

OpenAIR@RGU

The Open Access Institutional Repository
at Robert Gordon University

http://openair.rgu.ac.uk

This is an author produced version of a paper published in

IEEE Congress on Evolutionary Computation (CEC) 2013 : Proceedings
(ISBN 9781479904525, eISBN 9781479904532)

This version may not include final proof corrections and does not include
published layout or pagination.

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

GERRARD, C. E., MCCALL, J., MACLEOD, C. and COGHILL, G. M.,
2013. Artificial chemistry approach to exploring search spaces
using Artificial Reaction Network agents. Available from
OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk

Citation for the publisher’s version:

GERRARD, C. E., MCCALL, J., MACLEOD, C. and COGHILL, G. M.,
2013. Artificial chemistry approach to exploring search spaces
using Artificial Reaction Network agents. In: IEEE Congress on
Evolutionary Computation (CEC) 2013 : Proceedings. 20 – 23 June
2013. IEEE. pp. 1201-1208.

Copyright
Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

IEEE COPYRIGHT STATEMENT

© 2013 IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted
component of this work in other works.

Artificial Chemistry Approach to Exploring Search

Spaces Using Artificial Reaction Network Agents

Claire E. Gerrard, John McCall, Christopher Macleod,

IDEAS Research Institute,

Robert Gordon University,

Aberdeen, Scotland.

c.e.gerrard@rgu.ac.uk, j.mccall@rgu.ac.uk,

chris.macleod@rgu.ac.uk

George M. Coghill,

Department of Computing Science,

University of Aberdeen,

Aberdeen, Scotland.

g.coghill@abdn.ac.uk

Abstract— The Artificial Reaction Network (ARN) is a cell

signaling network inspired representation belonging to the

branch of A-Life known as Artificial Chemistry. It has properties

in common with both AI and Systems Biology techniques

including Artificial Neural Networks, Petri Nets, Random

Boolean Networks and S-Systems. The ARN has been previously

applied to control of limbed robots and simulation of biological

signaling pathways. In this paper, multiple instances of

independent distributed ARN controlled agents function to find

the global minima within a set of simulated environments

characterized by benchmark problems. The search behavior

results from the internal ARN network, but is enhanced by

collective activities and stigmergic interaction of the agents. The

results show that the agents are able to find best fitness solutions

in all problems, and compare well with results of cell inspired

optimization algorithms. Such a system may have practical

application in distributed or swarm robotics.

Keywords— Artificial Reaction Networks; Artificial Chemistry;

Swarm Robotics

I. INTRODUCTION

Single celled organisms display an astonishing array of
complex behaviors. Some can avoid light with photo-sensitive
spots; some actively hunt prey; while others can build
protective shelters [1]. Such behaviors improved these
organisms’ chances of survival through the process of natural
selection. In recent years a growing body of research has
illuminated the remarkable capabilities of single cells to store
and process information [2, 3]. The mechanisms involved are
quite different from those of a digital computer. Within a cell,
the current state is represented as a set of spatially distributed
concentrations of chemical species. This data is processed by
vast networks of chemical reactions termed cell signaling
networks (CSNs). In this way, cells are able to respond to
current environmental conditions, communicate with other
cells, and perform internal self maintenance operations.

Several researchers have highlighted the processing
capabilities of these networks [2, 4, 5] and similarities to
Artificial Neural Networks (ANNs) [2, 5]. For example, it has
been demonstrated that such networks can perform Boolean
and fuzzy logic functions and are equivalent to a Turing

machine [2, 4]. Furthermore, CSNs contain topological features
such as feedback loops and interconnectivity, thus forming
highly complex systems [2, 5, 6].

It is possible to abstract the computational properties of
such chemical processing to create a type of model called an
Artificial Chemistry. Artificial Chemistry is a subfield of A-
Life, and in its broadest sense, it describes man-made systems
which are similar to real chemical systems [7]. In previous
work, a new Artificial Chemistry representation of CSNs- the
Artificial Reaction Network (ARN) was introduced and
investigated as a means to control limbed robots [8, 9, 10].

