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Abstract

Music recommender systems are used by millions of people every day to discover new
and exciting music. Central to making recommendations is the representation of each
track, which may be used to calculate similarity. Content representations capture the
musical and texture facets of each track, and semantic representations describe social and
cultural information provided by listeners.

This thesis is motivated by an analysis of the strengths and weaknesses of both content
and semantic representations. Content representations can be available for all tracks in
a collection, but provide poor recommendation quality. Semantic representations suffer
from the cold-start problem and are not available for all tracks, but provide good recom-
mendation quality when a strong representation is available. These observations highlight
the need to integrate both content and semantic representations, and use the strengths of
each to improve music recommendation quality and discovery.

A bridge of the gap between content and semantic representations is achieved in this
thesis through hybrid representation. Content texture representations are examined, and
a new music-inspired texture representation is defined. This content is integrated with
semantic tags directly, and through a mid-level pseudo-tag representation. The effect of
these approaches is to increase the high quality discovery of tracks, and to allow users to
uncover interesting novel recommendations.

The challenge of evaluating music recommendations when many tracks are under-
tagged is addressed. Implicit and explicit feedback provided by users is exploited to define
a new ground truth similarity measure, which accurately reflects how different recommen-
dation methods perform. A user study is conducted to evaluate both this measure, and
the performance of integrated representations for recommending strong novel recommen-
dations.
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Chapter 1

Introduction

Listening to music is an activity that people have enjoyed for thousands of years,

and is an activity that is important to many people. Music can define social identities,

invoke strong emotions, and provide a background to other every day activities. In the

past decade however, the way in which people listen to music has gone through a huge

transformation, from the age of physical media into the world of digital media.

Before this transformation, listening to music involved buying a physical copy of a

single or album, typically on either a LP record, cassette, or CD. The selection of music

available to each individual listener was limited to the albums that they, or their friends

purchased, and discovering new music was based on the recommendations of friends, radio

presenters, and music magazines. With recent advances in hardware, digitisation, and the

world wide web however, the way music is purchased, stored, and listened to has changed

dramatically. It is now possible to buy parts of an album digitally at much lower costs

than the physical equivalent, store thousands of tracks on media smaller than a CD, and

connect with people having similar musical tastes all over the world. For many however,

this explosive growth is difficult to manage, and navigating the vast amount of music

available is problematic: what should I listen to next?

To overcome this problem of information overload, music recommender systems have

become increasingly popular over the past ten years. Millions of people now use online ser-

vices such as Last.FM, Spotify, and Pandora every day, giving them access to vast amounts

1



1.1. Music Recommendation 2

of music. These services aim to be the equivalent of a friend that understands your musical

tastes, and who has listened to every song in the service’s collection. Instead of a person

making recommendations however, such services make recommendations algorithmically,

using data that describes the music available. In the digital age, this computer-driven

approach to making recommendations offers people a gateway to navigating large-scale

collections, and discovering new and exciting music that may otherwise have been missed.

The field of music recommendation is still in its infancy, and although much progress

has been made towards helping users discover good recommendations, there is still much

work to do. Music recommendation is a sub-area of music information retrieval, which is

built upon techniques from artificial intelligence, cognition, musicology, and physics. Each

of these fields play an important role for both music information retrieval and recommenda-

tion. Music is created by exploiting the physical properties of sound, which then stimulate

a cognitive response from listeners. This creation of music, although highly expressive,

is governed by a strict set of rhythmic and harmonic structures. The role of artificial

intelligence for music recommendation is to capture these influences, and somehow make

sense of them so that meaningful recommendations and discoveries can be made.

The focus of this research is on increasing the ability of a music recommender system

to make high quality recommendations to users, that allow them to discover new music.

To achieve this, the low-level physical foundations of music are examined, and a bridge to

the high-level semantic descriptions of music is established. In this chapter, background

information on the role that both physical audio and semantics play in the recommendation

process is presented, and the need for further research in this area is motivated. The

specific research objectives of this work are defined and described, and an overview of the

contents of this thesis is provided.

1.1 Music Recommendation

Music recommendation relies on exploiting the available information that describes each

track. Given a strong representation of this information, the similarity between tracks

may be defined, and thus recommendations can be made. Two core representations used

for music recommendation are content, which describes the low-level audio and musical



1.1. Music Recommendation 3

features, and semantic, which is the high-level descriptions that people use. In this section

background information on each representation is provided, and the relationship between

content and semantic representations is discussed.

1.1.1 Content Representations

Music is produced from physical vibrations created by an instrument, for example the

vibrations of a guitar string. As the string vibrates, the surrounding air molecules ex-

perience compression and rarefaction. These fluctuations in pressure are recognised by

the human ear, and are interpreted as sound. If the sounds that are produced are har-

monically, rhythmically, and texturally pleasing to the listener, then this sound may be

described as music. Content representations aim to artificially replicate this hearing pro-

cess, and understand either the harmonic, rhythmic, or textural properties of the music.

If the harmonies, rhythms and textures that a listener enjoys are known, then it follows

that recommendations can be made by finding tracks which are similar to this listener

profile.

The sound generated by the physical vibrations of musical instruments can be captured

as a digital waveform, which may then be processed. Content representations can be

extracted from the audio file of a track, containing this waveform, by either trying to

capture musical properties, or by trying to estimate how humans hear the sound. In both

cases, this waveform is processed, or listened to, in short-time frames, and the frequency

components of each audio frame obtained. Mathematical techniques are then used to

extract content representations from each individual frame, which collectively describe

the content of a track.

Harmonies may be described by inspecting the frequencies that match those of musical

notes, and rhythms may be described by comparing the energy within adjacent frames.

Texture can be described by examining statistical properties of the frequency spectrum,

and attempting to align these with measurements made in the field of cognitive psychology.

However, existing techniques to capture these musical and perceptual qualities only achieve

limited success, and are not yet able to fully replicate how humans understand music.

Therefore, at best, these content representations are a good estimation.

The use of content-based representations in recommender systems assumes that listen-
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ers want to be recommended tracks that sound similar to tracks they already like. The

most successful existing approach to achieving this is to use texture based representations,

that capture the overall feel, or timbre of each track. Although musical representations

such as harmony and rhythm have been studied more extensively, they do not appear to be

as helpful for recommendation. This is perhaps not surprising: consider a song played on

piano and flute by one group of musicians, and exactly the same song played on distorted

electric guitars by another group. The harmonies and rhythms are identical in each case,

however, the texture is dramatically different.

1.1.2 Semantic Representations

The content of music is certainly an important factor of what music people listen to and

like, and if people do not like the way a track sounds they are unlikely to want to listen

to it. However, musical content is not the only factor that affects the musical tastes of a

listener. Social and cultural factors also play an important role in deciding the music that

someone wants to listen to. From the ‘Flappers’ of the 1920s jazz scene, to the ‘Hippies’ of

the 1960s rock and blues scene and beyond, social identities have played a key role in the

musical tastes of many. Many people may also enjoy the music of one musician whose style

changes over time. For example, the guitarist Tom Morello has played in the rap-metal

band Rage Against the Machine, rock band Audioslave, and as a solo folk artist under

the alias The Watchman. Content representations would struggle to identify any of these

important factors that contribute to musical preference.

Semantic representations aim to capture these social and cultural properties of music

through the language that people use. With advances in social media, people can now

provide social and cultural feedback, as well as opinions, topics, and other semantic infor-

mation. For music, this feedback is achieved through social tagging, where people provide

short free-text descriptions to artists and tracks as they listen to them. As more people

provide these tags, a collective view of each track emerges, which can then be used to

construct semantic representations.

Tag-based representations are able to effectively capture the collective social informa-

tion relating to a track, and based on these representations high quality recommendations

can be made. The similarity between the tags of two tracks captures the similarity between
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how people perceive these tracks, and how socially and culturally related the tracks are.

People also tag with musical information, and so to some extent the information captured

through content-based representation is also included, further strengthening recommen-

dations.

1.1.3 Bridging the Semantic Gap

Recommendations made using tag-based semantic representations can be of very good

quality. However, such quality is only achievable if tracks are described by a sufficiently

rich set of tags. When a track is under-tagged, and this rich representation does not

exist, then recommendation quality suffers. A popularity bias observed in listening habits

has the implication that large numbers of tracks are under-tagged, a problem known

as cold-start. Content representations do not suffer from this cold-start problem since

audio content is always available. However, the recommendation quality achieved through

using content representations is much poorer than when a well-tagged representation is

used. This presents a difficult challenge for music recommender systems: how can high

quality recommendations and discoveries be made when there is a lack of a sufficiently

rich representation?

In the offline world, people are able to make recommendations to each other based on

the knowledge captured in both content and semantic tag representations. The limitation

of course is that people do not know nearly as much music as a digital recommender system,

but for the tracks they do know, they have a very strong understanding. People have the

ability to hear a new track and very quickly understand qualities such as genre, emotion,

time period, and instrumentation. People also have the ability to recognise distinctive

voices and playing styles, and to place these into a wider social and cultural context. This

ability is shared by all, and does not rely on any prior theoretical musical knowledge, but

only that the listener has heard similar music previously.

This human knowledge of music is built around the ability of people to associate the

way music sounds, with how this fits into a wider social context. This is a very natural

process that does not require a great deal of thought on the listeners part, and is almost

instinctive. If digital recommender systems are able to learn these associations between

content and semantic representations, then the cold-start problem observed when using
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semantic representations may be mitigated. However, forging this link between content

and tags is a difficult challenge, and one that has not yet been fully achieved. This problem

of linking low-level content to high-level semantics is commonly known as the semantic

gap.

Bridging the semantic gap requires the use of techniques from the field of artificial

intelligence, in an attempt to imitate the process that humans follow. This problem is

also found throughout other multimedia-based systems, such as image and video, and a

wide range of techniques has been developed to try and bridge the gap. However, exist-

ing techniques fall short of human ability, and further research is required. Nevertheless,

techniques that bridge this gap open up new and interesting possibilities for music rec-

ommendation. Tracks that have not been listened to heavily, and therefore do not have a

strong semantic representation, may be recommended, opening up the possibility of dis-

covering new music. Semantic representations make it easy to recommend already known

tracks, which may be reasonable for simply casual listening, but many people want to

discover new and exciting music that is relevant to them. After all, every artist that is

well known once belonged to the set of under-tagged tracks!

1.2 Motivation Behind the Research

Music recommender systems are increasingly becoming the default source of knowledge

that people rely on to discovery new music. The field of music recommendation however

is relatively new, and many interesting problems still exist that must be solved to provide

users with high quality discoveries. Central to many of these problems is the lack of strong

representations for music, and an understanding of how these representations can best be

used.

The motivation behind this research is a desire to further understand the properties of

music that make good recommendations, and how these properties may be represented.

Given these representations, the question of how they interact, whether one is inferred from

the other or complements it, is also of interest. Music recommendation can inspire social

outlets, for example discovering a new artist and going to their gig, and also creative

outlets such as taking inspiration from a musical scene that is yet to hit mass media.
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Social media is increasingly allowing people to take more control over their influences and

interests. However, in the case of music, this is hampered somewhat by the inability of

recommender systems to include under represented tracks, reducing the easy access to

such music. Allowing people to discover such music more actively is the main motivation

for understanding how representations interact, and how they may be integrated.

1.3 Research Objectives

This research project set out to investigate and define new techniques to allow high quality

discoveries to be made through music recommender systems. The overall aim was to first

improve the representation of audio content, since it was realised these may not necessarily

be most appropriate for music in their current state. Based on these improvements, the

aim was to develop techniques to bridge the semantic gap, allowing a more knowledge rich

representation to be created for under represented music. While completing these aims,

it was also realised that the evaluation of music recommender systems is also hampered

by the cold-start problem, and thus a new aim was created to develop an approach to

evaluation.

The following research objectives were addressed:

1. Analyse the advantages and disadvantages of both content- and semantic-based rep-

resentations for making music recommendations;

2. Develop novel content-based representations, which take advantage of the perceptual

qualities of music that make good recommendations;

3. Bridge the semantic gap by integrating content and semantic representations, and

use this bridge to improve recommendations; and

4. Exploit user feedback data to evaluate the important qualities of music recommen-

dation.
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1.4 Thesis Overview

This thesis develops an approach to integrating content and semantic representations for

music recommendation. In this chapter a brief overview of music recommendation has

been presented, focussing on the important aspects of content and semantic representation.

The motivation behind this research has been discussed, and the research objectives that

focussed this work has been given.

In Chapter 2 recent work on music recommender systems is discussed. This includes an

overview of approaches to recommendation, and why content and semantic representations

are important. Recent work on establishing both content and semantic representations is

presented, and the gaps in this work identified. The cold-start problem, and approaches

to reducing it are described in detail, and finally existing approaches to evaluating music

recommender systems are examined.

In Chapter 3 the datasets that are used in this research are discussed, including both

a publicly available collection, and a private collection. In Chapter 4 the question of how

music recommendations may be evaluated, even when the cold-start problem is present,

is discussed. The desirable properties of such evaluations are discussed, and the available

data is examined. From this, a new approach to evaluating recommendation quality is

developed, which is then used throughout this research.

Chapter 5 examines a widely used representation of texture, and questions its suit-

ability to describing music. From this examination, a new music-inspired approach to

representing texture is developed and evaluated. In Chapter 6 an approach to combining

this new musical texture with existing tag representations is presented. This approach

attempts to fill the gaps in existing methods, and learns hybrid concepts which capture

both musical content and semantics. This approach is then evaluated in terms of both

recommendation quality, and its ability to allow cold-start tracks to be discovered.

In Chapter 7 a different approach is examined, where a semantic tag-based represen-

tation is learned using the texture representation. Limitations in the way this task is

currently addressed are identified, and from this, a new definition of the task emerges. An

approach to learning these content generated tags is then presented, and compared with

an existing state-of-the-art approach that takes a similar approach.
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Chapter 8 builds on the representation developed in Chapter 7, and develops a new

approach to integrating content and tags. This is achieved by embedding the learned tags

with existing tags, and the benefit of this approach over using content directly is discussed.

A hybrid representation that is able to avoid the cold-start problem is developed, and its

effects on recommendation quality and discovery are presented.

In Chapter 9 a user study evaluating the key contributions of this research is presented.

First, this study tests the suitability of the evaluation strategy developed in Chapter 4.

This study then examines the recommendation quality of the learned tags in Chapter 7,

and ultimately the recommendation quality of the hybrid approach presented in Chapter

8. The novelty of recommendations made is also inspected, allowing the effects of increased

cold-start discovery to be fully explored.

The conclusions in Chapter 10 summarise the contributions of the research presented.

The limitations of the approaches used throughout this thesis are identified, and from

these the future directions of this research, and music recommendation in general, are

discussed.



Chapter 2

Literature Survey

In this chapter recent and influential work on aspects related to the research objectives

are discussed. Throughout this discussion the related work is critically analysed, and

gaps within this research are identified, motivating the research objectives that have been

defined. First, music recommendation is discussed, covering approaches to, and objectives

of recommendation, and how these fit into the wider context of music information retrieval.

The two core representations upon which many recommendation approaches rely, audio

content and tags, are then discussed.

Having analysed the recommendation problem and representations available, the cold-

start problem observed for tag-based representations is examined in detail. Related ap-

proaches to reducing this problem, and their effectiveness, are then discussed. Finally,

the issues surrounding evaluating the facets of recommendation that are key to this re-

search are investigated. These key facets include quality, from both a system-centric and

user-centric perspective, and the relationship between cold-start discovery and track nov-

elty. This chapter concludes by summarising the key findings from this survey of related

literature.

10
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2.1 Music Recommendation

Music recommender systems have become an increasingly popular method for users to

navigate and discover music. Systems such as Last.FM1, iTunes Genuis2, Grooveshark3,

and most recently Twitter4, are house-hold names and used by millions. The growth

of such music recommender systems is fairly recent, as the music industry looked for

alternatives to the peer-to-peer music sharing culture of the early 2000s. Table 2.1 captures

this growth over the last 10 years, in terms of the output of academic papers. The Number

of Papers column shows the number of articles that contain either “music recommender”

or “music recommendation” in their title, and the Number of RecSys Papers column shows

the number of articles published in the annual ACM Recommender Systems conference

that contain the word “music” in the article. These figures were obtained through the

Google Scholar5 search engine.

Year Number of Papers Number of RecSys Papers
2002 4
2003 5
2004 9
2005 20
2006 24
2007 44 9
2008 33 12
2009 42 20
2010 47 32
2011 50 41
2012 51 28

Table 2.1: Papers Related to Music Recommendation

Early work on music recommender systems considers what factors will make recom-

mendations successful (Uitdenbogerd & van Schyndel 2002), and describes offline recom-

mender systems (Crossen, Budzik & Hammond 2002). By 2005 a lot of focus was directed

towards playlist recommendation (Logan 2004, Pampalk, Pohle & Widmer 2005, Pauws

1http://www.last.fm
2http://www.apple.com/uk/itunes/
3http://grooveshark.com
4http://music.twitter.com/i/suggested
5http://scholar.google.co.uk
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& van de Wijdeven 2005), and by 2007 the field had fully embraced web2.0 social music

recommendation (Eck, Lamere, Bertin-Mahieux & Green 2007, Li, Myaeng & Kim 2007).

2.1.1 Recommendation Methods

In general, there are two approaches to recommendation, content-based (Bogdanov, Haro,

Fuhrmann, Gómez & Herrera 2010), and collaborative-based (Lee, Cho & Kim 2010).

Each approach can be viewed as either a filtering or a neighbourhood problem, namely

collaborative filtering, content-based filtering, user-based neighbourhood, and item-based

neighbourhood (Celma 2010). Collaborative filtering aims to find users similar to the

current user, and make recommendations based on similar users’ ratings. Content-based

filtering aims to find tracks similar to a track that it is known a user likes, for example

the track they are currently listening to. The neighbourhood problem is an extension to

filtering, where collaborative filtering ratings are based on multiple users, and content-

based filtering is based on a set of tracks the user likes.

The focus of the work in this thesis is on recommendation by content-based filtering,

which can be described as having three primary parts; a content analyser, profile learner,

and filtering component (Lops, de Gemmis & Semeraro 2011). The content analyser

aims to extract and represent important features that describe each track. The filtering

component aims to find tracks to recommend to a user based on the input from the profile

learner. In the case of filtering, the profile learner provides the most appropriate track to

use as a query at the current time.

An advantage that content-based filtering has over collaborative filtering is that it

does not suffer from the ‘grey sheep’ problem (Barragáns-Mart́ınez, Costa-Montenegro,

Burguillo, Rey-López, Mikic-Fonte & Peleteiro 2010), where users with niche tastes are

excluded because no similar users exist. Instead, content-based filtering has the potential

to recommend any track within a collection to the user. Care must be taken however

to avoid over-specialisation (Balabanović & Shoham 1997), where users are only recom-

mended tracks that are very similar to those already listened to, thus reducing the dis-

covery of novel tracks. In such cases however, content-based methods have the advantage

that recommendations can be more transparent, by showing what content was used to

make the recommendation. This transparency may help the user navigate the collection
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differently, allowing new tracks to be found.

2.1.2 Content-Based Filtering: Issues and Future Directions

The main disadvantage of content-based recommender systems is that they rely entirely

on the strength of each tracks’ representation. If the representation of a track is weak,

then it is difficult to define meaningful similarity, and thus the quality of recommendations

will also be weak. The two core features used to represent music tracks are audio content

(Casey, Veltkamp, Goto, Leman, Rhodes & Slaney 2008), and tags (Lamere 2008), and

thus improving these features and how they are represented will improve content-based

filtering.

Content-based representations have an advantage over collaborative filtering, in that

they avoid the cold-start problem. No user ratings are required, and each track always has

a representation. However, audio content representation is weak, and does not provide

high quality recommendations. When tag-based features are used, high quality recom-

mendations can be made, however, tags are most commonly generated socially via user

collaboration, and thus tagging introduces the cold-start problem from collaborative fil-

tering.

The future direction towards improving recommendation by content-based filtering

therefore needs to concentrate on two main aspects: improving content-based representa-

tion, and bridging the semantic gap (Zhang, Zhou & Zhang 2011). The semantic gap is the

link between audio content and tags, which humans achieve naturally, and so by bridg-

ing this semantic gap the cold-start problem may be addressed, and recommendations

improved. In the following sections of this survey the state-of-the-art in content-based

and tag-based representation is first discussed. This feeds into a more detailed discus-

sion around the cold-start problem, and then differing approaches to solving this problem

through hybrid methods which attempt to reduce the semantic gap.

2.2 Content-Based Representations

Throughout this thesis, the term content-based representation will refer specifically to

the representation of a track’s audio content, and not the track’s semantic or high-level
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content. In general, content-based representations fall into three main categories: chroma,

rhythm, and texture. Chroma includes pitch histograms (Bartsch & Wakefield 2001) and

chord recognition (Itoyama, Ogata & Okuno 2012). Rhythm features capture and model

the onset of notes (Degara, Pena, Davies & Plumbley 2010), and texture aims to describe

the overall feel of a sound (Logan & Salomon 2001). Each of these features have advantages

and disadvantages, and the choice of an appropriate feature or set of features can depend

on specific details of the task being addressed.

2.2.1 Content-Based Features

The high level process describing how to extract content-based features is the same for

chroma, rhythm, and timbre. Figure 2.1 illustrates this process for a single audio track.

The input is ideally a WAV file, although high quality MP3 files have been shown to be

suitably robust (Sigurdsson, Petersen & Lehn-Schiler 2006). This input file is first blocked

into frames, typically between approximately 30ms and 3000ms, depending on the specific

feature.

audio frame

frequency
spectrum

audio feature

audio track Windowing

Fast Fourier
Transform

Frame Blocking

Feature Extraction

Figure 2.1: Content-Based Feature Extraction Process

Each blocked audio frame is then windowed, a pre-processing step to translating the

time-domain signal into a frequency-domain spectrum by Fast Fourier Transform (FFT).

For chroma and rhythm features, a Gaussian window function is typically used, which

helps to emphasise individual frequencies over noise (Dörfler 2001). For texture based

features a Hamming window is common, which does not place special emphasis on intense

frequencies, but rather helps minimise the effects of discontinuities introduced by frame

blocking.

The final step in the process is to analyse the frequency spectrum, and extract a feature
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representation. Typically, the features learned are represented as a single vector for each

audio frame within a track. Thus, once fully processed, a single track may be described by

100s or 1000s of individual feature vectors, collectively described as a bag-of-frames. For

the task of recommendation, the most successful and widely used feature for representation

is texture.

2.2.2 Texture Representation

Texture representations aim to capture the overall feel, or timbre of an audio track.

Texture is typically extracted by examining intensities within each frame’s frequency

spectrum, often filtered or warped to reveal specific information (Pohle, Pampalk &

Widmer 2005). Some common measures that capture these intensity properties are:

• Spectral Centroid - the centre of the magnitude spectrum’s distribution;

• Spectral Rolloff - frequency below which 95% of spectral power is observed;

• Spectral Flux - Euclidean distance between two adjacent frames normalised spectra;

• Third (skewness) and Fourth (kurtosis) standardised moments of frequency spec-

trum.

Each of these measures captures a specific property of the audio, and describes it

as a single value. A more detailed texture representation that is commonly used is

Mel-Frequency Cepstral Coefficients (MFCC). Originally developed for speech recognition

(Mermelstein 1976), MFCCs first warp the frequency magnitude spectrum of each audio

frame to mimic human perception using the mel scale (Stevens, Volkman & Newman 1937),

and then decorrelate the warped spectrum using discrete cosine transform (DCT).

In the 2012 MIREX Audio Music Similarity and Retrieval task, more than half of the

submitted methods made use of MFCCs, including the top performing system (Seyerlehner,

Schedl, Knees & Sonnleitner 2012). However, due to MFCCs roots in speech processing, it

is logical to question if the construction of this representation is optimal for music (Nam,

Herrera, Han & Lee 2012), or if it could be further improved. Investigating this point is

difficult: for speech recognition evaluations are objective (Zheng, Zhang & Song 2001),

but for music recommendation the evaluation is subjective (Ellis, Whitman, Berenzweig
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& Lawrence 2002). One approach is to examine how suitable MFCCs are for the more

objective task of genre classification (Lee, Shih, Yu & Lin 2009), but with care it is also

possible to evaluate MFCCs for music recommendation (Yoshii, Goto, Komatani, Ogata

& Okuno 2008).

When questioning how suitable MFCCs are, the first step is to examine how suitable the

mel scale is compared to other scales, for example a linear scaling. Logan (2000) examines

the ability of the mel scale to discriminate between speech and musical audio, and shows

that the scale is suitable, but perhaps more investigation is required to understand its

ability to discriminate between musical works. The role of the mel scale when constructing

MFCCs is that it is used to construct a filter bank, which is applied to the frequency

domain. Li & Chan (2011) investigates the placement of these mel-scaled filters for the

task of genre classification. They find that MFCCs are affected by the key that music is

played in, and overcome this problem by normalising the key of each track before extracting

MFCCs.

These observations, that the mel-scale is suitable, but that it is affected by musical

key, are both very interesting. Western music is defined by an equally tempered scale

(Ellis 1885), which when used as a filter bank produces a pitch histogram. These results

suggest therefore that there may be a meaningful relationship between the two scales,

which if identified could help adjust how the mel-scale is utilised. This relationship will be

investigated in detail, and used to form the basis for a music-inspired texture representation

in Chapter 5.

Further investigations into using MFCCs for music focus on resolution, both of the

input, and of the coefficients retained from DCT. Pachet & Aucouturier (2004) and Sig-

urdsson et al. (2006) both show that increased input resolution improves the quality of

MFCCs. Neither paper provides a deeper analysis of why this is the case however. In

further work, Aucouturier, Pachet & Sandler (2005) investigate the relationship between

the number of coefficients retained after DCT, and the number of components used in a

Gaussian Mixture Model (GMM) that models these coefficients. Unlike input resolution,

the authors find that increasing the DCT resolution beyond a threshold is harmful to the

GMM. These questions over resolution, and the balance between input and output may

be related to the observations discussed relating to musical scale.
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To further understand why increasing the resolution of DCT was found to be harmful,

the rational behind using DCT must be understood. In the original work on MFCC

for speech recognition, Mermelstein (1976) find that the first two coefficients obtained

from DCT describe 97% of the variance between syllables, and the first three coefficients

describe 99% of variance. Yan, Zhou & Li (2012) realise however that when multiple

accents are included, the ability of DCT to capture this variability declines. To overcome

the problem, the authors re-distribute the placement of filters, thus allowing DCT to once

again capture variability in a succinct manner.

Differing accents centre around different frequencies (Evans & Iverson 2004), and thus

DCT must be able to summarise these differing frequency ranges. However, as previously

discussed, Li & Chan (2011) show MFCCs for music are also affected by pitch. Yan et al.

(2012) cluster their filter-adjusted MFCCs using a GMM, which has the ability to group

similar accents together, and Li & Chan (2011) choose instead to normalise data prior

to calculating MFCC. The lengths that authors have gone to, simply to maintain DCT’s

ability to decorrelate information in a meaningful way, brings into question how necessary

decorrelation is for music at all. DCT has the ability to separate signal from noise, but

it is not the only method which can achieve this. When developing a new approach to

music-inspired texture, this DCT step will be examined more closely, and its suitability

for describing musical texture tested.

2.3 Tag-Based Representations

Tag-based representations have become increasingly more important to content-based rec-

ommender systems since the birth of the social web. For some music recommendation

problems, tags alone have been shown to provide better quality recommendations than

collaborative filtering methods (Firan, Nejdl & Paiu 2007). The tags used to construct

these representations come directly from users, and not from record label meta-data. This

means that a wealth of social and cultural knowledge, created by the implicit collabo-

ration of users, can be available to describe tracks. Tags also introduce a blur between

the classical notion of a recommender system being either content-based or collaborative

filtering. In the strict sense tags are content, but because they are created collabora-
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tively, recommendations made based on tags are influenced by other users, which classical

content-based systems are not.

In this section different methods to collecting tags will be presented, and the type of

knowledge that they capture will be discussed. Because tags are generated collaboratively,

tracks with this representation suffer from the cold-start problem in the same way as

collaborative filtering approaches do. This cold-start problem, and the reasons for it

occurring will be examined. Finally, the effects that this problem has on recommendation

will be analysed.

2.3.1 Collecting Tags

Turnbull, Barrington & Lanckriet (2008) discuss five different ways in which a tag-based

representation can be collected for each track. These are:

1. Survey - Tags are provided by either users (Turnbull, Barrington, Torres & Lanckriet

2008) or domain experts completing a survey (e.g. Pandora6);

2. Users provide tags through playing a game, such as Tag-a-Tune (Law & Von Ahn

2009) or MajorMinor (Mandel & Ellis 2008);

3. Auto-Tagging - where tags are learned for a track based on audio content (Sordo,

Laurier & Celma 2007);

4. Mining Web Documents - indexing frequency and meaningful terms in documents

returned by a search engine (Knees, Pohle, Schedl, Schnitzer & Seyerlehner 2008);

and

5. Social Tags - Tags which users provide to a music service while listening, for example,

as with Last.FM.

Each of these methods come with their own specific advantages and disadvantages.

Tags generated by survey tend to only cover collections of limited size, since it is not prac-

tical for users to survey millions of tracks. Similarly, games also suffer from this problem,

with Tag-a-Tune having collected tags for around 30, 000 tracks. This is impressive, but

6http://www.pandora.com
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it is still only a small set of tracks when compared to the remaining three methods. One

advantage that survey and game approaches do have however is that the tags are generally

clean, well-structured, and complete. This makes them excellent datasets to use for many

research tasks, but perhaps not for large scale recommender systems.

Auto-tagging is an automated way of collecting tags, where tags are learned algorith-

mically. Given a training set of annotated tracks, the task is to propagate these tags to

tracks within a test set, and thus expand the tag coverage of the collection. While this ap-

proach may guarantee a certain degree of tagging throughout a collection, the tags are not

generated by humans, and thus it is likely that erroneous tags will be propagated to many

tracks. Mining web documents allows for a rich vocabulary of tags to be learned, based

on the contents of documents related to individual artists and tracks. However, as Levy &

Sandler (2007) discuss, this vocabulary is too rich, with a large degree of noise introduced

by irrelevant web document, and non-musical words used throughout the documents.

The final approach to collecting tags is social tagging. This approach has become

the primary focus of many tag-based recommender systems over recent years (Rendle &

Schmidt-Thieme 2010, Bogdanov & Herrera 2011, Musto, Semeraro, Lops, de Gemmis &

Narducci 2012), helped hugely by the merging of Last.FM and AudioScrobbler in 2005,

allowing access to the service’s social tags through their API. As users browse and listen

to music, the service allows them to add any short free-text description to a track. In an

analysis of how people tag, Bischoff, Firan, Nejdl & Paiu (2008) finds that approximately

20% of these tags relate to user opinion, 20% to usage / task, and just under 20% are

self-referential. Users also tag about topic, genre, and the track’s artist. This provides a

very rich, and relevant set of tags that describe tracks. As each user tags a track, they

contribute to the collective tag representation for that track. In the case of Last.FM,

the most popular tag(s) for each track is given a weighting of 100, and every other tag

a proportional weighting of less than 100. These weights can be used to construct a tag

vector for each track, and similarity between tracks is calculated with techniques built

upon the vector-space model.
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2.3.2 The Cold-Start Problem

Social tagging allows multiple users to contribute tags to a single track, thus strengthening

the general description of that track. However, not all tracks within a collection are tagged

equally; popular tracks tend to have a large number of tags describing them, and lesser-

known tracks may have no tags at all. These two extremes are often referred to as the

short-head, and the long-tail, referring to the distribution of tracks regarding how well-

tagged they are. A small number of tracks belong to the short-head, and are well tagged,

and a much larger number of tracks belong to the long-tail, and are not well-tagged (Levy

& Bosteels 2010). An example of this skewed distribution can be observed within the

Last.fm contribution (Last.fm dataset 2012) to the Million Song Dataset (Bertin-Mahieux,

Ellis, Whitman & Lamere 2011), where 46% of tracks do not have any tags at all. This

distribution is illustrated in Figure 2.2. On average each tagged track has 17 tags. The

25, 000 most popular tracks each have 100 tags assigned to them, but this number very

quickly drops off, leaving the majority of tracks being under-tagged.

