

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

REGNIER-COUDERT, O., 2013. Bayesian network structure learning
using characteristic properties of permutation representations
with applications to prostate cancer treatment. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

Bayesian Network Structure
Learning Using Characteristic

Properties of Permutation
Representations with Applications to

Prostate Cancer Treatment.

Olivier Regnier-Coudert

A thesis submitted in partial fulfilment of the requirements for the

degree

of Doctor of Philosophy

at the School of Computing

Robert Gordon University

Aberdeen, Scotland

May 2013

Principal supervisors

Prof. John McCall . IDEAS Research Institute, Robert Gordon

University, Aberdeen, Scotland

Mr. Sam McClinton . Academic Urology Unit, University Of

Aberdeen, Aberdeen, Scotland

Secondary supervisors

Mr. Thomas Lam . Academic Urology Unit, University Of

Aberdeen, Aberdeen, Scotland

Dr. Robert Lothian . IDEAS Research Institute, Robert Gordon

University, Aberdeen, Scotland

Prof. James N’Dow . Academic Urology Unit, University Of

Aberdeen, Aberdeen, Scotland

ii

Abstract

Over the last decades, Bayesian Networks (BNs) have become an increasingly popular

technique to model data under presence of uncertainty. BNs are probabilistic models

that represent relationships between variables by means of a node structure and a set

of parameters. Learning efficiently the structure that models a particular dataset is a

NP-hard task that requires substantial computational efforts to be successful. Although

there exist many families of techniques for this purpose, this thesis focuses on the study

and improvement of search and score methods such as Evolutionary Algorithms (EAs).

In the domain of BN structure learning, previous work has investigated the use of per-

mutations to represent variable orderings within EAs. In this thesis, the characteristic

properties of permutation representations are analysed and used in order to enhance BN

structure learning. The thesis assesses well-established algorithms to provide a detailed

analysis of the difficulty of learning BN structures using permutation representations.

Using selected benchmarks, rugged and plateaued fitness landscapes are identified that

result in a loss of population diversity throughout the search.

The thesis proposes two approaches to handle the loss of diversity. First, the benefits

of introducing the Island Model (IM) paradigm are studied, showing that diversity loss

can be significantly reduced. Second, a novel agent-based metaheuristic is presented in

which evolution is based on the use of several mutation operators and the definition of

a distance metric in permutation spaces. The latter approach shows that diversity can

be maintained throughout the search while exploring efficiently the solution space. In

iii

addition, the use of IM is investigated in the context of distributed data, a common

property of real-world problems. Experiments prove that privacy can be preserved

while learning BNs of high quality.

Finally, using UK-wide data related to prostate cancer patients, the thesis assesses the

general suitability of BNs alongside the proposed learning approaches for medical data

modeling. Following comparisons with tools currently used in clinical settings and with

alternative classifiers, it is shown that BNs can improve the predictive power of prostate

cancer staging tools, a major concern in the field of urology.

iv

Acknowledgements

It took me four years to complete my PhD. Although there were some difficult times

and a fair amount of moaning and groaning, the overall experience was a positive one. I

believe it is mainly related to the stimulating and friendly environment I had the chance

to be part of during that period of time. Thus, I would like to take the opportunity to

thank the many people that made it be such a rewarding episode of my life, both from

a professional and personal point of view.

First of all, I would like to thank my principal supervisor, John McCall for his help

before and during my PhD in introducing me to the research world. I very much appre-

ciated his methods of supervision, leaving me the freedom to decide which directions to

give to my research. John also involved me in many other research projects and offered

me the opportunity to travel to conferences, which further widened my interest in the

field. I of course do not forget the many discussions and digressions that helped me

during this process.

I would also like to thank the rest of my supervisory team and particularly Sam Mc-

Clinton and Thomas Lam for their help in deciphering the medical knowledge. Our

discussions gave to the cross-disciplinary nature of my work a nice savor. I also would

like to thank the British Association of Urological Surgeons for providing me with the

prostate cancer patient data that played a very important role in my thesis and my

funding bodies, NHS and the Northern Research Partnership.

Most of my time in these past years was spent in lovely CTC where I met many fellow

v

research students that made it a convivial workplace. I would like to thank particularly

Yanghui and Francois for all the discussions and code sharing we had and Michael for his

patience in assisting me in using and crashing some of the parallel computing facilities.

I would also like to thank the School of Computing IT team alongside Virginia and

Duncan for their constant help throughout my PhD.

I also take this opportunity to thank my viva committee composed of Qingfu Zhang

and Andrei Petrovski for their time and their valuable comments and suggestions.

Of course, my life outside work is also filled with fun and many exciting moments and

I cease the opportunity to think about all the friends I have, met on the road between

Courpiere and Aberdeen and now scattered across the world. I am glad to have them.

To finish this section, I would like to briefly switch languages to thank more personally

a few people.

Nil, bu satırlar senin için. Sana sen olduğun için teşekkür etmek istiyorum, her gün

yüzünde gördüğüm sevgi ve tebessüm için, ve benimle hazine avı, bahçıvanlık, aşçılık ve

zanaatkarlık gibi türlü maceralara atıldığn için. Hiç bir zaman bir astronot olmayacak

olsan da, bunların hepsi hayatımı heyecanla dolduruyor ve beni mutlu bir adam yapıyor.

Pour terminer, j’aimerais remercier mes parents Jocelyne et Roby pour tout ce qu’ils

m’ont apporté durant ces 28 dernières années. Merci tout d’abord pour votre soutien

financier et moral essentiel durant ces longues études mais aussi dans ma vie en géneral.

Merci aussi pour tous ces bons moments, ces paris en pagailles, ces débats sur les

chaussettes, cette valise trop chère, ce pique-nique aux crevettes, ce petit lapin ou

encore ce chausson qui aimait tant les fleurs. Tout cela, j’en suis sur, m’a beaucoup

servi. Enfin, merci d’avoir accepté de me laisser partir si loin pour mes études et

d’accepter mes choix dans ma vie. Cette thèse est pour vous.

vi

Published Papers

• Lam, T., Regnier-Coudert, O., McCall, J., Lothian, R. and McClinton, S. (2010),

Prostate cancer staging nomograms: Validation on a British population, BJUI ,

Vol. 106, pp. 2-3.

• Regnier-Coudert, O. and McCall, J. (2011), Privacy-preserving approach to

bayesian network structure learning from distributed data, in Proceedings of the

13th annual conference companion on Genetic and evolutionary computation,

ACM, pp. 815-816.

• Regnier-Coudert, O., McCall, J., Lothian, R., Lam, T., McClinton, S. and NDow,

J. (2011), Machine learning for improved pathological staging of prostate can-

cer: A performance comparison on a range of classifiers, Artificial Intelligence in

Medicine, Vol. 55, Elsevier, pp. 25-35.

• Lam, T., Regnier-Coudert, O., McCall, J. and McClinton, S. (2012), Develop-

ment and validation of a uk-specific prostate cancer staging predictive model: Uk

prostate cancer tables, British Journal of Medical and Surgical Urology, Vol.5,

Elsevier, pp. 224-235.

• Regnier-Coudert, O. and McCall, J. (2012), An island model genetic algorithm for

bayesian network structure learning, in Proceedings of the 2012 IEEE Congress

on Evolutionary Computation (CEC), IEEE, pp. 1-8.

• Regnier-Coudert, O. and McCall, J. (2012), Competing mutating agents for

bayesian network structure learning, Proceedings of Parallel Problem Solving

from Nature XII, Springer, pp. 216-225.

vii

Contents

Abstract iii

Acknowledgements v

Published Papers vii

1 Introduction 1

1.1 Background . 1

1.2 Research Questions . 3

1.3 Summary of Thesis . 3

2 Background 5

2.1 Bayesian Networks . 5

2.2 Benchmark Bayesian Networks . 10

2.2.1 Sampling benchmark Bayesian Networks 10

2.2.2 Asia . 11

2.2.3 Tank . 12

2.2.4 Credit . 12

2.2.5 Car . 13

2.2.6 Boerlage . 13

2.2.7 Alarm . 14

2.3 Bayesian Network Structure Learning 15

2.3.1 Using Conditional Independence 15

viii

2.3.2 Search and Score Strategies . 18

2.3.3 Bayesian Networks and Estimation of Distribution Algorithms . 33

2.4 Solution Quality . 34

2.4.1 Exact match distance . 35

2.4.2 Edit distance . 35

2.4.3 Kendall-Tau distance . 35

2.4.4 Structural Quality and Structural Hamming Distance 36

2.5 Summary . 37

3 Difficulty of Node Ordering Permutation Optimization 39

3.1 Search Space Analysis . 39

3.1.1 Correlation between fitness and distance 39

3.1.2 Plateaux Analysis . 44

3.2 Influence of fitness properties on a population-based algorithm 47

3.3 Summary . 53

4 Combining Local Optima by Means of Island Models 55

4.1 Effect of Crossover on Local Optima and Island Models 55

4.2 Island Model K2 Genetic Algorithm . 59

4.2.1 Implementation . 59

4.2.2 Island Models and Loss of Diversity in K2GA 60

4.2.3 Performance Evaluation of IMK2GA 65

4.3 Learning Bayesian Networks from Distributed Data 71

4.3.1 Generating Distributed Data . 72

4.3.2 Performance of IMK2GA on Distributed Data 74

4.4 Summary . 77

5 Size of Neighborhood and Population Diversity 79

5.1 Neighborhood in the Space of Orderings 79

5.2 Distance-Based Mutation Operators . 82

5.2.1 Swap Mutation . 83

ix

5.2.2 Insert Mutation . 83

5.2.3 Invert Mutation . 84

5.2.4 Scramble Mutation . 84

5.2.5 Displacement Mutation . 85

5.2.6 Invert+Swap Mutation . 86

5.2.7 Invert+Displacement Mutation 86

5.2.8 Choice of Mutation Operator and Bayesian Network Structure

Quality . 88

5.3 Competing Mutating Agents . 95

5.3.1 Implementation . 95

5.3.2 Experiments . 99

5.4 Summary . 109

6 Applications to Prostate Cancer Staging 112

6.1 Prostate Cancer Staging . 113

6.1.1 Medical Background . 113

6.1.2 Predictive Staging Tools . 114

6.1.3 Data . 116

6.2 Bayesian Networks for Prostate Cancer Staging 118

6.2.1 Overview of Alternative Classifiers 120

6.2.2 Experimental Design . 122

6.2.3 Experimental Results . 124

6.3 Comparative Study of Bayesian Network Structure Learning Algorithms

on Prostate Cancer Data . 138

6.4 Bayesian Network Structure Learning on Distributed Medical Data . . . 140

6.4.1 Distributed Data in Medicine . 140

6.4.2 BAUS Distributed Data . 142

6.4.3 Island Model for Distributed Data 143

6.5 Summary . 147

x

7 Discussion and Directions for Further Research 149

7.1 Contributions . 149

7.2 Directions for Further Research . 150

7.2.1 Parameter Tuning . 150

7.2.2 Use of Alternative Fitness Functions 152

7.2.3 Dynamic selection of mutation parameters in COMMA 152

7.2.4 Implementation of Surrogate Fitness Function 154

7.2.5 Investigation of techniques to handle small datasets 156

7.3 General Conclusion . 156

A Example of CH score calculation 160

B Population and tournament sizes and convergence of K2GA 162

C Evaluation of the presence of local optima using K2GA 168

D Performance analysis of IMK2GA 174

E Choice of Distance-Based Mutation Operators 182

F BAUS data distribution across NHS Cancer Networks 188

G Use of k-order marginal fitness surrogate model for BN structure

learning 190

xi

List of Tables

2.1 Relation between number of variables and number of possible BN structures 15

3.1 Correlation coefficients r obtained on the different benchmark problems

using KTD as distance metric, with standard deviations in brackets . . 44

3.2 Autocorrelation AUk obtained on the different benchmark problems for

different values of k, with standard deviations in brackets 45

3.3 Correlation coefficients obtained on the different benchmark problems

using SHD as distance metric, with standard deviations in brackets . . . 46

3.4 Plateau characteristics of the different benchmark problems, with stan-

dard deviations in brackets . 47

4.1 Frequency of beneficial crossovers over all possible combinations of local

optima . 56

4.2 Migration intervals for IMK2GAab (in generations) 62

4.3 Characteristics of best BNs found by each algorithm after 1000 individual

FEs on asia, tank and credit . 66

4.4 Characteristics of best BNs found by each algorithm after 1000 individual

FEs on car, boerlage and alarm . 67

4.5 Characteristics of best BNs found by each algorithm after 1000 individual

FEs on asia, tank and credit with parameters enhancing diversity. . . 69

4.6 Characteristics of best BNs found by each algorithm after 1000 individual

FEs on car, boerlage and alarm with parameters enhancing diversity . 69

xii

4.7 Population KTD after 1000 fitness evaluations in IMK2GA10 and

IMK2GA43 for each benchmark problem 71

4.8 Characteristics of best BNs found on centralized and distributed datasets

after 5000 generations on asia, tank, credit and car 76

5.1 Influence of mutation operators and mutation distance d on ordering

similarity distance ρ on a 8-variable problem (n = 8, such as asia) . . . 88

5.2 Influence of mutation operator and mutation distance d on ordering sim-

ilarity distance ρ on a 23-variable problem (n = 23, such as boerlage) . . 89

5.3 Comparison of KTD of solutions obtained by distance-based mutations

and by random generation . 93

5.4 Comparison of SHD of solutions obtained by distance-based mutations

and by random generation . 94

5.5 Comparison of two rules to assign values to mutation distances 97

5.6 K2GA and IMK2GA settings . 101

5.7 Characteristics of best BNs obtained by each algorithm after 1000 FEs . 105

5.8 Performance comparison of COMMA implementations with different

distance-based mutation operators . 110

6.1 Variable details of the BAUS-4 dataset 116

6.2 Variable details of the BAUS-6 dataset 117

6.3 Variable details of the ARI-10 dataset 118

6.4 Classifier settings in Weka . 124

6.5 Settings for K2GA . 125

6.6 Concordance index of the different LR models 125

6.7 BAUS-4 : Performances of the different classifiers 128

6.8 BAUS-6 : Performances of the different classifiers 129

6.9 ARI-10 : Performances of the different classifiers 132

6.10 Performance of three search and score approaches on two medical datasets137

6.11 Fitness landscape characteristics of BAUS-6 and ARI-10 138

xiii

6.12 Cancer network areas . 143

6.13 BN structure quality at each island after 5000 generations in IMK2GA30

and IMK2GA33 computed from local and centralized run of K2 145

A.1 Dataset used as an example for CH score calculation (Y = Yes, N = No). 160

xiv

List of Figures

2.1 Example of Bayesian network with CPTs shown for 3 variables X0, X1

and X3 . 6

2.2 BN representation of the simplified car start problem1. The effect of

evidence insertion is shown by displaying the probabilities relevant to

each state of each variable. 9

2.3 Structure of asia . 11

2.4 Structure of tank . 12

2.5 Structure of credit . 12

2.6 Structure of car . 13

2.7 Structure of boerlage . 14

2.8 Structure of alarm . 14

2.9 Example of cycle crossover . 28

3.1 Variation of autocorrelation ACk for all datasets under change of k . . . 43

3.2 Convergence speed of K2GA on car . 51

3.3 Frequency of best orderings obtained over 10 runs of K2GA on car . . . 52

4.1 Evolution of the fitness of the best solution in IMK2GA10 and

IMK2GA43 on all benchmark problems 70

5.1 Use of radius to define neighborhood of a solution in Euclidean and

discrete spaces . 80

xv

5.2 Impact of the distance d between two genes when using swap mutation.

Red arrows represent edges that differ from the original structure. . . . 81

5.3 Example of swap mutation from a solution X of size n = 6, using muta-

tion distance d = 3 . 83

5.4 Example of insert mutation from a solution X of size n = 6, using

mutation distance d = 3 . 84

5.5 Example of invert mutation from a solution X of size n = 6, using

mutation distance d = 3 . 84

5.6 Example of scramble mutation from a solution X of size n = 6, using

mutation distance d = 3 . 85

5.7 Example of displacement mutation from a solution X of size n = 6, using

mutation distance d = 3, where d′ takes the random value 2 85

5.8 Example of invert+swap mutation from a solution X of size n = 6, using

mutation distance d = 3, where d′ takes the random value 2 86

5.9 Example of invert+displacement mutation from a solution X of size n =

6, using mutation distance d = 3, where d′ takes the random value 1 . . 87

5.10 Effect of choice of mutation on produced solution on boerlage 92

5.11 Evolution of agent’s positions over time on tank 106

5.12 Evolution of SHD and fitness of the best solution over time on tank . . 106

5.13 Evolution of fitness of the best solution over time on boerlage and alarm 107

6.1 Distribution of the class variable pathological stage in the three datasets 119

6.2 BN structures learned from BAUS-4 dataset 129

6.3 BN structures learned from BAUS-6 dataset 130

6.4 Difference in AUCs between BAUS-4 and BAUS-6. 131

6.5 BN structures learned from ARI-10 dataset 133

6.6 BN structure resulting from a locally optimal ordering on ARI-10 dataset140

6.7 Best BN structure obtained by K2GA and IMK2GA on the centralized

BAUS-8 dataset . 144

xvi

6.8 Correlation between fitness of an ordering and its related SHD to known

structure on complete BAUS-8 data and a 270-instance subset 146

6.9 Impact of dataset size on the quality (C and SHD) of BN structures

learned by K2 from an optimal ordering. Labels show the expected

quality for the sizes of the BAUS-8 North (270), Central (818) and South

(613) datasets. 147

7.1 Evolution of surrogate fitness of the best solution and its associated CH

score on boerlage with and without model update 156

B.1 Convergence speed of K2GA on asia . 163

B.2 Convergence speed of K2GA on tank . 164

B.3 Convergence speed of K2GA on credit 165

B.4 Convergence speed of K2GA on boerlage 166

B.5 Convergence speed of K2GA on alarm 167

C.1 Frequency of best orderings obtained over 10 runs of K2GA on asia . . 169

C.2 Frequency of best orderings obtained over 10 runs of K2GA on tank . . 170

C.3 Frequency of best orderings obtained over 10 runs of K2GA on credit . 171

C.4 Frequency of best orderings obtained over 10 runs of K2GA on boerlage 172

C.5 Frequency of best orderings obtained over 10 runs of K2GA on alarm . 173

D.1 Evolution of solution quality and population diversity on asia 175

D.2 Evolution of solution quality and population diversity on tank 176

D.3 Evolution of solution quality and population diversity on credit 177

D.4 Evolution of solution quality and population diversity on car 178

D.5 Evolution of solution quality and population diversity on boerlage . . . 179

D.6 Evolution of correct, reversed, added and omitted edges throughout the

search with IMK2GA21 . 180

D.7 Evolution of correct, reversed, added and omitted edges throughout the

search with IMK2GA43 . 181

xvii

E.1 Effect of choice of mutation on produced solution on asia 183

E.2 Effect of choice of mutation on produced solution on tank 184

E.3 Effect of choice of mutation on produced solution on credit 185

E.4 Effect of choice of mutation on produced solution on car 186

E.5 Effect of choice of mutation on produced solution on alarm 187

F.1 Distribution of the pathological stage by cancer network 189

G.1 Evolution of surrogate fitness of the best solution and its associated CH

score on asia with and without model update 190

G.2 Evolution of surrogate fitness of the best solution and its associated CH

score on tank with and without model update 191

G.3 Evolution of surrogate fitness of the best solution and its associated CH

score on credit with and without model update 191

G.4 Evolution of surrogate fitness of the best solution and its associated CH

score on car with and without model update 191

xviii

List of Algorithms

1 K2 . 26

2 K2GA . 32

3 IMK2GAab . 61

4 Altering parameters in a given BN, at rate τ and power α 73

5 COMMA . 99

6 IM − COMMA . 100

7 Concordance Index CIci,cj between classes ci and cj 123

xix

Acronyms

ACO Ant Colony Optimization

AIC Akaike Information Criterion

ANN Artificial Neural Network

ARI Aberdeen Royal Infirmary

AUC Area Under the ROC Curve

BAUS British Association of Urological Surgeons

BD Bayesian Dirichlet

BDe likelihood-equivalence Bayesian Dirichlet

BDeu uniform BDe

BIC Bayesian Information Criterion

BN Bayesian Network

BOA Bayesian Optimization Algorithm

c-index Concordance Index

CH Cooper Herskovits score

CI Conditional Independence

xx

CMI Conditional Mutual Information

COMMA COMpeting Mutating Agents

COMMAd COMpeting Mutating Agents with degradation

CPT Conditional Probability Table

CS Clinical Stage

DAG Directed Acyclic Graph

DRE Digital Rectal Examination

EA Evolutionary Algorithm

EBNA Estimation of BN Algorithm

EDA Estimation of Distribution Algorithm

EP Evolutionary Programing

EPE Extra-Prostatic Extension

FDC Fitness Distance Correlation

GA Genetic Algorithm

GS Gleason Sum score

IM-COMMA Island Model COMpeting Mutating Agents

IM-COMMAd Island Model COMpeting Mutating Agents with degradation

IMK2GA Island Model K2 Genetic Algorithm

IPSS International Prostate Symptom Score

k-NN k-Nearest Neighbours

K2GA K2 Genetic Algorithm

xxi

KTD Kendall-Tau Distance

LNI Lymph Node Involvement

LR Logistic Regression

MDL Minimum Description Length

MI Mutual Information

MIMIC Mutual Information Maximization for Input Clustering

MLE Maximum Likelihood Estimation

MLP MultiLayer Perceptron

MPE Most Probable Explanation

MRI Magnetic Resonance Imaging

NB Naive Bayes

OC Organ Confined

PGM Probabilistic Graphical Model

PLS Probabilistic Logic Sampling

PS Pathological Stage

PSA Prostate Specific Antigen

QoL Quality of Life

RBF Radial Basis Function

RF Random Forest

SHD Structural Hamming Distance

SVI Seminal Vesicle Involvement

xxii

SVM Support Vector Machine

TAN Tree Augmented Naive Bayes

TRUS TRansrectal UltraSound

UMDA Univariate Marginal Distribution Algorithm

xxiii

Chapter 1

Introduction

1.1 Background

Bayesian Network (BN) (Pearl, 1988) is a powerful data modelling tool to reason under

uncertainty and has been used in many applications. Learning BNs is not straightfor-

ward as the number of possible network structures that can be built from a set of

variables becomes very large with the increase of the number of features. There ex-

ist several approaches to learning BN structures, from using conditional independence

tests to applying metaheuristics. Metaheuristic techniques can also be distinguished

from each other. While some focus on searching directly for a BN structure, others

aim at finding the most representative ordering of variables from which structures can

be derived using deterministic methods. This latter family of algorithms is treated

in this thesis, following work that has been conducted in implementing Evolutionary

Algorithms (EAs) (Back et al., 1997) to search for an optimal ordering of variables that

can be used in conjunction with a greedy search to construct BN structures (Larrañaga,

Kuijpers, Murga and Yurramendi, 1996). In such problems, variable orderings are rep-

resented as permutations. In a nutshell, EAs aim at improving the quality of potential

solutions of a given problem by evolving them according to some strategies that differ

between types of EAs. For example, the well known Genetic Algorithm (GA) (Holland,

1

1.1. Background

1975) builds a population of solutions and score each of them according to some fitness

function. A selection process is performed in which some promising solutions are chosen

and recombined in order to create new solutions. Since, new solutions are generated

from selected solutions, they present higher chances to be good as well. As this process

is repeated, the quality of the population is improved and so are the chances to find

the best solution to the problem.

In recent years, efforts were made in defining novel ways to search the space of variable

orderings efficiently. Consequently, several population-based search and score algo-

rithms were implemented (Larrañaga, Kuijpers, Murga and Yurramendi, 1996; Hsu

et al., 2002; Kabli et al., 2007; Wu et al., 2010). Despite showing interesting results,

some of them suffer from early convergence related to the rapid drop in diversity within

their populations that can be caused by the selection and recombination processes. In

this thesis, we touch upon this issue and present ways around it that lead to several

themes of study. These include:

• a detailed analysis of the factors that can affect population diversity in permuta-

tion representations;

• the investigation of the performance characteristics of existing approaches within

an Island Model framework designed to promote diversity;

• the investigation of the performance characteristics of a novel search and score

approach that focuses on maintaining a steady level of diversity throughout the

search.

These themes are also put in the context of medical data modelling where the use

of machine learning and of BNs more specifically have been identified as specially

appropriate to model medical reasoning with the uncertainty it implies (Onísko, 2008).

Particular applications related to prostate cancer treatment are studied in the present

work. Three aspects are investigated, the specific problem of prostate cancer staging,

general data modelling by means of BNs and the challenge of privacy-preserving data

2

1.3. Research Questions

modelling from distributed data.

The themes and applications covered in this thesis are relevant to several research

domains such as BN structure learning, permutation representations or parallel meta-

heuristics. Although the focus is mainly set on the aforementioned, presented methods

and findings may also benefit research in other domains where BNs can be applied.

These include for example the fields of general urology (Kabli et al., 2008), cardiology

(Wiggins et al., 2008), neurosciences (Oteniya, 2008), oil and gas engineering (Fournier

et al., 2010), meteorology (Cano et al., 2004), risk management or sensor validation

(Pourret et al., 2008).

1.2 Research Questions

As already mentioned, this thesis addresses several issues. However, the research ob-

jective raised by all themes can be defined in three questions:

• What is the influence of diversity in BN structure learning population-based

search and score approaches?

• Can information on diversity be used in order to enhance the search?

• How do BNs and diversity analysis benefit data modelling with respect to the

semantic meaning of the data and in particular for data relevant to prostate

cancer?

1.3 Summary of Thesis

Below is a brief description of the content of each chapter.

Chapter 2. Background. This chapter presents general background information on

techniques that are dealt with in this thesis. It describes Bayesian Networks (BNs)

and different approaches to BN structure learning, including EAs and considers the

3

1.3. Summary of Thesis

key studies from literature. Finally, tools used to assess BN structure quality are

presented.

Chapter 3. Difficulty of Node Ordering Permutation Optimization. This chapter

highlights the current limitations of search and score algorithms used for BN structure

learning that are based on permutation representations. These observations are sup-

ported by analyzing the fitness landscapes associated with permutation search spaces,

with a particular focus on the node ordering representation. As a result, key aspects

that need improvement are exposed, setting the motivation for the following chapters.

Chapter 4. Combining Local Optima by Means of Island Models. This chapter

presents an approach based on the use of island models to tackle the problem of early

convergence of a specific GA implementation, K2GA, on BN structure learning prob-

lems in presence of local optima.

Chapter 5. Size of Neighborhood and Population Diversity. In this chapter, a novel

method is described that focuses on maintaining high diversity in a population of agents.

Different roles are assigned to each agent according to its rank in the population by

means of distance-based mutation. This ensures constant exploration of the search

space and exploitation of the best areas.

Chapter 6. Applications to Prostate Cancer Staging. Techniques implemented in

the previous chapters are applied on British prostate cancer patient data. Benefits of

the use of BNs for prostate cancer staging are presented following comparison with

alternative techniques currently used in a clinical setting.

Chapter 7. Discussion and Directions for Further Research. This chapter presents

the conclusions of the thesis and describes potential areas of research that can rise from

this work.

4

Chapter 2

Background

2.1 Bayesian Networks

Bayesian Network (BN) is a type of Probabilistic Graphical Model (PGM) developed in

(Pearl, 1988). BNs were inspired by the way humans process information and organize

their knowledge. Typically, when facing a problem, humans are able to divide the

information available into smaller sub-problems and to handle uncertain information

based on their knowledge. A famous case is to find out what the cause of a car being

unable to start is. A car is composed of several parts and a breakdown can possibly

be caused by many of them. When facing this problem, the human brain splits the

bigger problem into smaller ones and starts solving them individually. One may propose

different possible areas of investigation such as the lack of fuel in the tank, the state

of the battery or the quality of the sparks for instance. If one of these shows signs

of potential failure, the other possible causes are likely to be disregarded. Behind

this decision lies a probabilistic model that represents our knowledge built for example

from experience or from literature. Since one may think that having two simultaneous

distinct failures is very unlikely to cause the car breakdown, efforts will be made to fix

the first identified problem while assuming everything else is operational.

5

2.1. Bayesian Networks

Similarly, in a BN, the problem knowledge is also factorized. To do so, conditional

relationships between problem variables Xi are identified and represented by means of

nodes and directed edges. In a BN, the set of all edges and all nodes is a graph and

is called the structure of the BN. To be a valid BN, its final structure requires to be

a Directed Acyclic Graph (DAG). In addition, each node in a BN is given a set of

parameters in the form of a Conditional Probability Table (CPT) which is conditioned

on the state of its parents Pa(Xi) in the graph as shown in Figure 2.1. In a BN, the

set of all CPTs is often refered to as its parameters.Each random variable Xi can be

instantiated with a value xi whose distribution is determined from the BN parameters.

One of the main benefits of BN lies in the fact that it factorizes the joint probability

distribution P of a set of n variables Xi according to their respective parents Pa(Xi)

as shown in (2.1).

P = P (X1, X2, ..., Xn) =

n∏
i=1

P (Xi|Pa(Xi)) (2.1)

Figure 2.1: Example of Bayesian network with CPTs shown for 3 variables X0, X1 and
X3

One of the properties that can be studied on a BN is its topology, or in other terms its

depth and width. Such characteristics are imporant to consider because some topologies

6

2.1. Bayesian Networks

tend to affect structure learning methods. In order to express the definition of the width

and depth of a BN, the notion of level should be introduced. A level represents the set

of all nodes whose parents have already been assigned to a previous level. The set of

nodes with no parent constitutes the level 0. Based on this definition, the depth of a

BN is defined by the number of levels it exhibits. On the other hand, the width of a

BN is defined by the number of nodes that compose its largest level.

The two main tasks in learning BNs are the structure and parameter learning steps.

Both steps can either be done by gathering expert knowledge or by mining data related

to the problem. Evidence can then be injected in the BN, such as for example the

observation that the battery of the car is empty. The variable in the BN related to the

state of the battery is instantiated with the value corresponding to its empty state. Once

set, evidence propagates to the rest of the BN according to the conditional relationships

previously defined. Evidence propagation affects other variables by changing their

state probabilities. An illustration is given in Figure 2.2 for the simplified car start

problem previously described. In Figure 2.2a, a BN with conditional relationships and

prior knowledge is represented. It shows that CarStarts depends on the state of the

three variables Sparks, Battery and Fuel. Each of these three variables has a prior

probability, that is each of these components has a 90% likelihood to be operational

(OK state). On the other hand, the CPT of CarStarts is conditioned on the three

other variables. Hence, without any observation on the car state, a 71 % chance is

given for the car to start. In Figure 2.2b, evidence has been set on the CarStarts

node after observing that the car cannot start. This evidence propagates to the rest of

the BN and new probabilities are given to the three remaining variables, showing that

the likelihood of each component to be faulty has been increased. In this example, the

three parent variables have differerent level of dependency on CarStarts, defined in

the CPT of CarStarts. This explains why their respective post-inference probabilities

are altered in distinct ways. Figure 2.2c shows that following the observation of a fault

in the battery, a new evidence is set in Battery, that propagates once again to the

other nodes. This affects Sparks and Fuel by decreasing significantly their respective

7

2.1. Bayesian Networks

probabilities to be faulty and empty. This calculation of probability for any variable

is referred to as inference. Inference is based on Bayes’ rule that enables manipulation

of probabilities and which is given in (2.2) for two events A and B. An event defines

the information that is known on a set of variables. These variables can either be

instantiated or not. The states of instantiated variables are known while those of non-

instantiated variables follow a distribution defined by the parameters of the BN.

P (A|B) =
P (B|A) ∗ P (A)

P (B)
(2.2)

Bayes’ rule allows propagation of evidence through edges in any direction. Several

methods have been developed in order to perform inference in a BN based on (2.2).

For example, one of the best known inference methods is called variable elimination

(Cozman, 2000) and consists in inserting evidence in (2.1). Variables Xi that are neither

in A or B are removed from (2.1) through calculating independently the individual

P (Xi|Pa(Xi)) and P (Xj |Pa(Xj)), with Xi /∈ {A,B}, Xj ∈ {A,B} and Xi ∈ Pa(Xi).

Note that this process highly reduces the number of entries that need to be handled to

calculate a particular event probability in comparison with dealing with an unfactorized

expression of the joint probability table.

8

2.2. Bayesian Networks

(a) No evidence (b) Evidence: car does not start

(c) Evidences: car does not start and battery is

faulty

Figure 2.2: BN representation of the simplified car start problem1. The effect of evi-
dence insertion is shown by displaying the probabilities relevant to each state of each
variable.

Application wise, BNs are used in several fields and for various tasks such as classi-

fication (Friedman et al., 1997), decision support (Nicholson et al., 2008) or problem

understanding (Kabli et al., 2008). For more details on BNs, we refer the reader to

Jensen and Nielsen’s 2007 work (Jensen and Nielsen, 2007).

1illustration generated from Hugin Expert (Accessed: 22 February 2013), http://www.hugin.com/

9

2.2. Benchmark Bayesian Networks

2.2 Benchmark Bayesian Networks

2.2.1 Sampling benchmark Bayesian Networks

In order to objectively assess the abilities and performance of BN learning algorithms,

a range of BN problems needs to be selected. A common approach to understand the

performance of search methods for BN structure learning is to sample known BNs to

generate data that can then be used by the search methods to learn a structure. In order

to do so and given a BN, Probabilistic Logic Sampling (PLS) (Henrion, 1986) is applied.

In PLS, a state is sampled for each node depending on its CPT and consequently on its

parents’ respective states. Thus, PLS starts generating a value for variables represented

by nodes that do not have parent in the BN. More generally, PLS only generates a value

for a given variable if all of its parents in the BN structure have already been sampled.

Since BN structures are DAGs, PLS is a straightforward task. Once learnt, structures

can be compared to the original ones used to create the data. If an algorithm is

able to retrieve the same structure, it can be considered as successful at the task. Of

course, with problems of different size and complexity, it can be very challenging to

retrieve the true structure and approaching it can become an objective. However, it is

important to keep in mind that there exist equivalent BN structures among all possible

structures. As explained in (Chickering, 1995), two BN structures are equivalent if

the set of distributions that they represent is identical. As a consequence, there exist

BNs whose structures differ but that will have similar likelihood scores, that is metrics

that define the relationship between a given structure and a given dataset. Scores are

described in more depth in Section 2.3.

BN learning is a common field of research and thus, it is important to evaluate our

methods in a coherent way to what has been done already. However, as the number of

studies on the topic is relatively large, the number of benchmark problems that have

been used is also large. Here, we describe the problems that are used for the experiments

throughout the thesis. The choice of these six particular problems was motivated by

10

2.2. Benchmark Bayesian Networks

literature and by problem characteristics. asia, car and alarm are some of the most

used benchmarks (Cooper and Herskovits, 1992; Kabli et al., 2007; Wu et al., 2011) and

were chosen to allow comparisons with other studies. On the other hand, tank, credit

and boerlage are less commonly referred to, but offer some distinct properties. While

tank and credit exhibit a rather wide and shallow structure, boerlage has a deeper and

narrower structure with respect to their respective topologies. Studying the efficiency

of the proposed methods on problems with different properties helps reaching more

objective conclusions. Illustrations of the different network structures presented in this

section were obtained using the Netica software 2 for BN management.

2.2.2 Asia

The asia network (Lauritzen and Spiegelhalter, 1988) is also referred to as chest clinic

in some studies. The asia network, shown in Figure 2.3, is a very simple fictitious

benchmark that illustrates relationships that exist between characteristics of a patient

(visit to Asia, smoking habits, medical test results and presence of bronchitis, tuber-

culosis or lung cancer). This network is composed of 8 nodes and 8 edges and has a

total of 36 parameters. This is usually used to assess the basic functionality of learning

algorithms. Algorithms that fail at retrieving the correct structure of asia will usually

not be able to learn other structures.

Figure 2.3: Structure of asia

2available from Norsys (Accessed: 22 November 2011), http://www.norsys.com

11

2.2. Benchmark Bayesian Networks

2.2.3 Tank

The tank network 3 is shown in Figure 2.4. It is composed of 14 nodes and 20 edges,

for a total of 92 parameters. The tank benchmark BN focuses on the diagnostic of

possible explosion in a tank, based on sensor readings. tank can be qualified as wide.

It has 4 levels and is 5-node wide.

Figure 2.4: Structure of tank

2.2.4 Credit

The credit network 3 is shown in Figure 2.5. It is composed of 12 nodes and 12 edges

for a total of 166 parameters. The credit benchmark BN models the relationships

between the credit worthiness of an individual and some of his personal details such as

employment information and previous bank history. Similarly to tank, credit is wide

and not deep with 4 levels for a 7-node width. However, both differ in the sense that

credit contains 7 independent nodes, while tank only has 2.

Figure 2.5: Structure of credit

3Genie and Smile (Accessed: 22 February 2013), http://genie.sis.pitt.edu/

12

2.2. Benchmark Bayesian Networks

2.2.5 Car

The car network 2 is shown in Figure 2.6. It can be used to inverstigate causes related

to a car start failure. The car benchmark BN is composed of 18 nodes and 17 edges

for a total of 121 parameters. car can be split in 5 levels and is 10-node wide.

Figure 2.6: Structure of car

2.2.6 Boerlage

The boerlage network (Boerlage, 1992) is shown in Figure 2.7. It is composed of 23

nodes and 36 edges for 172 parameters. The boerlage benchmark BN models relation-

ships between separate events that would not be considered as inter-related at first.

For example, in the boerlage BN, the relation between the presence of “lots of traf-

fic on 5th street” and the fact that “Tom’s cousin is visiting him” can be evaluated.

Boerlage exhibits the deepest and narrowest structure from the benchmark suite as

it is 14-level deep and 3-node wide. Although the problem modelled by this BN may

seem unrealistic, it is considered for its topological characteristics that differ from the

rest of the benchmarks. Thus, boerlage is analysed from a probabilistic perspective

and the semantic meaning of its variables is not investigated further.

13

2.3. Benchmark Bayesian Networks

Figure 2.7: Structure of boerlage

2.2.7 Alarm

The alarm benchmark BN (Beinlich et al., 1989) shown in Figure 2.8 is one of the most

widely used benchmark datasets in BN structure learning literature. Alarm is based

on a real-world domain and provides information on medical diagnosis of false alarm in

patient monitoring. The alarm network consists in 37 nodes and 46 edges for a total

of 752 parameters. Its structure is composed of 11 levels and has a width of 12 nodes.

Figure 2.8: Structure of alarm

14

2.3. Bayesian Network Structure Learning

Number of variables Number of structures

1 1
2 3
3 25
4 543
5 29281
6 3781503
7 1138779265

Table 2.1: Relation between number of variables and number of possible BN structures

2.3 Bayesian Network Structure Learning

Although learning BNs from data consists in learning both structure and parameters,

the most challenging task remains to determine the network structure. This is consid-

ered as a NP-hard problem (Robinson, 1977) and the number of potential structures

that can be drawn from a set of variables grows super-exponentially as the number of

variables n increases as illustrated in Table 2.1 for n ∈ [1; 7]. It has been shown that

the number of structures that exist is O(n!2
n
2) (Robinson, 1977). Exhaustive search

is therefore not a sensible approach to the problem. Two main families of methods

are commonly considered for BN structure learning, respectively based on Conditional

Independence (CI) tests and on search and score techniques.

2.3.1 Using Conditional Independence

The core concept of CI-based methods (Cheng et al., 2002) is to discard potential edges

that could be drawn. Several approaches exists in which the CI tests between pairs of

variables are performed in different order. Yet, the first components that need to be

studied are the CI tests. Although there exists a variety of tests, only one is presented

in this section. This is to illustrate an example of CI-based method rather than giving a

complete overview of the field. Hence, the Mutual Information (MI) is explained along

with the process of learning Chow-Liu tree BNs.

15

2.3. Bayesian Network Structure Learning

Computing the MI between two variables XA and XB gives an indication on how

related their distributions are. We denote by xa and xb the state of variables XA and

XB respectively. The MI represents how much information will be gained by XA if

information is gained on XB. Hence, it can be used to define how dependent of each

other they are. MI can also be computed under the influence of a set of variables. In

such case, the test is called Conditional Mutual Information (CMI). The MI between

XA and XB is computed as

MI(XA, XB) ≡
∑
xA

∑
xB

p(xA, xB) log2

(
p(xA, xB)

p(xA)p(xB)

)
(2.3)

MI(XA, XB) = H(XA)−H(XA|XB) (2.4)

The MI metric provides a continuum of dependency values that range from 0, for

independent variables, to the common entropy of a pair of variables. This prop-

erty is illustrated in (2.4), which describes the relation between MI(XA, XB) and

the marginal entropy H(XA) of XA and its conditional entropy H(XA|XB) given XB

(Cover and Thomas, 1991). Hence, it is needed to set a dependency values threshold

on MI(XA, XB) beyond which two variables can be qualified as dependent. Varying

the threshold makes the learning process discriminative to different extents and hence

constraints the number of edges that are set in the structures.

Although Chow-Liu Tree BNs (Chow and Liu, 1968) are not used throughout this work,

they represent a good illustration of the use of a CI measure. A BN can be represented

as a Chow-Liu tree under two constraints. First, its structure needs to be rooted-tree-

shaped, that is only one node in the structure has no parent. Second, each node of

the structure can have at maximum one parent. This type of representation ensures

that the structure only has a small number of edges. Furthermore, it has been shown

that Chow-Liu structures can model efficiently any data distribution with maximum

likelihood (Chow and Liu, 1968). Learning Chow-Liu structures is a straightforward

16

2.3. Bayesian Network Structure Learning

process in which a complete undirected graph is drawn at first. MI is calculated for

every pair of variables and MI values assigned to each undirected edge. Based on this

information, a maximum spanning tree can then be drawn in O(e) operations, where e

represents the number of edges in the original tree as proved in (Kruskal, 1956). The

maximum spanning tree should connect all variables by maximizing the sum of the

weights from all edges that are kept, or in other words the sum of the associated MI

values. The remaining step is to direct all edges. Since the final structure should be

a tree, a root node is selected at random. Edges are directed in the outward direction

from the root node. Note that this example makes use of MI to determine CI between

variables. Alternatives can be used. Chow-Liu trees have also been employed as a BN

representation in order to reduce the search space in conjunction with search and score

techniques (Carvalho et al., 2007).