Our first aim is to show that an ARN network can be
instantiated and used as the internal control system for multiple
instances of cell-like autonomous distributed agents. Like
biological cells these agents react to their environment, and
stigmergically communicate to facilitate collective emergent
behavior. Our second aim is not to present a new optimization
algorithm; rather it is to show that these agents can perform a
range of useful search behaviors in a variety of situations, and
that their search strategy can compare to that of established
optimization algorithms using similar cell inspired strategies.
The agents are placed within a simulated environment with the
task of finding the global minima of a set of well-known
benchmark problems. The search spaces chosen are not high
dimensional, but chosen to reflect problems which situated
robotic agents could perform in real world environments.

The paper is structured as follows: section 2 provides an
overview of the ARN representation; this is followed by an
overview of the ARN agents in section 3. The experimental
details are discussed in section 4 followed by results in section
5. Finally section 6 presents the conclusions.

II. ARTIFICIAL REACTION NETWORKS

A full account and verification of the ARN representation
can be found in our work [8, 9, 10]; thus to preserve space only
a brief summary is provided here.

The ARN comprises a set of networked reaction nodes
(circles), pools (squares), and inputs (triangles) as shown in
Fig. 1. Each pool stores the current available chemical species
concentration (avail); this concentration represents data within

mailto:c.e.gerrard@rgu.ac.uk
mailto:j.mccall@rgu.ac.uk

the system. Thus, the complete set of pool concentrations at
time t, corresponds to the current state of the system. Inputs are
a special type of pool, the only difference being that they are
not updated by flux at each time step, and are used to represent
continuous concentrations, for example, environmental inputs
or enzymes. Each circle corresponds to a reaction unit,
representing a reaction between a number of chemicals. Data is
processed by reaction nodes transforming incoming pool
values to connected outgoing pool values. Connections
symbolize the flow of chemical into and out of reaction units
and their weight (w) corresponds to reaction order.
Connections provide the facility to create complex control
structures using combinations of inhibitory and excitatory
connections. Fig. 1 shows the reaction between species A and
B to produce species C. At time interval ∆t, each reaction unit’s
temporal flux value is calculated by applying Euler’s
approximation to the differential rate equation as shown in (1).

Fig. 1. The Artificial Reaction Network representation.

tCKBAKC CBA W
availCr

W
avail

W
availCf 






















)()((1)














 D

W

W
CCC

C

C

availavail


 (2)

Where:

A, B, C, D = Species Concentrations

W = Reaction order (weight)

avail = Available species concentration

Kf = Forward rate constant

∆C = Change in species concentration C

Kr = Reverse rate constant

α=sum of other incoming weights

This value is then used to update the current concentration

of each reaction’s connecting pools as shown in (2). Pools may

asymptotically approach 0, and thus below a particular

threshold a pool is considered empty and its value set to zero.

A reaction step may proceed if it meets its preconditions.

Preconditions are met if incoming inhibitory pools are inactive,

and incoming excitatory pools are active. In a similar way the

completion of a reaction step will fulfill a number of post

conditions, which depend on the parameters and connections of

the reaction step.

III. ARN CONTROLLED AGENTS

In the following experiments a number of autonomous
ARN controlled software agents termed “cytobots” (“cyto”
from Greek for cell, and “bot” from robot) are created and
initialized within an artificial environment containing a nutrient
landscape. The cytobots task is to find the maximum food level
by moving around within this simulated environment in as few
evaluations (reading the value of food at the current position)
as possible. Similar to the way in which a CSN acts as the
control system to a cell, the behavior of each cytobot is
controlled by its own instance of an ARN network. In this way,
the ARN directs the agent’s movement, enables the agent to
react to situated environmental patterns, and allows it to
stigmergically communicate with other cytobots to contribute
to higher level function. The cytobot ARN network was
designed to produce two simple behavioral modes: foraging
and starvation, both are based on the movement patterns of
unicellular organisms. Cytobots forage by performing a biased
random walk behavior while consuming food at each passing
location. This pattern of movement is exemplified by the
bacteria Escherichia coli (E. coli), where foraging cells
alternate periods of runs (forward motion) and random
redirections known as tumbles. By comparing concentrations
of attractants and repellants in a temporal fashion, the organism
is able to reduce the frequency of tumbles up concentration
gradients of attractants, and down gradients of repellants, thus
providing the bias. This behavior implements a type of
optimization where biased periods of movement in the
direction of attractants lead to overall travel toward more
favorable conditions [11].

