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ABSTRACT 

 

The thesis presents an investigation of the relationship between anterior knee 

pain and lower limb biomechanics in symptomatic and asymptomatic individuals 

during walking. 

Although foot orthotic devices are often prescribed to realign lower extremity 

mechanics, there is conflicting evidence to support this.  A quantitative study 

explored the dynamics of walking barefoot, shod and with orthotic devices using 

the 3D Kinematic Motion Analysis System, Vicon 370.  Sample sizes of 30 control 

subjects and 30 subjects with anterior knee pain were recruited.  Kinematic gait 

parameters and temporal-spatial gait parameters were compared between the 

two groups and a thorough static clinical examination was provided.   

The relationship of alignment and knee pain was also examined using the 

Positional Upright MRI Scanner.  A group of 15 subjects with anterior knee pain 

and a group of 5 asymptomatic subjects were examined radiographically barefoot, 

shod and with orthotic devices. 

An increase in Q-angle was shown in the knee pain group with an added angle 

increase in the females in both groups.  This could signify that a higher Q-angle 

may influence biomechanics of the knee joint by creating an abnormally increased 

valgus angle.  Evidence was found that there was a strong relationship between 

eversion and inversion of the foot with internal and external tibial rotation of the 

leg.  This coupling relationship may lend insight into the behavior of the lower leg 

and anterior knee pain whilst walking.  Small changes were noted when wearing 

the orthotic devices which may be advantageous biomechanically and they were 

also of benefit in correcting pronatory changes or movements more distal to the 

foot.  The results of the MRI study were disappointing but many limitations were 

shown to support the results. 

Upon finishing this thesis, it is apparent that documented evidence of any 

relationship between anterior knee pain and lower limb biomechanics is 

imperative to clinicians in order to aid in treatment plans of patients but also in 

preventative treatment.  Further research is required to enhance the clinicians’ 

knowledge and understanding of the foot and leg dynamically.  
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1. Chapter 1 – Introduction 

 

1.1. Introduction 

 

This chapter provides an introduction and justification to the origins and 

objectives of the thesis. 

The aim of this thesis is to investigate any association between lower limb 

biomechanics and anterior knee pain in symptomatic and asymptomatic subjects 

during gait.  There have been assumptions that altered foot mechanics as a 

primary problem can lead to secondary knee pain but the evidence in terms of 

objective analysis of lower limb and in particular foot biomechanics is limited. 

Some studies have suggested that differences in relative muscle forces exerted on 

the patella between the vastus medialis muscle and the vastus lateralis muscle 

contribute towards lateral patellar tracking and malalignment which have been 

linked to knee pain (Powers et al 1996; Cutbill et al 1997). Studies investigating 

foot function during gait have typically approximated foot pronation and 

supination using calcaneal eversion and inversion, as this component is the 

simplest to measure (Edington et al 1990). Deviation from the normal gait 

pattern, described as either excessive foot pronation or supination or calcaneal 

eversion and inversion depending on definitions and measurement technique, 

have been implicated as being contributory to a number of musculoskeletal 

disorders of the lower extremity. 

Lower limb alignment was also investigated to establish any changes in barefoot, 

shod and orthotic conditions using a Motion Analysis System and a Positional MRI 

scanner.   There are various theories from a review of literature whether foot 

orthotics affect lower limb biomechanics. It was believed that wearing shoes with 

and without the addition of foot orthoses could alter the kinematics of the lower 

limb therefore measuring motion at the rearfoot was paramount.  The rearfoot 

(subtalar joint) is very difficult to examine clinically due to the fact it is 

structurally and functionally dependent on other joints forming the ankle joint and 

midtarsal complex. Due to this complexity, the subtalar joint presents many 

problems in the accurate measurement of range of motion.  Previous literature 
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does exist which has also investigated 2D and 3D motion at the rearfoot.  Foot 

models have been devised for use with motion capture which enables 3D data to 

be collected at the subtalar joint.  The foot model used in this study was slightly 

different to previous ones and this will be discussed in chapter 4 section 4.4.  

Another specific element of the new foot model involved was being able to 

measure navicular height both statically and dynamically.  According to previous 

research, the measure of navicular height is a representation of pronation and 

supination but when the model was being developed, there had been no evidence 

in the research literature at the time on testing dynamic navicular height. 

One of the aims was to identify relationships between clinical measurements of 

lower limb biomechanics versus measurements taken dynamically using motion 

capture and positional MRI. In order to do this the reliability of clinical 

measurements, marker placement for use with motion capture and MRI 

measurements were tested in several pilot studies involving small samples of 

subjects. The repeatability, reliability and accuracy of the measurements were 

explored which will give confidence with the interpretation of the final results. 

The overall objective of this research was to gain a greater understanding of how 

the foot and leg work together and if there are any associations between the 

biomechanics of the lower leg and anterior knee pain during walking. 

The findings of this study may be relevant for clinical practice and research in the 

following ways 

a. Influence evidence based practice by presenting clinicians with data-

supported clinical recommendations and guidelines, concerning the potential 

effectiveness for the use of functional foot orthoses in lower extremity 

injuries. 

b. By providing a normative database of kinematic data using the control groups 

data which will enable clinicians to compare any symptomatic foot and leg 

kinematic data. 

c. Development of an accurate and precise kinematic foot marker placement 

model. This will facilitate the study of 3D rearfoot and midfoot foot function 

during gait when using a Kinematic Motion Analysis System. 
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d. Providing invaluable information from images of lower limb alignment with 

barefoot, shoes and orthotic conditions taken in the upright position using a 

Positional MRI Scanner.    

 

1.2. Thesis Objectives 

 

a. To establish if a relationship exists between anterior knee pain and lower 

limb biomechanics. 

b. To analyse the intratester reliability of a detailed clinical assessment. 

c. To develop and test a foot marker placement model for use with the Vicon 

370 Kinematic Motion Analysis System to analyse the biomechanics of the 

lower limb. 

d. To develop and establish values for lower limb biomechanics in a group of 

asymptomatic subjects using a detailed clinical assessment and the Vicon 

370 Kinematic Motion Analysis System. 

e. To develop and establish values for lower limb biomechanics in a group of 

symptomatic subjects with anterior knee pain using a detailed clinical 

assessment and the Vicon 370 Kinematic Motion Analysis System. 

f. To analyse the effect of lower limb alignment in shod subjects with anterior 

knee pain using the Vicon 370 Kinematic Motion Analysis System. 

g. To analyse the effect of foot orthoses on lower limb biomechanics in 

subjects with anterior knee pain using the Vicon 370 Kinematic Motion 

Analysis System. 

h. To investigate lower limb alignment on asymptomatic subjects using 

barefoot, shod and orthotic conditions on the upright Positional MRI 

Scanner. 

i. To investigate lower limb alignment on symptomatic subjects with anterior 

knee pain using barefoot, shod and orthotic conditions on the upright 

Positional MRI Scanner. 
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1.3. Structure of the Thesis 

 

Chapter 2 provides the reader with a comprehensive background and literature 

review on anterior knee pain and treatment particularly with the use of foot 

orthoses.  Chapter 2 also reviews the measurement of the clinical tests performed 

in the clinical assessment and also the available literature on the Upright 

Positional MRI Scanner.  Vicon 370 Kinematic Motion Analysis System is also 

reviewed and the marker placement models associated with it. Chapter 3 

investigates the intrarater reliability of the measurements used in the clinical 

assessment by means of a pilot study.  Chapter 4 introduces the foot model used 

in the motion analysis study and marker placement procedure.  A pilot study is 

also included in this chapter which assesses the intrarater reliability of marker 

placement.  In chapters 5 and 6 there are details of the randomised-controlled 

trial methodology for evaluation of the lower limb biomechanics, chapter 5 

including the control group of asymptomatic subjects and chapter 6 including the 

group with anterior knee pain.  Each trial is described in detail with specific 

reference to interventions, primary clinical outcome measures, clinical variables 

and the methods of statistical analyses. The results from each clinical trial are 

presented and discussed in detail. Chapter 7 investigates the effects of shoes and 

orthoses on lower limb alignment using the Upright Positional MRI Scanner. As 

with previous chapters, methodology, statistical analysis and a full detailed 

discussion are presented.  Chapter 8 provides the reader with a discussion 

collated from conclusions from chapters 5, 6 and 7 and chapter 9 presents a 

conclusion and the clinical implications as a result of this research. 
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2. Chapter 2 – Literature Review 

 

2.1. Introduction 

 

This chapter reviews the past and current literature relevant to this field of work. 

A description of anterior knee pain, aetiologies and treatments available alongside 

a detailed review of foot orthoses with special emphasis on how they work and 

why they work is provided.  The well documented coupling effect is examined in 

detail as this is particularly important in establishing if there is a direct 

relationship between anterior knee pain and lower limb biomechanics.  A thorough 

review of the clinical measurements which are included in the clinical assessment 

is also provided in this chapter and an overview of the reliability of these 

measurements is given. The Upright Positional MRI Scanner and the Vicon 370 

Kinematic Motion Analysis System are discussed as well as marker placement for 

the kinematic analyses. 

 

2.2. What is Anterior Knee Pain? 

 

There is no clear consensus in the orthopaedic literature on the terminology, 

aetiology and treatment of the anterior part of the knee (Cutbill et al 1997; 

Holmes 1998 and Thomee et al 1999).  The term “anterior knee pain” (AKP) is 

suggested to encompass all pain related problems of the anterior part of the knee 

(Thomee et al 1995).  The different terminology used and still widely discussed 

such as chondromalacia patella, patellofemoral pain syndrome, patellar pain 

syndrome, patellar pain, malalignment syndrome and patellofemoral arthalgia 

illustrate the complexity of AKP.  These names are all often used synonymously 

with AKP. 

Aleman (1928) when describing pathological changes of the retropatellar cartilage 

defined the term chondromalacia patella (CP) at the beginning of the 20th 

Century.  Chondromalacia specifically means abnormal softening of the articular 

cartilage on the under surface of the patella and is widely used to designate the 
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clinical syndrome of patellofemoral pain (Callaghan & Baltzopoulos 1992).  

McNichol (1986) questioned the nomenclature by stating that chondromalacia 

patella suggests a patellar and femoral softening of the articular cartilage, yet this 

pathological change is very rare in young athletes with patellar pain.  Garrick 

(1989) stated that the term chondromalacia patella is inappropriate and 

pathologically incorrect and Witvrouw et al (2000) also agrees and reports that 

the term is a wastebasket term and should not be used synonymously with AKP.  

Fulkerson & Hungerford (1990) state that the term is now restricted to those 

instances where articular cartilaginous degeneration has shown to be present. 

Bourne et al (1988) suggested that the term should be discouraged and should 

only describe changes in the knee found on arthroscopy or athrotomy.  They also 

stated that there are many causes of AKP such as biomechanical or biochemical 

and one cause could be a direct cause of another or biomechanical changes could 

cause symptoms on the articular surface similar to CP.  However, there seems to 

be general agreement that there is a definite distinction between AKP and 

chondromalacia patella (McNichol 1986 and Deveraux & Lachmann 1984) but 

there seems to be a contentious issue surrounding the clinical features between 

AKP and CP (Wilson 1989). 

According to La Brier (1993) and Baquie & Bruckner (1997), AKP is the most 

common complaint of runners seen in sports medicine facilities and Taunton et al 

(2002) state that the most common overuse running injury 20 years ago was 

patellofemoral pain; this is still the case to date. 

It affects as many as one in four individuals in the general or sporting population 

(McConnell 1986; Anderson & Herrington 2003; Witvrouw et al 2003) and it can 

occur at all ages and in both genders.  In the general population, it has been 

observed to be more prevalent in active females according to Sathe et al (2002), 

Kannus (1987), Whiteside (1980) and Gray et al (1985).  However, Bennell & 

Crossley (1996) found that there was no significant difference between males and 

females and AKP.  Zuluaga et al (1995) stated that in the athletic population the 

numbers are usually equal. One or both knees can be affected and it is 

characterised by retropatellar pain, felt specifically when the knee functions under 

load in flexion, classically when ascending and descending stairs, pain during and 

after physical activities mainly running, cycling or even squatting (Insall et al 
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1976).  Running, whether competitive or recreational is the most common form of 

exercise undertaken and the majority of injuries incurred affect the lower limb 

(Neely 1998).   Clement et al (1981) conducted a retrospective study of patients 

seen by one physician over a period of two years and reported that a total of 

1650 patients were seen for 1819 running -related injuries.   Korkia et al (1994) 

proved that 41% of all injuries amongst 144 British triathletes were overuse 

injuries and 65% occurred during running.  Prolonged sitting with the knee flexed, 

often known as “movie-goer’s sign”, also causes pain because of the extra 

pressure between the patella and the femur but can be relieved upon extension of 

the joint (Juhn 1999).  Steps, hills and uneven surfaces tend to aggravate AKP.   

Once started, AKP frequently becomes a chronic problem forcing the patient to 

stop sports and other similar activities (Witvrouw et al 2000).  However, the 

problem is not always resolved by simply discontinuing these sporting activities as 

the pain that results often interferes with simple normal everyday activities such 

as walking or even standing (Craik & Oatis 1995). 

 

2.2.1. Who are at risk- Men or Women? 

 

Despite historical struggles, women today are participating in sport and exercise 

(Arendt 1996) although there are numerous unanswered questions regarding 

gender differences and AKP (Alexander 1998).  

Bell et al (2000) conducted a study of Army trainees and found that women 

experienced twice as many injuries as men.  However, this was thought to be 

because the women entered the training course at a significantly lower level of 

fitness than the men.  They concluded that although the women were less 

physically fit than their male counterparts, they made much greater 

improvements in fitness over the given time. 

Wider pelvis, menstrual irregularities, weaker musculoskeletal system, higher 

body fat and increased ligamentous laxity are all possible reasons as to why 

women could be more at risk of injury than men.  Bennell & Crossley (1996) 

found that women with a history of menstrual disturbance had an increased risk 

of musculoskeletal injuries but did not mention the knee specifically.  Lloyd et al 
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(1986) found similar results where female runners all of whom had injuries were 

more likely to have absent or irregular menses.  Cavanaugh (1990) states that 

women are more prone to injury due to a higher body fat content than men and 

state that extra body fat can hinder performance and may contribute to injuries 

during the weight bearing phase of running. 

The Quadriceps angle (Q-angle) is a frontal plane measurement formed by the 

intersection of a line from the anterior superior iliac spine (ASIS) to the centre of 

the patella and a line from the centre of the patella to the tibial tubercle (Moeller 

& Lamb 1997). Kantaras et al (2001) maintain that the normal value is 10 to 15 

degrees for men and 15 to 20 degrees for women. This could mean that women 

have an immediate predisposition to AKP because an increased Q-angle may 

increase the laterally directed force on the extensor mechanism, predisposing the 

patella to mal-positioning and instability (Smith et al 2008). 

 

2.2.2. What are the causes of AKP? 

 

The exact aetiology of the condition has not been determined and it is quite 

apparent that more than one cause is responsible for this condition.  
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Figure 2.1 Aetiology of running injuries1 
 

There is no consensus about the aetiology of AKP in the orthopaedic literature 

(Holmes 1998).  However, by identifying factors which place an athlete at greater 

risk for injury, it may be possible to prevent future episodes and hence reduce 

injury incidence and prevalence.  Risk factors are those entities which contribute 

to the occurrence of athletic injuries (Meeuwisse 1991). The risk factors 

responsible for AKP are traditionally divided into two main categories- intrinsic 

and extrinsic risk factors. The extrinsic factors relate to variables independent of 

the individual and environmental such as exercise load, type of exercise and the 

terrain on which the exercise is being conducted.  The intrinsic category relate to 

the individual biological and psychosocial characteristics (Taimela et al 1990), 

such as gender, age and anatomical biomechanical factors. 

There is continuing controversy between authors whether the intrinsic factors 

actually play a role in the aetiology of lower limb injuries. Nakhaee et al (2008) 

investigated if there was any relationship between the medial longitudinal arch 

height and knee injuries however they didn’t specify which specific knee injuries.  

An independent t- test showed that the mean navicular drop value in healthy 

subjects was 5.3mm, which was significantly lower than that of the injured 

subjects who had a drop value of 7.4mm (p=0.002). However, despite the 

                                                                 
1
 Hintermann and Nigg (1998),  Will iams et al (2001) 
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meaningful difference between the averages of navicular drop values, no 

relationship was found between the rate of knee injuries and the height of the 

medial longitudinal arch (MLA).  Michelson et al (2002) also state that pes planus 

is not a risk factor for lower limb injuries in runners. Nakhaee et al (2008) 

concluded that extrinsic factors were more likely to determine the probability of 

an injury in athletes. 

AKP can be divided by two mechanisms which are acute traumatic and overuse 

injuries.  In case of injuries which are due mainly to sport, there is a higher 

incidence of acute injuries in contact sports, such as football, whereas in non-

contact sports, such as running, there is a higher incidence of overuse related 

injuries (Armsey & Hosey 2004). Due to the enormity of both this review will only 

concern itself with the category related to overuse. 

AKP can commonly be referred to as an overuse injury (Brukner & Khan 1993; 

Milgrom et al 1996; Finestone et al 1993; Thomee et al 1995 and Tria et al 1992).  

However, a more appropriate term may be “overload” because AKP can also affect 

inactive patients (Juhn 1999).  Overuse injuries may be the most common class 

of sports injuries encountered by physicians (Francis et al 1997).  They have been 

described in both civilian and military populations (Clement et al 1981; James et 

al 1978 and Taunton et al 1988).  Baquie & Bruckner (1997) reported that 

overuse injuries at their centre during a one-year period were twice as frequent 

as acute injuries with the most common presentation being AKP.  Clement et al 

(1981) also agreed that AKP is the most frequently encountered overuse injury.  

Running is one of the most common activities during which overuse injuries of the 

lower extremity may occur (Hreljac et al 2000 and Van Mechelen 1992).  Various 

studies have reported that they are located at the knee and below for about 80% 

of all cases (Van Mechelen 1992 and Marti et al 1988). 

 

2.2.3. What is an overuse injury? 

 

Overuse injuries are clinically used to describe exertional pain and or dysfunction 

when there is no evident acute trauma involved (Rolf 1995).  They occur when 
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repetitive sub maximal stresses to bone or musculotendinous structures damages 

tissue at a greater rate than at which the body can repair itself (Krivickas 1997).  

The tissue is continually injured on the microscopic level and cannot repair itself 

as rapidly as the damage is being done.  Muscle, tendon, ligament and bone are 

all able to undergo structural change and become conditioned to accept more 

biomechanical stress without suffering injury (Watson 1988).  However, if these 

structures are subject to increasing repetitive sub- maximal stresses, the body 

cannot keep pace and injury may result.  For example, during running the 

punishing stresses absorbed by the knee will render the area susceptible to injury 

if there are problems with muscle function or even minor biomechanical 

disturbances.  These may be of no significance when the individual is involved in 

sedentary or non-repetitive activities (Taunton et al 1987). In most cases, this 

then produces degenerative changes leading to weakness, loss of flexibility and 

chronic pain (Nirschl 1992). Although it is common for athletes to suffer from 

overuse injuries, sedentary individuals have a substantial risk of developing an 

overuse injury.  If this individual is starting out on a physical training program 

then “too much too soon” is a common problem and is responsible for up to 60% 

of all injuries (James et al 1978).  Various epidemiological studies of recreational 

and competitive runners (Lysholm & Wiklander 1987, Macera et al 1989 and 

Jacobs & Berson 1986) have estimated that between 27% and 70% of runners 

sustain overuse injuries during any one year period.  Clement et al (1981), 

Macera et al (1989) and Marti et al (1988) found that new inexperienced athletes 

are at an increased risk of injury than experienced athletes.  The lower injury rate 

among more experienced individuals could be due to a musculoskeletal adaptive 

process that would decrease injury rate as the years of training increase. The 

level of force at which a given tissue can withstand may be increased gradually by 

increasing the training load, improving flexibility and strength, improving 

biomechanics and where possible, correcting anatomical malalignment (Krivickas 

1997).   
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2.2.4. What is the treatment for AKP patients? 

 

The amount of literature published on AKP and its management is a reflective 

measure of the frequency of its occurrence. Treatments vary enormously and a  

wide range of conservative interventions including rest, patellar bracing, ice, non-

steroidal anti-inflammatory medication, electrical modalities, quadriceps 

exercises, foot orthoses and passive mobilisation of the patellofemoral joint, have 

been used singly, or in combination (Eburne & Bannister 1996). Conservative 

treatment historically has aimed to improve quadriceps muscle power to stabilise 

the knee and thus reduce pain.  Whereas overall results achieved have been 

variable (Insall et al 1993). McConnell (1986) proposed a treatment programme 

designed to correct lateral subluxation and recorded success of 96% of cases.  In 

this study it was concluded that the McConnell regimen did demonstrate a slight 

advantage to the isometric quadriceps exercises.  Although it appears that it is a 

genuine advance, it is not the complete magic potion for anterior knee pain. 

Foot orthoses and athletic footwear are commonly used rehabilitative 

interventions in addressing AKP.  James et al (1978) and McKenzie et al (1985) 

noted that appropriate footwear and selective use of foot orthoses may be 

beneficial in treatment of individuals with AKP.  Also, several authors have 

reported that a shoe alone may produce significant changes in lower extremity 

alignment (Cornwall & McPoil 1995; Bates et al 1979; Brown et al 1995).  

Cornwall & McPoil (1995) reported that shoes decrease maximum tibial internal 

rotation in subjects with pronatory-type feet.  Bates et al (1979) found significant 

differences in rearfoot motion between shod and barefoot conditions.  Brown et al 

(1995) found no significant differences in analysis of rearfoot motion between 

shod only and shod with an orthotic device.   

Despite the high incidence and the extensive literature written, the exact cause of 

this disorder remains enigmatic although it is quite clear that there is more than 

one cause responsible for this condition. Much of the literature concerning 

aetiologies and risk factors is based on conjecture or expert opinion.  This is 

especially true for lower extremity alignment, an area with a paucity of existing 

studies (Wen et al 1998).  Lower extremity alignment is often discussed along 

with foot orthoses due to fact that biomechanical malalignment can often be 
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corrected with them (Donatelli et al 1998).  The next section discusses foot 

orthoses in detail and their implications to lower limb alignment. 

 

2.3. Foot orthoses 

 

Despite the fact that foot orthoses remain widely used, to the extent they are 

even used prophylactically in forms with similar functional purposes (motion 

control and stability running shoes), their mechanical function, consistency and 

permanence of effects are not specifically known. It has been suggested that 

positive outcome results may be due to mechanical and or proprioceptive 

mechanisms (Nurse and Nigg 2001).  Recent biomechanical literature suggests 

that orthoses can produce kinematic, kinetic and muscle changes on healthy 

subjects (Mundermann et al 2003; Nester et al 2003).  Human adaptation may 

play some role in the variance of results, yet no one has conducted a quantitative 

experiment applicable to a general pronated patient population. 

 

2.3.1. What are foot orthoses? 

 

Foot orthoses (FO’s) are devices which are inserted between the foot and the 

shoe and have been used in clinical situations to modify lower limb biomechanics 

during the stance phase of gait during walking and running.  Although the primary 

focus of orthoses research has been mostly at the rearfoot, they are frequently 

prescribed to relieve a wide variety of lower extremity ailments including knee 

pain (Mundermann et al 2001; Landorf & Keenan 2000; Clement et al 1981; 

Eggold 1981; Way 1999 and Eng & Pierrynowski 1993).  Cutbill et al (1997) 

states that a common conservative form of treatment of anterior knee pain (AKP) 

is using foot orthoses.  Eng & Pierrynowski (1993) also found that orthoses 

combined with an exercise programme can be an effective method in reducing the 

symptoms of AKP in young women.  They also reported in a study in 1994 that 

medially wedged orthoses resulted in a decrease in the range of frontal and 

transverse plane motion at the knee during the contact and mid-stance phases of 
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gait although the amounts were small and Nawoczenski et al (1995) also reported 

a decrease in the transverse plane motion.   

They can be categorised into rigid, semi rigid and soft orthotics and are typically 

classified as non-posted or posted and non-moulded or moulded (Root 1994).  

 

2.3.2. Who wears foot orthoses? 

 

Foot orthoses are often prescribed to patients with excessively high or low arches 

to help correct abnormal weight bearing and gait conditions (Zifchock & Davis 

2008).  People with excessively high arches tend to have a diminished capacity 

for shock absorption due to increased stiffness and a smaller area for weight 

distribution (Zifchock et al 2006).  Conversely, people with lower arches have a 

tendency to collapse into excessive pronation (Mann et al 1981).  Both of these 

conditions can predispose the patient to injury.  Kaufman et al (1999) reported 

that those with either high or low arched feet are nearly twice as likely to sustain 

a stress fracture as compared to those with normal arch height.  Williams et al 

(2001) found that runners with high arches have an increased propensity for bony 

injuries while those with low arched feet have a higher rate of soft tissue injuries 

(Zifchock & Davis 2008). 

 

2.3.3. Do foot orthoses work? 

 

There has been a significant volume of literature published relating to them, some 

of which support their use and some which is either inconclusive or simply 

discourages their use. Although the mechanisms by which orthoses are 

sometimes effective are not fully understood, a significant reduction in lower 

extremity symptoms has been reported (Donatelli et al 1988; Sperryn & Reestan 

1983).  Current opinion is that the biomechanical effects produced by orthotics 

are not clearly understood and it has been suggested that any positive outcomes 

from using orthotics may be due to mechanical and or proprioceptive mechanics 

(Stacoff et al 2007). 
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As mentioned previously, the source of excessive motion of the rearfoot has been 

an extensive area of study (Razeghi & Batt 2000).  It has been reported that 

medially wedged orthoses reduce the range of rearfoot pronation during the 

stance phase (McCulluch et al 1993) and the maximum angle of calcaneal 

eversion during the stance phase (Novick et al 1992).  Stacoff et al (2000) found 

that wedged orthotics also reduce the range of internal tibial rotation associated 

with rearfoot pronation during running in symptomatic and asymptomatic 

subjects. 

Mundermann et al (2004) found that different types of orthoses have different 

effects.  The orthoses with the external postings would work better to decrease 

maximum foot eversion and the moulding type would work better to decrease 

maximum tibial rotation.  They concluded that with a combination of moulding 

and posting the positive effects of the moulding would override the posting 

effects. 

Researchers have gathered qualitative data from patient surveys to offer proof of 

foot orthotic efficacy (Gross et al 1991; Orteza et al 1992; Sperryn and Restan 

1983).  Surveyed patients either had completely or partially recovered from 

injuries such as shin splints, plantar fasciitis, stress fractures and inversion ankle 

sprains while using prescribed foot orthotics. In addition there have been several 

quantitative studies which demonstrate that foot orthoses affect both the kinetics 

and kinematics of gait when used by pronated subjects (Johanson et al 1994; 

Nawoczenski et al 1995; Novick and Kelley 1990).  Payne & Davis (2004 

unpublished work) examined the effects of three retail foot inserts on plantar 

fasciitis one of which was the same AOL orthotic device as used in this present 

study.  The results showed all subjects except three had improvement in 

symptoms at one month (varied from 0% to 80%). 

Unfortunately, the repeatability of quantitative results has been poor. Many 

researchers have been unable to confirm quantitative orthotic effects, or have 

found significant variations in effects. Foot orthotic therapy is therefore 

controversial, since quantitative researchers have been unable to repeatedly 

determine kinetic or kinematic effects.  Very few researchers seem to understand 
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that if there is an improvement in the subject’s condition whilst using orthotics, 

how it actually happens. 

Stackhouse et al (2004) found in their study (n=15) that rearfoot motion 

variables were reduced with orthotic intervention however the group average 

reduction was not large enough to be clinically significant and their sample was 

asymptomatic.  More studies with larger numbers of subjects are needed as 

individual responses to orthoses appear to be highly variable. 

Neptune et al (2000) conducted a study into the effects of an orthotic and vastus 

medialis oblique strengthening on knee pain.  They concluded that the muscle 

strengthening yielded much more consistent results than the orthoses in reducing 

patellofemoral joint loading during running.  They found that they had a beneficial 

effect in some subjects and no effect in others but never observed an adverse 

effect.  Gross et al (1991) surveyed 500 long-distance runners who had been 

prescribed FO’s.  They reported that 76% of the subjects found complete 

resolution or a significant reduction of their symptoms and that 90% continued to 

use their devices even after their symptoms had resolved.  James et al (1978) 

found that 78% of their treated runners were able to return to their original 

running programmes.  Donatelli et al (1988) surveyed 81 subjects and the results 

showed 90% of them were completely satisfied with their devices. 

Novick and Kelley (1990) found a substantial decrease in maximum and total 

pronation in subjects walking with shoes and orthoses compared with the same 

subjects walking with shoes alone.  The authors however did not state the 

amount of posting or the location of the post used with each device.  

Few studies have actually evaluated the use of orthoses over a sustained period 

of time.  Stude and Brink (1997) reported an improvement in fatigue in a group of 

golfers over a 6 week period and Rome and Brown (2004) also reported 

significant improvement in a group of symptomatic and asymptomatic subjects 

(n=50 ) with  rearfoot malalignment whilst wearing orthoses.   They utilized 

prefabricated foot orthoses with 5-degree rearfoot varus posts in the 

experimental group and compared this group to the untreated group with the 

same foot alignment abnormality.  They found no differences in postural control 

at baseline between the two groups. However, after wearing the foot orthoses for 
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four weeks, the experimental group showed significant improvements of postural 

control in medial-lateral sway. The authors emphasized this was the first study on 

healthy patients (those with no ankle instability) with a specific foot deformity 

that showed the positive effects of orthotics to improve balance and postural 

control.  

 

2.3.4. How do foot orthoses work? 

 

To examine the biomechanical effects of the foot orthotic during gait, the effects 

of the orthotic on joints proximal to the ankle in addition to the motion of the foot 

and ankle should be studied. The mechanism responsible for their success is not 

very well understood (Ferber et al 2005).  The main role of the orthotic, either 

functional or biomechanical, is to control excessive and potentially harmful 

subtalar and midtarsal joint movement during the stance phase of gait (Burns 

1977). 

They work in one of three ways according to Bowker (1987). 

1. By preventing unwanted movement by stabilising or restricting the range of 

movement of one or more joints. 

2. By correcting or controlling a deformity. 

3. By totally or partially relieving body weight from a limb, joint or area of soft 

tissue. 

 

Kirby (1992) stated that to be able to reduce or control the amount of pronation 

at the subtalar joint, an orthotic must increase the supination moment that is 

generated across the subtalar axis of the foot.  The most obvious way to do this is 

to have the forces directed in an upward direction and located medial to the 

subtalar joint (STJ).  Kirby (1992) also believed that since orthoses are in direct 

contact with the plantar surface of the foot, the most likely method in which a 

supination moment is produced is by generating a force at the medial plantar 

surface of the foot in an upward direction. Stackhouse et al (2004) report also 

that the mechanism by how FO’s may reduce the symptoms of knee pain is not 
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well understood.  They found in their studies that mean knee flexion velocity 

decreased with FO intervention.  This then results in reduced strain rates placed 

upon soft tissues at the knee joint thereby relieving knee pain. 

Nester et al (2003) reported a considerable effect of an orthotic on the rearfoot 

complex.  They noted a decrease in the mean value of 15 subjects walking with 

shoes only and walking with shoes and a medially posted rearfoot orthotic (31.2 

degrees and 28.6 degrees respectively).  This was however a 10 degree posted 

device. 

Cornwall & McPoil (1995) and Nawoczenski et al (1995) have shown that in 

addition to reducing rearfoot pronation, they reduce internal tibial rotation. 

Stacoff et al (2000) also agree and found that medially wedged orthoses reduce 

the range of internal tibial rotation associated with rearfoot pronation during 

running. They did however use a symptomatic and asymptomatic sample.  This is 

not a surprising discovery given the assumed coupling effect of the subtalar joint 

between the lower leg and the foot. 

Previous motion-time studies have produced conflicting reports about the 

biomechanical effect of orthoses on the ankle and foot joints (Smith et al 1986).  

Although some of the discrepancies have arisen from the variation in the 

construction of the orthotic, the procedures used for the gait analysis may also 

have been a source of variability.   

Although traditional research has focused on the use of orthotics to alter the gait 

cycle, recent literature has begun to concentrate more on the use of orthotics as 

an aid for proprioception and postural stability hence the lack of up-to-date 

literature on rearfoot and forefoot mechanics. 

 

2.3.5. What is the coupling effect and how does it work? 

 

Several researchers have documented the synergistic relationship between STJ 

pronation and prolonged internal tibial rotation during walking and running.  

Tiberio (1987) and Cornwall & McPoil (1995) reported a very strong (r=0.95) 
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correlation between pronation and tibial rotation during walking and Nigg et al 

(1993) also observed a positive coupling (r=0.99) between them during running.  

Pronation of the STJ is a tri-planar motion consisting of eversion, abduction and 

dorsiflexion of the calcaneus with respect to the talus (Donatelli 1993).  It has 

been suggested that pronation occurs, in part, so that the foot can accommodate 

uneven surfaces better as well as attenuating shock (Isman & Inman 1969) and 

(Root et al 1966).  During closed chain pronation, when the calcaneus is fixed to 

the ground it cannot abduct relative to the talus, therefore in order to obtain the 

transverse plane component of STJ pronation, the talus adducts or medially 

rotates.  Due to the tight articulation of the ankle mortise, the tibia internally 

rotates as the talus adducts.  During this cushioning phase of stance the knee 

joint flexes which is also associated with tibial internal rotation. Thus pronation, 

tibial internal rotation and knee flexion occur simultaneously (Buchbinder et al 

1979 and Tiberio 1987). During the latter stance phase, the propulsive phase, the 

opposite actions occur and these motions reverse.  The calcaneus inverts and the 

tibia and talus externally rotate as the knee extends.  The rationale for studying 

joint motion and timing is based on the idea that asynchrony in these motions 

may result in injury (DeLeo et al 2004). 
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Figure 2.2 Closed chain pronation of the subtalar joint2  
 

Tibial internal rotation is associated with knee flexion and rearfoot eversion and it 

has been postulated that these movements should be synchronous (McClay 

2000). This means that peak knee flexion should occur approximately at the same 

time during midstance as peak rearfoot eversion and the reversal of these 

movements, knee extension and rearfoot inversion, should occur at approximately 

the same time after midstance (James et al 1978). 

 

                                                                 
2
 McClay 2000 
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Figure 2.3 Joint coupling model3 
 

The mechanism is such that if the STJ continues to pronate when the knee begins 

to extend, or if the STJ begins to supinate when the knee continues to flex, timing 

discrepancies between the joint actions would occur.  It would appear therefore 

that the tibia would undergo antagonistic counter rotations at its proximal and 

distal ends which could lead to excessive stress at the knee joint and thus may 

result in injury.   It has been suggested that abnormal rearfoot motion can lead to 

patellofemoral pain syndrome (Duffey at al 2000; Tiberio 1987). 

 

2.3.6. How is coupling measured? 

 

One way in which investigators have studied the coupling of eversion and internal 

tibial rotation is through the evaluation of the relative excursions.  An 

eversion/internal tibial rotation excursion ratio (EV/TIR ratio) is formed by 

dividing the excursion of eversion by that of tibial internal rotation over the time 

period from heel strike to the respective peak values (occurring around 

midstance).  As there is normally more eversion than internal tibial rotation, this 

ratio has been reported to vary between 1.0 and 1.8 (McClay & Manal 1997; 

Nawoczenski et al 1998; Stacoff et al 2000 and Willliams et al 2001). 

                                                                 
3
 Bates et al. 1979 
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Figure 2.4 Diagrammatic display of joint coupling in the lower leg4 

 

Tiberio (1987) suggested that the rationale for investigating the timing of joint 

motion is based on the idea that any asynchrony in the joint movements may 

result in injury.  He proposed a mechanism for anterior knee pain that is related 

to abnormal joint coupling.  He speculated that if pronation of the STJ is 

prolonged and continues beyond midstance, tibial internal rotation will also be 

prolonged.  This then results in a mechanical dilemma at the knee, for knee 

extension begins around midstance and must be accompanied by tibial external 

rotation to maintain joint congruity.  However, since the tibia is continuing to 

internally rotate with the talus, the femur must excessively internally rotate to 

obtain the relative knee external rotation needed.  Tiberio (1987) also suggested 

that the compensatory femoral internal rotation may alter normal patellofemoral 

alignment and cause excessive contact pressures at the lateral facet of the 

patella.  

The degree of coupling between the rearfoot and the knee is believed to be 

influenced by the orientation of the STJ axis in the sagittal plane (DeLeo et al 

2004).  However it is difficult to quantify the orientation of the axis without 

                                                                 
4
 Tiberio 1987 
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invasive techniques.  A number of authors have examined the relative amounts of 

both rearfoot eversion (EV) and internal tibial rotation (TIR) motion, which is 

suggestive of the orientation of the STJ.   

DeLeo et al (2004) states that there is increasing evidence that arch structure 

influences EV/TIR ratios. As the arch height increases, the orientation of the STJ 

axis increases thus altering the ratio.  A high arch may signify a higher internal 

tibial rotation and a lower EV/TIR ratio. Nawoczenski et al (1998), Stacoff et al 

(2000) and Williams et al (2001) showed that runners with low arches (thought to 

be related to excessive eversion) exhibited higher EV/TIR ratios. 

Nigg et al (1993) reported that runners with high and lower arches exhibited 

similar rearfoot eversion excursion.  However the runners exhibited greater 

internal tibial rotation excursions, resulting in lower EV/TIR ratios compared to 

the low arch group.  Nawoczenski et al (1998) used radiographic measurements 

to classify arch structure and investigated differences in joint coupling in runners 

with high and low arches.  Like Nigg and colleagues, they found no difference in 

rearfoot eversion between the two groups but found the high arch group exhibited 

greater internal tibial rotation, resulting in a lower EV/TIR ratio compared to the 

low arched group. McClay and Manal (1997) also compared EV/TIR ratios in 

runners who were excessive pronators and a group with normal rearfoot 

mechanics. They reported similar results as the previous authors.  However, 

internal tibial rotation was greater in the pronator group resulting in a much lower 

EV/TIR ratio in this group (1.33) as compared to the normal group (1.42). Based 

on the majority of the evidence, it can be suggested that variations in the EV/TIR 

ratio can be attributed to internal tibial rotation excursion to a greater extent than 

rearfoot eversion excursion (DeLeo et al 2004).   

Joint timing and joint timing differences are another simple way to measure joint 

coupling behaviour.  This has been discussed at length in chapter 6 section 6.8. 
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2.3.7. Foot orthoses and the coupling effect 

 

Many authors have speculated on factors which can increase a runner’s risk of 

injury such as excessive pronation of the foot (Messier & Pittala 1988), increased 

internal rotation of the leg (Nigg et al 1993), increased knee adduction and 

external knee moments (Stefanyshyn et al 1999) and increased ankle inversion 

moments (McClay 2000).  Therefore it has been suggested that by using an 

orthotic device, it can reduce the risk of injury by controlling these factors (Eng & 

Pierrynowski 1994; Nigg et al 1999; Nawoczenski et al 1995 and Mundermann et 

al 2001).  However, due to earlier studies not finding any significant changes in 

any of the above factors, Hreliac et al (2000) suggests that reducing foot eversion 

and tibial rotation may not be the primary function of foot orthoses. 

Foot orthoses are generally prescribed to control rearfoot eversion thus they will 

likely reduce the relative amount of eversion to internal tibial rotation and alter 

the joint coupling relationship (Ferber et al 2005). However, Ferber et al (2005) 

conducted a study to compare the joint coupling pattern and variability of the 

rearfoot and the tibia during running to have a better understanding of the 

mechanisms behind running injuries and the success of orthotics.  They compared 

running in once injured but now treated (by an orthotic) subjects and non-injured 

subjects without orthotics.  It was hypothesised that the treated runners would 

exhibit lower joint coupling angles without their orthotics compared to the 

controls. However, no significant differences were found.   It was also 

hypothesised that there would be a decrease in the coupling angle between the 

orthotic and non-orthotic conditions and again, no significant changes were 

observed.  The authors concluded by suggesting that foot orthotics do not 

produce significant changes in the rearfoot/tibial coupling. 

Nawoczenski et al (1995) evaluated the effect of standard orthoses on the EV/TIR 

ratio of healthy runners with high and low arches.  They reported negligible 

differences in eversion excursion for both groups when comparing the orthotic 

and non-orthotic conditions.  They did, however, find a significant increase in TIR 

excursion in the orthotic group (5.2 degrees) as compared to the non-orthotic 

condition (8.1 degrees) in the high arch group.  Therefore, orthotic devices can be 

responsible for significant changes in the EV/TIR ratios. 
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Although the exact aetiology of AKP is unknown, investigators propose that 

abnormal patellofemoral mechanics are the primary cause of it (Eng & 

Pierrynowski 1993).  It has been discussed that although foot orthoses are 

frequently used in many clinical settings, there are many discrepancies regarding 

their usage and effectiveness. 

It is anticipated that the results from the study (see chapter 6) will help answer 

and further open dialogue on such questions as, are the initially reported effects 

of foot orthotics, the true effects and should they be reported as such? 

The following section discusses in detail the importance of accuracy and reliability 

when performing clinical measurements. 

 

2.4. A review of the literature for the reliability of measurement 

 

2.4.1. Introduction 

 

Measurement of the limbs in a clinical examination is essential to determine 

baseline for treatment, to determine treatment efficacy and to assist in diagnosis.  

However, it has been the subject of much controversy and as yet there is no one 

single method that proves to be reliable or valid in its own right.  

In order for a clinical measurement to have any scientific credibility, a reliable and 

valid clinical measurement technique must be employed.  With regard to clinical 

assessment, reliability can be defined as the amount of agreement between 

successive measurements of the same joint by the same tester or different 

testers, namely, intratester and intertester reliability respectively. Validity is 

defined as the degree to which an instrument measures what it is supposed to 

measure; the extent to which it fills its purpose (Currier 1990). As such, it is clear 

that for a clinical measurement technique or tool to be useful, reliability and 

validity are fundamental pre-requisites. 

Reliability and validity testing are usually performed to assess one of the 

following:  
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a) Instrumental reliability, i.e. the ability of the chosen instrument to 

perform reliably and will give reproducible results. 

b) Rater reliability, i.e. the ability of the therapist administering the chosen 

instrument. 

c) Response reliability, i.e. the reliability/stability of the variable being 

measured (Bruton et al 2000). 

 

2.4.2. Goniometry 

 

Goniometry is a technique commonly used in clinical practice for measuring the 

range of motion in body joints.  The literature on goniometry is extensive since 

goniometers have been available for measuring joint range of motion (ROM) since 

the early 20th Century.  However, examiners have not been able to agree on how 

to perform the correct procedures for goniometric measurements (Reese et al 

2010).  In 1965, the American Academy of Orthopaedic Surgeons published a 

manual of standardised methods of measuring and recording joint motion.  

A variety of instruments are used to measure joint motion.  These instruments 

range from simple paper tracings and tape measures to elaborate flexible 

electrogoniometers.  A therapist may choose to use a particular instrument based 

on the instrument’s accuracy, cost, availability and ease of use (Norkin & White 

1985).  The usefulness of goniometric measurements for providing objective 

assessments of a patient’s initial status and progress depends on the reliability 

and validity of the measurements (Gogia et al 1987). 

The universal goniometer (UG) is the most common instrument used when 

measuring joint motion.  Moore (1948) designated this type of goniometer as 

“universal” because of its versatility.  It can be used to measure joint position and 

ROM at almost all joints of the body.  It is simple to use, non-invasive and 

inexpensive (Norkin & White 1988).  However, despite its practical advantages, 

reliability is low due to inaccuracies that have been reported with improper 

alignment (Elveru et al 1988). 
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Figure 2.5 Universal goniometer 

 

Electrogoniometers, introduced by Karpovich and Karpovich (1959) are used 

primarily in research to obtain dynamic joint measurements.  They were thought 

to allow measurements to be made more accurately and to avoid erroneous joint 

recordings caused by misinterpretations of values obtained with the universal 

goniometer (Clapper & Wolf 1988).  They are, however, expensive and take time 

to accurately calibrate and attach to the subject. 

A less commonly used instrument is the fluid (bubble) goniometer, which has a 

fluid-filled circular chamber containing an air bubble and it works on a similar 

principle to a carpenter’s level.  This instrument may be easier to use and is 

therefore not subject to errors caused by alignment to bony landmarks such like 

the universal goniometer (Norkin & White 1995).  However, disadvantages to the 

fluid-filled goniometer include an inability to measure outside the fluid’s straight-

plane movement in gravity (Rhealt et al 1988).  There can also be variation 

occurring when measuring small joints or where there is soft tissue deformity 

(Miller 1985). 

Another type of goniometer was designed and developed at The Rehabilitation 

Centre in Ottawa, as a result of the unpredictability of placing the fulcrum over 

the centre of rotation of the specified joint, called the Parallelogram goniometer 

(PG).  The main advantage over the standard goniometer is its capacity to 

measure a joint angle without using a point representing the joint’s centre of 
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rotation (Brosseau et al 2001).  Another benefit of the parallelogram goniometer 

is the shape as the range obtained is always represented by the angle between 

the two goniometric arms (Brosseau et al 2001).  Brosseau et al (2001) 

performed an experiment, which examined the intratester reliability of the 

parallelogram goniometer and the universal goniometer when measuring active 

knee flexion and extension on healthy subjects with various knee restrictions.  

The results showed high intratester reliability with both goniometers using 

intraclass correlation coefficients (ICC’s). The UG reliability was (ICC=0.977) in 

flexion and (ICC=0.985) in extension.  Similarly, the PG reliability was excellent 

with (ICC=0.996 and 0.955) for flexion and extension respectively.  They also 

looked at intertester reliability with both goniometers and concluded that although 

both were reliable, they recommended that the same therapist should take all 

measurements when assessing pathological knees. 

Clapper & Wolf (1988) found excellent results when comparing a standard UG 

goniometer and an Orthoranger (a computerised digital goniometer).  They found 

high ICC values ranging from the lowest result of (0.80) for hip adduction and the 

highest value of (0.96) for ankle plantarflexion.   

A tape measure can also be used to measure ROM through observation of a 

change in distance from one segment to another.  These observations are 

measured with a tape measure and are recorded in inches or centimetres. 

