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Abstract— The Artificial Reaction Network (ARN) is a cell 

signaling network inspired representation belonging to the 

branch of A-Life known as Artificial Chemistry. It has properties 

in common with both AI and Systems Biology techniques 

including Artificial Neural Networks, Petri Nets, Random 

Boolean Networks and S-Systems. The ARN has been previously 

applied to control of limbed robots and simulation of biological 

signaling pathways. In this paper, multiple instances of 

independent distributed ARN controlled agents function to find 

the global minima within a set of simulated environments 

characterized by benchmark problems. The search behavior 

results from the internal ARN network, but is enhanced by 

collective activities and stigmergic interaction of the agents. The 

results show that the agents are able to find best fitness solutions 

in all problems, and compare well with results of cell inspired 

optimization algorithms. Such a system may have practical 

application in distributed or swarm robotics. 

Keywords— Artificial Reaction Networks; Artificial Chemistry; 

Swarm Robotics 

I.  INTRODUCTION 

Single celled organisms display an astonishing array of 
complex behaviors. Some can avoid light with photo-sensitive 
spots; some actively hunt prey; while others can build 
protective shelters [1]. Such behaviors improved these 
organisms’ chances of survival through the process of natural 
selection. In recent years a growing body of research has 
illuminated the remarkable capabilities of single cells to store 
and process information [2, 3]. The mechanisms involved are 
quite different from those of a digital computer. Within a cell, 
the current state is represented as a set of spatially distributed 
concentrations of chemical species. This data is processed by 
vast networks of chemical reactions termed cell signaling 
networks (CSNs). In this way, cells are able to respond to 
current environmental conditions, communicate with other 
cells, and perform internal self maintenance operations. 

Several researchers have highlighted the processing 
capabilities of these networks [2, 4, 5] and similarities to 
Artificial Neural Networks (ANNs) [2, 5]. For example, it has 
been demonstrated that such networks can perform Boolean 
and fuzzy logic functions and are equivalent to a Turing 

machine [2, 4]. Furthermore, CSNs contain topological features 
such as feedback loops and interconnectivity, thus forming 
highly complex systems [2, 5, 6]. 

It is possible to abstract the computational properties of 
such chemical processing to create a type of model called an 
Artificial Chemistry. Artificial Chemistry is a subfield of A-
Life, and in its broadest sense, it describes man-made systems 
which are similar to real chemical systems [7]. In previous 
work, a new Artificial Chemistry representation of CSNs- the 
Artificial Reaction Network (ARN) was introduced and 
investigated as a means to control limbed robots [8, 9, 10].  

Our first aim is to show that an ARN network can be 
instantiated and used as the internal control system for multiple 
instances of cell-like autonomous distributed agents. Like 
biological cells these agents react to their environment, and 
stigmergically communicate to facilitate collective emergent 
behavior. Our second aim is not to present a new optimization 
algorithm; rather it is to show that these agents can perform a 
range of useful search behaviors in a variety of situations, and 
that their search strategy can compare to that of established 
optimization algorithms using similar cell inspired strategies. 
The agents are placed within a simulated environment with the 
task of finding the global minima of a set of well-known 
benchmark problems. The search spaces chosen are not high 
dimensional, but chosen to reflect problems which situated 
robotic agents could perform in real world environments.  

The paper is structured as follows: section 2 provides an 
overview of the ARN representation; this is followed by an 
overview of the ARN agents in section 3. The experimental 
details are discussed in section 4 followed by results in section 
5. Finally section 6 presents the conclusions.  

II. ARTIFICIAL REACTION NETWORKS 

A full account and verification of the ARN representation 
can be found in our work [8, 9, 10]; thus to preserve space only 
a brief summary is provided here.  

