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ABSTRACT  

 

The purpose of this study was to compare the biomechanics of the traditional squat with two 

popular exercise variations commonly referred to as the powerlifting squat and box squat. 

Twelve male powerlifters performed the exercises with 30, 50 and 70% of their measured 

1RM, with instruction to lift the loads as fast as possible. Inverse dynamics and spatial 

tracking of the external resistance were used to quantify biomechanical variables. A range of 

significant kinematic and kinetic differences (p<0.05) emerged between the exercises. The 

traditional squat was performed with a narrow stance, whereas the powerlifting squat and box 

squat were performed with similar wide stances (48.3 ± 3.8cm, 89.6 ± 4.9cm, 92.1 ± 5.1cm, 

respectively). During the eccentric phase of the traditional squat the knee travelled past the 

toes resulting in anterior displacement of the system center of mass (COM). In contrast, 

during the powerlifting squat and box squat a more vertical shin position was maintained, 

resulting in posterior displacements of the system COM. These differences in linear 

displacements had a significant effect (p<0.05) on a number of peak joint moments, with the 

greatest effects measured at the spine and ankle. For both joints the largest peak moment was 

produced during the traditional squat, followed by the powerlifting squat, then box squat.  

Significant differences (p<0.05) were also noted at the hip joint where the largest moment in 

all 3 planes were produced during the powerlifting squat. Coaches and athletes should be 

aware of the biomechanical differences between the squatting variations and select according 

to the kinematic and kinetic profile that best match the training goals. 
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INTRODUCTION 

 

The squat is one of the most frequently utilized resistance exercises for strength development 

in both athletic and rehabilitation settings. As a result of its widespread use, the exercise has 

been the focus of a large number of biomechanical studies (10-12, 19, 21, 23, 24, 28). The 

results present the squat as a complex movement which requires coordinated actions of the 

torso and all major joints of the lower extremities (10, 20). Furthermore, this complexity 

enables individuals to select different movement strategies to perform the exercise. From a 

performance enhancement and injury risk perspective, it is commonly recommended that 

movement strategies used to perform the squat should minimize anterior displacement of the 

knee (5). This recommendation is based on the reasoning that maintenance of a near vertical 

shin position during the squat reduces internal forces at the knee and emphasizes recruitment 

of the hip extensor muscles (5, 6). The first study to investigate the effects of controlling 

anterior knee displacement during the squat was conducted Fry et al. (12). The investigators 

measured joint torques produced at the hip and knee when squats were performed under two 

conditions with differing amounts of anterior knee displacement. During the first condition 

subjects were permitted to displace the knee beyond the toes, whereas, during the second 

condition displacement was restricted by placing a vertical board at the subjects’ feet. The 

results showed that creating a more vertical shin position by restricting anterior displacement 

decreased torque at the knee whilst concomitantly increasing torque at the hip. Fry et al. (12) 

also reported that restricting anterior displacement of the knee created a more horizontal torso 

position which suggested greater shear forces were developed at the lumbar spine. The 

authors proposed that a more horizontal posture was adopted to compensate for changes in 

positioning of the lower leg and maintain the system center of mass (COM) over the base of 

support (12). The results obtained by Fry et al. (12) have caused some to propose that 



restricting anterior displacement of the knee during squatting may create potentially injurious 

forces at the lower back (6, 12) 

 

The intention to restrict anterior displacement of the knee and maintain a near vertical shin 

position is a key feature of the movement strategies used by powerlifters to perform the squat. 

To achieve this posture, many powerlifters adopt a wide stance and focus on moving the hips 

posteriorly during the descent phase of the movement. In practical settings, this movement 

strategy is often referred to as “sitting back” and is the characterisation of what is considered 

to represent the powerlifting squat (6, 14) (Figure 1, middle). In contrast to result presented 

by Fry et al. (12), observation of skilled powerlifters suggests that some individuals can squat 

with relatively upright torso positions whilst restricting anterior displacement of the knee. At 

present, is not fully understood how these individuals successfully perform this task. 

However, to develop proficiency in the movement many powerlifters perform the squat onto 

a box placed behind the lower leg (26) (Figure 1, bottom). The box enables the performer to 

maximize posterior displacement of the hip and maintain a vertical shin position by acting as 

a safety device to catch the individual if the COM is moved beyond the base of support. Both 

the powerlifting squat and the box squat as it is commonly known are now popular exercises 

used by athletes other than powerlifters to develop strength and power (6, 19). However, 

some researchers and practitioners have questioned the safety and effectiveness of both 

exercises (4, 6). To date, only a limited number of studies have quantified biomechanical 

variables during the powerlifting squat or box squat. Multiple investigators have collected 

data from squats performed during powerlifting competitions (10, 14, 21). However, research 

has established that techniques used by individual powerlifters are varied and that some 

choose not to restrict anterior displacement of the knee (14). Much less information is 

available regarding the biomechanics of the box squat. McBride et al. (19) compared kinetic 



and electromyographic data of powerlifters performing the box squat and what was described 

as a standard squatting movement. The authors reported only minimal differences in peak 

force and muscle activity measured at the thigh. The experimental protocol utilized by Mc 

Bride et al. (19) did not calculate joint specific data or provide kinematic information 

regarding the movement strategies used by the powerlifters to perform each exercise. Due to 

the limited information available at present, coaches and athletes are unable to make 

informed judgements regarding the appropriateness of the powerlifting squat or box squat. 

