off and interacted with other droplets as shown 

in Figure 12.   

 

3.2.4. Time evolution of flow pattern 

 

Figure 14 shows the pressure drop, surface and volume coverage ratio for the base 

case, alternative blocked-off inlets (case 2)  and an optimized GDL arrangement of 50 

µm diameter with 200 µm inter-pore distances (case 6). The pressure drop across the 

channel represents the parasitic loss related to the pumping of air, the surface 

coverage ratio indicates the fraction of GDL surface covered by water compared to the 

total surface area, while the volume coverage ratio indicates the fraction of volume 

occupied by water compared to the volume of the channel. In order to make a PEM 

fuel cell more efficient, the pressure drop and the surface and volume coverage 

should be minimised. 
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For the base case, the pressure drop, surface and volume coverage ratio increase 

steadily up to 2 ms indicating the droplets emergence, growth and merger with each 

other. After 2 ms, the surface coverage ratio drops rapidly, which coincides with the 

water slugs touching the sidewalls and spreading as a water film. When water drops 

resides on the GDL surface, they occupy more cross-sectional area of the channel. As 

a result, the pressure drop is high. Once the droplets touch the side walls, and spread 

as a film, the water occupies less cross-sectional area and the pressure loss 

decreases.  After 2 ms, the pressure drop, the surface and volume coverage ratio 

starts to fluctuate indicating a very non-linear process. There appears to be a 

correlation between the pressure drop and volume coverage ratio. The surface 

coverage ratio does not seem to correlate with the pressure drop. 

 

For case 2, where inter-pore distances are larger compared to the base case, the 

droplets can grow larger, without much interaction with each other. As a result, the 

surface coverage ratio is lower compared to the base case. The pressure variation in 

this case is highlighted by the two peaks at approximately 3.5 ms and 8 ms. 

interestingly the pressure drop does not seem to correspond to the surface coverage 

ratio, rather it corresponds to the size of the slugs located on the GDL surface i.e. the 

cross-sectional area of channel occupied by the water (see Figure 7 at 4.0 ms). For 

the case 2, the volume coverage ratio is very similar to the base case; however, the 

surface coverage ratio is smaller, which is an indication that this arrangement of pores 

would allow more oxygen to reach the reaction sites. 

 

For the case 6, where the water pores are arranged near the side walls with inter pore 

distances of 200 µm, the surface and volume coverage are smaller compared to the 

other cases. Moreover, a distinctive cyclic variation in the pressure drop and  the 

surface and volume coverage ratio have been observed. In this case, the water 
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droplets emerge, grow, deflect, and merge into larger slugs and since the pores are 

arranged near the side walls, the slugs quickly touch the side walls. Aided by the 

hydrophilicity of the side walls, the slugs spread thinly as a film on the side walls 

before reaching the top wall. The water film is then flushed away from the channel 

quicker along the walls. This case produces the smallest surface coverage and 

pressure drop and should lead to an improved fuel cell performance.  

 

Figure 15 shows the variation of surface coverage ratio for different pore sizes. The 20 

µm diameter pore produces a slightly lower surface coverage ratio compared to the 50 

µm diameter. With the increase of inter-pore distance, the surface coverage ratio 

decreases and this effect is more pronounced for the 50 µm diameter water pores. 

 

 

3.3 Discussion on the GDL design for better water removal 

 

The results presented above show that the surface coverage ratio of a GDL can be 

reduced by having water pores arranged near the side walls. However, in the 

conventional GDL design, the water path into the channel cannot be controlled due to 

the random distribution of fibres inside a GDL structure.  There are several 

mechanisms for transporting water from the catalyst layer through the GDL towards 

the flow channels. Several studies have investigated the water drainage in the GDL 

under purging condition and have identified that that at higher saturation level the 

liquid water is transported in a capillary flow and at lower saturation level in a phase-

change induced flow [45-47]. Lu et al [25] has also investigated the water transport 

in a GDL in ex-situ experiment and concluded that liquid water transport takes place 

through preferential paths and the water breakthrough into the channel is 

intermittent. The water breakthrough takes place only at few sites. However, an in-
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situ experiment of an operating fuel cell has shown that the water breakthrough takes 

place at many GDL sites [25]. The increase of the number of water breakthrough sites 

in an operating fuel cell may have been caused by the vapour phase water transport 