The starvation behavior is based on the pattern of motion
displayed by starving cells of the cellular slime mould
Dictyostelium discoideum (D. discoideum). During the
vegetative stage of D. discoideum, cells move up gradients of
folic acid secreted by its bacterial prey. When the food resource
has been depleted, the amoebae begin to starve and enter the
aggregation phase of their life cycle. During aggregation,
starving cells secrete cAMP (cyclic adenosine monophosphate)
which serves as a signal to attract surrounding amoebae
towards a central location [12]. In this simulation, when the
cytobots enter starvation mode, the level of food surrounding
the agent represents corresponding levels of attractant cAMP.
When a cytobot travels over areas of low or zero food it enters
the starvation mode. Instead of turning in a random direction,
the new direction is weighted toward higher concentrations of
food within its surrounding area. This behavior forces
exploration of unexplored search space because previously
visited positions have a food level of 0.

Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks

Consumption of environmental food therefore serves as a
stigmergic signal, where agents are inclined to move up the
nutrient gradient created by their foraging activities. The
cytobot ARN was designed to perform the starvation and
foraging behaviors described above and is composed of 6
subnetworks as shown in Fig. 2. Each subnetwork contributes a
functional aspect to either or both starvation and foraging
behaviors. The subnetworks are discussed below.

A. The Master Oscillator

The master oscillator functions to synchronize all the
outputs from all the other subnetworks together and is what
each agent references at each time step to ascertain its current
behavior. It is a simple closed loop, with a token unit of
chemical cycling around it. It consists of 4 reaction units: M0,
M1, M2, and M3 (all with reaction rate of 1) and 4 pools MA,
MB, MC and MD. Each pool activates one of three behaviors,
and for every time step that a particular pool contains the token
unit, its corresponding behavior is performed. Pool MA
activates turn, MC activates run and pools MB and MD
activate stop. If these pools were switches to motor actuators
on a simple wheeled robot, pool MC would switch on all wheel
motors, while pool MA would switch on wheel motors on the
left side only, thus turning the robot. The remaining pools
would act as off switches. The other subnetworks inhibit or
excite the reaction units of the master oscillator to allow or
prevent chemical flow. The number of time steps that a
chemical is present in a particular pool indicates the length of
time that a particular behavior is performed. Thus if pool MC
contains a chemical for 10 time steps, then the agent will move
forward for 10 time steps; similarly if this were pool MA, the
agent would turn for 10 time steps.

B. The Food Network and The Run Length Network

The food network senses the level of food within the
environment and connects to the run length network to modify
the number of steps forward according to the level sensed. The
value of food at the cytobots’ current position is stored at input
pool FA. The forward rate of reaction node F0 is 1, thus the
content of FA is transferred to pool FB in a single time step.
The presence of chemical in pool FB inhibits the run network
reaction R0 for a number of time steps according to the level of
food (by setting forward rate of unit F1 to 1 and weight to 0
this can be an exact correlation). This in turn stops pool RC in
the run length network from emptying. Pool RC inhibits
reaction M2 of the master oscillator thus preventing pool MC
from emptying for the same number of time steps. As
discussed previously, the number of time steps which pool MC
contains the token unit represents the number of time steps to
move forward.

C. The Signaling Network

The signaling network functions as a switch between
starvation and foraging mode. Low food levels trigger the
starvation response and allow the weighted direction network
to control each new angle. Sufficient food will switch off the
weighted direction network and allow the chaotic network to
control each new angle. It is a simple closed loop with a token
unit of chemical flowing around it. Pool CA acts as a switch
between foraging and starvation behavior, where the presence
of chemical in CA inhibits the weighted direction network-
while its absence switches on the weighted direction network;
this in turn inhibits the chaotic network, as shown in Fig. 2. In
this component, all reaction units have a forward flux of 0.5;
which ensures a minimum number of time steps for each
behavior.