Therefore, it was the principal aim of this study to provide a detailed kinematic and kinetic 

comparison of each exercise with additional analysis of the traditional squat to provide a 

reference. In fulfilling this aim, the study objectives included data collection for each exercise 

over a range of loads performed with the intent to overcome the resistance as fast as possible 

to simulate the training protocols used frequently to develop muscular strength and power.  



METHODS 

 

Experimental Approach to the Problem. A cross-sectional, repeated measures design was 

used to quantify and compare kinematics and kinetics of the traditional squat, powerlifting 

squat and box squat. The experimental approach provided original information regarding 

movement strategies used to perform each exercise and comparative data to assist 

practitioners in exercise instruction and training prescription. The subjects comprised well-

trained powerlifters with extensive experience in performing each exercise. Data were 

collected for each subject over two sessions separated by one week. Session 1 was performed 

in the gymnasium and involved one-repetition maximum (1RM) testing in the squat. Session 

2 was performed in the laboratory where subjects performed maximum speed repetitions for 

each exercise using loads of 30, 50 and 70% of their recorded 1RM. Kinematics and kinetics 

were analysed during session 2 only.  

 

Subjects. Twelve male powerlifters participated in the study (age: 27.2 ± 4.2 yr; stature: 

180.3 ± 4.8 cm; mass: 100.2 ± 13.1 kg; squat 1RM:  220.2 ± 36.2 kg; resistance training 

experience: 9.2 ± 3.1 yr). All subjects had a minimum of 3 yrs experience performing each 

exercise. The study was conducted three months after a regional competition where the 

majority of subjects were nearing the end of a training cycle aimed at matching or exceeding 

their previous competition performance. Subjects were notified about the potential risks 

involved and gave their written informed consent to be included. Prior approval was given by 

the ethical review panel at Robert Gordon University, Aberdeen, UK.  

 

1RM testing. All subjects chose to perform the squat 1RM test using the powerlifting 

technique they used in competition. No supportive aids beyond the use of a weightlifting belt 



were permitted during the test. Based on a 1RM load predicted from performance in recent 

training sessions subjects performed a series of warm-up sets and up to 5 maximum attempts. 

A minimum of 2 minutes and a maximum of 4 minutes recovery time was allocated between 

attempts (2). Within this time frame subjects chose to perform the lifts based on their own 

perception of when they had recovered. All repetitions were performed to a depth where the 

thighs became parallel with the floor (2). Each attempt was deemed successful if the 

appropriate depth was reached and the barbell was not lowered at any point during the ascent 

phase. 

 

Squat variation testing. Prior to performing maximum speed repetitions subjects engaged in 

their own specific warm-up. Generally, this began with 3 to 5 sets of light squats (e.g., < 40% 

1RM) for 6 to 10 repetitions. All subjects then performed a series of maximum speed 

repetitions prior to any data collection. Once suitably prepared, subjects performed all three 

exercises with loads of 30, 50, and 70% of their predetermined 1RM. One trial comprising 

two repetitions was performed for each load and condition to assess intra-trial reliability. The 

nine trials were performed in a randomized order with a minimum 2 minute rest period 

allocated. A longer rest period of up to 4 minutes was made available if the subject felt it 

necessary to produce a maximum performance. For the traditional squat subjects were 

instructed to allow the knee to travel past the toes during the descent phase. For the 

powerlifting squat and box squat subjects were instructed to move the hip posteriorly and try 

to maintain as vertical a shin position as possible. During the box squat subjects were 

permitted to displace the COM behind the base of support during the final portion of the 

descent and were instructed to pause for a minimum of 1 second on the box. Instructions 

were given to perform the concentric portion of each repetition with maximum effort 

attempting to lift the load as fast as possible whilst maintaining contact with the ground 



throughout the movement. For each trial the repetition that produced the greatest peak barbell 

velocity was selected for further analysis.   

 

All testing was completed between the hours of 17:00 and 20:00 to correspond with the 

powerlifters’ regular training times. Subjects followed their individual nutritional practices 

used prior to training sessions. Consumption of water (500 ml) was permitted during tests and 

room temperature was maintained between 22 and 25°C. Consistent verbal encouragement 

was provided during both testing sessions with subjects frequently reminded to lift each load 

as fast as possible.   

 

Biomechanical instrumentation. A marker was placed on each of the following bony 

landmarks: spinous process of the 7th cervical vertebra, spinous process of the 10th cervical 

vertebra, suprasternal notch, inferior tip of the xiphoid process, left and right anterior superior 

iliac spine, left and right lateral femoral epicondycle, left and right lateral malleolus, and left 

and right head of the 2nd metatarsal. Additionally, markers were placed on the sacrum 

midway between the posterior superior iliac spines and bilaterally at midtibia, midfemur and 

the calcaneous. The geometric center of the external load was tracked in three-dimensional 

space by placing markers at the ends of the barbell and calculating the position of the 

midpoint. Trials were performed with a separate piezoelectric force platform (Kistler, Type 

9281B Kistler Instruments, Winterthur, Switzerland) under each foot, in a capture area 

defined by a nine-camera motion analysis system (Vicon MX, Vicon Motion Systems, 

Oxford Metrics, UK). Marker position and ground reaction force (GRF) data were captured at 

200 and 1200Hz respectively.  