The ARN comprises a set of networked reaction nodes 
(circles), pools (squares), and inputs (triangles) as shown in 
Fig. 1. Each pool stores the current available chemical species 
concentration (avail); this concentration represents data within 
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the system. Thus, the complete set of pool concentrations at 
time t, corresponds to the current state of the system. Inputs are 
a special type of pool, the only difference being that they are 
not updated by flux at each time step, and are used to represent 
continuous concentrations, for example, environmental inputs 
or enzymes. Each circle corresponds to a reaction unit, 
representing a reaction between a number of chemicals. Data is 
processed by reaction nodes transforming incoming pool 
values to connected outgoing pool values. Connections 
symbolize the flow of chemical into and out of reaction units 
and their weight (w) corresponds to reaction order. 
Connections provide the facility to create complex control 
structures using combinations of inhibitory and excitatory 
connections. Fig. 1 shows the reaction between species A and 
B to produce species C. At time interval ∆t, each reaction unit’s 
temporal flux value is calculated by applying Euler’s 
approximation to the differential rate equation as shown in (1).  

 

 

Fig. 1. The Artificial Reaction Network representation.  
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Where: 

A, B, C, D = Species Concentrations                   

W = Reaction order (weight)              

avail = Available species concentration         

Kf  = Forward rate constant                

∆C = Change in species concentration C       

Kr = Reverse rate constant    

α=sum of other incoming weights 

 

This value is then used to update the current concentration 

of each reaction’s connecting pools as shown in (2). Pools may 

asymptotically approach 0, and thus below a particular 

threshold a pool is considered empty and its value set to zero. 

A reaction step may proceed if it meets its preconditions. 

Preconditions are met if incoming inhibitory pools are inactive, 

and incoming excitatory pools are active. In a similar way the 

completion of a reaction step will fulfill a number of post 

conditions, which depend on the parameters and connections of 

the reaction step. 

III. ARN CONTROLLED AGENTS 

In the following experiments a number of autonomous 
ARN controlled software agents termed “cytobots” (“cyto” 
from Greek for cell, and “bot” from robot) are created and 
initialized within an artificial environment containing a nutrient 
landscape. The cytobots task is to find the maximum food level 
by moving around within this simulated environment in as few 
evaluations (reading the value of food at the current position) 
as possible. Similar to the way in which a CSN acts as the 
control system to a cell, the behavior of each cytobot is 
controlled by its own instance of an ARN network. In this way, 
the ARN directs the agent’s movement, enables the agent to 
react to situated environmental patterns, and allows it to 
stigmergically communicate with other cytobots to contribute 
to higher level function. The cytobot ARN network was 
designed to produce two simple behavioral modes: foraging 
and starvation, both are based on the movement patterns of 
unicellular organisms. Cytobots forage by performing a biased 
random walk behavior while consuming food at each passing 
location. This pattern of movement is exemplified by the 
bacteria Escherichia coli (E. coli), where foraging cells 
alternate periods of runs (forward motion) and random 
redirections known as tumbles. By comparing concentrations 
of attractants and repellants in a temporal fashion, the organism 
is able to reduce the frequency of tumbles up concentration 
gradients of attractants, and down gradients of repellants, thus 
providing the bias. This behavior implements a type of 
optimization where biased periods of movement in the 
direction of attractants lead to overall travel toward more 
favorable conditions [11]. 

The starvation behavior is based on the pattern of motion 
displayed by starving cells of the cellular slime mould 
Dictyostelium discoideum (D. discoideum). During the 
vegetative stage of D. discoideum, cells move up gradients of 
folic acid secreted by its bacterial prey. When the food resource 
has been depleted, the amoebae begin to starve and enter the 
aggregation phase of their life cycle. During aggregation, 
starving cells secrete cAMP (cyclic adenosine monophosphate) 
which serves as a signal to attract surrounding amoebae 
towards a central location [12]. In this simulation, when the 
cytobots enter starvation mode, the level of food surrounding 
the agent represents corresponding levels of attractant cAMP. 
When a cytobot travels over areas of low or zero food it enters 
the starvation mode. Instead of turning in a random direction, 
the new direction is weighted toward higher concentrations of 
food within its surrounding area. This behavior forces 
exploration of unexplored search space because previously 
visited positions have a food level of 0.   



