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ABSTRACT 

 

A three-dimensional, single-phase, isothermal, explicit electro-chemistry polymer electrolyte 

membrane fuel cell model has been developed and the developed computational model has been 

used to compare various effective diffusivity models of the gas diffusion layer. The Bruggeman 

model has traditionally been used to represent the diffusion of species in the porous gas 

diffusion layer. In the present study, the Bruggeman model has been compared against models 

based on particle porous media, multi-length scale particles and the percolation type correlation. 

The effects of isotropic and anisotropic permeability on flow dynamics and fuel cell performance 

have also been investigated. The present study shows that the modelling of the effective 

diffusivity has significant effects on the fuel cell performance prediction. The percolation based 

anisotropic model provides better accuracy for the fuel cell performance prediction. The effects 

of permeability have been found to be negligible and the specification of any realistic value for 

permeability has been found to be sufficient for polymer electrolyte membrane fuel cell 

modelling. 

 

Keywords: PEM fuel cell; anisotropy; effective diffusivity; permeability. 
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1 INTRODUCTION 

 

Rapid growth of the economies in many countries of the world together with modern 

technological advancements in consumer goods has caused significant increase in the 

consumption of energy. Global energy demands are primarily met by combusting fossil fuels. 

Over reliance on fossil fuels to meet the growing energy demand already has major 

consequences in terms of climate change. Climate change is real and the emission of CO2 has 

increased by a factor of three since the industrial revolution and is increasing at a faster rate [1]. 

Improved efficiency and energy savings will not be sufficient to meet future energy demand. In 

this regard, several alternative renewable energy sources such as wind turbine, solar 

photovoltaic, and hydrogen fuel cells have gained prominence to provide clean energy. Among 

these wind turbine technology has gained technical maturity and the wind energy installed 

capacity has reached 175 Gigawatt in 2010 [2]. The main disadvantage of wind and solar energy 

remains their intermittent availability and variation in energy density. In this regard, fuel cells 

are one of the clean sources of energy that can make a real contribution to the reduction of CO2 

emission. Among the many fuel cells such as direct methanol, solid oxide, molten carbonate, a 

polymer electrolyte membrane (PEM) fuel cell is the most versatile that can be used in 

residential and transport sectors.  

 

Despite having many advantages, the wider deployment of polymer electrolyte membrane fuel 

cells has been hampered by high cost.  The high cost of a polymer electrolyte membrane fuel 

cell results from using expensive Platinum in catalyst layers to initiate the electrochemical 

reaction.  One of the methods for reducing the cost of a PEM fuel cell would be to develop new 

architecture that would produce more power per unit area of a PEM fuel cell. In this respect, a 
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computational model is an indispensible tool for developing and optimising a new fuel cell design 

provided the model is accurate. A fuel cell model needs to take into account complex electro-

chemical reactions, diffusion of species, transport of electron, proton and transport of water. In 

order to handle these complex processes, often may simplified assumptions are made. In 

addition, many empirical correlations are used to treat physical processes. This often introduces 

many uncertainties in developing a computational tool. The focus of the present study is the 

accurate modelling of the transport of species through the gas diffusion layer (GDL) of a PEM 

fuel cell. 

 

A gas diffusion layer is a critical component of a PEM fuel cell which provides both functional and 

structural support. The main function of a gas diffusion layer is to provide a passage for 

reactants from the flow channel to the catalyst layer and to remove produced water. It also 

carries electrons to facilitate electro-chemical reaction. The effective diffusivity of species 

through a gas diffusion layer has traditionally been modelled by the Bruggeman model. For 

example, some of the pioneering work in the development of three dimensional fuel cell models 

has implemented the Bruggeman model to account for the diffusion of species through the gas 

diffusion layer [3-7]. Pharoah et al [8] cited a comprehensive review of 100 papers on the 

modelling of PEM and direct methanol fuel cells and stated that species transport in the gas 

diffusion layer was modelled in all the papers by the Bruggeman correlation which was 

developed for a granular porous media. A gas diffusion layer is made of randomly distributed 

carbon fibres of 7-10 µm diameter and several millimetres long formed into paper or cloth, and 

clearly demonstrates anisotropic behaviour [8]. Nam and Kaviany [9] developed an effective 

diffusivity model on pore network modelling of a fibrous web. Their model was compared against 

a percolation based model of Tomadakis and Sotirchos [10] and a multi-length scale, particle 
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based porous media model of Mezedur et al [11]. Their study showed that the Tomadakis and 

Sotirchos [10] model better represented the effective diffusivity in a GDL as its takes into 

account the anisotropy of fibre distribution. Gostick et al. [12] experimentally studied the in-

plane and through-plane permeability of several commercially available GDLs and showed that 

the in-plane permeability was much higher than the through-plane permeability. Gostick et al. 

