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ABSTRACT 
 

 
Name: Shaista Hameed 

Degree: PhD 
Title: Investigation of the production and isolation of bioactive  
compounds from cyanobacteria 

 
 

Due to heavy nutrient load and adverse climate change the occurrence of 

toxic cyanobacterial blooms have significantly increased during the last 

decades. Nodularia spumigena is one of the dominant toxic cyanobacteria 

which produces massive and inherent blooms in brackish water body, the 

Baltic Sea, particularly in late summer. Nodularia spp. are known to produce 

nodularins (NOD) and a range of other bioactive peptides such as spumigins 

and nodulopeptins, all of which have unclear function. In a recent study, 

three new nodulopeptins with molecular weight of 899, 901 and 917 were 

characterised from N. spumigena KAC 66.  
 

In the present study, N. spumigena KAC 66 was fractionated by reversed 

phase flash chromatography and their toxicity was determined by their 

lethality to Daphnia pulex and D. magna along with inhibition of protein 

phosphatase 1 assay (PP1). All fractions showed lethality to Daphnids and 

inhibitory activity against PP1, the toxicity was due to additional compounds 

as NOD and nodulopeptin 901 were only detected in 7 fractions. Pure NOD 

was lethal to D. pulex and D. magna LC50= 8.4 µg/mL and 5.0 µg/mL, 

respectively. The newly characterised nodulopeptin 901 was also tested 

against D. magna (LC50=>100 µg/mL). NOD and nodulopeptin 901 inhibited 

PP1 with IC50 0.038 µg/mL and 25 µg/mL, respectively.  
 

In common with many studies, the maximum amount of NOD was retained 

within the cells during the seven week growth experiment. In contrast, as 

much as ~50% of nodulopeptin 901 was detected in the growth media 

throughout the duration of experiments. 
 

To gain further insight on the effects of environmental stress on growth and 

production of bioactive metabolites in N. spumigena KAC 66, a range of 

parameters were investigated which included; temperature, salinity, nitrate 

and phosphorus.  



x 

 

 

In the present study it was investigated that extreme growth conditions 

have a considerable effect on biomass and toxin levels by N. spumigena 

KAC 66.  
 

The light intensity ranged from 17.35-17.47 μmol/s/m2, 22°C and 11-20 ‰ 

of salinity were the optimal growth conditions to obtain maximum 

biomasses, intra and extracellular peptide contents. At 6.5 mg/L nitrate the 

maximum growth, as indicated by Chl-a and maximum concentrations of 

intracellular NOD and nodulopeptin 901 were detected found in week 5 and 

4, respectively.  
 

Temperature had the greatest effect on peptide production. Whilst growth 

was similar at 22°C, 25°C and 30°C, increase in temperature had a 

profound effect on NOD production in that an increase from 22°C to 25°C 

resulted in a 50% decrease in intracellular NOD levels. At 30°C little or no 

NOD was detected. In contrast, whilst concentrations of nodulopeptin 901 

decreased with increasing temperature, they were still detected at 

consistent levels suggesting they play an important role. 
 

The results from phosphate experiment showed Chl-a, cell biomass and 

peptide production did not show clear dependency on availability of PO-3
4.  

 

This is the first study to evaluate the effects of selected environmental 

parameters on NOD/nodulopeptin 901 production which ultimately may be 

helpful to explain the distribution, control of natural blooms and toxin levels 

of N. spumigena in the Baltic Sea and as well as laboratory based 

experiments. 
 

In an attempt further exploit cyanobacterial diversity, 20 strains were 

isolated from the Dian Lake and 6 from the Dead Sea.  The UPLC-PDA-MS 

analysis of isolates, Microcystis spp. from Dian Lake, China indicated the 

presence of several peptides namely MC-LR, cyanopeptolin A and 

aerucyclamides A-D.  These new isolates will be examined for biological 

activity and chemical characterisation in future studies. 

 

Keywords: Nodularia spumigena KAC 66, the Baltic Sea, fractions, Daphina 
assay, protein phosphatase 1 assay, environmental factors, biomass, 
nodularin (NOD), nodulopeptin 901, the Dian Lake, the Dead Sea 
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1.1.  INTRODUCTION  

 

1.1.1. Cyanobacterial occurrence  

 

Cyanobacteria (Cyanoprokaryota/Cyanophyta/blue-green algae) belong 

to the oldest group of photosynthetic organisms (Catling et al., 2001; 

Kasting, 2001). The name blue-green has been given due to the presence 

of two photosynthetic pigments; chlorophyll-a and phycocyanins (Mur et 

al., 1999). 

 

They evolved in the middle of the Pre-Cambrian era, approximately 3.5-

3.8 billion years ago (Brasier et al., 2002). They are Gram-negative 

(Gerba et al., 2000) and photoautotrophic prokaryotes (without nucleus, 

Puschner and Jean, 2007) having higher plant-type oxygenic 

photosynthesis (Whitton and Potts, 2000).  

 

Cyanobacteria are commonly found in an extremely wide range of 

environments including water columns (i.e. Aphanizomenon flos-aquae, 

Nodularia spumigena and Anabaena circinalis (Syn. Genus 

Dolichospermum; Ralfs ex Bornet et Flahault, comb.nova) in the Baltic 

Sea; Kutser et al., 2008), sediments (i.e. Rivularia sp. and Gleotrichia 

sp.; Limaye et al., 2010), hot springs (i.e. Phormidium sp., Oscillatoria 

sp., Spirulina sp., and Synechococcus sp.; Stal, 2012; Krienitz et al., 

2003), cold lakes (belonging to orders Chroococcales, Oscillatoriales, and 

Nostocales; Singh and Elster, 2007), soils (i.e. genera Phormidium, 

Oscillatoria, Lyngbya, Anabaena, Nostoc, Scytonema and Calothrix; 

Bhatnagar et al., 2008) and other terrestrial environments (i.e. Nostoc 

sp., Microcoleus sp., Chroococcidiopsis sp. and Chroococcus sp.; Stal, 

2012). Many species of cyanobacteria are capable of surviving in the 
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extreme hypersaline environments (Anabaena sp., Synechococcus sp., 

Calothrix sp., Synechocystis sp., Gloeothece sp., Synechococcus sp. and  

Synechocystis sp.; Stal, 2012; Mazur-Marzec et al., 2005; Mackay et al., 

1984), sea bottoms (Lopez-Cortes et al., 2001), alkaline lakes 

(Arthrospira sp., Anabaenopsis sp., Spirulina sp., and Phormidium sp.; 

Ballot et al., 2005) and habitats of fresh (Golubic et al., 2009) and 

marine waters (Miller and Castenholz, 2000). Cyanobacteria also have 

the ability to survive in a wide range of temperatures, (-10 to 72ºC; 

Lopez-Cortes et al., 2005; Singh and Elster, 2007) and are neutral to 

alkaline conditions (pH 7.0-10; Stal, 2012). 

 

Cyanobacteria mainly contain photosynthetic pigments chlorophyll-a, 

phycobiliproteins (phycocyanin, allophycocyanin and phycoerythrin), 

xanthophylls and β-carotene, which carry out photosynthesis with the 

production of oxygen (Whitton and Potts, 2000). Cyanobacteria produce 

different kinds of cells. Under favorable growth conditions some produce 

photosynthetic cells/vegetative cells, under harsh environment conditions 

some form akinete cells/spores and under appropriate conditions some 

form thick walled heterocytes. Several cyanobacterial genera Anabaena, 

Aphanizomenon, Cylindrospermopsis, Nodularia and Nostoc (Mur et al., 

1999) have evolved specialised cells for nitrogen fixation (heterocytes), 

which contain nitrogenase enzyme to fix nitrogen.  

 

A dilemma exists as to whether cyanobacteria should be classified under 

the International Code of Botanical Nomenclature or the International 

Code of Nomenclature of Bacteria (Skulberg et al., 1993). On the basis of 

their morphological and genetic characteristics cyanobacteria are placed 

in a separate and distinct group of algae: Class Cyanophyceae 
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(Anagnostidis and Komarek, 1985; Rippka et al., 1979). Oren (2004) also 

proposed further integration of the cyanobacteria under the 

Bacteriological Code.   

 

1.1.2. Ecological importance of cyanobacteria 

 

Cyanobacteria are involved in oceanic primary production and give a total 

primary production on earth c. 1016 g C y­1 (Kaiser et al., 2005) and 

certain strains of cyanobacteria like Prochlorococcus and Synechococcus, 

have the highest rank among photosynthetic organisms on earth (Penno 

et al., 2006).  

 

 

                6CO2+12H2O                           C6H12O6+6O2+6H2O 

 

Cyanobacteria are involved in the global nitrogen and carbon cycles. 

Through photosynthesis they fix atmospheric carbon dioxide (CO2) and 

form organic compounds. In addition, they (i.e. a brackish water 

cyanobacterium Nodularia spumigena; Mazur-Marzec et al., 2005) also 

play an important role in dinitrogen fixation, and help in providing 

biologically available nitrogen to the environment.  

 

This nitrogen is used by higher plants (Paerl, 2000) and mangroves 

(Bashan et al., 1998). Some cyanobacterial species i.e. Oscillatoria 

salina, Plectonema terebrans and Aphanocapsa sp. are also known to 

play an important role in the biodegradation of oil in environments 

affected by oil spills (Raghukumar et al., 2001).  

 

Cyanobacteria have an impressive ability to produce useful biochemicals 

(Fatima and Venkataraman, 1999) and a variety of toxic/bioactive 

Sun light 
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compounds, known as the ‘cyanotoxins’ (van Apeldoorn et al., 2007; 

Welker and von Döhren, 2006). Some of these compounds are toxic to 

many microscopic organisms and to higher vertebrates (Carmichael, 

2001; Codd et al., 1997) including human beings (Osborne et al., 2008; 

Fleming et al., 2002). Some may have the ability to kill tumour cells, 

viruses (Review by Dittmann and Wiegand, 2006) and an anti-HIV 

protein (cyanovirin-N) has been isolated from Nostoc ellipsosporum 

(Gustafson et al., 1997). Several reports have suggested that these 

natural compounds could be utilised in drug industries (Tan, 2007; 

Proksch et al., 2002) and are being marketed directly for human 

consumption (i.e. Aphanizomenon flos-aquae, Arthrospira maxima and 

Arthrospira platensis; Singh et al., 2011).  

 

1.1.3. Cyanobacterial blooms  

 

Under favourable conditions several aquatic cyanobacterial strains are 

capable of growing in abundance and often form blooms or toxic blooms, 

associated with eutrophication and environmental factors (Larsson et al., 

2001; Wasmund, 1997; Kononen et al., 1996).  

 

In many cases blooms can be toxic with records suggesting that 50% of 

cyanobacterial blooms maybe toxic. Approximately, 40 cyanobacterial 

genera produce cyanobacterial toxins the main ones are Microcystis, 

Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia, Nostoc, 

Lyngbya and Planktothrix. Cyanobacterial blooms and their toxins are 

responsible for lethal effects on domestic/wild animals and human 

beings.   

 

http://www.ncbi.nlm.nih.gov/pubmed?term=Gustafson%20KR%5BAuthor%5D&cauthor=true&cauthor_uid=9299483
http://en.wikipedia.org/wiki/Arthrospira
http://en.wikipedia.org/wiki/Arthrospira
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Cyanobacterial blooms occur in temperate lakes (ISOC-HAB, 2008; 

Hudnell et al., 2008), coastal waters (Dietrich et al., 2008; Albert et al., 

2005; Watkinson et al., 2005) and especially in freshwaters (Kanoshina 

et al., 2003). In the past these blooms were considered a natural 

phenomenon, but in more recent years their frequency has increased 

considerably. Agricultural run off and other pollutants to aquatic 

environments have resulted in increased nutrient enrichment thus 

providing favourable conditions for the growth of toxic cyanobacteria 

(Codd et al., 2005; Sivonen and Jones, 1999). Many cyanobacterial 

species i.e. Aphanizomenon flos-aquae, Anabaena spp. and Nodularia 

spumigena are known to produce cyanobacterial blooms in the world’s 

second largest brackish water body, the Baltic Sea (Sukikkanen et al., 

2010). 

 

1.1.4. Types and nature of cyanotoxins 

 

On the basis of mode of action cyanobacterial toxins can be divided into 

different categories. Some cyanobacterial strains produce intracellular 

hepatotoxins (microcystins, nodularin and cylindrospermopsin), 

neurotoxins (anatoxins and saxitoxins) and skin irritants 

(lipopolysacchride endotoxins). The details of hepatotoxins and their 

target sites are shown in Table 1.1. 

 

 

../../admin/RescuePRO/Desktop/sites/entrez
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Toxic group Primary target Microalgal genera and species References

cells/organs in mammals

Cyclic peptides

(hepatotoxin)

Microcystins (MC) Liver Microcystis aeruginosa Lahti, (1997), Bateman et al., (1995),  Azevedo et al., (1994),  Craig et al., (1993), 

Gastrointestinal illness Sivonen et al ., (1992a,b,c), Kaya and Watanabe, (1990),  Stoner et al ., (1989), 

Gathercole and Thiel (1987), Botes et al ., (1984 and 1985), Elleman et al ., (1978),  

Watanabe et al.,  (1988), Lippy and Erb, (1976), Konst et al ., (1965),

Microcystis  spp. Lahti, (1997), Namikoshi et al ., (1995),  Luukkainen et al. , (1994), 

Namikoshi et al., (1992), Yu et al., ( 1988) 

Anabaena  sp.  Sivonen et al., ( 1992a), Namikoshi et al., ( 1992), Harada et al. , (1991b),

 Namikoshi et al., ( 1995), Namikoshi et al., ( 1998)

 Microcystis wesenbergii  Luukainen et al. , (1993), Carmichael et al. , (1988), Botes et al., ( 1985) 

Microcystis viridis  Barco et al.,  (2002), Harada et al., (1990)

Planktothrix, Nostoc, Hapalosiphon, Briand et al. , (2003),  Sivonen and Jones, (1999), Lawton et al., ( 1994), 

Ressom et al., (1994)

Anabaen, Planktothrix, Anabaenopsis milleri Agrawal et al. , (2006),  Diehnett et al ., (2005), Sivonen and Jones, (1999),

 Chorus and Bartram, (1999),  Namikoshi et al., (1998), Namikoshi et al.,  (1992)

Planktothrix agardhii Luukkainen et al ., (1993), Krishnamyrthy et al., ( 1989)

Anabaena flos-aquae  Sivonen et al ., (1992c), Harada et al., (1991a)

Nostoc  sp. Beattie et al. , (1998), Sivonen et al., ( 1990a), Namikoshi et al., (1990), Sivonen et al., ( 1992c)

Nodularia spumigena AV1 Fujii et al., (1997)

Nodularia spumigena Baker and Humpage, (1994), Jones et al ., (1994), Sivonen et al ., (1989b), 

Runnegar et al., (1988), Rinehart et al., (1988), Eriksson et al ., (1988), 

Nodularin (NOD) Liver Carmichael et al. , (1988), Edler et al. , (1985),  Persson et al. , (1984),  

Main et al ., (1977), LindstrØm, (1976), Francis, (1878) 

Contd……

Table. 1.1.  General features and targets of cyanobacterial toxins (selected references). 
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Toxic group Primary target Microalgal genera and species References

cells/organs in mammals

Cyclic peptides

(hepatotoxin)

Microcystins (MC) Liver Microcystis aeruginosa Lahti, (1997), Bateman et al., (1995),  Azevedo et al., (1994),  Craig et al., (1993), 

Gastrointestinal illness Sivonen et al ., (1992a,b,c), Kaya and Watanabe, (1990),  Stoner et al ., (1989), 

Gathercole and Thiel (1987), Botes et al ., (1984 and 1985), Elleman et al ., (1978),  

Watanabe et al.,  (1988), Lippy and Erb, (1976), Konst et al ., (1965),

Microcystis  spp. Lahti, (1997), Namikoshi et al ., (1995),  Luukkainen et al. , (1994), 

Namikoshi et al., (1992), Yu et al., ( 1988) 

Anabaena  sp.  Sivonen et al., ( 1992a), Namikoshi et al., ( 1992), Harada et al. , (1991b),

 Namikoshi et al., ( 1995), Namikoshi et al., ( 1998)

 Microcystis wesenbergii  Luukainen et al. , (1993), Carmichael et al. , (1988), Botes et al., ( 1985) 

Microcystis viridis  Barco et al.,  (2002), Harada et al., (1990)

Planktothrix, Nostoc, Hapalosiphon, Briand et al. , (2003),  Sivonen and Jones, (1999), Lawton et al., ( 1994), 

Ressom et al., (1994)

Anabaen, Planktothrix, Anabaenopsis milleri Agrawal et al. , (2006),  Diehnett et al ., (2005), Sivonen and Jones, (1999),

 Chorus and Bartram, (1999),  Namikoshi et al., (1998), Namikoshi et al.,  (1992)

Planktothrix agardhii Luukkainen et al ., (1993), Krishnamyrthy et al., ( 1989)

Anabaena flos-aquae  Sivonen et al ., (1992c), Harada et al., (1991a)

Nostoc  sp. Beattie et al. , (1998), Sivonen et al., ( 1990a), Namikoshi et al., (1990), Sivonen et al., ( 1992c)

Nodularia spumigena AV1 Fujii et al., (1997)

Nodularia spumigena Baker and Humpage, (1994), Jones et al ., (1994), Sivonen et al ., (1989b), 

Runnegar et al., (1988), Rinehart et al., (1988), Eriksson et al ., (1988), 

Nodularin (NOD) Liver Carmichael et al. , (1988), Edler et al. , (1985),  Persson et al. , (1984),  

Main et al ., (1977), LindstrØm, (1976), Francis, (1878) 

Contd……

Table 1.1.  Contd……

Guanidine alkaloid Nodularia PCC 7804 Beattie et al., (2000)

(hepatotoxin)

Cylindrospermopsin (CY) Liver Cylindrospermopsis rasciborscii Hawkins et al., (1985)

Anabaena bergii Schembri et al.,  (2001)

C. ovalisporum Shaw et al.,1(999)

Planktothirx, Raphidiopsis, Microcystis, Anabaena  Al-Lay et al., (1988), Carmichael et al., (1988), Carmichael, (1978)

Nodularia, Lyngbya and Nostoc Harada et al., (1991a and b, 1994),  Ohtani et al.,  (1992), Krishnamurthy et al., (1989)

Fastner et al., (2003), Li et al. , (2001a and b), Schembri et al ., (2001),  Banker et al., ( 1997), 

Hawkins et al ., (1997)

Lyngbya wollei Seifert et al., (2007)

Aphanizomenon onalisporum Shaw et al., (1999)

Aphanizomenon ovalisporum Shaw et al. , (1999), Banker et al., (1997)

Aphanizomenon flos-aquae Preußel et al. , (2006)

Cylindrospermopsis raciborskii Hawkins et al., (1985 and 1997), Törökné, (1997)

Umezakia natans Harada et al., ( 1994)

Alakloids

(Neurotoxin)

Anatoxin-a (AnTx) Nerve synapse Anabaena palnktonica, Cylindrospermum  sp.,        Carmichael et al., (1975 and 1990), Devlin et al., (1977), Gorham et al. , (1964)

Depolarize neuromuscular Phormidium favosum, Edwards et al. , (1992),  Sivonen et al ., (1989a), Carmichael and Bent, (1981)

blocking agent Anabaena planktonica,  Bruno et al.,  (1994), Rapala et al., (1993), James et al., (1997a, b)

 Raphiidiopsis mediterranea, Gugger et al., ( 2005), Ballot et al., ( 2005), Viaggiu et al. , (2004), Namikoshi et al.,  (2003)

Planktothrix rubescens, Anthrospira fusiformis Viaggieu et al., (2004)

Anabaena flos-aquae Devlin et al., (1977), Carmichael et al. , (1975),  Hurber, (1972),

Rapala et al ., (1993), Carmichael, (1992),  Carmichael and Bent., (1981)

Carmichael, (1992), Carmichael et al., ( 1975)

Anabaena spp. Sivonen et al., (1989a), James et al., (1997a , b)

 Anabaena blooms

Anabaena planctonica bloom Bruno et al., ( 1994), Sivonen et al., ( 1989a)

Anabaena circinalis James et al., (1997a, b), Bruno et al. , (1994), Sivonen et al. , (1989a)

Anthrospira fusiformis Ballot et al., (2005)

Aphanizomenon sp. Codd et al., (1997), Sivonen et al., (1989a)

Aphanizomenon  blooms Bumke-Vogt, (1999)

Anabaena spiroides Carmichael, (1992)

Cylindrospermum  sp. Sivonen et al., (1989a)

Contd……
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Toxic group Primary target Microalgal genera and species References

cells/organs in mammals

Cyclic peptides

(hepatotoxin)

Microcystins (MC) Liver Microcystis aeruginosa Lahti, (1997), Bateman et al., (1995),  Azevedo et al., (1994),  Craig et al., (1993), 

Gastrointestinal illness Sivonen et al ., (1992a,b,c), Kaya and Watanabe, (1990),  Stoner et al ., (1989), 

Gathercole and Thiel (1987), Botes et al ., (1984 and 1985), Elleman et al ., (1978),  

Watanabe et al.,  (1988), Lippy and Erb, (1976), Konst et al ., (1965),

Microcystis  spp. Lahti, (1997), Namikoshi et al ., (1995),  Luukkainen et al. , (1994), 

Namikoshi et al., (1992), Yu et al., ( 1988) 

Anabaena  sp.  Sivonen et al., ( 1992a), Namikoshi et al., ( 1992), Harada et al. , (1991b),

 Namikoshi et al., ( 1995), Namikoshi et al., ( 1998)

 Microcystis wesenbergii  Luukainen et al. , (1993), Carmichael et al. , (1988), Botes et al., ( 1985) 

Microcystis viridis  Barco et al.,  (2002), Harada et al., (1990)

Planktothrix, Nostoc, Hapalosiphon, Briand et al. , (2003),  Sivonen and Jones, (1999), Lawton et al., ( 1994), 

Ressom et al., (1994)

Anabaen, Planktothrix, Anabaenopsis milleri Agrawal et al. , (2006),  Diehnett et al ., (2005), Sivonen and Jones, (1999),

 Chorus and Bartram, (1999),  Namikoshi et al., (1998), Namikoshi et al.,  (1992)

Planktothrix agardhii Luukkainen et al ., (1993), Krishnamyrthy et al., ( 1989)

Anabaena flos-aquae  Sivonen et al ., (1992c), Harada et al., (1991a)

Nostoc  sp. Beattie et al. , (1998), Sivonen et al., ( 1990a), Namikoshi et al., (1990), Sivonen et al., ( 1992c)

Nodularia spumigena AV1 Fujii et al., (1997)

Nodularia spumigena Baker and Humpage, (1994), Jones et al ., (1994), Sivonen et al ., (1989b), 

Runnegar et al., (1988), Rinehart et al., (1988), Eriksson et al ., (1988), 

Nodularin (NOD) Liver Carmichael et al. , (1988), Edler et al. , (1985),  Persson et al. , (1984),  

Main et al ., (1977), LindstrØm, (1976), Francis, (1878) 

Contd……

Table 1.1.  Contd……

Microcystis sp. Codd et al., (1997)

Oscillatoria spp.  James et al. , (1997a, b), Edwards et al., (1992)

Planktothrix sp. Sivonen et al., (1989a)

Phormidium favosum Gugger et al., (2005)

Anatoxin-a(s), (AnTx-a(s) Nerve synapse Anabaena flos-aquae, Anabaena lemmermannii  Onodera et al., (1997), Matsunaga et al., (1989)

Antichlorinesterase Mahmood and Carmichael, (1986 and 1987)

Matsungaga et al., (1989)

Anabaena flos-aquae Matsunaga et al., ( 1989), Henriksen et al. , (1997), Mahmood and Carmichael, (1986)

A. lemmermannii Onodera et al., (1997)

Homoanatoxin-a (HAnTx) Nerve synapse Oscillatoria rubescens Aas et al., (1996)

Phormidium sp. Wood et al., (2007)

Planktothrix formosa Skulberg et al., (1992)

Saxitoxins (STx) Nerve axons Aphanizomenon flos-aquae, Kao and Walker, (1982)

(Red-tide algae) Sodium channel blocker Lyngbya wollei and Cylindrospermopsis, raciborskii, 

(paralytic shellfish poisonings; Cylindrospermopsis and 

 PSPs) marine dinoflagellates  

Anabaena circinalis Negri et al ., (1997),  Negri and Jones, (1995), Humpage et al ., (1994)

Aphanizomenon flos-aquae Mahmood and Carmichael (1986), Ikawa et al., (1982)

Cylindrospermopsis raciborskii Lagos et al., (1997)

Lyngbya wollei Carmichael et al., ( 1997), Onodera et al., ( 1997)

Neosaxitoxin (NeoSTx) Sodium channel blocker Aphanizomenon flos-aquae, Ikawa et al ., (1982)

Anabaena circinalis Negri et al ., (1995), Humpage et al., (1994)

Dermatoxic alkaloids

Skin irritants

Aplysiatoxin Skin, protein kinase C Lyngbya, Oscillatoria Mynderse et al., (1978), Fujiki et al.,  (1990)

activator

Gastrointestinal illness Schizothrix calcicola Mynderse and Moore, (1977)

Lyngbayatoxin-a Skin, gastrointestinal Schizothrix, Oscillatoria, Lyngbya majuscula Aimi et al. , (1990), Fujiki et al. , (1990), Fujuki et al.,  (1984), 

 potent tumour promter Cardellina et al. , (1979), Mynderse et al ., (1978)

Inflamatory agent, Lyngbya majuscula Izumi and Moore, (1987), Serdula et al., ( 1982)

severe oral and Fujiki et al., (1990)

gastrointestinal 

inflamatory agent 

Debromoaplysiatoxin Skin Oscillatoria,  Schizothrix and Oscillatoria nigroviridis Mynderse et al., (1977), Moore et al., ( 1984), Fujiki et al., ( 1984)

Inflamatory activator

Lipopolysaccharides Endotoxin, potential Anacystis nidulans, Schizothrix calcicola, Ressom et al., ( 1994), Weise and Drews, (1970)

(LPS) irritant; affects Oscillatoria brevis, 

any exposed Anabaena flos-aquae, Oscillatoria tenuis, 

 tissues M. aeruginosa, Anabaena variabilis

Cyclic guanidine alkaloids 

Cytotoxins Cell line Cylindrospermopsis raciborskii Hawkins et al., ( 1985 and 1997)

Umezakia natans Harada et al., ( 1994)

Aphanizomenon ovalisporum Banker et al., (1997)
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1.4.1.1.  Hepatotoxins 

 

Several freshwater, brackish water and marine cyanobacterial species of 

the genera Microcystis, Anabaena, Nodularin, Planktothrix, Nostoc and 

Hapalosiphon (Terrestrial genera) produce hepatotoxins (Rinehart et al., 

1994). These toxins include cylindrospermopsins (CYN), nodularins 

(NOD) and microcystins (MCs).  

 

1.1.4.1.1. Cylindrospermopsins (CYN) are guanidine tricyclic alkaloid 

toxins (MW 415 Daltons; van Apeldoorn et al., 2007, Fig. 1.1) and have 

been isolated from several cyanobacterial species and strains (Table 1.1). 

They inhibit protein synthesis (Wiegand and Pflugmacher, 2005) and 

potent hepatotoxin results in fatty liver and central globular necrosis in 

laboratory mice when injected intraperitonially (Kinnear, 2010). CYN is 

hepatotoxic but does not inhibit PP1 and PP2. Blooms of 

Cylindrospermopsis raciborskii are reported from Australia, North and 

South America and Europe.  

 

 

 

                 Figure 1.1. Chemical structure of cylindrospermopsin 
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1.1.4.1.2. Cyclic hepatotoxic peptides - microcystins and 
nodularin 

 
 

 

1.1.4.1.2.a. Microcystins (MC) are cyanobacterial monocyclic 

hepatotoxic peptides (Kuper-Goodman et al., 1994; Fig. 1.2A). They 

were first isolated from the cyanobacterium, Microcystis aeruginosa 

(Bishop et al., 1959). MCs have a similar structure to NOD, although it 

has 7 amino acids where NOD has 5. The main differences between both 

hepatotoxins are the replacement of Mdha in MC with Mdhb in NOD. 

Another difference is lack of amino acids D-Ala and L-Leu (X position; 

Rantala et al., 2004) in NOD structure. 

 

MCs contain two variable L-amino acids, three D-amino acids (alanine, 

methylaspartic acid and glutamic acid) and two unusual amino acids Adda 

(3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) 

and Mdha (N-methyldehydroalanine; Botes et al., 1985). More than 80 

MCs and their variants have been isolated from strains of cyanobacteria 

(Welker and von Döhren, 2006). Some MCs and their amino acids 

variations are shown in Table 1.2. 

 

Table 1.2. Variation of amino acids on X and Z positions. 

MC–WR Tryptophan  Arginine 1068

MC–YR Tyrosine  Arginine 1045

MC–RR Arginine  Arginine 1038

MC–LW Leucine Tryptophan 1025

MC–LY Leucine Tyrosine 1002

MC-LR  Leucine  Arginine 995

MC–LF Leucine Phenylalanine 986

MC- LA  Leucine Alanine 910

MC variant X- amino acid  Z- amino acid Molecular weight (Daltons)
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                                          A 

 

                                                                                       

                                          B 

 

 

Figure. 1.2. General chemical structures of microcystin-LR (A) and 

nodularin-R (B). 

 

[D-Ala= D–Alanine, L-Leu= X- Variable L-amino acid (L-Leucine), D-MeAsp= 

Methyl Aspartic acid, L-Arg= Z- Variable L-amino acid (L-Arginine), Adda= (3-

amino-9-methoxy-2,6,8-trimethyl-10-pheny ldeca-4,6-dienoic acid, D-Glu= D-

Glutamic acid, Mdha (N-methyldehydroalanine) and Mdhb [2-(N-

methyleamine)-2-dehydrobutyric acid] 
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The toxicities of these MCs do not vary greatly. M. aeruginosa is the most 

frequently studied organism to produce hepatotoxic MC-LR.  

 

The Adda amino acid is only found in hepatotoxic cyanobacterial toxins 

such as NOD and MCs.  

 

1.1.4.1.2.b. Nodularin (NOD) is a mono cyclic pentapeptide 

hepatotoxin (m/z 825 Daltons; Fig. 1.2B; Sivonen and Jones, 1999). 

Nodularia spumigena and Nostoc sp. (Gehringer et al., 2012) is the only 

one cyanobacterial strain which produces NOD. The chemical structure of 

NOD is cyclo-(D-MeAsp1-L-arginine2-Adda3-D-glutamate4-Mdhb5), in 

which Mdhb is 2-(N-methyleamine)-2-dehydrobutyric acid. D-MeAsp is D-

methylaspartic acid. Adda is 3-amino-9-methoxy-2,6,8-tri-methyl-10-

phenyldeca, 4,6-dienoic acid. This toxicosis caused death of cattle, sheep, 

dogs, horses and pigs. Death can occur within a few hours to a few days, 

followed by coma, muscle and general pains (Galey et al., 1987). In 

humans Nodularia spumigena causes flu-like symptoms (result of inhaling 

organism with LPS endotoxin), allergic reactions and skin irritations 

(Henriksen, 2005). NOD has LD50 of 50-150 μg/kg in mice when injected 

intraperitoneally (Lehtimäki, 2000).  

 

Several NOD variants have been isolated from N. spumigena (Table 1.3).  
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Table 1.3. Some NOD variants isolated from N. spumigena. 
 

Molecular weights

[M+H]+

Nodularin 825

Linear NOD 843

Nodularin-R 825

[DMAdda3]NOD 811

[Glu4(OMe)]NOD 839

[dhb5]NOD 811

[MeAdda3]NOD 839

Glu4(OMe)NOD 839

[D-Asp1]NOD 811

Demethylated-Adda form 811

[L-Har2]NOD 839 Beattie et al. , (2000)

[L-valine2]NOD or motuporin Mazur-Marzec et al ., (2006); 

Namikoshi et al ., (1993)

(Har=homoarginine) 

Mazur-Marzec et al. , (2006)

NOD variants References

 
 
 

 
Motuporin or [L-valine2]NOD has also been isolated from a marine 

sponge, Theonella swinhoei, which has symbiotic relationships with 

cyanobacteria (DeSilva et al., 1992).  

 

1.1.4.1.2.c. Toxic effects of hepatotoxic nodularin an Microcystins 
 
 

Cyanobacterial toxins are indirectly or directly harmful to animals and 

human beings through recreational and drinking water supplies. In 1878, 

the first report of cyanobacterial poisoning was reported from Lake 

Alexandria, Australia by Frances. The cause was, drinking of scum 

containing Nodularia spumigena. The cyclic peptide MCs and NOD are 

specific in causing liver toxicology in mammals. The chronic exposure to 

high doses of toxins results in liver haemorrhage or failure and promotes 
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the size of liver and forms tumours followed by death. MCs and NOD may 

also cause heart failure, hemodynamic shock and subsequently death. In 

laboratory animals they affect the lungs, intestines and kidneys 

(Carmichael and Bent, 1981). 

 

In humans, fatality has only been observed as a result of intravenous 

exposure to dominant toxin MC-LR, through renal dialysis at a 

haemodialysis centre in Caruaru, Brazil (Jochimsen et al., 1998).  

 

Few incidents of animal toxicology by Nodularia spp. and NOD have been 

reported compared with Microcystis and MCs.  The first report relates to 

the toxicity of cyanobacterial blooms as presented by Francis (1878). In 

his report he pointed out the death of domestic animals i.e. sheep, cattle, 

dogs, horses and pigs around the estuary of the Murray River, Australia. 

The main cyanobacterium responsible for these deaths, was Nodularia 

spumigena. In Finland (Perrson et al., 1984) and Germany (Edler et al., 

1985) death of dogs have been reported, which were also caused by 

Nodularia spumigena.  

 

Hepatotoxic MCs and NOD were also found to be inhibitors of eukaryotic 

protein serine/threonine phosphatase 1 and 2 (see section 1.1.8.2). 

 

1.1.4.1.3. Other cyanobacterial cyclic and linear peptides 

 

Cyanobacteria are known to produce toxic and non toxic peptides. A 

detailed description of peptides, their target cell/organs and their 

producing cyanobacteria is shown in Tables 1.1 and 1.4.  
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Figure 1.3. General chemical structures of cyanobacterial peptides.  

A:-Aeruginosin 98-A, B:- Microginin, C:- Anabaenopeptin A,  

D:- Cyanopeptolin, E:- Microviridin A, F:- Nostocyclamide and  

G:- Polypeptide (eg. nodulopeptin A-C; R=functional group)  
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On the bases of molecular structures and mode of action cyanobacterial 

peptides can be divided into the following main classes (Schumacher et 

al., 2012; Welker and von Döhren, 2006).  

 

1.4.1.3.a. Aeruginosins are linear peptides and are characterised by an 

arginine derivative and a derivative of hydroxy­phenyl lactic acid (Hpla) 

(Welker and von Döhren, 2006; Fig. 1.3A).  

 

1.1.4.1.3.b. Microginin is a class of linear peptides and was first 

described by Okino et al., (1993a). It is characterised by two tyrosine 

units at the C-terminus and a decanoic acid derivative, 3-amino-2-

hydroxy-decanoic acid (Ahda; Fig. 1.3B).  

 

1.1.4.1.3.c. Anabaenopeptins (ABPN) are cyclic peptides and have 

been isolated from freshwater (Harada et al., 1995), brackish water 

cyanobacteria (Fujii et al., 1997) and terrestrial habitats (Reshef and 

Carmeli, 2002; Fig. 1.3C).  

 

1.1.4.1.3.d. Cyanopeptolins are cyclic peptides and have high 

structural variability. They have been isolated from Chroococcales, 

Oscillatoriales and Nostocales (Fig. 1.3D).  

 

1.1.4.1.3.e. Microviridins have a main peptide ring consists of seven 

amino acids with an ester bond (Fig. 1.3E, Ishitsuka et al., 1990) and are 

isolated from many cyanobacterial strains. 

 

1.1.4.1.3.f. Cyclamides also have various structures and isolated from 

several strains of cyanobacteria (Fig. 1.3F).  

 

1.1.4.1.3.g. Polypeptide (A-C) is a new class of peptides (Fig. 1.3G) 

and has been isolated from filamentous cyanobacterium, Nodularia 
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spumigena KAC 66, namely nodulopeptin A (899 Daltons), B (901 

Daltons) and C (917 Daltons; Schumacher et al., 2012).  

 

In addition to these cyanobacterial peptides a variety of more rare 

peptides have been reported from various species of cyanobacteria listed 

in Table 1.4. 

 
 

       Table. 1.4. General features of cyanobacterial peptides (selected   
       references). 

 

1. Main classes 

    of peptides

Aeruginosins Linear Microcystis, Planktothrix, Nodularia Murakami et al.,  (1995)

a. Suomilide Nodularia Fujii et al.,  1997

b. Banyaside Nostoc Ploutno and Carmeli, (2002)

Microginins Linear Microcystis, Planktothrix, Nostoc Okino et al., (1993),  Ishida et al., ( 1998 and 2000)

a. Nostoginin Nostoc Ploutno and Carmeli, (2002)

Anabaenopeptins Cyclic Anabaena, Aphanizomenon. Microcystis, Harada et al.,  (1995); Reshef and Carmeli, (2002); 

Planktothrix Fujii et al. , (1995 and 1997)

Cyanopeptolins Cyclic Anabaena, Lyngbya, Microcystis, Planktothrix, Harrigan et al., (1999); Martin et al.,  (1993); Okino et al., 

Scytonema, Symploca, Cdroococcales, (1993b); Tsukamoto et al., ( 1993)

Oscillatoriale, Nostocales

Microcystins Cyclic Microcystis, Anabaena, Planktothrix, Nodularia Botes et al., (1984; see more references in Table 1.3)

Nostoc, Hapalosiphon, Anabaenopsis

Nodularins Cyclic Nodularia Sivonen et al., (1989b; see more references in Table 1.3) 

Microviridins Multicyclic Microcystis, Planktothrix, Nostoc Ishitsuka et al., (1990)

Cyclamides Cyclic hexa

a. Nostocyclamide Lyngbya, Microcystis, Nostoc, Oscillatoria, Todorova  et al., (1995)

b. Westiellamide Stigonema, Westelliopsis Prinsep  et al., (1992)

Nostoc

Polypeptide (A-C) Linear Nodularia spumigena  KAC 66 Schumacher et al.,  (2012)

II. Other peptides

Crytophycins Cyclic desi Noctoc Schwartz  et al., (1990)

Microcolins Linear Lyngbya Koehn et al., ( 1992)

Mirabimids Linear Scytonema

Tantazoles Linear tetra Scytonema Carmeli  et al., (1990 and 1991)

Mirabazoles Penta Scytonema Carmeli  et al., (1990 and 1991)

Other peptides

a. Aeruginosinamide Linear tetra Lawton  et al., (1999)

b. Barbamide Linear tetra Lyngbya Orjala and Gerwich, (1996), Williamson et al., (1999)

c.  Lyngbyabellin B Cyclic hexa Lyngbya Luesch et al., (2000a)

d. Apramides Linear non Luesch et al.,  (2000b)

e. Wewekazole Cyclic undeca Lyngbya Nogle et al., (2003)

f. Puwainaphycin Cyclic deca- and undeca Anabaena Gregson et al.,  (1992)

h. Laxaphycin Lipo Anabaena Frankmolle et al., (1992a and b)

i. Lobocyclamide MacMillan et al ., (2002)

j. Calophycin Calothrix Moon et al., (1992)

k. Kawaguchipeptin i. Cyclic deca- and undeca

ii. Undeca Microcystis Ishida et al., (1996 and 1997)

l. Oscillatorin Cyclic deca Sano and Kaya, (1996)

m. Radiosumin Matsuda et al., ( 1996)

n. Aeruginoguanidin Tri Ishida et al., (2002)

o. Kasumigamide Linear penta Ishida and Murkakami, (2000)

p. Antanapeptin Lyngbya Nogle and Gerwich, (2002)

q. Malevamide C Mono-cyclic Horgen et al., (2000)

r. Yanucamide Lyngbya/Schizothrix  as asemblage Sitachitta et al., (2000)

 (based on Welker and von Dohren, 2006)

Oliopeptides Type of peptide Microalgal origin References
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1.1.4.1.3.h. Linear nodularin (LNOD) is a non-toxic precursor of toxic 

nodularin (Fig. 1.4; Rinehart et al., 1994) and first isolated during the 

biosynthesis of toxic NOD. During biosynthesis the non-toxic NOD is 

produced but the linear form is also detected as a bacterial degradation 

product (Rinehart et al., 1994).  The toxic strain, Nodularia strain AV1 is also 

known to produce linear and cyclic peptides, nodulopeptins and 

spumigins (Fujii et al., 1997).  
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Figure 1.4. Chemical structure of linear nodularin (LNOD) 

 

 

1.1.4.1.4. Neurotoxins - toxic alkaloids 

 

These cyanotoxins are alkaloid in nature and only five neurotoxins have 

been studied in detail (Table 1.1). About 46 cyanobacterial species are 

able to produce neurotoxins, e.g. anatoxin-a, anatoxin-a(s), 

Homoanatoxin-a,   saxitoxin and Neosaxitoxin (Ernst et al., 2006). 

 
1.1.4.1.4.a. Anatoxin-a (AnTx-a) and Homoanatoxin-a (HAnTx).  

Anatoxin-a formerly called ‘very fast death factor’ (VFDF) is a bicyclic 

secondary amine of alkaloid origin (Carmichael et al., 1975; Figs. 1.5A). 

This toxin was first described in the freshwater cyanobacterium Anabaena 
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flos-aquae NRC 44-1. AnTx-a is a low molecular weight alkaloid 

(MW=165 Da, m/z; C10H15NO) a secondary amine, 2-acetly-9-azabicyclo 

(4.2.1) non-2-ene. It is a potent post-synaptic neuromuscular blocker 

(Carmichael et al., 1997). Homoanatoxin-a is a unique and potent 

neuromuscular blocking agent and has been reported from Planktothrix 

rubescens and Phormidium formosa (Fig. 1.5B). 

 

1.1.4.1.4.b. Anatoxin-a (s) (AnTx-a(s)) is a low molecular weight 

phosphate ester (MW=252 Da m/z, C7H17N4O4P) of a cyclic N-hydroxy-

guanidine methyl phosphate ester. It has been reported in blooms and 

isolated from strains of Anabaena lemmermannii. When injected into 

laboratory mice it produces marked salivation. (Fig. 1.5C).  

 

1.1.4.1.4.c. Saxitoxin (STx) and Neosaxitoxin (NeoSTx) Saxitoxins 

are a group of carbamate alkaloid neurotoxins (Figs. 1.5D and E). This 

group of toxins is produced by several cyanobacteria and certain genera 

of marine dinoflagellates (red-tide algae). They are also known as 

paralytic shellfish poisonings (PSPs; Hallegreaff, 1993) in the freshwater 

mussel Alathyria condola (Negri and Jones, 1995).  

 

The variation in structure of saxitoxins depends on the addition of double 

sulphated (C-toxins) or sulphated (gonyautoxins – GTx; Table 1.5). 
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           Table 1.5. Structural variation of saxitoxins (R=functional group). 

Toxin

variant

Saxitoxin

STx H H H CONH2 OH

Neosaxitoxin

NeoSTx OH H H CONH2 OH

Gonyautoxins

GTx1 OH H OSO3
- CONH2 OH

GTx2 H H OSO3
- CONH2 OH

GTx3 H OSO3
- H CONH2 OH

GTx4 OH OSO3
- H CONH2 OH

GTx5 H H H CONHSO3
- OH

GTx6 OH H H CONHSO3
- OH

C-toxins

C1 H H OSO3
- CONHSO3

- OH

C2 H OSO3
- H CONHSO3

- OH

Decarbamoyl

dcSTx H H H H OH

dcGTx2 H H OSO3
- H OH

dcGTx3 H OSO3
- H H OH

            (Adopted from Van Apeldoorn et al., 2007)

R1 R2 R3 R4 R5
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                           A                                            B 
                        

 
                           C                                           D 

 

 

                        E                                             F 
                               

                           G                                         H 

 
Figure 1.5. General chemical structures of cyanobacterial neurotoxins.  

A:- Anatoxin-a, B:- Homoanatoxin-a, C:- Anatoxin-a (s), D:- Saxitoxin and  

E:- Neosaxitoxin and skin irritants: F:- Aplysiatoxin, G:- Debromoaplysiatoxin 

and H:- Lyngbyatoxin  
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1.1.4.1.5. Skin irritants 

 

Some marine cyanobacteria contain dermatotoxic alkaloids (skin irritants, 

Table 1.1) like lyngbyatoxins and aplysiatoxins. The marine genera 

Lyngbya, Oscillatoria and Schizothrix produce toxins i.e. aplysiatoxins 

(Fig. 1.5F), debromoaplysiatoxins (Fig. 1.5G) and lyngbyatoxin (Fig 

1.5H). Lipopolysacchride (Fig. 1.6) was first isolated from the 

cyanobacterium, Anacystis nidulans (Weise and Drews, 1970) and found 

in the outer membrane of the cell wall of cyanobacteria.  

 

                   
 
Figure 1.6. General chemical structure of lipopolysaccharide endotoxin  
 

 
 

1.1.5. Allelopathy and allelochemicals 

 

Some strains of cyanobacteria have the ability to produce secondary 

metabolites known as allelochemicals/signalling compounds (Smith and 

Doan, 1999). Through the production of such allelochemicals 

cyanobacteria can communicate with other organisms and reduce 

(negative allelopathy) or promote (positive allelopathy) the 

growth/photosynthesis, growth rate, N2 fixing, inhibit the 
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replication/synthesis of DNA/RNA of their co-occurring cyanobacteria 

and/or phytoplankton species (Leao et al., 2009a and b; Ganter et al., 

2008; Suikkanen et al., 2004). 

 

Allelopathy is a biological phenomenon and is also important in the 

control of toxic blooms of cyanobacteria (Leao et al., 2009a), macro-

algae (Leao et al., 2009a), algal succession and bloom formation (Vardi 

et al., 2002; Keating, 1977) and can also target angiosperms (Leao et 

al., 2009a). 

 

The research on allelopathic activities of cyanobacteria was started in the 

1980s. Despite this relatively little is known about the type of signalling 

compounds produced by cyanobacteria and how these compounds affect 

other organisms within that environmental compartment. Few studies 

have been done on the effects and control of cyanobacterial toxins by 

allelochemicals. Some studies have attempted to demonstrate that toxin 

production (anatoxin and microcystin) by a free-living freshwater 

cyanobacterium Anabaena flos-aquae, is regulated in part by the 

presence of extracellular products of a eukaryotic green alga, 

Chlamydomonas reinhardtii (Kearns and Hunter, 2000). 
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Anabaena  spp. Increase N2 fixing Suikkanen et al.,  (2004); De Nobel et al ., (1998) 

Aphanizomaenon flos-aquae Growth inhibitor Leao et al. , (2009a), Suikkanen et al ., (2004)

Cylindrospermopsis rasciborskii Photosynthesis inhibitor Figueredo et al ., (2007)

Calothrix spp. Growth inhibitor Doan et al. , (2001)

RNA and DNA replication inhibitor Doan et al. , (2001)

Fischerella  spp. Growth inhibitor Leao et al. , (2009b); Doan et al ., (2001)

RNA and DNA replication inhibitor Doan et al. , (2001)

Fischerella  sp. CENA19 Growth inhibitor Etchegaray et al ., (2004)

Fischerella sp. strain 52-1 Growth inhibitor Gantar et al ., (2008)

Photosynthesis inhibitor Gantar et al ., (2008)

Leptolyngbya foveolarum Growth inhibitor van der Grinten et al ., (2005)

Microcystis sp. Photosynthesis inhibitor Wiegand et al ., (2002)

Microcystis aeroginosa Growth inhibitor Yamasaki, (1993)

Nodularia harveyana Cytotoxic Flores and Wolk (1986); Keating, (1977, 1978); 

Volk, (2005)

Nodularia spumigena Growth promotor Growth inhibitor Suikkanen et al ., (2004)

Nostoc insulare Cytotoxic Volk, (2005)

Nostoc  31 Growth inhibitor Juttner et al ., (2001)

Nostoc spp. Growth inhibitor Leao et al ., (2009b)

Oscillaroria  sp. Growth inhibitor Leao et al ., (2009a)

References
Mode of action

Species

Beneficial Detrimental

`

Table 1.6. Some allelopathic cyanobacteria and their mode of actions. 
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In another study, Engelke et al., (2003) investigated elevated microcystin 

and nodularin levels in cyanobacteria growing in spent medium of 

Planktothrix agardhii CYA 29. They found that the presence of P. agardhii 

and its spent medium increased the toxin level in Microcystis aeruginosa 

and Nodularia sp. Engelke, (1998) also applied spent media of 

Oscillatoria agardhii, Microcystis aeruginosa, Synechococcus sp., Chlorella 

vulgaris, and Nodularia sp. to various cyanobacteria to note the growth 

rate and toxin level although no significant effects were observed.  Berry 

et al., (2008) and Zupla et al., (2003) also worked on intra and 

extracellular allelochemicals produced by some cyanobacterial strains 

(Table 1.6).  

 

1.1.6. Description of Nodularia spumigena KAC 66 

 

The nitrogen-fixing filamentous brackish water cyanobacterium, Nodularia 

spumigena KAC 66 (Fig. 1.7) is known to produce a variety of  

                        
 

         Figure 1.7. Light micrograph of Nodularia spumigena  

         KAC 66 used in the present study. 
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hepatotoxic nodularins and cyclic hepatopeptides (Fujii et al., 1997; 

Dahlmann et al., 2001). 

Several other bioactive and non-bioactive compounds (Table 1.7) and 

allelochemicals (Table 1.8) have also been reported from Nodularia spp. 

In addition to producing hepatotoxins, this species produces many other 

bioactive compounds such as spumigins, nodulopeptins (Mazur-Marzec et 

al., 2013) and recently three new nodulopeptins A-C (Schumacher, et al., 

2012) have been characterised. 
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Table 1.7. Toxic and non-toxic compounds produced by Nodularia spp.  
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Table 1.8. Allelochemicals and their effects produced by N. spumigena.   

 
 

 
Nodularin (NOD) is the only hepatotoxin that is known to be produced by 

N. spumigena (Falconer, 2001). According to the world Health 

Organisation (WHO) a tolerable intake of nodularin is 0.04 mg/kg, but at 

lower levels this peptide can cause severe health problems in human 

beings (Schumacher et al., 2012; Karlsson, 2003).  

 

1.1.7. The Baltic Sea and N. spumigena 

 

Due to special environmental, geographical, oceanographic and 

physiochemical conditions, second largest semi-enclosed brackish water 

body is the Baltic Sea (Fig. 1.8). The water body is under pressure from 

agriculture run off, human activities, excessive nutrients and greenhouse 

effects. It also receives the rainwater catchment from 14 countries 

(HELCOM, 2006). Due to its heavy nutrient load, the Baltic Sea is under 

the influence of eutrophication (Lilover and Stips, 2008; Report on  

 

                  Mode of action References
Target species Beneficial Detrimental

Thalassiosira weissflogii Growth inhibtor Suikkanen et al., (2004, 2005, 2006)

Rhodomonas  sp. Growth inhibtor Suikkanen et al., (2004, 2005, 2006)

Prymnesium parvum No effect No effect Suikkanen et al.,  (2004)

Cryptophytes Growth inhibtor Suikkanen et al., (2004, 2005, 2006)

Snowella  spp. Growth promoter Suikkanen et al.,  (2005)

Pseudanabaena spp. Growth promoter Suikkanen et al.,  (2005)

Anabaena spp. Growth promoter Suikkanen et al.,  (2005)

Oocystis sp. Growth promoter Suikkanen et al.,  (2005)

Macoma balthica Acetylcholinesterase Lehtonen et al., (2003)

increase
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Figure 1.8. Map showing the location of the Baltic Sea  

(Google map used with permission) 

 

Estonia, 2005; Mazur-Marzec et al., 2005) which has resulted in the 

occurrence of heavy toxic cyanobacterial blooms. In late summer the 

dominant and toxic strain is N. spumigena (Kankaanpaa et al., 2002) and 

along with the potentially toxic Aphanizomenon flos-aquae and Anabaena 

spp., this produces massive and lethal blooms in many areas of the Baltic 

Sea (Suikkannen et al., 2010; Lilover and Stips, 2008; Ibelings et al., 

2007; Sivonen et al., 1989b). The blooms of N. spumigena are more 

common in low nitrogen and phosphorus deficient parts of the Baltic Sea. 

They rarely occur in the Kattegaat, the Baltic Sea, which has low N:P 

ratios and high salinity. Probably high salinity does not promote the 

bloom formation of N. spumigena (Lehtimäki, 2000). 
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Many cases have been reported to cause animal poisoning along the 

coasts of the Baltic Sea (Edler et al., 1985; Persson et al., 1984). N. 

spumigena has also been reported to have lethal blooms in Lake 

Alexandrina, Australia (Rinehart et al., 1988). In the report of HELCOM 

(2006) it has mentioned that the level of nutrients is much higher than 

previous years reported in 1950. In past decades increasing nutrient 

enrichment is providing suitable conditions for bloom formations. 

 

The mass culturing of cyanobacterial strains under suitable laboratory 

conditions, provide an opportunity to produce a high amount of cells to 

isolate compounds. Under favorable conditions N. spumigena produces a 

high amount of toxins within the cells (Lehtimäki et al., 1997) and also 

release in the growth medium. The end of log phase and starting lag 

phase, together with other environmental factors, is best time to get the 

highest amount of cells and extracellular and intracellular microcystins 

(Vezie et al., 2002). 

 

1.1.8. Bioassays 

1.1.8.1. Daphnia assays  

 

Cyanobacteria are known to produce toxic compounds, which can be 

lethal to several zooplanktons and phytoplanktons. The toxins can affect 

growth, feeding rates, feeding habits, survivorship, population size and 

fecundity of zooplanktons. Small planktonic caladocerans, Daphnia spp. 

(water fleas; (whole organism assay/in vivo) are a useful tool to note the 

lethality of any known and unknown toxins. Several studies have 

mentioned that they inhibit feeding rates and increase mortality of 
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daphnids. The toxin producing strains N. spumigena (DeMott, 1991), 

Microcystis aeruginosa (Lurling and van der Grinten., 2003; Nizan et al., 

1996), Microcystis PCC7806 (Jungmann, 1992), Planktothrix spp. 

(Oberhaus et al., 2007) and Cylindrospermopsis raciborskii (Nogueira et 

al., 2004) have been tested against lethality to daphnids. The lethality to 

daphnids depends on mode of exposure, species of daphnids and dose of 

toxins.  

 

1.1.8.2. Protein phosphatase 1 assay (PP1) 

 

Protein phosphatases are a group of several enzymes that catalyse the 

dephosphorylation of hepatocytes phosphoproteins (Fig. 1.9).  

 

     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.9. Mechanism of protein kinase and protein phosphatase 

(ATP:- Adeno triphosphate, ADP:- Adeno diphosphae, PO4:- phosphate, 

OH:- hydroxyl group, Pi:- inorganic phosphate)  

(Adopted from: http://www.scq.ubc.ac/protein=phosphorylation-a-regulator-ofcellular-activity/) 

 

http://www.scq.ubc.ac/protein=phosphorylation-a-regulator
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Hepatotoxic peptides, the MCs and NOD, are potent protein phosphates 

(PP1 and PP2A) inhibitors, which are responsible for the 

dephosphorylation of phosphoproteins (MacKintosh et al., 1993). Protein 

phosphatases (biochemical assay/in vivo) play an important role in 

mammalian liver cells. In hepatocytes regulatory proteins are 

phosphorylated on their amino acids namely serine and threonine 

residues. Serine/threonine-specific protein phosphatases regulate several 

cellular activities like cell proliferation and cellular processes (Ikehara et 

al., 2008). Both amino acids have similar side-chains and can be 

phosphorylated by a single enzyme.   

 

In addition the inhibition of PP1 and PP2A relate to the hepatotoxicity of 

MCs and NOD, which leads to inhibition of PP activities in the cytoplasmic 

matrix of mammalian liver and attach with protein phosphatases 1 and 

2A. This process leads to increase of phosphoproteins 

(hyperphosphorylation) and also disturbs the structure and homeostasis 

of hepatocyte results in liver necroses, haemorrhage and tumour 

formation in liver (Fig. 1.10), which leads to death (Yoshizawa et al., 

1990). 
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Figure 1.10. Route, mode of action, lethality and inhibition of protein 

phosphatase (PP1 and PP2A) by hepatotoxic NOD.  
 

(B:- Bile duct, SC:- sinusoidal capillary, H:- hepatocytes, DC:- damaged 

capillary, NOD:- hepatotoxic nodularin, PP1:- protein phosphatase 1           

PP2A:- protein phosphatase 2A, M:- microtubules, microfilaments,  

intermediary filaments, P:- phosphate group, OH:-  hydroxyl group) 

(Adopted from Carmichael, 1994 and Menezes et al., 2013) 

 
                   

MCs and NOD have similar toxicity mechanism to hepatocytes, except 

that NOD has Mdhb (2-(N-methyleamine)-2-dehydrobutyric acid), which 

does not bind covalently with protein phosphatases (Dawson, 1998). The 

Adda group (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-

dienoic acid) interact with hydrophobic catalytic site of protein 

phosphatase results in inactivation of protein phosphatase (Wiegand and 
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Pflugmacher 2005). The PP1 LD50 value for NOD is 30-50 μg/kg in the 

mouse (Chorus and Bartram, 1999). 

 

Due to the hepatotoxic nature of microcystins and NOD, there are several 

reports available on the protein phosphatase inhibition activities isolated 

from M. aeruginosa (Gesner-Apter and Carmeli, 2009; Yoshizawa et al., 

1990; Honkanen et al., 1990), M. viridis (Yoshizawa et al., 1990), 

Planktothrix rubescens (Grach-Pogrebinsky et al., 2003), Anabena flos-

aquae, Oscillatoria agardhii and N. spumigena (Yoshizawa et al., 1990; 

Chapter 2; Table 2.1).  

 

1.1.9. Effect of environmental parameters and N. spumigena KAC    
          66 
 
 

The bloom formation in natural environments is controlled by abiotic and 

biotic factors. These environmental factors affect toxic bloom formation 

concerns namely, temperature, salinity, pH, light intensity and nutrient 

availability, especially nitrogen and phosphors (Sivonen, 1996). Much 

work has been done on the effects of temperature (Lehtimäki et al., 1994 

and 1997), salinity (Musial and Plinkski, 2003; Hobson and Fallowfield, 

2003; Mosiandar et al., 2002; Lehtimäki et al., 1997), nitrogen (Vuorio et 

al., 2005; Stal et al., 2003; Lehtimäki et al., 1997) and phosphorus 

(Lehtimäki, 2000; Kononen et al., 1996) on the growth and toxin 

production by N. spumigena. 
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1.1.9.1. Temperature  

 

Temperature plays an important role in the formation of blooms and 

production of toxins. The combined effects of temperature and irradiance 

influence on growth, dominancy, toxin production ability and survival of 

strains and may vary from species to species (Hobson and Fallowfield, 

2003, Lehtimäki et al., 1997).  

 

The effects of temperature on cyanobacterial growth and biological 

process have been widely studied parameters. Higher temperature 

supports the cyanobacterial growth compared with other phytoplanktons. 

Temperature together with irradiance affects growth and toxin production 

by N. spumigena in the aquatic ecosystems (Hobson and Fallowfield, 

2003).  At higher temperature (30°C) with 30 μmol/s/m2 N. spumigena 

produces high cell biomass and intracellular NOD toxins (Hobson and 

Fallowfield, 2003).   

 

1.1.9.2. Salinity  

 

Cyanobacteria are salt tolerant organisms and can survive at extreme low 

and high salinity ranges. The salinity concentrations also affect the 

growth and nodularin production by N. spumigena. The extreme high and 

low salinities do not support growth of N. spumigena but promotes 

akinetes development with a decrease in heterocytes at 35 psu (Mazur-

Marzec et al., 2005).  

 

The fluctuation and an increase and decrease in salinity levels in the 

Baltic Sea depend on freshwater supply and temperature, precipitation 
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and climate change (Dailidienė and Davulienė, 2008). These factors also 

affect development of blooms (Dailidienė and Davulienė, 2008) and 

growth (Moisander et al., 2002). Salinity combined with light intensities 

affect the production of NOD (Hobson and Fallowfield, 2001; Mazur-

Marzec et al., 2005), photosynthetic activities and N2 fixation by 

Nodularia spp. (Moisander et al., 2002; Hobson and Fallowfield, 2001).  

 

1.1.9.3. Nitrate  

 

Nitrogen gas (N2) is a key part of atmosphere (80%) and nitrogen (N) is 

one of the primary nutrients, which is an important component for the 

survival of all living organisms. Although, dinitrogen gas (N2) is available 

in high amount in the atmosphere, higher plants and animals are not able 

to utilise nitrogen gas.  