Short Head Long Tail

Figure 2.2: Level of Last.FM Tagging Within the Million Song Dataset

This long-tail introduced by user tagging has a major impact on music recommenda-

tion; it leads to the cold-start problem, where tracks that are not well-tagged are likely to
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be excluded from recommendations (Lamere 2008). It is likely that users will know popular

tracks from the short-head and will listen to them. However, Celma & Cano (2008) show

that from these tracks, a content-based recommender system will only recommend tracks

from the long tail 29% of the time. Even if one assumes all of these recommendations are

good, and thus users are likely to tag the tracks, users are still given the opportunity to

tag popular songs much more frequently. It is unlikely that the cold-start problem will

be reduced simply through user usage, and thus recommender systems must be able to

reduce the effects of cold-start, but must do so while maintaining recommendation quality.

2.4 Reducing Cold-Start

Tag-based representations, and the recommender systems that use them, suffer from the

cold-start problem. Systems which use audio content-based recommender systems do not

suffer from this problem, but the quality of recommendations is much weaker. Hybrid

approaches to representation are required, where the benefits of tags are combined with

the ability of content to avoid cold-start. There are many ways in which a hybrid approach

can be achieved (Burke 2002), and the most relevant approaches to music are:

• Weighted Scores - The similarity scores of track recommendations from tags and

content are combined;

• Mixed - The recommendations of both tags and content are combined into a longer

recommendation list;

• Cascade - A coarse recommendation list is made using one method, and then refined

by the other; and

• Combination - The tag and content features are combined into a hybrid representa-

tion.

The method of weighting scores has not had much recent attention, since to be effec-

tive, the method assumes that the relative values of both approaches (content and tag)

are uniformly distributed. In practice this is not the case, since cold-start tracks are

likely to always be given low scores by a tag-based recommender. In less recent work, Li
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(2000) investigated using a nearest feature line method to weight similarity among dif-

fering dimensions of content, and then aggregate the correlations between these scores,

and Shardanand & Maes (1995) use profile similarity scores to weight how track recom-

mendations are scored. There does not appear to be any related work that successfully

investigates how weighting scores between content- and tag-based systems may be applied.

The FlyTrap recommender system (Crossen et al. 2002) produces candidate recom-

mendations using different agents, and then makes recommendations by sampling the

distribution of tracks returned. This approach is interesting, but is perhaps best suited to

group recommendations (Crossen & Budzik 2006). A similar approach to FlyTrap is to

first generate recommendations for each individual tag in a track’s tag-vector, and then

combine the recommendation lists (Cai, Zhang, Zhang & Ma 2007). This approach is

shown to produce good recommendations, and to be more efficient than approaches using

tag vectors. However, while this method may reduce the effects of cold-start by matching

individual tags, rather than vectors, it cannot cope with the extremes of cold-start any

better than vector-based approaches.

Cascade approaches offer an improvement over the mixed approach, because they allow

the strengths of both content and tags to be included when it is appropriate. Bogdanov

& Herrera (2011) compare recommendation based on a combination of content and tags

(C-SEMLL), with genre (M-GENRE), and using only tags (M-TAGS). The authors find

that C-SEMLL and M-GENRE both perform worse than M-TAGS. However, when C-

SEMLL and M-GENRE are designed as a cascade approach, where M-GENRE refines

C-SEMLL, this cascade is able to outperform all individual methods. In terms of cold-

start, genre is a reasonable facet to cascade to, since this data is typically provided for all

tracks as meta-data. However, one may question if this is the best possible approach to

cold-start, since genre only captures part of the meaningful description of a track. Similar

approaches have been examined where content is refined by more meaningful information,

such as relevance feedback (Hoashi, Matsumoto & Inoue 2003) and user profiles (Grimaldi

& Cunningham 2004), but these both have potential to suffer from cold-start.

Combination approaches are by far the most researched and promising direction for

reducing cold-start in music recommender systems. There are two main approaches to

combination methods for music. Auto-tagging (Bertin-Mahieux, Eck & Mandel 2010)



2.4. Reducing Cold-Start 23

combines the content and tag representations by propagating tags to cold-start tracks

based on content. Hybrid approaches combine content and tags into a new single repre-

sentation (Levy & Sandler 2009).

2.4.1 Auto-Tagging

The task of auto-tagging is fairly recent, and has gained much interest after its inclusion in

the MIREX 2008 competition. The objective of this task is to learn a set of tracks that are

relevant to a tag, thus propagating tags throughout the collection. To achieve this, each

tag is modelled in terms of content, and a fixed number of tracks that most closely match

this model are assigned the tag. The content used to model each tag is the combination

of content from each track that has this tag applied to it, usually irrespective of how

strong the tag assignment is. Given a set of untagged tracks, the content of each track

is modelled, and for each tag the track’s with models most similar to the tag model are

assigned the tag. Thus, the mapping is from one tag to multiple tracks. The implication

of this is that every tag is used, but not every track is guaranteed to be assigned a tag.

A standard approach to auto-tagging is to learn a Gaussian Mixture Model (GMM) for

each tag, using the audio features of each track the tag is applied to. Given an untagged

track, the probability of the track’s audio features belonging to each tag GMM is deter-

mined, and the most likely tags assigned. Barrington, Turnbull & Lanckriet (2008) also

model content vectors using a GMM, allowing auto-tagging to be achieved by determining

the probability that a track’s GMM would generate the tag GMM. This approach was the

best performing auto-tagging approach in the MIREX 2008 competition.

More recently, Tardieu, Charbuillet, Cornu & Peeters (2011) extend this approach by

constructing an Universal Background Model (UBM), describing the entire collection of

tags as a single GMM. An individual GMM is then learned for each individual track by

modifying only the mean-vectors of the UBM, and thus each track is represented by the

GMM mean vectors. This approach is more computationally efficient, and allows new,

cold-start tracks to be tagged quickly. One drawback with the UBM approach, and many

GMM approaches in general, is that efficient implementations consider each dimension to

be independent, because of the use of a diagonal covariance matrix. Miotto, Barrington

& Lanckriet (2010) overcome this problem by introducing a further step that refines auto-
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tag vectors based on a Dirichlet mixture. This approach has the advantage of including

co-occurences between tags, which assumes new tags that are learned should be related

to tags that already exist. While this introduction of co-occurece knowledge allows their

approach to out-perform GMMs, the authors evaluated the approach using a dataset with

very clean and well-structured tags. Thus, the approach runs the risk of excluding more

niche tags, which may be most appropriate for many cold-start tracks. It is easy to learn

common tags which co-occur often, but it is difficult to learn the more detailed tags.

A similar approach to GMMs is the Codeword Bournoulli Average model (Hoffman,

Blei & Cook 2009), which predicts the probability that a tag should be used to describe a

track. This method provides good baseline performance, and is often used as a comparison.

However, each of the approaches described have one problem in common. The methods

all treat auto-tagging as a classification task, where a tag is the input, and a track is the

class. In practice this is used by assigning each tag to a fixed number of tracks, and thus

one would expect many tracks to go un-tagged. Of course, it is possible to determine the

most likely tags for each track and then assign these tags, but this is not how the models

were designed. Reducing cold-start in this way is likely to introduce a lot of noisy tags to

tracks where only marginally relevant tags are assigned: less common tags, which may be

relevant to less popular tracks, are unlikely to be strong components in the distributions

learned by each model.

A much more simple approach, which does not rely on modelling distributions, has been

used initially for both auto-tagging style and mood (Sordo et al. 2007, Sordo et al. 2012),

and semantic annotation (Kim, Tomasik & Turnbull 2009). Both approaches treat retrieval

methods as a black box, which provide a set of similar tracks. The tag-vectors of these

similar tracks are then aggregated, and the most occurring tags are propagated. The

advantage of this method is that neither author attempts to correlate content directly with

tags, or presume that tagging must fit any prior distribution. Instead, the assumption is

that similar tracks will have similar tags, and thus tags not directly related to content will

also be discovered. Further, this assumption does not constrain the number of tags that

will be propagated to tracks, and removes the problem of niche tracks going untagged.

Both approaches use relatively simple aggregation techniques that count how often each

tag appears in similar tracks. Unlike with most auto-tagging approaches, the mapping
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in this case is from one track to multiple tags, with the implication that every track

will receive an equal number of tags. It would be interested to investigate this approach

further, and examine if more appropriate aggregation of tags from similar tracks would

lead to stronger representations being propagated to cold-start tracks.

2.4.2 Hybrid Representations

Hybrid representations attempt to combine two or more single representations into a sin-

gle joint representation. One of the main issues in achieving this it to first structure each

representation so that it is natural to combine them. Levy & Sandler (2009) achieve this

by first creating a code-book from audio content vectors. Each vector in the codebook is

referred to as a musword, and each content vector describing a track is assigned to a single

musword. Thus, each musword may be thought of as the audio equivalent of a tag, and a

musword-frequency vector is constructed for each track in a similar way to tag-frequency

vectors: the frequency of each musword is the number of times a content vector is as-

signed to that musword. The musword-frequency vector of each track is concatenated to

the track’s tag-frequency vector, creating a hybrid representation. Finally, the authors

generalise these hybrid vectors using probabilistic latent semantic analysis, learning con-

cepts which describe both content and tags. The advantage of learning such a concept

space is that tag information is naturally propagated to cold-start tracks. However, this

method relies strongly on the strength of the vector codebook, and may be affected by the

vocabulary size.

The approach of first combining representations, and then generalising them, is an

area that has received a lot of attention. Different combination include audio content

and tags (Levy & Sandler 2009), audio content and user ratings (Hu, Guo & Zhang

2009, Yoshii & Goto 2009), and audio content, users, and tags (Nanopoulos, Rafailidis,

Symeonidis & Manolopoulos 2010). Intuitively, sparsity in one representation (cold-start)

may be overcome by learning correlations with another representation. However, while this

approach may improve overall performance, it does not follow that it helps for cold-start.

Generalisation techniques typically look for strong correlations within data, and define

these as concepts. The strongest correlations are likely to be related to popular, well-

tagged tracks, and not the less popular cold-start tracks. This introduces an assumption
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that cold-start tracks should be tagged in the same way as well-tagged tracks, and this

may not be the case. For example, rock related tags are likely to be popular, but death-

metal tracks are likely to be under-tagged. Adding rock tags to a death metal song is

perhaps not incorrect, but it is not the best possible tags that could be assigned. It is also

likely that only content related tags will correlate closely with tags, limiting the potential

of such systems.

The method presented by Nanopoulos et al. (2010) looks for correlations between con-

tent, users, and tags. This avoids the problem of restricting correlations to being content

related, since the users provide a common link between content and tags. To achieve this

the decomposition of a tensor, rather than matrix, is required. This introduces a higher

level of computational complexity, and it is questionable how scalable this approach is.

However, the general idea is interesting, and perhaps utilising a different, more efficient

common link between content and tags would define further approaches to cold-start.

2.5 Evaluating Recommender Systems

The evaluation of newly developed recommender systems is a crucial step to ensure their

effectiveness. There are several properties of recommender system that can be evaluated,

including recommendation quality, discovery, and novelty for example. Each of these

properties are important when evaluating cold-start recommendation: discovering cold-

start tracks, and making novel recommendations is important, but only if quality can be

at least maintained. Measuring these properties can be achieved using either a system-

centric, network centric, or user-centric evaluation methodology (Celma 2010). Ideally a

user-centric evaluation, where users engage with a live recommender system, is used. In

this case the user study can be easily tailored to collect relevant information about each

measure that must be evaluated. However, many researchers do not have the luxury of a

user study, and so systems are evaluated using system- and network-centric approaches.

In this section these approaches will be examined in detail.
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2.5.1 System-Centric Evaluation and Quality

System-centric evaluations make use of existing data for users of a recommender system,

typically from listening logs or profiles. One method of evaluating quality following a

system-centric approach is to obtain logs of what individual users like, remove n tracks,

and measure how accurately a recommender system can recommend these held-out tracks

(Breese, Heckerman & Kadie 1998). This approach has been followed based on user

data from Amazon (Su, Yeh, Yu & Tseng 2010), Yahoo! (Koenigstein, Dror & Koren

2011), The Echo Nest’s Taste Profile (McFee, Bertin-Mahieux, Ellis & Lanckriet 2012)

and Last.fm (Bu, Tan, Chen, Wang, Wu, Zhang & He 2010). However, this method is not

always appropriate for evaluating recommender systems when cold-start recommendation

is important. The Amazon dataset is very commercially driven, and thus may not contain

enough information about less popular tracks. The dataset from Yahoo! anonymises both

users and tracks, and thus is only really applicable when collaborative filtering is used.

Finally, the Taste Profile and Last.fm datasets suffer from popularity bias, and so it is

unlikely that many users will have listened to cold-start tracks.

Jawaheer, Szomszor & Kostkova (2010) examine how user data can be used more

effectively, by considering both implicit and explicit feedback. Implicit feedback occurs

when a user listens to a track, as with the previous listening history examples. This

type of feedback can introduce noise because it assumes that if a user listens to a track

they also like it. Explicit feedback considers tracks which users have explicitly said they

like, through some kind of rating mechanism. Evidence exists of noise also occurring in

explicit feedback, but to a much lesser extent (Amatriain, Pujol, Tintarev & Oliver 2009).

The main form of noise with explicit feedback is opinions changing over time (Amatriain,

Pujol & Oliver 2009), and this can be managed by only considering explicit feedback over a

fixed time period. Jawaheer et al. (2010) compare evaluations using both data types, and

highlight the need for evaluation strategies to include both implicit and explicit feedback.

There does not appear to be any literature on how such combinations could be constructed

however, and the question of how predicting user listens and likes could be used jointly to

evaluate recommendations requires further research.

User listening and rating habits can be used to construct further evaluation strategies,
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not based on predicting individual user feedback. Instead, the collection of user feedback

can be considered as a whole, and relationships learned. This is different from collaborative

filtering because the goal is not to find similar users and make recommendations, but to

find similarities and trends amongst all users and tracks. Ellis et al. (2002) achieve this

by constructing ground truth score based on the co-occurence of tracks in user profiles, a

method they call cultural similarity. This score is weighted by a popularity cost function,

which reduces the score when the popularity of the query and recommendation differ

greatly. The approach is interesting because it introduces a structured way of handling

popularity bias within a collection. However, the specific cost function used penalises

recommending rare, cold-start tracks from popular queries. Eck et al. (2007) describe a

similar approach, but instead of using a cost function they treat every track as a document,

and every user that listened to the track as a term. TF-IDF weighting is used to reduce

the influence of popular tracks and the most active users, and similarity is used as a

ground truth score. The TF-IDF weighting allows cold-start tracks to be considered more

equally, but at the cost of down-playing the relationships between popular tracks, the

opposite effect of cultural similarity.

Complications over defining a suitable ground truth dataset and score has, in part, had

the consequence that many evaluations do not use user data, and instead use a proxy to

user quality. A good recommender system must be able to calculate similarity effectively,

and so a lot of work has used genre classification as a means to test how well similarity is

calculated. Neumayer & Rauber (2007) motivate this decision by highlighting that users

often want to listen to tracks that belong to a similar style. In an extremely comprehensive

review of genre recognition (Sturm 2012), it is found that 91.3% of 467 papers focus on

genre classification for evaluation. However, only 10 of these consider the problem as a

multi-class problem. This is important, because while it is possible that recommendation

quality and genre might be related, it is difficult to imagine that how recommendation

quality can be examined fully without considering multi-class solutions. The final evalua-

tion measure that it has been suggested be used for investigating recommendation quality

is year prediction (Bertin-Mahieux et al. 2011). The justification is that users may have a

preference towards music from certain time periods, and that many genres also relate to

these periods. However, this score does not appear to have been formally studied.
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2.5.2 Network-Centric Evaluation and Discovery

Network centric evaluations involve creating a track recommendation network, where each

node is a track, and edges reflect user listening habits. That is, if 10 users have listen to

tracks A and B, then an undirected edge between A and B is created with a weight of 10.

This structure cannot be used to measure recommendation quality, but it does provide

means to measure the coverage of a system, or how well cold-start tracks are discovered.

One method to measure discovery is to examine the minimum distance between query

and recommendation for example (Vargas & Castells 2011). By also including measures of

popularity for each track, this approach may be extended to examining novelty. However,

any offline evaluation of novelty must be interpreted carefully, since it cannot be known

what tracks users do not know (Zhang, Séaghdha, Quercia & Jambor 2012).

(Celma & Herrera 2008) measure discovery by correlating the evaluation network with

the long-tail distribution illustrated in Figure 2.2. The allows the identification of where

in the distribution a query and recommendation occurs, and the distance between them.

Both Celma & Herrera (2008) and Zhang et al. (2012) also conduct user-centric evaluations

to test their approaches. In each case, network-centric evaluation of discovery was found

to be a good indication of novelty. The results presented by Zhang et al. (2012) however

also show that discovery may be measured without having to construct and examine the

network. Instead, popularity and level of cold-start can act as a good indication. Network

analysis provides a fuller picture, but it is not always necessary.

2.6 Summary

The field of music recommendation as a part of computer science is relatively recent. Since

2005, and the birth of the social web, there has been an explosion of interest in this field

from both industry and academia. Systems are becoming successful enough that many

people now use recommender systems as a primary way of interacting with music collec-

tions. In general, there are two main approaches to recommendation, either employing

user information, or track content to make recommendations. While collaborative filtering

is limited to what a large number of users have already rated, content-based approaches

have the potential to include much more new and exciting discoveries for users.
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Two different types of representations exist for content-based recommender systems;

audio content, and track meta-data such as tags. Audio content features aim to describe

important features of a track, including chroma, rhythm, and harmony. Of these audio

features, texture has proven to be one of the most powerful when making recommendations.

Techniques for describing texture, however. come from the field of speech processing and

recognition. This brings into question how suitable standard texture descriptions are for

music. Results using speech texture techniques outperform musical techniques such as

chroma, but there is evidence to suggest texture can be further improved, thus improving

the ability to make recommendations.

Tag representations are most commonly constructed through social tagging, where

individual users can apply short free-text descriptions to any track. These tags can then

be aggregated for each track, constructing a tag vector that reflects many users opinions

and labels. Recommendation quality using social tags is stronger than when audio content

is used, but levels of social tagging are influenced heavily by popularity. This means that

only popular tracks are likely to be tagged strongly, leaving less popular tags under-tagged.

The effect of this under-tagging means that the tracks suffer from the cold-start problem,

where they are likely to be excluded from the system.

For content-based recommender systems to be used to their full potential, allowing

novel, high quality discoveries to be made, this cold-start problem must be addressed.

The use of audio content alone does not produce high quality recommendations, and so

approaches to bridging the gap between audio content and social tag representations are

required. One existing approach to achieve this is auto-tagging, where tags are propagated

to cold-start tracks. Approaches to auto-tagging rely on modelling the distribution of tags

within a collection, or the distribution of audio that describes a tag. However, many tags

do not describe music, and so do not fit into the distributions that are learned. New

approaches to propagating tags to cold-start tracks are required, that allow non-musical

tags to be more accurately propagated.

A further approach to bridging the gap between audio features and tags that has

gained much interest is hybrid representations. Many techniques to creating hybrid repre-

sentations first structure both audio features and tag features to be comparable, typically

through clustering. The representations are then combined and generalised, with the in-
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tention that cold-start tracks will be described by hybrid concepts. However, these hybrid

concepts are likely to be learned from correlations that exist with well-tagged tracks, and

these correlations may not exist within under-tagged tracks. New hybrid techniques that

do not rely on such correlations are required, and may increase the potential of recom-

mender systems.

Evaluating music recommender systems is ideally achieved by a user-study. However,

due to the datasets used, and requirements for rapid evaluation, user-studies are not always

possible. System-centric approaches to evaluation attempt to indicate the results of a user

study by using existing user listening and rating history. Listening data can be interpreted

as implicit feedback, where is assumed that if a user listens to a track they also like it.

Rating a track is explicit feedback, and more reliable, but does not provide as much data.

Existing techniques make use of either, but not both forms of feedback. In both cases this

can cause problems, such as noise or lack of data, and thus further techniques which use

both implicit and explicit feedback are required. In terms of evaluation for when cold-

start tracks must be evaluated reliably, existing techniques suffer from popularity bias in

the way they define ground truth scores. New techniques to reducing the effects of this

bias are required, allowing for more consistent and reliable evaluation of cold-start tracks.

Many researches use proxies to user feedback, such as genre classification, to achieve this,

but ideally techniques making use of feedback should be explored.



Chapter 3

Datasets

Techniques for music recommendation can only be developed if all of the required

data is available. This data includes audio files, meta-data, social tagging data, and user

listening profiles. Audio files are required in order to extract and develop new content-

based representation techniques. Meta-data typically accompanies audio files, describing

properties such as artist name, genre, and year. Social tagging data provides a wealth

of knowledge-rich information supplied by listeners of a track, and each listeners’ profile

contains information on the songs they listen to, and the songs they love.

Part of the focus of this thesis is to develop a new music-inspired texture representation.

To achieve this, a collection of audio tracks must be available, so that content-based

representations may be extracted directly from the audio. The important characteristics

of such a dataset is that the audio is available for each track, and that this audio is

of sufficiently good quality. Low quality audio introduces noise, and this can lead to

unreliable approaches that are unable to fully exploit the properties of music. Each track

should also have a tag-based representation, since a further focus of the work in this thesis

is to integrate content and semantic representations. Finally, an approach to evaluating

methods developed using a dataset must be possible, which may include further data such

as user listening and rating information.

Of the publicly available datasets at the time of starting this work, only the CAL500

was accompanied by audio tracks. In this chapter this dataset is first described, in terms of

32
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the audio files, and meta-data available. The set of well-structured tags that are included

in the CAL500 dataset are also described, and the potential problems with using this data

to construct real-world recommender systems.

A review of the CAL500 dataset shows the need for a larger, and more realistic dataset

to be available. Therefore, a private dataset is constructed. The audio files used for

this dataset are described, and also the meta-data that describes them. The process of

collecting tags to describe this dataset is presented, and the properties of this tag collection

are discussed. Finally, a comparison between the privately constructed dataset and the

publicly available CAL500 dataset is made, highlighting the strengths and weaknesses of

each for developing new music recommender systems and representations.

3.1 CAL500 Music Dataset

The CAL500 dataset (Turnbull, Barrington, Torres & Lanckriet 2008) was created at the

Computer Audition Lab, University of California, San Diego (UCSD) in 2007. The dataset

consists of 500 tracks, and each track is recorded by a unique artist. Some standard meta-

data is provided, and structured tags that were assigned using a survey are also present.

3.1.1 Audio Files

Each track in the CAL500 dataset comes with a monophonic audio clip of low quality,

encoded as a 32kbps mp3 file with a sampling frequency of 22.05kHz. As a reference, CD

quality audio has a bit-rate of 1, 411.2kbps, and so audio in the CAL500 has a compression

ratio of 44:1. Audio bit-rate can be thought of in a similar way to pixel density; in either

case decreasing the amount of information within each time or space frame reduces quality,

which may reduce the accuracy of any processing using the data. The maximum frequency

which can be extracted from audio is half the sampling frequency, and the range of human

hearing is roughly 0.02kHz to 20kHz. Thus, with the sampling frequency of 22.050kHz,

the maximum frequency that can be described is 11.025kHz, meaning that nearly half of

what humans can hear is not present. Each clip is sampled to be somewhere in the middle

of each track, and so typically does not include the introduction or ending of each song.

The left and right channels are also not present, since they have been flattened into a
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single channel, most likely to save space.

The dataset includes pre-extracted content-based feature vectors for each track. The

feature used is MFCC, which is extracted from the audio using a 12ms half-overlapping

window. The first 13 coefficients are retained, and the instantaneous first and second

derivatives of each MFCC is appended, creating a final feature vector that contains 39

dimensions. To avoid the possibility of reconstructing the original audio files, the creators

of the dataset randomly sample 10, 000 vectors for each track. This removes the ability

to define representations that are based on time orderings such as rhythm, but does not

affect non-temporal representations such as chroma and texture.

3.1.2 Meta-Data and Structured Tagging Data

The only meta-data that accompanies each track in the CAL500 dataset is the track

names. However, one main contribution of this dataset is the structured tagging data that

comes with it. The creators of the dataset paid 66 undergraduate students to annotate

the dataset with a fixed set of tags. These tags fall into the categories shown in Table 3.1.

Number of Tags Category Description
29 Instruments Annotated as present or not
22 Vocal Characteristics Annotated as relevant to the singer

or not
36 Genres A subset of the Cadaich (McKay,

McEnnis & Fujinaga 2006) genre
list, annotated as relevant or not

18 Emotions Found by Skowronek, McKinney &
Van De Par (2006) to be important
and easy to identify. Rated using 3
point scale

15 Song Concepts Acoustic qualities of the track,
artist, and recording

15 Usage Terms e.g. ‘I would listen to this song while
driving’

Table 3.1: CAL500 Structured Tags

At least 3 annotations were provided for each track, and these were expanded into

words, based on how each category tag was assigned. These annotations were then con-

structed into a ‘soft’ and ‘hard’ annotation matrix for the collection, where soft describes
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the strength of each tag-track assignment, and hard describes if the strength is above a

threshold or not.

In terms of having a fully represented, and structured tag representation, the CAL500

dataset is an excellent resource. Common tasks for which this dataset is used is genre

and emotion classification, and auto-tagging. However, for certain other tasks this dataset

comes with limitations. One such limitation is that the dataset is designed towards using

only audio content, since tags or tag categories are often used as evaluation data. For

approaches that aim to make use of both content and tags, such as hybrid representations,

the dataset is not comprehensive enough to allow for meaningful evaluations.

3.2 Private Music Dataset

In order to have data that can be used both for constructing hybrid representations, and

then evaluating recommender systems, a private dataset has been created. This is not a

personal collection, and was created by purchasing CDs from a range of different genres and

years. The inclusion of many compilation CDs also helped to keep the collection diverse.

This dataset includes 3174 tracks, across a wide range of musical styles and periods. A

full mp3 file is available for each track, along with rich meta-data. Social tagging data has

also been collected from the Last.FM web service.

3.2.1 Audio Files

Each track in the dataset has a corresponding stereo mp3 file, which is encoded at 320kbps

with a sampling frequency of 44.1kHz. This encoding allows for minimal signal loss due

to compression, and for a detailed analysis of the signal in each file. Since the full audio

of each track is available, any chosen content-based feature can be extracted, and time

ordering can be preserved if required.

3.2.2 Meta-Data

Each track was imported from CD using the iTunes media player, and thus rich meta-

data is available. While this meta-data is not necessarily used by algorithms, it is useful

to provide a clear picture of the nature of the dataset. The dataset contains 3174 tracks,
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by 76 artists, from 277 albums, many of which are compilation CDs. Table 3.2 shows the

genre classifications of these tracks. The majority of the collection can be described as

popular western music, which has a huge importance in current recommender systems.

Genre Number of Tracks % of Collection
Alternative 918 28.92
Pop 797 25.11
Rock 659 20.76
R&B 362 11.41
Dance 127 4.00
Metal 76 2.39
Folk 55 1.73
Rap 54 1.70
Easy Listening 40 1.26
Country 38 1.20
Other 48 1.51

Table 3.2: Private Dataset Genres

Table 3.3 shows the decade that each track in the collection was released. The dataset

primarily contains tracks that were released between the years 2000 to 2009. This collection

was created in 2009, and so to ensure new results are comparable with old, the collection

has been unmodified. This means no tracks since 2009 are included. As well as containing

many recent tracks, the collection also contains a large number of tracks from previous

decades. This spread across decades helps to make the collection more diverse and more

closely replicate a current recommender system.

Release Decade Number of Tracks % of Collection
2000s 2046 64.46
1990s 595 18.75
1980s 166 5.23
1970s 150 4.73
1960s 93 2.93
Pre-1960 59 1.86
Unknown 65 2.05

Table 3.3: Private Dataset Release Decades

Figure 3.1 illustrates the lengths of each track in seconds, showing that the majority

of tracks are between three and four and a half minutes long, Tracks that are longer than
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5 minutes tend to be classical works, and tracks shorter than a minute tend to be interval

tracks on albums.

Figure 3.1: Private Dataset Track Durations

3.2.3 Social Tagging Data

Tags for this dataset are collected from the Last.FM API1. Last.FM is an online music

recommender service, centred around providing users with personalised radio stations.

As users listen to music, they are able to tag each track with any free-text descrip-

tion they choose. The API they provide into their index of data contains the method

Track.getTopTags(); this method is used to retrieve tags for each track in the collection.

A total of 5160 unique tags are collected for the collection. On average, each track has

34 tags assigned to it, and the standard deviation is 26.4. The maximum number of tags

that any single track has is 99, and 94 tracks have no tag assignments. The weights that

Last.FM applies to each track-tag pair is also stored. These weights are in the range 0

to 100, where the strongest tag always has a weighting of 100. This information allows a

knowledge-rich tag-based representation to be defined for tracks in the collection, providing

a strong baseline recommender system.

Table 3.4 shows the most popular tags that describe the dataset. The fourth column

shows where each tag appears in a similar list compiled by Last.FM for their contribution

1http://last.fm/api
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to the Million Song Dataset (Last.fm dataset 2012). Seven of the most popular tags in

the private dataset appear in the top 10 most popular tags in Last.FM. This serves as a

good indication that the dataset is reflective of real-world music collections used in online

recommender systems. The top Last.FM tags missing from private dataset’s top 10 list are

electronic, female vocalist, and dance, which occur at positions 30, 13, and 15 respectively.

Position Tag Number of Tracks Last.FM Tag Position
1 rock 1945 1
2 pop 1586 2
3 alternative 1402 3
4 favourites 1704 7
5 alternative rock 1043 11
6 indie 1001 4
7 Love 940 8
8 00s 908 10
9 british 898 26
10 indie rock 732 21

Table 3.4: Most Popular Tags

3.3 Comparison of Private and CAL-500 Music Datasets

The strength of the CAL500 dataset is that it is clean, complete, and allows for the

comparison of work presented by different research teams. If an author publishes the code

for their algorithm online, then it is possible for anyone to replicate their work exactly,

since an identical copy of the dataset used is available. However, for some tasks the

CAL500 dataset comes with some drawbacks. Firstly, while standard audio features are

available, the audio files contained in the dataset are of a low quality. More importantly

however, the files are incomplete representations of each track, and thus may not always

be suitable for developing new methods.