As already mentioned, there are several CI-based algorithms. For instance, the PC

algorithm (Spirtes et al., 2000) starts from a complete undirected structure and removes

edges following CMI tests. As edges are being removed, the CMI tests are conditioned

on more neighbors and the structure gets trimmed further. At the end of this step, an

undirected structure is obtained. Unlike in the Chow-Liu method, directions are not

added by randomly picking a root node, but by following a set of rules. The approach

is to first identify potential v-structures in the graph, which are groups of any three

variables XA, XB and XC such that there is an edge between XA and XC and between

XB and XC and that XA and XB are independent under conditions that do not involve

XC . Such patterns are directed as follows: XA → XC ← XB. The second rule aims

at avoiding the addition of new v-structures. Thus, patterns such as XA → XC −XB

are turned into XA → XC → XB. The third rule goes through the graph and directs

any edge that could potentially lead to a cycle. Finally, if edges are left undirected, the

fourth rule states that they should be directed at random.

Literature on CI-based methods reports successes due to the individual independence

tests computed between all variables, making it able to assess all relationships that

exist between variables (Neapolitan, 2004). However, this feature of the method also

17

2.3. Bayesian Network Structure Learning

represents a drawback as results of individual independence tests may present failures

at times, resulting in learning structures that do not reflect the true distribution of

the data. Since the search is bounded by the CI test results, no other structure can

be assessed (Koller et al., 2007). Such observations are particularly likely to occur

when the number of variables involved in the learning process is small, increasing the

importance of accurate individual test results (Neapolitan, 2004). In the next section,

alternatives to CI-based methods are presented that search through the whole set of

possible structures.

2.3.2 Search and Score Strategies

As the name may suggest, search and score techniques are composed of two main

elements. First, a scoring metric needs to be defined to evaluate the quality of the

candidate BN structures. Once BNs can be assessed, a search algorithm can use this

information to generate and improve structures. Here, we start by presenting some of

the existing scoring metrics for BN structures, before reviewing works that have been

carried out on three different families of search and score approaches, namely greedy,

evolutionary and estimation of distribution algorithms.

2.3.2.1 Scoring Metrics

Some of the metrics presented in this section use methods from BN parameter estima-

tion. Hence, we first describe the process of Maximum Likelihood Estimation (MLE). A

BN M can be represented by different possible parameter sets θ. Each of them implies

a particular BN structure Sθ. The configuration of θ and Sθ affects the quality of M ,

that is its likelihood given a dataset D, composed of cases Cl as expressed in (2.5).

L(M |D) =
∏
Cl∈D

p(Cl|M) (2.5)

18

2.3. Bayesian Network Structure Learning

Because of the relation that exists between θ and Sθ, it can be stated that maximizing

the likelihood of a BN is equivalent to finding the unique θ configuration, denoted as

θ̂, that fits the best D. This process is performed using MLE:

θ̂ = argmax
θ

L(Sθ|D) (2.6)

In the special case of dealing with complete data, that is without missing values, the

likelihood of S can be computed as a product of all individual MLEs computed from

the parameters relevant to each variable. In more concrete terms, all CPTs of the BN

are used individually to compute local MLEs that are brought together in a product.

Each local MLE can be defined by simply counting cases from the data. For example,

p(Xi|Pa(Xi)) = N(Xi,Pa(Xi))
N(Pa(Xi))

. Because it is generally easier to deal with sums, the

log-likelihood is preferred and defined as:

LL(S|D) ≡
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log

(
Nijk

Nij

)
(2.7)

The arrity of Xi is denoted as ri and the total number of possible configurations of

parent states as qi. The number of instances of variable Xi in its k-th state, while its

parents are in their j-th combination is noted as Nijk, and Nij =
∑ri

k=1Nijk, that is

Nij represents the number of instances where the parents of Xi are in their j-th state.

Note that this notation is kept throughout the thesis.

One of the most simple scoring metrics directly based on MLE is the Euclidean dis-

tance. The term Euclidean distance originates from the continuous domain, in which

it represents the distance between two points in a multi-dimensional real vector space.

Yet, the concept can be extended to the domain of BNs. In order to measure the Eu-

clidean distance between a given structure S and the data D, the distance between the

two probability distributions PS and PD that they respectively model can be computed.

Thus, a structure that can accurately approach the data distribution will be a good

19

2.3. Bayesian Network Structure Learning

structure. Of course, the distribution modeled by a BN does not depend only on its

structure but also on its set of parameters. Since, S can imply many such distributions,

MLE is used in order to determine the parameters θ̂ that bring the distribution closest

to the one of the data. The Euclidean distance dist(PD, PS,θ̂) can be expressed over all

covariate configurations x as:

dist(PD, PS,θ̂) =
∑
x

(PD(x)− PS,θ̂(x))
2 (2.8)

Using solely the Euclidean distance in a search and score strategy would lead the best

structure to be complete, that is to have edges between all nodes. This is because it is

the complete structure that can model most accurately the data distribution. By using a

complete structure, conditional dependencies are defined between all variables, in which

case there is no factorization of the joint probability distribution, the main purpose of

BNs. More generally, a BN with a large number of modelled conditional dependencies

needs a greater number of operations and a greater processing time when performing

inference than a BN with fewer dependencies. Because such complete structures are

not wanted, Euclidean distance is often used in conjunction with penalty or parsimony

functions, respectively penalising models for their complexity or rewarding them for

their minimal use of resources. For instance, a score can be computed by calculating

dist(PD, PS,θ̂) and subtracting a function of the total number of edges in S. Despite

these efforts, there remains a major drawback which is the computational cost involved

in the calculation of the Euclidean distance that requires a processing step for every

covariate pattern and makes it usable only on very small-dimensional problems.

The Bayesian Information Criterion (BIC), also called Minimum Description Length

(MDL) addresses these problems (Lam and Bacchus, 1994). It also takes into consid-

eration both data fitting and structure complexity. For complete data of size N , the

BIC score BIC(S|D) can be computed as the difference of LL(S|D) and the output of

a penalty function and expressed as:

20

2.3. Bayesian Network Structure Learning

BIC(S|D) ≡
n∑
i=1

qi∑
j=1

ri∑
k=1

Nijk log2(
Nijk

Nij
)− log2N

2

n∑
i=1

qi(ri − 1) (2.9)

Since the BIC score is essentially a count over all variables of the data, it is said that

BIC is a decomposable fitness metric. It can be expressed as a sum of local BIC functions

over all variables because both LL and penalty function are computed over all variables.

Hence, local changes in the structures, such as addition of an edge for example, do not

require computation of the whole BIC, but just of the local BIC scores affected by

the alteration of the structure. Decomposability of a scoring metric is a property that

is essential to deal efficiently with data of high dimension, without implying a heavy

computational cost.

For information, the penalty function represented by the second term in (2.9) is some-

times replaced by
∑n

i=1 qi(ri − 1). In that case, the scoring function is called Akaike

Information Criterion (AIC) (Akaike, 1974).

There exists another family of scoring metrics, also decomposable and called Bayesian

metrics. Such methods are based on approximating the probability of each variable to

be in a given state, by approximating the probability distribution of its set of param-

eters. Given a BN structure, these values can then be used for every possible state of

each variable and its parents.

To obtain such metrics, one should express the conditional joint probability p(S,D|ξ) of

having both the BN structure S and the data D, given the current state of information

ξ, that is the set of all evidences inserted in the BN. Referring to the problem described

in Figure 2.2 as an example, ξ could represent the inclusion of the evidence that the

variable CarStarts is set to No. However, BN structure learning from data typically

does not involve prior knowledge and in most cases, such as in this thesis, ξ can be

ignored. Yet and before investigating how p(S,D|ξ) is derived, it is important to refer

to the Bayes rule on the problem as in (2.10) in order to understand the distributions

involved.

21

2.3. Bayesian Network Structure Learning

p(S|D, ξ) =
p(D|S, ξ)p(S|ξ)

p(D|ξ)
(2.10)

In this thesis, only discrete variables are considered, that is variables that have a finite

number of states. Because of this properties, variables in D follow a multinomial distri-

bution. Since variables in S are also variables in D, variables in S follow a multinomial

distribution and so do p(D|S, ξ). Note that a multinomial distribution can also be

referred to as a categorical distribution. Given this property of the likelihood function,

if the prior probability p(S|ξ) and the posterior probability p(S|D, ξ) have conjugate

distributions, they must follow a Dirichlet distribution themselves. Two probabilities

have conjugate distributions if they have the same mathematical form, but with differ-

ent parameters (George et al., 1993).

The probability distribution of the set of parameters ΘX of a variable X can be defined

as:

p(ΘX |D, ξ) = c

r∏
k=1

θNk
X=kp(ΘX |ξ) (2.11)

X is r-dimensional and each of its states k has θX=k as parameter. Nk represents

the number of occurrences of X in its k-th state in the dataset D. p(ΘX |ξ) is the

probability density function of ΘX , given the current state of information ξ. Finally, c

is a normalization constant.

One of the required step to use (2.11) is to define p(ΘX |ξ). As seen previously, the

Dirichlet distribution represents the probability of a set of rival events, given some

information on previously observed occurences of these events (Heckerman et al., 1995).

The general expression for the Dirichlet distribution Dir(X) of variable X is given in

(2.12). Note that Γ is the Gamma function which is equivalent to Γ(a) = (a− 1)!, for

any positive integer a.

22

2.3. Bayesian Network Structure Learning

Dir(X) =
1

B(N ′)

r∏
i=1

X
N ′

i−1
i , where B(N ′) =

∏r
k=1 Γ(N ′k)

Γ(
∑r

k=1N
′
k)

(2.12)

To simplify the understanding, 1
B(N ′) is regarded as a constant and will be referred to

as the normalization constant c.

Using a Dirichlet distribution, it is possible to define the expectation of X to be in its

k-th state by means of N ′k, function of ξ. For instance, such expectation E(ΘX = k) can

be formulated as (2.13). E(ΘX = k) actually represents the mean of the distribution of

Xk. We refer to the different N ′k as the hyperparameters of the Dirichlet distribution.

E(ΘX=k) = p(X = k|ξ) =
N ′k
N ′

, where N ′ =
r∑

k=1

N ′k (2.13)

Finally, under Dirichlet distribution, (2.11) can be extended to (2.14).

p(θij |D,S, ξ) = c

ri∏
k=1

θ
N ′

ijk−1+Nijk

ijk (2.14)

As demonstrated in (Heckerman et al., 1995), p(D|S, ξ) can be expressed by means of

expectations over all cases Cl of D, 1 ≤ l ≤ m, leading to:

p(D|S, ξ) =

n∏
i=1

qi∏
j=1

ri∏
k=1

m∏
l=1

E(θijk|C1, ..., Cl−1, S, ξ) (2.15)

Since p(S,D|ξ) = p(S|ξ)p(D|S, ξ) and from (2.13), (2.14) and (2.15), the joint proba-

bility p(S,D|ξ) can be expressed as:

p(S,D|ξ) = p(S|ξ)
n∏
i=1

qi∏
j=1

Γ(N ′ij)

Γ(N ′ij +Nij)

ri∏
k=1

Γ(N ′ijk +Nijk)

Γ(N ′ijk)
(2.16)

It is now possible to use (2.16) to calculate the likelihood function of a particular BN

23

2.3. Bayesian Network Structure Learning

structure, that is (2.16) without computing p(S|ξ). Note that p(S|ξ) is not computed

because it is a constant term when no evidence is inserted. This fitness function is called

the Bayesian Dirichlet (BD) function. However, this metric cannot be used in practice

as it would require to determine all N ′ijk hyperparameters of the Dirichlet distribution.

As a solution, there exists a particular case of BD proposed by Cooper and Herskovits

(Cooper and Herskovits, 1992), where it is assumed that N ′ijk = 1. This metric is called

the CH score and is defined as:

p(S,D|ξ) ≡ p(S|ξ)
n∏
i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (2.17)

Alternatively, the BD score can be re-formulated in order to only leave one hyperparam-

eter. This can be done by assuming that N ′ijk = N ′p(Xi = xik, Pa(Xi) = wij |S) and

that N ′ij = N ′p(Pa(Xi) = wij |S). Here, wij denotes the j-th combination of Pa(Xi)

and N ′ represents the sum of all hyperparameters of the Dirichlet distribution. When

the BD score is represented as such, it is called the likelihood-equivalence Bayesian

Dirichlet (BDe). This is still not a practical scoring metric since it is still necessary to

calculate all N ′ijk = N ′p(Xi = xik, Pa(Xi) = wij |S) for all combinations of i, j and k.

However, BDe represents a step towards another metric called the uniform BDe (BDeu)

(Buntine, 1991), in which it is assumed that p(Xi = xik, Pa(Xi) = wij |S) = 1
riqi

. This

assumption means that all prior joint probabilities on Xi and Pa(Xi) are uniform and

equal to 1
riqi

. Consequently, the BDeu score is defined as:

p(S,D|ξ) ≡ p(S|ξ)
n∏
i=1

qi∏
j=1

Γ(N
′

qi
)

Γ(N
′

qi

′
+Nij)

ri∏
k=1

Γ(N
′

riqi
+Nijk)

Γ(N
′

riqi
)

(2.18)

Although the implementation of BDeu has helped reducing the number of hyperparam-

eters of the metric, the value of N ′ remains of importance. Yet, it is not possible to

calculate this value for a given BN problem. Hence, in order to use BDeu, one should

consider different N ′ values until reaching satisfactory results.

24

2.3. Bayesian Network Structure Learning

It is important to stress that the metrics that are presented in this section assume

that the data is complete. In situations where this is not the case, some methods can

be used in order to infer the missing values. We refer the reader to the Expectation

Maximization algorithm (Dempster et al., 1977). Note that the data used throughout

this thesis does not exhibit missing values.

2.3.2.2 Greedy Search: the example of K2

Since scoring metrics have been presented, search strategies should now be investigated.

First, we focus on explaining the concept of greedy search and present a particular

example of such methods, based on the CH score presented in (2.17). In a general

greedy approach, a set of local operators is defined and applied to a solution in order

to improve its quality. In the context of BN structure learning, such solution is a

structure S. At each step of the greedy search, each defined operator is applied to S.

The effect of each operation is evaluated and the most beneficial with respect to the

improvement of the quality of S is determined. This represents the best neighbor S′

of S. S′ is evaluated and compared to S. If applying the operator is beneficial, that

is the quality of S′ is greater than S, S′ replaces S as the current best structure. The

cycle is repeated until no operator can improve S.

The K2 greedy algorithm (Cooper and Herskovits, 1992) is a specific greedy algorithm

that makes use of an ordering of nodes that is provided as an input. The K2 algorithm

evaluates addition of potential edges between variables. An edge can only be added

from a variable A to a variable B if A belongs to the predecessors of B in the ordering.

This constraint ensures that no cycle can be introduced in the structure and thus that

the structure remains a DAG. In the K2 algorithm, local CH scores are computed for

each variable Xi, given different parent sets Pa(Xi). The local CH(Xi, Pa(Xi) score

for a variable Xi and its parent set is taken from (2.17) and is summarized as

25

2.3. Bayesian Network Structure Learning

CH(Xi, Pa(Xi)) ≡
qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (2.19)

At each step, one edge is added between Xi and the variable that maximizes the local

CH score over all variables that are predecessors of Xi in the ordering, that is the

set Pred(Xi). Note that adding a variable to the set of parents of a given node does

not always improve the related CH score as described in Appendix A. In addition,

a threshold maxParents on the number of parents a node can have can be decided

prior to running K2. This is to ensure the structure that is learnt remains reasonably

complex. Of course, this threshold needs to be set manually, with respect to the problem

domain. Algorithm 1 presents the outline of K2.

Algorithm 1: K2

for each variable Xi, i ∈ [0;n[do
Pa(Xi) = ∅
stop = false
while stop and |Pa(Xi)| < maxParents do

Choose Xl, such that CH(Xi, Pa(Xi) ∪Xl) > CH(Xi, Pa(Xi) ∪Xk), for any
Xk ∈ Pred(Xi), k 6= l
if CH(Xi, Pa(Xi) ∪Xl) > CH(Xi, Pa(Xi)) then
Pa(Xi) = Pa(Xi) ∪Xl

else
stop = true

end if
end while

end for

With deterministic algorithms such as K2, a starting ordering of nodes is required.

Modification of the ordering leads to different candidate BN structures. In (Cooper and

Herskovits, 1992), starting orderings were always such that the K2 process could retrieve

the exact structure. Alternatively, K2 can be used based on random starting orderings

(Carvalho, 2011), but this is unlikely to lead to the optimum structure. Ideally one

would assess all possible orderings to allow K2 to reach an optimal solution. Although

this is possible on small problems, it can become impractical on larger dimensions as

the number of orderings for a dataset of n variables is n!. To search both spaces of

26

2.3. Bayesian Network Structure Learning

structures or orderings, it has become sensible to turn to methods that are able to

iteratively improve solutions such as EAs.

2.3.2.3 Bayesian Networks and Evolutionary Algorithms

EA is a paradigm inspired by nature that aims at generating candidate solutions to a

given problem based on characteristics of previously selected solutions. A key distin-

guishing feature of EAs lies in the fact that their search is driven by an evaluation-based

selection. As a result, solutions are improved over time, as the search progresses, mim-

icking natural evolution until reaching a satisfactory solution quality.

GAs (Holland, 1975) are probably the most well known type of EAs. In a GA, solutions

are generated at random to form a so-called population. Each solution in the population

is evaluated using a fitness function. Some solutions are then selected relative to their

fitness and recombined in order to create new solutions, called offspring . The idea is to

mix characteristics of good solutions to enhance the chances for the offspring to exhibit

high fitness values. Note that in order to evaluate solutions and perform recombination,

a way to represent a solution to the problem needs to be thought of. For example,

solutions can be represented as bit strings, real value vectors or as permutations. A

permutation defines a particular combination that can be created from a given set of

variables, where each of the variables is represented exactly once. In the context of

BNs, node orderings can be represented as permutations.

Since GAs are inspired by genetic evolution, a solution is often regarded as a chromo-

some or an individual, while each element of it is referred to as a gene. In a GA, there

are typically two recombination operators, which are the crossover and the mutation.

During crossover, parts of the selected solutions are exchanged as blocks. The effect of

crossover depends on the type of crossover and the domain in which it is applied. For

example, one point crossover picks at random a point pt in two selected solutions S1

and S2. Two solutions C1 and C2 are generated. The first child solution C1 is composed

of all genes placed before pt in S1 and all genes placed after pt in S2. Similarly C2 takes

27

2.3. Bayesian Network Structure Learning

genes from S2 and S1. One point crossover is probably the simplest operator and can

be applied on many domain, such as bit string representations. Yet, one point crossover

is not applicable to the permutation domain. Although several crossover types exist for

combinatorial problems, we present the process of using cycle crossover (Oliver et al.,

1987), which is used throughout this work. In the example illustrated in Figure 2.9,

a random gene position (position 0) is selected and genes at this position (8 and 1)

exchanged between S1 and S2. Since the new gene imported in S1 is duplicated, the

next genes to exchange are in position 7, where the element 1 can be found in S1. Once

the exchange is done, 6 is the new duplicated gene in S1. Thus, the other instance of 6

(at position 6) is exchanged. Because the new element imported in S1 is 8, the starting

element, a cycle has been completed and the crossover is complete, exhibiting two new

offsprings C1 and C2. Intermediate steps are shown in Figure 2.9.

Figure 2.9: Example of cycle crossover

The second recombination operator is mutation, where a solution is altered randomly.

This is motivated by the need to avoid early convergence in GAs. As the search

progresses, characteristics of the good solutions replace those of less fit ones. This may

lead the population to reach convergence where all solutions are similar. Hence, at

times, it may be good to introduce perturbation in the search in order to explore a

different area of the search space. On permutation representations, there are several

mutation types. One of the simplest is the swap mutation in which two randomly

picked genes are swapped within the same chromosome. Since mutation types are the

topic of Chapter 5, they are not investigated in further details here. Because mutation

is disruptive with respect to the chromosome, a mutation rate is set that defines how

likely mutation is to happen. Similarly, a crossover rate can be set. Once produced,

28

2.3. Bayesian Network Structure Learning

offspring solutions are evaluated and compared with the population. If an offspring

is better than the worse solution, it takes its place and the population is re-ordered.

Depending on the GA implementation, the number of offspring can vary. This process

is called a generation and is repeated until reaching a stopping criterion.

EAs also encompass other heuristics that have proved successful on many problems

including BN structure learning. Ant Colony Optimization (ACO) (Colorni et al.,

1991) mimics the behavior of ants foraging for food, that is exploring possible paths

to reach a food source. ACO is a technique particularly well adapted to problems

that can be represented as graphs, such as BN structure learning, where nodes can

be drawn within a graph, or combinatorial problems more generally. Similarly to real

ants, ACO ants explore possible solutions by choosing their next destination (e.g. next

node) based on traces of pheromones left on the different paths by previous ants. As

the search progresses, the best paths, which represent parts of the best solutions to

the optimization problems, gather more pheromones. This makes these paths more

prone to be part of the next solutions produced by future ants. The two examples of

EAs chosen here, namely GA and ACO, have been used for BN structure learning in

the past (Larrañaga, Kuijpers, Murga and Yurramendi, 1996; De Campos et al., 2002;

Parpinelli et al., 2002; Kabli et al., 2007; Wu et al., 2010).

Finally the last EA technique to be introduced here is Evolutionary Programing (EP)

(Fogel et al., 1966), which has seen a few applications to BN structure learning. In

EP, a set of operators is defined. Starting from a random population of solutions,

EP goes through several generations in which a chosen number of solutions is selected

in a similar fashion as in a GA. Each selected solution undergoes a mutation step

where an operator from the list of operators is applied. Once mutated, solutions are

evaluated and inserted in the population relative to their respective fitness. Note that

no crossover is used in EP. In the domain of BN structure learning, operators may

include for example insertion or deletion of an edge, redirection of an edge or creation

of v-structures. This is not an exhaustive list and more examples can be seen in (Cotta

and Muruzábal, 2004; Wong et al., 1999).

29

2.3. Bayesian Network Structure Learning

As explained previously, K2 introduces the notion of variable orderings, which reduces

considerably the search space. Instead of having to look through all candidate struc-

tures, the search focuses on finding a good ordering before setting it as an input to

K2. However, this is not totally advantageous since such strategies will not consider all

structures and hence miss some parts of the BN structure space. We recall that this can

represent a drawback as the final output of BN structure learning is to find a structure

rather than an ordering of nodes. Because of this properties, it is possible to split all

methods that have been implemented into two families, those searching through the

space of structures and those searching the space of orderings (Larrañaga, 2010).

One of the earliest work on searching the space of BN structures by means of EAs is

described in (Larrañaga, Poza, Yurramendi, Murga and Kuijpers, 1996) where solutions

are represented by a nxn connectivity matrix. This matrix defines the presence or

absence of edges between the n variables of a problem. Two approaches are investigated.

First, no restriction is made on edges that can be set. With no restrictions, genetic

operators generate solutions that may not be acyclic and thus that are outside the

problem domain. Through the introduction of a repairing step, edges that create cycles

are removed until the structure becomes a DAG. In the second strategy, an ordering

of nodes is considered and operators do not generate infeasible solutions, discarding

the repairing step previously proposed. The space of structures was explored using a

GA and solutions evaluated using CH score. Because the space of structures is too

large, efforts have been made to reduce its dimension. These include combining both

CI-based methods and EAs. In (Van Dijk et al., 2003), CI tests are run such as in

the PC algorithm. This step leads to a skeleton graph, representing the edges that are

most likely to be found in the optimal structure. This is also the search space on which

a GA can run, where each gene of a solution represents a distinct edge of the skeleton.

Note that the authors quantify the time dedicated to building the skeleton to 45 % of

the total algorithm runtime.

Hybridization of CI and EA is also the topic of (Wong and Leung, 2004). Chi-square

tests are performed for every pair of variables, based on the data. P-values representing

30

2.3. Bayesian Network Structure Learning

the degree of relationships between tested variables are recorded, but no skeleton graph

is built as it could omit important edges. In the step that follows, a GA is used to

generate structures. Before being scored, these are compared to the matrix of χ2 p-

values and discarded if under a certain threshold. This threshold varies as the search

goes on and becomes more discriminative.

On the other hand lie EAs that search through the space of node orderings. A first

insight of using an EA with K2 is the work presented in (Hsu et al., 2002). In this

work, the K2 algorithm is part of the fitness calculation but the final CH score on

which it is based is not the fitness value returned to the GA. Instead, K2 determines

the best BN structure given an ordering. This structure is assessed by running a holdout

validation where evidences are set on selected nodes in the BN and the Most Probable

Explanation (MPE) (Sy, 1992) computed on the remaining nodes. The results of the

MPE step can be compared with the holdout set and a fitness value derived from it.

In actual fact, the approach described in (Hsu et al., 2002) is based on the earlier

work by Larrañaga et al. (Larrañaga, Kuijpers, Murga and Yurramendi, 1996), in

which the validation process is not performed. Instead, the CH score corresponding

to the best BN found by K2 is used to guide the GA search. This algorithm is called

K2GA and is presented in Algorithm 2 for a population pop, a dataset D, crossover

and mutation rates δcr and δmu and a maximum of genMax generations. Because the

K2 process implies the computation of many local CH scores, it can be an expensive

process on large data. This problem is addressed by Kabli et al.(Kabli et al., 2007)

by investigating a surrogate to the K2 process. Kabli et al. makes the assumption

that a chain structure gives sufficient information about the quality of an ordering to

efficiently guide the GA search. A chain structure is a BN structure in which each

node is the parent of its successor. Once the GA has converged, a proportion of the

best orderings is fed into K2 in order to get their actual structures. This algorithm

is referred to as ChainK2GA. A similar approach has been taken in (Wu et al., 2010)

where K2 is associated to an implementation of ACO. In addition, a chain surrogate

approach is also implemented. Experimental results on a suite of benchmarks show

31

2.3. Bayesian Network Structure Learning

that both ChainK2 and K2 methods have advantages, although benefits of using the

chain surrogate are only seen on some specific problems (Wu et al., 2011). It was

suggested that the structure of the original BNs may have an influence which led to the

implementation of a hyperheuristic strategy based on problem characteristics that can

help further understand what approach should be used (Wu et al., 2012). Although

most of the aforementioned studies used benchmark problems, K2-based algorithms

have also been successful at modelling real-world data (Cano et al., 2004; Oteniya,

2008; Wiggins et al., 2008; Kabli et al., 2008; Fournier et al., 2010).

Algorithm 2: K2GA

Initialize population pop
for each solution soli ∈ pop, i ∈ [1; |pop|] do

Run K2 on soli and get structure Si
Set fitness of soli, fi = CH(Si, D)

end for
Initialize number of generations gen = 0
repeat

Sort pop by fitness in descending order
Select 2 parents from pop using selection method σ
Generate offspring solc by applying crossover operator at rate δcr
Apply mutation operator to solc at rate δmu
Run K2 on solc and get structure Sc
Set fitness of solc, fc = CH(Sc, D)
if fc > f|pop| then
sol|pop| = solc & f|pop| = fc

end if
gen+ +

until gen = genMax

Other approaches have investigated the use of hybrid strategies that search both spaces

of ordering and structures. This is the case in (Lee et al., 2008), which proposes a dual

representation GA to search the space of all possible network structures. A solution

is represented by an ordering and a connectivity matrix that states the presence of

edges between every pair of nodes. At each generation, both ordering and connectivity

matrix are evolved and solutions assessed by means of CH score.

32

2.3. Bayesian Network Structure Learning

2.3.3 Bayesian Networks and Estimation of Distribution Algorithms

Estimation of Distribution Algorithms (EDAs), first introduced in (Baluja, 1994), are

another type of search and score strategy. Their principle is to model the distribution

of the genes from selected solutions, often the best ones. Similarly to a GA, an EDA

starts by generating solutions at random that are scored against a fitness function. Once

evaluated, the population contains information about the genes that are correlated to

high fitnesses. Yet, this is not simple to observe and modeling techniques can be used

at that stage. For example, the top 20% of the ranked population can be used to build

a model. This model then contains information about the best solutions encountered

so far. Thus, sampling such models increases the chances to produce relatively good

solutions. Generated solutions are evaluated and inserted in the population. The model

can be updated and new solutions created until reaching a stopping criterion. A sim-

ple illustration is to study the Univariate Marginal Distribution Algorithm (UMDA)

(Mühlenbein and Paaß, 1996) that only considers univariate distributions, that is no

relationship among genes is modeled. On binary problems, UMDA inherent model

assigns a probability to each gene of the solution to be true, based on the frequen-

cies of true statements observed for each gene in the selected solutions. To generate a

new solution, a number is drawn in [0; 1] for each gene and compared to the relevant

probability value. Of course there exist many other approaches and depending on the

optimization problem, modeling interactions between variables may be beneficial. In

this specific task, PGMs have proved to be successful, including the use of Markov

Networks (Shakya and McCall, 2007) and BNs. Among BN-based implementations of

EDA, the Bayesian Optimization Algorithm (BOA) (Pelikan, 2005) and the Estimation

of BN Algorithm (EBNA) (Etxeberria and Larranaga, 1999) are the most commonly

applied (Santana, 2011). For both, learning the BN model structure from the selected

solutions is an essential task. In BOA, a greedy algorithm starts from an empty struc-

ture and add edges based on their effect on the structure’s associated CH score. In

EBNA, the difference lies in the fact that at each generation, the greedy search does

33

2.4. Solution Quality

not start from an empty structure but from the structure obtained at the previous gen-

eration, since it is known that local search performs better when starting from solutions

that are already good (Heckerman, 2008). Note that in the original implementation,

the local search in EBNA is guided by calculation of the BIC score for all proposed

structures. In both BOA and EBNA, solutions are sampled using PLS.

In addition to using BNs to model the gene distributions, EDAs have also been ap-

plied to the actual problem of BN structure learning. In (Romero et al., 2004), two

EDAs, UMDA and Mutual Information Maximization for Input Clustering (MIMIC)

(De Bonet et al., 1996) are used in a similar fashion than K2GA, to sample node or-

derings that are fed into K2 and assessed by means of CH score. Since UMDA and

MIMIC are not designed to handle combinatorial problems, the encoding is altered

and solutions are represented as vector of integers, each representing a factor of n!, the

number of possible permutations for a problem of size n.

To our knowledge, EDAs for combinatorial optimization have been developed but have

not been applied to BN structure learning. These are reviewed in (Ceberio et al., 2012).

2.4 Solution Quality

In search and score strategies, solutions can be compared based on their fitness values.

In some problems, this can represent objectively the actual quality of solutions. In the

particular case of BN structure learning, the fitness value obtained from the metrics

described in 2.3.2.1 is often an approximation of the actual quality of the BN. On the

general picture, improvement in terms of fitness generally means that the quality of the

BN is also improved. Yet, at smaller scale, fitness and structure quality do not vary

commensurately. In this section, we define similarity measures that can be used to

assess the actual quality of a solution. This selection of measures acts on both spaces

of orderings and BN structures. Note that all these methods compare a given solutions

to another one. Typically, when using benchmark problems, a given solution would

34

2.4. Solution Quality

be compared to a known optimal or to the true BN structure. For more permutation

measures, we refer the reader to (Sevaux et al., 2005; Schiavinotto and Stützle, 2007).

2.4.1 Exact match distance

The exact match distance between two orderings is very simple to compute as it counts

the number of elements that are at similar positions i in two permutations p and q of

size n. Hence, the higher the exact match distance is, the more similar the two solutions

are. Formally, the exact match distance is expressed as:

exactmatch =

n∑
i=1

xi, with xi =

0 if pi = qi

1 otherwise
(2.20)

2.4.2 Edit distance

The edit distance gives a similar kind of information as the exact match distance. Edit

distance represents the number of editing steps that need to be performed to obtain

the permutation q from p. Since editing steps can differ between problems, these need

to be stated before being able to compute the edit distance. In the present work, three

editing operators are considered in the specific order: swap, remove and insert. Hence,

to compute the edit distance between p and q, the number of elements that can be

swapped is first counted. Next, other elements whose positions need to be changed are

first removed and then inserted at the targeted position. Although, the edit distance

allows discrimination between editing operators, the three selected operators are set

with the same weight and thus considered as equal in the following experiments.

2.4.3 Kendall-Tau distance

Pairwise Kendall-Tau Distance (KTD) between two permutations p and q is calculated

following Equation (2.21) where the elements i and j belong to the set P of unordered

35

2.4. Solution Quality

pairs of elements obtained from p and q. Kij(p, q) equals either 0 if i and j are in the

same order, or 1 if i and j are in a different order in p and q.

KTD(p, q) =
∑
{i,j}∈P

Kij(p, q) (2.21)

In this work, KTD is also used to assess the diversity in a population of node orderings.

All pairwise KTDs are calculated from every pair of solutions in the population. These

are then averaged. Population KTD has been used for this purpose in (Dos Santos

et al., 2010).

2.4.4 Structural Quality and Structural Hamming Distance

The similarity measures presented up to now operate in the space of orderings. However,

as mentioned previously, it is essential to also assess the BN structure that is learnt.

A straightforward approach is to compare the learnt structure to the original structure

used to sample the data. By doing so, edges that are learnt can be qualified in different

way. A learnt edge is correct if it is set in the same direction as in the true structure.

It is reversed if it is set in the true structure with the opposite direction. An edge is

added if not present in the true structure. Finally, an omitted edge refers to an edge

present in the true structure but not learnt.

These four properties can be used as similarity measures themselves. For instance,

counting the number of correct edges C is an indicator of BN structure quality. How-

ever, it can be argued that C is not an objective similarity measure since the number

of reversed R, added A and omitted O edges also need to be considered. This is the

reason why several metrics combining C, R, A and O have been developed (De Jongh

and Druzdzel, 2009). In this work, we use three metrics. This may help anayzing re-

sults with respect to different contexts. Reversing an edge in a BN may still represent

the same probability distribution. This is because the associated CPTs would also be

affected by the change. Hence, in some contexts, reversed edges can be considered

36

2.5. Summary

as correct, although this is a problem dependent property. The number of relevant

edges, rel, represents all learnt edges that are also found in the true structure, without

consideration of the edges direction. It is computed as the sum of C and R. On the

other hand, added edges and omitted edges represent approximations of the original

structure. Thus, an objective of search techniques is to minimize their number. We call

the sum of A and O, the number of erroneous edges err. Finally, the Structural Ham-

ming Distance (SHD) is a measure more commonly used (Brown et al., 2005; De Jongh

and Druzdzel, 2009). SHD represents the total number of differences between two

structures, that is SHD=R+A+O.

2.5 Summary

• BNs are probabilistic graphical models in which variables of a dataset can be

represented as nodes and conditional dependencies as directed edges. BN is a

powerful tool to model data in presence of uncertainty. Typical uses of BNs

include problem understanding, classification or decision support. One of the

major tasks surrounding the use of BNs is to learn the structure from data, a

NP-hard problem.

• In order to assess different approaches to learn the structure, a common strategy

is to use known benchmark BNs to sample data. This data can be used by the

proposed search algorithms to produce structures that can be compared to the

original ones. Here, six benchmark BNs are considered that present different

characteristics: asia, tank, credit, car, boerlage and alarm.

• There exist two main families of methods used for BN structure learning. These

are either based on conditional independence tests or are search and score ap-

proaches.

• Search and score methods are based on producing solutions according to various

mechanisms before assessing them using a so-called fitness function. In the case of

37

2.5. Summary

BN structure learning, a common fitness function is the CH score that is derived

from a more general function called the Bayesian Dirichlet (BD). Search and score

strategies differ from each other in the way they make use of the information given

by the fitness of a solution.

• Greedy search is a particular type of search and score strategy in which the

solution that is produced at each generation gives the best improvement of fitness

over all neighbours of the current solution. One such technique is called K2. In

K2, an ordering of nodes is used as an input and edges determined. Starting from

an empty network, K2 adds at each iteration the edge that maximizes the CH

score until no improvement can be obtained.

• K2 introduces a reduction of the search space. It makes it possible to search for

an optimal ordering that can be used as an input in K2, rather than searching

through the entire space of structures. K2GA is a GA that search for an optimal

node ordering. At each generation, an ordering is produced and used in K2 to

determine a set of edges and return an associated CH score. Other approaches

using EAs or EDAs have been used to learn BN structures.

• Since many implementations are being explored in this work, several similarity

measures are presented that help assessing the quality of the solutions produced.

This includes measures that refer to the quality of a node ordering such as ex-

act match, edit or Kendall-Tau distances, but also measures such as SHD that

evaluate the quality of the actual BN resulting from an ordering.

38

Chapter 3

Difficulty of Node Ordering

Permutation Optimization

3.1 Search Space Analysis

In this section, the fitness landscapes associated with the different benchmark datasets

are assessed. This is aimed at highlighting and understanding the difficulties that can

be faced by search and score algorithms. In addition, analyzing the fitness landscape

can give indication on efficiency of algorithms and assist decision making regarding

algorithm design (Marmion et al., 2012; Wu et al., 2012).

3.1.1 Correlation between fitness and distance

A common approach to studying fitness landscape is to calculate a search space’s Fit-

ness Distance Correlation (FDC) (Jones and Forrest, 1995). FDC gives an indication

on how deceptive a problem is for optimization methods. FDC is usually computed

following a random walk, that is a sequence of solution generations and evaluations, in

which each solution is generated from the previous one using a chosen operator. In the

present setting, the swap mutation is used as operator. The swap mutation generates

39

3.1. Search Space Analysis

new permutations by swapping randomly two items from a given permutation. More

details on this operator are given in Chapter 5. At each step of the walk, the fitness

of the solution is calculated and its distance to the best known solution is stored. A

FDC graph is obtained by plotting the distance to the optimum against the fitness of

a solution. Thus, if the general curve generated has a negative gradient, the landscape

is adapted to optimization methods. A negative gradient means that as a solution is

drifting away from the optimum in terms of distance, its fitness also decreases. On

the other hand, some search spaces exhibit positive FDC gradients, meaning that the

problems are deceptive. Such problems are difficult to solve using search and score

approaches because the fitnesses of solutions increase when their respective distances

to the optimum increase, a counter-intuitive property. More generally, landscapes are

often compared with respect to their correlation coefficients r that quantifies the afore-

mentioned gradient, following (3.1) and obtained from the {fi, di} pairs representing

correlation between fitness and distance of the solution obtained at step i in the ran-

dom walk. Note that f̄ and d̄ represent the mean fitness and distance, while sF and sD

their associated standard deviations. Using r for comparisons, landscapes are classified

into three categories: straightforward if r ≤ −0.15, difficult if −0.15 < r < 0.15 and

deceptive or misleading for r ≥ 0.15 (Jones and Forrest, 1995).

r =
CFD
sF sD

, with CFD =
1

n

n∑
i=1

(fi − f̄)(di − d̄) (3.1)

In order to compute FDC from the random walk, it is needed to know the best solution.

In the case of BN structure learning using a permutation representation, it is possible to

define the global optimum by means of structure, but not in terms of variable orderings.

This is due to the fact that the optimal structure can be created from several distinct

variable orderings. For this reason and in order to define reference solutions in the space

of orderings, it is important to introduce a few concepts from topological sorting. We

consider two approaches, namely the Kahn (Kahn, 1962) and Tarjan (Tarjan, 1976)

algorithms. A Kahn topological sort is sometimes referred to as a width-first topological

40

3.1. Search Space Analysis

sort. Given a BN structure S, each node Xi whose parents belong to the set Pa(Xi)

is assigned a level Lj such that Xi ∈ Lj if Pa(Xi) ⊆ Lj−α, where α > 0 and if

Pa(Xi)∩Lj−1 6= ∅. L0 is defined as the set of nodes for which Pa(Xi) = ∅. Based on

these levels, it is possible to generate orderings of nodes that are topologically sorted in

a width-first manner. The so-called Kahn optimal orderings are created by taking nodes

from each level Lj , until all nodes from Lj have been picked. Nodes from Lj+1 are then

selected and set in the ordering. Note that the process starts by sampling nodes from

L0. The second type of topological sort, Tarjan sort, has a depth-first strategy where

nodes are sampled starting from L0 and following directed edges to chose the next

node to select. A node can only be picked if all his parents have already been picked.

Both methods provide orderings that could theoretically lead to the true structure after

running the K2 greedy search. Of course, it is important to recall that although these

orderings are considered as optimal, K2 may not retrieve the true structure for all of

them since some parameters influence the K2 results, such as the maximum number

of parents a node can have or the size of the data. Consequently, in order to create

k optimal orderings, k
2 orderings are generated based on each topological sort. This

ensures that the choice of topological sort does not bias the study (Wu et al., 2012).

FDC was calculated for each selected benchmark dataset, containing 3000 instances. 30

random walks were run, starting from optimal solutions. Each random walk involved

100 steps and distance was computed by means of KTD to an optimal ordering. Final

FDC values were obtained by averaging over the 30 result sets and are available from

Table 3.1, with standard deviations in brackets. Overall results suggest that the dif-

ferent problems are fairly straightforward to solve by search and score methods. Yet,

this is only considering FDC and further analysis needs to be done such as studying

the ruggedness of the landscape. Autocorrelation (Weinberger, 1990) is commonly used

for this purpose. A landscape is rugged when the difference in fitness of neighboring

solutions is important. The autocorrelation ACk is computed following a random walk

of length L and depends on the number of steps k that is chosen to define neighbor so-

lutions. For example, AC3 measures the fitness difference between two solutions distant

41

3.1. Search Space Analysis

by 3 random walk steps. ACk is calculated following (3.2). Note that each ACk needs

to be compared with a threshold value θ = 2√
L

(Weinberger, 1990). By definition and

to avoid approximations when L is small, ACk cannot be objectively analyzed when

ACk < θ. In our experimental setting, θ = 0.2.

ACk =

∑L−k
i=1 (fi − f̄)(fi+k − f̄)∑L

i=1(fi − f̄)2
(3.2)

The closer to 1 an ACk value is, the less rugged the fitness landscape is. Consequently,

the results presented in Table 3.2 indicate fairly smooth fitness landscapes for all prob-

lems when k = 1 since 0.85 < AC1 < 0.93. From Figure 3.1, although it might seem

that under increase of the distance k, the ACk decreases gently, comparisons with

other correlation analysis studies suggest the contrary. For comparison purposes, one

can refer to (Hordijk and Kauffman, 2005), where the autocorrelation is computed in a

similar manner for various NK landscapes. NK landscapes (Kauffman, 1989) represent

a meaningful application to compare with as the degree of ruggedness involved with

them can be tuned by varying the K value. In NK models, the K value represents the

epistasis in the landscape associated with a problem of size N, that is the degree of

correlation between solution genes with respect to the fitness. A NK landscape with

K=0 means that the fitness can be computed by assessing independently each gene

of a solution and by summing these independent contributions to the fitness. More

generally, for K = κ, the fitness of a solution is obtained by summing the fitness contri-

butions of groups of κ neighboring genes. Thus, the highest the value of K is, the more

rugged the landscape is. Based on the set of figures given in (Hordijk and Kauffman,

2005), the autocorrelation curves of Figure 3.1 fit between those obtained by the NK

landscapes with respective K values equal to 10 and 20 and N = 100.