[12] suggested that the Tomadakis and Sotirchos [10] model was also capable of accounting for 

the anisotropy in the diffusion coefficient by modelling the tortuosity more accurately. 

 

The above literature review suggests that the Bruggeman correlation does not seem to represent 

the diffusivity of species through a GDL accurately. However, to the best of the authors’ 

knowledge, there has not been any study that has systematically compared various effective 

diffusivity models for fuel cell performance prediction. Therefore, it is not clearly understood, 

how much of this uncertainty in modelling the effective diffusivity contributes to the actual 

modelling uncertainty of a PEM fuel cell. Sivertsen and Djilali [7] modified the Bruggeman model 

based on a constant tortuosity factor of 3 without providing justification for using such a value. 

Pharoah et al [8] treated the anisotropic gas transport inside a GDL by the percolation based 

anisotropic model of Tomadakis and Sotirchos [10] and showed that the anisotropic treatment 

had significant effects on the prediction of fuel cell voltage at current densities between 0.8-1.2 

Acm-2. Dawes et al [13] developed a percolation based isotropic diffusivity model. Their 

percolation based diffusivity model provided slightly better results compared to the Bruggeman 

model. Some recent work has focused on the anisotropic treatment of thermal conductivity of a 

GDL. In particular, Bapat and Thynell [14] investigated the effects of through-plane and in-plane 

thermal conductivity on the current density and the temperature distribution using a pseudo 

two-dimensional fuel cell geometry and concluded that an innovative GDL designed with a higher 
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through-plane thermal conductivity at the inlet and progressively decreasing through-plane 

thermal conductivity away from the inlet can lead to maximum potential.  Ju [15] also 

investigated the effects of anisotropy in the  thermal conductivity of a GDL on temperature 

distribution and water vapour characteristics and stated that the anisotropy had significant 

effects. In these studies, however, thermal conductivity values were not correlated with porosity, 

fibre orientations or GDL properties, instead, different ratios of through-plane and in-plane 

thermal conductivity were assumed. In the present study, a systematic comparison of various 

diffusivity models in predicting the performance of a PEM fuel cell has been reported. 

 

The second objective of this study is to investigate the effects of permeability of a gas diffusion 

layer. A literature search of previous reported modelling studies shows that different values of 

permeability have been used. For example, an isotropic permeability value of 1.76 x 10-11 m2 has 

been widely used [12, 16-18]. In addition, the permeability values of  10-12 m2 [19-20] and 5 x 

10-11 m2 [13] have been used in the computational modelling studies of a PEM fuel cell. Dawes et 

al [13] gave an account of a parametric study of permeability values in the range of 1.5 x 10-8 to 

1.5 x 10-12 m2. Gostick et al [12] measured the through-plane and in-plane permeability of 

various commercially available gas diffusion layers to be in the range of 10-11 – 10-12 m2. The 

effect of anisotropy in permeability was studied computationally by Ahmed et al. [21] by setting 

various combinations of in-plane and through plane permeabilities in the range of 1 x 10-9 to 1 x 

10-15.  Their study showed that the permeability had significant effects on water and thermal 

management especially at very low values of permeability. In Ahmed et al.’s [21] study, the 

permeability values were arbitrarily set at unrealistically low values and the analysis was done 

for a single current density of 2.4 Acm-2. This current density is unusually high. By contrast, 

Dawes et al [13] provided a parametric study of the effects of permeability on the cell 
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performance. They showed that the effect of permeability became insignificant below a 

permeability of 5 x 10-11. 

 

The literature review above clearly shows that there is uncertainty in modelling the effective 

diffusivity of species through a gas diffusion layer of a PEM fuel cell. Moreover, there is also 

uncertainty in the value of the permeability of a gas diffusion layer. The present study seeks to 

provide a systematic comparison of various effective diffusivity models and to investigate the 

effects of permeability of a gas diffusion layer on the PEM fuel cell performance. 

 

2 NUMERICAL MODEL DEVELOPMENT 

 

2.1 Modelling domain and Assumptions 

 

In the present study, a representative straight channel has been utilized to demonstrate the 

effects of the effective diffusivity of reactants and products. Figure 1 shows a three-dimensional 

straight channel which consists of anode and cathode gas channels for transporting the reactants 

(oxygen and hydrogen) and the product (water vapour) mixed in air, to and from the porous gas 

diffusion layers. The electrochemical reactions occur at the catalyst layers and a polymer 

electrolyte membrane is sandwiched between the catalyst layers. Protons and water are 

transported through the membrane.  

The assumptions used in the three-dimensional model are as follows:  

• Steady-state operation, 

• Isothermal operation, 

• Ideal gas mixtures, 
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• All the porous zones in the fuel cell domain are assumed to be homogeneous, and the 

membrane is considered impervious to reactant gases, 

• Water produced on the cathode side is in vapour phase. 