The tagging data accompanying the dataset is very strong, but does not necessarily

reflect the properties of data collected from a live music system. Figure 3.2 compares

the distribution of tags per track in the CAL500 and privately collected datasets. The

horizontal axis shows the number of tags a track has assigned to it, and the vertical axis

shows the percentage of tracks within the collection that have this number of tags.
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Figure 3.2: Comparison of CAL500 and Private Dataset Tag Distributions

The distribution of tagging for the CAL500 dataset is constructed using the hard-

annotations provided, and is illustrated by the dashed line. Due to the survey methodology

used to collect tags for this dataset, the minimum number of tags a track has is 13, and

the maximum number is 43; there are no tracks with 0 tags. The distribution of tagging

for the private dataset is illustrated by the solid black line, and is very different to that of

the CAL500 dataset. The trend observed for the private collection is that as the number

of tags increases, a smaller number of tracks will have that number of tags. This is an

expected trend for a dataset generated by online users, and is the result of a popularity

bias across the tracks being tagged.

3.4 Summary

These two datasets are used throughout the work presented in this thesis, based on their

applicability to the task being examined. The strength of the CAL500 dataset as a stan-

dard benchmarking collection cannot be ignored, and thus for tasks where it is important

to provide this benchmark comparison the CAL500 dataset is used. For tasks which in-

volve constructing hybrid representations however, the privately constructed dataset will

be used. This dataset is more comprehensive, and more accurately reflects what is ob-

served in a popular online music service. Further, the CAL500 dataset was designed for the

task of semantic annotation, not music recommendation, and as such does not come with

strong evaluation data; use of the private dataset introduces the possibility of including

such evaluation data.



Chapter 4

Evaluating Music Recommender

Systems

One key component of conducting research on music recommendation approaches is

the ability to evaluate the properties of a system, such as recommendation quality. This

recommendation quality should reflect the opinions of listeners, since they are the end-

users of any system using a new approach. Thus, an ideal evaluation of any approach is to

allow users to interact with a system which implements a new recommendation method,

and collect implicit or explicit feedback on each recommendation’s quality. However, there

are several obstacles to following this evaluation methodology that make it impractical.

Firstly, it is costly to run a live music service due to licensing, and such systems must

typically be run as a business venture, not research activity. More importantly though,

if such a live system were to be available, users would expect the recommendations they

are provided with to be of a consistent quality. When developing new approaches this

consistency cannot be guaranteed, and expecting users to interact with a potentially poor

recommender system can quickly turn them away from future engagement and evaluations.

Structured user studies suffer similar problems to that of a live system. While more

affordable, users are not likely to repeatedly take part in evaluations of a system in which

they are not more invested. At most, one may expect users to take part in such studies

only every few months. What is needed therefore is a replacement evaluation method

40



Evaluating Music Recommender Systems 41

that is able to give a reasonable indication of how users will rate recommendations. Such

approaches are often referred to as offline system-centric evaluations, as opposed to an

online user-centric evaluation.

System-centric evaluation methods rely on pre-existing user ratings, rather than asking

users to provide new ratings for recommendations. Such data can be gathered from users’

listening habits, profiles, and past ratings they have applied. This data is then used as a

ground truth against which recommendations may be compared, and an evaluation score

defined. To avoid over-fitting to this data, standard evaluation approaches such as leave-

n-out or n-fold cross validation can be used. This system-centric approach allows for

rapid, automated evaluation of new approaches to recommendation, that are not practical

with user-centric evaluations. Once a new approach has been evaluated successfully with

a system-centric evaluation, then these findings can be confirmed with a user-study. This

satisfies both the requirement of a developer to constantly evaluate their work, and the

need to maintain the interest of users willing to evaluate new work.

In many domains, such as text mining and image retrieval for example, the data re-

quired to utilise a system-centric evaluation approach is standardised, and freely available.

Unfortunately for music however this is not the case. While the Million Song Dataset

(Bertin-Mahieux et al. 2011) does indeed provide evaluation data, it does not provide

access to audio files, but instead comes with pre-extracted audio features. This dataset

is a good step in the right direction, but does not allow for the evaluation of work where

new content-based features are being examined.

The absence of user data to evaluate music recommender systems has meant that prox-

ies to system-centric evaluations are typically used. One key aspect of a recommender

system is the ability to identify similarity successfully, and thus the annual MIREX cam-

paign evaluates similarity by artist, genre, mood, and composer classification. While these

classifications may loosely reflect the similarity between tracks, they do not provide a fine

enough view of similarity. For example, Nirvana and Bon Jovi may both be classified as

‘rock’, but this does not mean suggesting Bon Jovi to a Nirvana fan is a good recommen-

dation.

To overcome this problem there are two possible solutions: the availability of a dataset

including audio files, tags, and user ratings; or a standard approach to constructing ground
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truth data which provides a good indication of how users will rate recommendations. The

former would require licensing of audio to researchers internationally, and so an approach

to defining ground truth data is developed. In this chapter the desirable properties of

such ground truth data are first discussed, followed by a description of the data which is

available. From these discussions the Association Score measure is defined, based on user

listening habits and ‘likes’.

4.1 Desirable Properties of Ground Truth

A strong ground truth scoring mechanism must satisfy several properties, so that it may

accurately reflect user opinions. This score must be based on ground truth data, and this

data must be able to satisfy the required properties. For example, ground truth should not

be influenced by a popularity bias within the data because refining algorithms based on

such performance with ground truth would lead to a system that is likely to recommend

popular tracks, and not necessarily high quality tracks. In this section each of the desirable

properties are discussed.

4.1.1 Substantial and Complete

Ground truth data must reflect the tracks that users listen to, and the tracks that they

rate. Every user however can have a unique taste in music, and while they may share

many commonalities with other users, there is always likely to be a level of disagreement.

Some people may listen to pop music in the morning, classical music at work, and dance

music in the evening, and thus their profile would contain ‘listens to’ and ratings of tracks

from a wide range of styles. It does not follow that recommending a classical track from

a pop query is good though, since this is a mis-understanding of listening context.

To understand and deal with these variations across individuals, a large amount of

data is required. For each listener, their profile must be substantial enough that outliers

may be recognised and dealt with accordingly, and a good view of their general interests

can be captured. The set of users must also be large, so that well supported trends or

correlations may be recognised. Further, this set of users must be diverse, so that built

systems are not biased towards a specific type of user, for example, one who prefers pop
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music.

From a track perspective, the ground truth data must also be fairly complete. That is,

there must be a substantial amount of ground truth data that reflects every individual track

in the collection. The reason for this is to avoid penalising tracks as bad recommendations,

when in fact they are good, but there is not data reflecting this fact. Further, completeness

is important for evaluating tasks such as cold-start recommendations. Cold-start tracks

are weak from a representational perspective, but must still have complete enough ground

truth data to ensure correct evaluation measures can be defined for them.

4.1.2 Normalised Track Popularity

Tracks that are popular in the system from which ground truth is collected are likely to

have much more ground truth data available. This should not be limited to match the

least popular track in a collection, because this removes vitally important information.

However, this increased data should also not affect any ground truth scoring that is used.

Support based ground truth scores may be influenced by the popularity of a track, and

thus scoring mechanisms must have some form of weighting or un-biasing function to

reduce this influence.

This form of normalising track popularity assumes that all tracks have the potential

to be good recommendations, thus optimising user satisfaction rather than facets like

revenue. For recommender systems that aim only to increase revenue by recommending

potential purchases, this normalisation may be undesirable. In this scenario, tracks which

are becoming popular, or which are the latest trending sales should indeed have a positive

bias. However, the focus of the work in this thesis is to increase user satisfaction and

improve discovery, and therefore popularity normalisation is desirable.

4.1.3 Granularity

Ground truth data should be able to reflect user feedback at a similar level of granularity.

This means that data such as genre, release year, and artist information should not be

used for evaluation. These types of data lead to class-based evaluation strategies, which

can be too coarsely grained. A dataset may contain many thousand tracks, but can be

split into only tens of categories. If a query and recommended track share the same
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category, the ground truth data provides a score of either true (1) or false (0). Such

coarse grained scoring does not allow the distinction between how good two different good

recommendations are, or how bad two different bad recommendations are.

4.1.4 Indicative Heuristic

The goal of a good ground truth scoring is not to accurately predict the exact ratings

that a user will provide: accurate prediction is the goal of a recommender system. The

values presented by a ground truth scoring do not even need to match the format or

range of values that are provided by users through explicit feedback. Instead, the ground

truth score must provide a heuristic measurement that indicates how users will respond

to recommendations, not what they respond with.

Given two recommender systems, A and B, a ground truth score must be able to

ascertain if users will typically rate system A or system B as the stronger. Further, this

score must be able to reflect to what extent users will rate one system over the other. To

achieve this, the ground truth score does not have to reflect every user score accurately,

but it must reflect the same correlation.

4.1.5 Properties in Existing Ground Truth

Music recommendation and similarity may be evaluated using several ground truth scoring

functions. To further illustrate and contextualise how these properties effect scoring, some

example scoring methods are discussed. The first of these scores is ‘genre score’, which is

defined as

genreScore(ti, tj) =





1 if ti.genre = tj .genre

0 otherwise
(4.1)

where ti.genre is the genre assigned to track ti. If both tracks share the same genre, then

the recommendation is said to be good, and otherwise it is said to be bad.

genreScore completely satisfies the requirements of completeness and normalised track

popularity, with a single genre label being available for every track. The score cannot be

said to be substantial however, since genre is defined by the creators of the meta-data,

who are typically either the artist or record label. Evidence suggests that people only
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agree on what genre label should be used between 20 and 70% of the time (Gjerdingen &

Perrott 2008), and so genreScore is too biased towards an individual’s perspective.

A further possible ground truth score is yearScore, which assumes that good recom-

mendations belong within a fixed time period, for example music from the 80s. This

measure is calculated as

yearScore(ti, tj) =
|year(ti)− year(tj)|
year(ty)− year(tx)

(4.2)

where year(ti) is the release year of track ti, ty is the most recently released track in the

collection, and tx is the most distantly released track.

yearScore also satisfies the requirements of completeness and normalised track popu-

larity. The data is as substantial as could be possible, but it is questionable how accurately

it describes user preference. For example, if a user likes music from the 80s, then a track

from the late 70s and early 90s could obtain the same score, but it may be more likely users

with this preference prefer 90s music over 70s music. This type of information cannot be

gathered without user provided information, something which yearScore does not capture

at all.

The main drawbacks of relying on either genreScore of yearScore as ground truth,

is that neither take into account variability amongst users, and include these preference

trends. This lack of user information introduces poor granularity within the scores ob-

tained, which can make it difficult to separate to recommendations of similar quality. A

ground truth score that does take specific user information into account is the peer-to-peer

cultural similarity developed by Ellis et al. (2002). Although originally developed for artist

similarity, the measure can be easily adapted to define track similarity. This ground truth

score is calculated as

culturalSim(ti, tj) =
likes(ti, tj)

min [likes(ti), likes(tj)]
·



1− |likes(ti)− likes(tj)|
max
t∈T

[likes(t)]



 (4.3)

where T is the set of all possible tracks. The first term estimates user feedback as the

proportion of users who have liked both tracks, given they have liked the least popular
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track in the pair. The second term acts as a ‘popularity cost’, which weakens the first

term when one track is very popular and the other is very rare.

If enough user profiles are examined, then culturalSim can be said to be substantial,

and will naturally introduce a high degree of granularity. This allows the quality of

recommendations to be examined in more detail, and avoid grouping recommendations

when there is evidence that one is better than the other. Unlike the previous scores

however, there is a risk that this score may not be complete, since calculating the score

relies on enough users having liked each track. With careful data collection though this

problem may be managed. A weak point of culturalSim is how popularity cost is defined,

which penalises recommending a cold-start track from a popular track. This means that

a popularity bias exists within the score, and this bias specifically discourages cold-start

recommendation.

Each of the scores examined are typical of ground truth scores, and the problems high-

lighted are most definitely an issue when evaluating cold-start recommendation. Existing

methods are either based on unsubstantial information, and thus have a poor granularity,

or are based on substantial information, but at the cost of introducing a popularity bias.

A new approach is required which is able to include the strong points of each existing

approach, while minimising the weaknesses.

4.2 Evaluation Data

A ground truth score can only be developed with user data that is available, and thus the

first step is to identify and acquire such data. The Last.FM service is used by millions of

users, and their interactions with the service are made available by the Last.FM API. For

each track, the total number of listeners and play counts are available, thus providing an

indication of how popular the track is. For each user, the last 50 tracks which they have

‘loved’ are available, thus providing data upon which to base a ground truth score.

To collect data, the Last.FM API also provides some helper methods. The top fans of

each track can be collected, providing a good start to ensuring each track has representative

data. These top fans are also important because there is a strong association between them

and the track, and thus their opinions are meaningful. To expand the set of users, the
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API provides a method to list any user’s friends, who are likely to follow a similar taste

in music. However, after several iterations of listing users friends, the set becomes more

diverse, reflecting a strong general opinion.

A total of 175, 000 users were identified by gathering each track’s top fans, and then

iteratively gathering each fan’s friends. Although more information is available, only the

user name of each user is stored, since this is all that is required to collect their loved

tracks. Having obtained a list of users, the next step is to start gathering the tracks

that they love. The API imposes a rate limit of 5 requests per second, and thus it takes

approximately 9 hours and 45 minutes to achieve a full pass over all users. This pass was

run once per day for a period of 2 months. At each pass, only the last 50 tracks each

user has ‘loved’ can be obtained. For some users, these 50 tracks never changed, and for

others these 50 would change every day, and thus repeating this process over time is a

crucial step to extracting substantial data. Further, Last.FM contains considerably more

tracks than the private dataset, and so the majority of tracks returned did not appear in

the private collection.

After the 2 month period, data was available for every track in the collection being

used, and for every user that had been identified. On average, a single user had liked 5.4

tracks in the collection. This crawl provides a wealth of user-track information that can

now be used to define a meaningful ground truth score.

4.3 Association Score

To define a ground truth score that satisfies the conditions described in §4.1, inspiration

is taken from a hypothetical conversation between two people, P1 and P2.

P1: I’ve been listening to this awesome band called Klaxons.

P2: Me too, Do you like Foals?

P1: Never heard of them!

P2: You should get their CD, you’d like them.

In this conversation, P1 first states a band that both have been listening to, and that
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they like. This band, Klaxons, are analogous to the query in a query-by-track recommender

system. P2 then states that she also like this band, thus forming a common link. Based

upon this established link, P2 then asks P1 if he also likes the band Foals. This question

is analogous to a recommendation in a recommender system, which P1 may or may not

know. P1 replies by stating that he has never heard of them, to which P2 responds by

reaffirming her recommendation.

This conversation characterises the recommendation process, and if P1 likes the recom-

mended track then the recommendation was good. If P1 does not like the recommended

track, then it is not good. However, from an evaluation perspective, if P1 does not like the

recommended track, then this recommendation should be considered of average quality,

since one out of the two people like both the query and recommendation.

The example illustrates a conversation between two people, and this idea may be

extrapolated to take into account the opinions of n people. To achieve this extrapolation,

it must be possible to first estimate how likely the conversation is to take place, and

compare this to how often the conversation actually took place. While the ground truth

data collected does not reveal these conversations, it does reveal what the answers are

likely to be for a large number of people.

The strength of an association between tracks ti and tj can be defined as the proportion

of people who agree that there is an association, calculated as

association(ti, tj) =
likes(ti, tj)

listeners(ti, tj)
(4.4)

where listeners(ti, tj) is the number of people who have listened to both ti and tj , and

likes(ti, tj) is the number of listeners who have liked both ti and tj . This measure is

similar to a user-centric evaluation, where a set of people are asked to listen to a query

and recommendation, and then say if they like the recommendation or not. When the

responses of all users are averaged, the association score is effectively determined.

The data collected from Last.FM, described in §4.2 can be used to obtain pairs of

tracks that each user has liked. Unfortunately the data does not describe pairs of tracks

to which each user has listened. However, the number of users who have listened to each

individual track is known, and this allows an estimate of listeners(ti, tj) to be determined.
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listeners(ti, tj) =
C(ti)

|Last.FM| ·
C(tj)

|Last.FM| · |Collection| (4.5)

where C(ti) denotes the count of users who have listened to track ti, |Last.FM | denotes

the number of users of Last.FM, and |Collection| denotes the number of users in the

evaluation dataset. To calculate this estimate it must first be assumed that tracks are

listened to independently, listening to track tj is not influenced by whether or not track

ti is listened to, and the estimate must be scaled to the number of users in the evaluation

dataset. Using this equation, it is possible to calculate the level of association between

tracks as described in Eq. (4.4).

One of the desirable properties of ground truth is that popularity is normalised. As-

sociation score achieves this by comparing the number of listeners of a track pair to the

number of people who like the pair. If both tracks in the pair are unpopular the estimated

number of listeners will be low, and thus only a small number of likes are required to

achieve a high score. If one track is popular and the other is not, then a moderate number

of listeners will be estimated. In this case, a moderate number of people who like both

tracks are required to achieve a high association score. Finally, if both tracks are popular,

then a large number of people are estimated to have listened to each track. Thus, a large

number of people must also have liked both tracks for a strong association score to be

achieved.

The association score estimates recommendation quality in the range 0 to 1. A value

of 0 indicates that there is no evidence of users liking the pair of tracks. A value of 1

occurs when the number of users who like a track pair is equal to the number of users that

have listened to the track pair. Due to listeners(ti, tj) being estimated, it is also possible

that a score of greater than 1 is obtained for some track pairs. The reason for this is that

as the true association between a track pair increases, the number of listeners is more

greatly under-estimated, due to the assumption of independence. Such track pairs should

intuitively be dealt with as being very associated, but allowing scores of greater than 1

can produce outliers that greatly influence averaged results. Thus, to handle this problem

association score is limited to the minimum of 1 and he calculated score.

A score of 0 is achieved by 87% of all possible track pairs, and a score of 1 is achieved
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for 3%. Figure 4.1 shows the distribution of association score values strictly between 0 and

1 that were calculated for the tracks in the private dataset. The horizontal axis shows the

association score that was calculated, and the vertical axis shows the percentage of track

pairs in the collection that obtain this score. A score of between 0 and 1 is achieved by

10% of possible track pairs. Of these pairs, the distribution centres around the score 0.12,

which occurs for 0.25% of all possible query recommendation pairs. There are a total of

approximately 5 million pairings, and the mean level of association score is 0.0064.

Figure 4.1: Distribution of association score values

This distribution of values shows that association score discriminates between high

and low quality recommendations suitably. This score is much more fine grained than

class based approaches, and is able to assign more meaningful scores. During evaluation,

association score may be calculated for each query recommendation pair, and the average

association score of the system calculated. Due to the similarities described between

association score and a user evaluation, averaging should have the effect of indicating the

results of a user evaluation, and thus user opinions.

4.4 Summary

The ability to evaluate recommender systems without the need for constant user inter-

action is critical to the development of new methods. User time is valuable, and so it is

not feasible to ask users to repeatedly evaluate the smallest changes to a recommendation

algorithm. However, the data to conduct such offline evaluations for music recommends
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systems is not readily available. Progress has been made providing publicly available

datasets, but these do not contain the audio files for tracks, and instead come with pre-

extracted representations. For tasks where new audio representations are to be defined

this introduces a barrier, and such datasets may not be used.

The important properties of system-centric evaluation ground truth have been identi-

fied and discussed. These include data being substantial and complete, and scores used

being fine grained, indicative of how users perceive quality, and not biased towards popu-

larity. An analysis of three ground truth scores that summarise existing techniques show

that existing scores do not satisfy all of the properties that are required. This means

that these techniques are only able to measure some aspects of recommendation, such as

similarity, but do not necessarily indicate user preference.

A new approach to defining ground truth similarity has been defined, named associ-

ation score, that takes advantage of data which is ublicly available through the Last.FM

API. A pool of users is collected, and the tracks which they like are logged over a period

of 2 months. Association score was developed to take advantage of this data, and satisfy

the desirable properties of a ground truth score that were identified.

Association score opens up the opportunity to investigate new approaches to recom-

mendation that use content-based representations. Such approaches would have previously

been infeasible without regular user studies, since the other ground truth approaches do

not accurately indicate recommendation quality. The new association score will be used as

the standard evaluation measure throughout the work presented in each chapter. A user

study will then be presented, which evaluates the work presented, and also the quality of

association score as an indicative heuristic.



Chapter 5

Music-Inspired Texture

Representation

A fundamental component of many music recommender systems is content-based fea-

tures and representations. For many systems the audio for each music track is available,

and encodes a wealth of information that describes the music. Content-based representa-

tions are typically used as part of a hybrid representation or system. Such hybrid repre-

sentations may also include representations such as tags, which are not guaranteed to be

available for every track. This lack of representation creates a cold-start problem, which

content may be used to reduce. However, in these systems the content representations are

usually the weakest component, and can potentially reduce recommendation quality. This

presents a need to improve the content representations used in hybrid systems, reducing

the performance gap between content-based and semantic representations.

The audio of any given track can be examined in time-slices, and for each time-slice a

meaningful content-based feature can be extracted. Given enough content-based features,

a representation can be learned that captures the important facets describing the track

as a whole. Content-based features range from those that describe the objective structure

of music, to features that describe the subjective feel of music, illustrated in Figure 5.1.

Objective features typically describe rhythm, harmony, or melody - the primary building

blocks of music. Extracting such features from polyphonic audio is an active research topic,

52
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and much work is still required to extract the features robustly (Benetos & Dixon 2013).

Using such features for the task of music recommendation can be found with varying

degrees of success, but subjective features have proven to be more reliable and of higher

quality (Casey et al. 2008).

Subjective Feel Objective Structure

Texture /
Timbre

Notes
Chords

Perceived 
Tempo

Melody
Rhythm

Figure 5.1: Musical Properties of Sound

The most widely used subjective feature is texture, which may be defined as how

humans perceive the interaction of frequencies produced by a sound. Simple frequency

interactions are perceived as pure, and complex frequency interactions are perceived as

harsh. For example, a flute has very few frequency interactions compared to a distorted

guitar, and so even when both instruments play the same note at the same volume, it

is still possible to easily identify them. This effect is not specific to music, and texture

can be used to distinguish between emotions such as happy and angry in speech sounds

(Krothapalli & Koolagudi 2013), and even emotional responses in animals (Hauser 2000).

To represent texture, the Mel-Frequency-Cepstral-Coefficients (MFCC) feature is most

commonly used. Although originally developed for speech recognition (Mermelstein 1976),

MFCCs have proven to be robust across many musical tasks, including recommendation.

In work comparing common content-based features, Pohle et al. (2005) find that texture

outperforms other features in six out of the seven experiments they conduct, and conclude

that improving texture could improve accuracy in their tasks. However, the foundation of

MFCCs in speech processing can make texture difficult to understand in a musical sense,

and thus difficult to improve.

In this chapter the applicability of MFCCs to music recommendation is questioned.

Through structured analysis and evaluation of the algorithm, several of its properties are

shown to be undesirable for music. These properties include the resolution used at a key

step in the algorithm, and how use of the discrete cosine transform can be harmful. Based

on this analysis of the MFCC algorithm, a novel music-inspired texture representation is

developed, which is able to offer many improvements for music over MFCC.
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5.1 Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients describe the texture of audio by applying transforms

to its frequency spectrum. These transforms are designed firstly to account for the human

perception of sound, as originally described by Stevens et al. (1937). After this, transforms

designed to account for the physical properties of human speech are applied, specifically,

in how noise is dealt with. In this section the MFCC algorithm is presented, and its

properties analysed from a musical perspective.

MFCCs are generated for an audio track of any given length, illustrated by the

flowchart in Figure 5.2. The audio track is encoded as a wave signal, typically at the

CD quality sampling rate of 44.1kHz. The first step of the algorithm is to split the audio

into fixed-length frames. Each audio frame is then re-expressed in the frequency domain

by the Fast Fourier Transform, for which windowing is a pre-processing step. The Mel

Filter Bank re-expresses the frequency spectrum along a psychologically based scale, pro-

ducing the mel frequency cepstrum, which is then amplitude-normalised using a log scale.

Finally, this cepstrum is summarised by a Discrete Cosine Transform, the coefficients of

which are the MFCC vector.

audio frame

frequency
spectrum

MFCC

Mel Filter BankLog

Discrete Cosine
Transform

audio track Windowing

Fast Fourier
Transform

Frame Blocking

cepstrum

Figure 5.2: The MFCC Algorithm

5.1.1 Frame Blocking and Windowing

The input audio track may be up to several minutes long, and so must be split into shorter

time frames before features are extracted. Efficient implementations of the Fast Fourier
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Transform (FFT) expect an input length that is a power of two, which for CD quality

audio is generally in the range 210 to 217 (23ms to 3s).

The next step after frame blocking in Figure 5.2 is windowing, which is a pre-processing

step to the FFT. The waveform that will be converted to the frequency domain has been

blocked into frames at arbitrary time points, and as such the blocked waveforms may

contain discontinuities at their time boundaries. The effect of these discontinuities is that

they introduce spectral leakage during the FFT.

Windowing is the process of multiplying the waveform x by a window function w. The

window function tapers the boundaries of x, thus reducing spectral leakage during the

FFT. A commonly used window function is the Hamming window, calculated as

wn = α− β cos

(
2πn

N − 1

)
(5.1)

where α = 0.54 and β = 0.46. N is the window size, identical to the length of frame x,

and n is a pointer to an individual bin within the window function.

5.1.2 Fast Fourier Transform

After the signal has been pre-processed and split into frames, the next stage is to convert

the time-domain signal into the frequency domain; this is achieved by the FFT algorithm.

From our time-domain waveform x, the frequency spectrum X is calculated as

Xk =
N−1∑

n=0

xne
−i2π k

N n (5.2)

where each Xk is a complex number encoding an amplitude and phase component of x,

and k
N is frequency in cycles per sample. Frequency can be re-expressed in cycles per

second as

f =
k

NT
(5.3)

where T is the length of each frame in seconds.

To create the MFCC texture representation, only the amplitude, not phase, of each

frequency component is important. This is calculated as
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|Xk| =
√
Re(Xk)2 + Im(Xk)2 (5.4)

This frequency power spectrum obtained using the FFT describes the physical prop-

erties of x.

5.1.3 Mel Filter Bank and Logarithmic Normalisation

To construct the MFCC texture representation this output must be warped into a percep-

tual scaling, both of frequency and power. The first stage of warping the physical output

of the FFT to a perceptual one is to apply a mel filter bank. This filter bank is constructed

using the mel scale (Stevens et al. 1937), which describes how humans perceive differences

in frequency. The conversion from frequency f to mel φ is calculated as

φ(f) = 2595 log10

(
f

700
+ 1

)
(5.5)

and is illustrated by the curve in Figure 5.3. The horizontal axis is f , and the vertical

axis is φ(f).

f

Φ(f)

0

22050

3
9
2
3

1000 10640

1
9
6
1

Figure 5.3: Frequency - Mel Curve

The curve shown is approximately linear to 1000Hz, and reflects how frequency is per-

ceived. Humans find it relatively easy to recognise changes at low frequencies, for example

between 400Hz and 440 Hz. However, at higher frequencies this becomes increasingly more
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difficult, and a larger change in frequency is required before the change is noticeable.

The filter bank used to warp frequency to mel is illustrated by the triangular filters

in Figure 5.3. These are spaced equally along the φ(f) axis, thus producing the spacing

along the f axis as illustrated. Formally, for M filters, the width ∆φ of each filter is

∆φ =
φ(fmax)

M
(5.6)

From eq. (5.3), the lower bound l and upper bound u frequency spectrum bins k, which

correlate to the upper and lower bound frequencies of filter m, are

lm = φ−1(m∆φ)NT (5.7)

um = φ−1((m+ 1)∆φ)NT (5.8)

and the length of filter m in terms of frequency spectrum bins k is

∆km = um − lm (5.9)

The mel filter bank matrix F is then constructed as

Fkm =






2
∆km+1 ·

(
∆km+1

2 −
∣∣(k − lm)− ∆km−1

2

∣∣) if lm ≤ k ≤ um

0 otherwise
(5.10)

where each column contains a single triangular mel filter. This filter bank is applied to

the power spectrum X as

Y = XF (5.11)

where Y is the frequency spectrum X discretised into M buckets by the filter bank F .

The second stage of perceptual warping is to normalise the values of Y by taking their

logarithm. The reason for this is to roughly approximate the way that humans perceive

perceive loudness. After this normalisation step, the output obtained is referred to as the

mel-frequency cepstrum.
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5.1.4 Discrete Cosine Transform

The final step in Figure 5.2 is the Discrete Cosine Transform (DCT), which takes the mel-

frequency cepstrum as an input, and outputs coefficients that describes its shape. These

mel-frequency cepstral coefficients are the MFCC texture representation.

The description provided by the DCT is a set of weights, each correlating to a specific

cosine curve. When these curves are combined as a weighted sum, the mel-frequency

cepstrum is approximated. To calculate the mel-frequency cepstral coefficients y, the

DCT is applied to the mel-frequency cepstrum Y as follows

yn =
M−1∑

m=0

Ym cos

[
π

M

(
m+

1

2

)
n

]
(5.12)

for n = 0 to N − 1, where N < M .

5.2 Music Inspired Texture Representation

Resolution plays a key role in the MFCC algorithm; resolution of FFT affects the mel filter

bank, and resolution of the mel filter bank affects the output cepstrum, and its coefficients.

At each stage in the algorithm, the resolution chosen must be reasoned and meaningful.

If too low a resolution is used, then perhaps important information is lost, and if too high

a resolution is used, there is a risk of introducing noise.

5.2.1 Important Properties of Speech

To fully understand the effects of resolution, we must start with frame blocking and the

FFT. The length of spectrum X is half the length of frame x. For example, if each frame

is blocked to have length 210, then X contains 29 frequency bins. This becomes important

when the sampling frequency is taken into account; the maximum frequency captured

is half the sampling rate (Nyquist 1928). For CD quality audio, the sampling rate is

44.1kHz, and thus the maximum frequency represented in the spectrum X is 22.05kHz.

In this example therefore, the resolution of each Xk is

FFT bin resolution =
Max Frequency

Number of bins
=

22050

29
= 43.066Hz (5.13)
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To increase the resolution of X, one must increase the number of bins, and thus

the window size. However, Pachet & Aucouturier (2004) found that MFCC features are

only useful on stationary frames, and observe negative effects as the frame size reaches

1 second. Frames larger than around 100ms will include many transients and variations,

introducing noise into the texture representation. This initial resolution therefore cannot

be changed significantly, but must form the basis of further analysis of resolution in the

MFCC algorithm.

5.2.2 Physical Resolution of Mel Filter Bank

Perceptual frequency warping is not achieved as a direct conversion from f to φ(f), but as

a discretization of f based on φ(f). This discretisation is achieved by the mel filter bank

defined in eq. (5.10), and applied using eq. (5.11). To avoid confusion, each Xk in the

frequency spectrum will be referred to as a bin, and each triangular filter m of the mel

filter bank as a bucket.

M buckets are equally sized and spaced along φ(f), as previously described in §5.1.3.

The buckets on the f axis are equivalent to those on φ(f). The value of each bucket is

a weighted sum of all its frequency bins, where the weights are defined by the triangular

filter.

Typically when the resolution of MFCC is discussed, it is in terms of frequency and

mel. The range of frequencies that are discretised into each bucket is defined by both the

resolution of FFT, and the number of filters used, M . From the previous example, X

contains 29 frequency bins, each 43.066Hz wide, and M mel filters of varying width are

used. If 10 mel-filters are used in the filter bank, each bucket is 392 mels wide. Figure 5.4

illustrates how the width of each mel filter varies in terms of frequency.