42

3.1. Search Space Analysis

1 2 3 4 5 6 7 8 9 10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

k

A
C

k

asia
tank
credit
car
boerlage
alarm

Figure 3.1: Variation of autocorrelation ACk for all datasets under change of k

In addition, FDC was also computed using SHD to the true structure as a distance

metric. As expected and as shown in Table 3.3, the coefficients are generally close to

-1, meaning that the fitness attributed to a solution by means of CH score is a good

approximation. Boerlage and alarm, the two largest problems of the test suite exhibit

correlation coefficients lower than -0.90. The two smaller problems, car and credit have

higher coefficients, but the correlation remains important (< −0.80). Yet, on the two

smaller benchmarks, the correlation is less pronounced. This is particularly apparent

for tank which has a fitness-SHD correlation coefficient of -0.25 and a large standard

deviation (0.59). More generally, this shows that on the specific tank problem, the

CH score does not reflect the actual quality of the structure. However, the correlation

coefficient obtained using SHD has a different meaning than the r coefficient obtained

using KTD. Because, the search operates in the space of orderings, SHD is not used to

assess the relation between fitness and solution distances and KTD is preferred for this

purpose.

43

3.1. Search Space Analysis

a
si
a

ta
n
k

cr
ed
it

ca
r

bo
er
la
ge

a
la
rm

-0.24 0.03 -0.34 -0.24 -0.48 -0.53
(0.30) (0.39) (0.27) (0.33) (0.26) (0.23)

Table 3.1: Correlation coefficients r obtained on the different benchmark problems
using KTD as distance metric, with standard deviations in brackets

3.1.2 Plateaux Analysis

In K2GA, solutions are represented by orderings of nodes. Each ordering is processed by

the K2 algorithm which determines a set of edges. This means that different orderings

can lead to the same structure and hence be set with similar fitness values. Because

of this specific property of the K2 ordering representation, it is important to study

the landscape with respect to the number of plateaux that it introduces. We define a

plateau as a succession of operations that do not bring any change in terms of fitness

value of an ordering. In this section, we use the results from the previously described

random walk and count each step as an operation. Hence, a plateau is defined as a

succession of adjacent swap mutations that generate orderings of similar fitness. From

the random walk results, landscapes are evaluated on the number of plateaux they

exhibit, the average size of a plateau and the size of the largest plateau. Note that

plateau sizes are given in number of successive swaps and that plateaux of size 0 are

not counted in the statistics. All measurements are averaged over the 30 repeat runs

and presented in Table 3.4. In general and regardless of the benchmark, it can be said

that the landscape associated with the optimization problem of BN structure learning

exhibits many plateaux. The mean number of plateaux ranges from 15 (car) up to

23 (boerlage), which is an important number when considering that only 100 steps

were allowed during the random walk. The average size of the largest plateau is also

large ranging approximately between 8 and 19 steps. To put this number back into the

context, this means that on car, up to 19 alterations can be performed to the ordering

without affecting the fitness of the ordering. Of course, because of the experimental

44

3.1. Search Space Analysis

k
1

2
3

4
5

6
7

8
9

10

0
.8

5
0
.7

3
0.

66
0.

59
0.

53
0.

48
0.

44
0
.3

9
0.

3
5

0.
3
0

a
si
a

(0
.1

1
)

(0
.1

8
)

(0
.2

0)
(0

.2
1)

(0
.2

3)
(0

.2
4)

(0
.2

5)
(0

.2
5)

(0
.2

6)
(0

.2
7)

0
.8

9
0
.8

0
0.

72
0.

65
0.

59
0.

54
0.

49
0
.4

5
0.

4
0

0.
3
6

ta
n
k

(0
.0

7
)

(0
.1

1
)

(0
.1

4)
(0

.1
9)

(0
.2

1)
(0

.2
3)

(0
.2

4)
(0

.2
5)

(0
.2

7)
(0

.2
6)

0
.8

5
0
.7

3
0.

64
0.

57
0.

52
0.

46
0.

41
0
.3

6
0.

3
0

0.
2
5

cr
ed
it

(0
.0

9)
(0

.1
7)

(0
.1

8)
(0

.1
9)

(0
.1

9)
(0

.1
9)

(0
.1

9)
(0

.2
0
)

(0
.2

1
)

(0
.2

2
)

0.
88

0
.7

9
0.

70
0.

63
0.

56
0.

49
0.

43
0
.3

8
0.

3
4

0.
3
0

ca
r

(0
.0

7)
(0

.1
1)

(0
.1

3)
(0

.1
6)

(0
.1

8)
(0

.1
9)

(0
.2

1)
(0

.2
1
)

(0
.2

1
)

(0
.2

2
)

0.
92

0
.8

5
0.

78
0.

72
0.

66
0.

61
0.

56
0
.5

1
0.

4
7

0.
4
2

bo
er
la
g
e

(0
.0

3)
(0

.0
6)

(0
.0

9)
(0

.1
0)

(0
.1

2)
(0

.1
3)

(0
.1

5)
(0

.1
6
)

(0
.1

8
)

(0
.1

9
)

0.
93

0.
8
5

0.
79

0.
73

0.
68

0.
62

0.
57

0.
5
2

0
.4

8
0
.4

4
a
la
rm

(0
.0

4
)

(0
.0

7
)

(0
.1

0)
(0

.1
2)

(0
.1

3)
(0

.1
5)

(0
.1

6)
(0

.1
7)

(0
.1

8)
(0

.1
9)

T
ab

le
3.

2:
A

u
to

co
rr

el
at

io
n
A
U
k

o
b

ta
in

ed
on

th
e

d
iff

er
en

t
b

en
ch

m
ar

k
p

ro
b

le
m

s
fo

r
d
iff

er
en

t
va

lu
es

of
k
,

w
it

h
st

an
d

a
rd

d
ev

ia
ti

on
s

in
b

ra
ck

et
s

45

3.2. Search Space Analysis

a
si
a

ta
n
k

cr
ed
it

ca
r

bo
er
la
ge

a
la
rm

-0.72 -0.25 -0.84 -0.83 -0.92 -0.94
(0.18) (0.59) (0.15) (0.09) (0.07) (0.05)

Table 3.3: Correlation coefficients obtained on the different benchmark problems using
SHD as distance metric, with standard deviations in brackets

design, the same ordering can be represented more than once in a plateau, although this

happening is less likely as the number of nodes in an ordering increases. Consequently

and despite being substantial (16), the largest plateau found on alarm is very unlikely

to exhibit twice the same ordering. On another note, the mean size of a plateau is

comprised between 2.25 and 5.48 depending on the problem. Some correlations can

be observed from all results. Problems that exhibit lower number of plateaux, that

is car and alarm also exhibits the highest value for largest plateau size and mean

plateau size. This can be explained by the fact that when large plateaux are observed

through a random walk, there are less room for extra plateaux. Similarly, asia, tank

and boerlage all have relative low mean plateau sizes, but have many plateaux. It

is possible that noise could lead to a large number of plateaux, that is the presence

of single solutions that can lead the random walk away from a given plateau for a

few steps only. However, since this is not essential to the understanding of the fitness

landscape associated with BN structure learning, this was not investigated further. To

summarize and according to the chosen benchmarks, BN structure learning using K2

is an optimization problem that presents plateaued landscapes. This property suggests

that algorithms may experience unexpected convergence since different solutions can

have similar fitnesses. This finding represents another challenge for search and score

algorithms on top of the rugged landscape described by means of autocorrelation.

46

3.2. Influence of fitness properties on a population-based algorithm

a
si
a

ta
n
k

cr
ed
it

ca
r

bo
er
la
ge

a
la
rm

21.40 21.63 18.77 15.50 23.27 17.80
Num. of pl.

(3.28) (4.00) (3.42) (3.85) (2.56) (3.80)
8.43 11.87 14.20 18.73 8.07 16.00

Largest pl.
(4.83) (5.63) (5.59) (7.37) (2.32) (7.81)
2.25 2.95 4.06 5.48 2.56 4.56

Mean pl.
(0.69) (1.17) (1.16) (1.86) (0.46) (1.71)

Table 3.4: Plateau characteristics of the different benchmark problems, with standard
deviations in brackets

3.2 Influence of fitness properties on a population-based

algorithm

In this section, we propose to study the presence of local optima in the fitness landscape,

which is a known property of BN structure learning (Nielsen et al., 2003). In order to do

so, K2GA is run on some tests problems and results are gathered regarding the quality

of the solutions produced. In addition, following findings from the plateau analysis, the

convergence is investigated.

K2GA is run with different settings on the benchmark problems. Settings are decided

in accordance with literature and set in such ways that they help observing their impact

on K2GA. A limit of 1000 generations is set. Fitness and SHD of the best solution at

each generation is recorded and plotted. Tournament selection and cycle crossover are

used to obtain these results. Since the tournament size is known to affect the selection

pressure (Back, 1994), different tournament sizes were assessed. We recall that the

tournament selection works by pre-selecting from the population a number of solutions

defined by the tournament size. These solutions entered a tournament from which

they are compared to each other relative to their fitness values. The solution with the

highest fitness (in the case of a maximization problem) is selected and added to the

breeding pool. For experimental purposes, a tournament size of 1 was used in specific

47

3.2. Influence of fitness properties on a population-based algorithm

runs. This is similar to random selection. In addition to the tournament size, it has

also been proved that the population size considered in isolation affects the conver-

gence of a GA (Goldberg et al., 1991). Thus, several population sizes were considered,

ranging from 10 to 100. Since BN structure learning is a problem computationally

expensive to evaluate, populations sizes larger than 100 were not considered. Although

it may increase algorithm performance, using large populations also means that less

generations can be performed within the experimental bounds. In this study, the focus

is set on the ability of search and score approaches to reach good solutions by means

of evolution rather than by increasing the chances to get good individuals from the

initial population. This choice of population sizes is also consistent with choices made

in previous work on K2GA (Larrañaga, Kuijpers, Murga and Yurramendi, 1996; Kabli

et al., 2007; Fournier et al., 2010). Figures 3.2, B.1, B.2, B.3, B.4 and B.5 show how

K2GA behaves when varying the population and tournament sizes on all benchmark

problems. Results are averaged over 10 runs and the size of the data used to learnt the

BN structures is set to 3000 records.

When small population sizes are used such as 10 or 20 individuals, K2GA exhibits a very

fast convergence and only a few solutions are actually evaluated. For example, when

the population size is set to 10, less than 50 distinct fitness evaluations are performed.

This is because a solution is only evaluated if it differs from both parents. Thus, in

our implementation, such a low number of fitness evaluations is another sign of early

convergence. As a direct consequence, K2GA does not have enough time to generate

good solutions and it converges while the fitness of the best individual in its population

is low. On car, a population size less than 50 seems to be insufficient to reach good

solutions. Beyond this size, K2GA appears to always produce a final best solution of

comparable fitness. These observations can be confirmed by analyzing the evolution

of the KTD in the population over time. With small populations, the gradient of the

curve is very high and the drop in KTD is sudden. Although this may be seen as a good

behavior, the search does not evaluate enough solutions and does not reach solutions

of good fitness, which reflects a premature convergence problem. This is smoothed by

48

3.2. Influence of fitness properties on a population-based algorithm

increasing the population size.

Similar observations can be seen with respect to the tournament size. Since the evolu-

tions of fitness and KTD are correlated with population size, the impact of tournament

size was studied under two population sizes, chosen such that they allow enough time

for K2GA to converge to relatively good solutions, that is population sizes of 50 and

100. The largest considered tournament sizes that favor the best solutions for selection

lead to faster convergence and similarly to the case of population size, lead to final

solutions of lower quality, as it is the case with a tournament size of 4 for example.

On the other hand, using a tournament size of 1 leads to the slowest convergence and

the best final solutions. In this case, a tournament of size 1 is equivalent to randomly

selecting a solution from the population, hence introducing the lowest selection pressure

possible with tournament selection.

Overall, regardless of the settings on the population and tournament sizes, convergence

happens very quickly. This is also true when setting the smallest tournament size along

with large population sizes, where diversity between solutions decreases at a fast rate.

Since it has been shown that the different implementations of K2GA converge at a

fast rate, it is important to study the quality of the solutions that each of them reach.

One can claim that a slow convergence speed may not be a drawback if an algorithm

reaches the global optimum over repeated run. In figures 3.3, C.1, C.2, C.3, C.4 and

C.5, orderings that are obtained at the end of the 10 runs are compared with each

other for four implementations of K2GA, namely, with population size of 50 or 100

individuals and tournament size of 1 or 4. In order to do so, orderings are considered

to have similar quality if their fitnesses are equal, that is the BN structures that can be

derived from them are the same. The first observation that can be made concerns the

number of distinct fitnesses obtained over 10 runs. For example, on the car benchmark,

K2GA has reached between 7 and 8 different solutions at the end of the runs, illustrating

the presence of many local optima, but also of many instances of global optima. The

presence of many instances of global optima is made possible by the fact that several

49

3.3. Influence of fitness properties on a population-based algorithm

distinct variable orderings can lead to the same BN structure following the K2 process

and hence have the same fitness value. In addition, by focusing only on the best

ordering found over the 10 runs, it is noticeable that its frequency of occurrence is very

low (between 10% and 20%) with tournament size of 1. When the tournament size is

increased to 4, it seems that some of the orderings occur more often at the end of the

runs, up to 30% of the time. However, this does not always represent the best ordering

over all. For example, with a population of 50 individuals and a tournament size of

4, the final ordering that occurs the most (30% of the time) is only the fourth one

in terms of fitness value over all ranked orderings obtained after 10 runs. Note that

in this particular experimental setting, the best ordering was only found once over all

runs. The last two observations support the hypothesis that the problem of learning

BN structure exhibits many local optima. The number of local optima also appears

correlated with the dimension of the problem. For instance, on asia, the most frequent

final best solution produced by K2GA with tournament size of 1 and a population of

100 individuals occurred 7 times out of the 10 runs. Using the same settings, the final

best solution only occurred 5 times on credit and twice on car. Finally on the two

largest datasets, boerlage and alarm, all runs reached distinct solutions. Note that

K2GA produced at maximum 2 similar solutions on the particular problem of tank.

The set of experiments on K2GA helps to identify a few issues. First of all, it is

obvious that despite trying different settings regarding some parameters known to affect

diversity, K2GA exhibits early convergence. This is likely to be correlated with a

convergence to solutions of low fitness, caused by an uneffective exploration of the

search space. Evaluation of the solutions obtained by K2GA at the end of multiple

runs shows that it converges to many different solutions. These can be defined as local

optima. As the dimension of the problem increases, their number also increases and

the reliability of the approach can be questioned, since two successive runs will lead to

different solutions of different quality. In the next sections, a particular focus is put

on managing diversity in the population in order to avoid early convergence. Several

approaches are considered and compared to K2GA.

50

3.3. Influence of fitness properties on a population-based algorithm

0 50 100 150 200 250 300 350 400 450
−7080

−7075

−7070

−7065

−7060

−7055

−7050

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

0 100 200 300 400 500 600 700 800
−7068

−7066

−7064

−7062

−7060

−7058

−7056

−7054

−7052

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 50 100 150 200 250 300 350 400 450

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

0 100 200 300 400 500 600 700 800

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure 3.2: Convergence speed of K2GA on car

51

3.3. Influence of fitness properties on a population-based algorithm

−7059 −7058 −7057 −7056 −7055 −7054 −7053 −7052 −7051
0

1

2

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−7060 −7059 −7058 −7057 −7056 −7055 −7054 −7053 −7052
0

1

2

3

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−7055 −7054.5 −7054 −7053.5 −7053 −7052.5 −7052
0

1

2

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−7058 −7057 −7056 −7055 −7054 −7053 −7052 −7051
0

1

2

3

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure 3.3: Frequency of best orderings obtained over 10 runs of K2GA on car

52

3.3. Summary

3.3 Summary

• Fitness Distance Correlation measures how correlated a fitness function is to

the quality of solutions. Using KTD as a distance metric, FDC measures how

different to an optimal ordering a solution is when its fitness decreases. FDC can

be interpreted as a measure of optimization difficulty. In the case of BN structure

learning, FDC using KTD was calculated on all benchmark problems. Results

show that these benchmark problems can be considered as straightforward to

solve for search and score methods.

• Although fitness and distance to optimum are correlated, the fitness landscape

may present other challenges that can affect search and score algorithm perfor-

mances. Autocorrelation measures the ruggedness of a landscape. It is found that

the landscape is smoothed when considering solely neighbor solutions, that is dis-

tant by only a few step in the random walk. Yet, increasing the number of steps

leads to a decrease in autocorrelation showing that the landscapes associated to

all benchmark problems are rugged.

• Correlation between CH score and actual BN structural quality is also assessed.

FDC was computed using SHD as a distance measure. It shows an overall cor-

relation between CH score and SHD. However, this is not true for tank, showing

that on this particular problem, there is a discrepancy between quality of node

ordering and quality of structure.

• Since many orderings can produce the same BN structure in K2, plateaux can be

observed in the landscape. Measurements following a random walk show that all

landscapes exhibit many plateaux, including some that are large. This is prone

to provoke early convergence in search and score algorithms.

• Such landscape properties are considered when running K2GA, an established

algorithm for BN structure learning. Early convergence is found correlated to

53

3.3. Summary

population and tournament sizes. When small population or high tournament

sizes are used, K2GA converges very fast but to sub-optimal solutions. This can

be explained by the selective pressure being too high in such settings.

• Overall, the convergence of K2GA can be slowed down through careful setting of

tournament and population sizes, but early convergence remains that can affect

the quality of the final results.

• In addition to presenting early convergence, K2GA shows that the quality of

the solutions that it finds is not optimal. It is found to converge to solutions

of different quality over repeated runs. This helps confirming that the fitness

landscape exhibits many local optima.

54

Chapter 4

Combining Local Optima by

Means of Island Models

The previous chapter points out some difficulties related to learning BNs from data.

One of the main challenges that were highlighted was the loss of diversity that can be

seen when using population-based algorithms, leading to premature convergence of the

search. In this section, we focus on this issue and investigate how convergence can be

slowed down in K2GA by means of IM. In order to do so, the effect of the crossover

operation on local optima is first studied. This motivates the use of IM within the

K2GA approach which is implemented, tested on the benchmark suite and compared

with its serial counterpart. The concept is put to the test in the context of distributed

data, a common situation on which the inherent mechanism of IM is naturally adapted.

4.1 Effect of Crossover on Local Optima and Island Mod-

els

It has been shown in Chapter 3 that K2GA suffers from early convergence and does

converge but to solutions of different fitnesses. Hence, it was considered that K2GA

55

4.1. Effect of Crossover on Local Optima and Island Models

population size / tournament size
50/1 50/4 100/1 100/4 50/1 50/4 100/1 100/4

Asia Tank
4% 7% 0% 4% 13% 24% 4% 20%

Credit Car
29% 24% 2% 4% 22% 20% 9% 20%

Boerlage Alarm
31% 58% 36% 22% 33% 40% 40% 40%

Table 4.1: Frequency of beneficial crossovers over all possible combinations of local
optima

converges to many local optimal solutions. In this section, we investigate when and how

often the crossover of local optima can benefit the search. In order to do so, the final

solutions obtained in Section 3.2 following 10 runs on each benchmark with different

settings are considered as local optima. There are many ways to approach the question

of measuring the benefits of crossover operations. In this work, we consider that one

of the objectives of crossover is to produce a solution that has a better fitness than at

least one of its parents, while being different from both of them. The latter part of

this statement is particularly true in the context of BN structure learning when aiming

at maintaining a certain level of diversity in the population. It is important to state

that the aforementioned definition of a beneficial crossover is only true in the present

context, where the search can easily be trapped in local optima. Such rule is defined

and applied on solutions generated following crossover between every possible pair of

local optima. Since 10 runs were completed for each problem, a total of 45 crossover

operations were performed (there are n(n−1)
2 pairs of optima for n distinct optima,

that is 10∗9
2 in the present case) for each configuration of population and tournament

sizes. The results presented in Table 4.1 are averaged over the 45 operations. We

recall that some of these node orderings display the same CH score although the node

orderings that they represent are different. The cycle crossover operator used within

K2GA was applied here. Since, it produces two distinct offspring solutions as explained

in Figure 2.9, each of them was compared to both parents to decide whether or not

crossover was beneficial.

56

4.1. Effect of Crossover on Local Optima and Island Models

Results are very dependent to the benchmark problem. For example, on asia, crossover

of the local optima brings improvement to the search on maximum 7% of the occasions it

is applied. In some settings such as with population and tournament sizes respectively

set to 100 and 1, no advantage is seen in using crossover. However, on the larger

problems, crossover produces improved solutions in up to 58% of the time, as seen on

boerlage. These results need to be analyzed while considering the number of different

optima that were reached by K2GA. On asia, despite presenting several final solutions,

some local optima were of similar quality. Hence, using crossover on these is likely to

produce solutions of similar fitness, which means that the crossover is not beneficial.

Such analysis also gives an idea on how good the solutions previously obtained are.

Since a simple crossover can improve them in 40% of the cases on alarm, their absolute

quality can be questioned.

Experiments also display the importance of the settings regarding population and tour-

nament selection. It has been previously observed that using a population size of 100

and a tournament size of 1 helps with maintaining the diversity. Running K2GA with

similar settings on the four smallest problems also suggests that the quality of the so-

lutions is high, since applying crossover on the final solutions only leads to improved

solutions on few occasions (9% at maximum). Similarly, the settings that show the

highest correlation with early convergence, that is using populations of 50 individuals

and tournament size of 4, display the best rates of improvement on all of the benchmark

problems but one, car. On boerlage and alarm, the differences between the configura-

tions of K2GA is less obvious and crossover operations exhibit benefits at rates greater

than 20%.

The overall message that arises from these results lies in the fact that crossover, which

is a simple operation, can offer some benefits and produce improved solutions by bring-

ing together local optima. Naturally, these findings need to be analyzed with respect

to the problems. Yet, it seems that crossover of local optima represents a promising

way to enhance the quality of the solutions found by K2GA on larger problems. Since

57

4.1. Effect of Crossover on Local Optima and Island Models

new solutions can be produced from crossing over individuals across different GA pop-

ulations that have converged, it seems natural to further apply the idea and consider

the use of IM.

In IM (Cantu-Paz, 1995), several evolutionary searches are run in parallel sub-

populations, or islands and exchange solutions at given intervals. This has two ad-

vantages. First, the algorithm can easily be split between the searches and thus be set

to run on different processors. Second, the independent searches combined with the

exchange of solutions makes IM-based algorithms behave differently than their serial

counterparts. IM have been widely applied in order to cope with limitations some se-

rial EA implementations may have on specific problems, such as convergence to local

optima, certainly the most frequent issue faced by EAs. It is known that IM can help

with this matter by using the results from many searches at different islands. If a

local optimum is reached at a specific island, this is likely to be fixed by integrating a

solution found by another search at a different island. In (Skolicki and De Jong, 2004),

the idea is extended in order to allow multi-representation between islands. In other

words, the search is performed according to different criteria at each island in order to

minimize the likelihood of falling in local optima. Thus, this approach seems particu-

larly appropriate for searching through multi-optimal spaces such as those associated

with BN structure learning (Nielsen et al., 2003).

To our knowledge, although IM has been applied to reduce computation time, it has

not been used to improve the performance of EAs for BN structure learning. However,

the need for parallel BN structure learning and more generally for parallel PGMs has

been expressed within the EDA community in recent years (Iclănzan and Dumitrescu,

2010; Santana, 2011). In some EDAs such as the Bayesian Optimization Algorithm

(BOA)(Ocenasek and Schwarz, 2001) and the Estimation of Bayesian Network Algo-

rithm (EBNA)(Mendiburu et al., 2005), BNs are used to model the distribution of

solution genes in order to sample new individuals. In serial versions of BN-based

EDAs, it is accounted that 50 to 99% of the total runtime is dedicated to model build-

ing (Mendiburu et al., 2005). Work has been done in (Ocenasek and Schwarz, 2001)

58

4.2. Island Model K2 Genetic Algorithm

in reducing the time allocated to the construction of the BN model in BOA using

parallel implementation. By decomposing and distributing the scoring function to a

pool of workstations, the distributed BOA exhibited a short runtime, but also a loss of

efficiency.

More generally, IM has been applied in (De la Ossa et al., 2004) to parallelize EDAs.

Two approaches were assessed in which either individual solutions or underlying prob-

abilistic models were exchanged during migration. Findings were two-fold, showing

that IM implementations outperform the serial versions and that in addition to being

possible, the exchange of probabilistic models from which new solutions can be sampled

generally leads to better results than the exchange of individuals.

4.2 Island Model K2 Genetic Algorithm

In this section, IMK2GA, an IM implementation of K2GA is presented. Further, experi-

ments regarding the use of IM with K2GA are run in two steps. First, it is investigated

if IM can help K2GA in maintaining diversity. Hence comparisons between several

configurations of IMK2GA are performed in an experimental environment that exhibit

characteristics prone to lead to early convergence. More explicitly, this was done by

interacting with the population and tournament sizes. In the second part of the exper-

iment, head-to-head performance comparisons are run in an optimal environment for

K2GA. This second step is essential to assess the performance of IMK2GA relative to

a state-of-the-art method, K2GA, when tunned with near-optimal settings.

4.2.1 Implementation

The proposed implementation is based on the same ordering representation as the one

used in K2GA. More precisely, IMK2GA is composed of many instances of K2GA

running in parallel. The principle is to pause the search when migration of individuals

should occur in order to exchange solutions between islands. Once the migration step

59

4.2. Island Model K2 Genetic Algorithm

is completed, the search can be resumed. Many strategies can thus be considered

which relates to the migration topology, the migration rate, the migration size and the

migration policy. In this section, we present a proof of concept and aim at studying

the possible use of IMK2GA. Therefore, we only consider one particular strategy that

uses a best-worst migration policy on a ring topology (De la Ossa et al., 2004) with two

solutions being exchanged at each migration. In a ring topology, islands are thought

of as forming a circle in which each island sends solutions to its right neighbor while

receiving solutions from its left one at migration. Algorithm 3 summarizes the different

steps of IMK2GA. The number of islands, number of migrations and migration intervals

are respectively set to a, b and migIntervals. At each island isli, the population popi

is evolved to search the space of solutions. The search is split in evolution stages stgj

according to the number of generation geni already performed. At the end of each

evolution stage but the last, a subset migi is created for migration with the λ best

individuals from popi. Subsets at different islands are then exchanged following a ring

topology and the λ worse individuals replaced in each popi. Note that this is also the

case when migrants present a lower fitness than the worse individuals.

In order to assess many configurations of the algorithm and to help the understanding,

we will refer to different configurations of IMK2GA as IMK2GAab in the rest of the

chapter, where a and b represent the number of islands and the number of migrations

respectively 1. The traditional version of K2GA corresponds to IMK2GA10.

4.2.2 Island Models and Loss of Diversity in K2GA

In the first experiment, small population sizes were used for the different benchmark

problems. These were respectively set to 100, 50, 50, 20 and 20 for asia, tank, credit,

car and boerlage. In addition, selective pressure was kept high through using tourna-

ment selection of size 4. Note that this part of the experiment was not assessed on

alarm due to time and computational cost constraints. IMK2GA is later evaluated

1Only one-digit values are considered throughout this thesis for the number of islands and the
number of migrations.

60

4.2. Island Model K2 Genetic Algorithm

Algorithm 3: IMK2GAab
for each island isli, i ∈ [0, a− 1] do

Initialize population popi
Evaluate popi using K2 algorithm
Initialize number of generation geni = 0
for each evolution stage stgj , j ∈ [0, b] do

repeat
Select orderings in popi to reproduce
Apply crossover operator
Apply mutation operator
geni + +

until geni = migInterval ∗ (j + 1)
if j 6= b then

Select n best orderings to create subpopulation migi
if i 6= 0 then

Replace λ worse orderings in popi by migi−1

else
Replace λ worse orderings in popi by miga−1

end if
end if

end for
end for

on alarm, with respect to its performance. In this set of experiments and on a given

dataset, each island is set with the same population size. This allows us to observe the

behavior of all algorithms when the inherent evolution is based on populations with

comparable settings. In addition, this strategy helps understanding the mechanism at

a single island as IMK2GA10 can be considered as such in this case. Different ap-

proaches were considered for the IM strategies in terms of number of islands (2 or 4)

and number of migrations (1 or 3). Algorithm behavior was studied on 1000 individ-

ual fitness evaluations (FEs) with all migrations occurring during this period, when

at least two islands were used. The migration interval was therefore set manually for

each IMK2GAab. Migration interval for IMK2GA10 refers to the total number of

generations that were run. These values are given in Table 4.2. A maximum of 10000

generations per migration interval was allowed for all algorithms to reach at least 1000

FEs. Algorithms which did not reach that number of FEs were considered as having

converged at the end of the run. Finally, the samples from which BNs were learnt were

61

4.2. Island Model K2 Genetic Algorithm

restricting diversity enhancing diversity
Dataset IMGA21 IMGA23 IMGA41 IMGA43 IMGA43

Asia 1000 500 300 150 100
Tank 5000 1500 600 250 100

Credit 4000 1500 600 300 100
Car 8000 3000 4000 1300 100

Boerlage 8000 3500 3500 1300 75
Alarm n/a n/a n/a n/a 75

Table 4.2: Migration intervals for IMK2GAab (in generations)

composed of 5000 records.

Tables 4.3 and 4.4 summarize the mean characteristics of the best BN obtained by each

algorithm on each dataset after 1000 FEs. Best values for fitness and C appear in bold.

Values that are not significantly different from the best (p-value>0.005 after Bonferroni

correction (Dunn, 1961)) have been marked with a ∗ symbol. Overall, IMK2GA43

produces the ordering with the highest fitness for all datasets but tank. Yet, in terms

of C, the highest numbers are obtained by IMK2GA10 on asia, IMK2GA23 on tank

and by IMK2GA43 on credit, car and boerlage. Despite being significantly better in

some comparisons, differences are not as important among IM-based methods than

as between them and the traditional K2GA although this statement is not true for

comparisons on asia, the smallest test problem.

In addition to the sole results, it is important to evaluate how the quality of the solutions

changes over time. Figures D.1, D.2, D.3, D.4 and D.5 show the evolution of the

best solution at each generation for all IMK2GAab configurations and all benchmark

problems on which they were run. Solution quality is represented by means of fitness,

relevant and erroneous edges and SHD. In addition, this set of figures also displays the

evolution of the KTD in the population.

These figures also allow us to investigate the importance of the number of islands.

First of all, there is a difference in terms of level of diversity that is reached following

migration. Migration always has a positive influence on the KTD. However, when 4

islands are used, the level of KTD is considerably higher than when only 2 islands are

62

4.2. Island Model K2 Genetic Algorithm

used. This is particularly apparent on car and credit as seen in Figures D.3 and D.4.

The number of islands also has an impact on the evolution of the fitness. Although

fitness is generally improved at migration, a lack of evolution can be observed successive

to migration when using 2 islands. This behavior can be seen on all benchmarks and

is most likely linked to to the aforementioned level of diversity that is much lower in

these configurations.

The introduction of IM also involves another parameter of high importance, the number

of migrations. In terms of KTD, when 3 migrations are used, the drop in diversity is

slowed down. This observation is clear on credit and is represented by a gradient

much smaller in the KTD curve of Figure E.3c, once the first migration has been

performed. Although the diversity in the population still decreases, it does so at a very

small pace after migration. Figure E.3c also displays how the KTD of the population of

IMK2GA41 is maintained after migration. However, using simply one migration seems

less efficient than using 3. The time at which the first migration occurs represents

another parameter that should be studied since it would be beneficial to slow down the

diversity loss at an earlier stage in the process. However, this was not supported in the

implementation used in this work and thus is not investigated.

More general comments can be made on the behavior of all implementations using IM.

As expected following the experiments on bringing together local optima in Section 4.1,

the fitness is always improved following the first migration. Subsequent migrations do

not show signs of decrease in fitness although they do not always lead to improvement.

This is probably caused by the fact that solutions of high quality have been reached

already, making improvements less frequent. This hypothesis is supported by the fact

that inefficient migrations are mostly observed on smaller problems. On the other hand,

some surprising observations can be made. For example, IMK2GA23 shows signs of

decrease in KTD when migrations are performed on the boerlage problem. Although

this behavior is unique to this algorithm and problem, it remains counterintuitive and

hard to explain. Experiments on asia also generate interesting cases such as the high

SHD that is associated to IMK2GA43 after the first migration. However, on this

63

4.2. Island Model K2 Genetic Algorithm

particular and easy problem, the sole GA evolution (IMK2GA10) is able to reach good

solutions (low SHD and high number of relevant edges). IM may have a negative effect

on such problem when evolving solutions that are already of high quality. We note

that the same observation is valid for IMK2GA21 and IMK2GA23, but to a lesser

extent. IMK2GA43 is also the only implementation that presents degradation relative

to the number of relevant edges of the best solution throughout the search. Of course,

these latter points are to be considered moderately since learning asia is not a very

challenging task. Finally, the two implementations using 4 islands do never converge on

tank in the given time limit. Fitness is constantly increased and their populations’ SHD

maintained to a steady level after the first migration. Yet, this good behavior relative to

a GA performance corresponds to a decrease of the BN structure quality represented by

an increasing SHD and number of erroneous edges. This can be explained by recalling

the lack of correlation between CH score and BN quality on the tank benchmark as

seen in Section 3.1.

We investigate in more depth the evolution of the edge quality in the best structures

over time, through studying distinctly correct, reversed, added and omitted edges.

This is done for two configurations of IMK2GAab. Figure D.6 illustrates how these

edges change on IMK2GA21, a configuration in which it is easy to study the sole

impact of a single migration between two islands. Figure D.7 focuses on IMK2GA43,

which is the implementation exhibiting the best results. One of the effects of migration

is a decrease of reversed edges and an increase in correct edges. This is simply the

redirection of an edge and can be seen on the figures for tank and car. However,

migration sometimes leads to the redirection of edges that were correct. Although this

is not an observation that one wants when seeking for a BN structure, the evolution that

follows mutation results in the edge being redirected to its correct state. Such behavior

is observed on asia, credit and boerlage and helps stating that from the results on

IMK2GA21, a single mutation may not always be beneficial to the structure but it

does not lead to irrevocable negative alterations. IMK2GA43 follows this trend. It

shows that migrations on boerlage can actually benefit the search and redirect edges,

64

4.2. Island Model K2 Genetic Algorithm

although not seen with IMK2GA21. This difference relates once again to the diversity

in the population at the time of migration. But, we also notice that some negative

alterations on asia are not fixed by evolution. Finally, we point out the difficulty

that exists in discerning the effect of migrations. The first migration always affects

the search noticeably, but it is not always the case with the subsequent migrations.

We propose that this is due to the state of the population at each individual island.

With all populations more likely to have reached the same best individuals after a few

migrations, it becomes more difficult to further improve the search. It may suggest

that an important parameter to study is the time of the first migration as mentioned

already.

4.2.3 Performance Evaluation of IMK2GA

Most of the behavior inherent to IMK2GAab has been investigated through the pre-

vious experiments. It was noted that overall, using 4 islands and 3 migrations leads to

the best results, both by helping in maintaining diversity in the population, but also

by producing solutions of high fitness. Yet, these findings need to be handled with care

since the environment in which the algorithms were runs were not well adapted to a

serial GA, with small population sizes and high selection pressure. Thus, we focus now

on studying purely the performance of one configuration of IMK2GAab and the serial

K2GA. Naturally, IMK2GA43 is selected as part of the experiments for the promising

results it previously displayed.

In order to reduce the bias towards IMK2GA, the population sizes were increased to

100 for all benchmark problems and the tournament size set to 1, introducing a low

selective pressure, and thus slowing down the loss of diversity in the population. 10 runs

were performed for the two methods and the 6 benchmark problems were considered.

Empirical results are shown in Tables 4.5 and 4.6. Statistical significance was tested over

30 runs following the same approach as for the previous experiments in Section 4.2.2.

There are two main points to take out of these results. On the four smallest problems,

65

4.2. Island Model K2 Genetic Algorithm

A
si

a
T

a
n

k
C

re
d

it

I
M
G
A

1
0

C
6
.0

7
(0

.3
6
)

14
.0

7
(2

.0
2)
∗

8
.6

(1
.1

1)
∗

R
1.

93
(0

.3
6)

5.
83

(1
.9

2)
3.

4
(1

.1
1
)

A
0.

03
(0

.1
8)

6.
0

(1
.5

1)
1.

9
(0

.7
5
)

O
0.

0
(0

.0
)

0.
1

(0
.3

0)
0
.0

(0
.0

)
F

it
n

es
s

-1
1
23

4.
93

13
(0

.5
6)
∗

-1
66

78
.0

47
0

(7
.2

2)
-5

28
34

.2
9
05

(7
.7

2
)

I
M
G
A

2
1

C
5.

97
(0

.1
8)
∗

15
.0

(1
.3

9)
∗

8.
8
3

(1
.0

7)
∗

R
2.

03
(0

.1
8)

4.
9

(1
.4

2)
3.

1
7

(1
.0

7)
A

0.
03

(0
.1

8)
5.

6
(1

.0
8)

1.
4
7

(0
.5

6)
O

0.
0

(0
.0

)
0.

1
(0

.3
0)

0
.0

(0
.0

)
F

it
n

es
s

-1
1
2
3
4
.7

1
1
4

(2
.4

9
.1

0
−
1
2
)

-1
66

72
.4

93
4

(2
.7

9)
-5

28
28

.5
0
94

(5
.8

6
)

I
M
G
A

2
3

C
6.

0
(0

.0
)∗

1
5
.1

(1
.6

4
)

8.
8
6

(0
.8

5)
∗

R
2.

0
(0

.0
)

4.
9

(1
.6

4)
3.

1
3

(0
.8

5)
A

0.
0

(0
.0

)
5.

3
(0

.9
7)

1.
3
7

(0
.4

8)
O

0.
0

(0
.0

)
0.

0
(0

.0
)

0
.0

(0
.0

)
F

it
n

es
s

-1
1
2
3
4
.7

1
1
4

(1
.9

9
.1

0
−
1
2
)

-1
66

72
.3

44
7

(2
.0

3)
∗

-5
2
82

7.
2
59

5
(6

.1
1)
∗

I
M
G
A

4
1

C
6
.0

7
(0

.2
5
)

14
.6

(1
.6

2)
∗

9.
0
6

(0
.7

3)
∗

R
1.

93
(0

.2
5)

5.
37

(1
.5

8)
2.

9
3

(0
.7

3)
A

0.
0

(0
.0

)
5.

6
(0

.8
4)

1.
2
7

(0
.4

4)
O

0.
0

(0
.0

)
0.

03
(0

.1
8)

0
.0

(0
.0

)
F

it
n

es
s

-1
1
2
3
4
.7

1
1
4

(1
.7

6
.1

0
−
1
2
)

-1
6
6
7
0
.8

9
0
4

(1
.4

1
)

-5
2
82

4.
9
42

0
(3

.7
5)
∗

I
M
G
A

4
3

C
5.

83
(0

.4
5)
∗

14
.1

7
(1

.8
1)
∗

9
.1

(0
.7

9
)

R
2.

17
(0

.4
5)

5.
83

(1
.8

1)
2.

9
(0

.7
9
)

A
0.

17
(0

.4
5)

6.
03

(1
.1

4)
1.

1
(0

.3
0
)

O
0.

0
(0

.0
)

0.
0

(0
.0

)
0
.0

(0
.0

)
F

it
n

es
s

-1
1
2
3
4
.7

1
1
4

(1
.7

6
.1

0
−
1
2
)

-1
66

70
.9

07
0

(1
.1

4)
-5

2
8
2
3
.9

3
3
1

(3
.2

2
)

T
a
b

le
4.

3:
C

h
a
ra

ct
er

is
ti

cs
of

b
es

t
B

N
s

fo
u

n
d

b
y

ea
ch

al
go

ri
th

m
af

te
r

10
00

in
d

iv
id

u
a
l

F
E

s
on

a
si
a
,
ta
n
k

a
n

d
cr
ed
it

66

4.2. Island Model K2 Genetic Algorithm

C
a
r

B
o
e
rl

a
g
e

A
la

rm

I
M
G
A

1
0

C
10

.4
7

(1
.6

9)
19

.2
(2

.3
3)
∗

n
/
a

R
3.

63
(1

.4
3)

8.
9

(2
.0

4)
A

7.
7

(2
.2

7)
5.

23
(1

.5
2)

O
2.

9
(1

.0
4)

7.
90

(0
.8

3)
F

it
n

es
s

-1
16

59
.9

07
4

(4
.8

9)
-5

13
01

.7
06

6
(1

1.
0
6)

I
M
G
A

2
1

C
11

.6
3

(1
.1

7)
∗

19
.1

3
(2

.3
2)
∗

n
/
a

R
2.

9
(1

.3
5)

9.
23

(2
.0

3)
A

7.
03

(1
.6

2)
4.

63
(1

.2
5)

O
2.

47
(0

.7
6)

7.
63

(0
.7

5)
F

it
n

es
s

-1
16

54
.2

42
8

(3
.3

2)
∗

-5
12

94
.3

23
8

(9
.3

6
)

I
M
G
A

2
3

C
11

.1
7

(1
.5

7)
19

.1
7

(2
.5

8)
∗

n
/
a

R
3.

03
(1

.7
2)

9.
17

(2
.1

8)
A

7.
47

(1
.5

0)
4.

67
(1

.9
4)

O
2.

8
(0

.7
5)

7.
67

(0
.7

0)
F

it
n

es
s

-1
16

54
.8

27
5

(3
.8

8)
∗

-5
12

89
.7

25
4

(9
.9

2)
∗

I
M
G
A

4
1

C
12

.0
(0

.9
3)
∗

19
.4

3
(2

.5
9)
∗

n
/
a

R
2.