 



Data processing and reduction. Based on a frequency content analysis of the three-

dimensional coordinate data, marker trajectories were filtered using a digital fourth-order low-

pass Butterworth filter with a cut-off frequency of 6 Hz. A three-dimensional lower body 

model (16) and upper body model (13) were used to calculate joint positions and angles of the 

torso, hip, knee and ankle, as well as the position of the 5th lumbar vertebra. Linear and 

angular velocities were calculated by differentiating position data with a Lagrangian five 

point differentiation scheme. Joint moments were calculated using inverse dynamics and 

anthropometric data with Vicon Nexus 1.7 processing software (Oxford Metrics, Oxford, 

UK). The moment arm created by the external resistance was also calculated for each joint. 

This was computed by measuring the horizontal distance from the geometric center of the 

barbell to the respective joint centers. Kinematics and kinetics for the hip, knee and ankle 

were calculated for both left and right sides and then averaged to obtain single values. 

Squatting technique was assessed by using quantitative and qualitative means. Quantitatively, 

technique was assessed by measuring joint angles during the first frame of the concentric 

movement. For qualitative analyses representative joint angle-time curves were selected and 

compared across techniques. Similar quantitative and qualitative analyses have been used 

previously to describe techniques used to perform the squat (10, 12). Peak power and rate of 

force development (RFD) were also measured to assess the external performance of each 

squat. Instantaneous power values were calculated as the product of the vertical GRF and 

corresponding vertical barbell velocity. RFD was calculated from the slope of the vertical 

GRF-time curve extending from the transition between eccentric and concentric phases to the 

maximum value of the first peak.  

 

 



Statistical Analysis. Intra-trial reliability for each variable analysed was assessed by 

intraclass correlation coefficient (ICC). As recommended by Baumgartner (3), ICCs were 

calculated with a correction factor for number of repetitions performed per trial (n=2) and 

number of repetitions used in the criterion score (n=1).  Intra-trial reliability for all variables 

reported was above 0.88. Potential differences in kinematic and kinetic variables measured 

during the squats were analyzed using a 3x3 (squat type x load) repeated measures ANOVA. 

Significant main effects were further analyzed with Bonferroni adjusted pair-wise 

comparisons. Statistical significance was accepted at P < 0.05. All statistical procedures were 

performed using the SPSS software package (SPSS, Version 17.0, SPSS Inc., Chicago, IL).  

  



RESULTS  

 

Linear Kinematics. The powerlifting squat and box squat were performed with a 

significantly wider stance than the traditional squat (89.6 ± 4.9cm, 92.1 ± 5.1cm, 48.3 ± 

3.8cm, respectively). Linear displacements of the barbell and joint centers in the anterior-

posterior direction revealed differences across techniques (Table 1). The largest effects were 

noted during the eccentric phase where greater posterior hip displacements and reduced 

anterior knee displacements occurred during the powerlifting squat and box squat compared 

to the traditional squat. These differences were reflected in the overall displacement of the 

system COM. During the eccentric phase the system COM was displaced anteriorly during 

the traditional squat and posteriorly during the powerlifting squat and box squat.  

 

Angular Kinematics. Potential differences in squatting posture were primarily assessed by 

recording segmental angles during the first frame of the concentric phase. The values were 

averaged across loads as the external resistance was found to have minimal effect (Table 2). 

Similar torso angles were obtained for the traditional squat and powerlifting squat. However, 

at the start of the concentric phase a significantly more upright torso was recorded for the box 

squat. Angular differences across the exercises were observed at all three joint axes of the 

hip. The wide stance squats (powerlifting and box) displayed significantly greater abduction 

angles than the traditional squat. In addition, significantly greater hip flexion and internal 

rotation was recorded during the powerlifing squat compared with the other exercises. 

Significant differences were also obtained for the knee and ankle, with greater flexion angles 

obtained at both joints during the traditional squat.  

 



A qualitative assessment of the lifting technique adopted for each exercise was obtained by 

selecting representative joint angle-time curves. Comparatively homogenous traces were 

obtained for the traditional squat (Figure 2). The results illustrate that the hip and knee flex 

and extend together with similar magnitudes. Also, similar patterns of flexion then extension 

were observed for the torso and ankle during the traditional squat. Assessment of the joint 

angle-time curves for the powerlifting squat and box squat revealed subjects selected one of 

two distinct techniques to perform the movement (Figures 3 and 4 illustrate representative 

curves for the distinct patterns used in the powerlifting squat). The first technique exhibited 

similar flexion and extension angles for the hip and knee as observed during the traditional 

squat (Figure 3). However, the movement also included substantially more rotation of the 

femur around the vertical and anterior-posterior axes than observed during the traditional 

squat. The second technique observed exhibited two distinct phases during the eccentric 

portion of the movement (Figure 4). Initially, movement was isolated in the sagittal plane at 

the hip joint. Upon reaching a critical hip flexion angle the knee and ankle simultaneously 

flexed along with concurrent abduction and internal rotation of the femur. Whilst the same 

overall movement patterns were observed for the powerlifting squat and box squat, the actual 

magnitude of torso inclination and ankle flexion during the eccentric phase were reduced 

when the box was introduced.  