The smallest filter 0 in Figure 5.4 is 291Hz, and the largest 9 is 6688Hz. As a percentage

of the information available, each bucket covers 10% of the mel scale, or between 1.3%

and 30% of the frequency scale. At a first glance it seems that the smallest bucket is

too fine, and the largest bucket is too coarse. Although the mel scale is used to replicate

human hearing, grouping 30% of information into a single bucket does not seem intuitive.

In terms of human hearing ranges the smallest and largest buckets are identical, however,

it must be remembered that the largest bucket will also include harmonics of the smallest
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Figure 5.4: Mel Filter Widths

bucket. In speech-based studies it is argued that lower resolutions can be advantageous

(Skowronski & Harris 2002); but due to harmonics this may not be the case for music.

5.2.3 Musical Resolution of Mel Filter Bank

To understand the effects that the mel filter bank has for music, resolution must be

examined using a musical scale. The mathematical scale upon which all western musical

scales are constructed is the cents scale, known to musicians as the chromatic scale. This

cents scale describes the difference between two frequencies, where 100cents is one semi-

tone, and is defined as

c(f, fref) = 1200 log2

(
f

fref

)
(5.14)

where f is a variable frequency, and fref is a reference frequency. When tuning musical

instruments, 440Hz is a common value for fref , and corresponds to the musical note A4.

To avoid confusion from negative values in our example, fref = 16.35Hz will be used, which

corresponds to the musical note C0. The lowest note on a standard piano is A0 at 27.5Hz.

Figure 5.5 shows the filter widths in Hz identically to Figure 5.4, and also includes

the filter widths in terms of musical notes. The curve is in terms of the left vertical axis
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Figure 5.5: Mel Filter Widths Examined Musically

showing frequency, and the bars are in terms of the right vertical axis showing notes. This

shows a completely different picture of resolution when it is examined in terms of musical

notes. Unlike frequency, the 0th filter now discretises the most information, nearly 50

notes. The 9th filter is the largest in terms of frequency, but smallest musically, discretising

just a fraction over 6 notes. There are 12477 cents between our reference frequency fref

and 22050Hz, which is just over 124 musical notes. Re-examining the discretisation as a

percentage, the smallest bucket covers 39.5% of all musical notes, and the largest bucket

covers 0.048%.

The 0th filter in Figure 5.5 discretises much more notes than any other filter. The

reason for this actually agrees with the underlying principles of the mel scale; people can

tell apart low frequencies more easily than high frequencies, and thus there must be more

notes at the lower frequencies. This makes the insight that low-frequency filters discretise

a large number of notes easy to miss if the cents scale is not considered.

Implementations of MFCC typically set M = 40, causing the 0th filter to cover 23.5

musical notes, and the 39th filter to cover only 1 musical note. Discretisation of 23.5

musical notes still appears to be too much however; most musical notes are played at

relatively low frequencies. Higher frequencies in the spectrum often capture harmonics of

the lower notes being played, and so their discretisation is not as critical.
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A strong music-inspired texture representation should be able to capture all of the

musically meaningful information, while still adhering to the psycho-acoustic principles

of the mel-scale. In the developed musical texture, M must be a carefully considered

parameter, and may require to be set significantly higher than 40. Increasing M will

decrease the size of all buckets, until such a point that reasonable musical discretisation

is achieved. For higher order buckets, the number of notes they discretise will fall below

1. This should not be considered a problem however, it is a trade off of the balancing act

required to capture the correct musical information.

5.2.4 How Noise is Handled

Once the mel cepstrum has been obtained, it is then summarised by the discrete cosine

transform (DCT). The motivation behind this is two-fold: to concisely describe vocal

formants, and to remove the effect of general noise. In speech, meaningful information is

described by formants, irrespective of which pitch they were uttered at. For example, in

a speech transcription task it should not matter if a low male, or high female voice is the

input.

DCT summarises the cepstrum as a weighted sum of cosine curves that follow a fixed

pattern of wavelength: the 0th, 1st, 2nd and 3rd curves have wavelength 0
M , 0.5

M , 1
M , and

1.5
M respectively (see eq. (5.12)). Thus it is the weights of each curve that make the

parameters of y, and y0 describes the DC level of the cepstrum. Since for speech formants

are best described by low frequency changes in the cepstrum, only a few number of values

are retained after the DCT, typically around 13 coefficients.

Pitch is important for music, and so one may be temped to assert that more coefficients

should be retained from the DCT, the higher frequency changes. This would increase

the resolution of the DCT, but in a non-meaningful way; as the number of coefficients

in y tends to the number of coefficients in Y , the two vectors describe the exact same

information, but in a different format. Increasing the number of coefficients retained by

the DCT therefore will not be helpful for a music texture representation.

The main reason for using DCT is speech texture is to capture formants while removing

noise; these concepts do not translate into the music domain, where noise, consisting

primarily of breath does not exist. In music, the equivalent of background “noise” is in
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fact produced by instruments that ring continuously, for example a cymbal or the drone

of a bagpipe. Omitting such sounds from a music texture representation could indeed be

harmful.

As an example, let us consider the genres of dance and rock. In dance music cymbals

are often computer generated, and may be clipped to remove any sustain, producing a

very tight on-the-beat sound. In rock music cymbals are recorded using an over-head mi-

crophone capturing a live musician. The EQ on this microphone channel is intentionally

designed to let cymbals ring out until the next time the musician hits them. This dis-

tinction between tight clipped cymbals and looser sustained cymbals can be subtle, given

that cymbals are not the most prominent instrument in a track. However, these subtle

differences can be important when determining the similarity between textures, and thus

must be captured.

For music-inspired texture, the DCT will not be used. Instead, all of the information

provided in the cepstrum Y will be made available to the learning models that use it.

If the appropriate models are used, then the important components of Y will be learned

effectively. These models are important to the successful usage of Y , since all information is

available. The music inspired texture as described will be referred to as the Mel-Frequency

Spectrum MFS.

5.3 Evaluation of MFCC and MFS

To evaluate how effective the music-inspired texture MFS is compared to MFCC, both

representations will be compared by their recommendation performance. The music col-

lection used for evaluation is described in §3.2, and the evaluation data described in §4.2.

The evaluation method used is the association score, as applied in §4.3.

The different models are used to create recommender systems using MFS and MFCC.

These are standard models used in both speech-based and music-based tasks, and are

described in the following section. To examine the effects of resolution the number of

filters M is modified, using the values 40, 60, 80, 100, and 120. For 40 filters the 0th filter

contains just over 25 notes, and the 39th just over 1. For 120 filters the 0th filter contains

4 notes, and the 119th only 0.5 notes.



5.3. Evaluation of MFCC and MFS 64

5.3.1 Evaluated Models

Three different models are compared, allowing the performance of both MFS and MFCC to

be measured under varying conditions. Latent Semantic Indexing (LSI) is used to evaluate

generalising texture, k-means (VOC) is used to evaluate clustering texture, and Gaussian

Mixture Models (GMM) are used to evaluate modelling the distribution of texture in a

track. Each model will be referred to by the representation used to combine it, and the

model itself, for example MFS-LSI, or MFCC-LSI.

Generalisation

For each track, a mean texture vector is first computed, where each dimension in this

mean vector corresponds to the mean value across all of the track’s texture vectors. The

mean texture vectors of all tracks in the training set are then used to construct a track by

mean vector matrix. This matrix is generalised using Singular Value Decomposition, thus

obtaining basis functions for Latent Semantic Indexing. Given a query track, the mean

vector is projected into this generalised search space, and recommendations are made using

cosine similarity.

Clustering

To generate a vocabulary of cluster centroids the k-means algorithm is used. The input

data for this model is 20000 randomly selected texture vectors from tracks in the training

set. Using this vocabulary, the vectors for each track are assigned to their nearest cluster.

The number of assignments for each track-cluster pair are used to construct a cluster-track

matrix, and TF-IDF weighting is applied. Recommendations are made from this matrix

using cosine similarity.

Distribution Modelling

A Gaussian Mixture Model (GMM) describes the distribution of a track’s texture vectors

as a weighted sum of K simple Gaussian distributions, each known as a component of the

model. Each weighted component is described by its mean texture vector, and a covariance

matrix (Aucouturier et al. 2005). To evaluate MFS and MFCC a GMM is learned for each
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track using the Expectation Maximisation algorithm.

Recommendations are made using the Kullback-Leibler (KL) divergence between track

GMMs. However, KL divergence only measures the divergence between two Gaussian

distributions; each GMM has K Gaussian distributions. To overcome this problem rec-

ommendations are made based on an approximation of KL divergence (Hershey & Olsen

2007). This approximation method first computes the KL divergence between all pair-wise

combinations of components of two GMMs. The final KL divergence is calculated as a

weighted average of the minimum divergence from each query component. Unlike with the

previous two models discussed, similarity in this case is asymmetrical, since divergence is

calculated from each query component, but not necessarily to each recommendation com-

ponent. This makes sense because importance must be given to the query: if this measure

was forced to be symmetrical, then parts of a recommendation that are not important for

a query would be allowed to influence recommendations.

5.3.2 Baseline Recommendation Quality

Figure 5.6 shows the recommendation quality achieved using MFS and MFCC for each

model. The vertical axis shows the association score, and the horizontal axis shows the

number of recommendations that were evaluated. Each value shown is the average asso-

ciation score at the number of recommendations made, and error bars show significance

at a 95% confidence interval from the mean.

Recommendations using MFS-LSI achieve significantly better association scores than

all other representation models. MFS-VOC provides a significant quality increase over

MFCC-VOC when more than 1 recommendation is made. The reason that MFS performs

better than MFCC for both the LSI and VOC models is because both models group data

at the collection level, as opposed to the track level of GMM. LSI is finding associations

between dimensions in the mean texture vectors, and VOC is grouping texture vectors

into clusters. Crucially, MFS is allowing these models to group at the collection level

effectively, unlike MFCC. The reason for this is that MFCC is summarising each texture

vector at the track level by applying DCT.

When 40 filters are used, MFCC-GMM performs significantly better than MFS-GMM.

The reason for this is that GMM behaves differently to LSI and VOC, and each track is
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Figure 5.6: Comparison of MFS and MFCC using 40 filters

modelled in isolation. The implementation of EM used to learn the GMMs makes use of

a diagonal covariance matrix to increase efficiency of the algorithm. The effect of this is

that each dimension in the texture vectors are independent, and thus associations between

dimensions are not learned in the same way that they are with LSI and VOC.

5.3.3 Effects of Resolution on Recommendation Quality

To explore the effects increasing the number of filters has on recommendation, a more

simple recommendation task is examined. Figure 5.7 shows the average association score

of the top 3 recommendations made for each model using MFS. The horizontal axis is

grouped by the model used, and each bar corresponds to a given number of filters.

Increasing the number of filters significantly increases the recommendation quality of

MFS-GMM, does not significantly affect MFS-VOC, and significantly decreases the quality
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Figure 5.7: Effect of filters on MFS

of MFS-LSI. The reason that GMM is improved is because more independent dimensions

are available to the model, and thus more meaningful distributions can be learned. The

k-means based VOC model does not change, since similar clusters are learned. Although

the search space to be clustered is expressed by more dimensions, the clusters formed in

this space are roughly equivalent. The performance of LSI decreases as more filters are

used, showing that this model can generalise a low number of filters more effectively.

Figure 5.8 shows the effect of changing the umber of filters for MFCC. In this case

no correlations appear between the number of filters used and the association score. The

MFCC representation is not as predictable and stable as the MFS representation when

modelled. This makes the representation much more difficult to tune to particular appli-

cations, and gain the best performance from it.

5.3.4 Comparison of MFS and MFCC

Figure 5.9 is in the same format as Figure 5.6, and illustrates MFS and MFCC when the

best performing number of filters are used for each model. VOC is not shown because

neither representation was improved by modifying the number of filters used.

The solid black line shows MFS(40)-GMM, and the solid grey line shows MFS(120)-

GMM. Both results are included to illustrate the improvement that increasing the number

of filters achieves. In comparison, there is only a very small improvement for MFCC-
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Figure 5.8: Effect of filters on MFCC

Figure 5.9: Comparison of best MFS and MFCC by model
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GMM by increasing the number of filters. For the first 5 recommendations MFS-GMM

now achieves significantly better recommendation quality than MFCC-GMM.

5.4 Summary

The entire mel-frequency spectrum is important when describing the texture of music,

and should not be summarised by DCT. When the MFS representation is used, all of

the texture information is available to each model, leading to improved recommendation

quality over models using MFCC. When MFCC is used, DCT provides a summary of

the information within MFS, which does not allow a recommender model to learn the

important aspects. Experimental results show that by not using the DCT, MFS achieves

significantly better recommendation quality for each of the three models evaluated.

Traditional speech texture representations are extracted with a fixed, standard num-

ber of filters, and therefore resolution. Results show however that to extract a meaningful

music-inspired texture representation, it is important to understand how this resolution

affects the model being used. This stable link between representation and model is impor-

tant, and is something not achieved by MFCC. There is no single MFS resolution which

is optimal for each recommender model evaluated, but by understanding how a model

works, it is possible to extract the most meaningful MFS representation.

In each recommender model evaluated, the behaviour of MFS is more predicable than

with MFCC. For GMM, more filters are best because the model is able to describe this

increased amount of information meaningfully. With VOC there is no significant difference,

and with LSI fewer filters can best be generalised. Results obtained using MFCC do not

show any of these trends, and thus no insight can be gained into how this representation

may be used to model music.

Although the LSI model clearly outperforms both VOC and GMM, both VOC and

GMM are commonly found throughout hybrid recommender systems. The improved qual-

ity of MFS over MFCC in these models, and the understanding of resolution, may lead to

improved hybrid recommender systems when VOC or GMM is used. In following chapters

the link between music texture and semantic features will be explored in detail; a task

made more achievable by the MFS representation.



Chapter 6

Combining Content-Based and

Tag-Based Representations

Content-based representations can be used as replacement for tags when cold-start is

present. The benefit in doing so is that the discovery of cold-start tracks is increased,

thus allowing these tracks to be gradually incorporated into a tag-based recommender

system. Recommendations made using content may or may not have a tag description, but

including them in recommendations increases the likelihood that each track will become

well-tagged. As these tracks become increasingly more tagged, tag-based methods can

supersede content-based methods.

However, this description is an idealised one, and assumes that content-based recom-

mendations are of similar quality to tag-based recommendations. In reality a tag-based

recommender will significantly outperform even the very best content-based methods.

Methods are required which increase discovery, but not at the expense of reduced recom-

mendation quality.

Hybrid recommender systems offer an opportunity to increase cold-start discovery,

while maintaining a consistent recommendation quality. The challenge of a hybrid repre-

sentation is to incorporate the discovery power of content-based representations, with the

recommendation quality power of tag-based representations, as illustrated in Figure 6.1.

In this chapter some important properties of both content- and tag-based representa-
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Figure 6.1: Balancing Quality and Discovery with Hybrid Representation

tions are explored. These properties have implications on how two fundamentally different

representations may be combined into a hybrid representation. Based on this investiga-

tion a method of combining content and tags is described, and a new approach to learning

the important features of this combination is developed. This hybrid representation is

then evaluated both in terms of recommendation quality, and discovery rate of cold-start

tracks. The work in this chapter was presented at the Twenty-Second International Joint

Conference on Artificial Intelligence (Horsburgh, Craw, Massie & Boswell 2011)

6.1 Basic Representations

To successfully combine both content and tags in a unified representation, it is important to

understand the characteristics of each individual representation. This includes examining

how the representation is described, how similarity is calculated and what it means, and

properties such as sparsity within tags.

6.1.1 Content Representation

Content-based representations are available for every track in a collection when a recom-

mender systems has access to audio files. These representations are a good starting point

for inclusion in a hybrid representation, since they always follow a well-defined structure,
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and are always available.

Content representations describe physical properties of musical audio, such as chroma,

rhythm, harmony, and texture. Although the focus of this work is on using texture, each

representation adheres to a similar structure. Audio is sampled in fixed time frames,

and features are extracted. For texture, as described in Chapter 5, the output is a single

Euclidean vector for each time frame, which is then aggregated into a mean feature vector.

c =
[
c1 c2 ... cn

]
(6.1)

The content vector c will by definition contain no sparsity, that is, each dimension

has a non-zero value. Each value in the vector describes something meaningful, which in

theory could be interpreted by humans. In the case of MFS, each dimension describes

the specific influence of a critical band within a track’s audio. The value c0 describes the

influence of the lowest bass notes, and the value cn describes the influence of the highest

treble notes and overtones.

6.1.2 Tag Representation

Tag representations are created from the social tags applied to a track by users. Once

aggregated across all users, each tag has a weight when applied to a track, and these

weights can be represented as a Euclidean vector t.

t =
[
t1 t2 ... tm

]
(6.2)

The vector t must contain a single dimensions for every possible tag that could be

applied, and thus the number of dimensions is equivalent to the vocabulary size for the

collection of tracks. From this vocabulary, each track will only have been assigned a very

limited number of tags, and thus many dimensions of t will be zero valued. Unlike with

content vectors then, each track’s tag vector t will contain a large degree of sparsity.
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6.2 Concatenating Content and Tag vectors

In §2.4 the different approaches to reducing cold-start were discussed. Each approach

aims to reduce the sparsity problem in tag representations, thus reducing the cold-start

problem. However, existing approaches first cluster the content representation, and then

combine this clustered representation with a tag representation. This approach assumes

that each content vector as a whole is meaningful, and not the individual dimensions

within the content vector. Results in the previous chapter show however that this is not

the case, and that each individual dimension is meaningful.

With MFS, each dimension describes the properties of a perceptual critical band within

the music. If these vectors are clustered, then relationships between the bands are cap-

tured, but they can no longer be identified. When tags are introduced therefore, it is

impossible to realise if there is an explicit relationship between the tag and the critical

band, since only relationships with clusters can be established. For example, it is possible

that tracks with high values in the low dimensions of MFS will be tagged with words

like ‘bass’, ‘low-end’, and ‘booming’. In a clustered space, it is not guaranteed that all

tracks with strong low-dimensional values will fall into the same clusters, and thus this

relationship cannot be captured.

To combine content with tags in such a way that these relationships can be explicitly

identified, the set of content vectors describing each track must first be aggregated. The

reason for this, and indeed for clustering, is to ensure a normalised amount of information

describes each track. That is, long track’s with many content vectors are described in a

comparable way to short track’s with few content vectors. Each track is represented by a

set of content vectors C, which are aggregated into a mean content vector c̄ by calculating

the average of each dimension,

c̄i =
∑

c∈C
ci (6.3)

This mean content vector is then concatenated with the track’s tag vector t, forming the

combined vector s as
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s =
[
c1 · · · cn t1 · · · tm

]
(6.4)

where n is the number of dimensions in each track’s content vector c, and m is the number

of dimensions in each track’s tag vector t.

This concatenated vector for each track now introduces the possibility of identifying

meaningful correlations between content and tags. The identification of these correlations

is important, since it does not make sense to compare the concatenated vectors directly.

Sparsity still exists within the tag component of cold-start tracks, and comparing these

concatenated vectors is equivalent to simply averaging the similarity scores of each rep-

resentation individually. Without identifying correlations, the problem of sparsity cannot

be reduced.

6.3 Generalisation by Latent Semantic Analysis

Latent semantic analysis (LSA) provides an effective technique that can be used to gen-

eralise the concatenated representation, and allow the relationships between content and

tags to be uncovered and exploited. Each track is described by a single concatenated

vector s, which is used to construct the track matrix S as

S =





S11 S12 · · · S1T

...
...

...
...

Sn1 Sn2 · · · SnT

S(n+1)1 S(n+1)2 · · · S(n+1)T

...
...

...
...

S(n+m)1 S(n+m)2 · · · S(n+m)T





(6.5)

where T is the number of tracks in the collection, and each column represents the con-

catenated vector s for an individual track.

During the construction of this matrix, the content and tag components of each track’s

concatenated vector must each be normalised to a unit vector. This ensures that neither

representation overpowers the other during generalisation, and that meaningful relation-

ships can be identified.
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6.3.1 Singular Value Decomposition

LSA is a way of interpreting the singular value decomposition (SVD) of a matrix. The

first step of SVD is to calculate correlations within the input matrix s as

A = SST (6.6)

B = STS (6.7)

Matrix A contains all the first-order representation correlations with respect to tracks,

and B contains all the first-order track correlations with respect to representations. For

example, matrix A describes to what extent one dimension in the representation correlates

with another dimension in the representation, across the collection of tracks. In the case

of concatenated vectors s therefore, A will determine the relationships between track

content vectors, track tag vectors, and the content and tag vectors of a track. This final

correlation is the most important for reducing the effects of cold-start, since enforcing

these correlations to under-tagged tracks vectors allows tag information to be propagated.

The next step of SVD is to determine the eigenvectors of A, such that

Au = σu (6.8)

where u is a single eigenvector, and σ is its corresponding eigenvalue. Similarity

Bv = σv (6.9)

where v is a single eigenvector, and σ is its corresponding eigenvalue. In both eq. (6.8)

and eq.(6.9), the eigenvalues σ are identical, but the eigenvectors u and v will be different.

This step of calculating the eigenvectors and eigenvalues of the correlation matrices

A and B is the key method behind the decomposition of matrix S. The eigenvectors u

are arranged as column vectors, and form matrix U . The eigenvectors v are arranged as

row vectors, and form matrix V T . The eigenvalues σ are arranged as the diagonal of a

square matrix, and form Σ. Thus the original matrix S has been decomposed into the
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form S = UΣV T based on its singular values.

S =

[[
u0

] [
u1

]
· · ·

[
ul

]]
·





σ0 · · · · · · 0
... σ1

...
...

. . .
...

0 · · · · · · σl





·





[
v0

]

[
v1

]

...
[
vl

]





(6.10)

Importantly however, each eigenvector u characterises a set of representation-representation

correlations, since its direction does not change when multiplied by the correlation matrix

A (eq. (6.8)). Through calculating these eigenvectors, the individual pair-wise corre-

lations are generalised across the all pair-wise correlations. The singular values σ each

correspond to the strength of this generalisation across the dataset, allowing the most

important generalisations to be identified.

6.3.2 From SVD to LSA

SVD is a mathematical tool to tri-factorise a given input matrix. LSA is a specific way

of interpreting the results of this tri-factorisation, that can be used to interpret the gen-

eralised representation. Each characterising eigenvector is known as a concept, and these

concepts are important to using SVD effectively to achieve LSA.

Removing Noise

In a generalised representation, it is desirable that any noise is removed from the original

input representation. An interesting property of SVD that can aid this, is that any related

u, σ, and v vectors can be safely removed from their respective matrices. The result of

calculating UΣV T with these reduced matrices is a least-squares approximation of the

original matrix S. As a consequence, it is safe to remove all eigenvectors and eigenvalues

whose strength is below a given threshold, or to retain only the top k strongest vectors,

thus removing noise.

Typically this dimensionality reduction is achieved by first ordering the columns vectors

of U , row vectors of V , and singular values of Σ, by the strength of the concepts, identified

by each value in Σ. Once re-ordered, the strongest k concepts are retained, and all other
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concepts are discarded. In terms of the concatenated representation only some of the

concepts retained will directly relate to the relationships between content and tags, but

this step is necessary to discard the weaker correlations considered as noise.

Calculating Similarity

To calculate the similarity between two tracks, the representation of each track must first

be projected onto the generalised search space. The track representation for query track

q is projected into a concept vector q̂ as

q̂ = Σ−1UT qT (6.11)

This equation translates the query vector q into the concept space V , which describes

the concepts that capture relationship between content and tags. If the query was not

projected into the concept space, then queries which only have content available, and

no tags, would not benefit from the generalisation. Through projecting queries, further

meaningful tag knowledge can be introduced through the correlations learned between

content and tags. To calculate the similarity between the projected query vector q̂, and the

potential recommendation r̂, the strength of each concept must also be included. Cosine

similarity is appropriate, because each concept is based on direction, and so similarity is

calculated as

sim(q, r) = sim(Σq̂,Σr̂) (6.12)

6.4 The Effect of Generalisation

The effect of generalising content and tag data using SVD is that, when a new track’s

vector is projected, both the content and tag representations are effectively refined by

a re-weighting scheme. This re-weighting is illustrated in the following example, where

Figure 6.2 shows the un-normalised input matrix S describing the tag and content vectors

of each track.

Tracks T1, T2, and T3 are each represented by both content and tags, and tracks T4

and T5 are represented by content only. Tracks T4 and T5 are cold-start; the weights of
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Figure 6.2: Example Concatenation Matrix of Content and Tag

all tags for the tracks are zero. The position of cold-start track T4 and T5 is at the right

of the matrix to make the example clearer to read; in practice the order that the tracks

appear in may be random, and does not affect generalisation using LSA.

This matrix is generalised using LSA, thus learning the correlations across each di-

mension in the data. To inspect the re-weighting effect that LSA has, the matrix may be

re-represented by unprotecting each track vector from the subspaces learned by SVD, as

T̂n = TnΣV
T (6.13)

where Tn is the column vector of track n in the input matrix.

The matrix obtained by unprotecting each track vector in Figure 6.2 is shown in

Figure 6.3. The dimensions corresponding to the tag dimensions of cold-start tracks are

highlighted in bold. After LSA, it is clear that tag information has been propagated into

the representations for these cold-start tracks. This occurs because the content part of

the representation matches a strong concept identified by LSA, and this concept includes

tag information.

Figure 6.4 shows how each track vector has been modified in concept space, allowing

deeper insight into how LSA has generalised the input matrix. This is calculated by
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Figure 6.3: Generalised Concatenation Matrix of Content and Tag

subtracting each dimension value in the Figure 6.2 after normalisation is applied, from

Figure 6.3. The red dimensions are ones which have their influence weakened in concept

space, and the green dimensions are ones with have their influence increased.

Figure 6.4: Learning by LSA

LSA has weakened all of the content-based dimensions. This is perhaps expected,

since it is known that content is the weaker representation of the two. The majority of

the tag-based dimensions have had their influence increased. This increase however is

not uniform across all tracks; the cold-start tracks have had their tag-based dimensions
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increased significantly. This behaviour is highly desirable, allowing well-tagged tracks to

maintain their strong information, and increasing the potential of cold-start tracks to be

recommended.

6.5 Evaluation of ConcatLSA

The purpose of generalising the concatenated representation is to increase the discovery

rate of cold-start tracks in a recommender system. However, this representation must

also be able to provide consistently high quality recommendations. Therefore, prior to

investigating cold-start discovery rate, the recommendation quality achieved by the rep-

resentation is evaluated. The representations that will be compared are:

• Content - the MFS-LSA model described in Chapter 5 is used to provide content-

based recommendations.

• Tag - the tag-vectors collected from Last.FM provide a benchmark recommendation

quality

• ConcatLSA - the generalised representation defined in §6.3

Recommendation quality is measured as described in §4.2, and the mean average as-

sociation score is presented.

6.5.1 Recommendation Quality Results

Figure 6.5 shows the recommendation quality achieved by each of the methods being eval-

uated. Both Tag and ConcatLSA are clearly able to out perform Content, since they both

contain the stronger tag knowledge. However, the performance of Tag and ConcatLSA is

comparable: for the first 7 recommendations there is no significant difference in recom-

mendation quality; and when more than 7 recommendations are made Tag outperforms

ConcatLSA.

The reason Tag and ConcatLSA are so similar is that only 2% of tracks in the dataset

used for evaluation, described in §3.2, are represented by zero tags. The tag knowledge is

much stronger than content, and so in this case LSA will tend towards learning concepts
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Figure 6.5: Recommendation Quality of ConcatLSA

based on this knowledge. To investigate how ConcatLSA compares with the Tag repre-

sentation when a higher rate of cold-start is present, tags are removed from a randomly

selected 25% of the collection, and the experiment is repeated. This level of cold start

more closely reflects what occurs naturally within a live recommender system, as discussed

in §2.3.2.

Figure 6.6 shows the recommendation quality achieved when cold-start is injected into

25% of the collection. As expected, the Tag representation, illustrated by the grey dashed

line, is still able to outperform the Content method by a significant amount. However,

when compared with the performance of Tag on a well-tagged dataset, the recommendation

quality has dropped a great amount, from 0.63 to 0.45 when a single recommendation is

made. This clearly illustrates how significant a problem cold-start can be to a tag-based

recommender system.

The ConcatLSA method, illustrated by the solid black line, is now able to provide

significantly better quality recommendations than both the Content and Tag methods.

ConcatLSA is able to correctly identify discriminant concepts within the representations

of well-tagged tracks, and propagate this information into the representations of cold-start

tracks. However, to achieve a higher recommendation quality than tags, generalisation
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Figure 6.6: Recommendation Quality of ConcatLSA with Injected Cold-Start

must also propagate meaningful information into the representations of cold-start tracks.

The results obtained therefore illustrate that LSA is able to achieve this successfully,

creating concepts based on well represented tracks, and then moving cold-start tracks

closer to these concepts in the concept-space. Note that LSA is not used on the Tag

representation. This was tested during initial evaluations, but was found to significantly

weaken the recommendation quality when using tags. The key difference for ConcatLSA

that allows generalisation to work is the inclusion of content into the representation.

6.6 Cold-Start Discovery Results

Measuring cold-start discovery rate provides further insight into how ConcatLSA is able

to outperform the Tag representation when cold-start is present. Discovery is the ratio

of untagged items which are recommended, when the query track is tagged. Figure 6.7

shows the average discovery rate of each representation for the first 20 recommendations.

The Content representation roughly follows the random cold-start discovery rate of 25%;

cold-start was injected at random, and so this result is expected.

Both the Tag and ConcatLSA representations achieve a lower discovery rate than

Content. However, these results must be interpreted with Figure 6.6 in mind; it is only
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Figure 6.7: Discovery of Cold Start Tracks

desirable to achieve a high discovery rate if a good recommendation quality can be main-

tained. The Tag representation achieves a discovery rate of approximately 0 for the first

4 recommendations, and then gradually increases. The reason for this is that the tag

representation always finds tracks that are tagged first, and when no more tracks exist

with matching tags recommendations are made randomly.

In contrast to the Tag method, ConcatLSA achieves a discovery rate of 0.03 for the first

recommendation. Similar to Tag, the discovery rate of cold-start tracks with ConcatLSA

also increases as more recommendations are made, only at a slightly faster rate. When 20

recommendations are made, the cold-start discovery rate peaks at 25%, the level achieved

by both Content and Random. This increased discovery rate is because cold-start tracks

are generalised alongside well-tagged tracks, and the concepts learned cover both.

The improved discovery rate of ConcatLSA over Tag is achieved while also maintaining

a higher recommendation quality over Tag. This further illustrates that the concepts

learning by ConcatLSA are meaningful, and are able to introduce useful information into

the representation of cold-start tracks.
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6.7 Summary

Content-based representations offer a method of including all tracks in a collection when

the recommender system has access to each track’s audio. However, the quality of rec-

ommendations generated based on a content-based representation is not high enough to

provide a good quality system. Tag-based representations allow for higher recommenda-

tion quality than content, but suffers from the cold-start problem.

To overcome this cold-start problem, an approach to combining both content and tags

into a single representation has been developed. This ConcatLSA representation first

concatenates content and tags in such a way that each is given an equal influence when

both are present. Latent Semantic Analysis is then used to generalise both representations

together, and create a new concept space. An investigation of this concept space reveals

that LSA is able to create concepts that contain both content and tag information.