 

    
  N2                  NO3 

-                 NO2
-                NH2OH                NH3 

 

Nitrogen         Nitrate            Nitrite            Hydroxyl-          Ammonia 
gas                                                            amine 

 
 

 
In general, several cyanobacterial strains are able to use nitrate (NO3

-), 

nitrite (NO2
-), urea (CO(NH2)2), ammonium (NH4

+), or some amino acids. 

In cyanobacteria, nitrogen plays an important part in synthesis of 

proteins and amino acids (for deoxyribonuclic acid, DNA) and production 

of other biologically important compounds like hepatotoxins, neurotoxins 

and lipopolysaccharide endotoxins. Heterocyts are thick walled 

specialised cells, which contain an enzyme nitrogenase for nitrogen 

http://en.wikipedia.org/wiki/Cyanobacteria
http://en.wikipedia.org/wiki/Nitrate
http://en.wikipedia.org/wiki/Nitrite
http://en.wikipedia.org/wiki/Urea
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Ammonium
http://en.wikipedia.org/wiki/Amino_acids
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fixation. The diazotrophic/heterocytous (nitrogen fixing) and toxic N. 

spumigena and non toxic A. flos-aquae from blooms in nitrogen deficient 

areas of the Baltic Sea (Mur et al., 1999; Lehtimäki et al., 1997) and 

have ability to convert dinitrogen gas into nitrogen. Later nitrogen 

converts into ammonia (NH3), thus can be utilised by primary producers 

like plants. The process of conversion of dinitrogen gas into biological 

nitrogen is termed as nitrogen fixation.  

 

1.1.9.4. Phosphate  

 

Phosphorus is also an important nutrient and available in dissolved form 

for aquatic organisms. 

 

Since the last few decades human activities i.e. urbanisation, industrial 

and agricultural development, have contributed a major role in increasing 

cyanobacterial blooms in the Baltic Sea. In general, cyanobacteria require 

N:P ratio as 7:1 which depends and varies from species to species. The 

diazotrophic bacteria are primarily limited by low N:P ratio (Mazur-Marzec 

et al., 2005; Stal et al., 2003; Mur et al., 1999). In the Baltic Sea low 

nitrogen and high phosphorus favour the blooms of N. spumigena and A. 

flos-aquae (Lehtimäki, et al., 1997). The bloom development in the Baltic 

Sea is associated with low nitrogen (Lehtimäki et al., 1997) and high 

phosphorus concentrations at low N:P ratios (Mazur-Marzec et al., 2006) 

with moderate salinity (5–13 PSU; Kabir and Mandal, 2012; Mazur-

Marzec et al., 2006). An increase or decrease in nitrogen and phosphorus 

concentrations affects cyanobacterial growth, community structure and 

toxin production (Lehtimäki, et al., 1997).  

http://aem.asm.org/search?author1=J+Lehtimaki&sortspec=date&submit=Submit
http://aem.asm.org/search?author1=J+Lehtimaki&sortspec=date&submit=Submit
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1.1.10. Isolation of cyanobacteria and detection of peptides from   

           different environments 
 

 

 
It has been mentioned earlier that cyanobacteria are rich in production of 

secondary metabolites, which can be used in biological screening/drug 

discovery programmes, agricultural industry and to control a number of 

viruses, bacteria, fungi and other microorganisms (Mundt et al., 2001). 

There is a need to isolate cyanobacteria from various water bodies to 

discover new compounds, which can also provide a comparison on 

geographical distribution and toxin production ability among genetically 

exact strains found in different habitats. The freshwater Dian Lake or 

Dianchi Lake or Kunming Lake, China and the Dead Sea are an 

interesting source to target new strains of cyanobacteria and also provide 

a comparison between same species toxicology isolated from fresh and 

hypersaline waters. The Dianchi Lake is famous for toxic blooms of 

Microcystis aeruginosa, M. viridis and A. flos-aquae (Wu et al., 2009; Mei 

et al., 2006 and Liu et al., 2006).  

 

For several decades the Dead Sea has been under the influence of high 

salinity with the water level seeing a drop of more than 20 m (Oren et 

al., 2008). The increasing precipitation resulted in high salinity, which 

diminished a number of strains. In 1963 at 27 psu (Volcani, 1944, see 

Oren, 1999) several strains of cyanobacteria (Table 4.1) existed 

compared to the current time at 34-40 psu (Oren, 2008). However, 

under these intensive conditions the Dead Sea is dominated by viruses, 

bacteria, fungi and the increasing blooms of green alga, Dunaliella pawa 

(Oren, 2008 and 2000). 

http://europepmc.org/abstract/CBA/573074/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1126&lvl=0
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1.1.11. Aims and objectives 

 

A number of studies have examined the effects of environmental factors 

(temperature, light, salinity, nitrate and phosphate) on the growth of N. 

spumigena KAC 66 but no work has been done on the effects of abiotic 

factors on freeze dried cell biomass, Chl-a, extracellular NOD and 

recently characterised nodulopeptin 901 produced by N. spumigena KAC 

66. The present study has provided new knowledge about N. spumigena 

KAC 66 and the effects of environmental factors on the production of 

freeze dried cell biomass, Chl-a, extracellular NOD and intra and 

extracellular concentrations of newly discovered nodulopeptin 901 

(Schumacher et al., 2012). The lethality of fractions of N. spumigena has 

not been evaluated. The present research also provided knowledge on 

lethality of fractionated extracts of N. spumigena to Daphnia pulex, D. 

magna and inhibition of protein phosphatase 1 assay. The present study 

also provided information on compounds found in toxic cyanobacterial 

strains, which were isolated from freshwater Dian Lake and hypersaline 

lake, the Dead Sea. 

 

Main goals of this study were: 

 

1.1.11.1. Evaluate the toxicity of bioactive components of  
               N. spumigena by daphnids and inhibition of protein  

               phosphatase assays 
 

 
Daphnia spp. and protein phosphatase 1 assays are more frequently 

using bioassays to determine the lethality of compounds or whole cells. 

This study is the first of its kind to determine the lethality of fractions of 

N. spumigena KAC 66 collected from the reversed phase flash 
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chromatography. The fractions were tested against two strains of 

daphnids, Daphnia pulex and D. magna and for inhibition of protein 

phosphatase 1. 

 

1.1.11.2. Evaluate the optimal growth conditions for  
                N. spumigena KAC 66 in two different culture  

                vessels 
 
 

Mass culturing plays an important role to obtain highest cell biomass to 

isolate new compounds. The present study has provided knowledge about 

optimal growth conditions to obtain maximum cell biomass, NOD and 

nodulopeptin 901. For this purpose N. spumigena was grown in 8 L 

Perspex columns and 10 L glass flasks under laboratory conditions at 

22°C.  

 

1.1.11.3. Investigate the effects of environmental factors on  
               growth and toxin production by N. spumigena  
 

 
The production of cell biomass, Chl-a and peptides can be affected by 

extreme environmental conditions. The extreme low or high 

environmental conditions can be helpful to increase or decrease the 

production of cell biomass and peptides. The control on availability of 

nutrients can also be helpful to control cyanobacterial blooms and their 

toxin production in natural water bodies as well as production of high 

amounts of peptides for laboratory based experiments. The nutrient 

concentrations can also alarm the developing blooms. A number of 

studies have been done on the effects of abiotic factors (light, 

temperature, salinity, phosphate and nitrate) on the production cell 

biomass and intracellular NOD production. There is no information 

available regarding the effects of the nutrients on the production of 
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extracellular NOD and intra and extracellular levels of recently 

characterised nodulopeptin 901. This study has provided the information 

on the effects of temperature, salinity, phosphate and nitrate on the 

production of NOD and newly characterised nodulopeptin 901. 

 

1.1.11.4. Isolation of cyanobacterial strains and identification of    
               bioactive compounds from freshwater Dian lake, China   
               and hypersaline lake, the Dead Sea 

 
 

 

In 1944 due to less salinity the Dead Sea was inhabited by a number of 

microorganisms, which do not exist at the present time (Oren, 2008). 

The present study has provided a recent update of occurrence of 

cyanobacterial strains from Israeli side, Quedem, the Dead Sea. During 

this research some strains have been isolated and analysed on UPLC-

PDA-MS.  

 

In contrast bloom samples from freshwater Dian Lake, China were also 

isolated and analysed on UPLC-PDA-MS. Therefore, it is interesting to 

know that two strains namely Microcystis spp., showed the presence of 

several toxic peptides during UPLC-PDA-MS analysis.  
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2.1. INTRODUCTION 

 

Cyanobacteria have been found to produce a wide range of bioactive 

compounds which can be of interest in drug discovery or due to their 

impact on both natural ecosystems and human health. One reason why 

interest continues in that, cyanobacteria can be found in a wide range of 

habitats, which is thought to lead to a wide diversity of interesting active 

metabolites.  

 

More than 120 natural products have been isolated from the 

cyanobacteria and most of them are secondary metabolites. These 

metabolites have showed cytotoxic, antimalarial, anticancer, anti-HIV, 

antifungal and antimicrobial activities (Burja et al., 2001). Schrader et 

al., (2002) isolated several bioactive compounds from cyanobacteria and 

algae, which showed lethality against herbs, algae, insects, molluscs and 

fungus related to control of agriculture invertebrate pests and insects. 

The nitrogen fixing marine cyanobacterium, Nodularia harveyana isolated 

from the Mediterranean Sea expressed antibiotic, allelopathic activity and 

toxicity against a wide range of organisms such as chlorophytes, 

cyanobacteria, eubacteria, rotifers and crustaceans (Pushparaj et al., 

1998). 

 

Nodularia spp. are found primarily in brackish water but can tolerate a 

wide range of salinities. They are also well known as producers of the 

potent cyanotoxin, nodularin (NOD). Nodularia spumigena KAC 66 was 

isolated from the Baltic Sea and known to produce other compounds. This 

study explores the purification and biological activity of compounds 
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produced by N. spumigena KAC 66. Two bioassays were selected to 

screen to the samples. Firstly the Daphnia bioassay was performed, 

which is a generic test for aquatic toxins. The other assay used was 

protein phosphatase inhibitory assay, which is known to detect both NOD 

and microcystins (MCs) was employed to evaluate the presence of other 

compounds related to this group.  

 

The wide distribution and toxicological effects of hepatotoxic Nodularia 

spumigena on food chain, has caused significant attention towards the 

effects of the species. The present study will investigate further N. 

spumigena to detect the effects of peptides it produces on PP1 and 

Daphnia spp. 

 

In the present study two well established bioassays, Daphnia as a generic 

aquatic toxicity test and protein phosphatase inhibitory assay as a 

specific induction at the action of NOD and MCs (Gulledge, et al., 2002; 

Yoshizawa et al., 1990) were used. 

 

2.1.1. Bioassays 

2.1.1.a. Daphnia bioassay  

 

A number of simple bioassays can be performed to test toxicity, ranging 

from molecular assays to whole-organism assays (McLaughlin, 1991).  

 

Daphnia (Daphnids or water fleas) are members of aquatic crustaceans 

(Order Cladocera and Class Crustacea). They are found in freshwater 

ponds. Daphnids can tolerate varying levels of environmental factors, and 

common biology experiment conditions. They are considered a useful tool 
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for preliminary assessment of cytotoxicity. The neonates or adult 

daphnids are used for Daphnia lethality assay. Under favourable 

conditions daphnids produce parthenogenicity, while under stressed 

conditions they reproduce sexually and produce dark brown/black saddle-

shaped resting egg cases known as ephippia. 

 

Bioactive natural compounds are often toxic to daphnids (Reinikainen et 

al., 2002 and 2001). Hence in vivo lethality to daphnids can be used as a 

rapid and simple preliminary screening of bioactive compounds during the 

isolation of natural products.  

 

Daphnia assays have also been used for the detection of fungal toxins 

and their active peptide metabolites (Czarneck, et al., 2006) along with 

polyunsaturated fatty acids and microcystin (Reinlkainen et al., 2000). 

 

It has been suggested that the Daphnia assay can determine the lethality 

of materials indicating the ability of compound to kill cancer cells (Olvera-

Ramírez, et al., 2010). The ingestion or direct exposure to cyanobacterial 

toxins may affect on population, feeding and filtrating rates of daphnids. 

There are several reports available on the effects of N. spumigena, M. 

aeruginosa and Microcystis PCC 7806 on the survival and feeding 

behaviour of D. pulex, D. hyaline, D. pullicaria and D. magna (DeMott, 

1991; Reinikainen et al., 1994, Lauren-Maatta, et al., 1997; Jungmann, 

1992 and Reinikainen et al., 2001). Hence the Daphnia bioassay was 

established and used to screen toxicity of compounds/fractions of N. 

spumigena KAC 66. 
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2.1.1.b. Protein phosphatase assay (PP1) 

 

MCs and NOD are named as tumour promoters and inhibit PP1 and PP2A, 

which set to regulate liver function (see 1.8.2). This assay was developed 

on the basis of the ability of MC and NOD to inhibit serine/threonine 

protein phosphatase enzymes (Table 2.1). 

 

Table 2.1. Inhibition of PP1 (IC50) by microcystin-LR and NOD 

0.03 nM ,- Ward et al.,  (1997)

,- 1.8 nM Honkanen et al.,  (1990)

,- 0.7nM Yoshizawa et al.,  (1990)

1.4 nM Yoshizawa et al.,  (1990)

1.6 nM Yoshizawa et al.,  (1990)

1.7 nM ,- Honkanen et al.  (1990)

0.3 nM ,- Ana and Carmichael, (1994)

0.01 nM ,- Fontal  et al ., (1999)

~0.1 nM ,- Mackintosh et al., (1990)

ReferencesNODMC-LR

 

 

MCs and NOD are known tumour producers due to their inhibitory activity 

on protein phosphatase PP1 and PP2A, which act to regulate cell function. 

 

Due to this potent inhibitory activity it has been possible to develop an 

enzyme inhibition assay which determines both MCs and NOD along with 

related compounds. The assay vary in their determination methods with 

early methods relying as radio labelled phosphate where as now most 

researchers employ as colour reaction in a 96 well plate format.  
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PP1 consists of a targeting subunit or a specific protein inhibitor (see 

section 1.8.2). The para-nitrophenyl phosphate (pNPP) hydrolysis in the 

presence of phosphatase and form para-nitrophenol and under alkaline  

conditions it converts into para-nitophenolate, with a strong yellow colour 

detectable at 405 nm (Fig. 2.1). 

 

 

Figure 2.1. Chemical reaction of hydrolysis of para-nitrophenyl 

phosphate (pNPP) resulted in para-nitrophenol and than para-

nitophenolate (which gives yellow colour; (Pi= phosphate group 

or inorganic phosphate) 

(adopted from http://www.gbiosciences.com/PhosphataseAssay-desc.aspx).  

       

 

PP1 assay has several advantages for the laboratory strains and bloom 

samples tested. PP1 has better advantages as compared to the HPLC as 

the screening method is more sensitive; whilst the expensive equipment, 

sample unit cost and level of expertise required are markedly lower 

(Ward et al., 1997). 

 

http://www.gbiosciences.com/PhosphataseAssay-desc.aspx
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The aim of this study was to determine the lethality against Daphnia 

pulex, D. magna and PP1 inhibitory activity of NOD and recently 

discovered nodulopeptin 901 present in the aqueous fractions of brackish 

water cyanobacterium, N. spumigena KAC 66. Anabaenopeptolin A, B and 

linear peptides were also used to determine their inhibitory activity 

against protein phosphatase. The anabaenopeptin A and B were used as 

reference peptides as they have similarity in structure with newly 

characterised nodulopeptin 901 (Figs. 2.2; Table 2.2).  

 

 

                   A                                                     B 

 

 

                   C 

Figure  2.2. General chemical structures of cyanobacterial    

PP1 inhibitory peptides.  

A:- Anabaenopeptin A, B:- Anabaenopeptin B,  

C:- Nodulopeptin 901  
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Table 2.2. Inhibition percentage of PP1 by  
anabaenopeptins and anabaenopeptilides  
(Gkelis et al., (2006) 

 

Anabaenopeptin A 45-60%

Anabaenopeptin B 5-75%

Anabaenopeptilides 

90A

5-35%

Anabaenopeptilides 

90B

5-23%

% Inhibition Peptides

 

 

2.2. MATERIALS AND METHODS 

 

2.2.1. Chemicals 

 

Chemicals were of analytical-reagent grade unless stated and obtained 

from Fisher Scientific, Leicestershire, UK. HPLC-grade methanol and 

acetonitrile were purchased from Rathburn, Walkerburn, UK. Pure water 

was obtained from a Milli-Q system (Millipore, Watford, UK).  

 

Anabaenopeptin A and B were purified from batch cultures of Microcystis 

aeruginosa as previously described for microcystins (Edwards and 

Lawton, 2009 and Edwards et al., 1996). NOD, nodulopeptin 901 and 

LNOD were obtained from the cultures of N. spumigena KAC 66 following 

the same protocols. 

 

2.2.2. Large scale culture of N. spumigena KAC 66 

 

N. spumigena KAC 66 was grown in BG-II with 20% instant ocean water 

in 10 L Pyrex flasks or 8 L Perspex columns (Mazur-Marzec et al., 2006). 

Cultures were sparged with sterile air (0.22 μm filter, Millipore, UK) and 

exposed to continuous illumination generated by cool white Osram 
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fluorescent tubes (58 W) 20 μmol/s/m2 (Li-Cor intelligent light meter Li-

250) in a temperature controlled (22°C ± 2) room. 

 

2.2.3. Harvesting and extraction of N. spumigena KAC 66 

 

Cyanobacterial cultures were harvested by centrifugation (2,500 x rpm, 

4°C) for 30 min and stored at -20 °C prior to being thawed for extraction. 

 

Freeze-thawed wet cells were extracted for 1 h in 50% (v/v) aqueous 

methanol and centrifuged (1500 rpm, 30 min). Supernatants were 

decanted and the pellets were re-extracted a further two times. The 

aqueous extracts were diluted to 20% (v/v methanol) and loaded into 

C18 cartridge for concentration and clean-up using reversed phase flash 

chromatography (Edwards et al., 1996).  

 

2.2.4. Reversed Phase Flash Chromatography (RPFC) 

 

Concentration and clean-up of nodularin and other peptides was achieved 

by application of the 20% (v/v) aqueous methanol extracts onto a 

preconditioned C18 cartridge (40 mm I.D. x 75 mm long; 40-63 µm 

particle size) at 40 mL/min, using the Biotage Horizon flash 

chromatography system (Cardiff, UK). Compounds were eluted with a 

gradient from 0 to 100% methanol, in 10% increments with 240 mL per 

step/fraction. Fractions were analysed by HPLC-PDA-MS and those 

containing target peptides were further purified by preparative HPLC. 

 

2.2.5. Preparative HPLC 

 

Preparative HPLC separations were achieved using a Phenomenex 

(Macclesfield, UK) Luna C18 column (21 mm I.D. x 250 mm long; 10 μm 
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particle size). Mobile phase was Milli-Q water (A) and acetonitrile (B) both 

containing 0.05% TFA. Samples from flash purification were redissolved 

in 50% (v/v) aqueous methanol and 0.5 mL injected per run. The 

“sandwich” solvent, used to surround the sample in the loop and prevent 

precipitation, was also 50% (v/v) aqueous methanol. Polar compounds, 

such as nodularin, were eluted using a gradient increasing from 25% to 

50% B over 30 min at a flow rate of 20 mL/min. Less polar compounds 

such as nodulopeptin 901 were eluted with a gradient increasing from 

45% to 75% B over 30 min at the same flow rate. Fractionation was 

based on volume and eluent was collected in deep well microtitre plates 

(48 x 5 mL). Fractions were analysed by HPLC-PDA-MS and those of 

acceptable purity were pooled, desalted, eluted in methanol and dried 

and weighed to constant weight (Welgamage, 2012). 

 

2.2.6. HPLC-PDA-MS analysis 

 

For identification and quantification of nodularin and nodulopeptin 901 

was performed using HPLC-PDA-MS (Lawton et al., 1994). The system 

combined a Waters Alliance 2695 solvent delivery system,  photodiode 

array detector (PDA, model 2996) and mass detector (ZQ 2000 MS), all 

supplied by Waters (Elstree, UK). The separation of peptides was 

achieved on a Sunfire C18 column (5 µm particle size; 2.1 mm i.d. 150 

mm long) adjusted at 40°C using a Waters temperature control module.  

 

The mobile solvent phase A was Milli-Q water with 0.05% (v/v) 

trifluoroacetic acid (TFA; Fisher Scientific, UK) and mobile solvent phase 

B was acetonitrile (Fisher Scientific, UK) with 0.05% TFA (v/v). Samples 
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and standards were separated using a gradient increasing from 15 to 60 

% B for 25 minutes at a flow rate of 0.3 mL/min followed by ramp up to 

100 % B and re-equilibration after 10 next minutes. Mass spectrometry 

was performed in positive ion electro-spray mode (ESI+), scanning from 

m/z 100 to 1200 with a scan time of 2 seconds and inter-scan delay of 

0.1 second ion source parameters. The sprayer voltage was set at 3.07 

kV, and cone voltage 80 V. The source temperature and desolvation 

temperatures were 100 ºC and 300ºC, respectively. MassLynx software 

v4.1 was used to control the instrument for data acquisition and 

processing. The photo diode array (PDA) was set to a resolution of 1.2 

nm and data acquired from 200 to 400 nm. The injection volume for 

standards and samples was 10 and 20 µl, respectively. Compounds were 

identified on the basis of retention time, characteristic UV and mass 

spectra compared to standards. Quantification of peptides was based on 

calibration with external standards, nodularin at 238 nm and 

nodulopeptin 901 at 210 nm.  

 

2.2.6.1. Calibration curves  

 

Purified NOD was re-dissolved in 80% (v/v) aqueous methanol to a 

concentration of 200 µg/mL. A concentration range from 0.1 to 200 

µg/mL was analysed on HPLC-PDA-MS. Since the absorbance maximum 

is 238 nm, chromatograms were extracted at this wavelength and peak 

area determined. 

 

Nodulopeptin 901 was prepared in 80% (v/v) aqueous methanol at a 

concentration of 100 µg/mL. A concentration range from 0.1 to 100 
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µg/mL was analysed by HPLC-PDA-MS. The chromatograms were 

extracted at wavelength 210 nm and peak area response determined.  

 

2.2.7. Extraction and fractionation for bioactivity evaluation 

 

Six hundred mL cells of N. spumigena KAC 66 extracted in 600 mL of 

methanol (100%) in a flask. The flask was shaken well and left for the 

whole night for extraction. Next day 1800 mL of Milli-Q water was added 

and passed through filtration unit. A sample of filtrate was taken for 

UPLC-PDA-MS analysis to note the presence of any NOD and 

nodulopeptin 901. Six hundred mL was kept for second extraction (Fig. 

2.3). 
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Pure culture of N. spumigena KAC 66 
 

 
     Harvested 

 
 

   Concentrated cells Filtrate 

 
 

 
  1st extraction 

                    

                  (1 L concentrated cells +1 L 100%  MeOH) 
                            Extracted for the whole night 

 

  + 
 

       1 L Milli-Q water 

 
 

  Concentrated 
    (Filtrate sample was taken for LC-MS) 

 

   
  2nd extraction 

                    
                  (1 L of first extraction + 1 L 100% MeOH)         

              Extracted for one hour 
 

+ 
 

                         3 L Milli-Q water was added 
 
 

 
                   Concentrated  

                      (Filtrate sample was taken for LC-MS) 
 
 

 
            Reversed phase flash chromatography (RPFC) 

                                      (C18 cartridge) 
 
 

 
             Collected 17 fractions 

 
 
                                                                      Protein phosphatase                           

                                        Bioassays              assay (PP1) 
                                                                   

                                                                      Daphnia assays  

 
Figure 2.3. Summary of extraction and fractionation method used for  

N. spumigena KAC 66.  
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For fractionation an Isolera Flash chromatography system (Biotage, 

Cardiff, UK) was used. The SNAP C18 cartridge (60 g, 39 mm I.D. x 157 

mm long; particle size 37-70 μm) was pre-conditioned with 200 mL of 

100% methanol followed by 300 mL of Milli-Q water. The aqueous 

extracts were diluted to 20% (v/v methanol) and loaded onto the 

cartridge at a flow rate of 40 mL/min. Compounds were eluted with a 

linear gradient from 0 to 100% methanol. Fractions were collected on the 

basis of volume (60 mL/fraction) and monitored by UV at 254 nm and 

220 nm. 

 

Fractions were analysed by UPLC-PDA-MS to detect the presence of any 

NOD and nodulopeptin 901. The spent media from first and second 

extracts were also analysed.  

 

Aliquots (2 mL) of fractions were dried at 45°C under nitrogen and stored 

at -20°C prior to use in bioassays. 

 

2.2.8. Analysis by UPLC-PDA-MS  

 

The system comprised a Waters Acquity Ultra performance LC coupled to 

a photodiode array and a Xevo quadrupole time of flight mass 

spectrometer (Waters, Elstree, UK). Samples were separated on a BEH 

C18 column (100 x 2.1 mm; 1.7 µm particle size) which was maintained 

at 40°C. Mobile phase was Milli-Q Water plus 0.1% formic acid (A) and 

acetonitrile plus 0.1 % formic acid (B). Separation was achieved using a 

gradient increasing from 20% B to 70% B over 10 min, followed by a 

100% B wash step and re-equilibration. Autosampler was maintained at 

6°C at all times. 
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Data was acquired in positive ion electrospray scanning from m/z 50 to 

2000 with a scan time of 2 s and inter-scan delay of 0.1 s. Ion source 

parameters; capillary and sampling cone were 2.9 V and 25 V 

respectively; desolvation temperature, 300ºC; and source temperature, 

80ºC. Cone gas and desolvation gas flows were 50 L/h and 400 L/h 

respectively. Sodium iodide (2 µg/µl in 50% aqueous propan-2-ol (v/v)) 

was used as the calibrant with leucine-enkephalin (0.5 mg/L in 50% 

aqueous methanol (v/v)) as the lockspray.  Instrument control, data 

acquisition (centroid) and processing were achieved using MassLynx v4.1.  

 

2.2.8.1. Calibration curves 

 

Nodularin and nodulopeptin 901 standards were prepared in 80% (v/v) 

aqueous methanol at a concentration of 100 µg/mL. For each compound 

a range of concentrations from 0.1 to 100 µg/mL were analysed on UPLC-

PDA-MS. Chromatograms were extracted at 238 and 210 nm for 

quantification of nodularin and nodulopeptin 901, respectively. 

 

2.2.9. Daphnia bioassay (in vivo) 

 

For comparison of toxicological effects of fractions from KAC 66 and 

purified NOD on two species of daphnids i.e. Daphnia pulex and D. 

magna were used.  

 

For this assay daphnids were provided by Yorkshire Brine Shrimp 

suppliers (Bradford, UK). The Daphnids were acclimatised in 2 different 

population culture tanks in a temperature controlled room under 

continuous fluorescence light (0.77-1.21 μmol/s/m2) at 22ºC for 24 h. 
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Two litres of Chalkley’s (CH) and ASTM media were used for culturing of 

D. pulex and D. magna, respectively. Chlorella vulgaris (50 mL) was used 

as food (≈17x107 cells/mL) and added to each tank. Each day dead 

daphnids were removed from the tanks by 10 mL pipette. Ten healthy 

daphnids females were selected from culture tanks using dissecting 

microscope.  

 

2.2.9.a. Chalkley’s medium (CH) for D. pulex 

 

For cultivation of D. pulex Chalkley’s medium was used (Table 2.3).  Five 

mL of each nutrient was added in 1 L of deionised water and autoclaved 

at 15 psi for 15 minutes.  

 

 
                      

              Table 2.3. The chemical composition of growth  
              medium Chalkley’s medium (CH) use for cultivation  
              of D. pulex 

 
 

Stock solution Final conc.

(g/500 ml) (g/L)

NaCl 2 0.04

KCl 0.08 0.0016

CaCl2 0.12 0.0024

Nutrients

 

 

2.2.9.b. ASTM medium for D. magna 

 

D. magna were cultivated in artificial freshwater ASTM hard water (Table  

2.4). Ten mL of each nutrient used in one litre of deionised water 

autoclaved at 15 psi for 15 minutes.  



 

 

64 

 

 

Table 2.4. ASTM hard water growth medium for  
cultivation of D. magna. 
 

Nutrients Stock solution Final con.

(g/500 ml) (g/L)

NaHCO3 9.6 0.19

CaSO4.2H2O 6 0.12

MgSO4.7H2O 12.8 0.25

KCl 0.4 0.008

Seaweed extract 0.5 µl 1 ppm/L

pH was 7.6-8.0

Hardness (as mg/L of CaCO3): 160-180 g/500 ml   

 

2.2.9.c. Culturing of Chlorella vulgaris  

 

Ten percent of one month old pure isolate of C. vulgaris was inoculated 

in a two litre Erlenmeyer flask containing 1 L BG-11. The culture was 

grown for 2 weeks under white fluorescent light (17.67-17.91 

μmol/s/m2) in temperature controlled room at 22ºC. After 2 weeks the 

culture was scaled up to 1800 mL with BG-11 and 50 mL of culture was 

used as food for daphnids culture tanks containing 10 L CH/ASTM media. 

The cell count was performed on Sedgewick rafter counting cell slide 

(Fisher Scientific, Roskilde, Denmark) under light microscope (x4 

magnification; Olympus, UK). 

 

2.2.9.d. Preparation of fractions, NOD and nodulopeptin 901 for   

             daphnid assays 
 
 
 

The same methods, preparation of toxins and fractions dilutions were 

used to determine the lethality of toxins and fractions against D. pulex 
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and D. magna. Daphnids were tested for the lethal effects of standard 

NOD and nodulopeptin 901 and 17 fractions. 

 

Purified NOD was diluted in CH and ASTM media for D. pulex and D. 

magna, respectively, to give a concentration range of 0.1-100 µg/mL. 

The pure nodulopeptin 901 was diluted in ASTM medium for D. magna to 

give a concentration range of 0.1-120 µg/mL. 

 

2.2.9.e. Stock solution for 17 fractions of N. spumigena KAC 66  

 

Aliquots (2 mL) of each flash fraction were evaporated under nitrogen at 

45ºC for 3-4 h. The dried fractions were re-suspended in 2 mL of 

CH/ASTM media for D. pulex and D. magna, respectively. 

 

Fractions were diluted x2 and x4 and tested in duplicate. NOD at a 

concentration of 100 µg/mL was used as a positive control and media 

alone was used as negative control. 

 

2.2.9.f. Experimental setup 

 

One mL of each test sample and 1 mL of daphnids (10-15) were placed in 

triplicate in 24 well Nunclon plates (Thermo Fisher Scientific, Roskilde, 

Denmark; Fig. 2.4).  

 

The Nunclon plates were covered with lids and incubated in a 

temperature controlled room under continuous fluorescent light (0.78-

0.99 μmol/s/m2) at 21ºC for 24 h. Next day both dead and living 

daphnids were counted and LC50 values were calculated. 
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Figure 2.4. Experimental design of Daphnia assay to detect  

the lethality of toxins against D. pulex and D. magna. 

 

 
 

 

 

1 mL of each sample 
+ 

1 mL daphnids 

1 mL NOD conc.  

+ 
1 mL daphnids 

1 mL growth medium 

+ 
1 mL daphnids 

            -ve control                               +ve control  

Test well 



 

 

67 

 

2.2.10. Protein phosphatase inhibition assay (PP1; in vitro) 

 

To determine the inhibitory activity against PP1, NOD, nodulopeptin 901, 

17 fractions of N. spumigena, anabaenopeptin A (ANA), anabaenopeptin 

B (ANB) and linear NOD (LNOD) were used. 

 

Protein phosphatase inhibition assay was performed using a modification 

of previously reported colourimetric procedures (Ana and Carmichael, 

1994 and Ward et al., 1997 and Liu et al., 2002). The assays were 

performed in triplicate. 

 

Buffer A and B were prepared in 500 mL Milli-Q water. All chemicals and 

the enzyme were obtained from Sigma, Poole, UK. 

 

Buffer A contained 50mM Tris-HCl, BSA (Bovine serum albumin; 0.5 

g/500 mL), MnCl2 1.0mM and Dithiothreitol 2.0mM. The buffer was 

adjusted to pH 7.4 using freshly prepared 1M NaOH.  

 

Buffer B contained 50mM Tris-HCl, MgCl2 20mM, MnCl2 0.2mM and p-

nitrophenyl phosphate (phosphate substrate) 5mM. The buffer was 

adjusted to pH 8.0 using freshly prepared 1M NaOH. The light sensitive 

buffer B was wrapped in aluminium foil to prevent from light. All buffers 

were freshly prepared before use. 

 

Buffer C contained protein phosphatase 1 (PP1) was diluted with buffer A 

to obtain a working concentration of 5.0 µg/mL. 

 

NOD was double diluted to obtain a concentration range of 0.009 to 10 

µg/mL, which would enable determination of IC50.  
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Other test peptides (nodulopeptin 901, linear NOD, ANA and ANB) were 

prepared at a broader concentration range (0.009 to100 µg/mL).   

 

2.2.10.a. Test fractions: 17 fractions of N. Spumigena KAC 66  

 

Seventeen fractions of N. Spumigena KAC 66 collected from reversed 

phase flash chromatography (RPFC) were tested to determine the 

inhibitory activity of NOD and nodulopeptin 901 against PP1. 

 

Two mL of each methanolic fraction was evaporated under nitrogen at 45 

ºC and re-suspended in 200 µl of Milli-Q water (stock solution) and 

vortexed thoroughly to dissolve the material giving x10, x100 and x1000 

concentration sample. Each fraction was tested for protein phosphatase 

inhibition. 

 

Concentrated fractions were diluted 10 fold (equivalent to undiluted flash 

fraction), 100 fold and 1000 fold. 

 

2.2.10.b. Experimental setup 

 

All working solutions were freshly prepared and kept at 4ºC prior to use. 

Microtiter plates were prepared by adding enzyme (10 µl; 5.0 µg/mL) 

followed by test toxins (10 µl) in three replicate wells. Substrate (180 µl) 

was added to the wells using 22-200 µl multichannel pipette (Anachem, 

Luton, UK). 

 

The plate was incubated and shaken (30 rpm) in a shaking incubator 

(Stuart Orbital Incubator, Staffordshire, UK) overnight (14 h) at 37ºC 

immediately (Table 2.5). After 14 h the  plate placed in a reader at  405  
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   Table. 2.5. Details of method used in PP1 assay.  

Conditions Step 1 Step 2 Step 3 Step 4

Blank 10 µl buffer A 190 µl MQ

After adding substrate 

Control 10  µl MQ 190  µl buffer B/substrate the plate was After 14 h

shaken (30 rmp) the plate

and incubated placed in 

.+ ve control 10  µl enzyme/buffer C (5.0 µg/mL) 180  µl substrate overnight (14 h) a reader

(0 µl fractions) .+  at 37 ºC. at 405 nm.

10 µl NOD (10 µ/mL)

Samples 10  µl enzyme/buffer C (5.0 µg/mL) 180  µl substrate

 (peptides) .+

10 µl fractions/peptides
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nm on Microplate Spectrophotometer (Biotek, Vermont, USA) using Gen 

5 programme.  

 

Protein phosphatase was detected by colour change reaction through the 

action on para-nitrophenol phosphate. The developed yellow colour 

showed no enzyme inhibition (Fig. 2.5).  

 

 

Figure 2.5. Development of colouration indicates no inhibition of PP1 

and no colour indicates inhibition of PP1. 
 

 

The percent inhibition was calculated by following formula. Inhibition 

concentration (IC50) for all peptides and 17 fractions were calculated from 

graphs. 
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Inhibitory %  =  x 100

Normal activity - inhibitory activity

Normal activity or +ve control  

 

2.3. RESULTS  

2.3.1. Isolation and purification of peptides from N. spumigena     

          KAC 66 
 
 

 

The 20% methanol fraction contained linear nodularin and nodularin as 

determined by UV (λ max 234 and 238 nm) and mass spectra ([M+H]+ 

m/z 843 and 825; Figs. 2.6 ad 2.7; Appendices 1-4). 

 

 

Figure 2.6. UV and MS of 20% methanol fraction from flash    

chromatography 
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The 40% methanol fraction contained nodulopeptin 901 as determined by 

[M+H]+ at m/z 902 (Appendices 5-7). Both flash fractions were 

processed and further purified by preparative HPLC resulting in linear 

NOD (4 mg), NOD (3 mg) and nodulopeptin 901 (3 mg). The purified 

peptides further used as standards and experimental compounds. 
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Figure 2.7. Typical absorption spectrum of linear NOD (LNOD) with 

presence of peptide at 235 UV spectrum (m/z; A and B), mass spectrum 

(C), absorption spectrum (D) and chemical structure of LNOD (E). 
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2.3.2. HPLC-PDA-MS analysis 

 

2.3.2.a. Standard curve of NOD 

 

The standard curve of NOD was prepared between the concentrations of 

NOD against peak area response by HPLC-PDA-MS. The UV 

chromatogram of NOD was extracted at its highest absorption 238 nm 

and continued a correlation coefficient of R2=0.9998 (Fig. 2.8; Appendix 

8). 
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Figure 2.8. Standard curve for NOD quantified on HPLC at the 

wavelength of 238 nm with diode array at 12.00 min retention time. 

SD was less than 5% mean of n=3 (n=3, bars= 1 SD). 
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2.3.2.b. Standard curve of nodulopeptin 901 

 

The standards curve of nodulopeptin 901 was plotted as the 

concentration of nodulopeptin 901 against peak area responded by HPLC-

PDA-MS (Fig. 2.9; Appendix 9). The standard curve of nodulopeptin 901 

gave a correlation coefficient of R2=0.9996.   
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Figure 2.9. Standard curve for nodulopeptin, based on  

nodulopeptin 901, quantified on HPLC at the wavelength  

of 210 nm with diode array at 18.00 min retention time.  

SD was less than 5% mean of n=3 (n=3, bars= 1 SD). 
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2.3.2.c. Analysis of NOD and nodulopeptin 901 on HPLC-PDA-MS 
 
 

Nodularin (2.10A) was quantified at the wavelength of 238 nm and at 

12:00 min retention time. The full scanned chromatograms and 

absorbance spectrum are shown in Fig. 2.10.B and Fig. 2.10C, 

respectively. The nodulopeptin 901 was quantified at 210 nm wavelength 

at 18:00 min retention time (Figs. 2.11A-D). 

 

 
 

mar09

Time
2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00 22.00 24.00 26.00 28.00 30.00 32.00 34.00

%

0

100

Shaista T 14th sep 24 1: Scan ES+ 
TIC

1.06e7

14.24

10.86

9.141.34 6.682.18
3.55

3.23 4.67
8.12

28.89

15.29

26.40

15.99

32.58

31.49
29.63

31.28

34.59

NH

N

N
H

NH

Z

N
H

O

COOH

OH2

CH3

COOHOH2

OH2

CH3CH3

OR2

OH2

D-Glu

R1

Mdhb

   Adda
(DMAdda)

D-MeAsp
  D-Asp

Arg

A

B

 
 
 

 

 
Figure 2.10.  

A:- Chemical structure of NOD  

B:- Full scanned chromatogram of NOD 

C:- Typical absorbance spectrum of NOD at 238 nm 
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Figure 2.11. 

A:- Chemical structure of nodulopeptin 901 

B:- Full scanned chromatogram of nodulopeptin 901 

C:- At 210 nm 

D:- Typical absorbance spectrum of nodulopeptin 901 at 210 nm 
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2.3.3. UPLC-PDA-MS analysis 

 

2.3.3.a. Standard curve of NOD 

 

A range of NOD concentrations (Appendix 10) was used to plot a 

standard curve of pure NOD. The calibration curve of pure NOD was 

plotted as concentration of NOD against peak area’s response by UPLC- 

PDA-MS. The pure NOD showed a linear line and maintained a correlation 

R2 = 0.9993 (Fig. 2.12).   
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Figure 2.12. Standard curve for NOD, quantified on UPLC at the    

wavelength of 238 nm with diode array at 6.05-6.13  

min retention time (n=3, bars= 1 SD). 
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2.3.3.b. Standard curve of nodulopeptin 901 

 

The typical calibration graph for nodulopeptin 901 showed a linear 

correlation between peak area and concentration of nodulopeptin 901 

response by UPLC-PDA-MS chromatograms. The pure nodulopeptin 901 

indicated a linear response at UV-210 nm and maintained a correlation 

coefficient R2= 0.9972 (Fig. 2.13; Appendix 11).  
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Figure 2.13. Standard curve for nodulopeptin 901, based on 

nodulopeptin 901, quantified on UPLC at the wavelength of 210 nm 

with diode array at 7.88-7.90 min retention time (n=3, bars= 1 SD).  
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2.3.3.c. Analysis of NOD and nodulopeptin 901 on UPLC-PDA-MS 
 
 

Nodularin was quantified at the wavelength of 238 nm at 6.19 min 

retention time (Fig. 2.14). The nodulopeptin 901 was quantified at 210 

nm wavelength at 7.99 min retention time (Fig. 2.15). 
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Figure 2.14. Full scanned chromatogram of NOD at 6.19 min retention   

time. 
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Figure 2.15. Full scanned chromatogram of nodulopeptin 901 at 7.99    

min retention time. 

 

 

2.3.4. Bioactivity evaluation of fractions from N. spumigena KAC    
          66 
 
 

The extract from N. spumigena KAC 66 was separated by reversed phase 

flash chromatography (RPFC) using a linear gradient and yielded 17 

fractions. Fractions were analysed by UPLC-PDA-MS using standards of 

NOD and nodulopeptin 901 to identify and quantify the toxins in the 

fractions.  

 

The peptides were identified in fractions of N. spumigena KAC 66 on the 

basis of their wavelength and retention time (NOD 238 nm wavelength 

with retention time 5.53 min and nodulopeptin 901, 210 nm wavelength 

with retention time 7.71 min). 

 

A series of methanolic fractions (10-100%) of N. spumigena KAC 66 were 

also analysed on UPLC-PDA-MS. NOD was only eluted in five fractions  
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Table 2.6. Amount of NOD and nodulopeptin 901 in fractions of N. 

spumigena KAC 66 analysed on UPLC-PDA-MS. (NOD 238 nm wavelength 
and retention time 5.53 min; and nodulopeptin 901, 210 nm wavelength 
and retention time 7.71 min (n.d. not detected). 

NOD NOD
Nodulopeptin 

901

Nodulopeptin 

901

(µg/ml) (mg/fraction) (µg/ml) (mg/fraction)

1 .- .- .- .-

2 .- .- .- .-

3 47.76 2.87 .- .-

4 20.86 1.25 .- .-

5 14.43 0.87 .- .-

6 11.47 0.69 .- .-

7 1.64 0.09 5.44 0.33

8 .- .- 6.45 0.39

9 .- .- 4.42 0.27

10 .- .- n.d. n.d.

Fraction

 
 

 

 

(F3-F7) while nodulopeptin 901 was eluted in three fractions (F7-F9), 

respectively (Table 2.6). Fractions 3, 4 and 5 contained NOD at 90% 

purity whereas fractions 6 and seven were more complex and NOD was a 

minor component. Nodulopeptin 901 was detected in fractions 7, 8 and 

9, although these fractions were complex. 

 

Fractions 1, 2, and 10-17 did not contain any known compounds in UV or 

MS chromatograms. 

 

2.3.5. Bioassays 

2.3.5.a. Daphnia bioassays - D. pulex 

 

Determination of the toxicity of NOD towards D. pulex gave an LC50 of 

8.4 µg/mL (Figure 2.16; Appendix 12). When D. pulex were exposed to 

undiluted fractions, mortality was 100% in F2-F6 and F8-F15 fractions 

(Appendix 13). However, F1 and F16 showed less mortality 21 and 5.8%, 
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respectively. These fractions were eluted in low (F1) methanol and high 

methanol (F16) where NOD and nodulopeptin 901 were not eluted hence 

toxicity against Daphnia was observed (Table 2.7). The UPLC-PDA-MS 

analysis indicated that NOD and nodulopeptin 901 were only present in 

fraction F3-F9, while in undiluted approximately all fractions showed 

lethality to D. pulex. This maybe due to the presence of other toxic 

compounds in the extracts, which killed daphnids. 
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Figure 2.16. LC50 value (8.4 µg/mL) determination for standard 

NOD against D. pulex. NOD was serially diluted in CH medium. 

SD was less than 5% mean of n=3 (n=3, bars= 1 SD). 
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Table 2.7. Lethality of 17 fractions of N. spumigena KAC 66 collected 

from RPFC for D. pulex (the daphnids exposed for 24 h with each 
undiluted fraction, CH= Calkley's medium) 

 

Fractions of

N. spumigena  KAC 66

(2 ml dried fraction Total number Alive Dead % of dead

 dissolved in 1 ml CH)

F1 14 11 3 21

F2 9 .- 9 100

F3 15 .- 15 100

F4 15 .- 15 100

F5 15 .- 15 100

F6 14 .- 14 100

F7 12 6 6 50

F8 10 .- 10 100

F9 11 .- 11 100

F10 16 .- 16 100

F11 15 .- 15 100

F12 15 .- 15 100

F13 10 .- 10 100

F14 15 .- 15 100

F15 12 .- 12 100

F16 17 16 1 5.8

F17 11 11 .- 0

,-ve Control 13 13 .- 0

D. pulex

 

 

Further dilution (x2 diluted fraction) of fractions indicated that in fractions 

F1, F7, F8 and F16 mortality rate was slightly lower than undiluted 

fractions, ranging from 8-70% daphnids were killed (Table 2.8; Appendix 

14). At x2 diluted fraction several fractions (F3, F4, F6, F10, F11, F12, 

F13 and F14) demonstrated 100% lethality to D. pulex, which further 

decreased in the dilution factor x4 diluted fraction (Appendix 15). In 

fraction numbers F3, F4 F5, F6, F7, F11 and F12 high mortality (10-45%) 

was observed. Although no mortality was recorded in F1, F2, F8, F9, F10 

and F13-F17 (Table 2.8). In undiluted fraction number 3 contained the 

highest amount of NOD (24 µg/mL) and killed 100% of D. pulex, which 

was gradually decreased till F6 (0.8 µg/mL of NOD) and 38% mortality 

was recorded (Table 2.8).  



84 

 

F1 8 8 0 .- .- .- .- .- .-

F2 100 78 0 .- .- .- .- .- .-

F3 100 100 45

(24 µg/ml) (11.9 µg/ml) (5.97 µg/ml) .- .- .-

F4 100 100 30

(10.4 µg/ml) (5.2 µg/ml) (2.61 µg/ml) .- .- .-

F5 100 80 9

(7.2 µg/ml) (3.6 µg/ml) (1.8 µg/ml) .- .- .-

F6 100 100 30

(5.7 µg/ml) (2.9 µg/ml) (1.43 µg/ml) .- .- .-

F7 38 40 8 38 40 8

(0.8 µg/ml) (0.4 µg/ml) (0.21 µg/ml) (2.72 µg/ml) (1.4 µg/ml) (0.7 µg/ml)

F8 70 9 0 70 9 0

.- .- .- (3.2 µg/ml) (1.6 µg/ml) (0.8 µg/ml)

F9 100 73 0 100 73 0

.- .- .- (2.2 µg/ml) (10.5 µg/ml) (0.6 µg/ml)

F10 100 100 0 .- .- .- .- .- .-

F11 100 100 18 .- .- .- .- .- .-

F12 100 100 10 .- .- .- .- .- .-

F13 100 100 0 .- .- .- .- .- .-

F14 100 100 0 .- .- .- .- .- .-

F15 100 36 0 .- .- .- .- .- .-

F16 100 18 0 .- .- .- .- .- .-

F17 8 10 0 .- .- .- .- .- .-

,-ve Control 8

,+ ve Control (NOD 100 µg/ml) 100

Fractions 

Dead D. pulex  (%)

(x2)

Fractions do not contain 
   Fractions contain  Nodulopeptin 901 

NOD and nodulopeptin 901

Dead D. magna  (%) and lethailty of nodulopeptin 901

Undiluted

Diluted

(x2) (x4)(x4)

Undiluted

Dead D. pulex  (%) and lethailty of NOD 

Undiluted

Fractions contain NOD 

Diluted

(x2) (x4)

Diluted

Table 2.8. Mortality (%) of D. pulex when treated with undiluted and diluted fractions of  
N. spumigena KAC 66. The values in brackets represent amount of NOD and nodulopeptin 

901, calculated on the basis of amount of peptides collected from reversed phase flash 

chromatography.  
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Due to high amount of NOD and high mortality rate the undiluted fraction 

was further diluted. At x2 diluted fraction dilution 40-100% daphnids 

were killed in F3-F7 fractions containing 0.4-12.0 µg/mL NOD. At high 

dilution a smaller number of daphnids were killed compared with 

undiluted and x2 fraction dilution, which ranged from 8-45% with 0.21-

6.0 µg/mL NOD (Table 2.8).  

 

The fraction number 9 had 2.2 µg/mL nodulopeptin 901, which killed 

100% daphnids. The daphnid’s mortality was gradually decreased (0-8) 

as dilution factor was increased (0.6-0.8 µg/mL).  

 

2.3.5.b. D. magna assay 

i. Lethality of standard NOD 

A series of dilutions were performed to determine the lethal activity of 

NOD against D. magna with 5.0 µg/mL (Fig. 2.17; Appendix 16).  
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Figure 2.17. LC50 value (5.0 µg/mL) determination for standard NOD 

against D. magna. NOD was serially diluted in ASTM medium. SD was 

less than 5% mean of n=3 (n=3, bars=1 SD).  
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ii. Lethality of standard nodulopeptin 901 

Pure nodulopeptin 901 showed lethal activity against D. magna with 116 

µg/mL (Fig. 2.18; Appendix 17).  
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Figure 2.18. LC50 value (116 µg/mL) determination for standard 

nodulopeptin 901 against D. magna. NOD was serially diluted in ASTM 

medium (n=3, bars=1 SD).  

 

In general it is observed that NOD toxic to D. magna compared with 

nodulopeptin 901.   

 

Only in undiluted fraction numbers F3 and F16 100% mortality of D. 

magna were observed (Appendix 18). Due to high mortality rate the 

fractions were diluted further. The fraction obtained at 100% MeOH 

showed lowest mortality (18%). At x2 diluted fraction due to presence of 
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other toxic compounds rather than NOD and nodulopeptin 901 F16 

represented 100% mortality of D. magna (Appendix 19). In comparison 

with UPLC-PDA-MS data, the F3 showed highest amount of NOD. The 

toxicity of NOD (23.9 µg/mL NOD; Table 2.9) was also confirmed by the 

80% mortality of D. magna in the same fraction.  At x4 diluted fraction 

no mortality was observed in undiluted F2, F11 and F17, however, in F16 

total 91% daphnids were dead. Fractions F3 to F9 confirmed the lethality 

of NOD and nodulopeptin 901, ranged from 9-30% (Table 2.9; (Appendix 

20).  

 

UPLC-PDA-MS analysis showed that nodulopeptin 901 were eluted in 

fraction numbers F7-F9 and in same fractions 9-70% mortality was 

recorded. In undiluted fractions the highest mortality of daphnids (70%) 

was found in F8 with 3.2 µg/mL nodulopeptin 901, which was gradually 

decreased with an increase in dilutions (Table 2.9).   
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F1 33 20 10 .- .- .- .- .- .-

F2 40 20 0 .- .- .-

F3 100 82 10

(23.9  µg/ml) (11.9  µg/ml) (6  µg/ml .- .- .-

F4 50 40 20

(10.4  µg/ml) (5.2  µg/ml) (2.6  µg/ml) .- .- .-

F5 60 20 10

(7.2  µg/ml) (3.6  µg/ml) (1.8  µg/ml) .- .- .-

F6 60 45 30

(5.7  µg/ml) (2.9  µg/ml) (1.4  µg/ml) .- .- .-

F7 36 27 18 36 27 18

(0.8  µg/ml) (0.4  µg/ml) (0.2  µg/ml) (2.7  µg/ml) (1.4  µg/ml) (0.7  µg/ml)

F8 70 30 22 70 30 22

.- .- .- (3.2  µg/ml) (1.6  µg/ml) (0.8  µg/ml)

F9 30 22 9 30 22 9
.- .- .- (2.2  µg/ml) (1.1  µg/ml) (0.6  µg/ml)

F10 30 20 20 .- .- .- .- .- .-

F11 90 40 0 .- .- .- .- .- .-

F12 60 20 20 .- .- .- .- .- .-

F13 90 50 20 .- .- .- .- .- .-

F14 90 56 10 .- .- .- .- .- .-

F15 40 27 20 .- .- .- .- .- .-

F16 100 100 91 .- .- .- .- .- .-

F17 18 10 0 .- .- .- .- .- .-

,-ve Control 10 10 10

,+ ve Control (NOD 100 µg/ml) 100 100 100

Fractions 

Dead D. magna  (%) and lethailty of NOD Dead D. magna  (%)

Fractions contain NOD    Fractions contain  Nodulopeptin 901 

Dead D. magna  (%) and lethailty of nodulopeptin 901

Undiluted

Diluted

Undiluted

Diluted

(x2) (x4) (x2) (x4)

NOD and nodulopeptin 901

Undiluted

Diluted

(x2) (x4)

Fractions do not contain 

Table 2.9. Mortality (%) of D. magna when treated with undiluted and diluted fractions of               
N. spumigena KAC 66. The values in brackets represent amount of NOD and nodulopeptin 901, 

calculated on the basis of amount of peptides collected from reversed phase flash chromatography.  
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A comparison of lethality of standard NOD against D. pulex and D. magna 

was also performed (Table 2.10). It shows that from 5-100 µg/mL of 

NOD concentration has same lethal effects on both species of daphnids 

(100-40%). At 1.0 µg/mL of NOD was 9% and 30% lethal to D. pulex 

and D. magna, respectively. At 0.5 and 0.1 µg/mL NOD concentration the 

D. magna showed sensitivity to NOD compared to D. pulex, 27 and 20% 

mortality was observed, respectively. It shows that the lowest 

concentrations are toxic to D. magna and D. pulex survived on those 

NOD concentrations. 

 

 

 

Table  2.10. Concentrations and lethality of standard toxin, NOD for  

D. pulex and D. magna (the daphnids exposed for 24 h with NOD) 
 
 

NOD D. pulex D. magna

concentrations 

(µg/ml) Mean total Mean dead Dead Mean total Mean dead Dead

 (x̅)  (x̅) (%)  (x̅)  (x̅) (%)

100 10 10 100 12 12 100

50 10 10 100 12 12 100

10 11 6 55 10 5 50

5 10 4 40 10 4 40

1 11 1 9 10 3 30

0.5 11 .- 0 11 3 27

0.1 10 .- 0 10 2 20

,-ve Control 15 .- 0 10 1 10

 

 

Typically undiluted and x2 diluted fraction dilution all fractions showed 

higher lethality to D. pulex compared to D. magna. In undiluted fractions 

only D. magna were found to be more sensitive to F1 (33%) and F17 

(18%) than D. pulex. Generally, more D. pulex were killed at x2 diluted 

fraction dilution and survival rate increased at x4 diluted fraction dilution 

as might be expected. It is concluded that D. magna were more sensitive 

to all fractions compared to D. pulex.  
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2.3.6. Protein phosphatase assay (PP1) 

 

2.3.6.a. PP1 inhibition by standard peptides 

 

 A number of purified peptides NOD, ANA, ANB, linear NOD and recently 

characterised nodulopeptin 901 were tested for their inhibitory activity 

against protein phosphatase 1. The colouration in microtiter plates 

showed the inhibitory activities of peptides against PP1 after 14 h 

incubation at 37°C. The plates were read at 405 nm (Fig. 2.19A-C).  

 

The results indicated that NOD inhibited the PP1 with IC50 0.038 µg/mL, 

which was the highest inhibitory activity among all other tested peptides 

(Fig. 2.20A; Appendix 21). Increasing NOD concentrations resulted in   

increasing % inhibition. 

 

Linear NOD inhibited PP1 with IC50 20 µg/mL. Only at highest 

concentration (100 µg/mL) very small inhibitory activity was noted 

(0.225%, Fig. 2.20B; Appendix 22).  ANA and ANB inhibited PP1 with IC50 

70 and 100 µg/mL, respectively (Figs. 2.20C and D; Appendix 23). 

Nodulopeptin 901 inhibited PP1 with IC50 20 µg/mL (Fig. 2.20E; Appendix 

24).  
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Figure 2.19. Microtiter plates showing the colouration of 

inhibitory activities of peptides against PP1 after 14 h 

incubation at 37°C. The plates were read at 405 nm  

(A:- NOD, B:- ANB, C:- ANA, D:- linear NOD and         

E:- nodulopeptin 901) 

 

A 

B 

C 

D 

E 
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Figure 2.20. PP1 inhibitory activity and IC50 values of standard peptides 

after 14 h incubated at 37 °C. The plates were read at 405 nm. IC50 values: 

A:- NOD 0.038 µg/mL, B:- LNOD 20 µg/mL, C:- ANA 70 µg/mL, D:- ANB 

100 µg/mL and E:- nodulopeptin 901, 25 µg/mL SD was less than 5% mean 

of n=3 (n=3, bars= 1 SD). 
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2.3.6.b. PP1 inhibition by undiluted 17 fractions  

 

The undiluted fractions collected from RPFC indicated PPI inhibition 

ranged from 63.2%-90% (Fig. 2.11; Appendix 25). NOD 144.3-208.7 

µg/mL (73.4%-86.8%; F3-F7) and nodulopeptin 901 44.2-64.5 µg/mL 

(77.6-82.6%; F8 and F9) inhibited PP1. 

 

All undiluted fractions inhibited protein phosphatase, relatively NOD and 

nodulopeptin 901 were only eluted in F3-F9 fractions during RPFC (Fig. 

2.21). This maybe due to the presence of other eluted toxic compounds 

present in fractions.  

 

Due to high % inhibition the undiluted fraction was further diluted up to 

x10, x100 and than x1000. 

 

 

 

Figure 2.21. Microtiter plate showing the colouration of inhibitory 

activities of diluted fractions against PP1 after 14 h incubation at 

37°C. The plates were read at 405 nm  
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F1 77.6 85.2 81.9 1.4 .- .- .- .- .- .- .- .-

F2 63.2 88.5 83.6 38.9 .- .- .- .- .- .- .- .-

F3 85.1 90.7 90.2 76.4

(477.6 µg/ml) (47.8 µg/ml) (4.8 µg/ml) (0.5 µg/ml) .- .- .- .-

F4 86.8 90.5 87.9 65.5

(208.7 µg/ml) (20.87 µg/ml) (2.09 ug/ml) (0.21 µg/ml) .- .- .- .-

F5 73.4 90.4 89.9 75.9

(144.3 µg/ml) (14.43 µg/ml) (1.44 µg/ml) (0.14 µg/ml) .- .- .- .-

F6 83.9 90.4 90.5 76.8

(114.7 µg/ml) (11.47 µg/ml) (1.15 µg/ml) (0.11 µg/ml) .- .- .- .-

F7 81.5 90.0 90.0 60.7 81.5 90.0 90.0 60.7

(16.4 µg/ml) (1.64 µg/ml) (0.16 µg/ml) (0.02 µg/ml) (54.4 µg/ml) (5.44 µg/ml) (0.54 µg/ml) (0.05 µg/ml)

F8 82.6 90.6 89.1 61.1

.- .- .- .- (64.5 µg/ml) (6.45 µg/ml) (0.65 µg/ml) (0.06 µg/ml)

F9 77.6 87.5 89.0 53.7

.- .- .- .- (44.2 µg/ml) (4.42 µg/ml) (0.44 µg/ml) (0.04 µg/ml)

F10 78.7 88.0 84.3 47.4 .- .- .- .- .- .- .- .-

F11 75.8 86.2 85.5 53.7 .- .- .- .- .- .- .- .-

F12 79.2 89.4 86.1 50.2 .- .- .- .- .- .- .- .-

F13 86.1 89.8 83.6 53.7 .- .- .- .- .- .- .- .-

F14 88.5 88.8 80.0 52.6 .- .- .- .- .- .- .- .-

F15 89.9 85.2 51.8 54.5 .- .- .- .- .- .- .- .-

F16 86.2 45.8 42.0 52.5 .- .- .- .- .- .- .- .-

F17 83.3 23.9 38.2 58.0 .- .- .- .- .- .- .- .-

   Fractions contain  Nodulopeptin 901 
NOD and nodulopeptin 901

Diluted

(x1000)

Undiluted

(x100) (x10) (x100) (x1000)

Diluted

Undiluted

Diluted

Undiluted

(x10) (x100) (x10) (x1000)
Fractions

Fractions do not contain 
Fractions contain NOD 

Table 2.11. Comparison of PP1 inhibitory activity of undiluted and diluted fractions of                 

N. spumigena KAC 66. The values in brackets represent IC50 of NOD and nodulopeptin 901, 
calculated on the amount of peptides collected from reversed phase flash chromatography. 
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2.3.6.c. PP1 inhibition by diluted 17 fractions  

 

In x10 diluted fractions the inhibition ranged from 24.0%-90.7% (Table 

2.11; Appendix 26). PP1 was greatly inhibited by 1.64-47.8 µg/mL NOD 

(90.0%-90.7%) present in F3-F6 and by 6.45 µg/mL nodulopeptin 901 

in F8 (90.6%; Table 2.11). Fraction 7 also inhibited PP1 (90%), which is 

supposed to be inhibited by nodulopeptin 901 as it was found in high 

amounts (5.44 µg/mL) compared to NOD (1.64 µg/mL) in F7 during 

UPLC-PDA-MS analysis.  