 

2.4.3. Visual estimation 

 

Visual estimation is used by some clinicians to assess joint range of motion in 

preference to using a standardised instrument especially when the subject has 

excessive soft tissue (Rowe 1964). The American Academy of Orthopaedic 

Surgeons (1965) suggested that where bony landmarks are not easily identifiable 

estimating the angle is as good as, if not better than, using a goniometer.  

However, there was no evidence offered to support this statement.   Norkin & 

White (1985) however, do not recommend this procedure and Watkins et al 

(1991), Youdas et al (1991), and Low (1976) all report more accurate and reliable 

measurements when using a goniometer in comparison to visual estimates.  
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Brosseau al (2001) found that the data obtained from visual estimations revealed 

lower (r) values with the UG or the PG therefore the use of visual estimations is 

less valid than goniometric measurements.   Croxford et al (1998) also is in 

agreement with the above-mentioned authors.  They conducted a study 

comparing the intertester reliability of visual estimation and goniometric 

measurement of ankle dorsiflexion.  It was demonstrated that intertester 

variation in visual estimation to be twice that of the universal goniometer thus 

concluding that a universal goniometer should be used to minimise measurement 

error between therapists when assessing ankle dorsiflexion in a clinical 

environment. 

 

2.4.4. Reliability and validity 

 

Establishment of reliability is essential for tests to be considered scientific and to 

be used with confidence (Rothstein 1985).  Reliability and validity of 

measurement is a fundamental part of clinical practice, particularly when clinical 

assessment is based on subjective judgements for diagnosis, choice of potential 

intervention, and a review of management (Keenan & Bach 1996). For 

goniometry to provide meaningful information, an adequate measure must 

therefore be designed and tested for reliability and validity.  This measure is 

tested for reliability. This is to ensure that repeat measurements on separate 

occasions (test-retest) and at the same time by the same therapist (intratester) 

or separate therapists (intertester) are reproducible.  A goniometric measurement 

is highly reliable if successive measurements of a joint angle or ROM, on the same 

subject and under the same conditions, yield the same results.  A highly reliable 

measurement contains little measurement error and a measurement that has 

poor reliability is not dependable and should not be used in the clinical decision-

making process. 

The validity of goniometric measurements has not been as extensively studied as 

reliability (Gogia et al 1987).  Currier (1990) stated that validity is “the degree to 

which an instrument measures what it is purported to measure; the extent to 

which it fulfils its purpose”. Most support for the validity of goniometry is in the 
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form of content validity.  Content validity is determined by judging whether or not 

an instrument adequately measures and represents the content-the substance-of 

the variable of interest (Rothstein 1985). 

Some studies have examined criterion-related validity for various types of 

goniometer used in the clinical setting.  Criterion-related validity justifies the 

validity of the measuring instrument in comparison to a well established “gold-

standard” of measurement- the criterion (Norkin & White 1985).  On a very basic 

level, an examiner may question the construction of a particular goniometer and 

consider whether the degree units of the goniometer accurately represent the 

degree units of a circle. 

The best gold standard used to establish criterion-related validity of goniometric 

measurements is radiography.  Gogia et al (1987) conducted a study to assess 

the intertester reliability of goniometric measurements at the knee and the 

validity of the clinical measurements by comparing them to measurements taken 

from radiographs.  They measured the knee position of 30 subjects with 

radiography and with a large 360-degree plastic universal goniometer.  Knee 

range of motion ranged from 0 to 120 degrees.  Pearson product-moment 

correlation coefficients (r's) and intraclass correlation coefficients (ICCs) were 

used to analyze the data. The data analysis revealed high correlation and 

agreement - intertester reliability (r = 0.98; ICC = 0.99) and validity (r = 0.97-

0.98; ICC = 0.98-0.99).  Therefore goniometric measurement of knee joint 

position was considered valid.  Enwemeka (1986) also conducted a study 

comparing goniometric measurements with radiographs and indicated a high 

degree of relationship between measurements obtained with radiography and 

goniometry.  A study conducted by Brosseau et al (2001) sought to examine the 

criterion validity of the universal goniometer and the parallelogram goniometer 

and the criterion validity of visual estimations for active knee flexion and 

extension on subjects with various knee restrictions. They did this by comparing 

the results obtained with the UG and the PG with radiographs.  The UG intratester 

reliability for flexion (ICCs = 0.997) and extension (ICC= 0.97 to 0.98). The 

results were also high with the PG (ICC = 0.99, 0.95- 0.95) for flexion and 

extension, respectively. The intertester reliability was high for flexion (ICC = 

0.977- 0.982) and for extension (ICC = 0.893- 0.926) when using the UG. For the 
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PG, results ranged from (ICC= 0.959 to 0.970) for flexion and from (ICC= 0.856 

to 0.898 for extension. Criterion validity varied from (r= 0.975 to 0.987) for 

flexion and from (r=0.390 to 0.442) for extension with the UG, and from 

(r=0.976 to 0.985) for flexion and (r=0.423 to 0.514) for extension with the PG. 

They concluded that intratester and intertester reliability were high for both 

goniometers. The results for the criterion validity varied. The study also revealed 

that it is preferable to use goniometry rather than visual estimations when 

measuring active range of motion.  It is recommended that the same therapist 

take all the measurements when assessing range of motion for UG and PG 

goniometric measurements on patients with knee restrictions. 

Despite the acknowledged need for accurate and reliable measurements, only a 

limited number of studies have been undertaken to determine the reliability of 

either the tester or the instrument (Moore 1949 and Low 1979) and the results 

varied considerably between these studies.  Gogia et al (1987), Low (1976) and 

Ekstruand et al (1982) all studied goniometric joint measurements and found that 

joint range of motion can be measured with good-to-excellent reliability.  

However, several authors state that intratester reliability appears to be higher 

than intertester reliability (Boone et al 1978; Grohmann 1983; Low 1976 and 

Rothstein et al 1983).  Boone et al (1978) express that the same individual should 

perform the goniometric measurements on the one patient in order to achieve 

reliable results.  

The measurement of joint position and ROM of the extremities with a universal 

goniometer has been generally found to have good-to-excellent reliability.  Gogia 

et al (1987), Grohmann (1983) and Hamilton (1969) have found that studies 

measuring a fixed joint position have higher reliability values than studies 

measuring ROM.  This is expected because more sources of variation or error are 

present in measuring ROM than in measuring a fixed joint position.  

 

2.4.5. Accuracy and precision 

 

When conducting an experiment, the researcher must take steps to ensure the 

statistical test is reliable and valid, minimise measurement errors and only use 
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measures that are precise and accurate (Gavin 1996). In all measurements, there 

is error.  Knowing the error of measurement is important when determining the 

meaning of a change in values and is important in determining measurement 

precision.  Precision refers to a measurement that has nearly the exact value each 

time it is repeated.  Minimising the measurement error will increase the validity of 

drawing inferences from a study by rendering that study free of random error 

(Gavin 1996).  Accuracy is also an important factor in measurement error.  The 

accuracy of a variable is the degree to which it actually represents what it is 

supposed to represent.  It can be involved in determining how well a variable 

measurement compares with another well-established measurement (Gold 

standard) (Gavin 1996). 

Accuracy and precision can be wrongly interpreted.  The following example of this 

could be a universal goniometer used to measure knee flexion and the procedure 

is repeated twenty times.  If the readings are nearly equal on all the 

measurements, then this could be considered precise but not necessarily 

accurate.  However, if the same measurements were compared to a Gold 

standard measurement such as a radiograph or a CT scan and both the readings 

were nearly equal, then this could be considered accurate but not necessarily 

precise.  

Clarkson & Gilewich (1989) agree that the therapist should ensure that sources of 

error are minimised or do not occur when measuring.  They state that one of the 

main errors to be avoided when measuring range of motion is reading the wrong 

side of the goniometer.  Stratford et al (1984) also agree with this and state that 

if the goniometer arm was placed halfway between 40 degrees and 50 degrees, 

the tester may read 55 degrees instead of 45 degrees.  Rome et al (1996) state 

other sources of error such as difficulty in reading the goniometer due to the 

graduations being too small or reading the measurement at an odd angle.  

Stratford et al (1984) stated that some goniometers may have received excessive 

wear and tear thus resulting in the increments being difficult to read.  A different 

example of measurement error according to Clarkson & Gilewich (1989) is 

individual expectations of what the reading should be and allowing this to 

influence the reading.  For example, if the study is evaluating intratester 

reliability, the tester often expects the repeated measures to be similar to that of 
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the first value.  Thus, the values of the intratester reliability may be 

uncharacteristically high.  Stratford (1982 unpublished) found examples of this in 

a study conducted by himself whereby the intratester variation for the knee joint 

varied from a pooled standard deviation of 2.12 degrees (in cases which the 

goniometer scale was visible to the tester whilst taking the measurement) to a 

pooled standard deviation of 2.72 degrees (in cases which the goniometer scale 

was hidden to the tester whilst taking the measurements).  Another example is 

end-digit preference.  Testers have a tendency to read values that end with a 

particular digit (Rome et al 1996).  Low (1976) proved this when he tested the 

reliability of visual estimation and goniometric measurements of elbow flexion.  

He found that when estimating the angle, only three out of fifty testers did not 

round the measurement up to the nearest 5 degrees, i.e. 5 degrees, 10 degrees 

or 20 degrees and only 14 testers did not round up when using the goniometer.  

Low (1976) also found that errors were made from placing the goniometer the 

wrong way round!   

Clarkson & Gilewich (1989) report that taking successive measurements at 

different times during the day account for measurement errors.  Stratford et al 

(1984) states that patients or subjects can have ranges of motion that not only 

varies within each day but from day to day as well.  For example, patients with 

rheumatoid arthritis who may suffer from morning stiffness may give lower 

readings first thing in the morning for range of motion when compared to later on 

in the day. The environment also plays an important role.  Unsuitable lighting or 

noisy establishments must be controlled in order to reduce the risk of error 

(Stratford et al 1984).  

Measurement procedure errors such as different starting positions and testing 

methods are also important.  Moore (1984) and Norkin & White (1985) have the 

same opinion that the reliability of goniometric measurements is affected by the 

measurement procedure.  Watkins et al (1991) and Ekstruand et al (1982) found 

that intertester reliability improved when all the therapists used consistent, well-

defined testing procedures and methods.  Croxford et al (1998) agree that there 

is a need to heighten the awareness of the importance of adhering to well 

established and recognised procedures when measuring joint ROM. 
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Many studies of joint measurement methods have found intratester reliability to 

be higher than intertester reliability (Grohmann 1983; Boone et al 1978; 

Hellebrandt et al 1985 and Low 1976).  Only a few studies found intertester 

reliability to be higher than intratester reliability (Defibaugh 1964).  In all of these 

studies, the time interval between repeated measurements by the same therapist 

was considerably greater than the time interval between measurements by 

different therapists.  This confirms what Clarkson & Gilewich (1989) reported that 

taking successive measurements at the same time increases the reliability factor. 

Moore (1949) also agrees with Clarkson & Gilewich (1989) in that a skilled tester 

may obtain inaccurate results by using a poorly constructed or unreliable 

measurement protocol and poor intertester reliability may result if therapists’ 

used varied starting positions. 

It is well documented that reliable goniometric measurements are difficult to 

obtain at some joints (American Academy of Orthopaedic Surgeons 1965).  Boone 

et al (1978) found that upper extremity joint measurements are more reliable 

than those of the lower extremity.  Some studies such as Brosseau et al (1997), 

Rothstein et al (1983) and Watkins et al (1991) have shown measurements to be 

more reliable for larger angles than for smaller angles.  Moore (1949) and 

Rothstein (1983) found that in some instances, the axis of joint motion is either 

shifting continually or difficult to localise which may be due to the complexity of 

the joints according to Norkin & White (1995).  Gajdosik & Bohannon (1987) 

stated that this could be an additional source of error in measuring joint range of 

motion.  Hellebrandt et al (1945) also agreed that measurement error could be 

due to “peculiarities in anatomic structure or functional use”.   

Several investigations have been conducted to examine the reliability of using the 

mean of several goniometric measurements as compared with using just one 

measurement (Norkin & White 1985).  Low (1976) recommends that using the 

mean of several measurements increased the reliability of the measurement.  

However, Boone et al (1978) and Rothstein et al (1983) found no significant 

difference and reported that one measurement taken by a therapist is just as 

reliable as the mean of repeated measurements. 
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Hellebrandt et al (1949) suggest that large goniometers are better than small 

ones but this theory has not been tested but Norkin & White (1995) suggest using 

large goniometers to increase the chances of reliability. 

To conclude, the only way to obtain a high level of accuracy and reliability is for a 

therapist to fully understand the many different sources of error and variability 

and to standardise as many items as possible to reduce the number of variables 

in any investigation (Rome et al 1996). 

The following section is a review of the past and present literature for the specific 

measurements which were included in the clinical assessment. 

 

2.5. Clinical assessment- A review of the literature for 

measurements included in the clinical assessment. 

 

2.5.1. Quadriceps angle (Q-angle) 

 

Abnormal patellar tracking has been documented as one of the possible causes of 

AKP (Powers et al 1995).  Generally, subluxation involves excessive lateral 

displacement of the patella between 10 degrees to 20 degrees of flexion 

(Fulkerson & Hungerford 1990).  The natural tendency of the patella to track 

laterally has been described by Fulkerson & Hungerford (1990) as “the law of 

valgus”.  This is a consequence of the valgus orientation of the lower extremity 

where the relationship of the anterior superior iliac spine (ASIS) of the pelvis to 

the midline of the ground forms a 10 degree angle between the femur and the 

tibia (Powers et al 1995).  Since the quadriceps follows the longitudinal axis of the 

femur, the angle is formally known as the quadriceps angle (Q-angle). 
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Figure 2.6 Quadriceps angle (Q-angle)5 
 

The Q-angle is defined as the intersection of lines drawn from A- ASIS to mid 

patella and B-Tibial tubercle to mid patella as shown in Figure 2.6. 

The Q-angle is an index of the vector for the combined pull of the extensor 

mechanisms and the patellar tendon (Tsujimoto et al 2000).  It is a frontal plane 

measurement formed by the intersection of a line from the ASIS to the centre of 

the patella and a line from the centre of the patella to the tibial tubercle (Moeller 

& Lamb 1997).  

There are many different methods used to measure the angle, although few 

studies using the Q-angle actually give detailed descriptions of their methods 

(Caylor et al 1993). The Q-angle can be measured in both the supine and weight-

bearing positions as well as with the knee in both flexed and extended positions.  

Hossler & Maffei (1990) conducted two studies, one with the subjects’ supine and 

one with the subjects’ standing and found different values up to 5 degrees in each 

test. Caylor et al (1993) studied the reliability of the various methods of 

measuring Q-angle and found no significant difference in intratester Q-angle 

values between the extended and flexed knee positions (p > 0.05). With the knee 

in an extended position, intratester Q-angle ranged from (ICC= 0.84 to 0.90, and 

standard error of measurement (SEM) values ranged from (2.01 to 2.23 degrees).  

                                                                 
5
 Cavanagh 1990 
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With the knee flexed, the intratester (ICC = 0.83) for both testers, and SEM 

values ranged from (0.68 to 2.45 degrees). 

The Q-angle has been defined as a measurement to quantify lower extremity 

alignment (Hamill et al 1999).  The rationale being that a higher Q-angle changes 

the contact and pressure patterns in the patellofemoral joint, leading to excessive 

pressure in locations that are not usually exposed to these stresses (Cox 1985).  

Smith et al (2008) testify that an increased Q-angle may increase the laterally 

directed force on the extensor mechanism, predisposing the patellar to mal-

positioning and instability. 

Skeletal malalignment has been shown to have a profound effect on the degree of 

the Q-angle.  An increased Q-angle is often present when rotational malalignment 

of the femur and tibia are present.  Such examples include femoral anteversion, 

genu valgum, tibial torsion and the position of the tibial tubercle (Insall 1976 and 

Paulos 1980).  The tibial tubercle is affected by the tibial rotation, which in turn 

can be affected by the position of the foot.  Patients may demonstrate one or 

several of these malalignments which may contribute to patellofemoral 

dysfunction.  Tiberio (1987) demonstrated in a theoretical model that as the foot 

undergoes pronation, the tibia will internally rotate thus the tibial tubercle will be 

displaced in a more medial direction.  As a result of these movements, the Q-

angle should decrease.  However, Corley et al (1997) states that the model from 

Tiberio (1987) does not take into account femoral or pelvic movements which 

occur during the walking cycle.  Olerud and Berg (1984) disagree with Tiberio’s 

(1987) claim and reported that they found a decrease in the Q-angle but when 

the tibia was externally rotated with the foot supinated.  Olerud & Berg (1984) 

and D’Amico & Rubin (1986) both state that with pronation of the foot, internal 

rotation of the tibia occurs causing medial translation of the patella and an 

associated increase in the Q-angle. 

Many authors hypothesise that an increased Q-angle plays an important role in 

AKP although there are differences of opinion (Chapman 1997).  Shambaogh et al 

(1993) and Nadeau et al (1997) found in both their studies that those sustaining 

AKP had a larger Q-angle than those with uninjured limbs did.  Duffey et al 

(2000) conducted a study examining the differences between injured runners with 
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AKP and non-injured runners.  Although when tested, the Q-angle was not a 

significant discriminator between the groups however the injured subjects did 

have a slightly higher Q-angle value than the control group.  There  were a couple 

of methodological flaws that may have influenced the values.  Although the tests 

were conducted on both legs, three times, nothing was written about the time 

interval in-between these tests therefore the tester may have been influenced by 

previous results.  There was also no mention of how many testers conducted the 

experiments and the experience of the ones who did.  Another limiting factor 

affecting the reliability of the Q-angle measurement could be that the authors 

never stated in their methods whether the Q-angle test was done weight-bearing, 

supine, knee extended or knee flexed.  As mentioned previously, there can be 

differing results depending on how the angle is tested (Hossler & Maffei 1990).  

Moeller & Lamb (1997), Kannus (1992), Kernozek (1993) and D’amico (1986) all 

agree with this although Caylor et al (1993) and Thomee et al (1995) both found 

no difference in Q-angles between injured and non-injured subjects.  Fulkerson & 

Hungerford (1990) consider there is no direct correlation between a high Q-angle 

and AKP however, Thomee et al (1995) state that a high Q-angle may be a 

contributing factor in maintaining AKP once it has been acquired but this needs 

further research.   

In 2001, Sanfridsson et al compared clinically measured Q-angle values with 

radiographically measured Q-angles in patients and healthy knees.  The results 

were striking in that the Q-angle was not increased in any of the patient groups 

but instead there were decreased Q-angles in the affected knees.   

There is a lot of controversy over the size of a normal Q-angle and what is 

abnormal. The Q-angle is regarded as normal with the quadriceps relaxed if it is 

between 13 and 18 degrees (Reid 1992; Insall et al 1976 and Fulkerson 1983) 

but also state that these values differ between practitioners.  Tomisch et al 

(1996) agree and state that the method of measuring the Q-angle differs between 

practitioners therefore differing values will occur.  However, Geriniger (1999) 

thinks that the Q-angle is normal if it is between 5 and 15 degrees. 

Schuster (1978), Anglietti et al (1983), Alexander (1998) and Woodland & Francis 

(1992) all report that women typically have greater Q-angles than men.  They all 
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state that 17° is normal for women and 14° for men.  However, La Brier & O’Neill 

(1993) and Hughston et al (1984) state that anything more than 10° in men and 

15° in women is abnormal.  The Manual of Orthopaedic Surgery (1972) considers 

angles greater than 15° degrees in men and 20° degrees in women pathological.  

Kantaras et al (2001) maintain that normal value is 10° to 15° degrees for men 

and 15° to 20° degrees for women. 

The inability of researchers to reach a consensus on what might be considered 

normal has raised doubt about its diagnostic value (Livingstone & Mandigo 1999).  

The lack of a standardised measurement protocol is at least partially to blame 

since the size of the angle can differ dramatically when measured using different 

procedures (Woodall & Welsh 1990).  Indeed, variations in subject posture 

(Woodland & Francis 1992), knee position and foot position (Ando et al 1993) can 

all alter the size of the angle therefore direct comparisons between studies using 

differing measurement procedures are therefore not feasible (Caylor et al 1993). 

 

2.5.2. Ankle dorsiflexion and plantarflexion 

 

An adequate range of motion at the foot and ankle is a necessary component for 

the performance of functional activities such as running, ascending and 

descending stairs and many more weight bearing sporting activities which require 

the flexed knee to move forward over the foot when in contact with the ground 

(Bennell et al 1998; Donatelli 1996). Limited ROM in plantarflexion and 

dorsiflexion of the ankle has been suggested to be associated to running injuries 

(Hreljac et al 2000). 

Ankle joint dorsiflexion is carried out routinely as part of a static lower extremity 

examination for the diagnosis of ankle equinus (Rome et al 1996).  Proper ankle 

function, especially the dorsiflexion component, is essential for normal gait (Root 

et al 1977). When there is limitation of ankle dorsiflexion this is called ankle 

equinus. The effects of ankle equinus, with contracture of the Achilles tendon, 

may have a negative effect on foot and ankle function (Saxena & Di Giovanni 

2011).  They can involve the leg, knee, pelvis and spine and even the upper body.  

Acquired shortness of the posterior crural muscles, which produce ankle equinus, 
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can result from many sources.  Davis’ Law states that “soft tissue under 

prolonged tension will elongate” and the “same is true in retrospect”.  Soft tissue 

will contract to its transformed position and thus this is the most frequent 

underlying aetiology of acquired muscular ankle equinus. 

Downey (1992) cites that repeated use of high-heeled shoes, Achilles tendon (TA) 

rupture, or prolonged casting with the foot in a plantarflexed position can create 

an equinus position at the ankle joint. Limited ankle dorsiflexion (ankle equinus) 

has been associated with lower limb pathology (Hill 1995).  Limited ankle 

dorsiflexion is thought to necessitate midtarsal joint dorsiflexion thus leading to 

midfoot collapse. Fortunately, the body will compensate for ankle equinus by 

flexing the knees, early heel-lift, foot pronation, and foot abduction.  It may also 

include hyperextension of the knees or flexion at the hip (Hill 1995).  The term 

“compensation” implies something that counterbalances or makes up in one place 

for something that is lacking in another (Oxford 2010). 

Tiberio et al (1989) conducted a study to determine whether a significant 

difference exists between subtalar joint neutral position (STJN) and subtalar joint 

inversion position when measuring ankle dorsiflexion.  They found that inversion 

elicited ten degrees greater dorsiflexion than when in STJN position.   

The position of the subject may also influence the amount of motion available.  

The most widely used position is the supine or prone position but other authors 

have suggested either a seated or standing weight bearing position (Baggett & 

Young 1993).  Baggett & Young (1993) evaluated ankle dorsiflexion in a static 

weight bearing position where the subject stood upright facing a wall and was 

asked to lean forwards.  With the knee extended, a small wedge was placed under 

the head of the first metatarsal in order to prevent eversion of the rearfoot.  

However, Gross and Niapoli (1993) reported that this method was not appropriate 

and represented a false measurement, as the joint actually being measured is the 

midtarsal joint.  Jones et al (2005) undertook a study examining the 

intraobserver and interobserver reliability of ankle dorsiflexion in a weight bearing 

position using a measurement tool which uses a linear distance method to 

establish the distance that the knee can move forward over the foot which is fixed 

to the ground.  They found far more agreement and higher ICC results with the 
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injured group that the asymptomatic group.  They also found better reliability 

with independent observers than the same observer which is surprising. Bennell 

et al (1998) also conducted a similar study using the weight bearing lunge test to 

measure ankle dorsiflexion and found similar results.  They however found 

excellent intrarater results as well as interrater results.  They concluded that 

differences in skill level did not influence the repeatability of the results therefore 

may be an easier method of measuring ankle range of motion.  Although this 

seems like an easy way to measure it both for the patient and to get good results, 

it must be remembered that it does not measure actual motion at one specific 

joint.  Dorsiflexion, as measured by this test is a combination of movement at a 

number of joints including the talocrural, midtarsal and subtalar joint.  Another 

negative point to this method is that there may be a number of patients who 

cannot perform this movement and weight bearing may be contraindicated. 

Several authors have reported the “normal” ranges of motion for the ankle joint 

and they vary greatly (Elveru et al 1988).  Normal ankle ROM is traditionally 

thought to be 10 degrees of dorsiflexion (Root et al 1979) but the American 

Academy of Orthopaedic Surgeons (1965) state that the normal range is anything 

from zero to 20 degrees as does the American Medical Association (1990).  Other 

studies report a range from 8 to 26 degrees (Rome 1996).  This wide range of 

variability presents a dilemma for therapists who try to assess the normality of 

subject’s range of motion (Oatis 1988).  Normal ankle plantarflexion ROM is 

traditionally thought to be 50 degrees (American Academy of Orthopaedic 

Surgeons 1965) but the American Medical Association (1990) state that the 

normal is 40 degrees but these values are based on a method that uses visual 

estimation. Grimston et al (1993) suggest that ankle joint ROM is age-dependent 

and generally maximum ankle joint ROM occurs before 20 years of age with 

decrements beginning as early as 17-20 years of age.  However, even though 

Rome et al (1996) agree with the fact that there is a general decrease in ankle 

dorsiflexion from early adulthood, they report an age range of 29-39 years. 

The reliability of goniometry (as discussed previously in this chapter) is dependent 

upon standardised measurements (Elveru et al 1988 and Youdas et al 1993) and 

ankle joint ROM measurement is particularly difficult to standardise due to the 

complex motion at the joint (Engsberg 1987).  The hand-held universal 
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goniometer remains the most widely used instrument to measure ankle joint ROM 

(Rome et al 1996), however, there are many sources of measurement error which 

exist when measuring it (Wright & Feinstein 1992).  The coincidental location of 

the ankle joint fulcrum with the axis of rotation, and the multi-axial movements of 

the ankle joint have been reported by Elveru et al (1988) to present sources of 

measurement error. Clinical measurement of ankle ROM may be moderately 

reliable if conducted by the same therapist over a short period of time (Youdas et 

al 1992).  Elveru et al (1988) investigated intratester and intertester reliability of 

goniometric measurements at the ankle joint.  They found good intratester 

reliability for both plantarflexion and dorsiflexion and adequate intertester 

reliability for plantarflexion.  However, intertester reliability for dorsiflexion was 

poor.  This suggests that perhaps measures for dorsiflexion should be re-

evaluated or to identify if the presence or absence of plantarflexion is more 

reliable and would suffice for clinical examinations.  However, the results of the 

study should be interpretated carefully as several methodological flaws were 

identified.  Only subjects with orthopaedic or neurological conditions were 

included in the study therefore does not represent a normal sample of the 

population and no standardised protocol was made for measurements at the ankle 

joint.  The tibia and the ankle joint were not held in stabilised positions, therefore 

additional motion may have influenced the reading thus influencing reliability.  

The study, mentioned above by Tiberio et al (1989), also has flaws as the study 

only included eighteen women, which is a very small sample size and the chance 

for sampling error is indirectly proportional to the size of the sample (Polgar 

&Thomas 1991).  The women selected had no history of congenital or traumatic 

conditions. Boone et al (1978) also agree from their study that intratester 

reliability is much higher when using the goniometer for ankle joint ROM than 

intertester reliability. 

Rome et al (1996) investigated the reliability of three types of goniometer on 

ankle ROM and found poor interdevice reliability both among and within 

therapists.  This suggests that when goniometers are interchanged in a clinical 

setting, which is possible, particularly when the patients are seen by different 

therapists each visit, there is low reliability of measurements.  They concluded by 

stating that error associated with using multiple devices is much higher than 
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when using a single device.  Hellebrandt et al (1949) strongly agree with this and 

found that reliability was improved when all therapists in one department used 

the same goniometer.  Rome et al (1996) also agree that once a therapist has 

chosen a particular instrument that therapist should use that particular 

instrument, and not interchange with any other instrument or therapist, but, 

Rothstein et al (1983) found in their study that for all measurements of knee and 

elbow movements, the three goniometers used could be used interchangeably. 

 

2.5.3. Limb length discrepancy (LLD) 

 

Leg length discrepancy is a common problem found in as many as 40% 

(Subotnick 1981) and 70% (Woerman and Binder-Macleod 1984) of subjects 

where paired limbs are noticeably unequal (Gurney 2002). To date, there is no 

universally accepted clinical method for measuring leg length (Ingram 1980).  The 

degree of limb length difference (LLD) that is clinically significant remains 

controversial (Beattie et al 1990) as does the acceptable amount of LLD 

necessary to warrant treatment.  Subotnick (1981) reported that a difference of 

as little as 3mm is significant whereas Anderson has stated that a difference of 

less than 19mm is acceptable. 

Limb length difference is widely criticised as to whether or not it plays a role in 

the aetiology of AKP (Kannus 1992).  Gogia & Braatz (1986) stated that any 

problems resulting from LLD might depend on the degree of inequality.  Some 

authors have claimed that a limb-length discrepancy leads to mechanical and 

functional changes in gait (Morrissey 1990).  Treatment has been recommended 

for discrepancies of less than one to five cm (Gross 1978; Morrissey 1990). 

Brody (1986) claims that an LLD of 6mm or greater can cause injuries to runners 

although, Wen & Puffer (1997) conducted a study that found leg length 

discrepancy was not an important risk factor in runners with knee pain however 

the methodology had limiting factors.  The subjects were chosen from a cohort of 

low mileage runners, which is not indicative of a representative population.  There 

was also a potential for selection bias known as “the healthy effect” (Marti et al 

1988).  Athletes who were already injured at the time of selection may not have 
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wanted to volunteer for the study and athletes whom were prone to injury in the 

past may also not have wanted to volunteer for fear of re-injury.  Another limiting 

factor was the lack of reliability of the measurements.  Intratester reliability 

results were of limited use due to the fact that the testers performed the second 

test immediately after the first one and therefore were not blinded to the results 

of the first test.  This may influence the testers’ results especially if they were 

inexperienced which in this study they were.  Intertester reliability was not 

checked due to the lack of time available. 

There is lots of criticism on the reliability and accuracy of leg length measurement 

(Freiberg 1982; Mosseley 1987; McCaw et al 1991). Although associated with low 

reliability and validity, the tape measure remains the most common instrument 

used to evaluate LLD (Freiberg et al 1988).  This is even though the reported 

validity and intratester and intertester reliability coefficients of tape-measured 

methods are consistently less than radiographic methods (Clarke 1972).  Nichols 

& Bailey (1955) also agree that by taking measurements from radiographs to 

determine leg length and then calculating the difference is generally considered 

the most accurate method of testing LLD.  They also state however, that because 

of their cost and the fact that they expose the subject to the adverse effects of 

radiation, radiographs are impractical and unjustifiable for determining LLD. 

Although the tape measure method is easy to administer and costs very little 

(McCaw & Bates 1991), there are many potential sources of error with the 

method.  Differences in the circumferences of both legs could contribute to 

distance differences, as could unilateral deviations along the long axis of the leg 

such as genu valgum or genu varum (Beattie et al 1990).  McCaw & Bates (1991) 

think that tape-measurement inaccuracy stems from its reliance on bony 

prominences such as the ASIS and medial malleolus.  Beattie et al (1990) also 

state that any asymmetries in the surface contours of the skin at the thigh, knee, 

or lower leg may alter the position of the tape measure therefore leading to 

inaccurate LLD measurements. 

Beattie et al (1990) reported that measurements obtained with a tape measure 

appear to be valid for assessing subjects with LLD when the mean of two 

measurements is used. They conducted a study using two examiners who 
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obtained repeated measurements of LLD on 50 subjects.  The results showed 

good intratester reliability (ICC =0.807) and fair intertester reliability (ICC 

=0.668) when comparing the first measurements obtained by each examiner.  

When they compared the mean values of paired measurements, the intertester 

reliability rose significantly (ICC=0.910). 

Ideally both limbs should be of equal length but a certain amount of discrepancy 

can be considered normal although authors differ on what the criterion for normal 

is and when a discrepancy should be treated. 

A leg length inequality of less than 3cm is classified as mild and moderate 

differences include leg length inequality between 3 and 6cm.  Differences greater 

than 6cm is classified as severe (McCaw 1992). 

 

2.5.4.  Subtalar Joint Neutral (STJN) 

 

The definition of STJN has important implications for assessment of foot function.  

It is the most widely used reference point for the clinical measurement of the 

relationship of rearfoot to forefoot (Pierrynowski & Smith 1997).  It provides 

consistency in positioning the foot before assessing structural or bony deformities 

of the foot and leg (Oatis 1988).  It also provides the clinician with a relative zero 

point from which to measure STJ range of motion and serves as a point of 

reference for other lower limb measurements.  The ability to identify the STJN, 

therefore, would appear to have important implications for assessment of the 

lower extremity (Levangie & Norkin 2001).  However, there are differences in 

opinion in the literature as to the correct definition of STJN position and the most 

reliable and valid form of measurement. In 1964, Wright et al defined the subtalar 

neutral position as “the position of the subtalar and talocrural joints when the 

subject was standing relaxed with the knees fully extended, the arms at the sides, 

feet six inches apart and with a comfortable amount of toeing-out.”  However, 

McPoil & Cornwall (1994) argue that this definition describes the relaxed calcaneal 

stance position today and not the STJN position. The American Academy of 

Orthopaedic Surgeons (1965) state the STJN position is that position where the 
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longitudinal midline of the leg and heel bisection are parallel although Elveru et al 

(1988b) does not agree and finds this definition not clinically useful because it 

does not take into account anatomical differences between subjects. Merriman & 

Tollafield (1995) define neutral position as the foot being neither pronated nor 

supinated.  LaPointe et al (2001) maintain that any deformity such as tibial varum 

or rearfoot valgus makes this definition irrelevant.  They give an example of a 

patient with a fully compensated rearfoot varus who may be at the end range of 

eversion when the calcaneus is aligned with the tibia therefore the definition 

cannot be applied universally.   

Root et al, in 1971 defined subtalar neutral as the position of the STJ that was 

neither pronated nor supinated and in 1977 defined it, as the position in which 

the forefoot is locked on the rearfoot when the midtarsal joint is maximally 

pronated.  He also classified it, as the point from which the calcaneus will invert 

twice as many degrees as it will evert.  This position is generally determined by 

palpation of the talus on the calcaneus. These are only a few examples and Root’s 

theories on biomechanics have been the gold standard for many years. However 

many of the current researchers such as McPoil & Cornwall (1994), Elveru et al 

(1998) and Pierrynowski & Smith (1996/1997) are discarding his ideas in favour 

of new theories about STJN position and the biomechanics of the foot during the 

gait cycle.  

The position of the STJN is also important in casting and for orthoses fabrication 

(Elveru et al 1988b).  It is the position typically used by therapists to obtain a 

cast representation of a patient’s foot before fabrication of biomechanically 

functional orthoses therefore it is important for therapists to agree as to the true 

definition of STJN position.  As mentioned above, McPoil & Cornwall (1994) state 

that the neutral position of the rearfoot during gait is the resting calcaneal stance 

position, not the subtalar joint position.  They even suggest that due to this 

finding, the fabrication of orthoses in STJN position may be contraindicated 

however they do not explain why there is evidence to show that orthoses 

fabricated from a STJN position can improve patient symptoms.  Donatelli et al 

(1988) found 91% improvement in patients’ symptoms when supplied with 

orthoses casted in a STJN position. 
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Eng & Pierrynowski (1994) found that the correction of structural foot 

abnormalities with soft foot orthoses resulted in small changes in frontal and 

transverse motion at the knee. Although the sample size was small, female and 

all adolescents, these results show that there is a clinical relationship to orthoses 

and patellofemoral pain syndrome.   

Astrom & Arvidson (1995) state that when carrying out biomechanical evaluations 

or prescribing orthoses, a gold standard must be set as a reference.  This gold 

standard is the “ideal foot”.  It is based on the theory that it will be more efficient 

and provide optimal function with minimal risk of injury if granted a balanced 

range of subtalar joint motion.  Astrom & Arvidson (1995) also state that a 

vertical stance position of the calf and the calcaneus in the STJN position is the 

‘ideal foot’ and provides optimal function with minimal risk of injury.  However, 

none of the subjects conformed to the “ideal foot” theory, which should be 

abandoned in favour of a reference based clinical observation, rather than 

theoretical observations.  McPoil et al (1998) and Garbalosa et al (1994) also both 

conducted studies involving foot position of healthy subjects and McPoil et al 

(1998) found that out of 116 feet surveyed, not one was an “ideal foot” in STJN 

position.  The latter study found that out of 234 feet sampled, 90% had a forefoot 

condition bilaterally.  These studies agree with Astrom & Arvidson (1995) and 

McPoil et al (1999) stated “ if so many feet are abnormal in a healthy adult 

symptom free population, then one could question whether the criteria used to 

define a “normal” foot structure is even appropriate.”  However, the term 

“normal” has been used in as many different contexts as there have been people 

whom have written about it (Phillips 2000).  To every individual, the term has a 

different meaning.  Root et al (1971) defined the normal foot as  

“A set of circumstances whereby the foot will function in a manner which will not 

create adverse physical or emotional response in the individual.  This applies 

when the lower extremity is used in an average manner and in an average 

environment, as dictated by the needs of society at the moment.” 

This position has been defined differently by various investigators, with some 

issues raised as to the appropriateness of the measurement techniques (Levangie 

& Norkin 2001).  Since small angular deviations may be of clinical relevance, the 



64 

 

accuracy and consistency of measuring the STJN position is crucial in the 

management of foot and leg disorders.  Therapists should be proficient in 

performing this skill and should be accurate and consistent.  The method 

described above by Elveru et al (1988) was used in a study by Astrom & Arvidson 

(1995) and they found the average position of the calcaneus in the palpated STJN 

position to be 2 degrees of calcaneal valgus.  However, in another study by McPoil 

& Cornwall (1994) also conducted using the “Elveru” method found an average 

STJN position of 1.5 degrees of calcaneal varus.  The reliability of this method 

varies according to experience of the clinician and position of the patient 

(Pierrynowski & Smith 1997). 

A study by Ball & Johnson (1993) investigated the use of a flexible 

electrogoniometer on the reliability of STJN measurements.  They showed a high 

intertester variation of 7 degrees for STJN whereas the intratester variation was 

only 2.5 degrees.  However, this study was conducted with a small sample size 

and the outcome could have been influenced by instrumentation that was not 

blind to the tester (Rothstein 1985 and Clarkson & Gilewich 1989).  This 

phenomenon is known as the Rosenthal Effect whereby the expectations of the 

tester influence the outcome of the study (Polgar & Thomas 1991).  It is also not 

clear whether the design of the study was randomised which if not, would further 

invalidate the conclusions since a randomised sample is more likely to represent 

the population about which inferences are being made (Polgar & Thomas 1991).  

Powers et al (1995) conducted a study using the Elveru et al (1988) method to 

assess rearfoot posture in subjects with patellofemoral pain.  The intratester 

reliability deemed excellent even though the tester was relatively inexperienced 

which the authors thought would prevent potential bias that could result from 

extended knowledge and expertise with this technique.  Nevertheless, the tester 

was not blind to the subjects’ identity that may limit the reliability of the results. 

Elveru et al (1988) and Smith-Oricchio & Harris (1990) found that the reliability of 

therapists in positioning a rearfoot in STJN position is generally poor but can be 

moderately reliable if taken within-therapists than between-therapists over a 

short period.  However, Elveru et al (1988) examined a group of inexperienced 

therapists after only 30 minutes of textbook instruction and Smith-Orrichio & 

Harris (1990) examined therapists with an unreported skill level. However, 
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because of how this measurement is used and in light of the poor intertester 

reliability, the clinical usefulness of measuring the position of STJN is limited.  

Norkin & White (1995) elected not to use this position because use of STJN 

position adds error to ROM measurements.  Picciano et al (1993) concluded that 

STJN measurements taken by inexperienced therapists are unreliable and 

recommend that clinicians determine their own reliability for this measurement.  

This can also be seen in research conducted by Pierrynowski et al (1996) which 

tested the proficiency of experienced foot care specialists (chiropodists) and 

untrained physiotherapy students to place the rearfoot at STJN position.  It was 

readily apparent that the experienced therapists were able to locate the STJN 

position much better than the students were.  However, in another similar study 

by the same authors in 1997, the STJN position was tested in three different 

positions-weight bearing, prone and seated and some of the experienced 

chiropodists found difficulty in finding STJN position due to the different positions 

of the patient.  They showed that the ability of the foot care specialists to position 

seated subjects in STJN position was poor. Chiropodist number three, who was 

the most experienced foot care specialist, normally performed 80% of their STJN 

position assessments in a prone position and only 10% in the other two positions 

therefore did not have much more experience than the untrained students.  

Perhaps the reliability may be improved had the raters chosen a particular 

position that they were experienced with.  Pierrynowski et al (1997) also agrees 

that it may be possible that a different patient position could improve the 

reported proficiency value and warrants further research. 

 

2.5.5. Knee flexion and extension 

 

Knee flexion and extension is the largest component of knee motion and occurs in 

the sagittal plane (McClay & Manal 1998).   

Radiographic measurement of maximum knee flexion is considered the most 

accurate technique (Gogia et al 1987) but in clinical practice, most practitioners 

either visually estimate knee flexion ROM or measure knee flexion with a 

goniometer. 
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Gogia et al (1987) demonstrated high intertester reliability and validity for 

goniometric measurements at the knee joint and Rothstein et al (1983) found 

high intertester reliability values for flexion of the knee but poor intertester 

reliability for extension of the knee using three different goniometers.  However, it 

was thought that this was a result of not having a standardised measuring 

technique as each therapist used a different patient position when measuring 

knee movements.  Rothstein and colleagues tested this hypothesis and a post hoc 

analysis was carried out but even using the same standardised position between 

testers, the reliability was never comparable to intratester reliability standards.  

They concluded that for knee extension measurements, the same therapist should 

take all the measurements for one individual patient.  Boone et al (1978) and Low 

(1976) also found higher intratester reliability than intertester reliability when 

measuring ROM at the knee joint and both agree it would seem to be better that 

where possible, one therapist should make all the measurements for a patient.  In 

contrast, Rhealt et al (1988) found intertester reliability to be high when 

measuring knee movements with either a universal goniometer or a fluid-based 

goniometer however, only a small sample of subjects were used and all the 

subjects were healthy which does not represent an accurate patient population.  

In addition, only two testers were studied with only two recordings on each 

instrument.  Perhaps more testers or making more measurements with each 

instrument would provide the study with more interesting and valuable 

information. 

In a gait study conducted by Nadeau et al (1997), it was found that the knee 

flexion angle measured with a universal goniometer was significantly lower for the 

group with anterior knee pain as compared with the control group.  However, 

Dillon et al (1983) hypothesised that anterior knee pain subjects used less flexion 

at the knee joint to decrease forces at the patellofemoral joint and thus avoid 

pain. 

Taking all the past literature into account, many authors concur that using a 

Universal Goniometer can be more reliable when it is used by the same tester 

(Boone et al 1978; Grohmann 1983; Low 1976 and Rothstein et al 1983).  

Brosseau et al (2001) also found that it was more reliable than visually estimating 
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the ranges of motion at the knee. This was the justification used for using this 

tool for the measurement of knee flexion and extension. 

The American Academy of Orthopaedic Surgeons (1965) state that the normal 

knee flexion is 135 degrees whereas the American Medical Association (1990) 

states that it is 150 degrees. 

 

2.5.6. Resting calcaneal stance position (RCSP) 

 

The resting calcaneal stance position is considered to be an indication of the way 

the foot has compensated for various structural and functional abnormalities of 

the foot and lower limb (Payne & Richardson 2000).  It is also an indicator of STJ 

motion when weight bearing.  The clinical importance of measuring the rearfoot 

angle is related to the premise that excessive foot pronation is manifested by an 

everted calcaneus during standing (Cornwall & McPoil 2004). The everted rearfoot 

is generally thought to result from compensatory movements at the STJ and or 

midtarsal joints (Donatelli 1996). 

It is important to note the difference between the RCSP and the STJN in order to 

assess the compensation that occurs for proximal and distal problems however 

there are limitations of comparing them in that they only provide information 

regarding frontal plane motion of the rearfoot (Merriman & Turner 2002).  Some 

authors suggest that sagittal plane motion (Meuller et al 1993) or transverse 

plane motion (Nawoczenski et al 1995) may be a better indicator of foot 

pronation. 

It has been proposed in the literature that the angle of the rearfoot in standing 

should be between 0° and 2° (Root et al 1977).  However Sobel et al (1999) 

reported mean eversion values for adults of 6.07°.  
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Figure 2.7 Feet in RCSP6 

 

2.5.7. Rearfoot angle (varus/valgus) 

 

The rearfoot angle is a measurement of the inclination of the calcaneus relative to 

the lower leg in resting position and is a typical component of the clinical 

examination of lower limb pathologies (Donatelli 1996).  

The rearfoot angle which can sometimes be referred to as the calcaneal angle, 

was measured in relaxed single-limb stance as the angle between a line that 

bisected the calcaneus and a line that bisected the lower third of the leg.  This 

was the same bisection line which was used to measure STJN and relaxed 

calcaneal stance position.  

This measurement should be made under the assumption that in equal, relaxed 

standing, the STJ should be at or near its neutral position and indicates to the 

clinician what abnormal compensation may be occurring (Donatelli 1996). 

                                                                 
6
 Merriman and Turner (2002) 
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Figure 2.8 Measurement of rearfoot angle7 

 

Despite the recurrent clinical use of the rearfoot angle, its direct relationship to 

abnormal rearfoot motion during walking and its relationship to lower extremity 

injury is sparse. Normal values of rearfoot angles vary somewhat throughout the 

published literature starting early with Root et al (1977) proposing that the 

rearfoot angle in relaxed stance should be 0±2°. However, other authors do not 

share these values.  Sobel et al (1999) reported mean rearfoot values of 6.07 

degrees of eversion in adults and Cornwall & McPoil (2004) had a finding of 6.3 

degrees of rearfoot eversion. Donatelli et al (1999) described rearfoot angles of 

more than 8 degrees to be excessively pronated and angles between 1-8 degrees 

to be pronated. Root et al (1977) defined abnormal pronation as compensation at 

the STJ for a variety of lower extremity postures, resulting in excessive or 

prolonged eversion movement of the rearfoot during the stance phase of gait.  

They defined “excessive” as pronation movement greater than 4-6 degrees.    

Genova & Gross (2000) state excessive is equal to or more than 10 degrees and 

Eng & Pierrynowski (1994) and Johanson et al (1994) both report  that anything 

more than 6 degrees of rearfoot motion during stance is excessive.  