When tracks are projected into the learned concept space, the concepts which they

are mapped to contain both content and tag information. Thus, when cold-start tracks

are projected, tag knowledge is added. This allows the tracks to gradually be included in

recommendations, even when the query is well-tagged.

Results shows that the ConcatLSA representation is able to provide significantly better

quality recommendations than both the Content and Tag representations when cold-start

is present. This improvement comes from improving the discovery rate of cold-start tracks

in the recommender system. Importantly, this increase discovery rate is not achieved by

randomly including cold-start tracks, but by including cold-start tracks that are relevant

to the query.



Chapter 7

Learning a Pseudo-Tag

Representation

Music that is well-tagged allows a system to produce strong recommendations. How-

ever, many tracks within a typical collection are under-tagged, and for these tracks rec-

ommendation quality is poor. The lack of information available in under-tagged tracks

also means that they are likely to be excluded from recommendations, thus increasing the

time it takes for users to discover the tracks and tag them. Content-based representations

can give support for less tagged tracks, since content representations are always available.

However, the quality of recommendations made using content-based representations is

comparatively poor, and cannot guarantee high quality recommendations to the user.

One approach to addressing this problem is to propagate the collective knowledge

captured in the existing tag corpus. Auto-tagging is one such approach, where the goal is

to propagate tags throughout the collection, thus increasing the level of tagging. However,

existing auto-tagging techniques commonly address this task as a classification problem,

where the goal is to assign each tag to a set of tracks from the collection. The first drawback

of this approach is that the weights of each assigned tag are not necessarily calculated,

and so only limited knowledge is available to a recommender system. A further drawback

is that, to increase the level of tagging through-out a collection, it makes more sense to

assign tags to tracks. Auto-tagging approaches model each tag, and then find a set of
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tracks which most closely fit this model and assign the tag to them. There is no guarantee

that every track will be used, and thus no guarantee that a track will be assigned any

tags, let alone enough to become well-tagged. This in turn means that auto-tagging alone

is not a viable approach to effectively reducing the cold-start problem. Ideally, tags that

are learned will be used to construct a hybrid representation including both learned and

social tags, and to achieve this each track must have a set of learned tags, each with a

corresponding weight.

In this chapter a new approach to auto-tagging is defined, that is more suitable to

addressing the cold-start problem introduced by under-tagged tracks. A discussion of

the collective knowledge tags describe is presented first, followed by a definition of the

auto-tagging task, and the new pseudo-tagging task. A new approach to learning pseudo-

tags based on content is then presented. This approach is evaluated against a baseline

and similar significant approach, both in terms of tagging accuracy, and how pseudo-tags

compare with content for music recommendation.

7.1 Tapping Into Collective Knowledge

To give an idea of how people tag music, Table 7.1 shows the frequency of the top 10 tags

applied within the Last.FM dataset (Bertin-Mahieux et al. 2011). This dataset contains

505, 216 tracks, and 522, 366 unique tags, and 6 of the top 10 tags describe a genre.

One of the tags describes a musical aspect (‘female vocalists’), one describes an opinion

(‘favourites’), one describes context (‘00s’), and the remaining tag may describe either an

opinion or song topic (‘Love’).

Tag Frequency Tag Frequency
rock 101,071 female vocalists 42,565
pop 69,159 favorites 39,921
alternative 55,777 Love 34,901
indie 48,175 dance 33,618
electronic 46,270 00s 31,432

Table 7.1: Most Frequency Tags in Last.fm Million Song Dataset
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Bischoff et al. (2008) examine the tagging behaviour of Last.fm users in more detail.

The authors define eight distinct categories of tags; topic, time, location, type, author,

opinion, usage, and self-reference. Of these categories, they report that around 45% of the

tags they sampled from Last.FM describe ‘type’, which primarily consists of genre tags,

but also instrumentation and other musical qualities. This means however that around

55% of tags found in Last.FM do not describe musical qualities.

The observation that most tags do not describe musical qualities is important to the

task of auto-tagging, and can have tangible implications. Many auto-tagging approaches

rely on the use of content, and thus it may be reasonable to argue that only content-based

tags can be learned; only 45% of tag data is useful. The power of a tag-based approach

however may be due to the richness and diversity of the descriptions, perhaps explaining

why content-based approaches are so far behind in terms of quality. If auto-tagging is to

be useful, then the task and approaches used must be well defined, and able to bridge the

semantic gap from content to all all tags, not just musical ones.

7.2 The Auto-Tagging Task

The auto-tagging task is usually to assign each tag in a collection to a set of correct tracks

(Turnbull, Barrington, Torres & Lanckriet 2008, Panagakis & Kotropoulos 2012, Nam,

Herrera, Slaney & Smith 2012). As illustrated in Figure 7.1, the inputs for this task are

typically a set of audio features and tag data, which are linked through the track they both

describe. A learning algorithm then uses this data to construct an auto-tagging model,

and outputs a list of automatically generated tags, applied to tracks.

audio features

Learning Algorithm

tag data

tracks per tag

Figure 7.1: Auto-Tagging Task

The task of auto-tagging is designed to answer the question, ‘given tag t, which tracks

should I apply it to?’. When considering the task of cold-start, this auto-tagging task
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definition can be problematic. Tag t cannot be applied to all tracks, and so a threshold

must be introduced. This threshold is typically set to 10 when evaluating an auto-tagging

system.

Classifying each tag as describing a certain track measures how well a tag is modelled

by an audio representation, but it is not an approach to reducing cold-start. It is possible

that some tracks in the collection will never have an auto-tag assigned to them, since each

tag is only assigned to a limited number of tracks. To reduce the effects of cold-start by

learning tags, the task must be restructured to ensure that each song is guaranteed an

appropriate tag-based representation.

7.3 The Pseudo-Tagging Task

In order to address the cold-start problem fully, auto-tagging must be designed to answer

the question, ‘given track s, which tags should I apply to it?’ - this task will be referred

to as pseudo-tagging. Figure 7.2 illustrates this task, where the input data is now the

audio features of a track, alongside the tracks tags. The learning algorithm this time does

not associate audio features with auto-tags, but rather a tracks set of audio features with

pseudo-tags.

audio features

Learning Algorithm

tag data

tags per track

Figure 7.2: Pseudo-Tagging Task

Through re-framing the auto-tagging task in this way, it can be guaranteed that

pseudo-tags will be learned for every track in a collection. It is also possible to guarantee

the number of pseudo-tags that will be learned for each track, regardless of if a track has

any human-generated tags or not. The result of this is that the cold-start problem, from

a representational point of view, will be removed from the collection.

Pseudo-tagging is guaranteed to provide every track in a collection with tags, but

these tags must be meaningful and useful. The motivation behind pseudo-tagging is not
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to re-work the tag classification problem, it is to improve recommendation quality when

cold-start is present. For this reason the quality of pseudo-tagging should not be measured

only by classification accuracy, but also by how the pseudo-tag representation allows a

recommender system to perform.

7.4 Learning Pseudo-Tags

In Chapter 5 the MFS-LSA content-based model was developed, which recommends a list

of tracks given a single track query. MFS-LSA can be used not only for recommendation,

but also to generate psuedo-tags for a track. The first stage in generating pseudo-tags for

a track is to find tracks which are similar to a query; the assumption is that musically

similar tracks will be described by semantically similar tags.

The content-based MFS-LSA model is used to retrieve the top K most similar tracks

to a query. Each of these K tracks will have an associated tag representation, which can

then be used to learn pseudo-tags for the query track. One simple approach to learn

pseudo-tags is to sum all the weights in the retrieved tag-vectors. A more meaningful

approach is to weight the contribution of each tracks’ tag-vector based on how similar it

is to the query.

However, content-based similarity can vary depending on the query track, and so a

more consistent weighting is required. The retrieved tracks can be considered a ranked

list, where the the nearest neighbour, k = 1, is most similar to the query. The tag-vector

of each track in this list can then be weighted as

wk = 1− k − 1

K
(7.1)

where wk is the calculated weight, k is the position of the track in the nearest neighbour

retrieval in the range 1 to K.

The pseudo-tag vector p for a given query track is therefore calculated as

pi =
K∑

k=1

wkti(k) (7.2)

where ti(k) is the term-frequency of the ith tag in the tag vector of track at position k in
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the nearest neighbours.

Given this pseudo-tag representation, it is now possible to recommend tracks using

only tag-based methods, where the pseudo-tag vector is used as a substitute for the queries

mean MFS vector. This approach will be referred to as PseudoTag.

7.5 Evaluation of Pseudo-Tags

Pseudo-tagging quality, and recommendation quality when pseudo-tags are used are both

important measures to understand how effective the method presented is. Pseudo-tagging

quality provides insight into how accurately pseudo-tags reflect human tagging behaviour.

It is important that meaningful pseudo-tags are learned for each track, thus providing a

strong replacement for a tag-based representation.

Recommendation quality is then evaluated to compare how well pseudo-tags perform

against content-based recommendation. It is important that pseudo-tags are able to offer a

strong representation for a recommender system, since pseudo-tags may be integrated more

easily with tag-based representations, hopefully providing a strong hybrid recommender

system.

7.5.1 Measuring Pseudo-Tag Quality

Pseudo-tagging quality is measured by calculating the per-track precision and recall against

the track’s ground truth tags. Precision measures the percentage of pseudo-tags correctly

applied to a track, and recall is the percentage of a track’s tags which are generated as

pseudo-tags. Precision and recall are calculated as

precision(s) =

∑P
i=1 rel(pi‖s)

P
(7.3)

recall(s) =

∑P
i=1 rel(pi‖s)

T
(7.4)

where rel(pi‖s) is 1 if pseudo-tag pi has a weight greater than 0 in the tag-vector of track

s, and 0 otherwise. T is the number of tags in the tag vector of track s, and P is the

number of pseudo-tags generated.



7.5. Evaluation of Pseudo-Tags 91

For pseudo-tags, it is more important that a high precision score is obtained than

recall. Pseudo-tagging is not a classification task, or designed to provide annotations for

humans; pseudo-tags are intended to be a representation that can for used in cold-start

recommendations, and so must be accurate. Recall of the system will vary depending on

how many pseudo-tags are required, but it is important that precision is strong for all

levels of recall.

7.5.2 Comparison Methods

The performance of the pseudo-tagging approach described in this section will be compared

to a baseline method, and another k-NN method from Sordo et al. (2012).

Random Baseline

A simple random baseline would only assign each song a randomly selected set of tags from

the collection. This measure however does not provide much insight into how the pseudo-

tagging method used behaves. A more interesting baseline method is to randomly select

tags from only the k nearest neighbours. This baseline will be referred to as random,

and will provide further insight into how the pseudo-tagging method proposed selects tags

from the nearest neighbourhood.

Sordo Method

Pseudo-tagging will also be compared with a current state-of-the-art k-nearest neighbour

approach (Sordo et al. 2012). Sordo’s method involves retrieving N tracks for each track

that must be annotated, and giving a higher weighting to the tags of the nearest K tracks.

The weighting function is defined as

wk =





1 if k < K

1
k2 otherwise

(7.5)

and this weighting function is then used to count the influence of all tags of the nearest

neighbour tracks, calculated as
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pi =
N∑

k=1

wk$ti(k)% (7.6)

where $ti(n)% evaluates to 1 if ti(k) is present, and 0 if it is not.

In Sordo’s method, N is set to the number of songs in the training set, and K is set in

the same way as for random and pseudo-tags. The effect is that the first K tracks all get

an equal vote, and the votes of the remaining N −K tracks have an inverse square decay.

7.5.3 Pseudo-Tag Quality With CAL-500 Dataset

Pseudo-tagging quality is first evaluated with the CAL-500 dataset, which is described

in detail in §3.1. Figure 7.3 shows the mean precision obtained when 10 pseudo-tags are

learned; the error bars shown are at a 95% confidence interval from the mean. The solid

black line shows the precision obtained when using the PseudoTag method, the grey line

shows that of Sordo’s method, and the dotted line shows the baseline random method.

As expected, the performance of the random approach, illustrated by the dotted line,

is much lower than both PseudoTagand Sordo. When K is 10 both the PseudoTag and

Sordo methods perform similarly, with a precision of approximately 0.68. AsK is increased

however, each method starts to behave differently. Precision of the PseudoTag method

improves until K is around 40, whereas precision of the Sordo method gradually decreases.

For values of K greater than 10, PseudoTag achieves significantly better precision than

Sordo.

It is interesting that precision of the random method also decreases as K is increased,

with a large decrement occurring between K = 20 and K = 30. The PseudoTag method

takes the position of each track in the content retrieval list into account. In the Sordo

and random methods, each track in the near neighbourhood is considered to be equally

important, and thus the tag-vectors of the K nearest tracks are all considered equal.

The reason that the PseudoTag method is able to achieve significantly increased precision

over the Sordo method is that each of the K nearest tracks are not treated equally. The

weighting function that we apply allows the tags of the most similar tracks to have a larger

influence, and to effectively control how tags are learned.

As K is increased beyond 40, the precision of all methods decreases. This exact
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Figure 7.3: Precision learning 10 pseudo-tags at varying K using CAL500 Dataset

threshold is specific to the CAL500 dataset, but the trend is not. Increasing K allows

more tags to be found, and the weights of these tags will gradually increase as more tracks

are included. For example, with the Sordo method, when K is equal to the size of the

training set, precision is reduced to that of when the most popular tags are assigned.

Figure 7.4 shows the recall-precision curve of each method. The points were generated

by evaluating the precision and recall of each method for between 1 and 100 pseudo-tags

learned. For both PseudoTag and Sordo, precision decreases as the number of pseudo-tags

learned is increased. This result is expected, since the chance of making an incorrect

pseudo-tag assignment also increases. However, the PseudoTag method that will ulti-

mately be used for recommendation, maintains a reasonable precision for all numbers

of pseudo-tags. This is very important, and must be interpreted slightly differently to

standard auto-tagging tasks.

When auto-tagging is used for suggesting tags to users, or providing a permanent tag

representation, typically 10 or 20 tags are suggested. For the task of creating a hybrid

representation however, many more pseudo-tags may be required for tracks which are very

under-tagged. Regardless of how many pseudo-tags are required, we need them to be as
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Figure 7.4: Recall Precision Curve using CAL500 Dataset

precise as possible. It is therefore useful that this method is able to provide a competitive

precision even when a large number of pseudo-tags are learned.

7.5.4 Pseudo-Tag Quality With Private Dataset

The private dataset, described in §4.2, has different properties to the CAL500 dataset. It

is therefore interesting to evaluate the different methods using this real-world distribution

of tagging. Figure 7.5 shows the recall-precision curve of each method, using the private

dataset. The points were again generated by evaluating the per-song precision and recall

of each method for between 1 and 100 pseudo-tags learned. The figure is in the same

format as Figure 7.4.

The PseudoTag method performs well when applied to the private dataset, with the

first predicted pseudo-tag having an average precision of 0.72. The private dataset contains

many more tracks and tags than the CAL500 dataset, and tagging follows a completely

different distribution. This difference in data explains why the PseudoTag curve drops

more steeply for this dataset.

The results obtained using Sordo method at first appear erratic, however, these results
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Figure 7.5: Recall Precision Curve using Private Dataset

are again a consequence of the large real-world dataset. For this method, a seemingly

random set of results are obtained when predicting a low number of pseudo-tags, and then

two ‘columns’ are found in the data. Within these columns, results have a similar level of

recall, but precision decreases as the number of predictions made increases. Finally, there

is a tail at the end of the results.

The scattered results achieved for low levels of recall are when few pseudo-tags are

predicted. In this case, the Sordo method is learning pseudo-tags based on counting

occurrences in the K nearest neighbours. The effect here is that the most common tag is

learned first, regardless of how strong its association is to a track. The columns that are

seen in the results occur when a large number of candidate pseudo-tags have the same level

of occurrence in the data, in this case 3 or 2 nearest neighbours. When this occurs, the

weighting function eq. (7.5) acts as a tie breaker, and ranks pseudo-tags. This weighting

function is limited to tie breaking since it tends towards a limit less than the counting

weight of 1 the first K neighbours get.

Σ∞
k=11

1

k2
= Σ∞

k=1
1

k2
− Σ10

k=1
1

k2
=

π2

6
− Σ10

k=1
1

k2
= 0.0869 (7.7)
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These results clearly illustrate the effectiveness of weighting pseudo-tags based on the

rank of the K nearest neighbours, as opposed to counting occurrences. Even with such

small nearest neighbourhoods, where one may assume all tags are relevant, tracks which

are more content-similar offer stronger tags which can be learned as pseudo-tags.

7.5.5 Pseudo-Tag Recommendation Quality

The reason for learning pseudo-tags is ultimately to improve recommendation quality, by

including them in a hybrid representation. This means that pseudo-tags should be able to

offer better recommendation quality than a content-based recommender system; if this is

not the case, then perhaps it is more meaningful to use content instead. To evaluate how

PseudoTag compares to content, recommendations are measured as described in §4.3.

Figure 7.6 shows the average association score achieved when between 1 and 10 rec-

ommendations are made. The dashed black line illustrates the performance of a purely

content-based recommender system, and the solid line shows when PseudoTag is used.

When only 1 recommendation is made the two methods are comparable, however, when

more than one recommendation is made PseudoTag offers significantly improved recom-

mendation quality. Further, the PseudoTag method is able to offer a more consistent level

of recommendation quality across varying numbers of recommendations.

The reason that PseudoTag is able to out-perform content-based recommendation is

that, while they are based on content, pseudo-tags also describe more information. Tracks

that are musically similar may also be contextually similar, something that is missed by

content-based methods. With PseudoTag however, this context information is also learned,

providing a more knowledge-rich representation.

The grey dashed line in Figure 7.6 shows the performance of PseudoTag when the

weighting scheme in eq. (7.1) is not applied; that is, the weight is always 1. In this

case the performance of PseudoTag suffers, and even performs worse than content for

1 recommendation. This highlights the effectiveness of the weighting scheme used, and

further reinforces the importance of content-based similarity when learning pseudo-tags.
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Figure 7.6: Recommendation Quality of Pseudo-Tags

7.6 Summary

Content-based representations can be used to make recommendations in the absence of

a strong tag-based representation. However, content alone cannot offer the same perfor-

mance as a strong tag-based recommender. Further approaches are required to reduce the

semantic gap between content and tags, and allow recommendation quality to be improved

when tracks are under-tagged. One such approach is auto-tagging, where the goal is to

propagate tags to tracks.

The task of auto-tagging is reasonably well established within the field of Music Infor-

mation Retrieval, however, this task is often defined as a multi-class classification problem,

where each tag must be assigned to a set of tracks. In order to create a representation to

address cold-start this task definition has been modified, so that each song is assigned a

set of tags. This reformulation is subtle, but necessary to develop an approach that can

be used in cold-start recommendation scenarios.

The PseudoTag method developed is able to offer significantly improved recommen-
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dation quality, when compared to a content-based method. Although these pseudo-tags

are learned from the content-based method, the representation that is learned is much

stronger. The reason for this comes from knowing what tags describe; people often tag

content related terms, but also tag contextual information. This presents more knowledge

that can be taken advantage of by a pseudo-tag representation. Given a set of simi-

lar songs, there are trends across tags that cover both content-based meaning, and also

contextual meaning.

Experimental results show that it is not enough to simply use the most common

tags that occur in a set of nearest neighbours of a track. Content-based similarity is

meaningful, and capturing this through the rank of similar tracks can help improve the

quality of tags that are learned. A weighting scheme was developed that successfully

captures this similarity meaning, allowing the tags from a track’s nearest neighbours to

be learned effectively. Learning pseudo-tags in this way allowed an improvement over the

recommendation quality of content to be made, and introduces a less sparse representation

than tags for each track.

Pseudo-tags present new possibilities for creating more powerful hybrid representa-

tions. Defining such representations using two completely different representations, such

as content and tags, can become difficult. A lot of effort can be spent towards normalising

and warping the two differing data types so that they can be used coherently together.

Pseudo-tags remove this obstacle; the data is learned algorithmically rather than cre-

ated by humans, but the abstract representation is identical. As a result the focus when

developing a hybrid representation can shift from data integration, towards creating a

representation that captures the information required to make good recommendations.



Chapter 8

Dynamic Hybrid Representation

A major obstacle in the way of providing high quality recommendations is the cold-

start problem. In previous chapters this problem has been viewed as tracks having no

tags, and the model in Chapter 6 was developed to tackle this challenge. However, the

cold-start problem may be better described as when tracks have a weak representation.

Tracks that have very few tags, especially when these tags are generic such as ‘rock’, suffer

similar problems to tracks without any tag representation.

Figure 8.1 illustrates this type of cold-start problem in music recommender systems.

The horizontal axis shows increasing number of tags for a track, and the vertical axis shows

increasing recommendation quality. The content-based representation does not suffer from

cold-start, and is illustrated by the horizontal dashed line. The performance of a content-

based recommender system is expected to be consistent regardless of how many tags a

query track has, since tags are not used. However, the recommendation quality achieved

by content-based systems is not as strong as when a good tag-based recommender system

is used.

The dotted line in Figure 8.1 illustrates the expected recommendation quality of a

tag-based recommender system. When no tags exist, recommendation quality is likely to

be poor, shown at point n0. As the number of tags available increases however, recom-

mendation quality will improve, until eventually after point n1 the quality is higher than

the content-based recommender system. This point n1 is the threshold at which a track

99
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Figure 8.1: The Cold-Start Problem

moves from being under-tagged to well-tagged.

If the recommendation method is switched from content- to tag-based at point n1,

then the cold-start problem for tracks below n1 may be avoided. However, the point n1

is in practice not easy to define, since the point at which tag-based recommendations

outperform content-based recommendations will vary across each track. This means that

this hybrid system of ‘swapping’ the recommendation method used is not practical. In

any case, the recommendation quality of cold-start tracks is unlikely to be as strong as

well-tagged tracks, since it is limited to the quality of content-based methods.

A much more desirable goal for a hybrid recommender system is to provide recommen-

dation quality that is better than either content or tags, regardless of how well-tagged a

track is. This goal is illustrated by the shaded area in Figure 8.1, labelled as the ‘Area

of Improved Quality’. To provide recommendations that are in this area, a hybrid system

must be able to learn from the content- and tag-based representations that are available,

and infer a new, stronger representation.

In this chapter the motivation for using pseudo-tags, not content, in a hybrid represen-

tation is discussed. The two important stages in developing the hybrid representation will

be presented; how to select the best pseudo-tags, and how to weight pseudo-tags in the
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hybrid representation. This representation will then be evaluated by comparing recom-

mendation quality with that of a tag-based system. The results of this evaluation will also

discuss the effects that each representation has on cold-start discovery, providing further

insight into how the hybrid representation behaves. Finally, conclusions of this work and

an evaluation will be presented.

8.1 Motivation for Pseudo-Tags in Hybrid Representations

Many existing hybrid representations incorporate content into a tag-based representation,

similar to the model developed in Chapter 6. The advantages of this approach are that

content is always available, and contains knowledge that describes a track in a meaningful

way. This knowledge is used to forge an implicit link between content and tags, and thus

introduces enough knowledge into a representation to reduce cold-start.

However, a closer look at the specific knowledge that content and tags describe shows

that this approach may not be ideal for hybrid representations. Figure 8.2 illustrates

the information captured and described by each representation. Audio content features

describe musicality and audio quality, while tag features describe higher level knowledge,

such as meta-data, classes, opinions and contexts.

Audio Content Tags
Chroma
Rhythm
Texture

Audio Properties

Artist
Track
Title
Genre

Topic
Opinion
Context

Figure 8.2: Audio Content and Tag Knowledge

This clear mis-match between content and tags limits the potential of hybrid represen-

tations that try to link both directly. The fundamental reason for this mis-match is that

content representations are generated objectively, and tag representations are primarily

generated subjectively. This introduces a degree of noise into any relationships that can

be learned, but also means that certain relationships will be extremely difficult to learn.

Noise is introduced as a consequence of disagreement between peoples opinions. An exam-

ple of a relationship that is extremely difficult to learn is context; one person may listen

to metal while working, and another may listen to classical while working. The content
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representations of these genres will be very different, and thus no clear link may be found.

Pseudo-tags, as described in Chapter 7, offer an alternative approach to constructing

hybrid representations. Using these pseudo-tags allows an intermediate step to be intro-

duced into the process of defining a hybrid representation. This intermediate step, the

learning of pseudo-tags, can help overcome some of the problems introduced when using

content.

A hybrid representation using content and tags assumes there is a direct link between

content features and tag features. However, pseudo-tags make a different assumption;

pseudo-tags assume that tracks with similar content features will also have similar tag

features. While subtle, this differing assumption has large implications when defining a

hybrid representation. Firstly, pseudo-tags are able to learn tags that content cannot link

to directly, such as context. Pseudo-tags also present a consistent representation structure

to work with, removing the obstacles encountered when combining the differing structures

of content and tags.

The hybrid representation defined in this chapter therefore combines the learned pseudo-

tag vector for each track with the track’s tag vector. These pseudo-tags are always avail-

able, and are thus able to address the cold-start problem. However, these pseudo-tags

also capture a more knowledge-rich representation, and so this hybrid approach aims to

improve recommendation quality for all tracks. In order to construct this representation

there are two main stages that will be discussed; selecting which pseudo-tags to include

in the hybrid representation, and the method of integrating the two representation into a

hybrid representation.

8.2 Selecting the Best Pseudo-Tags

The pseudo-tagging method described in Chapter 7 adds every tag that occurs in a track’s

K nearest neighbours to the track’s pseudo-tag vector. Each pseudo-tag is weighted based

on where it appears in the nearest neighbour list, and the strength of its original assignment

to the nearest neighbour. For even very small values of K, this means that the number

of pseudo-tags which are learned can be very large for certain tracks, for example, when

each of its nearest neighbours are well-tagged. In comparison, the number of tags that
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exist in a track’s tag vector is likely to be much smaller, even for well-tagged tracks. For

example, if a track has an average number of tags, and each of the nearest neighbours used

for pseudo-tagging also have an average number of tags, one may expect the pseudo-tag

vector to contain many more values than the tag vector.

Cosine similarity will be used to make recommendations, since it is able to calculate

similarity based on the relative strength of tags assigned to each track. However, since both

pseudo-tags and tags are to be included in the hybrid representation, a difference in the

number of non-zero dimensions in each representation can damage recommendation qual-

ity. For tracks that are well-tagged, the strong recommendation power of tags is desirable,

however too many pseudo-tags will reduce this. For tracks that are under-tagged, the few

tags they do have are important; it is necessary to introduce pseudo-tags, but too many

may make existing tags redundant. While the introduction of all pseudo-tags available

may improve recommendation quality overall, it is unlikely to increase recommendation

quality into the grey shaded area in Figure 8.1.

To overcome these problems the number of pseudo-tags to be included in a hybrid

representation should be restricted. Each pseudo-tag that is learned has a corresponding

strength that can be used to help decide which pseudo-tags to include in a hybrid repre-

sentation. This decision should also take into account how many tags exist for a track,

and balance the influence of tags and pseudo-tags in a meaningful way. To investigate

how many pseudo-tags should be retained, a simple experiment is conducted. The recom-

mendation quality achieved by each track is measured when varying levels of pseudo-tags

are used. The number of pseudo-tags used are chosen at intervals of 10, in the range 0 to

100. For each track, the number of tags is known, and tracks are grouped into buckets of

10 tags. The best performing number of pseudo-tags for each tag bucket is measured.

The solid red line in Figure 8.3 shows the results of this experiment. Each point along

the line shows the average number of pseudo-tags that provide the best recommendation

quality for tracks with a varying number of tags. The dashed black line shows the line-of-

best-fit through these data points, and is the function that is used to select the number

of pseudo-tags to retain. These results agree with the intuition that tags and pseudo-tags

must be balanced correctly, removing a negative bias towards either representation. For

well-tagged tracks a low number of pseudo-tags are used, and for under-tagged tracks a



8.3. Weighting Pseudo-Tags and Tags 104

Figure 8.3: Selecting the Best Pseudo-Tags

high number of pseudo-tags are used.

An interesting and less expected observation from these results is the number of pseudo-

tags required for well-tagged tracks. For tracks with between 61 and 70 tags, high rec-

ommendation quality is achieved using 30 pseudo-tags. This shows that pseudo-tags are

able to contribute to a hybrid representation not only for under-tagged tracks, but also

for well-tagged tracks.

8.3 Weighting Pseudo-Tags and Tags

Once the appropriate number of pseudo-tags for each track has been determined, the next

step is to decide how to weight each representation. Similarly to selecting pseudo-tags, if a

track is well-tagged then tags should be the most influential representation, and if a track

is under-tagged, pseudo-tags should be most influential. This weighting is achieved by

introducing a weighting parameter when combining the two representations. The hybrid

vector h is therefore defined as

hi = αpi + (1− α)ti (8.1)

where p is the pseudo-tag vector, t is the tag vector, and both p and t are normalised

per-track prior to computing the hybrid vector h. The parameter α controls the influence

of both pseudo-tags and tags. α is set to be in the range 0 to 1, where 0 means tags have
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complete control, and 1 means pseudo-tags have complete control.

To set the value of α a further experiment was conducted to understand how the

influence between pseudo-tags and tags should change as the number of tags a track has

increases. The recommendation quality achieved by each track is measured for varying

levels of α, which was set at intervals of 0.1 in the range 0 to 0.5. The upper-bound

value of 0.5 was chosen to guarantee that tags will always have at least a weighting equal

to pseudo-tags; tags are the stronger representation and thus should never have a lesser

influence. Since cosine similarity is used, in cases where a track has no tags the pseudo-tag

vector effectively has a weight of 1 because of normalisation.

The solid blue line in Figure 8.4 shows the results of this experiment. As before, the

dashed black line shows the line-of-best-fit through the data points, and is the function

that will be used to set the value of α. This line of best fit confirms that the weight of

pseudo-tags should decrease as the number of tags a track has increases.

Figure 8.4: Weighting Pseudo-Tags and Tags

Comparing Figure 8.4 with Figure 8.3 shows that well-tagged tracks should be assigned

30 pseudo-tags, but that the weight of these pseudo-tags should only 0.1. This means that

pseudo-tags may be used to refine the tag representation, and therefore recommendations,

but they do not have a large influence. Under-tagged tracks must be assigned more

pseudo-tags, and these must have a higher weighting in the hybrid combination, thus

allowing pseudo-tags to have a much larger influence over recommendations generated.

Less expected is that tracks with an average number of tags, 34, should be assigned

approximately 60 pseudo-tags, and these should have a weight of approximately 0.25. This
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is encouraging, since it hints that the inclusion of pseudo-tags in the hybrid representation

may indeed be able to offer improved recommendation quality regardless of how well-

tagged a track is.

8.4 Evaluation of Hybrid Representation

The hybrid representation that has been developed will be evaluated by comparing rec-

ommendation quality with when a tag-based representation is used. Recommendation

quality across the entire dataset is evaluated first, allowing the effects of using the hybrid

representation to be understood. Next, these results will be presented and analysed for

tracks with varying levels of tagging. This allows further insights into how the hybrid

representation behaves, both for cold-start and well-tagged tracks. Finally, the effects of

the hybrid representation on cold-start discovery are investigated, helping to explain the

effects hybrid representation has on recommendation.

8.4.1 Recommendation Quality

Figure 8.5 illustrates the recommendation quality achieved using the hybrid and tag rep-

resentations. The horizontal axis shows the number of recommendations made, and the

vertical axis shows the mean association score across all tracks. The hybrid representa-

tion, illustrated by the solid line, is able to achieve significantly higher quality than the

tag representation for all numbers of recommendations.