 

At x100 dilution the % inhibition ranged from 38.2-90.5%. NOD 0.16-

4.8 µg/mL greatly inhibited PP1 (88.9-90.5%) present in fractions F3-

F7. In fractions F7-F9 Nodulopeptin 901 4.42-6.45 µg/mL also inhibited 

PP1 (89-90%; Appendix 27). 

                                                                   

At x1000 dilution all fractions showed PP1 inhibition. NOD 0.02-0.5 

µg/mL (F3-F7) inhibited PP1 ranged from 65.5%-76.4%. Nodulopeptin 

901 0.04-0.06 µg/mL (F8 and F9) inhibited PP1 ranged from 53.7-

61.1%. The 60.7% (0.02 µg/mL) inhibition for NOD in F7 was near to 

standard NOD % inhibition (0.038 µg/mL; Table 2.11; Appendices 28 

and 29).  

 

2.3.7. A comparison among benchtop bioassays 

 

UPLC-PDA-MS analysis indicated presence of NOD in F3-F7 and 

nodulopeptin 901 in F7-F9.  In PP1 and daphnid assays all dilutions of 

fractions gave positive results. It shows that N. spumigena KAC 66 

produces other toxic compounds which affected/inhibited PP1 and killed 

D. pulex and D. magna (Table  2.12).  
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Table 2.12. PP1 inhibitory activity and lethal effects on daphnids by aqueous 
methanolic fractions collected from N. spumigena KAC 66.   

 

Fractions of

N. spumigena  KAC 66

collected from

flash chormatography NOD Nodulopeptin 901 Daphnia pulex Daphnia magna PP1 inhibition

assay assay assay

F1 .- .- .+ .+ .+

F2 .- .- .+ .+ .+

F3 .+ .- .+ .+ .+

F4 .+ .- .+ .+ .+

F5 .+ .- .+ .+ .+

F6 .+ .- .+ .+ .+

F7 .+ .+ .+ .+ .+

F8 .- .+ .+ .+ .+

F9 .- .+ .+ .+ .+

F10 .- .- .+ .+ .+

F11 .- .- .+ .+ .+

F12 .- .- .+ .+ .+

F13 .- .- .+ .+ .+

F14 .- .- .+ .+ .+

F15 .- .- .+ .+ .+

F16 .- .- .+ .+ .+

F17 .- .- .+ .+ .+

UPLC-PDA-MS analysis Benchtop bioassays

 

 

 2.4. DISCUSSION 

 

Several studies have demonstrated that cyanobacteria are rich in 

natural products, which can be used in pharmaceutical and agricultural 

industries (Burja et al., 2001). This study provided an additional 

investigation towards the lethal effects of aqueous methanolic 

fractionation of hepatotoxic N. spumigena against protein phosphatase 1 

and a comparison of toxicological effects of fractions on the two species 

of daphnids, D. pulex and D. magna.  
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2.4.1. Fractionation of N. spumigena KAC 66 

 

At 20%, 30%, 40% and 50% methanolic fractions NOD and 

nodulopeptin 901 were eluted from the extract. It shows the polar and 

semi-polar nature of hepatotoxins. It was also noted that pure methanol 

did not extract NOD and nodulopeptin 901 quantitatively from extract of 

N. spumigena. Fastner et al. (1998) also reported that pure methanol 

does not extract microcystins from lyophilised cyanobacterial samples.  

 

Several species of Nodularia spp. are known to produce toxins. The 

present study indicated that the methanolic fractionation contained NOD 

and nodulopeptin 901. These fractions were found to be very toxic to 

daphnids and strongly inhibited PP1. Another Nodularia, N. harveyana 

has showed activity against a number of organisms. The acetone 

extracts of N. harveyana represented allelopathic and toxicological 

effects on several organisms such as Chlorophyceae, cyanobacteria 

(Anabaena spp., Nostoc sp., Spirulina platensis and Nodularia 

harveyana itself), eubacteria, plant fungal pathogens, rotifers and 

crustaceans (Pushparaj et al., 1999).  

 

2.4.2. Daphnia bioassay 

 

The NOD is produced by N. spumigena and highly toxic to daphnids 

(Reinikainen et al., 2002) and copepods (DeMott et al., 1991). The 

copepods can resist up to 2 µg/mL of dissolved NOD (Reinikainen et al., 

2002). The present study showed that at 10 µg/mL of pure NOD more 

than half of the tested population of D. pulex and D. magna was killed. 

In concentrations above 10 µg/mL, 100% mortality occurred when both 
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species were exposed to pure NOD. Below 10 µg/mL D. magna showed 

sensitivity to NOD compared to D. pulex and no single individual of D. 

pulex was killed. It has been suggested that this maybe due to different 

species of daphnids having different levels of tolerance. DeMott et al., 

(1991) worked on the effects of hepatotoxins isolated from N. 

spumigena (NOD) and M. aeruginosa (MC-LR), on three species of 

Daphnia (D. pulex, D. hyaline and D. pulicaria) and a copepod 

(Diaptomus birgei). The copepods were exposed for 48 h to NOD the 

LC50 was approximately 4–10 µg/mL. The present study also confirms 

that the D. pulex exposed for 24 h with NOD the LC50 =8.4 µg/mL was 

recorded, while D. magna were more sensitive to NOD (LC50 =5.0 

µg/mL). 

 

DeMott et al., (1991) also noted the different LC50 values when different 

zooplanktons were exposed to MC-LR for 48 h. They further investigated 

that the copepod D. birgei was most sensitive to MC-LR (0.45-1.00 

µg/mL) compared to D. pulicaria (LC50 = 21.4 µg/mL), D. hyalina (LC50= 

11.6 µg/mL) and D. pulex (LC50= 9.6 µg/mL) and each zooplankton 

species responded the same when exposed to hepatotoxic MC-LR and 

NOD, as both toxins have similar hepatotoxicity and chemical 

structures.  

 

In the present study both tested species behaved differently when 

exposed to pure standard NOD, fractions containing NOD and 

nodulopeptin 901. In general, D. pulex showed tolerance to pure NOD 

(44.5%) and were killed when concentrations of pure NOD were high, 

while D. magna showed sensitivity to all NOD concentrations (55.5%). 
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Approximately, it seems that D. pulex is more resistant than D. magna 

when exposed to fractions (Table 1.13). 

 

The previous studies indicated that several cladoceran species behave 

differently to cyanobacterial exposure. A planktonic water flea, found 

near shoreline of ponds and lakes, Bosmina longirostris was more 

tolerant to cyanobacterial toxins than other water fleas, D. parvula and 

Moina micrura (Fulton, 1988). Species of same genus of Daphnia also 

showed different feeding behaviour when exposed to Microcystis sp. 

(Hietala et al., 1995).  

 

In comparison to standard NOD the newly characterised nodulopeptin 

901 (Schumacher et al., 2012) was also found to be less toxic against 

D. magna (116 µg/mL). Due to newly discovered nodulopeptin 901 no 

data is available to compare the lethality of peptide to D. magna. 

 

The positive results of all fractions against daphnids indicated that N. 

spumigena is rich in a new source of toxic compounds. There is a 

further need to discover compounds, which can be useful in agricultural 

and pharmaceutical industries. 

 

2.4.3. Protein phosphatase assay (PP1) 

 

Microcystins and nodularin are known hepatotoxins and inhibit protein 

phosphatase activity (PP1 and PP2A; Gulledge, et al., 2002; Yoshizawa 

et al., 1990). The positive results of Daphnia assay can also be 

confirmed by PP1 and UPLC-PDA-MS. The initial screening of fraction or 

extracts with daphnids and PPI assays are helpful to determine the 

presence of hepatotoxins. Due to hepatotoxic effects of microcystin-LR 
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(MacKintosh, 1990) and NOD (Yoshizawa et al., 1990) much work has 

been done on PP1 inhibition on both toxins. In the present study IC50 

0.038 µg/mL for pure standard NOD was recorded.   

 

A NOD variant, [L-Har2]NOD and NOD isolated from freshwater 

cyanobacterium, Nodularia PCC 7804,  inhibited PP1 with an IC50 of 

0.005 µg/mL and 0.006 µg/mL, respectively (Beattie et al., 2000). 

These values are lower than % inhibition (0.038 µg/mL) of enzyme by 

standard NOD used in this study. The IC50 of enzyme inhibition for MC-

LR was 0.0035 µg/mL (Beattie et al., 2000).  

 

In the present study nodulopeptin 901 inhibited PP1 (IC50 25 µg/mL) 

while Schumacher et al., (2012) indicated that recently characterised 

three nodulopeptins 901, 917 and 899, isolated from N. spumigena KAC 

66, do not inhibit PP1. Nodulopeptin 901 has similarity in structure with 

anabaenopeptolin A and B (Gkelis et al., 2006) and showed high 

inhibitory activity than anabaenopeptolin A and B.   

 

The inhibitory activities of N. spumigena KAC 66 and Nodularia PCC 

7804 indicated that N. spumigena KAC 66 is rich in the production of 

hepatotoxins. However, NOD is the most abundant hepatotoxin 

compared to other analogues of NOD.  

 

Almost all stock solutions, undiluted and diluted fractions of N. 

spumigena KAC 66, collected from RPFC inhibited PP1. It suggests that 

the extracts were green colour and that the green colour interfered with 

OD values of fractions it or maybe that some other minor toxic 

compounds were also present (produced by N. spumigena KAC 66) in 

fractions, which have yet to be discovered. Beattie et al., (2000) 
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reported that Nodularia strains, PCC 7804, although containing NOD, 

also produces several unreported nodularia variants.  

  

2.5. CONCLUSION 

 

The  present  study  proved  that   nitrogen   fixing   cyanobacterium,  

N. spumigena KAC 66 expressed toxic and inhibitory activities against 

daphnids and PP1, respectively. The results from fractions also indicated 

that N. spumigena possessed compounds, which are lethal to daphnids. 

There is a need to investigate the presence of other toxic compounds, 

produced by N. spumigena KAC 66. 
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THE GROWTH AND PEPTIDE PRODUCTION  
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3.1. INTRODUCTION 

 
 

The growth and toxin production of cyanobacteria is affected by many 

environmental factors i.e. temperature, light, salinity, phosphate, 

availability of nitrates and carbon dioxide (Sivonen, 1996). These abiotic 

factors are also helpful to control the dominance of specific strains in the 

natural cyanobacterial blooms as well as in laboratory based 

experiments. 

 

The concentrations of toxin, produced by N. spumigena, maybe 

increased or decreased under specific environmental parameters. Some 

work has been done on changes in growth and toxin levels in response 

to factors i.e. growth duration (Gupta et al., 2002), light (Hobson and 

Fallowfield, 2003; Stal et al., 1999 and Lehtimäki et al., 1997), 

temperature (Hobson and Fallowfield, 2003; Lehtimäki et al., 1997), 

salinity (Mazur-Marzec et al., 2005; Hobson and Fallowfield, 2003; 

Musial and Plinski, 2003; Moisander et al., 2002; Hobson et al., 1999 

and Blackburn et al., 1996) and nitrate and phosphorus ratios (Lilover 

and Stips, 2008; Mazur-Marzec et al., 2005; Stolte et al., 2002; Repka 

et al., 2001; Stal et al., 1999 and Lehtimäki et al., 1994).  

 

There is a knowledge gap regarding the effect of such environmental 

factors on the production of NOD and nodulopeptin 901. No research has 

been done on the effects of environmental factors on chlorophyll-a 

concentrations, cell biomass and nodulopeptin 901 concentrations within 

the cells and in growth medium produced by N. spumigena KAC 66. To 

fill this knowledge gap the ecologically important and toxin producing 

cyanobacterium, N. spumigena KAC 66 was selected for the present 



 

 

107 
 

study, obtained from Kalmar Collection Centre, Dept. of Marine 

Sciences, Kalmar University, Sweden. The strain was isolated by 

Gisselson L Å in 1996 from Askö, Baltic Sea (7 ‰). 

 

Due to the ecological importance of this cyanobacterium and the hazards 

to human and animal health it is important to extract all intracellular and 

extracellular toxins from N. spumigena KAC 66 to characterise and 

quantify the production of NOD and nodulopeptin 901. These toxins can 

be analysed and quantified using high performance liquid 

chromatography photo diode array mass spectrometry (HPLC-PDA-MS) 

technique in laboratory cultures. LC-MS is a sensitive technique to detect 

the presence of cyanobacterial toxins especially microcystins (MC; 

Rohrlack et al., 2003; Lawton et al., 1994), nodulopeptin 901, 917 and 

899 (Schumacher et al., 2012), nodularins (NOD; Anjos et al., 2006; 

Diehnelt et al., 2005; Zhang et al., 2004) and other secondary 

metabolites/allelochemicals (Puddick and Prinsep, 2008).  

 

Chlorophyll-a concentrations and cell biomass are also important factors 

and are frequently used as indicators to determine the biomass of N. 

spumigena blooms in the Baltic Sea as well as in the laboratory cultures.  

 

The aims of this study were to highlight important and new knowledge 

about effects of environmental factors (temperature, salinity, nitrate and 

phosphate) on the growth, chlorophyll-a, cell biomass and production of 

nodularin and the recently characterised nodulopeptin 901 produced by 

N. spumigena KAC 66. 
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3.2. MATERIALS AND METHODS 

 

In this study the influence of abiotic factors (temperature, salinity, nitrate 

and phosphate) on the production of extra and intracellular nodularin and 

nodulopeptin 901 in the continuous batch cultures of toxic 

cyanobacterium, Nodularia spumigena KAC 66 was investigated. The 

biomass was determined using freeze dried cells and Chl-a 

concentrations. All experiments were carried out in triplicate.  

 

3.2.1. Preparation of growth medium BG-11  

 

In the laboratory, culturing of cyanobacterial species requires conditions 

similar to those in the natural environments in which they are normally 

found. The cultivation and growth of cyanobacteria can be difficult, as 

different strains require specific environmental conditions. The 

requirements of cyanobacteria for vitamins, organic and inorganic 

nutrients are species dependant (Andersen and Kawachi, 2005).  

 

Additionally culturing and growth of different species requires a variety of 

other conditions to be optimised such as pH, salinity, temperature, 

phosphate, nitrate, CO2, light and aeration. 

 

For culturing and experiments of N. spumigena KAC 66 the growth Allen’s 

blue green algal medium, BG-11 (20 ‰; Allen and Stanier, 1968 

modified by Stanier et al., 1971) was prepared by following 

SOP/PtR/003a (Table 3.1). The small volume and large volumes of media 

were autoclaved for 15 minutes and 1 h, respectively, at 15 psi of 

pressure and 120°C (Kawachi and Noёl, 2005) in an autoclave (Astell 

Scientific, UK). The stock solutions were prepared (in Milli-Q water) and  
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Table 3.1. The chemical composition of growth medium BG-11. 

 
 

   

NaNO3 0.75

K2HPO4 0.04

MgSO4.7H2O 0.075

CaCl2.2H2O 0.036

Na2CO3 0.02

Citric acid 0.006

FeSO4.7H2O 0.006

EDTA (disodium ) 0.001

Trace element solution  1 ml/L

Trace element solution

H3BO3 2.68

MnCl2.4H2O 1.81

NaMoO4 2H2O 0.39

ZnSO4.7H2O 0.222

CuSO4.5H2O 0.079

Co(NO3)2.6H2O 0.049

Nutrients Concentraion (g/L)

  

         The pH was 7.1 after sterilisation. 
 

           
 

stored in plastic bottles at room temperature. Only trace metals were 

kept in fridge (4°C). 

 

3.2.2. Sub culturing and maintenance of N. spumigena KAC 66  
          cultures 

 
 

The unialgal and purified culture of N. spumigena KAC 66 was used in 

the present study. N. spumigena KAC 66 underwent routine culture 

maintenance on a monthly basis for sub culturing and ongoing research  
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experiments. For routine maintenance 10% (10 mL, Sivonen et al., 

1989a) of old stock culture was transferred into 6 x 250 mL Erlenmeyer 

flasks (250 mL) containing 100 mL of BG-11 (20 ‰) to give a final 

culture volume of ~110 mL/flask. To avoid any contamination, transfer 

of cultures was performed under axenic conditions in a laminar flow 

hood (Microflow, Biological Safety Cabinet, UK). The flasks were kept on 

a shelf and grown in a temperature controlled room (22°C). All cultures 

received continuous cool white illumination (0.80 μmol/s/m2; LI-250A, 

light meter, USA) and allowed to grow photoautotrophically. The flasks 

were shaken twice a week manually and grown for one month to obtain 

sufficient cultures for experiments.   

 

3.2.3. Investigation and experimental set up for growth and   

          peptide production 
 

 

N. spumigena KAC 66 was grown in 10 L flat bottom round glass flasks 

and 8 L Perspex columns to evaluate the effect of time on the growth 

conditions, to find suitable culture vessels and to assess the effect of 

these factors on the production of peptide levels. Harvested cultures 

were used for fractionationand to obtain pure LNOD, NOD and 

nodulopeptin 901 (see Chapter 2).  

 

3.2.3.a. Growth in 10 L glass flasks 

 

Three 10 L flat bottom round flasks were filled with 8 L of BG-11 (20 

‰). The glass flasks were supplied by 2 silicon tube outlets. One tube 

was stopped by gate clamp and syringe for future sampling. The second 

tube was connected to a heap filter to produce sterile aeration (Fig. 3.1; 

Jun aquarium air-pump,  
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              Figure 3.1. Culturing of N. spumigena KAC 66 in  

              triplicate 10 L glass flasks for 7 weeks at 22°C. 

 

ACO-5503, Japan). The flasks were autoclaved for 1 h at 15 lb of 

pressure and 120°C. All autoclaved flasks were left at room temperature 

for cooling. Cells from one month old stock cultures of N. spumigena (3 

x 1 L) were mixed together in a 5 litre autoclaved Erlenmeyer flask. An 

autoclaved measuring cylinder was used to transfer the culture into 

three separate flasks (700 mL/flask). All flasks were kept at 22°C under 

continuous illumination from two cool white fluorescent tubes (36 W) 

delivering 17.35-17.47 μmol/s/m2 (Table 3.2; Fig. 3.1). Samples were 

taken once per week for 7 weeks for cell biomass, chlorophyll-a, intra 

and extracellular peptide levels. 
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Table. 3.2. Light conditions for the growth  

of N. spumigena KAC 66 in glass flasks                         
grown for 7 weeks at 22°C. 

Flask nos. light intensity

(μmol/s/m2)

1 17.35

2 17.47

3 17.36

 

 
3.2.3.b. Growth in 8 L Perspex columns 

 

Five x 7 L BG-11 medium (20 ‰) was autoclaved for 1 h at 15 psi of 

pressure and 120°C and allowed to cool at room temperature. Next day 

5 Perspex columns (140 cm x 10 cm) were washed with 2 L distilled 

water and purged with air to clean the air stones. Two liter of 

autoclaved BG-11 medium (0 ‰) was then used to wash columns and 

columns were left for 4 h to clean air stones. After 4 h columns were 

emptied and each column was filled with autoclaved BG-11 medium (7 

L/column, 20 ‰).   
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Figure 3.2. Culturing of N. spumigena KAC 66  

in 8 L Perspex columns for 5 weeks at 22°C. 

 
 

In a 5 L autoclaved flask one month old (5 x 1000 mL) stock cultures 

were mixed and equally divided into five volumes (900 mL/column) 

using an autoclaved measuring cylinder. The culture was inoculated into 

each column. All columns were aerated continuously from the bottom of 

column by air-stones and the top sealed with a sterile foam bung.  

 

All five columns were kept in a temperature controlled room (22°C) 

under continuous illumination from two cool white fluorescent tubes (36 

W; Fig. 3.2). Sampling was carried out once per week for 5 weeks to 

determine cell biomass, chlorophyll-a, intra and extracellular peptide 

levels. The intensity of light was also measured at different positions on 

columns (Table 3.3). Column number 1 and 2 were one foot away from  
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Table. 3.3. Light conditions for the growth of N. spumigena KAC 66 in    

 Perspex columns at different points down the column. 
        

    
          Light intensity (μmol/s/m2 ) 

Distance from

the top of the

column (cm)

0 1.6 1.4 2.5 16.9 12.9

30 1.7 1.5 2.4 12.5 12.0

60 1.6 2.0 5.6 33.9 14.1

90 1.7 3.3 7.1 42.6 17.1

120 1.6 2.1 6.1 40.4 18.0

1 2 3 4 5

Away from light source Near to light source

 
 

 
 

the light source while column 3, 4 and 5 were near (≈ 8 inches) to the 

fluorescent tubes. 

 

3.2.4. Investigation and experimental setup for effect of  
           environmental parameters on growth and peptide  
           production 

 
3.2.4.a. Temperature 

 

In this experiment 22, 25 and 30°C temperatures were selected, which 

covered the range of the thermal optimum conditions for N. spumigena in 

the Baltic Sea (Musial and Plinski, 2003; Lehtimäki et al., 1997; Sivonen 

et al., 1989c) at which the blooms frequently occur. 

 

To note the effect of temperature on growth and toxin production three 

temperature controlled water baths were used. Water baths 1, 2 and 3 

were adjusted at 22, 25 and 30°C, respectively and then placed under 

continuous illumination from cool white fluorescent tubes (36 W) 

delivering 13.36-13.49 μmol/s/m2 (Table 3.4). 
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           Table 3.4. Light conditions for N. spumigena KAC 66   

           grown for 7 weeks at different temperatures.  

                     

Water bath no. Temperature Light intensity

(°C) (μ mol/s/m2)

1 22 12.36

2 25 13.32

3 30 13.49

 

                  
The water baths were setup for one week and monitored to confirm a 

constant temperature. During the experiment the water level was kept 

constant by adding Milli-Q water.  

 

In this experiment 9 x 500 mL Erlenmeyer flasks were used, three for 

each temperature (22, 25 and 30°C). Each flask contained 350 mL of BG-

11 (20 ‰) and was supplied by 2 silicon tube outlets. All flasks were 

autoclaved (15 minutes at 15 lb of pressure at 120°C) and cooled at 

room temperature. After cooling 35 mL (10%) of one month old stock 

culture of N. spumigena KAC 66 was inoculated into each flask. 

 

Three Erlenmeyer flasks were kept in a temperature-controlled water 

bath number 1 (22°C), three flasks in water bath number 2 (25°C) and 

three in water bath number 3 (30°C; Fig 3.3) under continuous  
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   Figure 3.3. Experimental set up for N. spumigena KAC 66 

          for 7 weeks at different temperatures. 

 

 
 
illumination from two cool white fluorescent tubes (36 W) delivering 

13.36 to 13.49 µmol/s/m2 (Table 3.4). All flasks were supplied by 

continuous and slow aeration by silicon tubing. Cultures were sampled 

every week for 7 weeks for cell biomass, chlorophyll-a and intra and 

extracellular peptide levels. 

 

3.2.4.b. Salinity 
 

 
 

In order to measure the effect of salinity on chlorophyll-a, biomass and 

peptide production, a range of salinities were selected based on optimal 

growth conditions of N. spumigena in laboratory and salinity conditions of 

the Baltic Sea (Gasiunaite et al., 2005; Mazur-Marzec et al., 2005; Musial 

and Plinkski, 2003; Wasmund, 1997). Gasiunaite et al., (2005) the Baltic 

Sea receives freshwater from many rivers results in a variation in salinity 

in different areas (0-25.5 psu; ≈0-25.5 ‰). Salinity range between 3.8-
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11.5 psu (≈3.8-11.5 ‰) is important for the distribution of N. 

spumigena blooms in the Baltic Sea (Wasmund, 1997). According to 

Mazur-Marzec et al., (2005) grew N. spumigena NSGG-1 strain at various 

salinities (0, 3, 7, 18 and 35 psu; ≈0, 3, 7, 18 and 35 ‰). They used 

lower salinities because the Baltic Sea is a semi-enclosed brackish water 

body and receives less water from Kattegat, North Sea (Kullenberg, 

1981).  

 

To carry out the experiment the Erlenmeyer flasks (15 x 500 mL) were 

prepared with 350 mL of BG-11 medium. The salinity in each flask was 

adjusted to the required concentrations (2, 7, 11, 20 and 25 ‰; Table 

3.5) using sodium chloride (Fisher Scientific, UK).  

 

 

            Table 3.5. Different saline BG-11 medium for growth of  
N. spumigena KAC 66 at 22°C. 

 

Salinity BG 11 medium Amount of inoculum

(‰) (ml) (ml)

2 350 35

7 350 35

11 350 35

20 350 35

25 350 35

 

 

All flasks were supplied by 2 silicon tube outlets (see section 3.2.4.a, 

where appropriate). Prior to the inoculation of the cultures all flasks were 

autoclaved for 15 minutes at 15 lb pressure at 120 °C and left to cool at 

room temperature. The following day one month old stock cultures (9 x 

100 mL) of inoculum were transferred into each flask (35 mL/flask). 
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This experiment was carried out in a temperature controlled room 

(22°C). All flasks were kept under constant illumination from two cool 

white fluorescent tubes (36 W) delivering 13.3-13.5 µmol/s/m2; Fig. 3.4). 

Samples were taken once per week for 6 weeks for cell biomass, 

chlorophyll-a, intra and extracellular peptide levels. 

 

 

              

            Figure 3.4. Experimental set up for N. spumigena KAC 66  

            for 6 weeks at different salinities at 22°C. 

 

3.2.4.c. Nitrate (NO-
3)         

 
 

Cyanobacteria are key organisms involved in the uptake and reduction of 

nitrate to ammonium by photosynthesis. Like higher plants and algae 

they use nitrates for their growth. The annual nitrogen fixation in the 

Baltic Sea occurs due to extensive blooms of heterocystic cyanobacteria 

N. spumigena along with Aphanizomenon, which is approximately equal 

to the total nitrogen input from atmospheric deposition, river run off and 

agricultural lands (Schneider et al., 2004), because of nitrogen fixation 

ability N. spumigena has a high ecological importance for the Baltic Sea. 
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Therefore, the current experiment was performed to note the effects of 

nitrate on the biomass and peptide production. For this purpose various 

concentrations of nitrate were used on the basis of NO-
3-NO-

2 (nitrate-

nitrite) and nitrate levels measured at different places in the Baltic Sea 

(Table 3.6).  

 

 

 
Table 3.6. Various levels of NO-

3 and NO-
3-NO-

2 at different places in the 
Baltic Sea. 

 
 

Nitrate levels Nitrate-Nitrite level

(µM/L) (µM/L)

North Sylt Wadden Sea 40-50 .-

North Sylt Wadden Sea (summer) <0.1 .-

Salzhaff 95 .-

Outer coastal waters of Mecklenburg-Vorpommern (Aug 2003) <0.10-0.08 .-

Outer coastal waters of Mecklenburg-Vorpommern (Sept 2003) 0.17-1.30 .-

Mecklenburg .- 0.07

Central Gotland Sea .- 0.49

Inner coastal waters of Mecklenburg-Vorpommern (July 2003) <0.01-1.20 .-

Inner coastal waters of Mecklenburg-Vorpommern (Sept 2003) 1.5 .-

German Bight (2005) 0.1 .-

Coastal waters of the German Bight (2005) .- 19.4±6.0

Offshore waters .- 8.7±5.7

Kiel Bight to the northern Gotland Basin (2006) 2.2-4 .-

Outer coastal waters of Mecklenburg-Vorpommern, 1.0 .-

Lower Warnow 260 .-

Barther Bodden 98 .-

MURSYS Report 2003

MURSYS Report 2005

MURSYS Report 2006

ReferencesLocations

 

 

Eighteen Erlenmeyer flasks (500 mL) were prepared with 350 mL of BG-

11 (20 ‰) medium and adjusted at different concentrations of sodium 

nitrate (NaNO3, Fisher Scientific, UK; Table 3.7). The flasks were supplied 

by 2 silicon tube outlets (see section 3.2.4.a, where appropriate) and 

autoclaved for 15 minutes at 15 lb of pressure at 120°C. 
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Table 3.7. Amount of NaNO3 used to obtain different  

concentrations of nitrate for growth of N. spumigena  
KAC 66 in 1 L BG-11 medium (20 ‰) grown at 22°C. 

Amount of NaNO3 Amount of NaNO3 NaNO3

(mg/L) (mM/L) (%)

0 0 0

3.5 56 9.85

6.5 105 18.3

7.5 121 21.12

8.5 137 23.94

9.5 153 26.76

 

 

 
Thirty five mL of one month old culture of N. spumigena KAC 66 was 

inoculated into an Erlenmeyer flask and then placed under constant 

illumination by fluorescent tubes delivering 13.4-13.7 µmol/s/m2. 

Cultures were sampled every 6 days to determine the cell biomass, Chl-a, 

intra and extracellular peptide levels. 

 

3.2.4.d. Phosphate 

 

Like other nutrients phosphorus also plays an important part in increasing 

cyanobacterial biomass in the Baltic Sea. Enhanced phosphorus input 

from increased river run off since the early 1970s has lead to the high 

phosphorus concentrations in the surface layers of the Baltic proper 

(Eilola et al., 2009) and resulted in an increase in intensity and duration 

of the N. spumigena blooms. In this experiment, a range of phosphate 

concentrations were tested to monitor the effects of phosphorus on the 

production of Chl-a, cell biomass and peptides produced by  
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N. spumigena. These concentrations were based on phosphate levels 

recorded from the different locations of the Baltic Sea (Table 3.8). 

 

To determine the effects of phosphorus on biomass and peptide 

production the experiment was performed in  the Erlenmeyer flasks (21 x 

500 mL) prepared containing 350 mL of BG-11 medium (20 ‰). The 

phosphate concentrations in each flask were adjusted to the required 

concentrations (0, 0.1, 10, 40, 70, 100 and 120 mg/L; Table 3.9) using 

potassium phosphate (Fisher Scientific, UK).  

 

Before the experiment was started, the cultures were grown in BG-11 (20  

‰) for one month. The Erlenmeyer flasks were supplied 2 silicon tube 

outlets, one for sampling and the other to provide constant aeration (see 

section 3.2.4.a, where appropriate). Prior to the inoculation of the 

cultures all flasks were autoclaved for 15 minutes at 15 lb of pressure at 

120°C and left to cool at room temperature. The following day one month 

old stock cultures (9 x 100mL) of inoculum were transferred into each 

flask (35 mL/flask). The experiment was conducted in a temperature 

controlled room at 22°C. All flasks were kept under constant illumination 

from two cool white fluorescent tubes (36 W) delivering 13.5-14.5 

µmol/s/m2). Samples for peptide analysis, Chl-a and cell biomass were 

taken on the day of inoculation and on a weekly basis for 5 weeks.  
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Table 3.8. Various levels of phosphate at different locations in the Baltic 
Sea. 

 

Phosphate levels References

(µM/L)

North Sylt Wadden Sea 1.2

North Sylt Wadden Sea (summer) 0.1-1

Outer coastal waters of Mecklenburg-Vorpommern (July 2005) 0.04-0.52

Central Gotland Sea (October-November) 0.20

Pomeranian Bight  (October-November) 0.84

Inner coastal waters of Mecklenburg-Vorpommern (September) 0.25-4.79

German Bight (2005) 0.02-0.15

Coastal waters of the German Bight (2005) 0.66±0.24

Offshore waters 0.66±0.24

Elbe estuary 1.09±0.25

Darsser Ort 0.16

Outer coastal waters of Mecklenburg-Vorpommern 0.02

Inner coastal waters of Mecklenburg-Vorpommern 0.2-0.3

Kiel Bight to the northern Gotland Basin (2006) 0.1-0.35

Coastal water of North Sea (January 2006) 1.19±0.14

German Bight (January 2006) 0.77±0.13

Central North Sea 0.64±0.13

Near shore waters of North Sea 0.97±0.20

German Bight 0.64±0.2

der Central North Sea 0.53±0.2

MURSYS Report 2006

Locations

MURSYS Report 2005

 
 

 

 

 

 
 

Table 3.9. Amount of K2HPO4 for getting different  
Concentrations of phosphate for the growth of  
N. spumigena KAC 66 at 22°C. 

 

Phosphate Amount of K2HPO4 K2HPO4

conditions            (mg/L) (%)

0 0 0

0.1 0.1 4.8

10 10 9.5

40 40 14

70 70 19

100 100 24

120 120 29
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3.2.5. Analytical methods and sampling procedures for cell  
          biomass and chlorophyll-a (Chl-a)  
 
 
 

The sampling procedure and sample analysis protocols for all 

experiments were the same. The sampling was done on the day of 

inoculation and on weekly basis (T0 and T1-T7). Before sampling all 

flasks were well shaken by hand and 25 mL of culture removed T0 (time 

zero) and weekly thereafter from each column/flask in separate plastic 

beakers (20 mL was used for cell biomass, chlorophyll-a estimation and 

extracellular peptide levels while 1.5 mL was used for determination of 

intracellular peptide levels). A detailed sampling procedure to determine 

the biomasses and the intra and extracellular peptide levels is shown in 

Fig. 3.5.  
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       Monoculture of Nodularia spumigena KAC 66 
 

   
 

                                    Sampling 
                                     (25 ml) 
 

        Sample                                                       Sample 
       (20 ml)                                              (1.5 ml)    

          
 
 

           Filtration (GF/C; weighed)                                    Centrifuge                                                
 

 
 
 

        Filtrate             Filter discs                                           Freeze dry 
                               with cells (weighed) 

                                                                           
 

      Freeze dry                                 
                                              Freeze dry                             Extract     
                                                                                    (150 µl, 80%MeOH) 
                     
                                                                               
        Extract                                                                   

 (1 ml, 80% MeOH)          Cell extract       Desiccator               Centrifuge 
                             (5 ml, 100% MeOH)                                
                                                                                     
                                                                

                                           
Centrifuge               Centrifuge         Re-weight                Supernate                                

 
 
 

Supernate                Supernate              Cell                Intracellular   
                                                         biomass           peptide levels 

 
 
 

  Extracellular      Spectrophotometer                                             
 peptide levels              analysis                                                                                            

                                                                                                                                                                 
                                   

                                     

                                       
                                                                                      LC-MS analysis                              

                                                                                          
                                                                                        

                                                    
                                                                              NOD    Nodulopeptin 901  

 Chl-a estimation 

 
 

 
Figure 3.5. A flow diagram for sampling procedure to observe the 

effects of environmental factors on the growth parameters and toxin 

production by N. spumigena KAC 66. 
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3.2.5.1. Cell biomass determination 

 

To determine the cell biomass 20 mL sample cultures of each treatment 

were used. To obtain the constant weight, GF/C glass microfiber filter 

discs (55mm Ø, Whatman, UK) were placed in pre-labelled individual 

plastic Petri plates and kept in a desiccator for one week. All filter discs 

re-weighed three times to obtain constant weight and then 20 mL culture 

was filtered through the pre-weighed filter discs. The filtrate was used for 

the determination of extracellular toxin levels.  

 

The filter papers were freeze dried over night in a freeze dryer (HSC 500, 

Modulyo, Edwards, UK) at -45 ºC and 10-1 m bar. The next day filters 

were transferred to a decicator overnight and reweighed three times to 

obtain constant weight. The initial weight was subtracted from the weight 

of with cells to obtain dry weight of cells (mg/20 mL), later the data was 

converted into µg/mL. For Chl-a estimation the weighed filter papers 

were transferred to -4 ºC until extraction. All filters were analysed within 

2 months. 

 

3.2.5.2. Chlorophyll-a estimation  

 

Like higher plants and algae, cyanobacteria contain chlorophyll-a, a 

major photosynthetic pigments which helps in photosynthesis by 

harvesting light.  

 

Chlorophyll-a estimation is a commonly used method to determine 

biomass (Lawton et al., 1999). The amount of chlorophyll-a present 

within the samples on filter papers was determined 

spectrophotometrically by extracting in 5 mL of 100% methanol 
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(Rathburn, Walkerburn, UK) in 25 mL universal bottles. These bottles 

were vortexed (Fisons, WhirliMixer, UK) and left in the dark for 1 hour to 

extract chlorophyll-a. Extracts were placed in centrifuge tubes (25 mL) 

and centrifuged in a refrigerated centrifuge (ALC4237, Italy) at 4°C for 

10 min at 4000 rpm. To estimate the amount of Chl-a, absorbance were 

noted on a spectrophotometer (Spectrophotometer, UK) at a wavelength 

(λ) of 665 nm.  Methanol was used as a blank. The amount of Chl-a was 

calculated by the following equation as mentioned by Murphy et al., 

(2005 and 2009).  

      

           Chlorophyll-a (µg/mL) = (13.0xAxv)/(dxV) 

 

Where:  

13.0= Constant for methanol 
A= absorbance at 665 nm 

v= solvent in mL (5 mL MeOH) 
V= initial filtered sample volume (20 mL) 
d= Path length of cuvette in cm (1 cm) 

 

 

3.2.5.3. Correlation between cell biomass and chlorophyll-a  

 

To determine the correlation between cell biomass and chlorophyll-a, 6 x 

3 GF/C filter papers were dried in a desiccator (see section 3.2.5.1, 

where appropriate). Prior to sample analysis a serial dilution (Table 3.10) 

of one month old culture of N. spumigena KAC 66 was prepared to 

calibrate the cell biomass and Chl-a. Culture in BG-11 (20 ‰) was 

diluted using BG-11 (20 ‰) to obtain the following dilutions 1, 5, 10, 25,  
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Table 3.10. A serial dilution of N. spumigena  

KAC 66 culture with BG-11 (20 ‰) to find a  
relation between cell biomass and Chl-a  
contents. 

                              

Amount of culture Amount of BG-11 

(ml) (ml)

100 0

50 50

25 75

10 90

5 95

1 99

 
 

50 and 100%. From each dilution 20 mL was removed for Chl-a 

calibration. All experiment was performed in triplicate. 

 

3.2.5.4. High Chl-a absorbance on spectrophotometer  

 

Samples containing the high concentrations of chlorophyll-a was 

confirmed by a serial dilution (100, 50 and 25%) as these were out with 

the linear range of the spectrophotometer. Two mL of 100% extract was 

added in 2 mL MeOH to get 50% extract. These dilutions were read on 

spectrophotometer at 665 nm. The same procedure was used for all 

concentrated chlorophyll-a samples, however the dilution factor was 

taken into account where calculating the Chl-a concentrations. 

 

3.2.6. Analytical methods and sampling procedures for extra and  

          intracellular peptide levels  
 
 

3.2.6.1. Extracellular peptide level analysis 

 

Twenty mL filtrate/spent medium (extracellular) of sample was used for 

analysis by LC-MS to detect the presence and concentrations of any 

toxins released into the surrounding growth medium. The spent medium 
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was freeze dried and re-suspended in 1 mL 80% MeOH:H2O (80:20, v/v) 

for one hour and all extracts were transferred into 1.5 mL 

microcentrifuge tube. To measure extracellular peptide levels all extracts 

were stored at -20ºC until LC-MS analyses. All extracts were analysed 

within 2 months. 

 

3.2.6.2. Intracellular peptide level analysis 

 

From 25 mL of the culture sample 1.5 mL was transferred into an 

microcentrifuge tube and centrifuged at 13,000 rpm (Eppendorf 

Centrifuge 5410, Germany) for 10 min. The supernate was discarded 

and the palette vortexed with 150 µl MeOH (80%) and extracted for 

one hour.  

 

To measure intracellular peptide levels all extracts were stored at -20ºC 

until LC-MS analyses. All extracts were analysed within 2 months. 

 

For HPLC-PDA-MS analysis all extracts were centrifuged at 13,000 rpm 

for 10 min. One hundred µl supernate was carefully transferred into an 

LC-MS vial.  

 

 

3.2.6.3. Analysis of nodularin and nodulopeptin 901 on HPLC-  

             PDA-MS  
 
 

The samples from growth experiment preformed in Perspex columns and 

10 L glass flasks and effects of environmental factors (temperature, 

salinity and nitrate) on the cell biomass, Chl-a, intracellular and 

extracellular peptide productions produced by N. spumigena KAC 66 were 

analysed on HPLC and UPLC-PDA-MS. 

 



 

 

129 
 

For identification and quantification of nodularin and nodulopeptin 901 

was performed using HPLC-PDA-MS. The system combined a Waters 

Alliance 2695 solvent delivery system,  photodiode array detector (PDA, 

model 2996) and mass detector (ZQ 2000 MS), all supplied by Waters 

(Elstree, UK). The separation of peptides was achieved on a Sunfire C18 

column (5 µm particle size; 2.1 mm i.d. 150 mm long) meaasured at 

40°C. The mobile solvent phase A was Mili-Q water with 0.05% (v/v) 

trifluoroacetic acid (TFA; Fisher Scientific, UK) and mobile solvent phase 

B was acetonitrile (Fisher Scientific, UK) with 0.05% TFA (v/v). Samples 

and standards were separated using a gradient increasing from 15 to 

60% B for 25 minutes at a flow rate of 0.3 mL/min followed by ramp up 

to 100% B and re-equilibration after 10 next minutes. Mass spectrometry 

was performed in positive ion electro-spray mode (ESI+), scanning from 

m/z 100 to 1200 with a scan time of 2 seconds and inter-scan delay of 

0.1 second ion source parameters. The sprayer voltage was set at 3.07 

kV, and cone voltage 80 V. The source temperature and desolvation 

temperatures were 100ºC and 300ºC, respectively. MassLynx software 

v4.0 was used to control the instrument for data acquisition and 

processing. The photo diode array (PDA) was set to a resolution of 1.2 

nm and data acquired from 200 to 400 nm. The injection volume for 

standards and samples was 10 and 20 µl, respectively. Quantification of 

peptides was based on calibration with external standards, nodularin at 

238 nm and nodulopeptin 901 at 210 nm.  
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3.3. RESULTS 

 

3.3.1. Growth medium BG-11 and maintenance of N. spumigena  

          KAC 66  
 
 

In this study N. spumigena KAC 66 was successfully grown and tested in 

BG-11 growth medium (20 ‰). The observations showed that 22°C and 

low light intensity (0.80 μmol/s/m2) are good for long term maintenance 

of N. spumigena KAC 66.  

 

3.3.2. A correlation between cell biomass and chlorophyll-a  

 

The amount of chlorophyll-a at different dilutions of cells of N. spumigena 

KAC 66 was quantified by plotting a correlation graph (Fig. 3.6.; 

Appendices 30 and 31).  
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Figure 3.6. A correlation between cell biomass and Chl-a (n=3, 

bars=1 SD). 
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It was noted that as the cell biomass of N. spumigena increases the 

amount of Chl-a also increases. At the highest cell biomass (1,108 

µg/mL) the highest Chl-a value (7,554.1 µg/mL) was observed, which 

gradually decreased as the dilution was increased (Appendix 32).  

 

3.3.3. High Chl-a absorbance on spectrophotometer  

 

The highest absorbance values (2.32, 2.32 and 2.32) for Chl-a were 

observed in a 100 mL dilution while plotting a correlation graph between 

Chl-a and cell biomass (Fig. 3.7; Appendix 33), which was closed to the 

highest readable absorbance limit (2.5) of the spectrophotometer. The 

results show that the Chl-a concentration was high and could not be 

correctly read by spectrophotometer. The results showed a difference of 

0.66 absorbance between 100% and 50% diluted extracts (Fig. 3.7) 

indicating typical plateau effect observed when using spectrophotometer.  
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Figure 3.7. Difference between absorbance of Chl-a at 100% and 50% 

dilutions at 665 nm wavelength (n=3, bars=1 SD). 

 

 
 

3.3.4. Investigation on growth and peptide production 

  
 

3.3.4.1. Growth in 10 L glass flasks 

 

3.3.4.1.a. Cell biomass and chlorophyll-a 

  

N. spumigena KAC 66 cell biomass and Chl-a concentrations were 

maintained for 7 weeks and ranged from 6,387 to 6,917 µg/mL and 0.05 to 

0.2 µg/mL, respectively. A relationship between Chl-a concentration and 

time was observed as would be expected, as the time passed Chl-a was also 

increased with a slight decline in week 7 (0.19 µg/mL; Fig. 3.8; Appendix 

34).  
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Figure 3.8. Chl-a concentrations and cell biomass for cultures of N. 

spumigena KAC 66, grown in glass flasks for 7 weeks at 22°C (n=3, 

bars=1 SD) (Chlorophyll-a ●, cell biomass ◊) 

 

 
 
In week 1 the lower Chl-a concentration (0.05 µg/mL) and cell biomass 

(6,387 µg/mL) was recorded but mostly high concentrations exhibited in 

last weeks of experiment, which showed a normal growth pattern. Due to 

error in measurement the cell biomass did not show any considerable 

change from week 2 to 6 and continued with an increase (6,917 µg/mL; 

Fig. 3.8) in week 7. This would suggest a problem with the accuracy of 

the dry weight measurements. 

 

3.3.4.1.b. Extra and intracellular peptide levels 

 

Nodularin and nodulopeptin 901 were produced in high amount by N. 

spumigena (Appendix 35). The UPLC-PDA-MS analyses showed that N. 

spumigena retain high amounts of NOD within the cell. In the case of 
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nodulopeptin 901 both the intra and extracellular levels increased as time 

passed (Figs. 3.9A and B; Appendix 35).  

 

During the 7 weeks it was observed that nodulopeptin 901 concentrations 

were rich significant in the extracellular fraction. At T0 (first day of 

inoculation) no traces or undetectable amount of extracellular peptides 

observed.  

 

The intracellular NOD levels increased between weeks 1 to 6 (137-390 

ng/mL) and decreased (304 ng/mL) in week 7 (Fig. 3.9A; Appendix 36). 

From week 1 to 4 the cyanobacterium started to release NOD in to the 

surrounding medium and concentrations ranging from 7.0-36 ng/mL were 

detected (Fig. 3.9B; Appendix 36).  

 

In the case of nodulopeptin 901 a gradual increase both in extra and 

intracellular concentrations was observed during growth over time. The 

highest concentration (282 ng/mL) of extracellular nodulopeptin 901 was  

recorded in week 6. After this in week 7 the nodulopeptin 901 level 

decreased (226 ng/mL) due to the commencement of death phase of the 

cyanobacteria and toxin release rate into the growth medium was 

reduced. Intracellular concentrations of nodulopeptin 901 gradually 

increased until the last week of harvesting (91-370 ng/mL). The week 6 

is the optimum time to harvest the cyanobacterium to get the highest 

amount of extra and intracellular nodulopeptin 901 and intracellular NOD 

(Fig. 3.9B; Appendix 63). During the growth experiments the relative 

properties of extra and intracellular concentrations were calculated. In 

week 5 to 7 undetectable amount of NOD was released in medium and 

100% toxin remained within the cells (Table 4.1). Comparatively, it  
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Figure 3.9. The Intra and extracellular levels of peptides for cultures of 

N. spumigena KAC 66 grown in glass flasks for 7 weeks  at 22°C  

(n=3, bars=1 SD). A:- NOD, B:- nodulopeptin 901 (Extracellular   ,  

intracellular    ). 
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Table 3.11. Percentages of peptides in extra and 
intracellular levels in weekly samples of N. 
spumigena KAC 66 cultures grown in glass flasks 

for 7 weeks  at 22°C (n.d. = not detected, the 
data based of mean values given in Appendix 

36). 
 

Time Extracellular Intracellular

(weeks) (%) (%)

NOD

T0 n.d. 100

T1 4 96

T2 3 97

T3 4 96

T4 9 91

T5 n.d. 100

T6 n.d. 100

T7 n.d. 100

Nodulopeptin 901

T0 n.d. 100

T1 31 69

T2 38 62

T3 46 54

T4 43 57

T5 40 60

T6 40 60

T7 38 62
 

 

 
 

 

seems that during the whole experiment the high amount of NOD 

remained within the cells, ranged from 91-100%.  

 

The highest percentage (100%) of nodulopeptin 901 was recorded within 

the cells and no detectable amount was recorded at the day of 

inoculation. From week 1 to 7 a considerable amount of intracellular 

nodulopeptin 901 was recorded (54-69%) in surrounding medium (31-

46%; Table 3.11). The highest percentages of extracellular nodulopeptin 

901 was noted in weeks 3 and 4 (Table 3.11). Intracellular NOD 
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concentrations were 91 % of the total NOD detection with much lower 

(9%) extracellular concentrations. Intracellular concentrations of 

nodulopeptin 901 were consisting higher (approximately 66%) than 

extracellular nodulopeptin (34%). 

 

In general the cell biomass, Chl-a contents and peptide production levels 

were considerably co-related with each other and all parameters were 

recorded on their maximum levels in week 6 (except extracellular NOD 

levels).  

 

3.3.4.2. Growth in 8 L Perspex columns 

 

3.3.4.2.a. Cell biomass and chlorophyll-a  

 

The variation in cell biomass and Chl-a concentrations/week in five 

Perspex columns are summerized in Figs. 3.10 and 3.11, respectively. 

Due to poor growth of N. spumigena in three columns, the experiment 

was only performed for 5 weeks.  

 

As expected in all columns the lowest cell biomass was found at the day 

of inoculation, when cell concentration was low (Appendix 37).  
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Figure 3.10. Cell biomass for cultures of N. spumigena KAC 66, grown in 

columns for 5 weeks at 22°C (A:- column 1, B:- column 2, C:- column 3, 

D:- column 4 and E:- column 5)  
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Among five columns  the highest cell biomass was observed in column 4 

in week 3 (559 µg/mL; Fig. 3.10). The columns 1 and 2 were slightly 

further away from the light source and showed healthy growth pattern 

over time (Figs. 3.10A and B). The  cell biomass reached its maximum 

410.5 and 450.0 µg/mL in week  2 and 4, respectively (Figs. 3.10A and 

B). A decrease in cell biomass was observed in column 1 (241.5 µg/mL) 

and 2 (273.0 µg/mL) in week 5. 

 

Columns 3, 4 and 5 were closed to light source. Columns 3 and 5 

represented an increasing growth pattern from the first day of inoculation 

(T0) to week 2 ranged from 198.5-505.0  µg/mL (Figs. 3.10C and E). 

While column 4 showed increase in cell biomass till week 3 (559.0 

µg/mL; Fig. 3.10D).  

 

In week 5 in coulmns 3-5 a sudden decrease in cell biomass ranged from 

202.5-239.5 µg/mL with an increase (387.0-506.0 µg/mL) was observed 

(Figs.3.10C-D). 

 

The Chl-a contents in all 5 Perspex columns  represented a same pattern 

as cell biomass showed (Fig. 3.11; Appendix 38). Column 1 and 2 (away 

from light source) showed an increase in Chl-a concentrations in weeks 2 

and 3 (Fig. 3.11A and B). The Chl-a concentration of column 3, 4 and 5 

was reached on its maxima in week 2 (ranged from 0.22 to 0.26 µg/mL) 

and started to decline from week 4 to 5 (Figs. 3.11C, D and E).  
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Figure 3.11. Chl-a concentrations for cultures of N. spumigena KAC 66, 

grown in columns for 5 weeks at 22°C (A:- column 1, B:- column 2, C:- 

column 3, D:- column 4 and E:- column 5)  
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Figure 3.12. A comparison of biomasses for cultures of N. spumigena KAC 

66, grown in individual columns for 5 weeks at 22°C (A:- Chl-a 

concentrations, B:- cell biomass; column 1=   , column 2=    ,  

column 3=   ,  column 4=    , column 5=    ).  
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A comparative analysis of Chl-a contents and cell biomass among 5 

columns was also done (Figs. 3.12A and B).  It was also noted that those 

columns (3, 4 and 5) were near to light source started to die first 

compared to column 1 and 2, which were away from high irradiance. 

After death of cell the colour of cultures was turned from green to pale 

yellow, which affected the biomass (Figs. 3.12A and B). 

 

3.3.4.2.b. Extra and intracellular peptide levels 
 

 
 

The results relating to the production of peptides are summarized in Figs. 

3.13 and 3.14; Appendix 39). The amount of intra and extracellular 

peptides in ng/mL are summarized in Appendix 40. 

 

The HPLC-PDA-MS analysis show that in all columns undetectable amount 

or no release of NOD was noted in week 1, but release occurred between 

weeks 2 to 5. In column 5 at the day of inoculation (T0) and in week 1 no 

traces of intracellular and extracellular NOD were detected. In week 3 the 

highest intracellular NOD (1,300.3 ng/mL) was recorded which started 

decline till week 5 (1.9 ng/mL). The highest intracellular NOD levels were 

noted in column 1 in week 4 (1,457.5 ng/mL) and lowest in column 2 in 

week 5 (2.5 ng/mL; Fig. 3.13).   

 

In all columns no extracellular nodulopeptin 901 was detected during the 

whole experiment. The highest intracellular nodulopeptin 901 

concentrations were noted in column 4 and 5 in week 2 (236 and 324 

ng/mL, respectively). The lowest concentration of intracellular 

nodulopeptin 901 was recorded in column 3 (11.5 ng/mL, Fig. 3.14C; 

Appendix 40). Columns 1, 2 and 4 did not show any traces of intracellular 

nodulopeptin 901 from week 3-5 (Figs. 3.14A, B and D).      
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Results in the present experiment show considerable effects of irradiance 

and the death of cells on the production of extra and intracellular peptide 

levels. Both factors suppressed the production intra and extracellular 

nodulopeptin 901 concentrations resulted in no or undetectable amount 

of nodulopeptin 901 was released in the surrounding growth medium.  

 

The percentages in columns 1 and 3 the extracellular NOD concentrations 

were high in week 3 (96% and 79%, respectively; Table 3.12). The 

highest extracellular NOD concentrations were recorded in columns 2, 4 

and 5 in week 5 ranged from 69-99%. Intracellular NOD concentrations 

were highest in columns 1-4 in week 2 (100%) and in column 5 in weeks 

2-4 (94-99%). During the whole growth duration nodulopeptin 901 was 

not release into medium and 100% nodulopeptin 901 retained within the 

cells.  
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Figure 3.13. The Intra and extracellular levels of NOD for cultures of N. 

spumigena KAC 66 grown in columns for 5 weeks  at 22 °C. A:- column 

1, B:- column 2, C:- column 3, D:- column 4, E:- column 5  

(Extracellular    , intracellular    ) 
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Figure 3.14. The Intracellular levels of nodulopeptin 901 for cultures of 
N. spumigena KAC 66 grown in columns for 5 weeks  at 22°C. A:- column 

1, B:- column 2, C:- column 3, D:- column 4, E:- column 5  
(intracellular    ) 
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NOD Nodulopeptin 901

(%) (%)

Time (weeks) Time (weeks)

T0 T1 T2 T3 T4 T5 T0 T1 T2 T3 T4 T5

Extracellular

1 n.d n.d 35 96 46 1 n.d n.d n.d n.d n.d n.d

2 n.d n.d 5 62 0 99 n.d n.d n.d n.d n.d n.d

3 n.d n.d 7 79 12 68 n.d n.d n.d n.d n.d n.d

4 n.d n.d 6 8 10 96 n.d n.d n.d n.d n.d n.d

5 n.d n.d 3 1 6 69 n.d n.d n.d n.d n.d n.d

Intracellular

1 n.d 100 65 4 54 99 100 100 100 n.d n.d n.d

2 n.d 100 95 38 100 1 n.d 100 100 n.d n.d n.d

3 n.d 100 93 21 88 32 100 100 100 n.d 100 n.d

4 n.d 100 94 92 90 34 100 100 100 n.d n.d n.d

5 n.d n.d 97 99 94 31 n.d n.d 100 n.d 100 n.d

Columns

 

Table 3.12. Percentages of NOD and nodulopeptin 901 in extra and intracellular levels for cultures of  
N. spumigena KAC 66 grown in columns for 5 weeks at 22°C (n.d = not detected, the data is based  

on mean values of Appendix 40). 
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3.3.5. Investigation on effect of environmental factors on growth    
          and peptide production  

 
 

3.3.5.1. Temperature 
 
 

3.3.5.1.a. Cell biomass and chlorophyll-a 
 
 

Chl-a concentrations for N. spumigena KAC 66 grown in Erlenmeyer 

flasks for 6 weeks at 22°C, 25°C and 30°C.  

 

At 22°C the concentration of Chl-a was very low in week 1 (0.1 µg/mL) 

but as time progressed the concentration of Chl-a was increased by week 

6 (0.19 µg/mL; Appendix 41).  

 

A total of Chl-a concentrations during the experiment at 25°C, showed an 

increase in weeks 3 and 4 (0.17 µg/mL) and then declined by week 6 

(0.13 µg/mL). At the highest temperature (30°C) the maximum 

concentration was observed in week 4 (0.21 µg/mL) and there was a 

considerable decline was noted in week 6 (0.12 µg/mL; Fig. 3.15A-C). 

Due to difficulties with dry weights containing freeze dried cells the data 

could not be included.  
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Figure 3.15. Chlorophyll-a concentrations at different  

temperatures for cultures of N. spumigena KAC 66 grown 

for 6 weeks (n=3, bars=1 SD). A:- 22°C B:- 25°C and  

C:- 30 °C. 
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3.3.5.2. b. Extra and intracellular peptide levels 
 

 
It was observed that extra and intracellular peptide concentrations 

decreased as temperatures increased (Figs. 3.17 and 3.18; Appendices 

42 and 43). The amount of intra and extracellular NOD and nodulopeptin 

901 are shown in Appendices 44 and 45, respectively.  

 

In comparison firstly 22°C and secondly 25°C supported the high 

production extra and intracellular of NOD (intracellular) and nodulopeptin 

901 (Fig. 3.16).  
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Figure 3.16. The chromatograms show the effects of different temperatures on 

the production of intracellular NOD and nodulopeptin 901 for N. spumigena KAC 

66 grown for 6 weeks.   

 

 

No extracellular NOD was observed regardless of the growth 

temperature. In the case of the typical culturing temperature (22°C) no 

traces or undetectable amount of extracellular NOD were recorded (the 

same was also observed in growth experiment performed in 10 L glass 
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flasks). The production of intracellular NOD levels at 22°C was low during 

the week 2 and 3 (472-851 ng/mL), after which the strain grew best in 

week 4 and produced maximum amount of intracellular NOD (1,061 

ng/mL), while the maximum values  for 25°C (473 ng/mL) and 30°C 

(46.7 ng/mL) were observed at week 3. At 30°C from week 4 to 6 a 

complete disappearance of intracellular NOD contents was noted 

(Appendix 44).  

 

The lowest extra and intracellular nodulopeptin 901 levels were noted 

from week 1 to 3 at all temperatures, as time progressed. The 

nodulopeptin 901 levels were increased in the surrounding medium and 

within the cells. Likewise, it was noted that 22°C enhanced the 

production of nodulopeptin 901 in cultures both in extra and intracellular 

nodulopeptin 901 concentrations. At 25ºC at week 5 the highest amounts 

of extra (347 ng/mL) and intracellular (488 ng/mL) nodulopeptin 901 

were observed (Appendix 45).  

 

In general, at elevated temperature (25ºC and 30ºC) lower NOD was 

recorded as compared to 22ºC. A considerable decrease in the production 

of nodulopeptin 901 was noted at high temperature (30°C) in both extra 

and intracellular levels (Appendix 43). During the experiment no NOD 

was released in growth medium (Table 3.13). The highest proportion of 

nodulopeptin 901 found intracellularly, occurred at the lowest test 

temperature. The maximum percentages of intracellular nodulopeptin 

901 were recorded in week 3 at 22ºC (84%) and 25ºC (70%), while the 

highest percentage was noted in week 2 at 30ºC (55%). In week 1 the 

elevated percentages were observed at 22, 25 and 30ºC (45-58%).    
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Figure 3.17. The Intra and extracellular levels of NOD at 

different temperatures for cultures of N. spumigena KAC 66 

grown for 6 weeks (n=3, bars=1 SD). A:- 22°C B:- 25°C and 

C:- 30°C. (Extracellular    and intracellular    ) 
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Figure 3.18. The Intra and extracellular levels of nodulopeptin      

901 at different temperatures for cultures of N. spumigena        

KAC 66 grown for 6 weeks (n=3, bars=1 SD). A:- 22°C, B:-    

25°C and C:- 30°C. (Extracellular      and intracellular    )   
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Table 3.13. Percentages of extra and intracellular NOD and nodulopeptin 901 
levels for cultures of N. spumigena KAC 66 grown for 6 weeks at different 
temperatures  (n.d= not detected, the data is based on mean values of 

Appendices 44 and 45).  
 

Time Temperature 

(weeks) conditions

(ºC) Extracellular Intracellular Extracellular Intracellular

(%) (%) (%) (%)

T0 n.d n.d 100 n.d

T1 n.d n.d 45 55

T2 n.d 100 30 70

T3 n.d 100 16 84

T4 n.d 100 29 71

T5 n.d 100 31 69

T6 n.d 100 29 71

T0 n.d n.d 100 n.d

T1 n.d n.d 47 53

T2 n.d 100 39 61

T3 n.d 100 30 70

T4 n.d 100 43 57

T5 n.d 100 42 58

T6 n.d 100 39 61

T0 n.d n.d 100 n.d

T1 n.d n.d 58 42

T2 n.d 100 45 55

T3 n.d 100 47 53

T4 n.d 100 57 43

T5 n.d n.d 52 48

T6 n.d n.d 48 52

22

25

30

   NOD               Nodulopeptin 901

 
 

 
 ..  
3.3.5.2. Salinity 

 
 

3.3.5.2.a. Cell biomass and chlorophyll-a   
 
 

The relationship between cell biomass and Chl-a at different salinities is 

presented in Fig. 3.19 (Appendices 46 and 47). The concentration of intra 

and extracellular peptides are shown Appendices 48 and 49.  