 

Fig. 2. The cytobot ARN network. Each cytobot is controlled by an instance of this network. The network is composed of 6 subnetworks 

 

Consumption of environmental food therefore serves as a 
stigmergic signal, where agents are inclined to move up the 
nutrient gradient created by their foraging activities. The 
cytobot ARN was designed to perform the starvation and 
foraging behaviors described above and is composed of 6 
subnetworks as shown in Fig. 2. Each subnetwork contributes a 
functional aspect to either or both starvation and foraging 
behaviors. The subnetworks are discussed below. 

A. The Master Oscillator 

The master oscillator functions to synchronize all the 
outputs from all the other subnetworks together and is what 
each agent references at each time step to ascertain its current 
behavior. It is a simple closed loop, with a token unit of 
chemical cycling around it. It consists of 4 reaction units: M0, 
M1, M2, and M3 (all with reaction rate of 1) and 4 pools MA, 
MB, MC and MD. Each pool activates one of three behaviors, 
and for every time step that a particular pool contains the token 
unit, its corresponding behavior is performed. Pool MA 
activates turn, MC activates run and pools MB and MD 
activate stop. If these pools were switches to motor actuators 
on a simple wheeled robot, pool MC would switch on all wheel 
motors, while pool MA would switch on wheel motors on the 
left side only, thus turning the robot. The remaining pools 
would act as off switches. The other subnetworks inhibit or 
excite the reaction units of the master oscillator to allow or 
prevent chemical flow. The number of time steps that a 
chemical is present in a particular pool indicates the length of 
time that a particular behavior is performed. Thus if pool MC 
contains a chemical for 10 time steps, then the agent will move 
forward for 10 time steps; similarly if this were pool MA, the 
agent would turn for 10 time steps. 

B. The Food Network and The Run Length Network 

The food network senses the level of food within the 
environment and connects to the run length network to modify 
the number of steps forward according to the level sensed. The 
value of food at the cytobots’ current position is stored at input 
pool FA. The forward rate of reaction node F0 is 1, thus the 
content of FA is transferred to pool FB in a single time step. 
The presence of chemical in pool FB inhibits the run network 
reaction R0 for a number of time steps according to the level of 
food (by setting forward rate of unit F1 to 1 and weight to 0 
this can be an exact correlation). This in turn stops pool RC in 
the run length network from emptying. Pool RC inhibits 
reaction M2 of the master oscillator thus preventing pool MC 
from emptying for the same number of time steps. As 
discussed previously, the number of time steps which pool MC 
contains the token unit represents the number of time steps to 
move forward. 

C. The Signaling Network 

The signaling network functions as a switch between 
starvation and foraging mode. Low food levels trigger the 
starvation response and allow the weighted direction network 
to control each new angle. Sufficient food will switch off the 
weighted direction network and allow the chaotic network to 
control each new angle. It is a simple closed loop with a token 
unit of chemical flowing around it. Pool CA acts as a switch 
between foraging and starvation behavior, where the presence 
of chemical in CA inhibits the weighted direction network- 
while its absence switches on the weighted direction network; 
this in turn inhibits the chaotic network, as shown in Fig. 2. In 
this component, all reaction units have a forward flux of 0.5; 
which ensures a minimum number of time steps for each 
behavior.  