 

Angular Kinetics. Peak joint moments and moment arms are displayed in Table 3. Moment 

arms were calculated relative to the barbell center and correspond with the time interval of 

the peak joint moment. Positive values indicate the barbell was anterior to the joint center and 

negative values indicate a posterior barbell location. Significant differences were obtained for 

all joint moments and moment arms across the exercises. The greatest differences in peak 

joint moments were recorded at the spine and ankle. At both joints, the largest peak moments 



were produced during the traditional squat, followed by the powerlifting squat, then box 

squat. The addition of a box resulted in significant changes to a number of moment arms and 

peak joint moments. In particular, the use of a box decreased peak extension moments at the 

spine and hip and increased peak extension moments at the knee.  

 

External Kinematics and Kinetics. The external stimulus of each exercise was assessed 

through measurement of the GRF, velocity, power and RFD. The vertical GRF maintained an 

overall similar profile for each exercise across loads. However, it was observed that as the 

external load increased the vertical GRF-time curve became more bimodal, with an increase 

in the relative size of the second peak. The group average vertical GRF-time curves 

performed with a load of 70% 1RM are displayed in Figure 5. The greatest differences in 

vertical GRF were observed during the box squat. There were no sharp increases in force 

production during the transition between eccentric and concentric phases as was evident with 

the other exercises. In addition, as the individual sat and paused there was a gradual transfer 

of load from the system to the box resulting in a substantial reduction in force production. 

Across the loading conditions, significantly greater peak vertical GRF was obtained for the 

traditional squat and powerlifting squat compared to the box squat (Table 4). Significant 

differences were also obtained for peak velocity, peak power and RFD. The greatest 

differences were obtained for RFD where 3- to 4-fold larger values were obtained for the box 

squat.     

 

 

 

 

 



DISCUSSION 

 

The results of the present study reveal significant biomechanical differences between the 

traditional squat and two of its most popular variations, the powerlifting squat and box squat. 

One of the most significant technical differences noted was the stance width used for each 

exercise. All of the athletes in the present study self-selected a narrow stance for the 

traditional squat and a wide stance for the powerlifting squat and box squat. Previous 

research investigating the effects of stance width on squatting biomechanics has reported a 

number of findings similar to the results obtained here (10). Using video data collected 

during a powerlifting competition, Escamilla et al. (10) reported that athletes performing 

wide stance squats exhibited greater hip flexion and smaller plantarflexion angles than those 

performing narrow stance squats. These results correspond with the significant differences in 

joint angles recorded in the present study between the narrow stance traditional squat and the 

wide stance powerlifting squat. In addition, Escamilla et al. (10) reported similar effects of 

stance width on hip and ankle moments. In particular, wide stance squats were found to 

produce significantly larger hip extension moments and smaller ankle extension moments 

(10). In contrast to the findings of the present study, Escamilla et al. (10) reported that overall 

joint-time curves for the torso and lower body were similar between narrow and wide stance 

squats. However, data collected by Escamilla et al. (10) were recorded during an active 

competition and the authors were unable to influence the lifting techniques employed; 

whereas, in the present study athletes were instructed to let the knee travel past the toes 

during the traditional squat and to maximize posterior displacement of the hip during the 

powerlifting squat and box squat. These instructions resulted in different movement strategies 

beyond alterations to stance width. The joint-time curves for the traditional (narrow stance) 

squat were consistent across subjects and featured simultaneous flexion then extension of the 



hip and knee, with greater range of motion obtained at the knee joint (Figure 2). During the 

powerlifting squat and box squat (wide stance) two distinct techniques were observed. The 

first technique also featured simultaneous flexion then extension of the hip and knee. 

However, the movement was combined with significantly greater ab/adduction and 

int/external rotation of the femur compared to that measured during the traditional squat 

(Figure 3). The second technique observed during wide stance squats featured two distinct 

phases during the eccentric portion of the movement (Figure 4). The first phase consisted of 

isolated hip flexion to approximately 40 degrees. Upon reaching this point, the second phase 

of the movement was initiated and comprised rapid flexion of the knee and ankle, combined 

with substantial abduction and internal rotation of the femur. The different movement 

strategies selected were clearly influenced by the stance width adopted. When attempting to 

displace the knees past the toes a narrow stance may have been selected to facilitate tracking 

of the patella over large knee flexion angles. In contrast, a wide stance was most likely 

adopted when attempting to maximize posterior displacement of the hip in order to decrease 

the height of the system COM and increase overall stability. 

 

When discussing the advantages and potential risks associated with each type of squat, 

researchers and practitioners have generally focused on the kinetics associated with the 

exercise (6). Based largely on research conducted by Fry et al. 2003 (12), it is commonly 

believed that squats which minimize anterior displacement of the knee produce greater 

muscular forces at the hip and require a more horizontal torso position to remain balanced. 

Importantly, it is believed that this torso position results in larger forces and moments 

experienced at the lumbar spine, which increases the risk of developing lower back injuries. 