[25]. Due to the temperature gradient across the GDL, the water vapour transported 

from the CL to the channel condenses inside the GDL forming micro-droplets. These 

micro-droplets then condense to form macro-droplets, which then follow preferentially 

through larger pores and then breakout into the channel [25]. This mechanism was 

proposed by Nam and Kaviany as “inverted tree-like water transport” [48].  It is quite 

clear from the discussion above that the water transport through a GDL is very 

complex and it is not very clear which path the liquid water takes inside a GDL and 

breakouts into the cathode channel. However, some studies have shown how the 

water path through a GDL can be controlled. A simulation study of liquid water 

transport within a reconstructed GDL layer made of selective introduction of 

hydrophilic passages within the GDL shows that the liquid water invades into the GDL 

selectively through the hydrophilic path [49]. A pore-network modelling study by 

Sinha and Wang [50] also shows that a controlled wettability distribution of 

hydrophobic and hydrophilic paths allows liquid water to flow preferentially through 

the connected hydrophilic paths. It is evident that incorporating a mixed wettability 

GDL layer would lead to the precise control of water path through the GDL into the 

channel near the channel walls and the present study shows that this would 

significantly improve transport of water through the flow channel. 

 

4.0 Conclusion 

 

The present study focuses on the investigation of water dynamics inside a polymer 

electrolyte membrane fuel cell using two different modelling approaches:  the Eulerian 

two-phase mixture and the volume of fluid interface tracking models. The Eulerian 
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multi-phase model has provided overall information of species distribution inside a 

fuel cell and identified that liquid water usually accumulates under the land area. 

Further, the liquid water transport through a cathode channel of a PEM fuel cell has 

been thoroughly investigated employing an interface tracking volume of fluid (VOF) 

model in order to develop a fuel cell design for better water management. The 

simulation results show that the water transport can be broadly described as: 

emergence of droplets, interaction with neighboring droplets, formation of slug, 

movement of slug along the channel and the walls and eventual flushing out. The 

whole process is highly non-linear. The present study shows that the water transport 

in the channel could be optimized by controlling the arrangement of water pore in the 

GDL surface. In particular, by reducing the pore diameter, by placing water inlets near 

the channel walls and by increasing the inter-pore distance; the surface coverage of 

the GDL by water can be greatly reduced. A GDL layer made of a column of 

hydrophilic fibers arranged inside the randomly distributed hydrophobic fibre matrix 

could provide a controlled and predictable path of water into the channel and that 

would lead to a better water management in the channel. 

 

Nomenclature 

𝒂𝒌   water activity 
𝐴  specific area of the catalyst layer (m-1) 
𝐶  molar concentration (mol m-3) 
𝑑  pore diameter, m 
𝐷  diffusion coefficient (m2 s-1) 
𝐸  equilibrium thermodynamic potential (V) 
𝐹  Faraday constant (96485.309 C mol-1) 
𝐹  surface tension force, Nm-3 
𝑔  acceleration due to gravity, ms-2 
𝐻  height (m) 
𝑖  reaction rate (Am-3) 
𝐼  average current density (Am-2) 
𝐾  permeability (m2) 
𝑘𝑐  condensation rate (s-1) 
𝑘𝑚  phase conductivity of membrane (S m-1)  
𝐿  length (m) 
𝑀  molar mass (kg mol-1) 
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𝑀𝑚 ,𝑑𝑑𝑑 R  dry mass of membrane (Kg mol-1) 
𝑛  electron number for reactions 
𝑛𝑑  electro-osmotic drag coefficient 
𝑃  pressure (Pa) 
𝑅  gas constant (8.314 J mol-1 K-1) 
𝑅𝐻  relative humidity 
𝑆  source term 
𝑠  liquid water saturation  
𝑡  time, s 
𝑡𝑚  membrane thickness 
𝑇  temperature (K) 
𝒖   velocity vector (m s-1) 
𝑉𝑐𝑐𝑐𝑐  cell voltage (V) 
𝑊  width (m) 
𝑋  molar fraction 
𝑥,𝑦, 𝑧  co-ordinate 