D. The Weighted Direction Network 

The weighted direction network senses food within the 
agents’ immediate environment and calculates a tumble angle 
which is weighted toward higher food levels. This network 
interfaces with the environment via a number of receptor pools 
(AW, ANW, AN, ANE, AEA) which sense the level of food 
around the cytobot. These pools represent receptors positioned 
at points around the front of its perimeter, allowing the agent to 
travel in a similar way to that of a polarized biological cell. For 
example, during the aggregation phase of their life cycle, D. 
discoideum cells are polarized, and one side becomes the 
leading edge which always faces in the direction of travel [12]. 
For each receptor input pool, there is a static pool containing a 
fixed level of chemical in correspondence to its direction. 
Directions start from AW (west) with a corresponding numeric 
value of 0 (A00) and progress in 45 degree steps through each 
direction to east. As the receptor positions around the agent are 
fixed, directions are always relative to that in which the agent 
is facing. All connections have a weight of 1 with the exception 
of the connection between pool AD and reaction A12 which 
has a weight of -1. This negative connection raises the sum of 
food detected in pool AD to -1, which multiplied by AB, 
allows an average angle to be calculated.  

The calculated angle interfaces with the remaining 
subnetworks at pool AE. In an actual organism receptors are 
set around the cell perimeter and direct movement 
appropriately. In this simulation, for simplicity, a count of the 
number of time steps that MA contains the token unit is 
processed to gain the turn angle relative to the agents’ current 
heading using (3). Thus if the number time steps is 120 and 
the agent is facing north, then the current heading would equal 
0 and the new heading would equal 30. 

 

 360mod))90(( cnh   (3) 

  

Where: 

h= new heading 

n = count of time steps pool MA contained chemical 

c = current heading 
 

E. The Chaotic Network 

The chaotic network, as shown in Fig. 2, is responsible for 
generating pseudo random angles which agents use to perform 
the foraging tumble behavior. It is a networked 
implementation of a Logistic Map, see (4). Without prior 
knowledge of the initial conditions the output of the logistic 
map is unpredictable, whereas with prior knowledge it is 
deterministic- therefore the series cannot be described as truly 
random but as pseudo random. Its output has long been 
proposed as a pseudo-random number generator. Ulam and von 
Neumann [13] were the first to examine this and it has been 
successfully used in this capacity by several researchers [14]. 
The probability density distribution of the Logistic Map is non-
uniform and is described by (5) [14]. When λ=4 the 
distribution is “U” shaped with higher probability of values 
closer to the minima and maxima of X and symmetric 

distribution at the midpoint. The general shape of the 
distribution is invariant for the complete range of state 
variables from 0 to 1.  
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Where: 

Xn= state variable of value 0 ≤ Xn ≤ 1 

λ= system parameter of value 1 ≤ λ ≤ 4 
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Where: 

P(X) = probability of X occurring 
 

The chaotic network component, as shown in Fig. 2, operates 

in the following manner. At the start of the simulation, the 

pools KA and KB of each cytobots’ chaotic network are 

initialized to the same random value between 0 and 1 (to 5 

decimal places). This represents the first value of X where X 

is the state variable of (4). All the other pools are initialized to 

0 with the exception of the static pools KI and RK whose 

initial values are 360 and 1 respectively. Reaction K2 is 

responsible for generating each new value of X and has a 

forward and reverse rate of 4 (the logistic map exhibits chaotic 

behavior when λ is 4). The connection between KA and K2 

has a weight of 1 and the connection between K2 and KB has 

a weight of 2. The remaining series of reactions function to 

copy the value of X 3 times, where 2 copies serve as the new 

initial values of KA and KB and the remaining copy 

participates in the final output of the network at KH. Static 

pool KI has a fixed value of 360 which in reaction K0, allows 

the network to convert the pseudo random number at KH to an 

angle value between 0 and 360. However, reaction K0 cannot 

proceed until all 11 pools that inhibit it are empty. These 

inhibitory connections ensure that random angles are not 

output while the agent is in starvation mode, and that pool AE 

is empty before adding more chemical.  