 

 

 

                                                                 
7
 Donatelli 1996 
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INVESTIGATOR CRITERIA FOR EXCESSIVE 

PRONATION 

Root et al (1977) Greater than 4-6 degrees 

Genova & Gross (2000) Equal to or more than 10 

degrees 

Eng & Pierrynowski (1994) Greater than 6 degrees 

Johanson et al (1996) Greater than 6 degrees 

Table 2.1 Various authors’ criteria for excessive pronation 

 

In contrast to these studies, Cornwall & McPoil (2004) concluded that unless there 

is some pathology such as rheumatoid arthritis that introduces abnormal bone 

and joint structure and mechanics, all individuals pronate the same amount and 

that excess or overpronation is not due to rearfoot motion but a matter of 

exceeding the individuals soft tissue mechanical limits.  They measured the 

rearfoot angle of 82 subjects and put them into groups of everted and inverted 

depending on their values. Rearfoot motion for the two groups was measured 

during walking and the kinematic data found no difference between the groups.  

Their findings indicated that a subject’s rearfoot angle does not influence rearfoot 

motion during walking and therefore its usefulness is questionable. 

 

2.5.8. 1st Metatarsalphalangeal joint (MTPJ) flexion  

 

This joint plays an important and functional part of the gait cycle.  Its general 

function is to allow the foot to progress through the terminal stance phase of the 

cycle. In 1954, Hicks published the first scientific examination of motion at the 1 s t 

ray and reported that the 1s t MTPJ motion was controlled solely by the windlass 

effect of the plantar aponeurosis.  The plantar aponeurosis is an extremely 

important structure in the maintenance of the longitudinal arch of the foot and 
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absorbing stress for weight bearing.  Donatelli (1985) states “in the static stance 

position the plantar aponeurosis takes up approximately 60% of the stress of 

weight bearing and the beam action of the metatarsals approximately 25%.”  

Hicks (1954) understood that since the plantar aponeurosis is attached proximally 

to the medial tubercle of the calcaneus and distally to the proximal phalanges of 

the toes through its connection to the plantar pad, then when the hallux is 

dorsiflexed or extended, the plantar pads and the plantar aponeurosis will move 

distally around the heads of the metatarsals.  Hicks (1954) also stated “the effect 

was as though a cable had been wound one quarter of a turn on the drum of a 

windlass; the drum of the windlass being the head of the metatarsal, the handle 

which does the winding being the proximal phalanx, and the cable which is wound 

on to the drum being the plantar pad and the plantar aponeurosis.”  This effect 

will cause the rearfoot to supinate as the pull of the plantar aponeurosis causes 

the distance between the calcaneus and the head of the 1s t metatarsal to shorten 

therefore increasing the height and length of the arch.  He tested this method on 

a living foot and a cadaver specimen and found that all the effects were present 

on both subjects therefore concluding that the “windlass mechanism” operates 

independently of muscular activity (Aquino & Payne 1999). 

The ability of the hallux to undergo dorsiflexion in gait has been proposed as an 

essential element of normal locomotion (Harradine & Bevan 2000).  Dananberg 

(1993) states that normal ambulation requires at least 65 degrees of motion.  

Restriction of motion of this joint can severely mar the function of the foot and 

altered gait patterns and pathological changes in the joint may occur 

consequently.  Hallux limitus is a foot deformity often seen associated with a 

limitation of dorsiflexion in the 1s t MTP joint.  Clinical assessment can be 

conducted by observing the decreased ROM of the joint.  While normal 

dorsiflexion ranges from 50 to 70 degrees, hallux limitus involves less than 50 

degrees of motion (Birke et al 1995).  Patients will complain mostly of pain or 

crepitus in the joint and symptoms are usually insidious and progressive.  

Treatment can be successful if managed in the early stages but may require an 

orthotic device to help the patient, as there is insufficient ROM in the joint to 

support the hallux in the toe-off stage of the gait cycle.  
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Harradine & Beran (2000) conducted a study to test if there was a decrease in 

hallux dorsiflexion with rearfoot pronation.  The results showed that there was an 

initial increase in the ROM of dorsiflexion with an increase of pronation but only 

up to a point of five degrees eversion.  Any additional degree of pronation showed 

no real significant decrease in 1s t MTP joint dorsiflexion.  However, these results 

have restricted integrity, as the sample size was very small it was therefore not 

representative of a normal population and the study did not consider dynamic 

structure only static.  Further research is needed to determine if limitation in 1s t 

MTP joint ROM is sufficient to cause lower extremity injuries and if so, how much 

limitation is needed before an injury occurs.  

The reported values of dorsiflexion of the 1s t MTP joint are very variable according 

to (Oatis 1988).  Oatis (1988) stated dorsiflexion of the great toe to vary from 0-

70 to 0-90 degrees and Merriman & Tollafield (1995) found the same for 

dorsiflexion.  They report that normal dorsiflexion of the first MPT joint should be 

70 degrees as does The American Academy of Orthopaedic Surgeons (1965) but 

the American Medical Association (1995) state that normal dorsiflexion should be 

50 degrees. 

 Goniometers are widely used in clinical practice and have been demonstrated as 

a reliable and valid instrument when measuring 1s t MTP joint dorsiflexion (Roukis 

et al 1996).  Hogan & Kidd (2001) conducted a single-blinded randomised study 

of thirty subjects with pain of the 1s t MTP joint.  The study assessed the validity 

and reliability of using a universal goniometer to measure ROM of the 1s t MTP 

joint.  The results suggested that it is reliable and valid when used by the same 

therapist on the same subject however, when the angle was being recorded, the 

value was rounded to the nearest whole degree as the goniometer only had 

measurements in whole degrees.  This resulted in measurement error but 

because there is no other reliable, valid, and affordable technique yet available, 

the universal goniometer remains a popular choice for measuring the 1 s t MTP joint 

(Hogan & Kidd 2001).  The flexible electrogoniometer has also been reported to 

be highly accurate and reliable in the measurement of this joint (Ball & Johnson 

1993). 
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 Hopson et al (1995) investigated the intrarater reliability of four methods of 

measuring the first metatarsalphalangeal joint and found that although the mean 

measurements for all four methods varied considerably, the measurements 

obtained by each method were reliable.  They also stated that although each of 

the measurement methods was reliable, they should not be used interchangeably. 

 

2.5.9. Arch height 

 

The arches of the foot became important structures of the human body thousands 

of years ago when man’s ancestors stood erect and began bipedal locomotion 

(Saltzman & Charles 1995). The plantar aspect of the foot is divided into two 

arches, the transverse arch, and the longitudinal arch.  The transverse arch is 

supported by the three cuneiforms and the cuboid bones.  The longitudinal arch is 

divided into two parts: a medial longitudinal arch (MLA), which supports the 

medial aspect of the foot and a lateral longitudinal arch, which supports the 

lateral aspect of the foot.  The MLA is supported by the calcaneus, talus, 

navicular, medial, intermediate, and lateral cuneiforms and the first and second 

metatarsals. 

 

 

Figure 2.9 Bones of the medial longitudinal arch8 
 

                                                                 
8
 Williams et al 1989 
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The lateral longitudinal arch (LLA) consists of the calcaneus, cuboid and the fourth 

and fifth metatarsal bones.  Ligaments, muscles, and a deep fascia on the plantar 

aspect of the foot called the plantar aponeurosis support the arches.  The 

longitudinal arches play an important role in man’s ability to keep upright and 

balanced and in shock absorption.  The arch in connection with the soft tissue 

heel pad acts as a shock absorption during running, walking and jumping to 

absorb some of the impact forces from the ground (Saltzman & Charles 1995).  

The shock absorber mechanism is carried out by the combined efforts of the thick 

soft tissue heel pad, the flexible joints of the longitudinal arch, the plantar 

ligaments and the plantar aponeurosis (Manusov 1996). 

The height of the sagittal plane arch (MLA) has been one of the primary criteria 

for classification of foot structures (Saltzman et al 1995) and can be determined 

by the shapes of the bones and the laxity of the ligaments of the foot (Harris & 

Beath 1948).  It is measured from the highest point of the soft-tissue margin of 

the medial longitudinal arch, which, anatomically would be the navicular, to the 

ground and should be a relatively easy procedure to conduct.  However, it can be 

confounded by bony architecture and soft-tissue variations between subjects and 

there is yet no existing objective criterion for the classification of foot type’s pes 

cavus and pes planus.  Pes Planus is a complication of the foot in which the height 

of the MLA is lower than normal or even absent.  An individual with pes planus 

may be referred to as having flat feet (Manusov 1996).  Pes cavus is a 

complication of the foot in which the height of the MLA is greater than normal.  

Both of these conditions greatly reduce the foot’s ability to act as a shock 

absorber for the rest of the body. 

The height of the MLA is commonly thought to be a predisposing factor to knee 

injuries (Williams & McClay 2000 and Kaufman 1999) although there are many 

opinions in the literature regarding this.  Some of the controversy may be due to 

the many different ways of measuring the MLA but there is however, no 

unanimous stand on how this evaluation should be carried out (Sneyers et al 

1995).  There are to date, no universally accepted clinical or radiographic 

definitions of the average height or the normal range of heights of the MLA.  The 

point at which a low arch becomes a flat foot is unknown (Mosca 1995). 
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Although a variety of methods have been used in order to measure arch height 

such as with the use of X-rays, ultrasound, radiographs (Cobey & Sella 1981) and 

footprint parameters, these methods are limited as X-rays and ultrasound both 

require other specialised therapists to carry these tests out and are also 

expensive.  X-rays, in addition, imply a potential health risk (Hawes et al 1992).  

In order to conduct a complete clinical evaluation of a subject’s feet whether they 

are normal, flat or high arched, a detailed history, physical examination, and 

possible radiographic examinations are required.  This is also time consuming and 

impractical (Cowan et al 1994). 

Weight- bearing and non-weight- bearing examinations of feet can have very 

different outcomes according to Subotnick (1985) and Williams & McClay (2000).  

Establishing reliability in both weight-bearing and non-weight- bearing conditions 

allows for measurements that can be taken under both conditions and, therefore, 

may be used to describe foot mobility as both foot structure and foot mobility 

may play an important role in predicting injuries (Williams & McClay 2000). 

Although most of the methods attempt to quantify the arch, some methods are 

based on observation.  Giladi et al (1985) classified the non-weight -bearing foot 

as either high-arched or low-arched by visual assessment alone.  Even among 

very experienced clinicians however, this method is highly inconsistent (Cowan et 

al 1994).  In the study conducted by Cowan et al (1994), they found that there 

was poor agreement between clinicians in visually assessing arch height based on 

observation of photographs.  Among those at the extremes of the evaluations, the 

high arch foot was predicted much less reliably than the flat foot thus concluding 

an unacceptable level of intertester variability.  This study strongly argues for a 

standardised quantitative measurement of arch height at least as a screening 

mechanism. 

Harves et al (1992) measured the highest point of the soft tissue along the MLA in 

full weight-bearing, however Williams & McClay (2000) do not believe that this 

measurement necessarily represents the state of the bony architecture of the 

foot.  Dr. M. Kvist of the Sports Medical research Unit at the Jyvaskyla University 

in Turku developed a method for measuring arch height.  The foot arch was 

evaluated while the subject was standing on a podoscope with feet in slight 

abduction.  A mirror, mounted underneath the glass plate, allows the therapist to 



76 

 

evaluate the plantar contact surface with the glass plate.  When the arch is low, 

the contact surface in the midfoot region is often wide, when the arch is high the 

midfoot region contact barely touches the ground and normal arches usually have 

intermediate midfoot contact surfaces.  However, although Sneyers et al (1995) 

used this method they concluded that having only three subdivisions of arch 

heights was too general and larger divisions need to be tested. 

Various authors have studied anthropometrical techniques of measuring arch 

height.  Williams & McClay (2000) measured the reliability and validity of seven 

measurements of the arch compared to radiographically determined bony 

landmarks and found only two out of the seven measurements to be similar to the 

radiographs.  Nigg et al (1993) and Hawes et al (1992) both emphasise the 

indistinctions and inconsistencies of measuring the MLA by non-invasive means.  

They found that when measuring arch height on healthy subjects, anthropometric 

techniques seemed to be reliable but the validity related to radiographs was never 

tested.  Saltzman et al (1995) found that clinical or anthropometric 

measurements yield reliable and valid approximations of the MLA structure when 

certain criteria are met.  Experienced examiners record the measurements, the 

same measuring device is used across testing conditions, and when 

measurements are taken in a weight-bearing position are such examples which 

have been reported to allow for highest reliability estimates (Elveru et al 1988 

and Smith-Oricchio & Harris 1990).  

The most popular approach has involved the interpretation of footprints.  The 

footprint as a measure of pathological conditions has been in use for some time.  

They are simple to obtain, inexpensive and if properly taken they show a strong 

visual observation of the height of the longitudinal arch (Clarke 1933).  Footprints 

may be made with home-made devices such as a solution which is brushed over 

the sole of the subject’s foot and the foot is then placed with full weight on a 

piece of paper.  Several commercial organisations also provide materials for 

footprints.  The pedograph machine is a popular device as it is inexpensive and 

easy to use (Clarke 1933).  Although footprints are reliable (Clarke 1933), their 

validity is suspect (Saltzman et al 1995).  Validity may be determined by 

computing measures with other evidences of the equalities they are to measure 

(Clarke 1933). The ability of the simple footprint however to predict dynamic 
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rearfoot motion remains questionable.  Atkinson-Smith & Betts (1992) conducted 

research in which simple ink footprints and dynamic pedobaragraphy were 

compared to see if the ink prints were useful indicators of dynamic rearfoot 

motion.  The authors concluded that the ink print did not provide any information 

regarding plantar foot pressure throughout the gait cycle and were therefore 

deemed invalid in the measurement of dynamic motion. Footprints, obtained from 

the Harris-Beath mat, have also been used to describe foot architecture (Hawes 

et al 1992 and Thomson 1994).  Hawes et al (1992) found that they were unable 

to predict arch height from the footprints and concluded that they were indicators 

of footprint shape only.  Song et al (1996) also agree and believe that although 

these mats provide a reasonable method to describe the gross foot morphology 

such as low arch, high arch, or normal arch, they do not quantify the specific 

forefoot to rearfoot alignment. William and Morrison (1931) doubt the ability of 

the footprint to indicate foot type since factors other than arch height may 

contribute. Williams & McClay (2000) also doubt the ability of footprints, as the 

soft tissue on the plantar aspect of the foot is thick and variable and can mask the 

true bony architecture of the foot.  Urry & Wearing (2001) compared electronic 

footprints against ink footprints to determine the relative accuracy of the area and 

angular measurements of the electronic footprint.  A Musgrave Footprint foot 

pressure platform was used to collect the electronic measurements and a foam 

rubber pad impregnated with water-soluble ink was used to collect the ink 

footprint.  The study revealed that the pressure platform consistently 

underestimated the contact area of the foot by as much as 14% and the 

electronic footprint produced a small yet significant reduction when calculating the 

arch index.  Consequently, the accuracy of measurements obtained from 

electronic prints is questionable and are not representative of those footprints 

derived from an inkpad. 

When measuring the height of the longitudinal arch, Saltzman et al (1995) 

considers radiographic measures as “gold standard” in their study due to the 

reliability of radiographic studies using experienced examiners to be consistently 

high and also, the radiographs provide a clear-cut image of the skeletal 

components of the MLA. 
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It has been suggested that a functional relationship between arch height and knee 

injury may exist.  It is generally understood that a low arched foot tends to be 

more flexible and therefore is subject to increased pronation during the contact 

phase of the gait cycle and in contrast, a high arched foot is more rigid and 

subject to increased supination.  Consequently a low or high arched foot may 

place the athlete at a higher risk of injury (Razeghi & Batt 2000).  Lutter (1980) 

states that the high-arched, cavus foot has been associated with knee pain.  

However Cowan et al (1993) proved in their study that low arched feet were more 

prone to injury than high arched feet.  They concluded that a low arched foot 

actually provides protection against lower limb injury.  However, another study 

conducted by Duffey et al (2000) of normal subjects and subjects with AKP, found 

the AKP group had a significantly lower arch height relative to the control group, 

which indicates that a higher arch foot type is preventative of AKP. 

McKenzie et al (1985) stated that the configuration of the MLA is a valuable 

method of classifying feet and has direct implications on the development and 

management of running problems.  Nigg et al (1993) demonstrated that the 

transfer of foot inversion to internal leg rotation was found to increase 

significantly with increasing arch height.  It was suggested that this relationship 

might explain the cause of knee pain.  Saltzman et al (1995) also thought that 

there is a functional relationship between arch height and injury and it may be 

related to a transfer or “coupling” motion between the leg and foot.  Kaufman et 

al (1999) however does not support the association between general foot types 

and overuse injuries at the knee.  

 

2.5.10.  Navicular height/drop 

 

The drop of the navicular tuberosity in relation to the bony landmarks within the 

foot is a further test to be a measure of STJ pronation and excessive MLA collapse 

(Gross 1995).  Brody (1982) was one of the first authors to report navicular drop 

as a measure of foot pronation in runners.  Sell et al (1994) evaluated the 

reliability of navicular drop and found high intratester and intertester reliability.  

They concluded that this method is a far favourable and more reliable method of 
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measuring foot pronation and is much easier and simpler to perform than the 

traditional method of bisecting the calcaneus.  Mueller et al (1993) also agreed 

with this method and stated that navicular drop can be considered a reliable 

“composite” measure of foot pronation.  In contrast, however, Picciano et al 

(1993) reported differing results with poor-to-fair intratester reliability and poor 

intertester reliability.  The conflicting results may be due to the fact that the 

testers used were very inexperienced physiotherapy students both of whom had 

only two hours to practice the method and as mentioned before by the authors 

and by Pierrynowski et al (1996), experienced testers has been proven to improve 

the reliability of clinical measurements.  Had the inexperienced physiotherapy 

students had more time to practice or they had used experienced 

physiotherapists, perhaps the results of the study may have been in agreement 

with Mueller et al (1993) and Sell et al (1994).  

There are many differing methods to measure navicular drop and Menz (1998) 

measured navicular drop by placing the fully weight- bearing subject in the talar 

head congruent position (STJN position) and measured the distance between the 

navicular tuberosity and the supporting surface.  The subject is then told to relax, 

and the sagittal plane excursion of the navicular is measured with a ruler.  When 

describing this method however, Menz (1998) gave no indication of the sample 

group or evaluated the reliability of this method.  

Beckett et al (1992) described values as 6mm or 7mm up to 10mm but it is not 

clear how these figures were obtained.  Brody (1982) suggested that normal 

navicular drop is approximately 10mm and that measurements over 15mm 

represents abnormal pronation.  However, both of these authors fail to take into 

account the size of the foot being assessed.  A navicular drop of 15mm may be 

excessive according to Brody (1982) on a small foot but may be normal drop on a 

larger foot.  Further research is obviously needed to establish a navicular drop 

“index”, that is, the amount of navicular drop considered normal or abnormal 

relative to the size of an individual foot (Menz 1998). 

The reliability of this measure has been questioned (Picciano et al 1993) however.  

Williams & McClay (2000) conducted a study, which tested the reliability, and 

validity of the height of the navicular based on their use of bony anatomical 
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landmarks.  It was measured from the floor to the most anterior-inferior portion 

of the navicular.  To establish concurrent validity, they compared the clinical 

measurement with radiographs.  They found that the mean values for navicular 

height were found to be in agreement with values from other studies such as 

Cavanagh et al (1997), Saltzman et al (1995) and Wen et al (1997).  However, 

the absolute values for navicular height was much lower than previous studies 

such as Cowan et al (1993), but it was reported that Cowan and colleagues took 

their measurements from photographs which could account for the difference in 

values.  Williams & McClay (2000) concluded that intratester reliability was much 

higher than intertester reliability when measuring navicular height.  Saltzman et 

al (1995) found good intratester reliability and moderate intertester reliability 

when measuring navicular height.  Sell et al (1994) also found excellent 

intratester and moderate intertester reliability.  Weiner-Ogilvie & Rome (1998) 

calculated navicular height as the most prominent palpable portion of the 

navicular tuberosity was marked with a dot using a fine black pen when the 

subject was in a prone position.  Callipers were used to measure the distance 

from the fixed end of the calliper to the mark on the navicular tuberosity.  They 

found that intratester reliability was much higher than intertester reliability by a 

large degree.  This finding was in agreement of other studies such as McPoil & 

Cornwall (1996) and Smith-Oricchio & Harris (1990) however, it should be noted 

that the sample size in the former study was small and therefore the population 

choice was limited.  McCrory et al (1997) suggested that radiographic 

measurements could reliably determine the height of the navicular.  By measuring 

with this method, the errors involved in palpation, skin movement and soft-tissue 

distribution are minimised.  Thompson (1994) concluded that radiographs also 

exhibit significant intratester and intertester variability.  
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2.6. A Review of the Literature on the Vicon 370 Kinematic Motion 

Analysis System 

 

2.6.1. Introduction 

 

Computerised three dimensional (3D) gait analysis has been increasingly used for 

quantifying gait analysis and therapeutic intervention however it will only receive 

wider acceptance in clinical practice if its reliability can be demonstrated (Maynard 

et al 2003).  It is essential that the measurements taken can be repeated by the 

same tester on different occasions and yield similar results especially when clinical 

inferences are drawn.  Winter (1984) conducted a study reporting on intrasubject 

repeatability of kinematic and kinetic data on two subjects where one subject was 

evaluated on different test days and the other was evaluated on the same day but 

different times.  The results showed that intrasubject repeatability was better 

within the same day of testing compared to results from different days. 

 However, there are many sources of error associated with 3D gait analysis. One 

commonly recognised problem is the day-to-day variability that may be present 

due to marker placement on the skin.  This is especially important when the same 

subject is being tested on more than one occasion and comparisons are to be 

made between the sessions.  Skin movement, mathematical model assumptions 

and anatomical marker placement are also common sources of error.  Accuracy of 

marker based systems is affected by errors introduced due to skin movement 

(Benoit et al 2006).  The results may not reflect the motion of the underlying 

bones and skin movement was not quantified in this thesis.  However, any errors 

relating to skin movement would be equally apparent in all subjects and would 

therefore produce no bias. The results must be interpreted with this in mind. 

 

 

 



82 

 

2.6.2. Reliability and Validity of Vicon 370 Kinematic Motion 

Analysis System. 

 

Measurements of the spatial and temporal parameters of gait patterns are 

frequently obtained to identify gait deviations, aid with diagnosis and to 

determine and monitor patient progress (Bilney et al 2003).  Making evidence-

based decisions in the clinical management of gait dysfunction requires the ability 

to measure temporal-spatial gait variables validly and reliably (Barker et al 2006).  

There have been several significant studies which have investigated the validity 

and reliability of various motion analysis systems but the reported findings have 

not been consistent. 

Reliability of a measurement tool incorporates repeatability and precision of its 

measurements (Durward et al 1999).  Identifying the location of any anatomical 

landmark by palpation or other means in a repeatable fashion is of crucial 

importance to the reliability of relevant results in any experimental approach.  

Careful attention should be paid to sources of error, mainly due to the relative 

displacement between marker arrays associated with skin and underlying bones, 

which affect the determination of instantaneous positions and orientations of 

lower limb bones (Benedetti et al 1998). 

Face validity refers to the judgement made about the appropriateness of the 

measurement tool for its intended use (Durward et al 1999).  It has been 

demonstrated by the reported ability of Vicon to measure all the parameters of 

interest in this particular study and by its use in previous studies (Ferber et al 

2002 and Williams et al 2003). 

Content Validity refers to the particular measurement tools ability to measure all 

aspects of the behaviour of interest (Durward et al 1999).  It was demonstrated 

by the ability of the Kinematic System to measure all gait and relevant 

parameters. 

Kadaba et al (1989) investigated the repeatability of gait variables using Vicon 

with 40 normal subjects, three times daily and on three different test days. They 

used a statistic which measured the overall similarity of waveforms taking into 

account the concurrent effects of differences in offset, correlation and gain called 
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the coefficient of multiple correlation (CMC). They found excellent intratester 

repeatability of joint angle motion at the hip, knee and ankle in the sagittal plane 

within a test day and good repeatability between test days within (CMC = 0.643-

0.996) and between (CMC= 0.240-0.944). Pelvic tilt pattern displayed the lowest 

repeatability (CMC= 0.598) for within test days and (CMC= 0.529) for between 

test days.  The authors stated the reason for the low values could be due to the 

pelvis’s small range of motion (mean range 1-2 degrees). The results for the joint 

angle motion in the other two planes were found to be reduced than those in the 

sagittal plane and repeatability was much better within a test day than between 

test days.  This, however, is to be expected as within test day repeatability results 

are not affected by marker re-application errors. 

Kadaba and his colleagues write that the reason for the excellent repeatability 

only in the sagittal plane is due to the fact that a higher level of control is 

exercised by the neuromuscular system since the direction of progression is along 

the sagittal plane.  They reinforce this by stating that the results of the between 

test days in the sagittal plane are also excellent. In conclusion, they suggested 

that the results demonstrate that the gait variables are quite repeatable and it 

would be reasonable to base significant clinical decisions on a single gait 

evaluation using the Vicon Kinematic Motion Analysis System. 

Another study assessed the reliability of gait measurements and resulted in 

different findings from the above study.  Maynard et al (2002) investigated the 

intratester and intertester reliability of kinematic data using the dual CODA 

mpx30 (Charnwood Dynamics, Barrow on Soar, Leicestershire, England) Motion 

Analysis System.  Interestingly, they found better intertester than intratester 

repeatability for most of the gait parameters measured.  Test-retest repeatability 

of measurements of all joint kinematics was best for the knee angles and poorest 

for the hip angles.  This is consistent with observations from a previous study by 

Cowman et al (1998) and may be due to the easier identification of the 

anatomical landmarks for the placement of the markers on the knee.  Both 

studies findings do not demonstrate complete reproducibility of the gait analysis 

data when measurements are made with the CODA mpx30 System. 
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Barker et al (2006) compared the accuracy and reliability of measurements taken 

with the Gait Mat II System (GM) with the same measures taken simultaneously 

with the Vicon Kinematic Motion Analysis System.  The GM is a portable and 

inexpensive device designed to collect spatiotemporal characteristics of gait.  The 

data from the GM can be analysed to provide the same common gait parameters 

as the Vicon System can.  Measurements taken simultaneously by the GM and 

Vicon had an ICC of (0.99) indicating excellent reliability.  The results support the 

reliability and concurrent validity of the GM as a clinical gait analysis tool (Barker 

et al 2006).  This is particularly useful as although Vicon is known as the “Gold 

standard”, it has its disadvantages.  It is not portable and convenient, expensive 

and it is not easy to use in a routine clinical environment. 

 The Vicon 370 Kinematic Motion Analysis System has been shown to be one of 

the most accurate optical measurement systems in a comparison by Ehara et al 

(1997) with a reported mean absolute error of (0.94mm).  For this reason, Vicon 

is often considered the Gold standard in motion analysis (Ehara et al 1997).  

  

2.6.3. Marker placement 

 

The Helen Hayes marker set is a relatively simple set of external markers 

developed for time-efficient video analysis of lower extremity kinematics. The 

original configuration of 13 markers was developed by Kadaba et al (1988) at the 

Orthopaedic Engineering and Research Centre, Helen Hayes Hospital, West 

Haverstraw, N.Y. The basic Helen Hayes marker set consists of 15 lower body 

markers and the markers are secured to the body at anatomical significant 

locations that determine embedded axes for segments under consideration. The 

Helen Hayes marker sets determine ankle and knee joint centers and segment 

coordinate systems by means of a marker on a post or wand protruding from the 

lateral aspect of the thigh and shank, and by single markers placed over the 

lateral aspect of the joint flexion/extension axis.  It is important that the wands 

do not move with respect to their original position on the patient's legs during 

data capture. If the wands move, the knee and or ankle coordinate systems will 
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move with them and undetectable movement can cause large degrees of 

inaccuracy in joint kinematics and kinetics.  

Intratester reliability of marker placement is very important to establish especially 

when reliability is in part dependent on placement of markers by the operator. If 

the skin above the bony landmark is liable to displacement, marking should be 

carried out with these bones in the relative position they assume when the 

anatomical landmark calibration procedure is carried out.  For example, ASIS 

landmarks may be displaced if they are marked when the patient is supine and 

they are slightly overweight to when they stand up. 

 

Despite this model being a very popular and common marker set, it does have its 

limitations when measuring the foot.  Measurement of foot kinematics is 

becoming increasingly popular as motion analysis systems become more and 

more accurate. However, an accurate measurement of the movement of the talus 

during walking is impossible using non-invasive techniques since there are no 

external anatomical landmarks are present for marker placement.  As a result, 

there is inadequate information on the function of the rearfoot (the talus and the 

calcaneus) during the stance phase of walking.  Therefore a valid and repeatable 

multisegmental foot model is needed for understanding normal and pathological 

function, planning intervention and evaluating the outcome of treatment 

(Stebbins et al 2005). 

 

2.7. Review of the literature available on past and present foot 

models. 

 

Over the last few years, various authors have presented in vivo studies of the foot 

and ankle complex on healthy adults (Carson et al 2001; Kidder et al 1996; 

Leardini et al 1999; Hunt et al 2001; MacWilliams et al 2003) but quantitive 

comparisons between them are not possible due to the differences in marker 

placement and definitions of fixed anatomical axes (Leardini et al 1999).  There is 

a need for a standardised multi-segmented foot model and measurement protocol 
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applicable to gait analysis.  There are numerous ways of measuring foot 

mechanics such as cadavers, surface markers, bone pins and markers and 

imaging.  Each has its own set of advantages and disadvantages associated with 

them.  One of the key issues to consider when implementing a kinematic foot 

model is the potential for skin artefact errors (Reinschmidt et al 1997).  They 

tried to determine the effect of skin movement artefact on the calculation of 

tibiofemoral motion during running using intracortical Hofmann bone pins with 

reflective markers attached.  They found that the agreement between the skin 

and bone markers was generally poor for abduction/adduction and 

internal/external knee rotation motions.  Conversely, skin mounted markers were 

able to give a good representation of flexion/extension of the knee and was in 

agreement with the results for walking and the skin movement errors were 

consistently higher for running compared to walking (Reinschmidt et al 1997b). 

The designation of anatomical coordinate systems (Leardini et al 2007) and the 

definition of a “neutral” position of the joint of the foot (Leardini et al 2007; Liu et 

al 1997) are also issues to consider when designing a biomechanical model. 

Leardini et al (1999) proposed an in-vivo technique using five rigid segments.  

Each segment was assumed rigid and was identified with an anatomically based 

co-ordinate system.  They used rigid arrays of markers as they claimed this 

embraced the underlying bones better than skin mounted markers.  They were 

placed on the foot and ankle according to specific locations of anatomical 

landmarks using the tip of a pointer which is more accurate and practical than 

direct marker placement especially when they are located in awkward positions 

such as the head of a metatarsal or a pointed tip of malleoli.  However, Carson et 

al (2001) also developed a foot model for healthy adults using three segments 

which was non invasive and very similar to that of Kidder et al (1996).  They used 

skin mounted markers which saved time required for the rigid array of markers 

used by Leardini and workers (1999) in landmark identification.  Carson et al 

(2001) also mentioned skin motion artefact which affects the array of markers in 

a uniform manner and is therefore impossible to filter mathematically. 

When human movement is measured using motion analysis, each marker 

attached on the body surface moves together with the underlying skin, which 
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during movement moves with respect to the underlying bone.  The amount of skin 

deformation depends on the physical characteristics of the subject, the location of 

the marker and the phase of movement being performed (Croce et al 2005).  The 

relative movement between marker and bone represents a soft tissue artefact 

which affects the estimation of the skeletal segment and joint kinematics and is 

regarded as the most critical source of error in motion analysis. 

Benoit et al (2006) conducted an investigation to quantify the error caused by 

skin movement artefact when reporting the kinematics of the tibiofemoral joint 

during movements which incorporate sagittal and non-sagittal plane movements.  

They hypothesised that skin movement error will reduce the ability to accurately 

measure 3D kinematics and that non-sagittal plane movements will be most 

affected by skin movement artefacts.  The study indicated that skin mounted 

reflective markers display significant limitations in predicting 3D kinematics of the 

knee joint.  Holden et al (1997) and Reinschmidt et al (1997) performed studies 

in which steel pins were inserted in the bones of volunteers and the positions of 

skin markers compared with the position of markers on the pins were analysed.  

Both results showed that the amount of movement depended on which parameter 

was actually being measured.  Whittle (2002) agrees with these authors and 

states that marker movement has little effect on sagittal plane angles because it 

causes only a small relative change in the length of fairly long segments. 

A reasonably new development within 3D analysis is the verification of a multi-

segment foot model which differentiates between the forefoot and the rearfoot.  

The model is called the Oxford Foot Model and was defined by Carson et al 

(2001). 
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Figure 2.10 Oxford foot model9 
 

It is based on two main segments, the rearfoot and the forefoot and an additional 

hallux segment and produces adjusted kinematics for the ankle as well as the 

added inter-segment angles. Limited information is available regarding the 

repeatability and error of this model in adults and knowledge of these would 

enhance the ability to interpret both individual differences (pre- and post 

intervention) and group differences (asymptomatic and symptomatic individuals) 

during kinematic investigations (Wright et al 2010).  Stebbins et al (2006) and 

Carson et al (2001) published studies which both comment on the good 

repeatability of the Oxford model in healthy adults however there are very few 

published studies examining the inter-centre repeatability or validity of the model 

(Curtis et al 2009).  Wright et al (2010) found that rearfoot and forefoot motion 

displayed high reliability and low error of adult gait.  They used a slightly modified 

version of the Oxford foot model which improves the repeatability of the model 

according to Stebbins et al (2006).  More research is required to provide valuable 

insight into rearfoot, midfoot and forefoot pathomechanics. 

The last section of this literature review chapter introduces and reviews the 

measurement tool used in chapter 7 which is the Positional Upright MRI Scanner. 

 

2.8. Magnetic Resonance Imaging (MRI) – A literature review 

 

Various authors have conducted research to test the reliability of radiographic 

measurements albeit using plain X-rays or supine MRI’s but there are very few 
                                                                 
9
 Vicon motion systems (2011) 
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studies conducted on the lower leg using the Upright Positional MRI Scanner.  This 

makes it unfeasible for comparison purposes; however there are a few papers 

available which have examined the spine.  Gilbert et al (2008) stated that imaging 

the spine in the upright or weight-bearing position may increase the diagnostic 

accuracy for the medical professional.  This accuracy may be further enhanced by 

placing the patient upright in the position that causes pain. 

Supine MRI findings can often correlate poorly with clinical findings but upright 

MRI in the flexed, extended, rotated and standing positions allows patients to 

reproduce the positions that evoke their symptoms and may uncover MRI findings 

that were not visible with routine supine imaging (Alyas et al 2008). 

Lin et al (2004) found that the radiographic approach is generally considered as 

the clinical gold standard when describing the medial longitudinal arch in the foot 

because it provides consistent reliability and a strong correlation between 

radiographic parameters and injury of the lower limb.  They also state that whilst 

it has good reliability if performed by an experienced technician, it has the 

disadvantages of being time-consuming, costly and most importantly radiation 

exposure. 

Normal reference range values for weight-bearing foot radiologic measures have 

been established by various authors with good agreement (Gentilli et al 1996) 

however the reliability and repeatability of foot radiographs has been investigated 

with varying results (Bryant et al 2000).  Bryant et al (2000) found high ICC’s for 

navicular height (0.92) and CIA (0.87).  These measurements were conducted on 

radiographs and followed a standardised radiographic measurement technique. 

Menz and Munteanu (2005) showed that the test-retest reliability of each of their 

radiographic measurements was excellent with all the ICC values greater than 

(0.98) and the lower 95% CI consistently greater than (0.95).  This level of 

reliability is consistent with previous reports. 

Saltzman et al (1995) showed that a high reliability can be obtained from selected 

measurements when using the same tester. They correlated measurements 

obtained from radiographs taken at 50% of weight-bearing.  The high established 

intrarater reliability values from navicular height (ICC=0.92) arch height 

(ICC=0.91) and calcaneal inclination angle (ICC=0.99) demonstrates that 
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measurements based on clearly defined anatomical landmarks can be reliably 

measured from radiographs. However, this study reported that the measurements 

taken by the same tester within the same day were the most repeatable with a 

measurement error of up to 2 degrees but when using different testers, a 

measurement error in excess of 5 degrees occurred. 

Murley et al (2009), Nawoczenski et al (1998) and Menz & Munteanu (2005) also 

found “gold standard” values for cancaneal inclination angle (CIA), (ICC=0.98, 

0.97 and > 0.98) respectively when measuring the CIA radiographically. 

Lohrer et al (2008) conducted a study measuring talar tilt at the ankle on 33 

bilateral radiographs and found high values (ICC=0.83) for intratester reliability 

and unusually higher results for intertester reliability (ICC=0.95).  These angles 

were measured manually with a goniometer and a ruler and measurements were 

made to the nearest 1 degree. They also measured NH (navicular height) from 

radiographs and clinically and they found clinical measurements of NH very 

strongly associated with the corresponding NH measurements obtained from 

radiographs (r values ranging from 0.72 to 0.76). Williams & McClay (2000) found 

clinically determined navicular height (r = 0.91) to be strongly correlated with 

radiographic navicular height. 

Sanfridsson et al in 1998, tried to test a computed system for measuring 

radiological angles as most musculoskeletal measurements in conventional 

radiography are made with a ruler and a protractor directly onto the film.  They 

looked at measuring medial and lateral joint spaces while testing intra-observer 

variations.  The results were good and the standard deviations (SD’s) were small.  

They concluded that although the use of measuring assistance tools for evaluation 

are time-consuming, they are important for the implementation of computed 

radiography in workstations dedicated to musculoskeletal radiography.    

 

2.9. Conclusion 

 

The main aim of this study is to investigate any association between lower limb 

biomechanics in subjects with anterior knee pain using the Upright Positional MRI 
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Scanner and the Vicon 370 Kinematic Motion Analysis System when barefoot, 

shod and wearing orthoses. In order to facilitate this objective, comprehensive 

background and literature reviews had to be conducted to understand which 

research had already been performed, protocols and methodology of 

measurements, statistical analysis of results and conclusions.  This identified that 

there are very few consistent research papers available which can be compared in 

the field of lower limb biomechanics and foot orthoses.  There appears to be lots 

of controversy between authors on whether or not orthoses actually do affect the 

biomechanics of the foot and leg. This is due to differing methodology, different 

types of orthoses and various measurement tools utilised.  There is also a lot of 

speculation on the kinematics of the rearfoot due to the fact that previous foot 

models only identified the foot as a whole segment and not as having a midfoot, 

rearfoot and a forefoot segment.  This however should change due to the design 

of the Oxford foot model which is constantly being updated in order to improve 

repeatability and remove immediate sources of error. 

Repeatability and sources of error were discussed as these are paramount to any 

source of research. Reliability and validity of measurement is a fundamental part 

of clinical practice, particularly when clinical assessment is based on subjective 

judgements for diagnosis, choice of potential intervention, and a review of 

management (Keenan & Bach 1996). 

It is also paramount that in order to produce reliable and repeatable results, the 

actual clinical protocol for each measurement requires to be well documented and 

known for its reliability and validity by previous authors.  This should generate 

more consistent results which can be comparable to previous studies. 

The two main measurement tools used in this study are the Vicon Kinematic 

Motion Analysis System and the Upright Positional MRI Scanner. These have been 

explained in depth and limitations and restrictions which may occur have been 

duly noted. Examples of these are marker placement and skin movement with the 

kinematic analysis and “ghosting” and the partial volume effect with the 

radiographs. 
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Chapter 3 – Intrarater Reliability of Clinical Assessment 

 

3.1. Introduction 

 

In order for a clinical measurement to have any scientific credibility, a reliable and 

valid clinical measurement technique must be employed. The aim of this chapter 

is to develop a standardised and reliable protocol for a clinical assessment by 

measuring the tester’s reliability (intratester) of performing the measurements 

required.  With regard to clinical assessment, reliability can be defined as the 

amount of agreement between successive measurements of the same joint by the 

same tester or different testers, namely, intratester and intertester reliability 

respectively. This is an important pre-requisite for the protocol so that the same 

clinical assessment can be applied to both the analysis of asymptomatic and 

symptomatic subjects in the main study.   

 

3.2. Methodology of reliability study 

 

This experimental study took place at the Grampian Gait and Motion Analysis 

Centre in Aberdeen.  Full ethical approval from the local research and ethics 

committee was received prior to data collection. 

Subjects in this study were required to meet the following inclusion/exclusion 

criteria prior to data collection.  This was based on those used in other previous 

reliability studies (Bennell et al 2000; Klingman et al 1997).  Inclusion criteria 

included initial screening determined all subjects to be free of pain, 

musculoskeletal and neurological dysfunction of both right and left lower 

extremity.  Exclusion criteria included that there was no intervention of foot 

orthoses, none of the subjects had been treated for musculoskeletal disorders of 

the right or left lower extremity in the past and none of the subjects were 

qualified physiotherapists or podiatrists.  

All volunteers were recruited from the RGU student population and were familiar 

with the purpose of the study and signed a consent form prior to participation.  It 



94 

 

should be noted that all of the subjects were healthy with no apparent injuries 

and, thus, generalisation of the results to a patient population may be restricted.  

However, as the aim of this pilot study was only to test intratester reliability of a 

random sample of clinical measurements before conducting a larger study, it was 

felt that the healthy sample used would be deemed appropriate. 

One tester (the researcher) with experience in measuring joint ROM carried out 

15 goniometric measurements and one tape measurement on 5 healthy 

volunteers ranging from ages 31-45 years. The same tester performed fifteen 

different measurements on each subject in three different measurement sessions.  

The sessions, which took place over a period of one month, were carefully 

standardised according to day, time, and instruction. Lighting, sound and 

temperature were monitored and kept constant.  The same tester performed all 

measurements within one hour on the same day each week on both right and left 

sides of the subjects. 

 

 N 

(no.) 

MIN MAX MEAN STD.DEV 

HEIGHT 

(cm) 

5 158 184.5 172.3 12.00 

WEIGHT 

(kg) 

5 68 100 82.4 14.24 

AGE 5 31 45 36 5.38 

Table 3.1 Characteristics of subjects 

 

3.2.1. Instrumentation 

 

To conduct this study, two quantitative clinical measuring tools were used- the 

universal goniometer and a tape measure.  Visual observation was not used due 

to the lack of reliability (Norkin & White 1985; Watkins et al 1991; Youdas et al 

(1991).  The UG was a standard, double-armed goniometer constructed of clear 
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flexible plastic with a scale of one-degree increments.  The tape measure was a 

100 cm length standard plastic tape measure. In order to reduce the possibility of 

the Rosenthal effect, which is to prevent the tester from being biased and 

influenced by their previous readings, tape covered the scales of the goniometer 

on the side facing the tester and the side of the tape measure facing them was 

also covered.  This allowed an independent recorder to read the reverse side of 

both instruments and record the measurements. As the goniometer only had 

measurements in whole degrees, the measurements were rounded off to the 

nearest degree.  The same principle applied to the tape measure in that the 

measurements for it were rounded off to the nearest millimetre.  Using the 

rounding off effect automatically results in measurement error (Kuzma 1992) but 

in order to recognize these instruments as reliable, the tester must accept a 

possible error margin in their measurement (Hogan & Kidd 2001). 

There have been many discussions reporting the issues of using both legs in the 

analysis of gait.  For example, if 30 individuals are taking part in a study, (n=30), 

but if both right and left feet are being used, (n=60).  This raises a significant 

problem according to Menz (2004).  He states that it has the potential to 

significantly influence the findings and interpretation of many investigations.  

Altman and Bland (1997) also agree that if both right and left feet were counted 

as single independent observations, the researcher is essentially “double-dipping” 

their data which essentially means counting each subject twice.  Menz (2004) 

points out that by doing this the “independence assumption of statistical analysis 

has been violated”.  Altman and Bland (1997) agree in that if the sample size is 

inflated, this may lead to spurious statistical significance. Redmond (2004) agrees 

that although pooling of right and left data cannot be considered best practice, it 

has to be recognised that one of the downsides of maintaining independence of 

limbs is that more data will be reported from smaller underpowered studies with 

the consequence of Type II errors.  This could have the potential to result in 

overly conservative clinical interpretation of results.   

Menz (2004) conducted a study using “dummy data” in order to demonstrate how 

the decision to pool or not pool right and left data can alter results. He developed 

a dataset of 30 subjects which represented rearfoot motion with and without 

orthoses in right and left feet. Statistical tests were used to compare the “without 
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orthoses” and “with orthoses” with right and left individually, the average of right 

and left and right and left combined (n=60).  The results of this worked example 

showed clearly that there are problems in “pooling limbs”.  There was no effect in 

rearfoot motion when analysing right foot only, left foot only and when the two 

were averaged whilst wearing orthoses.  However, when the right and left data 

were combined (n=60), a significant reduction in rearfoot motion was apparent 

(p=0.018, p < 0.05).  He concluded that depending on whether right and left data 

were pooled or not, it could be interpretated that foot orthoses either did 

influence rearfoot motion or did not.  It must be remembered that this was only 

imaginary data but it did provide us with possible evidence of the potential 

problems with analysing two legs rather than one person.   

The only solution around this problem is to select either the right or left side 

randomly or pick the dominant side or collapse the right and left data into a single 

measure by taking the average of the two. There is however, a lot of debate on 

the common practice of deriving data from one leg only (Messier et al 1988; 

Woodland & Francis 1992; Horton & Hall (1989).  Livingstone & Mandigo (1999) 

report that the measuring and reporting of one value only is problematic for it 

implies that measurements are bilaterally symmetric.  Hahn & Foldspang (1997) 

conducted a study of 339 athletes and found right Q-angles to be on average 3 

degrees greater in magnitude than and significantly different (p<0.001) from 

those in the left lower limb.    

For the purposes of the main research, data will not be pooled and each subject 

will be considered a “unit” of investigation. In doing so, it was accepted that by 

this approach may result in missing something imperative either by discarding 

important data or obscuring potentially significant information by taking an 

average of my measurements.  However, it was felt that if one subject is the 

“unit” of investigation, then it should be the “unit” of analysis (Altman and Bland 

1997). However, in this chapter, when assessing intratester reliability and validity 

of the clinical assessment, it was decided to pool the data from both feet and legs 

(n=5 subjects which leads to 10 legs, therefore n=10).  The statistical 

justification we have for this reasoning is that we were comparing each variable 

separately over a period of three occasions.  Comparisons were not being sought 
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between subjects or even between right and left limbs therefore using n=10 on 

this occasion will add strength to the study. 