 

In general, no correlation between cell biomass and Chl-a concentrations 

was observed. Except 20 ‰ all salinities decreased the production of 



 

 

154 
 

Chl-a of treated cultures, as time progressed. At all salinities, Chl-a 

concentrations started increasing from weeks 1 to 4, and then declined 

by week 5 and 6. The results show that the concentrations of Chl-a at 2, 

11, 20 and 25 ‰ was decreased during the growth period except at        

7 ‰. 

 

At 2, 11 and 20 ‰ cell biomass was found to have a relation with time, 

which showed a normal growth trend and a gradual increase of biomass 

was observed during growth. In weeks 5 and 6 the highest cell biomass 

was recorded at 2, 7, 11 and 20 ‰, ranged from 1,207-1,740 µg/mL. 

The elevated salinity (25 ‰) suppressed the growth of strain and the 

highest cell biomass (973 µg/mL) was noted in week 3, which was lowest 

cell biomass among all salinities. It seems that variations in salinities 

have substantial effect on cell biomass and Chl-a concentrations.  

 

3.3.5.2.b.  Extra and intracellular peptide levels 
 

 
 

The effect of each condition had on NOD production is represented in Fig. 

3.20. The intracellular NOD showed an increased level in cultures 

subjected to 2, 7 and 11 and 25 ‰ in week 5 and declined by week 6, 

only cultures at 20 ‰ showed maximum level of NOD from week 3 to 

week 5. Increasing salinity from 2 to 11 ‰ was found to have a 

pronounced effect on total amount of intracellular NOD production, but 

the highest amount was found at 2 ‰ in weeks 4 and 5, ranged from 

1,511-1,666 ng/mL. In weeks 1 and 2 a relatively low amount of 

intracellular NOD were observed in all tested cultures, while lowest 

detectable amount (205 ng/mL) was recorded in week 6 at 25 ‰. The 

extracellular NOD contents varied from week 3 to 6 at all salinities. In 
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this experiment relatively low extracellular NOD was detected in the 

elevated salt conditions (25 ‰; Appendix 50). The results of effects of 

salinity on the production of intra and extracellular nodulopeptin 901 

levels by N. spumigena are shown in Fig. 3.21A-C. During the whole 

course of experiment all salinities tested had substantial effect on the 

production of intra and extracellular nodulopeptin 901.  

 

At 25 ‰ the intracellular nodulopeptin 901 concentrations were found 

maximum in week 5 (447 ng/mL) and declined in week 6 (344 ng/mL; 

Appendix 51). In case of intra and extracellular nodulopeptin 901 

concentrations all salinities supported the production of toxins.  

 

Due to low concentration of cells in newly inoculated cultures no traces or 

undetectable intracellular peptides were observed and 100 % peptides 

found in the surrounding medium, which maybe already present in stock 

culture. During the experiment at different salinities it was noted that 

from week 1 to 6 NOD (89-100 %) and from week 2-6 nodulopeptin 901 

were predominantly (50-68 %) intracellularly. In week 2 at elevated salt 

concentration (25‰) an equilibrium between intra and extracellular 

nodulopeptin 901 (50:50%) was observed (Table 3.14). 

................................................................................
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Figure 3.19. Chl-a concentrations and biomass for cultures of N. spumigena KAC 66, grown at different salinities for 6 weeks at 

22°C. (n=3, bars=1 SD). A:- 2 ‰, B:- 7‰, C:- 11 ‰, D:- 20 ‰ and E:- 25 ‰.  

(Chlorophyll-a ●, cell biomass ◊) 
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Figure 3.20. The Intra and extracellular levels of NOD at different salinities for cultures of N. spumigena KAC 66 grown for 6 

weeks at 22 °C (n=3, bars=1 SD).  A:- 2 ‰, B:- 7 ‰, C:- 11 ‰, D:- 20 ‰ and E:- 25 ‰ (Extracellular     , intracellular   ).
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Figure 3.21. The Intra and extracellular levels of nodulopeptin 901 at different salinities for cultures of N. spumigena KAC 66 
grown for 6 weeks at 22 °C (n=3, bars=1 SD). A:- 2 ‰, B:- 7‰, C:- 11 ‰, D:- 20 ‰ and E:- 25 ‰  

(Extracellular     , intracellular    ). 
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Table 3.14. Percentages of NOD and nodulopeptin 901 in extra and 
intracellular levels  for cultures of N. spumigena KAC 66 grown for 6 weeks at 
different salinities (n.d= not detected, the data is based on mean values of 

Appendices 50 and 51).   
 

Time Salintiy
(weeks) conditions

(‰) Extracellular Intracellular Extracellular Intracellular
(%) (%) (%) (%)

T0 100 n.d 100 n.d
T1 2 98 50 50
T2 6 94 47 53
T3 2 98 37 63
T4 1 99 37 63
T5 1 99 37 63
T6 n.d 100 42 58

T0 100 n.d 100 n.d
T1 2 97 56 44
T2 5 95 46 54
T3 3 97 41 59
T4 1 99 38 62
T5 1 99 39 61
T6 n.d 100 41 59

T0 100 n.d 100 n.d
T1 3 98 59 41
T2 11 89 49 51
T3 3 97 44 56
T4 2 98 43 57
T5 1 99 41 59
T6 4 96 40 60

T0 100 n.d 100 n.d
T1 5 95 68 32
T2 9 91 44 56
T3 6 94 43 57
T4 4 96 39 61
T5 3 97 40 60
T6 6 94 45 55

T0 100 n.d 100 n.d
T1 2 98 53 47
T2 8 92 50 50
T3 4 96 42 58
T4 2 98 32 68
T5 4 96 26 74
T6 9 91 39 61

              Nodulopeptin 901

2

7

11

20

25

   NOD
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3.3.5.3. Nitrate         
 

 

3.3.5.3.a. Cell biomass and chlorophyll-a  
 

  
At all nitrate concentrations a linear relationship was observed between 

cell biomass and Chl-a contents, as time passed the cell biomass and Chl-

a also increased (Fig. 3.22; Appendices 52 and 53). The results indicated 

that the N. spumigena can easily grow both in the absence and at high 

concentrations of nitrate. Combining the observations an increased 

biomass (183.3 to 1068.3 µg/mL) production was noted at NaNO3 free 

experiment.  

 

At all concentration the maximum cell biomass was observed in week 5 

ranged from 1,068.3-2,223.3 µg/mL. At 7.5 mg/L less cell biomass 

(1,160.7 µg/mL) was recorded compared to 6.5, 8.5 and 9.5 mg/L 

(1,826.7, 1973.3 and 2,223.3 µg/mL, respectively). It showed that a rise 

in nitrate concentration increased the cell biomass production.  

 

At all nitrate concentrations, Chl-a showed a linear increase versus 

progressed time (Fig. 3.30). Throughout the experiment, in nitrate free 

medium the Chl-a concentrations were low (0.19 µg/mL) compared with 

other concentrations (Fig. 3.22). In week 5 at 3.5 mg/L 7.5 mg/L,  

approximately the highest Chl-a concentrations (0.27 and 30.0 µg/mL, 

respectively) were recorded (Figs. 3.30B and D). In week 5 the elevated 

concentrations of nitrate (6.5, 8.5 and 9.5 gm/L) showed the highest 

values of Chl-a 0.48, 0.44 and 0.39 µg/mL, respectively (Figs. 3.22C, E 

and F).  
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Figure 3.22. Chl-a concentrations and cell biomass for cultures of N. spumigena KAC 66, grown at different concentrations of 

nitrate for 5 weeks at 22°C. (n=3, bars=1 SD). A:- 0, B:- 3.5, C:- 6.5, D:- 7.5, E:- 8.5 and F:- 9.5 mg/L. (Chlorophyll-a ●, 
biomass  ◊) 
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Analyzing nitrate concentration and time together showed that the 6.5 

mg/L favoured the high biomass and (1826.7 µg/mL) Chl-a 

concentrations (0.48 µg/mL) in week 5. 

 

3.3.5.3.b. Extra and intracellular peptide levels 
 

 

 

At all concentrations of nitrate the levels of intracellular NOD and 

nodulopeptin 901 showed an increase from week 1 to week 5 (Fig. 3.23; 

Appendices 54 and 56). In contrast to the results at nitrate free cultures 

(0 mg/L; 159.2-561.4 ng/mL and at high nitrate level (9.5 mg/L) the 

lowest amount (157-712.2 ng/mL) of intracellular NOD was recorded 

(Figs. 3.23A and F). At 6.5 mg/L the highest amount (1,833.5 ng/mL) of 

intracellular NOD was observed by week 4, which decreased in week 5 

(985.0 ng/mL; Fig. 3.23C).  In comparison, at all other nitrate 

concentrations the week 3 and 4 supported the highest amount of 

intracellular NOD, which gradually decreased by week 5 (Fig. 3.23). In 

nitrate free cultures, the extracellular NOD was higher in week 1 (7.4 

ng/mL), which gradually decreased till week 3 (2.9 ng/mL) and increased 

again in week 4 (3.2 ng/mL). In week 5 no traces or an undetectable 

amount of extracellular NOD was observed (Fig. 3.23A; Appendix 55).  

 

The media containing 3.5 and 6.5 mg/L nitrate showed similar pattern of 

extracellular NOD production, as time passed the amount of NOD 

increased ranged from 6.6-9.3 ng/mL from week 1-3 (Figs. 3.23B and C). 

This amount was found to be high (16.7 ng/mL) in week 2 at 6.5 mg/L 

nitrate level (Fig. 3.23D). The amount of extracellular NOD at 9.5 mg/L 

was minimum in week 1 and 3, 8.2 and 8.3 ng/mL, respectively.  This 

amount was maximum (11.1 ng/mL) in week 2 (Fig. 3.23F). At all nitrate 
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conditions, except in nitrate free cultures, no traces of extracellular NOD 

were observed in week 4 and 5. 

 

 Nodulopeptin 901 was found intra and intracellularly and intracellularly 

in all nitrate conditions (0-9.5 mg/L; Fig. 3.24), which increasing as time 

progressed. 

 

The observations indicated that at all nitrate concentrations the higher 

intracellular nodulopeptide 901 levels were recorded in week 4 (ranged 

from 559.3-1,231.8 ng/mL), except at 7.5 mg/L (555.3 ng/mL). 

Analyzing all combinations of nitrate concentrations, nitrate free cultures 

and 6.5 mg/L leaded to a higher intracellular nodulopeptin 901 

concentration 1039.6 and 1231.8 ng/mL, respectively in week 4 (Figs. 

3.24A and C).  

 

Combining the observations of increased extracellular nodulopeptin 901 

production in all nitrate  conditions, showed an exponential increase from 

week 1 to week 4, with a decrease in week 5 (Fig. 3.24). The 

extracellular nodulopeptin 901 concentrations in nitrate free medium 

(72.5-359.7 ng/mL) and at 7.5 mg/L (42.6-133.7 ng/mL), showed same 

trend but less amount was recorded in 7.5 mg/L (Figs. 3.32A and D). At 

3.5 mg/L (130.2 ng/mL) and 6.5 mg/L (126.7 ng/mL) nitrate conditions a 

slight decrease in extracellular nodulopeptin 901 was recorded in week 3 

(Figs. 3.24B and C). The nitrate free medium supported the highest 

amount of extracellular nodulopeptin (359.7 ng/mL) in week 4 (Fig.  

3.24A). 

 



 

 

164 
 

It is suggested that the highest amount of intracellular NOD (1,833.5 

ng/mL) and nodulopeptin 901 (1,231.8 ng/mL) can be obtained at 6.5-

7.5 mg/L of nitrate in week 4 (Appendix 57).  

 

At all concentrations, at the day of inoculation and in week 5 no traces or 

undetectable amount of extracellular NOD was observed and 100% NOD 

was retained within the cells (Table 3.15). During the whole experiment 

period low percentage of extracellular NOD was recorded from week 1 to 

week 4 ranged from 1-5%. Between 3-29% of total extracellular 

nodulopeptide 901 was found under all conditions. The percentage 

composition of nodulopeptin 901 represented that 71-97% retained 

intracellularly (Table 3.15). 
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Figure 3.23. The Intra and extracellular levels of NOD at different concentrations of nitrate for cultures of N. spumigena KAC 
66 grown for 5 weeks  at 22 °C (n=3, bars=1 SD).  A:- 0, B:- 3.5, C:- 6.5, D:- 7.5, E:- 8.5 and F:- 9.5 mg/L  

(Extracellular    ,   intracellular    ) 
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Figure. 3.24. The Intra and extracellular levels of nodulopeptin 901 at different concentrations of nitrate for cultures of  

N. spumigena KAC 66 grown for 5 weeks  at 22 °C (n=3, bars=1 SD).  A:- 0, B:- 3.5, C:- 6.5, D:- 7.5, E:- 8.5 and  
F:- 9.5 mg/L (Extracellular    ,  intracellular    ).
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Table 3.15. Percentages of NOD and nodulopeptin 901 in extra and intracellular 
levels  for cultures of N. spumigena KAC 66 grown for 5 weeks at different 

nitrate concentrations of nitrate (n.d= not detected, the data is based on mean 
values of Appendices 55 and 56).   

 

Time Nitrate
(weeks) conditions

(mg/L) Extracellular Intracellular Extracellular Intracellular
(%) (%) (%) (%)

T0 n.d. 100 n.d. 100
T1 4 96 24 76
T2 1 99 22 78
T3 0 100 24 76
T4 1 99 26 74
T5 n.d. 100 19 81

T0 n.d. 100 29 71
T1 4 96 21 79
T2 2 98 23 77
T3 1 99 17 83
T4 n.d. 100 24 76
T5 n.d. 100 3 97

T0 n.d. 100 21 79
T1 3 97 15 85
T2 1 99 18 82
T3 1 99 14 86
T4 n.d. 100 19 81
T5 n.d. 100 10 90

T0 n.d. 100 17 83
T1 5 95 21 79
T2 2 98 18 82
T3 0 100 20 80
T4 n.d. 100 19 81
T5 n.d. 100 15 85

T0 n.d. 100 24 76
T1 4 96 20 80
T2 1 99 22 78
T3 1 99 20 80
T4 n.d. 100 25 75
T5 n.d. 100 14 86

T0 n.d. 100 n.d. n.d.
T1 5 95 16 84
T2 2 98 12 88
T3 1 99 14 86
T4 n.d. 100 24 76
T5 n.d. 100 14 86

8.5

9.5

   NOD               Nodulopeptin 901
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3.3.5.4. Phosphate  

 

3.3.5.4.a. Cell biomass and chlorophyll-a  
 

 
 

As discussed previously, a number of phosphate concentrations were 

used to determine their effects on biomass and toxin productions. Figure 

3.25 represents a correlation among Chl-a, cell biomass and growth time.  

 

At 0, 0,1, 40, 70 and 100 mg/L phosphate concentrations a similar trend 

was observed, following an[ui896 initial increase, later samples of cell 

biomass decreased (Figs. 3.25A, B, D, E and F; Appendix 58). However, 

in contrast at 10 and 120 mg/L the amount of cell biomass was increase 

throughout the growth period (Figs. 3.25C and G). In  PO4
-3 free cultures 

the lowest cell biomass values were recorded ranged from 200-470 

µg/mL (Fig. 3.25A) and 120 mg/L supported the maximum cell (275.0-

931.7 µg/mL) in week 5 (Fig. 3.25G). The combination of observations 

showed that Chl-a represented similar pattern as normal growth curve 

showed (Fig. 3.25).  

 

In phosphate free cultures death phase occurred around in week 4 and 5 

amount (0.003 µg/mL) Chl-a recorded (Fig. 3.25A). None the less of the 

relatively low phosphate level at 10 mg/L the highest Chl-a concentration 

was observed in week 2 followed by week 3 (0.18 µg/mL; Fig. 3.25C). 

Except for 70 and 120 mg/L, at all other PO4
-3 conditions, the maximum 

Chl-a levels were recorded in week 2 ranged from 0.12-0.18 µg/mL 

(Appendix 59).  
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Figure 3.25. Chl-a concentrations and biomass for cultures of N. 
spumigena KAC 66, grown at different concentrations of phosphate for 5 

weeks at 22°C. (n=3, bars=1 SD). A:- 0, B:- 0.1, C:- 10 , D:- 40, E:- 
70, F:- 100 and G:- 120 mg/ L (Chlorophyll-a ●, cell biomass ◊) 
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3.3.5.4.b. Extra and intracellular peptide levels 
 

 

At all concentrations, the highest amount of NOD was always located 

intracellularly (Fig. 3.2.6; Appendices 60 and 61). The intracellular NOD 

concentration in phosphate deficient medium, was relatively low in week 

4 and 5 (23.5-28.3 ng/mL; Fig. 3.26A). In all experimental conditions in 

week 2 the intracellular NOD concentrations were found to peak 

(1,829.2-2,469.3 ng/mL; Fig. 3.26), which then gradually decreased untll 

week 5. Combining the observation of increased extracellular NOD 

production at medium containing high amount of phosphate from 40 

mg/L to highest elevated concentration of phosphate (120 mg/L), 

increased extracellular NOD levels were recorded (2,274.9- 2,469.3 

ng/mL; Figs. 3.26D-G).  

 

The relative proportion of extracellular NOD was very low compared to 

concentrations of NOD within the cell. At 0 mg/L, 10 mg/L and the 

highest (120 mg/L) phosphate conditions, the concentration of this 

extracellular NOD was lowest in last three weeks ranged from 1.3-5.2 

ng/mL (Figs. 3.26AC and G). In phosphate free cultures an increase 

(23.5 ng/mL) of extracellular NOD was observed till week 3 followed by a 

decrease in week 4 (3.1 ng/mL) and 5 (3.3 ng/mL; Fig. 3.26A). In 40 

mg/L this peptide started decrease in week 3 and 4 with a slight increase 

in week 5 (Fig. 3.34D). At 100 mg/L 28.3 ng/mL (Fig. 2.34A) N. 

spumigena released the highest amount of NOD in surrounding medium 

(Fig. 3.26F; Appendix 61), although levels were still relatively low.   

 

Comparing all conditions of phosphate levels of intracellular nodulopeptin 

901 was almost the same regardless of phosphate concentrations upto 
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week 2, followed by a decrease (Fig. 3.27; Appendix 62). At all 

concentrations an elevated level of this peptide was noted in week 2 

ranged from 303.5-502.4 ng/mL, with a slight increase in week 5 at 40 

mg/L (173.8 ng/mL; Fig. 3.27D).  

 

The levels of this extracellular peptide showed the same trend and 

decreased as time passed. In general week 3 and 4 supported the 

maximum release of nodulopeptin 901 in growth medium.  

 

In phosphate free condition was nodulopeptin 901 was highest (156.5 

ng/mL) in week 3 (Fig. 3.27A). Forty mg/L supported an increase in 

extracellular nodulopeptin 901 as time passed (Fig. 3.27D). At 0, 70, 100 

and 120 mg/L phosphate conditions the cultures demonstrated the same 

pattern with an increase in 3 and 4 (86.9-114.1 ng/mL; Figs. 3.27C, E, F 

and G; Appendix 63).  

 

Between 96-100% of total NOD was found intracellularly under all 

conditions and it was not release in surrounding medium (Table 3.16). 

Extracellular nodulopeptin 901 released in surrounding medium (11-49%) 

at all phosphate conditions and much amount retained (51-89%) within 

the cells.  At 0, 0.1 and 70 mg/L conditions an equilibrium were observed 

between extra and intracellular nodulopeptin 901 concentrations in week 

4. 

 

The highest values of cell biomass, Chl-a and peptide production during 

environmental factors experiments are summarized in Table 3.17.  
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Figure 3.26. The intra and extracellular levels of NOD at different 
concentrations of phosphate for cultures of N. spumigena KAC 66 grown 

for 5 weeks at 22 °C (n=3, bars=1 SD).  A:- 0, B:- 0.1, C:- 10, D:- 40, 
E:- 70 F:- 100 and G:- 120 mg/L (Extracellular   , intracellular    ). 
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Figure 3.27. The intra and extracellular levels of nodulopeptin 901 at 

different concentrations of phosphate for cultures of N. spumigena KAC 
66 grown for 5 weeks at 22 °C (n=3, bars=1 SD).  A:- 0, B:- 0.1,  
C:- 10, D:- 40, E:- 70, F:- 100 and G:- 120 mg/L  

(Extracellular    , intracellular   ).  
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Table 3.16. Percentages of NOD and nodulopeptin 901 in extra  and 

intracellular levels  for cultures of N. spumigena KAC 66 grown for 5 
weeks at different phosphate concentrations of nitrate (n.d= not 

detected, the data is based on mean values of Appendices 61 and 63).  
 

Time Phosphate

(weeks) conditions

(mg/l) Extracellular Intracellular Extracellular Intracellular

(%) (%) (%) (%)

T0 3 97 25 75

T1 2 98 22 78

T2 1 99 16 84

T3 1 99 44 56

T4 6 94 49 51

T5 13 87 36 64

T0 2 98 37 63

T1 2 98 24 76

T2 1 99 11 89

T3 2 98 27 73

T4 1 99 48 52

T5 3 97 40 60

T0 3 97 33 67

T1 2 98 26 74

T2 1 99 20 80

T3 0 100 35 65

T4 0 100 40 60

T5 0 100 33 67

T0 3 97 31 69

T1 2 98 21 79

T2 8 92 17 83

T3 1 99 41 59

T4 0 100 42 58

T5 1 99 39 61

T0 3 97 27 73

T1 2 98 20 80

T2 1 99 15 85

T3 0 100 30 70

T4 2 98 45 55

T5 1 99 40 60

T0 3 97 19 81

T1 2 98 17 83

T2 1 99 14 86

T3 1 99 33 67

T4 4 96 37 63

T5 0 199 33 67

T0 4 96 37 63

T1 3 97 22 78

T2 1 99 16 84

T3 0 100 33 67

T4 4 96 47 53

T5 8 92 37 63

120

0

   NOD               Nodulopeptin 901

0.1

10

40

70

100
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Table 3.17. A summary of the highest values of cell biomass, Chl-a, and peptides obtained during effects of environmental 
factors on the growth of N. spumigena KAC 66. 

 

 

Measured

parameters

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 1 2 3 4 5

Cell biomass .- .- .- .- .- .- .- .- .- .- .- 20 .- .- .- .- 9.5 .- .- .- .- 120

Chl-a .- .- .- 30 30 .- .- .- .- 0 .- .- .- .- .- .- 6.5, 8.5, 9.5 .- 10 10, 120 .-

Intracellular NOD .- .- .- 22 22 .- .- .- .- .- 0 .- .- .- .- 6.5 .- .- 70, 100, 120 .- .- .-

Extracellular NOD .- .- .- .- .- .- .- .- .- .- 25 .- .- 7.5 .- .- .- 120 .- .- 100 .-

Intracellular .- .- .- .- .- 22 .- .- .- .- .- 11 .- .- .- 6.5 .- .- 0 .- .- .-

nodulopeptin 901

Extracellular .- .- .- .- .- 22 .- .- .- .- .- 11 .- .- .- 0 .- .- .- .- .- 0

nodulopeptin 901

weeks weeks

Environmental factors

Temperature (°C) Salinity (‰) Nitrate (mg/mL) Phosphate (mg/mL)

weeks weeks
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3.4. DISCUSSION 

 

This chapter emphasized the effects of various environmental factors on 

the growth and toxin production by N. spumigena KAC 66.  

 

3.4.1. Growth medium BG-11 and maintenance of N. spumigena  

          KAC 66 
 
 

In this study BG-11 (20 ‰; Allen and Stanier, 1968) growth medium 

was used for culturing of N. spumigena KAC 66 to obtain good growth. 

Many studies have used different media and salinity for the culturing of 

N. spumigena, the choice depending on the meteorological conditions of 

their collection sites. Likewise, Sivonen et al., (1989c) used Z8 medium 

with 7.5 ‰, which was identical to the salinity of the Southern Baltic 

Sea, while Carmichael et al., (1988) used Tris-buffered bold basal 

medium containing 1% NaCl to maintain toxic N. spumigena, isolated 

from Lake Ellesmere Lake, New Zealand. Hobson and Fallowfield, (2003) 

used ASTM medium for culturing of N. spumigena 001E, Australia. All 

cultivated N. spumigena successfully but BG-11 is highly recommended 

growth media for the cultivation of study strains (Musial and Plinski, 

2003). 

 

Cyanobacteria generally have lower maximal growth rates compared to 

other algal species (Reynolds, 1984).  Due to their slow growth rate 

cyanobacteria require a longer time period and extra nutrients to form a 

mass development (Mur et al., 1999; Reynolds, 1984). In this study BG-

11 (20 ‰) was used for the growth of N. spumigena KAC 66. Due to 

presence of Mg+, Na+, and Ca+ ions BG-11 provided favourable conditions 

for the studied strain (Oliver and Ganf, 2000). Without addition of 

nutrients and trace metals, the yield of cyanobacteria becomes too low 
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for laboratory experiments (Harrison and Berges, 2005). Trace metals 

also play an important role in the culturing of cyanobacteria and without 

addition of these, the growth rate decreases and the concentration of 

cyanobacteria becomes too low for laboratory experiments (Harrison and 

Berges, 2005). The effect of varying trace metal concentrations on the 

regulation of peptides has been investigated by several researcher 

groups. The effect of metal concentrations on toxin production by 

Microcystis aeruginosa was found not to have any effect on algal growth 

and toxin production Lukae et al., (1993).  

 

During the present study all stock cultures and experiments (except for 

temperature effect experiment) were performed at 22°C in a temperature 

controlled culture room. It was noted that 22°C is the best growth 

temperature for N. spumigena KAC 66. Some culture collection centres 

maintain their cultures at 20°C. Previous studies have indicated that 

most common planktonic cyanobacterial strains (Mur et al., 1999) 

including N. spumigena (Musial and Plinski, 2003) grow best at around 

20°C. Further studies by Robarts and Zohary (1987) showed that 25°C is 

a suitable temperature for many cyanobacterial strains to achieve their 

maximum growth rates, however a temperature higher than 22°C 

combined with a high light intensity can damage the cells and increase 

the evaporation rate of growth medium (Lorenz et al., 2005).  

 

3.4.2. Growth and peptide production in 10 L glass flasks 

 

Cyanobacterial biomass and toxin yield also varies between strains and 

species, and commonly the highest toxin production rates are observed 

under optimum growth conditions. During the growth experiment 
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conducted in 10 L glass flasks the biomass and Chl-a did not show any 

clear relationship, while Chl-a contents showed a clear and normal 

growth pattern as time passed. It is suggested that to determine the 

biomass of strain the pigment estimation gives more reliable results as 

compared to cell biomass. The intracellular NOD followed the same 

pattern as Chl-a. During the study period intracellular NOD concentration 

was high from week 2 to 6, maybe as a result of high concentration of 

cells. In comparison extracellular NOD concentrations were lower and 

toxins were not released in the surrounding medium or may be they 

degraded by bacteria present in medium. This resulted in very low 

amount of extracellular NOD, which maybe due to no cell lyses. Berg et 

al., (1987) indicated that cyanobacterial toxins remain inside the cell and 

are released into the surrounding medium only when the cells start dying 

and lysing. Several studies have shown that under favourable 

environmental conditions hepatotoxins (Gupta et al., 2002; Sivonen, 

1990a; Kiviranta et al., 1991,) and anatoxin-a (Gupta et al., 2002) are 

mostly retained within the cells and start to be released in the 

surrounding medium when cells die. In this experiment an increase of 

extracellular NOD was observed in week 3, also confirmed by Sivonen et 

al., (1999a). They mentioned that during growth experiments Oscillatoria 

agardhii from Finnish lakes, extracellular hepatotoxins were detected in 

the end of week 3-4.   

 

The production of nodulopeptin 901 within the cells and in the 

surrounding medium showed a similar trend to Chl-a concentrations. But 

intra and extracellular nodulopeptin 901 concentrations did not show any 

relation with cell biomass. Gupta et al., (2002) and Carmichael et al., 

http://www.csa.com/htbin/dbrng.cgi?username=edina1&access=edina1001&requester=gs&db=all&fed=results&qry=AU%253D%2528Kiviranta%2520J%2529
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(1988) showed that toxin production by N. spumigena did not relate to 

biomass increase but was correlated with Chl-a concentrations. Gupta et 

al., (2002) stated that toxin production was related to the primary energy 

processes within cells.  It is recommended that the best time to harvest 

cells to obtain the highest amount of toxins, cell biomass and Chl-a 

contents for N. spumigena KAC 66 grown in 10 L flasks is week 6 at 

22°C.    

 

3.4.3. Growth and peptide production in 8 L Perspex columns 

 

During the present study the effect of growth duration on cell biomass, 

Chl-a concentrations and the production of intra and extracellular 

peptides was also observed in Perspex columns. In this experiment in all 

columns the optimum cell biomass and Chl-a contents were observed in 

week 2, which declined as time passed. The cell biomass and Chl-a may 

vary according to the availability of light intensity and temperature. 

During the growth in columns, the cells started to decay and the colour of 

cultures was turned from green to pale yellow, probably due to high light 

intensity or maybe due to not proper cleaning of columns. This type of 

culturing system cannot be sterilized hence there is always the potential 

for increased variability and cell death due to contamination. It seems 

that less or over illumination was the main reason of poor or unhealthy 

cultures resulted in damaged or death of cells, low production of biomass 

and toxin production (Sivonen, 1990; Lehtimäki, et al., 1997).  

 

Hobson and Fallowfield (2003) suggested that 30 µmol/s/m2 is the best 

light intensity for culturing of N. spumigena isolated from Lake 

Alexandrina, Australia. Other researchers have also investigated the 
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effect of light on the growth and toxin production by other cyanobacterial 

strains and mentioned that production of peptides is directly influenced 

by intensity of light (Weidner et al., 2003; Utkilen and Gjolme, 1992; 

Lehtimäki et al., 1997; Watanabe and Oishi, 1988b). Hobson and 

Fallowfield (2003) noticed that due to photoinhibition at high irradiance 

N. spumigena 001E decreases its high production ability of intracellular 

hepatotoxins.  

 

In previous studies light intensity was found to be a factor effecting the 

toxin production in many cyanobacterial strains i. e. Oscillatoria (Sivonen, 

1990), Microcystin (Wiedner et al., 2003; Utkilen and Gjølme, 1992), 

Anabaena, Aphanizomenon (Rapala et al., 1997 and 1993), Lyngbya (Yin 

et al., 1997) and Nodularia (Lehtimäki et al., 1997 and 1994).  

 

In this study irradiance also had an apparent effect on the production of 

extra and intracellular peptide levels. Growth duration was also shown to 

effect peptide production. In general in this experiment intracellular NOD 

concentrations were high before the death of cell in columns while the 

extracellular NOD concentration kept increasing after the cell death, 

probably as a result of a considerable release of toxin into the medium 

from the cells (Berg et al., 1987).  It was noted that due to stress as a 

result of over illumination or the presence of bacteria, nodulopeptin 901 

was not released or detected into the surrounding medium and high 

amounts of toxins retained within the cells or they maybe degraded by 

bacteria (Berg et al., 1987). The conclusions of previous studies showed 

that the highest amount of intracellular hepatotoxins is produced under 

favourable growth conditions (Vezie et al., 2002; Watanabe and Oshi, 

1985).  
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A comparison between biomass of N. spumigena KAC 66, cultured in 

different vessels, was also carried out. It was mentioned earlier that light 

plays an important role in culturing of cyanobacterial strains. In this 

study it was observed that 17.35-17.47 μmol/s/m2 was ideal light 

intensity for growth experiments of N. spumigena KAC 66 in glass flasks. 

The high concentrations of cell biomass, Chl-a and peptides were 

observed in glass flasks compared to that found in columns. This was 

because all flasks were receiving equal light intensity and were not 

shaded by side walls. Columns were received different illumination at 

different lengths (ranged from 1.4 to 42.6 μmol/s/m2), which affected the 

growth and production of peptides. Flasks produced approximately ~15 

fold higher cell biomass compared to columns. It is concluded that to get 

best results, mass cultures of N. spumigena KAC 66 should be prepared 

in 10 L glass flasks.  

 

3.4.4. Effect of temperature on growth and peptide production 

 

The release and production of hepatotoxins were also affected by 

meteorological and physiological conditions (Veize et al., 2002). Salinity, 

light and temperature are commonly studied environmental parameters 

and are thought to affect the concentration of toxins produced by N. 

spumigena (Stolte et al., 2002; Sivonen and Jones, 1999). Among all 

parameters temperature is major factor to control the growth and toxin 

production ability of cyanobacteria. The growth of many cyanobacterial 

strains, such as Anabaena (Rapala et al., 1993), Microcystis (Utkilen and 

Gjolme, 1992), Nodularia (Lehtimäki et al., 1994) and Oscillatoria 

(Sivonen, 1990) is controlled by temperature. In the present study 
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temperature was observed to influence Chl-a concentrations and peptide 

productions. In this experiment N. spumigena grew well at all 

temperatures while considering Chl-a, at 30°C the highest Chl-a 

concentration was recorded. According to Lehtimäki et al. (1997) N. 

spumigena can grow fast at temperature of 25 to 28°C and show 

tolerance to survive at much higher temperatures and slower growth at 

temperature below than 16°C (Lehtimäki et al., 1997).  

 

This experiment has shown that the extreme temperatures do not 

influence on the release of nodulopeptin 901 but affected on the total 

amount of toxins. The low temperature (22°C) supported the highest 

concentrations extra and intracellular nodulopeptin 901. Similar results 

were reported by Sivonen, (1990), who observed that at high 

temperature (30ºC) Oscillatoria agardhii does not leak extracellular 

hepatotoxins in the surrounding medium but affect on the amount of 

toxins.  

 

The findings indicate that the higher temperature does not completely 

diminish the presence of extra and intracellular toxins but it can have an 

effect on their amounts.  

 

Hobson and Fallowfield (2003) worked on combined effects of light and 

temperature on hepatotoxin and biomass produced by N. spumigena 

001E. They showed that low light intensity (30 μmol/s/m2) combined with 

high temperature (30°C) and high irradiance (80 μmol/s/m2) with low 

temperature (20°C) enhance the production of high intracellular toxins 

and biomass. Van der Westhuizen and Eloff (1985) studied the effect of 

temperature and light on the toxicity and growth of Microcystis 
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aeruginosa. They recorded that M. aeruginosa produces high intracellular 

toxin contents at 145 μmol/s/m2 and high biomass at 205 μmol/s/m2 at 

20°C. Sivonen and Jones (1999) also suggested that at 18-25C usually 

several cyanobacterial strains produce most toxins. The results from the 

present study have shown that the optimum growth temperature (22°C) 

is associated with high intracellular toxin production. The high 

temperature (30°C) did not support high production of intra and 

extracellular NOD concentration, probably due to the environmental 

conditions the strain did not release recordable amount of toxins in the 

surrounding medium.  

 

Lehtimäki et al. (1997), Van der Westhuizen et al. (1986 and 1985); 

Watanabe et al. (1985) also observed that the high temperature cause 

stress and affect on the production of toxins and production of nodularin 

(Lehtimäki et al., 1994). The high temperature inhibits/slows the growth, 

production of toxins and metabolic activities results in cells go under 

stressed conditions (Graham, 2007) and a large amount of hepatotoxins 

retained within the cells, although leakage of nodulopeptin 901 increased 

towards the end of experiment. It is observed that high temperature had 

negative effects on extracellular NOD and positive on intra and 

extracellular nodulopeptin 901. The filamentous cyanobacterium, O. 

agardhii also showed same response against biotic and abiotic factors on 

the hepatotoxin production (Sivonen, 1990). At high temperature most of 

hepatotoxins kept within the cells and leakage of hepatotoxins occurred 

when cells die or cell lysis.  

 

It is suggested that 22°C is the best temperature to obtain maximum 

amount of intracellular NOD and intracellular and extracellular 
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nodulopeptin 901.  It is also recommended that 10 L flasks are suitable 

culture vessels to obtain maximum amount of biomass and peptides.  

 

3.4.5. Effect of salinity on growth and peptide production  

 

Salinity is also an important environmental factor to control the growth 

and toxin production of all cyanobacterial strains. In the present study, 

11 and 20 ‰ supported the growth of N. spumigena, while at higher salt 

concentration (25 ‰) decreased the growth rate. Many cyanobacterial 

strains have acclimation mechanisms to survive under stenohaline and 

hypersaline conditions (Mazur-Marzec et al., 2005). The results obtained 

from the present study showed that all salinities had a considerable effect 

on biomass and the total amount of NOD produced as time progressed. 

This has been previously described in the cyanobacterium, Microcystis 

aeruginosa (Moisander et al., 2002). In the present study the high 

intracellular NOD contents were found at 2-11 ‰. Lehtimäki et al. 

(1997) worked on N. spumigena BY1 collected from the Baltic Sea. They 

indicated that the maximum growth rate of strain BY1 was found at 10 

psu (≈10 ‰) while 15 psu (≈15 ‰) favoured the highest production of 

intracellular NOD at 15 psu (≈15 ‰). Mosiandar et al, (2002) 

demonstrated that N. spumigena FL2f collected from the Baltic Sea, did 

not show any change in growth rate when treated with salinities, ranged 

from 0-20 psu (≈0-20 ‰) NaCl. Horstman (1975) indicated that optimal 

growth of N. spumigena from the Baltic Sea was recorded at 5-15 psu 

(≈5-15 ‰). It is concluded that the salt tolerance of N. spumigena 

varies and depends on strains, from where they collected.    
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In this study at the lowest salinity (2 ‰) the highest concentration of 

Chl-a was observed. This observation was also supported by Lehtimäki et 

al., (1997). They observed that at low salinity (10 ‰) N. spumigena 

produced the highest amount of Chl-a. Blackburn et al., (1996) worked 

on six strains of N. spumigena collected from various locations of 

Australia and noticed that the maximum growth of strains was recorded 

at 12 ‰. This study also confirms that N. spumigena KAC 66 produces 

the highest biomass at 11 ‰.    

 

At all salinities Chl-a contents and increasing intracellular NOD levels 

increased initially and then decreased as time progressed. These results 

are supported by Stal et al., (1999). They estimated NOD contents by 

NOD/Chl-a ratios and found that increased salinity affect on increases 

NOD and Chl-a concentrations.  

 

In this study N. spumigena KAC 66 also showed that an increase in cell 

biomass did not support toxin production but showed correlation with 

Chl-a concentrations (Carmichael et al., 1988). Lehtimäki et al., (1997) 

worked on effect of salinities (0-30 ‰) on Chl-a contents and dried cell 

biomass of N. spumigena. They noticed that dried cell biomass does not 

have any correlation with salinity, while Chl-a has positive correlation 

with salinity. Stal et al. (1999) found considerable effects of salinity on 

growth and NOD production. The maximum growth was recorded 

between 7-18 psu (≈7-18 ‰) and lower at 3 and 24 psu (≈3 and 24 

‰). While the growth was strongly inhibited at 0 and 35 psu (≈35 ‰). 

At high salinities (20 and 25 ‰) the cultures went under stressed 

conditions and high amount of NOD could not be produced (Blackburn et 

al., 1996) or degraded. The current study it was noticed that the low 
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salinities (2 to 11 ‰) enhanced the production of extra and intracellular 

nodulopeptin 901 and intracellular NOD levels. Hobson and Fallowfield 

(2003) indicated that N. spumigena from Lake Alexandria, Australia 

produces high amount of intracellular hepatotoxins at salinities ranged 

from 0.36 and 26.4 ‰. They noted that salinity has effect on the cell 

numbers, optical density, Chl-a concentration, dry biomass and growth 

rate. They also speculated that N. spumigena NSG 0897 grows 

considerably in salinities ranged from 4-16 psu (≈4-16 ‰), while 8 psu 

(≈8 ‰) was the best salinity to obtain the optimal growth of this strain.  

 

In another study Musial and Plinski (2003) worked on effects of a range 

of salinities (4, 8, 12, 16, 24, 30, 35 psu; (≈4, 8, 12, 16, 24, 30, 35 ‰) 

on growth of N. spumigena NSG 0897 collected from the Gulf of Gdansk, 

Baltic Sea. In another study Burja et al., (2001) cultured Lyngbya 

majuscula in 3 different media having different salinity, pH and trace 

elements. They suggested that varying the culture conditions under 

which Lyngbya majuscula was grown had the greatest effect on 

secondary metabolite production. Orr et al., (2004) carried out a study 

using a laboratory culture of Microcystis aeruginosa and found that M. 

aeruginosa is more tolerant at high salinity and continue producing 

microcystin.  

 

It is concluded that the biological activity of cyanobacteria appears to be 

depended upon growth conditions and therefore the performance of toxin 

producing organisms maybe improved by altering the cultural conditions. 

It is suggested that 11 to 20 ‰ is the best salinity range to harvest 

culture to obtain high amount of extra and intracellular peptides and 

biomass. 
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3.4.6. Effect of nitrate on growth and peptide production  

 

The observations from the present study showed that in nitrate free and 

all other nitrate conditions Chl-a, cell biomass and intracellular peptides 

levels increased with time. However, during the later phase of growth the 

toxin levels often dropped. These results can be associated with that 

where growth nutrients are in limitations, in stressed conditions the strain 

decreased the production of peptides because biosynthesis of peptides 

consumes significant energy and cells use limited nutrient sources to 

survive. Vezie et al., (2002) did a comparative study between toxic and 

non toxic Microcystis spp. under variable nitrogen (0.84-84 mg/L) and 

phosphorus (0.05-5.5 mg/L) conditions. They noted that in nutrient 

limited conditions toxic strains reduce the production of toxins and use 

resources for their growth only. Therefore, non toxic Microcystis strain 

grew better than toxic strain. It might be that the biosynthesis of 

hepatotoxin microcystin requires additional energy consumption during 

toxin production process.  

 

Thus, the effect of increased nutrients and low N/P ratio on the blooms of 

N. spumigena in the Baltic Sea is still a debated topic. According to Oliver 

and Ganf (2000) low nitrogen source also affect the growth of 

cyanobacterium. In the present study the highest cell biomass was 

recorded in week 5 at highest concentrations of nitrates. Vintila and El-

Shehawy (2012) mentioned that N. spumigena strains isolated from the 

Baltic Sea, did not respond considerably to nitrate rich cultures. They 

suggested that N. spumigena strains do not seem to be efficient to 

uptake dissolved inorganic nitrogen (DIN) compared with other nitrogen 
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fixing cyanobacteria. In the Baltic Sea N. spumigena produces blooms in 

N limited areas (Stal et al., 2003) and seem to be affected by other 

factors i.e. salinity, temperature and phosphorus (Vintila and El-

Shehawy, 2012). It has suggested that maybe due to geographical 

distribution and variability in the genetic background within the species 

N. spumigena strains respond differently (Vintila and El-Shehawy, 2012).    

 

Stal et al., (1999) and Kivi et al., (1993) speculated that in late summer 

N. spumigena forms blooms in nutrient limited conditions in the Baltic 

Sea. According to them it is an assumption that low N:P ratio in the Baltic 

Sea water promotes the cyanobacterial growth. However, it seems to be 

apposite in this laboratory based study the highest cell biomass was 

observed at high concentrations of NO-
3. Stal et al., (2003) suggested 

that abundance of N2-fixing cyanobacteria in the Baltic Sea is due to low 

N:P ratios.  

 

At lower nitrate conditions and control cultures, an increased intracellular 

NOD levels were observed, this hypothesis is supported by one of 

laboratory based experiments that Anabaena spp. (Rapala et al., 1997) 

and N. spumigena (Lehtimäki et al., 1997) demonstrated an increase in 

microcystin and nodularin productions under N limited conditions, 

respectively. In another study made by Vuorio et al., (2005), who 

performed an experiment on the effect nitrogen to phosphorus ratio on 

the phytoplankton community structure in mesocosm conducted in 

Archipelago Sea, Northern Baltic Sea. In the end of 3 weeks experiment 

they found that microcystin and nodularin increased with increasing 

biomass of Anabaena spp. and N. spumigena, respectively.  
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3.4.7. Effect of phosphate on growth and peptide production  
 
 

Cyanobacterial strains have ability to store phosphorus and can maintain 

their growth and toxin production under phosphorus deficient conditions 

(Karjalainen, 2005). This hypothesis was approved in this study that N. 

spumigena was grown under all phosphorus conditions and cell biomass 

and Chl-a concentrations were high maintained for several weeks but 

when fully depleted results in decline. At the highest phosphorus level a 

linear increase in cell biomass was recorded compared with other 

conditions. It shows that the high phosphorus concentration supported 

the growth of N. spumigena. The blooms samples of Aphanizomenon flos-

aquae and N. spumigena collected from the Gulf of Finland, Baltic Sea, 

grew in the high biomass in under high phosphorus and low N:P ratios. 

(Kononen et al., 1996). Phosphorus studies on both phosphorus starved 

inocula of strains, represented the slow growth by hepatotoxic N. 

spumigena and stimulated growth by non-toxic A. flos-aquae, from the 

Baltic Sea. It represented that the deficient medium non toxic strains 

grow well because they do not spend energy on the biosynthesis of 

hepatotoxins (Lehtimäki et al., 1997).  

  

In present study the high cell biomass, Chl-a and intra and extracellular 

NOD and nodulopeptin 901 concentrations were found in the end of log 

phase and in beginning of stationary phase in control to high phosphorus 

conditions, which followed by a decline. Microcystins, anabaenopeptilides 

and anabaenopeptins, produced by Anabaena strain 90, showed the 

highest peptide concentrations in the medium phosphate levels (Repka et 

al., 2004). The same results were found for microcystins at the middle of 
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the growth period (Sivonen and Jones, 1999). In general, in this study, 

at all phosphorus conditions extracellular NOD and nodulopeptin 901 

(except in control medium) a decline of toxins was observed with 

incubation time. Lehtimäki, (2000) reported that at different phosphorus 

conditions extracellular NOD concentrations increased with increasing 

time.  

 

In the present study salinity, nitrate and phosphate experiments the 

much amount of NOD retained within the cells during late log phase and 

early stationary growth phases. This hypothesis was also supported by 

several investigations. Under favourable conditions anatoxin-a (Gupta et 

al., 2000) and microcystin (Rapala et al., 1997 and Sivonen, 1990) 

mostly retained within the cells. Vezie et al., (2002) also noted that the 

toxic Microcystin cultures were at late logarithmic or early stationary 

phases, the much amount of intracellular microcystin retained within the 

cell, while growing in different N and P concentrations. In the present 

study at high concentrations of nitrate the lower amounts of intra and 

extracellular peptides were recorded. Lehtimäki et al., (1997) found that 

at high inorganic N concentrations lower amount of intracellular NOD was 

found in nitrogen fixing N. spumigena.  

 

Due to recently discovered nodulopeptin 901 no data is available on the 

effects of environmental factors on its intra and extracellular levels. It is 

concluded that the biological activities of N. spumigena KAC 66 appear to 

be dependent upon suitable growth conditions. They also affect the ability 

to produce less or high amounts of biomass and toxins, which can be 

controlled by altering the culture conditions. 
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In all experiments, Chl-a contents showed a positive correlation with 

extra and intracellular NOD production, as Chl-a concentrations 

decreased NOD levels were also decreased. Only columns showed that 

only intracellular NOD levels had positive correlation with Chl-a contents, 

it maybe due to the cell death in lag phase in columns and toxins could 

not be released in the surrounding media, while nodulopeptin Chl-a 

contents showed a negative correlation, a decrease of Chl-a contents 

showed an increase of extra and intracellular nodulopeptin 901 contents. 

Carmichael et al. (1988) and Lehtimäki et al., (1997) mentioned that Chl-

a contents of N. spumigena collected from the Baltic Sea, showed a 

positive correlation with extra and intracellular toxins.  

 

In this study in all experiments a fluctuation in cell biomass was 

observed, probably due to start of death phase of cultures and died cells 

were measured as cell biomass. The second reason was that the salt and 

nitrate contents (in salinity and nitrate experiments) remained on filter 

discs, used for filtration to determine cell biomass, which may cause 

variation in cell biomass (Hobson and Fallowfield, 2003; Lehtimäki et al., 

1997). Problem with residual salt contributing to dry weight shows that 

cell biomass is not a reliable measure to determine biomass of cultures. 

Many scientists also recommended that Chl-a pigments are good to 

determine biomass of growing strains (Murphy et al., 2005; Gupta et al., 

2002; Lawton, 1999; Lehtimäki et al., 1997; Becker, 1994). 

 

3.5. CONCLUSION 

 

It is concluded that the environmental factors have considerable impact 

on the biomass and toxins production. Recent years due to heavy load of 
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agricultural runoff and other pollutants to the Baltic Sea, have resulted in 

increase of nutrients. The global warming is also providing favourable 

conditions for spreading of toxic blooms of N. spumigena in the Baltic Sea 

and its adjacent areas and other freshwater and brackish water bodies. If 

water temperature rises in the Baltic Sea, this study suggests, more rapid 

growth of N. spumigena but lower NOD levels release into environment. 

It has also been predicted that N2 fixation by N. spumigena might be 

increased by 67±50% in the next 100 years, which can promote the 

blooms of N. spumigena. This is first study on the factors influencing on 

the production of newly characterised nodulopeptin 901.  

 

The results from present study give physiological and chemical evidences 

that which conditions are favourable and unfavourable for the production 

of biomass and toxin levels, which maybe helpful to explain the 

distribution of N. spumigena in the Baltic Sea. According to present study 

these abiotic factors will also helpful to control the dominance of strain in 

the natural blooms in the Baltic Sea and as well as laboratory based 

experiments to produce high amount of peptides for research purposes.  

 

The investigations on the growth limiting N or P nutrients and the 

response of the N. spumigena are still being unexplored. It was observed 

that ≈40-50% nosulopeptin 901 released extracellularly. It is suggested 

that there are further investigations required to note the role of 

nodulopeptin 901 as a signalling compound.  

 

To obtain highest amount of cell biomass, Chl-a, and intracellular and 

extracellular peptides, there is need to make some changes in recipe of 

BG-11 and time to harvest N. spumigena KAC 66 cultures. 
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CHAPTER 4 
 
 
 
TAXONOMY AND CHARACTERISATION  
OF COMPOUNDS FROM ISOLATES OF  

FRESHWATER AND HYPERSALINE  
ENVIRONMENTS  
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4.1. INTRODUCTION 

 

Natural products play an important role in the development of medicines. 

Cyanobacteria are most promising organisms to produce bioactive and 

novel compounds. They represent a wide biological diversity from 

terrestrial habitats to water bodies and are a rich source for potential 

discovery of new biochemicals, including enzymes, pharmaceuticals and 

novel bioactive compounds. In the past 30-40 years marine (Burja et al., 

2001; Tan, 2007) and freshwater (Singh et al., 2011) cyanobacteria have 

been targeted to explore bioactive and novel compounds for drug 

discovery programmes.  

 

In recent reviews (Singh et al., 2011; Butler, 2005; Burja et al., 2001), 

mentioned that several members of cyanobacterial genera belong to 

Microcystis, Synechocystis, Lyngbya, Oscillatoria, Phormidium, Anabaena, 

Cylindrospermopsis, Nodularia and Nostoc have been known to produce a 

number of antibacterial, antifungal, anticancer, antimalarial, anti-HIV, 

cytotoxic, antiviral, anti-protozoal, and  enzyme inhibitors.  

 

A literature survey was done on published bioactive cyanobacterial 

compounds in Journal of Natural Products (2007-2008; Singh et al., 

2011) and represented that in one year 38 new compounds have been 

isolated from cyanobacteria (Fig. 4.1A), among which 82% of compounds 

were antiprotozoal, antibacterial, antiviral, cytotoxic,  protease inhibitors 

and  Ca2+ channel inhibitors. In another review Burja et al., (2001) 

analysed 550 research papers published during 1996-2001. They 

revealed that a total of 424 compounds were isolated from marine 

cyanobacteria and most of them showed activity against cell lines, cancer  
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Figure 4.1. Reported biological activities of cyanobacterial compounds 
 
A:- Cyanobacterial compounds (38 new compounds; adopted from  

Singh et al., 2011) 
B:- Marine cyanobacterial compounds (424 compounds; adopted from 

Burja et al., 2001) 
 

 
cells, antibiotics, fungi and viruses (Fig. 4.1B). 

 
 

The bloom forming and hepatotoxin producing strain Microcystis 

aeruginosa is known to produce variety of toxic compounds. It produces 

cyclic heptapeptide microcystin (tumour promoter) and cyclic 

desipeptide cyanopeptolins i.e. aeruginosin (enzyme inhibitor), 

A 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
B 
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microcystilide (cell differentiation), micropeptin (endotoxic; Burja et al., 

2001). Cyanopeptolins are also known as micropeptins, aeruginopeptins 

and microcystilides and widely distributed in cyanobacteria 

(Chroococcales, Oscillatoriales and Nostocales). They have more than 

100 variants and have a diverse mass range (770 – 1181 Da). They are 

inhibitors of serine proteases of crustaceans and mammals (Gademann 

et al., 2010). 

 

Cyanopeptolins are characterised by 3-amino-6-hydroxy-piperidone 

(Aph) and cyclisation occurring with the formation of an ester bond 

between the β-hydroxy group of threonine with the carboxy group of the 

terminal amino acid. Attached to the amino group of threonine is a side 

chain of variable length and composition. Common side chains include 

one or two amino acids and an aliphatic fatty acid such as octanoic acid 

or glyceric acid (Fig. 4.12). 

 

Due to continued medicinal importance there is a need to isolate new 

strains of cyanobacteria from different habitats, which may never been 

sampled. Sampling from different environments can also provide 

information on geographical distribution of species and toxin production 

under extreme environments. The present study provides an opportunity 

to isolate cyanobacterial strains and toxic compounds from two different 

water bodies, the hypersaline water body, the Dead Sea and freshwater 

Dian Lake, China.  

 

4.1.1. Dian Lake, Dianchi Lake or Kunming Lake, China 

 

Dian Lake is the sixth largest hypereutrophic lake and main water source 

of Kunming, Yunnan Province of southwestern China, which is divided  
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Figure 4.2. Map showing the location of Dianchi Lake, China. 
(Google map, used with permission) 

 
 
 

into two sections, Waihai and Caohai (Fig. 4.2). It covers 298 km2 area of 

land (Liu et al., 2013) and is 1,886.5 m above than sea level.  

 

Due to industrialisation and urbanization it receives a heavy nutrient 

load, which causes development of frequent cyanobacterial blooms (Liu 

et al., 2013). According to a survey made in 2006-2007, the total 

phosphorus (0.12-0.35 mg/L), total nitrogen (1.40-5.06 mg/L) and 

chlorophyll-a (0.047-0.336 mg/L) concentrations were high (Wang et al., 

2011), which provided favourable eutrophic conditions for cyanobacterial 
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blooms. 

 

In spring and summer blooms (September 2001 to July 2002) Microcystis 

(35.7%-88.0%) and Aphanizomenon (0.46%-30.75%) were dominant 

strains among the total concentration of phytoplankton (Yuan et al., 

2005; Mei et al., 2006). In another report (Liu et al., 2006) the main 

bloom forming cyanobacteria were Microcystis aeruginosa, Microcystis 

viridis (Lirong et al., 1999) and Aphanizomenon flos-aquae. Wu et al., 

(2009) also indicated that microcystin-LR and MC-RR were the dominant 

hepatotoxins, reported from bloom samples of Dian Lake.  

 

4.1.2. The Dead Sea  

 

The Dead Sea, Sea of Death or the Salt Sea is a unique, athalassohaline, 

exposed to extreme environmental stresses, inland hypersaline lake 

located near the Syrian–African Rift Valley, on the border between Jordan 

and Israel (Fig. 4.3). It is 377 m deep and the earth's lowest elevation on 

land. The surface of the lake is 423 m below sea level. The main sources 

of water input in the Dead Sea are winter rain floods and only the Jordan 

River, bringing water from Lake Kinneret, Israel. 

 

http://europepmc.org/abstract/CBA/573074/?whatizit_url_Species=http://www.ncbi.nih.gov/Taxonomy/Browser/wwwtax.cgi?id=1126&lvl=0
http://europepmc.org/search/?page=1&query=AUTH:%22Song+Lirong%22
http://en.wikipedia.org/wiki/Sea_level
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              Figure 4.3. Map showing the location of the Dead Sea 
              (Google map, used with permission) 

 

 

Currently, the pH of the Dead Sea is about 6 (Oren, 2000) and the 

salinity is around 34-40 PSU (Kis-Papo et al., 2003; Oren, 2008). In the 

lake the cation concentrations is exceptionally very high (Cl− > Br− 

>Mg++ >Na+> Ca++>K+; Khlaifat et al., 2010).  

 

The biological monitoring of the Dead Sea was started in 1936 and first 

time Benjamin Elazari-Volcani reported the presence of algal and 

cyanobacterial communities (Oren, 2008) when salinity was much lower 

than at present time. 

 

The microorganisms, bacteria, diatoms, green algae and fungi (Table 

4.1) are best adapted to this hypersaline environment. In the salt lake 
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the halophilic phototrophic primary producer is the unicellular green alga 

Dunaliella pawa which forms dense blooms followed by halophilic 

Archaeal belong to family Halobacteriaceae. The blooms of these 

microorganisms occur after rain when rain and fresh water from Jordan 

River cause remarkable dilution in the upper layers of water (Oren, 

2000). As a result of evaporation, the upper layer of water becomes 

unfavourable and the dense blooms of Dunaliella and Archaea disappear 

slowly.  

 

Some cyanobacteria are able to adapt to salinity stress (see 1.1.9.2) and 

can survive in hypersaline environments like other halophilic 

microorganisms. However, in the Dead Sea ecosystem the cyanobacteria 

do not play a significant ecological role, although several cyanobacterial 

strains have been identified (Volcani, 1944; Oren, 2008; Nevo and 

Wasser, 2000).  
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Table 4.1. A list of micro-organisms reported from various habitats   
of the Dead Sea. 

 

Genera/species References

 Virus-like particles Oren et al. , (1997)

Anaerobic bacteria

Halobacteroides halobius , Orenia marismortui Oren et al. , (2004)

Selenihalanaerobacter shriftii, Sporohalobacter lortetii

Aerobic bacteria

Chromohalobacter marismortui , Halomonas halmophila , Oren et al. , (2004)

Chromohalobacter israelensis, Salibacillus marismortui

Fungi

77 fungal species Kis-Papo et al. , (2003)

Oren, (2005)

Protozoa  Volcani, (1944)

Diatoms

Melosira, Navicula, Gomphonema, Cymbella, Pinnularia, see Oren, (2008)

Eunotia, Synedra

Dinoflagellates

Exuviella see Oren, (2008)

Cyanobacterial genera

Aphanocapsa , Aphanothece , Microcystis (?), Oscillatoria , Volcani, (1944) 

Phormidium, Plectonema

From freshwater springs

Scytonema,  Homoeothrix, Phormidium, Cylindrospermum Oren, (2008)

From brackish water bodies

Chroococcus, Gloeocapsa, Gloeothece, Gomphosphaeria, Oren, (2008)

Johannesbaptista, Merismopedia, Nodularia Oscillatoria,

Phormidium and Schizothrix

From terrestrial environments Oren, (2008)

Entophysalis, Schizothrix, Microcoleus and Nostoc 

Experimental solar ponds 

Aphanothece, Aphanocapsa, Gomphosphaeria, Gloeocapsa, Dor and Ehrlich, (1987)

Chroococcus, Chlorogloea, Chroococcidiopsis, Phormidium, 

Spirulina and Oscillatoria 

Green algae

Dunaliella pawa, Scenedesmus, Pediastrum, Ulothrix Nevo and Wasser, (2000)

(see Oren, 2008)

(based on Oren, 2008)  
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4.1.3. Isolation and identification of cyanobacteria 

 

Photosynthetic cyanobacteria belong to morphologically and 

developmentally diverse group of prokaryotes and range from unicellular 

to filamentous forms. About 2000 cyanobacterial strains have been 

reported (Mundt et al., 2001) and found in variety of habitats from 

aquatic to terrestrial but their taxonomic diversity is not different. In 

comparison to their diversity the identification of cyanobacteria is only 

restricted to comparatively few representatives. The methodology used 

for isolation and purification of cyanobacteria is quite different compared 

to other bacteria. The traditional isolation techniques used to isolate 

cyanobacteria may restrict the number of strains, which can be important 

for production of biochemicals and can act as useful industrial and 

research tools.   

 

The identification and distribution of cyanobacteria play an important role 

in the field of research especially in bloom samples. Rapid microscopic 

identification of cyanobacteria can be helpful to detect community 

composition and presence of harmful species. Microscopy can be readily 

used to identify organisms to genera level, which is often adequate to 

predict possible bloom hazards and initial precautions to control blooms 

in drinking or recreational water bodies. It is also useful to count cell 

numbers i.e. how much number of cyanobacteria may be hazardous to 

health.  