The ARN implementation of the Logistic Map was tested 

against the recursive relation shown in (4). The results 

generated for (4), were obtained using Matlab, where λ=4, 

initial X = 0.927725, and iterated 100000 steps. The complete 

range of state variables between 0 and 1 were divided into 100 

equal subintervals and the frequency of occurrence of each 

subinterval interval was plotted. Similarly, the chaotic network 

component of the ARN was run for 100000 cycles, using the 

same parameters of X and λ. These results were processed in 

the same way and are shown in Fig. 3. The frequency 

distribution gained from the ARN is identical to that obtained 

using matlab and by other researchers using the same 

parameters [14]. The same comparison was repeated 100 times 

at different values of X, and the ARN consistently produced 

the same values as (4). 
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Fig. 3. Frequency distribution for each value of X resulting from the chaotic 

network when the first value of X is 0.927725 and λ=4 

IV. METHODOLOGY 

In the following experiments, cytobot agents are applied to the 
task of finding the minima in a number of benchmark 2D 
optimization problems. These are the following functions: 
Rosenbrock, Peaks, Inverted sinc, and Bowl (see Table 1 for 
formulae, domains, and minima). Three experiments were 
performed for each function, where each uses either 1, 3 or 6 
cytobots and is performed 100 times. The task of the agents is 
to find the minima of the functions within as few evaluations 
(reading value of food at current x, y coordinate) as possible. 
The range of output values for each of the functions represents 
the concentration of food (also the fitness of an agent at that 
point) within a simulated environment. Values approaching the 
minima represent higher food levels, and values approaching 
the maxima represent lower food levels. The simulated 
environment consists of a 2D area of 400 x 400 pixels. A 
scaling factor is used to map the domain to the actual 
dimensions of the simulation, e.g. Rosenbrock domain of [-2, 
2] mapped to a simulation space of [-200, 200] by a scaling 
factor of 100. For display purposes, a corresponding grayscale 
color is used to show the distribution of food within the 
environment as displayed in the screenshot of the simulation in 
Fig. 4. Each agent consists of a token to mark its current 
position and an instance of an ARN network, as discussed in 
section 3. At the start of each experimental run, each agent’s 
ARN network is initialized as described in section 3, and each 
is positioned at random x,y coordinates within the search 
space. The agents undergo alternating phases of “searching” 
and “repositioning,” for a number of cycles until one reaches a 
position of within 0.04 of the global minima of the function. 
This value was chosen as it is within 1% of the global minima 
for all the functions used. The high level pseudocode 
describing the searching and repositioning phases is provided 
in Fig. 5. Searching is characterized by the 2 ARN controlled 
behaviors- foraging and starvation, as described in section 3. In 
each search phase each agent performs a total of 3 moves (3 
evaluations of the environment). The length of a run 

corresponds to the number of pixels a cytobot moves forward 
and is subject to the output from the run length network. After 
each tumble, and before moving forward, the food level at the 
current position is input into the ARN network as described 
previously. The agents travel at a speed of 1 pixel per time 
step, thus the number of time steps produced by the run length 
network corresponds directly to the number of pixels the agent 
moves forward. As a cytobot travels, the food at each passing 
position is consumed and its path within the simulation is 
represented in black (as shown in Fig. 4). During the search 
phase, a central control unit, external to all cytobot agents, 
keeps track of each cytobots best fitness and the coordinates of 
that value.  
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Where: 

a*= agent with highest fitness 

fa= fitness of agent an 

ftot= total fitness of all agents 

fra= ratio of agent an fitness to ftot 

xa*= the x coordinate of a* 

ya*= the y coordinate of a* 

xa= agent an x coordinate 

ya = agent an y coordinate 

dax=difference between xa and xa*  

day= difference between ya and ya* 

px=total of all dax 

py= total of all day 

rand(r)= a random value within a defined radius r 



INITIALISE cytobots 
WHILE (best fitness outwith 0.04 of global minima)  

 

    START search phase 
        WHILE (more searching phase moves)  

           FOR each agent start searching phase 

              Turn agent    
              Set receptor pools of food network 

              Set receptor pools of weighted direction network  

              Move agent forward 
              IF (new food level > previous food level) 

                    Record fitness  

                    Record current position 
              END IF 

             END FOR  

          ENDWHILE 
       END search phase 

 

      START reposition phase 
      CALCULATE new central point P to reposition 

      INITIALISE agents at new position 

    END reposition phase 
  END WHILE 

 

 

Fig. 4. A screen shot of the simulation showing 6 cytobots in the inverted 

sinc search space. The greyscale color represents the food distribution. 