D. The Weighted Direction Network

The weighted direction network senses food within the
agents’ immediate environment and calculates a tumble angle
which is weighted toward higher food levels. This network
interfaces with the environment via a number of receptor pools
(AW, ANW, AN, ANE, AEA) which sense the level of food
around the cytobot. These pools represent receptors positioned
at points around the front of its perimeter, allowing the agent to
travel in a similar way to that of a polarized biological cell. For
example, during the aggregation phase of their life cycle, D.
discoideum cells are polarized, and one side becomes the
leading edge which always faces in the direction of travel [12].
For each receptor input pool, there is a static pool containing a
fixed level of chemical in correspondence to its direction.
Directions start from AW (west) with a corresponding numeric
value of 0 (A00) and progress in 45 degree steps through each
direction to east. As the receptor positions around the agent are
fixed, directions are always relative to that in which the agent
is facing. All connections have a weight of 1 with the exception
of the connection between pool AD and reaction A12 which
has a weight of -1. This negative connection raises the sum of
food detected in pool AD to -1, which multiplied by AB,
allows an average angle to be calculated.

The calculated angle interfaces with the remaining
subnetworks at pool AE. In an actual organism receptors are
set around the cell perimeter and direct movement
appropriately. In this simulation, for simplicity, a count of the
number of time steps that MA contains the token unit is
processed to gain the turn angle relative to the agents’ current
heading using (3). Thus if the number time steps is 120 and
the agent is facing north, then the current heading would equal
0 and the new heading would equal 30.

 360mod))90((cnh  (3)

Where:

h= new heading

n = count of time steps pool MA contained chemical

c = current heading

E. The Chaotic Network

The chaotic network, as shown in Fig. 2, is responsible for
generating pseudo random angles which agents use to perform
the foraging tumble behavior. It is a networked
implementation of a Logistic Map, see (4). Without prior
knowledge of the initial conditions the output of the logistic
map is unpredictable, whereas with prior knowledge it is
deterministic- therefore the series cannot be described as truly
random but as pseudo random. Its output has long been
proposed as a pseudo-random number generator. Ulam and von
Neumann [13] were the first to examine this and it has been
successfully used in this capacity by several researchers [14].
The probability density distribution of the Logistic Map is non-
uniform and is described by (5) [14]. When λ=4 the
distribution is “U” shaped with higher probability of values
closer to the minima and maxima of X and symmetric

distribution at the midpoint. The general shape of the
distribution is invariant for the complete range of state
variables from 0 to 1.

)1(1 nnn XXX   (4)

Where:

Xn= state variable of value 0 ≤ Xn ≤ 1

λ= system parameter of value 1 ≤ λ ≤ 4

)1(

1
)(

XX
XP





 (5)

Where:

P(X) = probability of X occurring

The chaotic network component, as shown in Fig. 2, operates

in the following manner. At the start of the simulation, the

pools KA and KB of each cytobots’ chaotic network are

initialized to the same random value between 0 and 1 (to 5

decimal places). This represents the first value of X where X

is the state variable of (4). All the other pools are initialized to

0 with the exception of the static pools KI and RK whose

initial values are 360 and 1 respectively. Reaction K2 is

responsible for generating each new value of X and has a

forward and reverse rate of 4 (the logistic map exhibits chaotic

behavior when λ is 4). The connection between KA and K2

has a weight of 1 and the connection between K2 and KB has

a weight of 2. The remaining series of reactions function to

copy the value of X 3 times, where 2 copies serve as the new

initial values of KA and KB and the remaining copy

participates in the final output of the network at KH. Static

pool KI has a fixed value of 360 which in reaction K0, allows

the network to convert the pseudo random number at KH to an

angle value between 0 and 360. However, reaction K0 cannot

proceed until all 11 pools that inhibit it are empty. These

inhibitory connections ensure that random angles are not

output while the agent is in starvation mode, and that pool AE

is empty before adding more chemical.

The ARN implementation of the Logistic Map was tested

against the recursive relation shown in (4). The results

generated for (4), were obtained using Matlab, where λ=4,

initial X = 0.927725, and iterated 100000 steps. The complete

range of state variables between 0 and 1 were divided into 100

equal subintervals and the frequency of occurrence of each

subinterval interval was plotted. Similarly, the chaotic network

component of the ARN was run for 100000 cycles, using the

same parameters of X and λ. These results were processed in

the same way and are shown in Fig. 3. The frequency

distribution gained from the ARN is identical to that obtained

using matlab and by other researchers using the same

parameters [14]. The same comparison was repeated 100 times

at different values of X, and the ARN consistently produced

the same values as (4).