 

2.2 Model equations  

 

Governing Equations  

 

The governing equations for the steady-state PEM fuel cell model consist of continuity, 

conservation of momentum and species transport. To represent the electrochemistry and 

transport phenomena through the membrane, appropriate source terms are applied at the anode 

and cathode catalyst layers.   

 

The mass conservation equation (continuity equation): 

 

∇ (𝜌𝑢�⃗ ) = 0         (1) 

 

where ρ is the fluid density and 𝑢�⃗  is the velocity vector.  

 

The momentum conservation equation: 

 

∇(𝜌𝑢�⃗ 𝑢�⃗ ) =  −∇𝑃 + ∇(𝜇∇𝑢)����⃗ + 𝑆𝑢     (2) 

 

where P is the pressure and Su is the source term.  
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In the porous region, Darcy’s law term is added to the momentum equations to represent the 

momentum related with the resistance due to a porous media. The source term is expressed as: 

 

𝑆𝑢 = −𝜇𝑢��⃗
𝐾

        (3) 

 

The species conservation equation: 

  

∇(𝜌𝑢�⃗ 𝑋𝑘)������⃗ = ∇(𝐷𝑘
𝑒𝑒𝑒𝜌∇𝑋𝑘)������⃗ + 𝑆𝑘      (4) 

 

where index k refers to different species, Xk is the molar concentration of species k and Dk
eff is 

the effective diffusivity of species k. The diffusivity in the gas channel can be expressed as [6]: 

𝐷𝑘 = 𝐷𝑘,𝑟𝑒𝑒 �
𝑇

𝑇𝑟𝑒𝑓
�
3
2�
�𝑃𝑟𝑒𝑓

𝑃
�      (5) 

where Dk,ref is the reference value at Tref and Pref.  

 

The effective diffusivity of species can be described by the Bruggeman correction [6]: 

𝐷𝑘
𝑒𝑒𝑒 = 𝜖1.5𝐷𝑘         (6) 

 

The source terms (Sk) in the species conservation equation are defined as zero for all regions of 

the model except the catalyst layers. The species source term for the anode and cathode 

catalyst layers are expressed as: 

 

Consumption of hydrogen due to electrochemical effects at the anode catalyst layer 
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𝑆𝐻2 = − 𝐼𝐼
2𝐹
𝑀𝐻2        (7) 

 

Consumption of oxygen due to electrochemical effects at the cathode catalyst layer 

 

𝑆𝑂2 = − 𝐼𝐼
4𝐹
𝑀𝑂2        (8) 

 

Production of water and flux of water due to electrochemical effects at the cathode catalyst layer 

 

𝑆𝑐𝑐 = [1+2𝛼]𝐼𝐼
2𝐹

𝑀𝐻2𝑂       (9) 

 

Flux of water due to electrochemical effects at the anode catalyst layer 

 

𝑆𝑎𝑐 = −𝛼𝐼𝐼
𝐹
𝑀𝐻2𝑂       (10) 

 

The average current density I and net water transfer coefficient 𝛼 are used to determine these 

source terms. A number of auxiliary equations are needed to be solved to model the 

electrochemical reactions and determine the local current density and net water transfer 

coefficient. The empirical equations are based on the assumption of using the Nafion 117 

membrane, and taken from the work of Springer et al. [22]. 
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2.3 Auxiliary Equations 

 

The auxiliary model equations, needed to be solved to determine the net water transfer 

coefficient and cell voltage at average current density, are summarized below:  

 

Net water transfer coefficient [6] 

 

𝛼 = 𝑛𝑑 −
𝐹𝐷𝐻2𝑂[𝐶𝐻2𝑂𝑐−𝐶𝐻2𝑂𝑎]

𝐼𝑡𝑚
       (11) 

 

Where 𝐷𝐻2𝑂 represents the water diffusion coefficient, and  𝐶𝐻2𝑂𝑎 and 𝐶𝐻2𝑂𝑐 represent the molar 

concentration of water at the anode and cathode side respectively, I is the average current 

density and tm is the membrane thickness and F is the Faraday’s constant.  

 

The electro-osmotic drag coefficient describes the amount of water dragged by each proton 

across the membrane from the anode to the cathode side and is expressed as, [6] 

 

𝑛𝑑 = 0.0049 + 2.02𝑎𝑎 − 4.53𝑎𝑎2 + 4.09𝑎𝑎3  ;  𝑎𝑎 ≤ 1  

𝑛𝑑 = 1.59 + 0.159(𝑎𝑎 − 1);                               𝑎𝑎 > 1         (12) 

 

Water activity is defined as, [6] 

 

𝑎𝑘 = 𝑋𝐻2𝑂,𝑘𝑃
𝐷𝐻2𝑂,𝑘
𝑠𝑎𝑡

 

           (13) 
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where P is the cell pressure and 𝑋𝐻2𝑂.𝐾 is the mole fraction of water on either the anode or 

cathode side.  