 
Greek symbols 
𝛼  net water transfer coefficient 
𝛼  volume fraction 
𝜀  porosity 
𝜂  overpotential (V) 
𝜃  contact angle 
  viscosity (kg m-1 s-1)  
𝜁  stoichiometric ratio 
𝜌  density (kg m-3) 
𝜎  surface tension force, Nm-1 
𝜔  mass fraction 
 
 
 
Subscripts and superscripts 
 
0  before diffusion layer 
a  anode 
act  activation  
av  average 
c  cathode  
conc  concentration 
d  diffusion layer 
eff  effective 
el  electron 
H2  hydrogen 
k  species 
L  limiting 
m  membrane 
O2  oxygen 
ohm  ohmic polarization 
pro  proton 
𝑞  phases 
ref  reference 
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sat  saturation 
wv  water vapour 
𝑤  wall 

Abbreviation 

CL  catalyst layer 

GDL  gas diffusion layer 

PEM  polymer electrolyte membrane 

VOF  volume of fluid 

 

References 

 

[1]  G. Sandstede, E. J. Cairns, V. S.  Bagotsky, K. Wiesener, History of low 

temperature fuel cells, in: W. Vielstich, H. A. Gasteiger, A. Lamm, H. Yokokawa 

(Eds.), Handbook of Fuel Cells - Fundamentals, Technology and Applications, John 

Willey and Sons,  2010.  

[2] W. Yoon, A. Z. Weber, Modeling low-platinum-loading effects in fuel-cell catalyst 

layers, J. Electrochem. Soc. 158 (2011) B1007-B1018. 

[3]  A. Ohma, T. Mashio, K. Sato, H. Iden, Y. Ono, K. Sakai, K. Akizuki, S. Takaichi, K. 

Shinohara, Analysis of proton exchange membrane fuel cell catalyst layers for 

reduction of platinum loading at Nissan. Electrochimica Acta. 56 (2011) 10832-

10841. 

[4]  D. Spernjak, A. K. Prasad, S. G.  Advani, Experimental investigation of liquid 

water formation and transport in a transparent single-serpentine PEM fuel cell, J. 

Power Sources. 170(2) (2007) 334-344.  

[5]  D. Natarajan, T. V.   Nguyen, Three-dimensional effects of liquid water flooding in 

the cathode of a PEM fuel cell, J. Power Sources. 115 (2003) 66-80. 

[6]  Z. H. Wang, C. Y.  Wang, K. S. Chen, Two-phase flow and transport in the air 

cathode of PEM fuel cells, J. Power Sources. 94(2001) 40-50. 



36 
 

[7]  L. You, H. T. Liu, A two-phase flow and transport model for the air cathode in PEM 

fuel cells,  Int. H. Heat Mass Transfer. 45 (2002) 2277-2287. 

[8]  L. You, H. Liu H, A two-phase flow and transport model for PEM fuel cells, J. Power 

Sources. 155 (2006) 219-230. 

[9] T. Berning, N. Djilali, A 3D, multiphase, multicomponent model of the cathode and 

anode of a pem fuel cell, J. Electrochem. Soc. 150 (2003) A1589-A1598. 

[10] S. Mazumder, J. V. Cole, Rigorous 3-D mathematical modelling of pem fuel 

cells, II. Model predictions with liquid water transport, J. Electrochem. Soc. 

150(11)  (2003) A1510-1517. 

[11] C. H. Min, Performance of a proton exchange membrane fuel cell with stepped 

flow field design, J. Power Sources. 186 (2009) 370-376. 

[12] H. Meng, A three dimensional mixed-domain PEM fuel cell model with fully-

coupled transport phenomenon, J. Power Sources. 164 (2007) 688-696.  

[13] M. A. Khan, B. Sundén , J. Yuan,  Analysis of multi-phase transport phenomena 

with catalyst reactions in polymer electrolyte membrane fuel cells – A review, J. 

Power Sources. 196 (2011) 7899-7916.  