0 0.2 0.4 0.6 0.8 1
0

1000

2000

3000

4000

5000

6000

7000

X-Value

F
re

q
u
e
n
c
y
 C

o
u
n
ts





Fig. 3. Frequency distribution for each value of X resulting from the chaotic

network when the first value of X is 0.927725 and λ=4

IV. METHODOLOGY

In the following experiments, cytobot agents are applied to the
task of finding the minima in a number of benchmark 2D
optimization problems. These are the following functions:
Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 1 for
formulae, domains, and minima). Three experiments were
performed for each function, where each uses either 1, 3 or 6
cytobots and is performed 100 times. The task of the agents is
to find the minima of the functions within as few evaluations
(reading value of food at current x, y coordinate) as possible.
The range of output values for each of the functions represents
the concentration of food (also the fitness of an agent at that
point) within a simulated environment. Values approaching the
minima represent higher food levels, and values approaching
the maxima represent lower food levels. The simulated
environment consists of a 2D area of 400 x 400 pixels. A
scaling factor is used to map the domain to the actual
dimensions of the simulation, e.g. Rosenbrock domain of [-2,
2] mapped to a simulation space of [-200, 200] by a scaling
factor of 100. For display purposes, a corresponding grayscale
color is used to show the distribution of food within the
environment as displayed in the screenshot of the simulation in
Fig. 4. Each agent consists of a token to mark its current
position and an instance of an ARN network, as discussed in
section 3. At the start of each experimental run, each agent’s
ARN network is initialized as described in section 3, and each
is positioned at random x,y coordinates within the search
space. The agents undergo alternating phases of “searching”
and “repositioning,” for a number of cycles until one reaches a
position of within 0.04 of the global minima of the function.
This value was chosen as it is within 1% of the global minima
for all the functions used. The high level pseudocode
describing the searching and repositioning phases is provided
in Fig. 5. Searching is characterized by the 2 ARN controlled
behaviors- foraging and starvation, as described in section 3. In
each search phase each agent performs a total of 3 moves (3
evaluations of the environment). The length of a run

corresponds to the number of pixels a cytobot moves forward
and is subject to the output from the run length network. After
each tumble, and before moving forward, the food level at the
current position is input into the ARN network as described
previously. The agents travel at a speed of 1 pixel per time
step, thus the number of time steps produced by the run length
network corresponds directly to the number of pixels the agent
moves forward. As a cytobot travels, the food at each passing
position is consumed and its path within the simulation is
represented in black (as shown in Fig. 4). During the search
phase, a central control unit, external to all cytobot agents,
keeps track of each cytobots best fitness and the coordinates of
that value.

Let },,{
N

aaA o  equal the set of all agents

 



N

a
atot ff

0

 (6)

*}{\ Then aAa

tot

a
ra

f

f
f  (7)

 *aaax xxd  (8)

 *aaay yyd  (9)

 












 



raax

N

a
ax fdxp

0

* (10)

 












 



raay

N

a
ay fdyp

0

* (11)

 xa prrandx )((12)

 ya prrandx )((13)

Where:

a*= agent with highest fitness

fa= fitness of agent an

ftot= total fitness of all agents

fra= ratio of agent an fitness to ftot

xa*= the x coordinate of a*

ya*= the y coordinate of a*

xa= agent an x coordinate

ya = agent an y coordinate

dax=difference between xa and xa*

day= difference between ya and ya*

px=total of all dax

py= total of all day

rand(r)= a random value within a defined radius r

INITIALISE cytobots
WHILE (best fitness outwith 0.04 of global minima)

 START search phase
 WHILE (more searching phase moves)

 FOR each agent start searching phase

 Turn agent
 Set receptor pools of food network

 Set receptor pools of weighted direction network

 Move agent forward
 IF (new food level > previous food level)

 Record fitness

 Record current position
 END IF

 END FOR

 ENDWHILE
 END search phase

 START reposition phase
 CALCULATE new central point P to reposition

 INITIALISE agents at new position

 END reposition phase
 END WHILE

Fig. 4. A screen shot of the simulation showing 6 cytobots in the inverted

sinc search space. The greyscale color represents the food distribution.