 

A number of studies have been done on the isolation and purification of 

cyanobacteria (Allen and Stanier, 1968; Guillard, 1973; Rippka, et al., 

1988; Hallegraeff, et al., 1995, Rippka 1979; Lawton, et al., 1999).  
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4.1.4. Microscopic examination 

 

Cyanobacteria can be identified on the basis of their morphologically and 

can be divided into non filamentous (solitary cells, aggregated, colonial or 

surrounded by mucilage), filamentous with specialised cells (akinete, 

heterocysts) and filamentous non specialised cells (hormogonia). They 

are also capable of reproduction by binary fission and show true 

branching, which can be useful to identify certain strains under 

microscopic examination. There are several techniques which have been 

developed to identify cyanobacterial species including light, compound, 

inverted, epifluorescence microscopes and methods comparing DNA-

sequences. Most cyanobacterial strains can be easily differentiated from 

other phytoplanktons and microalgae under the microscope on the basis 

of their morphological characteristics. Recently, Hoffmann et al., (2005) 

proposed classification system of cyanobacteria based on the genetic 

relationships, mainly 16S rDNA gene sequence, morphology and 

thylakoid arrangements.      

 

4.1.5. Axenic cultures 

 

Field samples contain a variety of contaminants and are difficult to 

separate from cyanobacterial strains. To grow single species of 

cyanobacteria it is essential to obtain axenic cultures. Several methods 

have been suggested to obtain axenic cultures from heavily contaminated 

natural field samples (Cho et al., 2002 and Choi et al., 2002). Antibiotic 

treatment is a successful and widely used method to achieve axenic 

cyanobacterial strains (Choi et al., 2002 and Cho et al., 2002; Vazquez-

Martinez et al., 2004). In order to obtain bacteria free cultures of 
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cyanobacteria, a range of antibiotics or combination of antibiotics i.e. 

cycloheximide, kanamycin, nystatin, erythromycin, mixture of 

streptomycin, β-lactum, penicillin and chlorophenicol, ampicilin, 

carbenicllin and chlorampehnicol (Vazquez-Martinez et al., 2004) are 

added to the medium to inhibit the growth of Gram +ve and Gram –ve 

rods and cooci bacteria.  

 

In some cases due to the presence of a mucilaginous envelop around the 

cells/filaments, antibiotic treatments do not show any effectiveness. 

Mucilaginous covering protects cyanobacteria from any antibiotic 

treatments (Cho et al., 2002). High concentration of antibiotic treatment 

can also harm to cyanobacteria. To avoid these difficulties several 

physical methods are available to isolate cyanobacteria from mixed and 

natural field samples i.e. sample crushing between two glass slides, 

filtration, homogenization in a homogenizer, serial dilution, streaking 

over agar plates and capillary methods. Some strains can be isolated by 

gliding and phototaxis of motile cyanobacteria (Vaara et al., 1979). 

Antibiotic treatment is often the last method to obtain bacteria free 

isolates to get rid of bacterial contaminants well attached with 

mucilaginous sheaths and among bunch of cells/colonies.   

 

4.1.6. Isolation techniques 

 

Isolation and purification of cyanobacteria are relatively restricted due to 

the difficulties faced during isolation and purification of a single strain. 

Several liquid and solid media have been developed by Allen and Stainer 

(1968), Rippka (1979) and Waterbury and Stainer (1981) to obtain 

purified and isolated colonies or single cells. Traditionally streaking over 
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agar plates and capillary methods are suggested to isolate cyanobacterial 

strains. Commercially available agar is used as solidifying agent to obtain 

single strain, but it is known to contain impurities, which may harm 

cyanobacterial growth or inhibits the growth of certain strains of 

cyanobacteria. A number of studies have been done to reduce the 

negative effect of impurities present in agar by means of separate 

sterilization of agar and nutrient solutions in separate Erlenmeyer (Allen 

and Stanier, 1968), lower agar concentration (Shirai et al., 1989), glass 

fibre filters (Ferris and Hirsch, 1991) and washing of agar (Krieg and 

Gerhardt, 1981).  

 

The main aim of the current study was to provide a new knowledge about 

cyanobacterial diversity and to detect presence of any novel compound/s 

from two different water bodies, the Dian Chi Lake and the Dead Sea. 

These novel bioactive compounds may be used for pharmaceutical drug 

discovery programmes. 

 

4.2. MATERIALS AND METHODS 

 

In the present study cyanobacteria were isolated from diverse 

environments including fresh, marin, brackishwaters, eurythermal, 

stenohaline and euryhaline habitats. The natural samples from the Dead 

Sea were provided by Dr. Iain Douglas, University of Aberdeen, United 

Kingdom. The field samples were collected from various localities of the 

Israeli side of the lake, the samples were either collected from the shore, 

the spring themselves, the water table and from the thermal springs of 

Quedem. Fifty three samples were received from the Dead Sea and 

divided into seven groups on the basis of salinity which ranged from 4-
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>32 ‰ (Appendix 64). The salinity of samples was checked by 

refrectometer. 

 

The bloom samples from the Dian Lake, China were provided by Mr. 

David Van Alstyne, Director (St. Cyrus, Scotland), Scottish Bioenergy. 

The samples were identified microscopically on the basis of their 

morphology, colour, shape and size.  

 

In this study the classification and identification of species are based on 

classification schemes of Komarek and Anagnostidis (1999 and 2005).  

The present study was initiated with a review to isolate cyanobacterial 

strains collected from blooms samples of Dianchi Lake, China and the 

Dead Sea samples.     

 

The following methods were used to obtain isolated and purified single 

clone or colony (Fig. 4.4). 
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                           Plankton sample 
                                (Natural or bloom samples) 
 

 

                                                                
 Examine under the microscope 

 
 

                                
          Streaking method        Capillary isolation            Serial dilution 

           (Agar plate)                                                 (Nunclon plate) 
 

                                                             
                                 Single colony/cell/filament       
          

                            
 

                                              
                              Examine under the microscope  
 

 
      Test for purity 

 

 

 

                                                            
 

                       Culture single clone in a separate 250 ml  

                       Erlenmeyer flask containing 100 ml BG 11  

              
      Figure 4.4. A method to obtain a single cell or colony of    
      cyanobacteria/microalgae from natural sample. 
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4.2.1. Preparation of agar plates 

 

In an Erlenmeyer flask (500 mL) 23 g of agar (Oxoid, Hampshire, UK) 

was dissolved in 400 mL distilled water and heated up to transparency, 

equilibrated up to room temperature and cut into small cubes (~1 cm). 

The agar cubes were dipped into distilled water for 3-4 days with several 

replacement of distilled water to remove its toxicity (Waterbury et al., 

1981; Rippka, 1988). 

 

In another Erlenmeyer flask (1000 mL) 600 mL double-strength medium 

(BG-11; 0 ‰) was prepared. Both flasks were autoclaved at 15 lb of 

pressure at 121 ºC for 15 min. After cooling, both solutions were mixed 

together (Rippka, 1988) and the lukewarm medium was poured into Petri 

plates (~25 mL agar/Petri plate).   

 

This procedure was repeated for another set of Petri dishes containing 

antibiotic. In this study cycloheximide (Sigma, Poole, UK) was used to 

inhibit protein biosynthesis in eukaryotic organisms. The cooled molten 

agar was supplemented with aqueous stock solution of cycloheximide (25 

µg/mL; wt/vol), prepared freshly and sterilized by filtration syringe driven 

filter unit (33 mm; pore size 0.45 µm) (Millex, Millipore, Ireland). The 

molten agar was poured over Petri dishes (≈25mL agar/Petri plate) and 

allowed to set at room temperature in a laminar flow hood to avoid any 

contamination. 

 

4.2.2. Streaking method 

 

The naturally contaminated and benthic cyanobacteria, present in bloom 

samples, were isolated by streaking method (Hoshaw and Rosowski, 

1973) on pre-prepared solidified agar plates. After solidification of agar in 

http://en.wikipedia.org/wiki/Enzyme_inhibitor
http://en.wikipedia.org/wiki/Eukaryote
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Petri plates, cyanobacterial sample was crushed between two glass slides 

and a drop of crushed cyanobacteria streaked over solidified medium with 

an autoclaved bent Pasteur pipette (Rippka, 1988). The isolation by 

streaking method was done in two sets of Petri dishes. One set was 

contained agar and another with agar contained the antibiotic, 

cycloheximide.   

 

The sides of all Petri plates were sealed with Parafilm and incubated for 

4-5 weeks under continuous low white cool illumination (0.08-0.90 

μmol/s/m2) at 22ºC in order to obtain best growth of cyanobacterial 

species. All Petri dishes were covered for 3 days with muslin to protect 

new colonies from high light intensity. The plates were examined at 

weekly intervals to observe any new colony of cyanobacteria under 

dissecting microscope at lower magnification (60x, Olympus SZ40, 

Japan). The purity of newly isolated cyanobacterial strains were checked. 

Those cyanobacteria were glided much further from streaking lines and 

rapidly separated from their contaminants were picked by Pasteur 

micropipette and transferred into 250 mL flash containing 100 mL BG-11. 

In some cases motile and filamentous cyanobacteria were self-purified on 

agar plates by gliding away from other cyanobacterial strains and 

contaminants. Those filamentous cyanobacteria were directly picked up 

by capillary method. 

 

4.2.3. Capillary method   

 

Several cyanobacterial and green algal strains were easily isolated by 

capillary direct picking method at the first attempt using Pasteur 

micropipette (Rippka, 1988). The Pasteur pipette is an ideal tool to pick 
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single filament or unicellular cells. A drop of fresh bloom or natural 

samples was placed over a glass slide and a single cell or colony of 

cyanobacteria was picked by capillary method under dissecting 

microscope (Andersen and Kawachi, 2005). Once getting single cell or 

colony was obtained, it was checked for its purity and then transferred 

into 250 mL Erlenmeyer flasks containing 100 mL BG-11 (0 ‰).   

 

4.2.4. Serial dilution culture (SDC) method 

 

Serial dilution method is used to isolate planktonic cyanobacteria as 

described by Guillard (1973) modified by Andersen and Throndsen 

(2003). Two or three drops of sample were crushed between two glass 

slides to separate different strains with each other. For serial dilution 24 

well Nunclon plate (Thermo, Fisher Scientific, Roskilde, Denmark) 

containing 1 mL growth medium (BG-11, 0 ‰) was used. Serial dilution 

was done by transferring 1 mL into first well, second well to last well 

(10x-1,00,000x). The pates were incubated under constant fluorescence 

light (16.62-17.23 μmol/s/m2) for 1-2 weeks at 22 ºC. All wells were 

supplied by fresh medium to prevent the new mini-cultures from 

desiccation. After 1-2 weeks each well was observed under dissecting 

microscope to obtain any single filament or colony. The isolates were 

examined for purity and transferred to 250 mL Erlenmeyer flask 

containing 100 mL liquid growth BG 11 medium for identification and 

mass culturing.  
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4.2.5. Test for purity of cultures 

 

Several methods are available to check the purity of samples (Vaara and 

Niemela, 1979; Rippka, 1988; Ferris and Hirsch, 1991). The purity of 

newly isolated colonies was checked as described by Rippka (1998). Few 

drops of the liquid culture and isolated colony from agar 

plates/capillary/serial dilution methods were placed on agar plates 

supplemented with BG-11, casamino acid (Sigma, Poole, UK; 0.02-

0.05%, w/v) and glucose (Fisher Scientific, Loughborough, UK; 0.5%, 

w/v). The plates were incubated in dark for 2-3 days at 22°C, typical for 

the growth of sample’s cyanobacteria, since if any bacteria are still 

present they would be expected to grow at that temperature. The 

contaminated strains were again streaked over fresh agar plates 

containing antibiotic, cycloheximide. If no contamination was observed, 

the cultures were assumed axenic. The presence of any bacteria in 

cultures was also determined by phase-contrast microscope and/or under 

oil immersion lens.  

 

4.2.6. Culturing and maintenance of cyanobacterial strains 

 

After one month the purified cyanobacterial cells/colonies were inoculated 

into 250 mL flasks containing 100 mL of growth medium (BG-11). The 

flasks were kept under constant illumination of cool white fluorescent 

light (18.37-18.57 μmol/s/m2) and the cyanobacteria were allowed to 

grow photoautotrophically. In 15 days, an adequate growth of 

cyanobacteria were obtained, later which were used for UPLC analysis. 

 

To maintain cyanobacterial strains the growth medium was regularly 

changed on monthly basis. Ten mL (10%) of old culture was transferred 
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into 100 mL of growth media.  

 

4.2.7. Identification and morphological characterisation 

 

Most cyanobacteria can readily be distinguished from other phytoplankton 

algae and particles under the microscope on the basis of their 

morphological features i.e. size, cell structure, shape and filamentous and 

non­filamentous morphology.  

 

For identification of strains small drop of fresh and pure culture was 

spread on a glass slide and covered with a glass cover slip. A drop of 

immersion oil was placed over the cover slip and the slide observed at 

1000x magnification under florescence microscope lighting system 

(DMLS; Leica, Wetzlar, Germany). The measurements were done in µm 

by using a computer based program (available with microscope) and 

pictures taken by a digital sight camera (DFC 300 FX, Leica, Wetzlar, 

Germany).  For unicellular strains 30 cells were measured and the length 

and width were noted. For filamentous strains the length and width of 30 

individual cells were measured. The strains were indentified on the bases 

of their morphological characteristics. The literatures used for 

identification were: Komárek and Anagnostidis (1999 and 2005).  

 

4.2.8. Extraction and analysis of isolates  

 

A total of 26 extracts of isolates from the Dead Sea and Dian Lake were 

analysed on analytical Ultra High Performance Liquid Chromatography-

Photo Diode Array-Mass Spectrometer-Mass Spectrometry (UPLC-PDA-

MS). 

 

Aliquots (1 mL) bloom material was centrifuged at 13,000 rpm for 10 
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min. The supernatant was discarded and the pellet was extracted in 80% 

aqueous methanol (v/v) for 1 h, with intermittent vortexing. Extracts 

were centrifuged at 13, 000 rpm and supernatant analysed by UPLC-PDA-

MS as described in section 2.2.8. 

 

One hundred µl of each extract was taken in UPLC vials and analyzed 

on UPLC (Waters Acquity) coupled to a Xevo Quadrupole Time of Flight 

Mass Spectrometer (Xevo QToF-MS). For separation of extracts a BEH 

C18 column (100 x 2.1 mm, 1.7 µm particle size) maintained at 40 ºC 

was used. Milli-Q water and 0.1% formic acid (A) and acetonitrile with 

0.1% formic acid (B) were used as mobile phase. Analytical gradient 

reagents, acetonitrile and methanol were obtained from Rathburn, 

Walkersburn, UK. 

 

UPLC chemicals formic acid and trifluoroacetic acid (TFA) were purchased 

from Sigma-Aldrich, Dorset, UK and Leicestershire, UK, respectively. 

Milli-Q pure water was obtained from a Milli-Q system purified to 18.2 MΩ 

(Millipore, Watford, UK). 

 

Samples were separated using a gradient increasing from 20% to 70% B 

over 20 min followed by ramp up to 100% B wash step and re-

equilibration over the next 20 min. Autosampler was constantly 

maintained at 6 ºC. Analysis by mass spectrometry was acquired in 

positive ion electro-spray mode, scanning from m/z 50 to 2000 Da with a 

scan time of 2 s and inter-scan delay of 0.1 s. The ion source 

parameters; capillary and sampling cone were 2.9 V and 25 V, 

simultaneously. The desolvation temperature and source temperature 

were 300 °C and 80 °C, respectively. The desolvation gas and cone gas 
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flows were 400 L/h and 50 L/h, respectively. Leucine-enkephalin (0.5 

mg/L in 50% aqueous methanol; v/v) was used as the lockspray and 

sodium iodide (2 µg/µl in 50% aqueous propane-2-ol; v/v) as the 

calibrant. Instrumental control, data acquisition (centroid) and processing 

were obtained using Masslynx v4.1. ToF analysis was performed on low 

and high energy voltages, 6 v and 25-40 v, respectively. 

 

MS/MS was performed on predominant ion m/z 993.5 [M+H]+ during 

UPLC separation. MS/MS conditions: source was as standard (see 2.2.8) 

mass range was from 50-1000 Da, scan time was 0.2 sec with interscan 

0.025 sec, collision energy was ramped from 40-50 eV. Purified 

compounds were identified on the basis of their molecular weights.  

 

4.3. RESULTS  

 

A total of 26 cyanobacterial and green algal strains were isolated from 

natural samples of Dian Lake and the Dead Sea (Table 4.2). The 

cyanobacterial strains belonged to two orders: Chroococcales and 

Oscillatoriales, and green algae belonged to three orders: Chlorellales, 

Chlorosarcinales and Sphaeropleales.  

 

Out of 26 strains 5 unicellular cyanobacterial and green algal strains were 

isolated by serial dilution belonging to genera Synechococcus (3 strains) 

and Chlorella (2 strains), respectively. A total of 19 filamentous and non-

filamentous cyanobacterial and algal strains were purified by streaking 

and capillary method or a combination of both techniques belonging to 

the following genera: Microcystis (2 strains), Phormidium sp. (1 strain), 

Chlorogleaopsis (1 strain), Oscillatoria (2 strains), Lyngbya (2 stains), 

Chlorosarcinopsis (2 strains), Desmodesmus (3 strains), Pseudoanabaena 
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(3 strains) and Phormidium (3 strains). Only 2 non filamentous strains 

were were isolated by capillary method (Table 4.2). 

 

The cycloheximide was found to be an effective against all contaminants. 

All strains were grown well on both agar plates with and without 

cycloheximide except Microcystis spp. They isolated from the agar plates, 

which were not supplemented by cycloheximide.   

 
Table. 4.2. Isolation techniques and culturing conditions of strains isolated 

from Dian Lake and the Dead Sea grown in BG-11 under continuous light 
(18.3-18.57 µmol/s/m2) at 22 °C. 

Collection sites Isolated strains Sapmle codes Isolation techniques Salinity References

(‰)

Dian Lake's bloom isolates Phylum Cyanoprokaryota

Order Chroococcales 

Synechococcus  sp. P5 Serial dilution 0 Komarek and Anagnostidis, (1999)

Synechococcus  sp. P12 Serial dilution 0

Synechococcocus  sp. P16 Serial dilution 0

Microcystis sp. P18 Streaking and capillary method 0

Microcystis sp. P19 Streaking and capillary method 0

Order Oscillatoriales 

Phormidium  sp. P7 Capillary method 0 Komarek and Anagnostidis, (2005)

Phormidium sp. P9 Streaking and capillary methods 0

Chlorogleopsis  sp. P20 Streaking and capillary methods 0

Oscillatoria sp. P10 Streaking and capillary methods 0

Oscillatoria sp. P11 Streaking and capillary methods 0

Oscillatoria sp. P17 Capillary method 0

Lyngbya  sp. P1 Streaking and capillary methods 0

Lyngbya sp. P8 Streaking and capillary methods 0

Phylum Chlorophyta

Class Chlorophyta

Order Chlorellales 

Chlorella sp. P3 Serial dilution 0 Canter-Lund and Lund, (1995)

Chlorella  sp. P15 Serial dilution 0

Order Chlorosarcinales

Chlorosarcinopsis sp. P13 Streaking and capillary methods Trainor and Hilton, (1967)

Chlorosarcinopsis  sp. P14 Streaking and capillary methods

Order Sphaeropleales

Desmodesmus sp. P2 Streaking and capillary methods 0 Canter-Lund and Lund. (1995)

Desmodesmus  sp. P4 Streaking and capillary methods 0

Desmodesmus  sp P6 Streaking and capillary methods 0

Dead Sea Phylum Cyanoprokaryota

Order Oscillatoriales

Pseudoanabaena  sp. D11 Streaking and capillary methods 20 Komarek and Anagnostidis, (2005)

Pseudoanabaena sp. D15 Streaking and capillary methods 25

Pseudoanabaena sp. D16 Streaking and capillary methods 22

Phormidium sp. D12 Streaking and capillary methods 22

Phormidium sp. D39 Streaking and capillary methods 4

Phormidium sp. D49 Streaking and capillary methods 4

 

 

4.3.1. Identification of cyanobacterial strains isolated from bloom  
           samples from Dian Lake 
 
 

All strains were identified by traditional microscopy using oil immersion 

lens on the basis of their cell size, form, cell structures, mucilaginous 

envelopes and colonial characteristics.  
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4.3.1.1. Taxonomic description of cyanobacterial strains   

 

Out of 20 isolates 13 cyanobacterial strains were isolated from the bloom 

samples of the Dian Lake, which belong to two orders i.e. Chroococcales 

and Oscillatoriales. The identification was based on Komárek and 

Anagnostidis (1999). The detailed morphology of pure isolates of 

cyanobacteria and green algae isolated from the Dian Lake have 

presented in Plates 1-3. 

 

4.3.1.1.1. Chroococcales  

 

4.3.1.1.1.a. Synechococcus sp. Nageli 1849 (P5) Cells solitary, 

cylindrical, slightly curved, two to several times longer than wide, without 

mucilage and arranged irregularly. They form irregular microscopic 

clusters of colonies. Cells 1.5-2.5 µm wide and 2.7-3.3 µm long (Plate 

1A). In cultures they formed green sheaths attached with the bottom of 

culturing flasks.  Cells divided by binary fission into two isomorphic 

daughter cells.  

 

4.3.1.1.1.b. Synechococcus sp. Nageli 1849 (P12) Cells solitary, 

cylindrical, straight, two to several times longer than wide, without 

mucilage and arranged irregularly (Plate 1B). They form irregular 

microscopic clusters of colonies. Cells 1.6-1.8 µm wide and 2.5-3.0 µm 

long and form green granules on the bottom of culturing flasks. Cells 

divided by binary fission into two isomorphic daughter cells.  

 

4.3.1.1.1.c. Synechococcus sp. Nageli 1849 (P16) Cells bright 

green, cylindrical, rounded from corners, solitary and longer (6.0-3.7 µm) 

than wide (2.1-2.3 µm). The cells were without mucilage homogenous in 
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the growth medium (Plate 1C).   

 

4.3.1.1.1.d. Microcystis sp. Kutzing ex Lemmermann 1907 (P18) 

In newly obtained bloom samples the cells were enveloped in transparent 

mucilage. But this characteristic was lost in old cultures and cells became 

solitary. The old cultures formed irregular lobate and irregularly arranged 

colonies and packed with cells. The colonies were packed in colourles 

mucilage. The solitary cells were pale blue-green, microscopic and more 

or less spherical (3.5-3.8 x 3.3-3.8 µm; Plate 1D). Within the cell 

numerous aerotopes can easily be seen under microscope. Bright green 

solitary cells were homogenous in the growth medium. 

 

4.3.1.1.1.e. Microcystis sp. Kutzing ex Lemmermann 1907 (P19) 

The blue-green cells form irregular, elongated and lobate colonies 

enveloped by indistinctly slime in fresh samples and cells were densely 

packed in the mucilaginous colonies. The isolated pure cultures lost 

colonial characteristics and cells were observed in solitary form. The cells 

more or less spherical in diameter (3.5-3.8 x 3.3-3.8 µm) with numerous 

aerotopes. In newly obtained bloom samples the cells were enveloped in 

a transpatrent mucilage (Plate 1E). The old and isolated cells lost their 

mucilaginous covering and become homogenous in the growth medium. 
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Plate 1. Light micrographs of isolated Chroococcales from blooms  

samples of Dian Lake 
 
A:- Synechococcus sp., B:- Synechococcus sp., C:- Synechococcus sp., 

D2:- Microcystis sp.  (D1:- mucilaginous colony), E2:- Microcystis sp. 
(E1- mucilaginous colony) 

 

 

4.3.1.1.2. Oscillatoriales  

 

The identification was based on Komárek and Anagnostidis (2005).  

 

4.3.1.1.2.a. Phormidium sp. Kützing ex Gomont 1892 (P7) The 

filaments of Phormidium sp. formed green sheaths on the surface of 

growth medium. Single trichome was enclosed in a single, gelatinous, 

firm and thick sheath, which was opened from both ends (Plate 2A). No 

false branching was observed. Trichomes mainly straight and containing 

cells (2.6-3.2 µm wide and 4.5-4.8 µm long). The cells were clearly 

motile inside the sheaths. The gas vesicles were spread over the whole 
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cell contents. 

 

4.3.1.1.2.b. Phormidium sp. Kützing ex Gomont 1892 (P9) 

Filaments formed dark green mats on the surface of growth medium. 

Single trichome enclosed in single, gelatinous, firm and thick sheath, 

opened at the both ends (Plate 2B). No false branching was observed. 

Trichomes mainly very long, straight and containing cells (2.6-3.0 µm 

wide and 2.0-2.3 µm long). The cells were clearly motile inside the 

sheaths. The gas vesicles were spread over the whole cell contents.    

 

4.3.1.1.2.c. Chlorogleaopsis sp.  Desikachary (P20) The filamentous 

thallus was dark green and contained 3-6 cells. Sheath was absent. The 

cells were non-motile, 5.0-1.8 μm broad and 2.7-3.7 μm long (Plate 2C). 

Apical cells were non-capitate. In laboratory cultures they grew on the 

bottom of culturing flasks.    

 

4.3.1.1.2.d. Oscillatoria sp. Vaucher ex Gomont 1892 (P10) The 

blue-green trichomes form brownish red mats over the surface of growth 

medium. Trichomes straight, single, trembling and clearly constricted at 

cross-walls. Fully grown trichomes were with identical ends. Cell longer 

(2.8-3.2 μm) than wide (1.3-1.8 μm). Sheath lacking (Plate 2D).  

 

4.3.1.1.2.e. Oscillatoria sp. Vaucher ex Gomont 1892 (P11) The 

blue-green trichomes form brownish red mats over the surface of growth 

medium. Trichomes straight, single, trembling and clearly constricted at 

cross-walls. Fully grown trichomes were with identical ends. All cells in 

the trichome were longer (2.5-3.5 μm) than wide (1.3-1.5 μm), usually 

several times. Sheath lacking. Apical cells without calyptras (Plate 2E). 
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4.3.1.1.2.f. Oscillatoria sp. Vaucher ex Gomont 1892 (P17) The 

blue-green trichomes form brownish red mats over the surface of growth 

medium. Trichomes were straight, single, trembling and clearly 

constricted at cross-walls. Fully grown trichomes were with identical 

ends. All cells in the trichome were longer (2.8-3.0 μm) than wide (1.6-

2.1 μm), usually several times. Sheath lacking. Apical cells without 

calyptras (Plate 2F). 

 

4.3.1.1.2.g. Lyngbya sp. C. Agardh ex Gomont 1892 (P1) Filaments 

were straight, solitary and enveloped in sheaths. The filaments were 

mainly forming thick, compact and dark green sheaths in culturing flasks. 

Sheaths yellow-brown in colour containing one straight trichome. The 

sheath opened from both ends. Cells were short and wider (2.0-2.3 µm) 

than length (1.9 µm). Apical cells identical, more or less rounded without 

any thickening (Plate 2G). 
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Plate 2. Light micrographs of isolated Oscillatoriales from blooms samples 

of Dian Lake 
 

A:- Phormidium sp., B:- Phormidium sp., C:- Chlorogleaopsis sp.,   
D:- Oscillatoria sp., E:- Oscillatoria sp., F:- Oscillatoria sp.,  
G:- Lyngbya sp. H:- Lyngbya sp. 
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4.3.1.1.2.h. Lyngbya sp. C. Agardh ex Gomont 1892 (P8) Filaments 

long, solitary, straight, non-motile and form dark green large and think 

sheaths in the growth medium. Fully grown trichomes were 

morphologically identical and with more or less rounded apical cells. All 

brownish red cells in the trichomes were solitary, straight, shorter (1.8-

2.3 µm) than wide (2.6-2.7 µm) and regularly enveloped in brownish 

sheaths. Sheaths were gelatinous, thin and firm and cylindrical with open 

ends (Plate 2H). 

 

4.3.1.2. Taxonomic description of chlorophytes   

 

Out of 20 isolates 7 chlorophytes were isolated from the bloom samples, 

which belong to three orders i.e. Chlorellales, Chlorosarcinales and 

Sphaeropleales. These strains were identified by traditional microscopy 

using oil immersion lens (Olympus, Japan) on the basis of their cell size, 

form, cell structures and colonial characteristics.  

 

4.3.1.2.1. Chlorellales  

 

The identification was based on Canter-Lund and Lund (1995) and 

Graham and Wilcox (2000). 

 

4.3.1.2.1.a. Chlorella sp. Beijerinck 1890 (P3) The bright green 

coloured cells of Chlorella sp. are free living or endosymbionts. The cells 

were found solitary, planktonic and homogenous in the growth medium 

and 3.1-4.0 x 3.1-3.4 µm in diameter. The shape of cells varied from 

spherical, subspherical, semi-spherical or irregular-rounded forms (Plate 

3A). The chloroplast is partietal. Asexual reproduction is by the formation 

of four autospores.   
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4.3.1.2.1.b. Chlorella sp. Beijerinck 1890 (P15) The cells were green 

to olive green in colour. They formed microscopic, regular or more or less 

spherical green cells 3.5x3.5 µm in diameter (Plate 3B). The bright green 

cells were homogenous in stagnant medium. The cells divided by binary 

fission. 

 

4.3.1.2.2. Chlorosarcinales 

 

4.3.1.2.2.a. Chlorosarcinopsis sp. Herndon 1958 (P13) This 

freshwater green alga has solitary, very adherent and spherical cells 

tightly packed in colonies. The cells and colonies packed in firm 

gelatinous material. Cells were 7.3-9.7 µm in diameter with adjacent 

sides flattened when in colonies (Plate 3C). The cells contain uni-nucleate 

and granular cytoplasm with no vacuoles in vegetative cells. The colonies 

settled on the bottom of culturing flask in the form of small green balls.  

Cell divided by binary fission and form tetrads.   

 

4.3.1.2.2.b. Chlorosarcinopsis sp. Herndon 1958 (P14) This 

freshwater unicellular freshwater green alga form small rounded and 

floating colonies on the bottom of culturing flask. Individual cells were 

spheres (5.7-11.4 µm in diameter), solitary, tightly packed together into 

grape like groups with smooth regular to irregular cell wall. The cells and 

colonies packed in firm gelatinous material (Plate 3D). The cells 

contained uni-nucleate and granular cytoplasm with no vacuoles in 

vegetative cells. Cell divided by binary fission and form tetrads.   

 

4.3.1.2.3. Sphaeropleales 

 

4.3.1.2.3.a. Desmodesmus sp. Meyen 1829 (P2) Desmodesmus is 

commonly found in the plankton of freshwater rivers, ponds, and lakes, 
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and sometimes in brackish habitats. The free living or epiphytic cells of 

Desmodesmus sp. formed small balls, settled on the bottom of culturing 

flasks. They formed microscopic and irregular colonies (11.8-16.3 x 6.9-

7.8 µm). The multicellular colonies were packed in packet-like, 2-4 celled 

groups (2.1-16.3 x 6.9-7.8 µm). The terminal serrated cells had long and 

slightly curved spines (2.6-3.5 µm). No middle spines were observed. 

The cells contained green homogenous granules with a central or sub-

central vacuole (Plate 3E). 

  

Plate 3. Light micrographs of isolated Chlorophyceans from blooms   

samples  of Dian Lake 
 
A:- Chlorella sp., B:- Chlorella sp., C:- Chlorosarcinopsis sp.,  

D:- Chlorosarcinopsis sp., E:- Desmodesmus sp., F:- Desmodesmus sp., 
G:- Desmodesmus sp.  
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4.3.1.2.3.b. Desmodesmus sp. Meyen 1829 (P4) The free living  

bright green cells of Desmodesmus sp. appeared as a free living group of 

2-4 cells (4.3-5.0 x 7.5-9.5 µm) and arranged in a row. The serrated 

terminal cells had long and slightly curved spines (3.5-4.2 µm) on each 

corner of the cell. No middle spines were observed in the middle of the 

outer cell. The species form scattered colonies (12.8-16.1x7.5-9.5 µm) 

on the bottom of culturing flasks. The cells contained green homogenous 

granules and a central or sub-central vacuole (Plate 3F).  

 

4.3.1.2.3.c. Desmodesmus sp. Meyen, 1829 (P6) The free living or 

epiphytic and bright green cells formed small, irregular and rounded 

colonies (13.4-18.6x7.0-8.5 µm) settled on the bottom of culturing 

flasks. The multicellular colonies were packed in packet-like, 2-4 celled 

groups (3.6-4.5 x 7.2-8.9 µm). The terminal cells had long and slightly 

curved spines (4.3-5.8 µm) and 2-4 middle and small spines. The cells 

contained green homogenous granules with a central or sub-central 

vacuole (Plate 3G).  

 

The species composition of Dian Lake isolates was dominated by genera  

Synechococcus, Oscillatoria and Desmodesmus. Some other diatoms 

(Navicula sp., Surirella sp., Pinnularia sp.), cyanobacterium (Chroococcus 

sp.) and green microalgae (Pediastrum sp.) were also observed under 

microscopic examination (Fig. 4.5). 
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Synechococcus sp.

Microcystis sp. 

Phormidium sp.

Chlorogleopsis sp.

Oscillatoria sp. 

Lyngbya sp.

Chlorella sp.

Chlorosarcinopsis sp.

Desmodesmus sp.

 

 

 
4.3.2. Identification of cyanobacterial strains isolated from the  

           Dead Sea 
 
 

Six cyanobacterial strains were isolated from the Dead Sea samples. 

These strains belonged to one order Oscillatoriales. These strains were 

identified by traditional microscopy using oil immersion lens (Olympus, 

Japan) on the basis of their cell size, form, cell structures, mucilaginous 

envelopes and colonial characteristics. Some unidentified organisms were 

also isolated from the samples of the Dead Sea. 

 

4.3.2.1. Taxonomic description of cyanobacterial strains   

 

4.3.2.1.1. Oscillatoriales  

 

The identification was based on Komárek and Anagnostidis (2005).  

 

4.3.2.1.1.a. Pseudoanabaena sp. Lauterborn (D11) Green, solitary 

and motile, trichomes. Old cultures form planktonic fine mats. Cylindrical 

Figure.4.5. The relative abundance of cyanobacterial and  

microalgal isolates from the Dian Lake, China. 
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trichomes contain several cells with clear constrictions at cross-walls. 

Trichomes without sheaths. Slow gliding motility. Cells cylindrical with 

rounded and identical ends, longer than wide almost double in length 

(5.38-5.48 µm) than wide (1.01-1.06 µm; Plate 4A). 

 

4.3.2.1.1.b. Pseudoanabaena sp. Lauterborn (D15) Trichomes, 

solitary, green and motile on their places. Filaments without sheaths, 

short consisted of few cells with remarkable constrictions at cross-walls. 

The clusters of trichomes formed benthic sheaths on the bottom of 

culturing Erlenmeyer flask. Cylindrical cells longer (1.85-1.86 µm) than 

wide (1.18-1.68 µm; Plate 4B). 

 

4.3.2.1.1.c. Pseudoanabaena sp. Lauterborn (D16) Trichomes 

green, straight or slightly curved, strongly constructed, motile on their 

places consisted of very few to several cells. Filaments without sheath. 

Cell cylindrical, longer (2.19 -2.23 µm) than wide (1.52-1.64 µm). The 

cells were usually rounded cylindrical with rounded corners. Apical cells 

were rounded and identical, without calyptras and thickened outer cell 

wall. The clusters of trichomes formed benthic sheaths (Plate 4C). 

 

4.3.2.1.1.d. Phormidium sp. Kützing ex Gomont 1892 (D12) 

Thallus bright green, large filaments that were somewhat curved and 

showed gliding movements. The cells were broad 1.35-1.67 µm and 

1.52-2.52 µm long. Cells non-capitate, longer than broad, constricted at 

the ends and at cross walls (Plate 4D). Thin and simple sheaths were 

present. Under laboratory condition they were grown on the bottom of 

flasks in the form of thick and compact colonies.  
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     Plate 4. Light micrographs of isolated Oscillatoriales from the Dead   
     Sea samples 

 
A:- Pseudoanabaena sp., B:- Pseudoanabaena sp.,  

C:- Pseudoanabaena sp., D:- Phormidium sp.,  
E:- Phormidium sp., F:- Phormidium sp. 

  

 

4.3.2.1.1.e. Phormidium sp. Kützing ex Gomont 1892 (D39) Cells 

were bright-green in colour, mucilaginous sheath present, beaded 

appearance as cells slightly separated from each other, formed small 

colonies, 2.10-212 μm broad and 1.67-2.86 μm long. Filaments were 

long and non-motile. Apical cell was non-capitate and rounded (Plate 4E). 

Under laboratory conditions they were grown on bottom of flasks in the 

form of dense sheaths. On shaking they were mixed thoroughly in 
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culturing medium. 

 

4.3.2.1.1.f. Phormidium sp. Kützing ex Gomont 1892 (D49) 

Trichomes solitary, planktonic, green in colour, form sheaths, non motile, 

beaded appearance and separated from each other. Filaments without 

sheaths form dense colonies on the bottom of culturing flask. Cells longer 

(2.35-2.36 µm) than wide (1.34-1.35 µm; Plate 4F).   

 

The isolates of the Dead Sea showed that the genera Pseudoanabaena 

and Phormidium were commonly occurring and easy to isolate strains. In 

the fresh samples of the Dead Sea several other microorganisms were 

also observed belonged to bacteria (Order Halobacteriales), Pennate 

diatoms (Synedra sp., Pseudo-nitzschia sp., Navilcula spp., Pinnularia 

sp., Cymbella sp.), cyanobacterium (Chroccoccus sp.)  and some new 

and unidentified strains. 

 

4.3.3. Analysis of pure isolates  

 

Aqueous methanolic extracts of isolated cyanobacterial, micro green algal 

and natural bloom samples of the lake were analysed on UPLC-PDA-MS 

 to detect presence of any compound/s. Only three isolates i.e. 

Microcystis sp. (P18) and Microcystis sp. (P19) from the Dian lake and 

Pseudoanabaena sp. (D15) from the Dead Sea showed presence of 

peaks.   

 

4.3.4. Identification of compounds in bloom samples of Dian Lake 

 

The generic RP method was used for cyanobacterial peptides analysis. 

The UPLC – TIC ESI+ of extracts of bloom samples showed several peaks 

of cyanopeptolins and MC-LR (Fig. 4.6A-D). The fragments of compounds 
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observed in the mass spectra represented presence of two 

cyanopeptolins with m/z 1020 (Fig. 4.7A) and m/z 992 (Fig. 4.7B). 

 

The extracts showed clear fragments indicative of Aph moiety. The 

positive ion electrospray chromatograms also indicated the presence of 

compounds (Fig. 4.8). The structural fragments of MS/MS of pk m/z 

993.53 confirmed presence of two fragments m/z 150.1 (MeTyr), 243.13 

(Aph-Phe-H2O) and 420.22 (Aph-Phe-Metyr; Fig.4.8). The extracted ion 

chromatogram at m/z 150 (MeTyr) indicated several cyanopeptolins and 

other five minor cyanopeptolins (Fig. 4.9).  
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Figure 4.6. UPLC - TIC ESI+ of extracts of bloom material from 4 

locations at Dian Lake 
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Figure 4.7. Mass spectra of predominant compounds (unresolved by UPLC 

gradient) in extracts from Microcystis bloom material from Lake Dian, 
China  
Characteristic fragments suggest tentative identification as  

A:- cyanopeptolin  MW 1020, [M+H]+ at m/z 1021 (could be a or b) and  
B:- cyanopeptolin MW 992, [M+H]+ at m/z 993 
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Figure 4.8. MS/MS confirmation of major compound in bloom material 

from Lake Dian with common fragments associated with the unusual 
amino acid – 3-amino-6-hydroxy-piperidone, which is characteristic of 

this large group of compounds. 
(NOTE: all fragments are protonated)  

Cyanopeptolin 992 [Lys-Aph-Phe-MeTyr-Val-O]-Glu-HA  
 
 

 
A number of other minor cyanopeptolins were also found in the isolates 

and only cyanopeptolin 1006A ([Arg-Aph-Phe-MeTyr-Val-O]-Glu-OA 

could identified (Fig. 4.9). Other cyanopeptolins are new unreported 

variants of this large peptide family where there is high variability in 

amino acid and side chain composition and Aph is highly conserved (Fig. 

4.9). 
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Figure 4.9. Presence of other minor cyanopeptolins as indicated by 
fragments at m/z 150 and 420 (MeTyr and Aph-Phe-MeTyr) 

 
 

4.3.5.  Identification of bioactive peptides in isolates 

 

4.3.5.1. Microcystis sp. (P18): The pure isolate of Microcystis sp. 

(P18) showed 5 clear peaks of compounds ranged from 6.61-11.10 min  

(Fig. 4.10) 

 

Fig. 4.10. Chromatogram of Microcystin sp. (P18) indicated the presence 
of five peaks in the bloom material. 
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4.3.5.2. Microcystis sp. (P19): The pure and isolated culture of 

Microcystis sp. (P19) also showed presence of a number of compounds. 

The mass spectra revealed five major peaks ranged from 6.58–10.31 

min (Fig. 11).  

 

 

 Fig. 4.11. Chromatogram of Microcystin sp. (P19) indicated the presence    
 of five peaks. 

 

4.3.5.3. Time of flight mass spectrometry (ToF) 

 

 

The extracted ion chromatograms of methanolic extracts of both isolates 

from Dian Lake Microcystis spp. (P18 and P19) indicated the clear peaks 

of one microcystin-LR (MW 995 Da), one desipeptide, cyanopeptolin A 

(MW 957 Da) and four hexacyclopeptides, aerucyclamide A (MW 957 Da), 

B (MW 533 Da), C (MW 517 Da) and D (MW 587 Da; Fig. 4.12). The TIC 

ESI+ spectrum at high (Fig. 4.13A) and low (Fig. 4.13B) energy also 

confirm the presence of compounds (Fig 4.14). For further confirmation 

of aerucyclamides A-D peaks were analysed by ToF MS ESI+ (Figs. 4.15-

4.18). 

A detailed summary of compounds identified in Microcystis spp. is shown 

in Table 4.3. 
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       Figure 4.12. Extracted ion chromatogram of major compounds at low    
       energy 
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Aerucyclamide A

Aerucyclamide D

Aerucyclamide C

Aerucyclamide A

MC-LR

Cyanopeptolin A

Aerucyclamide B

533

A

B

 

 

Figure 4.13. TIC ESI+ spectrum of compounds identified in Microcystis 
spp. (P18 and P19) at m/z 50-12000 
A:- at high energy; B:- at lower energy  

(MC-LR MW 995, [M+H]+ at m/z 996; cyanopeptolin A MW 957 [M+H]+ at 
m/z 958; aerucyclamide A MW 535; aerucyclamide B MW 533 

aerucyclamide C MW 517 aerucyclamide D MW 587) 
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Figure 4.14. Chromatograms of Microcystis spp. isolated from bloom 
samples of Dian Lake, show the four aerucyclamides (A-D) 
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Figure 4.15. ToF MS ESI+ spectrum of aerucyclamide A, m/z 535 (A), 

extracted spectrum (B) and chemical structure of aerucyclamide A (C). 
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Figure 4.16. ToF MS ESI+ spectrum of aerucyclamide B, m/z 533 (A), 

extracted spectrum (B) and chemical structure of aerucyclamide A (C). 
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Figure 4.17. ToF MS ESI+ spectrum of aerucyclamide C, m/z 517 (A), 
extracted spectrum (B) and chemical structure of aerucyclamide A (C). 
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Figure 4.18. ToF MS ESI+ spectrum of aerucyclamide D, m/z 587 (A), 

extracted spectrum (B) and chemical structure of aerucyclamide A (C). 
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Table 4.3. Identification of MC-LR (standard reference), cyanopeptolin A 
(standard reference), aerucyclamides (A-D) in Microcystis spp. using 

elemental composition tool in MassLynx 4.1 

Microcystin–LR C49H74N10O12 995.56 Welker et al . (2006)

Cyanopeptolin A C46H72N10O12 957.54 Martin et al.,  (1993)

Welker et al ., (2006)

Aerucyclamide A C24H34N6O4S2
535.2161 535.2149 (2.2) Portmann et al.,  (2008a)

Aerucyclamide B C24H33N6O4S2
533.2005 533.2026 (3.9) Portmann et al.,  (2008a)

Aerucyclamide C C24H33N6O5S 517.2233 517.2233 (0) Portmann et al.,  (2008b)

Aerucyclamide D C26H31N6O4S3
587.1569 587.1589 (3.4) Portmann et al.,  (2008b)

Compound
Chemical 

formula

Calculated mass

[M+H]+

Calculated mass

[M+H]+(∆ppm)
References

 
 

 
 

4.3.6. Identification of compounds in the Dead Sea isolates 
 

4.3.6.1. Pseudoanabaena sp. (D15):  

 

The chromatogram of Pseudoanabaena sp. showed the presence of two 

peaks (Fig. 4.19). The ToF MS IES+ spectra of peak one was showed m/z 

561 at low and high energy voltages (Fig. 4.20). The analysis of ToF MS 

IES+ spectra of peak 2 was showed m/z 575 at low and high energy 

voltages (Fig. 4.21). Due to new nature of compounds no data was 

available to identify peaks. 
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Figure 4.19. Chromatogram of pure isolate of Pseudoanabaena sp. (D15) 
indicates two clear peaks 

 

 

Figure. 4.20. ToF MS IES+ spectra of peak one m/z 561 at low (A) and 

high (B) energy voltages 
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Figure 4.21. ToF MS IES+ spectra of peak 2 m/z 575 at low (A) and high 

(B) energy voltages 
 

 
 

4.4.  DISCUSSION 

 

4.4.1. Isolation and identification of cyanobacteria 

 

In this study double strength BG-11 was used to prepare agar plates 

because cyanobacterial growth rate is very slow and they take 4-5 weeks 

to grow. The slow rate of strains results in depletion of nutrients present 

in the agar as previously recommended by Yuvakkumar et al., (2008). 

The antibiotic, cycloheximide was found to be very effective against all 

the contaminants of cyanobacterial and algal isolates, and thus it appears 

to be the drug choice to obtain axenic cultures (Yuvakkkumar, et al., 

2008). 

 

A selection of methods was used to optimize the isolation of benthic and 

planktonic cyanobacteria from natural samples. Serial dilution method 

was successful technique to isolate unicellular strains i.e. coccoid and 

green microalgae, Chlorella spp., as previously described by Andersen 
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and Kawachi (2005). Streaking and capillary methods or combination of 

both methods were found to be useful techniques to isolate some green 

algae and filamentous cyanobacteria (Andersen and Kawachi, 2005).  

 

Due to close association of contaminating bacteria with compact and 

gelatinous colonies of Microcystis spp., it was very difficult to obtain 

axenic isolates of Microcystis strains by standard plating method (Bolch 

and Blackburn, 1996). However, in this study Microcystis spp. were 

successfully isolated by combination of both streaking and capillary 

methods as before streaking mixed cultures were crushed between two 

glass slides to separate mixed cell to each other. The unicellular non 

filamentous strains, Synechococcus spp. and Chlorella spp. was isolated 

by streaking method and by serial dilution. But results showed that 

Synechococcus spp. do not grow well on solid media, but satisfactory 

results were obtained by serial dilution (Waterbury et al., 1981).  

 

Microscopic based identification of strains requires time and skills. 

Sometimes it is very difficult to differentiate between certain strains of the 

same genus, toxic and non-toxic strains (Scholin et al., 2003), 

morphological characteristics due to different culturing conditions 

(Castenholz and Waterbury, 1989) and morphologically identical strains 

(Wilmotte and Herdman, 2001). Lehtimäki et al. (2000) and Gugger et al., 

(2002) also mentioned that the phenotype of heterocytous cyanobacteria 

change their morphology during laboratory cultivation which makes the 

identification of strains difficult. Traditionally microscopic technique was 

convenient to identify cyanobacterial strains but not for all strains 

especially in the case of Pseudoanabaena and Phormidium strains. In the 
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present study during microscopic characteristics, based on morphology, it 

was difficult to distinguish between genera of Pseudoanabaena and 

Phormidium. It seemed that all morphological characteristics of 

filamentous benthic cyanobacteria, Pseudoanabaena and Phormidium 

strains, were more or less same but they were only distinguished on the 

basis of their motility (Komárek and Anagnostidis 2005) and aggregation 

of trichomes (John et al., 2002). Komárek and Anagnostidis (2005) 

mentioned that Phormidium spp. show clear motile movements; gliding, 

creeping, waving, trembling while Pseudoanabaena spp. did not show clear 

motility. They also mentioned that the taxonomy of Phormidium belongs to 

the most difficult cyanoprokaryotic genera as it comprises of numerous 

morphotypes with many closely similar forms. According to John et al., 

(2002) many trichomes of Phormidium spp. form gelatinous or leathery 

mats while filaments of Pseudoanabaena spp. do not gather. During the 

present investigation two strains of Phormidium were isolated from Dian 

Lake. Three strains of Phormidium spp. and three species of 

Pseudoanabaena were isolated from different localities of the Dead Sea. It 

shows that Phormidium spp. are more common species as compared to 

Pseudoanabaena spp. (personal communication with Prof. Jan Rueness, 

University of Oslo, Norway). From the spring waters of Ein Boqeq and the 

water springs of Hamei Zohar, the Dead Sea, only two species of 

Phormidium were identified (Oren, 2008). According to the NIVA Culture 

Collection of Algae a total of 30 strains of Phormidium and 7 strains of 

Pseudoanabaena have isolated from marine and freshwaters of the North 

Sea, Norway. Only 8 species of marine Phormidium was reported from 

Swedish waters and 8 species from Oslofjord, Norway (Wiik, 1981). Both 
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of them did not find any species of Pseudoanabaena from marine 

Norwegian waters. These observations show that Phormidium spp. are 

more common in aquatic environments compared to Pseudoanabaena spp.  

 

It is suggested that identification of strains by traditional microscopic is 

not adequate to identify to species levels. For confirmation to species 

levels modern techniques are available. In recent years DNA analysis is 

one of the most reliable methods to identify the strains by using 

oligonucleotide primers/probes and it also helps to identify bloom forming 

cyanobacteria (Neilan et al., 1995).  The phylogenetic analysis is a reliable 

method to differentiate between toxic and non-toxic strains (Lyra et al., 

2001), which is it not possible by microscopic identification. The 

combination of habitat, size of strains, molecular biological methods and 

microscopy can make it possible to identify strains correctly and up to 

species levels to understand the rapid microbial diversity of cyanobacteria 

(Rajaniemi-Wacklin et al., 2008; Oren, 2008).   

 

4.4.2. Dead Sea isolates 

 

From the beginning of 19th century several reports have been published on 

the occurrence of microbial communities in the Dead Sea and a number of 

cyanobacteria and diatoms have also been reported. In the present study 

out of 53 samples only 6 cyanobacterial strains were isolated from the 

Dead Sea dominated by Pseudoanabaena and Phormidium spp. It may be 

due to reduced in flow of fresh water from the Jordan River and the Sea of 

Galilee resulted in the decrease of water level (Gavrieli et al., 2002), 

increase salinity and low pH (Oren, 1999). Oren (2000) suggested that at 

low pH (6 pH) cyanobacteria do not found in abundance, result in the 
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disappearance of many strains, which were reported from in early studies.  

 

Finding of new strains from various habitats especially from hypersaline 

waters provide additional targets of bioactive compounds. Only one 

isolate, Pseudoanabaena sp. from the Dead Sea showed 2 peaks of new 

and unknown compound. Due to lack of information of unknown 

compound the peaks could not be identified.  

 

4.4.3. Dian Lake isolates and bloom samples 

 

Microcystis aeruginosa and Aphanizomenon flos-aquae are common 

bloom forming cyanobacteria in the Dian Lake (Yuan et al., 2005). The 

UPLC-PDA-MS chromatograms of mixed natural bloom samples from 

Dian’s Lake showed presence of cyanopeptolin, which may have been 

produced by either Microcystis sp. or Aphanizomenon sp. Pure isolated 

strains from the lake did not show presence of detectable cyanopeptolin, 

which was observed in natural bloom’s chromatograms. Suggesting that 

the strains providing this class of compounds were lost during isolation or 

strains were died during culturing and unsuitable environmental 

conditions.  

 

4.4.4. Identification of peptides from cyanobacteria isolated from   
          the Dian Lake  
 

 
The results show that toxic MC-LR, cyanopeptolin A and aerucyclamides 

A, B, C and D were present in the isolates of Microcystis spp. and have 

previously been identified in Microcystis aeruginosa PCC 7806. Microcystis 

aeruginosa is known to produce microcystins. Sivonen and Jones (1999) 

depicted that the freshwater M. aeruginosa, Anabaena sp., A. flos-

aquaes, M. viridis, Oscillatoria agardhii and Nostoc sp. and salt water 
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Synechococcus spp. (Carmichael and Li, 2006) have potential to be a 

significant source of MC-LR. MC-LR extensively studied and is a 

commonly occurring hepatotoxic peptide and a potent and specific 

protein phosphatases 1 and 2A inhibitor (Mackintosh et al., 1990).  

 

During UPLC-PDA-MS analysis a peak of cyanopeptolin A was detected, 

which had same molecular weight as observed in Microcystis aeruginosa 

PCC 7806 (Martin et al., 1993). They have reported the presence of 

several cyanopeptolins A-D from Microcystis aeruginosa PCC 7806 and 

they possess identical structures except a basic variable amino acid.  

 

Microcystins, anabaenopeptins and anabaenopeptilides (have similar 

structure of cyanopeptolins), are also produced by Anabaena 90 (Tonk et 

al., 2009). They mentioned that cyanopeptolins have ability to exhibit 

protease-inhibitory (trypsin) activity which may have pharmaceutical 

research application (Martin et al., 1993).  

 

The chromatograms showed that Microcystis spp. were rich in 

aerucyclamides. The same aerucyclamides have been previously reported 

by Portmann et al., (2008a, b). They isolated four aerucyclamide A-D 

from freshwater cyanobacterium Microcystis aeruginosa PCC 7806 and 

tested toxicity of aerucyclamides A and B against freshwater crustacean 

Thamnocephalus platyurus with LC50 values 30.5 and 33.8 µM, 

respectively.  

 

In another publication Portmann et al., (2008b) found aerucyclamide B 

was toxic to protozoan malarial parasite Plasmodium falciparum and 

aerucyclamide C lethal to flagellate protozoan Trypanosomas brucei. 
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The Dian Lake is a major source of water supply to the city and occurs in 

the Yunnan Province, which is famous for huge phosphorus mines (Chen 

et al., 2002) and input of nitrogen from agricultural land (Liu et al., 

1995).  The leaching of phosphorus into the lake causes eutrophication 

and results in frequent bloom formation of Microcystis spp. Several 

reports have been published on the regularly increasing Microcystis spp. 

blooms in the Dian Lake (Sheng et al., 2012). According to Hou et al., 

(2011) since 1985 the lake has faced an increase in cyanobacterial 

blooms dominated by Microcystis spp. results in disappearance of 

molluscan communities (Li-Na et al., 2011; Zhang et al., 2012) and there 

is a risk to humans who consume muscles and gonads of molluscs.  

 

The present study reflects that cyanobacteria are rich in bioactive 

compounds and existing compounds need further screening, chemical 

and biological characterisation.  

 

4.5. CONCLUSION 

 

This chapter has described that capillary and agar plate methods 

supplemented with antibiotic cycloheximide are appropriate tools to 

obtain most of cyanobacterial and algal isolates. Cyanobacterial diversity 

from two different environments (the Dian Lake and the Dead Sea areas) 

demonstrated that in this instance and as might be expected freshwater 

habitat supports a wider range of microbial biota than hypersaline 

environment. It was also noted that the samples collected from the 

hypersaline locations (>32 ‰) of the Dead Sea gave no indication of the 

presence of cyanobacteria or algae. All six cyanobacteria strains were 

isolated from location which had salinity ranged from 4-25 ‰. It was 
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also showed that the cyanobacteria do not contribute a major role in the 

ecology of the Dead Sea as compared to diatoms.  

 

The presence of toxic MC-LR, cyanopeptolin and aerucyclamides in 

frequently occurring blooms in economically important Dian Lake, it is 

important to monitor the concentrations of peptides more intensively and 

nutrient concentrations. It is concluded that the presence of the peptide 

co-occurrence and in same pattern in Microcystis spp. helps to know 

about the cosmopolitan distribution of same Microcystis strains in various 

aquatic environments and can also be served as a useful tool to find 

geographical distribution of the same strain. 

 

Cyanobacteria are known to produce a variety of compounds. The 

findings from the present study showed that cyanobacteria from both 

habitats are a potential source of new active/inactive compounds that 

could be useful for future research, biochemical and pharmacological 

industries. To find more peptides and other compounds there is a need to 

increase concentration of extracts, extraction and detection methods as a 

number of novel compounds could have gone unreported in the current 

study either because they were not extracted or detected. Further studies 

of all isolates will now be performed under a range of 

extraction/detection methods. .  

 

This investigation provides an updated of current understanding of the 

microalgal and cyanobacterial diversity in Dian Lake and around the Dead 

Sea. It is suggested that the further studies are required in other 

freshwater, salt lakes and salt-stressed ecosystems to identify and isolate 
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new strains of cyanobacteria and diatoms, their importance and detection 

of any possible compound/s. 

 

 

 

 

 

 
 
 

 
 

 
 



 

 

254 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 

 
 
 

 

CHAPTER 5 
 
 
 

GENERAL DISCUSSION



 

 

255 
 

 
Discussion 

 

The main aims of the present investigation were: 

 

1. To fractionate, purify and evaluate the bioactivity of compounds 

produced by Nodularia spumigena KAC 66. 

2. Effects of abiotic factors on the production of biomass and peptide 

production. 

3. Isolation and taxonomy of cyanobacteria from blooms of 

freshwater Dianchi Lake, China and the Dead Sea. 

 

The elucidation of NOD and nodulopeptin 901 with MeOH:H2O fractions F3 

to F9 (20%-80% MeOH) showed polar and semi-polar nature of 

hepatotoxins. Almost all polar, semi polar and non polar diluted fractions 

were significantly toxic to daphnids and inhibited PP1, when compared to 

standard peptides. Different mortality percentages proved that lethality 

of pure NOD and fractions, containing NOD and nodulopeptin 901, varied 

from species to species. The purified NOD caused dose-dependent 

mortality in D. pulex and D. magna, while D. magna were found to be 

more sensitive to NOD concentrations than D. pulex.  Previous studies 

have also been approved that different daphnid species have different 

levels of sensitivities to toxins (DeMott et al., 1991; Hietala et al., 1995). 

Approximately, all purified peptides, ANA, ANB, linear NOD, nodulopeptin 

901 and fractions inhibited PP1 showing a range of inhibiting effects. As 

reported previously hepatotoxic NOD is a potent protein inhibitor and 

contains Adda group. However, purified ANA, ANB and nodulopeptin 901 

also inhibited PP1, which do not contain Adda group thought to be the 

key moiety on the NOD causing PP1 inhibition. Due to lack in information, 
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newly characterised nodulopeptin 901 was quantified by ANA and ANB. 

All diluted fractions also showed activity against PP1, including those 

fractions, which were not contained the NOD and nodulopeptin 901. It 

may be due to green colouration of fractions, which had an effect on the 

OD values of spectrophotometer or N. spumigena produces other PP1 

inhibitory compounds, which can be extracted using different solvents 

and extraction methods. 

 

Like other strains N. spumigena can easily be grown in temperature 

controlled culture rooms in closed glass flasks/columns and provide a low 

cost source of cell biomass to discover new and bioactive compounds.  

 

The mass culturing of N. spumigena KAC 66 in different vessels also 

provided a comparative analysis of Chl-a, cell biomass and peptide 

production. In this experiment, 10 L glass flasks were found to be easy to 

handle while harvesting. In the glass flasks the highest biomass and 

peptide levels were recorded compared to Perspex columns. Even light 

distribution to culturing glass flasks provided suitable conditions to 

produce high cell biomass and peptides levels. The present study 

indicated that the end of log phase and beginning of the stationary phase 

was a suitable time to obtain highest biomass and intra and extracellular 

peptides levels, while grown in glass flasks.  

 

Suitable environmental conditions support high production of biomass 

and peptides. Extreme low or high growth conditions (eg. light and 

temperature), inappropriate culturing vessels and shortage or excessive 

availability of nutrients can affect on growth, biomass and peptide 

production. After 2 weeks, 3 Perspex columns out of five demonstrated 



 

 

257 
 

poor growth/death of cells resulted in reduced production of cell biomass 

and toxins, while extracellular NOD concentrations continued to increase 

after cells death. The death of cells or poor growth of cultures may have 

occurred due to low irradiance or bacterial contamination or not properly 

cleaning of columns. Light intensity is a major component with an effect 

on growth and peptide production. In growth experiment the cultures 

carried out in glass flasks and Perspex columns were receiving 17.35-

17.47 μmol/s/m2 and 1.4 to 42.6 μmol/s/m2 light intensity, respectively. 

The high biomass and peptide production in glass flasks reviled that light 

is also play an important role in healthy growth of the strain. Low 

irradiance could not support the growth in columns than glass flasks, 

which were receiving equal and high light intensity compared to columns.  

 

It is interesting to know that under stressed conditions in columns 

nodulopeptin 901 was not detected in the surrounding medium and they 

retained within the cells or they may be degraded by bacterial 

contaminants present in the growth medium.   