[14] Y. H. Cai, J. Hu, H. P. Ma, B. L., Yi,  H. M.  Zhang, Effects of 

hydrophilic/hydrophobic properties on the water behavior in the micro-channels of 

a proton exchange membrane fuel cell,  J. Power Sources. 161(2) (2006) 843-848. 

[15] Z. Zhan, J. Xiao, M. Pan, R. Yuan, Characteristics of droplet and film water 

motion in the flow channels of polymer electrolyte membrane fuel cells, J. Power 

Sources. 160(1) (2006) 1-9.  

[16]  K. Jiao, B. Zhou, Innovative gas diffusion layers and their water removal 

characteristics in PEM fuel cell cathode, J. Power Sources. 169 (2007) 296-314. 

[17]  P. Quan, B. Zhou, A. Sobiesiak, Z. Liu, Water behaviour in serpentine micro-

channel for proton exchange membrane fuel cell cathode, J. Power Sources. 152 

(2005) 131-145. 



37 
 

[18]  X. Zhu, P. C. Sui, N. Djilali, Dynamic behaviour of liquid water emerging from a 

GDL pore into a PEMFC gas flow channel, J.  Power Sources. 172 (2007) 287-295. 

[19]  X. Zhu, P. C. Sui, N. Djilali, Three-dimensional numerical simulations of water 

droplet dynamics in a PEMFC gas channel, J. Power Sources. 181 (2008) 101-115. 

[20] X. Zhu, Q. Liao, P. C. Sui, N. Djilali, Numerical investigation of water droplet 

dynamics in a low-temperature fuel cell microchannel: effect of channel geometry, 

J. Power Sources. 195 (2010) 801-812. 

[21] Y. Ding, H. T. Bi, D. P. Wilkinson, Three-dimensional numerical simulation of 

water droplet emerging from a gas diffusion layer surface in micro-channel, J. 

Power Sources. 195 (2010) 7278-7288. 

[22] Y. Ding, H. T. Bi, D. P. Wilkinson, Three dimensional numerical simulation of 

gas-liquid two-phase flow patterns in a polymer-electrolyte membrane fuel cells 

gas channel, J. Power Sources. 196 (2011) 6284-6292. 

[23] T. Ous, C. Arcoumanis, Visualisation of water droplets during the operation of 

PEM fuel cells, J. Power Sources. 173 (2007) 137-148. 

[24] T. Ous, C. Arcoumanis, Visualisation of water accumulation in the flow channels 

of PEMFC under various operating conditions, J. Power Sources. 187 (2009) 182-

189. 

[25] Z. Lu, M. M.  Daino, C.  Rath, S. G.  Kandlikar, Water management studies in 

PEM fuel cells, part III: Dynamic breakthrough and intermittent drainage 

characteristics from GDLs with and without MPLs, Int. J. Hydrogen Energ. 35(9) 

(2010) 4222-4233.  

[26] A. Bazylak, D. Sinton, N. Djilali, Dynamic water transport and droplet 

emergence in PEMFC gas diffusion layers, J. Power Sources. 176(1) (2008) 240-

246.  



38 
 

[27] L. J. Yu, G. P. Ren, M. J. Qin, X. M. Jing, Transport mechanisms and 

performance simulations of a PEM fuel cell with interdigitated flow field, Renewable 

Energy.  34 (2009) 530-543. 

[28] J. Nam, M. Kaviany,  Effective diffusivity and water-saturation distribution in 

single- and two-layer PEMFC diffusion medium,  Int. J. Heat and Mass Transfer. 

46(24) (2003) 4595-4611.  

[29] T. E. Springer, T. A. Zawodzinski, S.  Gottesfeld, Polymer electrolyte fuel cell 

model, J. Electrochem. Soc. 138 (8) (1991) 2334–2342.  

[30] K. W. Lum, J. J.  McGuirk, Three-dimensional model of a complete polymer 

electrolyte membrane fuel cell-model formulation, validation and parametric 

studies, J. Power Sources. 143 (2005) 103-124. 

[31] C. W. Hirt, B. D. Nichols, Volume of fluid (VOF) method for the dynamics of free 

boundaries, Journal of Computational Physics. 39 (1) (1981) 201–225. 

[32] Fluent User’s guide, Fluent Inc. 2011. 