The results from the present study support claims that greater muscular forces are generated 

at the hip when attempting to maintain a more vertical shin position (6). This conclusion is 



based on significant differences in peak joint moments measured between the traditional 

squat and powerlifting squat. In contrast to the findings of Fry et al. (12) the results obtained 

here demonstrate that positioning of the torso is not dependent on the amount of anterior knee 

displacement. In addition, the largest peak moments at the L5/S1 joint in the present study 

were measured during performance of the traditional squat and not the powerlifting squat as 

would have previously been expected. Collectively, the results contradict previous 

suggestions that there is a greater risk of developing lower back injuries when performing 

variations such as the powerlifting squat. Contrasting results may be due to a number of 

methodological differences between the studies. Subjects recruited by Fry et al. (12) were 

recreationally trained and attempted to adopt similar movement strategies when performing 

the traditional squatting technique and the variation with restricted anterior knee 

displacement. Conversely, subjects in the present study were competitive powerlifters with 

enough experience in both exercises to select different movement strategies. Based on 

consistent technical features adopted by all athletes in the present study, it is clear that 

maintaining a relatively upright torso position whilst restricting anterior displacement of the 

knee is best achieved by adopting a wide stance and achieving significant range of motion at 

the hip joint in all three planes of motion. This may have implications for individuals who 

wish to perform the powerlifting squat or restrict anterior displacement of the knee but have 

limited movement capabilities at the hip joint.   

 

Differences in peak joint torques recorded for each exercise were largely a result of the 

relative displacements of the barbell and joint centers. Performance of the traditional squat 

created relatively large anterior displacements of the barbell, knee and system COM during 

the eccentric phase (Table 1). In contrast, use of the box enabled individuals to maximize 

posterior displacement of the hip which resulted in an overall posterior displacement of the 



barbell. Visual observation of box squat repetitions revealed that many of the powerlifters 

displaced the system COM behind the base of support during the final stages of the eccentric 

movement. The use of the box to safely maximize posterior displacement created an ordered 

succession of squatting motions with the traditional squat situated at one end of the spectrum 

and the box squat at the other. A number of peak joint moments analyzed in the present study 

reflected this ordered succession. At the ankle joint, peak extension moments were greatest 

during the traditional squat, followed by the powerlifting squat, then box squat. Differences 

in peak moments measured at the ankle would have been caused by variation in the 

displacement of the system COM. The larger anterior displacements created during the 

traditional squat would have resulted in an increased joint moment to compensate for the 

greater total resistance (28). Based on the results of previous research (12, 28) and large 

differences noted across techniques for anterior knee displacement, a similar ordered effect 

was expected for peak moments developed at the knee joint. However, the results showed 

that the largest peak moments were obtained during the box squat, with similar smaller values 

obtained during the traditional squat and powerlifting squat. For each exercise the peak knee 

extension moment was developed during the initial stage of the concentric movement. As 

individuals maintained a more upright torso position when performing the box squat, the 

greater resistance moment arm created explains the larger peak moment recorded. The 

magnitude of the resistance moment arm created at the knee joint was similar between the 

traditional squat and powerlifting squat. As a result, no significant difference for the peak 

knee extension moment was measured between the two exercises. This result contradicts 

findings from previous research reporting reduced knee moments when maintaining a more 

vertical shin position (12). However, previous results were associated with an increased 

forward lean of the torso which did not occur in the present study. It is also important to note, 

that the overall mechanical stress experienced at the knee may not be adequately described by 



the peak moment alone. Research has shown that compressive and shear forces at the knee 

increase with larger flexion angles and greater displacement of the femur relative to the tibia 

(11, 24, 28). As a result, it is expected that greater overall stress at the knee joint will occur 

during the traditional squat.  

 

Significant kinetic differences were also obtained at the hip joint. Across exercises, the 

largest peak moment was obtained during performance of the powerlifting squat. This result 

may be due to a number of biomechanical and physiological factors. The increased forward 

lean of the torso during the powerlifting squat in comparison to the box squat would have 

created a larger resistance moment arm at the hip, which would explain the difference in peak 

extension moment found. However, a significant difference was also obtained between the 

powerlifting squat and traditional squat despite both exercises creating a similar resistance 

moment arm. The difference may have been caused by variation in recruitment of the 

muscles surrounding the hip joint. Researchers have previously commented that powerlifters 

intentionally emphasise hip extension when performing wide stance squats (28). Support for 

this claim can be found in multiple studies which have reported increased muscle activity of 

the gluteus maximus when squats are performed with wider stance widths (20, 22). In 

addition to creating the largest extension moment at the hip, the powerlifting squat also 

produced the largest peak abduction and peak axial rotation moments. These larger kinetic 

values corresponded with greater frontal and transverse rotations of the femur during the 

powerlifting squat compared to the other exercises. Recently, there has been interest in 

altering the position of the femur during squatting exercises to target specific muscle groups 

(11, 23, 25). Anecdotally, it is believed that performing the squat with the hip in external 

rotation increases muscle activity of the quadriceps and hip abductors (25). Research 

conducted thus far has failed to demonstrate changes in quadriceps activity with altered 



rotation of the femur (11, 25); however, data exists to suggest that muscle activity of the hip 

abductors can be influenced (23). Previous studies have attempted to control the position of 

the femur by fixing the orientation of the foot. However, during the present study significant 

axial rotation was measured despite the foot remaining still. For each exercise the movement 

was initiated with the foot abducted and the hip externally rotated. As the movement 

progressed, foot position remained fixed as the hip moved in and then out of internal rotation. 

Results from other kinematic studies incorporating 3D motion capture systems have reported 

similar results for athletes performing the squat (9, 29). This observation may have 

implications for potential injuries at the knee joint. Research has previously shown that hip 

adduction combined with internal rotation of the femur during knee flexion exercises is 

associated with increased valgus stress and repetitive injuries such as anterior cruciate 

ligament strain, iliotibial band friction syndrome and patellofemoral pain syndrome (15, 18). 