 

The growth and peptide production by N. spumigena was strongly 

environmental factor-dependant. This study proved that 22°C was the 

optimal temperature for the growth and toxin production by N. 

spumigena, while the highest temperature (30°C) was found to have 

significant effect on the production of extra and intracellular peptides 

production. In this experiment some interesting results were obtained 

that N. spumigena kept growing well in all salt concentrations. 

Furthermore, increasing salinity affected the intra and extracellular NOD, 

while nodulopeptin 901 showed positive correlation with increasing 

salinity. It seems that release and production of NOD is more sensitive to 
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the salinity changes than nodulopeptin 901. In general, different nitrate 

and phosphate conditions had similar effects on intra and extracellular 

peptide levels, they decreased with increasing time. The absence of 

nitrate in the medium had a significant negative effect on the cell 

biomass, Chl-a concentrations and total NOD production (intra and 

extracellular). However, intra and extracellular nodulopeptin 901 were 

high under this condition. In phosphate deficient medium N. spumigena 

maintained its growth at all concentrations but after 3 weeks, a decrease 

in cell biomass, Chl-a and total peptides was observed. It may be due to 

shortage of stored phosphate within the cells. 

 

It is suggested that the alteration in temperature and concentrations of 

salinity, nitrate and phosphorus, can enhance the yield of intra and 

extracellular peptides and biomass (summarized in Table 3.17) in 

laboratories and can be helpful to control the bloom formation and toxin 

production in natural environments.  

 

Determination of cell density or biomass can be best estimated by 

chlorophyll-a concentration as this was found coorelate well with growth. 

The dead cells in the experimental flasks or especially salt contents on 

filter discs (especially during salinity experiment) can effect on the cell 

biomass estimation.  

The role of toxin production by cyanobacteria is still unclear. In the result 

of cell lysis/death/damage, the peptides release in the surrounding 

medium (Sivonen and Jones, 1999), maybe they are not essential for the 

growth and reproduction. These toxins maybe the product of cell 

biological processes or use as signalling compounds or for defence 
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against microorganisms that feed on cyanobacterial strains (Mundt et al., 

2001). 

 

There is some information available on the fate of toxins released in 

surrounding medium. Sivonen and Jones, (1999) studied degradation of 

NOD under different environmental conditions. They reported that under 

light and dark conditions NOD was photochemically degraded into small 

components. These small components recycled by bacterial communities 

or maybe reused by cyanobacterial cell themselves. 

 

It is suggested that there is much work needed to know about the fate 

and use extracellular peptides. 

 

Microscopic identification provided immediate information about 

identification of strains present in bloom and could be helpful to 

distinguish between prokaryotes and eukaryotes, potential toxic and non 

toxic strains and abundance of certain strains in natural samples. This 

basic information can be helpful to alarm presence of dangerous strains 

in developing blooms. For rapid identification of strains several methods 

are available but in this study three isolation techniques (serial dilution, 

capillary and streaking methods) were found to be very effective and 

successful to isolate filamentous and non filamentous strains. In the 

present study a total of 26 strains were isolated from bloom samples 

from of Dian Lake and natural samples from the Dead Sea. It is 

suggested that unicellular strains i.e. Synechococcus spp. and Chlorella 

spp. were easily isolated by serial dilution method. Streaking and 

capillary methods or combination of both methods were effective to 

isolate some green algae and mostly filamentous cyanobacteria. 
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Creeping/oscillatory movements of Phormidium, Pseudoanabaena, 

Oscillatoria and Lyngbya spp., on solid media, helped to isolate them 

from other strains. Pseudoanabaena and Phormidium spp.  were very 

difficult to distinguish and can be distinguished on the basis of their 

motality and aggregation of trichomes.  

 

Phormidium spp. showed clear motile movements compared to trembling 

Pseudoanabaena spp. This study supported the importance of microscopic 

identification that a total of 5 Phormidium spp. were isolated from Dian 

Lake and the Dead Sea samples, which showed the abundance and 

diversity of strain in two different water bodies. In this study species only 

identified up to only genera levels. Traditional microscopy could not 

provide satisfactory results to identify strains up to species levels. It is 

proposed that combination of modern technique DNA analysis, habitat, 

size of strain, bioassays and microscopy made it possible to identify 

strains correctly and up to species. 

 

There are several reports are available on microoragnisms including 

cyanobacterial diversity in the Dead Sea.  Out of 53 samples from 

different locations of the Dead Sea, 6 cyanobacterial strains belonging to 

Pseudoanabaena and Phormidium spp. were isolated by streaking and 

capillary methods. Only one strain Pseudoanabaena sp. (D15) showed 

peaks of unknown compound. It shows that cyanobacterial strains are 

rich in compounds that can be further investigated to discover novel 

compounds. 

 

Twenty strains were isolated from the bloom samples of the Dian Lake 

and out of which 2 strains identified as Microcystis spp.  Due to 
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eutrophication in the Dian Lake annual toxic blooms of Microcystis and 

Aphanizomenon spp. have already been reported. The UPLC-PDA-MS 

analysis of isolated strains, Microcystis spp. indicated the presence toxic 

MC-LR, cyanopeptolin A, aerucyclamides A, B, C and D. These peptides 

have also been reported from Microcystis aeruginosa PCC 7806 and the 

presence of same peptides in the Dian Lake, showed the geographical 

diversity of similar strain.  

 

This study contributes to the information of the diversity of cyanobacteria 

in the Dead Sea and Dian Lake.  

 

In conclusion, the present study is first time providing information on the 

effects of environmental factors on the production of intra and 

extracellular levels of newly discovered nodulopeptin 901. Additionally, 

this study also presents information about the lethality of nodulopeptin 

901 against daphnids and inhibition of PP1.  

 

The information from effects of environmental factors on the production 

of biomass and total peptides can be used as a base line to understand 

the occurrence of peptides levels in nature. 
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1. Full scanned HPLC-PDA-LCMS chromatograms of peptides (A) their absorbance 

(B).  
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2. Typical absorbance spectra of LNOD (A) and NOD (B). 
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3. Typical absorption spectrum of LNOD with presence of peptide at 234 mass 
spectrum (m/z). 
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4. Typical absorption spectrum of NOD with presence of peptide at 238 mass 
spectrum (m/z) and 825 (MW). 
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5. Typical absorption spectrum of nodulopeptin 901 with presence of peptide 
at 210 mass spectrum (m/z). 
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6. Typical absorbance spectrum of nodulopeptin 901 at 210 nm. 

nm
210 215 220 225 230 235 240 245 250 255 260 265 270 275 280 285 290 295 300

A
U

0.0

1.0e-2

2.0e-2

3.0e-2

4.0e-2

5.0e-2

6.0e-2

7.0e-2

 

 

 

 

 

 



 

 

302 
 

 

6. Typical absorption spectrum of nodulopeptin 901 with presence of 

peptide at 210 mass spectrum (m/z).  
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7. Typical absorption spectrum of nodulopeptin 901 with presence of peptide 

at 210 mass spectrum (m/z). 
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8. Calibration of standard NOD quantified at wavelength of 238 nm 

with diode array at 12:00 min retention time analysed on HPLC-
PDA-MS (n=3). (±S.D = standard deviation).  

 

Concentration Peak area mean STDev % error bar

(µg mL-1)  (x) (σn-1)

0.1 312 320 9.71 3.03
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9. Calibration of standard nodulopeptin 901 based on the use of 

nodulopeptin 901 curve with diode array at 12:00 min retention 

time quantified at 210 nm analysed on HPLC-PDA-MS (±S.D = 

standard deviation), (n=3). 

 

Concentration Peak area Mean STDev % Error bar

(µg mL-1)  (x) (σn-1)

0.1 119 108 11.02 10.17
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10. Calibration of standard NOD quantified at wavelength of 238 nm 

with diode array at 6.05-6.13 min retention time analysed on 
UPLC-PDA-MS (n=3). (±S.D = standard deviation).  

 

Concentration Peak area Mean StDev % Error bar

(µg mL-1) (x̅) (σn-1)

0.1 72 68 4.00 5.88
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11. Calibration of standard nodulopeptin 901 based on the use of   

 nodulopeptin 901 curve quantified at 210 nm with diode array at  

 7.88-7.90 min retention time analysed on UPLC-PDA-MS (n=3).  
 (±S.D = standard deviation) (n.d.=not detected). 

Concentration Peak area Mean StDev % Error bar

(µg mL-1) (x̅) (σn-1)

0.1 n.d n.d n.d n.d

n.d

n.d

0.5 n.d n.d n.d n.d

n.d

n.d

1.0 530 520 19.08 3.67

498
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5.0 2566 2474 136.87 5.53
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10 4200 4220 19.55 0.463
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12.  Concentrations and lethality of standard toxin, NOD for D. pulex   

         exposed to NOD for 24 h (n= 2). 
 
 

Set number 1 Set number 2

NOD

Concentrations 

(µg/ml) Total no. of No. of alive No. of dead Total no. of No. of alive No. of dead Mean of total Mean of dead % of dead

daphnids daphnids daphnids daphnids daphnids daphnids daphnids daphnids daphnids

100 10 0 10 10 0 10 10 10 100

50 10 0 10 11 0 11 11 11 100

10 11 5 6 11 5 6 11 6 55

5 10 6 4 10 6 4 10 4 40

1 11 8 3 10 9 1 11 2 18

0.5 11 11 0 10 10 0 11 0 0

0.1 10 10 0 11 11 0 11 0 0

,-ve Control 15 15 0 13 13 0 14 0 0

 

 

 

 

13. D. pulex assay of positive, negative controls and undiluted 17 fractions  

(collected from the RPFC) of N. spumigena KAC 66.   

Fractions of Total no. of neotales No. of dead neotales No. of alive neotales Mean total Mean alive Mean dead % of dead

N. spumigena no. of neotales neotales neotales neotales

KAC 66 1 2 1 2 1 2

F1 13 10 1 1 12 9 12 11 1 8

F2 10 8 10 7 0 1 9 1 9 100

F3 10 9 10 9 0 0 10 0 10 100

F4 12 10 12 10 0 0 11 0 11 100

F5 9 10 9 10 0 0 10 0 10 100

F6 9 10 9 10 0 0 10 0 10 100

F7 15 10 5 5 10 5 13 8 5 38

F8 10 9 7 7 3 2 10 3 7 70

F9 10 10 10 10 0 0 10 0 10 100

F10 10 10 10 10 0 0 10 0 10 100

F11 10 10 10 10 0 0 10 0 10 100

F12 10 10 10 10 0 0 10 0 10 100

F13 10 10 10 10 0 0 10 0 10 100

F14 10 10 10 10 0 0 10 0 10 100

F15 10 10 10 10 0 0 10 0 10 100

F16 10 10 1 1 9 9 10 9 10 100

F17 13 11 0 1 13 10 12 12 1 8

,-ve Control 11 12 2 0 9 12 12 11 1 8

,_+ ve Control 10 10 10 10 0 0 10 0 10 100  
 
 

 
 
 

 
 

 
 

 



 

 

308 
 

 
 

 
 
 

14. D. pulex assay of positive, negative controls and 17 fractions 

(collected from flash chromatography) of N. spumigena KAC 66 at 

x2 dilution. 

Fractions of Total no. of neotales No. of dead neotales No. of alive neotales Mean total Mean alive Mean dead % of dead

N. spumigena no. of neotales neotales neotales neotales

KAC 66 1 2 1 2 1 2

F1 14 9 0 1 14 8 12 11 1 8

F2 10 8 5 8 5 0 9 3 7 78

F3 10 10 10 10 0 0 10 0 10 100

F4 10 10 10 10 0 0 10 0 10 100

F5 10 10 8 7 2 3 10 3 8 80

F6 10 10 10 10 0 0 10 0 10 100

F7 10 10 3 5 7 5 10 6 4 40

F8 10 11 1 1 9 10 11 10 1 9

F9 11 11 8 7 3 4 11 4 8 73

F10 10 10 10 10 0 0 10 0 10 100

F11 10 10 10 10 0 0 10 0 10 100

F12 10 10 10 9 0 1 10 1 10 100

F13 10 10 10 10 0 0 10 0 10 100

F14 10 10 10 10 0 0 10 0 10 100

F15 10 12 5 3 5 9 11 7 4 36

F16 12 10 2 1 10 9 11 10 2 18

F17 10 9 0 1 10 8 10 9 1 10

,-ve Control 11 12 2 0 9 12 12 11 1 8

,_+ ve Control 10 10 10 10 0 0 10 0 10 100

 
 

 

 

 

15. D. pulex assay of positive, negative controls and 17 fractions       

collected from flash chromatography) of N. spumigena KAC 66 at x4         
dilution. 

 

Fractions of Total no. of neotales No. of dead neotales No. of alive neotales Mean total Mean alive Mean dead % of dead

N. spumigena no. of neotales neotales neotales neotales

KAC 66 1 2 1 2 1 2

F1 10 11 0 0 10 11 11 11 0 0

F2 10 10 0 0 10 10 10 10 0 0

F3 10 11 5 5 5 6 11 6 5 45

F4 10 10 1 4 9 6 10 8 3 30

F5 10 11 1 1 9 10 11 10 1 9

F6 9 10 1 4 8 6 10 7 3 30

F7 14 10 1 1 13 9 12 11 1 8

F8 10 10 0 0 10 10 10 10 0 0

F9 10 10 0 0 10 10 10 10 0 0

F10 10 10 0 0 10 10 10 10 0 0

F11 11 10 2 1 9 9 11 9 2 18

F12 9 10 2 0 7 10 10 9 1 10

F13 10 10 0 0 10 10 10 10 0 0

F14 10 10 0 0 10 10 10 10 0 0

F15 10 10 0 0 10 10 10 10 0 0

F16 10 10 0 0 10 10 10 10 0 0

F17 10 10 0 0 10 10 10 10 0 0

,-ve Control 11 12 2 0 9 12 12 11 1 8

,_+ ve Control 10 10 10 10 0 0 10 0 10 100
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16. Concentrations and lethality of standard toxin, NOD for D. magna  

     (exposed to NOD for 24 h; n=3) 
 

Set number 1 Set number 2

NOD

Concentrations 

(µg/ml) Total no. of No. of alive No. of dead Total no. of No. of alive No. of dead Mean of total Mean of dead % of dead

neonates neonates neonates neonates neonates neonates neotales neotales neotales

100 12 0 12 11 0 11 12 12 100

50 12 0 12 11 0 11 12 12 100

10 9 4 5 10 5 5 10 5 50

5 10 6 4 10 7 3 10 4 40

1 9 5 4 11 9 2 10 3 30

0.5 10 7 3 11 9 2 11 3 27

0.1 9 8 1 10 7 3 10 2 20

,-ve Control 10 9 1 9 9 0 10 1 10

 

 

 
 

 
 
 

17. Concentrations and lethality of standard toxin, nodulopeptin 901 for D. 

magna(the daphnids exposed for 24 h with nodulopeptin 901; n=3) 

Nodulopeptin 901

Concentrations 

(µg/ml)

Mean of total Mean of dead StDev

 (x̅)  (x̅) (σn-1)

120 12 6 6 11 5 6 11 6 5 11 6 55 0.6

100 12 7 5 11 5 6 10 7 3 11 5 45 1.5

50 9 3 6 8 5 3 9 5 3 9 4 44 1.7

10 9 9 0 10 9 1 10 6 4 10 2 20 2.1

5 10 9 1 10 9 1 10 9 1 10 1 10 0.0

1 10 10 0 10 9 1 9 6 3 10 1 10 1.5

0.5 10 10 0 10 9 1 9 6 3 10 1 10 1.5

0.1 10 10 0 9 6 3 9 8 1 9 1 11 1.5

,-ve Control 12 12 0 10 9 1 10 9 1 11 1 9 0.6

,+ve Control 10 0 10 13 0 13 10 0 10 11 11 100 1.7

Set number 1 Set number 2 Set number 3

Total no. Alive Dead 

Daphnids

Total no. Alive Dead Total no. Alive Dead % of dead
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18. D. magna assay of positive, negative controls and undiluted 17   

 fractions (collected from RPFC) of N. spumigena KAC 66. 
 

Fractions of Total no. of neonates No. of dead neonates No. of alive neonates Mean total Mean alive Mean dead % of dead

N. spumigena no. of neonates neonates neonates neonates

KAC 66 1 2 1 2 1 2

F1 7 10 2 4 5 6 9 6 3 33

F2 10 10 3 4 7 6 10 7 4 40

F3 10 9 10 9 0 0 10 0 10 100

F4 9 10 4 6 5 4 10 5 5 50

F5 10 10 8 4 2 6 10 4 6 60

F6 10 10 7 5 3 5 10 4 6 60

F7 11 10 4 4 7 6 11 7 4 36

F8 9 10 3 4 6 7 10 7 4 70

F9 10 10 2 3 8 7 10 8 3 30

F10 10 10 2 4 8 6 10 7 3 30

F11 10 10 8 9 2 1 10 2 9 90

F12 10 10 6 5 4 5 10 5 6 60

F13 10 10 10 7 0 3 10 2 9 90

F14 10 10 8 10 2 0 10 1 9 90

F15 10 9 3 4 7 5 10 6 4 40

F16 9 10 3 3 6 7 10 7 10 100

F17 11 10 2 1 9 9 11 9 2 18

,-ve Control 9 10 0 1 9 9 10 9 1 10

,_+ ve Control 10 10 10 10 0 0 10 0 10 100  

 

 

19. D. magna assay of positive, negative controls and 17 fractions  

(collected from RPFC) of N. spumigena KAC 66 at x2 dilution. 

Fractions of Total no. of neonates No. of dead neonates No. of alive neonates Mean total Mean alive Mean dead % of dead

N. spumigena no. of neonates neonates neonates neonates

KAC 66 1 2 1 2 1 2

F1 10 10 2 1 8 9 10 9 2 20

F2 11 9 2 2 9 7 10 8 2 20

F3 10 11 10 8 0 3 11 2 9 82

F4 10 10 4 3 6 7 10 7 4 40

F5 10 10 1 2 9 8 10 9 2 20

F6 11 10 4 6 7 4 11 6 5 45

F7 11 11 3 3 8 7 11 8 3 27

F8 10 10 2 3 8 7 10 8 3 30

F9 8 10 1 2 7 8 9 8 2 22

F10 10 9 2 1 8 8 10 8 2 20

F11 9 10 4 4 5 6 10 6 4 40

F12 9 10 2 1 7 9 10 8 2 20

F13 9 10 1 8 8 2 10 5 5 50

F14 9 9 6 3 3 6 9 5 5 56

F15 10 11 2 4 8 7 11 8 3 27

F16 10 9 1 3 9 6 10 8 10 100

F17 9 10 0 2 9 8 10 9 1 10

,-ve Control 9 10 0 1 9 9 10 9 1 10

,_+ ve Control 10 10 10 10 0 0 10 0 10 100
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20. D. magna assay of positive, negative controls and 17 fractions  

(collected from RPFC) of N. spumigena KAC 66 at x4 dilution. 

Fractions of Total no. of neonates No. of dead neonates No. of alive neonates Mean total Mean alive Mean dead % of dead

N. spumigena no. of neonates neonates neonates neonates

KAC 66 1 2 1 2 1 2

F1 10 9 1 0 9 9 10 9 1 10

F2 8 10 0 0 8 10 9 9 0 0

F3 10 9 0 1 10 8 10 9 1 10

F4 10 10 1 3 9 7 10 8 2 20

F5 10 10 0 2 10 8 10 9 1 10

F6 10 9 1 4 9 5 10 7 3 30

F7 11 10 2 2 9 8 11 9 2 18

F8 8 10 2 1 6 9 9 8 2 22

F9 11 11 0 2 11 9 11 10 1 9

F10 10 9 2 2 8 7 10 8 2 20

F11 10 10 0 0 10 10 10 10 0 0

F12 9 9 1 3 8 6 9 7 2 20

F13 10 10 2 1 8 9 10 9 2 20

F14 9 10 1 1 8 9 10 9 1 10

F15 10 10 0 3 10 7 10 9 2 20

F16 11 10 0 3 11 7 11 9 10 91

F17 10 10 0 0 10 10 10 10 0 0

,-ve Control 9 10 0 1 9 9 10 9 1 10

,_+ ve Control 10 10 10 10 0 0 10 0 10 100
 

 
 

21. Inhibitory activity of standard NOD after 14 h incubation at   

37°C. The plate was read at 405 nm. 

 

Conc. of

NOD Mean Std Dev

(µg/ml)   (x̅) (σn-1)

10.0 0.127 0.118 0.117 0.121 0.006

5.0 0.132 0.137 0.132 0.134 0.003

2.5 0.15 0.15 0.15 0.150 0.000

1.25 0.167 0.157 0.172 0.165 0.008

0.625 0.197 0.187 0.198 0.194 0.006

0.312 0.226 0.225 0.222 0.224 0.002

0.156 0.256 0.256 0.259 0.257 0.002

0.078 0.328 0.337 0.335 0.333 0.005

0.039 0.391 0.486 0.509 0.462 0.063

0.019 0.711 0.724 0.683 0.706 0.021

0.009 0.845 0.858 0.815 0.839 0.022

0 0.956 0.985 0.976 0.972 0.015

Blank 0.044 0.044 0.044 0.044 0.000

Control 0.06 0.061 0.06 0.060 0.001

OD

1 2 3
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22. Inhibitory activity of standard linear NOD after 14 h  incubation 

at 37 °C. The plate was read at 405 nm. 

Conc of linear NOD Std Dev

(µg/ml) Mean (σn-1)

1 2 3 (x̅)

Linear NOD

100.0 0.213 0.23 0.232 0.225 0.010

50.0 0.325 0.321 0.303 0.316 0.012

10.0 0.819 0.787 0.841 0.816 0.027

5.0 1.043 1.079 1.053 1.058 0.019

2.5 1.178 1.238 1.18 1.199 0.034

1.25 1.26 1.174 1.252 1.229 0.048

0.63 1.232 1.25 1.27 1.251 0.019

0.31 1.266 1.294 1.22 1.260 0.037

0.16 1.268 1.244 1.258 1.257 0.012

0.07 1.277 1.275 1.257 1.270 0.011

0.009 1.248 1.357 1.229 1.278 0.069

0 1.272 1.255 1.314 1.280 0.030

Blank 0.043 0.043 0.044 0.043 0.001

Control 0.074 0.076 0.086 0.079 0.006

OD
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23. Inhibitory activity of standard ANA and ANB after 14 h  

 incubation at  37 °C. The plate was read at 405 nm. 

 
Conc of peptides 

(µg/ml) Mean Std Dev

1 2 3  (x̅) (σn-1)

ANA

100.0 0.299 0.244 0.29 0.278 0.030

50.0 0.501 0.378 0.559 0.479 0.092

10.0 0.572 0.568 0.548 0.563 0.013

5.0 0.528 0.531 0.573 0.544 0.025

2.5 0.541 0.57 0.522 0.544 0.024

1.25 0.621 0.537 0.436 0.531 0.093

0.63 0.517 0.591 0.517 0.542 0.043

0.31 0.641 0.592 0.625 0.619 0.025

0.16 0.619 0.561 0.718 0.633 0.079

0.07 0.738 0.553 0.651 0.647 0.093

0.009 0.739 0.719 0.712 0.723 0.014

0 0.649 0.702 0.829 0.727 0.093

ANB

100.0 0.347 0.351 0.285 0.328 0.037

50.0 0.399 0.385 0.311 0.365 0.047

10.0 0.363 0.355 0.347 0.355 0.008

5.0 0.399 0.39 0.374 0.388 0.013

2.5 0.49 0.418 0.506 0.471 0.047

1.25 0.402 0.589 0.445 0.479 0.098

0.63 0.404 0.816 0.403 0.541 0.238

0.31 0.512 0.666 0.473 0.550 0.102

0.16 0.539 0.676 0.527 0.581 0.083

0.07 0.51 0.618 0.584 0.571 0.055

0.009 0.59 0.61 0.58 0.593 0.015

0 0.61 0.678 0.66 0.649 0.035

Blank 0.044 0.044 0.044 0.044 0.000

Control 0.063 0.064 0.065 0.064 0.001

OD
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24.  Inhibitory activity of standard nodulopeptin 901 after 14 h incubation 

        at 37 °C. The plate was read at 405 nm. 
 

Conc of pep 901 OD

(µg/ml) (after 14 hrs incubation) Mean  (x̅) OD Std Dev

1 2 3 (σn-1)

100.0 0.318 0.452 0.423 0.398 0.071

50.0 0.484 0.658 0.545 0.562 0.088

10.0 0.946 0.674 0.924 0.848 0.151

5.0 1.865 0.054 0.977 0.965 0.906

2.5 1.006 0.681 1.238 0.975 0.280

1.25 0.934 1.092 1.069 1.032 0.085

0.63 0.979 0.963 1.186 1.043 0.124

0.31 1.06 1.049 1.148 1.086 0.054

0.16 1.184 0.983 1.124 1.097 0.103

0.07 0.583 1.735 0.998 1.105 0.583

0.009 1.556 0.984 1.282 1.274 0.286

0 1.122 1.732 1.373 1.409 0.307

Blank 0.044 0.044 0.043 0.044 0.001

Control 0.067 0.066 0.067 0.067 0.001
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25. PP1 inhibitory activity of undiluted 17 fractions of N. spumigena 

KAC 66 collected from reversed phase flash chromatography. The 

plate incubated for 14 h at 37 °C and read at 405 nm.  

 

Conc. of fractions

(2 ml dried and Inibition Std Dev

dissolved in 200 µl MQ water) Mean (%) (σn-1)

 (x̅)

F1 0.216 0.215 0.22 0.217 77.6 0.003

F2 0.332 0.345 0.394 0.357 63.2 0.033

F3 0.145 0.144 0.144 0.144 85.1 0.001

F4 0.127 0.128 0.129 0.128 86.8 0.001

F5 0.259 0.237 0.278 0.258 73.4 0.021

F6 0.152 0.157 0.158 0.156 83.9 0.003

F7 0.176 0.179 0.182 0.179 81.5 0.003

F8 0.168 0.17 0.169 0.169 82.6 0.001

F9 0.215 0.22 0.217 0.217 77.6 0.003

F10 0.202 0.211 0.206 0.206 78.7 0.005

F11 0.228 0.241 0.235 0.235 75.8 0.007

F12 0.2 0.201 0.204 0.202 79.2 0.002

F13 0.135 0.136 0.133 0.135 86.1 0.002

F14 0.111 0.114 0.11 0.112 88.5 0.002

F15 0.098 0.096 0.099 0.098 89.9 0.002

F16 0.134 0.133 0.135 0.134 86.2 0.001

F17 0.162 0.158 0.165 0.162 83.3 0.004

Blank 0.044 0.044 0.044 0.044 0.000

Control 0.06 0.061 0.06 0.060 0.001

OD

1 2 3
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26. PP1 inhibitory activity of diluted 17 fractions (x10) of N. 

spumigena KAC 66 collected from reversed phase flash 

chromatography. The plate incubated for 14 h at 37 °C and read at 

405 nm. 

Fractions Mean Inhibition Std Dev

 (x̅) (%) (σn-1)

F1 0.147 0.146 0.14 0.144 85.2 0.004

F2 0.117 0.108 0.111 0.112 88.5 0.005

F3 0.093 0.089 0.088 0.090 90.7 0.003

F4 0.094 0.092 0.092 0.093 90.5 0.001

F5 0.093 0.095 0.092 0.093 90.4 0.002

F6 0.099 0.089 0.093 0.094 90.4 0.005

F7 0.101 0.095 0.095 0.097 90.0 0.003

F8 0.099 0.095 0.081 0.092 90.6 0.009

F9 0.104 0.105 0.157 0.122 87.5 0.030

F10 0.126 0.115 0.109 0.117 88.0 0.009

F11 0.185 0.109 0.108 0.134 86.2 0.044

F12 0.103 0.102 0.104 0.103 89.4 0.001

F13 0.099 0.102 0.096 0.099 89.8 0.003

F14 0.103 0.12 0.103 0.109 88.8 0.010

F15 0.12 0.155 0.157 0.144 85.2 0.021

F16 0.529 0.524 0.527 0.527 45.8 0.003

F17 0.736 0.768 0.717 0.740 23.9 0.026

Blank 0.044 0.044 0.043 0.044 0.001

Control 0.071 0.068 0.068 0.069 0.002

0 µg/ml NOD (control) 0.956 0.985 0.976 0.972 0.015

OD

1 2 3
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27. PP1 inhibitory activity of diluted 17 fractions (x100) of N. 

spumigena KAC 66 collected from reversed phase flash 

chromatography. The plate incubated for 14 h at 37 °C and read at 

405 nm. 

 

Fractions Mean Inhibition Std Dev

 (x̅) (%) (σn-1)

F1 0.18 0.172 0.175 0.176 81.9 0.004

F2 0.128 0.208 0.142 0.159 83.6 0.043

F3 0.096 0.095 0.094 0.095 90.2 0.001

F4 0.119 0.117 0.116 0.117 87.9 0.002

F5 0.098 0.098 0.099 0.098 89.9 0.001

F6 0.094 0.092 0.092 0.093 90.5 0.001

F7 0.097 0.098 0.097 0.097 90.0 0.001

F8 0.106 0.107 0.106 0.106 89.1 0.001

F9 0.112 0.106 0.104 0.107 89.0 0.004

F10 0.153 0.152 0.153 0.153 84.3 0.001

F11 0.141 0.14 0.142 0.141 85.5 0.001

F12 0.133 0.135 0.137 0.135 86.1 0.002

F13 0.186 0.144 0.148 0.159 83.6 0.023

F14 0.201 0.191 0.19 0.194 80.0 0.006

F15 0.421 0.351 0.633 0.468 51.8 0.147

F16 0.59 0.599 0.504 0.564 42.0 0.052

F17 0.612 0.602 0.588 0.601 38.2 0.012

Blank 0.044 0.044 0.044 0.044 0.000

.+ve control 0.646 0.61 0.606 0.621 0.022

Control 0.063 0.062 0.063 0.063 0.001

0 µg/ml NOD (control) 0.956 0.985 0.976 0.972 0.015

OD

1 2 3
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28. PP1 inhibitory activity of diluted 17 fractions (x1000) of N. 

spumigena KAC 66 collected from reversed phase flash 

chromatography. The plate incubated for 14 h at 37 °C and read at 

405 nm. 

StDev Inhibition

(σn-1) (%)

1 2 3 Mean

 (x̅)

F1 0.953 0.968 0.956 0.959 0.01 1.4

F2 0.574 0.614 0.593 0.594 0.02 38.9

F3 0.238 0.219 0.23 0.229 0.01 76.4

F4 0.33 0.341 0.336 0.336 0.01 65.5

F5 0.251 0.223 0.228 0.234 0.01 75.9

F6 0.22 0.239 0.217 0.225 0.01 76.8

F7 0.395 0.392 0.36 0.382 0.02 60.7

F8 0.376 0.38 0.38 0.379 0.00 61.1

F9 0.399 0.468 0.484 0.450 0.05 53.7
F10 0.498 0.538 0.499 0.512 0.02 47.4

F11 0.344 0.526 0.481 0.450 0.09 53.7

F12 0.47 0.512 0.47 0.484 0.02 50.2

F13 0.476 0.466 0.408 0.450 0.04 53.7

F14 0.483 0.464 0.435 0.461 0.02 52.6

F15 0.47 0.447 0.409 0.442 0.03 54.5

F16 0.465 0.466 0.454 0.462 0.01 52.5

F17 0.407 0.457 0.362 0.409 0.05 58.0

Blank 0.046 0.049 0.049 0.048 0.00

Control 0.065 0.064 0.063 0.064 0.00

.+ve control 0.416 0.445 0.468 0.443 0.03

0 µg/ml NOD 0.956 0.985 0.976 0.972 0.01

(control)

OD

Fractions
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29. PP1 inhibitory activities of 17 undiluted and dilution fractions of  

N. spumigena KAC 66 collected from reversed phase  
flash chromatography.  

 

2 ml dried fraction 100 µl of 1 100 µl of 2 10 µl of 3 

dissolved in .+ .+ .+

200 µl MQ water 900 µl MQ water 900 µl MQ water 990 µl MQ water

multiply by 10 divided by 10 divided by 100 divided by 1000

1 2 3 4

F1 77.6 85.2 81.9 1.4

F2 63.2 88.5 83.6 38.9

F3 85.1 90.7 90.2 76.4

F4 86.8 90.5 87.9 65.5

F5 73.4 90.4 89.9 75.9

F6 83.9 90.4 90.5 76.8

F7 81.5 90.0 90.0 60.7

F8 82.6 90.6 89.1 61.1

F9 77.6 87.5 89.0 53.7

F10 78.7 88.0 84.3 47.4

F11 75.8 86.2 85.5 53.7

F12 79.2 89.4 86.1 50.2

F13 86.1 89.8 83.6 53.7

F14 88.5 88.8 80.0 52.6

F15 89.9 85.2 51.8 54.5

F16 86.2 45.8 42.0 52.5

F17 83.3 23.9 38.2 58.0

Fractions

% inhibition

Undiluted

Diluted

(x10) (x100) (x1000)
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30. Weight of empty, freeze dried filter discs (with cells) and cell biomass for N. spumigena KAC 66 to determine relationship    

     between cell biomass and chlorophyll-a (±S.D= standard deviation). 

    Empty filter paper wts. (mg)  Freeze dried filter paper with cells (mg) Biomass

Dilutions Freeze dried cells .(c) Mean (x) Stdev

1 2 3 4 5 6 (a) 1 2 3 4 5 6 (b) (b-a=c) (mg/20ml) (mg/ml) (ug/ml) (ug/ml) (σn-1)

(mg/20ml)

100ml

1 118.80 118.80 118.73 118.90 118.90 118.90 141.25 141.02 141.05 141.03 141.02 141.01 22.12 22.11 1.106 1105.5 1108.0 2.29

2 119.50 119.22 119.00 119.06 119.00 119.00 141.38 141.20 141.31 141.18 141.17 141.17 22.17 22.17 1.109 1108.5

3 115.70 116.55 116.53 116.57 116.54 116.53 139.02 138.70 139.09 138.75 138.73 138.73 22.19 22.20 1.110 1110.0

50ml

1 117.20 117.40 117.50 117.36 117.36 117.40 129.09 129.07 129.10 128.97 128.74 128.73 11.38 11.33 0.566 566.5 597.0 26.47

2 116.26 116.64 116.74 116.74 116.71 116.72 129.33 129.13 129.11 129.15 128.96 129.00 12.25 12.28 0.614 614.0

3 117.13 117.50 117.56 117.56 117.56 117.55 129.80 129.79 129.77 129.78 129.77 129.76 12.21 12.21 0.611 610.5

25ml

1 117.44 117.44 117.50 117.53 117.52 117.52 125.43 125.40 125.32 125.25 125.03 125.01 7.51 7.49 0.375 374.5 367.0 16.12

2 117.21 118.84 118.80 118.80 118.80 118.80 125.94 125.68 125.76 125.92 125.76 125.77 6.96 6.97 0.349 348.5

3 118.22 118.10 118.00 118.13 118.13 118.12 125.74 125.66 125.59 125.75 125.72 125.68 7.59 7.56 0.378 378.0

10ml

1 116.84 117.02 117.20 117.07 117.08 117.00 121.06 121.06 121.08 121.12 121.02 120.95 3.94 3.95 0.198 197.5 214.0 22.79

2 118.52 118.46 118.40 118.28 118.27 118.27 122.65 122.33 122.47 122.45 122.38 122.36 4.11 4.09 0.205 204.5

3 118.60 118.71 118.88 118.40 118.80 118.80 123.84 123.75 123.64 123.64 123.64 123.60 4.84 4.80 0.240 240.0

5ml

1 116.14 116.00 116.09 116.10 116.10 116.10 120.40 120.30 120.34 120.32 120.29 120.30 4.19 4.20 0.210 210.0 171.3 40.07

2 119.05 119.60 119.41 119.32 119.30 119.30 123.01 123.00 123.03 123.01 122.77 122.78 3.47 3.48 0.174 174.0

3 118.88 118.60 118.86 118.93 118.90 118.90 121.76 121.70 121.77 121.88 121.50 121.50 2.60 2.60 0.130 130.0

1ml

1 117.00 116.90 117.19 117.22 117.23 117.23 120.82 120.72 120.80 120.89 120.83 120.80 3.60 3.57 0.179 178.5 163.2 44.05

2 118.06 117.80 118.09 118.07 118.00 118.03 120.35 120.34 120.30 120.29 120.29 120.30 2.29 2.27 0.114 113.5

3 117.04 117.04 117.20 117.15 117.12 117.01 121.09 121.07 121.09 120.97 120.97 120.96 3.85 3.95 0.197 197.5
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31. Chl-a concentrations for N. spumigena KAC 66 to determine  
relationship between cell biomass and chlorophyll-a  

(±S.D = standard deviation). 

  
 

 

Concentration of Chl-a

Dilutions Mean ±STDev

Absorbance     (µg/20ml)     (µg/ml)     (µg/ml) (σn-1)

100ml

2.322 7.55 7546.5 7554.1 10.45

2.328 7.57 7566.0

2.323 7.55 7549.8

50ml

1.800 5.85 5850.0 5796.9 78.29

1.756 5.71 5707.0

1.795 5.83 5833.8

25ml

0.886 2.88 2879.5 2785.3 84.31

0.849 2.76 2759.3

0.836 2.72 2717.0

10ml

0.386 1.25 1254.5 1206.8 50.59

0.373 1.21 1212.3

0.355 1.15 1153.8

5ml

0.185 0.60 601.3 619.7 34.75

0.184 0.60 598.0

0.203 0.66 659.8

1ml

0.042 0.14 136.5 133.3 5.63

0.042 0.14 136.5

0.039 0.13 126.8
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32. Serial dilution for cell biomass and Chl-a. 
 

Dilutions Cell biomass Mean of Chl-a

(ml) mean (x)     (μg/ml) 

(μg/ml)

100 1108 7554.1

50 597 5796.9

25 367 2785.3

10 214 1206.8

5 171.3 619.7

1 163.2 133.3

 
 

 
 

 
 
 

33. Absorption and standard deviation of concentrated sample. 

Absorbance Mean absorbance Stdev Absorbance Mean absorbance Stdev

(100% extract) (x) (σ) (50% extract) (x) (σn-1)

2.32 2.32 0.003 1.64 1.66 0.049

2.33 1.72

2.32 1.63

 
 
 
 

 
 

 
 
 

 
 

 
 
 

 
 

 
 



 

 

323 
 

234. Cell biomass and Chl-a concentrations for N. spumigena KAC 66 grown in 10 L glass for 7 weeks at 20ºC   

(±S.D = standard deviation). 

Time Freeze dried biomass of cells                                  Chlorophyll-a estimation

(weeks) Freeze dried cells mg/ml ug/ml mean (x) ±STDev Chlorophyll a Chl-a Mean Chl-a ±STDev

(mg/20ml) (ug/ml) (σn-1) Absorbance     (µg/20ml) (µg/ml) (µg/ml) (σn-1)

To

1 129.0 6.45 6450.0 6150.0 396.86 0.113 0.37 0.018 0.018 0.001

2 126.0 6.30 6300.0 0.122 0.40 0.020

3 114.0 5.70 5700.0 0.105 0.34 0.017

T1

1 131.9 6.60 6595.0 6386.7 220.93 0.276 0.90 0.045 0.048 0.003

2 128.2 6.41 6410.0 0.310 1.01 0.050

3 123.1 6.16 6155.0 0.295 0.96 0.048

T2

1 135.0 6.75 6750.0 6715.0 44.44 0.460 1.50 0.075 0.083 0.008

2 134.6 6.73 6730.0 0.512 1.66 0.083

3 133.3 6.67 6665.0 0.557 1.81 0.091

T3

1 126.8 6.34 6340.0 6641.7 261.36 0.818 2.66 0.133 0.130 0.008

2 136.0 6.80 6800.0 0.837 2.72 0.136

3 135.7 6.79 6785.0 0.744 2.42 0.121

T4

1 137.0 6.85 6850.0 6735.0 103.32 0.878 2.85 0.143 0.134 0.008

2 134.1 6.71 6705.0 0.815 2.65 0.132

3 133.8 6.65 6650.0 0.786 2.55 0.128

T5

1 137.0 6.85 6850.0 6688.3 207.02 1.062 3.45 0.173 0.153 0.017

2 135.2 6.76 6760.0 0.878 2.85 0.143

3 129.1 6.46 6455.0 0.891 2.90 0.145

T6

1 139.0 6.95 6950.0 6678.3 237.50 1.395 4.53 0.227 0.199 0.024

2 131.5 6.58 6575.0 1.143 3.71 0.186

3 130.2 6.51 6510.0 1.130 3.67 0.184

T7

1 141.5 7.08 7075.0 6916.7 137.33 1.255 4.08 0.204 0.193 0.013

2 136.9 6.85 6845.0 1.096 3.56 0.178

3 136.6 6.83 6830.0 1.203 3.91 0.195
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35. Intra and extracellular levels of NOD and nodulopeptin 901 for cultures of 
    N. spumigena KAC 66 grown in 10 L glass flasks for 7 weeks at 22°C during    

    the analysis on LC-MS. (for NOD 238 nm wavelength and retention time 12.18  
    to 14.12 min, for nodulopeptin 210 nm wavelength and retention time 17.98  

    to 18.00 min; RT= retention time, PA= peak area, n.d= not detected) 

Time

(weeks) RT PA Mean of PA STDev RT PA Mean of PA STDev 

(min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Extracellular

To .- n.d n.d n.d .- n.d n.d n.d

.- n.d .- n.d

.- n.d .- n.d

T1 13.10 29 23 5.7 18.03 100 81 50.0

13.10 23 18.02 119

13.12 18 18.03 24

T2 13.13 30 29 7.0 18.07 138 177 57.5

13.10 22 18.03 243

13.08 36 18.02 151

T3 13.08 71 55 15.2 18.02 238 248 51.5

13.08 51 18.02 304

13.08 41 18.02 203

T4 13.07 45 130 148.4 18.00 258 319 77.8

13.07 301 18.00 407

13.08 43 18.00 292

T5 .- n.d n.d n.d 17.98 291 327 65.6

.- n.d 17.98 402

.- n.d 17.98 287

T6 .- n.d n.d n.d 17.98 486 467 28.4

.- n.d 17.98 481

.- n.d 17.98 434

T7 .- n.d n.d n.d 17.97 375 442 129.8

.- n.d 17.98 592

.- n.d 18.00 360

 Nodularin   Nodulopeptin 901
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Time

(weeks) RT PA Mean of PA STDev RT PA Mean of PA STDev 

(min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Intracellular

To 13.07 196 189 16.1 18.00 50 46 7.7

13.05 200 17.98 50

13.08 170 17.98 37

T1 13.08 430 489 62.7 18.03 131 179 44.5

13.12 482 18.07 219

13.12 555 18.05 186

T2 13.08 1100 1117 16.8 18.02 222 283 53.8

13.08 1118 18.02 308

13.07 1133 18.00 321

T3 13.08 1187 1192 45.7 18.02 291 288 47.0

13.07 1241 18.00 332

13.08 1150 18.02 239

T4 13.07 1465 1287 206.0 18.00 422 416 17.5

13.07 1061 18.00 431

13.07 1336 17.98 397

T5 13.07 1234 1346 110.4 17.98 422 484 113.1
13.07 1455 17.98 614

13.07 1350 17.98 415

T6 13.05 1438 1390 79.0 17.97 699 708 117.8

13.05 1299 17.98 831

13.08 1434 18.00 596

T7 13.08 825 1085 247.7 18.00 654 725 111.3

13.08 1318 18.00 854

13.08 1113 18.00 669

 Nodularin   Nodulopeptin 901
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36. The amount (ng/ml) of intra and extracellular concentrations of  NOD 
and nodulopeptin 901 for cultures of N. spumigena KAC 66 grown in 

10 L glass flasks for 7 weeks at 22°C. (n.d= not detected) 
 

Time

(weeks) Amount Mean (x̅) STDev Amount Mean (x̅) STDev 

(ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Extracellular

To n.d n.d n.d n.d n.d n.d

n.d n.d

n.d n.d

T1 8.2 6.6 1.6 51.1 41.4 25.7

6.4 60.8

5.0 12.3

T2 8.4 8.2 2.0 70.5 90.6 29.2

6.2 124.1

10.1 77.1

T3 19.9 15.2 4.3 121.6 126.8 26.2

14.3 155.3

11.5 103.7

T4 12.6 36.4 41.6 131.8 162.9 39.9

84.4 207.9

12.1 149.1

T5 n.d n.d n.d 111.8 154.6 47.2

n.d 205.3

n.d 146.6

T6 n.d n.d n.d 146.1 170.4 44.4

n.d 143.5

n.d 221.7

T7 n.d n.d n.d 191.5 225.9 66.3

n.d 302.3

n.d 183.9

      Nodularin   Nodulopeptin 901
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Time

(weeks) Amount Mean (x̅) STDev Amount Mean (x̅) STDev 

(ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Intracellular

To 54.9 52.9 4.6 25.5 23.3 3.8

56.1 25.5

47.7 18.9

T1 120.5 137.1 17.6 66.9 91.2 22.7

135.1 111.8

155.6 95.0

T2 308.4 313.1 4.6 113.4 144.9 27.5

313.4 157.3

317.6 163.9

T3 332.8 334.4 12.8 148.6 146.7 23.8

347.9 169.6

322.4 122.1

T4 410.7 360.9 57.8 215.5 212.8 9.0

297.4 220.1

374.5 202.8

T5 345.9 377.4 31.0 215.5 247.0 57.7

407.9 313.6

378.5 212.0

T6 403.1 389.8 22.2 357.0 361.9 60.2

364.2 424.4

402.0 304.4

T7 231.3 304.3 69.4 334.0 370.6 56.9

369.5 436.2

312.0 341.7

      Nodularin   Nodulopeptin 901
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37. Weight of empty, freeze dried filter discs (with cells) and cell biomass for N. spumigena KAC 66 grown in 8 L Perspex    

     columns for 5 weeks at 20ºC (±S.D = standard deviation). 

  Empty filter paper weights (mg)      Freeze dried filter paper with cells (mg)

Columns Freeze dried cells (c) Biomass Mean (x̅) StDev

1 2 3 (a) 1 2 3 (b) (b-a=c) (mg/ml) (µg/ml) (µg/ml) (σn-1)

(mg/20ml)

To

1 116.67 116.63 116.61 120.67 120.67 120.68 4.07 0.20 203.5 213.6 19.51

2 116.76 116.77 116.76 121.14 121.13 121.14 4.38 0.22 219.0

3 118.50 118.51 118.50 123.45 123.41 123.41 4.91 0.25 245.5

4 118.07 118.01 118.01 122.09 122.05 122.04 4.03 0.20 201.5

5 116.34 116.32 116.32 120.31 120.30 120.29 3.97 0.20 198.5

T1

1 115.10 115.03 115.00 121.93 121.90 121.91 6.91 0.35 345.5 309.5 37.82

2 116.20 116.15 116.13 122.00 121.34 121.36 5.23 0.26 261.5

3 116.00 115.96 115.95 122.89 122.85 122.82 6.87 0.34 343.5

4 115.99 115.97 115.98 121.62 121.53 121.57 5.59 0.28 279.5

5 115.79 115.76 115.75 122.12 122.09 122.1 6.35 0.32 317.5

T2

1 115.70 115.57 115.56 123.81 123.79 123.77 8.21 0.41 410.5 447.6 54.71

2 117.77 117.73 117.70 125.17 125.14 125.15 7.45 0.37 372.5

3 116.60 116.59 116.54 126.65 126.63 126.64 10.10 0.51 505.0

4 117.50 117.51 117.48 126.89 126.83 126.80 9.32 0.47 466.0

5 118.90 118.90 118.90 128.59 128.59 128.58 9.68 0.48 484.0

T3

1 116.19 116.08 116.06 122.65 122.62 122.62 6.56 0.33 328.0 420.5 94.62

2 116.90 116.82 116.83 125.46 125.45 125.43 8.60 0.43 430.0

3 117.90 117.69 117.70 126.71 126.70 126.69 8.99 0.45 449.5

4 116.70 116.71 116.70 127.89 127.87 127.88 11.18 0.56 559.0

5 116.40 116.40 116.38 123.11 123.11 123.10 6.72 0.34 336.0

T4

1 118.86 118.84 118.85 124.97 124.95 124.96 6.11 0.31 305.5 281.1 104.10

2 118.34 118.32 118.33 127.39 127.36 127.37 9.04 0.45 452.0

3 118.33 118.31 118.32 122.45 122.43 122.44 4.12 0.21 206.0

4 117.56 117.55 117.55 122.39 122.35 122.34 4.79 0.24 239.5

5 118.78 118.72 118.73 122.79 122.78 122.78 4.05 0.20 202.5

T5

1 120.33 120.31 120.30 125.15 125.13 125.13 4.83 0.24 241.5 344.9 112.21

2 120.10 120.06 120.06 125.56 125.51 125.52 5.46 0.27 273.0

3 117.06 117.01 117.00 127.14 127.13 127.12 10.12 0.51 506.0

4 118.40 118.39 118.38 124.13 124.11 124.12 5.74 0.29 287.0

5 117.66 117.64 117.62 125.98 125.95 125.96 8.34 0.42 417.0
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38.  Chl-a concentrations for N. spumigena KAC 66 grown in 8 L Perspex  

      columns 5 weeks at 22ºC (±S.D = standard deviation). 

                      Concentration of Chl-a

Columns Absorbance Chlorophyll-a Chl-a Mean Chl-a ±STDev

    (µg/20ml) (µg/ml) (µg/ml) (σn-1)

To

1 0.358 1.16 0.058 0.057 0.005

2 0.384 1.25 0.062

3 0.312 1.01 0.051

4 0.334 1.09 0.054

5 0.370 1.20 0.060

T1

1 0.550 1.79 0.089 0.066 0.031

2 0.662 2.15 0.108

3 0.362 1.18 0.059

4 0.246 0.80 0.040

5 0.218 0.71 0.035

T2

1 0.698 2.27 0.113 0.207 0.058

2 1.238 4.02 0.201

3 1.355 4.40 0.220

4 1.414 4.60 0.230

5 1.657 5.39 0.269

T3

1 0.786 2.55 0.128 0.125 0.058

2 0.760 2.47 0.124

3 1.044 3.39 0.170

4 1.079 3.51 0.175

5 0.185 0.60 0.030

T4

1 0.680 2.21 0.111 0.062 0.037

2 0.571 1.86 0.093

3 0.254 0.83 0.041

4 0.216 0.70 0.035

5 0.186 0.60 0.030

T5

1 0.269 0.87 0.044 0.028 0.011

2 0.119 0.39 0.019

3 0.165 0.54 0.027

4 0.104 0.34 0.017

5 0.196 0.64 0.032
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39. Intra and extracellular concentrations of NOD and nodulopeptin 901 for   
     cultures of N. spumigena KAC 66 grown in 8 L Perspex columns for 5 weeks     

     at 22°C during the analysis on LC-MS. (for NOD 238 nm wavelength and  
     retention time 14.18 to 14.12 min, for nodulopeptin 210 nm wavelength and  

     retention time 17.98 to 18.00 min; RT= retention time, PA= peak area, n.d=  
     not detected) 

  

Time

(weeks) RT PA mean of PA STDev RT PA mean of PA STDev 

(min) (x̅) (σn-1) (min) (x̅) (σn-1)

Extracellular

To

1 - n.d n.d n.d - n.d n.d n.d

2 - n.d - n.d

3 - n.d - n.d

4 - n.d - n.d

5 - n.d - n.d

T1

1 - n.d n.d n.d - n.d n.d n.d

2 - n.d - n.d

3 - n.d - n.d

4 - n.d - n.d

5 - n.d - n.d

T2

1 14.28 1409 384 537.1 - n.d n.d n.d

2 14.25 129 - n.d

3 14.27 166 - n.d

4 14.23 147 - n.d

5 14.27 67 - n.d

T3

1 14.23 2319 718 866.1 - n.d n.d n.d

2 14.22 454 - n.d

3 14.22 466 - n.d

4 14.22 310 - n.d

5 14.23 41 - n.d

T4

1 14.20 4435 1006 1768.6 - n.d n.d n.d

2 14.23 416 - n.d

3 14.23 82 - n.d

4 14.22 43 - n.d

5 14.22 53 - n.d

T5

1 14.13 8562 1968 3399.9 - n.d n.d n.d

2 14.22 705 - n.d

3 14.22 307 - n.d

4 14.23 96 - n.d

5 14.23 171 - n.d

                Nodularin Nodulopeptin 901
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Time

(weeks) RT PA mean of PA STDev RT PA mean of PA STDev 

(min) (x̅) (σn-1) (min) (x̅) (σn-1)

Intracellular

To

1 - n.d n.d n.d 17.47 102 58 53.4

2 - n.d - n.d

3 - n.d 17.43 92

4 - n.d 17.45 99

5 - n.d - n.d

T1

1 14.32 1716 1204 821.3 17.47 289 153 124.5

2 14.32 1793 17.45 261

3 14.32 1481 17.45 125

4 14.30 1032 17.57 92

5 - n.d - n.d

T2

1 14.27 2590 2438 1003.8 17.42 179 308 241.6

2 14.23 2435 17.43 92

3 14.23 2284 17.40 171

4 14.23 2297 17.40 462

5 14.25 2581 17.42 635

T3

1 14.23 102 1731 2070.2 - n.d n.d n.d

2 14.27 284 - n.d

3 14.20 126 - n.d

4 14.25 3507 - n.d

5 14.23 4638 - n.d

T4

1 14.20 5199 1613 1925.9 - n.d 16 23.8

2 14.20 1123 - n.d

3 14.25 582 17.50 23

4 14.25 376 - n.d

5 14.23 786 17.84 58

T5

1 14.22 387 131 146.5 - n.d n.d n.d

2 14.28 9 - n.d

3 14.22 146 - n.d

4 14.23 34 - n.d

5 14.22 78 - n.d

                Nodularin Nodulopeptin 901
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40. The amount (ng/ml) of intra and extracellular concentrations of NOD  
     and nodulopeptin 901 for cultures of N. spumigena KAC 66 grown in  

     8 L Perspex columns for 5 weeks at 22°C (n.d= not detected). 
 

Time Amount of NOD Mean (x)̅ STDev Amount of nodulopeptin 901 Mean (x)̅ STDev 

(weeks) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Extracellular

To

1 n.d n.d n.d n.d n.d n.d

2 n.d n.d

3 n.d n.d

4 n.d n.d

5 n.d n.d

T1

1 n.d n.d n.d n.d n.d n.d

2 n.d n.d

3 n.d n.d

4 n.d n.d

5 n.d n.d

T2

1 395 107.5 161.0 n.d n.d n.d

2 36 n.d

3 47 n.d

4 41 n.d

5 19 n.d

T3

1 650 201.3 255.5 n.d n.d n.d

2 127 n.d

3 131 n.d

4 87 n.d

5 11 n.d

T4

1 1244 282.0 539.3 n.d n.d n.d

2 117 n.d

3 23 n.d

4 12 n.d

5 15 n.d

T5

1 673 206.3 269.0 n.d n.d n.d

2 198 n.d

3 86 n.d

4 27 n.d

5 48 n.d  
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Time Amount of NOD Mean (x)̅ STDev Amount of nodulopeptin 901 Mean (x)̅ STDev 

(weeks) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Intracellular

To

1 n.d n.d n.d 52 29.9 27.4

2 n.d 0

3 n.d 47

4 n.d 51

5 n.d 0

T1

1 481 337.7 206.3 148 78.3 61.5

2 503 133

3 415 64

4 289 47

5 0 0

T2

1 726 683.3 41.4 91 157.2 117.8

2 683 47

3 640 87

4 644 236

5 724 324

T3

1 29 485.4 609.8 n.d n.d n.d

2 80 n.d

3 35 n.d

4 983 n.d

5 1300 n.d

T4

1 1458 452.3 567.3 0 8.3 13.0

2 315 0

3 163 12

4 105 0

5 220 30

T5

1 108 36.7 42.7 n.d n.d n.d

2 3 n.d

3 41 n.d

4 10 n.d
5 22 n.d
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41. Chl-a concentrations for N. spumigena KAC 66 grown for  
     6 weeks at different temperatures (±S.D = standard    

     deviation).  
 (±S.D = standard deviation). 

Time Conditions                                                          Concentration of Chl-a

(Weeks) and temperatures Absorbance Chlorophyll-a Chl-a Mean Chl-a ±STDev

    (ug/20ml) (ug/ml) (ug/ml) (σn-1)

To 22 °C 0.211 0.686 0.034 0.033 0.003

0.184 0.598 0.030

0.218 0.709 0.035

25 °C 0.214 0.696 0.035 0.034 0.005

0.178 0.579 0.029

0.243 0.790 0.039

30 °C 0.204 0.663 0.033 0.036 0.002

0.229 0.744 0.037

0.229 0.744 0.037

T1 22 °C 0.516 1.677 0.084 0.085 0.001

0.521 1.693 0.085

0.527 1.713 0.086

25 °C 0.593 1.927 0.096 0.098 0.003

0.625 2.031 0.102

0.597 1.940 0.097

30 °C 0.643 2.090 0.104 0.111 0.010

0.653 2.122 0.106

0.750 2.438 0.122

T2 22 °C 0.761 2.473 0.124 0.127 0.007

0.831 2.701 0.135

0.753 2.447 0.122

25 °C 0.842 2.737 0.137 0.142 0.008

0.930 3.023 0.151

0.855 2.779 0.139

30 °C 1.025 3.331 0.167 0.168 0.010

0.981 3.188 0.159

1.097 3.565 0.178

T3 22 °C 0.899 2.922 0.146 0.149 0.008

0.971 3.156 0.158

0.873 2.837 0.142

25 °C 1.022 3.322 0.166 0.169 0.003

1.059 3.442 0.172

1.031 3.351 0.168

30 °C 1.093 3.552 0.178 0.177 0.002

1.099 3.572 0.179

1.073 3.487 0.174

T4 22 °C 1.152 3.744 0.187 0.189 0.002

1.170 3.803 0.190

1.169 3.799 0.190

25 °C 1.072 3.484 0.174 0.165 0.010

1.019 3.312 0.166

0.947 3.078 0.154

30 °C 1.308 4.251 0.213 0.213 0.000

1.311 4.261 0.213

1.307 4.248 0.212

T5 22 °C 1.122 3.647 0.182 0.194 0.010

1.223 3.975 0.199

1.237 4.020 0.201

25 °C 1.065 3.461 0.173 0.154 0.017

0.910 2.958 0.148

0.861 2.798 0.140

30 °C 1.248 4.056 0.203 0.202 0.000

1.244 4.043 0.202

1.242 4.037 0.202

T6 22 °C 1.153 3.747 0.187 0.193 0.006

1.226 3.985 0.199

1.193 3.877 0.194

25 °C 0.888 2.886 0.144 0.126 0.016

0.738 2.399 0.120

0.696 2.262 0.113

30 °C 1.024 3.328 0.166 0.171 0.016

1.163 3.780 0.189

0.977 3.175 0.159
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42. Intra and extracellular levels of NOD for cultures of N. spumigena KAC 66 grown for 6 weeks at different temperatures  
    analysed on LC-MS. (NOD 238 nm wavelength and retention time 14.37 to 14.48 min; RT= retention time, PA= peak  

    area, n.d= not detected). 
 

 

Temperature

(°C)

RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

22 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

25 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

30 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d n.d n.d 

Intracellular 

22 n.d n.d n.d n.d n.d n.d n.d n.d 14.42 1585 1684 93.2 13.98 2866 3037 148.8

n.d n.d n.d n.d 14.37 1770 14.43 3128

n.d n.d n.d n.d 14.88 1698 14.40 3119

25 n.d n.d n.d n.d n.d n.d n.d n.d 14.40 1157 1156 81.5 14.43 1558 1688 128.8

n.d n.d n.d n.d 14.42 1075 14.43 1815

n.d n.d n.d n.d 14.40 1238 14.45 1692

30 n.d n.d n.d n.d n.d n.d n.d n.d 14.43 183.0 61 105.7 14.45 87 167 69.3

n.d n.d n.d n.d n.d 0 14.47 209

n.d n.d n.d n.d n.d 0 14.47 205

To T1 T2 T3
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Temperature

(°C)

RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

22 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

25 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

30 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

Intracellular 

22 14.52 3903 3784 208.3 14.47 3812 3677 136.3 14.55 3459 3611 314.6

14.48 3906 14.42 3680 14.52 3973

14.50 3543 14.45 3540 14.53 3402

25 14.50 1994 1687 300.0 14.43 1806 1600 205.8 14.55 1339 1212 123.2

14.50 1674 14.45 1394 14.07 1093

14.52 1395 14.48 1601 14.50 1204

30 n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

n.d n.d n.d n.d n.d n.d 

T6T4 T5
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43. Intra and extracellular levels of nodulopeptin 901 for cultures of N. spumigena KAC 66 grown for 6 weeks at different  
     temperatures analysed on LC-MS. (nodulopeptin 210 nm wavelength and retention time 17.98 to 18.00 min; RT=  

     retention time, PA= peak area, n.d= not detected). 
 