[33] J. U. Brackbill, D. B. Kothe, C. Zemach, A continuum method for modeling 

surface tension, J. Comp. Phys. 100 (1992) 335-354. 

[34] X. Liu, W. Tao, Z. Li, Y. He. Three-dimensional transport model of PEM fuel cell 

with straight flow channels, J. Power Sources. 158 (2006) 25-35. 

[35] H. K. Versteeg, W. Malalasekear, An Introduction to Computational Fluid 

Dynamics, The Finite Volume Method, 2nd Edition, Pearson, Prentice Hall, Harlow: 

England. 

[36] R. I. Issa, Solution of the implicit discretised fluid flow equations by operator 

splitting, J. Comp. Phys. 62 (1986), 40-65.  

[37] D. L. Youngs. Time-dependent multi-material flow with large fluid distortion, In 

K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics. 

Academic Press, New York, 1982. 



39 
 

[38] E. A. Ticianelli, C. R. Derouin, S. Srinivasan, Localization of platinum in low 

catalyst loading electrodes to attain high power densities in SPE fuel cells. J. 

Electroanal. Chem. 251 (1998) 275-295. 

[39] T. Berning, D. M.  Lu, N. Djilali, Three-dimensional computational analysis of 

transport phenomena in a PEM fuel cell, J. Power Sources. 106 (2002) 284-294. 

[40] C-H. Min, A novel three-dimensional, two-phase and non-isothermal numerical 

model for proton exchange membrane fuel cell, J. Power Sources. 195 (7) (2010) 

1880-1887.  

[41] J. E. Dawes, N. S. Hanspal, O. A. Famioly,  A. Turan,  Three-dimensional CFD 

modeling of PEM fuel cells: an investigation into the effects of water flooding, 

Chem. Eng. Sci. 64 (2008) 2781-2794. 

[42] E. C. Kumbur, K. V.  Sharp, M. M. Mench, Liquid droplet behavior and instability 

in a polymer electrolyte fuel cell channel, J. Power Sources. 161 (2006) 333-345. 

[43] S. C. Cho, Y. Wang, K. S. Chen,  Droplet dynamics in a polymer electrolyte fuel 

cell gas flow channel: Forces, deformation, and detachment. I: Theoretical and 

numerical analyses,  J. Power Sources.  206 (2012) 119-128. 

[44] S. C. Cho, Y. Wang Y., K. S. Chen, Droplet dynamics in a polymer electrolyte 

fuel cell gas flow channel: Forces, deformation, and detachment. I: Comparisons of 

analytical solution with numerical and experimental results, J. Power Sources. 210 

(2012) 191-197. 

[45] A. Turhan,  K. Heller, J. S.  Brenizer, M. M. Mench , Passive control of liquid 

water storage and distribution in a PEFC through flow-field design,  J. Power 

Sources.  180 (2) (2008) 773-783.  

[46] M. Khandelwal, M. M. Mench,  An integrated modeling approach for 

temperature driven water transport in a polymer electrolyte fuel cell stack after 

shutdown, J. Power Sources.  195 (19) (2010) 6549-6558.  



40 
 

[47] K. T. Cho, M. M.  Mench, Coupled effects of flow field geometry and diffusion 

media material structure on evaporative water removal from polymer electrolyte 

fuel cells,  Int.  J. of Hydrogen Energy.  35 (22) (2010) 12329-12340.  

[48] J. H., Nam, M. Kaviany, Effective diffusivity and water saturation distribution in 

single- and two layer PEMFC diffusion medium. Int. J. Heat Mass Tran. 46 (2003) 

4595-4611. 

[49] L. Hao, P. Cheng, Lattice Boltzmann simulations of water transport in gas 

diffusion layer of a polymer electrolyte membrane fuel cell, J. Power Sources. 195 

(2010) 3870-3881. 

[50] P. K. Sinha, C-Y. Wang, Liquid water transport in a mixed gas diffusion layer of 

a polymer electrolyte fuel cell, Chem. Eng. Sci. 63 (2008) 1081-1091. 