Fig. 5. High level pseudocode for each experiment

After completing the searching phase, agents switch to the
repositioning phase. This phase is used to focus searching
toward areas containing higher food levels and is inspired by
stages of the life cycle of D. discoideum. Having depleted the
level of nutrients within the immediate environment, D.
discoideum cells begin to starve, and aggregate to form a slug.
The slug travels in the direction of more favorable conditions
by moving toward attractants such as light, warmth, and
humidity. On finding a suitable location, it eventually forms a
fruiting body which disperses spores within its immediate
surroundings. The spores mature into cells, and begin foraging
within the new environment [12]. When the cytobots enter the
repositioning phase, the central control unit processes each
agent’s best fitness position to compute a new central point P,
weighted in favor of higher fitness, as described by equations
(6-13). Agents are then repositioned randomly within an area

of radius r from point P to begin the next search phase. For the
purposes of this simulation travelling to the new position was
not modeled, as this does not affect overall behavior and would
only occur if the cytobots were applied to real world
environments.

V. RESULTS

The experimental results are displayed in Table 1. For each
experiment, the average best, fa, and best solution, fb, for 100
independent runs are presented. The average number of
evaluations and the standard deviation for all agents is
displayed as “Avg Eval for all agents” and “Std Dev”
respectively. The average number of relocations for each agent
is presented in the final column as “Avg Reloc per agent”.

In all experiments the cytobots were able to find the global
minima. Cytobots performed best in Bowl and Rosenbrock
functions, where, using 6 cytobots, the average number of total
evaluations and relocations per agent respectively for Bowl
was 56.4 and 2.1 and for Rosenbrock was 79.8 and 3.4. The
cytobots performed least well in the Inverted Sinc search space,
where the lowest number of total evaluations was 94.8 using 6
cytobots. In all the experiments, a slight increase in the number
of cytobots generally results in a significant reduction in the
total number of evaluations performed. This is most significant
for Peaks where using 3 and 6 cytobots results in
approximately 30% and 60% respective reductions in the total
number of evaluations when compared to the results for 1
cytobot. The Mann Whitney U test was used to determine any
significant (95% confidence) statistical difference in the total
number of evaluations between experiments using 1 and 3 and
3 and 6 cytobots. In all experiments there was a significant
difference between 1 and 3 agents, with the exception of the
Inverted Sinc function. In Peaks there was a significant
difference in all experiments, while in the Inverted Sinc there
was no significant difference found. Thus increasing the
number of cytobots from 1 to 3 both reduces the time to find
the global minima and the number of evaluations, but this
effect can be quickly reversed if too many cytobots are added.

The paths of agents through the search space indicate
reasons for variation in results. In simple landscapes such as
Bowl, agents descend steadily toward the minima, as shown in
Fig. 6. Similarly in Rosenbrock, agents quickly descend to the
narrow valley and are forced to steadily move along it by
moving up the nutrient gradient created by the consumption of
food, until finding the global minima. In Peaks, agents move
from their initial positions and search many parts of the
domain. Fig. 7 shows the agents’ trajectories, one can see that
peaks are avoided and troughs are pursued. However, if fewer
agents are used they may quickly become trapped in local
minima causing a significant rise in the number of evaluations.
Increasing the number of agents by a small amount expands
the amount of search space explored per cycle, and increases
the chance of finding better solutions and/or leaving local
minima. Another possibility is to increase the number of
moves for each searching phase, thus allowing an agent to
travel a sufficient distance to escape local minima. Similar
solutions could be adopted in the Inverted Sinc function.