57
(0

.9
9)

9.
03

(2
.2

4)
A

7.
17

(1
.1

3)
4.

2
(1

.2
8)

O
1.

13
(2

.4
3)

7.
53

(0
.7

6)
F

it
n

es
s

-1
16

53
.0

61
6

(2
.0

6)
∗

-5
12

85
.2

22
1

(7
.9

6)
∗

I
M
G
A

4
3

C
1
2
.2

(0
.9

8
)

2
0
.1

3
(2

.2
0
)

n
/
a

R
2.

23
(1

.0
2)

8.
37

(2
.0

9)
A

6.
7

(1
.3

2)
3.

87
(1

.4
5)

O
2.

57
(0

.6
2)

7.
5

(0
.6

7)
F

it
n

es
s

-1
1
6
5
2
.4

0
0
1

(2
.4

6
)

-5
1
2
8
5
.0

2
7
6

(9
.8

8
)

T
ab

le
4
.4

:
C

h
ar

ac
te

ri
st

ic
s

o
f

b
es

t
B

N
s

fo
u

n
d

b
y

ea
ch

al
go

ri
th

m
af

te
r

10
00

in
d

iv
id

u
a
l

F
E

s
on

ca
r,
bo
er
la
g
e

an
d
a
la
rm

67

4.3. Island Model K2 Genetic Algorithm

IMK2GA43 exhibits a better fitness than the serial IMK2GA10. This also corresponds

to better values of C and SHD. The use of IM supports and enhances the search on these

benchmarks. However, as the dimension of the problem increases, the performance of

IMK2GA43 becomes worst than the one of IMK2GA10. On boerlage and alarm, the

serial GA significantly outperforms the IM implementation on all markers, relative to

both fitness and solution quality. Table 4.7 gives an idea of the state of the search at

the end of the runs for both methods by presenting the population KTD after 1000

fitness evaluations. It appears that IMK2GA43 has a high diversity, while the one of

IMK2GA10 is much closer to 0, reducing the chances to produce further improvements.

In order to understand these results, it is important to look at the state of each method

when the maximum number of fitness evaluations is reached and measurements taken.

Figure 4.1 shows the evolution of the best fitness over time throughout the search. It

is interesting to note that the shape of the curves is very different between the two

methods. While IMK2GA10 confirms the trend overseen in Chapter 3 by displaying

a fast improvement in fitness, followed by stagnation, IMK2GA43 shows a gentle im-

provement over time and does not exhibit any sign of convergence. On boerlage and

alarm, where IMK2GA10 outperforms the IMK2GA43, the latter has not converged

when the experiment is paused. This suggests that there is room for further perfor-

mance improvement in IMK2GA43. Similarly, at the end of the runs on tank, credit

and car, IMK2GA43 is stopped while improving its best solution. Yet, it outperforms

IMK2GA10 on these three benchmarks.

These findings highlight the difficulty in correctly setting the tradeoff between selective

pressure and quality of final solutions. Of course, it is important to consider the

applications and how many fitness evaluations can be performed. With time, the use

of several islands and migration is likely to lead to better solutions at the price to a

slow improvement in solution quality. On problems that cannot allow a long time for

evolution, high selection pressure can be beneficial and serial GA implementations may

be better adapted.

68

4.3. Island Model K2 Genetic Algorithm

Asia Tank Credit

IMGA10

C 6.73 (0.44) 14.33 (2.09) 8.67 (1.14)
R 1.27 (0.44)∗ 5.57 (1.96) 3.33 (1.14)
A 0.0 (0.0) 5.33 (0.94) 1.40 (0.55)
O 0.0 (0.0) 0.10 (0.30) 0.0 (0.0)

SHD 1.27 (0.44) 11.00 (2.92) 4.73 (1.63)
Rel. 8.00 (0.0) 19.90 (0.30)∗ 12.00 (0.0)
Err. 0.0 (0.0) 5.43 (1.05)∗ 1.40 (0.55)

Fitness -6827.9744 (0.02) -10027.5908 (2.27) -31757.4589 (5.06)

IMGA43

C 6.63 (0.48)∗ 15.33 (1.62) 9.17 (0.52)
R 1.37 (0.48) 4.60 (1.43) 2.83 (0.52)
A 0.0 (0.0) 5.03 (0.55) 1.03 (0.18)
O 0.0 (0.0) 0.07 (0.25) 0.0 (0.0)

SHD 1.37 (0.48)∗ 9.70 (1.99) 3.87 (0.62)
Rel. 8.00 (0.0) 19.93 (0.25) 12.00 (0.0)
Err. 0.0 (0.0) 5.10 (0.70) 1.03 (0.18)

Fitness -6827.9796 (0.03)∗ -10026.5528 (1.06) -31753.7064 (1.74)

Table 4.5: Characteristics of best BNs found by each algorithm after 1000 individual
FEs on asia, tank and credit with parameters enhancing diversity.

Car Boerlage Alarm

IMGA10

C 12.97 (0.75)∗ 20.50 (1.80) 26.53 (2.26)
R 1.77 (0.72) 7.60 (1.62) 15.33 (2.33)
A 5.97 (0.84) 3.30 (1.44) 18.50 (2.09)
O 2.27 (0.51) 7.90 (0.54) 4.13 (0.34)

SHD 10.00 (1.51) 18.80 (2.54) 37.97 (3.46)
Rel. 14.73 (0.51) 28.10 (0.54) 41.87 (0.34)
Err. 8.23 (1.27) 11.20 (1.72) 22.63 (2.14)

Fitness -7054.3047 (1.75)∗ -30687.8064 (5.73) -29647.0882 (34.39)

IMGA43

C 13.03 (0.75) 19.87 (1.65)∗ 25.10 (2.29)
R 1.23 (0.50) 8.07 (1.57) 16.77 (2.22)
A 6.30 (1.32) 4.10 (1.72) 20.97 (1.97)
O 2.73 (0.73) 8.07 (0.44) 4.13 (0.43)

SHD 10.27 (2.00)∗ 20.23 (2.14) 41.87 (3.33)
Rel. 14.27 (0.73) 27.93 (0.44)∗ 41.87 (0.43)∗

Err. 9.03 (1.99)∗ 12.17 (1.77) 25.10 (2.07)
Fitness -7053.7041 (1.14) -30692.8968 (4.83) -29718.4400 (30.02)

Table 4.6: Characteristics of best BNs found by each algorithm after 1000 individual
FEs on car, boerlage and alarm with parameters enhancing diversity

69

4.3. Island Model K2 Genetic Algorithm

0 100 200 300 400 500 600 700 800 900 1000
−6830.5

−6830

−6829.5

−6829

−6828.5

−6828

−6827.5

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(a) Asia

0 100 200 300 400 500 600 700 800 900 1000
−1.0055

−1.005

−1.0045

−1.004

−1.0035

−1.003

−1.0025
x 10

4

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(b) Tank

0 100 200 300 400 500 600 700 800 900 1000
−3.178

−3.1775

−3.177

−3.1765

−3.176

−3.1755

−3.175
x 10

4

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(c) Credit

0 100 200 300 400 500 600 700 800 900 1000
−7064

−7062

−7060

−7058

−7056

−7054

−7052

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(d) Car

0 100 200 300 400 500 600 700 800 900 1000
−3.0735

−3.073

−3.0725

−3.072

−3.0715

−3.071

−3.0705

−3.07

−3.0695

−3.069

−3.0685
x 10

4

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(e) Boerlage

0 100 200 300 400 500 600 700 800 900 1000
−3.02

−3.01

−3

−2.99

−2.98

−2.97

−2.96
x 10

4

Fitness Evaluations

F
itn

es
s

of
 B

es
t S

ol
ut

io
n

IMK2GA
10

IMK2GA
43

(f) Alarm

Figure 4.1: Evolution of the fitness of the best solution in IMK2GA10 and IMK2GA43

on all benchmark problems

70

4.3. Learning Bayesian Networks from Distributed Data

Asia Tank Credit Car Boerlage Alarm

IMK2GA10 0.25
(0.05)

0.11
(0.07)

0.17
(0.06)

0.19
(0.08)

0.12
(0.08)

0.08
(0.03)

IMK2GA43 0.46
(0.01)

0.40
(0.01)

0.39
(0.02)

0.41
(0.01)

0.43
(0.02)

0.43
(0.01)

Table 4.7: Population KTD after 1000 fitness evaluations in IMK2GA10 and
IMK2GA43 for each benchmark problem

4.3 Learning Bayesian Networks from Distributed Data

Distributed data mining (DDM) appeared as a new field of research when issues on

classical centralized data mining were raised. Such issues encompass the long response

time needed to gather data to a central site, the lack of proper use of distributed systems

that could potentially improve the performance of data mining, or at least facilitate its

completion. Other issues relate to the cost of communication involved with transferring

data and finally the need to preserve privacy (Park et al., 2002).

From the literature, there is a distinction between two types of DDM, namely DDM

which deals with homogeneous data, that is where the set of variables is identical across

distributed data sites and DDM that handles heterogeneous data where variables are

different between sites. Naturally, from this distinction, arise different approaches.

In this section, the use of IM is investigated in the context of homogeneously distributed

data. This study is motivated by the solution migration process inherent to IM that

could offer potential when performing data modelling tasks from distributed data. IM

allows models to be learnt locally, that is based on the data at a single site, before

exchanging these models through migration. Each island gets information about the

data present at distant sites through the model it receives, but no data is transfered

at any moment. The advantages of the approach are two-fold. First, it is a way to

allow data modelling from distributed data, while preserving privacy, that is without

exchanging or merging any data. Second, using IM could also represent a way to divide

the data in order to mine separately subsets of the data, with different characteristics,

71

4.3. Learning Bayesian Networks from Distributed Data

or smaller size, which can be beneficial in terms of computational power needed. We

recall that the time associated with learning a BN from data is related to the number

of instances in the data, among other elements. The use of IM is only treated here with

the objective to allow privacy-preserving BN structure learning from distributed data,

thus the issue of computational cost is not investigated.

Although several studies have addressed the problem of parallelization of BN structure

learning (Lam and Segre, 1997; Ocenasek and Schwarz, 2001; Mendiburu et al., 2005;

Santana, 2011), there are fewer of them that treat the issue of handling distributed data.

In (Chen et al., 2004), local BNs are constructed at each site before being recombined

to produce a global model. Despite retrieving similar structures as centralized methods,

such approach presents flaws with respect to data privacy, as some selected instances

are shared to compute the final parameters. Focus on privacy preservation is higher

in (Yang and Wright, 2006), where a method is presented that computes CH score

and the BN parameters from distant sites without sharing data. Other approaches

including cryptography or noise addition have also been proposed for different kinds of

data mining techniques but no method has yet been implemented which focuses on the

exchange of BN structures (Yang and Wright, 2006).

4.3.1 Generating Distributed Data

Although generating distributed data could be straightforward, time was spent design-

ing a strategy to produce different sets of data, corresponding to different contexts.

Distributed real-world data may exhibit some differences between sites. For example,

these can be the effects of differences in demographics among people represented by

the data at distant locations. More generally, the data is likely to show dissimilarities

in terms of its distribution across sites. In order to model these differences, data was

generated with different distributions. Sampling simply the original BN as was done to

generate the data used for the previous sets of experiments does not help introducing

changes in the distribution. Hence, the parameters from the original BN were modified

72

4.3. Learning Bayesian Networks from Distributed Data

to different extent to produce several altered BNs that can be sampled in turn. The

process to alter the CPT entries of a given BN follows (Wu et al., 2012) and is detailed

in Algorithm 4. It takes into consideration two parameters that are the alteration rate

τ and the alteration power α. The process goes through all CPT rows rij for each

node Xi and decide whether to bring some changes to the row or not. This decision is

based on the value of τ , ranging from 0, where no changes are performed to 1, where

each row is modified. The second parameter, α manages the degree of alteration that

is brought to the row. When a CPT row is altered, each of its elements Pijk is replaced

by a value drawn in the range [Pijk − α ∗ Pijk;Pijk + α ∗ Pijk]. In this way, large values

of α can result in new values that are very different from the original ones. Note that

small alterations can also happen when α is large. Once all Pijk of a given row have

been changed, their values are normalized in order for them to sum up to 1.

Algorithm 4: Altering parameters in a given BN, at rate τ and power α

for each node Xi of BN do
for each row rij of Xi’s CPT do

sum = 0
Generate at random rand1 ∈ [0; 1]
if rand1 ≤ τ then

for each parameterPijk of rij do
lowerbound = Pijk − α ∗ Pijk
upperbound = Pijk + α ∗ Pijk
Generate at random rand2 ∈ [lowerbound;upperbound]
Pijk = rand2

sum = sum+ Pijk
end for
for each parameterPijk of rij do
Pijk = Pijk/sum

end for
end if

end for
end for

In order to evaluate IMK2GA on distributed data, three data configurations are con-

sidered. These essentially differ in the level of alteration brought to the original data

distribution. The first set of BNs is obtained by using an alteration power α of 0.1.

This represents very slight changes for the CPTs. For the two other sets of BNs, α was

73

4.3. Learning Bayesian Networks from Distributed Data

respectively set to 0.5 and 1. These values were defined arbitrarily in order to give a

broad overview of the performance of IMK2GA on different kinds of data whether it

underwent very small (α = 0.1) or important (α = 1) changes. For all configurations,

τ was set to 1, implying that all parameters from the BNs were altered.

For experiment purposes, 4 BNs were derived from each configuration. Thus, each of

these BNs has a distinct distribution, although their distance to the original distribution

is of the same order (similar α used for alteration). From each of the BNs, a dataset

of 5000 instances was sampled that can be used at a single island.

4.3.2 Performance of IMK2GA on Distributed Data

The main objective of this set of experiments is to investigate whether IMK2GA can

allow BN modeling from different datasets. Thus, it is important to study the quality

of the learnt BNs and to compare them to the original structures. Quality of structures

should be compared between the contexts of centralized data, in which all individual

datasets are merged together and the one of distributed data, where the data is different

at each island. Two algorithms are put to the test on each benchmark BN, and under

the three configurations previously described. The two algorithms are K2GA to model

the centralized data and IMK2GA43 to handle the distributed data. Using 4 islands

in IMK2GA allows modeling of 4 distinct datasets, set at each island.

30 runs were performed for each algorithm on all experimental configurations. It was

decided to use a maximum of 3000 instances for modeling. Hence, in order to create

a centralized dataset, all four 5000-instance datasets were brought together to create

a 20,000-instance dataset. To avoid bias due to the data sampling process, the data

underwent a preparation step in which it was randomized, leading to the use of dif-

ferent datasets at each run. Once randomized, the data can be sampled, by selecting

3000 records. Since, the maximum number of instances allowed was set to 3000 and

4 islands were defined, only 750 instances could be used at each island. Thus, the

same randomization process was performed prior to start each run of IMK2GA. Each

74

4.4. Learning Bayesian Networks from Distributed Data

algorithm was allowed 5000 generations to evolve solutions.

Tables 4.8 presents the results obtained on the four benchmark problems, asia, tank,

credit and car.

The impact of the alteration power α can be seen on the numbers. When α is increased,

that is when the data distribution gets more different than the original one, the results of

the two algorithms are affected in different manner. K2GA running on the centralized

data shows an overall decrease in terms of correct edges, while its associated SHD

and the number of erroneous edges are increased. Erroneous edges are particularly

affected by the increase of α and since the number of relevant edges is not changed to

a significant extent, it can be said than increasing α leads to the addition of a lot of

spurious edges in the network. This is obvious when comparing results obtained with

α respectively set to 0.5 and 1. On the other hand, IMK2GA using distributed data

is less affected by changes in α. Although the overall quality of the solutions is not as

good as with solutions obtained by K2GA on data whose distribution is close to the

original’s (α = 0.1), the various quality metrics do not vary to a large extent. This is

particularly apparent on asia and car. Of course results remain problem dependent

and variations can be observed as seen on tank between α = 0.5 and α = 1, but these

are much less important than those observed on the centralized data. Note that at

time, the structures are actually improved by increasing α. This is the case on credit,

where the average number of correct edges grows from 8.66 (α = 0.1) to 10.18 (α=1)

and SHD is corrected from 4.58 to 3.13.

These results suggest potential benefits that could be found in the use of IM to model

distributed data. IM seems able to make use of the different distributions to improve

the search and reach better solutions than a serial GA. This may be related to the

fact that introducing discrepancies in distributions leads the different islands to search

different part of the search space. By using different datasets, the fitness function is

consequently changed and solutions that are proposed by other islands at migrations

may not remain as good solutions in a specific island population. This is a factor that

75

4.4. Learning Bayesian Networks from Distributed Data

A
si

a
T

a
n

k
C

re
d

it
C

a
r

1
/

0
.1

C
6.

03
(0

.4
1)

14
.2

0
(2

.2
4)

8.
80

(0
.8

3)
12

.0
3

(1
.1

1
)

c
e
n
tr

a
li
z
e
d

S
H

D
2.

60
(0

.9
9)

11
.6

3
(3

.0
4)

5.
10

(1
.3

3)
9.

7
3

(2
.5

9)

R
el

.
7.

23
(0

.4
2)

19
.9

3
(0

.2
5)

12
.0

0
(0

.0
)

14
.1

3
(0

.8
8
)

E
rr

.
1.

40
(0

.8
8)

5.
90

(1
.2

7)
1.

90
(0

.7
0)

7.
6
3

(2
.0

9)

d
is

tr
ib

u
te

d

C
5.

63
(0

.4
0)

11
.8

3
(0

.6
8)

8.
66

(0
.4

2)
9
.6

7
(0

.9
8
)

S
H

D
4.

08
(1

.0
4)

14
.7

9
(0

.8
4)

4.
58

(0
.5

3)
12

.0
4

(1
.6

7
)

R
el

.
6.

87
(0

.3
1)

19
.0

6
(0

.2
2)

11
.7

0
(0

.2
0
)

11
.5

3
(0

.7
5
)

E
rr

.
2.

84
(0

.9
2)

7.
56

(0
.7

8)
1.

54
(0

.3
3)

10
.1

8
(1

.4
7
)

1
/

0
.5

C
5.

77
(0

.5
0)

14
.5

0
(2

.1
4)

8.
80

(0
.9

0)
11

.2
7

(1
.0

6
)

c
e
n
tr

a
li
z
e
d

S
H

D
3.

20
(1

.3
0)

11
.7

0
(3

.0
6)

4.
87

(1
.6

3)
10

.1
0

(2
.5

3
)

R
el

.
7.

87
(0

.3
4)

19
.8

7
(0

.3
4)

11
.8

3
(0

.3
7)

13
.4

7
(0

.7
2
)

E
rr

.
1.

10
(1

.2
2)

6.
33

(1
.4

7)
1.

83
(0

.9
0)

7.
9
0

(2
.0

9)

d
is

tr
ib

u
te

d

C
5.

41
(0

.4
6)

12
.3

0
(1

.0
3)

9.
14

(0
.3

4)
10

.1
7

(0
.8

2
)

S
H

D
4.

53
(0

.8
8)

14
.7

5
(1

.3
2)

4.
03

(0
.5

1)
11

.3
6

(1
.2

4
)

R
el

.
7.

05
(0

.3
6)

19
.0

7
(0

.2
4)

11
.5

2
(0

.2
3
)

11
.6

8
(0

.6
0
)

E
rr

.
2.

89
(0

.7
7)

7.
98

(0
.8

0)
1.

66
(0

.2
8)

9
.8

5
(1

.1
2
)

1
/

1

C
4.

70
(0

.5
9)

15
.1

0
(2

.0
2)

8.
87

(1
.0

6)
9.

6
0

(1
.5

0)

c
e
n
tr

a
li
z
e
d

S
H

D
8.

97
(1

.9
1)

13
.3

3
(3

.1
8)

11
.3

7
(1

.6
2)

19
.1

0
(3

.0
8
)

R
el

.
7.

10
(0

.8
7)

19
.9

0
(0

.3
0)

12
.0

0
(0

.0
)

13
.5

0
(0

.7
6
)

E
rr

.
6.

57
(1

.9
8)

8.
53

(1
.6

5)
8.

23
(0

.8
4)

15
.2

0
(2

.7
3
)

d
is

tr
ib

u
te

d

C
5.

49
(0

.5
6)

9.
93

(0
.8

6)
10

.1
8

(0
.2

3
)

9
.5

4
(1

.0
0
)

S
H

D
4.

18
(0

.9
1)

16
.1

9
(1

.4
8)

3.
13

(0
.3

9)
12

.0
3

(1
.4

5
)

R
el

.
6.

78
(0

.3
7)

16
.4

0
(0

.5
4)

11
.9

8
(0

.0
6
)

11
.4

2
(0

.8
4
)

E
rr

.
2.

90
(0

.7
8)

9.
72

(1
.2

7)
1.

33
(0

.2
4)

10
.1

5
(1

.2
7
)

T
ab

le
4
.8

:
C

h
ar

ac
te

ri
st

ic
s

of
b

es
t

B
N

s
fo

u
n

d
on

ce
n
tr

al
iz

ed
an

d
d

is
tr

ib
u

te
d

d
at

as
et

s
af

te
r

5
00

0
g
en

er
a
ti

on
s

on
a
si
a
,
ta
n
k
,
cr
ed
it

a
n

d
ca
r

76

4.4. Summary

can also increase the diversity in the population.

4.4 Summary

• Landscapes associated with BNs are generally multi-optimal. Using crossover on

the different local optima has shown that it can be an operation beneficial for the

search, generating offsprings that are better and different than their parents. Ac-

cording to empirical tests, this statement becomes more valid when the dimension

of the problem increases as seen with boerlage and alarm.

• An IM version of K2GA is implemented to handle the many local optima it

is likely to reach. IMK2GA shows improvements in terms of fitness of the final

solutions obtained on all benchmark datasets over the serial K2GA in environment

restricting diversity, that is when the selection pressure is high. However, this does

not always correlate with better BN structures. Using 4 islands and 3 migrations

leads to the best results from the configurations that were considered.

• In terms of best performance, that is the quality of the solutions and their asso-

ciated fitness values in environments more likely to reduce the loss of diversity,

IMK2GA shows benefits on small datasets over K2GA. On the largest problems,

K2GA outperformed IMK2GA. Yet, this is to be put in perspective by the fact

that IMK2GA exhibits a slow convergence rate and has not reached its full po-

tential within the experimental bounds. Acting on the number of islands and

migrations would affect these findings.

• Modelling distributed data is of growing interest in the machine learning com-

munity. By the inherent mechanism of IM, IM-based EAs are good candidates

to perform such tasks and in particular BN structure learning while preserving

privacy. IMK2GA is put to the test on several datasets that display different

distributions.

77

4.4. Summary

• Empirical analysis shows that the use of IM makes K2GA less sensitive to dif-

ferences in the respective distributions of distinct datasets. However, when the

differences between these datasets are small, K2GA offers better results.

78

Chapter 5

Size of Neighborhood and

Population Diversity

5.1 Neighborhood in the Space of Orderings

The notion of neighborhood is important with respect to EAs. The neighborhood of

a given solution represents the space of solutions that are close to it in terms of gene

characteristics. Some heuristics such as local search or best neighbor strongly depend

on the expression of the neighborhood. In local search, a solution is mutated at each

iteration, making sure that the offspring belongs to the set of neighboring solutions.

In best neighbor, the set of all neighboring solutions is generated, the one presenting

the highest fitness value becomes the offspring. The neighborhood of a solution needs

to be expressed with respect to a parameter defining the degree of neighborhood. To

understand this concept, it is more straightforward to study distances between solutions

in Euclidean spaces as illustrated in Figure 5.1a. In Euclidean spaces, where a metric

is defined, the neighborhood NX,k of a solution X is defined with respect to a radius

k. Solutions distant by 1 unit from X belongs to the neighborhood NX,1 of X. In

order to increase the size of the neighborhood, k can be increased. Accordingly, in

Figure 5.1a, excluding X, 3 solutions belong to NX,1, 5 solutions belong to NX,2, 6

79

5.1. Neighborhood in the Space of Orderings

solutions belong to NX,3 and 8 solutions belong to NX,4. The radius k would need

to be further increased to include the two remaining solutions to the neighborhood of

X. In Figure 5.1b, an example of neighborhood in discrete space is given. Each point

represents a solution in the space. An edge is traced between two solutions X and Y if

they belong to each other’s neighborhood of radius 1, that is if X ∈ NY,1 and Y ∈ NX,1.

Considering the central point in Figure 5.1b as the solution X, it is now possible to

define neighborhoods NX,k of different radius k where k represents the shortest path

length in the graph. In other words, a solution Y is in NX,k iff there is a path of length

k from X to Y . Excluding X, the sizes of the neighborhoods NX,k are |NX,1| = 4,

|NX,2| = 10, |NX,3| = 16 and |NX,4| = 22.

(a) Euclidean spaces (b) Discrete spaces

Figure 5.1: Use of radius to define neighborhood of a solution in Euclidean and discrete
spaces

The same idea can be extended to different types of search space once a metric is de-

fined to quantify the distance between solutions. In discrete spaces such as permutation

spaces, a metric can be expressed by means of minimum number of adjacent transpo-

sitions also referred to as minimum number of adjacent gene swaps ρ(X,Y) needed to

transform a solution X into another solution Y . In this chapter, we refer to ρ(X,Y) as

the ordering similarity distance. This choice of distance as a metric respects the fun-

damentals of metric spaces (Sutherland, 2009), which are non negativity and identity,

symmetry and triangle inequality respectively summarized in (5.1), (5.2) and (5.3).

80

5.1. Neighborhood in the Space of Orderings

Figure 5.2: Impact of the distance d between two genes when using swap mutation.
Red arrows represent edges that differ from the original structure.

 ρ (X,Y) ≥ 0

ρ (X,X) = 0,∀X,Y
(5.1)

ρ(X,Y) = ρ(Y,X),∀X,Y (5.2)

ρ(X,Z) ≤ ρ(X,Y) + ρ(Y,Z), ∀X,Y, Z (5.3)

In (Jerrum, 1985), it is shown that the minimum number of adjacent transpositions

ρ(X,Y) between two permutations X and Y can be calculated by moving each indi-

vidual element of a permutation towards its appropriate position in sequence. It is also

proved that the order in which elements are being chosen does not affect the final value

of ρ(X,Y). Thus, the set of permutations is a metric space under ρ(X,Y).

For many permutation representations, the ordering similarity distance ρ is sufficient

to express differences between solutions. However, in K2GA, generating an ordering of

nodes is not the final objective and although orderings are evaluated, it is their inherent

81

5.2. Distance-Based Mutation Operators

BN structures resulting from the run of the K2 deterministic process that are scored.

Hence, when altering an ordering, the final BN structure that can be constructed from

the ordering should also be considered. For example, considering the swap operator as

mutation operator, swapping two adjacent genes from a solution X is likely to produce

an ordering Y with a corresponding BN structure close to the the one of X. On the

other hand, swapping two genes that are more distant will bring more changes in the

resulting BN structures. Figure 5.2 illustrates how much alteration can result from

swapping genes in an 5-node ordering with different distances between mutated genes.

Note that this distance that is referred to as mutation distance has a different meaning

than the ρ distance. From an original ordering {1− 2− 3− 4− 5}, four orderings are

created by swapping the first gene with another one with mutation distances d of 1,

2, 3 and 4. To illustrate the importance of the mutation distance on the degree of

alteration that can be observed, we consider for each ordering a BN structure with a

maximum number of edges, that is 10 edges in total. Each mutated network is then

compared with the original structure and the numbers of edges that differ highlighted.

For example, when d = 1, only the edge 2→ 1 differs from the original structure where

the edge between nodes 1 and 2 is 1→ 2. The four mutated structures exhibit different

degrees of alteration, with an increase of the mutation distance leading to an increase

of differences. This example describes how the locality breaks down when the distance

between two genes increases, or in other words, how the concept of neighborhood needs

to be considered with respect to the mutation distance. This illustration by means of

number of altered edges is actually equivalent to calculating the KTD between each

mutated ordering and the original one. It also confirms the relevance of KTD as a

metric to assess distance between node orderings.

5.2 Distance-Based Mutation Operators

In this section, several mutation operators that use mutation distance are presented.

In addition to describing their mechanisms, they are also compared with respect to

82

5.2. Distance-Based Mutation Operators

Figure 5.3: Example of swap mutation from a solution X of size n = 6, using mutation
distance d = 3

their effect on the offspring orderings and corresponding BN structures when mutation

distances are changed. The impact of these operators are observed through studying

the relation between neighborhood radius k and the ordering similarity distance ρ and

some structural and ordering measurements such as SHD and KTD.

5.2.1 Swap Mutation

The swap mutation operator is illustrated in Figure 5.3. A gene Xi is selected at random

in the ordering and swapped with another gene selected randomly between Xi−d and

Xi+d, unless restricted by the position of Xi. For example, if i = 2 and d = 3, the

second gene to be mutated can only be X5 since i−d < 0. Here, the mutation distance d

represents the distance between the two genes to swap. The ordering similarity distance

between genitor and offspring can be expressed as (5.4).

ρ = 2d− 1 (5.4)

5.2.2 Insert Mutation

With insert mutation, a gene Xi is randomly selected and either inserted after Xi+d or

before Xi−d. This position is chosen at random unless a constraint exists because of the

position of Xi as explained for the swap operator. Figure 5.4 illustrates an example of

insert mutation with a distance d set to 3 and X0 as starting edge. Here, the distance

d represents the distance between the starting gene Xi and the position it is inserted

at. ρ can be expressed as (5.5).

83

5.2. Distance-Based Mutation Operators

Figure 5.4: Example of insert mutation from a solution X of size n = 6, using mutation
distance d = 3

Figure 5.5: Example of invert mutation from a solution X of size n = 6, using mutation
distance d = 3

ρ = d (5.5)

5.2.3 Invert Mutation

Invert mutation acts on a subgroup of genes of size d+1. The first gene of the subgroup

is selected at random. Figure 5.5 describes an example of invert mutation where the

order in which genes of the subgroup appear in the genitor is reversed to generate the

offspring. In this illustration, d is set to 3. ρ is expressed as (5.6).

ρ =
d ∗ (d+ 1)

2
(5.6)

5.2.4 Scramble Mutation

In contrast with the three previous methods, the scramble mutation operator is not

deterministic, that is given a genitor solution, the offspring can differ across repeated

applications of the operator. This is due to a random step in the process. Similarly to

the invert mutation operator, a subgroup of genes of size d+ 1 is selected. The order in

84

5.2. Distance-Based Mutation Operators

Figure 5.6: Example of scramble mutation from a solution X of size n = 6, using
mutation distance d = 3

Figure 5.7: Example of displacement mutation from a solution X of size n = 6, using
mutation distance d = 3, where d′ takes the random value 2

which genes appear in the genitor is changed at random to create an offspring as shown

in Figure 5.6, for d = 3. Due to the random re-ordering, the ordering similarity distance

between genitor and offspring needs to be expressed as a range of values following (5.7).

ρ ∈
[
1,
d ∗ (d+ 1)

2

]
(5.7)

5.2.5 Displacement Mutation

The displacement mutation selects a subgroup of size d′ to be moved. The position

to which the subgroup is moved is defined by means of a distinct distance d as shown

in Figure 5.7. d′ is set randomly, while respecting position constraints. The order

in which the genes appear in the subgroup is not modified throughout the process.

Consequently, ρ is expressed as (5.8), where n refers to the problem size.

ρ ∈ [d, d ∗ (n− d)] (5.8)

85

5.2. Distance-Based Mutation Operators

Figure 5.8: Example of invert+swap mutation from a solution X of size n = 6, using
mutation distance d = 3, where d′ takes the random value 2

5.2.6 Invert+Swap Mutation

The remaining two mutation operators combine some of the previous methods and

were first defined in (Deep and Mebrahtu, 2011), where they show improvements over

other mutation types on the Traveling Salesman Problem. The first of the two oper-

ators runs successively the invert and the swap mutation operators and is referred to

as invert+swap. Because it is important not to increase consequently the number of

parameters related to an algorithm, it was decided to only manage one distance param-

eter d. In this case, d is the mutation distance corresponding to the invert mutation,

thus the number of genes to be part of the subgroup being inverted is equal to d + 1.

During the second step of the process, the swap mutation uses a random distance d′

that is related to d. The range of value for d′ and the expression of ρ is described in

(5.9). An example can be found in Figure 5.8 where the manageable distance d is set

to 3, while a random value of 2 was drawn for d′. The offspring is the result of the

swap step.

ρ ∈ [d+ 1, 2n− d− 1] (5.9)

5.2.7 Invert+Displacement Mutation

In order to generate a solution from a genitor X using the invert+displacement muta-

tion operator, invert and displacement mutations are run consecutively. In the same

86

5.2. Distance-Based Mutation Operators

Figure 5.9: Example of invert+displacement mutation from a solution X of size n = 6,
using mutation distance d = 3, where d′ takes the random value 1

manner as the invert+swap mutation, two distances need to be defined but only one of

them, d, needs to be manually set. In this approach, d is associated with the invert mu-

tation step, while the displacement mutation step is characterized by d′, set at random,

accordingly to the value of d. In short and as summarized in Figure 5.9, d+1 represents

the number of genes to form the subgroup whose positions are to be inverted, while d′

represents the distance to which the previously defined subgroup needs to be displaced.

The relation between d and d′ is given in (5.10) along with the general expression for

ρ.

ρ ∈
[

(d+ 1) ∗ (d+ 2)

2
,
−2d2 + (2n− 3)d+ 2n− 1

2

]
(5.10)

Because of the way both distances d and d′ are correlated in invert+swap and in-

vert+displacement mutations, setting small values of d means that the values for d′

can be drawn from a larger range and thus be large. Consequently, dissimilarities can

be observed between genitor and offspring solutions even if d is set with low values. It

is understood that both invert+swap and invert+displacement mutations lead to larger

dissimilarities between genitor and offspring solutions. Tables 5.1 and 5.2 present all

values that ρ can take for each mutation type and different distances on two problems

of respective sizes n = 8 and n = 23. Note that these problem characteristics match

those of asia and boerlage. Based on these numbers, it is possible to foresee how the

different operators will affect solutions and thus influence algorithm design choices. For

example, the insert and swap operators can be qualified as conservative in comparison

87

5.2. Distance-Based Mutation Operators

ρ

Mutation operator d
=

1

d
=

2

d
=

3

d
=

4

Swap 1 3 5 7
Insert 1 2 3 4
Invert 1 3 6 10

Scramble 1 [1;3] [1;6] [1;10]
Displacement [1;7] [2;12] [3;15] [4;16]
Invert+Swap [2;14] [3;13] [4;12] [5;11]

Invert+Displacement [3;13] [6;18] [10;22] [15;25]

Table 5.1: Influence of mutation operators and mutation distance d on ordering simi-
larity distance ρ on a 8-variable problem (n = 8, such as asia)

with the rest of the methods, regardless of the mutation distance, that is offspring

solutions should exhibit less differences than with other methods. On the other hand,

invert+displacement and displacement show high possible values of ρ, even for small

d. This means that small distances are also able to lead to distant solutions. Invert

and scramble mutations give the same maximum ρ values, but the use of scramble

rather than invert introduces some randomness since ρ takes its value within a range

of values. Finally, invert + displacement displays another distribution of ρ in which

its mean value does not vary despite changes in d. Only the size of the range varies,

from large to smaller when d is increased.

5.2.8 Choice of Mutation Operator and Bayesian Network Structure

Quality

In this section, the previous estimates on dissimilarities between genitor and offsprings

presented in Tables 5.1 and 5.2 are compared with empirical results relevant to BN

structure quality. The aim of this step is to assess to what extent ordering similarity

distance as a measure of change in the space of orderings corresponds to change in

structure and evaluation in the space of structures generated by K2.

In this set of experiments, 30 orderings are generated at random. Each of them is

88

5.2. Distance-Based Mutation Operators

ρ

M
u

ta
ti

o
n

op
er

a
to

r

d=1

d=2

d=3

d=4

d=5

d=6

d=7

d=8

d=9

d=10

d=11

S
w

a
p

1
3

5
7

9
11

13
15

17
19

21
In

se
rt

1
2

3
4

5
6

7
8

9
10

11
In

ve
rt

1
3

6
10

15
21

28
36

45
55

66
S

cr
a
m

b
le

1
[1

;3
]

[1
;6

]
[1

;1
0]

[1
;1

5]
[1

;2
1]

[1
;2

8]
[1

;3
6]

[1
;4

5]
[1

;5
5]

[1
;6

6]
D

is
p

la
ce

m
en

t
[1

;2
2]

[2
;4

2
]

[3
;6

0]
[4

;7
6]

[5
;9

0]
[6

;1
02

]
[7

;1
12

]
[8

;1
20

]
[9

;1
26

]
[1

0;
13

0]
[1

1;
13

2]
In

ve
rt

+
S

w
ap

[2
;4

4
]

[3
;4

3]
[4

;4
2]

[5
;4

1]
[6

;4
0]

[7
;3

9]
[8

;3
8]

[9
;3

7]
[1

0;
36

]
[1

1;
35

]
[1

2;
34

]
In

ve
rt

+
D

is
p

la
ce

m
en

t
[3

;4
3
]

[6
;6

3]
[1

0;
82

]
[1

5;
10

0]
[2

1;
11

7]
[2

8;
13

3]
[3

6;
14

8]
[4

5;
16

2]
[5

5;
17

5]
[6

6;
18

7]
[7

8;
19

8]

T
ab

le
5
.2

:
In

fl
u

en
ce

of
m

u
ta

ti
o
n

o
p

er
a
to

r
an

d
m

u
ta

ti
on

d
is

ta
n

ce
d

on
or

d
er

in
g

si
m

il
ar

it
y

d
is

ta
n

ce
ρ

on
a

23
-v

ar
ia

b
le

p
ro

b
le

m
(n

=
23

,
su

ch
a
s
bo
er
la
g
e)

89

5.2. Distance-Based Mutation Operators

mutated once with mutation distance d, using each of the mutation types described

in this chapter. The solutions that are produced are compared with their genitor.

The process is repeated for every value d can take on each problem of size n, that is

d ∈ [1; bn/2c]. The upper bound of bn/2c on d ensures that any gene of a solution can be

affected by the mutation. Greater d values would limit the number of possible mutations

since genes cannot be moved outside the boundaries of the solution size n. In order

to evaluate the effect of the different mutation types and mutation distance values,

several measurements are performed. First, it is important to study the impact the

changes have on the orderings as the mutation directly acts in this specific search space.

Hence, the exact match, edit and Kendall-Tau distances are computed as described

in Section 2.4. Second, solutions need to be compared with respect to the BN they

represent. SHD between offspring and genitor is calculated since it evaluates the quality

of edges that exist in a BN structure. Finally, the fitness difference between the two

solutions is recorded since it is important to relate the changes that are brought to the

scoring method that guides the search. These measurements are shown in Figure 5.10,

for different mutation distances. This set of figures only shows results obtained on the

boerlage dataset. Similar set of figures are given in E.1, E.2, E.3, E.4 and E.5 for the

remaining five datasets.

The first observation that can be made from all the figures is that we observe a discrep-

ancy between the measurements that relate to the orderings and those that relate to

the final BN structure. For instance, for all measurements following the swap mutation,

the level of alteration in terms of orderings can be described as constant under increase

of d. Yet, the impact of the variation of d on the structures that are obtained following

the runs of K2 is different as illustrated by an increase of the SHD. This stresses the

importance already mentioned to always consider both ordering and structure spaces

when analysing solutions. In addition and by definition, edit and exact match distances

cannot show variation for the swap mutation. On the other hand, KTD generally ex-

hibits a linear increase for invert, insert, scramble and invert+swap. The remaining

two mutation types, displacement and invert+displacement are overall more disruptive

90

5.2. Distance-Based Mutation Operators

operators. This observation is particularly valid when d is small, illustrating the fact

that slight changes cannot be performed based on these two operators. Note that both

involve a displacement step that appears as the single mutation type presenting the

most ordering alterations on all datasets. Since our objective is to compare the dif-

ferent values of ρ calculated theoretically against empirical results on final solutions,

SHD is the most meaningful metric here. As expected from Tables 5.1 and 5.2, the less

disruptive method is insert. Swap is also less disruptive in comparison with the rest of

the methods. Scramble and displacement are generally varying in the same range. This

is probably an effect of the random process on which they rely. Comparable curves are

obtained for invert and invert+swap when d is high. At lower d, invert+swap is more

disruptive than invert. Finally the remaining invert+displacement shows a much higher

SHD throughout the whole range of d and is the most disruptive mutation operator

over all. Using these observations, it can be concluded that empirical results confirmed

that ρ is a good approximation to the extend of disruption introduced in a BN ordering

at mutation.

Since changes in mutation distance d bring changes in solutions, it is interesting to also

assess how close to a random process each of the operator is when d is high. If using a

mutation operator brings the same results than generating a new solution at random, it

might be more judicious not to use such operator. Ideally, a mutation operator should

generate offsprings close to random solutions when d is set to its maximum value,

although there should remain a difference. Experiments were run in which two random

orderings were compared on each of the benchmark problems by means of KTD and

SHD. The process was repeated 30 times in order to match the experimental settings

used to assess the mutation distance operators. Tables 5.3 and 5.4 present results

obtained after 30 repeat runs along with respectively KTD and SHD obtained at d =

bn/2c for comparison purposes. Values that appear to be not statistically significant

from those of the random generation are annotated with a ∗ symbol. For this, unpaired

t-tests were performed. These comparisons show that there is a difference between

using mutation operators and large distances and generating random orderings. This

91

5.2. Distance-Based Mutation Operators

1 2 3 4 5 6 7 8 9 10 11
6

8

10

12

14

16

18

20

22

24

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

1 2 3 4 5 6 7 8 9 10 11
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

1 2 3 4 5 6 7 8 9 10 11
0

5

10

15

20

25

30

35

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure 5.10: Effect of choice of mutation on produced solution on boerlage

92

5.3. Distance-Based Mutation Operators

Mutation operator a
si
a

ta
n
k

cr
ed
it

ca
r

bo
er
la
ge

a
la
rm

Swap
0.20 0.10 0.11 0.08 0.04 0.03

(0.12) (0.05) (0.09) (0.05) (0.03) (0.02)

Insert
0.35 0.33 0.35 0.33 0.31 0.31

(0.11) (0.08) (0.10) (0.07) (0.07) (0.07)

Invert
0.33 0.32 0.27 0.33 0.31 0.26

(0.14) (0.13) (0.12) (0.12) (0.07) (0.05)

Scramble
0.32 0.29 0.31 0.29 0.32 0.30

(0.12) (0.12) (0.10) (0.07) (0.06) (0.05)

Displacement
0.40 0.35 0.39 0.35 0.33 0.33

(0.16) (0.08) (0.12) (0.08) (0.09) (0.07)

Invert+Swap
0.37 0.38 0.36 0.35 0.32 0.30

(0.19) (0.12) (0.18) (0.07) (0.08) (0.06)

Invert+Displacement
0.48∗ 0.43∗ 0.39 0.44∗ 0.43∗ 0.34
(0.17) (0.13) (0.11) (0.13) (0.10) (0.08)
0.51 0.50 0.49 0.48 0.48 0.49

Random Generation
(0.10) (0.10) (0.11) (0.07) (0.06) (0.06)

Table 5.3: Comparison of KTD of solutions obtained by distance-based mutations and
by random generation

is an important point since it means that even for large distances, mutation operators

keeps some information from the genitor solutions. However, this is not always true.