From the table shown below, the ICC results for the average of right and left 

measurements are much more favourable compared to pairing the two together. 

This is an example using my data of how this issue has the potential to 

significantly interfere with results and findings. 

 

MEASUREMENT ICC 

N=10 

 

ICC 

N=5 

ANKLE D/F WITH KNEE EXTENDED 0.72 0.85 

ANKLE D/F WITH KNEE FLEXED 0.84 0.88 

ANKLE P/L WITH KNEE EXTENDED 0.37 0.44 

ANKLE P/F WITH KNEE FLEXED 0.82 0.91 

1ST MTPJ DORSIFLEXION 0.91 0.98 

KNEE FLEXION 0.91 0.93 

KNEE EXTENSION 0.72 0.79 

STJN 0.90 0.90 

RCSP 0.88 0.97 

LEG LENGTH 0.89 0.91 

ANKLE WIDTH 0.88 0.90 

KNEE WIDTH 0.85 0.90 

Q-ANGLE SUPINE 0.70 0.70 

Q-ANGLE WEIGHTBEARING 0.70 0.89 

REARFOOT ANGLE 0.75 0.94 

Table 3.2 Two feet or one person10 

                                                                 
10

 Redmond 2004 
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3.2.2. Procedure 

 

Due to the nature of foot abnormalities and the variation within “the normal foot”, 

it is necessary to develop assessment methods that can be consistently applied to 

all feet and are meaningful and valid biomechanically and clinically.  The former 

requires a measurement and marker placement protocol that can be undertaken 

on almost all feet and the latter is complicated as axes for inter-segmental motion 

do not conform to the standard anatomical planes (Inman 1976). 

An assessment protocol was devised based on work by Norkin & White (1985).  

This protocol was used to refine the intratester reliability study prior to data 

collection.  It was postulated that if good to high reliability was proven then the 

measurement protocol would be used for the main data collection.  During each 

session, subjects were asked to wear shorts therefore their lower extremities 

were exposed from the level of mid-thigh to their feet.  The fifteen measurements 

are described in detail below. 

 

Measurements to be included in examination 

Refer to chapter 2 section 2.5 - Clinical assessment for a full and concise 

explanation of measurements involved. 

 

1. The Q-angle (supine and weight bearing) 

Various authors have stated that a lack of standardised measurement protocol is 

partially to blame for the doubtfulness of the Q-angles diagnostic value (Woodall 

& Welsh 1990; Woodland & Francis 1992 and Ando et al 1993).  However, this 

study will follow a strict measuring protocol with each subject being measured in 

the same foot and knee position in supine and lying positions.  This will establish 

the reliability required in order to be included in the clinical examination.  The Q-

angle is measured by using a goniometer with the subject in a supine position and 

a line is drawn from the ASIS to the middle of the patella.  Another line is drawn 

from the middle of the patella to the tibial tuberosity.  The Q-angle is the angle 

between the two lines.  It should be measured and compared bilaterally.  The 
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same test should be repeated with the subject in a standing position.  In the 

standing position, the subject is asked to find a comfortable resting stance 

position with their body weight distributed on both feet.  It should be emphasised 

that each subject should stand in a relaxed position and should try to  avoid 

contracture of the quadriceps, which has been proven to decrease the standing Q-

angle (Guerra et al 1994; Lathinghouse & Trimble 2000).  The Q-angle is marked 

in the same manner as above.  Both positions should then be measured bilaterally 

and compared with each other. 

 

 

Figure 3.1 Q-angle performed 
supine11 

 

 

Figure 3.2 Q-angle performed 
standing12 

 

2. Ankle dorsiflexion/plantarflexion (knee flexed and extended) 

As mentioned in section 2.5.2, clinical measurement of ankle ROM may be reliable 

if a standardised protocol is followed.  The same tester was used each time, the 

occasions were conducted in a short space of time and the same goniometer was 

used on each occasion. 

The subject was positioned prone with their feet hanging over the end of the 

plinth.  The researcher holds the STJ in neutral position as previously described.  

The position of the STJ and its effect on ankle dorsiflexion is very important.  This 

is because maximum ankle dorsiflexion occurs when the STJ is in its neutral 

position therefore therapists must measure ankle dorsiflexion with the STJ in its 

                                                                 
11

 Smith et al 2008 
12

 Smith et al 2008 
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neutral position (Root et al 1977). If this does not occur and the STJ is in a 

pronated position, dorsiflexion can occur around the oblique axis of the MTJ that 

may be confusing and prevent a false measurement of ankle joint dorsiflexion.  

The knee is extended and the axis of the UG was positioned over the lateral 

aspect of the centre of the right lateral malleolus.  The stationary arm is 

positioned parallel to the lateral border of the fibula, and the moveable arm was 

parallel with the lateral border of the fifth metatarsal.  The subject then moved 

the foot into dorsiflexion as far as possible and the recorder measured the angle.  

The same test was also done with the knee flexed.  If dorsiflexion was greater 

with the knee flexed at 90 degrees than that with the knee extended, 

gastrocnemious muscle is likely to be contracted and if there was no change with 

this manoeuvre, there was likely to be a contracture of soleus. This was repeated 

with the foot moved into plantarflexion.  The testing position is the same for ankle 

dorsiflexion (Rome & Cowieson 1996).   The tester gently pushed downward on 

the dorsum of the subject’s foot to produce plantarflexion.  The therapist exerted 

no force on the subject’s toes and was careful to avoid pushing the ankle into 

inversion or eversion.  The moveable arm of the goniometer was then aligned and 

the angle recorded. The same test was also done with the knee flexed.  It must 

be noted that for the purposes of this study, ankle joint range of motion was 

measured in a non-weight- bearing position. 

 

Figure 3.3 Measurement of the ankle dorsiflexion with knee extended13 
 

                                                                 
13

 Donatelli 1996 
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Figure 3.4 Measurement of the ankle dorsiflexion with knee flexed14 

 

3. Limb length discrepancy 

As discussed on section 2.5.3, it is generally agreed that the tape meansure is the 

most common measurement tool used clinically to measure LLD despite its low 

validity and reliability (Freiberg et al 1988).  However, due to cost implications 

and the adverse effects of radiation it still remains the tool of choice.  In order to 

obtain the most reliable results possible using the tape measure, measurements 

were conducted twice and the mean calculated.  Beattie et al (1990) stated that 

this was the best way to obtain valid and reliable results. 

The tester started the measurement from a proximal position at the level of the 

hips and the subject was in a supine position.  The tester positioned the subject’s 

lower limbs in neutral hip rotation as determined by observation then palpated 

the subject’s inferior border of the ASIS which represented a relatively reliable 

bony landmark of the pelvis.  One end of a measuring tape was placed on the 

ASIS and stretched to the prominence of the medial malleolus on the same side.  

A measurement was then recorded and compared with the measurement on the 

contra-lateral side.  As with all measurements, it was repeated and the mean 

calculated.  LLD was calculated by subtracting the right leg-length measurement 

from the left leg-length measurement (Beattie et al 1990; Messier et al 1991). 
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4. Subtalar Joint Neutral (STJN) 

Elveru et al (1988) proposed a method which appears to have construct validity, 

has shown to have moderately good intratester reliability and appears to be 

clinically useful therefore this was the method employed for this measurement.  

The subject is in a prone or seated position with the foot and ankle to be 

measured hanging over the edge of the couch.  The therapist palpates the medial 

and lateral borders of the lower one third of the leg.  With a straight edge, the 

therapist draws a narrow vertical line on the posterior lower leg.  The line should 

be midway between the medial and lateral borders.  The therapist then locates 

the medial and lateral heads of the talus on the dorsum of the foot.  In order to 

achieve this correctly, the following was accepted. The medial aspect of the talar 

head is slightly inferior and anterior to the medial malleolus and proximal to the 

navicular and the lateral aspect of the head of the talus is anterior to the lateral 

malleolus towards the midline of the foot.  To set the foot into STJN position, the 

therapist places their thumb of the medial hand under the medial aspect of the 

medial head of the talus and their index finger over the lateral aspect of the talar 

head.  The thumb of the therapists other hand is placed under the plantar surface 

of the fourth and fifth metatarsal heads.  The foot is moved into pronation and 

supination and whilst the foot is pronating, the talar head can be felt protruding 

on the medial side of the talonavicular joint and whilst the foot is supinating, the 

talar head can be felt protruding on the lateral side of the talonavicular joint.  

Neutral position was achieved when the talar head cannot be palpated on either 

side (Merriman & Tollafield 1995 and Elveru et al 1988).  In this position, the STJ 

is maximally congruent (Bailey et al 1984).  The STJN position was maintained 

and a UG was used to measure the angle formed by the longitudinal midline of 

the posterior calcaneus and the midline of the lower leg. 
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Figure 3.5 Lines showing bisection of posterior heel and lower one third of 
posterior leg 

 

5. Resting Calcaneal Stance Position (RCSP) 

This measurement is clinically important as discussed in section 2.5.6 (Cornwall & 

McPoil 2004).  The RCPS was measured by using the same line drawn when 

measuring the STJN and the angle this line makes with the ground was measured.  

This method has been shown to have good intratester reliability and good 

contruct validity (Elveru et al 1988). With the patient in relaxed standing, the 

goniometer arms were aligned with the bisection line.  The amount of calcaneal 

eversion or inversion was measured.  Values of 0-4°eversion indicated within 

normal limits, 4-7° eversion indicated the presence of moderate abnormal 

pronation and eversion greater than 8° indicated marked abnormal pronation 

(Merriman & Turner 2002). 

 

6. Knee Flexion and Extension 

When deciding upon a protocol for knee joint measurement, all favourable and 

poor reliability results in previous studies were taken into account.  As mentioned 

on p49 of this study, Brosseau et al (2001) found good reliability when measuring 
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knee flexion and extension when using a UG.  They recommended using the same 

tester to take the measurements and the same UG.  Many previous authors 

concur with this theory (Boone et al 1978; Grohmann 1983; Low 1976 and 

Rothstein et al 1983).  Therefore it was deemed very important that a 

standardised procedure was adhered to using the same tester and the same UG 

throughout all the measurements. The knee joint measurements were obtained 

according to the procedure cited by Norkin & White (1985). It was acknowledged 

that this procedure was not entirely reliable but known sources or error were tried 

to be reduced thereby increasing the chances of a higher relibability result.  

Knee flexion was measured with the subject positioned prone with their ankles 

and feet hanging off the plinth.  This position is crucial to the movement due to 

the rectus femoris muscle. Measurements were taken in the prone and sitting 

position. Subjects were asked to actively flex and extend both knees five times 

before measurement as a warm-up exercise. A stationary arm of the goniometer 

was placed along the line from the greater trochanter to the knee joint.  The 

moveable arm was placed along the lateral aspect of the fibula (fibular head to 

lateral malleolus).  The axis of the goniometer was located at the intersection of 

the thigh and shank at the knee joint. They were asked to flex the knee in a 

posterior direction to full flexion position.  The starting and end positions and 

range of knee flexion were documented.  Knee extension was measured with the 

subject sitting at the end of the plinth with their back straight.  The subject 

started with the knee flexed at 90 degrees and was asked to extend their knee to 

full extension without altering the position of the pelvis of the lumbar spine.  

Again, the starting and end position and the range of knee extension were 

documented.    

 

7. Rearfoot angle-varus/valgus 

Literature on the rearfoot angle and its relationship to injury is sparse.  Normal 

values vary as do opinions on the usefulness of the measurement.  The 

justification of including it in the study was to try to find out if there was any 

relationship between rearfoot angle and any joints proximal to it.  It was also 
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included so the angle measured clinically could be compared against the angle 

taken on radiographs which were conducted later in the study. 

 Rearfoot angle was measured in relaxed single-limb stance as the angle between 

a line that bisected the calcaneus and a line which bisected the lower third of the 

leg. The subject was in a weight- bearing position.  The measurement is made 

under the assumption that in equal, relaxed standing, the subtalar joint should be 

at or near its neutral position and indicates to the researcher what abnormal 

compensating may be occurring (Donatelli 1996).  A goniometer was placed with 

its central point at the level of the STJ.  One arm of the tractograph was placed on 

the superior line of the leg and the other arm was placed at the heel bisection line 

and a measurement was read. The measurement was recorded as degrees of 

valgus or varus. 

 

8. 1st Metatarsalphalangeal joint (MTPJ) dorsiflexion  

The method described below was found to be reliable and valid for use in clinical 

practice (ICC= 0.87 left foot and ICC=0.97 right foot) using a reliability coefficient 

by Hogan and Kidd (2001). The midpoint of the medial aspect of the 1s t MTP joint 

was identified by palpation of the joint when the subject was in their normal angle 

and base of gait.  Mcllroy and Maki (1997) state that by adopting a preferred 

stance position, this will meet the need to standardise and the need to simulate 

‘natural’ stance positions during measurement. This technique is recommended by 

Tranberg & Karlsson (1998) as this reduces the error of skin displacement from a 

mark made whilst the subject is in a supine or sitting position then used as a 

reference when they are weight- bearing in stance.  Subjects were asked to 

dorsiflex their hallux to the end range of motion before any examination several 

times in order to reduce measurement error caused by inflexibility of the joint. 

The centre of the hinge of the goniometer was aligned with the mark of the 

medial aspect of the MTP joint, and the proximal arm of the instrument was 

aligned with the floor. The subject was then asked to dorsiflex their toe to the end 

ROM.  The distal arm of the goniometer was then placed on the dorsal surface of 

the metatarsal and proximal phalanx and a measurement was read.  The same 

procedure was repeated on the other foot. 
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Figure 3.6 Dorsiflexion of the 1s t MTPJ15 

 

9. Knee width 

This was conducted with the subject lying supine with both knees flexed. Knee 

width was determined from measuring the distance between the lateral and 

medial femoral condyles in a supine position using a knee alignment device (KAD) 

of both knees.  

 

10. Ankle Width 

This was conducted with the subject lying supine with ankles relaxed and hanging 

off the edge of the plinth. Ankle width was determined from measuring the 

transmalleolar distance using a KAD of both ankles.  

 

11. Navicular height/drop 

Navicular height and drop was measured using a similar method used by Menz et 

al (1998) and Evans et al (2003).  The tester palpated the medial midfoot in order 

to locate the navicular tuberosity and this area was marked with a black pen.  The 

fully weight-bearing subject was then placed in the STJN position and asked to 

maintain this position.  The height of the black mark to the supporting surface 
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was measured with a ruler and recorded in millimetres (mm).  Subjects were then 

asked to relax the foot and the height of the mark to the supporting surface was 

recorded again.    Navicular drop was calculated by subtracting the two 

measurements from each other and measurements were performed bilaterally. 

To ensure the best reliability, the same tester carried out the measurements each 

time and that said tester had experience in carrying out this measurement 

procedure. This method allowed for comparison of results with the results from 

the radiographs conducted later in the study. Radiographs are found to be the 

gold standard method of measuring LLD (Nichols & Bailey1955). 

 

3.2.3. Statistical analysis 

 

A one-way repeated measures ANOVA was conducted to compare measurement 

scores over three occasions on the same group of subjects.  The reproducibility of 

all the measurements were considered in this pilot study using the coefficient of 

variation (CV) expressed as a percentage.  This statistic is used to measure 

overall repeatability.  The standard error of measurement (SEM) was used to 

determine an estimate of the error associated with all repeated measurements 

over three occasions.  Intraclass correlation coefficients (ICC’s) were computed to 

determine the intratester reliability of the researcher.  Descriptive statistics were 

also tabulated. 

The data was screened for outliers using box plots in order to determine whether 

assumptions for repeated-measures ANOVA were met. A probability level of 

significance of (p<0.05) was selected for all statistical tests. 

 

3.3. Results 

 

The intratester variation as a result of the biological variation and the variation of 

the tester shows for all 15 measurements a mean coefficient of variation of 

(4.3%).  Shown below are sample graphs of mean values of selected variables. 
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Figure 3.7 Leg length measurements 

 

 

Figure 3.8 1st MTPJ dorsiflexion 
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Figure 3.9 STJN measurement 
 

Leg length, STJN and 1s t MTP joint measurements all showed very good reliability 

over the three occasions and from the table below, the CV value is higher for the 

STJN variable than the leg length variable. 
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Table 3.3 includes the ICC results, SEM results and CV of all measurements 

repeated to establish intratester reliability. 

 

MEASUREMENT ICC SEM 

(degrees) 

CV (%) 

ANKLE D/F WITH KNEE EXTENDED 0.72 0.92 12.06 

ANKLE D/F WITH KNEE FLEXED 0.84 1.26 13.47 

ANKLE P/F WITH KNEE EXTENDED 0.36 1.91 6.75 

ANKLE P/F WITH KNEE FLEXED 0.81 1.35 4.64 

1ST MTPJ DORSIFLEXION 0.91 2.07 9.27 

KNEE FLEXION 0.91 1.85 3.05 

KNEE EXTENSION 0.72 1.16 1.14 

STJN 0.90 0.43 26.26 

RCSP 0.88 0.46 10.64 

LEG LENGTH 0.89 0.98 1.29 

ANKLE WIDTH 0.88 0.33 2.2 

KNEE WIDTH 0.85 0.17 2.63 

Q-ANGLE SUPINE 0.70 0.70 9.3 

Q-ANGLE WEIGHTBEARING 0.70 0.68 8.41 

REARFOOT ANGLE 0.75 0.63 14.01 

Table 3.3 Intraclass correlation coefficients (ICC), Standard error of 
measurement (SEM) and coefficient of variation (CV) for 15 measurements over 

three occasions (n=10) 
 

ICC values were found to be significant (p<0.05) 
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3.4. Discussion 

 

The results obtained with the goniometer compare favourably to data in other 

publications.  Brosseau et al (2001) found values of (ICC =0.98) in knee flexion 

and (ICC = 0.97) in extension.  Clapper & Wolf (1988) found ICC values of (0.95) 

for hip flexion and ankle plantarflexion, (0.92) for ankle dorsiflexion and (0.95) 

for knee flexion.  A list of other previous literature conducted is shown in the table 

below which is consistent with this present study’s results. 

Table 3.4 displays examples of previous authors ICC results so it can be shown 

that the results from the study are consistent with work conducted previously on 

a normal asymptomatic group of subjects. 
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MEASUREMENT ICC of study INVESTIGATOR PREVIOUS ICC 

KNEE FLEXION 0.91 Watkins et al (2001) 

Rothstein et al (1983) 

Clapper et al (1988) 

0.99 

0.99 

0.95 

KNEE EXTENSION 0.72 Watkins et al (2001) 

Rothstein et al (1983) 

Clapper et al (1988) 

0.98 

0.91 

0.85 

LEG LENGTH 0.89 Beattie et al (1990) 0.80 

REARFOOT ANGLE 0.75 Elveru et al (1988) 

Powers et al (1995) 

0.86 

0.97 

ANKLE 

DORSIFLEXION –knee 

extended 

knee flexed 

 

0.72 

0.84 

Clapper et al (1988) paper 

does not disclose method of 

measurement 

Weaver et al (2001) 

0.92 

 

 

0.98 

ANKLE 

PLANTARFLEXION 

Knee extended 

Knee flexed 

 

 

0.37 

0.82 

Clapper et al (1988) paper 

does not disclose method of 

measurement 0.96 

1ST MTPJ 

DORSIFLEXION 

0.91 Hogan & Kidd (2001) 0.87 left 

0.97 right 

STJN 0.90 Pierrynowski et al (1996) 0.54 foot care specialist 

and 0.90 student foot 

care specialist 

Q-ANGLE 0.70 Caylor et al (1993) 

Greene et al (2001) 

0.84-0.90 

0.14-0.37 

Table 3.4 Previous literature showing ICC values 
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The only low ICC value found was for ankle plantarflexion with knee extended.  All 

of the other measurements proved good to excellent values. No statistical tests 

exist to compare the differences between ICC’s, so visual observations of the data 

were used to make this determination.  Intraclass correlation coefficients for all 

measurements may be considered good (0.72 or above) with the exception of 

ankle plantarflexion with the knee extended (ICC=0.37). Youdas (1993) also 

found lower intratester values for ankle plantarflexion than dorsiflexion 

(ICC=0.64) was the lowest value. The result of (ICC=0.37) in the present study 

does not correlate well with the study conducted by Clapper et al (1988) who 

revealed an ICC of (0.96).  However, the coefficient of variation for ankle 

plantarflexion was (6.75%) which is very acceptable variation.  The relatively 

small interindividual variation explains low reliability coefficients thus 

measurements with a low CV may be valid but not always reliable measurements. 

The opposite can also occur and Bovens et al (1990) state that it is common to 

find a good ICC value where the standard deviations and the CV’s are high.  They 

found fairly good reliability coefficients for dorsiflexion of the ankle (0.63-0.75) 

but high CV’s (50.8-10.5%). 

Quite a lot of current literature relies on Intraclass correlation coefficients because 

they are simple to calculate, easy to understand and occur frequently in literature 

containing reliability of joint range of motion.  However, Weaver et al (2001) 

states that they are non-intuitive and do not directly translate into clinically 

meaningful estimates of reliability.  Weaver et al (2001) and Vinicombe et al 

(2001) both present ICC’s to make their results more comparable to previous 

literature.   

The CV of STJN range is large (0%-100%), not as a result of the standard 

deviation but because the range of motion is small.  Bovens et al (1990) agree 

that intratester variation strongly depends on the size of the measured angle. 

The ANOVA in this pilot study revealed no statistical significant intratester 

variance (F (27, 2), 20.54, p=0.37).  This finding supports claims in the literature 

that an individual tester is capable of making accurate repeated measurements in 

order to provide reliable information of joint range of motion and function (Low 

1976; Boone et al 1978; Clapper & Wolf 1988). 
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The consistency of the intratester measurements is good.  It must be 

remembered that there will unavoidably be some small changes in the voluntary 

measurements such as ankle joint ROM, knee joint ROM and 1s t MTP joint 

dorsiflexion from day to day as it is improbable that the subject could achieve 

exactly the same angle on each of the three occasions.  Some part of the 

variations in the measured angles would be accounted for by in these changes. 

 

3.5. Conclusion 

 

This small study demonstrated that a relatively high degree of intratester 

reliability can be expected when using the standardised protocol as described 

above.  This fulfils the objective of the analyses of intratester reliability of a 

detailed clinical assessment and sets a precedent for the reliability of any clinical 

measurements conducted in the following chapters. 
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3. Chapter 4 – Vicon 370 Kinematic Motion Analysis System 

 

4.1. Introduction 

 

Three-dimensional (3D) motion analysis has become a widely used tool for both 

research and clinical assessments. However, for motion analysis to be valuable, 

reliable data is essential (Ferber et al 2002).  In order to produce reliable and 

repeatable results, there is a need to minimise the problems associated with the 

re-application of markers on different test sessions.  This is why it was essential 

to measure the tester’s performance in marker application.  This ensures that the 

confidence with which any kinematic 3D results can be used is established 

(Keenan & Bach 1996). 

The main objective of this chapter was to conduct a small pilot study in order to 

determine the test-re-test and intratester reliability of marker placement using 

Vicon 370 Kinematic Motion Analysis System and the degree of normal variation 

during the walking cycle.   

 

4.2. Methodology 

 

Gait analysis was performed using the Vicon 370 Kinematic Motion Analysis 

System at The Robert Gordon University with six video based cameras (Motion 

Analysis Corporation) and a floor-mounted force plate (Kistler Instruments, 

Switzerland). This system has been shown to be one of the most accurate optical 

measurement systems and is often considered the Gold standard in dynamic 

motion analysis by many other researchers (Ehara et al 1997; Kadaba et al 1987; 

Deschamps et al 2011). See section 2.6 on Review of Vicon 370 Kinematic Motion 

Analysis System and 2.6.2 on Reliability and Validity of Vicon 370 Kinematic 

Motion Analysis System. 
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Figure 4.1 Gait laboratory, Robert Gordon University 
 

 

The researcher who had previous experience in marker placement using the Vicon 

370 Kinematic Gait Analysis System carried out reliability analysis on two subjects 

(not included in the main study).  This was conducted to measure the 

researcher’s ability to reliably place the markers on the various landmarks on the 

body.  This was imperative to gain accurate and reliable results for which we can 

report confidently.  The two subjects, who volunteered, were chosen at random. 

(Subject 1, female, age 45, weight 65kg, height 155cm; subject 2, male age 28, 

weight 85kg, height 185cm).  Both volunteers were free from pain, 

musculoskeletal and neurological dysfunction of both right and left lower 

extremities and were familiar with the purpose of the study and signed a consent 

form prior to starting any sessions. 

The researcher placed twenty-six small light reflective markers on various 

anatomical landmarks three times over a period of three weekly occasions.  This 

was conducted at the same time of day within one hour and attempts were made 

to keep lighting, sound and temperature constant. 
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Figure 4.2 Location of markers (Sacrum and posterior heel markers are omitted 
from the picture) 

 

 

Once all the markers were applied to each subject, calibration procedures were 

carried out before any subject data was collected to provide a baseline reference 

for the 3D coordinate system and to find the best camera orientation (Kejonen & 

Kauranen 2002).  This was carried out using a calibration L- frame initially over 

the data collection space.  The frame contained four retro-reflective markers and 

was placed in a predetermined position on the motion analysis force platforms.  

Following this, a dynamic calibration was conducted using a 500mm DYNACAL 

wand which had two reflective markers on it and involved moving it around the 

data capture area for approximately twenty seconds. 

Calibration may be a main source of error which may reduce the validity of the 

movements being analysed.  The level of kinematic data analysis system 

calibration can affect the accuracy of the marker placement if it is not configured 

correctly.  The calibration residual scores reflect the cameras ability to record 

three-dimensional coordinates.  A calibration residual score above two can 

produce inaccurate data coordinates. A reference static trial was then collected of 

each subject such that the long axis of the foot was aligned in the sagittal plane 
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with the knees in full extension and both arms out to the side. This was done in 

order to define the neutral position of the joints. 

The calibrated measurement field was approximately 5 metres in length by 2 

metres in width and was located on top of the force platform. 

Each subject was asked to walk barefoot at a natural self-selected speed and was 

given a few practice trials to determine normal walking pace in order to maintain 

a consistent average velocity. Subjects were instructed not to target the force 

plates with their feet as forced kinematic data may result.  It was also important 

for each subject to be familiar and confident with this process as not to alter their 

gait pattern in any way in order to strike the force plates (Heiderscheidt 2002).  A 

trial was deemed acceptable if both the entire right and left foot of each subject 

contacted the force platform. 

 

 

Figure 4.3 Subject walking over force plates 
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There has been much debate as to the number of trials a subject should perform 

to reduce the variability that inevitably exists between trials (Diss 2001).   Bates 

et al (1983) stated that a minimum of eight trials was required to establish 

normal patterns under experimental conditions.  However, Grainger et al (1983) 

and Hughes et al (1991) all disagree and state that at least three gait cycles are 

all that should be required in order to obtain reliable measurements. Based on 

work conducted by Diss (2001) and Winter (1984), who state that ten trials are 

acceptable to obtain reliable results for kinetic data and five trials for kinematic 

data.  They found that subjects demonstrated low variability for kinematic data 

(CV=7%-20%) but high variability for kinetic data (CV=67%-72%) especially 

moment force patterns at the knee and hip.  Diss (2001) reported that in a study 

of five normals, kinetic data had a reliability of (ICC = 0.93) when the mean of 

ten trials were used.  This showed that if a subject from the same population 

performed ten trials, an accurate representation of their kinetics can be gained.  

They also report that in some cases certain variables and subjects will show 

inconsistency between trials even when tested under the same experimental 

conditions despite the number of trials recorded.  Devita et al (1988) stated that 

researchers need to recognise that variability under test conditions could result 

from “normal performance variability”.  Therefore conclusions taken from studies 

with a limited number of trials need to be treated with caution.  Winter (1984) 

suggested that a minimum of three gait trials should be taken to overcome the 

effects of cycle-to-cycle variability.  

Averages of five trials were conducted for each subject for kinematic data. The 

kinematic data recorded included the pelvis, hip, knee and ankle angles in the 

transverse, sagittal and frontal planes.  Temporal spatial data was also recorded. 

Kinetic data was not recorded. 

Each trial was normalised to 100% (heel strike-heel strike) of the gait cycle to 

allow for comparison of subjects. Videotaped trials were made simultaneously 

from the frontal and sagittal planes. 

Skin movement was not quantified in this pilot study.  However, any errors due to 

skin movement would presumably be equally visible in all subjects and the results 
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would not introduce any bias.  The results, however, must be interpreted with this 

in mind. 

 

4.3. Marker placement protocol 

 

Palpation was used in this study and was done directly on to the skin over the 

particular landmark and not over clothes.  The skin over the bony landmark was 

marked using a black felt pen. If the skin above the bony landmark is liable to 

displacement, marking should be carried out with these bones in the relative 

position they assume when the anatomical landmark calibration procedure is 

carried out.  For example, ASIS landmarks may be displaced if they are marked 

when the patient is supine and they are slightly overweight to when they stand 

up. 

Intratester reliability of marker placement is very important to establish especially 

when reliability is in part dependent on placement of markers by the operator. 

The following describes in detail where the standard Helen Hayes marker set 

(Kadaba et al 1987) should be placed on the subject. The positioning is identical 

for the right side and the left side (see point 2.6.3. on full explanation of the 

Helen Hayes Marker Set). 
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Figure 4.4 Helen Hayes (Davis) Marker Placement Protocol16 
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 Lifemodeler 2010 
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The following anatomical landmarks were reconstructed. 

4.3.1. Pelvis 

 

This is defined by three markers 

LASI 

(14) 

Left ASIS Placed directly over the left anterior superior 

iliac spine 

RASI 

(7) 

Right 

ASIS 

Placed directly over the right anterior superior 

iliac spine 

 

Standing in front of the subject, the researcher’s hands are placed above the 

subjects hips.  The thumbs are anchored upon the anterior portion of the iliac 

crest and then follow the downward curve of the iliac crest anteriorly until the 

anterior superior spines are located.  The spines are subcutaneous and relatively 

easy to palpate however they can be difficult to find in obese subjects. 

 

SACR 

(15) 

Sacral wand 

marker 

Placed on skin mid-way between the 

posterior superior iliac spines (PSIS) 

 

The SACR was used as an alternative to the LPSI (left posterior superior iliac 

spine) and the RPSI (right posterior iliac spine) markers.  

 

4.3.2. Leg Markers  

 

These are defined by two markers, one placed on the thigh and the other over the 

knee joint.  There is a third ‘virtual ‘marker which is the calculated hip joint 

centre.  The three sets of coordinates generate a plane which is perpendicular to 

the plane of hip flexion/extension. 

LKNE 

(12) 

Left knee Placed on the lateral epicondyle of the left 

knee 

RKNE 

(5) 

Right 

knee 

Placed on the lateral epicondyle of the right 

knee 
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In order to locate the “precise” point for the knee marker placement, the subject 

was asked to passively flex and extend their knee slightly.  This was done to 

identify where the knee joint axis passes through the lateral aspect of the knee 

and to find the lateral skin surface that comes closest to remaining fixed in the 

thigh.  This area was also the point about which the lower leg appears to rotate.  

The area was marked with a pen and was approximately 1.5cm above the knee 

joint line, mid-way between the front and the back of the joint.  The markers 

were attached at these points. 

 

LTHI 

(13) 

Left thigh Placed over the lower lateral 1/3 surface of 

the left thigh, just below the swing of the hand 

RTHI 

(6) 

Right 

thigh 

Placed over the lower lateral 1/3 surface of 

the right thigh, just below the swing of the 

hand 

 

The anterio-posterior thigh markers are used to calculate the knee flexion axis 

location and orientation.  It is critical that these markers are aligned correctly. 

The thigh markers contain a 5cm broad base plate as their placement is over soft 

tissue but it is important to keep the markers off the muscle belly of the thigh.  

The markers also have a “wand” and this was adjusted so that it was aligned in 

the plane of the knee and hip joint centers.     

 

LANK(10) Left 

ankle  

Placed on the left lateral malleolus along an 

imaginary line which passes through the 

transmalleolar axis  

RANK (3) Right 

ankle 

Placed on the right lateral malleolus along an 

imaginary line which passes through the 

transmalleolar axis 

 

The lateral ankle markers were placed over the lateral malleolus along the 

dorsiflexion/plantarflexion axis of the ankle.   
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LTIB 

(11) 

Left tibial wand 

marker 

Placed over the lower 1/3 of the left 

tibia to determine the alignment of 

the ankle flexion axis 

RTIB 

(4) 

Right tibial wand 

marker 

Placed over the lower 1/3 of the right 

tibia to determine the alignment of 

the ankle flexion axis 

 

The tibial markers are very similar to the thigh markers and were placed on the 

plane which contained the knee and ankle joint centers and the ankle dorsiflexion 

and plantarflexion axis i.e. the lateral knee marker and the lateral ankle markers. 

 

4.3.3. Foot Markers 

 

LTOE 

(8) 

Left toe Placed on the left dorsum of the foot on the 2nd 

ray 

RTOE 

(1) 

Right 

toe 

Placed on the right dorsum of the foot on the 

2nd ray 

LHEE 

(9) 

Left 

heel 

Placed on the left posterior calcaneus 

RHEE 

(2) 

Right 

heel 

Placed on the right posterior calcaneus 

 

The foot markers were placed on the dorsum of the foot on the 2nd ray at the 

metatarsal heads and on the posterior calcaneus such that its height was equal to 

that of the marker on the dorsum of the foot and they were parallel to the sole of 

the foot in reference to the floor.  This was to establish the long axis of the foot 

(Rogers 1988).  Subjects were asked to flex their toes in order to facilitate 

identification. 

Since the motion of the talus cannot be detected in vivo directly with a surface 

marker set, the markers on the posterior calcaneus is a representation of the 
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talus.  This is a valid approach for the normal ankle joint as calcaneal motion can 

be attributed primarily to subtalar rotation (Simon et al 2006). 

 

4.4. Foot model 

 

4.4.1. Navicular height 

 

Little is known regarding the effects of orthotics on the mid-foot due to the 

difficulty in measuring these mechanics with surface markers (Stackhouse et al 

2004).  With the surface marker on the navicular bone, this provided extra 

information on mid-foot mechanics. To date, Simon et al (2006) is the only study 

conducted with a skin based navicular marker.  There are however limitations of 

using a navicular marker according to them.  The tibialis anterior tendon may 

affect the correct placement of it and may have to be attached in a more medial 

or lateral position.  Regardless of this possible anatomical variation, the navicular 

marker provides valuable information needed for mid-foot kinematics. 

 

 

Figure 4.5 Subject’s foot with extra navicular marker 
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LNAV  Left 

navicular 

Positioned on the most prominent aspect 

of the left navicular tuberosity. 

RNAV    Right 

navicular 

Positioned on the most prominent aspect 

of the right navicular tuberosity. 

4.4.2. Rearfoot angle 

 

An estimation of the motion of the calcaneus with respect to the tibia in the 

frontal plane is often used to produce two-dimensional values for inversion and 

eversion (Rodgers & LeVeau 1982; Bates et al 1978). Many studies investigating 

foot function during gait have approximated foot pronation and supination using 

calcaneal eversion and inversion (Cavanagh 1990). Pronation was defined as the 

eversion angle between the bisection of the distal 1/3 of the lower leg and the 

bisection of the calcaneus.  Supination was defined as the inversion angle 

between the bisection of the distal 1/3 of the lower leg and the bisection of the 

calcaneus. 

When using the Helen Hayes marker set, it was discovered that some of the 

variables of interest could not be measured within this marker set.  Inversion and 

eversion values (pronation and supination) were required to measure the amount 

of pronation with and without shoes and orthotics.  Inversion and eversion are 

frontal plane motions of the ankle and pronation and supination are triplanar 

motions of the foot and ankle complex.  Pronation is made up of dorsiflexion, 

abduction and eversion motions and inversion is made up of plantarflexion, 

adduction and inversion motions.  As inversion and eversion are components of 

supination and pronation and can therefore be used interchangeably with 

supination, as can eversion with pronation.  By placing the extra heel marker on 

the lower third of the calcaneus along with the original Helen Hayes heel marker, 

measurement of 2D frontal plane inversion and eversion of the rearfoot was 

achieved.  A mathematical model was also written in Bodybuilder program.  

Bodybuilder software was designed as a scripting language which includes full 

support for advanced concepts such as segments, vectors, angles, moments and 

powers.  This allows the user to define a complete segment or to calculate joint 

moments very simply (Vicon Motion Systems 2011).  The model was written 

which projected a line containing the two posterior calcaneal markers and the two 
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proximal markers on the back of the leg.  The 2D rearfoot angle was then 

calculated as the angle formed by the intersection of these two lines.  

Measurement of the inclination of the calcaneus relative to the lower leg in resting 

standing position frequently referred to as the rearfoot angle.  Its clinical 

importance is related to the premise that excessive foot pronation is manifested 

by an everted calcaneus during quiet standing (Donatelli 1996). 

 

 

Figure 4.6 2D Rearfoot angle measured during walking in the present study17 

 

 

Figure 4.7 Location of markers on posterior leg and heel 

 

                                                                 
17

 Cornwall & McPoil 1995 
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4.4.3. 3D Calcaneal Inversion/Eversion angle 

 

Many studies have used 2D motion of inversion and eversion data which have 

then been used to estimate and present 3D motion of eversion and inversion 

(Bates et al 1979 and Winter 1984).  Because of this it was decided to create a 

new kinematic model which would produce an actual 3D value.  Kinematic 

modelling is the process of transforming 3D points obtained from reflective 

markers to biomechanical measurements such as joint angles. By creating 

segments aligned with anatomical axes, it is possible to generate accurate joint 

angles either between two segments or relative to the laboratory coordinate 

system (Vicon Motion Systems 2011). A segment was created of three points, one 

being the original lateral malleolus, one being the original posterior heel and the 

third point was made from creating a virtual marker on the medial calcaneus.   

 

Figure 4.8 3D Eversion-inversion foot angle measured during walking in the 
present study18 

 

Subjects were asked to lie prone on the plinth with their feet hanging over the 

edge and the calcaneus was visually bisected and a black line was marked.  

Procedures in how to do this have been discussed in an earlier chapter.  The calf 

was also bisected visually and marked.  Lapointe et al (2001) conducted a study 

which examined the reliability of bisecting the calcaneus using digital linear 

callipers and the visual bisection technique.  They found very disappointing results 

with visually palpating the bisection to be poor (intrarater ICC= 0.30).  The digital 

callipers provided a mean absolute error of less than 1° which for the purpose of 

the bisection of the heel, this was considered highly repeatable.  However, Elveru 

                                                                 
18

 Cornwall & McPoil 1995 
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et al (1988) chose to visually bisect the calcaneus because they found that a 

calcaneal bisection line did not accurately represent calcaneal position during 

subtalar joint range of motion measurements secondary to skin movement when 

the joint was moved.  They state that visually and objectively measuring the 

bisection is a far more utilised and accurate method. For the purposes of this 

present study, callipers were not available within the gait laboratory so the 

method by Elveru et al (1988) was utilised.  

LCALC 1 Left calcaneal 

marker 1 

Positioned 2cm below the  L 

heel marker measured centre 

to centre 

RCALC 1 Right calcaneal 

marker 1 

Positioned 2cm below the  R 

heel marker measured centre 

to centre 

 

One extra small marker with 1cm diameter was placed over the calcaneus on the 

bisection line 2cm below the larger marker measured centre to centre.   

 

LCALC 2 Left calcaneal 

marker 2 

Positioned 4inch above the left 

proximal calf marker 

RCALC 2 Right calcaneal 

marker 2 

Positioned 4inch above the 

right proximal calf marker 

LCALC 3 Left calcaneal 

marker 3 

Positioned 4inch above the left 

distal calf marker 

RCALC 3 Right calcaneal 

marker 3 

Positioned 4inch above the 

right distal calf marker 

 

Another two small markers were placed on the calf measuring centre to centre 

along the bisection line.  The distal marker was placed 4 inches above the 

proximal calcaneal marker and the second calf marker was placed 4 inches above 

the distal calf marker.   
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Figure 4.9 Subject showing extra leg and heel markers 
 

 

The markers defined two lines which were used to describe the frontal plane angle 

of the calf-calcaneus angle which is normally referred to in the medical literature 

as the rearfoot angle (McPoil & Cornwall 1994; Liu et al 1997 and Mosley et al 

1996).  This was described as the maximum value of the calf-to-calcaneal angle 

in the direction of pronation recorded during the stance phase. This angle 

however, reflects only certain aspects of pronation namely changes in the rearfoot 

in the frontal plane. Pronation in gait includes movement in the sagittal and 

transverse planes at the STJ as well as movements in the frontal, transverse and 

sagittal planes at the MTJ. 

For the trials performed whilst wearing shoes and shoes with orthoses, the 

calcaneal marker was applied at the top of the heel counter.  The height of the 

heel marker was measured to reflect the alignment of the sole of the foot and 

then the marker on the dorsum of the shoe was placed at the same height, 

proximal to the distal toe crease of the shoe, approximately between the 2nd and 

3rd metatarsals (Oeffinger et al 1999). 

Cornwall & McPoil (1995) compared 2D and 3D measurements of rearfoot 

inversion and eversion during running.  They reported that the patterns between 

them were very similar and the areas where the curves are significantly different 

are during the initial 6% of the stance phase.  They concluded that a likely 
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possibility for this difference is that the angle of the rearfoot at the initiation of 

the stance phase is not accurately measured during the 2D videography.  

However, there were discrepancies in the rearfoot angle at heel-strike between 

the two conditions and they did not compare the influence of the two analysis 

methods on rearfoot motion during the last 40% of the stance phase (Pohl 2006).  

McClay and Manal (1998b) provided supporting evidence that the rearfoot angle 

at heel-strike was different between 2D and 3D analyses. They also found that 

the rearfoot angle at toe-off was influenced by the type of analysis, therefore, 

making 3D analysis essential for any investigation of rearfoot kinematics over the 

entire stance phase. 

 

 

Figure 4.10 2D and 3D rearfoot motion values at heel strike 
 

This graph shows that the the values at heel strike are completely different 

between the two comparisons (p<0.05) which is consistent with McClay and 

Manal (1998b). 
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4.5. Statistical analysis 

 

The methodology of data analysis was as used by Kadaba et al (1989) in their 

well known study on normal adults. 

There is no Gold standard method for measuring reliability of marker placement.  

Many authors have used CMC’s (Kadaba et al 1989; Winter 1971; Steinwender et 

al (2000); Gorton et al 1997; Yavuzer et al 2008; Mackey et al 2005; Kavanagh 

et al 2005) which compares the waveforms of the kinematic graph. However, for 

this present study, comparisons of the peaks and troughs of the waves were 

considered more important and relevant than the pattern of the wave.  For this 

reason the coefficient of variation (CV) was used.  The CV is particularly useful for 

representing the repeatability of performance tests (Yavuzer et al 2008).  

For both subjects, the coefficient of variation (CV) was calculated as a measure of 

between-day and within-day repeatability.  The CV can be defined as the ratio of 

the standard deviation to the mean value (Steinwender et al 2000). For within-

day CV, all gait parameters from all six trials were used, whilst all eighteen trials 

were used to calculate between-day CV.    

Mean and standard deviations (SD) of the spatiotemporal parameters were 

computed for within each test day as well as over the three test occasions.   

Visual interpretation of the graphs was facilitated by superimposing the subjects’ 

results onto a normal database (database was from the group of 5 control 

subjects in chapter 5). The values found at certain points throughout the gait 

cycle on all three occasions were compared using an independent t-test (p<0.05).   

Intraclass correlation coefficients (ICC (2, k)) were used to compare reliability 

between occasions for all kinematic and spatiotemporal variables.  The ICC is a 

measure of correlation that considers variance and describes the agreement 

between the repeated measures.  This approach is an appropriate statistical 

method to analyse agreement between sets of data for any sample size (Yavuzer 

et al 2008).  The evaluation criteria and standards for ICC values were as follows, 

values (> 0.75) indicated excellent reliability, (0.4-0.74) indicated adequate 

reliability and (< 0.40) indicated poor reliability (Salter et al 2005).  Although 

ICC’s are generally considered to be an appropriate indicator of reliability, it must 
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be noted that a low ICC does not necessarily mean that a test is unreliable.  In 

cases where there is little variability among subjects’ scores between tests and 

re-tests, it can be difficult to obtain high ICC’s (Menz et al 2003).  To overcome 

this, the coefficient of variation (CV) was also used.  This absolute measure of 

reliability used along with ICC’s can show that if a clinical measurement has a 

moderate or low ICC, it still may be reliable provided that the CV is low and there 

is no systematic difference between one trial to the next (Menz et al 2003).  

 

4.6. Results 

  

The following results are graphs depicting the mean temporal spatial parameters 

over three occasions for one subject. 
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Cadence (steps/min) 

 

Double support (s) 

 

Foot off (%) 

 

Opposite foot contact (%) 
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Stride length (m) 

 

Stride time (s) 

 

Walking speed/velocity (m/sec) 

 

 

 Figure 4.11 Mean of spatio-temporal parameters within each test day as 

well as between test days for one representative subject  
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The graphs above show one subject only picked randomly as the results for the 

other subject were very similar and it must be noted that we are not measuring 

repeatability between the two subjects but each one separately on different 

occasions.  The graphs depict the fact that the subject walked repeatedly on the 

three different testing sessions. 

The mean and SD of within-day and between-day repeatability of the spatio-

temporal parameters reflected by the corresponding CV in the tables below.   