 

 

 

 

 

 

 

 

 

 

Fig. 5. High level pseudocode for each experiment 

After completing the searching phase, agents switch to the 
repositioning phase. This phase is used to focus searching 
toward areas containing higher food levels and is inspired by 
stages of the life cycle of D. discoideum. Having depleted the 
level of nutrients within the immediate environment, D. 
discoideum cells begin to starve, and aggregate to form a slug. 
The slug travels in the direction of more favorable conditions 
by moving toward attractants such as light, warmth, and 
humidity. On finding a suitable location, it eventually forms a 
fruiting body which disperses spores within its immediate 
surroundings. The spores mature into cells, and begin foraging 
within the new environment [12]. When the cytobots enter the 
repositioning phase, the central control unit processes each 
agent’s best fitness position to compute a new central point P, 
weighted in favor of higher fitness, as described by equations 
(6-13). Agents are then repositioned randomly within an area 

of radius r from point P to begin the next search phase. For the 
purposes of this simulation travelling to the new position was 
not modeled, as this does not affect overall behavior and would 
only occur if the cytobots were applied to real world 
environments.  

V. RESULTS 

The experimental results are displayed in Table 1. For each 
experiment, the average best, fa, and best solution, fb, for 100 
independent runs are presented. The average number of 
evaluations and the standard deviation for all agents is 
displayed as “Avg Eval for all agents” and “Std Dev” 
respectively. The average number of relocations for each agent 
is presented in the final column as “Avg Reloc per agent”. 

In all experiments the cytobots were able to find the global 
minima. Cytobots performed best in Bowl and Rosenbrock 
functions, where, using 6 cytobots, the average number of total 
evaluations and relocations per agent respectively for Bowl 
was 56.4 and 2.1 and for Rosenbrock was 79.8 and 3.4. The 
cytobots performed least well in the Inverted Sinc search space, 
where the lowest number of total evaluations was 94.8 using 6 
cytobots. In all the experiments, a slight increase in the number 
of cytobots generally results in a significant reduction in the 
total number of evaluations performed. This is most significant 
for Peaks where using 3 and 6 cytobots results in 
approximately 30% and 60% respective reductions in the total 
number of evaluations when compared to the results for 1 
cytobot. The Mann Whitney U test was used to determine any 
significant (95% confidence) statistical difference in the total 
number of evaluations between experiments using 1 and 3 and 
3 and 6 cytobots. In all experiments there was a significant 
difference between 1 and 3 agents, with the exception of the 
Inverted Sinc function. In Peaks there was a significant 
difference in all experiments, while in the Inverted Sinc there 
was no significant difference found. Thus increasing the 
number of cytobots from 1 to 3 both reduces the time to find 
the global minima and the number of evaluations, but this 
effect can be quickly reversed if too many cytobots are added.  

The paths of agents through the search space indicate 
reasons for variation in results. In simple landscapes such as 
Bowl, agents descend steadily toward the minima, as shown in 
Fig. 6. Similarly in Rosenbrock, agents quickly descend to the 
narrow valley and are forced to steadily move along it by 
moving up the nutrient gradient created by the consumption of 
food, until finding the global minima. In Peaks, agents move 
from their initial positions and search many parts of the 
domain. Fig. 7 shows the agents’ trajectories, one can see that 
peaks are avoided and troughs are pursued. However, if fewer 
agents are used they may quickly become trapped in local 
minima causing a significant rise in the number of evaluations. 
Increasing the number of agents by a small amount expands 
the amount of search space explored per cycle, and increases 
the chance of finding better solutions and/or leaving local 
minima. Another possibility is to increase the number of 
moves for each searching phase, thus allowing an agent to 
travel a sufficient distance to escape local minima. Similar 
solutions could be adopted in the Inverted Sinc function. 