For example, invert exhibits no significant difference with random generation on asia.

Since asia is a problem of very small dimension, this result is not significant. It is seen

that the same invert operator shows differences on the rest of the benchmarks. On

the other hand and at maximum distance d, invert+displacement, the operator defined

as the most disruptive, reaches a similar level of disruption than if orderings were

generated at random on all benchmarks except alarm by SHD. Considering KTD solely,

invert+displacement is similar to a random generation on asia, tank and boerlage only.

93

5.3. Distance-Based Mutation Operators

Mutation operator a
si
a

ta
n
k

cr
ed
it

ca
r

bo
er
la
ge

a
la
rm

Swap
5.43 12.80 6.67 9.53 6.77 11.60

(2.01) (5.31) (3.00) (5.00) (3.86) (6.00)

Insert
3.10 9.93 3.70 7.30 3.70 8.03

(2.89) (5.34) (3.36) (6.81) (3.33) (4.59)

Invert
7.80∗ 24.77 9.80 20.77 18.27 44.10
(3.20) (7.10) (2.93) (6.58) (3.50) (5.00)

Scramble
4.87 14.33 5.67 11.43 9.47 25.50

(2.92) (6.63) (2.83) (6.69) (3.42) (7.54)

Displacement
4.77 10.30 5.90 7.87 7.87 14.73

(3.62) (6.52) (3.90) (7.46) (5.49) (14.13)

Invert+Swap
6.43 24.50 8.20 21.70 17.93 42.13

(2.67) (7.28) (3.19) (8.49) (6.13) (9.66)

Invert+Displacement
10.93∗ 33.67∗ 15.50∗ 28.83∗ 29.10∗ 57.00
(3.36) (8.43) (4.22) (8.07) (8.18) (15.38)
10.13 36.93 15.10 31.27 33.17 73.30

Random Generation
(3.53) (8.49) (4.07) (7.72) (5.66) (9.70)

Table 5.4: Comparison of SHD of solutions obtained by distance-based mutations and
by random generation

94

5.3. Competing Mutating Agents

5.3 Competing Mutating Agents

5.3.1 Implementation

Many EAs including the classic GA follow the principle that exploration of the search

space should be first performed before the exploitation of particular regions. In terms

of neighborhood, this often means producing offspring from the whole search space

in explorative phases while increasing the focus on the neighborhood of the best so-

lutions as the search progresses. Typically, in the last generations of a GA process,

there are only a few differences between solutions in a population and the offsprings

produced with respect to their genes. Other approaches such as Simulated Annealing

(SA) (Kirkpatrick et al., 1983) depend on a temperature variable that manages how

much degradation can be introduced into the search. In SA, a neighboring solution is

produced and scored at each generation. This solution replaces the previous best with

a probability depending on the score and the temperature. A high temperature will

support replacement of the current best solution by a solution of lower fitness while a

low temperature will favor solutions of better fitness. The temperature in SA decreases

as the search progresses. This policy aims at allowing degradation while exploring the

search space and refraining it when exploiting an area of the search space.

Runs of EAs involve some stochasticity. Hence, it is hard to anticipate how much ex-

ploration needs to be done. For instance, the basin of attraction of a global optimum

can be reached early during the search, leading the algorithm to find an optimal so-

lution early. On the other hand, many optimization problems exhibit multi-optimal

landscapes. Such problems, such as the BN structure learning are likely to trap the

search in a local optima, exploiting an area of the search space which is good but not

optimal. Taking these two contrasting scenarios in consideration, a different direction

is taken in this section that presents a new algorithm where exploration and exploita-

tion are both performed in parallel throughout the search. The approach makes use of

distance-based mutation operators on a population of agents in order to vary the size

95

5.3. Competing Mutating Agents

of the neighborhood of solutions through varying the level of disruption ρ introduced

by each agents. Thus, ρ is set accordingly to the agent’s position in the population.

Varying the way mutation is performed during the search is not a novel idea. The use

of adaptive mutation has been explored in previous works including (Cobb and Grefen-

stette, 1993) and (Thierens, 2002). In these works, several strategies were proposed

around a GA framework. In (Cobb and Grefenstette, 1993), a so-called triggered hy-

permutation is introduced that increases the mutation rate under some circumstances

such as a degradation of the GA performance over time. This strategy was found helpful

since it preserves information on the population when used on changing environments,

that is when the fitness landscape varies during the GA run. Some ideas presented

in (Thierens, 2002) are closer to those of SA, where the mutation rate decreases as

the search progresses to become more and more restrictive on the degree of random

information introduced in the population at each generation.

Here, a population of agents is considered in which each agent aims at improving its

assigned solution by means of distance mutation. Large distances are allowed for agents

in low positions while best agents, that is those with the highest quality solutions, are

constrained with smaller distances. Since each agent only uses mutation to improve its

solution and because each agent aims at reaching the best positions in the population,

we call this approach COMpeting Mutating Agents (COMMA). Algorithm 5 presents

the outline of COMMA used for maximization optimization. For each position posj in

the population pop sorted in ascending order, a mutation distance dj is set such that

for two agents at positions e and f , de ≤ df if e < f . Since it can be beneficial to

allow degrading solutions to be accepted, as seen in SA, a probability pj is also set for

each posj . Each agent ai is initially assigned a random solution si. The population is

then sorted by fitness. At each generation, each agent mutates si using the distance

disti ∈ [1, dr] defined according to its position r in the population. If the mutated

solution snew has a better fitness than si, ai replaces si with snew. If snew has a poorer

fitness than si, snew only replaces si with probability pr.

96

5.3. Competing Mutating Agents

Mutation type
Rule 1 Rule 2

Fitness C SHD Fitness C SHD

tank

Swap -10030.6 13.4 12.9 -10026.7 13.4 11.5
Insert -10031.6 13.4 12.7 -10026.1 14.0 11.6
Invert -10032.8 12.4 14.5 -10028.6 14.2 11.4

Scramble -10039.9 12.9 15.0 -10026.9 15.0 10.2

car

Swap -7059.0 11.6 12.3 -7053.2 13.3 9.6
Insert -7059.9 11.2 13.9 -7052.3 13.6 8.9
Invert -7060.5 11.1 13.0 -7054.4 12.8 10.4

Scramble -7059.7 11.4 13.0 -7052.8 13.6 8.9

boerlage

Swap -30733.1 16.8 26.6 -30679.7 19.4 20.4
Insert -30733.9 15.4 27.4 -30681.4 18.4 20.8

Scramble -30732.2 15.6 28.2 -30688.5 18.6 20.6

Table 5.5: Comparison of two rules to assign values to mutation distances

Parameter tuning can be a difficult task, especially when the number of parameters

involved in an algorithms is large. The above description of COMMA implies several

variables such as the size of the population |pop|, the number of bins |∆| in which the

population is divided or the mutation distance ∆jvalues for each bin j. Thus, following

some preliminary comparisons, a rule was set in order to define distances for each bin

in relation with |pop|, |∆| and the number n of variable of the problem. Two rules were

originally compared. In the first rule, the bins would each be set with small distance

values ∆j ∈ [1; |∆|]. Because, we considered only 4 bins, ∆j ∈ [1; 4]. On the other

hand, a second rule was set that covers a wider range of distances, that is the best

agents will be set with the minimum distance ∆0 = 1, while the agents in the worse bin

will be attributed a distance ∆|∆|−1 =
⌊
n
2

⌋
. The rest of the distances are equidistant to

each others. More generally the distance in each bin in the second rule can be expressed

as (5.11).

∆j =

 1 , if j = 0⌊
j∗n

2∗(|∆|−1)

⌋
, otherwise

(5.11)

97

5.3. Competing Mutating Agents

In order to assess the efficiency of these two approaches, some mutation types were

selected and COMMA run on 3 datasets, namely, tank, car and boerlage. 10 runs were

performed and mean fitness, correct edges and SHD of the best solutions compared.

The maximum number of generations was set to 1000 FEs for tank, the smaller problem,

while car and boerlage were left to run up to 5000 FEs. Note that only a sample of the

mutation operators and datasets were used for this experiment, as more experiments

were not justified. Results presented in Table 5.5 respectively suggest that the second

rule which allows larger distances gives better results than the first rule on all three

measurements, and this for all datasets. Thus, distances are set according to (5.11)

for the rest of the chapter and the distances ∆i are no longer considered as input

parameters in COMMA. Once distances are set, each agent needs to be allocated to a

bin. In the proposed design, the population is split into bins of equal size when this is

possible, that is when the number of agents is divisible by the number of bins. In the

other case, the q worse bins have an extra agent such as q = |pop| − |pop||∆| ∗ |∆|. The

distance ∆j is allocated to all agents al, with l ∈
[
j ∗
⌊
|pop|
|∆|

⌋
; j ∗

⌊
|pop|
|∆|

⌋
− 1
]

if j < q,

l ∈
[
j ∗
⌊
|pop|
|∆|

⌋
+ j − q; (j + 1) ∗

⌊
|pop|
|∆|

⌋
+ j − q

]
otherwise.

As seen in Chapter 4, the use of IM showed improvements over its serial counterparts

when learning BN structures using GA by maintaining diversity. Hence, IM was also im-

plemented for COMMA and is referred to as IM-COMMA. The outline of IM-COMMA

is presented in Algorithm 6 for n islands, m migrations and migration intervals of size

migInterval. The search is split into evolution stages stgl where migInterval gen-

erations are performed. At each stgl, the COMMA process is performed and paused

to allow migration. Solutions from the λ best agents from each island are sent to the

neighbouring island at migration and assigned to the λ worse agents in its population

following a ring topology with a best-worse policy.

98

5.3. Competing Mutating Agents

Algorithm 5: COMMA

Initialize pop of σ agents with random solutions, distance vector d of size σ and
probability vector p of size σ
repeat

Sort pop by fitness in ascending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in pop
Generate new solution snew with fitness fitnew by mutating si with distance
disti selected with uniform probability from [1, dr]
if fitnew > fiti then

Assign si = snew
else

Assign si = snew with probability pr
end if

end for
until Stopping condition met

5.3.2 Experiments

Experiments regarding COMMA are presented in two steps. First, different versions

of COMMA and IM-COMMA with or without degradation are compared to GA-based

methods. Second, and since several mutation types exist, different versions of COMMA

are developed and compared against each other on the benchmark suite.

5.3.2.1 Comparison of COMMA and GA

Two versions of COMMA and IM-COMMA were implemented in order to observe the

effect of degradation. We set one of the COMMA and one of the IM-COMMA with

degradation probabilities pj equal to zero while the two other versions were set with

degradation probabilities of [0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.6, 0.8, 0.8, 0.8], respectively

stated from the best to the worse position in the population of agents. For the time

of the experiments, we respectively call these methods COMMA, IM − COMMA,

COMMAd and IM − COMMAd where d stands for degradation. As the population

size for COMMA and COMMAd was set to 10, using 4 distinct mutation distances and

probabilities helped observing how agents evolve. Mutation distances were set relative

99

5.3. Competing Mutating Agents

Algorithm 6: IM − COMMA

Initialize k populations of σ agents with random solutions, distance vector d of size
σ and probability vector p of size σ
for each evolution stage stgl, l ∈ [0,m− 1] do

for each island islk, k ∈ [0, n− 1] do
genk = 0
repeat

Sort popk by fitness in ascending order
for each agent ai, i ∈ [0, σ − 1] do

Get position r of ai in popk
Generate new solution snew with fitness fitnew by mutating si with
distance disti selected with uniform probability from [1, dr]
if fitnew > fiti then

Assign si = snew
else

Assign si = snew with probability pr
end if

end for
genk + +

until genk = migInterval
end for
if l 6= m then

Select λ best orderings to create subpopulation migk
if i 6= 0 then

Replace λ worse orderings in popk by migi−1

else
Replace λ worse orderings in popk by mign−1

end if
end if

end for

100

5.3. Competing Mutating Agents

Dataset K2GApop IMK2GAmigInterval

Asia 100 150
Tank 50 250

Credit 50 300
Car 20 1200

Boerlage 20 800
Alarm 20 600

Table 5.6: K2GA and IMK2GA settings

to the number of nodes in each benchmark. IM − COMMA and IM − COMMAd

were both set with 4 islands, 3 migrations and 7 generations were chosen as migration

interval in order to reach 1000 FEs. K2GA and IMK2GA were set following Table 6.5,

with tournament selection of size 4.

In this set of experiments, the number of cases in each dataset was set to 3000. Results

regarding quality of the solutions obtained by the different methods are presented in

Table 5.7. This encompasses the number of correct edges (C), SHD, number of relevant

edges (Rel.) and number of erroneous edges (Err.). 30 runs were performed for each

algorithm on each dataset, except alarm and unpaired t-tests carried out. For the case

of alarm, 10 runs were performed due to the computational time that is involved. Best

values over all methods appear in bold while those not statistically significant from the

best (p-value>0.003 after Bonferroni correction for a 95% confidence level) are marked

with a ∗ symbol.

Overall, COMMA seems competitive with the GA-based methods although presenting

a few exceptions such as a significantly higher SHD on asia and a higher number of

erroneous edges on credit. On the other hand, IM −COMMA seems less competitive

when the problem size increases. For example, IM − COMMA exhibits significantly

higher SHD for the three largest problems, car, boerlage and alarm, while its serial

counterpart does not. The benefit of using IM in conjunction with COMMA can be

questioned. While IM were originally used to avoid local optima or to bring together

the outcomes of different evolutions by means of crossover, it was applied here to an

algorithm that does not converge, nor evolve its solutions using crossover. Thus, a

101

5.3. Competing Mutating Agents

migration in IM −COMMA can simply be considered as a successful mutation of the

solutions from the worse agents in the island populations.

Degradation was introduced in COMMA in order to prevent the search to becoming on

the same solutions for too many generations. Yet, according to the results of Table 5.7,

degradation does not bring much improvement to the results of COMMA and IM-

COMMA. Its use even leads to solutions of lower quality on problems such as car and

boerlage, where COMMAd has a significantly lower C and higher SHD. We recall

that the best agents are subject to degradation at a 0.2 rate in this implementation. In

order to further understand how such results are obtained, it is possible to study how

agent positions change in the population over time. In Figure 5.11, the positions of the

agents is plotted for COMMA (Figures 5.11a, 5.11b) and COMMAd (Figures 5.11c,

5.11d) on a typical run on tank. Each row from these figures represents the positions

of the agents at a given generation. The plot is to be read from top to bottom where

the first row represent the initial generation and the last row the final generation.

Each agent is assigned a distinct color kept throughout the run. Thus, by reading two

successive lines, the position changes can be observed. Note that agents are ordered

in the population according to the fitness of their solutions. In the representation, the

best agents are on the right hand side while the worse ones are on the left hand side.

Knowing this, Figure 5.11 can be analyzed. On the run of COMMA, agents exchange

positions less often than on the run of COMMAd. This is particularly obvious among

the bottom half of the population. The impact of introducing degradation can be seen

as a succession of changes in 5.11c and 5.11d, and this even when the algorithm is

approaching the end of its run, suggesting a constant exploration of the search space.

In comparison, COMMA has reached a state of stability after 75 generations where

the solutions of the agents cannot be improved sufficiently to cause a position change.

Although allowing degradation may have seemed a good idea at first, it can also be

disruptive and not support the search. For instance, from Figures 5.11c, 5.11d, the best

agent at generation 0 remains in the top two positions for more than 10 generations

because the degradation probability is very small in these positions. As soon as another

102

5.3. Competing Mutating Agents

agent takes its position, degradation starts playing a more important role, having for

consequence the fast drop in the agent position. Half way through the run, the same

agent, which was initially the best one, belongs to the two worse agents’ positions in

the population and remains in low positions until the end of the run. More generally,

it seems that beyond a certain number of generations, agents that are in the lowest

positions will remain there until the end of the run. Figures 5.11c, 5.11d also display a

swap of colors between generations 0 and 100, which means that the worse agents at the

beginning of the run ended being the best ones, while the initial best agents finished the

run with the worse solutions. The last comment regarding agent’s positions concerns

Figures 5.11a and 5.11b where the contribution of the strategy of COMMA can be

observed. By looking closely at the final best agents and at how it reached the top

position, we see that it occupied every possible position in the population. It also

reached the second position after generation 52, but did not remains at this position

until the end of the run unlike observed with COMMAd.

Looking back at Table 5.7, it seems that in the context of allowing degradation, the use

of IM offers better results than the non-parallel COMMAd. Yet, the solutions obtained

by IM − COMMAd remain overall below solutions found by the best methods, with

the difference reaching statistical significance for C on car and for SHD on boerlage.

Across all methods run on tank, K2GA exhibits the best C and SHD, which con-

trasts with the general trend observed over all other benchmark problems. In order to

investigate this result, it is helpful to have an insight on how the fitness of the best

solution varies over time with all methods and to compare it with the evolution of

the solution quality, such as SHD for instance as done in Figures 5.12. As expected,

K2GA converges after around 200 fitness evaluations to a solution of lower fitness than

the rest of the algorithms. The use of IM prevents this from happening and the state

of convergence is not reached over the 1000 fitness evaluation boundary for IMK2GA.

The simple COMMA is the only COMMA-based algorithm to reach a higher fitness

than K2GA. Yet, this does not correlate with a low SHD at the end of the run. Looking

at the evolution of the SHD throughout the run illustrates a discrepancy between CH

103

5.3. Competing Mutating Agents

score and BN structure quality. For example, the case of IMK2GA shows that the

SHD decreases with the first 400 fitness evaluations and is at this stage much lower than

those of solutions obtained by other methods. However, beyond 400 fitness evaluation

and despite observing an increase of the fitness of the best solution, the SHD increases

and ends up being greater than the one of K2GA. This finding fits in what has been

described in Chapter 3, where tank was defined as exhibiting a lack of correlation

between fitness and SHD.

Finally, results on the two largest benchmark problems show that IMK2GA performs

best in comparison with COMMA and IM −COMMA. This is maybe due to the dif-

ficulty of the problems and the fact that IMK2GA converges faster than the COMMA-

based methods that are still improving their fitnesses at the time the search is stopped

as shown in Figure 5.13. This suggests that better results would be obtained if they

were left to run for more generations. It may also be a hint that the current settings

are not optimal and too much exploration is being performed. Assessing mutation op-

erators other than swap may be a way to solve this problem and is treated in the next

section. In addition, it is found that the use of degradation is beneficial on alarm, with

IM − COMMAd exhibiting solutions that are better than those of K2GA in every

aspect. The use of degradation also affects the way the IM implementation performs.

On alarm, IM − COMMA shows the worst results, reaching statistical significance,

while its counterpart allowing degradation is the best performing approach. This can

be explained by the fact that each island in IM-COMMA methods is subject to fewer

generations in order to reach a similar number of fitness evaluations than the serial ver-

sions of COMMA. Building on the previous idea that COMMA approaches may suffer

from a too slow exploitation of the good areas of the search space, IM − COMMA

is more prone to this problem than its serial counterpart which is allowed more gen-

erations. In this context, degradation may have a positive influence in making the

exploration faster, reaching better areas of the search space earlier in the search.

104

5.3. Competing Mutating Agents

A
si

a
T

a
n

k
C

re
d

it
C

a
r

B
o
e
rl

a
g
e

A
la

rm

K
2G
A

C
6
.4

3
(0

.5
6)

1
4
.7

7
(1

.7
5)

8.
87
∗ (

1.
18

)
10

.8
3

(1
.3

4)
17

.4
3

(2
.2

6
)

2
3.

5
0∗

(3
.3

2
)

S
H

D
1
.6

0
(0

.6
6)

1
0
.9

3
(2

.6
6)

4.
70
∗ (

1.
64

)
13

.3
3

(2
.8

8)
24

.8
0

(3
.0

3
)

4
8.

6
0∗

(4
.3

4
)

R
el

.
8
.0

0
(0

.0
0
)

19
.6

7
∗ (

0.
54

)
1
2
.0

0
(0

.0
)

14
.2

7
∗ (

0.
81

)
2
8.

0
7∗

(0
.6

3)
4
1.

3
0∗

(0
.7

8
)

E
rr

.
0
.0

3∗
(0

.1
8
)

6.
03
∗ (

1.
52

)
1.

57
(0

.5
6)

9.
90
∗ (

2.
7
1)

1
4.

1
7∗

(2
.4

4)
3
0.

8
0∗

(3
.8

7
)

I
M
K

2G
A

C
6
.5

7∗
(0

.5
6
)

14
.2

0
∗ (

2.
04

)
9.

23
∗ (

0.
50

)
12

.1
3
∗ (

0.
76

)
1
9
.6

0
(2

.1
4
)

2
4.

4
0∗

(3
.4

1
)

S
H

D
1
.4

7
(0

.6
7)

11
.3

0
∗ (

2.
76

)
3.

80
∗ (

0.
60

)
11

.5
7

(1
.9

6)
2
0
.9

0
(3

.2
3
)

4
4.

3
0∗

(5
.1

6
)

R
el

.
8
.0

0
(0

.0
0
)

19
.8

3
∗ (

0.
37

)
1
2
.0

0
(0

.0
0)

14
.2

3
∗ (

0.
76

)
2
8.

0
3∗

(0
.4

8)
4
1.

6
0∗

(0
.8

0
)

E
rr

.
0
.0

3∗
(0

.1
8
)

5
.6

7
(1

.0
7)

1
.0

3
(0

.1
8)

9.
47
∗ (

2.
0
8)

1
2
.4

7
(2

.1
6
)

2
7
.1

0
(4

.1
6
)

C
O
M
M
A

C
6
.7

0∗
(0

.4
6
)

13
.4

3
∗ (

1.
87

)
9.

13
∗ (

1.
23

)
1
2
.4

7
(0

.9
6)

1
8.

7
0∗

(2
.0

8)
2
4.

2
0∗

(2
.5

6
)

S
H

D
1
.3

7
(0

.6
6)

12
.2

7
∗ (

2.
64

)
4.

27
∗ (

1.
71

)
1
0
.9

3
(2

.1
4)

2
2.

8
7∗

(2
.5

9)
4
6.

9
0∗

(3
.0

8
)

R
el

.
8
.0

0
(0

.0
0
)

1
9
.8

7
(0

.3
4)

1
2
.0

0
(0

.0
0)

1
4
.3

3
(0

.5
4)

2
8
.1

7
(0

.6
4
)

4
1.

3
0∗

(0
.4

6
)

E
rr

.
0
.0

7∗
(0

.3
6
)

5.
83
∗ (

1.
13

)
1.

40
(0

.5
5)

9
.0

7
(1

.6
7
)

1
3.

4
0∗

(1
.6

5)
2
9.

8
0∗

(1
.6

6
)

I
M
−
C
O
M
M
A

C
6
.9

0
(0

.3
0
)

14
.1

7
∗ (

2.
03

)
9
.6

3
(1

.2
0)

11
.6

3
∗ (

1.
17

)
1
8.

1
3∗

(2
.3

2)
2
2.

8
0∗

(3
.3

7
)

S
H

D
1
.1

0
(0

.3
0
)

11
.8

3
∗ (

2.
78

)
3
.6

0
(1

.7
4)

12
.8

0
(2

.4
1)

23
.5

3
(3

.3
3
)

5
2.

1
0

(5
.5

2)
R

el
.

8
.0

0
(0

.0
0
)

19
.7

0
∗ (

0.
46

)
1
2
.0

0
(0

.0
0)

13
.8

7
∗ (

0.
81

)
2
8.

0
7∗

(0
.6

3)
4
1.

0
0∗

(0
.6

3
)

E
rr

.
0
.0

0
(0

.0
0
)

6.
30
∗ (

1.
39

)
1.

23
∗ (

0.
62

)
10

.5
7
∗ (

2.
38

)
1
3.

6
0∗

(2
.2

4)
3
3.

9
0

(3
.6

7)

C
O
M
M
A
d

C
6
.8

7∗
(0

.3
4
)

14
.5

3
∗ (

2.
06

)
9.

37
∗ (

1.
28

)
11

.4
0

(1
.1

1)
17

.1
0

(1
.7

8
)

2
5.

4
0∗

(3
.0

7
)

S
H

D
1
.1

3∗
(0

.3
4
)

11
.2

3
∗ (

3.
24

)
4.

10
∗ (

1.
81

)
12

.8
0

(2
.1

8)
24

.9
3

(2
.3

9
)

4
4.

8
0∗

(6
.0

0
)

R
el

.
8
.0

0
(0

.0
0
)

19
.8

3
∗ (

0.
37

)
1
2
.0

0
(0

.0
0)

14
.2

0
∗ (

0.
54

)
2
7.

8
3∗

(0
.9

0)
4
1
.8

0
(0

.6
0
)

E
rr

.
0
.0

0
(0

.0
0
)

5.
93
∗ (

1.
59

)
1.

47
(0

.6
2)

10
.0

0
∗ (

1.
73

)
1
4.

2
0∗

(2
.2

7)
2
8.

4
0∗

(3
.9

8
)

I
M
−
C
O
M
M
A
d

C
6
.8

7∗
(0

.3
4
)

14
.4

3
∗ (

2.
46

)
9.

53
∗ (

1.
33

)
11

.6
3

(1
.0

8)
1
7.

8
7∗

(2
.3

1)
2
6
.1

0
(2

.0
7
)

S
H

D
1
.1

3∗
(0

.3
4
)

11
.2

0
∗ (

3.
69

)
3.

70
∗ (

1.
93

)
11

.9
3
∗ (

2.
62

)
24

.7
7

(2
.9

2
)

4
3
.7

0
(3

.9
3
)

R
el

.
8
.0

0
(0

.0
0
)

19
.7

0
∗ (

0.
46

)
1
2
.0

0
(0

.0
0)

14
.1

7
∗ (

0.
73

)
2
8.

0
3∗

(0
.8

0)
4
1.

6
0∗

(0
.4

9
)

E
rr

.
0
.0

0
(0

.0
0
)

5.
93
∗ (

1.
67

)
1.

23
∗ (

0.
67

)
9.

40
∗ (

2.
2
2)

14
.6

0
(1

.9
8
)

2
8.

2
0∗

(2
.4

0
)

T
ab

le
5
.7

:
C

h
ar

a
ct

er
is

ti
cs

of
b

es
t

B
N

s
ob

ta
in

ed
b
y

ea
ch

al
go

ri
th

m
af

te
r

1
00

0
F

E
s

105

5.3. Competing Mutating Agents

(a) COMMA,
gen. 1 to 50

(b) COMMA,
gen. 51 to 100

(c) COMMAd,
gen. 1 to 50

(d)
COMMAd,
gen. 51 to 100

Figure 5.11: Evolution of agent’s positions over time on tank

0 100 200 300 400 500 600 700 800 900 1000
9

10

11

12

13

14

15

16

17

18

19

Individual FEs

S
H

D
 to

 O
pt

im
al

GA
IMGA
COMMA
IM−COMMA
COMMA

d

IM−COMMA
d

(a) SHD of best solution

0 100 200 300 400 500 600 700 800 900 1000
−1.008

−1.007

−1.006

−1.005

−1.004

−1.003

−1.002
x 10

4

Individual FEs

F
itn

es
s

GA
IMGA
COMMA
IM−COMMA
COMMA

d

IM−COMMA
d

(b) Fitness of best solution

Figure 5.12: Evolution of SHD and fitness of the best solution over time on tank

106

5.3. Competing Mutating Agents

0 100 200 300 400 500 600 700 800 900 1000
−3.075

−3.074

−3.073

−3.072

−3.071

−3.07

−3.069
x 10

4

Individual FEs

F
itn

es
s

GA

IMGA

COMMA

IM−COMMA

COMMA
d

IM−COMMA
d

(a) boerlage

0 100 200 300 400 500 600 700 800 900 1000
−7080

−7075

−7070

−7065

−7060

−7055

−7050

Individual FEs

F
itn

es
s

GA
IMGA
COMMA
IM−COMMA
COMMA

d

IM−COMMA
d

(b) car

Figure 5.13: Evolution of fitness of the best solution over time on boerlage and alarm

5.3.2.2 Comparison of distance-based mutation types within COMMA

In order to evaluate the performance of the different mutation types, they were used

as operators within COMMA. 10 runs were performed on each dataset and the re-

sults averaged, including fitness, number of correct edges and SHD of the best solution

found at the end of the runs. In the previous set of experiments, the COMMA-based

implementations showed that they were still improving solutions when stopped. Thus,

we set a higher limit on the total number of fitness evaluations and stopped the algo-

rithms after 10000 of them. Because of the small sample size, Wilcoxon signed-rank

test is used in order to evaluate differences observed in the results summarized in Ta-

ble 5.8. Since, there are multiple comparisons, Bonferroni correction is applied. Thus,

statistical significance was defined for p-values > 0.002.

Results show that the choice of mutation operator is important and affects the quality

of the solutions that are obtained by COMMA. Since a large number of generations

was used, we can consider that all implementations were given enough time to evolve

good solutions.

Over all benchmarks, displacement and invert+swap mutations are the operator that

lead to the best BNs. With respect to the suitability of the operators for optimization,

that is considering only the fitness value, invert+swap is the best, exhibiting the best

107

5.3. Competing Mutating Agents

fitness on all benchmark problems. On the other hand, insert mutation gives the worse

results. The swap operator used in the previous section is mostly behind the best

operators in terms of fitness. This is not always correlated with significant differences

on BN quality.

In order to analyze these findings, it is important to refer to ρ, the expression of the

level of disruption introduced by each operator as illustrated in Table 5.2. We recall

that we can categorize the operators in two distinct kinds, those that introduce a fixed

disruption for a given distance d, that is swap, insert and invert, and those whose

disruption level takes its value according to some stochastic process, thus in a range of

values. Out of the three operators that introduce a fixed level of disruption, two of them,

swap and invert are clearly behind the best operators with respect to their results. The

value of ρ for invert is the largest from all the operators with fixed ρ. On the other hand,

insert, which produces good solutions with similar characteristics than those obtained

by the best operators on asia and car, is the less disruptive operator. It seems that the

invert operator is too disruptive to allow efficient optimization. According to Table 5.2,

the scramble operator can be as disruptive as invert. However, since there is no fixed

value for ρ, small ρ can be used, resulting in the generation of solutions of better quality

than invert.

Invert+displacement, the most disruptive operator of all and the most disruptive of

those that define ρ in a range of values exhibits results of lower quality than displace-

ment and invert+swap, which may be caused by a level of disruption too high. This

observation matches the earlier evidence that when large mutation distances are used,

invert+displacement gets close to the results of random ordering generation.

The two best operators present different ρ values. Displacement usually gives a wide

range of values to draw from and hence can sometimes be disruptive, while it may also

not be. Invert+swap offers a range of values that is always centered on the same mean

value, despite varying d. Increase of d affects the bounds and forces the operator to a

ρ closer to the mean. Hence, this may result in having more disruption when d is small

108

5.4. Summary

than when d is high. Although showing very dissimilar strategies, both displacement

and invert+swap mutation operators perform similarly and are the most adapted op-

erators to be used in COMMA. Note that both invert+swap and invert+displacement

use the invert operator as part of their mutation process. However, the resulting ρ

values are very different and invert can be simply seen as a mechanism to get to these

values.

5.4 Summary

• The neighborhood of a solution S defines the set of solutions that are close to S in

terms of gene characteristics. On Euclidean spaces, neighborhood size is defined

by the neighborhood radius. This idea can be extended to other representation

spaces such as permutations. We defined a metric ρ that defines the level of

dissimilarities between a solution S1 and a solution S2, obtained by mutating S1.

ρ represents the number of adjacent gene swaps that are needed to transform

S1 into S2. Thus, ρ can be considered as a metric to define the extent of the

neighborhood of a solution, given a mutation operator.

• Seven mutation operators are presented that uses a mutation distance d to control

the degree of alteration that they each introduce to a solution. These are swap,

insert, invert, scramble, displacement, invert+swap and invert+displacement.

Each of them presents different values for ρ, that help concluding that insert

is the less disruptive operator, while invert + displacement leads to the most

disruptions.

• An algorithm is proposed that makes use of the distance mutation d to perform

both exploration and exploitation of the search space throughout the search.

COMMA uses a population of agents that are each assigned a solution. Agents

are ranked according to the fitness of their respective solutions and mutation

distances set accordingly. Agents with the best solutions are assigned small d,

109

5.4. Summary

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Disp.

a
s
ia

F
it

.
-6

8
27

.9
7∗

-6
8
2
7
.9

6
-6

82
8.

26
∗

-6
8
2
7
.9

6
-6

8
2
7
.9

6
-6

8
2
7
.9

6
-6

8
2
7
.9

6
C

6.
9
∗

7
.0

6.
9∗

7
.0

7
.0

7
.0

7
.0

S
H

D
1.

1
∗

1
.0

1.
2∗

1
.0

1
.0

1
.0

1
.0

ta
n
k

F
it

.
-1

0
02

4
.9

2∗
-1

00
24

.8
0
∗

-1
00

26
.3

5
∗

-1
00

24
.4

8
∗

-1
00

24
.8

1∗
-1

0
0
2
4
.2

7
-1

00
25

.8
1∗

C
13

.2
∗

13
.2
∗

13
.9
∗

12
.5
∗

13
.5
∗

12
.9
∗

1
4
.0

S
H

D
12

.5
∗

12
.3
∗

12
.0
∗

13
.4
∗

11
.5
∗

12
.3
∗

1
1
.1

c
r
e
d
it

F
it

.
-3

17
6
2
.5

7
-3

17
58

.1
6

-3
17

60
.1

8
-3

17
55

.5
5

-3
1
7
5
3
.0

2
-3

1
7
5
3
.0

2
-3

17
53

.3
3∗

C
8
.2

9.
1
∗

9.
1∗

9
.7

9.
0
∗

9.
0∗

9.
3
∗

S
H

D
5
.8

4.
1∗

4.
3∗

3
.2

4.
0
∗

4.
0∗

3.
7
∗

c
a
r

F
it

.
-7

05
3
.3

5
-7

0
5
2
.1

1
-7

05
4.

77
-7

05
2.

17
∗

-7
0
5
2
.1

1
-7

0
5
2
.1

1
-7

05
3.

18
C

13
.5
∗

1
4
.0

12
.9

13
.8
∗

1
4
.0

1
4
.0

13
.4

S
H

D
9
.0
∗

8
.0

10
.2
∗

8.
4∗

8
.0

8
.0

9.
1
∗

b
o
e
r
la
g
e

F
it

.
-3

06
8
3
.5

4
-3

06
83

.8
0

-3
07

01
.6

2
-3

06
89

.9
0

-3
06

77
.6

8
∗

-3
0
6
7
7
.2

5
-3

06
80

.8
0

C
1
8
.7
∗

19
.8
∗

19
.0
∗

19
.0
∗

2
1
.1

20
.7
∗

20
.0
∗

S
H

D
20

.8
∗

20
.2
∗

22
.4
∗

21
.5
∗

1
8
.3

19
.2
∗

19
.6
∗

a
la
r
m

F
it

.
-2

96
2
7
.3

8
-2

96
39

.2
8

-2
97

84
.0

5
-2

96
92

.4
4

-2
95

78
.1

9
∗

-2
9
5
5
6
.8

6
-2

96
34

.6
4

C
2
9
.5
∗

28
.7
∗

23
.9

28
.0
∗

3
0
.4

29
.5
∗

28
.4
∗

S
H

D
34

.9
∗

34
.7
∗

44
.4

38
.1
∗

3
1
.3

32
.1
∗

35
.3
∗

T
a
b

le
5.

8:
P

er
fo

rm
an

ce
co

m
p

ar
is

on
of

C
O

M
M

A
im

p
le

m
en

ta
ti

on
s

w
it

h
d

iff
er

en
t

d
is

ta
n

ce
-b

as
ed

m
u

ta
ti

on
op

er
at

or
s

110

5.4. Summary

likely to bring less alteration to their solutions, while the worst agents are set with

large d. As the search progresses, agents improve their solutions and compete for

a place in the top of the population, where less alteration is introduced. The use of

Island Model and the allowance of degradation in COMMA are also investigated.

• COMMA shows that it can produce solutions of similar quality than those ob-

tained by K2GA and IMK2GA. However, the improvement of the solutions is

slower with COMMA which has not converged by the end of the runs. This lat-

ter observation suggests that allowing more runtime may lead to better solutions.

Studying the positions of agents and how they evolve over time shows that the

competing strategy introduced in COMMA supports the search. The use of IM

does not bring improvement to the quality of the solutions that are produced.

On the other hand, introducing degradation can help in finding good solutions as

seen on alarm.

• Several mutation operators are assessed within the COMMA framework.

Displacement and invert+ swap, a combination of two operators obtained from

literature, exhibit the best results overall both in terms of CH score and BN struc-

ture quality, showing that they are the operators the best adapted to COMMA

for BN structure learning.

111

Chapter 6

Applications to Prostate Cancer

Staging

In the present chapter, the potential use of BNs is investigated in a medical environ-

ment 1. More precisely, it considers learning BNs to model data related to prostate

cancer staging, based on two real-world datasets respectively gathered by the British

Association of Urological Surgeons (BAUS) and the urology unit from Aberdeen Royal

Infirmary (ARI). Four main points are treated here. First, the process of prostate

cancer staging is described, along with the related current clinical practice. Second,

the study is justified by comparing BNs to other classifiers with respect to their abil-

ity in predicting cancer stages from patient data. In the third part of this chapter,

we apply techniques defined in the previous chapters to the two medical datasets at

hand. Finally, the use of IM is explored to make use of distributed medical data, which

represents a barrier to many data modelling studies in the field.

1Large parts of this chapter are extracted from material published in O. Regnier-Coudert, J. McCall,
R. Lothian, T. Lam, S. McClinton, J. N’Dow. Machine learning for improved pathological staging of
prostate cancer: A performance comparison on a range of classifiers. Artificial Intelligence in Medicine,
55(1):25-35. 2011. It is used with permission of the publisher.

112

6.1. Prostate Cancer Staging

6.1 Prostate Cancer Staging

6.1.1 Medical Background

Cancer is a disease where malignant cells are developed and alter the function of their

hosting organs or tissues. Typically, malignant cells reproduce and group together to

form a tumor. Untreated tumors grow and affect surrounding healthy cells, leading to a

spread of the cancer. Metastasis happens when the cancer reaches surrounding organs

or tissues. The presence of cancer results in the deterioration of some body functions

and can lead to death when vital organs are touched.

Whilst in the past prostate cancer was a disease which predominantly affected older

men well into their seventies, the advent of Prostate Specific Antigen (PSA) testing

over the past three decades has caused a shift in the age of presentation, such that

men in their early fifties are increasingly being diagnosed. In addition, PSA testing has

also resulted in a stage migration from late, symptomatic stages to early, asymptomatic

stages of the disease. Men with raised PSA would then undergo prostate biopsies which

will confirm the diagnosis and provide a grade of the disease expressed by means of the

Gleason Sum score (GS), with the grade of the cancer reflecting its aggressiveness. Once

the diagnosis is confirmed, a Digital Rectal Examination (DRE) is performed to assess

the local Clinical Stage (CS). The stage is a means of indicating the spread of the dis-

ease, expressed by the TNM staging system (Sobin, 2009), whereby the T stage refers

to the local extent of spread. The treatment options available for localised prostate

cancer include surgery, external beam radiotherapy, brachytherapy, active monitoring

and minimally invasive localised therapy such as cryotherapy (Kirby, 2002). Surgery

by way of radical prostatectomy, where the prostate is surgically removed completely,

is one of the leading options. Although most of the curative treatment options result in

similar cure rates, surgery has the major advantage of removing the prostate completely

as well as providing the actual pathological stage and grade of the disease, which in

turn influence prognosis. The pathological stage is the most accurate determination of

113

6.1. Prostate Cancer Staging

the actual stage of the disease (as opposed to clinical stage which is an estimate), be-

ing determined by pathological examination of the entire prostate specimen. However,

the major drawback of surgery is its associated adverse effects, such as intra-operative

complications (e.g. bleeding), prolonged hospital stay, urinary incontinence and erec-

tile dysfunction. The pathological stage of prostate cancer significantly influences the

prognosis; the presence of extra-prostatic extension reduces the chance of cure and

increases the risk of adverse effects. Consequently, surgery may not be appropriate

for every man with prostate cancer, and those with more advanced disease should be

offered other options instead. Such decision-making crucially relies on the prediction

of the likely pathological stage. It is for this purpose that predictive staging tools were

created.

6.1.2 Predictive Staging Tools

Partin tables (Partin et al., 1993) are the most commonly used tool for prostate cancer

staging. The tables are a means of predicting the likely pathological stage of the

cancer using the pre-treatment variables of PSA, GS and CS, with the result being

expressed as probabilities. Based on a patient’s PSA, GS and CS, probabilities are

provided for each of four discrete pathological stage outcomes: Organ Confined (OC),

Extra-Prostatic Extension (EPE), Seminal Vesicle Involvement (SVI) and Lymph Node

Involvement (LNI). The predicted probabilities of pathological outcomes are displayed

by means of look-up tables organised according to the three pre-treatment variables,

which are in turn divided into sub-groups.

Partin tables were originally created using Logistic Regression (LR) (Hosmer and

Lemeshow, 2000) on a database gathering records of patients that were treated with

radical prostatectomy in a single US institution (Partin et al., 1993). Since then, the

tables have been updated using different up-to-date datasets (Partin et al., 1997, 2001;

Makarov et al., 2007). The revision takes into account changes in population demo-

graphics, advances in health technology and improved health care systems, but the

114

6.1. Prostate Cancer Staging

tables are still based on the same fundamental LR-based methodology.