Fig. 6. Typical path of 1 cytobot in Bowl search space

Fig. 7. Typical path of 3 cytobots in Peaks search space

TABLE I. CYTOBOT AGENTS 2D SEARCH SPACE RESULTS

Functions No. of

Agents

Formulae Avg (fa)

Best and

Best (fb)

Results

Domain f(x*) = f* Avg Eval

for all

agents

(Std

Dev)

Avg

Reloc

per

agent

Rosenbrock’s

Function

1 2
1

22
12)1()(100)(xxxxf 

fa =

0.04

fb = 0

]2,2[, 21 xx 0)1,1(f 98.5

(16.3)

32

Rosenbrock’s

Function

3 As above

fa =
0.03

fb = 0

As above

As above

84.6
 (9.5)

8.4

Rosenbrock’s

Function

6 As above

fa =
0.01

fb = 0

As above

As above

79.8
 (4.8)

3.4

Bowl 1 2
2

2
1)(xxxf  fa =

0.03

fb = 0

]1,1[, 21 xx

0)0,0(f 81.9
(14.8)

26.3

Bowl 3 As above fa =
0.02
fb = 0

As above As above 64.2

 (7.6)

6.1

Bowl 6 As above fa = 0.02

fb = 0

As above

As above

56.4

 (5.8)

2.1

Peaks 1

))1(exp(3/1

)exp()5/(10

))1()(exp()1(*3)(

2
2

2
1

2
2

2
1

5
2

3
11

2
2

2
1

2
1

xx

xxxxx

xxxxf







fa =

-6.51

fb = -6.55

]3,3[, 21 xx

-6.55

)63.1,23.0(



f

 151.7

(59.2)

49.6

Peaks 3 As above fa = -6.51

fb = -6.55

As above As above 108.9

 (17.4)

11.1

Peaks 6 As above

fa = -6.52

fb = -6.55

As above

As above

64.8

 (5.7)

2.6

Inverted sinc

function

1


































2
2

2
1

2
2

2
1sin

1)(

xx

xx

xf

fa = -1.04

fb = -1
]10,10[, 21 xx

-1)0,0(f 163.5

(63.4)

53.5

Inverted sinc

function

3 As above

fa = -1.03

fb = -1

As above

As above

109.5

 (30.1)

11.2

Inverted sinc

function

6 As above

fa = -1.03
fb = -1

As above

As above

94.8
 (10.1)

4.2

These results are compared with other optimization
algorithms inspired by behaviors of single celled organisms.
For example, Passino developed the Bacterial Foraging
Optimization Algorithm (BFOA), inspired by foraging
behaviors, reproduction and dispersal events in the life cycle
of E. coli [15]. Like the foraging behavior of the cytobots,
movement is modeled as a biased random walk, where, after
each random redirection, the cell moves forward a length
according to current food levels. In a nutrient hill-climbing
experiment (without swarming effects), 50 cells are initialized
at random starting positions within a 2D search space. This
search space is similar to Peaks but with 5 troughs and a
domain of [30, 30]. Similarly to cytobots the cells tend toward
valleys and avoid peaks. After 4 generations (4 reproductive
steps), and moving 100 chemotactic steps (moves) between
generations, the cells find the global minima.

Similarly in other work, Chen et al applied BFOA using 6
cells to the 2D Bowl function with domain [-5,5], and the
global minima was found within 50 chemotactic steps [16]. In
our experiments, 6 cytobots find the global minima after an
average of 9.4 evaluations, which is the equivalent to 9.4
moves (or 9.4 chemotactic steps in the terminology of Chen et
al). After adjusting for the difference in domain size, the
numbers of moves are highly consistent for cytobots and the
cells in BFOA. In other related work, Monismith et al created
the slime mould optimization algorithm inspired by the life
cycle of D. discoideum [17]. The state space is represented as
a sparse mesh which cells populate and make modifications to,
for example, deposit attractant. Using a combination of
behavioral states inspired by the life cycle of D. discoideum,
artificial cells perform local searches, and move to positions in
favor of their personal best and the best fitness of their
neighborhood. The slime mould optimization algorithm, like
the cytobots, finds the global minima of the 2D Rosenbrock
function.