During the bottom portion of the squat where internal rotation of the femur was at its greatest, 

the athletes in the present study were able to maintain appropriate alignment of the femur and 

tibia through substantial abduction of the hip. During the powerlifting squat where internal 

rotation and hip flexion is maximized, untrained individuals and those with restricted 

movement capabilities may be unable to maintain hip abduction. This may lead to those 

individuals descending into an adducted and internally rotated posture which could create 

large stresses at the knee.  

 

In order to obtain a more complete understanding of the biomechanical stimulus presented by 

an exercise, recent research has focused on the external kinematics and kinetics created (7, 

17, 30). Most frequently, variables such as force, velocity, power and RFD have been 

measured (1). The data obtained has also been used to rank exercises based on the belief that 

those which acutely maximize the production of each variable provide the best stimulus for 



longitudinal improvement. To ensure the biomechanical stimulus is maximized for each 

variable, repetitions in the present and previous studies were performed with the intention to 

lift the load as fast as possible (7, 17, 30). The results obtained here demonstrate that large 

forces can be produced in all three squatting exercises even when light resistances are 

displaced with maximum velocity. Across the 30 to 70% 1RM loads, peak vertical GRF for 

the group was approximately 2.1 to 2.8 times body weight. The largest effects of squat 

variation on force and all other external kinematics and kinetics recorded were obtained 

during the box squat. Group average force-time curves showed reduced peak values and 

changes to the overall profile with the box squat compared to the other exercises (Figure 5). 

During the traditional squat and powerlifting squat a large increase in force was measured 

during the transition period between eccentric and concentric phases. However, during the 

box squat, athletes were able to decrease force production during this transition period and 

use the box to partially slow the system COM. Following a sustained reduction in force as the 

athletes paused on the box, force was then rapidly increased during the concentric phase. A 

similar reduction in peak force when performing the box squat was reported in a recent study 

conducted by McBride et al. 2010 (19) The authors suggested that lower forces produced 

during the box squat compared to a standard squatting movement was the result of reduced 

stretch-shortening activity from pausing on the box. The powerlifters in the present study 

were instructed to follow their individual practices regarding the length of time paused on the 

box, as long as a minimum period of one second was adhered to. On average, the group 

paused for 1.7 seconds with times ranging from 1.3 to 2.3 seconds. Research has shown that 

as duration between eccentric and concentric phases increases there is a progressive reduction 

in contribution from the stretch shortening cycle (27). The long pauses obtained during the 

box squat are therefore likely to explain the reductions in force, velocity and power in 

comparison to the other exercises studied. However, the largest effect of squat variation 



observed was an increase in RFD during the box squat. The results showed 3 to 4-fold greater 

values in RFD when squats were performed with the box. As RFD and the squat exercise are 

both considered important elements of training for athletic improvement (8), the finding that 

significantly larger RFD values can be obtained when using the box could have important 

implications for training prescription. Whilst it remains unclear which training practices are 

most effective for long-term improvements in RFD, many believe that performing explosive 

resistance exercises that create high RFD values will be successful (8). The large disparity in 

RFD values obtained between the exercises may provide researchers with an effective model 

to study RFD using movements that are transferable to many sporting actions.  

 

PRACTICAL APPLICATIONS 

 

The squat is widely regarded as one of the most effective exercises for improving strength 

and athletic performance. Most often, the exercise is performed with a narrow stance and the 

knee is permitted to travel past the toes. In many instances, strength and conditioning coaches 

will attempt to manipulate the exercise to target particular areas of the body or simply to 

provide variation in training. Traditionally, strength and conditioning coaches have 

manipulated the biomechanics of the squat by altering the position of the barbell to perform 

either the front squat or overhead squat. However, the results of this study show that the 

biomechanical stimulus of the squat can be altered by employing different movement 

strategies and by using a box to modify the transition between eccentric and concentric 

phases. By instructing individuals to maximize posterior displacement of the hip as is 

required during the powerlifting squat, it is possible to increase the stress placed on the hip 

joint in all three planes. This squatting style requires a wide stance to remain stable and if 

performed correctly may decrease the stress placed at the ankle and lumbar region in 



comparison to the traditional squat. In addition, performance of the powerlifting squat may be 

beneficial for individuals who have sufficient movement capabilities at the hip but lack range 

of motion at the ankle joint and therefore are unable to descend to sufficient depth with 

appropriate body positioning. Coaches and athletes should be aware that correct performance 

of the powerlifting squat may require substantial mobility at the hip joint and practice to co-

ordinate the segments of the body.  We recommend that the box squat be used as a training 

tool to improve competency in performing the powerlifting squat. Initially, a relatively tall 

box may be used to teach the exercise and progressed by gradually decreasing the height as 

proficiency increases. In addition, the very large RFD values produced during the box squat 

suggest it could be an effective exercise to develop explosive strength and athleticism. Based 

on current paradigms used in the training of athletes it is recommended that multiple sets of 3 

to 6 repetitions be performed to develop these qualities.    
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Figure Captions. 

 

Figure 1-Traditional Squat (top), Powerlifting Squat (middle) and Box Squat (bottom). 

 

Figure 2-Representative joint angle-time curve for the traditional squat.  

Dashed line indicates transition from eccentric to concentric 

 

Figure 3-Representative joint angle-time curve for a distinct movement pattern 

observed during the powerlifting squat.  