Temperature RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev

(°C) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

22 17.50 76 99 25.1 18.02 83 93 8.8 17.50 126 162 32.1 17.55 147 218 62.3

17.48 95 17.97 99 17.50 173 17.55 243

17.48 126 18.00 96 17.50 187 17.53 264

25 17.50 92 105 12.2 18.02 82 69 17.9 17.52 136 146 9.4 17.52 307 270 52.9

17.48 108 18.00 49 17.50 147 17.53 210

17.48 116 18.02 77 17.50 155 17.55 294

30 17.50 104 113 10.4 18.00 79 86 8.1 17.53 100 119 17.5 17.53 131 142 9.4

17.50 124 18.00 84 17.52 123 17.52 147

17.50 109 18.00 95 17.50 135 17.53 148

Intracellular 

22 .- n.d .- .- 18.03 103 115 12.5 17.53 307 374 71.5 17.53 436 1156 632.0

.- n.d 18.08 128 17.48 367 17.53 1414

.- n.d 18.00 113 17.50 450 17.50 1619

25 .- n.d .- .- 18.02 93 77 14.0 17.52 203 228 35.7 17.53 572 617 138.6

.- n.d 18.02 68 17.52 212 17.55 507

.- n.d 18.00 70 17.50 269 17.57 773

30 .- n.d .- .- 18.03 58 62 11.7 17.52 128 145 16.5 17.53 135 159 26.7

.- n.d 18.00 54 17.50 148 17.53 188

.- n.d 18.02 76 17.48 160 17.53 154

To T1 T2 T3
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Temperature RT (min) PA Mean STDev RT (min) PA Mean STDev RT (min) PA Mean STDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

22 17.53 317 450 117.5 17.58 404 595 166.6 17.55 618 771 133.3

17.55 492 17.53 679 17.60 860

17.57 541 17.53 704 17.55 835

25 17.53 580 631 68.3 17.55 639 681 58.4 17.55 649 613 53.9

17.55 604 17.55 656 17.62 551

17.53 709 17.53 748 17.62 639

30 17.55 263 261 15.6 17.53 253 233 17.3 17.58 197 185 16.1

17.57 245 17.58 228 17.60 190

17.57 276 17.53 220 17.62 167

Intracellular 

22 17.57 912 1111 176.2 17.55 1164 1301 125.4 17.63 1266 1922 855.4

17.53 1247 17.50 1330 17.60 1611

17.57 1174 17.52 1410 17.60 2890

25 17.53 876 838 34.0 17.50 979 956 101.4 17.60 1024 942 124.2

17.53 809 17.52 845 17.58 799

17.53 830 17.53 1044 17.57 1002

30 17.53 198 194 3.6 17.50 217 214 9.2 17.62 214 201 15.4

17.52 191 17.53 203 17.57 204

17.53 194 17.50 221 17.58 184

T5 T6T4

 
 



 

 

339 
 

 
44. The amount (ng/ml) of intra and extracellular levels of NOD for cultures of N. spumigena KAC 66 grown for 6 weeks at  
     different temperatures (n.d= not detected). 

 

Temperature Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

(°C) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

22 n.d 0 0 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d n.d 

n.d n.d n.d n.d 

25 n.d 0 0 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d n.d 

n.d n.d n.d n.d 

30 n.d 0 0 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d n.d 

n.d n.d n.d n.d 

Intracellular 

22 n.d 0 0 n.d 0 0 444.4 472.21 26.13 803.5 851.60 41.70

n.d n.d 496.2 876.9

n.d n.d 476.0 874.4

25 n.d 0 0 n.d 0 0 324.4 324.27 22.85 436.8 473.32 36.04

n.d n.d 301.4 508.8

n.d n.d 347.1 474.3

30 n.d 0 0 n.d 0 0 51.3 17.10 29.62 24.4 46.78 19.40

n.d n.d 0 58.6

n.d n.d 0 57.4

To T1 T2 T3
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Temperature Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

(°C) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

22 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d 

n.d n.d n.d 

25 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d 

n.d n.d n.d 

30 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d 

n.d n.d n.d 

Intracellular 

22 1094.2 1060.84 58.51 1068.7 1030.93 38.13 969.7 1012.43 88.17

1095.0 1031.7 1113.8

993.3 992.4 953.7

25 559.0 473.13 84.03 506.3 448.65 57.75 375.4 339.78 34.54

469.3 390.8 306.4

391.1 448.8 337.5

30 n.d 0 0 n.d 0 0 n.d 0 0

n.d n.d n.d 

n.d n.d n.d 

T6T4 T5
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45. The amount (ng/ml) of intra and extracellular concentrations of nodulopeptin 901 for cultures of N. spumigena KAC 66  
     grown for 6 weeks at different temperatures (n.d= not detected). 

 

Amount  of Amount  of Amount  of Amount  of

Temperature nodulopeptin 901 Mean (x̅) StDev nodulopeptin 901 Mean (x̅) StDev nodulopeptin Mean (x̅) StDev nodulopeptin 901 Mean (x̅) StDev 

(°C) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

22 38.9 50.6 12.8 42.2 47.3 4.5 64.2 82.8 16.4 75.2 111.3 31.8

48.6 50.7 88.5 124.0

64.3 49.1 95.6 134.9

25 64.3 59.6 4.6 41.9 35.4 9.1 69.4 74.4 4.8 156.9 138.0 27.0

55.2 25.0 74.9 107.1

59.2 39.4 78.9 150.1

30 53.2 57.5 5.3 40.5 43.9 4.1 51.3 61.0 8.9 67.0 72.5 4.8

63.4 42.8 63.0 75.0

55.9 48.5 68.8 75.5

Intracellular 

22 n.d 0 0 52.8 58.6 6.4 156.9 191.2 36.5 222.7 590.5 322.8

n.d 65.4 187.3 721.9

n.d 57.5 229.6 826.8

25 n.d 0 0 47.5 39.3 7.1 103.8 116.5 18.2 292.0 315.2 70.8

n.d 34.7 108.3 259.0

n.d 35.6 137.4 394.7

30 n.d 0 0 29.6 31.9 6.0 65.1 74.1 8.4 68.9 81.1 13.7

n.d 27.3 75.5 95.9

n.d 38.6 81.8 78.7

T1To T3T2
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Amount  of Amount  of Amount  of

Temperature nodulopeptin 901 Mean (x̅) StDev nodulopeptin 901 Mean (x̅) StDev nodulopeptin 901 Mean (x̅) StDev 

(°C) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

22 162.1 229.8 60.0 206.1 304.1 85.1 315.5 393.8 68.1

251.2 346.8 439.4

276.3 359.4 426.5

25 296.2 322.2 34.9 326.5 347.9 29.8 331.6 313.2 27.6

308.5 335.1 281.6

361.9 382.0 326.6

30 134.1 133.5 8.0 129.1 119.2 8.8 100.8 94.4 8.2

125.2 116.2 97.2

141.2 112.2 85.1

Intracellular 

22 465.7 567.4 90.0 594.6 664.7 64.1 646.6 981.6 436.9

636.7 679.1 822.6

599.8 720.3 1475.7

25 447.3 428.2 17.4 499.8 488.1 51.8 523.0 480.9 63.5

413.4 431.5 407.9

424.0 533.0 511.7

30 101.3 99.3 1.8 110.9 109.2 4.7 109.5 102.5 7.9

97.8 103.9 104.1

98.8 112.8 94.0

T6T5T4
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46. Weight of empty, freeze dried filter discs (with cells) and cell biomass for N. spumigena KAC 66 grown at different   

     salinities for 6 weeks at 22ºC (±S.D = standard deviation). 

Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

To

2 119.50 119.30 119.31 121.80 121.82 121.83 2.52 0.13 126.0 113.7 24.5

120.32 120.30 120.31 122.01 122.02 122.02 1.71 0.09 85.5

118.80 118.76 118.76 121.36 121.35 121.35 2.59 0.13 129.5

7 119.97 120.05 120.00 122.02 122.01 122.00 2.00 0.10 100.0 98.7 10.6

120.00 119.75 119.73 121.92 121.91 121.90 2.17 0.11 108.5

120.83 120.77 120.76 122.56 122.50 122.51 1.75 0.09 87.5

11 119.94 120.21 120.20 122.18 122.15 122.16 1.96 0.10 98.0 106.5 8.3

117.14 116.85 116.84 119.15 119.15 119.13 2.29 0.11 114.5

117.02 117.00 117.01 119.20 119.14 119.15 2.14 0.11 107.0

20 117.96 118.25 118.24 112.79 112.75 121.74 3.50 0.18 175.0 147.2 25.2

119.40 119.20 119.19 121.74 121.73 121.71 2.52 0.13 126.0

118.00 116.96 116.97 119.80 119.78 119.78 2.81 0.14 140.5

25 118.06 117.99 118.00 120.77 120.76 120.78 2.78 0.14 139.0 156.2 26.8

115.84 115.87 115.83 119.61 119.54 119.57 3.74 0.19 187.0

118.05 118.08 118.06 120.95 120.93 120.91 2.85 0.14 142.5

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T1

2 117.11 117.03 117.04 123.52 123.50 123.49 6.45 0.32 322.5 270.3 45.3

118.74 118.79 118.78 123.76 123.73 123.72 4.94 0.25 247.0

119.21 119.15 119.17 124.05 124.01 124.00 4.83 0.24 241.5

7 120.07 120.01 120.03 125.14 125.12 125.11 5.08 0.25 254.0 305.0 57.0

118.32 118.30 118.29 125.67 125.63 125.62 7.33 0.37 366.5

119.59 119.52 119.53 125.45 125.42 125.42 5.89 0.29 294.5

11 117.39 117.38 117.40 124.94 124.93 124.90 7.50 0.38 375.0 324.8 44.4

118.29 118.26 118.24 124.46 124.41 124.42 6.18 0.31 309.0

118.60 118.58 118.59 124.43 124.41 124.40 5.81 0.29 290.5

20 115.72 115.60 115.62 124.07 124.05 124.04 8.42 0.42 421.0 410.3 31.4

116.62 116.55 116.56 124.07 124.09 124.06 7.50 0.38 375.0

115.89 115.84 115.86 124.59 124.57 124.56 8.70 0.44 435.0

25 109.00 108.95 108.99 119.10 119.07 119.05 10.06 0.50 503.0 408.2 84.7

116.89 116.84 116.85 124.54 124.50 124.48 7.63 0.38 381.5

119.48 119.40 119.42 126.25 126.23 126.22 6.80 0.34 340.0

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T2

2 116.90 116.88 116.89 132.39 132.34 132.34 15.45 0.77 772.5 638.7 142.1

116.40 116.39 116.38 129.49 129.47 129.46 13.08 0.65 654.0

119.10 119.06 119.04 128.83 128.81 128.83 9.79 0.49 489.5

7 119.80 119.78 119.76 133.09 133.03 133.05 13.29 0.66 664.5 549.7 102.2

117.06 117.02 116.99 126.39 126.37 126.36 9.37 0.47 468.5

118.45 118.43 118.43 128.78 128.76 128.75 10.32 0.52 516.0

11 119.65 119.63 119.64 133.88 133.86 133.85 14.21 0.71 710.5 653.0 94.9

118.10 118.09 118.08 132.21 132.20 132.18 14.10 0.71 705.0

118.95 118.93 118.91 129.81 129.79 129.78 10.87 0.54 543.5

20 118.46 118.45 118.44 127.89 127.86 127.86 9.42 0.47 471.0 534.3 76.3

117.25 117.23 117.23 127.51 127.50 127.49 10.26 0.51 513.0

119.65 119.63 119.64 132.05 132.03 132.02 12.38 0.62 619.0

25 118.95 118.90 118.91 131.28 131.27 131.28 12.37 0.62 618.5 588.2 33.6

119.95 119.93 119.94 131.01 130.99 130.98 11.04 0.55 552.0

118.26 118.24 118.25 130.19 130.15 130.13 11.88 0.59 594.0

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T3

2 118.05 118.03 118.04 132.68 132.62 132.63 14.59 0.73 729.5 706.5 19.9

118.46 118.45 118.46 132.39 132.37 132.37 13.91 0.70 695.5

117.58 117.57 117.58 131.50 131.48 131.47 13.89 0.69 694.5

7 115.69 115.66 115.67 132.45 132.42 132.41 16.74 0.84 837.0 801.5 45.7

117.39 117.37 117.37 133.76 133.73 133.72 16.35 0.82 817.5

119.83 119.82 119.81 134.36 134.80 134.81 15.00 0.75 750.0

11 119.34 119.31 119.31 136.14 136.12 136.11 16.80 0.84 840.0 827.0 14.7

118.64 118.63 118.64 135.29 135.25 135.24 16.60 0.83 830.0

118.56 118.53 118.53 134.78 134.76 134.75 16.22 0.81 811.0

20 118.33 118.30 118.29 131.83 131.80 131.79 13.50 0.67 675.0 672.2 3.3

117.83 117.82 117.83 131.26 131.21 131.20 13.37 0.67 668.5

121.63 121.61 121.60 135.08 135.06 135.06 13.46 0.67 673.0

25 118.79 118.77 118.78 138.69 138.65 138.65 19.87 0.99 993.5 972.7 24.6

119.67 119.65 119.66 138.59 138.56 138.57 18.91 0.95 945.5

119.53 119.50 119.49 139.10 139.07 139.07 19.58 0.98 979.0

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T4

2 116.91 116.89 116.85 138.50 138.48 138.48 21.63 1.08 1081.5 940.2 126.5

110.53 110.50 110.49 127.29 127.26 127.24 16.75 0.84 837.5

119.69 119.68 119.67 137.76 137.73 137.70 18.03 0.90 901.5

7 119.09 119.05 119.03 139.38 139.36 139.37 20.34 1.02 1017.0 1116.3 142.8

116.67 116.63 116.61 137.64 137.64 137.65 21.04 1.05 1052.0

112.82 112.80 112.79 138.42 138.40 138.39 25.60 1.28 1280.0

11 119.29 119.26 119.25 138.09 138.10 136.08 16.83 0.84 841.5 879.2 55.2

119.48 119.47 119.47 136.59 136.55 136.54 17.07 0.85 853.5

119.36 119.34 119.34 138.21 138.19 138.19 18.85 0.94 942.5

20 119.10 119.08 119.08 134.83 134.80 134.80 15.72 0.79 786.0 784.3 8.1

118.35 118.32 118.32 134.20 134.16 134.15 15.83 0.79 791.5

119.65 119.63 119.60 135.18 135.12 135.11 15.51 0.78 775.5

25 117.89 117.87 117.85 128.71 128.69 128.67 10.82 0.54 541.0 549.0 8.0

120.23 120.20 120.17 131.30 131.25 131.15 10.98 0.55 549.0

119.59 119.55 119.55 130.71 130.68 130.69 11.14 0.56 557.0

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T5

2 119.86 119.80 119.81 143.37 143.39 143.39 23.58 1.18 1179.0 1207.5 47.6

120.61 120.58 120.56 144.15 144.15 144.18 23.62 1.18 1181.0

117.10 117.03 117.00 142.23 142.24 142.25 25.25 1.26 1262.5

7 120.49 120.43 120.41 142.30 142.31 142.32 21.91 1.10 1095.5 1228.2 133.3

117.47 117.45 117.43 144.63 144.66 144.67 27.24 1.36 1362.0

119.39 119.36 119.34 143.35 143.86 143.88 24.54 1.23 1227.0

11 118.53 118.52 118.51 149.39 149.38 149.33 30.82 1.54 1541.0 1451.8 78.0

119.67 119.65 119.65 148.05 148.03 148.02 28.37 1.42 1418.5

118.99 118.94 118.92 146.89 146.85 146.84 27.92 1.40 1396.0

20 119.29 119.25 119.23 140.67 140.68 140.68 21.45 1.07 1072.5 1089.2 56.4

118.17 118.16 118.15 138.96 139.03 139.01 20.86 1.04 1043.0

120.29 120.27 120.26 143.31 143.31 143.30 23.04 1.15 1152.0

25 120.73 120.70 120.71 128.79 128.75 128.74 8.03 0.40 401.5 490.0 78.3

118.80 118.79 118.79 129.85 129.82 129.80 11.01 0.55 550.5

118.58 118.56 118.55 128.94 128.93 128.91 10.36 0.52 518.0

1 2 3 1 2 3
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Conditions Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)              Cell biomass

 and (b-a=c) (mg/ml) (µg/ml) Mean (x̅) StDev

salinity (‰) (mg/20ml) (µg/ml) (σn-1)

T6

2 117.80 117.74 117.73 140.93 140.91 140.91 23.18 1.16 1159.0 1222.2 71.0

116.26 116.26 116.24 140.44 140.43 140.41 24.17 1.21 1208.5

116.91 116.87 116.86 142.86 142.85 142.84 25.98 1.30 1299.0

7 116.99 116.97 116.95 139.27 139.25 139.23 22.28 1.11 1114.0 1156.7 75.6

117.29 117.25 117.22 142.13 142.12 142.10 24.88 1.24 1244.0

115.79 115.78 115.76 138.06 138.03 138.00 22.24 1.11 1112.0

11 115.90 115.89 115.87 145.88 145.87 145.85 29.98 1.50 1499.0 1496.7 75.0

115.35 115.33 115.33 146.76 146.75 146.74 31.41 1.57 1570.5

118.46 118.41 118.39 146.85 146.82 146.80 28.41 1.42 1420.5

20 118.53 118.51 118.49 153.24 153.25 153.27 34.78 1.74 1739.0 1739.5 9.8

118.24 118.23 118.22 152.80 152.80 152.82 34.60 1.73 1730.0

116.29 116.23 116.21 151.18 151.20 151.20 34.99 1.75 1749.5

25 118.55 118.52 118.50 126.47 126.41 126.39 7.89 0.39 394.5 428.2 48.7

116.61 116.59 116.58 126.29 126.27 126.26 9.68 0.48 484.0

117.85 117.83 117.82 125.98 125.96 125.94 8.12 0.41 406.0

1 2 3 1 2 3
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47. Chl-a concentrations for N. spumigena KAC 66 grown at different salinities for 6  

     weeks at 22ºC (±S.D = standard deviation). 

                             Absorbance                                                                  Concentration of Chl-a

Conditions Salinity (pure sample) (sample:MeOH) Chlorophyll a Mean Chl-a Chl-a ±STDev

(‰) .(1:1, v/v) Diluted values     (µg/ml) (x) (µg/ml) (σn-1)

multiplied by 2 .= (13.0xAxv)/(dxV)     (µg/20ml) 

To 2 0.334 .- 0.33 1.07 1.06 0.05 0.02

0.319 .- 0.32 1.04

0.328 .- 0.33 1.07

7 0.349 .- 0.35 1.13 1.09 0.05 0.03

0.334 .- 0.33 1.07

0.325 .- 0.33 1.07

11 0.335 .- 0.34 1.10 1.11 0.05 0.05

0.360 .- 0.36 1.17

0.334 .- 0.33 1.07

20 0.336 .- 0.34 1.10 1.08 0.05 0.03

0.323 .- 0.32 1.04

0.340 .- 0.34 1.10

25 0.323 .- 0.32 1.04 1.02 0.05 0.04

0.320 .- 0.32 1.04

0.302 .- 0.30 0.97

T1 2 0.951 .- 0.95 3.08 2.95 0.14 0.17

0.850 .- 0.85 2.76

0.934 .- 0.93 3.02

7 0.988 .- 0.99 3.21 3.26 0.16 0.04

1.007 .- 1.01 3.28

1.006 .- 1.01 3.28

11 0.956 .- 0.96 3.12 3.29 0.16 0.15

1.032 .- 1.03 3.34

1.053 .- 1.05 3.41

20 0.960 .- 0.96 3.12 3.24 0.16 0.11

0.995 .- 1.00 3.25

1.031 .- 1.03 3.34

25 0.953 .- 0.95 3.08 3.03 0.15 0.05

0.918 .- 0.92 2.99

0.928 .- 0.93 3.02

T2 2 2.348 .- 2.35 7.63 6.85 0.34 0.78

2.108 .- 2.11 6.85

1.873 .- 1.87 6.07

7 2.044 .- 2.04 6.63 5.75 0.28 1.38

1.823 .- 1.82 4.16

1.992 .- 1.99 6.46

11 2.240 .- 2.24 7.28 7.14 0.35 0.55

2.335 .- 2.34 7.60

2.014 .- 2.01 6.53

20 1.584 .- 1.58 5.13 5.53 0.27 0.53

1.887 .- 1.89 6.14

1.644 .- 1.64 5.33

25 1.988 .- 1.99 6.46 6.42 0.32 0.78

1.727 .- 1.73 5.62

2.208 .- 2.21 7.18

T3 2 2.274 .- 2.27 7.37 7.26 0.36 0.14

2.188 .- 2.19 7.11

2.254 .- 2.25 7.31

7 2.353 1.684 3.37 10.95 10.98 0.54 0.09

2.352 1.704 3.41 11.080

2.351 1.682 3.36 10.920

11 2.342 1.670 3.34 10.85 9.72 0.48 2.56

2.356 1.775 3.55 11.53

2.335 1.046 2.09 6.79

20 2.140 1.531 3.06 9.94 9.90 0.49 0.65

2.151 1.418 2.84 9.23

2.096 1.620 3.24 10.53

25 2.404 1.853 3.71 12.05 10.60 0.53 2.51

2.392 1.186 2.37 7.70

2.407 1.856 3.71 12.05
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                             Absorbance                                                                  Concentration of Chl-a

Conditions Salinity (pure sample) (sample:MeOH) Chlorophyll a Mean Chl-a Chl-a ±STDev

(‰) .(1:1, v/v) Diluted values     (µg/ml) (x) (µg/ml) (σn-1)

multiplied by 2 .= (13.0xAxv)/(dxV)     (µg/20ml) 

T4 2 2.425 1.900 3.80 12.35 12.44 0.62 0.08

2.417 1.921 3.84 12.48

2.410 1.919 3.84 12.48

7 2.446 1.213 2.43 7.89 7.86 0.39 0.22

2.454 1.240 2.48 8.06

2.432 1.174 2.35 7.63

11 2.412 1.854 3.71 12.05 11.87 0.59 0.32

2.408 1.857 3.71 12.05

2.409 1.770 3.54 11.50

20 2.372 1.700 3.40 11.05 11.24 0.56 0.48

2.384 1.817 3.63 11.79

2.347 1.674 3.35 10.88

25 2.464 1.851 3.70 12.02 10.63 0.53 2.38

2.483 1.843 3.69 11.99

2.461 1.213 2.43 7.89

T5 2 2.443 1.265 2.53 8.22 7.61 0.38 0.78

2.443 1.176 2.35 6.73

2.441 1.216 2.43 7.89

7 2.446 1.192 2.38 7.73 7.70 0.38 0.21

2.386 1.217 2.43 7.89

2.368 1.150 2.30 7.47

11 2.427 1.325 2.65 8.61 8.65 0.43 0.33

2.451 1.385 2.77 9.00

2.427 1.285 2.57 8.35

20 2.414 1.844 3.69 12.0 10.31 0.51 3.11

2.415 1.879 3.76 12.22

2.436 1.036 2.07 6.72

25 2.480 1.433 2.87 9.32 9.06 0.45 0.51

2.486 1.456 2.91 8.48

2.487 1.443 2.89 9.39

T6 2 2.444 1.372 2.74 8.90 8.53 0.42 0.34

2.448 1.267 2.53 8.22

2.438 1.303 2.61 8.48

7 2.488 1.463 2.93 9.52 9.41 0.47 0.13

2.507 1.456 2.91 9.45

2.494 1.442 2.88 9.26

11 2.523 1.453 2.91 9.45 9.47 0.32 0.07

2.512 1.450 2.90 9.42

2.507 1.471 2.94 9.55

20 2.427 1.158 2.32 7.54 7.48 0.37 0.93

2.406 1.007 2.01 6.53

2.407 1.292 2.58 8.38

25 2.413 1.339 2.68 8.71 7.80 0.39 1.11

2.386 1.252 2.50 8.12

2.387 1.011 2.02 6.56
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48. Intra and extracellular levels of NOD for cultures of N. spumigena KAC 66 grown for 6 weeks at different salinities at  
     22ºC analysed on LC-MS. (NOD 238 nm wavelength and retention time 13.00 to 13.25 min; RT= retention time, PA=  
     peak area, n.d= not detected). 

 

Salinity

( ‰) RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev

(min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

2 13.32 37 36 11.3 13.10 26 29 2.9 13.08 133 108 21.7 13.05 105 95 8.6

13.29 47 13.08 32 13.08 93 13.05 92

13.33 24 13.08 28 13.08 98 13.03 88

7 13.27 22 22 0.9 13.10 34 34 0.3 13.07 82 85 10.8 13.02 107 112 5.8

13.30 22 13.10 34 13.08 97 13.00 118

13.35 23 13.08 34 13.10 76 13.02 110

11 13.30 75 58 15.1 13.08 29 30 2.9 13.10 242 163 75.8 13.07 151 138 12.0

13.25 46 13.08 28 13.07 91 13.00 134

13.33 52 13.10 34 13.05 156 13.00 128

20 13.33 65 104 34.9 13.10 41 40 1.8 13.05 133 134 2.1 13.00 160 178 38.5

13.35 132 13.08 38 13.10 133 13.00 222

13.35 115 13.10 39 13.10 136 13.00 152

25 13.31 53 75 18.9 13.10 22 22 3.4 13.07 108 102 22.9 12.98 120 109 17.9

13.33 85 13.10 26 13.07 77 12.97 119

13.35 86 13.12 19 13.07 122 13.00 89

Intracellular 

2 n.d n.d n.d n.d 13.05 1610 1534 150.1 13.12 1349 1579 393.8 12.97 4684 4689 30.9

n.d n.d 13.03 1631 13.10 1354 12.98 4661

n.d n.d 13.12 1361 13.13 2033 13.00 4722

7 n.d n.d n.d n.d 13.07 1118 1310 240.6 13.13 1642 1581 161.7 12.98 4438 4302 134.6

n.d n.d 13.1 1580 13.12 1703 12.98 4168

n.d n.d 13.1 1232 13.12 1398 13.00 4301

11 n.d n.d n.d n.d 13.08 1121 1267 200.2 13.12 1346 1312 78.4 13.00 4315 4341 76.7

n.d n.d 13.03 1496 13.10 1367 13.00 4427

n.d n.d 13.1 1186 13.08 1222 13.00 4280

20 n.d n.d n.d n.d 13.12 831 763 141.7 13.13 1227 1338 96.4 13.00 3026 2859 175.3

n.d n.d 13.12 857 13.10 1397 13.00 2676

n.d n.d 13.13 600 13.07 1391 13.00 2874

25 n.d n.d n.d n.d 13.15 800 1062 493.3 13.10 1190 1118 78.4 13.00 2846 2851 5.1

n.d n.d 13.51 756 13.10 1131 13.02 2855

n.d n.d 13.05 1632 13.08 1035 13.02 2854

To T1 T2 T3
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Salinity

( ‰) RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev

(min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

2 13.03 69 66 3.2 13.07 44 47 2.5 n.d n.d n.d n.d

13.02 63 13.05 48 n.d n.d

13.05 66 13.03 49 n.d n.d

7 13.05 52 44 7.2 13.03 37 31 5.5 n.d n.d n.d n.d

13.05 44 13.03 28 n.d n.d

13.05 37 13.02 27 n.d n.d

11 13.03 50 58 13.2 13.03 65 67 12.7

12.98 73 13.02 81 13.08 131 165 29.6

13.10 51 13.03 56 13.07 181

1305 183

20 13.05 77 94 15.6 13.02 89 91 5.2

13.05 106 13.03 87 13.08 85 88 5.0

13.10 100 13.05 97 13.07 85

13.07 94

25 13.05 83 92 10.4 13.05 204 217 17.6

13.05 104 13.05 237 13.10 89 73 14.7

13.05 91 13.05 208 13.05 70

13.07 61

Intracellular 

2 13.07 5225 5388 312.98 13.07 5770 5943 190.2 13.05 3515 3529 126.3

13.07 5189 13.05 5912 13.05 3410

13.03 5748 13.05 6147 13.05 3662

7 13.00 4331 4203 180.50 13.07 5232 5154 77.7 13.12 4109 3749 341.0

13.03 4282 13.07 5155 13.05 3431

13.05 3997 13.07 5077 13.08 3707

11 13.07 3509 3222 322.63 13.05 5345 5482 184.8 13.07 3833 3507 312.6

13.05 3284 13.07 5693 13.1 3209

13.08 2873 13.00 5410 13.07 3480

20 13.05 2837 2513 281.42 13.05 2816 2837 68.4 13.05 934 1295 325.9

13.03 2368 13.05 2913 13.07 1383

13.03 2333 13.08 2780 13.05 1567

25 13.05 3707 4102 342.92 13.07 5729 5756 312.4 13.08 973 732 214.8

13.07 4281 13.10 6081 13.10 560

13.03 4318 13.08 5458 13.13 664

T4 T5 T6
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49. Intra and extracellular levels of nodulopeptin 901 for cultures of N. spumigena KAC 66 grown for 6 weeks at different  
     salinities at 22ºC analysed on LC-MS. (nodulopeptin 901, 210 nm wavelength and retention time 18.07 to 18.25 min;  

     RT= retention time, PA= peak area, n.d= not detected). 
 

Salinity RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev 

(‰) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

2 18.10 19 18 0.5 18.10 311 302 12.5 18.07 835 599 221.3 18.15 457 466 13.5

18.10 18 18.07 308 18.08 563 18.12 460

18.12 18 18.07 288 18.07 397 18.12 482

7 18.82 14 16 2.5 18.10 268 273 7.6 18.05 500 445 90.8 18.10 644 650 13.0

18.08 19 18.12 270 18.05 494 18.08 641

18.13 17 18.08 282 18.07 340 18.10 665

11 18.13 19 20 2.1 18.08 277 271 5.8 18.07 517 479 32.9 18.12 608 640 34.6

18.13 22 18.10 266 18.07 455 18.10 677

18.13 19 18.08 271 18.03 465 18.08 636

20 18.13 19 21 2.8 18.08 217 225 6.4 18.02 345 350 19.3 18.08 438 426 45.6

18.13 24 18.08 228 18.08 371 18.08 464

18.13 19 18.10 229 18.08 333 18.07 375

25 18.12 26 22 3.0 18.10 131 126 4.6 18.05 191 227 38.7 18.07 241 224 28.7

18.13 20 18.10 125 18.05 223 18.07 239

18.15 21 18.13 122 18.07 268 18.05 191

Intracellular 

2 n.d n.d n.d n.d 18.03 368 306 89.4 18.13 584 671 138.3 18.07 789 796 15.4

n.d n.d 18.03 346 18.12 598 18.07 785

n.d n.d 18.10 204 18.13 830 18.08 813

7 n.d n.d n.d n.d 18.05 203 216 16.3 18.13 538 533 36.3 18.07 1007 937 61.6

n.d n.d 18.10 235 18.13 566 18.07 891

n.d n.d 18.12 211 18.13 494 18.08 913

11 n.d n.d n.d n.d 18.08 203 192 16.3 18.12 498 503 26.3 18.08 815 817 28.2

n.d n.d 18.02 200 18.12 532 18.08 846

n.d n.d 18.10 173 18.10 480 18.08 790

20 n.d n.d n.d n.d 18.12 80 107 27.4 18.13 436 438 9.2 18.07 580 563 31.7

n.d n.d 18.12 134 18.10 431 18.07 527

n.d n.d 18.13 106 18.07 449 18.07 583

25 n.d n.d n.d n.d 18.15 81 113 40.9 18.08 236 231 4.6 18.07 316 309 8.1

n.d n.d 18.12 99 18.08 231 18.07 300

n.d n.d 18.05 159 18.07 227 18.08 311

To T3T2T1
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Salinity RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev 

(‰) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

2 18.12 595 614 26.1 18.13 796 775 18.1 18.15 897 930 28.3

18.10 603 18.13 766 18.13 945

18.13 643 18.10 763 18.13 947

7 18.13 755 763 13.6 18.08 987 1090 90.4 18.15 1369 1475 126.5

18.10 755 18.17 1128 18.15 1442

18.12 779 18.10 1155 18.15 1615

11 18.10 774 771 7.0 18.1 1109 1189 90.1 18.12 1468 1519 44.6

18.08 776 18.12 1287 18.12 1538

18.17 763 18.10 1171 18.12 1550

20 18.12 507 519 35.9 18.08 577 534 44.8 18.165 808 757 55.5

18.13 560 18.12 487 18.12 766

18.17 491 18.12 537 18.13 698

25 18.15 255 270 13.7 18.15 295 306 16.7 18.12 550 428 105.7

18.13 274 18.13 325 18.10 369

18.13 281 18.12 297 18.12 364

Intracellular 

2 18.15 1014 1042 58.2 18.13 1235 1294 50.6 18.08 1323 1291 74.9

18.13 1003 18.10 1328 18.08 1205

18.12 1109 18.10 1317 18.08 1343

7 18.08 1296 1260 59.2 18.12 1736 1712 32.1 18.12 2115 2110 219.3

18.12 1292 18.10 1724 18.07 1889

18.12 1191 18.12 1676 18.10 2327

11 18.13 1173 1030 144.9 18.12 1627 1691 82.0 18.10 2690 2260 373.8

18.12 1033 18.10 1783 18.08 2009

18.15 884 18.13 1663 18.10 2081

20 18.12 779 809 25.9 18.08 795 791 17.5 18.08 868 916 41.3

18.10 819 18.08 807 18.08 940

18.08 828 18.12 773 18.10 939

25 18.12 518 563 39.5 18.12 871 875 53.5 18.12 735 674 55.1

18.12 591 18.12 930 18.13 628

18.10 580 18.13 823 18.13 658

T6T5T4
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50. The amount (ng/ml) of intra and extracellular levels of NOD for cultures of N. spumigena KAC 66   

     grown for 6 weeks at different  salinities at 22ºC (n.d= not detected). 
To T1 T2 T3

Salinity Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

(‰) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

2 10.4 10.1 3.2 7.3 8.04 0.86 37.3 30.3 6.1 29.4 26.6 2.5

13.2 9.0 26.1 25.8

6.7 7.8 27.5 24.7

7 6.2 6.3 0.2 9.5 9.53 0.00 23.0 23.8 3.0 30.0 31.3 1.6

6.2 9.5 27.2 33.1

6.4 9.5 21.3 30.8

11 21.0 16.2 4.3 8.1 8.50 0.90 67.8 45.7 21.2 42.3 38.6 3.3

12.9 7.8 25.5 37.6

14.6 9.5 43.7 35.9

20 18.2 29.2 9.8 11.5 11.03 0.43 37.3 37.6 0.5 44.9 49.9 10.7

37.0 10.7 37.3 62.2

32.2 10.9 38.1 42.6

25 14.9 20.9 5.3 6.2 6.26 0.98 30.3 28.7 6.5 33.6 30.7 4.9

23.8 7.3 21.6 33.4

24.1 5.3 34.2 25.0

Intracellular 

2 0 0.0 0.0 451.4 430.05 42.11 378.2 442.6 110.3 1313.1 1314.6 8.6

0 457.2 379.6 1306.7

0 381.6 569.9 1323.8

7 0 0.0 0.0 313.4 367.26 67.47 460.3 443.2 45.2 1244.2 1206.1 37.8

0 442.9 477.4 1168.5

0 345.4 391.9 1205.8

11 0 0.0 0.0 314.3 355.39 56.18 377.3 367.7 22.0 1209.7 1216.9 21.5

0 419.4 383.2 1241.1

0 332.5 342.6 1199.9

20 0 0.0 0.0 233.0 213.81 39.66 344.0 375.2 27.0 848.3 801.4 49.2

0 240.3 391.6 750.2

0 168.2 390.0 805.7

25 0 0.0 0.0 224.3 297.92 138.36 333.6 313.2 22.5 797.9 799.5 1.4

0 211.9 317.1 800.4

0 457.5 289.0 800.1



 

 

357 
 

T4 T5 T6

Salinity Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

(‰) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

Exrtracellular 

2 19.3 18.5 0.8 12.3 13.2 0.7 0.0 0.0 0.0

17.7 13.5 0.0

18.5 13.7 0.0

7 14.6 12.4 2.1 10.4 8.6 1.5 0.0 0.0 0.0

12.3 7.8 0.0

10.4 7.6 0.0

11 14.0 16.3 3.6 18.2 18.9 3.5 36.7 46.3 8.3

20.5 22.7 50.7

14.3 15.7 51.3

20 21.6 26.4 4.3 25.0 25.5 1.5 23.8 24.7 1.5

29.7 24.4 23.8

28.0 27.2 26.4

25 23.3 26.0 3.0 57.2 60.6 5.0 25.0 20.6 4.0

29.2 66.4 19.6

25.5 58.3 17.1

Intracellular 

2 1464.8 1510.3 87.7 1617.6 1666.1 53.4 985.4 989.3 35.5

1454.7 1657.4 956.0

1611.4 1723.3 1026.6

7 1214.2 1178.4 50.6 1466.8 1445.1 21.7 1151.9 1051.0 95.6

1200.4 1445.2 961.9

1120.5 1423.3 1039.2

11 983.7 903.3 90.4 1498.5 1537.1 51.9 1074.6 983.3 87.7

920.7 1596.0 899.6

805.4 1516.7 975.6

20 805.4 707.8 84.7 789.5 795.2 19.3 261.8 363.0 91.3

663.9 816.7 387.7

654.1 779.4 439.3

25 1039.2 1150.0 96.0 1606.1 1613.7 87.6 272.8 205.3 60.2

1200.2 1704.8 157.0

1210.5 1530.1 186.2
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    51. The amount (ng/ml) of intra and extracellular concentrations of nodulopeptin 901 for cultures of  

          N. spumigena KAC 66 grown for 6 weeks at different salinities at 22ºC (n.d= not detected). 
 

To T1 T2 T3

Salinity Amount of mean (x) STDev Amount of mean (x) STDev Amount of mean (x) STDev Amount of mean (x) STDev 

(‰) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(ng/ml) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

2 9.7 9.4 0.3 158.8 154.4 6.4 426.5 305.6 112.9 233.4 238.2 7.0

9.2 157.3 287.5 234.9

9.2 147.1 202.8 246.2

7 7.2 8.5 1.3 136.9 139.6 3.9 255.4 227.1 46.3 328.9 332.0 6.7

9.7 137.9 252.3 327.4

8.7 144.0 173.6 339.6

11 9.7 10.2 0.9 141.5 138.6 2.8 264.0 244.6 17.0 310.5 327.0 17.7

11.2 135.9 232.4 345.8

9.7 138.4 237.5 324.8

20 9.7 10.6 1.5 110.8 114.7 3.4 176.2 178.6 9.9 223.7 217.4 23.4

12.3 116.4 189.5 237.0

9.7 117.0 170.1 191.5

25 13.3 11.4 1.6 66.9 64.4 2.3 191.0 147.3 39.6 123.1 114.2 14.5

10.2 63.8 113.9 122.1

10.7 62.3 136.9 97.5

Intracellular 

2 0 0 0 187.9 156.3 45.5 298.3 342.5 70.6 403.0 406.4 7.7

0 176.7 305.4 400.9

0 104.2 423.9 415.2

7 0 0 0 103.7 110.5 8.5 274.8 272.0 18.5 514.3 478.5 31.5

0 120.0 289.1 455.1

0 107.8 252.3 466.3

11 0 0 0 103.7 98.1 8.4 254.3 257.1 13.5 416.2 417.3 14.3

0 102.1 271.7 432.1

0 88.4 245.1 403.5

20 0 0 0 40.9 54.5 13.8 222.7 224.0 4.7 296.2 287.7 16.1

0 68.4 220.1 269.2

0 54.1 229.3 297.8

25 0 0 0 41.4 57.7 20.9 120.5 118.1 2.3 161.4 157.8 4.2

0 50.6 118.0 153.2

0 81.2 115.9 158.8
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T4 T5 T6

Amount of mean (x) STDev Amount of mean (x) STDev Amount of mean (x) STDev 

Salinity nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(‰) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

2 303.9 313.4 13.1 406.5 395.8 9.3 458.1 474.8 14.5

308.0 391.2 482.6

328.4 389.7 483.7

7 385.6 389.7 7.1 504.1 556.7 46.1 699.2 753.5 64.5

385.6 576.1 736.5

397.9 589.9 824.8

11 395.3 393.8 3.6 566.4 607.3 46.1 749.7 775.6 22.6

396.3 657.3 785.5

389.7 598.1 791.6

20 258.9 265.2 18.4 294.7 272.6 23.0 412.7 386.8 28.4

286.0 248.7 391.2

250.8 274.3 356.5

25 130.2 137.9 6.9 150.7 156.1 8.6 280.9 218.4 54.1

139.9 166.0 188.5

143.5 151.7 185.9

Intracellular 

2 187.9 422.2 204.7 630.7 660.5 26.0 675.7 659.0 38.1

512.3 678.2 615.4

566.4 672.6 685.9

7 661.9 643.3 30.4 886.6 874.4 16.2 1080.2 1077.8 111.9

659.9 880.5 964.8

608.3 856.0 1188.5

11 599.1 526.0 73.8 830.9 863.6 41.7 1373.9 1154.2 191.1

527.6 910.6 1026.0

451.5 849.3 1062.8

20 397.9 413.0 13.3 406.0 404.3 8.8 443.3 467.7 21.1

418.3 412.2 480.1

422.9 394.8 479.6

25 264.6 287.5 20.1 444.8 446.7 27.4 375.4 344.1 28.2

301.8 475.0 320.7

296.2 420.3 336.1
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52. Weight of empty, freeze dried filter discs (with cells) and cell biomass for N. spumigena KAC 66 grown at different    

     NaNO3 concentrations for 5 weeks at 22ºC (±S.D = standard deviation). 

  

Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

To

0 128.5 128.5 128.1 131.8 131.7 131.5 3.4 0.17 170.0 183.3 11.5

129.9 129.7 129.5 133.7 133.5 133.3 3.8 0.19 190.0

128.3 128.2 128.1 132.3 132.0 131.9 3.8 0.19 190.0

3.5 129.1 129.0 128.9 133.0 132.9 132.7 3.8 0.19 190.0 215.0 21.8

127.8 127.7 127.5 132.5 132.2 132.1 4.6 0.23 230.0

126.9 126.9 126.8 131.5 131.4 131.3 4.5 0.23 225.0

6.5 126.7 126.6 126.6 131.5 131.3 131.2 4.6 0.23 230.0 261.7 38.8

126.8 126.7 126.6 131.9 131.8 131.6 5.0 0.25 250.0

130.3 130.2 130.1 136.5 136.3 136.2 6.1 0.31 305.0

7.5 128.9 128.7 128.7 133.2 133.1 132.9 4.2 0.21 210.0 206.7 10.4

129.6 129.5 129.3 133.9 133.7 133.6 4.3 0.21 215.0

127.9 127.7 127.6 131.7 131.5 131.5 3.9 0.20 195.0

8.5 126.9 126.9 126.7 131.9 131.8 131.7 5.0 0.25 250.0 240.0 17.3

126.9 126.8 126.6 131.5 131.3 131.0 4.4 0.22 220.0

124.6 124.5 124.4 129.7 129.5 129.4 5.0 0.25 250.0

9.5 126.8 126.7 126.5 133.4 133.2 133.0 6.5 0.33 325.0 250.0 65.4

127.9 127.7 127.5 131.9 131.8 131.9 4.4 0.22 220.0

129.5 129.2 129.1 133.5 133.3 133.2 4.1 0.21 205.0

(µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3 (mg/ml)
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Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

T1

0 125.5 15.3 125.0 130.5 130.4 130.2 5.2 0.26 260.0 261.7 7.6

129.6 129.3 129.0 134.6 134.3 134.1 5.1 0.26 255.0

127.5 127.4 127.3 132.9 132.9 132.7 5.4 0.27 270.0

3.5 127.9 16.9 126.8 132.0 131.9 131.8 5.0 0.25 250.0 270.0 43.6

123.7 123.8 124.0 130.7 130.5 130.4 6.4 0.32 320.0

126.5 126.3 126.2 131.6 131.5 131.0 4.8 0.24 240.0

6.5 127.9 127.7 127.6 132.9 132.8 132.7 5.1 0.26 255.0 278.3 32.1

125.9 125.9 125.8 132.4 132.3 132.1 6.3 0.32 315.0

129.6 129.5 129.3 134.9 134.7 134.6 5.3 0.26 265.0

7.5 124.6 124.5 124.3 130.6 130.5 130.5 6.2 0.31 310.0 275.0 31.2

130.3 130.2 130.0 135.5 135.2 135.0 5.0 0.25 250.0

125.5 125.4 125.3 130.8 130.7 130.6 5.3 0.27 265.0

8.5 126.3 126.2 126.0 132.2 131.9 131.9 5.9 0.30 295.0 275.0 17.3

127.2 127.1 127.0 132.5 132.4 132.3 5.3 0.27 265.0

129.8 129.7 129.6 135.1 135.0 134.9 5.3 0.27 265.0

9.5 129.4 129.3 129.2 134.8 134.7 134.6 5.4 0.27 270.0 253.3 20.8

128.2 128.1 128.0 132.9 132.7 132.6 4.6 0.23 230.0

127.2 127.1 126.9 132.5 132.2 132.1 5.2 0.26 260.0

(mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3
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Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

T2

0 124.3 124.0 124.0 136.8 136.7 136.5 12.5 0.63 625.0 510.0 112.6

123.3 123.1 122.9 133.5 133.2 133.0 10.1 0.51 505.0

125.3 125.2 125.0 133.3 133.1 133.0 8.0 0.40 400.0

3.5 121.7 121.5 121.4 127.5 127.2 127.0 5.6 0.28 280.0 401.7 106.8

122.6 122.4 122.2 131.9 131.8 131.8 9.6 0.48 480.0

120.9 120.8 120.6 129.8 129.6 129.5 8.9 0.45 445.0

6.5 123.6 123.6 123.5 135.1 134.9 134.8 11.3 0.57 565.0 500.0 62.6

123.0 122.9 122.8 132.9 132.8 132.7 9.9 0.50 495.0

124.8 124.6 124.5 133.7 133.5 133.3 8.8 0.44 440.0

7.5 122.6 122.6 122.4 133.2 132.9 132.9 10.5 0.53 525.0 528.3 10.4

124.8 124.7 124.5 135.6 135.5 135.3 10.8 0.54 540.0

123.5 123.3 123.2 133.9 133.7 133.6 10.4 0.52 520.0

8.5 124.1 123.9 123.9 133.4 133.2 133.0 9.1 0.46 455.0 466.7 16.1

124.9 124.8 124.7 134.6 134.5 134.4 9.7 0.49 485.0

120.3 120.2 120.1 129.6 129.5 129.3 9.2 0.46 460.0

9.5 121.5 121.3 121.2 133.9 133.7 133.7 12.5 0.62 625.0 500.0 110.6

123.2 122.9 122.8 131.5 131.2 131.1 8.3 0.42 415.0

129.2 128.9 120.9 130.4 130.2 130.1 9.2 0.46 460.0

(mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3
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Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

T3

0 122.4 122.3 122.1 135.9 135.9 135.8 13.7 0.69 685.0 720.0 60.6

122.7 122.8 122.6 138.7 138.5 138.4 15.8 0.79 790.0

123.2 123.1 122.9 136.9 136.7 136.6 13.7 0.68 685.0

3.5 122.3 122.1 122.0 136.4 136.3 136.1 14.1 0.71 705.0 673.3 54.8

124.5 124.2 124.0 136.7 136.4 136.2 12.2 0.61 610.0

120.9 120.8 120.8 135.3 135.1 134.9 14.1 0.71 705.0

6.5 123.2 123.2 123.0 137.3 137.2 137.1 14.1 0.71 705.0 693.3 63.3

122.8 122.7 122.6 135.5 135.3 135.1 12.5 0.63 625.0

119.4 119.3 119.2 134.4 134.3 134.2 15.0 0.75 750.0

7.5 125.5 125.4 125.3 140.3 140.1 139.0 13.7 0.69 685.0 693.3 14.4

122.7 122.7 122.5 136.9 136.8 136.7 14.2 0.71 710.0

125.7 125.6 125.5 139.5 139.3 139.2 13.7 0.68 685.0

8.5 120.9 120.9 120.8 138.4 138.2 138.1 17.3 0.87 865.0 766.7 88.1

123.8 123.6 123.5 138.6 138.4 138.3 14.8 0.74 740.0

124.7 124.5 124.5 138.7 138.5 138.4 13.9 0.70 695.0

9.5 121.3 121.2 120.9 134.5 134.5 134.4 13.5 0.68 675.0 655.0 48.2

123.6 123.5 123.3 135.7 135.4 135.3 12.0 0.60 600.0

124.5 124.4 124.3 138.4 138.3 138.1 13.8 0.69 690.0

(mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3
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Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

T4

0 123.7 123.5 123.3 143.8 143.7 143.5 20.2 1.01 1010.0 941.7 67.5

124.9 124.8 124.8 142.7 142.5 142.3 17.5 0.88 875.0

126.6 126.5 126.3 145.4 145.2 145.1 18.8 0.94 940.0

3.5 123.8 123.6 123.5 141.9 141.8 141.7 18.2 0.91 910.0 898.3 38.8

122.7 122.6 122.4 141.3 141.2 141.0 18.6 0.93 930.0

122.6 122.4 122.2 139.5 139.4 139.3 17.1 0.86 855.0

6.5 125.5 125.2 125.0 145.8 145.7 145.6 20.6 1.03 1030.0 1075.0 39.1

121.7 121.5 121.4 143.6 143.5 143.3 21.9 1.10 1095.0

122.9 122.8 122.7 144.9 144.8 144.7 22.0 1.10 1100.0

7.5 124.7 124.5 124.4 140.1 139.9 139.9 15.5 0.78 775.0 801.7 50.6

126.5 126.3 126.3 143.6 143.5 143.5 17.2 0.86 860.0

124.3 124.2 124.1 139.8 139.7 139.5 15.4 0.77 770.0

8.5 122.6 122.5 122.4 145.6 145.5 145.3 22.9 1.15 1145.0 1106.7 50.1

124.9 124.8 124.7 145.9 145.8 145.7 21.0 1.05 1050.0

124.8 124.7 124.6 147.3 147.2 147.1 22.5 1.13 1125.0

9.5 125.6 125.3 125.2 144.1 143.9 143.8 18.6 0.93 930.0 1056.7 120.6

122.4 122.3 122.0 143.7 143.5 143.4 21.4 1.07 1070.0

123.8 123.8 123.7 148.2 147.9 147.1 23.4 1.17 1170.0

(µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3 (mg/ml)
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Conditions StDev

(mg/L) (b-a=c) Mean (x̅) (σn-1)

(mg/20ml)  (µg/ml)

T5

0 125.9 125.8 125.8 146.9 146.9 146.7 20.9 1.05 1045.0 1068.3 32.1

121.5 121.4 121.3 142.7 142.6 142.4 21.1 1.06 1055.0

121.5 121.3 121.1 143.5 143.3 143.2 22.1 1.11 1105.0

3.5 124.8 124.7 124.5 146.5 146.2 146.0 21.5 1.08 1075.0 1141.7 65.1

127.5 127.3 127.2 150.3 150.2 150.1 22.9 1.15 1145.0

125.9 125.9 125.7 150.1 149.9 149.8 24.1 1.21 1205.0

6.5 122.8 122.6 122.5 159.2 158.9 158.8 36.3 1.82 1815.0 1826.7 98.0

123.7 123.6 123.4 162.3 162.3 162.0 38.6 1.93 1930.0

122.9 122.7 122.6 157.5 157.4 157.3 34.7 1.74 1735.0

7.5 124.5 124.3 124.1 146.9 146.8 146.7 22.6 1.13 1130.0 1106.7 22.5

124.7 124.6 124.5 146.8 146.7 146.6 22.1 1.11 1105.0

121.8 121.6 121.5 143.4 143.3 143.2 21.7 1.09 1085.0

8.5 125.3 125.1 125.0 165.7 165.5 165.5 40.5 2.03 2025.0 1973.3 217.2

122.9 122.8 122.8 157.8 157.6 157.5 34.7 1.74 1735.0

121.9 121.6 121.5 164.9 164.8 164.7 43.2 2.16 2160.0

9.5 121.6 121.5 121.4 171.4 171.2 171.0 49.6 2.48 2480.0 2223.3 226.8

123.6 123.4 123.3 164.6 164.5 164.3 41.0 2.05 2050.0

122.1 121.9 121.9 164.9 164.8 164.7 42.8 2.14 2140.0

(mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3
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53. Chl-a concentrations for N. spumigena KAC 66 grown at different  

     NaNO3 concentrations for 5 weeks at 22ºC (±S.D = standard 
deviation).  

                                                     Absorbance                                                                                          Concentration of Chl-a

Conditions Concentrations (pure sample) (sample:MeOH) Chlorophyll a Chl-a Mean (x) ±STDev

of NaNO3 (100% MeOH) .(1:1, v/v) Diluted values     (ug/20ml) (µg/ml) (µg/ml) (σn-1)

(mg/L) multiplied by 2 .= (13.0xAxv)/(dxV)

To 0 0.07 0.23 0.01 0.01 0.00

0.06 0.19 0.01

0.06 0.20 0.01

3.5 0.06 0.20 0.01 0.01 0.00

0.05 0.18 0.01

0.06 0.19 0.01

6.5 0.03 0.11 0.01 0.01 0.00

0.04 0.13 0.01

0.05 0.15 0.01

7.5 0.05 0.16 0.01 0.01 0.01

0.03 0.08 0.00

0.10 0.32 0.02

8.5 0.03 0.09 0.00 0.01 0.00

0.06 0.19 0.01

0.05 0.17 0.01

9.5 0.03 0.11 0.01 0.01 0.00

0.05 0.17 0.01

0.05 0.17 0.01

T1 0 0.31 1.01 0.05 0.05 #REF!