 

 

  



41 
 

Table 1 Physical parameters and boundary conditions used for the simulations  

Gas channel length     𝐿= 100 mm 

Gas channel width       𝑊 = 1 mm             [11] 

Gas channel height      𝐻𝑐ℎ = 1 mm            [11] 

Diffusion layer height      𝐻𝑑  R= 0.254 mm       [11, 34] 

Catalyst layer height      𝐻𝑐𝜕  = 0.0287 mm    [11, 34] 

Land area width          𝑊𝑐  R= 1 mm              [11] 

Membrane thickness     𝑡𝑚  = 0.23 mm        [38] 

Permeability       𝐾 = 1.76x 10-11 m2   [11, 34] 

Faraday Constant       𝐹 = 96485.309 C mol-1 

Operating pressure      𝑃 = 101325 Pa  

Operating temperature      𝑇 = 323 K                 [38] 

GDL porosity       𝜀𝑔𝑑𝑐 = 0.4                  [34] 

CL porosity       𝜀𝑐𝑐    = 0.4 

Dry mass of membrane      𝑀𝑚,𝑑𝑑𝑑  R= 1.1 kgmol-1 

Dry density of membrane     𝜌𝑚,𝑑𝑑𝑑  = 2000 kgm-3 

Fuel/ air stoichiometric ratio  𝜉𝑎/𝜉𝑐= 5/5               [38] 

Electron number of anode   𝑛𝑎 = 4 

reaction 

Electron number of cathode   𝑛𝑐 = 2 

reaction 

Relative humidity of inlet fuel  RHa = 100%              [38] 

Relative humidity of inlet air  RHc = 0%                  [38] 

Oxygen mass fraction of inlet air  𝜔𝑂 = 0.232 

H2 diffusion coefficient   𝐷ℎ,𝑑𝑐𝑓 = 0.915 × 10-4 m2s-1  [11] 

at reference state 



42 
 

O2 diffusion coefficient    𝐷𝑂,𝑑𝑐𝑓 = 0.22 × 10-4 m2s-1   [11] 

at reference state 

Water vapour diffusion coefficient   𝐷𝑤,𝑑𝑐𝑓 = 0.256 × 10-4 m2s-1 

[11] 

at reference state 

Anode exchange current density     𝑖𝑎 ,𝑑𝑐𝑓   = 2.0 × 108 Am-3  [11] 

cathode exchange current density     𝑖𝑐 ,𝑑𝑐𝑓   = 160  Am-3          

[11] 

Hydrogen reference concentration   𝐶ℎ,𝑑𝑐𝑓   R=  56.4 mol m-3    

[11] 

Oxygen reference concentration   𝐶𝑜,𝑑𝑐𝑓  =  3.39 mol m-3    [11] 

Anode transfer coefficient   𝛼𝑎   = 0.5                      [11] 

Cathode transfer coefficient  𝛼𝑐   = 0.5                      [11] 

Water vapour condensation rate  𝑘𝑐 = 1 s-1                      [11] 

 
Table 2: 

Simulation cases for different locations of water emergence as describe in Figure 6 

Case number Water inlet diameter Inter-pore distances 

1 (Base case) 50 µm 75 µm in both directions, 3 
rows (L1 = 75 µm, L2= 50 
µm, L3= 75 µm) 

2 50 µm 150 µm in longitudinal 
direction, 75 µm in lateral 
direction, 3 rows (L1 = 150 
µm, L2= 50 µm, L3= 75 
µm) 

3 50 µm 75 µm, two columns, 
distance from walls 62.5 
µm (L1 = 75 µm, L2= 62.5 
µm, L3= 75 µm) 

4 50 µm 100 µm, two columns, 
distance from walls 62.5 
µm (L1 = 100 µm, L2= 
62.5 µm, L3= 75 µm) 

5 50 µm 150 µm, two columns, 
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distance from walls 62.5 
µm (L1 = 150 µm, L2= 
62.5 µm, L3= 75 µm) 

6 50 µm 200 µm, two columns, 
distance from walls 62.5 
µm (L1 =200 µm, L2= 62.5 
µm, L3= 75 µm) 