This improved quality over tags is achieved because of the new knowledge introduced

to the representation through pseudo-tags. For well-tagged tracks this new knowledge is

able to better order recommendations, and for under-tagged tracks it introduces a more

controlled approach to recommendation. Rather than simply matching the small number

of tags that may be available, hybrid offers a more refined approach that allows pseudo-tags

learned from other tracks’ tags to be fully exploited.

To gain further insight into where the hybrid representation is achieving this improve-

ment over tags, Figure 8.6 shows the results split by how well tagged each query is. In

this figure the vertical axis shows the improvement in hybrid recommendation quality over

the tag-based approach. Improvement is the difference between the quality of recommen-
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Figure 8.5: Recommendation Quality of Hybrid Representation

dations made using the hybrid and tag representations when each representation has a

limited number of tags available.

Figure 8.6: Improvement by Number of Tags Using Hybrid Representation

The solid black line shows improvement for under-tagged queries that have between 0

and 9 tags, and the dashed black line shows improvement for well-tagged queries that have

between 80 and 89 tags. Both these lines are extremes of tagging level within the collection.

As expected, the largest improvements are made for very under-tagged queries. When

using the tag representation for recommendation, tracks with 0 tags can only generate

random recommendations, which are of a very low quality. When a track has 1 tag,
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then a very small number of tracks that also have this tag will be recommended before

the randomly generated tracks, increasing quality only slightly. This trend continues

for tag-based recommendations until a reasonable number of tags are available, making

recommendations of reasonable quality.

When using the hybrid representation however, this initial phase of making random

recommendations is skipped, since pseudo-tags always allow informed recommendations to

be made. Thus, the hybrid representation is given a head-start over the tag representation.

Similar to the tag representation, as the number of tags increases so does the quality of

recommendations made using the hybrid approach. The difference between improvement

over the tag representation for when a hybrid representation has 0 to 9 tags, and when

it has 80 to 89 tags, indicates that the rate of improvement for hybrid is not as steep as

with tags. However, this rate of improvement does not have to be as steep since the initial

recommendation quality is significantly improved.

The solid grey lines in Figure 8.6 show the improvement in recommendation quality

for tracks with between 10 and 79 tags, at 10 tag intervals. These reveal that the hybrid

representation is able to provide higher recommendation quality than tags for all tracks,

regardless of how well tagged the track is. The reason that the hybrid representation is able

to achieve this is because of the subtle influence that pseudo-tags introduce for reasonably

well-tagged tracks. Upon inspection of the recommendations from tags and hybrid as

a group, only a few differences of recommendation are typically found. However, when

looking at these recommendations as a ranked list, the order they are presented in is

often very different. Pseudo-tags within the hybrid representation are able to introduce

refinements into the recommendation lists that can greatly improve quality.

8.4.2 Effects on Discovery

Improvements in recommendation quality are achieved by including pseudo-tags into the

hybrid representation. To fully understand how pseudo-tags are able to offer this improve-

ment, the effects that hybrid representation has on discovery can be examined. In Chapter

6 discovery is measured as the rate tracks with zero tags are included by the recommender

system. This was possible because extreme cold-start was injected into the collection,

meaning 25% of tracks had no tags at all. The view of cold-start in this chapter is that it
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is a progressive problem, affecting not only tracks with zero tags, but also those that are

under-tagged.

To measure the effects each representation has on this progressive view of cold-start,

Figure 8.7 shows the discovery rate of tracks which have less than 10, 20, and 30 tags

for each representation. The layout of this Figure is as with previous figures, where the

horizontal axis shows the number of recommendations that were measured. A solid line

always shows the hybrid representation, and a dashed line shows the tag representation.

The rate of discovering tracks with fewer than 10 tags is illustrated by the grey lines. In

this case there is no real difference between the two methods; the curves fluctuate between

tag and hybrid making more discoveries. However, only approximately 16 of every 100

recommendations will have fewer than 10 tags.

Figure 8.7: Rate of Recommending Under-Tagged Tracks

The middle two curves show the rate of discovery of tracks with fewer than 20 tags.

For the first 5 recommendations both tags and hybrid are comparable, but for 6 or more

recommendations hybrid achieves a significantly improved discovery rate. A similar trend

is observed by the discovery rate of tracks with fewer than 30 tags, where hybrid offers

a significant improvement when more than 2 recommendations are measured. No im-

provement is observed for the first few recommendations in each case because the tag

component in the hybrid representation is most influential. There are a small number of
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tracks that have many tags in common with each query, and so these are very likely to be

recommended first using both representations. However, after these very strong recom-

mendations are made, the hybrid method is able to find tracks with fewer tags that may

be recommended. Further, these cold-start tracks are also of high quality, as reported in

the previous section.

Figure 8.7 has shown the ability of hybrid to include tracks that are under-tagged. It

is also interesting to measure the preference of each system towards under-tagged or well-

tagged tracks. Figure 8.8 shows the lesser tagged rate achieved by each representation.

This is the rate at which tracks with fewer tags than the query track are recommended.

The rate that is achieved by a random recommender system is approximately 0.5: if a

system achieves a higher rate then its preference is towards recommending lesser tagged

tracks; if a system achieves a lower rate then its preference is towards recommending more

tagged tracks.

Figure 8.8: Rate of Recommending Lesser Tagged Tracks

The dashed line in Figure 8.8 illustrates the lesser tagged rate of recommendations

using tags. Initially this is 0.26, and rises to 0.32 for 10 recommendations. In comparison,

the solid line shows the rate using hybrid representation, which is initially 0.27, and

increases to 0.38 when 10 recommendations are made. The two methods are comparable

when a single recommendation is made, but when more than 1 recommendation is made

the hybrid approach provides a significantly improved rate over tags.
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Both methods achieve a lower rate than the random approach, showing that both

methods are more likely to recommend tracks with more tags than the current query.

Importantly however, the hybrid method has a weaker preference towards more tagged

queries, and thus is able to offer increased cold-start discovery rate and improve recom-

mendation quality.

8.5 Summary

The cold-start problem affects most tracks to a lesser or greater extent. As the number

of tags a track has increases, so does the average recommendation quality. This opens

up potential to improve the recommendation quality for all tracks in a system if a strong

approach to reducing sparsity within tag representations can be realised.

When designing an approach to reducing sparsity within a tag-based representation,

it is not necessarily desirable to include content directly. Content-based representations

describe the musical facets of a track, but tag-based representations often describe non-

musical facets, such as contexts and opinions. This provides incompatibilities between

the two representations which can be difficult to overcome. However, content is always

available for a track, and so may be used. The solution to this incompatibility is not

to include content into a hybrid representation, but to use content to learn a hybrid

representation.

The hybrid representation presented in this chapter takes advantage of pseudo-tags.

The inclusion of this knowledge-rich pseudo-tag representation also removes some complex

processing steps that are often required when building a hybrid representation, such as

generalisation. Instead, more focus is directed towards how the two similar representations

may be integrated into a single hybrid representation.

Recommendations made using the hybrid representation are of significantly higher

quality than those made using a tag-based representation. This allows strong recommen-

dations to be made even when tracks have a very low number of tags available, since these

are reinforced by pseudo-tags in the hybrid approach. Further, this hybrid representation

is able to improve recommendation quality regardless of how well- or under-tagged a track

is.
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Recommendation quality is improved because the rate of discovery of cold-start tracks

is increased in a controlled manner. The hybrid representation is more likely to recommend

tracks that are under-tagged than the tag-based representation. Hybrid is also able to im-

prove significantly the rate that under-tagged tracks are introduced into recommendations.

The problem being addressed was initially described in Figure 8.1, and the objective was

to design a recommender system that is able to provide better recommendation quality

than both content- and tag-based methods. The hybrid representation has successfully

achieved this, always providing recommendations in the grey shaded area of Figure 8.1.



Chapter 9

User Evaluation

The development of new approaches to representation and recommendation have been

evaluated using Association score. This score can provide a good indication of how an

approach to recommendation will perform, but this is only an indication. The goal of

a recommender system is to provide good recommendations to users, and thus the final

systems should be evaluated by users. A user evaluation has been constructed to test the

recommendation quality of three separate recommender systems:

• Pseudo-Tag - as described in Chapter 7;

• Hybrid - as described in Chapter 8; and

• Tag - the baseline approach used throughout previous chapters.

This user evaluation also measures the novelty of recommendations provided by each

system, complementing the Discovery measure evaluated previously. Simple demographic

data is also collected to help put these results into further context, and understand more

about how each approach performs.

In this chapter the design of this user evaluation is first described, including what is

measured and how. This is followed by a discussion of user participation, analysing the

basic demographics of users that completed the evaluation. Next, the results for recom-

mendation quality are presented, from which several unexpected observations are made.

The following section investigates the reasons behind these observations, which helps to

113
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further understand how each system behaves. The results for novelty are presented, and

the balance between recombination quality and novelty is explored for each approach.

Finally, this study is summarised, and some conclusions are made.

9.1 Evaluation Design

The objective of this user study is to evaluate both recommendation quality and novelty of

three different approaches. To achieve this there are several important aspects that must

be considered: how to make and present recommendations in such a way that it does not

introduce a bias, or influence feedback; how to evaluate quality; how to evaluate novelty;

and what demographic data it is desirable to collect.

9.1.1 Making and Presenting Recommendations

The user study is presented to users through a web interface, that allows users to evaluate

recommendations. Each page displayed to a user consists of a query track, and a list of

the top 5 recommendations made using a single recommendation method, for example,

hybrid. The order that recommendations appear on screen is randomised, to ensure that

users do not know the actual ordering, removing the possibility that users will simply rate

recommendations by their position. It is possible to check if users are attempting this,

and exclude the results from users who consistently rate according to presentation order.

There is an equal chance of each method being used to make the recommendations, and

the users cannot know which method is currently being used. The query track presented

is selected at random, with an equal chance that is is either from a fixed pool, or from

the entire dataset. This pool of tracks contains 3 randomly selected tracks from each of

the 11 genres in the dataset, and thus 33 potential queries. The reason for including such

a pool is to increase the likelihood that queries will be evaluated by more than a single

person, providing a strong consensus opinion of how each approach performs with a fixed

set of queries. It is likely that tracks not included in this pool will only be evaluated by a

single user, and thus this data is biased towards that single users opinion.

Users are allowed to evaluate as many queries as they choose. If they evaluate enough

queries to exhaust the pool, then queries will always be taken from the entire dataset,
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avoiding repetition. The parameters regarding which approach is being used, and the

order in which recommendations are made, are always stored server side. There is no

way to access this information from the HTML file that is rendered in a browser, or from

cookies, thus removing the possibility that a technically minded user could use this to

influence his interactions.

9.1.2 Capturing Quality

Users are asked to evaluate the quality of each of the 5 recommendations that are made.

To do this, the user can listen to a 30 second sample of the track; the samples are taken

to start 15 seconds before the mid-point of the track, which is typically enough to include

snippets of both verse and chorus. The user can also listen to a 30 second sample of the

query track.

Figure 9.1 illustrates what is shown to a user for each recommendation. The play

button can be used to hear the 30 second clip, and the track title and artist are shown.

The sliding bar allows user to answer the question “Given the following track, how good

are these recommendations”. The user can rate the recommendation on a scale of ‘Very

Bad’ to ‘Very Good’.

Figure 9.1: Evaluating Recommendation Quality

The sliding scale allows users to score each track in the range 0 to 1000, although these

values are never shown to the user. This high granularity makes the slider feel seamless,

and allows the user to express their opinions beyond the more common 5 point scale, or

like/dislike. The slider was chosen as opposed to a radio-button based scale to allow greater

flexibility and expression to each user. When a 5 point scale is used then users may chose

every point across a set of 5 recommendations, as a mechanism of ordering the results.

However, a user may also be of the opinion that every track is a good recommendation,

just to a greater or lesser extent than the others. This method of input allows the user to

express both preferred order and quality.

To avoid influencing either positive or negative feedback, each slider is set to an initial
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point of 500, exactly midway. This consistent setting also makes it easy to detect queries

for which the user did not move the slider for any recommendations, but instead used the

submit button to skip the track.

9.1.3 Capturing Novelty

For both the query track and each recommendation, the user is asked to declare what they

know about the track. They are given three possible options.

1. Know Artist and Track

2. Know Artist but not Track

3. Do not know Artist or Track

This information helps to identify which queries and recommendations the users know,

and which they do not. Based on this, it is possible to understand the proportion of tracks

each approach recommends that are novel.

9.1.4 Demographic Questionnaire

Recommendations may be perceived differently by different user groups. To help under-

stand if this is the case or not, and also to understand the sample of users that took part,

each user is asked to complete a questionnaire prior to evaluating recommendations. The

questions asked are shown in Table 9.1, and users could not continue to recommendations

until they complete this questionnaire.

9.2 User Participation

The study was published as a website, which was available for 30 days. The link to this

site was distributed through social media and mailing lists. 132 people took part in the

study, evaluating a total of 1444 queries. From these, 47% of queries were selected from

the track pool. This is less than the 50% chance of getting a query in the pool because

users were allowed to skip queries they didn’t want to evaluate. The most queries that

were completed by a single user is 88.
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Question Input Type Options

Gender Single Selection
Male
Female

Age Range Single Selection

under 13
13 - 18
19 - 25
26 - 35
36 - 45
46 - 55
55+

Musical Knowledge Single Selection

None - no particular interest
in music related topics
Basic - lessons at school, read
music magazine or blogs, etc
Advanced - play an instru-
ment, edit music on computer,
etc
Professional - professional
musician, audio engineer, etc

Daily Listening Hours Single Selection
less than 2
between 2 and 4
more than 4

Genres you typically listen to Multiple Selection

Rock
Pop
Alternative
Metal
Electronica / Dance
Folk
R & B
Country
Rap & Hip-Hop
Easy Listening
Classical
Holiday

Table 9.1: User Questionnaire



9.2. User Participation 118

It was found that all recommendations for 386 queries were given a score of 500,

suggesting that the users clicked ‘submit’ to skip the query. These queries were discarded,

leaving 1058 valid query evaluations. The most valid queries evaluated by any single user

is 29, and on average each user evaluated 6.24 valid queries.

Figure 9.2a shows the age range of users that took part in the study, split by genre.

This reveals that 70% of users were between 19 and 35 years old, 57% of users were female,

and 43% were male.

(a) Users (b) Activity

Figure 9.2: Age Range by Gender

Figure 9.2b shows user activity in terms of age range and gender. The levels of activity

for users outwith the 19 to 35 age range matches what is expected based on Figure 9.2a.

Users within the range 19 to 25, especially males, were less likely than others to complete

several queries. Female users within the age range 26 to 35 are those who engaged most

with the study. These results show a reasonable spread across both age and gender of

participants, and that results are not strongly biased towards any single user group.

Figures 9.3a and 9.3b show the percentage of users and activity respectively split by

musical knowledge. Unlike age and gender, there does not seem to be any correlation

between musical knowledge and engagement with the user study. Approximately half of

all users have a basic knowledge of music, for example reading music magazines and blogs.

Around a third of users have advanced musical knowledge, meaning that they play an

instrument. This shows that the users evaluating the system are knowledgeable, and thus

are those likely to be familiar with, and use, music recommender systems.

Figure 9.4 shows the number of hours each user spends listening to music for each day,

and activity by these listening hours. 44% of users typically listen to less than 2 hours,
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(a) Users (b) Activity

Figure 9.3: Musical Knowledge

and just over a third listen to between 2 and 4. The most active users are those who listen

to less than 2 hours, who contribute over 55% of all evaluation data. This is somewhat

surprising, since one would expect those who listen to the most music to be most active.

(a) Users (b) Activity

Figure 9.4: Daily Listening Hours

The final piece of information provided by users is the genres that they typically

listen to. These genres are illustrated in Figure 9.5, and as may be expected, rock, pop,

and alternative are the most popular genres. After these three, the next most popular

genres were dance and classical, with almost 40% of users saying that they like each.

This distribution of genres that users like is encouraging, since it closely matches the

distribution of genres of tracks throughout the collection.
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Figure 9.5: Genres Users Listen To

9.3 Ground Truth Comparison Results

The data obtained from users during the study allows for a detailed evaluation of Associ-

ation Score, and investigation into how predictive of user feedback this is in practice. The

further ground truth scores of genreScore, yearScore, and culturalSim (see §4.1.5) will also

be examined to allow comparison between these differing approaches to ground truth. The

goal of each score is to indicate how users will rate recommendations, and this is achieved

by assigning query-recommendation pairs scores.

To compare ground truth with user feedback, the mean average score (MAS) of each

query is calculated as

MAS(Q) =
1

|Q|
∑

q∈Q

1

K

K∑

k=1

score(q,Rk) (9.1)

where Q is an individual query track, and q ∈ Q is an instance of this query being evaluated

by a single user. K is the number of recommendations, which is fixed to 5. Rk is the kth

recommendation for query instance q, and score(q,Rk) is the score that an individual user

provided for query q and recommendation Rk. Only queries where |Q| ≥ 3 are included,

i.e. queries that have been evaluated by 3 or more users. This score is also calculated for

association, genreScore, culturalSim, and yearScore of tracks Q, where |Q| = 1 since there

is only a single score that could be assigned by each ground truth.
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9.3.1 Mean Average Score by Recommendation Method

Figure 9.6 shows the MAS for each ground truth score, averaged across all queries. The

bars show the MAS for each of hybrid, tag, and pseudo-tag. The leftmost three bars show

the mean average userScore, which is the scores provided by users during the evaluation.

These results show that hybrid achieves the highest score, followed closely by tag, and

pseudo-tag achieves the lowest score. The aim of each of the ground truth scores is to

indicate these results observed by userScore.

Figure 9.6: Comparison of Ground Truth Measure Scores

The results for association score show that the measure is able to accurately indicate

the order of quality for each recommendation method. The exact values achieved are not

necessarily important in this case, it is the interpretation of these values that is important.

Association score correctly shows that hybrid performs best overall, followed by tag and

then pseudo-tag. Each of the culturalSim, genreScore, and yearScore methods correctly

predict that hybrid and tag outperform pseudo-tag. However, in each case tag is predicted

to outperform hybrid, which is incorrect. When used as a ground truth score, this mis-

prediction can have significant implications. Hybrid is a new approach, and it is crucially

important to know if it offers improvements over the other methods. If these scores were
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used, then hybrid would have been developed differently, and may not have improved

recommendation quality from the user perspectives.

The culturalSim method is most similar to association score, in that it employs user

activity as a source of knowledge. The difference between hybrid and tag is important,

but culturalSim has hugely under-estimated the performance of pseudo-tag. The reason

for this lies in the normalisation term of culturalSim, in Eq. (4.3). This term normalises

based on the number of users who have liked each track. When this number of users is

very similar, regardless of popularity, then a weighting of close to 1 is calculated. When

the number of users is very different, then the weighting cost can approach 0. The effect

is that culturalSim penalised recommending a popular track from a rare query, or a rare

track from a popular query. In practice however the user evaluation shows this is not a

good strategy to adopt.

9.3.2 Ground Truth Correlation with User Score

Figure 9.6 shows the average MAS score of each recommendation method. To gain further

insight into how each of these scores correlates with the user evaluation, the MAS of each

individual query for all methods is shown for association score in Figure 9.7. The line

shown is the line-of-best-fit through all queries.

Figure 9.7: Comparison of User Score and Association Score
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The range of values observed for association score is between 0 and 1, whereas the

user scores are between approximately 0.3 and 0.8. This shows that the user average

is likely to rate more modestly than the ground truth, and will not typically declare a

recommendation to be extremely bad or good. Within these ranges however the line-of-

best-fit shows that there is a positive relationship between the userScore and association.

However, the association scores observed are spread widely around this line, showing that

the individual query-recommendation scores are not reliable. From Figure 9.6 though the

average of these scores provides a strong overall estimate. It is important therefore that

evaluations include and average over a substantial number of queries.

Figure 9.8 shows the same results for culturalSim. Note that the scores here are much

lower than in Figure 9.6 because the average scores in the previous figure were scaled up

to make the figure readable. In this case many of the scores are extremely low, in part

due to the normalisation term of culturalSim. Scores below the line-of-best-fit are quite

close to this line, whereas scores above this line consist of a very few outliers. These

outliers are tracks which are indeed good recommendations, but also share the same level

of popularity. In this case culturalSim is allowing the pairs to influence the overall score

too much, thus explaining further why the measure does not produce indicative average

results.

Figure 9.8: Comparison of User Score and culturalSim
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9.3.3 Coefficient of Determination

The R2 coefficient of determination can provide further insight into how each ground truth

method is able to predict the user scores that will be observed. R2 is calculated as

R2 = 1−
∑Q

j=1(userScorej −MASj)2
∑Q

j=1(userScorej − userScore)2
(9.2)

where Q is the number of queries that are evaluated, userScorej is the observed userScore

for query j, MASj is the ground truth score associated with query j, and userScore is the

average userScore for all j. The numerator calculates the residual sum of squares, and

the denominator calculates the total sum of squares. Thus, a value of 1 indicates that the

ground truth data perfectly fits the userScore, and a value of 0 indicates that there is no

correlation between the scores.

Figure 9.9 shows this R2 coefficient of determination for each of the ground truth

scores evaluated. Association is the score most correlated with the user feedback, achiev-

ing an R2 value of 0.19. As expected, this is followed by culturalSim, with a value of

approximately 0.11. This reduced degree of correlation observed for culturalSim is in part

due to the outliers observed in Figure 9.8, where the residual sum of squares will be large.

Nevertheless, this lack of correlation with userScore ultimately detracts from culturalSim’s

ability to indicate how users will rate recommendations.

The R2 values observed for genreScore and yearScore are perhaps more unexpected,

both achieving a score of approximately 0.04. Such a small value indicates that there

is very little correlation between the scores predicted by the scores and userScore. The

reason that genreScore does not correlate with userScore is that, even when averaged over

5 recommendations, approximately 50% the queries are given a score of either 0 or 1. In

§4.1 it was argued that granularity is an important property of any ground truth evaluation

score, which genreScore is unable to introduce. Interestingly, the complete opposite effect

is observed with yearScore, where the distribution of values observed is flat. This is the

same distribution that one would observe from a random ground truth, which yearScore

is only marginally better than.
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Figure 9.9: R2 of User Score and Ground Truth Scores

9.4 Recommendation Quality Results

It has been shown that association score correlates strongly with the scores that users

provided during the user study. In this section these user scores will be examined by

themselves, allowing a more detailed analysis of how each method performs according to

user opinion.

Figure 9.10 shows the average MAS across all queries for each recommendation method,

including those that were evaluated by less than 3 users. The horizontal axis shows the

number of recommendations made, and the vertical axis shows the average MAS score for

this number of recommendations made. For example, scores at 3 show the average score

of the first 3 recommendations.

The solid black line shows the quality of recommendations made using the hybrid

representation. These results are roughly flat across the 5 recommendations made, with a

score of around 580. The dashed black line shows the quality of recommendations made

using the tag approach. The quality of tags is around 575, a small margin lower than

hybrid. However, there is no significant difference between these two methods. The solid

grey line shows the performance of pseudo-tag, which as expected is much lower than both
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Figure 9.10: Recommendation Quality For All Tracks

tag and hybrid.

9.4.1 Pool Recommendation Quality

Figure 9.10 shows recommendation quality for all tracks that were evaluated, of which

approximately 53% were not tracks from the pre-determined pool. For these non-pool

tracks, each track is typically evaluated only by a single user. The opinions of one user

do not necessarily match the opinions of other users, and therefore it is interesting to

examine the results when only tracks in the pool are measured. Figure 9.11 shows the

average MAS for queries which were part of the track pool, and therefore each is evaluated

by more than 1 user.

As observed previously, hybrid performs better than tags, but the difference is not

significant. However, the recommendation quality of hybrid is stronger than previously,

and the quality of tags is weaker. For the first recommendation, there is a difference of 29

between hybrid and tags, compared with a difference of only 2 previously in Figure 9.10.

The performance of pseudo-tags for pool-only tracks is almost identical to the perfor-

mance of pseudo-tags across all tracks. This observation is interesting because it raises

the question of why the performance of hybrid and tag is different, but pseudo-tags is

unchanged. One may expect a similar degree of variation across all methods, but this

is not the case. This observation hints that there must be something beyond simply the
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Figure 9.11: Recommendation Quality For Pool Tracks

recommendation approach that is influencing the results observed, and explain why hybrid

improves and tags are weakened.

9.4.2 Evidence of Bias Within Results

To help further understand the results observed in Figure 9.11 compared with those in

Figure 9.10 the other data that was collected can be used. This data includes answers

from the questionnaire, and data on what tracks each user knows. Demographic data was

analysed first, to see if there was any correlations between age and gender for example,

and how users score recommendations. However, no such correlations were found, since

queries were generated randomly, and thus well distributed across each demographic.

Figure 9.12 shows the recommendation quality for each approach, split by what the

user knows about each recommended track. The first section along the horizontal axis

shows recommendation quality for tracks when the user knew both the artist and the

track that was recommended. In this case tag performs strongest, but the performance of

hybrid is comparable. As expected pseudo-tag is significantly weaker than either tag or

hybrid.

The second section of the horizontal axis shows quality for recommendations where the

track was not known, but the artist was. For these novel recommendations hybrid provides
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Figure 9.12: Recommendation Quality by What is Known For All Tracks

significantly better recommendations than both tag and pseudo-tag, and tag also provides

a significant improvement over pseudo-tag. The final section shows quality when neither

artist nor track are known to the user. Similarly to when the track is not known, hybrid

performs best. However, the improvement over tag is not significant. The improvement

of both hybrid and tag over pseudo-tag is significant.

Looking at the relative performance of each method by these groups reveals a trend

towards giving higher scores to recommendations where the track is known. Also, users

generally give higher scores to unknown tracks when they know the artist that recorded

the track. It makes sense that users will provide higher scores to tracks that they already

know, since for many people these will indeed be viewed as a good recommendation.

9.5 Novelty Results

Novelty is the ability of each recommendation method to include unknown tracks in rec-

ommendations. This is measured as the rate at which unknown recommendations are

made, when the query track is known to the user. Figure 9.13 shows novelty for each

method over 5 recommendations. The format of this figure is the same as previously, but

the vertical axis now shows the rate of including novel tracks. For example, a score of 0.5
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indicates that 50% of recommendations made are tracks that the user does not already

know.

Figure 9.13: Novelty

Hybrid, illustrated by the solid black line, recommends novel tracks around 50% of the

time. Pseudo-tag produces a greater amount of novel recommendations, but the difference

is not significant. Recommendations made using tag are only novel around 40% of the

time, a significantly lower rate than both hybrid and pseudo-tag. The reason that tag

makes fewer novel recommendations is because it tends to recommend well-tagged tracks.

These tags are created by users of the Last.FM system, and thus well-tagged tracks also

tend to be well known.

9.5.1 Balance Between Quality and Novelty

An increased novelty rate is good for cold-start recommendation, allowing new tracks to

be recommended to users. However, these novel recommendations must be of comparable

quality to tracks that are already known to users. Ultimately, if users do not like the

tracks being recommended, regardless of whether they are known or not, then they will

not continue to use the system. Results in Figure 9.12 indicate that hybrid provides better

recommendations than tags for unknown tracks, and Figure 9.13 shows that hybrid makes

more novel recommendations than tags.
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Figure 9.14 shows the relationship between the quality, as average MAS on the hori-

zontal axis, and the novelty of recommendations on the vertical axis. Each point shows

the average scores over different numbers of recommendations. The right-most point for

each approach is when 1 recommendation is made, and the left-most is the average over 5

recommendations.

Figure 9.14: Balance Between Quality and Novelty

Hybrid and tag both achieve comparable recommendation quality of between 525 and

600. However, in terms of novelty, hybrid offers a significant improvement over tag-based

recommendation. This figure clearly illustrates that hybrid is able to take the strongest

properties of each of its constituent parts, and exploit these properties for recommendation.

Tags provide good recommendation quality, but low novelty, and conversely pseudo-tags

provide good novelty, but low recommendation quality. Through dynamically combining

both tags and pseudo-tags in a meaningful way, hybrid is able to offer a good novelty rate,

while maintaining strong recommendation quality.

These results show that the hybrid representation is able to effectively bridge the

semantic gap between content, through pseudo-tags, and tags. When used as part of a

recommender system, this hybrid representation allows users to discover more new music,

that importantly, is of high quality, and likely to be of interest.
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9.6 Summary

A user study was conducted that evaluates both recommendation quality and novelty

of the hybrid, tag, and pseudo-tag representations. In this study, users were first asked

to complete a short questionnaire to provide background demographic information, and

help understand the user sample. After this, each user was presented with a series of

queries, and for each query asked to evaluate 5 recommendations made using a single

recommendation approach.

A high level of participation and engagement was achieved during the 30 days that

the evaluation was available online. 132 users took part, and collectively evaluated over

1000 queries. The questionnaire data collected showed a good spread of users across both

age and gender, and the musical interests of the user base aligns closely with the tracks

contained in the dataset.

Previously, each method had been evaluated using association score, developed in

Chapter 4. This user study allowed the comparison of association score and other ground

truth scores, with the scores that user provided to be made. Results show that association

score was the only method which could accurately indicate the relative performance of

three separate recommendation methods. This is important, since if other methods were

used, then incorrect refinements to new recommendation methods would have been made.

The primary reasons that association score was able to out-perform the other ground truth

scores is that it is not biassed by track popularity, and that it is able to provide a suitable

level of granularity of scores.

User results show that hybrid and tag both achieve a comparably high level of recom-

mendation quality, with an average score of approximately 600 on a 1000 point scale. As

expected the pseudo-tag representation achieved lower recommendation quality than both

tag and hybrid, but provides a good baseline for comparison. The evaluation also included

queries that were included from a fixed pool of tracks, allowing a consensus opinion of the

quality of each query to be understood. The results for the pool tracks shows the quality of

hybrid improving, and the quality of tag decreasing. This highlighted the need to further

investigate the results, and understand why this change is observed.

Further results show that tag performs well when recommending known tracks, but
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is weaker than hybrid when recommending novel tracks. Hybrid representation does not

suffer from cold-start, and so has a better understanding of each track that could be

recommended. This in turn allows hybrid to make higher quality novel recommendations.

Results looking at the rate of making novel recommendations show that 50% of tracks

recommended by hybrid are unknown, compared with 40% by tag. This increased novelty

rate is related to cold-start, since cold-start tracks are likely to also be unknown to users.

Through increasing cold-start discovery rate, hybrid representation allows more novel

recommendations to be made at the same level of quality as a tag-based recommender

system. This type of recommender system allows users to discover more novel tracks,

and widen their musical tastes, in a way that maintains high quality. As these tracks are

recommended it becomes increasing likely that users will tag the tracks, thus reducing

the level of cold-start throughout the collection. Of course, new tracks are always being

released, but this recommender system would be able to more quickly introduce these to

relevant users, and shorten the time that tracks remain cold-start.



Chapter 10

Conclusions and Future Work

The work presented in this thesis has investigated approaches to describing musical

texture, developed pseudo-tags to bridge the semantic gap, and described methods to inte-

grate content and semantic representations for music recommendation. In this concluding

chapter, a discussion of the contributions that have been made, and future directions of

this research is presented.

10.1 Achievements and Contributions

The achievements and contributions of this work can be best described by revisiting the

initial research objectives. In this section the achievements and contributions that have

emerged from each research objective are discussed in turn.