 
Fig. 6. Typical path of 1 cytobot in Bowl search space  

 

Fig. 7. Typical path of 3 cytobots in Peaks search space 

 

TABLE I.  CYTOBOT AGENTS 2D SEARCH SPACE RESULTS 
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Bowl 3 As above fa =  
0.02 
fb = 0 

As above As above 64.2 

 (7.6) 
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These results are compared with other optimization 
algorithms inspired by behaviors of single celled organisms. 
For example, Passino developed the Bacterial Foraging 
Optimization Algorithm (BFOA), inspired by foraging 
behaviors, reproduction and dispersal events in the life cycle 
of E. coli [15]. Like the foraging behavior of the cytobots, 
movement is modeled as a biased random walk, where, after 
each random redirection, the cell moves forward a length 
according to current food levels. In a nutrient hill-climbing 
experiment (without swarming effects), 50 cells are initialized 
at random starting positions within a 2D search space. This 
search space is similar to Peaks but with 5 troughs and a 
domain of [30, 30]. Similarly to cytobots the cells tend toward 
valleys and avoid peaks. After 4 generations (4 reproductive 
steps), and moving 100 chemotactic steps (moves) between 
generations, the cells find the global minima. 

Similarly in other work, Chen et al applied BFOA using 6 
cells to the 2D Bowl function with domain [-5,5], and the 
global minima was found within 50 chemotactic steps [16]. In 
our experiments, 6 cytobots find the global minima after an 
average of 9.4 evaluations, which is the equivalent to 9.4 
moves (or 9.4 chemotactic steps in the terminology of Chen et 
al). After adjusting for the difference in domain size, the 
numbers of moves are highly consistent for cytobots and the 
cells in BFOA. In other related work, Monismith et al created 
the slime mould optimization algorithm inspired by the life 
cycle of D. discoideum [17]. The state space is represented as 
a sparse mesh which cells populate and make modifications to, 
for example, deposit attractant. Using a combination of 
behavioral states inspired by the life cycle of D. discoideum, 
artificial cells perform local searches, and move to positions in 
favor of their personal best and the best fitness of their 
neighborhood. The slime mould optimization algorithm, like 
the cytobots, finds the global minima of the 2D Rosenbrock 
function.  

VI. CONCLUSIONS 

The results presented above show that the agents are able to 
find best fitness solutions in all problems, and match the 
performance of cell inspired optimization algorithms in similar 
search spaces. Increasing the number of agents by small 
increments (2 or 3), can half the number of function 
evaluations required to find the global minima. These 
experiments serve as a preliminary to implementing ARN 
systems to control real world distributed autonomous robotic 
agents. Such agents could be applied to similar search 
problems in real world environments, for example oil spill 
cleanup operations, where the objective is to travel to higher 
concentrations of oil, while consuming it at each passing 
location. The cytobots obviously do not compare directly with 
conventional optimization techniques like Genetic Algorithms, 
since they have a complex internal structure. However this is 
not their purpose and they may be much more effectively 
utilized as the control systems in autonomous agents. This 
application demands an internal control system which can 
function without reference to other agents within the 
environment which are operating in parallel. By modifying the 
environment, (in this case by consumption of food), the agents 
can stigmergically communicate and enhance and/or facilitate 

emergent behavior. The cytobots offer a unique range of 
abilities. Like cells, their internal network of spatially 
distributed dynamic chemical species allows them to 
autonomously coordinate and direct their movement, 
recognize and respond to patterns in the environment, and 
produce high-level behavior.  