Dashed line indicates transition from eccentric to concentric 

 

Figure 4- Representative joint angle-time curve for a second distinct movement pattern 

observed during the powerlifting squat.  

Dashed line indicates transition from eccentric to concentric 

 

Figure 5-Group average force time curves obtained with a 70% 1RM load.  

Circles indicate transition between phases of the squat (eccentric/concentric) and 

(eccentric/box/concentric) 
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 Table 1. Anterior-posterior displacements calculated across the eccentric and 
concentric phases (mean ± SD)  
 Traditional Powerlifting Box 
Eccentric    
   30% 1RM    
      Bar (cm) 9.5 ± 2.1*† 5.1 ± 2.2*‡ -6.8 ± 6.0†‡ 
      COM (cm) 3.2 ± 2.8*† -6.8 ± 3.1* -8.4 ± 3.5† 
      Hip (cm) -15.5 ± 2.6*† -21.1 ± 3.2*‡ -28.7 ± 5.1†‡ 
      Knee (cm) 22.4 ± 4.3*† 16.4 ± 3.3*‡ 13.9 ± 2.7†‡ 
    
   50% 1RM    
      Bar (cm) 8.4 ± 1.8*† 4.1 ± 2.2*‡ -7.1 ± 6.4†‡ 
      COM (cm) 3.5 ± 2.7*† -4.2 ± 3.0* -7.9 ± 4.0† 
      Hip (cm) -15.6 ± 1.8*† -18.1 ± 2.9*‡ -25.3 ± 6.2†‡ 
      Knee (cm) 20.7 ± 3.1† 17.3 ± 4.1‡ 14.4 ± 3.5†‡ 
    
   70% 1RM    
      Bar (cm) 7.4 ± 1.8*† 3.8 ± 1.9*‡ -5.9 ± 2.9†‡ 
      COM (cm) 4.1 ± 3.4*† -2.8 ± 2.4* -3.7 ± 3.2† 
      Hip (cm) -15.1 ± 2.7† -16.0 ± 6.2‡ -23.6 ± 6.0†‡ 
      Knee (cm) 19.9 ± 2.6† 18.2 ± 5.0‡ 13.7 ± 3.9†‡ 
    
Concentric    
   30% 1RM    
      Bar (cm) -5.8 ± 2.1† -4.2 ± 2.2‡ 9.4 ± 4.1†‡ 
      COM (cm) -2.5 ± 1.2*† 6.7 ± 2.3*‡ 10.6 ± 2.9†‡ 
      Hip (cm) 18.1 ± 3.4† 20.2 ± 2.8‡ 29.0 ± 3.3†‡ 
      Knee (cm) -21.6 ± 4.1*† -18.2 ± 3.1*‡ -13.1 ± 2.5†‡ 
    
   50% 1RM    
      Bar (cm) -6.2 ± 1.9*† -3.6 ± 2.4*‡ 10.8 ± 3.7†‡ 
      COM (cm) -2.0 ± 0.8*† 7.6 ± 1.6*‡ 11.3 ± 2.2†‡ 
      Hip (cm) 16.2 ± 3.1*† 19.2 ± 1.9*‡ 29.0 ± 3.4†‡ 
      Knee (cm) -22.8 ± 4.2*† -18.3 ± 3.2*‡ -13.3 ± 2.3†‡ 
    
   70% 1RM    
      Bar (cm) -6.1 ± 1.9† -3.7 ± 2.7‡ 9.9 ± 4.0†‡ 
      COM (cm) -2.0 ± 0.8*† 8.4 ± 5.0* 9.5 ± 1.8† 
      Hip (cm) 14.7 ± 3.3† 17.5 ± 2.0‡ 26.6 ± 3.1†‡ 
      Knee (cm) -20.3 ± 3.6† -19.2 ± 3.2‡ -13.7 ± 3.4†‡ 
* Significant difference between traditional and powerlifting (p < 0.05). 
† Significant difference between traditional and box (p < 0.05). 
‡ Significant difference between powerlifting and box (p < 0.05).  
 
 
 

 

 



Table 2. Joint angles at the start of the concentric phase (mean ± SD)  
 Traditional Powerlifting Box 
    
Torso (flexion °) 33.5 ± 4.6† 33.1 ± 4.5‡ 26.9 ± 3.8†‡ 
Hip  (flexion °) 104.3 ± 4.9* 112.6 ± 5.8* 105.7 ± 5.6 
Hip (abduction°) 28.0 ± 5.5*† 38.4 ± 4.7* 37.5 ± 2.2† 
Hip (int rotation °) 19.3 ± 3.3* 27.4 ± 4.1*‡ 20.9 ± 2.1‡ 
Knee (flexion °) 121.1 ± 3.4*† 112.1 ± 4.3*‡ 103.8 ± 5.2†‡ 
Ankle (flexion °) 37.2 ± 3.9*† 26.7 ± 5.1*‡ 14.4 ± 4.2†‡ 
Shank 
(horizontal°) 

53.2 ± 3.1*† 68.9 ± 4.1*‡ 76.3 ± 3.8†‡ 

* Significant difference between traditional and powerlifting (p < 0.05). 
† Significant difference between traditional and box (p < 0.05). 
‡ Significant difference between powerlifting and box (p < 0.05).  
 