Analyse the advantages and disadvantages of both content- and semantic-based

representations for making music recommendations

This research examines some of the strengths and weaknesses of both content and

semantic representations. Through experiments this work highlights the strengths of con-

tent representations, which are able to offer high levels of discovery in recommendations.

However, the same experiments also show that the quality of content is weak, in part

because it is not suitably constructed for describing music.

Analysis of semantic representations, and the process by which these representations
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are generated, highlights the strength of tags for describing music. Tags are able to

capture high level musical and cultural meaning suitably, and from this knowledge strong

recommendations may be made. However, analysis of real world data also shows that

these tag representations are lacking, and many tracks suffer from the cold-start problem.

This analysis of both content- and semantic-based representations motivates the di-

rection of the further research objectives. The focus of the work is on reducing cold-start

within collections, and increasing the discovery of high quality recommendations.

Develop novel content-based representations, which take advantage of the per-

ceptual qualities of music that make good recommendations

This research focusses on the importance of modelling texture relating to music, rather

than using texture representations from the field of speech recognition. A critical anal-

ysis of the difference, and what is required for music, allows the contribution of a new

music-inspired texture representation, MFS, which was presented at the AAAI conference

(Horsburgh, Craw & Massie 2012b). Experimental results show the benefits of using this

MFS representation for recommendation, and highlight how the representation may be

used within different recommendation models. This contribution allows music researchers

the ability to describe the texture of music more meaningfully, and this texture may have

many more uses beyond recommendation.

Bridge the semantic gap by integrating content and semantic representations,

and use this bridge to improve recommendations

The development of a generalised concatenated representation, integrating both con-

tent and tags, contributes an approach to bridging the semantic gap. Previous approaches

focus on integrating clustered content representations and tags. The approach presented

in this research shows how content may be integrated without clustering, allowing con-

cepts to be learned for each part of content representation. The advantage in doing so is

that correlations between parts of a musical sound and tags may be established, not just

correlations with the overall musical sound.

This method also contributes a new approach to increasing the discovery rate of tracks

that suffer from the cold-start problem. The concepts learned contain information about
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both content and tags, and when a track with no tags is projected into this concept space,

the concepts it is associated with introduce new tag knowledge to the track. This work

was presented at the IJCAI conference (Horsburgh et al. 2011).

The development of pseudo-tags contributes both a new approach to auto-tagging,

and a new method by which to achieve this. Many auto-tagging approaches are built

upon modelling the distributions observed for track content, and for track tags. Using

these learned distributions new tags are propagated to tracks. An investigation of such

approaches however realises the short comings of such an approach when the cold-start

problem is present. A new approach to tackling this problem is developed, where it the

distributions of content and tags are not assumed. Instead, content was used as a black

box to retrieve similar tracks, and then from these similar tracks to learn pseudo-tags.

The main contribution of this approach is that it allows tags that are not directly

related to content to be learned. This is an important step towards bridging the semantic

gap, and towards capturing both musical and non-musical semantic information. This

approach also allows for a guaranteed number of tags to be learned for a track, which

importantly are each given a weight. This is different from auto-tagging, which simply

learns tags without a weight as a classification task. Results show that this pseudo-

tag representation offers improved quality over content representation, and provides a

step towards the closer integration of content and semantic representations. Initial work

towards this approach was presented at the Third Annual Digital Economy All Hands

Conference (Horsburgh, Craw & Massie 2012a).

The hybrid representation presented in Chapter 8 achieves a bridge between content

and tags based on the mid-level pseudo-tag representation. This contributes a new ap-

proach to bridging the semantic gap, where content and tags are not integrated directly,

but through an intermediate step. Pseudo-tags are integrated into a tag representation

dynamically, where both the number and weight of pseudo-tags that contribute to the

hybrid representation are parameters. This is an important step forward from bridging

between content and tags directly, and creates the idea that a bridge should be dynamic,

and only used when appropriate. Results from the offline and user study show that this

approach is able to increase the discovery rate of cold-start tracks, and therefore novelty,

while also maintaining high recommendation quality.
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Exploit user feedback data to evaluate the important qualities of music rec-

ommendation

The evaluation of music recommender systems is an important part of developing new

methods for recommendation. Investigation of existing evaluation strategies highlighted

that strong evaluations are difficult to achieve without repeatedly conducting user trials.

This investigation highlighted that evaluation measures suffer from lack of complete data,

and are biased by popularity in listening habits. The focus of this research is to examine

discovery, which typically includes lesser known tracks, and so such evaluation methods

were not suitable.

A contribution of this research is a new approach to evaluation recommendation qual-

ity, association score. The data required for this score can be gathered for any working

collection, and through the novel use of both implicit and explicit feedback, the bias of

popularity is hugely reduced. A user study is constructed to evaluate association score,

and compares it with other existing ground truth scores. This shows that association

score provides a strong indication of how users will rate recommendations. This contri-

bution therefore allows researchers the ability to more effectively develop and optimise

new techniques, based on much stronger feedback than previous ground truth measures

provide.

10.2 Future Directions

This thesis focussed on the use of texture representation, and forming a bridge between

texture and tag representation. The motivation for this bridge was to increase discov-

ery of cold-start tracks, and novelty from a user perspective. In this section some of

the limitations of this work are identified, and future research directions and challenges

described.

10.2.1 Expanding Content Representation

Texture was identified as the strongest method of describing musical content for making

recommendations. However, texture is not the only representation of content that is
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available. Further information, such as chroma, rhythm, and perhaps even melody could

be learned for each track. Incorporating this information into the content description of

a track may allow stronger overall representation to be achieved. The introduction of

further knowledge may also allow new bridges to be formed to semantic content, although

these will most likely be limited to music related knowledge.

10.2.2 Expanding Tag Representation

The tag representation used throughout this research is a simple, but effective approach

to describing semantic knowledge. However, this tag representation could also be further

expanded, perhaps making use of natural language processing, or through linking to on-

tologies. Introducing this further knowledge layer to semantic representation may open

up new possibilities when bridging the gap between content and semantics. For example,

concepts such as synonymy, sentiment, and domain knowledge open up a more fine grained

representation. Perhaps in some cases this granularity would allow a stronger bridge to

be formed, for example between chroma and sentiment, based on the musical scale being

used.

10.2.3 User Profiles

The recommendation approach used throughout this research is to assume that a user

provides a single track that they like as an input to the recommendation process. In prac-

tice, this would typically be the track they are currently, or have most recently listened to.

However, users listen to many tracks, and future work could investigate how these groups

of tracks may be used to form a stronger user profile, from which to make recommenda-

tions. These user profiles would open up the possibility of looking at the semantic gap

for sets of songs that are related, rather than for each song individually. This expanded

query representation may allow for further discoveries to be made, and the quality of these

discoveries may indeed be higher than the quality of known recommendations.

10.2.4 Applying Dynamic Hybrid to Further Representations

The dynamic hybrid representation that has been developed integrates pseudo-tags with

existing tag representations. Viewed more generally however, this approach integrates a
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pseudo-representation that has been learned, into a real representation that is provided.

Future work may examine how this approach could be utilised with further representation,

such as user profiles. Collaborative filtering methods suffer from the cold-start problem

from a user’s perspective, rather than the track’s. If pseudo-profiles could be learned suc-

cessfully, then perhaps this cold-start problem could be reduced in a similar way. Eventu-

ally, a three-way model between users profiles, content, and tags may even be established,

and pseudo content may be learned across this model to enhance the knowledge described.

10.3 The Future of Music Recommendation

Music recommendation has evolved from the pre-digital age where close friends made rec-

ommendations to each other, into the digital age where anonymous artificial friends made

recommendations. These artificial friends, the algorithms and data structures that pro-

duce recommendations, are becoming an increasingly more popular method for discovering

new music. This anonymity has had real tangible impacts on how music recommendation

occurs, and may even be dramatically changing the way that people interact with music.

Discovering new music is still as important as it always has been, but discovering

new social identities and sub cultures seems to be disappearing into the past. Semantic

information allows people to describe their identity, and the culture surrounding music, but

this culture is increasingly becoming an online presence. What are the modern equivalents

of the punks, mods, rockers, and hippies? The real and online worlds seem to be drifting

further apart, and groups of people who share the same musical influences and social

concerns do not appear as vocal or prominent as in the past. Perhaps this is because

people now express their opinions online, or perhaps access to near unlimited access of

music has resulted in many smaller sub cultures emerging. Perhaps it is enough to be part

of a musical collective in an online world, and the desire to express this in the real world

is diminished.

However, where does this leave live music scenes? These are the next major challenge

for music recommendation. Music is recommended online as part of ‘social’ communities,

but the real social community for music is in the venue, dancing or jumping around to

the next exciting thing. Just like a bridge between content and semantics is required, the
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next bridge to be built is between the online and real world. Can music recommendation

be used to inspire local music scenes, introduce people to new and exciting artists on their

doorstep, and allow real musical communities to re-emerge?

10.4 Conclusions

In this work the semantic gap between content and tags has been bridged through integrat-

ing the representations. Increased discovery of high quality novel tracks has been achieved

through exploiting pseudo-tags in a dynamic hybrid representation. In future work this

hybrid representation could be expanded to include user profiles, and the introduction

of data that drives social interaction. If event listings and local artists can be included,

then music recommendation may be used as the driving force behind discovering music

at a more local level. Further, the recommendation task could be expanded to include

event recommendation, based on a combination of information in the existing hybrid, and

the inclusion of event listings, friendships, and temporal information. This work offers a

strong starting point for bridging the next gap, the social gap for music.
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Abstract

We have developed a novel hybrid representation
for Music Information Retrieval. Our representa-
tion is built by incorporating audio content into the
tag space in a tag-track matrix, and then learning
hybrid concepts using latent semantic analysis. We
apply this representation to the task of music rec-
ommendation, using similarity-based retrieval from
a query music track. We also develop a new ap-
proach to evaluating music recommender systems,
which is based upon the relationship of users liking
tracks. We are interested in measuring the recom-
mendation quality, and the rate at which cold-start
tracks are recommended. Our hybrid representa-
tion is able to outperform a tag-only representation,
in terms of both recommendation quality and the
rate that cold-start tracks are included as recom-
mendations.

1 Introduction

Over recent years a vast number of online music services
have appeared and grown. Unlike high-street music stores,
listeners now have instant access to all recorded music. Tra-
ditional methods of finding music do not scale to large online
music collections, and so an area of Music Information Re-
trieval which has been given much attention recently is rec-
ommendation. Every major online music service now has a
music recommender system available to users, helping them
navigate music collections. Such systems have been keenly
adopted by users, to the extent that artists can now become
massively popular solely based on a viral online interest.

Core to current state-of-the-art music recommender sys-
tems is social meta-data. This is typically in the form of free-
text tags which describe any musical entity, such as an artist
or track. Recommendations are then made based upon the
similarity of social tags which are applied to each track.

Tag-based recommender systems have proven to be very
powerful, but there are scenarios where they do not perform
well. One such scenario is the well-known cold-start prob-
lem, where tracks in a collection do not have any tags applied
to them. In these situations the untagged tracks will never
be recommended. Often this means that the track will also
never be tagged, since no one has been recommended the

track, creating a Catch-22 style scenario. When the iTunes
store opened in 2003, 200, 000 tracks were available; in 2010
13, 000, 000 tracks1 were available. This illustrates the steep
increase in volume of tracks available online, all of which
must be tagged to be included in a recommender system.
In this paper we show how the recommendation discovery
of cold-start tracks can be increased by incorporating audio
content-based data into a recommenders’ representation.

Measuring the quality of a recommender system is typi-
cally achieved using genre, mood or artist classification ac-
curacy. While these measures may be part of a good recom-
mendation, they do not directly measure quality. We present
a new evaluation measure which is not based on classification
accuracy, but instead measures the level of positive associa-
tion between two tracks based on user listening data.

The paper is structured as follows. In Section 2 we discuss
recent related work on recommendation and evaluation. Our
method for including content-based data in a tracks represen-
tation is presented in Section 3. Our evaluation measure is
described in Section 4. Section 5 describes the experiments
which we run to evaluate our representation, and presents our
results. In Section 6 we draw some conclusions.

2 Related Work

Knowledge which can be gathered online has proven to be
invaluable to music recommendation [Plaza and Baccigalupo,
2009]. Central to many state-of-the-art recommender systems
are social tags [Nanopoulos et al., 2010]. While these sys-
tems perform very well when data is available, tracks which
do not have data available are left out. Reducing this cold-
start problem, and enabling users to discover cold-start tracks,
has been the focus of much recent work.

In general, there are two approaches to increasing discov-
ery in tag-based recommenders. The first is to use audio
similarity to propagate tags throughout a collection, there-
fore allowing every track to have a tag representation [Bertin-
Mahieux et al., 2008]. The limitation of this approach is that
content similarity does not directly correlate to tag similar-
ity, and therefore many erroneous tags are propagated. The
second approach is to directly incorporate a content-based
representation into the tag representation, therefore always
presenting data on which to compute a similarity. Bu et al.

1http://www.apple.com/itunes/features/
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[2010] present a hypergraph model which combines content
with tags. This is an intuitive way to combine many differ-
ent types of representations, but no new concepts are learned
from this combination. Levy and Sandler [2009] construct a
representation matrix which combines tags and clustered con-
tent representations, which they name muswords. They then
employ probabilistic latent semantic analysis to learn hybrid
concepts which generalize both tags and content. All notion
of content-based similarity however is lost in their method,
due to the muswords being treated as a bag of words.

3 Music Representation

We develop a new representation which combines tags and
content, designed to increase the rate of discovering untagged
tracks in a recommender system. The collection we are using
consists of 3495 tracks which span 951 artists and 16 genres,
as defined by Gracenote2. For each track we collect tags and
extract standard content-based representations. These repre-
sentations are then used to create a new hybrid representation,
designed to reduce the cold-start recommendation problem by
increasing cold-start discovery.

3.1 Basic Representations

Our tag representation is built using data downloaded from
Last.fm, using the API they provide3. We store the top 20 tags
for each track, along with their frequency when applied to the
track. In total 3537 distinct tags are collected, and on average
a track has 18 tags available. Last.fm normalizes each tag
frequency relative to the most frequent tag, stored as a per-
centage value; the most frequent tag always has a frequency
of 100, and a tag occurring half as frequently is given a fre-
quency of 50. These frequency values are represented as a
3537 wide vector. Each vector is extremely sparse, with an
average of 0.51% non-zeros.

To extract content features from audio we process each
track in time slices of 750ms. Beyond providing computa-
tional efficiency, this time interval was chosen based on ev-
idence which suggests humans can distinguish genre upon
hearing anything more than 475ms [Gjerdingen and Perrott,
2008]. This amount of time is not sufficient for the listener to
distinguish any rhythmic features, and therefore we only in-
clude spatial features. For each time slice we first compute a
Hamming windowed Fast-Fourier-Transform (FFT), and then
extract our representations. The average over all time slices
is then used as the final representation.

The inspiration behind our content features is to describe
key spatial aspects of music: pitch, texture and harmony.

• A chroma representation describes the intensities of mu-
sical notes, and captures pitch [Kim and Narayanan,
2008]. To represent chroma we extract the intensity of
each musical note found within the frequency domain of
a time slice. These range from C0 at 8.176Hz to B7
at 3951Hz. This provides a measure of the intensity of
each musical note within an 8 octave range, described as
a 96 bin vector.

2http://www.gracenote.com/
3http://www.last.fm/api

• Mel Frequency Cepstral Coefficients (MFCC), origi-
nally used in speech recognition, describe the timbre of
sound. MFCCs have proven to be very useful for genre,
artist and mood classification, and so we are interested in
how they perform for recommendation. We implement
MFCCs as described by Sigurdsson et al. [2006], using
20 equally spaced triangular Mel filters, and retaining
the first 12 MFCC’s in our representation.

• To represent harmony we include a discretized repre-
sentation of each FFT, which we name the Discretized-
Frequency-Domain (DFD). When two musical notes are
played simultaneously many harmonics of each note in-
teract to create a new harmonic sound, heard as a result
of the complex distribution of frequencies. DFD aims
to capture this distribution by discretizing the frequency
domain of each time slice into 200 equally spaced buck-
ets. The sum of all intensities within each bucket is used.

3.2 Tag-Concept Representation

Each of the basic representations capture specific facets of
each track. However, they do not contain any knowledge of
how those facets relate to the collection of tracks. This is well
known throughout text retrieval, where synonymy is a prob-
lem. Two terms may be synonymous, but a direct comparison
will always treat them as being different.

Latent Semantic Analysis (LSA) is a technique which gen-
eralizes the terms used into a conceptual representation, thus
capturing synonyms. This is achieved by first constructing a
term-document matrix, and then applying singular value de-
composition (SVD). SVD decomposes a matrix, M , such that
M = UΣV T ; matrix U consists of tags and track-concepts,
and matrix V T consists of tag-concepts and tracks.

The tag-concept representation we use is V T , obtained by
decomposing the following matrix:

M =









T1 T2 TN

t1 f11 f12 . . . f1N
t2 f21 f12 . . . f2N

...
...

...
...

tn fn1 fn2 . . . fnN









where Ti denotes a track, and tj denotes a tag. fij denotes
the frequency of tag ti when applied to track Tj as defined by
Last.fm.

3.3 Hybrid-Concept Representation

The tag-concept representation described suffers from the
cold-start problem; no generalized concepts can be defined
for untagged tracks, and therefore these tracks will not be
recommended from tagged tracks. To reduce this problem
we create a hybrid-concept representation, where content is
included.

The aim for our hybrid representation is to include content
in the matrix M in such a way that SVD is able to generalize
tag and content features into meaningful concepts. This gen-
eralization is extremely important when the cold-start prob-
lem exists. Suppose the query track is well tagged, and a
frequent tag is happy, generalization will make it possible to
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recommend a non-tagged track which shares the same con-
cept of happy, due to its content representation.

To include content in M we extend the number of rows by
the number of bins in the content representation being used.
This extended matrix is constructed as follows:

M =



























T1 T2 TN

t1 f11 f12 . . . f1N
t2 f21 f22 . . . f2N

...
...

...
...

tn fn1 fn2 . . . fnN
c1 i11 i12 . . . i1N
c2 i21 i22 . . . i2N

...
...

...
...

cm im1 im2 . . . imN



























where ci denotes a bin in our content representation, and iij
denotes the intensity of bin ci for track Tj . The values used
in the matrix are the normalized intensity values of a content-
based representation. These are normalized in the same way
as with Last.fm tags

SVD generalizes well when sparse data is used. For this
reason we only include the 20 most intense bins within each
tracks’ content representation. Our initial experiments did
not introduce this sparsity, and obtained a significantly lower
evaluation score. While intensity is different from frequency
in tags, high valued bins are still the most reflective of a track.
For example, a tag-based concept capturing “lots of Bass”
may be present in a DFD based form, where specific bins for
“bass” may be high, and bins for other frequency ranges may
be low.

4 Recommendation Quality

Many evaluations throughout music retrieval use the classifi-
cation accuracy of artists, genre or mood [Flexer et al., 2010].
It would be much more desirable to be able to conduct a full
user evaluation, as with [Firan et al., 2007], but such evalua-
tions however are impractical for iterative evaluations. Ellis
et al. [2002] propose several methods of replicating a real-
world user evaluation. Their first approach is based on us-
ing complex network-analysis to define a similarity measure.
One drawback with this shortest-path based approach is that
popular tracks are linked by one edge to many tracks, making
it difficult to know what is truly a good recommendation. The
second method they propose uses a peer-to-peer cultural sim-
ilarity measure, based on listening habits. This measure de-
fines a good recommendation as one which is similarly popu-
lar to the query, and occurs in a large percentage of users pro-
files with the query. Again, the bias introduced by popularity
makes this measure unsuitable for evaluation when discovery
is important.

In this section we describe our new evaluation measure
for recommendation quality, and then provide a discussion
of how this measure behaves.

4.1 Measuring Quality

We propose a new evaluation strategy which attempts to repli-
cate a real-world user evaluation, by using available data from

internet users. The inspiration for our measure of recommen-
dation quality comes from conversations between two people:

P1: I’ve been listening to this awesome band called Klaxons.

P2: Me too. Do you like Neon Plastix?

P1: Never heard of them!

P2: You should get their CD, you’d like them.

The key point from this type of conversation is that Person
P2 has made an association between Klaxons and Neon Plas-
tix. This association is based upon P2 having listened to both
artists, and having liked both artists. The concepts of listening
to and liking both artists forms the basis for our measure.

We define a high quality recommendation as one for which
Person 2 makes an association, and a low quality recommen-
dation as one which Person 2 does not. We then extrapolate
this definition to take account of n peoples’ opinions. The
proportion of people who agree that there is an association
between the two tracks quantifies the strength of association,
shown in Eq. 1.

association(ti, tj) =
likes(ti, tj)

listeners(ti, tj)
(1)

where ti and tj are tracks, listeners(ti, tj) is the number of
people who have listened to both ti and tj , and likes(ti, tj) is
the number of listeners who have liked both ti and tj . This
definition is similar to many offline user evaluations, where
a set of people are asked to rate pairs of tracks. The average
of all ratings, or associations, quantifies the strength of the
recommendation. We are therefore simulating an offline user
experiment where user ratings are binary.

To apply this type of evaluation one must first have users
available. Instead of offline users we use online users, the
data for which is available using the Last.fm API. We collect
data for over 175000 users, over a period of 2 months. For
each user the tracks which they have clicked the “thumbs up”
button on Last.fm are recorded, providing data on the tracks
they like. On average a single user will have liked 5.4 tracks
in our collection. Further information collected from Last.fm
is the number of distinct listeners of each track.

To determine the level of association in Eq. (1) between
two tracks we must first know two important facts; the num-
ber of users in our collection who have listened to a given pair
of tracks, and the number of users who have liked both tracks.
From our collected Last.fm data we know the number of users
who have liked both tracks in any given pair. Unfortunately,
data on who has listened to both tracks is unavailable from
their API. However, the number of users who have listened
to each track is available, allowing an estimate of listeners to
both.

To estimate the number of users in our collection who have
listened to a pair of tracks, we first assume that all tracks
are listened to independently. We then estimate the number
of users who have listen to each possible pairing of tracks,
scaled to our collection size, using Eq. 2.

listeners(ti, tj) =
C(ti)

|Last.fm|
·

C(tj)

|Last.fm|
|Collection| (2)
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where C(ti) denotes the count of users who have listened to
track ti, |Last.fm| denotes the number of users of Last.fm,
and |Collection| denotes the number of users in our collec-
tion. Using the estimate in Eq. (2), we are able to calculate
the level of association between tracks as described in Eq.
(1).

The measure of association defines quality on a scale of 0
to 1. A value of 0 occurs when there is no evidence of users
liking a pair of tracks. A value of 1 occurs when the number
of users who like a pair of tracks is equal to the number who
have listened to the pair. It is possible to obtain a score of
greater than 1, since we are using an estimate to determine
the number of listeners. As the actual level of association
between a pair of tracks increases, so does the amount we
under-estimate the number of listeners, due to our assumption
of independence. To handle this we set a limit on the measure
to 1. When an under-estimate occurs, such that a value of
more than 1 is obtained, it is clear that the two tracks display
a very high level of association, and therefore a score of 1
reflects this.

4.2 Discussion of Measure

The evaluation measure we have described is based on as-
sociations between users having listened to and liked tracks.
This approach may be compared to collaborative filtering,
but a key difference exists. Collaborative filtering is an ap-
proach for finding similar users, and then recommending
tracks which may be of interest. Our evaluation measure does
not find similar users, but quantifies the global level of agree-
ment between sets of users. Collaborative Filtering has been
developed to make recommendations: our method has been
developed to evaluate recommendations.

The mean level of association in our collection is 0.064. An
association score of 0 is achieved by 87% of all possible rec-
ommendation pairs, and a score between 0 and 1 is achieved
by 10% of all pairs. In our collection 3% of possible query-
recommendation pairs obtain an association score of greater
than 1, which we modify to be 1. The distribution of associ-
ation scores for all possible pairs in our collection is shown
in Figure 1. We have excluded values for associations of 0
and 1 so that the meaningful part of the curve can be easily
observed.

Figure 1: Distribution of association values

The distribution observed centers around the score
0.12, which occurs for 0.25% of all possible query-
recommendation pairs. The tail of the curve decays less

steeply than expected, due to our estimate of listeners. If
an estimate was not used we would expect the tail to decay
much faster, and reach a frequency of approximately 0 much
earlier, reflecting the level of true agreement. 13% of all pos-
sible pairs in our collection obtain a score of greater than 0,
with 10% lying in the distribution shown. This shows our
measure is suitably discriminant of high and low quality rec-
ommendations.

5 Experiments

We evaluate several recommender systems, each using a dif-
ferent representation for tracks. The representations evalu-
ated are as follows:

• Tag is the LSA representation from the tag-track matrix
(as described in Section 3.3)

• DFD, MFCC and Chroma use LSA representations from
the corresponding matrix where the tags are replaced
with the appropriate content-based representation

• Hybrid is the LSA representation from the extended ma-
trix for tags with content features

• Random does not have a representation, but instead ran-
domly selects tracks to recommend

Euclidean distance is used to retrieve and rank retrieved
tracks for all representations. This is a metric which is com-
monly used in content-based retrieval. It is standard that a
cosine similarity measure is used for text, because it defines
similarity based on terms co-occurring with the same relative
frequency. For tags however, the value of frequency values
used is important. Euclidean distance is able to capture dif-
ferences in these values, and is therefore best suited to each
of our representations.

We follow a standard experimental design for each repre-
sentation. We hold-out 30% of tracks as test queries, and the
remaining 70% make the set of possible recommendations.
For each track in our test set we obtain the top 20 recommen-
dations. We evaluate each recommendation subset in this top
20, that is, we calculate the association score for only 1 rec-
ommendation, 2 recommendations, and so on. For each rec-
ommender system we repeat the experiment procedure four
times. The results presented are an average of the results ob-
tained over all runs. All error bars shown are at a 95% confi-
dence interval.

5.1 Recommender Results

Initially we evaluate each content-based representation to un-
derstand which performs best at the task of music recommen-
dation. The expectation was that MFCCs would perform best,
due to their strength in other MIR tasks. Figure 2 shows the
results for recommender systems built using the DFD, MFCC
and Chroma representations. The x-axis is the number of rec-
ommendations that were made, and the y-axis is the associ-
ation score for this number of recommendations. For a rec-
ommendation set of up to 8 recommendations, the DFD rep-
resentation outperforms MFCC’s. The first recommendations
presented are far more important than those further down the
list, and therefore we use the DFD representation as the con-
tent component in our hybrid representation.
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Figure 2: Content-based representations

The second experiment (Figure 3) is intended to under-
stand the performance of the Tag, DFD and Hybrid represen-
tations. We construct our Hybrid representation using DFD
as the content component, since it outperforms MFCCs and
Chroma. It is interesting to note the difference between the
Tag and Hybrid association score, and the DFD association
score. When DFD only is used, the quality of recommenda-
tions made is extremely low. When DFD is integrated into
our Hybrid representation however, the quality of recommen-
dations is competitive with the Tag recommender. The reason
for this is that the process of SVD is taking advantage of the
discriminant power of tags far more than it does for DFD.

Figure 3: Recommendation quality

Our final experiment shows how each of the representa-
tions performs on our collection with injected cold-start. Our
collection has only 2% natural cold-start within it. To simu-
late the cold-start problem we inject the problem into a ran-
domly selected 25% of our collection by removing their tags,
allowing us to clearly observe the problems effects.

When the cold-start problem has been injected into our col-
lection, our Hybrid representation outperforms the Tag rep-
resentation at all recommendation list sizes (Figure 4). The
SVD of the original track-representation matrix generalizes
the representation, and takes advantage of discriminant con-
cepts. In the case of our Tag representation, 25% of our data

is identical; it has no tags. For these data there is no discrim-
inant concepts which can be used, and therefore no meaning-
ful similarity measure can be defined.

Figure 4: Recommendation quality in cold-start scenario

It should be noted that the injection of cold-start tracks has
nevertheless lowered the performance of our Hybrid repre-
sentation. This is directly caused by the untagged tracks,
since tags naturally outperform content representations. In
this scenario however, our Hybrid representation still has a
representation for the untagged tracks. Further, the represen-
tation available for these tracks is always available for the
whole collection. This in turn means that SVD is again able
to take advantage of discriminant concepts within the entire
representation. It is for this reason that our Hybrid representa-
tion is able to outperform the Tag representation, and provide
a recommender system which can produce higher quality rec-
ommendations when the cold-start problem exists.

5.2 Discovery Results

A complementary measure we use is the discovery rate of
cold-start items. This is the ratio of untagged items which are
recommended, when the query track is tagged.

Figure 5 shows the discovery rate for each representation.
The random and DFD based recommenders achieve a consis-
tent discovery rate of approximately 25%. While this at first
appears to be good, these results must be interpretted with
Figure 4 in mind. The random recommender obtains a high
discovery rate, but also obtains a very low association score.
DFD obtains the same discovery rate since it is unbiased to-
wards tag representation. The association score is again low
however, meaning that the tracks discovered are not strong
recommendations.

The Tag representation has a discovery rate of approxi-
mately 0 for the first 4 recommendations. This is expected,
since the Tag representation will naturally rank tagged tracks
as most similar. As the size of the recommendation set in-
creases the tag representation gradually makes more discover-
ies. The reason for this is that for some query tracks there are
no more recommendation tracks which share tag-concepts,
and therefore everything obtains a similarity of 0.

The Hybrid representation has a steeper discovery rate than
Tags, starting at a rate of 0.03 for 1 recommendation. Un-
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Figure 5: Recommendation of untagged Tracks

like with the random and DFD recommenders, DFD achieves
this increase in discovery while maintaining a high associa-
tion score. This shows that the tracks being discovered are
relevant, and good recommendations.

The increased discovery rate of the Hybrid representation
is due to the influence of the DFD component. Where no
tags exist, a track still has a concept representation, and is
therefore able to obtain meaningful recommendations, avoid-
ing the 0 similarity problem found in the tag recommender.

6 Conclusions

We have developed a novel way of incorporating content-
based representations into a tag-based recommender system.
This has been achieved by extending the tag-track matrix
to include content, and then learning hybrid concepts using
LSA. Through generalization, the concepts learned make as-
sociations between tags and content in such a way that rec-
ommendations can still be made when tags are absent.

A new evaluation measure simulating real-world user eval-
uations of recommender systems has also been developed.
This evaluation defines associations between pairs of tracks
based upon users having listened to both tracks, and having
liked both tracks. In developing this measure, we have shown
how recommender systems can be evaluated in terms which
are directly relevant to recommendation, not classification.

Our results show that by including content an increased
rate of discovering cold-start items can be achieved. Further,
this discovery of cold-start improves the overall performance
of the recommender system, and the Hybrid representation
is able to outperform the Tag representation when the cold-
start problem exists. When cold-start tracks do not exist, our
recommender is competitive with a tag-only recommender.