Partin tables are the most well-established and most widely used pathological staging

tool in the urological community worldwide. However, concerns have been raised re-

garding their validity on non-US populations as such populations may present different

characteristics (Kattan et al., 1997; Blute et al., 2000; Penson et al., 2002; Graefen et al.,

2003; Augustin et al., 2004; Eskicorapci et al., 2005; Karakiewicz et al., 2005; Song et al.,

2005; Gao et al., 2008; Bhojani, Ahyai, Graefen, Capitanio, Suardi, Shariat, Jeldres, Er-

bersdobler, Schlomm, Haese et al., 2009; Bhojani, Salomon, Capitanio, Suardi, Shariat,

Jeldres, Zini, Pharand, Péloquin, Arjane et al., 2009). In some instances, Partin ta-

bles were considered to be unsuitable for the target population because of limitations

with respect to their predictive power (Kattan et al., 1997; Penson et al., 2002; Song

et al., 2005; Gao et al., 2008; Bhojani, Ahyai, Graefen, Capitanio, Suardi, Shariat, Jel-

dres, Erbersdobler, Schlomm, Haese et al., 2009; Bhojani, Salomon, Capitanio, Suardi,

Shariat, Jeldres, Zini, Pharand, Péloquin, Arjane et al., 2009). The appropriateness of

the methodology behind Partin tables, especially in regard to the choice of predictive

variables and classifier, was not addressed in those studies. In addition, it is widely

recognized that prostate cancer staging is associated with a high level of uncertainty.

All these considerations are compelling clinicians to explore alternative means of gener-

ating predictive tools, especially those which apply machine-learning techniques which

have the potential of improving the quality and accuracy of predictive performance

(Cruz and Wishart, 2006).

This issue was addressed in the UK by constructing a predictive table derived from

a UK-wide surgical cohort (Bott et al., 2008). In that study, pre-operative clinical

stage was not included in the final analysis, and percentage core biopsy was used as a

surrogate instead.

115

6.1. Prostate Cancer Staging

Variable Name Categories

PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 4+3, ≥8
CS T1c, T2a, T2b/c
PS OC, EPE, SVI, LNI

Table 6.1: Variable details of the BAUS-4 dataset

6.1.3 Data

6.1.3.1 BAUS Data

BAUS gathered clinical and pathological data on over 7500 patients that were received

with prostate cancer and underwent radical prostatectomy in one of the 57 different

centers of the study between 1999 and 2008. This accounts for approximately 20% of

the total number of prostatectomies that were performed in the whole of UK over this

period (Shaida and Malone, 2007). The BAUS dataset can be considered as large and

representative of the British population and consequently, well suited for the assessment

of Partin tables for use in the UK.

From the original BAUS dataset, two subsets were created to meet the different objec-

tives. To construct the first one, we only kept the records where PSA, GS, CS and PS

were set in order to match Partin tables variable settings. We call this dataset BAUS-

4. Each variable in BAUS-4 was discretized following Partin method as described in

Table 6.1. The final size of BAUS-4 was 1701 records, following the removal of cases

where data was missing for any of the four variables and where input data was erro-

neous. The distribution of PS in the prepared data was compared with its distribution

in the original BAUS dataset. No important differences were noticed and we assumed

that the data remained unbiased after the preparation process.

The original BAUS dataset was used to create a second subset called BAUS-6. In

BAUS-6, the two variables age and ASA are added to BAUS-4. ASA is a score which

describes the severity of a patient’s symptoms on a scale ranging from 1 to 5. No

116

6.1. Prostate Cancer Staging

Variable Name Categories

PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 4+3, ≥8
CS T1c, T2a, T2b/c
Age <55, 55-59, 60-64, 65-69, ≥70
ASA 1, 2, 3
PS OC, EPE, SVI, LNI

Table 6.2: Variable details of the BAUS-6 dataset

patient was received with an ASA of 4 or 5 and only three categories were kept for

this variable. Age was discretized in five categories that were chosen as to ensure a

balanced distribution between them, as described in Table 6.2. BAUS-6 contains 1535

records after preparation.

6.1.3.2 ARI Data

A further dataset, ARI-10, was prepared from data collected at the Aberdeen Royal

Infirmary, UK. This data contains different variables and allows the exploration of

variables that were not collected in the original BAUS dataset. Table 6.3 presents

the variables that were selected for our study. In addition to the Partin variables,

ARI-10 includes information on patients’ age, erectile function, prostate size following

transrectal ultrasound (TRUS size) and stage prediction following Magnetic Resonance

Imaging (MRI stage). Two variables are also included that relate to the patient’s well-

being. They both result from the International Prostate Symptom Score (IPSS) which

is composed of seven questions related to the effect of the symptoms on the patients and

an additional question which reflects his overall Quality of Life (QoL). We respectively

call these variables IPSS symptoms and IPSS QoL. In clinical practice, IPSS symp-

toms and IPSS QoL are used as a means of comparing the effect of treatment on a

patient. However, they can also be an indicator of other variables such as prostate size

for example which can lead to procedure complications and be taken into account when

selecting the best treatment option. Being based on patients from a single institution,

the size of ARI-10 is much smaller and contains 85 records. Such small size implies that

117

6.2. Bayesian Networks for Prostate Cancer Staging

Variable Name Categories

PSA 0-2.5, 2.6-4.0, 4.1-6.0, 6.1-10.0, >10.0
GS 5-6, 3+4, 4+3, ≥8
CS T1c, T2a, T2b/c
Age <55, 55-59, 60-64, 65-69, ≥70

Pre-op erection Full function, Partial, Absent, Unknown
IPSS Symptoms Mild, Moderate, Severe, Unknown

IPSS QoL 0, 1, 2, 3, 4, 5, 6, Unknown
TRUS size 0-30, 31-60, >61, Unknown
MRI stage T0/T1, T2, T3a, None

PS OC, EPE, SVI, LNI

Table 6.3: Variable details of the ARI-10 dataset

the variance of classifiers built from this data is likely to be important (Brain et al.,

1999) and results should be considered as preliminary.

6.1.3.3 Data Distribution

One important characteristic of both BAUS and ARI data relies in the distribution

of the class variable being very skewed towards milder pathological stages. By con-

sequence, the number of SVI and LNI cases is low in each dataset as illustrated in

Figure 6.1.

6.2 Bayesian Networks for Prostate Cancer Staging

This section introduces three main objectives that present interests for both medicine

and machine learning communities. Overall these experiments help to establish the

potential that BNs have with respect to applications on prostate cancer data.

First, we aim to critically assess the methodology which was used to construct Partin

tables. This involves externally validating the version currently being used by practi-

tioners, that is, studying how well it performs on a population that presents different

characteristics. Here, the tool is evaluated on a large British cohort and results are

118

6.2. Bayesian Networks for Prostate Cancer Staging

Figure 6.1: Distribution of the class variable pathological stage in the three datasets

compared to those of its internal validation given in (Makarov et al., 2007), where

the original data was also used for testing. Using the British data and the approach

described in (Makarov et al., 2007), we build new lookup tables and assess the method-

ology itself. The results are compared against the previous validation studies (Kattan

et al., 1997; Blute et al., 2000; Penson et al., 2002; Graefen et al., 2003; Augustin

et al., 2004; Eskicorapci et al., 2005; Karakiewicz et al., 2005; Song et al., 2005; Gao

et al., 2008; Bhojani, Ahyai, Graefen, Capitanio, Suardi, Shariat, Jeldres, Erbersdobler,

Schlomm, Haese et al., 2009; Bhojani, Salomon, Capitanio, Suardi, Shariat, Jeldres,

Zini, Pharand, Péloquin, Arjane et al., 2009) and provide additional understanding on

Partin tables performances.

Second, we propose alternative classifying techniques to build lookup tables for prostate

cancer staging. We run many classifiers, including LR, on our data and study the

performances of the models produced by each. We compare the different methods with

respects to their predictive power and propose alternatives to LR.

119

6.2. Bayesian Networks for Prostate Cancer Staging

Finally, we investigate the impact of new variables being introduced into the model.

Two different datasets are used for this purpose each using distinct set of predicting

variables. Among them, variables that were originally excluded when Partin tables

were built are considered. In (Partin et al., 1993), patient’s age was tested against

other combination of variables and did not show statistically significant improvement

to the LR-based model. A range of classifiers is considered and applied to different

subsets of data in order to observe the impact that inclusion of elements can have.

6.2.1 Overview of Alternative Classifiers

In order to fairly compare LR to other methods, the selection of these techniques

represents an important step of the study. A first set of runs was performed in order to

select the best classifiers from the Weka platform (Hall et al., 2009). In this section, we

present the methods that showed the best initial performances and that were applied

to the different datasets for the complete study. In order to ensure the comparison

covers a wide area of the machine learning landscape, we considered methods from the

following machine learning families: decision tree learning, lazy learning, regression,

Support Vector Machine (SVM), Artificial Neural Networks (ANNs) and BNs. Most

of these classifiers have already been applied to cancer applications in the past as

summarized in (Cruz and Wishart, 2006).

Random forest (RF) (Breiman, 2001) is an ensemble method in which several decision

trees are constructed. Each tree is built using a subset of the input variables chosen

at random. The final outcome of the classifier is the class which is predicted by the

highest number of individual trees.

In k-nearest neighbours (k-NN) (Aha et al., 1991), a new instance is classified according

to the class value of its k most similar neighbours. A majority vote is used to infer

a classification outcome from the k retrieved values. The distance between the test

instance and the training instances can be computed in several ways. The most popular

method for numerical attributes uses Euclidean distance. This has also been adapted

120

6.2. Bayesian Networks for Prostate Cancer Staging

to handle nominal variables, the distance between two instances corresponding to the

number of attributes they have in common.

LR (Hosmer and Lemeshow, 2000) associates a weight to each of the predictors (for

binary variables) or to each of the predictor states (for multinomial variables). Weighted

predictor observations are summed and fitted to a logistic curve to produce a probability

for the response variable. As previously mentioned, LR is the technique which was

used to generate the Partin tables and represents therefore an important element of

comparison.

In SVM, instances are represented as vectors and projected onto a n-dimension graph

where n is the number of features in the dataset. Building such a classifier requires

finding the optimal hyperplane that splits instances in clusters according to their class

values. For the present study, the Sequential Minimal Optimization algorithm (SMO)

(Platt, 1999) was used to train the SVM.

ANNs consist of two or more layers of artificial neurons which receive information

signals via their respective inputs. The value of the input information is weighted

and processed by a neuron according to the value of its activation threshold. Using

many layers of linked neurons, complex decision process can be modeled. Different

approaches have been developed to learn the neuron weights or to set the activation

functions. From the wide range of available ANNs, and in order to cover more than

one approach, Multilayer Perceptron (MLP) (Rumelhart et al., 1985) and Radial Basis

Function (RBF) (Broomhead et al., 1988) were selected for the study. MLP was applied

for prostate cancer staging in previous studies and presented better performances than

LR (Han et al., 2001; Matsui et al., 2002; Veltri et al., 2002). However, it has also been

proven that MLP does not always outperform LR (Borque et al., 2001; Anagnostou

et al., 2003; Kawakami et al., 2008). RBF was compared against LR in (Borque et al.,

2001) but no significant difference was observed between the methods.

Finally, although BNs do not need to be described in this section, restrictions can also

be applied on them that result in simplified models often preferred to general BNs on

121

6.2. Bayesian Networks for Prostate Cancer Staging

classification tasks. In a Naive Bayes (NB) (Langley et al., 1992), a class variable is

set prior to build the model. The BN which is created afterwards defines the class

variable as a parent of all other variables. In a NB, no edges are allowed between the

predictor variables. The concept of NB has been extended as to consider that relations

may exist between the predictors. Such BN is called a Tree Augmented Naive Bayes

(TAN) (Friedman et al., 1997) and is built using a greedy search and the CH metric.

6.2.2 Experimental Design

The main objective of the study is to evaluate the performance of the different classifiers.

Area under the ROC curve (AUC) is a standard method to assess a model’s predictive

power (Metz, 1978). AUC takes into consideration both sensitivity and specificity and

represents an objective way to cope with data which is unbalanced between classes. An

AUC value close to 1 describes a model with a good predictive power, while a value

close to 0.5 shows that the model is no better than a random decision. An AUC of zero

describes a model that classifies all instances with a wrong label.

On the other hand, many medical studies have assessed Partin tables by computing

their concordance index (c-index) (Harrell Jr et al., 1982), as an alternative to AUC. C-

index reflects how good a model is at accurately distinguishing between two randomly

selected patients with different outcomes. Algorithm 7 outlines how the concordance

index CIci,cj between two distinct classes ci and cj is computed for a given model M .

Let sp and sq respectively denote the class label of subjects p and q. sp and sq belong

to the ordered set C of n class labels such as c1 < c2 < ... < cn. Let Si denotes the set

of subjects p with class label ci such as Si = {p : sp = ci} and mi = |Si|.

P (sp = ci) represents the probability of subject p to be classified as ci while P (sp > ci)

denotes the probability of subject p to be classified with a class label better than ci.

Similarly, P (sp < ci) denotes the probability of subject p to be classified with a class

label worse than ci.

122

6.2. Bayesian Networks for Prostate Cancer Staging

Algorithm 7: Concordance Index CIci,cj between classes ci and cj

Initialize correct = 0
for each pair (sp, sq) ∈ Si × Sj , (i < j) do

from model M , compute P (sp < sq) =
∑n−1

k=1 P (sp = ck) ∗ P (sq > ck) and
P (sq < sp) = 1− P (sp < sq)
if P (sp < sq) > P (sq < sp) then
correct ++

end if
end for
return CIci,cj = correct / mi ∗mj

In order to validate the Partin tables and their methodology, the approach that was

used to build them (Makarov et al., 2007) was carefully studied and replicated. As a

result, multinomial LR was applied to the data using bootstrap resampling with 1000

replications. The variables were discretized in the same way as in Partin tables and as

given in Table 6.1. C-indices for each pathological stage against OC were computed

as to ensure the results can be compared with previous external validations and with

original findings.

For the rest of the study, 10-fold stratified cross validation was performed 1000 times

for each classifier on the three datasets and AUC was calculated. The number of folds

and the choice for stratification was decided following (Kohavi, 1995) to ensure the

measure of accuracy reflects objectively the model’s true abilities with respect to its

variance and bias when data varies.

To assess RF, k-NN, LR, MLP, RBF and the SVM classifiers, we used the Weka suite

(Hall et al., 2009), while BN-based models were built and analyzed using implementa-

tions of K2GA developed at the Robert Gordon University and presented in Chapter 2.

To ensure the performance measures were consistent across the two tools, the random

seeds for stratification and cross validation was set to the same value. We compared

several BNs using both platforms and retrieved similar AUC values.

An initial 10-fold cross validation analysis was run for each of the Weka classifiers in

order to ensure that comparisons are fair. The parameter settings were hand optimized

123

6.2. Bayesian Networks for Prostate Cancer Staging

Classifier Settings

k-NN
k = 3 (BAUS-4); k = 4 (BAUS-6, ARI-10)
Search = linear based on Euclidean distance

RF maxDepth = unlimited
numFeatures = 3 (BAUS-4, BAUS-6);
numFeatures = 4 (ARI-10)
numTrees = 10

LR
maxIts = -1
ridge = 10−8

MLP

Hidden layers = 4 (number of classes)
Learning rate = 0.3
Momentum = 0.2
Training time = 100 epochs

RBF

maxIts = -1
minStdDev = 0.1
numClusters = 2
ridge = 10−8

SVM
Filter type = Normalize training data
Complexity parameter = 1
Kernel type = Puk (Ω = 1; Σ = 1)

Table 6.4: Classifier settings in Weka

until no further improvement with respect to the AUC could be found. We regard these

settings as optimum and kept them for the study. The final settings are presented in

Table 6.4. K2GA, the algorithm used to search for an optimum BN was tuned with

the settings presented in Table 6.5. K2GA and the greedy search for TAN were run on

the complete datasets, providing an optimum structure for each. The parameters were

calculated afterwards for each testing fold. We call the BN learned from K2GA, CHBN,

as it is based on the CH metric. For BAUS-4, CHBN was found exhaustively because

it was possible to test all possible structures, due to the small number of variables in

the data.

6.2.3 Experimental Results

Results for this set of experiments were dealt with and discussed in relation with the

three main themes that are the external validation of the Partin tables, the choice of

the methodology and finally the importance of the data.

124

6.2. Bayesian Networks for Prostate Cancer Staging

GA parameter Value

Number of runs 20
Population size 100
Selection type Rank selection
Crossover type Cycle crossover
Crossover rate 0.9
Mutation rate 0.1

Table 6.5: Settings for K2GA

Partin tables
with US Data
(Makarov et
al., 2007)

Partin tables
with BAUS
Data

Multinomial
LR with BAUS
Data

EPE vs. OC 0.696 0.602 0.610
SVI vs. OC 0.830 0.709 0.713
LNI vs. OC 0.894 0.819 0.873

Table 6.6: Concordance index of the different LR models

6.2.3.1 External validation of Partin tables

Similarly to the internal validation of the Partin tables, c-index was calculated for

the three non-OC pathological stages vs. OC. Results are presented in Table 6.6 and

illustrate how good the different LR models are at distinguishing between patients with

each combination of stages. Such values can be understood relative to the scale given

in (Galfano et al., 2008). The scale defines three levels of predictive power for a model

according to its c-index. A model has low, moderate or high prognostic accuracy if its

c-index is respectively between 0.5 and 0.7; between 0.7 and 0.9; or greater than 0.9.

Referring to Table 6.6, any model built following Partin approach is found to have a

low predictive power when distinguishing between OC and EPE cases, regardless of the

dataset used for validation. Internal validation numbers given in (Makarov et al., 2007),

show that the Partin tables predictive power is moderate for SVI vs. OC and LNI vs.

OC cases. When applied to British data, we notice a drop in terms of c-index for every

combination of outcomes. Building a new model using the same methodology improves

slightly the c-index but both Partin tables and new LR model can be described with

125

6.2. Bayesian Networks for Prostate Cancer Staging

a low predictive power for EPE vs. OC and a moderate predictive power for SVI vs.

OC and LNI vs. OC cases.

As shown in Table 6.6, original Partin tables achieve lower c-indices when applied to

the BAUS data. This implies that when used on a UK population, Partin tables have

a lower predictive power than on the native data from which they were derived. With

a c-index below 0.70 for OC vs. EPE, Partin tables can be considered as having poor

predictive power for patients falling in these two categories. We recall that patients

with OC and EPE pathological stages are the most frequent cases in the BAUS dataset,

as they count for nearly 95% of the entire cohort. In addition, the decision making for

radical prostatectomy is strongly guided by the probabilities of a patient to have OC or

EPE conditions. Correct distinction between these two classes represents thus the most

important feature of the Partin tables. Furthermore, the applicability and usefulness

of predictive tools with a c-index lower than 0.70 has been questioned, although there

is a lack of an accepted reference threshold beyond which the use of a predictive model

becomes unacceptable (Kattan, 2006).

The AUC analysis also supports this assertion and is in keeping with the trend seen

in other validation studies (Kattan et al., 1997; Blute et al., 2000; Penson et al., 2002;

Graefen et al., 2003; Augustin et al., 2004; Eskicorapci et al., 2005; Karakiewicz et al.,

2005; Song et al., 2005; Gao et al., 2008; Bhojani, Ahyai, Graefen, Capitanio, Suardi,

Shariat, Jeldres, Erbersdobler, Schlomm, Haese et al., 2009; Bhojani, Salomon, Capi-

tanio, Suardi, Shariat, Jeldres, Zini, Pharand, Péloquin, Arjane et al., 2009). In these

studies, the AUC for OC varies between 0.604 (Gao et al., 2008) and 0.817 (Graefen

et al., 2003).

There are several possible explanations for the reduced performance of Partin tables

when applied to a non-US population. Firstly, the original c-indices for Partin tables

were derived from internal validation, indicating that the same data was used to both

generate and assess the tables. The resulting model should thus be very well suited for

the population from which it was derived but not necessarily for different populations.

126

6.2. Bayesian Networks for Prostate Cancer Staging

Secondly, the updated Partin tables (Makarov et al., 2007) were generated using a

cohort of patients from a single institution. The tables reflect therefore the local popu-

lation’s demographics, genetic and ethnic mix, disease trends, environmental and social

factors and health care system, and therefore may not perform as well on populations

with different characteristics. The BAUS cohort presents some fundamental differences

likely to affect the models predictive power. These differences may be due to significant

discrepancies in health care system policies between the US and the UK. For instance,

PSA screening is routinely practised in the US, while it is not the case in the UK, and

clearly UK patients undergoing prostatectomy are presenting with a higher PSA, GS

or clinical stage. Lymph node dissection is also a domain that differs between UK and

US policies. While in the US, it is systematically performed on patients undergoing

prostatectomy, in the UK, it is reserved for patients presenting high PSA and high GS.

The lower rate of dissection in the UK may account for the differences in c-indices and

AUC for LNI in the different models, as this pathological stage is only observed follow-

ing dissection. Finally, the poor performance may also be due to the categorization of

the pre-operative variables. As has already been shown, the disease characteristics and

trends differ between the two populations and as such the original Partin sub-grouping

of variables may not be entirely appropriate for the BAUS cohort.

Despite the overall low predictive power that can be associated with all models built

following Partin approach, UK derived lookup tables show a better c-index. This

observation supports our assertion that when applied locally, lookup tables generated

from a UK population may have higher predictive power than those generated from a

population with inherently different characteristics.

6.2.3.2 Use of alternative classifiers and addition of new variables

Using the BAUS-4 dataset, we evaluated a range of classifiers. Table 6.7 describes

the AUC of the different classifiers for each pathological stage. Each of these values

illustrates how good the model is at correctly classifying a new patient in the given

127

6.2. Bayesian Networks for Prostate Cancer Staging

Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)

NB 0.662 (0.002) 0.604 (0.003) 0.702 (0.004) 0.827 (0.012)
TAN 0.654 (0.003) 0.588 (0.005) 0.701 (0.007) 0.794 (0.015)

CHBN 0.630 (0.003) 0.578 (0.006) 0.693 (0.005) 0.809 (0.014)
LR 0.660 (0.002) 0.601 (0.004) 0.694 (0.004) 0.717 (0.036)

MLP 0.645 (0.006) 0.587 (0.008) 0.693 (0.012) 0.792 (0.031)
RBF 0.649 (0.006) 0.591 (0.009) 0.686 (0.012) 0.767 (0.046)
k-NN 0.632 (0.005) 0.569 (0.008) 0.666 (0.012) 0.700 (0.014)
RF 0.633 (0.006) 0.569 (0.008) 0.660 (0.013) 0.465 (0.019)

SVM 0.525 (0.003) 0.492 (0.004) 0.585 (0.009) 0.491 (0.001)

Table 6.7: BAUS-4 : Performances of the different classifiers

category. Overall, the use of different methods gives rise to the variety of AUCs that

are calculated.

The model built using NB offers the best AUC in any pathological stage. Bonferroni

correction was applied to ensure a fair comparison between methods and the differ-

ence between NB and the other classifiers is found to be statistically significant (p-

value<0.005).

Among models based on BN, CHBN and TAN do not offer any advantage over the

simpler NB. It is interesting to note that, despite its performance, the naive structure

is not found by the exhaustive search used in CHBN nor by the greedy search for

TAN. Figure 6.2 illustrates the structures that were learned by the GA and by the

TAN search algorithm. These are based on the CH metric and reflect relationships

within the data. The structure showing the highest CH score does model relationships

between PS, GS and CS but considers PSA as conditionally independent from the

other variables. In the TAN, in addition to the naive structure, PSA is considered as

conditionally dependent on CS. The latter model outperforms CHBN to a statistically

significant extent for the prediction of OC, EPE and SVI cases.

The BAUS-6 dataset introduces two extra variables that were not in BAUS-4. The same

classifiers were run and AUC values are described in Table 6.8. With the probability

distribution becoming harder to model, no classifier shows the best AUC on all four

128

6.2. Bayesian Networks for Prostate Cancer Staging

(a) K2GA (b) TAN

Figure 6.2: BN structures learned from BAUS-4 dataset

Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)

NB 0.679 (0.002) 0.620 (0.004) 0.713 (0.005) 0.740 (0.007)
TAN 0.668 (0.004) 0.600 (0.006) 0.735 (0.008) 0.627 (0.008)

CHBN 0.675 (0.002) 0.622 (0.003) 0.724 (0.004) 0.773 (0.006)
LR 0.675 (0.003) 0.615 (0.005) 0.699 (0.006) 0.731 (0.015)

MLP 0.650 (0.009) 0.597 (0.011) 0.694 (0.017) 0.746 (0.040)
RBF 0.656 (0.009) 0.599 (0.011) 0.692 (0.015) 0.648 (0.079)
k-NN 0.627 (0.007) 0.560 (0.009) 0.665 (0.012) 0.522 (0.049)
RF 0.604 (0.009) 0.540 (0.010) 0.616 (0.016) 0.470 (0.009)

SVM 0.516 (0.004) 0.496 (0.006) 0.538 (0.010) 0.493 (0.001)

Table 6.8: BAUS-6 : Performances of the different classifiers

values of PS, as was the case on BAUS-4. Despite this difference, all best models are

built using different BN techniques.

With respect to the assessment of LR for prostate cancer staging, both NB and CHBN

significantly outperform LR for the prediction of all pathological stages, except for OC

classification where LR yields an AUC not significantly different to that of CHBN.

The BN structures learned using K2GA and TAN search are presented in Figure 6.3.

K2GA retrieves the naive structure that exists between CS, GS, PSA and the class

variable PS. In addition, relationships are discovered between PSA and age; and age

and ASA. These two conditional dependencies are also found by the TAN.

129

6.2. Bayesian Networks for Prostate Cancer Staging

(a) K2GA (b) TAN

Figure 6.3: BN structures learned from BAUS-6 dataset

Along with Tables 6.8 and 6.7, Figure 6.4 illustrates the impact of adding features to

the set of variables originally used in Partin tables. Performances of each classifier

can be compared across the two datasets. LR-based models are significantly improved

by addition of the age and ASA variables in all four categories. BN techniques and

RBF present better AUC on BAUS-6 than on BAUS-4 for OC, EPE and SVI predic-

tions, while MLP reaches a statistical significant level of difference for OC and EPE

predictions. The k-NN and RF methods suffer from the addition of variables. As a

consequence, their AUC values decrease for all of the PS categories but one, as LNI

prediction is improved for RF. LNI prediction is, over all classifiers, altered negatively

by the inclusion of age and ASA in the study, except if combined with the use of LR

or RF.

The ARI-10 dataset, prepared from a smaller number of records, but with more vari-

ables is used to explore the behavior of the classifiers and possible relationships among

variables. AUC results are shown in Table 6.9 for our selection of classifiers. The range

130

6.2. Bayesian Networks for Prostate Cancer Staging

 0

 0.2

 0.4

 0.6

 0.8

 1

SMORFK-NNRBFMLPLRK2GABNTANNB

AU
C

(O
C)

BAUS-4
BAUS-6

(a) OC

 0

 0.2

 0.4

 0.6

 0.8

 1

SMORFK-NNRBFMLPLRK2GABNTANNB

AU
C

(E
PE

)

BAUS-4
BAUS-6

(b) EPE

 0

 0.2

 0.4

 0.6

 0.8

 1

SMORFK-NNRBFMLPLRK2GABNTANNB

AU
C

(S
VI

)

BAUS-4
BAUS-6

(c) SVI

 0

 0.2

 0.4

 0.6

 0.8

 1

SMORFK-NNRBFMLPLRK2GABNTANNB

AU
C

(L
NI

)

BAUS-4
BAUS-6

(d) LNI

Figure 6.4: Difference in AUCs between BAUS-4 and BAUS-6.

131

6.2. Bayesian Networks for Prostate Cancer Staging

Classifier AUC (OC) AUC (EPE) AUC (SVI) AUC (LNI)

NB 0.523 (0.036) 0.410 (0.051) 0.528 (0.030) 0.008 (0.007)
TAN 0.592 (0.032) 0.639 (0.046) 0.488 (0.029) 0.011 (0.010)

CHBN 0.668 (0.026) 0.591 (0.045) 0.567 (0.029) 0.019 (0.008)
LR 0.534 (0.048) 0.342 (0.059) 0.582 (0.081) 0.380 (0.237)

MLP 0.500 (0.055) 0.379 (0.067) 0.668 (0.075) 0.670 (0.232)
RBF 0.490 (0.071) 0.487 (0.067) 0.475 (0.116) 0.546 (0.294)
k-NN 0.604 (0.041) 0.592 (0.047) 0.400 (0.067) 0.329 (0.172)
RF 0.512 (0.059) 0.455 (0.071) 0.545 (0.088) 0.500 (0.000)

SVM 0.500 (0.000) 0.500 (0.000) 0.500 (0.000) 0.500 (0.000)

Table 6.9: ARI-10 : Performances of the different classifiers

of AUC values is larger than previously observed with other datasets. The standard

deviation is also larger for all methods. These two observations is likely to be linked

with the small size of the dataset and the larger number of variables.

Similarly to their performances on the BAUS datasets, highest AUCs in three of the four

pathological stages are obtained from BN techniques. The best model for prediction

of OC and EPE are respectively built using CHBN and TAN. However, their AUC is

much lower for EPE and close to zero for LNI prediction where MLP performs best.

The CHBN and TAN structures presented in Figure 6.5 both show similar patterns. For

example, edges are modeled between the variable TRUS size and PSA, MRI stage and

IPSS symptoms. IPSS symptoms also appears as an important node, with relationships

with CS, TRUS size and IPSS QoL. We note that K2GA found that MRI stage is

the only variable conditionally dependent on PS. Finally, the pre-operative erection

variable is isolated from other variables.

Over all datasets, and among a pool of various classifiers, techniques using BN offers the

best AUC for PS prediction in 10 comparisons out of 12. Only MLP outperforms other

methods in two domains. This is observed when MLP is applied on ARI-10 dataset

and AUCs for SVI and LNI are measured. k-NN, RF and SVM are generally clearly

behind the other techniques in terms of AUC.

To build and assess a predictive model, three main elements need to be taken into

132

6.2. Bayesian Networks for Prostate Cancer Staging

(a) K2GA (b) TAN

Figure 6.5: BN structures learned from ARI-10 dataset

consideration. The choice of the classifier is important but it can only lead to good

prediction if the input variables have been chosen carefully. The quality of the data is

also a key factor in the process of building a model.

Nine methods were applied to the different datasets. The AUCs of the resulting models

vary significantly. For example the AUCs for OC prediction on BAUS-4 range between

0.525, using SVM, and 0.662, using NB. This results from the inherent characteristics

and approaches of the different methods, along with the type of data being used. BN

techniques have an overall higher predictive power than other methods. However, when

measured on BAUS-4 and despite being statistically significant, the difference in mean

AUC between NB and LR, the two best performing techniques, is small (0.002). When

applied on a dataset containing a larger number of variables, such as BAUS-6, the

difference between the two same techniques becomes more marked (0.004). Similarly

on ARI-10, LR is clearly outperformed in mean AUC by the best BN model, CHBN

(0.134). The dimension of the dataset impacts on the classifier’s abilities to produce

133

6.2. Bayesian Networks for Prostate Cancer Staging

high quality models. When only four variables are involved, it is expected to see small

differences in performances between the methods as the joint probability distribution is

easier to model for low-dimensional data. When new variables are included in the study,

some classifiers can lead to complex models. For example, the Euclidean distance, on

which the k-NN algorithm is based, loses discriminating power when applied on high

dimensional data. This characteristic of k-NN is illustrated when the variables age and

ASA are included in the BAUS data by a drop in terms of AUC for all class labels. The

tree algorithm RF also has difficulties in correctly classifying PS on BAUS-6. However,

the quality obtained on the different datasets matches findings from literature (Deng

et al., 2011) in which RF is described as a method which is not suitable for problems

where predictor variables have different numbers of values. The performance of RF here

is also consistent with the drop in AUC observed when the variables age and ASA,

with 5 and 3 states respectively, are introduced to the model. On the other hand SVM

techniques are known for their good performances on high dimensions. We suggest that

the poor predictive power presented by SVM on the BAUS datasets can be explained

by the number of variables being too few for this method which is particularly adapted

to high-dimensional problems (Platt, 1999).

As already mentioned, LR appears as a competitive solution for prostate cancer staging.

However, it does not outperform any of the selected alternative methods on any domain.

A potential drawback of LR resides in the fact that all predictors are considered as

independent from each other. This assumption also is made in a NB. Although this

assumption can be justified on BAUS-4 according to the performances of both LR and

NB, it does not seem justified on BAUS-6 and ARI-10. On these two datasets, AUCs

from TAN and CHBN are overall higher than those from NB and LR. Besides, the

associated BN structures reveal relationships between some of the predictor variables.

Independence between predictors can be assumed on datasets with a few variables.

However, with addition of extra features, interactions are likely to appear that are

beneficial for the model’s quality. The current version of Partin tables, based on LR

may not suffer from the previously discussed assumption, but experiments have shown

134

6.2. Bayesian Networks for Prostate Cancer Staging

that LR is not the best method for PS classification. In addition, the performance gap

with other approaches such as BN appears to increase with the dimension of the data

to model.

When the first version of Partin tables was created (Partin et al., 1993), Chi-square tests

were performed along with LR. The aim was to discover the combination of variables

that best correlates with PS. Results led to the conclusion that PSA, GS and CS

should be used together, and age of patients removed from the study. In the present

study, experiments were run on two subsets of the BAUS dataset. The AUCs of the

models built from BAUS-6, including the two new variables ASA and age, were higher

than the ones obtained from BAUS-4 with the same methods. Among these methods,

LR produced a better model when including age in the study, contradicting Partin’s

original assumption.

The quality of the data represents a key factor in the construction of a predictive model.

BAUS dataset is the result of a large scale data collection, involving 57 different centers.

Such data is extremely hard to gather as it involves collaboration between institutions,

standardization of the data and ethical issues. As a consequence, some records had to

be removed due to inconsistencies. Although the size of the datasets finally used was

highly reduced, it remains large with respectively over 1700 and 1500 patient records

for BAUS-4 and BAUS-6. The difficulties encountered in the data preparation process

is to be taken into consideration as it reflects a current challenge of medical data mining

(Ramakrishnan et al., 2010). Local data represents a good opportunity to explore ideas

but can also suffer from too few records. Such difficulties were observed on ARI-10 and

caution should be taken when analyzing resulting numbers. Another challenge resides

in the skewed distribution of pathological stages in both BAUS and ARI datasets.

Representing around 1% of all records, LNI condition is the most challenging stage to

predict, and is illustrated by standard deviations higher than for other stages for most

methods. These results should also be treated carefully as they are likely to vary with

the data.

135

6.2. Bayesian Networks for Prostate Cancer Staging

AUC measures show that the classifiers based on BN are better adapted to prostate

cancer staging than other methods from our selection. On BAUS-4, NB outperforms

TAN and CHBN. In other terms, setting the BN structure to one of its simplest form

was beneficial over the use of heuristic search for optimum networks. One could argue

on the efficiency of the heuristic employed in CHBN and TAN, but the metric on which

the search is based describes how well a structure reflects the data. The CH score

assesses a BN in a general way, thus without focusing on a particular variable. Scores

of the different BNs presented in Table 8 show that CH values are always higher for

CHBN than for TAN and NB as the search strategy aims at maximizing it. However,

CH scores and AUCs for PS are not affected in the same manner. A low CH score

does not ensure that the corresponding AUC for PS will be high. The development of

NB and TAN was originally motivated by this limitation on BN. These two restricted

BNs are biased toward a specific purpose, such as classification of a predefined variable.

Their performance on BAUS-4 confirms their efficiency on small dimensional datasets

over unrestricted networks.

However, as seen with NB, this is an efficient solution when the number of variables to

model is low, but shows limitation in other contexts. On BAUS-6, the performances

between NB and CHBN are close for OC prediction and NB is outperformed by CHBN

for EPE and SVI classification. In a similar manner, experimental results on ARI-10

shows that NB has the worst performance of the three BN methods for AUCs on OC

and EPE. In addition, CHBN presents with a AUC for OC of 0.668 against 0.604 for the

second best performing technique, k-NN. This important difference reflects the ability

of the GA to find a good solution from a large space of possible structures. Heuristic

search appears like the right approach when more features are included. Search and

score algorithms benefit from using datasets with a large number of variables. The

larger search space associated offers more possible dependencies between variables that

are likely to further improve the model’s predictive power.

The structures found by K2GA represent the most relevant relationships associated

with the data. On BAUS-4, the PSA variable is isolated from the rest of the features

136

6.3. Comparative Study of Bayesian Network Structure Learning Algorithms on
Prostate Cancer Data

BAUS-6 ARI-10

K2GA
Fitness -9464.5337 (5.30.10−12) -999.5378 (0.17)

S.R 97% 60%

IMK2GA43
Fitness -9464.5337 (5.46.10−12) -999.4796 (0.14)

S.R 93% 77%

COMMA
Fitness -9464.5337 (5.30.10−12) -999.4454 (0.18)

S.R 97% 93%

Table 6.10: Performance of three search and score approaches on two medical datasets

and it results in a model with a lower predictive power than the ones obtained from

NB and TAN when setting PSA as dependent on PS. This reflects the importance

of PSA and is consistent with medical understanding (Partin et al., 1993). From the

experimental results on BAUS-6 using K2GA and TAN, PSA is also considered as

conditionally dependent of PS. PSA and ASA appear to be correlated with age, a

medically meaningful finding. In addition, the NB structure on BAUS-4 is retrieved

when K2GA is run on BAUS-6. CS, GS and PSA are indeed linked with PS, illustrat-

ing that these variables are the most significant for PS. On ARI-10, only MRI stage

and GS are contained in the Markov blanket of the class variable PS. In this latter

model, only MRI stage and GS are needed to infer a patient’s pathological stage. The

presence of MRI stage in PS’ Markov blanket while CS is not is consistent with the

fact that MRI is a more accurate means of evaluating PS than DRE (Sanchez-Chapado

et al., 1997). Other relationships were found to be relevant with medical expectations,

such as the dependency between TRUS size and age and PSA (Collins et al., 1993),

but others such as the relationship between MRI stage and TRUS size raised questions

regarding their medical meaning (Anastasiadis et al., 2006). This may be due to the

small size of the ARI dataset implying that these results should only be considered as

exploratory.

137

6.3. Comparative Study of Bayesian Network Structure Learning Algorithms on
Prostate Cancer Data

r N
u
m

.
of

p
l.

L
ar

ge
st

p
l.

M
ea

n
p
l.

BAUS-6 -0.39 (0.23) 18.77 (2.45) 11.97 (4.98) 3.02 (0.68)
ARI-10 -0.27 (0.24) 19.23 (4.26) 15.20 (10.85) 3.99 (1.70)

Table 6.11: Fitness landscape characteristics of BAUS-6 and ARI-10

6.3 Comparative Study of Bayesian Network Structure

Learning Algorithms on Prostate Cancer Data

Since the suitability of BN to model prostate cancer data was proved, the use of the

three heuristics described in this thesis was investigated. This step is to ensure that

the network structures used for classification purposes are the most representative of

the data. Hence, 30 repeat runs of K2GA, IMK2GA43 and COMMA were performed

on the two medical datasets BAUS-6 and ARI-10 and the mean fitness of the best solu-

tion found after 1000 fitness evaluations recorded. The GA-based algorithms were set

following findings from Chapters 3 and 4, that is with a population of 100 individuals,

tournament selection of size 1 and cycle crossover. Using 4 islands and 3 migrations

was also justified since this configuration has previously shown best results over all ex-

periments. Similarly, COMMA was set with a population of 10 agents, in accordance

with Chapter 5.

Empirical results on BAUS-6 that are presented in Table 6.10 show that all methods

are able to find the best network, with a high frequency. This results in a very low

standard deviation associated with the fitness of the best solution after 1000 evaluations.

This shows a good reliability of the different learning algorithms in finding an optimal

structure on this simple 6-variable problem. However, the small size of the problem

does not allow further performance comparisons and a sole K2 process may be enough

to produce optimal solutions.

138

6.3. Comparative Study of Bayesian Network Structure Learning Algorithms on
Prostate Cancer Data

With the use of ARI-10, differences can be seen in terms of mean fitness of the best

solution. Standard deviations are also higher, as a result of a more diverse search. This

variation can be explained by an increase of the search space in comparison with the one

from BAUS-6, but also by the size of the data. With 85 records, running K2 is likely

to lead to many approximations. The overall best results are obtained by COMMA

on this particular problem after allowing 1000 fitness evaluations to be performed. Yet,

it is important to note that all methods managed to find the same best structure in

at least half of the 30 runs as illustrated by success rates (S.R.) in Table 6.10. Thus,

all approaches can be seen as reliable when considering the use of repeat runs on this

problem. These best structures are also similar to the ones presented in Figures 6.3a

and 6.5a

With lower standard deviations and higher success rates, ARI-10 seems to present less

local optima than the other benchmark problems previously studied. However, it was

noticed that a particular network structure was learnt by the GA-based algorithms when

the best structure was not found. Overall, the structure with the CH score of -999.7363

was obtained 10 times (33% of the runs) by K2GA and 7 times (23% of the runs)

by IMK2GA. In addition, this solution was found on the totality of the unsuccessful

runs of IMK2GA and on 83% of all unsuccessful runs of K2GA. This solution whose

structure is presented in Figure 6.6 can be considered as a local optima. It differs from

the best structure by 4 added, 3 omitted and 2 reversed edges, but with 4 similar edges.

Using IM helped improving the success rate of the GA, although not to the extent of

avoiding the local optima. On the other hand, COMMA showed a good behavior and

exhibits a high success rate (93%).

Table 6.11 presents characteristics of the landscapes associated with both BAUS-6 and

ARI-10. These includes the correlation coefficient r of the FDC analysis, the number

of plateaus, the size of the largest plateau and the mean size of a plateau. Fitness land-

scape was evaluated following the approach described in Chapter 3, following repeated

random walks. Since these random walks start from an optimal orderings, the best

structure found over 30 runs on each dataset was used as a reference and Kahn and

139

6.4. Bayesian Network Structure Learning on Distributed Medical Data

Figure 6.6: BN structure resulting from a locally optimal ordering on ARI-10 dataset

Tarjan orderings derived from it to generate orderings. Findings show that r values are

in the same range as those of the benchmarks previously studied, to the exception of

tank, and it can be extrapolated that finding a BN structure for BAUS-6 and ARI-10

is a problem that is straightforward for optimization methods, with respect to the cor-

relation between fitness and distance to optimal. Numbers related to plateaux are also

comparable to those of the benchmark problems.