7 20 µm 200 µm, two columns, 
distance from walls 62.5 
µm (L1 = 200 µm, L2= 50 
µm, L3= 75 µm) 
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Figure 1: Schematic diagram of the three-dimensional PEM fuel cell model 
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Figure 2: Three dimensional computational domain with mesh representing cathode 

channel 
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Figure 3: Comparison of simulated results with measurement for predicting V-I 

characteristics curve. 
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Figure 4: (a) Velocity vectors along the length of the model (b) Velocity vector along 

the length at the mid-plane of the fuel cell at the current density of 1 Acm-2. The 

arrows show the direction and the colour shows the magnitude of the velocity. 
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Figure 5: Contour plots of mass fraction of (a) oxygen, (b) water vapour and (c) 

liquid water at the cathode side.  
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Figure 6: A schematic drawing of the pore arrangement on the gas diffusion layer 

surface 
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Figure 7: Water flow pattern inside the cathode for the base case. 
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Figure 8: Water flow pattern inside the cathode for case 2 
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Figure 9: Water flow pattern for 50 µm pore and 75 µm inter pore distance, case 3. 
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Figure 10: Water flow pattern for 50 µm pore and 100 µm inter pore distance, case 

4. 
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Figure 11:  Water flow pattern for 50 µm pore and 150 µm inter pore distance, case 

5. 
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Figure 12: Water dynamics for 50 µm pore and 200 µm inter pore distance, case 6. 
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Figure13: Water flow pattern for 20 µm pore and 200 µm distance, case 7. 
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Figure 14: Time variation of (a) pressure (b) surface coverage and (c) volume 

fraction for the base case, case 2 and case 6. 
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Figure 15: The profile of surface coverage ratio for different inter pore distances and 