 

   Mean St Dev CV % 

   Mean Mean Mean 

Cadence Group Within Left 121.44 3.95 3.26 

  Within Right 121.89 2.86 2.33 

  Within Days 121.67 3.61 2.98 

  Between 3 days 121.67 4.39 3.61 

D/ Support Group Within Left 0.19 0.01 6.24 

  Within Right 0.18 0.01 5.72 

  Within Days 0.18 0.01 5.70 

  Between 3 days 0.18 0.01 6.09 

Foot Off Group Within Left 60.43 1.4 2.29 

  Within Right 59.02 0.87 1.48 

  Within Days 59.73 1.47 2.45 

  Between 3 days 59.73 1.68 2.82 

Opposite Foot  Group Within Left 51.18 1.68 3.25 

Contact  Within Right 49.93 0.83 1.66 

  Within Days 50.56 1.46 2.87 

  Between 3 days 50.56 1.63 3.23 

Opposite Foot  Group Within Left 6.69 3.63 54.26 

Off  Within Right 9.20 0.59 6.39 

  Within Days 7.94 2.86 39.39 

  Between 3 days 7.94 3.25 40.95 

Single Support Group Within Left 0.41 0.01 2.43 

  Within Right 0.4 0.00 1.06 

  Within Days 0.41 0.01 2.56 

  Between 3 days 0.41 0.02 3.68 
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Step Length Group Within Left 0.66 0.02 3.73 

  Within Right 0.65 0.01 2.00 

  Within Days 0.65 0.03 4.72 

  Between 3 days 0.65 0.04 5.46 

Step Time Group Within Left 0.48 0.03 5.45 

  Within Right 0.50 0.02 3.41 

  Within Days 0.49 0.03 5.94 

  Between 3 days 0.49 0.03 6.46 

Stride Length Group Within Left 1.31 0.03 2.38 

  Within Right 1.31 0.03 2.14 

  Within Days 1.31 0.03 2.51 

  Between 3 days 1.31 0.04 3.08 

Stride Time Group Within Left 0.99 0.03 3.14 

  Within Right 0.99 0.02 2.35 

  Within Days 0.99 0.03 2.98 

  Between 3 days 0.99 0.04 3.68 

Walking Speed Group Within Left 1.32 0.02 1.75 

  Within Right 1.33 0.04 2.95 

  Within Days 1.33 0.03 2.18 

  Between 3 days 1.32 0.05 4.11 

Table 4.1 Means, standard deviations, coefficients of variations for spatio-
temporal parameters 

 
 

The table above clearly shows that within-day is more repeatable than between-

day spatio-temporal parameters which strongly agree with Kadaba et al (1989).  

The coefficient of variation on the left side has a lower CV for all parameters with 

the exception of walking speed/velocity which has a higher percentage.  This was 

also noted in the study by Kadaba et al (1989). 

Among the assessed spatio-temporal parameters, opposite foot off showed the 

most variability (CV =39.39%) and walking speed/velocity showed the least (CV= 

2.18%) for within-day sessions.   Between –day sessions showed opposite foot off 

the most variable again (CV =40.95%) and foot off, stride time and stride length 

to be the most reliable (CV =2.82; 3.68 and 3.08% respectively).  It must be 

noted that the values for opposite foot off are very high and most unusual and 

does not conform to other similar studies.  It must be assumed therefore that 
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there was a measurement error with this particular variable.  The next two most 

variable parameters were the double support with a CV value of (5.70%) within-

day and (6.09%) for between day and the step time with a CV value of (5.94%) 

within–day and (6.46%) for between days. 

Kinematic angles were also measured over the three occasions and samples of 

graphs are shown below.  The peak values of all kinematic angles on all three 

occasions showed excellent repeatability (ICC= 0.98-0.99), the minimum on all 

three occasions showed excellent repeatability (ICC =0.78-0.99) with the 

exception of day 1 which only showed adequate reliability (ICC =0.55).  The ICC’s 

show that day 1 was the most variable by a great number.  As expected, 

between-day marker placement ICC values were less reliable than within-day 

values however they still demonstrated excellent repeatability between the three 

testing sessions (ICC= 0.79-0.99). 

 

 DAY 1 

Average 

measure 

DAY 2 

Average 

measure 

DAY 3 

Average 

measure 

MAX 0.999 0.998 0.994 

MIN 0.786 0.998 0.974 

Table 4.2 ICC results for within-day marker 
placement reliability 

 

 AVERAGE MEASURE 

MAX 0.991 

MIN 0.977 

Table 4.3 ICC results for between-day marker placement reliability 
 

A full list of graphs can be found in the appendix but shown below are a sample of 

value over three occasions for two subjects. 
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Figure 4.12 Ankle dorsiflexion/plantarflexion values over three days 

 

 

 

Figure 4.13 Pelvic tilt values over three days 
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Figure 4.14 Hip flexion/extension values over three days 

 

4.7. Discussion 

 

The purpose of this study was to determine the test-retest and intratester 

reliability of marker placement of the researcher using the Vicon 370 Kinematic 

Motion Analysis System.  The results of this investigation demonstrate that all the 

markers were placed in a repeatable and reliable fashion both within and between 

testing days. 

 

4.7.1. Kinematic parameters 

 

The general patterns of the kinematic parameters of the lower extremity during 

walking that were observed in this study were consistent with those reported in 

the literature (Kadaba et al 1989; McFadyen & Winter 1988).   

It can be shown from the kinematic graphs that sagittal plane values were less 

variable than frontal and transverse plane values.  Ferber et al (2002) agree with 

this and found the latter two to be in agreement with each other. They suggest 

that variability due to marker reapplication is less evident in the sagittal plane.  

Kadaba et al (1989) also agree with this statement and demonstrated relatively 
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low reliability in frontal and transverse plane values as compared to sagittal plane 

values in both within and between day comparisons.  The variability in any plane 

motion can be attributed to the alignment of the wand markers and their effect on 

the eventual kinematic data.  Skin movement artefacts are known to exaggerate 

joint angles particularly measures of transverse plane rotations (Holden et al 

1997). 

Manal et al (2000) reported in a study comparing various marker configurations 

to bone anchored markers on the leg that the greatest error between bone and 

skin attached markers were in the transverse plane.  Growney et al (1997) also 

found that the sagittal plane angles for knee, hip and ankle demonstrated 

excellent repeatability within test days and between test days compared with 

fairly repeatable results for frontal and transverse plane angles. Comparisons 

were not made with the values in this study however as a differing statistic was 

used to test repeatability. 

The factors contributing to between-day repeatability would include the variability 

in the gait pattern and in the application of markers on the same subject on 

different test days.  To exclude this variability, the markers were applied by the 

same person on each occasion. In spite of extreme care and a standardised 

protocol of marker application, some inconsistency is inevitable especially with 

stick markers for the shank and the thigh and in the placement of the sacral 

marker.  Kadaba et al (1990) and Kadaba et al (1989) attributed errors in the re-

application of markers to be a major cause for variations in the gait analysis data.  

Results of repeatability of kinematic data in our study are in agreement with the 

conclusions drawn by Kadaba et al (1990). 

When comparing the within-day and between day ICC values, it was not 

surprising that the within-day values were higher than the between day values.  

This is in agreement with various other studies (Carson et al 2001; Steinwender 

et al 2000 and Kadaba et al 1989). 

The ICC values for maximum and minimum values over the three occasions show 

that day 1 was the most variable by far.  This was also shown by the CV values.  

Day 1 CV values were much higher than days 2 and 3.  Within day variability can 

be attributed to measurement error, skin marker movement and inherent 



143 

 

physiological variability during human locomotion. However, the results suggest 

that between-day variability can be affected by factors affecting within-day 

variability such as marker reapplication error (Steinwender et al 2000).  Even 

slight changes in marker placement may produce an offset shift in the data 

resulting on lower between- day variability. 

Although the within-day repeatability of gait data has been shown to be generally 

good in studies by Kadaba et al (1989) and Growney et al (1997), some variation 

between trials is to be expected.  In some cases, certain variables and subjects 

will show inconsistency between trials even under exactly the same experimental 

conditions regardless of the number of trials recorded (Diss 2001). Consequently 

some variation of the small differences observed in our data may be the result of 

the natural variation in gait.   

 

4.7.2. Temporal-spatial parameters of gait 

 

Three previous well known studies have reported on the repeatability of the 

spatio-temporal parameters of gait using the Vicon Kinematic Motion Analysis 

System.  Table 4.4 illustrates the comparisons between them and the present 

study’s results. 
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Parameter Kadaba et 

al (1989) 

(CV) 

Steinwender 

et al (2000) 

(CV) 

Growney 

et al 

(1997) 

(CV) 

Present 

study 

(CV) 

Cadence 

(steps/min) 

1.9 3.4 2.29 2.98 

Walking 

speed/velocity 

(m/sec) 

2.9 5.2 2.69 2.18 

Left foot off 

(%) 

NR NR 1.80 2.29 

Right foot off 

(%) 

NR NR 1.58 1.48 

Left stride 

length (m) 

1.7 4 2.83 2.38 

Right stride 

length (m) 

1.7 4 2.83 2.14 

Left step 

length (m) 

NR NR 2.88 3.73 

Right step 

length (m) 

NR NR 2.84 2.00 

Table 4.4 Comparison of average CV% values in this study with those of 
previous studies 

KEY: NR = NOT REPORTED 

 

In the above comparisons of previous studies, healthy subjects walked at self-

selected normal walking speed.  The results from the study by Steinwender et al 

(2000) are slightly higher than the others including the present study.  The 

reason for this could be that they used healthy children as subjects (aged 7-15) 

and the others chose adults. 
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It can be seen that the CV values from the present study compare well with the 

previous studies and it can be concluded that the healthy subject’s gait at a 

normal self selected walking speed was as repeatable as that of previous reported 

samples. 

It can also be seen that the repeatability of the other parameters not reported in 

previous studies is reasonable.  If the misleading value for left opposite foot off is 

ignored and the other parameters which are the most concentrated on, double 

support (CV =5.07%) for within-day and (CV= 6.09%) between-day has high 

values.  This is the shortest event in the gait cycle (Whittle 2002) thus making it 

susceptible to measurement error (Wall & Crosbie 1996).  This just highlight one 

of the disadvantages mentioned previously of using the coefficient of variation 

with small mean values- a higher CV value does not necessarily mean low 

reproducibility (Growney et al 1997). 

It must be acknowledged that there may be limitations to the findings of the 

study because of the use of skin markers. The surface markers were attached 

with care in order to reduce the effect of skin motion artefact and marker 

“wobble” errors have not been measured but will be accounted for in this study. 

 

4.8. Conclusion 

 

Within-day comparisons were more reliable than between–day comparisons for 

both kinematic data and temporal-spatial data.  It can be shown from the 

kinematic graphs that sagittal plane values were less variable than frontal and 

transverse plane values due to marker application being less variable in the 

sagittal plane. 

The present study revealed acceptable results which were consistent with 

previous studies for within day and between day repeatability of temporal-spatial 

and kinematic parameters. This demonstrated that the researcher could reliably 

place specific protocol markers on subjects on the lower body using the Vicon 370 

Kinematic Motion Analysis System.  
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This pilot study was conducted in order to fulfil objective (d), chapter 5, which 

investigates lower limb biomechanics in a group of asymptomatic subjects using 

the kinematic system.  It is essential when using this system that variables 

affecting measurement values need to be eliminated or reduced so confidence can 

be assured when making clinical decisions regarding treatment based on the 

results. 
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5. Chapter 5 - Analysis of Kinematic and Temporal-Spatial Data of 

Asymptomatic Subjects using VICON 370 Kinematic Motion 

Analysis System Whilst Walking 

 

5.1. Introduction 

 

Clinical gait analysis typically seeks to discriminate between what is normal and 

abnormal gait and to assess change in walking over time (Baker 2006).  

It is very important for a health care provider to validly and reliably measure 

patients’ gait variables, as they will be better able to make evidence-based 

decisions in the clinical management depending on their gait dysfunction.  For 

example, temporal-spatial variables provide a description of a patients’ gait 

against which their previous performance can be compared and can be used to 

indicate whether improvement or deterioration has taken place. These measures 

can also be compared against age and sex-matched normal population 

distributions to ascertain whether the patient is approaching normal performance 

(Ostrosky et al 1994).  It is therefore very important to have a “normally 

distributed” database of measurements which what to compare the “abnormally 

distributed” to. 

Lower limb biomechanics are thought to be related to many lower limb 

musculoskeletal conditions (James et al 1978; Tiberio 1987; Tiberio 1988) with 

anterior knee pain being the most common injury seen in the sports injury clinic 

(Taunton et al 2002). Knowledge of kinematic differences between individuals 

with and without AKP is important to health professionals and researchers. This 

knowledge is needed to develop and optimise valid treatment and prevention 

strategies (Barton et al 2009).  

The main objective of this chapter was to compare kinematic and temporal-spatial 

data within a group of asymptomatic subjects during barefoot walking using the 

Vicon 370 Kinematic Motion Analysis System. 
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5.2. Methodology  

 

This experimental study took place at the Grampian Gait and Motion Analysis 

Centre, Woodend in Aberdeen.  Full ethical approval from the local research and 

ethics committee was received prior to data collection (project number 

01/00057). 

Subjects in this study were required to meet the following inclusion and exclusion 

criteria prior to data collection which was based on those used in other recent AKP 

studies (Bennell et al 2000). 

Inclusion criteria 

a) No history of Anterior Knee Pain in the last two years.  

b) No history of other injuries to the knee joint such as tears of the 

menisci, ligament or joint capsule or damage to the articular 

cartilage (Bennell et al 2000). 

c) No history of muscle or tendon ruptures of the lower extremities. 

d) No history of recurrent patellar subluxation or dislocation (Bennell et 

al 2000). 

e) No history of surgery of the lower extremity in the last three months 

(Bennell et al 2000). 

Exclusion criteria 

a) Pregnancy at time of trial. 

b) History of O/A or R/A. 

c) History of wearing foot orthoses. 

d) History of patellar dislocation or subluxation (Bennell et al 2000). 

e) History of surgery of the lower extremity in the last three months 

(Bennell et al 2000). 
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Subjects were recruited from The School of Health Sciences at The Robert Gordon 

University and local rugby and running clubs via posters and letters. Fifteen men 

and fifteen women with ages ranging between 22 and 49 years (mean 30.21 ± 

5.8 years) participated in this study.  All subjects were given an information sheet 

explaining the study and gave written informed consent before taking part.   

Using two samples of size 15, detectable differences for each of the variables 

could be assessed for a two-sample t-test at a 5% significance level and 80% 

power. For example the power curve below illustrates that a detectable difference 

of ankle width between genders of 0.53cm would be detectable with an assumed 

standard deviation of 0.5cm. 
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Figure 5.1 Power analysis19 
 

This process was repeated with the other variables being studied to include leg 

length, navicular height, Q-angle supine, hip flexion/extension, knee joint 

flexion/extension, ankle joint dorsiflexion/plantarflexion, rearfoot angle, RCSP and 

NCSP. 

Upon entering the laboratory, each subject completed a consent form and was 

asked some short questions which were related to the clinical assessment.  These 

were used to gather information regarding physical activity levels (how often they 

                                                                 
19

 SPSS 15 (Chicago, IL) 
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exercised and which type of exercise did they participate in most often), previous 

or current lower limb injuries and any previous treatment received. This was done 

to ensure the subjects were asymptomatic in order to be used as controls.  

Subjects were asked to wear shorts and remove socks and shoes.   

A clinical examination was performed on each subject by the same researcher 

using the same measurement tools which had been piloted to determine 

intratester reliability and measurement protocol (chapter 3 for methodology and 

results).  

Active range of motion (ROM) was assessed using a standard double-armed 

goniometer constructed of clear flexible plastic with a scale of one-degree 

increments.  Lower extremity measurements were examined in both weight 

bearing and non-weight bearing positions.  The clinical measurements carried out 

under specific protocol for subject position, skin markings and placement of the 

goniometer and tape measure were as follows: 

 

Non-weight bearing- (supine lying) 

1. Hip joint flexion/extension  

2. Knee joint flexion/extension 

3. Quadriceps angle 

4. Leg length measurement 

5. Distance ASIS-ASIS (required for kinematic analysis) 

6. Ankle joint dorsiflexion with knee flexed at 90 degrees and knee 

extended 

7. 1s t metatarsalphalangeal joint dorsiflexion 

8. Calcaneal/rearfoot angle (eversion or inversion) and calf-to-calcaneal 

angle. Calf-to-calcaneal angle was measured with a goniometer as the 

angle between the vertical midline of the calf and the vertical midline of 

the calcaneus. 
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Weight bearing - (relaxed calcaneal stance position) 

9. Quadriceps angle 

10. Resting calcaneal stance position 

11. Neutral calcaneal stance position 

12. Navicular height/drop 

Visual observations were also conducted by the same tester with the subject 

standing in their normal stance position.  It was noted if the hips were flexed, 

extended or neutral, knees were flexed, hyperextended or neutral, if there was a 

presence of genu varum, valgum or recurvatum and the patellar position was also 

recorded whether it was high, low or normal.  Foot type was assessed as to 

whether it was planus, cavus or normal (Dahle et al 1991). A low arched foot 

which the MLA was nearly in full contact with the floor was classified as a “planus 

foot”, a high arched foot was classified as a “cavus foot” and the remaining ones 

were described as a “normal foot”. The subtalar joint was noted whether it was in 

a normal, everted or inverted position in relation to the floor.   

Base of gait and angle of gait positions were also sought. The angle of gait is the 

foot angle made with the line of progression.  The base of gait (sometimes called 

walking base) is the side-to-side distance between the line of the two feet, usually 

measured at the midpoint of the heel but sometimes the centre of the ankle joint 

(Whittle 1992).  No attempt was made to measure the exact degree of any 

observable deformities.  The lower extremity ranges of motion values selected as 

“normal” were obtained from previously established normal’s (Norkin & White 

1985).   

Age, gender, height and weight were recorded to determine group homogeneity. 

Various recommended clinical anthropometric measurements were taken. 

a) Height was recorded by a stadiometer 

b) Body weight without shoes was measured  

c) Knee width was determined from measuring the distance between the 

lateral and medial femoral condyles in a supine position using a knee 
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alignment device (KAD) of both knees. These should be measured at the 

same level as the markers used to identify the flexion/extension axes 

d) Ankle width was determined from measuring the transmalleolar distance 

using the KAD of both ankles.  These also should be measured at the same 

level as the markers used to identify plantarflexion/dorsiflexion axes. 

 

Both the ankle width and knee width positions and measurements are well known 

and have been thoroughly validated (Davis et al 1991). 

 

5.2.1. Instrumentation 

 

Three-dimensional analysis is the state of the art method used for the analysis of 

joint kinematics in humans (Deschamps et al 2011).   

There are numerous ways of measuring foot biomechanics using cadavers, 

surface markers and bone pins and each come with their own set of advantages 

and disadvantages.   (See section 2.7 – a review of the literature available on 

past and present foot models).  It is important to take these factors into account 

as these form the basis for the clinical validation of an assessment tool (Swartz 

2004).  It is however, generally agreed that skin- mounted markers are the most 

convenient approach to use in gait laboratories (Robertson et al 2004).  It is 

based   on accurate placement of reflective markers over bony landmarks of the 

pelvis and lower limbs. 

Using marker placement sets requires mathematical models to relate 

measurements of the marker positions to the positions of the lower limb joints.  

Such models require certain measurements of the subject before gait analysis can 

take place such as leg length, knee width and ankle width.  Any assumptions 

made regarding gait analysis must be based on accurate placement of these 

markers.  Before the start of the data collection, a test-retest and intrarater 

reliability study was performed to ensure that variables affecting measurement 

values were reduced or eliminated by determining the reliability of the tester at 

marker placement. This was performed by applying the marker set to two 
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subjects independently, three times and on three separate occasions (chapter 4).  

The results showed acceptable values which were consistent with previous studies 

which further enhanced the basis of the clinical decision to use the Vicon 370 

Motion Analysis System for this study. 

The type of data which was derived from the data of each limb of each subject is 

listed below.   

Maximum (max) values were detected for each variable throughout an average 

cycle.  15 parameters were investigated using the Helen Hayes marker set 

(Kadaba et al 1987),- ankle dorsiflexion/plantarflexion, abduction/adduction, 

internal/external rotation, knee flexion/extension, varus/valgus, internal/external 

rotation, hip flexion/extension, adduction/abduction, internal/external rotation, 

pelvis anterior/posterior tilt, obliquity up/down and internal/external rotation.   

Subject kinematics and temporal spatial data were assessed using the Vicon 370 

Kinematic Motion Analysis System (Oxford Metrics, Oxford, UK), two Kistler Force 

Platforms (Kistler, Switzerland) and Workstation.  The graphs were presented by 

Polygon software.  The force platforms were installed flush with the floor in the 

middle of a 10m walkway.  The force platform is normally used to record the 

vertical (Fz), anteroposterior (Fy) and mediolateral (Fx) components of the 

external forces and the corresponding moments (Nadeau et al 1997) however 

these were not measured in this present study.  The position of the force plates 

on the floor was not revealed to the subjects in order to eliminate targeting 

resulting in altered gait patterns (Heiderscheidt 2002).   

Six infrared cameras operating at a 50 HZ sampling rate were positioned such 

that they could detect all of the twenty-six markers simultaneously during the 

whole gait cycle.  

Kinematic data was calculated using the standard Helen Hayes lower body marker 

set (Kadaba et al 1987).  Small, light reflective spherical markers (approx. 2cm in 

diameter) were attached to various anatomic landmarks on each subject with 

hypoallergenic double-sided tape.  Marker placement is known to be critically 

important in the measurement process and was described in some detail in 

chapter 4. 
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The markers were located according to the specifications in chapter 4 

 

SACR Sacrum 

LASI/RASI Left anterior superior iliac spine/Right anterior 

superior iliac spine 

LTHI/RTHI Left lateral thigh/Right lateral thigh 

LKNE/RKNE Left lateral condyles of knee/Right lateral 

condyles of knee 

LTIB/RTIB Left lateral lower 2/3 of tibia/Right lateral 

lower 2/3 of tibia 

LHEE/RHEE Left heel/Right heel 

LANK/RANK Left lateral malleoli/Right lateral malleoli 

LTOE/RTOE Left 2nd ray/Right 2nd ray 

Table 5.1 Anatomical location of markers 

  

From the kinematic data, the positions of the hip, knee and ankle joint, in the 

sagittal, frontal and transverse planes were calculated with Workstation and 

Polygon software.  These values were calculated separately for each extremity 

since the software averages the lengths of the limbs as a scaling parameter when 

the location of the centre of the hip joint is determined (Eng & Winter 1995). All 

participants were assigned an identification number to preserve confidentiality. 

 

5.2.2. Statistical analysis 

 

All statistical comparisons were analysed using the Statistical Package for Social 

Sciences 15 (SPSS Inc, Chicago, IL). Before running any tests, the data was 

checked for anomalies such as extreme values or skewed distribution.  This was 
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done by running a normality test (Shapiro Wilks) and constructing scatterplot 

graphs. This ensured that there was a normative database in which to test against 

the symptomatic group (chapter 6). 

Means and standard deviations were obtained for the clinical assessment, 

temporal-spatial and kinematic data. Independent sample t-tests were used in the 

clinical assessment and temporal-spatial data to evaluate group differences 

between right and left values and gender comparisons were also compared to 

establish if there were any differences between the right and left sides of the 

body.  All were tested at a two-tailed significance of (p<0.05). 

Comparisons were made between subjects for stride characteristics (velocity, 

cadence and stride length), percentage of gait cycle in single and double limb 

stance, force plate parameters and knee, foot and leg kinematics. Three clinical 

planes of motion (sagittal, frontal and transverse) were analysed at the pelvis, 

hip, knee, ankle and foot joints.  All joint comparisons were examined bilaterally. 

For each kinematic variable, the mean of five trials were used in the analysis. 

 

5.3. Results 

 

Due to the enormity of results analysed, significant results in the form of graphs 

and tables are shown in the results section but a full and concise list of all results 

can be found in the appendix. Normality tests (Shapiro Wilks) were performed to 

check for outliers and to ensure we had a normative database in which to test 

against the symptomatic group.  All variables plotted produced a normal linear 

line with the exception of opposite foot contact and opposite foot off variables.  

These two contained two outliers which skewed the data negatively.  An outlier is 

an observation which lies an abnormal distance from other values in a random 

sample from a population. Interestingly it was the same subject which skewed 

both variables. This was attributed to a measurement error  and the data was 

then tested again without this particular subject and a normal bell shaped curve 

was produced. 
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 Descriptive statistics of the symptomatic subjects who participated in the study 

are shown in the tables below. 

 

5.3.1. Normal subject demographics 

 

Fifteen males and fifteen females were recruited with a mean age of 29.4 years, 

182cm in height for the males and 163cm for females and 80.3kg in weight for 

males and 68.2kg for females. 

 N (no.) Min Max Mean 

age 30 22 49 29.43 

Height (cm) 30 153 198 173.0 

Weight (kg) 30 51 100 74.26 

Table 5.2 Subject demographics, age height and weight 

 

 
gender 

N 

(no.) Mean SD SEM 

Height 

(cm) 

male 15 182.4 8.1 2.0 

fem 15 163.7 6.2 1.6 

Weight 

(kg) 

male 15 80.3 10.1 2.6 

fem 15 68.2 15.0 3.8 

Table 5.3 Subject demographics, height and weight in males and females 
 

An independent t-test revealed a statistically significant difference between height 

and weight (height, t (28) = 7.04, p = 0.001; weight, t (28) = 2.58, p=0.015). 
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5.3.2. Clinical assessment 

 

A matched paired sample t-test was conducted to test whether there were any 

differences between right and left values in the normal group.  It was proven that 

there was no significance between any of the variables in right and left sides and 

shows that there is general tendency for symmetry. Due to this, left and right 

values have been averaged together.   

Influence of gender on asymptomatic group 

An independent t-test was used to test for a difference between gender and right 

and left measurements averaged together. 

Variable Gender Mean std.dev p- value 

Ankle width (cm) Male 7.52 

6.84 

0.46 

0.39 

0.0001 

Female 

Leg length (cm) Male 98.20 

89.05 

4.77 

3.80 

0.0001 

Female 

Navicular height (mm) Male 39.50 

33.75 

7.20 

5.33 

0.014 

Female 

Q-angle supine (°) Male 9.60 

14.97 

0.85 

3.20 

0.0001 

Female 

Q-angle weight 

bearing (°) 

Male 10.57 

14.90 

1.71 

3.75 

0.001 

female 

Table 5.4 Variables which showed significant differences when comparing 
influence of gender 

  

There were five variables which showed significant difference between males and 

females in the normal group (Ankle width (p= 0.0001), leg length (p= 0.0001), 

navicular height (p=0.014), Q-angle weight bearing (p=0.001) and Q-angle 

supine (p=0.0001)). 
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Figure 5.2 Variables which show statistical significance between genders (ankle 
width (cm), Q-angle (degrees), leg length (cm) and navicular height (mm). 
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5.3.3. Temporal spatial parameters 

 

The temporal spatial data was analysed and shown in the table below 

VARIABLE MEAN             SD 

CADENCE (steps/min) 119.7 8.65 

DOUBLE SUPPORT (s) 0.20 0.03 

FOOT OFF (%) 59.99 1.32 

OPPOSITE FOOT CONTACT (%) 49.91 1.09 

OPPOSITE FOOT OFF (%) 10.04 1.86 

SINGLE SUPPORT (s) 0.39 0.03 

STEP LENGTH (m) 0.70 0.07 

STEP TIME (s) 0.50 0.04 

STRIDE LENGTH (m) 1.42 0.12 

STRIDE TIME (s) 1.01 0.07 

WALKING SPEED (m/sec) 1.39 0.16 

Table 5.5 Temporal spatial data from normal’s (n=30) 

 

Note-right and left values have been averaged together  

An independent t–test found significant gender differences for cadence, double 

support, step time and stride time (p<0.05).  

Normality tests were conducted and all of the variables were normally distributed 

with the exception of cadence.   The scatterplot graph (figure 5.3 and 5.4) shows 

an extreme value which negatively skews the data. 
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Figure 5.3 Curve estimation of right and left cadence (steps/min)  
 

 

Figure 5.4 Histogram of skewed data of left and right cadence (steps/min) 
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5.3.4. Kinematic data analysis 

 

The power analysis conducted on the kinematic variables suggested that there 

was a 93% chance of detecting any differences in these variables between the 

test conditions which were greater than 3.5 degrees. An independent t-test was 

carried out to test for any differences in the test variables between males and 

females.  The results are divided into maximum and minimum values in the 

averaged gait trial. 

Comparison of maximum values between male and female asymptomatic 

subjects  

 

Figure 5.5 Significant maximum variables between males and females in 
asymptomatic barefoot walking (N=30). Angles are measured in degrees. 

 

Variable 

control 

Male  (°) mean Fem  (°) mean P value 

Foot 

progression  

-28.9 -1.4 0.01 

Hip abduction 4.86 6.63 0.027 

Hip external 

rotation 

13.18 6.76 0.045 

Table 5.6 Values for foot progression, hip abduction and hip external rotation 

gender
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M
e
a
n

20.00

10.00

0.00

-10.00

-20.00

-30.00

left and 
right hip 
external 
rotation

left and 
right hip 
abduction

left and 
right foot 
progression 
angle



162 

 

Three kinematic variables showed significant differences under the influence of 

gender.  The table shows a large increase in foot progression angle between men 

and women and a much smaller decrease in angle for hip external rotation in 

women. 

Normality tests, to test for skewness were carried out in order to determine that 

the control group was a normal representitive sample of the population.  This was 

required to have a normal database for which to test the symptomatic subjects 

with.  The graphs below show the normal data  which has been negatively skewed 

(-3.76). 

 

Figure 5.6 Histogram of negatively skewed data in left and right ankle joint 
dorsiflexion (°) 
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Figure 5.7 Curve estimation of right and left ankle dorsiflexion  (°) 

 

Test of normality (Shapiro-Wilks) show significance for this variable within the 

thirty subjects (p<0.05).  It can be seen from the histogram that there is an 

outlier with a value of -40 degrees.  However the case  with the outlier had 

extreme values throughout all the variables and it was decided it must be a 

computer error as this value couldn’t be a clinical value.  The subjects original 

clinical raw data was checked and it was within normal ranges however a problem 

must have occurred during the kinematic process such as marker placement 

error, marker wobble or simply a cumputer error.  For these reasons, subject 19 

was removed  and normality tests were carried out again. 

The graphs below show the data without the extreme value and  although there 

are a couple of larger numbers, the data is almost sitting on the line which is what 

we would expect with a normal sample of subjects.  Skewness did improve 

without number 19 and the value was nearer zero which is what we expected 

(0.882).  Figures 5.6 and 5.7 illustrates normal values when subject 19 has been 

omitted. 
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Figure 5.8 Histogram diagram of right and left dorsiflexion without subject 19 
(°) 

 

 

Figure 5.9 Curve estimation of left and right dorsiflexion without subject 19 (°) 

 

All the other variables were tested and all were not significant and positively 

skewed with values close to zero.   
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It was accepted following inspection of the raw data that the reason for the outlier 

from subject 19 was a computer error so the same tests were run again and no 

outlier was evident on this occasion therefore normal values were found.  Because 

of this the kinematic graphs showed normal wave patterns and a full concise set 

of normal graphs can be found in the Appendix. 

 

5.4. Discussion 

 

The main objective for this study was to evaluate the normal effects of walking 

barefoot by analysing the kinematic data and the temporal parameters.  This was 

conducted in order to achieve a normative database in which to compare the 

symptomatic data with. 

The success of this study relied on the ability to accurately locate the reflective 

markers worn by the subjects and to carry out a reliable clinical assessment on 

each individual.  This was achieved in two pilot studies conducted previously 

where a high reliability score was achieved.  Intraclass correlation coefficients 

ranged from (ICC= 0.37 to 0.98) indicating from the values stated above 

acceptable reliability for these measurements. 

A common method of finding a normal foot, knee or hip parameter such as 

normal Q-angle or normal dorsiflexion of the ankle according to Phillips (2000) is 

to examine a group of young asymptomatic adults and find the statistical average 

for whatever morphologic variable is being analysed.  A standard deviation from 

the average is determined followed by a statement that anyone who falls within 

two standard deviations should be considered normal. The results demonstrated 

this and therefore could be considered as normal. 

 

5.4.1. Clinical assessment  

 

Ball & Johnson (1996) demonstrated a small but significant gender difference with 

females exhibiting a greater range of motion than males in all the age groups.  It 
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was found in this study that only five of the variables had a significant difference 

between the sexes. 

As expected, Q-angle supine and Q-angle weight-bearing were highly significant 

along with ankle width, leg length and navicular height.  The values for all the 

variables were all larger in the male group with the exception of both Q-angles 

which supports the literature available that women have larger Q-angle values 

(Livingston and Mandigo 1999; Emami et al 2007). 

Q-angles supine and weight bearing (w/b) values were established (mean male 

supine (9.6°) and w/b (10.57°); mean female supine (14.96°) and w/b (14.99°) 

and were consistent with some studies (Horton & Hall 1989).  The mean values 

for both men and women were lower than the normal values suggested by 

Kantaras et al (2001) which were that normal value is 10 to 15 degrees for men 

and 15 to 20 degrees for women. The Manual of Orthopaedic Surgery (1972) 

considers angles greater than 15 degrees in men and 20 degrees in women 

pathological and values below these values normal.  Horton & Hall (1989) found 

similar Q-angles of 11.2° for men and 15.8° degrees for women and attributed 

the lower values to the fact that they measured in a weight bearing position as 

opposed to Agletti et al (1983) who found higher values of 14 and 17 degrees for 

men and women and measured in a supine position.  The results of the present 

study do not agree with this theory as the values for weight bearing are higher 

than the supine position. 

Navicular height was 6mm higher in the male group than the female group.  

Nielsen et al (2009) found that gender has an effect on navicular drop values 

although their study was dynamic but they reported a higher male mean value 

than the female group.  They also reported that as the foot length measurement 

increased by 10mm, navicular drop also increased in height by 0.4mm in males 

and 0.31mm in females.  Although this study did not measure foot length, this 

may account for the fact that the male group had higher values than the female 

group as males generally have larger feet than women. 

Ankle width and leg length were also significantly different.  A bivariate 

correlation was conducted to test for a relationship between leg length and height 

and a very strong positive relationship exists (r=0.95).  
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  Figure 5.10 Relationship between leg length and height (cm) 

 

From the results it can be seen that the majority of men were taller and therefore 

had longer legs in the normal group.  Ankle width was slightly related with height 

(r=0.75) which is consistent with significant values throughout the normal group. 

There was no significance between height and weight measurements in the group. 

Boone & Azen (1979) conducted a study which found that the amplitudes of 

motion of the left and right joints were consistently similar when testing healthy 

individuals.  They concluded that the motions of the joints of a patient’s healthy 

leg can routinely be used for comparison with those of the affected side in the 

presence of injury. 

The results of the clinical assessment show a range of normal values from thirty 

asymptomatic subjects which is representative of a normal population.  It is 

therefore a justifiable database on which to compare symptomatic subjects 

against. 

 

5.4.2. Temporal spatial data  

 

This data appeared to provide normal mean values with which any pathological 

data could be compared against.  When compared with gender, four variables 
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showed significant differences. However, because of there being distinct gender 

differences in skeletal dimensions, the walking patterns of the two genders are 

likely to differ (Cho et al 2004). 

Correlations were tested for cadences, step time and stride time between height 

and leg length.  It was expected that cadence would be significant between males 

and females as they are generally taller and have longer leg length however no 

relationship was shown.  It is also a common observation that smaller people tend 

to walk with smaller steps but at a higher step time than taller people do (Hof 

1996) and this would be consistent with this study’s results (cadence for males, 

115 steps/min and females, 123 steps/min and step time for males 0.52s and 

females 0.48s).  Crosbie et al (1997) found that females demonstrated a higher 

cadence value than males.  The female cadence at free speed was around 6% 

higher than the males.  Oberg et al (1993) studied what the influence of gender 

was on normal women and men and found that step timing was higher and step 

length and walking speed was lower for women than for men.  Their results are in 

accordance with the present study’s results. 

Regression lines are shown to investigate the relationship between cadence, leg 

length and height. 

 

 

Figure 5.11 Linear regression line describing cadence (steps/min) and height (cm) 

 

This graph shows no relationship between the two (r=-0.095). 
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Figure 5.12 Linear regression line describing cadence (steps/min) vs. leg length 
(cm) 

 

The graph above again shows no relationship (r=-0.072). 

 

5.4.3. Kinematic data 

 

It was noted when looking at the waveforms of the kinematic graphs that there 

were a couple of unexpected patterns within the range of the graph.  This 

occurred in many of the different variables so an extreme values test was carried 

out to look for outliers.  In this group of asymptomatic subjects there were two 

specific subjects who continuously had extreme values whether it was the highest 

or the lowest.  This is shown in the box plots below. 
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Minimum boxplots 

 

 

 

Figure 5.13 Minimum boxplots of normal group for hip abduction and ankle 
internal rotation 
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Figure 5.14 Maximum boxplot of normal group for internal hip rotation 

 

As can be shown from the graphs above, subject 4 and 21 had outlying values 

within these three variables. Subject 4 and 21 in ankle internal rotation and hip 

abduction were extreme outliers where the values were more than three box 

widths away from the rest of the data.  However, subject 21 in hip internal 

rotation variable showed only a mild outlier which was within the 1.5 box width 

range. Outliers have to be investigated carefully.  They can contain certain 

information about the process under investigation or the data collection and 

recording process.  The root cause of these outliers has to be determined as to 

why they appeared so a re-test can be justified.  In these cases, it was concluded 

that due to the extreme values, it was nothing to do with the participant 

structurally but perhaps to do with recording error, imputing error, marker 

placement error, marker wobble or simply a computer processing error. On 

review of the data, it was decided that because the cause of the extreme values 

could not be identified, the data was run again and normally distributed data was 

found within these three variables. 

 

5.5. Conclusion 

 

The main aim of this chapter was to investigate and establish values for lower 

limb biomechanics in a group of normal individuals using a detailed clinical 
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assessment and the Vicon 370 Kinematic Motion Analysis System.  Significant 

differences were found between genders but this was expected as there are 

distinct gender differences in skeletal dimensions, the walking patterns of the two 

genders are likely to differ (Cho et al 2004). 

One of the reasons for this objective was to obtain an asymptomatic database in 

which it was possible to compare symptomatic subjects with.  The normal set of 

results which was obtained from this chapter can be used effectively against the 

set of results from symptomatic subjects in the next chapter. 
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6. Chapter 6 – Analysis of Kinematic and Temporal-Spatial Data of    

Symptomatic Subjects using Vicon 370 Kinematic Motion 

Analysis System whilst Walking under Three Experimental 

Conditions. 

 

6.1. Introduction 

 

The aim of this study was to compare barefoot trials with shod and medially 

posted orthotic devices to establish any changes in foot and leg mechanics using 

3D motion capture, in this instance the Oxford Metrics Vicon 370 Kinematic 

Motion Analysis System.   

6.2. Methodology 

 

The methodology for the symptomatic group differed in that this experimental 

study took place at The Robert Gordon University Gait Laboratory in Aberdeen.   

Due to new ownership and relocation of the laboratory this study was conducted 

in different premises to the asymptomatic study.  However, every effort was 

made to ensure the experimental conditions were made the same.  The 

Bioengineer, the researcher and the equipment were constant variables. 

The inclusion and exclusion criterion that was used for recruiting the normal 

group of subjects was slightly adapted to recruit symptomatic subjects.  

Inclusion criteria 

a) Been diagnosed as having AKP by a medical doctor/Physiotherapist 

(Bennell et al 2000 and Ng & Cheng 2002). 

b) Having anterior or retropatellar knee pain (Bennell et al 2000; 

Cowan et al 2001). 

c) Reported that at least two of the following activities exacerbated 

their symptoms 

- prolonged sitting 
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- climbing up and down stairs 

- kneeling 

-squatting 

(Bennell et al 2000; Watson et al 2001; Thomee et al 2002 and Cowan et 

al 2002). 

Exclusion criteria 

a) History of surgery of the lower extremity in the last three months 

(Bennell et al 2000). 

b) Pregnancy at time of trial. 

c) History of wearing orthoses. 

d) History of patellar dislocation or subluxation (Bennell et al 2000). 

e) History of O/A or R/A. 

 

Subjects were recruited from The School of Health Sciences at The Robert Gordon 

University, local rugby and running clubs via posters and flyers.  Full ethical 

approval from the local research and ethics committee was received prior to data 

collection (project number 01/00057). 

Fifteen subjects (7 men and 8 women) with ages ranging between 22 and 49 

years (mean 30.21± 5.8 years) participated in this study and met with the 

appropriate criteria.  All subjects were given an information sheet explaining the 

study and gave written informed consent before participating in the study.   

Detectable differences were assessed for paired t-tests at 5% significance levels 

and 80% power for each of the variables using a sample size 15. The variables 

assessed were the same as tested in chapter 5- hip flexion/extension, knee 

flexion/extension, Q-angle, leg length, ankle dorsiflexion/plantarflexion, 1st MTPJ 

dorsiflexion, rearfoot angle, navicular height, NCSP and RCSP. 
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The subjects were given similar questions to the asymptomatic group and this 

was used in the same way to categorise this group of subjects as experiencing 

unilateral knee pain or bilateral knee pain. Subjects were asked to wear shorts 

and remove socks and shoes.   

Age, gender, height and weight were recorded to determine group homogeneity. 

The same recommended clinical anthropometric measurements as the control 

group were taken. 

An identical clinical assessment to the one used on the control group (see chapter 

4) was performed on each pathological subject using the same measurement 

tools for each one.  The protocol was exactly the same between the two groups 

and executed under identical experimental conditions. 

In each experimental condition, subjects walked at a self-selected speed. Each 

subject walked under three experimental conditions 

a) Walking barefoot 

b) Walking with their own trainers 

c) Walking with their own trainers and supplied orthoses 

 

The insole of the trainer was removed for the third experimental condition and 

replaced with an orthotic device to allow the shoes to fit.  Each device was fitted 

corresponding to shoe size. 

The orthotic device was selected because it was easily available to the general 

population, inexpensive and a good example of the many “off the shelf orthotics” 

for the subject experiencing AKP.   

The information below describes the orthotic in detail and explains exactly what 

the device is designed to do. 
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Figure 6.2 ORTHAHEEL Regular designed by podiatrist Phillip Vasyli 

 

a) Designed to fit regular men’s and women’s (flat) shoes.  

b) Made of flexible E.V.A (similar to the material used for midsoles in 

most sports shoes).  

c) Supporting the foot around its neutral position via a 4 degree built-in 

rearfoot varus angle.  

d) Stabilizing the foot via an Angular Restraining Mechanism.  This ARM 

is a trademark system and controls frontal plane motion (calcaneal 

eversion) (Vasyli Inc). 

e) Correctly aligning the 2nd, 3rd and 4th metatarsals. 

f) Shock-absorption with a Shock Dot in the centre of the heel. 

g) Forefoot balancing with a 4 degree wedge. 

 

The expected outcome of using the orthotic was to see a decrease in eversion 

variables between heel strike and midstance.  A further expectation was that due 

to the coupling mechanism at the ankle, internal rotation of the leg would be 

reduced and, a third outcome was that external rotation of the tibia would be 

reduced between midstance and toe-off ( Stacoff et al 2007 ). 

The orthotic devices were utilised to test if they reduce abnormal pronation in gait 

as measured by the calf-to calcaneus or the calcaneus-to-vertical angle.  Sims 

(1983) and Novick & Kelly (1990) both found these angles reduced in subjects 

walking wearing orthoses compared with subjects walking with shoes alone. 
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6.2.1. Hypotheses  

 

The expected effect of comparing the barefoot trials with the shod and medially 

posted orthotic trials would be to see a reduction of foot and leg variables.  It was 

also expected that due to the coupling mechanism at the ankle, internal tibial 

rotation and foot eversion would be reduced when wearing the orthotic (Stacoff 

2007). 

A further 3 parameters were also evaluated as a result of the extra markers on 

the foot and lower leg. 

a) 3D calcaneal inversion/eversion - referred to as pronation/supination.   

b) EV/TIR relationship - (discussed in chapter 2.3) 

c) Navicular height 

 

6.2.2. Marker placement 

 

Subject kinematic and temporal spatial data were assessed using the same 3D 

measurement tool as the control group (chapter 5). 

The markers from the Helen Hayes marker set were located according to the 

specifications below. The additional markers on the foot model are also listed.  

(These have been discussed in detail in a previous chapter 4.4). 
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SACR Sacrum 

LASI/RASI Left anterior superior iliac spine/Right anterior 

superior iliac spine 

LTHI/RTHI Left lateral thigh/Right lateral thigh 

LKNE/RKNE Left lateral condyles of knee/Right lateral condyles 

of knee 

LTIB/RTIB Left lateral lower 2/3 of tibia/Right lateral lower 

2/3 of tibia 

LHEE/RHEE Left heel/Right heel 

LANK/RANK Left lateral malleoli/Right lateral malleoli 

LTOE/RTOE Left 2nd ray/Right 2nd ray 

LNAV/RNAV Left navicular tuberosity/Right navicular tuberosity 

LCALC/RCALC Left calcaneal marker/Right calcaneal marker 

LCALC 1/ RCALC 1 Left calcaneal marker 1/ Right calcaneal marker 1 

LCALC 2/RCALC 2 Left calf marker 2/ Right calf marker 2 

LCALC 3/RCALC 3 Left distal calf marker 3/ Right distal calf marker 3 

Table 6.1 Locations of the anatomical landmarks 
 

From the kinematic data, the positions of the hip, knee and ankle joint in the 

sagittal, frontal and transverse planes were calculated with Vicon workstation.  
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These values were calculated separately for each extremity since the software 

averages the lengths of the limbs as a scaling parameter when the location of the 

centre of the hip joint is determined (Eng & Winter 1995).  Previous studies have 

measured the ROM over the entire gait cycle but due to the STJ working in 

different ways throughout the cycle it was decided to only examine the effect 

during the contact phase (heel contact to foot flat), mid-stance (foot flat to heel-

off) and propulsion (heel-off to toe-off).  The non-weight-bearing swing phase 

was not examined. Graphs were presented with Polygon software. All participants 

were assigned an identification number to preserve confidentiality. 

 

6.2.3. Statistical analysis 

 

All statistical comparisons analysed using the Statistical Package for Social 

Sciences 15 (SPSS Inc, Chicago, IL) and consisted of descriptive statistics, 

independent t-tests and matched paired sample t-tests.  All were tested at a two-

tailed significance of (p<0.05). 

Comparisons were made between subjects for stride characteristics (velocity, 

cadence and stride length), percentage of gait cycle in single and double limb 

stance, force plate parameters and foot and leg kinematics.  All subjects were 

tested for normality using the Shapiro-Wilks test. 

A repeated measure one-way ANOVA analysis was performed to compare the 

minimum and maximum angle values throughout various points of the gait cycle 

within the three experimental conditions (barefoot, trainers and trainers with 

orthoses).  In comparing the results obtained under the three test conditions, the 

difference between equivalent measurements was deemed to be significant if the 

corresponding P value was less than 0.05. Pairwise comparisons were also sought 

as although the results may show a statistically significant result which suggests 

that there is a difference somewhere among the groups. However, this does not 

tell you which group differs from one another.  Where significance was found, the 

Bonferroni post hoc test was executed to identify where the difference lay and the 

assumption of Sphericity was assessed using Mauchlys test. All data were 
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compared to previously obtained results on a group of asymptomatic subjects 

using various t-tests (chapter 5). 