6.4 Bayesian Network Structure Learning on Distributed

Medical Data

6.4.1 Distributed Data in Medicine

Although the field of medical data mining involves many studies, there exist difficulties

that relate to the nature of the data itself. These unique challenges offered by medical

data are summarized in (Cios and William Moore, 2002) under five main arguments.

These issues relate to the questions of data ownership, fear of lawsuits that could result

140

6.4. Bayesian Network Structure Learning on Distributed Medical Data

from mining practitioners’ data, data privacy and security, administrative issues and

finally potential benefits having to be proved.

In short, data ownership is an open debate that questions whether data regarding

patients belongs to the patients themselves or to the institutions treating them. This

has direct consequences on agreements that could be arrange to allow access to data to

researchers, as it can sometimes be unclear who should be concerned by the problem.

Practitioners also sometimes fear lawsuits that could results from mining the data rel-

evant to their patients as mining studies may reveal some errors relevant to the practi-

tioners’ choices regarding patients’ treatments. Thus, asking for data may sometimes

result in refusal.

The problem of privacy and security of the data covers many aspects such as the risks

that are involved when data is handled and transfered between institutions. Sharing

data may also influence the relationships between patients and practitioners that is

based on confidence. Finally, data verification may be required on some studies. This

step may be very difficult to realize if not impossible in cases such as when data is

anonymized.

In order to get access to data, proposal often needs to be written and accepted. This

suggests that there should be a strong motivation behind the project as well as a thor-

ough project plan. These points may be hard to define in cases and small institutions or

individual researchers may experience difficulties in gathering all the evidences required.

The last hurdle to data sharing concerns institutions’ administration. Sharing data

requires in some cases the implementation of legal contracts, new set of policies, user

training, the definition of termination procedures and many other elements. These can

represent barriers to potential data mining for both data host and requesting institu-

tions, decreasing the chances for studies to arise.

Although data is highly needed, policies on data protection raise a barrier to large

scale projects and many studies are performed using local data, gathered in single

141

6.4. Bayesian Network Structure Learning on Distributed Medical Data

centers. Conclusions of such studies are thus difficult to generalize. Computer science

could address this problem by developing a framework to make use of this data while

ensuring that patients cannot be tracked through their records. The approach proposed

in Chapter 4 and based on the use of IM is investigated in a real-world context, based

on the BAUS data.

6.4.2 BAUS Distributed Data

The BAUS-6 datasets was used as a starting point for this study. However, in order to

increase the size of the search space, two extra variables were included in the dataset,

potency and continence. Since many records exhibited missing values on these two

fields, a missing state was included for these variables. This is to ensure the number

of instances is similar to the one of BAUS-6 and large enough for modeling. Note that

missing states were not added for the other 6 variables of the problem. We call this new

dataset BAUS-8. Note that BAUS-8 is only created with the objective to increase the

complexity of the modeling task. Results and model structures presented in this section

are not to be considered as medically valid, but simply to support the hypothesis that

IM can be used to model distributed data.

In order to simulate situations that could arise from the medical domain, the BAUS

dataset need to be divided in some ways. This was made possible by consideration of

the origin of the records. Thus, each record was mapped to a medical center, which

allowed consistent and meaningful partition of the data. In total, 35 NHS research

cancer networks were involved in the study. Note that cancer networks are different

from single institutions that are part of the BAUS data collection procedure, networks

usually covering many institutions.

Because of the large number of cancer networks, the distribution of the different in-

stances of BAUS-8 on each cancer network shows important differences across networks.

This includes some networks with a large number of instances (251 for Central South

142

6.4. Bayesian Network Structure Learning on Distributed Medical Data

Area Size Cancer networks

North 270 Greater Manchester & Cheshire,
Humber & Yorkshire Coast, Lan-
cashire & South Cumbria, Mersey-
side & Cheshire, Northern, North-
ern Ireland, Scotland, Yorkshire

Central 818 3 Counties, Arden, Black Country,
Leicestershire & Northamptonshire,
Mid-Anglia, Mid-Trent, Mount Ver-
non, Norfolk & Waveney, North
East London, North London, North
Trent, North West Midlands, South
East London, South Essex, Thames
Valley, Wales, West London

South 613 Avon & Somerset & Wiltshire, Cen-
tral South Coast, Dorset, Peninsula,
Surrey & West Sussex & Hampshire,
Sussex

Table 6.12: Cancer network areas

Coast), but also some networks associated with a very few records (1 for Leicestershire-

Northamptonshire and West London) as illustrated in Figure F.1. Such small sample

size is not suitable for modelling and merging cancer networks is required. This lead to

the creation of three distinct datasets representing the North, Center and South areas

of the UK. Table 6.12 summarizes how the cancer networks are grouped under the three

labels.

6.4.3 Island Model for Distributed Data

In the previous chapter, in order to assess the quality of learnt BNs, structures were

compared to a known true structure from which data was sampled. In the current

problem of modeling prostate cancer data, it is not possible to know the true structure

of the problem. Hence, to understand the quality of the solutions learnt from distributed

data, it was decided to compare them to the best network structure that was discovered

on the centralized data, that is when the three individual datasets were merged together.

143

6.4. Bayesian Network Structure Learning on Distributed Medical Data

Figure 6.7: Best BN structure obtained by K2GA and IMK2GA on the centralized
BAUS-8 dataset

Both K2GA and IMK2GA43 were run in order to maximize the chances to obtain a

good structure. 30 runs of each with population size 100 and tournament size 1 lead

to similar results from both methods. A very small standard deviation was associated

with these results (> 1010) and it was found that the structure presented in Figure 6.7

exhibits the best CH score (-13860.6307). This BN structure is considered as a reference

and is used for comparison when learning BNs using distributed data.

K2GA and IMK2GA33 were run on the divided data for 5000 generations. Empirical

results are shown in Table 6.13. Orderings obtained at the end of the runs are set

as input in K2 to define their quality. This step is performed twice in this set of

experiments, using the local dataset first and the centralized data. Note that all repeat

runs ended with similar results, that is all islands were associated with an ordering of

similar fitness at the end of each run. Thus, standard deviations (0.0) were not included

in the tables.

The first observation that can be made concerns the discrepancies that exist between

the different islands, thus the different datasets. For instance, the island modeling

the Central data ends up the runs with a structure that differs from the one obtained

on centralized data by only one spurious edge. However, this is not the case for the

144

6.4. Bayesian Network Structure Learning on Distributed Medical Data

Island
K2 on local data K2 on centralized data

C R A O SHD C R A O SHD

IMK2GA30

North 1 1 0 5 6 3 2 1 0 5
Central 7 0 1 0 1 7 0 0 0 0
South 4 0 1 3 4 5 1 0 1 2

IMK2GA33

North 1 1 0 5 6 3 2 1 0 5
Central 7 0 1 0 1 7 0 0 0 0
South 4 0 1 3 4 5 1 0 1 2

Table 6.13: BN structure quality at each island after 5000 generations in IMK2GA30

and IMK2GA33 computed from local and centralized run of K2

remaining two islands or datasets that retrieve final BNs of relative poor quality. By

looking closely, we can see a correlation between poor structure quality and size of

the local dataset. For example, modelling the North dataset that only consists in 270

records leads to a network with only two edges. This can be explained by simply

looking at the FDC plot shown in Figure 6.8. The reason why only four points are

plotted is because despite generating many distinct orderings during the random walk,

only four different structures were found by K2 and assessed by CH score. In short, it

means that there are only four potential CH score values that can be attributed to any

ordering and that only four BNs can be built from the North dataset. Similarly, there

are less structures that could potentially be built from the South dataset than from

the Central one. The results presented in Table 6.13 following the K2 run on the best

ordering using the centralized data confirms the low quality of the orderings found from

the North dataset, in comparison with the other two. Using the Central data leads to

an optimal ordering.

The experimental settings are not a good ground for performance comparison between

serial and IM-based evolutions. Thus IMK2GA30, that is simply three K2GAs running

in parallel, using different datasets do not show any difference with IMK2GA33 in

terms of structure quality. This illustrates a lack of influence of the migration process

on the search that can be caused by the difficulties of K2 to use orderings on small

145

6.5. Bayesian Network Structure Learning on Distributed Medical Data

0 1 2 3 4 5 6 7 8
−1.389

−1.3885

−1.388

−1.3875

−1.387

−1.3865

−1.386

SHD to Known Structure

F
itn

es
s

(a) 1701 instances

5 5.2 5.4 5.6 5.8 6 6.2 6.4 6.6 6.8 7
−2243

−2242

−2241

−2240

−2239

−2238

−2237

−2236

−2235

−2234

−2233

SHD to Known Structure

F
itn

es
s

(b) 270 instances

Figure 6.8: Correlation between fitness of an ordering and its related SHD to known
structure on complete BAUS-8 data and a 270-instance subset

datasets. Hence, an ordering that can be optimal may be scored with a poor CH value

at a specific island because the amount of data available is too small, inhibiting the

effect of solution migration.

To illustrate the impact of the size of the data, figure 6.9 covers the variation in SHD

in the network learnt by K2 from a similar variable ordering, under variation of the

number of instances in the dataset. When datasets with less than 800 instances are

used in K2, the number of correct edges starts decreasing as the number of instances is

also decreased. The drop in structure quality reaches a critical point where almost no

edge can be found. Similar pattern is observed with SHD, illustrating the presence of a

minimum number of records needed to efficiently model a problem. These observations

are in concordance with previous analyses on K2’s abilities (Cooper and Herskovits,

1992). In Chapter 7, a few ideas on how this limitation could be overcome are given as

part of potential further work. They should be investigated in order to allow modelling

of the distributed BAUS data.

146

6.5. Summary

0 200 400 600 800 1000 1200 1400 1600 1800

0

1

2

3

4

5

6

7

X: 270
Y: 2

Data size

C
or

re
ct

 E
dg

es

X: 818
Y: 7

X: 613
Y: 6

(a) C

0 200 400 600 800 1000 1200 1400 1600 1800
0

2

4

6

8

10

12

14

X: 270
Y: 5

Data size

S
H

D

X: 818
Y: 0

X: 613
Y: 1

(b) SHD

Figure 6.9: Impact of dataset size on the quality (C and SHD) of BN structures learned
by K2 from an optimal ordering. Labels show the expected quality for the sizes of the
BAUS-8 North (270), Central (818) and South (613) datasets.

6.5 Summary

• UK-wide data was available from BAUS and gathered records from patients that

were treated with radical prostatectomy in recent years. In addition data from

ARI patients was also at hand for modelling purposes.

• One of the main challenge regarding prostate cancer treatment is to predict the

pathological stage of new patients based on some markers. Prostate cancer staging

is currently clinically done by using lookup tables called Partin tables, based on

LR.

• New lookup tables are prepared following the same methodology as the one of the

Partin tables, but using the BAUS data. Predictive power is evaluated by using

concordance index and AUC. It is found that original Partin tables have a low

predictive power on British cases. The new lookup tables lead to improvement

but the quality of the prediction remains low.

• A range of classifiers is applied to the BAUS and ARI datasets. Although differ-

ence are small when only 4 variables are included in the problem, BNs show better

predictive power than other techniques when the data dimension is increased.

147

6.5. Summary

• K2GA, IMK2GA and COMMA are assessed on the task of learning BNs from the

prostate cancer data. On the BAUS data, all methods perform similarly, reaching

the same best structures after 30 runs. On the other hand, COMMA exhibits the

best results by both fitness and success rate when modelling the ARI data.

• The fitness landscapes associated with the modelling of both medical datasets

present comparable characteristics than those of the benchmark problems, to the

exception of none or fewer local optima.

• The importance of modelling techniques that could handle distributed medical

data is detailed. NHS Cancer networks are included in the study and in the

BAUS data. This enables the creation of three datasets that gather records from

different geographical areas of the UK.

• However, the small size of some of the datasets restricts the performance of the K2

process and the search cannot lead to good structures. On the largest dataset,

Central, that is composed of 818 records, K2GA is able to retrieve the same

structure as the one obtained from centralized data. Resampling techniques need

to be investigated to enable modelling of small datasets.

148

Chapter 7

Discussion and Directions for

Further Research

In this chapter, we present the main contributions of the work presented in this thesis.

In addition, many limitations were overseen in the experiments conducted throughout

this thesis. These should not be disregarded as they help introducing further lines of

potential research, aiming at improving BN structure learning. Thus, future work is

presented.

7.1 Contributions

The following section highlights the key contributions of the work presented in this

thesis.

• A review on BN structure learning using permutation representation and on qual-

ity metrics associated with this representation.

• A detailed analysis of the difficulty of learning BN structures from data using per-

mutation representation. The analysis was performed by considering the fitness

149

7.2. Directions for Further Research

landscapes associated with several BN benchmarks, but also investigated the cor-

relation between CH score and BN structure quality. These findings were further

analyzed by studying the behavior of K2GA. BN structure learning by means of

K2-based approaches generally offers multi-optimal landscapes, exhibiting a large

number of plateaus, which is prone to affect the diversity in the population and

hence lead to premature convergence.

• An investigation of the impact of IM on K2GA. This includes performance anal-

ysis of IM in the classic environment where the data is centralized, but also a

novel implementation to enable BN structure leaning from distributed data while

preserving privacy.

• Introduction of a novel meta-heuristic to maintain a steady level of diversity in its

population. COMMA uses several distance mutation operators in a population

of agents in order to assign different roles to each of them. Results show that

COMMA is efficient in learning BN structures.

• Applications to prostate cancer data modeling. These include the implementation

and comparison of BN-based predictive tools with tools currently used clinically.

The use of IM to handle distributed medical data is also approached.

7.2 Directions for Further Research

7.2.1 Parameter Tuning

Regardless of the method that is applied to BN structure learning, the number of pa-

rameters that need to be considered and that can affect the search is large. In addition,

some of these parameters being of continuous nature, the number of possible combi-

nations of parameter values can sometimes be infinite. It has been seen throughout

the experiments carried in this thesis that certain parameters are very influent on the

diversity, that is the population size and the tournament size. Tests have been done to

150

7.2. Directions for Further Research

determine two sets of configurations that each defines a different environment, one that

is prone to lead to a fast loss of diversity and one that is less prone to it. However, it is

important to note that these values result from decisions that were made when design-

ing the experiments and cannot be considered as optimal. The same experimental bias

applies to other settings such as the number of islands and migrations in IMK2GA or

the number of agents or rules for mutation distances in COMMA.

It is often assumed that experimental decisions are part of the process of comparing

algorithms. Experiments presented in this work followed the classical way of running

some preliminary studies to find out good values for some selected parameters of im-

portance, before running the final implementations using several repeat runs. However,

it would be of interest to look at other experimental approaches that have been proven

as efficient. For example, the field of hyper-heuristics (Burke et al., 2003) has given

rise to methods that could be applied in the context of BN structure learning. Al-

though there are several paradigm in hyper-heuristics, the main idea is to compose

a search procedure by combining search operations that are applied in turn following

some strategies. This represents a higher level strategy that is less problem dependent

that classical meta-heuristics. Another type of higher level experimental approach con-

sists in preselecting a range of possible algorithm configurations and run a competitions

between these, on several instances of a problem. For instance, the F-race algorithm

(Balaprakash et al., 2007) starts with a range of configurations and evaluates them

on distinct problem instances. When some can be considered as statistically outper-

formed, they are discarded, and the process is repeated until reaching a satisfactory

number of configurations. This approach allows more configurations to be tested since

the bad ones will not be applied to a large number of instances before being rejected.

Implementation of F-race on K2GA, IMK2GA and COMMA would help to draw a

more consistent conclusion on their overall performance.

151

7.2. Directions for Further Research

7.2.2 Use of Alternative Fitness Functions

This work has focus exclusively on one specific type of EAs, that are based on the K2

greedy search. It implies that only one fitness function was used while many more have

been implemented as seen in Chapter 2. Different fitness function may bring benefits

to the search. For example, a problem related to the use of K2 relates to the size of

data that needs to be used. It was seen that when trying to model distributed data,

some subsets of the data were not composed of sufficient instances to allow efficient

structure learning by K2. K2 showed difficulties in distinguishing between several

distinct orderings and was only able to produce a handful of distinct structures. Despite

being promising to model distributed data according to experiments on benchmark

problems, the use of IM did not lead to usable models when applied to the real-world

medical data because of this limitation. It would be of interest to compare other scoring

functions on the same datasets, including the BAUS datasets.

Finally, modeling data based on CH score or any BD-derived metric leads to general

model of the data. Such approaches are adapted to situations where it is important

to have an overview of the relationships that exist between problem variables or where

there is not a specific class variable defined. Yet, in other contexts, such as prostate

cancer staging, the focus is on a particular variable, the pathological stage for example.

In such cases, BN structure learning would benefit from a scoring function that can

discriminate between a class variable and other features of the data. A scoring function

that fits in this description has been recently implemented (Carvalho et al., 2011) and

its application on BAUS data modeling is suggested in order to enhance the predictive

power of BN classifiers.

7.2.3 Dynamic selection of mutation parameters in COMMA

In its current implementation, COMMA’s strategy is based on using a single type of mu-

tation per run. Mutation distances act as the only way to define the degree of alteration

152

7.2. Directions for Further Research

that is applied to a solution. However, mutation types have different relationships with

the mutation distance. For example, two families of mutation operators were defined,

that applies an alteration whose value can be expressed either in a deterministic or

stochastic way. One of the drawback of the current implementation lies in the fact that

using a specific mutation type sets constraints on the maximum and minimum extent of

the alterations that are applied to each solution. For example, choosing swap mutation

means that all solutions that are produced from a generation to another do not differ

much from their parents, relative to other mutation types, regardless of the mutation

distance used. Similarly, small alterations are very unlikely with invert+displacement,

even with low mutation distances.

A proposed way to overcome this limitation of COMMA is to build lookup tables

containing the ordering similarity distance between a solution and its potential offspring

for each combination of mutation type and distance. These tables, similar to Tables 5.1

and 5.2 can then be used to dynamically allocate a mutation distance and a mutation

type to a given agent according to its rank in the population. Hence, instead of assigning

a different mutation to each agent, they would be assigned a level of alteration they

need to apply to their associated solution. Such approach is also beneficial in that

it reduces the number of parameters involved in the algorithm design as no mutation

types, nor distance would need to be decided arbitrary.

COMMA is a novel meta-heuristic approach that has been implemented for BN struc-

ture learning. Yet, it is a method that search in the space of permutations and thus

that could suit many other applications. The aforementioned idea of dynamic choice

of level alteration within the algorithm would lead to better conclusions if applied to a

range of problems. These includes the classic benchmark problems such as the Traveling

Salesman Problem or Flow Shop Scheduling for example.

153

7.2. Directions for Further Research

7.2.4 Implementation of Surrogate Fitness Function

Running K2 can be a computationally expensive process on large data. This results

in long runtime associated with K2-based EAs, such as K2GA or COMMA. Although

this point is not treated in this thesis, the need for surrogate fitness model is real and

such techniques would bring a lot of advantages to BN structure learning. With the

current implementations, it can take days to perform a single run of K2GA on large

datasets, which fixes some limits on the number of variables that can be modeled using

K2GA or COMMA.

The idea of surrogate fitness model consists in assessing a few solutions using a given

fitness function, such as the CH score resulting from K2, and to build a model based

on these fitness values and the solution genes. Naturally, a lot of work in the field of

fitness surrogate is derived from EDAs, whose strategy is to model the distributions

of good solutions in order to produce new individuals. For example, work has been

carried out in implementing a surrogate fitness model based on Markov Random Fields

in (Brownlee et al., 2010, 2012) for binary representations. Once built, the model was

fitted into a GA in order to guide the search, showing important benefits in terms of

runtime, but to the cost of a drop in solution quality. Work has also been carried out

in modeling the fitness associated to permutation spaces (Ceberio et al., 2012). This

lead to the implementation of surrogate fitness function used to support the search

in EAs. In (Zhang and Sun, 2006; Chen et al., 2012), a first-order marginal model

is used to guide a tournament between several crossover and mutation types within

an EA. Such model typically builds a table of probabilities for each variable-position

pair. This work is also a good example of how tuning steps can be introduced in an

algorithm at no cost. The idea was extended in (Ceberio et al., 2011b) to include more

orders into the marginal representation within an EDA. Another permutation-based

EDA (Ceberio et al., 2011a) makes use of the so-called Mallows model that defines

probability distributions associated with permutations, based on their distance to a

central permutation.

154

7.2. Directions for Further Research

Preliminary runs were performed to get an insight on how surrogate models would per-

form on the problem of learning BNs. Because of its simplicity, the k-order marginal

model (Ceberio et al., 2011b) was adapted to guide the search in K2GA on five bench-

mark problems, asia, tank, credit, car and boerlage. A population of 100 individuals

is initially evaluated using K2. The 30 solutions with the highest CH scores are se-

lected and a k-order marginal model is built from their characteristics. 1000 generations

are then performed, based on the surrogate fitness obtained by bringing together the

probabilities for each variable-position pair of the permutations. For this set of ex-

periments, the probabilities were simply summed to provide a fitness value. 10 runs

were performed on each benchmark problem, with datasets of 3000 instances. Finally,

Laplace correction was used to avoid the presence of zero probabilities in the model.

Experiments were run with and without model update, with a model of order 2. When

the model is updated, a new model is built from the 30 best solutions in the population

and replaces the previous one. Figures 7.1, G.1, G.2, G.3 and G.4 illustrate how the

surrogate fitness of the best solution evolves over time. In addition, the CH score corre-

sponding to the solution with the highest surrogate fitness value is also displayed. This

enable comparison between the two fitness functions. In theory, a perfect surrogate

would match the curve of the real fitness function. Although, there is a lot of noise and

the correlation between the two fitness functions is not perfect, there exists clearly a re-

lationship between them. This is particularly apparent when observing the runs where

no update is involved. Results also show that update helps fixing some approximations

of the surrogate model. However, it seems that the crude update strategy chosen here

does not help the search and better strategies that keep properties of previous models

should be used in place.

This series of experiments is very rudimentary and no objective conclusion can be

reached. However, the correlation between surrogate 2-order marginal fitness function

and CH score suggests that a more thorough analysis should be performed. Considering

other types of permutation-based models and a more meaningful way to produce a

fitness function from it are two guidelines that may benefit BN structure learning.

155

7.3. General Conclusion

0 100 200 300 400 500 600 700 800 900 1000
4

4.5

5

5.5

6

6.5

Generations

−3.0775

−3.077

−3.0765

−3.076

−3.0755

−3.075
x 10

4

Best Surrogate Fitness
Associated CH Score

(a) No Update

0 100 200 300 400 500 600 700 800 900 1000
0

100

200

300

Generations

−3.078

−3.076

−3.074

−3.072
x 10

4

Best Surrogate Fitness
Associated CH Score

(b) Model Update

Figure 7.1: Evolution of surrogate fitness of the best solution and its associated CH
score on boerlage with and without model update

7.2.5 Investigation of techniques to handle small datasets

Experiments on benchmark datasets showed that the use of IM can have another ben-

efit than enhancing diversity in the population. IMK2GA was successful at modeling

distributed data with distinct distributions but similar set of variables. It also showed

that using distributed data can enhance results that would be obtained after centraliza-

tion. Yet, the same technique was not as successful at modeling the distributed medical

data. The small number of records at some of the island was identified as a potential

cause, preventing K2 to produce good structures.

Investigating ways to handle data with such properties is a natural way to follow up on

the research on privacy-preserving distributed data modeling presented in this thesis.

The issue is very likely to be observed when modeling real-world data and this line of

research would ensure that there is a link between the theory presented here and its

application to practical problem.

7.3 General Conclusion

The work presented in this thesis covers many points of the specific application of

BN structure learning using EAs. Among other things, it highlights the importance

156

7.3. General Conclusion

of considering the fitness landscape of any problem in order to understand algorithm

performance. In the context of BN structure learning, different data present different

landscape characteristics. It is also important to consider the differences that can

exist between fitness values and actual BN properties. It appeared for example that

despite CH score and BN quality being overall correlated, exception can be found

in some datasets such as tank. Such knowledge about a problem helps understanding

findings. Generally, experimental work have shown that the landscapes associated with

BN structure learning exhibit many local optima and plateaux when using permutation

representations and K2 to score solutions. This means that many distinct solutions can

produce the same BN structures following K2, and hence be set with similar CH scores.

This property of the landscape favors early convergence and fast loss of diversity in the

population.

With population-based algorithms, one of the main factor influencing the search is the

level of diversity that exists at any time in the population. Typically, this factor can be

managed by consistent and thorough parameter tuning. For instance, the population

and tournament sizes affect highly selection pressure and thus the diversity. However, at

occasions, these parameter values can become impractical to ensure sufficient diversity

in the population (very large population size for instance). IM were applied to K2GA as

an alternative to thorough parameter tuning. Using IM when K2GA was set with small

population and large tournament size shows that IM can enhance the performance in

environments that are prone to generate a loss of diversity. However, in other types

of environments where K2GA does not suffer from premature convergence, the quality

of the BNs obtained by IMK2GA is not always as good as those of K2GA. This is

especially true on large datasets where a slow convergence is observed. COMMA was

designed in order to observe the performance of search and score population-based

algorithms that can be reached when the loss of diversity is not a concern anymore in

the search. COMMA shows that it is competitive with K2GA and IMK2GA on the

experimental bounds set but could lead to better results if its runtime was increased.

Yet, although both proposed approaches, IMK2GA and COMMA, show promising

157

7.3. General Conclusion

insights, their implementations introduce another set of new parameters that need

careful tuning. For example, particular parameter configurations on IMK2GA can

result in too slow convergence, another limitation. Thus, on some experiments and

despite solving the problem of premature convergence, satisfactory results may not be

reached. IMK2GA and COMMA were implemented as proofs of concept and were not

optimized in this work. To ensure an optimum use of both IMK2GA and COMMA, it is

important to try to reduce the number of parameters or to change the approach behind

the tuning of parameters, such as using some surrogate fitness to perform tuning steps

within the search.

The work carried out also considered a common limitation to many data modeling tasks.

It relates to the use of distributed data. While the IM principle represents a natural and

straightforward way to model such data, good results are also dependent on the quality

of the data and its size. When using K2, small sample size impedes K2 from learning

generalisable networks. Solutions to these problems may lie in the topics of resampling,

or in studying alternative to K2 that can handle small datasets. On the other hand,

IMK2GA appears as a good method to model data from distinct locations when the

size of each local dataset is sufficient. When datasets present important dissimilarities

in their distributions, the use of IM on distributed data offers advantages over modeling

the same data after centralization.

The aforementioned topics were analyzed in a real-world medical context. It was shown

that prostate cancer staging can benefit from using BNs to build both general model

and classifiers. However, the issue previously raised regarding the sample size acted

as a barrier to using IM to model distributed medical data from the data available at

hand.

In general, we have showed that diversity is an essential factor of performance for

population-based algorithms that can be managed in several ways. This particularly

applies to BN structure learning because of its characteristic fitness landscape and

should always be considered when implementing EAs. This study contributes to the

158

7.3. General Conclusion

understanding of well-established EA in the domain of BN structure learning and sug-

gests further applications in other domains. In addition, it also demonstrates that these

methods can benefit real-world data modeling and in particular in the medical domain.

159

Appendix A

Example of CH score calculation

This appendix describes how the addition of a node to the parent set of a given variable

can lead to a decreased CH score. We consider three binary variables X1, X2 and X3.

The dataset given in Table A.1 is used throughout this example.

In this example and given the ordering X2 − X1 − X3, we investigate the effect of

including X1 in the parent set Pa(X3) of X3. Note that we assume that X2 was added

to Pa(X3) prior to this step. To do so, CH(X3, Pa(X3)) is first computed using X2 as

only parent. In the second step, CH(X3, Pa(X3)) is calculated when both X2 and X1

are set as parent of X3. We recall that the calculations are based on (2.19).

X1 X2 X3

Y N N
Y Y Y
N N Y
Y Y Y
N N N
N Y Y
Y Y Y
N N N
Y Y Y
N N N

Table A.1: Dataset used as an example for CH score calculation (Y = Yes, N = No).

160

A. Example of CH score calculation

Pa(X3) = {X2}

CH(X3, Pa(X3)) = 1
6! ∗ 4! ∗ 1

6! ∗ 5!

CH(X3, Pa(X3)) = 0.0055

Pa(X3) = {X2, X1}

CH(X3, Pa(X3)) = 1
5! ∗ 3! ∗ 1! ∗ 1

2! ∗ 1! ∗ 0! ∗ 1
2! ∗ 0! ∗ 1! ∗ 1

5! ∗ 0! ∗ 4!

CH(X3, Pa(X3)) = 0.0025

CH(X3, {X2}) > CH(X3, {X2, X1})

Hence, K2 will discard X1 as a choice of parent for X3.

161

Appendix B

Population and tournament sizes

and convergence of K2GA

This set of figures relate to experiments described in Section 3.2 of Chapter 3.

162

B. Population and tournament sizes and convergence of K2GA

0 50 100 150 200 250 300 350 400
−6834

−6833

−6832

−6831

−6830

−6829

−6828

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

50 100 150 200 250 300 350 400 450 500
−6831.5

−6831

−6830.5

−6830

−6829.5

−6829

−6828.5

−6828

−6827.5

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 50 100 150 200 250 300 350 400
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

50 100 150 200 250 300 350 400 450 500

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure B.1: Convergence speed of K2GA on asia

163

B. Population and tournament sizes and convergence of K2GA

0 50 100 150 200 250 300 350 400 450
−1.011

−1.01

−1.009

−1.008

−1.007

−1.006

−1.005

−1.004

−1.003

−1.002

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

0 100 200 300 400 500 600 700
−1.0055

−1.005

−1.0045

−1.004

−1.0035

−1.003

−1.0025

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 50 100 150 200 250 300 350 400 450

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

0 100 200 300 400 500 600 700
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure B.2: Convergence speed of K2GA on tank

164

B. Population and tournament sizes and convergence of K2GA

0 50 100 150 200 250 300 350 400 450
−3.182

−3.181

−3.18

−3.179

−3.178

−3.177

−3.176

−3.175

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

0 100 200 300 400 500 600 700
−3.1785

−3.178

−3.1775

−3.177

−3.1765

−3.176

−3.1755

−3.175

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 50 100 150 200 250 300 350 400 450

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

0 100 200 300 400 500 600 700

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure B.3: Convergence speed of K2GA on credit

165

B. Population and tournament sizes and convergence of K2GA

0 100 200 300 400 500 600
−3.075

−3.074

−3.073

−3.072

−3.071

−3.07

−3.069

−3.068

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

0 100 200 300 400 500 600 700 800
−3.073

−3.0725

−3.072

−3.0715

−3.071

−3.0705

−3.07

−3.0695

−3.069

−3.0685

−3.068

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

0 100 200 300 400 500 600 700 800
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure B.4: Convergence speed of K2GA on boerlage

166

B. Population and tournament sizes and convergence of K2GA

0 100 200 300 400 500 600
−3.03

−3.02

−3.01

−3

−2.99

−2.98

−2.97

−2.96

Fitness Evaluations

F
itn

es
s

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(a) Effect of population size on fitness

0 100 200 300 400 500 600 700 800
−3.02

−3.01

−3

−2.99

−2.98

−2.97

−2.96

Fitness Evaluations

F
itn

es
s

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(b) Effect of tournament size on fitness

0 100 200 300 400 500 600
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 10
pop = 20
pop = 50
pop = 70
pop = 100

(c) Effect of population size on KTD

0 100 200 300 400 500 600 700 800
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
en

da
ll

T
au

 D
is

ta
nc

e

pop = 50 / tournament = 1
pop = 50 / tournament = 2
pop = 50 / tournament = 4
pop = 100 / tournament = 1
pop = 100 / tournament = 2
pop = 100 / tournament = 4

(d) Effect of tournament size on KTD

Figure B.5: Convergence speed of K2GA on alarm

167

Appendix C

Evaluation of the presence of local

optima using K2GA

This set of figures relate to experiments described in Section 3.2 of Chapter 3

168

C. Evaluation of the presence of local optima using K2GA

−6831.5 −6831 −6830.5 −6830 −6829.5 −6829 −6828.5 −6828 −6827.5
0

1

2

3

4

5

6

7

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−6830.5 −6830 −6829.5 −6829 −6828.5 −6828 −6827.5
0

1

2

3

4

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−6829.8 −6829.6 −6829.4 −6829.2 −6829 −6828.8 −6828.6 −6828.4 −6828.2 −6828 −6827.8
0

1

2

3

4

5

6

7

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−6829.8 −6829.6 −6829.4 −6829.2 −6829 −6828.8 −6828.6 −6828.4 −6828.2 −6828 −6827.8
0

1

2

3

4

5

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure C.1: Frequency of best orderings obtained over 10 runs of K2GA on asia

169

C. Evaluation of the presence of local optima using K2GA

−1.0034 −1.0033 −1.0032 −1.0031 −1.003 −1.0029 −1.0028 −1.0027 −1.0026 −1.0025 −1.0024
0

1

2

3

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−1.0036 −1.0035 −1.0034 −1.0033 −1.0032 −1.0031 −1.003 −1.0029 −1.0028 −1.0027 −1.0026
0

1

2

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−1.0028 −1.0027 −1.0027 −1.0026 −1.0026 −1.0025 −1.0025
0

1

2

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−1.004 −1.0038 −1.0036 −1.0034 −1.0032 −1.003 −1.0028 −1.0026
0

1

2

3

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure C.2: Frequency of best orderings obtained over 10 runs of K2GA on tank

170

C. Evaluation of the presence of local optima using K2GA

−3.1768 −3.1766 −3.1764 −3.1762 −3.176 −3.1758 −3.1756 −3.1754 −3.1752
0

1

2

3

4

5

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−3.1775 −3.177 −3.1765 −3.176 −3.1755 −3.175
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−3.1754 −3.1754 −3.1754 −3.1754 −3.1753 −3.1753 −3.1753 −3.1753 −3.1753 −3.1753 −3.1753
0

1

2

3

4

5

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−3.177 −3.1768 −3.1766 −3.1764 −3.1762 −3.176 −3.1758 −3.1756 −3.1754 −3.1752
0

1

2

3

4

5

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure C.3: Frequency of best orderings obtained over 10 runs of K2GA on credit

171

C. Evaluation of the presence of local optima using K2GA

−3.0694 −3.0692 −3.069 −3.0688 −3.0686 −3.0684 −3.0682 −3.068 −3.0678
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−3.0715 −3.071 −3.0705 −3.07 −3.0695 −3.069 −3.0685
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−3.07 −3.0698 −3.0696 −3.0694 −3.0692 −3.069 −3.0688 −3.0686 −3.0684 −3.0682
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−3.0692 −3.069 −3.0688 −3.0686 −3.0684 −3.0682 −3.068
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure C.4: Frequency of best orderings obtained over 10 runs of K2GA on boerlage

172

C. Evaluation of the presence of local optima using K2GA

−2.971 −2.97 −2.969 −2.968 −2.967 −2.966 −2.965 −2.964 −2.963 −2.962
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(a) Population size = 50, tournament size = 1

−2.995 −2.99 −2.985 −2.98 −2.975 −2.97 −2.965
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(b) Population size = 50, tournament size = 4

−2.974 −2.972 −2.97 −2.968 −2.966 −2.964 −2.962 −2.96 −2.958
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(c) Population size = 100, tournament size = 1

−2.978 −2.976 −2.974 −2.972 −2.97 −2.968 −2.966 −2.964 −2.962 −2.96
0

1

CH score

O
cc

ur
en

ce
 o

f C
H

 s
co

re

(d) Population size = 100, tournament size = 4

Figure C.5: Frequency of best orderings obtained over 10 runs of K2GA on alarm

173

Appendix D

Performance analysis of IMK2GA

This set of figures relate to experiments described in Section 4.2 of Chapter 4

174

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
−1.1237

−1.1236

−1.1236

−1.1236

−1.1236

−1.1236

−1.1235

−1.1235

−1.1235

−1.1235

−1.1235

Fitness Evaluations

F
itn

es
s

(a) Fitness

0 100 200 300 400 500 600 700 800 900 1000
1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2.6

Fitness Evaluations

S
H

D

(b) SHD

0 100 200 300 400 500 600 700 800 900 1000
7.88

7.9

7.92

7.94

7.96

7.98

8

8.02

Fitness Evaluations

R
el

ev
an

t E
dg

es

(c) Relevant edges

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fitness Evaluations

E
rr

on
eo

us
 E

dg
es

(d) Erroneous edges

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

(e) KTD

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

IMK2GA
10

IMK2GA
21

IMK2GA
23

IMK2GA
41

IMK2GA
43

Figure D.1: Evolution of solution quality and population diversity on asia

175

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
−1.67

−1.6695

−1.669

−1.6685

−1.668

−1.6675

−1.667

Fitness Evaluations

F
itn

es
s

(a) Fitness

0 100 200 300 400 500 600 700 800 900 1000
9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

Fitness Evaluations

S
H

D

(b) SHD

0 100 200 300 400 500 600 700 800 900 1000
19.4

19.5

19.6

19.7

19.8

19.9

20

20.1

Fitness Evaluations

R
el

ev
an

t E
dg

es

(c) Relevant edges

0 100 200 300 400 500 600 700 800 900 1000
5

5.5

6

6.5

7

7.5

8

8.5

Fitness Evaluations

E
rr

on
eo

us
 E

dg
es

(d) Erroneous edges

0 100 200 300 400 500 600 700 800 900 1000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

(e) KTD

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

IMK2GA
10

IMK2GA
21

IMK2GA
23

IMK2GA
41

IMK2GA
43

Figure D.2: Evolution of solution quality and population diversity on tank

176

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
−5.2855

−5.285

−5.2845

−5.284

−5.2835

−5.283

−5.2825

−5.282

Fitness Evaluations

F
itn

es
s

(a) Fitness

0 100 200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

6

6.5

7

7.5

8

Fitness Evaluations

S
H

D

(b) SHD

0 100 200 300 400 500 600 700 800 900 1000
11

11.2

11.4

11.6

11.8

12

12.2

12.4

12.6

12.8

13

Fitness Evaluations

R
el

ev
an

t E
dg

es

(c) Relevant edges

0 100 200 300 400 500 600 700 800 900 1000
1

1.5

2

2.5

3

3.5

Fitness Evaluations

E
rr

on
eo

us
 E

dg
es

(d) Erroneous edges

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

(e) KTD

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

IMK2GA
10

IMK2GA
21

IMK2GA
23

IMK2GA
41

IMK2GA
43

Figure D.3: Evolution of solution quality and population diversity on credit

177

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
−1.1668

−1.1666

−1.1664

−1.1662

−1.166

−1.1658

−1.1656

−1.1654

−1.1652

Fitness Evaluations

F
itn

es
s

(a) Fitness

0 100 200 300 400 500 600 700 800 900 1000
11

12

13

14

15

16

17

Fitness Evaluations

S
H

D

(b) SHD

0 100 200 300 400 500 600 700 800 900 1000
13.2

13.4

13.6

13.8

14

14.2

14.4

14.6

14.8

Fitness Evaluations

R
el

ev
an

t E
dg

es

(c) Relevant edges

0 100 200 300 400 500 600 700 800 900 1000
8.5

9

9.5

10

10.5

11

11.5

12

12.5

13

Fitness Evaluations

E
rr

on
eo

us
 E

dg
es

(d) Erroneous edges

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

(e) KTD

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

IMK2GA
10

IMK2GA
21

IMK2GA
23

IMK2GA
41

IMK2GA
43

Figure D.4: Evolution of solution quality and population diversity on car

178

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
−5.133

−5.1325

−5.132

−5.1315

−5.131

−5.1305

−5.13

−5.1295

−5.129

−5.1285

Fitness Evaluations

F
itn

es
s

(a) Fitness

0 100 200 300 400 500 600 700 800 900 1000
19

20

21

22

23

24

25

26

27

Fitness Evaluations

S
H

D

(b) SHD

0 100 200 300 400 500 600 700 800 900 1000
27.7

27.8

27.9

28

28.1

28.2

28.3

28.4

28.5

28.6

Fitness Evaluations

R
el

ev
an

t E
dg

es

(c) Relevant edges

0 100 200 300 400 500 600 700 800 900 1000
11

11.5

12

12.5

13

13.5

14

14.5

15

15.5

Fitness Evaluations

E
rr

on
eo

us
 E

dg
es

(d) Erroneous edges

0 100 200 300 400 500 600 700 800 900 1000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

(e) KTD

0 100 200 300 400 500 600 700 800 900 1000
0.2

0.25

0.3

0.35

0.4

0.45

0.5

Fitness Evaluations

K
T

D

IMK2GA
10

IMK2GA
21

IMK2GA
23

IMK2GA
41

IMK2GA
43

Figure D.5: Evolution of solution quality and population diversity on boerlage

179

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(a) asia

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(b) tank

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(c) credit

0 100 200 300 400 500 600 700 800 900 1000
2

3

4

5

6

7

8

9

10

11

12

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(d) car

0 100 200 300 400 500 600 700 800 900 1000
4

6

8

10

12

14

16

18

20

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(e) boerlage

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

Fitness Evaluations

N
um

be
r

of
 e

dg
es

Correct Edges

Reversed Edges

Added Edges

Omitted Edges

Figure D.6: Evolution of correct, reversed, added and omitted edges throughout the
search with IMK2GA21

180

D. Performance analysis of IMK2GA

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(a) asia

0 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

12

14

16

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(b) tank

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

7

8

9

10

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(c) credit

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(d) car

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

16

18

20

22

Fitness Evaluations

N
um

be
r

of
 e

dg
es

(e) boerlage

0 100 200 300 400 500 600 700 800 900 1000
2

4

6

8

10

12

14

Fitness Evaluations

N
um

be
r

of
 e

dg
es

Correct Edges

Reversed Edges

Added Edges

Omitted Edges

Figure D.7: Evolution of correct, reversed, added and omitted edges throughout the
search with IMK2GA43

181

Appendix E

Choice of Distance-Based Muta-

tion Operators

This set of figures relate to experiments described in Section 5.2 of Chapter 5

182

E. Choice of Distance-Based Mutation Operators

1 1.5 2 2.5 3 3.5 4
1

2

3

4

5

6

7

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0

2

4

6

8

10

12

14

16

18

20

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure E.1: Effect of choice of mutation on produced solution on asia

183

E. Choice of Distance-Based Mutation Operators

1 2 3 4 5 6 7
4

5

6

7

8

9

10

11

12

13

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

1 2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

1 2 3 4 5 6 7
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

1 2 3 4 5 6 7
0

5

10

15

20

25

30

35

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

1 2 3 4 5 6 7
0

50

100

150

200

250

300

350

400

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure E.2: Effect of choice of mutation on produced solution on tank

184

E. Choice of Distance-Based Mutation Operators

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
3

4

5

6

7

8

9

10

11

12

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14

16

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

2

4

6

8

10

12

14

16

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

20

40

60

80

100

120

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure E.3: Effect of choice of mutation on produced solution on credit

185

E. Choice of Distance-Based Mutation Operators

1 2 3 4 5 6 7 8 9
4

6

8

10

12

14

16

18

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

1 2 3 4 5 6 7 8 9
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

1 2 3 4 5 6 7 8 9
0

5

10

15

20

25

30

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

1 2 3 4 5 6 7 8 9
0

10

20

30

40

50

60

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure E.4: Effect of choice of mutation on produced solution on car

186

E. Choice of Distance-Based Mutation Operators

0 2 4 6 8 10 12 14 16 18
10

15

20

25

30

35

40

Mutation Distance

E
xa

ct
 M

at
ch

 D
is

ta
nc

e

(a) Exact distance vs. mutation distance

0 2 4 6 8 10 12 14 16 18
0

5

10

15

20

25

30

35

40

45

Mutation Distance

E
di

t D
is

ta
nc

e

(b) Edit distance vs. mutation distance

0 2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

(c) KTD vs. mutation distance

0 2 4 6 8 10 12 14 16 18
0

10

20

30

40

50

60

Mutation Distance

S
tr

uc
tu

ra
l H

am
m

in
g

D
is

ta
nc

e

(d) SHD vs. mutation distance

0 2 4 6 8 10 12 14 16 18
0

50

100

150

Mutation Distance

F
itn

es
s

D
iff

er
en

ce

(e) Fitness difference vs. mutation distance

1 1.5 2 2.5 3 3.5 4
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Mutation Distance

K
en

da
ll−

T
au

 D
is

ta
nc

e

Swap

Insert

Invert

Scramble

Displacement

Invert+Swap

Invert+Displacement

Figure E.5: Effect of choice of mutation on produced solution on alarm

187

Appendix F

BAUS data distribution across

NHS Cancer Networks

This set of figures relates to experiments described in Section 6.4 of Chapter 6

188

F. BAUS data distribution across NHS Cancer Networks

C
an

ce
r N

et
w

or
ks

Yorkshire

West London

Wales

Thames Valley

Sussex

Surrey, West Sussex & Hampshi

South Essex

South East London

Scotland

Peninsula

North West Midlands

North Trent

North London

Northern Ireland

Northern

North East London

Norfolk & Waveney

Mount Vernon

Mid Trent

Mid Anglia

Merseyside & Cheshire

Leicestershire, Northamptonsh

Lancashire & South Cumbria

Humber & Yorkshire Coast

Greater Manchester & Cheshire

Dorset

Central South Coast

Black Country

Avon, Somerset & Wiltshire

Arden

3 Counties

Number of Instances2
0
0

1
5
0

1
0
0

5
0 0

4
.

n

3
.