 
 
 



Table 3. Peak joint moments and corresponding moment arms (mean ± SD)  
 Traditional Powerlifting Box 
30% 1RM    
   Moment arms 
(cm)  

   

      L5/S1 23.5 ± 3.0† 22.9 ± 2.6‡ 18.2 ± 2.3†‡ 
      Hip 26.6 ± 2.7† 26.1 ± 2.1‡ 21.1 ± 2.2†‡ 
      Knee - 9.1 ± 1.8*† - 7.5 ± 1.2*‡ - 13.9 ± 

1.9†‡ 
      Ankle 10.1 ± 2.0*† 5.3 ± 1.0*‡ 2.5 ± 1.7†‡ 
    

   Moments (Nm)    
      L5/S1 (ext) 266 ± 36*† 222 ± 21* 203 ± 19† 
      Hip (ext) 200 ± 26* 222 ± 29*‡ 193 ± 28‡ 
      Hip (abd) 58 ± 18* 75 ± 25* 64 ± 28 
      Hip (int 
rotation) 

35 ± 16* 48 ± 18*‡ 26 ± 10‡ 

      Knee (ext) 166 ± 28† 161 ± 24‡ 197 ± 28†‡ 
      Ankle (ext) 82 ± 15*† 56 ± 8*‡ 41 ± 11†‡ 
    
50% 1RM    
   Moment arms 
(cm) 

   

      L5/S1  22.6 ± 2.3† 21.9 ± 2.2‡ 18.3 ± 2.6†‡ 
      Hip  25.9 ± 2.5† 25.8 ± 2.4‡ 21.3 ± 2.8†‡ 
      Knee - 10.5 ± 

1.9*† 
- 8.0 ± 1.4*‡ - 14.7 ± 

2.1†‡ 
      Ankle 9.5 ± 1.8*† 5.6 ± 1.5* 2.5 ± 2.1† 
    

   Moments (Nm)    
      L5/S1 (ext) 320 ± 42*† 261 ± 30* 233 ± 21† 
      Hip (ext) 240 ± 29† 253 ± 33‡ 213 ± 35†‡ 
      Hip (abd) 63 ± 29* 84 ± 27* 69 ± 35 
      Hip (int 
rotation) 

42 ± 24 50 ± 19‡ 26 ± 17‡ 

      Knee (ext) 188 ± 32† 176 ± 27‡ 221 ± 29†‡ 
      Ankle (ext) 93 ± 17*† 64 ± 16* 58 ± 15† 
    
70% 1RM    
   Moment arms 
(cm) 

   

      L5/S1 22.1 ± 2.5† 22.4 ± 2.3‡ 19.7 ± 2.8†‡ 
      Hip 25.2 ± 2.9 26.2 ± 2.1‡ 23.3 ± 3.0‡ 
      Knee  - 10.1 ± 

1.1*† 
- 8.1 ± 0.8*‡ - 15.2 ± 

2.8†‡ 
      Ankle  9.9 ± 2.2† 5.6 ± 1.6 2.4 ± 2.1† 
    

   Moments (Nm)    
      L5/S1 (ext) 354 ± 49*† 308 ± 39* 279 ± 35† 
      Hip (ext) 256 ± 35*† 281 ± 32*‡ 230 ± 37†‡ 
      Hip (abd) 70 ± 30* 94 ± 26* 79 ± 35 
      Hip (int 43 ± 24 55 ± 22 38 ± 28 



rotation) 
      Knee (ext) 201 ± 39 192 ± 36 229 ± 39 
      Ankle (ext) 104 ± 20*† 78 ± 10* 71 ± 14† 
* Significant difference between traditional and powerlifting (p < 0.05). 
† Significant difference between traditional and box (p < 0.05). 
‡ Significant difference between powerlifting and box (p < 0.05).  
 
 

Table 4. External kinematics and kinetics (mean ± SD)  
 Traditional Powerlifting Box 
 

  30% 1RM    

    Peak Vertical Force 
(N) 

2166 ± 194 2165 ± 182 2080 ± 280 

    Peak Velocity (ms-1)               1.68 ± 0.15† 1.61 ± 0.19‡ 1.44 ± 0.12†‡ 
    Peak Power (W) 2901 ± 293† 2825 ± 315‡ 2472 ± 288†‡ 
    RFD (Ns-1) 4801 ± 1572† 4963 ± 1542‡ 16390 ± 

4204†‡ 
    
  50% 1RM    
    Peak Force (N) 2448 ± 295† 2400 ± 270‡ 2265 ± 306†‡ 
    Peak Velocity (ms-1)               1.39 ± 0.14 1.34 ± 0.13 1.31 ± 0.11 
    Peak Power (W) 2702 ± 114 2695 ± 161 2589 ± 307 
    RFD (Ns-1) 5319 ± 1334† 5333 ± 1443‡ 16980 ± 

3199†‡ 
    
  70% 1RM    
    Peak Force (N) 2680 ± 309† 2685 ± 301‡ 2528 ± 302†‡ 
    Peak Velocity (ms-1)               1.18 ± 0.16 1.16 ± 0.12 1.12 ± 0.09 
    Peak Power (W) 2637 ± 137 2589 ± 135 2484 ± 301 
    RFD (Ns-1) 5083 ± 1227† 5868 ± 1972‡ 14537 ± 

3612†‡ 
    

* Significant difference between traditional and powerlifting (p < 0.05). 
† Significant difference between traditional and box (p < 0.05). 
‡ Significant difference between powerlifting and box (p < 0.05).  
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