In future work, it is intended to further explore the AI 
applications of the cytobot agents, and later, to create swarms 
of cytobot robots with applications in real world 
environments.  

REFERENCES 

[1] B. J. Ford, “Are cells Ingenious?,” The Microscope. vol. 52, no. 3-4, pp. 
135-144, 2004. 

[2] D. Bray, “Protein molecules as computational elements in living cells,” 
Nature, vol. 376, no. 6538, pp. 307-12, July 1995. 

[3] T. Nakagaki, H. Yamada, and A. Toth, “Maze-solving by an amoeboid 
organism,”. Nature, vol. 407, no. 6803, pp. 470-470, September 2000. 

[4] A. Arkin, J. Ross, “Computational functions in biochemical reaction 
networks,” Biophys. J., vol. 67, pp. 560-578, August 1994. 

[5] U. S. Bhalla, “Understanding complex signaling networks through 
models and metaphors,” Prog. Biophys . Mol. Biol. vol. 81, no. 1, pp. 
45-65, January 2003. 

[6] B. Kholodenko, “Cell signaling dynamics in time and space,” Nat. Rev. 
Mol. Cell Biol., vol. 7, no. 3, pp. 165-176, March 2006. 

[7] P. Dittrich, J. Zeigler, and W. Banzhaf, W. Artificial Chemistries- a 
reivew. Artifi. Life vol. 7, no. 3, pp. 225-275, 2001. 

[8] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Artificial 
Reaction Networks,” Proceedings of the 11th UK Workshop on 
Computational Intelligence, Manchester, UK, pp. 20-26, September 
2011. 

[9] C. E. Gerrard, J. McCall, G. M, Coghill, and C. Macleod, “Temporal 
patterns in Artificial Reaction Networks,” Proceedings of The 22nd 
International Conference on Artificial Neural Networks Lausanne, part 
1, vol. 7552, pp. 1-8, September 2012. 

[10] C. E. Gerrard, J. McCall, G. M. Coghill, and C. Macleod. “Adaptive 
Dynamic Control of Quadrupedal Robotic gaits with Artificial Reaction 
Networks,” Proceedings of The 19th International Conference on Neural 
Information Processing Doha, vol. 7663, part 1, pp. 280-287, November 
2012. 

[11] N. Vladimirov, and V. Sourjik, “Chemotaxis: how bacteria use 
memory,” J. Biol. Chem., vol. 390, no. 11, pp. 1097-1104, November 
2009.  

[12] R. H. Kessin, “Making Streams,”Nature, vol. 422, pp. 481-482, April 
2003. 

[13] S. M. Ulam and J. von Neumann, “On combinations of stochastic and 
deterministic processes,” Bull. Amer. Math. Soc, vol. 53, pp. 1120, 
1947. 

[14] V. Patidar, K. K. Sud, and N. K Pareek, “A Pseudo Random Bit 
Generator Based on Chaotic Logistic Map and its Statistical Testing,” 
Informatica, vol. 33, pp. 441-452, 2009. 

[15] K. M. Passino, “Biomimicry of bacterial foraging for distributed 
optimization and control”, IEEE Control Systems, vol. 22, no. 3, pp.52–
67, June, 2002. 

[16] H. Chen, Y. Zhu, and K. Hu, “Cooperative bacterial foraging 
optimization,” Discrete Dyn. Nat. Soc., vol. 2, no. 1, pp. 501-517, 
August 2009. 

[17] D. R. Monismith, and B. E. Mayfield, “Slime mold as a model for 
numerical optimization,” IEEE Swarm Intelligence Symposium, St 
Louis, USA, pp. 21-23, 2008. 


	Gerrard IEEE evolutionary computation coversheet
	IEEE COPYRIGHT STATEMENT
	CEC_2013_GERRARD