The merging of two representations in the way we have
developed has promising directions. We have shown how
content can be of benefit to tag-based recommenders. Using
our approach it may even be possible to include many differ-
ent sources of knowledge, such as play lists and mined web
data, creating a truly all-encompassing representation. Hu-
mans make recommendations based on a wealth of informa-
tion, the next challenge is to expand representations to include
this knowledge.
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Abstract
Techniques for music recommendation are increasingly
relying on hybrid representations to retrieve new and ex-
citing music. A key component of these representations
is musical content, with texture being the most widely
used feature. Current techniques for representing tex-
ture however are inspired by speech, not music, there-
fore music representations are not capturing the cor-
rect nature of musical texture. In this paper we inves-
tigate two parts of the well-established mel-frequency
cepstral coefficients (MFCC) representation: the resolu-
tion of mel-frequencies related to the resolution of mu-
sical notes; and how best to describe the shape of tex-
ture. Through contextualizing these parts, and their re-
lationship to music, a novel music-inspired texture rep-
resentation is developed. We evaluate this new texture
representation by applying it to the task of music rec-
ommendation. We use the representation to build three
recommendation models, based on current state-of-the-
art methods. Our results show that by understanding
two key parts of texture representation, it is possible
to achieve a significant recommendation improvement.
This contribution of a music-inspired texture represen-
tation will not only improve content-based representa-
tion, but will allow hybrid systems to take advantage of
a stronger content component.

Introduction
Over the last decade the way in which people find and en-
joy music has completely changed. Traditionally a listener
would first hear about new music either through their friends
or mass-media, such as radio and magazines. They would
then visit a record store and buy a hard copy of the music.
It is now equally as likely that a listener will have been rec-
ommended new music by an algorithm, and that they will
either stream or buy a soft copy of the music. There are pos-
sibly millions of tracks on a website, with only a limited
number being of interest to the user. This presents an inter-
esting new challenge: how to decide which tracks should be
recommended to a user.

Many current state-of-the-art techniques for providing
music recommendations are based on the idea of similar-
ity. Given one or more songs that the listener likes, recom-

Copyright c� 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mender systems must provide further songs that the listener
will like. One of the most popular ways to do this is to com-
pare meta-data about the songs. Such meta-data often in-
cludes textual tags, and audio descriptors, which are com-
bined into a hybrid representation for each song. When ex-
amining these hybrid representations it becomes clear that
tags offer much greater accuracy than audio descriptors. For
this reason a lot of current research is focussing on how such
audio descriptors can be improved, and how these can be
better integrated with tags.

There are two approaches to describing musical audio: in
terms of its structure, such as rhythm, harmony and melody;
or in terms of its feel, such as texture. The choice of which
approach to use can differ depending on the task. However,
in almost all tasks, texture has proven to be very popular
and successful. The most widely used texture descriptor is
the mel-frequency-cepstral-coefficient (MFCC) representa-
tion. Although originally developed for speech recognition,
MFCCs have proven to be robust across many musical tasks,
including recommendation. This foundation in speech pro-
cessing however can make texture difficult to understand in
a musical sense.

We take a novel approach to examining the MFCC rep-
resentation in a musical context, and make two important
observations. The first observation is related to the resolu-
tion used at a key step in the algorithm, and how this cor-
responds to music. The second observation is that in the
case of music, summarising the perceptual spectrum used by
MFCC is undesirable. Based on these observations we de-
velop a novel approach to music-inspired texture represen-
tation, and evaluate its performance using the task of music
recommendation. This evaluation also shows that no single
fixed-parameter texture representation works best for all rec-
ommendation models.

The paper is structured as follows. We first discuss re-
lated work on the MFCC representation, how it has been
used for music, and some observations others have made
on its suitability to music. We then develop our new tex-
ture representation by examining the MFCC representation,
and discussing key steps. The following section describes
our experimental design, and the three recommendation ap-
proaches with which we evaluate our approach. We then dis-
cuss the results obtained from our experiments, and finally
we draw some conclusions from this work.
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Figure 1: Block diagram of MFCC extraction algorithm

Related Work
One of the most important content-based representations for
music recommendation is MFCC (Celma 2010). First devel-
oped for speech recognition (Mermelstein 1976), the MFCC
representation is based on warping a frequency spectrum to
human perception using the mel scale (Stevens, Volkmann,
and Newman 1937).

One important difference between practical evaluations of
MFCC for speech and music, is that speech can be evalu-
ated in an objective manner (Zheng, Zhang, and Song 2001),
while many music tasks are evaluated subjectively (Ellis et
al. 2002). However, many authors have successfully evalu-
ated the use of MFCC subjectively for genre classification
(Lee et al. 2009) and music recommendation (Yoshii et al.
2008).

Logan (2000) investigates the suitability of the mel scale
for musical texture, concluding that the scale is at least not
harmful for speech / music discrimination, but perhaps fur-
ther work is required to examine only music. Logan also
concludes that at a theoretical level DCT is an appropri-
ate transform to decorrelate the mel-frequency spectrum,
but the parameters used require more thorough examination.
We question whether the mel-frequency spectrum should be
decorrelated at all, and evaluate the suitability of DCT for
describing a music-inspired texture.

Several investigations have concluded that resolution is an
important factor affecting MFCCs. It has been shown that
computing MFCCs on MP3 audio is only robust if the au-
dio is encoded at 128kbps or higher (Sigurdsson, Petersen,
and Lehn-Schiler 2006). At lower encoding resolutions, the
MFCCs extracted are not able to describe texture reliably.
Pachet and Aucouturier (2004) investigate several parame-
ters of MFCC and how they relate to music. Their first obser-
vation is closely linked to that of Sigurdsson, Petersen, and
Lehn-Schiler; increasing the input resolution by increasing
the sample rate improves the effectiveness of MFCC. In fur-
ther work Aucouturier, Pachet, and Sandler (2005) examine
the relationship between how many coefficients are retained
after DCT, and the number of components used in a Gaus-
sian Mixture Model. It is found that increasing the number
of coefficients beyond a threshold is harmful for this model.

The MFCC representation involves smoothing the input
data based on the mel scale, introducing a further step where
resolution may be important. Most commonly 40 mel fil-
ters are used for smoothing, often described as 13 linear and
27 logarithmic filters, and 13 coefficients are retained after

DCT. One popular toolbox for extracting MFCCs also uses
these fixed parameters (Slaney 1998).

Yan, Zhou, and Li (2012) investigate the placement of
mel filters for the application of Chinese speech recognition.
When analysing MFCC across various regional accents, they
discovered that the first two formants are most sensitive to
accents. These formants are the lower-frequency section of
the mel-spectrum, and so the authors re-distribute the mel
filters used to provide a higher resolution in these critical
bands.

Li and Chan (2011) also investigate the placement of mel
filters while considering genre classification. The authors
find that the MFCC representation is affected by the mu-
sical key that a track is played in. Rather than modifying the
MFCC representation to resolve this issue, they instead nor-
malise the key of each track before extracting MFCCs. In
this paper we investigate the relationship between the mel
scale and pitch, and develop our music-inspired texture rep-
resentation from this.

Mel-Frequency Texture Representations
The MFCC representation attempts to describe the shape of
a sound, with respect to how humans hear it. In this section
we describe and examine this representation, and develop
several modifications showing how this approach can be tai-
lored to describe texture for music.

Frequency Spectrum
The MFCC representation is generated from a short time-
sample of audio, as illustrated in Figure 1. The input is an
audio frame of fixed sample rate and sample size. To reduce
the effects of noise introduced by sampling, rather than hav-
ing a continuous waveform, the initial step in Figure 1 is
windowing. This windowed time-domain frame is then con-
verted to a frequency-domain spectrum using the discrete-
Fourier transform (DFT).

There are three properties of the frequency spectrum
which are important:

• The size of the spectrum is half the size of the audio
frame, and for computational efficiency is usually size 2n.

• The maximum frequency is half the audio frame sampling
rate.

• The spectrum bin resolution is the maximum frequency
divided by the spectrum size.
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For an audio frame with sample rate 44.1kHz and sample
size 210 (23ms), the size of the spectrum is 29, the maximum
frequency is 22.05kHz, and the bin resolution is 43.1Hz.

The windowing and DFT steps are common to many
content-based representations, and so this paper focusses on
the later steps in Figure 1, which are more specific to texture.

Mel-Frequency Spectrum
The frequency spectrum output by the DFT describes the
intensity of discrete frequency ranges. In order to correctly
describe texture, one must warp this output so that it de-
scribes how humans hear frequencies and their intensities.
This is achieved using two operations; frequency warping
and intensity rescaling. Intensity rescaling, applied after the
frequency warping, is achieved by taking the log of all fre-
quency values. In this section we will focus on how the fre-
quency warping is achieved.

Frequency is the physical scale describing sound oscil-
lations, and must be warped into the perceptual mel scale
(Stevens, Volkmann, and Newman 1937), thus mimicking
humans interpret frequency. The following equation de-
scribes the conversion from frequency f to mel f

f( f ) = 2595log10
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f

700
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◆
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and is illustrated by the curve in Figure 2. The horizontal
axis is f , and the left vertical axis is f( f ).

Frequency warping is not achieved as a direct conversion
from f to f( f ), but as a discretization of f based on f( f ). To
avoid confusion, we will refer to frequency ranges defined
by the DFT as bins, and to the ranges used for frequency
warping as buckets.

M buckets are equally sized and spaced along f( f ), as
illustrated by the triangles in Figure 2. The buckets on the
f axis are equivalent to those on f( f ). The value of each
bucket is a weighted sum of all its frequency bins, where the
weights are defined by the triangular filter.

After discretization, the frequency spectrum has been
warped into M mel-scaled values. After the log of each
value has been taken, this set of values is known as the Mel-
Frequency Spectrum (MFS).

Figure 2: Frequency - mel curve

Mel-Frequency Filter Resolution
When MFCCs are discussed in the literature it is usually in
terms of the frequency and mel scales. In this section we
first make observations of the MFS in terms frequency and
mel, and then in terms of a musical scale, in an attempt to
examine its suitability for musical texture.

Continuing with our example using Figure 2, when 10
triangular mel-filters are used for frequency warping, each
bucket is 392 mels wide. Converted to f , this means the
smallest bucket is 291Hz, and the largest is 6688Hz. Ex-
amined as a percentage value, each bucket covers 10% of
the mel scale, or between 0.013% and 30% of the frequency
scale. At a first glance the smallest bucket perhaps seems too
small, and the largest is perhaps too large, however, we must
now examine the ranges from a musical point of view.

The most commonly used musical scale is the cents scale,
which describes the distance in cents between two frequen-
cies. The following equation shows how to calculate the
number of cents between frequency f and reference fre-
quency g.

c( f ,g) = 1200log2
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Using this scale, 100 cents is equal to one musical semi-
tone, or adjacent piano key. For the scale to make sense g

must correspond to the frequency of a musical note; for our
examples we set g= 16.35, which is the musical note C. The
lowest note on a standard piano is A at 27.5Hz.

If we consider our example of 10 filters again, but this
time examining the size of the buckets in cents, we get a
completely different picture. The smallest filter covers 4986
cents, which is just more than 49 musical notes, and the
largest filter covers 626 cents, which is just more than 6
musical notes. This illustrates something completely differ-
ent to examining discretization of f ; musically the smallest
bucket in f seems much too large in cents, and the largest
bucket in f seems much too small in cents.

Figure 2 illustrates this conflict of resolution between f

and cents. The light grey shading shows the number of musi-
cal notes for each triangular filter along f . The right vertical
axis shows the scale for these bars. It is clear that the small-
est triangular filter on f has the largest number of notes. As
the filters on f become larger, the number of notes quickly
becomes lower and flattens at around 6 notes.

There are 12477 cents between our reference frequency
g and 22050Hz, which is just over 124 musical notes. Re-
examining the discretization as a percentage, the smallest
bucket covers 39.5% of the musical scale, and the largest
bucket covers 0.048%.

In practice the most common value of M for MFCCs is 40.
At this value the smallest filter covers 23.5 musical notes,
and the largest covers 1 musical note. Intuitively the small-
est filter still seems much too large. Most musical notes are
played at a relatively low frequency; the higher frequencies
often describe harmonics of the lower note. Texture should
describe all the elements, which when put together form a
sound. If 23.5 notes are all grouped together, one can argue
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these elements are too coarsely discretized, and thus the best
texture description is not used.

We propose that M should be a more carefully consid-
ered parameter, and should be much larger than is typically
used. There is one final consideration however; increasing
M will decrease the size of the smallest filter. M is bounded
by the point at which the size of the smallest filter becomes
less than the resolution of the frequency spectrum, at which
point duplicate and redundant information will be produced.
The selection of M is therefore a balancing act between the
resolution of the smallest and largest filters. As more filters
are used, the resolution of higher filters will become much
less than 1 musical note.

To denote the number of filters which are being used by
any representation we will append the number in brackets.
For example, when 60 filters are used the representation will
be denoted as MFS(60).

Discrete Cosine Transform
The final step in Figure 1 is the Discrete Cosine Transform
(DCT), which takes the mel-frequency spectrum as an input,
and outputs a description of its shape, the mel-frequency
cepstrum. The coefficients of this cepstrum are the MFCC
representation.

The description provided by the DCT is a set of weights,
each correlating to a specific cosine curve. When these
curves are combined as a weighted sum, the mel-frequency
spectrum is approximated. To calculate the mel-frequency
cepstrum, X , the DCT is applied to the mel-frequency spec-
trum x as follows
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for n = 0 to N �1. Typically M is 40, and N is 13.

Discrete Cosine Transform Observations
The idea behind using DCT for texture representations
comes from the speech processing domain. Speech has two
key characteristics: formants are the meaningful frequency
components which characterise a sound; and breath is the
general noise throughout all frequency components, and
thus much less meaningful.

For speech, DCT offers strong energy compaction. In
most applications breath is undesirable, and so only the first
few DCT coefficients need to be retained. This is because
these coefficients capture low-frequency changes within the
mel-frequency spectrum. The high frequency detail primar-
ily characterised by noisy breath is not needed. Most com-
monly 13 coefficients are retained when 40 mel filters are
used. Retaining 40 coefficients would give a very close ap-
proximation of the mel-frequency spectrum. Some authors
do not retain the 0th, DC coefficient in their representation.

For music, the concepts of formants and breath do not ap-
ply. It is true that a vocalist is common, meaning formants
and breath are present, however, music is also present. If
only a few coefficients are retained from the DCT, then much

information about percussion and the general feel of the mu-
sic is lost. In music the mel-frequency spectrum is much
more rich, and this detail is important to describing texture.

One could argue then that for music more coefficients
should be retained from the DCT. The primary reason for
using the DCT however still stems from the idea of separat-
ing formants and breath, or information from noise. We pro-
pose that the DCT should not be used for a mel-frequency
based texture representation for music. All of the frequency
information is potentially meaningful, and therefore should
not be summarised. The special case against this argument
is live music, where noise may still be present. However,
for general music retrieval, most music is studio recorded,
where a lot of effort is taken to remove all noise.

When no DCT is used for describing texture we denote
the representation mel-frequency spectrum (MFS). When
the DCT is used we denote the representation MFCC. When
40 mel filters are used we denote the representations as
MFS(40) or MFCC(40).

Experiment Design
We evaluate how MFS performs at the task of music rec-
ommendation. We construct this as a query-by-example
task, where 10 recommendations are provided for any given
query. 10-fold cross validation is used, and our results are
compared to those achieved by MFCC.

Dataset
The dataset we use consists of 3174 tracks by 764 artists,
and are from 12 distinct super-genres. The most common
genres are Alternative (29%) and Pop (25%). Each track in
our collection is sampled at 44.1kHz, and processed using a
non-overlapping samples of size of 213 (186ms). Each fre-
quency spectrum computed has a maximum frequency of
22.05kHz, and a bin resolution of 5.4Hz. For each sample
we use a Hamming window before computing the DFT, and
then extract each of the texture representations.

Each model is constructed using texture vectors, extracted
from each sample in a given track. We extract texture vectors
for both MFS and MFCC using 40, 60, 80, 100, and 120
filters. For 40 filters the smallest bucket contains just over
25 notes, and the largest contains just over 1 note. For 120
filters the smallest bucket contains 4 notes, and the largest
contains 0.5 notes.

Recommendation Models
We construct three well-known models to avoid drawing
conclusions specific to one type of recommender model.

Latent-Semantic-Indexing of Mean-Vector (LSA) - A
mean texture vector is first computed for each track, where
each dimension corresponds to the mean value across all of
the track’s texture vectors. We then construct a track-feature
matrix using these mean texture vectors. The JAMA pack-
age (Hicklin et al. 2000) is used to generalise this matrix by
LSI, and each query is projected into this generalised search
space. Recommendations are made based on Euclidean dis-
tance as in previous work (Horsburgh et al. 2011).
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Vocabulary-Based Model (VOC) - Vocabulary-Based
methods are often found in hybrid recommender systems,
and so we examine this popular model. To generate a vocab-
ulary we use the k-means algorithm to cluster 20000 tex-
ture vectors selected at random from all tracks. For each
track we count the number of samples which are assigned
to each cluster, and construct a cluster-track matrix. A TF-
IDF weighting is applied, and cosine similarity used to make
recommendations.

Gaussian Mixture Model Approach (GMM) - A GMM
models the distribution of a tracks’ texture vectors as a
weighted sum of K more simple Gaussian distributions,
known as components. Each weighted component in the
GMM is described by its mean texture vector and covariance
matrix (Aucouturier, Pachet, and Sandler 2005). We learn a
GMM for each track using the Weka implementation of the
EM algorithm (Hall et al. 2009).

If each track were represented by a single Gaussian dis-
tribution, recommendations can be made using Kullback-
Leibler divergence. With GMMs however each track is
represented by K weighted Gaussian distributions, and so
we make recommendations based on an approximation of
Kullback-Leibler divergence (Hershey and Olsen 2007). For
each component in a query track’s GMM, we compute
the minimum Kullback-Leibler divergence to each compo-
nent in a candidate track’s GMM. The estimated Kullback-
Leibler divergence between the query track and the candi-
date recommendation is calculated as the weighted average
of the minimum divergence between all components. Rec-
ommendations are ranked using this estimated Kullback-
Leibler divergence.

Evaluation Method
Our evaluation method uses data collected from over
175,000 user profiles, extracted from Last.fm using the Au-
dioScrobbler API1 over 2 months. For each user we record
tracks which they have said they like. On average, each user
in our collection likes 5.4 songs. To measure recommenda-
tion quality we use the association score that we developed
in previous work (Horsburgh et al. 2011).
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The number of listeners is estimated using statistics from
Last.fm, and assumes listens are independent. Using this
evaluation measure allows us to understand the likelihood
that someone who likes track t

i

will also like t

j

.

Results
We compare our MFS music-inspired texture with MFCCs
for the task of music recommendation using 40 filters. We
then investigate the effects of increasing the number of filters

1http://www.last.fm/api

used, and compare the best MFS and MFCC representations
for each model.

MFS vs MFCC
Figure 3 shows the results using MFS and MFCC for each
model. The vertical axis shows the association score, and the
horizontal axis shows the number of recommendations eval-
uated. Each value shown is the average association score at
the number of recommendations made. All error bars show
significance at a 95% confidence interval.

Figure 3: Comparison of MFS and MFCC using 40 filters

MFS-LSI achieves a significantly better association score
than all other models and representations. MFS-VOC pro-
vides a significant quality increase over MFCC-VOC when
2 or more recommendations are made. MFS out performs
MFCC with LSI and VOC because both models group data
at the collection level; LSI finds associations between di-
mensions in the texture vectors, and VOC groups texture
vectors into clusters. With MFCC, each texture vector is first
summarised by DCT without respect to the collection, and
therefore LSI and VOC are not able to model the data effec-
tively.

Unlike LSI and VOC, for 40 filters MFCC-GMM is sig-
nificantly better than MFS-GMM. The reason for this is that
GMM behaves differently; each model is constructed for a
single track. We learned each GMM using a diagonal co-
variance matrix, which has the effect of making dimensions
in the texture vector independent. This means associations
between dimensions are not learned.

Effect of Number of Filters
We want to explore the effect of increasing the number of
filters on recommendation, and so examine a more simple
recommendation task. Figure 4 shows the average associa-
tion score of the top 3 recommendations for each model. The
horizontal axis is grouped by the model used, and each bar
corresponds to a given number of filters.
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Figure 4: Effect of filters on MFS

Increasing the number of filters significantly increases
the recommendation quality of MFS-GMM, does not sig-
nificantly affect MFS-VOC, and significantly decreases the
quality of MFS-LSI. GMM is improved because more in-
dependent information is available to the model, and so
more meaningful distributions can be learned. VOC does not
change because a similar vocabulary is formed regardless
of the number of filters. The performance of LSI decreases,
showing that the model can generalise a low number of fil-
ters more effectively. Figure 5 shows the effect changing the
number of filters for MFCC. No correlation appears between
the number of filters used and association score.

Figure 5: Effect of filters on MFCC

Figure 6 is in the same format as Figure 3, and shows MFS
and MFCC when the best performing number of filters are
used for each model. We do not show VOC because neither
representation was improved by using more filters. Adding
more filters improved the MFCC-LSI model, but is still out-
performed by MFS-LSI.

The solid black line in Figure 6 shows MFS(40)-
GMM, and the solid grey line shows MFS(120)-GMM. The
MFS(40)-GMM results are included in the Figure to illus-
trate the improved recommendation quality achieved by in-
creasing the number of filters for MFS-GMM. For the first
5 recommendations, MFS-GMM is now significantly bet-
ter than MFCC-GMM. In comparison, there is only a small
improvement of MFCC-GMM through increasing the filters
used.

Figure 6: Comparison of best MFS and MFCC by model

Conclusion
The entire mel-frequency spectrum is important when de-
scribing the texture of music. When our MFS representa-
tion is used, all of the texture information is available to the
models we use, leading to improved recommendation qual-
ity over MFCC. When MFCC is used, the DCT provides
a summarised description of the mel-frequency spectrum,
which does not allow a recommender model to learn what
is important. Our results show that by not using the DCT,
MFS achieves significantly better recommendation quality
for each of the three models evaluated.

Traditional music texture representations are extracted
with a standard number of filters, and therefore resolution.
Our results have shown however that to extract a more mean-
ingful music-inspired texture representation, one must also
consider how the textures will be modelled. This link be-
tween representation and model is important, and there is no
single MFS resolution which is optimal for the three models
we have evaluated.

In each of the recommender models presented, the be-
haviour for MFS is more predictable than MFCC. With
GMM more filters are best because the GMM is able to de-
scribe the information more meaningfully than DCT. With
VOC there is no significant difference, and for LSI fewer fil-
ters are best. With MFCC, there are no relationships which
emerge between the number of filters used and the recom-
mender model.

The LSI model clearly outperforms both MFS and GMM
for texture-based music recommendation. However, both
VOC and GMM are commonly found in hybrid recom-
mender systems. Future work therefore will explore how our
novel approach to music texture contributes to hybrid rec-
ommender systems. It is hoped that by providing a stronger,
predictable and robust texture component, increased recom-
mendation quality may be achieved using hybrid representa-
tions.
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1. INTRODUCTION
Digital music systems are a new and exciting way to dis-

cover, share, and listen to new music. Their success is so
great, that digital downloads are now included alongside tra-
ditional record sales in many o�cial music charts [10]. In
the past listeners would rely on magazine, radio, and friends
reviews to decide on the music they listen to and purchase.
In the internet age, this style of finding music is being su-
perseded by music recommender systems.

The shift from listening to hard copies of music, such as
CDs, to online copies like MP3s, presents the interesting new
challenge of how to recommend music to a listener. In such
recommender systems, a user will typically provide a track
that they like as a query, often implicitly as they listen to
the track. The system must then provide a list of further
tracks that the user will want to listen to. Many websites
exist that provide such recommender systems, and many of
the systems provide very good recommendations. However,
there are still scenarios that these systems struggle to han-
dle, and where recommendations can be unreliable.

Online music systems allow users to tag any track with
a free-text description. A recommender system can then
determine the similarity between tracks based on these tags,
and make recommendations. However, when a track is new
to the system it will have no tags. This means that the track
is never recommended, and in turn, the track is very unlikely
to be tagged. Turnbull et. al [11] show that social tags tend
to be very sparse, and that a huge popularity bias exists.
This is further confirmed by data released by Last.fm [7] as
part of the million song dataset [3]: from a vocabulary of
over 500000 tags, each track, on average, has only 17 tags;
46% of tracks have no tags at all.

This scenario is often referred to as the cold-start prob-
lem; the results of which means large volumes of music are
excluded from recommendations, even if they may be an
excellent recommendation. The aim of our hybrid repre-
sentation is to reduce the e↵ects of the cold-start problem,
therefore increasing the recommendation quality of the over-
all system.
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2. RELATED WORK
E↵ects of cold-start can be reduced by learning tags for a

track, a task referred to as auto-tagging [2, 9]. Most auto-
tagging systems first extract audio features for many short
time-frames within a track, and then model this bag-of-
frames. A growing trend has been to use Gaussian Mixture
Models [1], which describe the important clusters within a
tracks’ bag-of-frames. Tags are modelled in a similar man-
ner, and correlations between the audio and tag models are
used to learn auto-tags.

Hybrid representations are also becoming a prominent
way of addressing the cold-start problem [8, 12]. In previ-
ous work we defined a representation that incorporates both
audio and tag features, and generalises the representation
using latent-semantic analysis (LSA) [5]. In the LSA con-
cept space, tracks without tags belonged to concepts with
tags. This approach increased the inclusion of cold-start
tracks in recommendations.

Hybrid methods are good for cold-start, but they are often
harmful when a track is well-tagged. The reason for this is
the direct inclusion of content in the representation; content
is a much weaker representation than tags.

3. HYBRID TAG REPRESENTATION
We propose that content should be used to strengthen

other representations, but should not be integrated into other
representations. Our new hybrid representation therefore
does not include the content representation directly, but in-
stead uses it to learn a stronger representation when appro-
priate.

To construct our hybrid representation we first define a
content-based recommender system. This is then used to
learn a pseudo-tag representation, which must achieve bet-
ter recommendation quality than the content-based method.
Our hybrid representation is a dynamic combination of both
tags and pseudo-tags. In this section we will describe each
representation.

Content. A content representation for a track is created
by extracting our music-inspired texture representation Mel-
Frequency Spectrum (MFS) [4] from the track audio. For
each track, we first extract one MFS texture-vector for every
186ms of audio, and then compute a mean texture-vector.
Finally, LSA is used to generalise all of the mean texture-
vectors in our collection. Using the generalised MFS vectors,
we are now able to provide content-based recommendations
by computing the Euclidean distance between tracks’ repre-
sentations; in our evaluation we will refer to this method as
content.



Pseudo-tags. Recommendation using the content method
provides a list of tracks with similar content to a query track.
To generate pseudo-tags, we take advantage of this list of
similar tracks, and any tags which represent them. Given
a list of N nearest neighbours of a track, we compute a
pseudo-tag vector p as a weighted sum of the nearest neigh-
bours tag-vector weights,

pi =
NX

n=1

✓
1� n� 1

N

◆
ti (1)

where n is the position of the track in the nearest neigh-
bour retrieval, and N is the number of nearest neighbours
retrieved. ti is the term-frequency of the ith tag in the tag
vector of the track at position n. The bracketed part of
the equation acts as a weighting function, giving a higher
weight to tracks that are most similar. Recommendations
made using these pseudo-tag vectors will be referred to as
the pseudo-tag method.

In our final recommendation approach, we do not want to
use only pseudo-tags, since these ignore tags already present
in the collection. We therefore integrate the pseudo-tags we
learn with the existing tag-vector of each track. However,
we also do not want to decrease the e↵ectiveness of exist-
ing track representations that do not su↵er from cold-start.
When our recommender system is using a tag-only represen-
tation, we will refer to this as the tag method.

Hybrid. E↵ective use of pseudo-tags can be achieved by
creating a tag + pseudo-tag hybrid, which balances the influ-
ence of both tags and pseudo-tags. We therefore determine
the number and weighting of pseudo-tags that we use based
on how well-tagged a track is. If a track su↵ers from cold-
start, many pseudo-tags will be used, and they will be given
a high weighting. Conversely, if a track is well-tagged, very
few pseudo-tags will be used, and they will be given a low
weighting. Our final hybrid representation h is computed as

hi = ↵pi + �ti (2)

where ↵ is the weight of pseudo-tag vector p, and � is the
weight of tag-vector t. i is the index of the tag being com-
puted. When limiting the number of pseudo-tags being used,
we set the weights of unwanted pseudo-tags to 0. The exact
thresholds and weightings that we used were learned from
a training set in our collection. We will refer to our hybrid
representation as hybrid.

4. EVALUATION
The objective of our evaluation is to measure the perfor-

mance of hybrid recommendation, and to examine the e↵ect
our representation has on cold-start tracks. A single track
is provided as a query, and we measure the quality of rec-
ommendations made by our recommender system.

The dataset we are using contains 3174 tracks by 764
artists, split across 12 distinct super-genres. We collect
the tag representations of each track using the Last.fm Au-
dioscrobbler API [6]. This API provides a normalised tag-
frequency vector, where the most popular tag for any given
track has a weight of 100. The average number of tags as-
signed to a track in our collection is 34, with a standard
deviation of 24.4. The maximum number of tags a track has
is 100. Cold-start is also present in our collection, with 25%

of tracks having fewer than 10 tags, and 3% of tracks having
no tags.

We use 10-fold cross validation, and each track occurs
in exactly one fold. For each query, our recommender sys-
tem provides 10 recommendations. To measure the qual-
ity of these recommendations we use the association score
measure, which we developed in previous work [5]. The
data used to calculate the association score was collected
for 175, 000 Last.fm users over a period of 2 months. This
score estimates the relationship between tracks based on the
proportion of listeners who liked both tracks, computed as

association(si, sj) =
likes(si, sj)

listeners(si, sj)
(3)

where si and sj are the query and recommended tracks.
listeners(si, sj) is the number of people who have listened to
both track si and track sj , and likes(si, sj) is the number of
people who have liked both si and sj . A score of 0 indicates
no evidence of users liking a recommendation, and a score
of 1 indicates that all listeners of the query and recommen-
dation also liked both the query and the recommendation,
that is, the recommendation is of a high quality.

5. RESULTS
We first evaluate the performance of our pseudo-tag rep-

resentation, to validate that it is meaningful. Figure 1 com-
pares the recommendation quality of pseudo-tags and con-
tent. The horizontal axis shows the number of recommen-
dations made, and the vertical axis shows the association
score. The values shown are the mean average association
score at the given number of recommendations, and error
bars show 95% confidence.

Content-based recommendation is illustrated by the grey
dashed line, and pseudo-tags by the black dashed line. When
1 recommendation is made, both methods are comparable;
when 2 or more recommendations are made, pseudo-tags
generate significantly better recommendations than content.
While pseudo-tags are learned using content, they do not
necessarily always describe content, and so tags, which de-
scribe other features, will also be present.

Figure 2 shows recommendation quality using tags and
our hybrid representation, in the same format as the previ-
ous figure. For all numbers of recommendation, the hybrid-
based approach o↵ers significantly better recommendations
than the tag-based method, and much better than either
content or pseudo-tags alone. Increased quality is achieved
because cold-start tracks now have a meaningful represen-
tation, and non-cold start tracks are still allowed to use the
full descriptive power of their tag representation.

6. CONCLUSIONS
The motivation for this work was to increase the perfor-

mance of a music recommender system by reducing the ef-
fects of the cold-start problem. We have shown that recom-
mendations made using our pseudo-tag representation are
of higher quality than when a state-of-the-art content-based
representation is used. But, integrating these pseudo-tags
with tags, to create our hybrid representation, provides sig-
nificantly better quality recommendations than when using
a tag-based representation. In future work we aim to exam-
ine in closer detail the e↵ects our hybrid representation has
on cold-start tracks.
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Figure 1: Pseudo-tag vs. Content Quality

Figure 2: Hybrid vs. Tag Quality
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