pore diameters. 
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	The surface tension force in equation (29) is represented by 𝐹. The surface tension force which is expressed as a volume force, is added to the momentum equation as a source term.
	To track the interface between phases, a volume fraction continuity equation for one of the phases (water in this case) is solved along with the above equations:
	,𝜕,𝛼-𝑞.-𝜕𝑡.+,𝑢..∇,𝛼-𝑞.=0        (30)
	where subscript 𝑞 represents each phase component.
	Air volume fraction is obtained from the relation ,𝑞=1-2-,𝛼-𝑞.=1..
	The properties appearing in the transport equations are determined by the presence of the component phases in each control volume. For example, the density is considered to be:
	𝜌=,𝑞=1-2-,𝛼-𝑞.,𝜌-𝑞..         (31)
	The surface tension effects between the liquid water and air have been considered by using the continuum surface force (CSF) model [33]. According to this model, the volume force is added to the momentum source in Equation (29) as,
	𝐹=𝜎,,𝜌,𝑘-1.∇,𝛼-𝑙.-1/2(,𝜌-𝑙.+,𝜌-𝑔.)..        (32)
	Where, 𝜎  is the surface tension coefficient, and ,𝜅-1. is the surface curvature of the liquid droplet defined in terms of the divergence of the unit normal and is given by,
	,𝑘-1.=∇.,,𝑛.-1.          (33)
	The unit normal vector, ,𝑛-1. is calculated from the local gradients in the surface normal at the interface as,
	,,𝑛.-1.=,∇,𝛼-𝑙.-,∇,𝛼-1...          (34)
	Wall adhesion effects are accounted for by adjusting the surface curvature near the wall, where the gas-liquid interface meets the solid wall. The local curvature of this interface is determined by the contact angle, ,𝜃-𝑤., which represents the angl...
	,𝑛.=,,𝑛.-𝑤.𝑐𝑜𝑠,𝜃-𝑤.+,,𝑡.-𝑤.𝑠𝑖𝑛,𝜃-𝑤.        (35)
	Where, ,,𝑛.-𝑤. and ,,𝑡.-𝑤. are the unit vectors normal and tangential to the wall, respectively.
	2.3 Solution Technique for the Eulerian Two-phase Mixture Model
	2.4 Solution Technique for the VOF Model
	The set of governing equations (28-30) has been solved in commercial CFD software FLUENT version 12.1. The CFD techniques basically involves discretising of  Equations (28)-(30) in algebraic form using a control volume method and then solving the set ...
	2.4.1 Computational domain and boundary condition for the VOF model
	In the present study, a cathode channel of a PEM fuel cell has been represented by a 250 µm x 250 µm x 1000 µm section as shown in Figure 2. This computational domain is similar to the study of Zhu et al [19] and Ding et al [21]. The bottom wall is th...
	The computational domain has been meshed with 442,566 hexahedral cells. A minimum mesh size of 5.5 µm has been used to mesh the domain. Instead of carrying out a grid independency test, the grid independency has been insured by comparing grids with si...
	3.0 Results and Discussion
	Due to electrochemical reaction in a PEM fuel cell taking place at 60-80POPC, the produced water often condenses in the GDL and is then transported through the GDL pore network into the flow channel. Due to the complex nature of GDL pore network it is...
	3.2.1 Water dynamics for the base case
	In the base case simulation, 50 µm diameter pores have been distributed on the GDL surface at 75 µm interval in both longitudinal and lateral directions. Figure 7 shows the water flow pattern inside the cathode channel. From the figure, three stages o...
	In the initial phase, water droplets emerge from the pores, merge with each other and then form slugs. Slugs are pushed downward by air pressure as shown at 1.75 ms. At 2.5 ms, the two slugs merge into a larger body and at 3.25 ms, the front of the sl...
	The importance of side and top walls on water transport is clearly observed from the simulation results presented in this section. The key finding from this section is that the hydrophilic wall allows the liquid water to spread as film and removes wat...
	3.2.2 Effects of water inlet structures
	It is clear from the base case simulation that a large proportion of the GDL surface is covered with liquid water, which would prevent fresh oxygen to diffuse through the surface and thus reducing the fuel cell performance. In order to optimize water ...
	Figure 8 shows the two-phase flow pattern for the case 2, where water pores are staggered with the longitudinal distance between the two consecutive pores is 150 µm. Because of the higher inter pore distances, the droplets after emerging from the pore...
	In order to take advantage of water removal characteristics of the hydrophilic side walls, further simulations have been carried out with water pores arranged in two columns at a distance of 62.5 µm from the side walls and with different longitudinal ...
	It is clear from the simulation results that the water inlet structures have significant effects on the liquid water transport through the channel and controlling the water inlet structures on the GDL surface could be one of the methods for optimising...
	3.2.3 Effects of pore diameter
	Figure 13 shows the dynamic water behavior for the case where the pore diameter of is 20 µm and the  inter-pore space is 200 µm. Compared to 50 µm diameter pore, the simulation results show that the smaller pore diameter leads to an early detachment o...
	3.2.4. Time evolution of flow pattern
	Figure 14 shows the pressure drop, surface and volume coverage ratio for the base case, alternative blocked-off inlets (case 2)  and an optimized GDL arrangement of 50 µm diameter with 200 µm inter-pore distances (case 6). The pressure drop across the...
	For the base case, the pressure drop, surface and volume coverage ratio increase steadily up to 2 ms indicating the droplets emergence, growth and merger with each other. After 2 ms, the surface coverage ratio drops rapidly, which coincides with the w...
	For case 2, where inter-pore distances are larger compared to the base case, the droplets can grow larger, without much interaction with each other. As a result, the surface coverage ratio is lower compared to the base case. The pressure variation in ...
	For the case 6, where the water pores are arranged near the side walls with inter pore distances of 200 µm, the surface and volume coverage are smaller compared to the other cases. Moreover, a distinctive cyclic variation in the pressure drop and  the...
	Figure 15 shows the variation of surface coverage ratio for different pore sizes. The 20 µm diameter pore produces a slightly lower surface coverage ratio compared to the 50 µm diameter. With the increase of inter-pore distance, the surface coverage r...
	3.3 Discussion on the GDL design for better water removal
	The results presented above show that the surface coverage ratio of a GDL can be reduced by having water pores arranged near the side walls. However, in the conventional GDL design, the water path into the channel cannot be controlled due to the rando...
	4.0 Conclusion
	The present study focuses on the investigation of water dynamics inside a polymer electrolyte membrane fuel cell using two different modelling approaches:  the Eulerian two-phase mixture and the volume of fluid interface tracking models. The Eulerian ...
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