The power analysis conducted on the kinematic variables suggested that there 

was a 93% chance of detecting any differences in these variables between the 

test conditions which were greater than 3.5 degrees. The kinematic variables 

were the same variables as tested in chapter 5. 

 

6.3. Results 

 

Descriptive statistics of the subjects who participated in the study are shown in 

the tables below. 

 

6.3.1. Subject demographics 

 

 N Minimum Maximum Mean Std. Deviation 

Age 15 27 4 

9 

36.53 7.219 

Height (cm) 15 160.50 187.50 173.46 8.578 

Weight (kg) 15 49.00 105.00 77.00 16.392 
 

Table 6.2 Subject demographics for age, height and weight 

 

 gender N Mean Std. Deviation Std. Error Mean 

Height 

(cm) 

male 7 180.35 6.811 2.574 

female 8 167.43 4.288 1.516 

Weight 

(kg) 

male 7 89.00 12.110 4.577 

female 8 66.50 11.904 4.208 

Table 6.3 Subject demographics for height and weight between males 
and females 
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An independent t-test was conducted to compare the height and weight 

differences in men and women.   There were no significant differences difference 

between, height and weight (p<0.05). 

 

6.4. Clinical Assessment results 

 

A matched paired t-test was conducted to test for any significance between the 

pathological leg and the unaffected leg in the patient group. It showed a 

statistically significant difference between right and left sides when measuring Q-

angle weight bearing (p=0.048), rearfoot angle (p=0.009) and hip flexion range 

of motion (p=0.023).   It was, however expected to see more of the variables 

showing significance but all the other variables showed no difference between 

right and left (p>0.05).  

 

Variable Side of 

body 

Mean Std. 

deviation 

P value 

(<0.05) 

Q-angle 

weight 

bearing (°) 

Left 12.86 

13.33 

4.77 

4.87 

0.048 

Right 

Rearfoot 

angle (°) 

Left 8.46 

9.66 

7.68 

8.73 

0.009 

Right 

Hip flexion 

ROM (°) 

Left 116.13 

114.13 

9.15 

10.15 

0.023 

right 

Table 6.4 Variables that differed significantly between right and left sides of 
the body 

 

The graph below displays results when comparing the normal group with 30 

unaffected legs and the symptomatic group with 9 right and 6 left affected legs.  

Note the similarity in the patterns between the groups. 
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Figure 6.3 Comparisons of normal group with unaffected knees with patient 
group with affected knees (All angles measured in degrees, leg length, ankle and 

knee width measured in cm). 
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6.4.1. Influence of gender on symptomatic group 

 

When testing for the effect of gender, the same independent t-test was conducted 

in the symptomatic group and the same four variables as in the control group 

were statistically significant. Ankle width right, left and averaged (p=0.001, 

0.011, 0.003); Q-angle weight bearing right, left and averaged (p=0.001, 0.0001, 

0.0001); Q-angle supine right, left and averaged (p=0.011, 0.001, 0.0001), 

however only the right navicular height was significant (p=0.038) and the right 

leg length (p=0.048). 

 

 

Figure 6.4 Bar chart displaying the variables significantly affected by gender 

(symptomatic group) 

 

Influence of gender on symptomatic compared with symptomatic group 

By using the normal database collected in an earlier chapter (chapter 5), a gender 

comparison was carried out between this group and the pathological group using 

an independent t-test.  Results showed significant differences between males and 
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females for Q-angle supine and weight bearing values and navicular height values 

(p<0.05). 

The table below shows the differences between the weight bearing Q-angle and 

supine Q-angle in both males and females.   

Control group (N = 30) 

  gender N Mean Std. Dev 

Std. 

Error 

Mean 

Q angle supine right 

and left (°) 

male 
15 9.6 .84 .21 

  female 15 14.9 3.1 .82 

Q angle w/ bearing 

right and left (°) 

male 
15 10.5 1.7 .44 

  female 15 14.9 3.7 .96 
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Injured group (N=15) 

 gender N Mean Std. Dev 

Std. 

Error 

Mean 

Q angle w/bearing 

left (°) 

male 
7 9.0 .69 .26 

  female 8 16.7 3.8 1.3 

Q angle w/t bearing 

right (°) 

male 
7 9.1 1.4 .55 

  female 8 17.0 3.5 1.2 

Q angle supine left 

(°) 

male 
7 9.2 1.5 .59 

  female 8 15.6 2.6 .92 

Q angle supine right 

(°) 

male 
7 9.4 1.2 .48 

  female 8 15.7 3.8 1.3 

 
Table 6.5 Differences between weight-bearing Q-angle and supine Q-angle in 

symptomatic and asymptomatic groups 

 

When looking at the males and females in their respective groups of symptomatic 

and asymptomatic, it was interesting to note that the female angles were much 

higher in the symptomatic group compared to the asymptomatic group (mean 

14.9° and 14.9° increased to 16.7° and 15.6°) but the male values were lower in 

the symptomatic group compared with the asymptomatic group (mean 9.6° and 

10.5° decreased to 9.0° and 9.2°).    

Male values for navicular height increased slightly between the normal and patient 

groups and female values increased by 3mm between groups. 

 



186 

 

Differences in clinical assessment between symptomatic and 

asymptomatic groups 

An independent t-test was conducted to see any differences between the 

variables in the symptomatic group and the asymptomatic group.  Right and left 

legs were compared due to the clinical significance of a few variables when 

comparing both sides. 

There was no statistical significance for most of the variables however as 

expected some of the variables were affected.  Rearfoot angle left (p=0.04), 

rearfoot angle right (p=0.01), ankle plantarflexion with knee extended in the right 

(p=0.03), and with knee flexed in the left side (p=0.04) and 1st MTPJ dorsiflexion 

(p= 0.01) all had statistical significance (p<0.05).  See Table 6.6. 

 

variable mean 

normal  

mean 

patient 

Std dev 

normal 

Std dev 

patient 

P value 

(p<0.05) 

rearfoot angle 

(°) left 

6.66 8.46 2.97 2.44 0.04 

rearfoot angle 

(°) right 

7.03 9.66 3.38 3.06 0.01 

ankle 

p/flexion 

knee ext(°) 

right 

40.0 34.1 7.66 10.37 0.03 

ankle 

p/flexion 

knee flexed(°) 

left 

39.86 34.2 8.25 9.3 0.04 

1st MTPJ 

d/flexion (°) 

right 

39.6 32.2 7.73 3.27 0.01 

Table 6.6 Displaying the variables which showed significance between the two 
groups 
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6.4.2. Temporal and stride parameters for symptomatic group 

(n=15) 

 

A matched paired t-test was conducted to test if there was any significance 

between the patient’s pathological leg and their non-pathological leg.  When 

comparing the spatio-temporal parameters, foot off in the barefoot condition 

showed significance (left leg mean = 60.68%; right leg mean = 61.78%, p=0.04) 

between right and left sides but all the other variables showed very small 

differences in the means but no significant differences. No significant differences 

were shown in the trainer condition and in the orthotics condition, cadence 

showed significance (mean 0.95 steps/min, p=0.045). 

A one-way repeated measures ANOVA was also conducted to compare continuous 

temporal spatial variables over the three conditions, barefoot, trainers and 

orthotics.  The means and SD are shown in Table 6.7. 
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MEASURE BAREFOOT TRAINERS ORTHOSES 

Cadence 

(steps/min) 

119 ± 11.31 118 ± 12.0 118.67 ± 11.8 

Double support 

(s) 

0.23 ± 0.50 0.25 ± 0.09 0.24 ±  0.07  

Foot off (%) 61.1± 1.85  61.2 ± 2.42 60.0 ± 4.15 

Opposite foot 

contact (%) 

50.64 ± 2.6 50.41 ± 3.27 51.17 ± 2.80 

Opposite foot off 

(%) 

11.03± 1.85  12.15 ± 3.32 14.6 ± 8.14 

Single support 

(s) 

0.40 ± 0.37 0.38 ± 0.06 0.38 ± 0.05 

Step length (m) 0.70 ± 0.77 0.72 ± 0.10 0.70 ± 0.68 

Step time (s) 0.51 ± 0.48 0.49 ± 0.05 0.48 ± 0.09 

Stride length (m) 1.41 ± 0.16 1.42 ± 0.16 1.42 ± 0.15 

Stride time (s) 1.02 ± 0.94 1.02 ±  0.11 1.02 ± 0.95 

Walking speed 

(cm/s) 

1.39 ± 0.21 1.38 ± 0.21 1.39 ± 0.20 

Table 6.7 Temporal spatial parameters under three conditions 

 

An increase in the parameter opposite foot off was noted in the trainer and 

orthotic group compared to the barefoot group and opposite foot contact 
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decreased in value in condition trainers and orthotic.  Step length, foot off, double 

support and step time increased from barefoot to trainer condition and then 

decreased in the orthotic group. 

Results from the repeated measures ANOVA test showed no significance at all for 

the data across the three groups. There were also no significance shown between 

the three groups (p>0.05). 

 

Gender differences between the three conditions for temporal spatial 

data 

The table below shows descriptive statistics for the patient barefoot group 

comparing males and females.  An independent t-test was conducted to test if 

there were any significant differences between temporal spatial data between the 

sexes in each of the three conditions.  Only one statistical significance was found 

in the cadence variable (p=0.03), right leg cadence (p=0.03) and left leg cadence 

(p=0.02) for the barefoot condition. 

 

Average of 

right and left  

Gender Mean Std 

deviation 

p-value 

Cadence 

(steps/min) 

Male 

Female 

112.57 

124.5 

6.87 

11.11 

0.03 

Table 6.8 Gender statistics for temporal spatial data (barefoot) 
 

No statistical differences existed in the trainers group but cadence showed 

significance in the orthotics group, right leg (p=0.03), left leg (p=0.04).   
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Average of 

right and left  

Gender Mean Std 

deviation 

p-value 

Cadence 

(steps/min) 

Male 

Female 

112.47 

125.42 

8.78 

11.83 

0.045 

Table 6.9 Gender statistics for temporal spatial data (orthotics) 
 

Temporal spatial data comparing symptomatic and asymptomatic groups 

Foot off (mean normal group= 59.99%, patient group=61.18%, p=0.017) was 

the only variable to show significance when comparing symptomatic and 

asymptomatic groups (barefoot condition).  Most of the variables were lower in 

the normal group although cadence was increased in the normal group (119 

steps/min, 118 steps/min) compared with the injured group. 

 

6.5. Kinematic data results  

 

Three clinical planes of motion (sagittal, frontal and transverse) were analysed at 

the pelvis, hip, knee, ankle and foot joints.  All joint comparisons were examined 

bilaterally. The graphs showing wave patterns from the kinematic data of the 

symptomatic group with barefoot, trainers and orthotic conditions are far too 

numerous to appear in this chapter.  References to a few are throughout the 

results section but a full concise list of them appears in the appendix. 

 

Comparing asymptomatic and symptomatic subjects with minimum and 

maximum values.  

Comparisons were made with kinematic data from pathological gait cycles against 

averaged kinematic data from the recently obtained non-pathological gait cycles. 

An independent t-test was carried out on the two groups comparing the minimum 

and maximum values of the kinematic data.  The results are shown below.  The 

results have been presented by boxplots as this can show any outliers.  Outliers 

are cases with scores that are quite different from the rest of the group, either 
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much higher or lower.  In addition to this, boxplots allow us to inspect the pattern 

of scores within the two groups.  It also allows for an indication of the variability 

in scores within the groups and a visual inspection of the differences between 

groups using the median level. 

 

Maximum data 

The only significant variable in this group was foot progression angle (external 

angle), asymptomatic (mean = 21.35°, SD 33.01), symptomatic (mean = 5.31°, 

SD 8.07), t (35.30) = 2.52, p=0.017) equal variances not assumed. 

 

Figure 6.5 Maximum asymptomatic vs symptomatic values of foot progression 
external angles (°) 

 

Median values for the control group are 9.57° and 6.23 ° for the injured group. 

 

 

 



192 

 

Kinematic graphs showing differences between symptomatic and 

asymptomatic groups 

Samples of these graphs are shown below however a complete list of all graphs 

can be found in the Appendix.  

The x-axis of each graph represents the percentage of the gait cycle and the y-

axis represents the joint angle. Each curve, therefore, shows the variation of the 

relevant joint angle during the gait cycle. Mean angles are superimposed in each 

graph. The vertical line in each graph represents the separation between stance 

and swing phase at approximately 60% of the gait cycle. The red line represents 

the symptomatic group and the blue line represents the asymptomatic group. 

 

 

Figure 6.6 Ankle dorsiflexion/plantarflexion (°) in normal and injured groups 
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Figure 6.7 Ankle internal/external tibial rotation (°) in normal and injured 
groups 

 

 

 

Figure 6.8 Knee flexion/extension (°) in normal and injured groups 

 

Figures 6.6, 6.7 and 6.8 display the results from the asymptomatic group 

compared with the results from the symptomatic group.  Maximum ankle 

dorsiflexion is much higher in the injured group but maximum ankle plantarflexion 

is lower during stance phase.  Tibial rotation (figure 6.7.) shows the injured group 

with increased maximum values throughout the stance phase and the non-injured 

group displaying higher minimum values.  Figure 6.8 displays knee flexion angles 

and again show higher maximum values throughout the stance phase in the 

injured group. 
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Comparison of maximum values between male and female symptomatic 

subjects  

Independent t-tests were performed to compare differences in kinematics in male 

and female symptomatic subjects.  In the maximum group, five of the variables 

examined had significant differences between the sexes.   

 

Figure 6.9 Graph showing significant variables between males and females in 
barefoot walking 
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Variable 

barefoot 

Male  (°) Female  (°) P value 

Ankle 

dorsiflexion 

6.9 28.09 0.010 

Knee varus 4.21 1.20 0.050 

Knee internal 

rotation 

23.42 17.17 0.009 

Hip extension 37.5 43.37 0.022 

Table 6.10 Maximum variables significantly different between males and females 
walking barefoot 

 

From the table above it was shown that females were significantly greater than 

males in ankle dorsiflexion and hip extension and males were significantly greater 

in knee varus and knee internal rotation.  

 

 

 

Figure 6.10 Graph showing significant variables between males and females in 
walking with trainers (°) 
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Variable 

trainers 

Male  (°) Female  (°) P value 

Ankle 

dorsiflexion 

6.86 31.5 0.016 

Ankle 

plantarflexion 

5.34 10.77 0.008 

Knee external 

rotation 

31.38 17.28 0.003 

Hip extension 38.63 44.10 0.021 

Hip internal 

rotation 

3.51 7.72 0.007 

Pelvic external 

rotation 

5.86 8.13 0.030 

Table 6.11 Maximum variables significantly different between males and females 
walking with trainers 

 

From Table 6.11 females exhibited greater values for all variables except knee 

external rotation. 

 

 

Figure 6.11 Graph showing significant variables between males and females in 

walking with trainers and orthotics (°) 
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In Table 6.12 male angles are far greater than female angles with the exception 

of knee flexion and extension. 

 

Variable 

orthotics 

Male  (°) Female  (°) P value 

Ankle 

plantarflexion 

-17.17 6.17 0.006 

Ankle 

abduction 

-5.03 0.47 0.024 

Ankle internal 

rotation 

-18.42 -0.29 0.008 

Ankle external 

rotation 

-25.05 -5.62 0.006 

Foot 

progression 

internal angle 

-16.8 2.21 0.002 

Foot 

progression 

external angle 

-21.00 -3.94 0.010 

Knee flexion 13.91 53.55 0.014 

knee extension 15.64 55.11 0.012 

Knee valgus -6.08 1.99 0.035 

Hip extension 2.14 38.05 0.004 

Hip external 

rotation 

-13.73 1.3 0.031 

Pelvic anterior 

tilt 

-17.32 -1.43 0.032 

Table 6.12 Maximum variables significantly different between males and females 
walking with trainers and orthotics 

 



198 

 

Analysis of kinematic data 

Maximum internal tibial rotation was progressively decreased between the 

barefoot and orthotic conditions in 11 out of the 15 subjects (73%) and maximum 

eversion values decreased but in only 3 out of 15 (20%) subjects in the orthotics 

condition.  However, despite the small number of reduced eversion values, 7 out 

of the sample coupled internal tibial rotation with eversion. 

In a few subjects, knee external rotation, hip extension and pelvic obliquity up, 

values were increased in the trainer condition but decreased in the orthotic 

condition although were still a higher value than in the original barefoot condition 

(see table on p210). 

 

MAXIMUM VALUES OF KINEMATIC DATA 

When testing ankle plantarflexion, Mauchlys test indicated that the assumption of 

sphericity had been violated (X (2) = 16.27, p=0.001) therefore the degrees of 

freedom were corrected using Greenhouse- Geisser estimates of sphericity 

(e=0.58).  The reason the GG test was chosen was that e<0.75 (Field, 2000). The 

results show that there was a significant effect on the three conditions on ankle 

plantarflexion, F (1.17, 16.34) = 12.98, p=0.002.  The maximum ankle 

plantarflexion angle was significantly increased between groups barefoot and 

orthotics (p= 0.006) and trainers and orthotics (p= 0.009). 
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As shown in Figure 6.12, subject 9 is an outlier, so the same test was repeated 

without the data from subject and found there was  still a significant difference 

between the three conditions on ankle plantarflexion , F(1.15, 15.03)= 13.24  

p=0.002. 

 

 

Figure 6.12 Mean data for maximum ankle dorsiflexion/plantarflexion angles (°) 
of three walking conditions 

 

 

 

Figure 6.13 Ankle dorsiflexion/plantarflexion over three conditions 
 

No significant differences were found for maximum ankle dorsiflexion (p<0.05).  
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Figure 6.14 Maximum ankle abduction/adduction over three conditions 
 

  
 

Mauchlys test was not violated so sphericity was assumed.  The results show that 

there was a significant difference between the groups for abduction F (2, 28) = 

9.01, p=0.001).  It was also shown that there was a significant difference of 

maximum ankle abduction between the groups of barefoot to orthotics (p=0.012) 

and trainers to orthotics (p= 0.017).  There was no significance for maximum 

adduction of the ankle although angle values decreased under all three conditions, 

barefoot to trainers (p=0.04), barefoot compared to orthotics (p=0.0020 and 

trainers compared to orthotics (p=0.023). 

 

 

Figure 6.15 Ankle internal/external rotation over three conditions 
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Figure 6.16 Mean data for maximum ankle internal/external angles of three 
conditions 

 

Mauchlys test was not violated for ankle internal rotation so sphericity was 

assumed.  The results show that there was significant difference between the 

groups F (2, 28) = 8.32, p=0.001).  It can be seen that there was significant 

decrease of internal rotation between the groups of trainers to orthotics (p= 

0.007) and barefoot to orthotics (p= 0.012).  Ankle external rotation was also 

statistically significant F (1.4, 19.6) = 13.67, p= 0.001.  The maximum external 

rotation angle was significantly increased under the barefoot-orthotics (p=0.003), 

barefoot to trainers (p=0.03) and trainers to orthotics (p= 0.014) conditions. 

   

 

 

Figure 6.18 Mean data for maximum foot progression (°) over three conditions 
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The graphs above, foot progression angles  were statistically all significant F(1.5, 

20.29)=10.36, p=0.002; F( 2, 28)=12.16, p=0.001).    The maximum internal 

foot progression angle was significanctly increased under groups barefoot to 

orthotics (p=0.04) and trainers to orthotics (p=0.01).  The maximum external 

foot progression angle  increased significantly between groups barefoot to trainers 

(p=0.01) and barefoot to orthotics (p=0.004). 

Knee flexion F (1.02, 14.32) = 12.84, p= 0.03 and knee extension F (2, 28) = 

11.11, p= 0.001 show both have significance between the three groups.  Peak 

knee flexion angles were significantly decreased between barefoot and orthotics 

(p=0.01) and trainers and orthotics (p=0.006) and knee extension angles were 

significantly increased between barefoot and trainers (p= 0.002) and reduced 

between trainers to orthotics (p=0.09). 

 

 

Figure 6.19 Mean data for maximum knee flexion/extension angles (°) of three 
conditions 
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Figure 6.20 Knee flexion/extension over three conditions 

     
The maximum knee varus angle was significantly increased F (2, 28) = 5.99, p= 

0.007 under trainers to orthotics (p =0.03) conditions. Knee valgus displayed no 

statistical significance (p>0.05). 

 

 

Figure 6.21 Mean data for maximum knee varus/valgus angles (°) over three 
conditions 

 

The peak internal rotation angle shows significantly reduced values under the 

barefoot to orthotics (p= 0.023) conditions and trainers to orthotics (p= 0.002) 

conditions. 
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Figure 6.22 Maximum values of internal/external knee rotation (°) angles over 
three conditions 

 

 

The graph clearly shows an unusual peak of rotation in the trainer group from 

subject 9 (85.3°).  The data was run again with ANOVA without subject 9 and 

although different, still statistically significant F (1.02, 13.23) =10.75, p=0.006).  

There were also changes within the group conditions data- barefoot compared to 

orthotics (p= 0.001), barefoot compared to trainers (p=0.05) and trainers 

compared to orthotics (p=0.023). 

 

 

Figure 6.23 Mean data for maximum knee internal rotation angles (°) over  
three conditions F (2, 28) = 6.60, p=0.004 

 

Hip flexion values were not statistically significant (p=0.151).   
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Peak hip extension values were significantly increased under conditions barefoot 

to orthotics (p=0.012), reduced under trainers to orthotics (p=0.010) and 

increased under barefoot to trainers (p= 0.002); F (1.00, 14.02) = 12.13, 

p=0.004). 

 

 

Figure 6.24 Hip flexion/extension angle over three conditions 
 
 

 

Figure 6.25 Mean data for maximum hip flexion/extension angles (°) over three 
conditions 
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Figure 6.26 Mean data for maximum hip abduction angles (°) over three 
conditions 

  
 
 
 

 

Figure 6.27 Maximum hip adduction/abduction angles (°) over three conditions 

 

Hip abduction did not show any statistical significance under the three different 

conditions.  Hip adduction was significant F (1.17, 16.38) = 9.74, p=(0.005).  

Peak hip adduction decreased significantly under conditions barefoot to orthotics 

(p=0.02) and decreased again with trainers compared to orthotics (p=0.014). 

Maximum hip internal rotation was not significant however, maximum hip 

external rotation was p = (0.002). 
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Figure 6.28 Mean data for maximum hip internal/external rotation (°) over three 
conditions 

 

 
 Pelvic anterior tilt, F (1.37, 19.24) = 12.43, p= 0.001 and pelvic obliquity up, F 

(2, 28) = 9.52, p=0.001 both displayed statistical significance.  Both had the 

same pairwise comparisons, barefoot to trainers (p= 0.28), (p=0.23) and 

barefoot to orthotics (p=0.002), (p=0.006). 

Pelvic posterior tilt, pelvic internal or external rotation did not show any 

significance between the three conditions. 

 

6.6. Extra marker set on foot and leg 

 

The extra marker placed on the top of the navicular was able to measure the 

height of the navicular from the floor in millimetres.  Tests were run on static 

measures and dynamic conditions.  The static measurements were available from 

the calibration trial therefore were only available in the barefoot condition. Paired 

t-tests were conducted to test for any differences between pathological sides and 

unaffected sides. 

In the static scores, no significance was shown between the two sides (p=0.84). 

Minimum and maximum values were very similar in right and left sides (left, min 

8.60mm, max 21.10mm, mean 14.6mm; right, min 9.19mm, max 21.9mm, 

mean 14.9mm).   
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Figure 6.29 Static navicular height values in 15 subjects 
 

An independent t-test was carried out to test for differences in gender and 

although male height was higher than female height in both injured and non-

injured sides, no significant differences were shown (p>0.05). 

Values were sought from the maximum and minimum groups in the dynamic trails 

over the three experimental conditions. In the maximum and minimum groups 

both found statistically significant differences. The maximum group showed 

significance in the trainer condition between right and left (p=0.045) and the 

minimum group for barefoot condition between right and left (p=0.013) 

 

 

Figure 6.30 Peak navicular height (cm) values over three conditions 
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The graph above shows that 60% of subject navicular height values reduced 

when in the trainer condition compared to the barefoot condition.  This could be 

due to the marker on the shoe not being placed in the same position as there was 

no cut out for the navicular bone on the trainer.   55% of values increased when 

wearing orthotics compared to the barefoot condition which is what would be 

expected and 73% of measurements increased between the trainer and the 

orthotic condition.  It was expected that the height would increase when in the 

trainer and orthotic condition. 

 

 

Figure 6.31 Minimum navicular height values (cm) over three conditions 
 

Repeated measures ANOVA was carried out to detect any comparisons between 

the three groups but no comparison were found in either of the maximum or 

minimum groups.  There were differences between the means of the three 

experimental groups but the standard error was quite high.   
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Calcaneal Inversion and Eversion results  

A matched paired t-test was conducted to test for differences between the 

pathological leg and the unaffected leg in which it was shown no significances in 

either the maximum and minimum values (max group, barefoot R & L (p=0.09); 

trainer R & L, (p=0.57); orthotic R & L, (p=0.92); min group, barefoot R & L, 

(p=0.55); trainer R & L, (p=0.26); orthotic R & L, (p=0.75).  A repeated 

measures ANOVA was also performed to see if there were any significant 

differences between each condition of barefoot, trainers and trainers with 

orthoses.  The results were as shown below. 

 

 

Figure 6.32 Maximum mean values of inversion/eversion (°) over three 
conditions 
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Condition N 

Min      

(°) 

Max     

(°) 

Mean 

(°) Std. Dev 

Barefoot 15 -9.42 11.00 4.0 5.2 

Trainers 15 -1.58 22.70 6.7 6.8 

Orthotics 15 -7.30 22.90 8.0 6.3 

Valid N 

(listwise) 

15     

Table 6.13 Maximum values for inversion/eversion over three conditions 
 

The graph clearly shows a similarity between the trainer and the orthotic groups 

however no significance was shown between any of the groups (F= (2, 28) = 

2.62, p=0.09).  The descriptive statistics show that the mean values increase 

throughout the three conditions, something that was not expected. 

 

 

Figure 6.33 Minimum mean values of inversion/eversion (°) over three conditions 
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Condition N 

Min    

(°) 

Max     

(°) 

Mean 

(°) 

Std. 

Dev. 

Barefoot 15 -20.80 -.32 -12.0 5.4 

Trainer 15 -19.05 1.60 -8.2 6.5 

Orthotic 15 -19.75 4.40 -7.7 8.3 

Valid N 

(listwise) 

15     

Table 6.14 Minimum values for inversion/eversion over three conditions 

 

The mean values for the minimum group reduced throughout the three conditions 

with eversion values reducing from -12.1° to -7. 79°. 

 

 

Figure 6.34 Inversion/eversion angles of one random subject 
 

Figure 6.34 shows maximum inversion/eversion  values throughout 100% of the 

stance phase for one random  subjects. Negative values denote eversion. In the 

frontal plane, calcaneal  inversion and eversion displayed differences between 

barefoot, trainers and orthotics. Looking at the subject 1 graph (Figure 6.34.), the 

barefoot condition started at heel strike in an everted position and the curve 

inverted and everted  through to  mid stance, started to evert again, and push off 

in an everted position.  In the orthotic condition, the rearfoot lands in an inverted 



213 

 

position and immediately started inverting and peaking at mid-stance, everting 

through to late stance and push off.  The trainers pattern follows a very similar 

trend as the barefoot pattern except that it started in a more everted position and 

didn’t peak as high as the barefoot condition.  Both barefoot and trainers start in 

an everted position but the orthotic condition starts heel strike in a very inverted 

position.  The rest of the graph is very similar except for mid- to late stance 

where trainers and orthotics are in an inverted positon but the barefoot is 

everting. 

The final two additional markers on the back of the calf measured the calf to 

calcaneus angle sometimes referred to as the rearfoot angle. This was the 2D 

angle (see chapter 4 section 4.6).  This explains what the rearfoot angle is and 

why it was being measured. 

A matched paired t-test was conducted to test for differences between the 

pathological leg and the unaffected leg in which it was shown no significances in  

the maximum condition but in the minimum group of values, right and left 

trainers showed significant differences (mean right 8.33°, left 6.46°, p=0.034). 

 

Figure 6.35 Rearfoot angle of one random subject over three walking conditions 
 

 

Figure 6.35 shows subject 1 rearfoot angle throughout the stance phase over 

three conditions and figure 6.36 displays the mean of the rearfoot angle of 15 

subjects. 
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Figure 6.36 Mean values of rearfoot angle of 15 subjects over three walking 
conditions 

 

A repeated measures ANOVA was also performed to see if there were any 

significant differences between each condition of barefoot, trainers and trainers 

with orthoses.  The results were as shown below. 

 

Maximum values 

 

Condition N 

Minimum 

(°) 

Maximum 

(°) Mean (°) 

Std. 

Deviation 

barefoot 15 12.72 26.75 18.9 4.8 

trainer 15 9.94 41.65 20.3 9.2 

orthotic 15 9.94 37.55 19.5 8.8 

Valid N 

(listwise) 

15     

Table 6.15 Maximum values of rearfoot angles over three conditions 
 

Mean maximum values increase in inversion values from barefoot to trainers and 

decrease slightly when wearing orthotics but not enough to be significant between 

the three conditions (p=0.552). 
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Minimum values 

 

Condition N 

Minimum 

(°) 

Maximum 

(°) 

Mean 

(°) 

Std. 

Deviation 

Barefoot 15 1.54 7.68 5.0 2.4 

Trainer 15 1.16 19.90 7.3 6.0 

Orthotic 15 .36 14.45 6.0 4.0 

Valid N 

(listwise) 

15     

Table 6.16 Minimum values of rearfoot angles over three conditions 

 

Minimum values had no significant differences (p=0.144).  The maximum value 

for the trainer and orthotic group were both much higher than the barefoot group.  

The maximum rearfoot angle is much more inverted when wearing trainers 

compared to barefoot however the angle starts to evert when wearing the 

orthotic. 

Due to the large amounts of results shown, a concise summary of the repeated 

measures ANOVA comparing kinematic data over three experimental conditions, 

barefoot, trainers and orthotics is provided. 
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Maximum values 

 Variable Maximum 

 (p value) 

conclusion Sig value of 

comparisons 

(p) 

ankle Dorsiflexion No sig   

 Plantarflexion 0.02 ↑1-3 ↓ 2-3 0.006, 0.009 

 Adduction No sig   

 Abduction 0.08 ↑1-3 ↑2-3 0.012, 0.017 

 Int rot 0.001 ↓2-3 ↓1-3 0.007, 0.012 

 Ext rot 0.001 ↑1-3 ↑1-2↑2-3 0.003, 0.03, 

0.014 

Foot 

prog 

 prog  int  0.002 ↑1-3 ↑ 2-3 0.04, 0.01 

  prog  ext 0.001 ↑1-2 ↑1-3 0.01, 0.004 

Knee Flexion 0.003 ↓1-3 ↓2-3 0.01, 0.006 

 Extension 0.001 ↑1-2  0.002, 0.09 

 Varus 0.007 ↑2-3 0.03 

 Valgus 0.001 ↓1-3 ↓2-3 0.017, 0.02 

 Int rot 0.004 ↓1-3 ↓2-3 0.023, 0.002 

 Ext rot 0.002 ↑1-2 ↓2-3 0.02, 0.019 

Hip Flexion No sig ↑1-2 ↓1-3 0.024 

 Extension 0.004 ↑1-3 ↑1-2↓2-3 0.012, 

0.002,0.01 

 Abduction No sig ↑1-2  0.04 

 Adduction 0.005 ↓1-3 ↓2-3 0.02, 0.014 

 Int rot Not sig ↓1-3  

 Ext rot 0.02 No comparisons  
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Pelvis Ant tilt  ↑1-2 ↑1-3 0.02, 0.002 

 Post tilt No sig   

 Obliq up 0.001 ↑1-2  ↑1-3 0.03, 0.006 

 Obliq down No sig   

 Int rot No sig   

 Ext rot No sig   

     

↑= angle has increased 1-barefoot, 2-trainers, 3-trainers with orthotics 

↓= angle has decreased 

 

6.7. Discussion  

 

The primary purpose of this study was to evaluate the biomechanical effects, if 

any, of wearing orthoses and trainers compared to walking barefoot.  This was 

achieved by analysing the 3D kinematics and the temporal parameters for any 

changes during the three experimental conditions.  This may then provide a more 

comprehensive explanation in the successful treatment of AKP. 

The other main aim was to analyse the new definitive foot model measuring 

navicular height, rearfoot angle and inversion and eversion in the frontal plane. 

 

6.7.1. Clinical assessment for pathological group 

 

In the clinical assessment, it was noted that in the symptomatic group there were 

significant differences between right and left sides during Q-angle (w/b), rearfoot 

angle measurement and hip flexion compared to no significant differences in the 

asymptomatic group. It was expected that there might be some differentiation in 

the patient group because these subjects all had a concurrent knee injury and 

both sides may not be the same.   This could be due to the fact that it was 
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established in the literature review that due to altered biomechanics, vastus 

lateralis often alters the pull of the Q-angle which could therefore create a larger 

Q-angle value.   

 

Influence of gender on symptomatic group 

Ball & Johnson (1996) demonstrated a small but significant gender difference with 

females exhibiting a greater range of motion than males in all the age groups.  It 

was found in this study that only five of the variables had a significant difference 

between the sexes. 

When comparing gender on the symptomatic groups, the same variables as in the 

normal group were significant, ankle width, q-angle w/b and supine, leg length 

and navicular height.  

Navicular height was significantly higher in the male group compared with the 

female group. Nielson et al (2009) agreed with this as they stated that as foot 

length increases, navicular height increases.  This was expected as discussed in 

the asymptomatic group.  Zeybek et al (2008) carried out a study on 249 subjects 

measuring right and left navicular height.  They found significant differences 

between their measurements between men and women.  Their static navicular 

height values were not consistent with this study’s results as they had much 

higher scores but their measurement was non-weight-bearing. Perhaps a small 

methodological flaw in the present study was that body weight was not taken into 

account when measuring weight-bearing navicular height therefore it was more 

than likely that body weight alone reduced the height of the navicular. 

It was of course expected that women’s Q-angle would also be significantly 

different in this group.  Leg length and ankle width which has been discussed 

earlier are dependent on height (r= 0.95 leg length-height and r= 0.75 ankle 

width- height) so again it was expected to see a difference between the genders 

within these variables. 
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Influence of gender on symptomatic compared with asymptomatic group 

Comparing the male and female values within both groups, although not 

significant, the females exhibit higher Q-angle values.  The female values are 

consistent with other studies (La Brier & O’Neill 1993) and (Hughston et al 1984) 

state that anything more than 15 in women is abnormal.  However, the male 

value of Q- angle weight-bearing was lower in the AKP group than the normal 

group and the females had a higher value in the AKP group than the normal 

group.  The Manual of Orthopaedic Surgery (1972) considers angles greater than 

15 degrees in men and 20 degrees in women pathological however, that does 

appear to be a little inaccurate (Horton & Hall 1989). 

 

Gender  

Q angle weight 

bearing right and 

left (°) 

Q angle supine right 

and left (°) 

Male 

 

 

Mean 9.75 9.93 

N 8 8 

Std. Deviation 2.32 2.24 

Female 

 

 

Mean 16.92 15.78 

N 7 7 

Std. Deviation 3.95 3.37 

Total 

 

 

Mean 13.10 12.66 

N 15 15 

Std. Deviation 4.81 4.064 

Table 6.17 Q-angle weight- bearing and supine for patient group 

 

Theoretically, a higher Q-angle increases the lateral pull of the quadriceps femoris 

muscle on the patella and potentiates patellofemoral disorders (Horton & Hall 

1989).  

There was a 1.6mm difference in navicular height between the asymptomatic 

group and the symptomatic group.  It was expected for the asymptomatic group 

to have a higher value as the patient group consisted of mostly over pronators, 

which would result in a smaller navicular height score.  
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Differences in clinical assessment between symptomatic and 

asymptomatic groups  

Rearfoot angle, ankle plantarflexion and 1st MTP joint dorsiflexion were all 

significant variables when comparing both symptomatic and asymptomatic 

groups. 

Rearfoot angle in the injured group was 2.2° everted higher than the non-injured 

group, ankle plantarflexion and 1s t MTP joint dorsiflexion was increased in the 

non-injured group compared to the injured group. Despite the frequent clinical 

use of the rearfoot angle, its direct relationship to abnormal rearfoot motion 

during locomotion and its relationship to lower extremity injury are sparse 

(Cornwall & McPoil 2004). 

Minimum and maximum rearfoot angle values (inversion/eversion) are shown in 

table below. (Negative values indicate inversion and positive values indicate 

eversion). 

Name of 

study 

N Min (°) Max(°) Mean(°) 

Present 

study 

n=30 (normal) 

n=15 (injured) 

-2.5 

4.5 

15 

15 

6.85 

9.06 

Chuter 

(2010) 

n=20(normal) 

n=20 

(pronated) 

3 

7 

7 

14 

4.95 

10.71 

McPoil & 

Cornwall 

(2004) 

n= 82 -0.2 11.8 6.3 

Sobel 

(1999) 

n=88 -1 14 6.07 

Table 6.18 Maximum, minimum and mean rearfoot angles 
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The results of the present study state that in the normal group the maximum 

value is 15 degrees, which is extremely high, compared to the other studies 

shown in the table.  However, this particular value is an outlier when if it was 

removed, the maximum value for rearfoot was 11 degrees of eversion.  Root et al 

(1977) proposed that the angle of the rearfoot in quiet standing should be in the 

range of 0-2 degrees either inverted or everted.  This appears to be a very low 

and unrealistic value and is not consistent with other empirical studies.  Sobel et 

al (1999) reported very different values to Root and colleagues and found 

maximum values to be 14 degrees everted.  The present study’s results compare 

favourably with the shown rearfoot angle values. 

Ankle plantarflexion was reported to be reduced significantly in the patient group 

by approximately four degrees.  Lun et al (2004) reported similar reductions in 

plantarflexion ROM between the injured and non-injured subject.  

Caylor et al (1993) found no significant difference in Q-angle between 

asymptomatic subjects (11.1 +/- 5.5 degrees) and symptomatic subjects (12.4 

+/- 5.1 degrees) (p = 0.07). They concluded that increased Q-angles were not 

responsible for AKP in this group of patients. Other factors were hypothesized to 

be responsible for their symptoms. The results of this present study agreed and 

found that no statistical differences were found between either groups.  The 

female symptomatic group had higher values for both supine and weight bearing 

methods and the male symptomatic group also had a higher weight bearing value 

but a lower supine value. 

 

Gender differences in temporal-spatial data 

Because of there being distinct gender differences in skeletal dimensions, the 

walking patterns of the two genders are likely to differ (Cho et al 2004). In all 

three conditions of barefoot, trainers and orthoses, cadence was a constant 

statistical significant variable.  The female group exhibited many more steps per 

minute (124 compared with 112 barefoot; 125 compared with 112 trainers and 

124 compared with 112 orthotic group).  Murray et al (1964) and Murray et al 

(1970) studied data that showed that females walked slower with shorter step 
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lengths but with greater cadence than males.  This however was proven without 

any statistical analysis but Oberg et al (1993) found consistent results as Murray 

and colleagues.  In the trainer condition, stride time and step time were deemed 

significant and the females were slower in both variables than the males. In the 

orthotic condition, stride time was significant with females slower than males and 

opposite foot off and single support also significant.   

The results show that no significant differences existed between the three 

conditions for temporal spatial data in the pathological group.  Chen et al (2010) 

found that stride length was significantly longer in the shoe condition and the 

insole condition than the equivalent results in the barefoot group (insoles 

compared to barefoot (p= 0.02) and shoes compared to barefoot (p= 0.03).  The 

shoes however were custom made for each subject and the insoles had been 

moulded for each subject.  An interesting observation in this study was that there 

was a 4% reduction in step frequency, approximately 3% increase in step length 

and a 1cm increase in stride length between barefoot and trainers.  Majumdar et 

al (2006) explained that this increase in step and stride length may be due to 

added cushioning, snugness of fit and comfort of the shoe.  They tested military 

boots against barefoot but the same snugness and comfort could be applied to 

the fit of a trainer. 

When comparing the symptomatic group with the asymptomatic group, it was 

also found that foot off was the only variable to increase significantly.  The results 

show that temporal spatial data was not particularly affected by the injured 

subjects and their pathological legs. 

 

6.7.2. Kinematics of symptomatic subjects 

 

Gender differences  

Ferber et al (2003) also looked at gender differences between normal kinematic 

data in running and found significant maximum values in hip adduction, knee 

abduction and hip internal rotation.  They hypothesised that females would have a 

lower internal knee rotation angle due to the greater femoral internal rotation.  In 
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the present study, the results were consistent with the hypothesis (Mean hip 

internal rotation – male 2.90 degrees female 5.31 degrees, mean knee internal 

rotation – male 23.42 degrees female 17.17 degrees) although it must be noted 

that the present study looked at symptomatic subjects walking and Ferber et al 

(2003) studied a normal group running.  Kerrigan et al (1998) reported that 

females had significantly higher hip flexion and lower knee extension.  This study 

reported a significantly higher hip flexion and although not significant, a higher 

knee extension in women. 

In the orthotic condition, knee flexion was very low in the male group and knee 

extension was very high in the female group. This agrees with Malinzak (2001) 

who reported less peak knee flexion in females. 

 

 

Figure 6.38 Significant mean differences between males and females in orthotic 
condition 

 
 

In the symptomatic barefoot group, knee flexion values were slightly higher for 

both sexes with 61.56° for males and 61.04° for females.  Knee extension values 

were 21.31° for males and 48.68° for females.  In the normal group, knee peak 

flexion and extension values were for males 60.29°, 17.07°, and females 53.88° 

and 24.90° respectively.  In the trainers group, knee flexion values were slightly 

raised from the barefoot group and knee extension values were raised for both 

sexes but especially in the male group (21.31° to 63.05°). 
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It was noted that the knee flexion angle was dramatically reduced comparing 

barefoot to the orthotic condition for males and knee extension for females was 

dramatically increased between the barefoot to orthotic condition.   

 

Q-angle weight bearing and supine 

Q-angles in females were consistently and significantly higher than their male 

counterparts.  This was expected as it is well documented that females have 

larger Q-angles (Livingstone 1999; Horton & Hall 1989). 

  

 

Figure 6.39 Q-angles and hip adduction in males and females 

 

The graph clearly shows the higher values for both Q-angle positions and hip 

adduction in the female group.   This is consistent with Hamill et al (1999) who 

state that greater Q-angles result in greater hip adduction values.  They also state 

that larger Q-angles result in larger values of foot pronation.  A paired sample t-

test was conducted to test for any significance between Q-angles and rearfoot 

angles.  Results showed there was statistical significance between Q-angle 

weight- bearing and supine positions and rearfoot angle (P=0.05; 0.04).  

 It was found in the clinical assessment that the women in both asymptomatic 

and symptomatic groups had higher Q-angles than the males and the 

symptomatic female group had higher than the female asymptomatic group.  It 
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seems that a higher Q-angle may certainly influence biomechanics of the knee 

joint by creating an abnormally increased valgus angle.  This exerts a laterally 

directed force leading to mal-tracking and excessive pressure on the 

patellofemoral articulation, consequently resulting in anterior knee pain (Emami 

et al 2007). 

However, an increased Q-angle cannot solely be responsible for this problem. In 

the control group, 33% of men had a higher Q-angle weight bearing and 13% of 

those had a Q-angle of over 13 degrees and 60% of females had a Q-angle of 

>15 degrees and one subject had an abnormally high value of 25° in the weight 

bearing position and 23° in the supine position.  It must be recognised that 

despite the higher values in the normal group, nobody had any knee pain 

symptoms. 

It was noted when looking at the waveforms of the kinematic graphs that there 

were a couple of unexpected patterns within the range of the graph.  This 

occurred in many of the different variables so an extreme values test was carried 

out to look for outliers.  In this group of symptomatic subjects there were two 

specific subjects who continuously had extreme values whether it was the highest 

or the lowest.  This is shown in the box plots below. 

 

Maximum box plots 
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Figure 6.40 Boxplots displaying extreme values for knee varus, pelvic obliquity 
up and ankle dorsiflexion 

 

The values were so extreme in some cases that it would have been a physical 

impossibility for a subject to replicate these measurements.  The dorsiflexion 

graph displays a long right hand tail which suggests a positive skewness.  

Normally the tail is where the problem in the data lies.  In this particular graph, 

one subject had a maximum ankle dorsiflexion value of 62.8°.  This value 

suggests that this was nothing to do with the subjects structurally but perhaps to 

do with marker placement error, ghosting, and marker wobble or computer 

processing error.  This subject’s results were obviously read with caution and 

should not reflect any meaningful conclusions.  Similarly to the outliers in chapter 

5, the data was re-checked and a re-test run.  In this case, the results were the 

same as previously which indicates that there may have been an error during 

marker placement or some movement occurred with the marker during the 

procedure.    It was imperative that no data was removed from the study without 

due justification as it is vital to report data with and without any suspected 

outliers in the analysis. 

 

Maximum kinematic values in symptomatic group 

Maximum kinematic values were very similar to data from Hunt et al (2000) with 

the exception of one variable ankle abduction which was slightly lower but within 

their range of values. 
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In the maximum group the experimental results indicate that orthotics had a 

significant effect on most angles compared to barefoot. Knee extension, knee 

varus and external rotation of knee did not have any significant effect when 

comparing barefoot to orthotic condition.  

No significance was found between maximum dorsiflexion but good significance 

was found between ankle abduction and orthotics.  There were differences 

between barefoot to trainers and barefoot to orthotics. The results indicate that 

maximum ankle dorsiflexion failed to exhibit significant values however by 

removing outlier number 9 the results indicate that maximum ankle dorsiflexion is 

significant over the three conditions (F = (1.01, 13.10) = 4.96, p=0.04). 

 

 

Figure 6.41 Maximum ankle dorsiflexion without the outlier over three conditions 
 

Peak ankle dorsiflexion increased in angle from the barefoot to the trainer 

condition slightly but then decreased a large amount in the orthotics condition.  