0.34 1.10 0.06

0.26 0.85 0.04

3.5 0.26 0.84 0.04 0.05 0.01

0.32 1.04 0.05

0.32 1.03 0.05

6.5 0.27 0.87 0.04 0.04 0.00

0.25 0.80 0.04

0.28 0.92 0.05

7.5 0.29 0.94 0.05 0.04 0.00

0.25 0.81 0.04

0.26 0.83 0.04

8.5 0.27 0.86 0.04 0.05 0.01

0.26 0.85 0.04

0.33 1.08 0.05

9.5 0.21 0.67 0.03 0.03 0.00

0.22 0.70 0.04

0.22 0.70 0.04

T2 0 0.61 1.97 0.10 0.09 0.01

0.49 1.59 0.08

0.65 2.12 0.11

3.5 0.77 2.51 0.13 0.12 0.00

0.73 2.38 0.12

0.78 2.54 0.13

6.5 0.77 2.49 0.12 0.12 0.00

0.72 2.33 0.12

0.74 2.42 0.12

7.5 0.69 2.23 0.11 0.11 0.02

0.56 1.81 0.09

0.80 2.59 0.13

8.5 0.75 2.44 0.12 0.12 0.00

0.70 2.27 0.11

0.73 2.37 0.12

9.5 0.49 1.58 0.08 0.09 0.01

0.60 1.93 0.10

0.64 2.08 0.10
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                                                     Absorbance                                                                                          Concentration of Chl-a

Concentrations

Conditions of NaNO3 (pure sample) (sample:MeOH) Chlorophyll a Chl-a Mean (x) ±STDev

(mg/L) (100% MeOH) .(1:1, v/v) Diluted values     (ug/20ml) (µg/ml) (µg/ml) (σn-1)

multiplied by 2 .= (13.0xAxv)/(dxV)

T3 0 0.78 2.53 0.13 0.12 0.00

0.76 2.45 0.12

0.73 2.39 0.12

3.5 1.18 3.83 0.19 0.20 0.01

1.27 4.14 0.21

1.29 4.19 0.21

6.5 1.19 3.88 0.19 0.18 0.02

0.98 3.19 0.16

1.08 3.50 0.17

7.5 1.19 3.86 0.19 0.19 0.01

1.27 4.12 0.21

1.14 3.69 0.18

8.5 1.13 3.67 0.18 0.19 0.01

1.27 4.11 0.21

1.13 3.67 0.18

9.5 0.97 3.14 0.16 0.17 0.01

1.05 3.43 0.17

1.03 3.35 0.17

T4 0 0.92 2.99 0.15 0.15 0.01

0.97 3.15 0.16

0.83 2.70 0.13

3.5 1.39 4.53 0.23 0.23 0.01

1.46 4.76 0.24

1.46 4.75 0.24

6.5 1.66 5.38 0.27 0.27 0.01

1.72 5.60 0.28

1.55 5.02 0.25

7.5 1.33 4.32 0.22 0.22 0.00

1.38 4.49 0.22

1.33 4.31 0.22

8.5 1.60 5.20 0.26 0.26 0.02

1.74 5.66 0.28

1.53 4.96 0.25

9.5 1.39 4.50 0.23 0.25 0.02

1.60 5.18 0.26

1.66 5.41 0.27

T5 0 1.14 3.70 0.18 0.19 0.01

1.19 3.87 0.19

1.13 3.68 0.18

3.5 1.69 5.48 0.27 0.27 0.01

1.59 5.18 0.26

1.71 5.57 0.28

6.5 2.21 1.47 2.94 9.56 0.48 0.48 0.03

2.16 1.39 2.78 9.04 0.45

2.26 1.55 3.10 10.08 0.50

7.5 1.89 6.13 0.31 0.30 0.00

1.87 6.07 0.30

1.86 6.04 0.30

8.5 2.23 1.46 2.92 9.49 0.47 0.44 0.04

2.07 1.20 2.40 7.80 0.39

2.19 1.39 2.78 9.04 0.45

9.5 2.05 1.21 2.42 7.87 0.39 0.39 0.09

1.82 5.91 0.30

2.21 1.44 2.88 9.36 0.47
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54. Intra and extracellular levels of NOD during the analysis on LC-MS at different nitrate concentrations for cultures   

     of N. spumigena KAC 66 grown for 5 weeks at 22°C. (for NOD 238 nm wavelength and retention time 13.10 to  
     13.52 min, RT= retention time, PA= peak area, n.d= not detected) 

 

Nitrate

concentrations

(mg/L) RT PA Mean STDev RT PA Mean STDev RT PA Mean STDev 

 (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Exrtracellular 

0 .- .- .- .- 13.13 26 27 5.0 13.13 19 19 1.9

.- .- 13.12 32 13.12 17

.- .- 13.12 22 13.08 21

3.5 .- .- .- .- 13.12 27 24 3.9 13.12 35 33 10.4

.- .- 13.12 19 13.10 42

.- .- 13.12 25 13.12 22

6.5 .- .- .- .- 13.12 24 24 2.8 13.12 34 30 3.8

.- .- 13.10 26 13.12 28

.- .- 13.10 21 13.08 28

7.5 .- .- .- .- 13.10 32 27 3.8 13.12 66 60 8.6

.- .- 13.10 25 13.10 63

.- .- 13.08 26 13.10 50

8.5 .- .- .- .- 13.08 35 27 8.1 13.12 31 24 6.1

.- .- 13.10 19 13.12 21

.- .- 13.10 27 13.12 20

9.5 .- .- .- .- 13.12 29 29 9.1 13.33 44 39 4.1

.- .- 13.12 39 13.12 36

.- .- 13.10 20 13.13 39

To T1 T2
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Nitrate

concentrations

(mg/L) RT PA Mean STDev RT PA Mean STDev RT PA Mean STDev 

 (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Exrtracellular 

0 13.12 10 10 1.4 12.70 12 11 0.4 .- .- .- .-

13.15 9 12.67 11 .- .-

13.17 12 12.70 11 .- .-

3.5 13.17 19 32 11.1 .- .- .- .- .- .- .- .-

13.17 38 .- .- .- .-

13.17 38 .- .- .- .-

6.5 13.15 39 33 14.0 .- .- .- .- .- .- .- .-

13.15 17 .- .- .- .-

13.15 43 .- .- .- .-

7.5 13.15 17 18 2.7 .- .- .- .- .- .- .- .-

13.15 16 .- .- .- .-

13.15 21 .- .- .- .-

8.5 13.13 33 29 8.2 .- .- .- .- .- .- .- .-

13.15 36 .- .- .- .-

13.15 20 .- .- .- .-

9.5 13.17 26 30 2.9 .- .- .- .- .- .- .- .-

13.17 32 .- .- .- .-

13.17 31 .- .- .- .-

T3 T4 T5
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Nitrate

concentrations

(mg/L) RT PA Mean STDev RT PA Mean STDev RT PA Mean STDev 

 (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Intracellular 

0 13.05 99.3 98 1.5 13.13 571 568 33.6 13.17 2348 2361 60.9

13.07 99.0 13.12 600 13.18 2307

13.05 96.5 13.13 533 13.17 2427

3.5 13.05 102.9 95 11.5 13.13 780 652 126.6 13.15 2222 2113 224.1

13.05 101.0 13.12 650 13.15 2261

13.05 82.1 13.13 527 13.15 1855

6.5 13.05 97.7 94 9.0 13.13 775 827 87.5 13.15 2152 2327 278.9

13.05 83.5 13.13 779 13.17 2649

13.07 100.2 13.13 928 13.15 2181

7.5 13.37 89.3 89 3.1 13.12 516 525 45.7 13.13 2485 2408 110.7

13.03 92.2 13.15 485 13.15 2459

13.05 86.0 13.15 575 13.15 2281

8.5 13.12 91.8 101 8.8 13.13 679 727 83.3 13.17 2614 2270 303.8

13.13 109.4 13.13 823 13.13 2157

13.12 101.0 13.13 678 13.13 2039

9.5 13.13 66.8 67 4.4 13.12 541 560 30.3 13.15 2022 2036 36.8

13.15 71.1 13.15 544 13.13 2077

13.13 62.3 13.12 595 13.13 2008

To T1 T2
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Nitrate

concentrations

(mg/L) RT PA Mean STDev RT PA Mean STDev RT PA Mean STDev 

 (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Intracellular 

0 13.17 2908 2529 429.9 13.20 1982 2089 108.5 13.23 1977 2002 31.6

13.18 2062 13.20 2199 13.27 2038

13.17 2616 13.20 2086 13.20 1992

3.5 13.15 3450 3808 317.2 13.20 3981 3841 124.6 13.25 2339 2637 403.7

13.13 4053 13.22 3742 13.23 3096

13.15 3921 13.22 3800 13.23 2475

6.5 13.13 4268 4383 100.2 13.23 6619 6540 148.4 13.25 3513 3514 76.1

13.17 4439 13.23 6369 13.23 3590

13.15 4443 13.25 6633 13.25 3438

7.5 13.15 3706 3840 248.5 13.25 3448 3620 219.6 13.25 1929 1971 54.4

13.17 4127 13.25 3545 13.25 1952

13.17 3688 13.25 3867 13.25 2033

8.5 13.17 3441 3447 31.2 13.25 3413 3221 184.2 13.27 3030 3129 147.7

13.15 3419 13.27 3204 13.25 3057

13.17 3480 13.28 3046 13.25 3298

9.5 13.13 2789 2946 145.0 13.25 2798 2886 79.1 13.32 2429 2540 126.1

13.15 2974 13.28 2912 13.32 2677

13.17 3075 13.25 2949 13.30 2514

T3 T4 T5
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To T1 T2

Nitrate Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Exrtracellular 

0 .- .- .- 7.2 7.4 1.4 5.3 5.4 0.5

.- 8.9 4.9

.- 6.2 5.9

3.5 .- .- .- 7.6 6.6 1.1 9.7 9.2 2.9

.- 5.4 11.9

.- 6.9 6.1

6.5 .- .- .- 6.6 6.6 0.8 9.6 8.4 1.1

.- 7.4 7.9

.- 5.8 7.7

7.5 .- .- .- 8.9 7.7 1.1 18.4 16.7 2.4

.- 7.0 17.8

.- 7.3 14.0

8.5 .- .- .- 9.7 7.5 2.3 8.7 6.8 1.7

.- 5.2 6.0

.- 7.5 5.6

9.5 .- .- .- 8.1 8.2 2.6 12.3 11.1 1.2

.- 10.8 10.0

.- 5.7 10.9

 

55. The amount (ng/ml) of intra and extracellular NOD at different concentrations of nitrate for cultures of    
      N. spumigena KAC 66 grown for 5 weeks at 22 ºC (n.d= not detected). 
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T3 T4 T5

Nitrate Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Exrtracellular 

0 2.9 3 0.4 3.3 3.2 0.1 .- .- .-

2.6 3.2 .- .-

3.3 3.1 .- .-

3.5 5.4 9 3.1 .- .- .- .- .- .-

10.8 .- .- .-

10.8 .- .- .-

6.5 11.0 9 3.9 .- .- .- .- .- .-

4.8 .- .- .-

12.1 .- .- .-

7.5 4.8 5 0.8 .- .- .- .- .- .-

4.5 .- .- .-

6.0 .- .- .-

8.5 9.2 8 2.3 .- .- .- .- .- .-

10.0 .- .- .-

5.6 .- .- .-

9.5 7.4 8 0.8 .- .- .- .- .- .-

8.9 .- .- .-

8.7 .- .- .-
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To T1 T2

Nitrate Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Intracellular 

0 27.8 27.5 0.4 159.9 159.2 9.4 658.2 661.8 17.1

27.8 168.3 646.8

27.1 149.5 680.3

3.5 28.8 26.7 3.2 218.6 181.0 35.7 623.0 592.2 62.8

28.3 176.6  633.8

23.0 147.7  520.0

6.5 27.4 26.3 2.5 217.2 232.0 24.5 603.3 652.4 78.2

23.4 218.4 742.6

28.1 260.3 611.4

7.5 25.0 25.0 0.9 144.7 147.2 12.8 696.6 675.2 31.0

25.8 135.8 689.3

24.1 161.1 639.6

8.5 25.7 28.2 2.5 190.4 203.8 23.4 732.9 636.4 85.2

30.7 230.7 604.6

28.3 190.1 571.7

9.5 18.7 18.7 1.2 151.8 157.0 8.5 566.8 570.7 10.3

19.9 152.5 582.4

17.5 166.8 562.9

 



 

 

375 
 

T3 T4 T5

Nitrate Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev Amount of NOD Mean (x) STDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Intracellular 

0 815.3 708.9 120.5 555.7 585.7 30.4 554.4 561.4 8.9

578.1 616.5 571.3

733.4 584.8 558.4

3.5 967.1 1067.5 88.9 1116.0 1076.8 34.9 655.6 739.2 113.2

1136.2 1049.0 868.0

1099.3 1065.3 693.9

6.5 1196.4 1228.9 28.1 1855.5 1833.5 41.6 984.9 985.0 21.3

1244.5 1785.5 1006.4

1245.7 1859.5 963.8

7.5 1038.9 1076.6 69.7 966.5 1014.8 61.6 540.9 552.7 15.2

1156.9 993.8 547.3

1033.8 1084.2 569.9

8.5 964.6 966.2 8.7 956.7 902.9 51.6 849.5 877.1 41.4

958.4 898.3 857.0

975.6 853.8 924.7

9.5 781.9 825.9 40.6 784.3 809.1 22.2 681.1 712.2 35.3

833.7 816.3 750.6

862.1 826.9 704.8
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56. Intra and extracellular levels of nodulopeptin 901 during the analysis on LC-MS at different nitrate concentrations for             

of N. spumigena KAC 66 grown for 5 weeks at 22°C. (for nodulopeptin 901, 210 nm wavelength and retention time 
18.12 to 18.42 min; RT= retention time, PA= peak area, n.d= not detected) 
 

Nitrate

conditions RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev 

(mg/L) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

0 .- .- .- .- 18.18 128 142 12.3 18.18 379 363 20.5

.- .- 18.15 152 18.18 340

.- .- 18.17 145 18.15 369

3.5 18.38 9 15 9.3 18.18 122 116 5.1 18.15 318 322 9.2

18.22 10 18.17 112 18.17 332

18.23 26 18.17 115 18.17 316

6.5 18.22 10 10 0.4 18.17 94 88 4.8 18.18 296 269 23.8

18.20 9 18.15 85 18.18 254

18.22 10 18.15 86 18.17 256

7.5 18.23 9 6 4.9 18.15 88 83 3.8 18.17 226 218 7.4

- 0 18.15 81 18.17 212

18.20 8 18.15 82 18.17 215

8.5 18.20 9 12 5.5 18.13 97 90 7.2 18.18 228 214 17.3

18.20 9 18.15 82 18.18 195

18.93 18 18.17 91 18.18 218

9.5 .- .- .- .- 18.22 47 43 6.0 18.22 86 85 1.0

.- .- 18.18 47 18.20 84

.- .- 18.17 36 18.20 84

To T1 T2
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Nitrate

conditions RT PA Mean StDev RT PA Mean StDev RT PA Mean StDev 

(mg/L) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1) (min)  (x̅) (σn-1)

Exrtracellular 

0 18.17 571 625 48.6 18.20 677 704 24.8 18.12 257 276 16.1

18.18 665 18.20 726 18.10 287

18.18 638 18.20 710 18.10 283

3.5 18.22 263 255 15.5 18.20 494 494 0.3 18.10 22 21 2.0

18.20 237 18.17 493 18.17 18

18.20 265 18.18 494 18.20 22

6.5 18.18 242 248 11.1 18.18 961 563 344.7 18.13 103 123 17.9

18.18 261 18.18 361 18.13 135

18.22 241 18.17 368 18.13 132

7.5 18.17 315 342 24.1 18.18 249 262 11.0 18.12 99 99 4.5

18.17 354 18.17 266 18.13 94

18.17 358 18.20 270 18.15 103

8.5 18.15 279 280 1.3 18.15 496 516 17.8 18.12 182 195 10.7

18.17 281 18.17 523 18.13 201

18.17 281 18.17 530 18.15 200

9.5 18.18 131 129 5.9 18.17 304 348 53.7 18.12 131 133 13.0

18.18 135 18.15 332 18.12 147

18.20 123 18.17 408 18.13 122

T3 T4 T5
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Nitrate To T1 T2

conditions RT PA Mean of PA STDev of PA RT PA Mean of PA STDev of PA RT PA Mean of PA STDev of PA

(mg/L)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Intracellular 

0 18.22 40 40 1.8 18.20 402 438 43.0 18.20 1305 1320 21.1

18.23 42 18.17 486 18.20 1312

18.22 39 18.18 427 18.18 1344

3.5 18.2 39 37 3.2 18.20 489 443 55.0 18.17 1071 1049 55.0

18.22 38 18.18 458 18.18 1091

18.22 33 18.18 382 18.18 987

6.5 18.22 38 36 1.9 18.20 445 508 64.7 18.17 1208 1240 60.5

18.22 35 18.18 504 18.18 1310

18.23 35 18.20 574 18.18 1202

7.5 18.25 26 28 3.4 18.18 308 310 22.3 18.17 983 987 53.8

18.2 32 18.22 290 18.17 1043

18.2 25 18.20 334 18.18 936

8.5 18.18 35 39 3.0 18.2 337 359 39.9 18.17 874 774 100.0

18.18 40 18.20 405 18.15 773

18.18 40 18.20 336 18.15 674

9.5 .- .- .- .- 18.18 223 234 24.2 18.15 647 650 8.8

.- .- 18.18 218 18.15 659

.- .- 18.18 262 18.15 642
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Nitrate T3 T4 T5

conditions RT PA Mean of PA STDev of PA RT PA Mean of PA STDev of PA RT PA Mean of PA STDev of PA

(mg/L)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)  (min) (x̅) (σn-1)

Intracellular 

0 18.2 2080 1931 196.3 18.17 2116 2369 274.8 18.13 1204 1209 8.5

18.18 1708 18.17 2329 18.13 1219

18.18 2005 18.17 2661 18.12 1204

3.5 18.18 1141 1253 97.4 18.17 1606 1551 51.0 18.15 645 733 113.3

18.15 1302 18.18 1504 18.15 861

18.17 1317 18.18 1544 18.15 694

6.5 18.15 1534 1586 45.2 18.20 2736 2412 281.8 18.15 1099 1097 10.7

18.18 1612 18.18 2223 18.13 1107

18.18 1613 18.18 2278 18.13 1085

7.5 18.17 1356 1359 71.2 18.20 997 1087 102.4 18.13 549 553 10.4

18.18 1432 18.18 1067 18.15 546

18.17 1290 18.20 1199 18.13 565

8.5 18.18 1090 1090 20.5 18.20 1568 1565 55.8 18.15 1192 1228 46.1

18.17 1070 18.20 1620 18.15 1212

18.17 1111 18.22 1508 18.15 1280

9.5 18.15 765 782 20.6 18.18 1069 1095 27.7 18.22 785 810 35.5

18.15 776 18.22 1124 18.20 851

18.17 805 18,20 1092 18.17 795
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57. The amount (ng/ml) of intra and extracellular nodulopeptin 901 at different concentrations of nitrate for cultures 

of N. spumigena KAC 66 grown for 5 weeks at 22 ºC (for nodulopeptin 901, 210 nm wavelength and retention 
time 18.12 to 18.42 min; RT= retention time, PA= peak area, n.d= not detected). 

To T1 T2

Nitrate Amount of Mean (x) STDev Amount of Mean (x) STDev Amount of Mean (x) STDev 

 concentrations nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

0 .- .- .- 65.6 72.5 6.3 193.8 185.2 10.5

.- 77.9 173.5

.- 74.1 188.3

3.5 4.7 7.7 4.8 62.3 59.4 2.6 162.2 164.4 4.7

5.2 57.3 169.8

13.2 58.6 161.2

6.5 5.2 4.9 0.2 47.9 45.1 2.4 151.3 137.3 12.2

4.8 43.7 129.7

4.8 43.7 130.8

7.5 4.5 2.9 2.5 44.8 42.6 1.9 115.4 111.1 3.8

0.0 41.2 108.3

4.1 41.8 109.7

8.5 4.6 6.2 2.8 49.3 45.9 3.7 116.6 109.2 8.9

4.4 42.0 99.4

9.4 46.4 111.4

9.5 .- .- .- 23.8 22.1 3.1 43.8 43.2 0.5

.- 24.0 43.0

.- 18.6 42.9
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T3 T4 T5

Nitrate Amount of Mean (x) STDev Amount of Mean (x) STDev Amount of Mean (x) STDev 

 concentrations nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

0 291.5 319.1 24.8 345.8 359.7 12.7 131.3 140.8 8.3

339.6 370.6 146.6

326.0 362.7 144.5

3.5 134.1 130.2 7.9 252.3 252.1 0.1 11.2 10.6 1.2

121.1 252.0 9.2

135.4 252.1 11.2

6.5 123.5 126.7 5.7 490.9 287.6 176.1 52.6 63.0 9.0

133.2 184.2 68.9

123.3 187.8 67.4

7.5 160.9 174.9 12.2 127.4 133.7 5.6 50.6 50.4 2.3

180.8 135.7 48.0

182.9 138.0 52.6

8.5 142.5 143.2 0.6 253.3 263.7 9.1 93.0 99.3 5.5

143.6 267.2 102.7

143.6 270.5 102.1

9.5 66.8 66.1 3.0 155.3 177.7 27.4 66.9 68.1 6.5

68.8 169.7 75.1

62.8 208.3 62.3
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To T1 T2

Nitrate Amount of Mean (x) STDev Amount of Mean (x) STDev Amount of Mean (x) STDev 

 concentrations nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Intracellular 

0 20.3 20.5 0.9 205.4 223.8 21.9 666.4 674.3 10.8

21.5 248.1 670.0

19.7 217.9 686.6

3.5 19.8 18.8 1.6 249.9 226.3 28.1 546.8 535.9 28.1

19.6 233.8 557.0

16.9 195.2 504.0

6.5 19.4 18.3 0.9 227.1 259.2 33.0 617.1 633.3 30.9

18.0 257.4 668.9

17.6 293.1 613.9

7.5 13.5 14.1 1.8 157.1 158.5 11.4 501.8 504.1 27.5

16.1 147.9 532.6

12.8 170.5 477.8

8.5 17.9 19.7 1.5 171.9 183.5 20.4 446.3 395.1 51.0

20.6 207.0 394.9

20.5 171.5 344.2

9.5 .- .- .- 113.8 119.5 12.3 330.6 331.8 4.5

.- 111.1 336.7

.- 133.7 327.9
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T3 T4 T5

Nitrate Amount of Mean (x) STDev Amount of Mean (x) STDev Amount of Mean (x) STDev 

 concentrations nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1) nodulopeptin (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Intracellular 

0 1062.1 986.2 100.3 1080.8 1039.6 174.2 614.9 617.5 4.4

872.5 1189.6 622.6

1024.0 848.5 614.9

3.5 582.8 640.1 49.7 820.0 792.2 26.0 329.4 374.5 57.8

665.0 768.3 439.7

672.5 788.4 354.4

6.5 783.5 810.1 23.1 1397.3 1231.8 144.1 561.3 560.3 5.7

823.0 1134.8 565.4

823.9 1163.3 554.1

7.5 692.7 694.2 36.4 509.1 555.3 52.3 280.4 282.6 5.2

731.3 544.8 278.9

658.6 612.1 288.6

8.5 556.5 556.7 10.4 800.8 799.4 28.5 608.8 627.2 23.6

546.4 827.1 619.0

567.3 770.2 653.7

9.5 390.9 399.4 10.5 546.1 559.3 14.1 400.9 413.9 18.2

396.2 574.2 434.6

411.1 557.7 406.0
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Conditions Amount of StDev

K2HPO4 (b-a=c) Mean (x̅) (σn-1)

(mg/L) (mg/20ml)  (µg/ml)

To 0 121.3 121.3 121.3 124.8 124.7 124.7 3.4 0.17 170.0 235.0 67.6

119.7 119.7 119.6 124.3 124.3 124.2 4.6 0.23 230.0

118.9 118.8 118.7 125.0 125.0 124.8 6.1 0.31 305.0

0.1 121.2 121.2 121.1 124.9 124.8 124.7 3.6 0.18 180.0 243.3 77.7

121.7 121.7 121.6 126.0 126.0 126.0 4.4 0.22 220.0

121.8 121.8 121.7 128.4 128.3 128.3 6.6 0.33 330.0

10 120.9 120.9 120.8 124.1 124.0 124.0 3.2 0.16 160.0 175.0 15.0

121.4 121.3 121.3 124.9 124.9 124.8 3.5 0.18 175.0

122.4 122.4 122.4 126.3 126.2 126.2 3.8 0.19 190.0

40 124.9 124.8 124.8 129.7 129.6 129.6 4.8 0.24 240.0 260.0 52.9

121.3 121.2 121.2 127.7 127.7 127.6 6.4 0.32 320.0

117.3 117.3 117.2 121.7 121.6 121.6 4.4 0.22 220.0

70 122.7 122.6 122.6 127.0 127.0 127.0 4.4 0.22 220.0 228.3 14.4

118.2 118.2 118.1 122.7 122.6 122.5 4.4 0.22 220.0

118.0 118.0 117.9 122.9 122.8 122.8 4.9 0.25 245.0

100 122.0 122.0 122.0 127.2 127.2 127.1 5.1 0.26 255.0 263.3 7.6

121.8 121.8 121.7 127.1 127.0 127.0 5.3 0.27 265.0

117.8 117.8 117.6 123.1 123.1 123.0 5.4 0.27 270.0

120 120.0 120.0 119.8 125.9 126.9 125.8 6.0 0.30 300.0 275.0 25.0

118.7 118.6 118.6 123.7 123.7 123.6 5.0 0.25 250.0

122.7 122.6 122.6 128.3 128.2 128.1 5.5 0.28 275.0

(µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3 (mg/ml)

 

58. Weight of empty, freeze dried filter discs (with cells) and cell biomass for N. spumigena KAC 66 grown at different          

K2HPO4 concentrations for 5 weeks at 22ºC (±S.D = standard deviation).  
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Conditions Amount of StDev

K2HPO4 (b-a=c) Mean (x̅) (σn-1)

(mg/L) (mg/20ml)  (µg/ml)

T1 0 117.9 117.8 117.8 123.9 123.8 123.8 6.0 0.30 300.0 320.0 18.0

121.8 121.7 121.7 128.3 128.2 128.2 6.5 0.32 325.0

123.5 123.4 123.4 130.2 130.1 130.1 6.7 0.33 335.0

0.1 121.6 121.5 121.5 130.6 130.6 130.5 9.0 0.45 450.0 398.3 45.4

121.2 121.2 121.1 128.9 128.8 128.7 7.6 0.38 380.0

119.9 119.8 119.8 127.3 127.2 127.1 7.3 0.37 365.0

10 120.7 120.6 120.6 128.5 128.4 128.3 7.7 0.39 385.0 358.3 25.2

121.5 121.4 121.4 128.1 128.0 128.1 6.7 0.33 335.0

120.4 120.4 120.3 127.5 127.5 127.4 7.1 0.36 355.0

40 121.7 121.6 121.6 128.6 128.5 128.5 6.9 0.35 345.0 380.0 69.5

119.6 119.5 119.5 128.8 128.8 128.7 9.2 0.46 460.0

118.7 118.6 118.6 125.5 125.4 125.3 6.7 0.34 335.0

70 123.3 123.3 123.2 131.5 131.4 131.4 8.2 0.41 410.0 391.7 16.1

120.4 120.3 120.3 128.1 128.1 128.0 7.7 0.39 385.0

121.0 121.0 120.9 128.7 128.6 128.5 7.6 0.38 380.0

100 119.0 119.0 118.9 125.6 126.6 126.5 7.6 0.38 380.0 360.0 30.4

118.0 117.8 117.9 124.5 124.4 124.4 6.5 0.33 325.0

121.4 121.3 121.2 128.8 128.8 128.7 7.5 0.37 375.0

120 121.8 121.7 121.7 130.2 130.1 130.1 8.4 0.42 420.0 395.0 52.2

119.1 119.0 119.1 127.8 127.8 127.7 8.6 0.43 430.0

116.5 116.4 116.4 123.2 123.1 123.1 6.7 0.33 335.0

(mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2 3
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Conditions Amount of StDev

K2HPO4 (b-a=c) Mean (x̅) (σn-1)

(mg/L) (mg/20ml)  (µg/ml)

T3 0 121.2 121.2 121.1 127.7 127.6 127.6 6.5 0.33 325.0 340.0 13.2

119.2 119.1 119.1 126.1 126.0 126.0 6.9 0.35 345.0

118.5 118.4 118.4 125.4 125.3 125.4 7.0 0.35 350.0

0.1 122.3 122.2 122.2 134.7 134.7 134.6 12.4 0.62 620.0 586.7 38.2

119.5 119.5 119.4 130.2 130.2 130.3 10.9 0.55 545.0

119.1 119.1 119.0 131.1 130.9 130.9 11.9 0.60 595.0

10 123.4 123.3 123.3 134.0 133.9 133.9 10.6 0.53 530.0 518.3 24.7

122.2 122.1 122.1 132.9 132.9 132.8 10.7 0.54 535.0

121.9 121.9 121.8 131.7 131.7 131.6 9.8 0.49 490.0

40 121.9 121.8 121.9 133.5 133.4 133.3 11.4 0.57 570.0 590.0 20.0

124.1 124.1 124.0 135.9 135.9 135.8 11.8 0.59 590.0

122.2 122.1 122.2 134.3 134.3 134.4 12.2 0.61 610.0

70 121.8 121.7 121.7 134.7 134.7 134.6 12.9 0.65 645.0 720.0 83.5

121.5 121.4 121.4 137.5 137.5 137.6 16.2 0.81 810.0

124.3 124.2 123.2 137.4 137.3 137.3 14.1 0.71 705.0

100 122.1 122.1 122.0 133.8 133.8 137.7 15.7 0.78 785.0 691.7 144.7

124.4 124.3 124.4 134.9 134.8 134.9 10.5 0.53 525.0

122.8 122.7 122.8 138.2 138.2 138.1 15.3 0.77 765.0

120 122.0 122.1 122.0 135.7 135.6 135.7 13.7 0.68 685.0 678.3 50.3

123.5 123.5 123.4 138.1 137.9 137.9 14.5 0.73 725.0

123.1 123.0 123.0 135.6 135.6 135.5 12.5 0.63 625.0

(mg/ml) (µg/ml)1 2 3 1 2 3

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass
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Conditions Amount of StDev

K2HPO4 (b-a=c) Mean (x̅) (σn-1)

(mg/L) (mg/20ml)  (µg/ml)

T4 0 121.3 121.3 121.2 127.5 127.4 127.3 6.1 0.31 305.0 250.0 49.2

125.4 125.3 125.2 129.8 129.6 129.4 4.2 0.21 210.0

121.4 121.4 121.3 126.0 125.9 126.0 4.7 0.24 235.0

0.1 123.8 123.8 123.7 132.4 132.3 132.2 8.5 0.42 425.0 433.3 10.4

122.3 122.3 122.2 130.9 130.9 130.8 8.6 0.43 430.0

122.4 122.4 122.3 131.5 131.3 131.2 8.9 0.45 445.0

10 122.9 122.9 122.8 132.8 132.7 132.7 9.9 0.50 495.0 560.0 91.8

121.6 121.5 121.6 132.1 132.1 132.0 10.4 0.52 520.0

123.5 123.4 123.3 136.7 136.6 136.6 13.3 0.67 665.0

40 121.9 121.9 121.8 132.7 132.7 132.6 10.8 0.54 540.0 551.7 34.0

121.8 121.8 121.7 132.2 132.3 132.2 10.5 0.52 525.0

121.9 121.9 121.8 133.7 133.5 133.6 11.8 0.59 590.0

70 122.9 122.9 122.8 134.8 134.7 134.6 11.8 0.59 590.0 623.3 80.4

120.9 120.9 120.8 132.2 132.2 132.1 11.3 0.57 565.0

119.7 119.7 119.6 133.9 133.8 133.9 14.3 0.72 715.0

100 122.2 122.1 122.0 138.2 138.1 138.0 16.0 0.80 800.0 681.7 109.1

122.5 122.4 122.3 134.2 134.1 134.0 11.7 0.59 585.0

121.0 120.9 120.9 134.2 134.2 134.1 13.2 0.66 660.0

120 124.7 124.7 124.6 137.4 137.4 137.4 12.8 0.64 640.0 740.0 88.9

121.7 121.6 121.5 137.9 136.0 136.9 15.4 0.77 770.0

122.8 122.7 122.7 139.1 139.0 138.9 16.2 0.81 810.0

3 (mg/ml) (µg/ml)

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass

1 2 3 1 2
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Conditions Amount of StDev

K2HPO4 (b-a=c) Mean (x̅) (σn-1)

(mg/L) (mg/20ml)  (µg/ml)

T5 0 1213.5 123.5 123.4 124.9 124.8 124.8 1.4 0.07 70.0 200.0 113.6

123.2 123.2 123.1 128.2 128.1 128.1 5.0 0.25 250.0

124.3 124.2 124.1 129.4 129.5 129.7 5.6 0.28 280.0

0.1 124.5 124.5 124.4 133.9 133.9 131.8 7.4 0.37 370.0 403.3 108.9

121.3 121.3 121.2 127.6 127.6 127.5 6.3 0.32 315.0

120.9 120.8 120.7 131.3 131.2 131.2 10.5 0.52 525.0

10 119.8 119.8 119.7 129.7 129.7 129.6 9.9 0.50 495.0 571.7 104.0

119.3 119.3 119.2 133.2 133.1 133.0 13.8 0.69 690.0

121.1 121.1 121.0 131.7 131.7 131.6 10.6 0.53 530.0

40 123.6 123.5 123.6 133.4 133.4 133.3 9.7 0.49 485.0 508.3 32.1

122.5 122.5 122.4 133.5 133.4 133.3 10.9 0.55 545.0

121.2 121.2 121.1 131.2 131.1 131.0 9.9 0.50 495.0

70 122.2 122.2 122.1 135.3 135.2 135.0 12.9 0.65 645.0 603.3 36.9

122.2 122.2 122.1 133.8 133.7 133.6 11.5 0.58 575.0

121.4 121.4 121.3 133.2 133.2 133.1 11.8 0.59 590.0

100 121.2 121.2 121.1 134.0 133.9 133.9 12.8 0.64 640.0 618.3 33.3

122.3 122.2 122.2 135.2 135.1 134.9 12.7 0.64 635.0

122.4 122.3 122.2 133.9 133.8 133.8 11.6 0.58 580.0

120 121.9 121.9 121.8 139.5 139.4 139.4 17.6 0.88 880.0 931.7 65.3

121.2 121.2 121.1 141.3 141.3 141.2 20.1 1.01 1005.0

122.0 121.9 121.9 140.2 140.2 140.1 18.2 0.91 910.0

(mg/ml) (µg/ml)1 2 3 1 2 3

Empty filter papers (a) (mg) Filter papers+freeze dried cells (b) (mg)                              Cell biomass
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                                                                                          Concentration of Chl-a

Conditions Amount Absorbance Chlorophyll a Chl-a Mean (x) ±STDev

of K2HPO4     (ug/20ml) (ug/ml) (ug/ml) (σ
n-1

)

(mg/L) .= (13.0xAxv)/(dxV)

To 0 0.41 1.35 0.07 0.053 0.013

0.26 0.84 0.04

0.30 0.99 0.05

0.1 0.41 1.34 0.07 0.060 0.014

0.27 0.87 0.04

0.43 1.40 0.07

10 0.32 1.05 0.05 0.063 0.010

0.43 1.39 0.07

0.42 1.36 0.07

40 0.44 1.43 0.07 0.061 0.009

0.36 1.17 0.06

0.33 1.07 0.05

70 0.37 1.20 0.06 0.046 0.020

0.14 0.46 0.02

0.33 1.08 0.05

100 0.18 0.60 0.03 0.046 0.022

0.23 0.76 0.04

0.44 1.42 0.07

120 0.36 1.17 0.06 0.045 0.014

0.18 0.59 0.03

0.28 0.92 0.05

T1 0 0.61 1.98 0.10 0.104 0.009

0.71 1.98 0.10

0.35 2.30 0.12

0.1 0.18 0.58 0.03 0.044 0.026

0.46 0.58 0.03

0.37 1.49 0.07

10 0.76 2.48 0.12 0.117 0.011

0.64 2.48 0.12

0.73 2.08 0.10

40 0.82 2.68 0.13 0.109 0.043

0.36 2.68 0.13

0.24 1.18 0.06

70 0.48 0.00 0.00 0.073 0.071

0.88 1.56 0.08

0.78 2.85 0.14

100 0.38 1.24 0.06 0.085 0.039

0.80 1.24 0.06

0.67 2.60 0.13

120 0.49 1.58 0.08 0.082 0.018

0.65 2.11 0.11

0.38 1.24 0.06

T2 0 0.78 2.54 0.13 0.115 0.021

0.55 2.54 0.13

0.36 1.80 0.09

0.1 0.98 3.19 0.16 0.165 0.009

1.08 3.19 0.16

0.79 3.51 0.18

10 0.72 2.35 0.12 0.184 0.116

1.96 2.35 0.12

1.10 6.37 0.32

40 0.77 2.50 0.12 0.144 0.033

1.12 2.50 0.12

1.33 3.65 0.18

70 0.66 2.15 0.11 0.143 0.061

1.31 2.15 0.11

0.54 4.27 0.21

100 0.77 2.52 0.13 0.121 0.007

0.70 2.52 0.13

0.88 2.26 0.11

120 0.55 1.79 0.09 0.122 0.040

0.90 2.92 0.15

0.80 2.58 0.13

 

59. Chl-a concentrations for N. spumigena KAC 66 grown     

at different K2HPO4 concentrations for 5 weeks at 22ºC 
(±S.D = standard deviation). 
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                                                     Absorbance                                                                                          Concentration of Chl-a

Conditions Amount Absorbance Chlorophyll a Chl-a Mean (x) ±STDev

of K2HPO4     (ug/20ml) (ug/ml) (ug/ml) (σ
n-1

)

(mg/L) .= (13.0xAxv)/(dxV)

T3 0 0.23 0.75 0.04 0.046 0.014

0.23 0.75 0.04

0.38 1.23 0.06

0.1 0.69 2.25 0.11 0.094 0.028

0.38 1.23 0.06

0.66 2.15 0.11

10 1.25 4.06 0.20 0.181 0.035

1.23 4.01 0.20

0.87 2.81 0.14

40 0.67 2.17 0.11 0.114 0.012

0.65 2.12 0.11

0.79 2.57 0.13

70 0.65 2.11 0.11 0.153 0.064

1.39 4.51 0.23

0.78 2.54 0.13

100 0.35 1.14 0.06 0.095 0.070

0.32 1.02 0.05

1.08 3.51 0.18

120 1.08 3.51 0.18 0.164 0.068

0.49 1.58 0.08

1.46 4.74 0.24

T4 0 0.02 0.07 0.003 0.003 0.001

0.02 0.07 0.003

0.01 0.05 0.002

0.1 0.59 1.91 0.10 0.091 0.004

0.55 1.78 0.09

0.55 1.78 0.09

10 0.64 2.06 0.10 0.104 0.038

0.87 2.83 0.14

0.41 1.32 0.07

40 1.18 3.82 0.19 0.133 0.051

0.59 1.93 0.10

0.68 2.21 0.11

70 1.20 3.90 0.20 0.121 0.066

0.42 1.38 0.07

0.60 1.96 0.10

100 0.04 0.12 0.01 0.063 0.050

0.58 1.88 0.09

0.55 1.80 0.09

120 0.64 2.09 0.10 0.076 0.024

0.44 1.42 0.07

0.33 1.08 0.05

T5 0 0.02 0.07 0.003 0.003 0.001

0.02 0.06 0.003

0.01 0.04 0.002

0.1 0.07 0.24 0.01 0.015 0.003

0.09 0.30 0.02

0.12 0.38 0.02

10 0.34 1.09 0.05 0.043 0.010

0.21 0.68 0.03

0.25 0.81 0.04

40 0.40 1.30 0.07 0.092 0.031

0.52 1.70 0.08

0.77 2.50 0.13

70 0.30 0.98 0.05 0.034 0.014

0.13 0.41 0.02

0.20 0.64 0.03

100 0.22 0.71 0.04 0.050 0.013

0.38 1.24 0.06

0.32 1.02 0.05

120 0.11 0.36 0.02 0.025 0.004

0.08 0.25 0.01

0.27 0.89 0.04
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Phosphate

conditions

(mg/L) RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

0 5.23 4 5 0.74 5.25 12 13 2.79 5.31 11 12 1.19

5.22 5 5.25 11 5.31 11

5.23 5 5.25 16 5.3 13

0.1 5.23 5 4 0.68 5.26 9 9 0.54 5.30 20 18 2.87

5.22 4 5.25 10 5.30 20

5.23 3 5.25 9 5.30 15

10 5.23 6 6 0.16 5.25 9 10 2.03 5.30 10 12 1.60

5.23 5 5.25 13 5.30 13

5.22 6 5.25 10 5.30 13

40 5.23 6 5 0.51 5.25 11 12 0.84 5.30 12 12 0.18

5.22 6 5.25 11 5.29 12

5.23 5 5.25 13 2.30 12

70 5.22 5 5 0.33 5.25 10 12 1.60 5.30 14 14 0.32

5.23 5 5.25 11 5.30 14

5.22 5 5.25 13 5.29 15

100 5.23 6 6 0.06 2.25 17 17 0.16 5.29 9 12 2.83

5.23 6 5.24 17 5.29 12

5.22 6 5.24 17 5.29 14

120 5.23 7 7 0.35 5.24 20 23 2.14 5.30 14 15 0.96

5.22 8 5.25 24 5.29 15

5.22 7 5.24 24 5.30 15

To T1 T2

 

60. Intra and extracellular levels of NOD during the analysis on LC-MS at different phosphate concentrations for cultures of  
     N. spumigena KAC 66 grown for 5 weeks at 22°C. (for NOD 238 nm wavelength and retention time 5.11-5.33 min,  

     RT= retention time, PA= peak area, n.d= not detected). 
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Phosphate

conditions

(mg/L) RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

0 5.32 3 3 0.28 5.33 1 1 0.05 5.22 3 3 1.90

5.33 3 5.33 1 5.23 5

5.32 3 5.34 1 5.23 2

0.1 5.32 27 18 7.62 5.33 2 2 0.69 5.23 1 1 0.23

5.32 13 5.33 3 5.23 1

5.32 14 5.33 2 5.23 1

10 5.32 1 1 0.33 5.33 1 1 0.33 5.23 1 1 0.08

5.32 1 5.34 1 5.23 1

5.31 1 5.34 1 5.24 1

40 5.32 5 6 4.81 5.33 1 1 0.14 5.23 3 3 2.08

5.31 2 5.33 1 5.24 1

5.32 12 5.33 1 5.24 5

70 5.31 5 5 1.18 5.34 2 11 10.85 5.24 6 3 3.08

5.32 4 5.33 23 5.24 2

5.31 6 5.34 9 5.24 0

100 5.31 8 9 2.05 5.33 26 22 17.89 5.24 1 1 0.72

5.32 7 5.33 37 5.24 2

5.32 11 5.34 2 5.25 0

120 5.32 7 5 2.11 5.34 2 2 0.20 5.24 4 4 3.95

5.32 3 5.34 2 5.25 8

5.32 6 5.34 2 0 0

T3 T4 T5
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Phosphate

conditions

(mg/L) RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Intracellular 

0 5.21 121 156 31.14 5.21 651 627 21.91 5.26 1452 1445 33.11

5.21 179 5.21 610 5.28 1475

5.22 169 5.21 619 5.26 1410

0.1 5.21 174 161 11.69 5.21 530 557 24.39 5.27 1478 1512 41.76

5.21 160 5.21 561 5.27 1499

5.21 150 5.22 578 5.27 1558

10 5.22 166 162 3.75 5.21 566 499 59.43 5.27 1432 1399 45.93

5.22 160 5.22 481 5.27 1419

5.22 160 5.22 451 5.28 1347

40 5.22 173 180 21.46 5.22 678 707 26.02 5.27 1767 1740 31.27

5.22 204 5.23 729 5.28 1706

5.22 163 5.22 714 5.28 1748

70 5.22 174 162 23.00 5.22 740 750 15.00 5.28 1902 1889 38.16

5.22 177 5.22 742 5.29 1919

5.22 136 5.23 767 5.29 1846

100 5.22 171 169 2.86 5.23 799 769 27.64 5.29 1735 1774 45.67

5.22 166 5.23 745 5.29 1762

5.22 170 5.23 764 5.29 1824

120 5.22 168 160 7.96 5.23 777 773 32.06 5.30 1757 1775 18.21

5.22 152 5.23 740 5.30 1794

5.22 161 5.23 804 5.29 1773

To T1 T2
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Phosphate

conditions

(mg/L) RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Intracellular 

0 5.30 287 277 12.78 5.33 19 18 1.03 5.18 23 22 1.72

5.29 263 5.33 18 5.19 20

5.29 281 5.33 17 5.19 22

0.1 5.28 1006 1047 116.10 5.32 271 274 7.57 5.19 35 35 1.13

5.28 957 5.31 269 5.19 33

5.28 1178 5.31 283 5.19 35

10 5.29 797 783 34.82 5.31 412 411 4.08 5.22 306 279 49.40

5.29 809 5.31 414 5.21 308

5.29 744 5.31 406 5.22 222

40 5.29 873 969 100.86 5.31 484 489 13.23 5.21 296 280 29.50

5.29 959 5.31 504 5.22 246

5.29 1074 5.32 479 5.21 298

70 5.30 998 1009 12.40 5.32 451 447 20.92 5.22 195 200 26.06

5.30 1023 5.32 424 5.22 228

5.30 1006 5.32 466 5.22 177

100 5.30 893 972 134.76 5.32 596 583 18.98 5.22 245 287 49.55

5.31 895 5.32 562 5.22 342

5.31 1128 5.32 593 5.22 274

120 5.31 845 851 38.84 5.33 262 265 18.60 5.23 47 45 3.95

5.32 893 5.33 285 5.23 41

5.31 816 5.33 248 5.22 49

T3 T4 T5
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To T1 T2

Phosphate Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Exrtracellular 

0 5.2 6.1 0.8 15.7 17.0 3.5 14.4 15.3 1.5

6.5 14.4 14.4

6.5 20.9 17.0

0.1 6.5 5.2 1.3 11.8 12.2 0.8 26.1 24.0 3.8

5.2 13.1 26.1

3.9 11.8 19.6

10 7.8 7.4 0.8 11.8 13.9 2.7 13.1 15.7 2.3

6.5 17.0 17.0

7.8 13.1 17.0

40 7.8 7.4 0.8 14.4 15.3 1.5 15.7 15.7 0.0

7.8 14.4 15.7

6.5 17.0 15.7

70 6.5 6.5 0.0 13.1 14.8 2.0 18.3 18.7 0.8

6.5 14.4 18.3

6.5 17.0 19.6

100 7.8 7.8 0.0 22.2 22.2 0.0 11.8 15.3 3.3

7.8 22.2 15.7

7.8 22.2 18.3

120 9.2 9.6 0.8 26.1 29.6 3.0 18.3 19.2 0.8

10.5 31.4 19.6

9.2 31.4 19.6

 

61. The amount (ng/ml) of intra and extracellular NOD at different concentrations of phosphate for cultures of  

N. spumigena KAC 66 grown for 5 weeks at 22 ºC (for NOD 238 nm wavelength and retention time 5.11-5.33 min,  
RT= retention time, PA= peak area, n.d= not detected).  
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T3 T4 T5

Phosphate Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Exrtracellular 

0 3.9 3.9 0.0 1.3 1.3 0.0 3.9 4.4 2.0

3.9 1.3 6.5

3.9 1.3 2.6

0.1 35.3 23.5 10.2 2.6 3.1 0.8 1.3 1.3 0.0

17.0 3.9 1.3

18.3 2.6 1.3

10 1.3 1.3 0.0 1.3 1.3 0.0 1.3 1.3 0.0

1.3 1.3 1.3

1.3 1.3 1.3

40 6.5 8.3 6.7 1.3 1.3 0.0 3.9 3.9 2.6

2.6 1.3 1.3

15.7 1.3 6.5

70 6.5 6.5 1.3 2.6 14.8 14.0 7.8 3.5 4.0

5.2 30.1 2.6

7.8 11.8 0.0

100 10.5 11.3 2.7 34.0 28.3 23.4 1.3 1.3 1.3

9.2 48.4 2.6

14.4 2.6 0

120 9.2 4.4 4.6 2.6 2.6 0.0 5.2 5.2 5.2

3.9 2.6 10.5

0 2.6 0
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To T1 T2

Phosphate Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Intracellular 

0 158.2 204.4 40.5 851.0 819.2 28.2 1898.0 1889.8 43.1

234.0 797.4 1928.1

220.9 809.2 1843.1

0.1 227.5 210.9 15.8 692.8 727.2 31.8 1932.0 1976.0 54.2

209.2 733.3 1959.5

196.1 755.6 2036.6

10 217.0 211.8 4.5 739.9 652.7 78.0 1871.9 1829.2 59.9

209.2 628.8 1854.9

209.2 589.5 1760.8

40 226.1 235.3 27.9 886.3 924.2 34.3 2309.8 2274.9 40.8

266.7 952.9 2230.1

213.1 933.3 2285.0

70 227.5 212.2 29.9 967.3 979.1 20.4 2486.3 2469.3 49.9

231.4 967.3 2508.5

177.8 1002.6 2413.1

100 223.5 220.9 3.5 1044.4 1005.7 35.8 2268.0 2318.5 59.7

217.0 973.9 2303.3

222.2 998.7 2384.3

120 350.3 253.2 84.4 1015.7 1011.3 42.0 2296.7 2300.2 16.0

198.7 967.3 2286.3

210.5 1051.0 2317.6
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T3 T4 T5

Phosphate Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev Amount of NOD Mean (x̅) StDev 

concentrations (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1) (ng/ml) (ng/ml) (σn-1)

(mg/L)

Intracellular 

0 375.2 362.1 16.3 24.8 23.5 1.3 30.1 28.3 2.0

343.8 23.5 26.1

367.3 22.2 28.8

0.1 1315.0 1368.6 151.7 354.2 358.6 9.9 45.8 44.9 1.5

1251.0 351.6 43.1

1539.9 369.9 45.8

10 1041.8 1024.0 45.2 538.6 536.8 5.4 400.0 364.3 64.2

1057.5 541.2 402.6

972.5 530.7 290.2

40 1141.2 1266.2 131.8 632.7 639.2 17.3 386.9 366.0 38.5

1253.6 658.8 321.6

1403.9 626.1 389.5

70 1304.6 1319.0 16.7 589.5 584.3 27.8 254.9 261.4 33.8

1337.3 554.2 298.0

1315.0 609.2 231.4

100 1167.3 1270.6 176.6 779.1 763.0 24.6 320.3 375.2 65.1

1169.9 734.6 447.1

1474.5 775.2 358.2

120 1104.6 1112.9 50.8 342.5 346.4 24.4 61.4 59.7 5.4

1167.3 372.5 53.6

1066.7 324.2 64.1
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Phosphate

conditions RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(mg/L) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

0

6.98 7 25 15.9 6.99 50 50 4.1 6.99 68 75 6.6

6.98 32 6.98 45 6.99 81

6.97 36 6.99 54 6.99 77

0.1

6.98 49 41 7.4 6.99 42 43 2.6 6.99 38 37 23.6

6.98 34 6.98 46 6.99 61

6.98 41 6.98 40 6.99 14

10

6.98 34 35 2.8 6.98 43 43 0.6 6.99 55 58 4.4

6.98 38 6.99 44 6.99 55

6.99 33 6.99 43 6.99 63

40

6.98 40 38 2.7 6.99 41 44 2.4 6.99 64 62 2.3

6.97 35 6.99 45 6.99 60

6.980 37 6.99 45 6.99 60

70

6.98 35 38 4.3 6.99 45 43 2.4 6.99 54 55 5.8

6.98 43 6.99 41 6.99 61

6.98 36 7.00 42 6.99 50

100

6.98 39 40 1.3 6.99 20 34 12.3 6.99 52 47 8.5

6.98 40 6.99 37 6.99 38

6.97 41 6.98 44 6.99 53

120

6.98 40 39 2.3 6.99 44 43 1.9 6.99 52 54 1.9

6.97 41 7.00 41 6.99 55

6.97 36 6.99 43 6.99 56

To T1 T2

 

62. Intra and extracellular levels of nodulopeptin 901 during the analysis on LC-MS at different phosphate concentrations for 

cultures of N. spumigena KAC 66 grown for 5 weeks at 22°C. (for nodulopeptin901, 210 nm wavelength and retention 
time 6.90-7.00 min; RT= retention time, PA= peak area, n.d= not detected) 
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Phosphate

conditions RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(mg/L) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Exrtracellular 

0

6.99 117 120 3.3 7.00 32 45 11.9 6.90 11 12 3.0

7.00 123 7.00 48 6.89 16

7.00 122 7.00 55 6.89 11

0.1

6.99 85 91 6.2 7.00 82 109 36.7 6.90 24 24 2.7

7.00 97 7.00 151 6.89 22

6.99 90 7.00 94 6.89 27

10

6.99 64 67 3.1 6.99 69 70 7.9 6.90 55 55 4.0

6.99 67 6.99 79 6.90 50

6.99 70 6.99 63 6.90 58

40

7.00 78 67 12.2 7.00 75 76 8.7 6.90 79 84 8.9

6.99 54 6.99 85 6.90 94

7.00 70 6.99 68 6.90 79

70

6.99 63 71 8.6 7.00 78 88 8.5 6.90 62 59 6.1

7.00 70 7.00 94 6.89 52

6.99 80 7.00 92 6.89 63

100

6.99 79 71 6.8 7.00 63 74 10.0 6.89 51 46 4.5

7.00 69 7.00 82 6.90 43

6.99 66 7.00 78 6.90 44

120

7.00 74 70 4.3 7.00 81 85 3.9 6.89 25 26 3.4

7.00 71 7.00 87 6.90 24

6.99 66 7.00 88 6.89 30

T3 T4 T5
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Phosphate

conditions RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(mg/L) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Intracellular 

0 9.98 52 77 24.9 6.98 187 179 13.2 6.99 406 387 17.0

6.98 102 6.98 187 6.99 383

6.98 76 6.98 164 6.99 373

0.1 6.98 83 69 11.5 6.98 133 135 5.4 6.99 313 307 16.5

6.98 63 6.97 130 6.98 288

6.98 62 6.98 141 6.98 319

10 6.98 85 71 12.4 6.98 129 125 19.1 6.99 245 234 42.4

6.98 63 6.98 105 6.98 270

6.97 64 6.98 142 6.99 187

40 6.98 80 82 6.6 6.98 144 166 19.1 6.98 314 300 12.5

6.98 89 6.98 177 6.98 295

6.98 76 6.98 177 6.98 290

70 6.98 72 67 4.1 6.98 201 174 23.8 6.98 301 300 26.0

6.98 67 6.98 157 6.99 326

6.98 63 6.98 164 6.98 274

100 6.97 67 66 1.9 6.98 153 165 17.7 6.98 284 295 16.4

6.98 68 6.98 157 6.99 314

6.98 64 6.98 186 6.99 288

120 6.97 74 66 7.4 6.98 163 154 24.8 6.99 253 287 31.0

6.98 60 6.98 126 6.99 314

6.98 64 6.98 173 6.99 295

To T1 T2

 



 

 

402 
 

Phosphate

conditions RT (min) PA Mean StDev RT (min) PA Mean StDev RT (min) PA Mean StDev

(mg/L) (x̅) (σn-1) (x̅) (σn-1) (x̅) (σn-1)

Intracellular 

0 7.00 159 152 7.1 6.99 43 47 3.5 6.89 25 22 2.3

6.99 145 7.00 48 6.90 21

6.99 152 7.00 50 6.90 22

0.1 6.99 214 241 39.3 7.00 119 116 4.9 6.90 34 37 2.6

6.99 224 6.99 110 6.89 39

7.00 286 7.00 119 6.90 38

10 6.99 111 124 12.2 6.99 110 108 4.2 6.89 119 109 14.6

6.99 128 7.00 110 6.89 115

6.99 134 7.00 103 6.90 92

40 6.99 150 146 29.7 6.99 100 103 3.2 6.89 128 134 9.9

6.99 115 6.99 106 6.90 129

6.99 174 7.00 103 6.89 145

70 6.99 157 165 11.7 7.00 99 105 6.0 6.90 63 89 22.8

6.99 160 7.00 106 6.90 107

6.99 179 7.00 111 6.89 95

100 6.99 142 147 8.2 7.00 134 125 13.5 6.89 91 95 4.9

6.99 142 7.00 131 6.90 100

7.00 156 6.99 110 6.89 95

120 6.99 152 142 9.7 7.00 104 97 15.1 6.90 45 45 2.1

7.00 132 7.00 79 6.89 43

6.99 143 7.00 107 6.89 47

T4 T5T3
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To T1 T2

Phosphate Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev 

 concentrations nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

0 9.1 32.4 20.4 64.9 64.4 5.8 88.2 97.7 8.6

41.5 58.4 105.1

46.7 70.0 99.9

0.1 63.6 53.6 9.7 54.5 55.3 4.0 49.3 48.9 30.5

44.1 59.7 79.1

53.2 51.9 18.2

10 44.1 45.4 3.4 55.8 56.2 0.7 71.3 74.8 6.0

49.3 57.1 71.3

42.8 55.8 81.7

40 51.9 48.4 3.3 53.2 56.6 3.0 83.0 79.6 3.0

45.4 58.4 77.8

48.0 58.4 77.8

70 45.4 31.6 25.1 58.4 55.3 2.7 70.0 71.3 7.2

2.6 53.2 79.1

46.7 54.5 64.9

100 2.6 19.5 29.2 25.9 43.7 16.0 67.4 61.8 10.9

2.6 48.0 49.3

53.2 57.1 68.7

120 51.9 50.6 3.4 57.1 55.3 2.0 67.4 70.5 2.7

53.2 53.2 71.3

46.7 55.8 72.6

 

63. The amount (ng/ml) of intra and extracellular nodulopeptin 901 at different concentrations of phosphate for 

cultures of  N. spumigena KAC 66 grown for 5 weeks at 22 ºC (for nodulopeptin901, 210 nm wavelength 
and retention time 6.90-7.00 min; RT= retention time, PA= peak area, n.d= not detected)  
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T3 T4 T5

Phosphate Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev 

 concentrations nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Exrtracellular 

0 151.8 156.5 4.2 41.5 58.4 15.3 14.3 16.4 3.7

159.5 62.3 20.8

158.2 71.3 14.3

0.1 110.2 117.6 7.8 106.4 141.4 47.8 31.1 31.6 3.3

125.8 195.8 28.5

116.7 121.9 35.0

10 83.0 86.9 3.9 89.5 91.2 10.5 71.3 70.5 5.2

86.9 102.5 64.9

90.8 81.7 75.2

40 101.2 87.3 15.8 97.3 98.6 11.1 102.5 108.9 11.2

70.0 110.2 121.9

90.8 88.2 102.5

70 81.7 92.1 11.1 101.2 114.1 11.3 80.4 76.5 7.9

90.8 121.9 67.4

103.8 119.3 81.7

100 102.5 92.5 8.8 81.7 96.4 13.0 66.1 59.7 5.7

89.5 106.4 55.8

85.6 101.2 57.1

120 96.0 91.2 5.2 105.1 110.7 4.9 32.4 34.2 4.2

92.1 112.8 31.1

85.6 114.1 38.9
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To T1 T2

Phosphate Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev 

 concentrations nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1) nodulopeptin 901 (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Intracellular 

0 67.4 99.4 32.4 242.5 232.6 17.2 526.6 502.4 21.9

132.3 242.5 496.8

98.6 212.7 483.8

0.1 107.7 89.9 15.4 172.5 174.7 7.4 406.0 397.8 21.3

81.7 168.6 373.5

80.4 182.9 413.7

10 110.2 91.7 16.1 167.3 162.6 24.3 317.8 303.5 55.2

81.7 136.2 350.2

83.0 184.2 242.5

40 103.8 105.9 8.6 186.8 215.3 24.7 407.3 388.7 16.4

115.4 229.6 382.6

98.6 229.6 376.1

70 93.4 87.3 5.8 260.7 225.7 30.7 390.4 389.5 33.7

86.9 203.6 422.8

81.7 212.7 355.4

100 86.9 86.0 2.7 198.4 214.4 23.4 368.4 383.1 21.1

88.2 203.6 407.3

83.0 241.2 373.5

120 96.0 85.6 9.4 211.4 199.7 32.1 328.1 372.7 40.5

77.8 163.4 407.3

83.0 224.4 382.6
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T3 T4 T5

Phosphate Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev Amount of Mean (x̅) StDev 

 concentrations nodulopeptin 902 (ng/ml) (σn-1) nodulopeptin 902 (ng/ml) (σn-1) nodulopeptin 902 (ng/ml) (σn-1)

(mg/L) (ng/ml) (ng/ml) (ng/ml)

Intracellular 

0 206.2 197.1 9.1 55.8 61.0 4.7 32.4 29.4 2.7

188.1 62.3 27.2

197.1 64.9 28.5

0.1 277.6 313.0 50.6 142.7 150.5 6.7 44.1 48.0 3.4

290.5 154.3 50.6

370.9 154.3 49.3

10 144.0 161.3 15.5 142.7 139.6 5.2 154.3 140.9 18.9

166.0 142.7 149.2

173.8 133.6 119.3

40 0.0 124.9 114.8 129.7 133.6 3.9 166.0 173.8 12.4

149.2 137.5 167.3

225.7 133.6 188.1

70 203.6 214.4 15.5 128.4 136.6 7.8 81.7 114.6 29.5

207.5 137.5 138.8

232.2 144.0 123.2

100 184.2 190.2 10.5 173.8 162.1 17.0 118.0 123.6 5.8

184.2 169.9 129.7

202.3 142.7 123.2

120 197.1 184.6 13.0 134.9 125.4 19.9 58.4 58.4 2.6

171.2 102.5 55.8

185.5 138.8 61.0
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Original sample code New codes Salinity (‰) Salinity groups

Shore sample 6 D39 4.0 4

Shore sample 7 D40 1.4 4

Shoreline 10a D49 5.4 4

Sample 1b D2 17.0 17

Spring spring 11a D35 16.0 17

Sample 1a D1 19.0 20

Sample 9a D11 18.6 20

Shoreline 4 D46 18.8 20

Shoreline 10b D50 19.6 20

Sample 2a D3 22.4 22

Sample 2b D4 22.4 22

Sample 4a D5 23.0 22

Sample 4b D6 22.4 22

Sample 6a D7 22.4 22

Sample 6b D8 22.4 22

Sample 9b D12 22.4 22

Sample 12b D16 23.2 22

Shore sample 2 D37 21.4 22

Spring spring 11b D36 21.0 22

Sample 8a D9 25.0 25

Sample 8b D10 26.6 25

Sample 11a D13 26.2 25

Sample 11b D14 26.2 25

Sample 12a D15 24.0 25

Spring sample 10 D31 26.4 25

Spring sample13 D34 25.0 25

Shore sample 5 D38 25.2 25

White hard a D51 >32.0 32

White hard b D52 32.0 32

Hot spring 1 D18 >32.0 32

Hot spring 2 D19 >32.0 32

Hot spring 3 D20 >32.0 32

Hot spring 4 D21 >32.0 32

Hot spring 7 D22 >32.0 32

Hot spring 9 D23 >32.0 32

Hot spring 11a D24 >32.0 32

Hot spring 11b D25 >32.0 32

Hot spring 12 D26 >32.0 32

Hot spring 17 D27 >32.0 32

Hot spring 18 D28 >32.0 32

Hot spring 19 D29 >32.0 32

Spring sample 6 D30 >32.0 32

Spring sample12a D32 >32.0 32

Spring sample12b D33 >32.0 32

Southern spring D43 >32.0 32

Southern system a D44 >32.0 32

Southern system b D45 >32.0 32

Shore sample 12 D42 29.0 28

Shoreline 6 D47 28.6 28

Shoreline 9 D48 27.2 28

Sample 14 D17 29.8 28

Shore sample 11 D41 dry dry

SHO shore D53 19.4 20

64. Details and salinity values of samples collected    

     from the various habitats of the Dead Sea. 



 

 

408 
 

 

 

 

 

 

 

 

 

 

 

CONFERENCE PRESENTATIONS



 

 

409 
 

 

 

 

            8th International Conference on Toxic Cyanobacteria (ICTC8) 

 Istanbul, TURKEY                             August 29th – September  4th, 2010 

 

(ID 082) 

Production of bioactive peptides by Nodularia spumigena 

KAC 66 

Shaista Hameed1, Christine Edwards2 and Lawton A. Lawton3 

1,2, 3 School of Pharmacy and Life Sciences, The Robert Gordon 

University, St. Andrew Street, Aberdeen, AB25 1HG, UK 

0514290@rgu.ac.uk 

 

Under favourable conditions several freshwater and marine cyanobacterial 

strains are capable of forming blooms which may be toxic and thus 

hazardous to animals and humans. The growth and toxin production of 

cyanobacteria are affected by abiotic and biotic factors, but why blooms 

form is still largely a mystery. The nitrogen-fixing cyanobacterium, 

Nodularia spumigena frequently forms blooms in the Baltic Sea. In addition 

to producing peptide hepatotoxins, nodularins, this species produces many 

other bioactive compounds such as spumigins, nodulopeptins and recently 

three new peptides have been characterised (A, B & C). In order to unravel 

the roles of these compounds, intracellular-and extracellular levels have 

been monitored during growth. This study reports the production of 

nodularin and the recently characterised peptide ”C”, major secondary 

metabolites produced by N. spumigena KAC 66. 
 

Cultures of N. spumigena were grown for 7 weeks with weekly sampling. 

Growth was measured by dry weight. The production of NOD and peptide C 

in cells and media were monitored by HPLC-PDA-MS.  
 

In common with many studies, the majority of the NOD was in the cells 

throughout the seven week growth experiment, with maximum levels 
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detected at 6 weeks. In contrast, as much as 40% of peptide C was 

detected in the media thought the growth cycle. 
 

HPLC-PDA-MS revealed that N. spumigena produces many characterised 

and uncharacterised compounds. Week 6 (T6) is the optimum time to get 

the highest amount of NOD and peptide C.  

 

Keywords: extracellular, intracellular, biomass, HPLC-PDA-MS 
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Abstract 
 
Due to heavy nutrient load, the Baltic Sea is Nodularia spumigena under 

the influence of eutrophication, which has resulted in the occurrence of 

heavy toxic algal blooms. In late summer the dominant and toxic strain 

N. spumigena along with the non-toxic Aphanizomenon flos-aquae and 

Anabaena spp., produces massive and lethal blooms in many areas of the 

Baltic Sea. N. spumigena has also been reported to have lethal blooms in 

Lake Alexandrina, Australia. As well as producing nodularins, Nodularia 

sp. also produces a range of other bioactive peptides such as spumigins 

and nodulopeptins, all of which have unclear function.   
 

We recently characterised three new nodulopeptins (899, 901, 917) from 

N. spumigena KAC 66. Nodulopeptin 901 demonstrated weak inhibition of 

protein phosphatase 1 (IC50 25 µg/mL).  To gain further insight on the 

effects of environmental stress on growth and production of bioactive 

metabolites in N. spumigena KAC 66, a range of parameters were 

investigated which included; temperature, salinity, nitrate and 

phosphorus. Growth was monitored by cell biomass and chlorophyll-a. 

Intracellular and extracellular peptides were monitored by high 
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412 
 

performance liquid chromatography with photodiode array and mass 

spectrometry (HPLC-PDA-MS).  
 

In common with many studies, the maximum amount of nodularin was 

retained within the cells during the seven week growth experiment. In 

contrast, as much as 40% of nodulopeptin 901 was detected in the 

growth media throughout the duration of experiments. 
 

Temperature had the greatest effect on peptide production. Whilst growth 

was similar at 22°C, 25°C and 30°C, increase in temperature had a 

profound effect on nodularin production in that an increase from 22°C to 

25°C resulted in a 50% decrease in intracellular nodularin levels. At 30°C 

little or no nodularin was detected. In contrast, whilst concentrations of 

nodulopeptin 901 decreased with increasing temperature, they were still 

detected at consistent levels suggesting they play an important role. 
 

This is the first study to evaluate the effects of selected environmental 

parameters on nodularin/nodulopeptin production which ultimately may 

be helpful to explain the distribution, control of natural blooms and toxin 

levels of N. spumigena in the Baltic Sea and as well as laboratory based 

experiments. 
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