3
b

2
.

3
a

1
.

2

P
at

ho
lo

gi
ca

l S
ta

ge

F
ig

u
re

F
.1

:
D

is
tr

ib
u

ti
on

of
th

e
p

at
h

ol
og

ic
al

st
ag

e
b
y

ca
n

ce
r

n
et

w
o
rk

189

Appendix G

Use of k-order marginal fitness

surrogate model for BN structure

learning

This set of figures relates to experiments described in Section 7.2.4 of Chapter 7

0 100 200 300 400 500 600 700 800 900 1000
3

3.5

4

4.5

Generations

−6834.5

−6834

−6833.5

−6833

Best Surrogate Fitness
Associated CH Score

(a) No Update

0 100 200 300 400 500 600 700 800 900 1000
0

20

40

60

80

100

Generations

−6840

−6838

−6836

−6834

−6832

−6830

Best Surrogate Fitness
Associated CH Score

(b) Model Update

Figure G.1: Evolution of surrogate fitness of the best solution and its associated CH
score on asia with and without model update

190

G. Use of k-order marginal fitness surrogate model for BN structure learning

0 100 200 300 400 500 600 700 800 900 1000
3

4

5

Generations

−1.02

−1.01

−1
x 10

4

Best Surrogate Fitness
Associated CH Score

(a) No Update

0 100 200 300 400 500 600 700 800 900 1000
0

10

20

30

40

50

60

70

80

90

Generations

−1.022

−1.02

−1.018

−1.016

−1.014

−1.012

−1.01

−1.008

−1.006

−1.004
x 10

4

Best Surrogate Fitness
Associated CH Score

(b) Model Update

Figure G.2: Evolution of surrogate fitness of the best solution and its associated CH
score on tank with and without model update

0 100 200 300 400 500 600 700 800 900 1000
0

50

Generations

−3.19

−3.18

−3.17
x 10

4

Best Surrogate Fitness
Associated CH Score

(a) No Update

0 100 200 300 400 500 600 700 800 900 1000
0

50

Generations

−3.19

−3.18

−3.17
x 10

4

Best Surrogate Fitness
Associated CH Score

(b) Model Update

Figure G.3: Evolution of surrogate fitness of the best solution and its associated CH
score on credit with and without model update

0 100 200 300 400 500 600 700 800 900 1000
3.5

4

4.5

5

5.5

Generations

−7120

−7110

−7100

−7090

−7080

Best Surrogate Fitness
Associated CH Score

(a) No Update

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Generations

−7120

−7100

−7080

−7060

Best Surrogate Fitness
Associated CH Score

(b) Model Update

Figure G.4: Evolution of surrogate fitness of the best solution and its associated CH
score on car with and without model update

191

Bibliography

Aha, D., Kibler, D. and Albert, M. (1991), “Instance-based learning algorithms”, Machine learning ,

Vol. 6, Springer, pp. 37–66.

Akaike, H. (1974), “A new look at the statistical model identification”, IEEE Transactions on Automatic

Control , Vol. 19, IEEE, pp. 716–723.

Anagnostou, T., Remzi, M., Lykourinas, M. and Djavan, B. (2003), “Artificial neural networks for

decision-making in urologic oncology”, European Urology , Vol. 43, Elsevier, pp. 596–603.

Anastasiadis, A., Lichy, M., Nagele, U., Kuczyk, M., Merseburger, A., Hennenlotter, J., Corvin, S.,

Sievert, K., Claussen, C., Stenzl, A. et al. (2006), “MRI-guided biopsy of the prostate increases

diagnostic performance in men with elevated or increasing PSA levels after previous negative TRUS

biopsies”, European Urology , Vol. 50, Elsevier, pp. 738–749.

Augustin, H., Eggert, T., Wenske, S., Karakiewicz, P., Palisaar, J., Daghofer, F., Huland, H. and

Graefen, M. (2004), “Comparison of accuracy between the Partin tables of 1997 and 2001 to predict

final pathological stage in clinically localized prostate cancer”, The Journal of Urology , Vol. 171,

Elsevier, pp. 177–181.

Back, T. (1994), “Selective pressure in evolutionary algorithms: A characterization of selection mech-

anisms”, Proceedings of the first IEEE Conference on Evolutionary Computation , pp. 57–62.

Back, T., Hammel, U. and Schwefel, H. (1997), “Evolutionary computation: Comments on the history

and current state”, IEEE Transactions on Evolutionary computation , Vol. 1, IEEE, pp. 3–17.

Balaprakash, P., Birattari, M. and Stützle, T. (2007), “Improvement strategies for the f-race algorithm:

Sampling design and iterative refinement”, Hybrid Metaheuristics , Springer, pp. 108–122.

Baluja, S. (1994), Population-based incremental learning. a method for integrating genetic search based

function optimization and competitive learning, Technical report, Carnegie Mellon University.

Beinlich, I., Suermondt, G., Chavez, R. and Cooper, G. (1989), “The alarm monitoring system: A

case study with two probabilistic inference techniques for belief networks”, Proceedings of the second

European Conference on Artificial Intelligence in Medicine , Springer-Verlag, pp. 247–256.

192

BIBLIOGRAPHY

Bhojani, N., Ahyai, S., Graefen, M., Capitanio, U., Suardi, N., Shariat, S., Jeldres, C., Erbersdobler, A.,

Schlomm, T., Haese, A. et al. (2009), “Partin Tables cannot accurately predict the pathological stage

at radical prostatectomy”, European Journal of Surgical Oncology , Vol. 35, Elsevier, pp. 123–128.

Bhojani, N., Salomon, L., Capitanio, U., Suardi, N., Shariat, S., Jeldres, C., Zini, L., Pharand, D.,

Péloquin, F., Arjane, P. et al. (2009), “External validation of the updated partin tables in a cohort

of French and Italian men”, International Journal of Radiation Oncology, Biology, Physics , Vol. 73,

Elsevier, pp. 347–352.

Blute, M., Bergstralh, E., Partin, A., Walsh, P., Kattan, M., Scardino, P., Montie, J., Pearson, J.,

Slezak, J. and Zincke, H. (2000), “Validation of Partin tables for predicting pathological stage of

clinically localized prostate cancer”, The Journal of Urology , Vol. 164, Elsevier, pp. 1591–1595.

Boerlage, B. (1992), Link strength in bayesian networks, Master’s thesis, University of British Columbia.

Borque, A., Sanz, G., Allepuz, C., Plaza, L., Gil, P. and Rioja, L. (2001), “The use of neural networks

and logistic regression analysis for predicting pathological stage in men undergoing radical prosta-

tectomy: a population based study”, The Journal of Urology , Vol. 166, Elsevier, pp. 1672–1678.

Bott, S., Emberton, M. and Sydes, M. (2008), “Prostate cancer staging tables - A predictive model for

the UK”, British Journal of Medical and Surgical Urology , Vol. 1, Elsevier, pp. 107–119.

Brain, D., Webb, G., Richards, D., Beydoun, G., Hoffmann, A. and Compton, P. (1999), “On the effect

of data set size on bias and variance in classification learning”, Proceedings of the fourth Australian

Knowledge Acquisition Workshop , University of New South Wales, pp. 117–128.

Breiman, L. (2001), “Random forests”, Machine Learning , Vol. 45, Springer, pp. 5–32.

Broomhead, D., Lowe, D., Signals, R. and Malvern, R. (1988), Radial basis functions, multi-variable

functional interpolation and adaptive networks, Technical report, Royal Signals and Radar Estab-

lishment, Malvern, UK.

Brown, L. E., Tsamardinos, I. and Aliferis, C. F. (2005), “A comparison of novel and state-of-the-art

polynomial bayesian network learning algorithms”, Proceedings of the twentieth National Conference

on Artificial Intelligence , AAAI, pp. 739–745.

Brownlee, A., Regnier-Coudert, O., McCall, J. and Massie, S. (2010), “Using a markov network as a

surrogate fitness function in a genetic algorithm”, Proceedings of the IEEE Congress on Evolutionary

Computing , IEEE, pp. 4525–4532.

Brownlee, A., Regnier-Coudert, O., McCall, J., Massie, S. and Stulajter, S. (2012), “An application of

193

BIBLIOGRAPHY

a GA with markov network surrogate to feature selection”, International Journal of Systems Science

, Taylor & Francis, pp. 1–18.

Buntine, W. (1991), “Theory refinement on bayesian networks”, Proceedings of the seventh Conference

on Uncertainty in Artificial Intelligence , Morgan Kaufmann, pp. 52–60.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P. and Schulenburg, S. (2003), “Hyper-heuristics: An

emerging direction in modern search technology”, Handbook of metaheuristics , Springer, pp. 457–

474.

Cano, R., Sordo, C. and Gutiérrez, J. M. (2004), “Applications of bayesian networks in meteorology”,

Studies in Fuzziness And Soft Computing , Vol. 146, Springer, pp. 309–328.

Cantu-Paz, E. (1995), A Summary of Research on Parallel Genetic Algorithms, Technical report, Illinois

Genetic Algorithms Laboratory, Urbana-Champaign, IL, USA.

Carvalho, A. (2011), “A cooperative coevolutionary genetic algorithm for learning bayesian network

structures”, Proceedings of the thirteenth Conference on Genetic and Evolutionary Computation ,

ACM, pp. 1131–1138.

Carvalho, A., Oliveira, A. and Sagot, M. (2007), “Efficient Learning of Bayesian Network Classifiers:

An extension to the TAN classifier”, Proceedings of the twentieth Australian joint Conference on

Advances in Artificial Intelligence , Springer, pp. 16–25.

Carvalho, A., Roos, T., Oliveira, A., Myllymäki, P. et al. (2011), “Discriminative learning of bayesian

networks via factorized conditional log-likelihood”, Journal of Machine Learning Research , Vol. 12,

MIT Press, pp. 2181–2210.

Ceberio, J., Irurozki, E., Mendiburu, A. and Lozano, J. (2012), “A review on estimation of distribu-

tion algorithms in permutation-based combinatorial optimization problems”, Progress in Artificial

Intelligence , Vol. 1, Springer, pp. 103–117.

Ceberio, J., Mendiburu, A. and Lozano, J. (2011a), “Introducing the mallows model on estimation of

distribution algorithms”, Proceedings of the eighteenth International Conference on Neural Informa-

tion Processing , Springer, pp. 461–470.

Ceberio, J., Mendiburu, A. and Lozano, J. (2011b), “A preliminary study on EDAs for permutation

problems based on marginal-based models”, Proceedings of the thirteenth annual Conference on

Genetic and Evolutionary Computation , ACM, pp. 609–616.

Chen, R., Sivakumar, K. and Kargupta, H. (2004), “Collective mining of bayesian networks from

194

BIBLIOGRAPHY

distributed heterogeneous data”, Knowledge and Information Systems , Vol. 6, Springer, pp. 164–

187.

Chen, S., Chang, P., Cheng, T. and Zhang, Q. (2012), “A self-guided genetic algorithm for permutation

flowshop scheduling problems”, Computers & Operations Research , Vol. 39, Elsevier, pp. 1450–1457.

Cheng, J., Greiner, R., Kelly, J., Bell, D. and Liu, W. (2002), “Learning bayesian networks from data:

An information-theory based approach”, Artificial Intelligence , Vol. 137, pp. 43–90.

Chickering, D. (1995), “A transformational characterization of equivalent bayesian network structures”,

Proceedings of the eleventh Conference on Uncertainty in Artificial Intelligence , Morgan Kaufmann,

pp. 87–98.

Chow, C. and Liu, C. (1968), “Approximating discrete probability distributions with dependence trees”,

IEEE transactions on Information Theory , Vol. 14, IEEE, pp. 462–467.

Cios, K. and William Moore, G. (2002), “Uniqueness of medical data mining”, Artificial Intelligence

in Medicine , Vol. 26, Elsevier, pp. 1–24.

Cobb, H. and Grefenstette, J. (1993), “Genetic algorithms for tracking changing environments”, Pro-

ceedings of the fifth International Conference on Genetic Algorithms , Morgan Kaufmann, pp. 523–

530.

Collins, G., Lee, R., McKelvie, G., Rogers, A. and Hehir, M. (1993), “Relationship between prostate

specific antigen, prostate volume and age in the benign prostate”, British Journal of Urology , Vol. 71,

Wiley, pp. 445–450.

Colorni, A., Dorigo, M., Maniezzo, V. et al. (1991), “Distributed optimization by ant colonies”, Pro-

ceedings of the first European Conference on Artificial Life , MIT Press, pp. 134–142.

Cooper, G. and Herskovits, E. (1992), “A bayesian method for the induction of probabilistic networks

from data”, Machine Learning , Vol. 9, Springer, pp. 309–347.

Cotta, C. and Muruzábal, J. (2004), “On the learning of bayesian network graph structures via evo-

lutionary programming”, Proceedings of the second European Workshop on Probabilistic Graphical

Models , Leiden University, pp. 65–72.

Cover, T. M. and Thomas, J. A. (1991), “Entropy, relative entropy and mutual information”, In

Elements of Information Theory , Wiley, pp. 12–49.

Cozman, F. (2000), “Generalizing variable elimination in Bayesian networks”, Workshop on Probabilis-

tic Reasoning in Artificial Intelligence , Editora Tecart, pp. 27–32.

195

BIBLIOGRAPHY

Cruz, J. and Wishart, D. (2006), “Applications of machine learning in cancer prediction and prognosis”,

Cancer Informatics , Vol. 2, Libertas Academica, pp. 59–77.

De Bonet, J., Isbell, C. and Viola, P. (1996), “MIMIC: Finding optima by estimating probability

densities”, Advances in Neural Information Processing Systems , Morgan Kaufmann, pp. 424–430.

De Campos, L. M., Fernandez-Luna, J. M., Gámez, J. A. and Puerta, J. M. (2002), “Ant colony

optimization for learning bayesian networks”, International Journal of Approximate Reasoning ,

Vol. 31, Elsevier, pp. 291–311.

De Jongh, M. and Druzdzel, M. (2009), “A comparison of structural distance measures for causal

bayesian network models”, Proceedings of International Joint Conference on Intelligent Information

Systems , pp. 443–456.

De la Ossa, L., Gámez, J. and Puerta, J. (2004), “Migration of probability models instead of individuals:

an alternative when applying the island model to EDAs”, Parallel Problem Solving from Nature VIII

, Springer, pp. 242–252.

Deep, K. and Mebrahtu, H. (2011), “Combined mutation operators of genetic algorithm for the trav-

elling salesman problem”, International Journal of Combinatorial Optimization Problems and In-

formatics , Vol. 2, International Journal of Combinatorial Optimization Problems and Informatics,

pp. 1–23.

Dempster, A., Laird, N. and Rubin, D. (1977), “Maximum likelihood from incomplete data via the EM

algorithm”, Journal of the Royal Statistical Society. Series B (Methodological) , JSTOR, pp. 1–38.

Deng, H., Runger, G. and Tuv, E. (2011), “Bias of importance measures for multi-valued attributes and

solutions”, Prodeedings of the twenty-first International Conference on Artificial Neural Networks ,

Springer, pp. 293–300.

Dos Santos, E., Hruschka, E. and Ebecken, N. (2010), “A distance-based mutation operator for learning

bayesian network structures using evolutionary algorithms”, Proceedings of the IEEE Congress on

Evolutionary Computation , IEEE, pp. 1–8.

Dunn, O. J. (1961), “Multiple comparisons among means”, Journal of the American Statistical Asso-

ciation , Vol. 56, Taylor & Francis, pp. 52–64.

Eskicorapci, S., Karabulut, E., Turkeri, L., Baltaci, S., Cal, C., Toktas, G., Akpinar, H., Ozer, G.,

Sozen, S., Tokuc, R. et al. (2005), “Validation of 2001 Partin tables in Turkey: a multicenter study”,

European Urology , Vol. 47, Elsevier, pp. 185–189.

196

BIBLIOGRAPHY

Etxeberria, R. and Larranaga, P. (1999), “Global optimization using bayesian networks”, Proceedings

of the second Symposium on Artificial Intelligence , pp. 332–339.

Fogel, L., Owens, A. and Walsh, M. (1966), Artificial intelligence through simulated evolution, Wiley.

Fournier, F., McCall, J., Petrovski, A. and Barclay, P. (2010), “Evolved bayesian network models of rig

operations in the gulf of Mexico”, Proceedings of the IEEE Congress on Evolutionary Computation

, IEEE, pp. 1–7.

Friedman, N., Geiger, D. and Goldszmidt, M. (1997), “Bayesian network classifiers”, Machine Learning

, Vol. 29, Springer, pp. 131–163.

Galfano, A., Novara, G., Iafrate, M., Cavalleri, S., Martignoni, G., Gardiman, M., D’Elia, C., Patard,

J., Artibani, W. and Ficarra, V. (2008), “Mathematical models for prognostic prediction in patients

with renal cell carcinoma”, Urologia Internationalis , Vol. 80, Karger, pp. 113–123.

Gao, X., Ren, S., Lu, X., Xu, C. and Sun, Y. (2008), “The Newer the Better? Comparison of the

1997 and 2001 Partin Tables for Pathologic Stage Prediction of Prostate Cancer in China”, Urology

, Vol. 72, Elsevier, pp. 1096–1101.

George, E., Makov, U. and Smith, A. (1993), “Conjugate likelihood distributions”, Scandinavian Jour-

nal of Statistics , Vol. 20, JSTOR, pp. 147–156.

Goldberg, D., Deb, K. and Clark, J. (1991), Genetic algorithms, noise, and the sizing of populations,

Technical report, University of Illinois.

Graefen, M., Augustin, H., Karakiewicz, P., Hammerer, P., Haese, A., Palisaar, J., Blonski, J., Fernan-

dez, S., Erbersdobler, A. and Huland, H. (2003), “Can predictive models for prostate cancer patients

derived in the United States of America be utilized in European patients? A validation study of the

Partin tables”, European Urology , Vol. 43, Elsevier, pp. 6–11.

Hall, J., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P. and Witten, I. (2009), “The WEKA

data mining software: An update”, SIGKDD Explorations Newsletter , Vol. 11, ACM, pp. 11–18.

Han, M., Snow, P., Brandt, J. and Partin, A. (2001), “Evaluation of artificial neural networks for the

prediction of pathological stage in prostate carcinoma”, Cancer , Vol. 91, American Cancer Society,

pp. 1661–1666.

Harrell Jr, F., Califf, R., Pryor, D., Lee, K. and Rosati, R. (1982), “Evaluating the yield of medical

tests”, Journal of the American Medical Association , Vol. 247, American Medical Association,

pp. 2543–2546.

197

BIBLIOGRAPHY

Heckerman, D. (2008), “A tutorial on learning with Bayesian networks”, Innovations in Bayesian

Networks , Springer, pp. 33–82.

Heckerman, D., Geiger, D. and Chickering, D. (1995), “Learning bayesian networks: the combination

of knowledge and statistical data”, Machine Learning , Vol. 20, Springer, pp. 197–243.

Henrion, M. (1986), “Propagating uncertainty in bayesian networks by probabilistic logic sampling”,

Proceedings of the second annual Conference on Uncertainty in Artificial Intelligence , Elsevier,

pp. 149–164.

Holland, J. (1975), Adaptation in natural and artificial systems, MIT press.

Hordijk, W. and Kauffman, S. (2005), “Correlation analysis of coupled fitness landscapes”, Complexity

, Vol. 10, Wiley, pp. 41–49.

Hosmer, D. and Lemeshow, S. (2000), Applied logistic regression, Wiley-Interscience.

Hsu, W., Guo, H., Perry, B. and Stilson, J. (2002), “A permutation genetic algorithm for variable

ordering in learning bayesian networks from data”, Proceedings of the Genetic and Evolutionary

Computation Conference , Morgan Kaufmann, pp. 383–390.

Iclănzan, D. and Dumitrescu, D. (2010), “Graph clustering based model building”, Parallel Problem

Solving from Nature XI , Springer, pp. 506–515.

Jensen, F. and Nielsen, T. (2007), Bayesian networks and decision graphs, Springer Verlag.

Jerrum, M. (1985), “The complexity of finding minimum-length generator sequences”, Theoretical

Computer Science , Vol. 36, Elsevier, pp. 265–289.

Jones, T. and Forrest, S. (1995), “Fitness distance correlation as a measure of problem difficulty

for genetic algorithms”, Proceedings of the sixth International Conference on Genetic Algorithms ,

Morgan Kaufmann, pp. 184–192.

Kabli, R., Herrmann, F. and McCall, J. (2007), “A chain-model genetic algorithm for bayesian network

structure learning”, Proceedings of the ninth Conference on Genetic and Evolutionary Computation

, ACM, pp. 1271–1278.

Kabli, R., McCall, J., Herrmann, F. and Ong, E. (2008), “Evolved bayesian networks as a versatile

alternative to partin tables for prostate cancer management”, Proceedings of the tenth Conference

on Genetic and Evolutionary Computation , ACM, pp. 1547–1554.

Kahn, A. (1962), “Topological sorting of large networks”, Communications of the ACM , Vol. 5, ACM,

pp. 558–562.

198

BIBLIOGRAPHY

Karakiewicz, P., Lattouf, J., Perrotte, P., Valiquette, L., Benard, F., McCormack, M., Menard, C.,

Lebeau, T., Benayoun, S. and Ramirez, A. (2005), “Validation of 1997 Partin Tables lymph node

invasion predictions in men treated with radical prostatectomy in Montreal Quebec.”, The Canadian

Journal of Urology , Vol. 12, The Canadian Journal of Urology, pp. 2588–2592.

Kattan, M. (2006), “Validating a prognostic model”, Cancer , Vol. 107, American Cancer Society,

pp. 2523–2524.

Kattan, M., Stapleton, A., Wheeler, T. and Scardino, P. (1997), “Evaluation of a nomogram used to

predict the pathologic stage of clinically localized prostate carcinoma”, Cancer , Vol. 79, American

Cancer Society, pp. 528–537.

Kauffman, S. A. (1989), “Adaptation on rugged fitness landscapes”, Lectures in the Sciences of Com-

plexity , Vol. 1, pp. 527–618.

Kawakami, S., Numao, N., Okubo, Y., Koga, F., Yamamoto, S., Saito, K., Fujii, Y., Yonese, J.,

Masuda, H., Kihara, K. et al. (2008), “Development, validation, and head-to-head comparison of

logistic regression-based nomograms and artificial neural network models predicting prostate cancer

on initial extended biopsy”, European Urology , Vol. 54, Elsevier, pp. 601–611.

Kirby, R. (2002), The prostate: small gland, big problem, Prostate Research Campaign UK.

Kirkpatrick, S., Gelatt Jr, C. and Vecchi, M. (1983), “Optimization by simulated annealing”, Science

, Vol. 220, American Association for the Advancement of Science, pp. 671–680.

Kohavi, R. (1995), “A study of cross-validation and bootstrap for accuracy estimation and model

selection”, Proceedings of the fourteenth International Joint Conference on Artificial Intelligence ,

AAAI, pp. 1137–1145.

Koller, D., Friedman, N., Getoor, L. and Taskar, B. (2007), “Graphical models in a nutshell”, In

Introduction to statistical relational learning , MIT Press, pp. 13–55.

Kruskal, J. (1956), “On the shortest spanning subtree of a graph and the traveling salesman problem”,

Proceedings of the American Mathematical society , Vol. 7, JSTOR, pp. 48–50.

Lam, W. and Bacchus, F. (1994), “Learning bayesian belief networks: An approach based on the MDL

principle”, Computational intelligence , Vol. 10, Wiley, pp. 269–293.

Lam, W. and Segre, A. (1997), “Distributed data mining of probabilistic knowledge”, Proceedings of

the seventeenth International Conference on Distributed Computing Systems , IEEE, pp. 178–185.

199

BIBLIOGRAPHY

Langley, P., Iba, W. and Thompson, K. (1992), “An analysis of Bayesian classifiers”, Proceedings of

the tenth National Conference on Artificial Intelligence , AAAI Press, pp. 223–228.

Larrañaga, P. (2010), “Probabilistic graphical models and evolutionary computation”, Plenary and

Invited Lectures of the IEEE World Congress on Computational Intelligence , IEEE, pp. 23–54.

Larrañaga, P., Kuijpers, C., Murga, R. and Yurramendi, Y. (1996), “Learning bayesian network struc-

tures by searching for the best ordering with genetic algorithms”, IEEE Transactions on Systems,

Man and Cybernetics , Vol. 26, IEEE, pp. 487–493.

Larrañaga, P., Poza, M., Yurramendi, Y., Murga, R. and Kuijpers, C. (1996), “Structure learning

of bayesian networks by genetic algorithms: A performance analysis of control parameters”, IEEE

Transactions on Pattern Analysis and Machine Intelligence , Vol. 18, IEEE, pp. 912–926.

Lauritzen, S. and Spiegelhalter, D. (1988), “Local computations with probabilities on graphical struc-

tures and their application to expert systems”, Journal of the Royal Statistical Society. Series B

(Methodological) , JSTOR, pp. 157–224.

Lee, J., Chung, W. and Kim, E. (2008), “Structure learning of bayesian networks using dual genetic

algorithm”, IEICE Transactions on Information and Systems , Vol. 91, Oxford Journals, pp. 32–43.

Makarov, D., Trock, B., Humphreys, E., Mangold, L., Walsh, P. and Epstein, J. (2007), “Updated

nomogram to predict pathologic stage of prostate cancer given prostate-specific antigen level, clinical

stage, and biopsy Gleason score (Partin tables) based on cases from 2000 to 2005”, Urology , Vol. 69,

Elsevier, pp. 1095–1101.

Marmion, M., Jourdan, L. and Dhaenens, C. (2012), “Fitness landscape analysis and metaheuristics

efficiency”, Journal of Mathematical Modelling and Algorithms , Springer, pp. 1–24.

Matsui, Y., Egawa, S., Tsukayama, C., Terai, A., Kuwao, S., Baba, S. and Arai, Y. (2002), “Artificial

neural network analysis for predicting pathological stage of clinically localized prostate cancer in the

japanese population”, Japanese Journal of Clinical Oncolology , Vol. 32, Oxford Journals, pp. 530–

535.

Mendiburu, A., Lozano, J. and Miguel-Alonso, J. (2005), “Parallel implementation of EDAs based on

probabilistic graphical models”, IEEE Transactions on Evolutionary Computation , Vol. 9, IEEE,

pp. 406–423.

Metz, C. (1978), “Basic principles of ROC analysis”, Seminars in nuclear medicine , Vol. 8, Elsevier,

pp. 283–298.

200

BIBLIOGRAPHY

Mühlenbein, H. and Paaß, G. (1996), “From recombination of genes to the estimation of distributions

I. Binary parameters”, Parallel Problem Solving from Nature IV , Springer, pp. 178–187.

Neapolitan, R. (2004), Learning bayesian networks, Pearson Prentice Hall Series in Artificial Intelli-

gence.

Nicholson, A., Twardy, C., Korb, K. and Hope, L. (2008), “Decision support for clinical cardiovascular

risk assessment”, In Bayesian Networks: A Practical Guide to Applications , Wiley, pp. 33–52.

Nielsen, J., Kocka, T. and Pena, J. (2003), “On local optima in learning bayesian networks”, Proceedings

of the nineteenth Conference in Uncertainty in Artificial Intelligence , Morgan Kaufmann, pp. 435–

442.

Ocenasek, J. and Schwarz, J. (2001), “The distributed bayesian optimization algorithm for combina-

torial optimization”, Proceedings of Evolutionary Methods for Design, Optimisation and Control ,

CIMNE, pp. 115–120.

Oliver, I., Smith, D. and Holland, J. R. (1987), “A study of permutation crossover operators on

the traveling salesman problem”, Proceedings of the Second International Conference on Genetic

Algorithms and their Application , L. Erlbaum Associates Inc., pp. 224–230.

Onísko, A. (2008), “Medical diagnosis”, In Bayesian Networks: A practical guide to applications ,

Wiley, pp. 15–32.

Oteniya, L. (2008), Bayesian belief networks for dementia diagnosis and other applications: a compar-

ison of hand-crafting and construction using a novel data driven technique, PhD thesis, University

of Stirling.

Park, B., Kargupta, H., Johnson, E., Sanseverino, E., Hershberger, D. and Silvestre, L. (2002), “Dis-

tributed, collaborative data analysis from heterogeneous sites using a scalable evolutionary tech-

nique”, Applied Intelligence , Vol. 16, Springer, pp. 19–42.

Parpinelli, R. S., Lopes, H. S. and Freitas, A. A. (2002), “Data mining with an ant colony optimization

algorithm”, IEEE Transactions on Evolutionary Computation , Vol. 6, IEEE, pp. 321–332.

Partin, A., Kattan, M., Subong, E., Walsh, P., Wojno, K. and Oesterling, J. (1997), “Combination of

prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized

prostate cancer: A multi-institutional update”, Journal of the American Medical Association , Vol.

277, American Medical Association, pp. 1445–1451.

Partin, A., Mangold, L., Lamm, D., Walsh, P., Epstein, J. and Pearson, J. (2001), “Contemporary

201

BIBLIOGRAPHY

update of prostate cancer staging nomograms (Partin Tables) for the new millennium”, Urology ,

Vol. 58, Elsevier, pp. 843–848.

Partin, A., Yoo, J., Carter, H., Pearson, J., Chan, D., Epstein, J. and Walsh, P. (1993), “The use of

prostate specific antigen, clinical stage and Gleason score to predict pathological stage in men with

localized prostate cancer.”, The Journal of Urology , Vol. 150, American Urological Association,

pp. 110–114.

Pearl, J. (1988), Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference, Mor-

gan Kaufmann.

Pelikan, M. (2005), “Bayesian optimization algorithm”, In Hierarchical Bayesian Optimization Algo-

rithm , Springer, pp. 31–48.

Penson, D., Grossfeld, G., Li, Y., Henning, J., Lubeck, D. and Carroll, P. (2002), “How well does

the Partin nomogram predict pathological stage after radical prostatectomy in a community based

population? Results of the cancer of the prostate strategic urological research endeavor”, The Journal

of Urology , Vol. 167, American Urological Association, pp. 1653–1658.

Platt, J. (1999), “Fast training of support vector machines using sequential minimal optimization”, In

Advances in Kernel Methods , MIT press, pp. 185–208.

Pourret, O., Naim, P. and Marcot, B. (2008), Bayesian networks: a practical guide to applications,

Wiley.

Ramakrishnan, N., Hanauer, D. and Keller, B. (2010), “Mining electronic health records”, Computer ,

Vol. 43, IEEE, pp. 77–81.

Robinson, R. (1977), “Counting unlabeled acyclic digraphs”, Proceedings of the fifth Australian Con-

ference on Combinatorial Mathematics , Springer, pp. 28–43.

Romero, T., Larranaga, P. and Sierra, B. (2004), “Learning bayesian networks in the space of order-

ings with estimation of distribution algorithms”, International Journal of Pattern Recognition and

Artificial Intelligence , Vol. 18, World Scientific, pp. 607–626.

Rumelhart, D., Hinton, G. and Williams, R. (1985), Learning internal representations by error propa-

gation, Technical report, University of California San Diego.

Sanchez-Chapado, M., Angulo, J., Ibarburen, C., Aguado, F., Ruiz, A., Viano, J., Garcia-Segura, A.,

Gonzalez-Esteban, J. and Rodriguez-Vallejo, J. (1997), “Comparison of digital rectal examination,

transrectal ultrasonography, and multicoil magnetic resonance imaging for preoperative evaluation

of prostate cancer”, European urology , Vol. 32, Elsevier, pp. 140–149.

202

BIBLIOGRAPHY

Santana, R. (2011), “Estimation of distribution algorithms: from available implementations to potential

developments”, Proceedings of the thirteenth Conference on Genetic and Evolutionary Computation

, ACM, pp. 679–686.

Schiavinotto, T. and Stützle, T. (2007), “A review of metrics on permutations for search landscape

analysis”, Computers & Operations Research , Vol. 34, Elsevier, pp. 3143–3153.

Sevaux, M., Sörensen, K. et al. (2005), “Permutation distance measures for memetic algorithms with

population management”, Proceedings of 6th Metaheuristics International Conference , pp. 1–8.

Shaida, N. and Malone, P. (2007), “Controversial topics in surgery. open versus laparoscopic radical

prostatectomy: The case for open radical prostatectomy.”, Annals of The Royal College of Surgeons

of England , Vol. 89, The Royal College of Surgeons of England, pp. 108–110.

Shakya, S. and McCall, J. (2007), “Optimization by estimation of distribution with deum framework

based on markov random fields”, International Journal of Automation and Computing , Vol. 4,

Springer, pp. 262–272.

Skolicki, Z. and De Jong, K. (2004), “Improving evolutionary algorithms with multi-representation

island models”, Parallel Problem Solving from Nature VIII , Springer, pp. 420–429.

Sobin, L. (2009), TNM classification of malignant tumours, Wiley-Blackwell.

Song, C., Kang, T., Ro, J., Lee, M., Kim, C. and Ahn, H. (2005), “Nomograms for the prediction of

pathologic stage of clinically localized prostate cancer in Korean men”, Journal of Korean Medical

Science , Vol. 20, The Korean Academy of Medical Science, pp. 262–266.

Spirtes, P., Glymour, C. and Scheines, R. (2000), Causation, prediction, and search, MIT Press.

Sutherland, W. A. (2009), Introduction to metric and topological spaces., Oxford University Press.

Sy, B. K. (1992), “Reasoning MPE to multiply connected belief networks using message passing”,

Proceedings of the National Conference on Artificial Intelligence , Wiley, pp. 570–576.

Tarjan, R. (1976), “Edge-disjoint spanning trees and depth-first search”, Acta Informatica , Vol. 6,

Springer, pp. 171–185.

Thierens, D. (2002), “Adaptive mutation rate control schemes in genetic algorithms”, Proceedings of

the Congress on Evolutionary Computation , Vol. 1, IEEE, pp. 980–985.

Van Dijk, S., Thierens, D. and van der Gaag, L. (2003), “Building a GA from design principles for learn-

ing bayesian networks”, Proceedings of the Conference on Genetic and Evolutionary Computation ,

Springer, pp. 198–198.

203

BIBLIOGRAPHY

Veltri, R., Chaudhari, M., Miller, M., Poole, E., O´ Dowd, G. and Partin, A. (2002), “Comparison

of logistic regression and neural net modeling for prediction of prostate cancer pathologic stage”,

Clinical Chemistry , Vol. 48, American Association for Clinical Chemistry, pp. 1828–1834.

Weinberger, E. (1990), “Correlated and uncorrelated fitness landscapes and how to tell the difference”,

Biological Cybernetics , Vol. 63, Springer, pp. 325–336.

Wiggins, M., Saad, A., Litt, B. and Vachtsevanos, G. (2008), “Evolving a bayesian classifier for ecg-

based age classification in medical applications”, Applied soft computing , Vol. 8, Elsevier, pp. 599–

608.

Wong, M., Lam, W. and Leung, K. (1999), “Using evolutionary programming and minimum description

length principle for data mining of bayesian networks”, IEEE Transactions on Pattern Analysis and

Machine Intelligence , Vol. 21, IEEE, pp. 174–178.

Wong, M. and Leung, K. (2004), “An efficient data mining method for learning bayesian networks using

an evolutionary algorithm-based hybrid approach”, IEEE Transactions on Evolutionary Computa-

tion , Vol. 8, IEEE, pp. 378–404.

Wu, Y., McCall, J. and Corne, D. (2010), “Two novel ant colony optimization approaches for bayesian

network structure learning”, Proceedings of the IEEE Congress on Evolutionary Computation , IEEE,

pp. 4473–4479.

Wu, Y., McCall, J. and Corne, D. (2011), “Comparative analysis of search and score metaheuristics

for bayesian network structure learning using node juxtaposition distributions”, Parallel Problem

Solving from Nature XI , Springer, pp. 424–433.

Wu, Y., McCall, J., Corne, D. and Regnier-Coudert, O. (2012), “Landscape analysis for hyperheuristic

bayesian network structure learning on unseen problems”, Proceedings of the IEEE Congress on

Evolutionary Computation , IEEE, pp. 1–8.

Yang, Z. and Wright, R. (2006), “Privacy-preserving computation of Bayesian networks on vertically

partitioned data”, IEEE Transactions on Knowledge and Data Engineering , IEEE, pp. 1253–1264.

Zhang, Q. and Sun, J. (2006), “Iterated local search with guided mutation”, Proceedings of the IEEE

Congress on Evolutionary Computation , IEEE, pp. 924–929.

204

	Regnier-Coudert thesis coversheet
	thesis
	Abstract
	Acknowledgements
	Published Papers
	Introduction
	Background
	Research Questions
	Summary of Thesis

	Background
	Bayesian Networks
	Benchmark Bayesian Networks
	Sampling benchmark Bayesian Networks
	Asia
	Tank
	Credit
	Car
	Boerlage
	Alarm

	Bayesian Network Structure Learning
	Using Conditional Independence
	Search and Score Strategies
	Bayesian Networks and Estimation of Distribution Algorithms

	Solution Quality
	Exact match distance
	Edit distance
	Kendall-Tau distance
	Structural Quality and Structural Hamming Distance

	Summary

	Difficulty of Node Ordering Permutation Optimization
	Search Space Analysis
	Correlation between fitness and distance
	Plateaux Analysis

	Influence of fitness properties on a population-based algorithm
	Summary

	Combining Local Optima by Means of Island Models
	Effect of Crossover on Local Optima and Island Models
	Island Model K2 Genetic Algorithm
	Implementation
	Island Models and Loss of Diversity in K2GA
	Performance Evaluation of IMK2GA

	Learning Bayesian Networks from Distributed Data
	Generating Distributed Data
	Performance of IMK2GA on Distributed Data

	Summary

	Size of Neighborhood and Population Diversity
	Neighborhood in the Space of Orderings
	Distance-Based Mutation Operators
	Swap Mutation
	Insert Mutation
	Invert Mutation
	Scramble Mutation
	Displacement Mutation
	Invert+Swap Mutation
	Invert+Displacement Mutation
	Choice of Mutation Operator and Bayesian Network Structure Quality

	Competing Mutating Agents
	Implementation
	Experiments

	Summary

	Applications to Prostate Cancer Staging
	Prostate Cancer Staging
	Medical Background
	Predictive Staging Tools
	Data

	Bayesian Networks for Prostate Cancer Staging
	Overview of Alternative Classifiers
	Experimental Design
	Experimental Results

	Comparative Study of Bayesian Network Structure Learning Algorithms on Prostate Cancer Data
	Bayesian Network Structure Learning on Distributed Medical Data
	Distributed Data in Medicine
	BAUS Distributed Data
	Island Model for Distributed Data

	Summary

	Discussion and Directions for Further Research
	Contributions
	Directions for Further Research
	Parameter Tuning
	Use of Alternative Fitness Functions
	Dynamic selection of mutation parameters in COMMA
	Implementation of Surrogate Fitness Function
	Investigation of techniques to handle small datasets

	General Conclusion

	Example of CH score calculation
	Population and tournament sizes and convergence of K2GA
	Evaluation of the presence of local optima using K2GA
	Performance analysis of IMK2GA
	Choice of Distance-Based Mutation Operators
	BAUS data distribution across NHS Cancer Networks
	Use of k-order marginal fitness surrogate model for BN structure learning