Chen et al (2010) found that their peak dorsiflexion increased throughout the 

same three conditions.  It was expected that ankle dorsiflexion would increase 

throughout the three occasions. 

Branthwaite et al (2004) also found no significance between insoles and peak 

ankle dorsiflexion or ankle abduction.  They suggested that the failure of ankle 

dorsiflexion being significant could be due to the fact that the angle is not a 

substantial component in pronation that is influenced by anti-pronatory devices.  
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Chen et al (2010), Mundermann et al (2003) and Stacoff et al (2000) found that 

maximum ankle plantarflexion angle was reduced in trials with shoes and insoles.  

This is consistent with the present study’s results.   It was found that maximum 

plantarflexion angle was significantly reduced when comparing barefoot to 

orthotics group (p=0.006) and trainer to orthotic group (p=0.009).   

Previous biomechanical studies have shown that orthotic insoles improve the 

maximum pronation angle of the foot and internal rotation of the tibia (Eng & 

Pierrynowski 1994; Kitaoka et al 2002; Nawoczenski et al 1995). Maximum 

internal and external tibial rotation did reduce in this present study when wearing 

trainers and orthotics. 

Knee flexion angle decreased significantly from trainer to orthotic condition and 

barefoot to orthotic conditions but this was not consistent with Chen et al (2010) 

who found increased values within the barefoot to orthotic condition.  They found 

knee flexion angle increased significantly between barefoot to orthotic condition 

which the present study also found but the values were too small to be 

significant. 

 

Figure 6.43 Maximum knee internal rotation without subject with extreme value 
over three conditions 
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By removing the subject with the extreme value again, the above graph clearly 

depicts that trainers reduce the peak knee internal rotation angle compared with 

barefoot and orthotics significantly reduce the angle even more than the other 

two conditions.  Huerta et al (2009) conducted a study which examined the 

differences in rearfoot kinematics when using a 7 degree varus and valgus wedge 

however they found no significant differences between either of the wedges for 

peak tibial internal rotation during walking.  It is however difficult to clinically 

correlate their results with the present study’s results as they used wedges and 

not orthoses.   

It is possible to reduce foot pronation and medial tibial rotation with a foot 

orthotic according to McPoil and Cornwall (2000) and Mundermann et al (2003). 

Recent work shows that a medially posted foot orthotic alters lower extremity 

kinematics during running (Mundermann et al 2003) and walking (McPoil and 

Cornwall, 2000). Specifically, a medially posted foot orthotic demonstrated a 

decrease in both the rate and degree of medial tibial rotation during walking 

(McPoil and Cornwall, 2000). Furthermore, given that a foot orthotic provides a 

mechanical barrier to pronation, the effect of a foot orthotic on lower extremity 

kinematic patterns should be permanent since the intervention effect is 

maintained. 

McPoil & Cornwall (2000) state that prefabricated orthoses have been shown to be 

just as effective as other types of  orthoses for controlling tibial rotation during 

functional tasks and Carcia et al (2006) found a prefabricated orthotic also 

reduced internal tibial rotation. 

The difference between the trainers group and the orthotic group was also very 

significant with most of the maximum parameters except foot progression 

external angle and pelvic anterior tilt and pelvic obliquity up being significant.  

However, very few of the parameters displayed significant differences between 

barefoot to trainer condition.  Ankle external rotation, foot progression external, 

knee extension and external rotation and pelvic anterior tilt and pelvic obliquity 

up all were significantly different between barefoot to trainers however these 

same parameters did not show any significance between barefoot to orthotic.  

Chen et al (2010) found no significant differences between the two shod 
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conditions, trainers and trainers with insoles.  Whereas it was found most of the 

variables were significant in these groups in this study.  However, in the minimum 

group, there was no significance between these groups.  Therefore, trainers were 

much the same as the orthotic group.  

 

Comparison of maximum values between asymptomatic and symptomatic 

subjects  

Foot progression external angle was a significant variable in maximum values.  

This angle measures the degree of in toeing or out toeing compared with an 

imaginary line on the floor.  Normal values are 20° internal and 20° external 

values.  The symptomatic group had much lower values than the asymptomatic 

group (5.31°- 21.35°).   

It was interesting to note that barefoot knee flexion angle was higher in the 

symptomatic group than in the control group (mean 61.32 ° and 57.09°).  An 

explanation for this could be that the patient group may have lacked ankle 

flexibility due to tight gastrocnemious (mean ankle dorsiflexion symptomatic 

group 10.04° and asymptomatic group 10.71°).  As compensation, the subjects’ 

may have shortened the calf muscle by increasing knee flexion and if this was still 

not enough they may have been forced to pronate at the rearfoot. 

An increased Q-angle is often present when rotational malalignment of the femur 

and tibia are present. The 3D analysis system measured tibial rotation and 

internal tibial rotation was increased in the symptomatic group compared to the 

asymptomatic group. Within the symptomatic group, females exhibited the higher 

internal tibial rotational values over males.   

It was evident that there was significant decrease of internal rotation between the 

groups of trainers to orthotics (p= 0.007) and barefoot to orthotics (p= 0.012).  

This could also match up with the coupling theory that increased knee flexion, 

increased internal tibial rotation and increased pronation (eversion angle) all 

occur synchronously.  The joint angles should “in theory” then reduce with the 

addition of an orthotic device.  It was shown that the internal tibial rotation angle 

decreased between barefoot to orthotics and trainers to orthotics 
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Internal hip rotation was also significant between the two groups. There was a 

slightly higher maximum mean difference between normal and injured values. It 

has been assumed that internal hip rotation is synchronous with foot pronation, 

which makes the timings of hip and rearfoot motions to be interdependent (Souza 

et al 2010).  Values of maximum rearfoot inversion/eversion between the two 

groups were not significantly different although higher eversion values were noted 

in the patient group compared to the normal group.  Similarly, values for external 

hip rotation were much lower in the injured group as were values for rearfoot 

inversion.  This would indicate that might be a slight existence of a kinematic 

chain occurring between the hip and foot. Motion resistance exerted by the knee 

joint and ankle complex during the stance phase of walking may cause this chain 

(Souza et al 2010).  Lafortune’s et al (1994) findings are consistent with this and 

state that induced foot inversion and eversion motions during the stance phase 

increase external and internal rotations respectively. 

Foot orthotics are typically designed to control rearfoot eversion, so they will 

likely reduce the relative amount of eversion to tibial internal rotation motion and 

thus alter their joint coupling relationship (Ferber et al 2005). However, 

Nawoczenski et al (1995) evaluated the effect of standard orthoses on the EV/TIR 

ratio of healthy runners and found an increase in the EV/TIR excursion ratio 

mainly due to reduced TIR. The EV/TIR excursion ratio is a single value. 

 

6.8. Kinematic coupling between foot and leg under three 

conditions 

 

The majority of biomechanical literature has reported on the kinematics of 

individual lower extremity joints as opposed to addressing the interaction between 

joints (Bates et al 1978).  There are various ways to measure joint coupling 

relationships, such as angular excursions and joint ratios but this study looked at 

joint timing and joint timing differences due to its basic nature.  Many have 

studied biomechanical coupling by examining the relationship between foot and 

leg using kinematic data determined at discrete points in the stance phase, for 
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example maximum rearfoot eversion and maximum knee flexion  (Nigg et al 1998 

and Stacoff et al 2000).  

Hamill et al (1992) investigated the effect of running in different shoes with 

varying midsole hardness on the timing of maximum rearfoot eversion and 

maximum knee flexion. The findings indicated that there were insignificant 

differences among the shoe conditions for time to maximum knee flexion 

parameter which occurred between 44.2% and 45.9% of the stance phase. In 

contrast, maximum eversion was found to occur significantly earlier in the stance 

phase (38.7%) when running with the softer midsole compared to the harder 

midsoles (42.8-43.8%).  Subsequently, the rearfoot had started to invert while 

the knee was still in flexion, resulting in an antagonistic relationship with the 

knee. This is due to the foot imposing an external torque on the tibia while the 

flexing knee forces the tibia to internally rotate.  

 Joint timing was defined as the time to reach the maximum peak angular value 

and the joint timing difference was defined as a measure of synchrony between 

the peaks of two joint motions which normally occur during the first half of the 

stance phase (Bates et al 1978). It was calculated as the time to peak of the 

distal motion minus the time to peak of the proximal motion.  The smaller the 

timing difference, the more synchronous relationship and a negative timing 

difference indicated that the distal motion reached its peak prior to the proximal 

motion (Dierks & Davis 2007).  Measures of peak joint angles are dependent on 

accurate and reliable placement of markers. Slight variations in the position of the 

markers can result in a shift in the absolute value of inter-segment angles 

(Carson et al 2001), an anomaly that would alter the peak values obtained.  By 

using the joint timing method it was understood that this method did not provide 

us with a description of continuous joint coupling and would therefore not reveal 

the complete relationship between the segments (Deleo et al 2004 and Hamill et 

al 1999).  

The following discrete variables were indentified for each trial and subject: 

maximum rearfoot eversion (EV), maximum internal tibial rotation (TIR) and 

maximum knee flexion (KF).  Eversion, internal tibial rotation and knee flexion 

was measured from heel strike to midstance.  



233 

 

6.8.1. Results 

 

The graphs below show mean lines of all conditions and all subjects  

 

Figure 6.44 Mean values of maximum internal tibial rotation 
over three conditions (N=15) 

 

 

Figure 6.45 Mean values of knee flexion 
over three conditions (N=15) 
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Figure 6.46 Mean values of maximum rearfoot eversion over three conditions 
(N=15) 

 

The joint patterns of the maximum values of rearfoot eversion and internal tibial 

rotation are very similar throughout the three conditions. In both the internal 

tibial rotation and the knee flexion variable, all subjects except one had a lower 

maximum value when wearing the orthotics compared to the barefoot condition 

but this was not noticed when measuring the rearfoot eversion variable.  However 

the rearfoot eversion graph showed a much more consistent pattern.  It was also 

noticed that four subjects displayed very low values when measuring internal 

tibial rotation and knee flexion.  This can be explained as a computer error, 

marker placement error or marker wobbles. 
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Figure 6.47 Joint timing differences for internal rotation of tibia, knee flexion and 
rearfoot eversion in the barefoot condition (N=15) 

 

 

Figure 6.48 Joint timing differences for internal rotation of tibia, knee flexion and 
rearfoot eversion in the trainer condition (N=15) 

 

 

Figure 6.49 Joint timing differences for internal rotation of tibia, knee flexion and 
rearfoot eversion in the orthotic condition (N=15) 
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Based on joint timing differences, for barefoot, TIR-KF was the most synchronous 

compared to the other two.  In the trainer group, EV-KF had the smallest value 

and was therefore the most synchronous.  However, TIR-KF resulted in negative 

timing values, indicating that peak TIR reached its peak before KF.  The orthotic 

group had a relatively synchronous relationship within EV-TIR but the other two 

relationships were negative.  This resulted in EV and TIR peak values occurring 

before KF values.  Dierks & Davis (2007) have also reported relatively small 

timing differences between EV-TIR and TIR-KF in barefoot although they also 

found small timing differences between EV-KF. 

Comparisons were made of the timing differences in the three conditions using a 

paired t-test.  The findings showed an insignificant change in any of the three 

joint timing differences in barefoot, trainers and orthotics (p=0.901, 0.164, 

0.057) respectively. 

Comparisons were also made between the maximum values of EV, TIR and KF 

during the stance phase of walking under the three conditions.  Pearson 

correlation coefficients were used to obtain correlations between the joint angles 

as this examines the relationship between the two variables which are continuous 

in nature (Salkind 2000).  The correlation values between TIR-KF, TIR-EV and KF-

EV are shown in the table below 

 

BAREFOOT 

COUPLING 

(R) TRAINERS 

COUPLING 

(R) 

 

ORTHOTICS 

COUPLING 

(R) 

TIR-KF 0.311 TIR-KF -0.014 TIR-KF 0.819 

TIR-EV 0.410 TIF-EV 0.719 TIF-EV 0.215 

KF-EV -0.183 KF-EV 0.084 KF-EV 0.007 

Table 6.19 Correlation values (r) for TIR-KF, TIR-EV and KF-EV (n=15) 

 

The results show that although absolute values were not comparable, the motions 

of TIR-EV in the trainers coupling condition (r=0.719), p = 0.03) and TIR-KF in 
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the orthotic coupling condition (r=0.819, p<0.01) were strongly related to each 

other (see figure 6.50). 

  

 

 

 

Figure 6.50 shows the positive relationship between TIR-EV in the trainer 

condition and TIR-KF in the orthotic condition.  The regression line illustrates the 

line of best fit between the two tested variables in each graph (N=15). 

 

Note the outlier in the above graph.  It is mainly because of this particular value 

that the regression line is slightly higher.  The value of the correlation coefficient 
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is inflated because of a high influence pair of values (internal rotation 26.70° and 

rearfoot 22.70°) .         

 

                                        

Figure 6.51 Mean degree values for internal tibial rotation, knee flexion and 
rearfoot angle in barefoot condition 

 

 

Figure 6.52 Mean degree values for internal tibial rotation, knee flexion and 
rearfoot angle in trainer condition 
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Figure 6.53 Mean degree values for internal tibial rotation, knee flexion and 
rearfoot angle in orthotic condition 

 

It can be seen on the graph displaying the trainer condition that the relationship 

is depicting a stronger relationship between TIR and EV by looking at the joint 

patterns. 

 

6.8.2. Discussion 

 

The normal coupling of the foot and leg may be negatively affected when the 

timings of the motions of EV, TIR and KF become asynchronous (Dierks & Davis 

2007).  Tiberio (1987) suggested that prolonged EV may result in abnormal lower 

leg coupling and may lead to knee pain.  He proposed that prolonged EV towards 

the end of the stance phase would be associated with prolonged TIR.  During the 

rest of the stance phase, knee extension occurs which is associated with external 

tibial rotation.  The tibia is internally rotating due to the prolonged EV from the 

first half of the stance phase so the only possible way to achieve the necessary 

rotation of the tibia is for the femur to internally rotate excessively relative to the 

tibia.  This increased rotation may lead to abnormal tracking of the knee leading 

to patellofemoral pain. 

It has been speculated that alterations in the timing between the motions of 

rearfoot eversion and inversion and knee flexion and extension may result in 

antagonistic torques being exerted at either end of the shank, thus placing 

excessive stress on the joints (Hamill et al., 1992; Stergiou et al., 1999; Stergiou 
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and Bates, 1997; Stergiou et al., 2001). This is based on the assumption that 

both rearfoot eversion and knee flexion act to internally rotate the shank whilst 

rearfoot inversion and knee flexion externally rotate the shank.  

The findings of this thesis suggest that although slight timing discrepancies 

between rearfoot eversion/inversion and shank internal/external rotation was 

present during walking, in general rearfoot eversion/inversion and shank 

internal/external rotation coupling was strong. Thus, the asynchronous timing 

found between the rearfoot and knee in the literature may have been due to 

altered kinematics between the shank and knee, rather than between the rearfoot 

and shank.  

The findings of this research suggest that the relatively small timing differences 

found between EV-TIR and TIR-KF in the barefoot condition indicated that there 

was synchrony between these relationships.  The negative values in the trainer 

and barefoot conditions obviously indicate little synchrony but EV-TIR values in 

both of these conditions indicate simultaneous peak values.   It was interesting to 

note that there was better coupling in the trainer condition between EV-TIR 

compared to barefoot and orthotics.  Stacoff et al (2000) found no substantial 

difference between calcaneal and tibial movement patterns in barefoot and shod 

running.  Another explanation could be that the orthotics had an immediate effect 

on the rearfoot kinematics but did not have any effect on the joints proximal to it 

and was therefore “out of phase”. 

McClay and Manal (1998) reported that peak eversion and tibial internal rotation 

occurred at similar times of (0.92s) and (0.10s) after heel strike.  Our findings are 

in agreement with this with maximum eversion occurring (0.38s) after heel strike 

and internal tibial rotation occurring (0.17s) after heel strike.  

Bates et al (1979) reported insignificant timing differences between peak knee 

flexion with peak calcaneal eversion when comparing a normal group and over-

pronating group during running. Cornwall & McPoil (1995) found similar 

correlation values (r=0.953) in the TIR-EV joint motions during walking. 
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Pohl et al (2006) reported EV was coupled with TIR during the first half of stance 

in running (r=0.917) which is slightly better agreement than this present study’s 

correlations in any of the conditions. 

6.8.3. Conclusion 

 

The findings suggest that there was a synchronous relationship between rearfoot 

frontal plane eversion and transverse internal tibial rotation in the trainer 

condition and transverse internal rotation and knee flexion in the orthotic 

condition compared to the lack of coupling with the other variables.  Further 

research need to be carried out using methods which measure continuous 

coupling of the angular motions throughout the whole of the stance phase and 

research should be conducted to ascertain how exactly rearfoot and shank motion 

is coupled with motion at the knee joint. 

 

6.9. Foot model discussion 

 

6.9.1. Navicular height marker 

 

Static values 

Navicular height measurements were tested for differences between genders as it 

was expected that males would have a higher navicular height than females.  

Although no significant differences were shown, the male group were higher in 

value than the female group.  Zeybek et al (2008) reported a strong significant 

relationship between static navicular height and height of the subject (r=0.75, 

p>0.05). A bivariate correlation was carried out on these results and an 

insignificant indirect moderately strong relationship was found (r=-0.5, p=0.9). 

Dynamic values 

Dynamic measurements were quite disappointing in that the height of the 

navicular was reduced when wearing trainers compared to barefoot and over half 

of the subjects had reduced values when comparing barefoot to orthotics.   
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However, the values increased between the trainer and the orthotic group but this 

was expected (mean 15.87mm trainers- mean 19.28mm orthotics).  The vertical 

height of the navicular tuberosity was selected as a measure of pronation (Del 

Rossi et al (2004) and since an orthotic is thought to reduce pronation, an 

increase in the height of the tuberosity would occur.  Kirby (1992) states that in 

order to reduce or control the amount of pronation at the STJ, orthotics must 

increase the supination moment that is generated across the STJ axis of the foot.  

The most obvious was for this to occur is to have the forces generated by the 

orthotic directed in an upward direction and located medial to the STJ axis.  Since 

orthotics are in direct contact with the plantar surface of the foot, the most likely 

method in which a supination moment is produced is by generating a force at the 

medial plantar surface of the foot in an upward direction (Kirby 1992).   

Payne et al (2003) conducted a study using the same orthotic device and 

measured navicular height using digital callipers barefoot with and without the 

devices in a static position.  There was a significant increase in the measurement 

value of 4.4mm when wearing the insoles.  However, Payne et al (2003) 

attributed the change in measurement value to either supination of the rearfoot, 

elevation of the medial longitudinal arch or simply due to elevation of the foot.  

This could be due to the thickness of the orthotic which could raise the foot higher 

which makes making clinical conclusions difficult. 

Vicenzino et al (2000) evaluated temporary felt orthotics on navicular height 

values before and after twenty minutes of jogging.  The orthotics produced a 14% 

increase in navicular height before the exercise and reduced further after the 

exercise but was still superior to the control measurement.  Del Rossi et al (2004) 

compared tape application and an evaluative orthotic with a 6° medial heel wedge 

on the effects of navicular height during exercises.  Measurements were taken 

after application and after 15 minutes and 30 minutes of exercise.  The wedge 

increased the navicular height significantly after 15 minutes but decreased over 

time. Both of these authors’ conclusions were consistent however it must be 

noted that a reduction in the ability to control pronation of the foot such that the 

navicular height values return back to what they were before intervention, does 

not necessarily imply that the orthotic cannot continue to limit or control 

movement into the extreme range of pronation motion.  This is where it is 
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hypothesised that the greatest amount of tissue stress occurs (Ator et al 1991).  

Carcia et al (2006) state that given that a foot orthotic provides a mechanical 

barrier to pronation, the effect of a foot orthotic on lower extremity kinematic 

patterns should be permanent since the intervention effect is maintained. 

 

6.9.2. Calcaneal Inversion/Eversion 

 

Since inversion/eversion of the foot has been highlighted as the greatest 

component of supination/pronation (McCulloch et al 1993), a reduction in eversion 

could be directly linked to a reduction in pronation (Blake and Ferguson 1993; 

Landorf and Keenan 1999; Stacoff et al 2000). 

Recent findings suggest a varied response in rearfoot kinematics to orthotics 

devices (Nigg et al 1998; Nigg et al 2003). When wearing the orthotic, it was 

expected that the foot would be instinctively placed in a more inverted position as 

Mundermann et al (2003) stated that by adding a medial post to an orthotic, the 

foot would intuitively be placed in an inverted position.  Both barefoot and trainer 

conditions started heel strike in an everted position but under the orthotic 

condition, the results clearly display an inverted position.  The results displayed 

from Mundermann and colleagues show a significant reduction in maximum 

rearfoot eversion during the first half of the stance phase when wearing a post on 

the orthotic.  In the present study, the results were consistent with this and 

although the results were insignificant, there was an overall slight decrease in 

calcaneal eversion when wearing orthotics during the stance phase.   

Branthwaite et al (2004) compared two types of insoles and found significant 

results of reduced eversion when comparing insoles to walking barefoot.  Biplanar 

insoles reduced maximum foot eversion by an average of 3.1 degrees when 

compared to no insole condition when walking. 

Stacoff et al (2000) found similar maximum inversion angles on subjects with 

orthotics (9.08°, SD 3.82) and subjects with trainers (8.69°, SD 3.38).  In the 

present study the peak values for orthotics were (mean 8.09°, SD 6.32) and for 

trainers (mean 6.76°, SD 6.80).  It was interesting to note that both studies 
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orthotic condition, peak values decreased from the trainer condition.  This 

demonstrates the expected effect with eversion values decreasing as orthotic 

correction occurs (note that positive values denotes inversion and negative values 

denote eversion values).  

It was also interesting to note that 80% of subjects actually decreased their 

maximum eversion values when using the orthotics and most of the subjects 

increased minimum values when using the orthotics. This is not consistent with 

Nawoczenski et al (1995) who found that individuals with flat feet had increased 

eversion maximum values when wearing insoles. 

 

6.9.3. Static vs. Dynamic 

 

Hunt et al (2000) failed to demonstrate a significant relationship between static 

rearfoot angles in quiet standing and dynamic rearfoot motion.  A correlation test 

was conducted between the static results from Vicon analysis during calibration 

for rearfoot motion and the results dynamically during walking.  The results 

showed a strong relationship between them (r=0.84). 

Cornwall & McPoil (2004) also indicate that static rearfoot motion does not 

influence dynamic rearfoot motion.  They studied inverted and everted feet and 

there was no statistically significant difference (P>0.05) between the two groups 

on any of the kinematic variables measured. They seriously questioned the clinical 

value of rearfoot angle since it does not appear to be a good predictor of a 

subject’s motion pattern during walking. Further studies need to be conducted to 

thoroughly analyse this question however it was not the objective of this study to 

measure this. 

 

6.9.4. 2D rearfoot angle 

 

Results from the 2D angle showed that the orthotic devices did actually make a 

difference in reducing eversion values. Mean maximum and minimum values did 
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show a decrease in eversion throughout the stance phase. This was very similar 

to the results displayed from the 3D calcaneal inversion/eversion angles.   

It was interesting to note that the results from the 2D and the 3D angles were 

very alike. This is consistent with the study conducted by Cornwall & McPoil in 

1995 who stated that 2D pattern analysis was very similar to 3D and that 2D 

analysis could be used effectively to assess foot inversion and eversion during the 

mid-stance of walking. 

The rearfoot angle and navicular height and were both measured during barefoot 

walking using skin mounted markers, whereas they were both measured again 

during shod and with orthotics walking using the same markers but mounted on 

the shoe. When markers are attached the shoe rather than the skin, it makes it 

impossible to be confident that the trajectories acquired from the externally 

mounted markers accurately and consistently coincide with those of the internal 

foot structure (Chen et al 2010). It was not ideal to place the extra markers on to 

the last of the shoe as it was extremely difficult to accurately place the navicular 

marker when palpation couldn’t be done to locate the top of the navicular bone.   

This creates uncertainty in terms of the validity of any findings so various authors 

have conducted alternative methods such as Williams et al (2003) and Williams et 

al (2001) who put extra markers on the rearfoot by placing them directly on the 

heel and extended through windows cut out in the shoes.  The windows allowed 

for unabated motion of the markers on the heel since it has previously been 

demonstrated that the calcaneus may move within the heel of a running shoe 

(Stacoff et al 1992; Van Gheluwe et al 1995).  Stacoff et al (1992) attempted to 

quantify the effect of calcaneal slippage within the heel of a shoe during running 

by cutting windows in the heel counter of a running shoe so that markers could 

still be placed on the calcaneus. They found that rearfoot eversion excursions 

(angle from heel strike to maximum angle) measured using markers on the 

calcaneus were 1.6° different with barefoot having the higher value of eversion. 

Stacoff et al (2000) used intracortical pins inserted into the foot under local 

anaesthetic and bone pins were then drilled into the heel and the reflective 

markers screwed onto the pin.  Attaching the small markers to the shoe directly 
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was the most convenient method given that the subjects all wore their own 

shoes.  The results should be noted with this in mind. 

 

6.10. Limitations to study  

 

There were several limitations to this study.  The foot orthotics used in this 

investigation were limited in that they were not individual specific in the degree of 

medial or lateral posting. Mundermann et al (2003) state that posting of moulded 

orthotics has been claimed to increase the effects of foot orthotics, therefore the 

“off the shelf “orthotics may not control the foot as well as a custom device.   

Another limiting factor could be that not all the subjects wore the same trainers.  

It could be argued that a more appropriate study design should have been 

adopted where all the subjects wore the same footwear.  However, this design is 

intended to imitate “real life” in that not all individuals wear the same make and 

model of trainers (Nester et al 2003).  Arch height and navicular height were only 

visually measured in this study and upon conducting literature reviews after the 

study was performed it seems that using callipers to measure both would be more 

reliable (Lapointe et al 2001). 

There is a lack of research regarding foot and knee motion using orthotics so this 

makes interpretation and comparisons difficult.  Future research is warranted to 

evaluate the validity of using orthotics as an intervention to reduce the risk of 

AKP. 

Another limitation could be that subjects were measured within minutes after 

placing the orthotic into the trainer.  Whether a greater period between 

introducing the orthotics and testing would have made a difference is unknown 

although Stacoff et al (2000) reported that an orthotic may have an immediate 

effect on the rearfoot but not on the joints proximal to it. 

Finally a limitation that has already been brought up in an earlier discussion is the 

foot model that is used to determine foot kinematics.  There is a highlighted need 
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to modify and develop models that can divide the foot into smaller segments for 

more precise understandings of how the joints in the foot behave (Pohl 2006). 

 

6.11.  Conclusions and clinical implications 

 

From the results presented it seems clear that there are clinical and 

biomechanical differences between symptomatic and asymptomatic groups.  

Wearing foot orthoses may be advantageous to the changes biomechanically as 

there was evidence of small kinematic changes when wearing the inserts.  It 

seems that the orthotic devices tested in this study presented little and small 

benefits in correcting pronatory changes or movements more distal to the foot.  It 

must however be remembered that the devices used are an “off the shelf” pair 

and would not necessarily reflect a custom bespoke pair prescribed from a 

practitioner which may explain some of the variability of the results. The results 

agree with many previous studies that orthotics may produce small kinematic 

changes within the gait cycle providing the subjects have increased rearfoot 

eversion, increased internal tibial rotation and an increased Q-angle already 

present.  The conclusions fulfil one of the main objectives of this chapter which 

was to investigate lower limb biomechanics in a group of subjects with AKP.  The 

other objective of this chapter was to develop and test a foot marker placement 

model for use with Vicon 370 Kinematic Motion Analysis System.  Further 

research is required on the model with a larger sample size and in order to 

compare results with other studies, running instead of walking would be 

advisable. 

Future studies are required to determine the static and dynamic effects of 

orthotics on Q-angle either using a 3D motion analysis machine or 

radiographically using the Positional MRI measurement tool. The 2D rearfoot 

angle measuring inversion and eversion was also shown to be an effective 

measurement that can be used in a clinical environment where a 3D motion 

analysis machine cannot realistically be present. 
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The following chapter further investigates the static effects of orthotics on lower 

limb biomechanics under the same three conditions as this present chapter, 

barefoot, trainers and trainers with foot orthotics.  The measurement tool used is 

the Upright Positional MRI Scanner. As discussed previously, it is imperative that 

with any measurement tool, the researcher is deemed able to carry out the 

measurements necessary both accurately and reliably.  Therefore, a small pilot 

study was conducted to establish this which will be presented first in the following 

chapter. 
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7. Chapter 7 - An Investigation of Lower Limb Biomechanics on 

Symptomatic and Asymptomatic Subjects with Anterior Knee 

Pain Using the Upright Positional MRI Scanner under Three 

Experimental Conditions 

 

7.1. Pilot study – Intrarater reliability of MRI measurements. 

 

7.1.1. Aim 

 

To conduct a pilot study to evaluate the intrarater reliability of measuring angles 

and distances using the measuring tool Osiris.  Reliability refers to a condition 

where a measurement process yields consistent scores (given an unchanged 

measured phenomenon) over repeat measurements. It was imperative that the 

researcher, who had no experience with using this measurement program, yielded 

consistent values throughout the experiment in order to produce credible results. 

 

7.1.2. Methodology 

 

Intrarater reliability was measured for the measurements made on the MRI 

images using the software program Osiris software 2007. 

This was done by making independent measurements on three different occasions 

to ensure reliability of the tester’s ability to make accurate and valid 

measurements.  It should be noted that the tester performing the measurements 

had no previous experience either with MRI images or with the software Osiris. An 

experienced senior radiographer with 10 years of experience in putting coils on 

patients and positioning correctly performed all the 45 scans.  This was to 

maintain continuity and the same technique was applied to all subjects.  The 

machine was calibrated daily to ensure reliability. 

MRI Images of five normal subjects were used using the measurement 

programme Osiris.  All three types of scan, barefoot, shod and shod with orthotic 

device were used.   
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7.1.3. Statistical analysis 

 

Intraclass correlation coefficients (ICC’s) were calculated to assess the reliability 

of this measurement repetition.  These were the measurements taken from the 

same image on the three different occasions.  Intrarater reliability values were 

established for height of navicular tuberosity, rearfoot angle, top of navicular 

height, medial and lateral joint space of the knee, soft tissue volume of heel fat 

pad, medial longitudinal arch angle, calcaneal inclination angle and talar tilt.  

Statistical tests were conducted using SPSS version 15 (SPSS Inc, Chicago, IL). 

To satisfy the independence assumption of statistical analysis, only 

measurements from the right side were analysed (Menz 2004).  All data were 

explored for normal distribution. 
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7.1.4. Results 

 

 

 

 ICC 

 
  
Test Type of scan Single Average 

Height of 

Navicular 

Tuberosity 

Barefoot 0.98 0.99 
Trainer 0.98 0.99 

Orthotic 0.99 0.99 

Top of 

Navicular 

Barefoot 0.99 0.99 

Trainer 0.95 0.98 

Orthotic 0.98 0.99 

Longitudinal 

Arch 

Barefoot 0.97 0.99 

Trainer 0.94 0.98 

Orthotic 0.98 0.99 

Calcaneal 

Inclination 

Angle 

Barefoot 0.93 0.97 

Trainer 0.97 0.99 

Orthotic 0.90 0.96 

Talar Tilt 
Barefoot 0.99 0.99 

Trainer 0.97 0.99 

Orthotic 0.99 0.99 

Rearfoot Angle 
Barefoot 0.97 0.99 

Trainer 0.99 0.99 

Orthotic 0.98 0.99 

Knee Joint 

Space Medial 

Barefoot 0.98 0.99 

Trainer 0.98 0.99 

Orthotic 0.99 0.99 

Knee Joint 

Space Lateral 

Barefoot 0.95 0.98 

Trainer 0.91 0.97 

Orthotic 0.99 0.99 

Soft Tissue 

Volume Medial 

Barefoot 0.90 0.94 

Trainer 0.96 0.92 

Orthotic 0.94 0.91 

Soft Tissue 

Volume Lateral 

Barefoot 0.89 0.91 

Trainer 0.90 0.87 

Orthotic 0.87 0.99 

Table 7.1 Intratester Reliability of 10 variables over three experimental 
conditions 

  

With respect to the 150 MRI images measured, the intratester ICC values were all 

very accurate with measures ranging from (ICC= 0.87-0.99).  As mentioned 

earlier in a previous study, the acceptable ICC values are as follows, values > 

0.75 indicated excellent reliability, 0.4-0.74 indicated adequate reliability and < 

0.40 indicated poor reliability (Salter et al 2005).  
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7.1.5. Discussion 

 

The purpose of this pilot study was to evaluate the intratester reliability of 

measuring angles and distances from radiographs using the measuring tool Osiris. 

The first consideration when interpreting the results is the reliability of the “gold 

standard” radiographic measurements.  The test-retest reliability of all of the 

variables was excellent with all of the ICC values greater than 0.8.  These 

measurement repetitions ICC’s suggest a very high reliability of the method used 

and the consistency of the tester.  These values were found to be in agreement 

with values reported previously (Chapter 2 section 2.8).  

For comparison purposes, there are many studies which have looked at the 

reliability of measuring angles and distances on plain X-rays and standard supine 

MRI machines but very few exist which have been conducted on the Upright 

Positional MRI Scanner.  To date there are also none which have investigated the 

effects of orthoses on the foot and leg using radiological scans. 

However, if we compare results from previous studies using plain X-rays, it seems 

they are comparable.  The methods may be different but the high ICC’s appear to 

be the same when measuring the equivalent angle or distance.  Most of the 

literature written consists of measurements of the calcaneal inclination angle 

(CIA) and navicular height and report excellent ICC’s which is consistent with the 

results above. 

 

7.1.6. Conclusion of pilot study 

 

It was concluded that based on the measurements above, reliable measurements 

can be made on radiographs using the measurement tool, Osiris.  
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7.2. Introduction  

 

This main study aims to look at the effects orthotic devices and footwear may 

have on the ankle, foot and knee joint.  It will illustrate how the Upright Positional 

MRI Scanner can demonstrate biomechanical changes in the foot, knee and ankle 

between three different conditions, barefoot, shod and shod with orthoses in 

normal and asymptomatic patients.   

In order to fully comprehend lower limb joint kinematics, a thorough 

understanding of it is necessary however previous kinematic studies of the leg 

and foot have been limited due to the invasive nature of anatomic studies but 

nowadays modern diagnostic and imaging procedures such as CT and MRI can 

make diagnosis more accurate and precise.  

 

7.3. What is MRI? 

 

MRI has an important role in the diagnosis and treatment of musculoskeletal 

injuries.  It can accurately depict soft tissue injuries such as muscle, ligament and 

meniscal tears as well as cartilage and bone injuries non-invasively and has 

proven to be an excellent resource for static and dynamic joint imaging (Brown & 

Bradley 1994).  It is a method of looking inside the body without using surgery or 

X-rays and provides detailed images of the body in any plane. It uses magnetism 

and radio waves to produce clear pictures of the anatomy of the body. 

MRI is an extremely effective modality for evaluating the musculoskeletal system 

and because the musculoskeletal system is comparatively easy to immobilise, 

motion artefacts are rarely a problem.  The non-invasiveness, lack of ionizing 

radiation and multiplanar imaging capabilities are all desirable features of MRI 

(Awh & Runge 2002).  It uses a powerful magnetic field to align the nuclear 

magnetisation of hydrogen atoms in water and fat in the body.  Radiofrequency 

fields are used to systematically alter the alignment of this magnetisation, causing 

the hydrogen nuclei to produce a rotating magnetic field detectable by the 
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scanner.  This signal can be manipulated by additional magnetic fields to build up 

enough information to construct an image of the body.   

 

7.3.1. What is an Upright Positional MRI Scanner? 

 

 

Figure 7.1 Subject in Upright Positional MRI Scanner 
 

Traditional MRI systems are designed so that the patient is scanned in the 

recumbent non-weight bearing position in a tunnel with a high field magnet or 

between two large magnetised plates in a low-field. The Upright MRI Scanner 

allows patients to simply walk in and be scanned. It allows all parts of the body to 

be imaged in the weight-bearing position which can be the position of pain.   

The knee is probably the easiest of all the musculoskeletal structures to image on 

an open MRI system.  This is due to the cylindrical coils which can be placed 

around the knee which provide an improved signal to noise ratio. Furthermore, 

the knee is easily immobilised to prevent motion artefacts (Awh & Runge 2002). 

The assessment of patellofemoral malalignment is best measured with the 

individual standing in the positional scanner. Patellofemoral malalignment refers 

to conditions where there is an imbalance of forces acting on the patella that 

produces abnormalities of alignment and tracking (Ellas & White 2004).  This 

imbalance may result from a combination of variables in bony geometry, function 
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of active and passive soft tissue restraints and functional demands.  The result of 

patellofemoral malalignment and maltracking is unfavourable stresses and 

shearing forces that exceed the physiological threshold of tissues and may result 

in cartilage damage, degenerative changes, mechanical failure or patellar 

dislocation. 

 

7.4. Advantages and disadvantages to the Upright Positional MRI 

Scanner 

 

Elias & White (2004) discussed the advantages of upright MRI scanning of the 

patellofemoral joint compared to original supine MRI scanning and stated that the 

knee is usually measured in the supine resting position but pain only occurs in a 

loaded functioning joint. Measures of alignment will be different in the supine 

knee compared with the loaded knee in which most symptoms occur. 

Another benefit is patient convenience.  Patients can be scanned in a multitude of 

positions including sitting, standing, flexion and extension as well as the usual 

recumbent position as used in the conventional MRI scanners.  They can walk in, 

sit or stand during the scan and walk out.  They will also feel less claustrophobic 

due to the unobstructed view in front of the patients face. 

The scanner is equipped with a motorised system which can move the patient into 

the magnet and place the anatomy of interest into the isocentre of the magnet. 

However, one drawback to upright MRI is the increased potential for motion 

artefacts, especially when dealing with young children.  An image artefact is not 

normally present but visible as a result of motion of the imaged part during the 

imaging sequence.  This can result in a blurring or “ghosting “effect (Hornack 

2000) and can produce artifactual appearances with pathology that may be 

misdiagnosed therefore use of immobilisation aids and clear instructions to the 

patient are vital. 
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7.5. Methodology 

 

This experimental study took place at a purpose-built facility at Woodend Hospital 

in Aberdeen which houses the FONAR 0.6 T Indomitable Positional MRI Scanner.  

Full ethical approval from the local research and ethics committee was received 

prior to data collection. 

MRI was performed using a 0.6 T “stand-up” Positional MRI Scanner (FONAR, 

Melville NY).  This scanner was chosen because of its open design and the ability 

to image the foot, knee and ankle under the effects of gravity. 

The images in Figures 7.2 and 7.3 were acquired using a solenoid coil (FONAR, 

Melville NY) which was placed around the ankle and knee whilst standing, allowing 

for imaging of the foot and ankle and knee during weight bearing. 

 

 

Figure 7.2 Subject with ankle coil 
 

 

Figure 7.3 Subject with knee coil 
 

 

A T1 weighted sequence (TR 350 TE 20) was used.  This sequence provides good 

contrast between bone, muscle, tendon, fat and skin, enabling easy recognition of 

all anatomy. 

Conducting a careful screening procedure is crucial to ensure the safety of anyone 

who enters the area of the MRI system.  Careful questioning and education of 
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patients and volunteers helps to maintain a controlled environment and avoid 

potential health hazards (Rothschild and Rothschild 2000).  When used properly, 

MRI is free of biohazards making it suitable for use with normal asymptomatic 

volunteers (Mitchell & Cohen 2004). 

Upon entering the MRI department and prior to entering the controlled area, 

patients and volunteers were asked to complete a MRI safety questionnaire to 

ensure it was safe to scan them, in line with MRHA guidelines and departmental 

local rules.  A senior radiographer was responsible for checking the questionnaire 

to ensure there were no contraindications to scanning. (See health questionnaire 

in appendix.)  All participating subjects were given an information sheet 

explaining the study and gave written informed consent before starting. 

All of the subjects (N = 20, 5 non-pathological and 15 pathological) who 

volunteered for this MRI study were also included in an earlier study using Vicon 

370 Kinematic Motion Analysis System, which at the time was also situated at 

Woodend Hospital in Aberdeen.  Although, 30 subjects completed the Vicon study, 

only 20 were suitable to also be involved in the MRI study due to health reasons, 

moving away from the area or simply not interested in participating. 

The subjects in this study had therefore met all the inclusion/exclusion criteria 

before data collection took place. Subjects were asked to wear shorts and remove 

socks and shoes for the first scan. 

The 9 variables which were derived from the data of the subjects’ 3 scans are 

listed in Table 7.2 
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Term code description units 

Navicular height Nav ht Distance between supporting surface 

and inferior surface of the navicular 

tuberosity 

mm 

Superior navicular 

height 

Sup 

nav ht 

Distance between the floor and the 

superior surface of the navicular bone 

mm 

Medial longitudinal 

arch angle 

 

MLA Angle between the tip of navicular 

tuberosity, posterior aspect of the 

calcaneus  the most medial aspect of the 

first metatarsal head, 

deg 

Calcaneal 

inclination 

CIA Angle between the supporting surface 

and the inferior surface of the calcaneus 

deg 

Talar tilt 

 

TT Angle between two tangent lines, one to 

the inferior articular surface of the tibia 

and one to the most proximal talar 

contour 

deg 

Rearfoot angle RF Angle between the longitudinal axis of 

the posterior surface of the calcaneus 

with the medial aspect of the calcaneus 

deg 

Knee joint space 

medial 

JSM Angle between the medial femoral 

condyle and the medial tibial plateau 

deg 

Knee joint space 

lateral 

JSL Angle between the lateral femoral 

condyle and the lateral tibial plateau 

deg 

Soft tissue volume- 

med and lat 

TV Heel pad thickness measured by the 

distance from the medial and lateral 

calcaneal tuberosity to the plantar 

surface of the skin 

mm 

Table 7.2 Radiographic measurements 

 

 

 



259 

 

7.5.1. Variables measured using Osiris Software 

 

 

Figure 7.4 Talar tilt20 
 

 

 

Figure 7.5 Talar tilt angle as measured on Osiris software 

 

Talar tilt was measured as the angle between two tangent lines, one to the 

inferior articular surface of the tibia and one to the most proximal talar contour 

(Lohrer et al 2008). 

                                                                 
20

 Lohrer et al 2008 
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The amount of degrees of talar tilt can indicate the amount of stability of the 

ankle joint (Gaebler et al 1997).  There is however no standardised value for the 

degree of tilt at which the ankle becomes unstable.  Some authors postulate that 

a talar tilt of more than 5 degrees compared to the unaffected side can indicate a 

serious ankle injury (Brostrom 1965; Smith & Reichl 1986 and Boruta et al 1990).  

Other authors maintain that a talar tilt of 15-30 degrees greater than the 

unaffected side indicates only moderate instability (Rubin and Witten 1960; Laurin 

et al 1968; Marder 1994 and Verhagen et al 1995). 

Talar tilt values range from 0-23 degrees but most normal ankles have a tilt of 5 

degrees or less (Wheeless 2009). 

It was expected that the degree of talar tilt would change when wearing footwear 

and when wearing orthoses.  Comparisons were also required to compare non-

symptomatic talar tilt values with the patients with AKP to determine if one of the 

symptoms of AKP could be ankle instability. 

Non-operative treatment of ankle instability can be addressed with orthoses or 

footwear modification (Johnson and Pedowitz 2006). 

 

7.5.2. Calcaneal Inclination Angle (CIA) 

 

 

Figure 7.6 Calcaneal Inclination Angle21 
 

                                                                 
21

 Vil larroya  et al  (2009) 
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Figure 7.7 CIA angle as measured on Osiris software 

 

The Inferior calcaneal inclination angle is a determination of arch height and is 

formed by the intersection of the plane of support and the calcaneal inclination 

axis. This axis is found from the plantar most surface of the calcaneus to the 

inferior border of the distal articular surface of the calcaneus (Villarroya et al 

2009). 

This angle is useful in evaluating a pronated or supinated foot. The more pronated 

the foot type, the smaller the angle, with an increased angle in a supinated foot 

(Donatelli 1996). 

Gentili et al (1996) state normal values are between 20-30 degrees however 

Donatelli (1996) states the average value to be 15 degrees. Nawoczenski et al 

(1998) conducted a radiographic study and stated that a value below 20 degrees 

was a low rear foot and values above 25 degrees were considered a high rear 

foot.  The mean values in their two groups were 16.6 degrees and 31.3 degrees. 
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The plane of support is determined by the most plantar aspect of the calcaneal 

tuberosity and the most plantar aspect of the head of the 5 th metatarsal (Donatelli 

1996). 

 

7.5.3. Medial longitudinal arch angle (MLA) 

 

The medial longitudinal arch angle was first described by Norkin and Levangie 

(1983) as the “Feiss line”   

 

 

Figure 7.8 The Feiss line22 
 

It is formed by a line connecting the medial malleolus to the navicular tuberosity 

and the most medial aspect of the first metatarsal head, and indirectly indicates 

the arch height (Razeghi and Batt 2002).  It is suggested to compose height and 

length of the MLA, providing a more accurate indication of the arch behaviour 

(Hunt et al 1999).  

                                                                 
22

 Norkin & Levange 1983 
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Figure 7.9 MLA angle as measured on Osiris software 

 

7.5.4. Height of navicular tuberosity (arch height) 

 

Navicular height (NH) was measured as the distance between the supporting 

surface and the inferior border of the navicular bone (Menz and Munteanu 2005). 

Palpation and measurement of the height of the navicular tuberosity has been 

shown to provide a useful indicator of radiographically determined navicular 

height (Saltzman et al 1995; Williams and McClay 2000).   McCrory et al (1997) 

disagree and write that palpation of a bony landmark is subject to considerable 

inaccuracy.  Palpation errors may result from an incorrect estimation of the 

navicular tuberosity or from other factors such as skin movement or skin 

distribution.  They do agree however that navicular height determined by 

radiographic measurements is a much more exact measurement because the 

projection of the most inferior point on the tuberosity can be easily and reliably 

measured. 
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Figure 7.10 Navicular height measurement as measured on Osiris software 

 

7.5.5. Top of navicular 

 

The height of the superior surface of the navicular bone to the supporting floor 

was measured. This was to indicate any rotation/movement/displacement of the 

navicular between the three conditions.  It was hoped to assess the excursion of 

the bone when loaded. 
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Figure 7.11 Top of navicular bone angle as measured on Osiris software 

 

7.5.6. Rearfoot angle 

 

Rearfoot angle was measured by bisecting the longitudinal axis of the posterior 

surface of the calcaneus with the medial aspect of the calcaneus. 