VI. CONCLUSIONS

The results presented above show that the agents are able to
find best fitness solutions in all problems, and match the
performance of cell inspired optimization algorithms in similar
search spaces. Increasing the number of agents by small
increments (2 or 3), can half the number of function
evaluations required to find the global minima. These
experiments serve as a preliminary to implementing ARN
systems to control real world distributed autonomous robotic
agents. Such agents could be applied to similar search
problems in real world environments, for example oil spill
cleanup operations, where the objective is to travel to higher
concentrations of oil, while consuming it at each passing
location. The cytobots obviously do not compare directly with
conventional optimization techniques like Genetic Algorithms,
since they have a complex internal structure. However this is
not their purpose and they may be much more effectively
utilized as the control systems in autonomous agents. This
application demands an internal control system which can
function without reference to other agents within the
environment which are operating in parallel. By modifying the
environment, (in this case by consumption of food), the agents
can stigmergically communicate and enhance and/or facilitate

emergent behavior. The cytobots offer a unique range of
abilities. Like cells, their internal network of spatially
distributed dynamic chemical species allows them to
autonomously coordinate and direct their movement,
recognize and respond to patterns in the environment, and
produce high-level behavior.

In future work, it is intended to further explore the AI
applications of the cytobot agents, and later, to create swarms
of cytobot robots with applications in real world
environments.

REFERENCES

[1] B. J. Ford, “Are cells Ingenious?,” The Microscope. vol. 52, no. 3-4, pp.
135-144, 2004.

[2] D. Bray, “Protein molecules as computational elements in living cells,”
Nature, vol. 376, no. 6538, pp. 307-12, July 1995.

[3] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid
organism,”. Nature, vol. 407, no. 6803, pp. 470-470, September 2000.

[4] A. Arkin, J. Ross, “Computational functions in biochemical reaction
networks,” Biophys. J., vol. 67, pp. 560-578, August 1994.

[5] U. S. Bhalla, “Understanding complex signaling networks through
models and metaphors,” Prog. Biophys . Mol. Biol. vol. 81, no. 1, pp.
45-65, January 2003.

[6] B. Kholodenko, “Cell signaling dynamics in time and space,” Nat. Rev.
Mol. Cell Biol., vol. 7, no. 3, pp. 165-176, March 2006.

[7] P. Dittrich, J. Zeigler, and W. Banzhaf, W. Artificial Chemistries- a
reivew. Artifi. Life vol. 7, no. 3, pp. 225-275, 2001.

[8] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Artificial
Reaction Networks,” Proceedings of the 11th UK Workshop on
Computational Intelligence, Manchester, UK, pp. 20-26, September
2011.

[9] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Temporal
patterns in Artificial Reaction Networks,” Proceedings of The 22nd
International Conference on Artificial Neural Networks Lausanne, part
1, vol. 7552, pp. 1-8, September 2012.

[10] C. E. Gerrard, J. McCall, G. M. Coghill, and C. Macleod. “Adaptive
Dynamic Control of Quadrupedal Robotic gaits with Artificial Reaction
Networks,” Proceedings of The 19th International Conference on Neural
Information Processing Doha, vol. 7663, part 1, pp. 280-287, November
2012.

[11] N. Vladimirov, and V. Sourjik, “Chemotaxis: how bacteria use
memory,” J. Biol. Chem., vol. 390, no. 11, pp. 1097-1104, November
2009.

[12] R. H. Kessin, “Making Streams,”Nature, vol. 422, pp. 481-482, April
2003.

[13] S. M. Ulam and J. von Neumann, “On combinations of stochastic and
deterministic processes,” Bull. Amer. Math. Soc, vol. 53, pp. 1120,
1947.

[14] V. Patidar, K. K. Sud, and N. K Pareek, “A Pseudo Random Bit
Generator Based on Chaotic Logistic Map and its Statistical Testing,”
Informatica, vol. 33, pp. 441-452, 2009.

[15] K. M. Passino, “Biomimicry of bacterial foraging for distributed
optimization and control”, IEEE Control Systems, vol. 22, no. 3, pp.52–
67, June, 2002.

[16] H. Chen, Y. Zhu, and K. Hu, “Cooperative bacterial foraging
optimization,” Discrete Dyn. Nat. Soc., vol. 2, no. 1, pp. 501-517,
August 2009.

[17] D. R. Monismith, and B. E. Mayfield, “Slime mold as a model for
numerical optimization,” IEEE Swarm Intelligence Symposium, St
Louis, USA, pp. 21-23, 2008.

	Gerrard IEEE evolutionary computation coversheet
	IEEE COPYRIGHT STATEMENT
	CEC_2013_GERRARD