 

 

Figure 7.12 Rearfoot angle as measured on Osiris software 
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7.5.7. Medial and lateral joint space   

 

The knee is probably the easiest of all the musculoskeletal structures to image on 

an open MRI system.  This is due to the cylindrical coils which can be placed 

around the knee which provide an improved signal to noise ratio.  Coils for the 

shoulder are less efficient because the shoulder cannot be circled in the same 

manner.  Furthermore, the knee is easily immobilised to prevent motion artefact 

(Awh & Runge 2002). 

The gold standard method of measuring knee alignment is the mechanical axis of 

the lower limb, using weight-bearing full-limb radiographs. This technique is 

however, time consuming, requires special equipment, and involves significant 

radiation exposure (Colebatch et al 2009).  It is however more commonly 

measured from short views of the knee which may only define limited aspects of 

the bones’ anatomical axis (Cooke et al 2007). 

The terms “varus” and “valgus” are commonly used terms throughout medical 

literature and confer “bowlegged “and “knock-kneed” limb deformities (Kamath et 

al 2010). 

 

Figure 7.13 Varus, neutral and valgus positions23 

 

                                                                 
23

 Cooke et al 2007 
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It was hoped to study and measure the quadriceps angle (Q- angle). However, 

due to the fact that this study has only short radiographs of the knee it was not 

possible to measure the long bones which would give us the information needed 

to confidently measure limb alignment so it was decided to study the medial and 

lateral joint space of the knee.  As seen from the figure above, if the leg is in a 

varus position, the medial joint space will be narrowed and the lateral joint space 

wider and if the leg is in a valgus position, the medial joint space will be wider 

and the lateral joint space will be narrowed. 

Medial joint space was measured as the angle from the knee centre to the medial 

femoral condyle and the medial tibial plateau.  Lateral joint space was measured 

as the angle from the knee centre to the lateral femoral condyle and the lateral 

tibial plateau. 

 

Figure 7.14 Medial and lateral joint space angles as measured on Osiris software 

 

7.5.8. Soft tissue volume (Heel fat pad) 

 

The heel pad consists of the fat pad surrounded by a thick sub dermal layer of 

fibrous tissue embedded in a layer of skin (Jahss et al 1992) with an average 

thickness of 18mm in the adult male (Gefen et al 2001).  It is subjected to high 

impact forces and is responsible for the protection of the musculoskeletal system 
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from the sudden shocks and transient forces which can propagate through the 

body and cause degenerative damage to the joints and also weaken the 

musculoskeletal system (Whittle, 2002). 

There has been reported in the literature a causative link between inadequate 

heel pad shock absorbency and a variety of complaints such as chronic lower back 

pain (Volshin & Wosk 1982), Achilles Tendonitis (Jorgensen 1985) and other 

shock induced overuse injuries. 

Trainers are designed to protect the foot yet the influence of shoes on internal 

foot biomechanics is not completely understood (Spears et al 2007). 

Confinement of the heel due to the counter of the shoe is believed to influence 

heel pad biomechanics.  Gefen et al (2001) measured the heel pad thickness of 

two 30-year-old subject’s non-weight bearing as 11mm and 13mm.  They then 

put a shoe on and the maximal deformation respectively was 3.8mm and 4.8mm.  

This was done dynamically and the pressures taken at initial heel strike.  Rome et 

al (1998) measured heel pad thickness using ultrasound.    They found mean 

measurements of non-weight bearing soft tissue volume to be 12.47mm and a 

weight bearing measurement to be 4.07mm. 

Spears et al (2007) conducted a study aiming to measure the potential effect of 

confinement on internal heel pad stress during static standing and presented that 

confinement does have the potential to reduce stress in the heel pad in the short 

term. 

It was hypothesised that we would see a difference in the volume of soft tissue in 

each of the three conditions. It was expected that the soft tissue distribution and 

mechanical changes with the insole and trainer would be considerably different 

from the unshod one. 

The minimum heel fat pad thickness was measured by the distance from the 

medial calcaneal tuberosity to the plantar aspect of the skin and the maximum 

heel fat pad was measured by the distance from the most lateral aspect of the 

calcaneus to the skin (Spears et al 2007). 
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Figure 7.15 Medial and lateral soft tissue measurement angles as measured in 
Osiris software 

 

7.6. Statistical analysis  

 

All statistical comparisons were analysed using the Statistical Package for Social 

Sciences 15 (SPSS Inc, Chicago, IL) and consisted of descriptive tests and 

repeated measures ANOVAS.  Descriptive statistics (mean + Std dev) were 

derived for either right or left legs.  A repeated measure ANOVA was performed to 

determine if there were differences between the three conditions within the ten 

measurement variables. In comparing the results obtained under the three test 

conditions, the difference between equivalent measurements was deemed to be 

significant if the corresponding P value was (< 0.05). 

When analysing differences between the ten measurements, the asymptomatic 

group were compared to the symptomatic group using an independent t-test and 

a post- hoc Mann-Whitney test. Level of significance was set at (p < 0.05). To 

evaluate any anthropometric related differences between the normal and 

asymptomatic groups, an independent sample t- test was used. 

An extra objective of this research was to compare any associations between 

clinical and radiological measures.  However, a full comparison of clinical, 

radiological and kinematic measurements is discussed in the following chapter 8.  
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7.7. Results  

 

The tables below display the anthropometric differences on all individuals 

participating in the study 

General 

anthropometric 

Normal group Patient group 

Gender  M = 2   F = 3 M = 7    F = 8 

Age mean ± SD 

(years) 

37 ± 11.2 37 ± 9.4 

Height mean ± SD 

(cm) 

172 ± 15.8 171 ± 10.9 

Weight mean ± SD 

(kg) 

69 ± 14.8 71 ± 15.5 

Left or right leg/foot  R = 3   L = 2 R = 6    L= 9 

Table 7.3 Anthropometric differences between normal and patient groups 

 

General anthropometric characteristics including age, height, weight were not 

significantly different between the normal and patient groups (p>0.05). 

A full detailed display of descriptive statistics for the ten MRI measurements for 

normal and patient groups can be seen in the appendix. The results showed the 

mean and standard deviation and the range of measurement values. The largest 

range was the top of navicular measurement (27mm) in the control orthotics 

group with the minimum value of 37mm and maximum value of 64mm.  The 

smallest range was the soft tissue volume medial aspect (4 mm) in the control 

barefoot group with a minimum value of 12mm and a maximum value of 16mm. 

Angles and measurements are shown below for each variable in both the normal 

and patient groups.  
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Medial longitudinal arch angle 

 

Figure 7.16 MLA patient group 

(Barefoot p=0.50, trainers p=0.17 and orthoses p=0.27) 

 

 

 

 

Figure 7.17 MLA normal group 
 

 In the normal group, it must be noted that most of the results showed an 

increase throughout the three conditions but values stayed relatively the same 
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within the patient group which was very interesting and not what was expected.  

It was expected that the MLA would shorten due to the increase in height of the 

trainer and orthotic as most trainers have built in arch support and the orthotic 

device had a raised arch area which should automatically change the height of the 

foot 

 

Calcaneal arch inclination 

 

Figure 7.18 CIA patient group 

(Barefoot p=0.87, trainers p=0.57 and orthoses p=0.065) 
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Figure 7.19 CIA normal group 
 

In the CIA group, the angles decreased although it was only marginally -  (15.4° 

barefoot to 14.8° wearing orthoses for normals and 15.8° barefoot to 13.8° 

wearing orthoses for the patient group).   

 

Talar tilt 

 

Figure 7.20 Talar tilt patient group 

 

(Barefoot p=0.47, trainers p=0.91 and orthoses p=0.72) 
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Figure 7.21 Talar tilt normal group 
 

The results show that the patient group had some changes with the majority of 

patients reducing the angle throughout the three scans or simply staying the 

same however, the normal group did produce a lower talar tilt value when 

wearing orthotics but most of the group increased when wearing their trainers. 

 

Height of navicular tuberosity 

 

Figure 7.22 Height of navicular tuberosity patient group 

(Barefoot p=0.55, trainers p=0.31 and orthoses p=0.39) 
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Figure 7.23 Height of navicular tuberosity normal group 

 

Height from top of navicular 

 

 Figure 7.24 Height from top of navicular patient group 
 

(Barefoot p=0.90, trainers p=0.93 and orthoses p=0.93) 
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Figure 7.25 Height from top of navicular normal group 
 

Results show that all the values except one asymptomatic subject decreased 

when wearing the orthoses in both groups.  About half of the measurements 

increased when wearing trainers but decreased lower than the initial barefoot 

measurement when wearing orthoses and trainers.  In one normal subject the 

navicular height decreased by 3mm from the barefoot scan to the orthotic scan.   

 

Rearfoot angle 

 

Figure 7.26 Rearfoot angle patient group 
(Barefoot p=0.34, trainers p=0.15 and orthoses p=0.10) 
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Figure 7.27 Rearfoot angle normal group 
 

In the patient group, the results showed that most of the subjects reduced the 

rearfoot value when wearing the orthoses and trainers.  In the normal group all of 

the orthotic values were less than when wearing trainers. 

 

Knee joint medial space 

 

Figure 7.28 Medial knee joint space patient group 
(Barefoot p=0.80, trainers p=0.65 and orthoses p=0.55) 
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Figure 7.29 Medial knee joint space normal group 

 

Lateral knee joint space 

 

Figure 7.30 Lateral knee joint space patient group 

(Barefoot p=0.92, trainers p=0.77 and orthoses p=0.93) 
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Figure 7.31 Lateral knee joint space normal group 

 

Soft tissue volume medial space 

 

Figure 7.32 Medial soft tissue volume patient group 
(Barefoot p=0.22, trainers p=0.39 and orthoses p=0.38) 
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Figure 7.33 Medial soft tissue volume normal group 

 

In the asymptomatic group, all medial values increased consecutively with each 

scan and the same with the lateral values with the exception of one subject 

whose measurement decreased by 3mm with the orthotics. 

       

Soft tissue volume lateral 

 

Figure 7.34 Lateral soft tissue volume patient group 
(Barefoot p=0.14, trainers p=0.45 and orthoses p=0.59) 
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Figure 7.35 Lateral soft tissue volume normal group 

 

 A repeated measure ANOVA was performed to determine if there were 

differences between the three conditions within the ten measurement variables. 

In comparing the results obtained under the three test conditions, the difference 

between equivalent measurements was deemed to be significant if the 

corresponding P value was (< 0.05). 

When analysing differences between the ten measurements, the asymptomatic 

group were compared to the symptomatic group using an independent t-test and 

a post- hoc Mann-Whitney test. Level of significance was set at (p < 0.05). To 

evaluate any anthropometric related differences between the normal and 

asymptomatic groups, an independent sample t- test was used. 

 

The results  of the independent t-test conducted to see if there were any 

differences between the ten variables between the normal group and patient 

group show that none of the p values were significant, (p>0.05). 
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P value of barefoot trainers orthotics 

navtub 0.55 0.31 0.39 

topnav 0.90 0.93 0.93 

arch 0.50 0.17 0.27 

calc 0.87 0.57 .065 

Talar 0.47 0.91 0.72 

rearfoot 0.34 0.15 0.10 

jointmed 0.80 0.65 0.55 

jointlat 0.92 0.77 0.93 

tvmed 0.22 0.39 0.38 

tvlat 0.14 0.45 0.59 

 

Table 7.4 Results of p values under the three conditions 

 

When comparing the differences between the three conditions and the ten 

radiographic variables, the results displayed that there were no statistical 

significant effects (F (18) =0.42 p>0.05). 

 

7.8. Discussion 

 

This study is original and to the best of our knowledge it is the first study which 

analyses upright MRI measurements in order to determine foot and knee 

alignment whilst wearing trainers and orthoses. The main purpose of this study 

was to determine if there were any changes in alignment of the foot and knee 

whilst barefoot and when wearing trainers and orthoses. 

It is hypothesised that foot orthoses are used to align and support the foot and 

ankle complex in a more near-normal physiological position for a weight bearing 

foot, to prevent dysfunction or improve the function of movable body parts (Levitz 
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1988).  It was expected to find radiological differences between the patient group 

and the normal group and differences between each of the three conditions. 

Eslami et al (2009) conducted research in the effects of orthotics on foot angles 

patients with pes cavus feet during standing.  They found angle changes in CIA 

decreased significantly by an average of 3 degrees, (p<0.01) when wearing 

orthoses (33.8° barefoot to 30.84° with orthoses) thus creating a flattening of the 

MLA with orthoses.  This is similar to the  results of this study but although the 

angles decreased it was only slightly -  (15.4° barefoot to 14.8° wearing orthoses 

for normals and 15.8° barefoot to 13.8° wearing orthoses for the patient group).  

However, the starting angles for calcaneal inclination were much higher due to 

the fact that all the subjects had pes cavus (33.8°) and the majority of subjects 

recruited in our study had pes planus. 

Murley et al (2009) conducted a study and inclusion criteria for normal arched 

foot for radiographic measures based on a study performed by Thomas et al 

(2006) to find normal values for CIA measures.  They found  CIA values for males 

to be 13.2 °- 26.2° and females 13.8° -25.6° (mean +- 1SD).  The study 

comprised 100 adults (50 males and 50 females with a mean age of 34.3 years 

for males and 34.7 mean ages for females). Menz & Munteanu (2005) reported 

CIA mean values of 21° as did Saltzman et al (1995) who obtained the 

radiographic values from 100 orthopaedic patients.  The mean CIA in our present 

study was 15.4° in the normal group and 15.8° in the patient group which is in 

the range of being acceptable. Both authors had larger sample groups (N=100 

and 95 respectively) which may account for the different values. An important 

finding is that if the CIA is low, this then should correlate with the fact that the 

NH is lower.  This may also suggest more pronated feet were being measured 

than supinated as the more pronated the foot, the smaller the angle; its decrease 

consistent with flatfoot (Villarroya et al 2009). However, it is interesting to note 

that CIA measurements decreased in value between barefoot and orthotics in 

both groups which was contrary to what was expected which was that the angle 

would increase due to the orthotic. 

The object of an orthotic for a pes cavus foot is to improve weight distribution and 

stability and the orthotics all had lateral rearfoot posts which aim to move the 
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arch in a flatter position.  It would be expected therefore that the rearfoot angles 

measured in the study by Eslami et al (2007) would increase when wearing a 

lateral rearfoot posted orthotic which was reported by them.  In this present 

study, the rearfoot angles decreased which is one of the purposes of a medially 

posted rearfoot orthotic (27° barefoot to 26 ° with orthotics for normals and 23° 

barefoot to 21.1°with orthotics in the patient group). Another differing factor is 

the orthoses described in their research were actually prescribed for each 

individual subject whereas in this present study the orthotics were off the shelf 

and each subject got the same pair dependent on shoe size.  This was a major 

limitation for the study.  

Vicenzino and colleagues (2000) researched whether a soft orthotics had any 

effect on navicular height before and after 30 minutes of exercise.  They found 

that the subjects, all whom had at least a navicular drop of 10mm at the start of 

the study, produced approximately 14 % of an increase in navicular height before 

the exercise.  They concluded that soft orthotics can help to increase navicular 

height which helps control abnormal pronation which should ameliorate 

inappropriate stresses on soft tissues of the lower limb. Payne et al (2003) found 

that all orthoses tested resulted in an increase in navicular height.  

Del Rossi et al (2004) noted similar results as Vicenzio et al (2000).  They 

conducted a study examining the effects of a wedged insole with a medial post 

underneath the heads of the metatarsals on the height of navicular and navicular 

drop.  It was found that the insole significantly increased navicular height and 

navicular drop measurements. 

It was also hypothesised that when subjects wore the orthotic devices, the NH 

measurement would increase due to the arch rising in height.  The results 

however were surprising in that the all the values except one asymptomatic 

subject decreased when wearing the orthoses in both groups.  About half of the 

measurements increased when wearing trainers but decreased lower than the 

initial barefoot measurement when wearing orthoses and trainers.  In one normal 

subject the nav ht decreased by 3mm from the barefoot scan to the orthotic scan.  

This is unusual and not what we expected however there were other unexpected 

results with the MLA angles as well. 
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The MLA angles all increased throughout all three scans in the normal group but 

stayed relatively the same within the patient group.  It is interesting to note that 

it was expected that this angle would decrease in size from the barefoot scan 

through to the orthotic scan ( mean patient group 149.5 degrees barefoot, 149 

degrees trainers, 150.2 degrees orthotics; mean normal group 141.6 degrees 

barefoot, 144 degrees trainers, 146 degrees orthotics).  This is a confounding 

result and is contrary to what we expected as the purpose of an orthotic device is 

to reduce rearfoot motion and raise the MLA.  However, it is interesting to note 

that although the MLA values increased when wearing the orthotic devices and 

the NH values decreased, the two results correlate together in that as the MLA 

flattens, the NH reduces which is what we would expect.  The increase in arch 

length cannot be explained as there is no research available to back any results 

up with.  Future research would be to re-do the study and look at the results 

again and compare them with the present results. 

When comparing the variables, we looked at the results from the top of the 

navicular and compared it with the results from the height of navicular.  In most 

cases in both groups the height and the top of navicular did simultaneous actions.  

When the height of the navicular tuberosity got smaller, so did the distance from 

the top of the navicular.  In three subjects, the height of the tuberosity increased 

as did the distance between the top of the navicular.    

Talar tilt values were expected to decrease throughout the three scans with the 

lower the amount of degrees, the more stability within the ankle.  The results 

were quite surprising.  The patient group had some changes with the majority of 

patients lowering throughout the three scans or simply staying the same 

however, the normal group did produce a lower talar tilt value when wearing 

orthotics but 100% of the group all increased when wearing their trainers.  This 

was also seen when testing NH measurement.  One of the normal subjects 

changed 4° between scan one and scan two.  In the patient group 27% of the 

subjects increased with trainers but the rest all did as was expected. 

There could be a couple of explanations for this.  It could be the programme 

Osiris which was used as a tool for all the radiographic measurements is very 

limited in its pixel size.  Clarity was often a problem when trying to locate the 



286 

 

inferior articular surface of the tibia or other prominent areas either because of 

pixel limitation or through the partial volume effect around the bone margin.  The 

subject could perhaps be moving which causes “ghosting”. 

Soft tissue volume was another variable which may be greatly affected by 

footwear.  It was expected that because we were using a medially posted orthotic 

device, the medial (minimum) aspect of the calcaneal tuberosity to the skin would 

increase in distance and the lateral aspect of the calcaneus to the skin may 

increase slightly but should maintain the same value.  In the asymptomatic 

group, all medial values increased consecutively with each scan and the same 

with the lateral values with the exception of one subject whose measurement 

decreased by 3mm with the orthotics.  However, the medial value increased so 

we would presume this to be an error in measuring as the device was on a flat 

surface.  Another explanation could be that this one subject had ill-fitting shoes or 

the shoes were very old and the heel counters worn down. 

An important consideration which must be taken into account when we interpret 

the results is our sample group. We compared a relatively young group of 

symptomatic and asymptomatic volunteers which cannot be assumed to be 

equally valid for a group of older subjects.  This is due to the foot undergoing 

several age related changes in strength (Endo et al 2002) and joint range of 

motion (Nigg et al 1992).  Menz & Munteanu (2005) conducted a study using an 

older population (62-94 years) and the mean NH was 26.5mm.  In our present 

study, the age requirement was 24-57 years and the mean for the normal 

barefoot was higher at 30mm and 32mm for the patient group.  Other studies 

have also found higher values ranging from 37 to 46mm (Menz et al 2003; 

Williams & McClay 2000).  Menz & Munteanu (2005) stated that the reason for the 

lower NH scores were due to 21 of their subjects had a NH measurement of less 

than 20mm.  Staheli et al (1987) previously reported that there is an increased 

tendency to flat foot in people aged over 60 years.  This will give the older 

population a lower NH measurement. 

One of the main aims of this study was to assess any differences between the 

normal group’s values and the patient group with anterior knee pain values.  

Variables CIA, RF, Nav ht, Sup nav ht and TV all had very similar measurements 
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and had comparable reactions.  The AKP group did have larger amounts of 

correction between the barefoot scan and the orthotic scan but there were no real 

disparity between them as hypothesised.   

What was very interesting to note was the effect the trainer had on the 

measurements compared to the other two scans with variables of MLA and TT. 

One possible explanation for this could be due to cost and limited resources, it 

was not possible to have all volunteers wearing the same type of trainer therefore 

they all wore their own.  These obviously varied greatly in terms of quality and 

shelf-life.  The majority of good quality trainers have a good blend of cushioning 

and a medial stability post or a dual-density midsole which aids in controlling 

pronation throughout the gait cycle.  The amount of support in a shoe could 

possibly affect any of these variables measured during the study and be far more 

supportive than the insoles under investigation.  For future research, a study with 

the same standardised shoe would be required.   

 

7.9. Limitations of study  

 

Several methodological limitations are acknowledged within this study.  First it 

must be recognised that the study was very limited to the immediate effects of 

the orthotic devices on any structural changes in the alignment of the foot and 

leg.  Any permanent changes in angles or measurements may induce long term 

adaptation (Eslami et al 2009). Secondly, this study was conducted standing only.  

Dynamic measurements through gait will differ from static measurements.   

One of the main purposes of this study was to measure the Q-angle with the 

upright MRI scanner.  We had hoped to determine if there was any difference in 

the Q-angle between the barefoot, trainers and orthotic scans.  However, as 

mentioned above it was not possible to measure the whole of the femur or the 

whole of the tibia with the MRI therefore we could not compare the clinically 

measured Q-angle to those measured by radiography.  In 2001, Sanfridsson and 

colleagues did this and compared two types of radiological Q- angle 

measurements with a clinical measurement.  The radiographic Q-angle was 

measured as the acute angle between the lines connecting the spina iliaca 
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anterior superior (SIAS) and the centre of the patella and the line from the tibial 

tuberosity to the centre of the patella.  They compared healthy knees with 

affected knees in semi flexion and extension.  The results were surprising and 

they found higher values in the healthy group in both semi flexion and extension 

(7.3 degrees semi flexion and 9 degrees extension compared with 9 degrees semi 

flexion and 13 degrees extension).  There was also a poor correlation between 

clinical and radiographic measurements (r = 0.47).  In a similar study by 

Sanfridsson et al also in 2001, they found higher Q-angles in females than in 

males in both semi flexion and extension (p=0.007 and p=0.0005 respectively). 

Brattstrom (1964) reported similar findings in females and said this was due to 

their broader pelvis. 

Relatively large pixel size and as mentioned previously, partial volume size was a 

limitation which has to be considered which will affect the measurement 

procedure.  Another large problem was the difficulty in reproducing the slice 

position between the barefoot, trainers and orthotics conditions.  It would be 

unlikely that the same slice was measured within each scan.  Future research 

would be to conduct repeated scans on each condition. 

Another possible idea for further research would be to use the measurements 

obtained from the MRI images and compare them clinically.  The quadriceps angle 

plays a very important role in measuring alignment of the knee and it was 

planned to include this as a measurement however due to time restrictions with 

the MRI scanner it was not possible to measure the femur and hip.  Therefore 

further research could be in measure the Q-angle using MRI and compare the 

results with a clinical measurement. 

 

7.10. Conclusion 

 

Radiographs used to assess foot and leg mechanics should be taken in a weight 

bearing position as to a more closely approximate relationship in gait.  This will 

help to demonstrate how the weight bearing foot and leg reacts in a closed kinetic 

chain environment as they interact with ground reactive forces. 
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It has been shown that by doing this it is a reliable and valid measurement tool 

although maybe not readily available due to cost and time for many clinicians. 
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8. Chapter 8 – Comparisons of Different Clinical Measurement 

Methods 

 

8.1. Introduction 

 

3D motion gait analysis and MRI positional scanning all provide standard 

measurements however, measurements performed in a clinical environment by an 

experienced clinician are more convenient, cheaper and more accessible. 

An extra objective of this study was to discover if there were any comparisons or 

correlations between measurements taken in a clinical environment by a clinician 

and the same measurement conducted by a different measuring tool such as 3D 

motion analysis machine or the MRI positional scanner.  Measurements conducted 

in a clinical setting by an experienced clinician are an established and accurate 

way of gathering data and these results have to be compared with measurements 

by new methods. 

In the previous chapters, each measurement tool was discussed separately and in 

this chapter the aim is to find out if correlations can be made from the findings 

from each one. 

Measurement of the navicular height is commonly used as a measure of subtalar 

position (Holmes et al 2002). The height of the medial longitudinal arch is often 

used as a surrogate, albeit indirect, measure of abnormal foot pronation and 

navicular height which is a measure of the medial longitudinal arch of the foot, 

decreases with pronation of the foot (Vicenzino et al 2005).  Therefore simple and 

reliable methods to measure static and dynamic navicular height are warranted.  

 

8.2. Methodology 

 

Navicular height was measured in the clinical assessment by an experienced 

clinician by marking the navicular tuberosity with a pen.  The subject was then 

placed in the NCSP position and asked to maintain this position.  The height of the 

black mark to the supporting surface was measured with a ruler and recorded in 
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millimetres (mm).  They were then asked to relax the foot and the height of the 

mark to the supporting surface was recorded again.    Navicular drop was 

calculated by subtracting the two measurements from each other.  This same 

measurement was also recorded by the 3D Motion Analysis System by placing a 

reflective marker on the top of the navicular tuberosity on the foot.  This then 

enabled the height from the marker to the floor to be measured.  The Positional 

MRI Scanner also helped measure the distance from the tuberosity to the floor 

and from the top of the navicular to the ground. 

A repeated measures ANOVA was executed to test for a significant main effect 

and a post-hoc Bonferroni adjusted pair-wise comparison was used if significance 

was shown. To determine this degree of association between the clinical, 

radiological and kinematic measurements, Pearson (r) correlation coefficients 

were calculated (Menz and Munteanu 2005).  

  

8.3. Results 

 

Results for navicular height values when comparing three measurement 

techniques were that significance was shown (p=0.0001).   

From the table below, there was 19.37° difference between clinical and Vicon 

measurements (p=0.0001), 16.54° difference between Vicon and MRI 

measurements (p=0.0001) and only 2.83° between clinical and MRI 

measurements (p=0.480). 
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Mean N 

Std. 

Deviation 

Std. Error 

Mean 

Pair 1 clinic 34.83 15 8.10 2.09 

vicon 15.46 15 5.81 1.53 

Pair 2 vicon 15.46 15 5.81 1.50 

mri 32.00 15 5.30 1.36 

Pair 3 clinic 34.83 15 8.10 2.09 

mri 32.00 15 5.30 1.36 

Table 8.1 Mean, standard deviation and mean standard error of navicular 

height measurements from clinical, MRI and 3D analysis 

 

 

Figure 8.1 Mean values for navicular height over three different measurement 
techniques 
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Figure 8.2 Scatterplot graph displaying clinical and 3D values for navicular 

height 

 

 

 

Figure 8.3 Scatterplot graph displaying clinical and MRI values for navicular 
height 
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Figure 8.4 Scatterplot graph displaying 3D and MRI values for navicular height 

 

Scatterplots showing clinical v 3D, clinical v MRI and 3D v MRI mean values for 

navicular height. 

Scatterplot diagrams show the line Y=X which is the line of equality on which all 

points would lie if the three measurement tools gave exactly the same reading 

each time. This shows the level of agreement between measurements (Bland & 

Altman 1986).    A matched paired t-test was conducted to test for correlations 

between the three tools and correlations were poor and insignificant. 

Another variable which was measured by all three measurement tools was 

rearfoot angle.  In the clinical assessment it was measured as the angle between 

a line that bisected the calcaneus and a line that bisected the lower third of the 

leg.  When using the Motion Analysis System, two small markers were placed on 

the calf along the bisection line.  The distal marker and the second calf marker 

defined two lines which were used to describe the frontal plane angle of the 

rearfoot angle.  The MRI Positional Scanner measured the angle by bisecting the 

longitudinal axis of the posterior surface of the calcaneus with the medial aspect 

of the calcaneus. 
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Figure 8.5 Mean values for clinical, 3D and MRI values for rearfoot angle 

 

  

Mean N 

Std. 

Deviation 

Std. Error 

Mean 

Pair 1 clinical 9.0667 15 2.61771 .67589 

vicon 10.8183 15 6.07976 1.56979 

Pair 2 vicon 10.8183 15 6.07976 1.56979 

mri 23.6667 15 6.29815 1.62617 

Pair 3 clin 9.0667 15 2.61771 .67589 

mri 23.6667 15 6.29815 1.62617 

Table 8.2 Mean, standard deviations and mean standard of error for rearfoot 

angles from clinical, MRI and 3D analysis 

 

 Repeated measures ANOVA was conducted there showed a significant effect 

(p=0.001).  The pairwise comparisons found significance between clinical 

measures and MRI measures (p=0.0001) and between Vicon measures and MRI 

measures (p=0.0001). 



297 

 

 

Figure 8.6 Scatterplot graph displaying clinical and 3D values for rearfoot 

angles 

 

 

Figure 8.7 Scatterplot graph displaying clinical and MRI values for rearfoot 

angles 
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Figure 8.8 Scatterplot graph displaying 3D and MRI values for rearfoot angles 

 

Scatterplot diagrams showing clinical v 3D, clinical v MRI and 3D v MRI mean 

values for rearfoot angles are shown above. 

A matched paired t-test was conducted to test for correlations between the three 

tools and correlations were poor and insignificant which can be shown easily by 

the graphs above. They show no relationship exists between any of the three 

comparisons. 

 

8.4. Discussion 

 

Associations among measurements were compared and results demonstrated no 

significant associations (P>0.01) with any of the parameters.  Clinical 

measurements of navicular height had only a small relationship with the 

corresponding radiographic navicular height measurement (r=0.45). This 

disagrees with literature which states very positive correlations between them. 

Menz & Munteanu (2005) writes that they found a strong correlation between 

clinical measurements of NH and measures from radiographs (r values ranging 

from 0.72-0.76). These values are consistent with Williams & McClay (2000) who 

reported a correlation of (r = 0.87). Associations between kinematic and clinical 

measurements of navicular height were not related at all.  This is surprising as it 
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was expected for radiographic measurements to be increased compared to clinical 

measurements.  There were also no relationships between the conditions when 

measuring rearfoot angle. Figure 8.7 and Figure 8.8 showed negative values (r=-

0.21 and r=-0.23) respectively.  

The results presented that the radiographic values when measuring navicular 

height were indeed higher but this may be due to the fact that the measurement 

incorporates the skin thickness especially around the heel and foot.  Each 3mm 

slice taken from each scan from the MRI scanner is not reproducible and to be 

truly comparable with kinematic data, the scans would require 3D pictures. 

Kinematic values may differ between subjects and each condition due to marker 

wobble and placement error.  These limitations have been discussed in earlier 

chapters.  Rearfoot angle, clinical and kinematic measurements had the most 

agreement whereas in the navicular height measure, radiographs and clinical had 

the most association.  The angle was slightly higher using the Vicon system than 

when measuring clinically.  The reason for this could be that the foot model which 

was used for the measurements measured the rearfoot as the “whole foot”.  It 

was not able to make any distinction between the forefoot and the rearfoot.  

Clinically, the rearfoot angle should be measured by placing the foot into subtalar 

joint neutral which utilises the forefoot.  For this reason the 3D analysis tool may 

result in a cruder value. Cadaver studies indicate that during pronation of the 

rearfoot, the greatest amount of motion occurs at the metatarsal-navicular level 

(Kitoaka et al 1997). The Oxford foot model (discussed in chapter 2 section 2.7) 

differentiates between the forefoot and the rearfoot and is able to provide new 

insight into 3D foot kinematics which is sorely required in the literature.  

 

8.5. Conclusion 

 

To conclude associations among measurements did not demonstrate significant 

associations with any of the three parameters.  Clinical measurements of 

navicular height were only very slightly associated with the corresponding 

radiographic navicular height measurement. This was surprising as it was 

expected for radiographic measurements to be increased compared to clinical 
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measurements. The clinical and kinematic relationship of rearfoot angle was poor 

but may have been better if it was not for the foot model only measuring the 

whole foot.  Further research could be conducted using the Oxford foot model 

which differentiates between the rearfoot and the forefoot. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



301 

 

9. Chapter 9 – Summary of findings and conclusion 

 

9.1.  Summary of findings 

 

The overall objective of this thesis was to gain a deeper understanding of lower 

limb biomechanics and to establish if there is a true relationship between anterior 

knee pain and lower limb biomechanics.  In order to address this study, nine 

objectives were formulated.  The following section reminds the reader of these 

and highlights the main outcomes of these objectives in turn. 

 

a. To establish if a relationship exists between anterior knee pain and 

lower limb biomechanics. 

A detailed review of the literature revealed that many researchers have attempted 

to establish if any relationship exists between anterior knee pain and lower limb 

biomechanics.  This revealed that there is much debate as to whether there is or 

isn’t.  Differences between methodologies, procedures and sample sizes make 

comparisons very difficult.  The literature revealed that excessive or prolonged 

STJ pronation has been associated with overuse injuries of the lower extremity 

during running and walking. Several researchers have also documented the 

synergistic relationship between STJ pronation and prolonged internal tibial 

rotation during walking and running.  In this research a small relationship was 

revealed between knee pain and lower limb biomechanics.  It was found that in 

both the normal and patient groups, women had higher Q-angle values than the 

males and the female patient group had higher values than the females in the 

normal group.  This could signify that a higher Q-angle may influence 

biomechanics of the knee joint by creating an abnormally increased valgus angle.  

Another conclusion was that there was a strong relationship between eversion and 

inversion with internal and external tibial rotation of the leg.  This coupling 

relationship was discussed in chapter 1 and the literature revealed that a 

relationship, albeit small, may exist between the two.  Further research is 

required to measure continuous coupling of the angular motions throughout the 
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whole of the stance phase.  This will ensure exactly how the foot and leg motions 

are coupled with knee joint motions. 

 

b. To analyse the intratester reliability of a detailed clinical 

assessment. 

In order for a clinical measurement to have any scientific credibility, a reliable and 

valid clinical measurement technique must be employed.  Reliability can be 

defined as the amount of agreement between successive measurements of the 

same joint by the same tester or different testers, namely, intratester and 

intertester reliability respectively. Chapter 2 highlighted a detailed review of the 

literature available on reliability of clinical measurements and chapter 3 presented 

a thorough and clear procedure of how the clinical measurements were 

conducted.  This was to ensure that the same method was conducted on each 

occasion in order for the researcher to prove that the method was indeed reliable.  

Chapter 3 also presented a small pilot study which showed the researcher 

carrying out the same clinical assessment three times on three separate occasions 

on five random asymptomatic subjects.  It was concluded that with the exception 

of ankle plantar flexion (ICC 0.37), the results showed good to excellent reliability 

(ICC >0.72). It was also documented that other authors have also showed poorer 

results for ankle plantar flexion in their studies.  This small study fulfilled the 

objective that a relatively high degree of intratester reliability can be expected 

when using the standardised protocol as described above.   

 

c. To develop and test a foot marker placement model for use with the 

Vicon 370 Kinematic Motion Analysis System to analyse the 

biomechanics of the lower limb. 

A detailed review on the measurement tool above showed that there was a lack of 

research already conducted on the foot dynamically.  Quite a lot of the research 

looks at the foot as a whole instead of looking at the foot in various sections such 

as rear foot and mid foot. A lot of the previous studies conducted also measure 

the STJ in 2D which does not represent the STJ as a tri-planar joint.  A review of 
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the literature available on past and present foot placement models for use with 

various 3D kinematic motion analysis systems was presented in chapter 2.  It was 

evident that the foot model which was currently being utilized by the university at 

the time of this research was unable to measure STJ pronation and supination, 

rearfoot angle and height of navicular bone.  Therefore, a new foot model was 

developed which could measure these specific variables.  This foot model was 

based on the original Helen Hayes foot model but the rearfoot segment was 

recreated with the addition of a new marker which ensures that 3D analysis could 

be represented.  An additional marker was placed on the top of the navicular bone 

which would enable the system to measure the bones movement in relation to the 

floor and an additional 4 markers were placed on the rear of the lower leg and 

heel to measure rearfoot motion.  It must be noted that future research would be 

to develop this particular model further to separate the foot into midfoot and 

rearfoot segments. 

In order to produce reliable and repeatable results, there is a need to minimise 

the problems associated with the re-application of markers on different test 

sessions.  This is why it is important to measure the tester’s performance in 

marker application.  This ensures that the confidence with which any kinematic 

3D results can be used is established.  A small pilot study was conducted and the 

results showed that there was excellent reliability for the results within the three 

occasions conducted on the same day as well as the three separate occasions on 

three different days. 

 

d. To develop and establish values for lower limb biomechanics in a 

group of asymptomatic subjects using a detailed clinical 

assessment and the Vicon 370 Kinematic Motion Analysis System. 

This objective was very important in that it is therefore very important to have a 

“normally distributed” database of measurements which what to compare the 

“abnormally distributed” to.  With the two small pilot studies conducted previously 

showing good to excellent reliability for clinical assessment and marker 

positioning this objective could be fulfilled.  However, there was one subject 

within the group who skewed the normality results and therefore could not be 
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used in the study.  Significant differences were found between genders but this 

was expected as there are distinct gender differences in skeletal dimensions, the 

walking patterns of the two genders are likely to differ.  The results presented 

that most of the group of thirty asymptomatic volunteers could be classed as 

“normal” and it is therefore a justifiable database on which to compare 

symptomatic subjects against. 

 

e. To develop and establish values for lower limb biomechanics in a 

group of symptomatic subjects with anterior knee pain using a 

detailed clinical assessment and the Vicon 370 Kinematic Motion 

Analysis System. 

This objective was conducted in a similar way to the previous one but involved 

symptomatic subjects.  The results obtained from this objective were compared 

against the results from the asymptomatic group.  The new foot model presented 

that height of navicular was higher in males which is consistent with the clinical 

assessment results.  The findings of the coupling relationship suggest that the 

relatively small timing differences found between EV-TIR and TIR-KF in the 

barefoot condition indicated that there was strong synchrony between these 

relationships. 

 

f. To analyse the effect of lower limb alignment in shod subjects with 

anterior knee pain using the Vicon 370 Kinematic Motion Analysis 

System. 

g. To analyse the effect of foot orthoses on lower limb biomechanics 

in subjects with anterior knee pain using the Vicon 370 Kinematic 

Motion Analysis System. 

It was found in the clinical assessment that the women in both normal and 

patients had higher Q-angles than the males and the patient female group had 

higher than the female normal group.  It seems that a higher Q-angle may 
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certainly influence biomechanics of the knee joint by creating an abnormally 

increased valgus angle.   

When looking at kinematic values in the maximum group the experimental results 

indicate that orthotics had a significant effect on most angles compared to 

barefoot.  The difference between the trainers group and the orthotic group was 

also very significant, however very few of the parameters displayed significant 

differences between barefoot to trainer condition.   

The findings within the coupling relationships suggest that there was a very small 

synchronous relationship between rearfoot frontal plane eversion and transverse 

internal tibial rotation in the trainer condition compared to the lack of coupling 

with the other variables. The negative values in the trainer and orthotic conditions 

obviously indicate little synchrony but EV-TIR values in both of these conditions 

indicate simultaneous peak values.   It was interesting to note that there was 

better coupling in the trainer condition between EV-TIR compared to barefoot and 

orthotics.  Dynamic measurements were quite disappointing in that the height of 

the navicular was reduced when wearing trainers compared to barefoot and over 

half of the subjects had reduced values when comparing barefoot to orthotics.   

However, the values increased between the trainer and the orthotic group (mean 

15.87mm trainers- mean 19.28mm orthotics).  One of the most important 

findings was that although the results were insignificant, there was an overall 

slight decrease in calcaneal eversion when wearing orthotics during the stance 

phase.  This supports the hypothesis that calcaneal eversion would be reduced 

when wearing the orthotic device. Further research need to be carried out using 

methods which measure continuous coupling of the angular motions throughout 

the whole of the stance phase.  

 

h. To investigate lower limb alignment on asymptomatic subjects 

using barefoot, shod and orthotics conditions on the Upright 

Positional MRI Scanner. 
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i. To investigate lower limb alignment on symptomatic subjects with 

anterior knee pain using barefoot, shod and orthotics conditions on 

the Upright Positional MRI Scanner. 

 

These final two objectives will be summarized together.  It was expected to find 

radiological differences between the patient group and the normal group and 

differences between each of the three conditions of barefoot, trainers and orthotic 

devices.  It was found that angle changes in CIA decreased (15.4° barefoot to 

14.8° wearing orthotics for normal group and 15.8° barefoot to 13.8° wearing 

orthotics for the patient group.). This was contrary to what was expected which 

was that the angle would increase due to the orthotic. 

Rearfoot angles decreased which is what was expected as it is one of the 

purposes of a medially posted rearfoot orthotic (27° barefoot to 26 ° with 

orthotics for normal group and 23° barefoot to 21.1°with orthotics in the patient 

group). It must be remembered that the orthotic devices used in this study were 

“off the shelf” and each subject got the same pair dependent on shoe size.  This 

was a limitation for the study. Further research could be to use a bespoke pair of 

orthotics (individually prescribed) to compare differences between the conditions.  

This may give a more precise account of whether the device is accurately doing 

what it was prescribed for. 

The results of the NH measurement and MLA angles were surprising and contrary 

to what were expected. It was hypothesised that when a subject wore the orthotic 

devices, the NH measurement would increase due to the arch rising in height.  

The results presented with all values except one asymptomatic subject decreasing 

when wearing the orthoses in both groups.  About half of the measurements 

increased when wearing trainers but decreased lower than the initial barefoot 

measurement when wearing orthoses and trainers.  The MLA angles were 

expected to decrease in size when wearing the trainer and the orthotic but they 

all increased throughout all three scans in the normal group but stayed relatively 

the same within the patient group (mean patient group 149.5 degrees barefoot, 

149 degrees trainers, 150.2 degrees orthotics; mean normal group 141.6 degrees 

barefoot, 144 degrees trainers, 146 degrees orthotics).  This is a confounding 
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result and is contrary to what we expected as the purpose of an orthotic device is 

to reduce rearfoot motion and raise the MLA.  Future research would be to re-do 

the study and look at the results again and compare them with the present 

results. To conclude the summary, Variables CIA, RF, Nav ht, Sup nav ht and TV 

all had very similar measurements and had comparable reactions.  The AKP group 

did have larger amounts of correction between the barefoot scan and the orthotic 

scan but there were no real disparity between them as hypothesised.  Further 

research is required with a larger subject sample and bespoke insoles.  

Controlling the type of trainer would also aid in comparing the results and 

comparing walking with running would help clinicians understand more about the 

dynamic foot. 

 

9.2. Conclusion 

 

The purpose of this research was to investigate if a relationship exists between 

anterior knee pain and lower limb biomechanics.  The results from the study 

reveal that a small relationship does exist between them.  Two small pilot studies 

were conducted to show scientific credibility, reliability and repeatability.  The first 

study examined the tester’s ability to accurately perform the measurements in 

the clinical examination and revealed a high degree of intratester reliability when 

using the standardised protocol as discussed.  The second study determined the 

test-re-test and intratester reliability of marker placement using the 3D gait 

analysis system.  Results revealed acceptable results which were comparable with 

previous investigations for intratester repeatability of temporal-spatial and 

kinematic parameters. This set the precedent for the reliability of any clinical 

measurements conducted throughout the study.   

A foot model was devised based on the Oxford foot model as there is a definite 

need for a standardised multisegmental foot model.  Most previous foot models 

involve the rearfoot only and as the foot is extremely complex, more information 

is required to gain more knowledge of how the foot works both statically and 

dynamically.  For the purpose of this research, rearfoot inversion and eversion 

and navicular height were able to be measured with the foot model.  Further work 
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is required to create a model which differentiates between the rearfoot and the 

midfoot. 

 Two groups of subjects were used, an asymptomatic group and a symptomatic 

group.  A study was conducted on the asymptomatic group to determine a 

normative database for which any other results can be compared against.  The 

normative database was then used to compare the results from the symptomatic 

group.  The group with anterior knee pain were measured under three 

experimental conditions, barefoot, trainers and trainers with orthotic insoles.  Any 

biomechanical changes were noted when analysing the 3D kinematics and 

temporal parameters during the three conditions.  The results show clearly that 

there are clinical and biomechanical differences between the two groups.  There 

was small evidence which showed that wearing foot orthotics may be 

advantageous to the changes biomechanically.  There were little and small 

benefits in correcting pronatory changes or movements more distal to the foot 

when wearing the orthoses.  This compared well with previous authors who state 

that orthotics may produce small kinematic changes within the gait cycle 

providing the subject has increased rearfoot eversion, increased internal tibial 

rotation and an increased Q-angle.  A large limitation of this study was that Q-

angle was not measured using 3D analysis.  This is a future recommendation as 

would provide a more detailed and valuable insight into dynamic foot function 

during walking. 

The final section of the study was to investigate the static effects of barefoot, 

trainers and orthotics on lower limb biomechanics using the upright positional MRI 

scanner.  A small pilot study was carried out to evaluate the intratester reliability 

of measuring angles and distances using the measurement tool, Osiris.  It was 

concluded that the results of the intratester reliability were excellent.  However 

the results of the MRI study were slightly disappointing.  There were many 

limitations throughout this section of the research such as pixel size and the coil 

size used.    

A small comparison study was carried out to compare 3D kinematic analysis, 

clinical examination and MRI positional scanning. It was expected that there 

would not be any correlations between the three measurement procedures.  
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However, significant associations were found between clinical navicular height and 

the corresponding radiographic navicular height measurement.  Associations 

between kinematic and clinical measurements were not as strongly related as the 

relationship between radiographic and clinical measurements.  However further 

research is required to be done with a new multisegmental foot model which may 

change the associations with clinical measurements. 
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Appendices 

 

1. Poster for subject recruitment for reliability study 

2. Poster for subject recruitment for 3D kinematic analysis 

3. Asymptomatic subject information sheet for 3D kinematic analysis 

4. Symptomatic subject information sheet for 3D kinematic analysis 

5. Clinical Assessment form 

6. Consent form 

7. Foot model marker (mkr) and model (mod) files for foot model 

8. MRI health questionnaire sheet for asymptomatic  subjects 

9. MRI health questionnaire sheet for symptomatic subjects 
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