 

Water vapour saturation pressure is given by [6], 

 

𝑃𝐻2𝑂,𝐾
𝑠𝑎𝑡 = [0.00644367 + 0.000213948(𝑇 − 273) + 3.43293 × 10−5(𝑇 − 273)2 − 2.70381 × 10−7(𝑇 − 273)3 +

8.77696 × 10−9(𝑇 − 273)4 − 3.14035 × 10−13(𝑇 − 273)5 + 3.82148 × 10−14(𝑇 − 273)6]1.013 × 105  (14) 

Water diffusion coefficient is expressed as [6],
            

𝐷𝐻2𝑂 = 5.5𝑒−11𝑛𝑑 exp �2416 � 1
303

− 1
𝑇
��     (15) 

Water concentration on the anode and cathode side, [6] 

    

 

𝐶𝐻2𝑂,𝐾 = 𝜌𝑚,𝑑𝑟𝑦

𝑀𝑚,𝑑𝑟𝑦
�0.043 + 17.8𝑎𝑘 − 39.8𝑎𝑘2 + 36.0𝑎𝑘3�; 𝑎𝑘 ≤ 1  

 

𝐶𝐻2𝑂,𝐾 = 𝜌𝑚,𝑑𝑟𝑦

𝑀𝑚,𝑑𝑟𝑦
(14 + 1.4(𝑎𝑘 − 1)); 𝑎𝑘 > 1     (16)     

  

2.4 Polarization Characteristics 

 

When electrical energy is drawn from the cell, the cell potential drops due to irreversible losses 

(activation, ohmic and concentration overpotential).  The cell voltage can be expressed by the 

following equation [17]: 

𝑉𝑐𝑒𝑐𝑐 = 𝐸 − 𝜂𝑎𝑐𝑡 − 𝜂𝑜ℎ𝑚 − 𝜂𝑐𝑜𝑐𝑐       (17) 
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where E is the equilibrium thermodynamic potential which is calculated using the Nernst 

equation [17]: 

𝐸 = 1.23 − 0.9 × 10−3(𝑇 − 298) + 2.3 𝑅𝑇
4𝐹

log (𝑝ℎ2𝑝𝑜)     (18) 

 𝜂𝑎𝑐𝑡 is the activation overpotential, 𝜂𝑜ℎ𝑚  is the ohmic overpotential and 𝜂𝑐𝑜𝑐𝑐 is the concentration 

overpotential.   

• Activation overpotential 𝜂𝑎𝑐𝑡: 

The activation overpotential is a function of local current density, exchange current density and 

concentration of oxygen. The activation overpotential is expressed by the Butler-Volmer 

equation, [17] 

 

    
 

𝑖𝑎 = 𝑖𝑎,𝑟𝑒𝑒 �
𝐶ℎ

𝐶ℎ,𝑟𝑒𝑓
�
1
2
�𝑒𝑒𝑝 �𝛼𝑎𝜂𝑎𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑎� − 𝑒𝑒𝑝 �− (1−𝛼𝑎)𝜂𝑎𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑎��  

 

𝑖𝑐 = 𝑖𝑐,𝑟𝑒𝑒 �
𝐶𝑜

𝐶𝑜,𝑟𝑒𝑓
�
1
2
�𝑒𝑒𝑝 �𝛼𝑐𝜂𝑐𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑐� − 𝑒𝑒𝑝 �− (1−𝛼𝑐)𝜂𝑐𝐹

𝑅𝑇
𝜂𝑎𝑐𝑡,𝑐��   (19) 

 

Where 𝑖𝑎,𝑟𝑒𝑒 and 𝑖𝑐,𝑟𝑒𝑒 are the exchange current density multiplied by the specific area, 𝑛 is the 

electron number of the reaction at the anode or cathode and 𝛼 is the transfer coefficient [17]. 

 

• Ohmic overpotential (𝜂𝑜ℎ𝑚): 

The ohmic overpotential occurs due to the resistance to electron and ion transfer and can be 

expressed as: 

𝜂𝑜ℎ𝑚 = 𝜂𝑜ℎ𝑚𝑒𝑐 + 𝜂𝑜ℎ𝑚
𝑝𝑟𝑜 = 𝐼�𝑅𝑒𝑐 + 𝑅𝑝𝑟𝑜�      (20) 
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Where  𝑅𝑒𝑐  is the resistance to electron transfer and  𝑅𝑝𝑟𝑜  is the resistance to proton transfer. In 

the present model,  𝑅𝑒𝑐 = 0.1 Ω cm2 is assumed.   𝑅𝑝𝑟𝑜 is calculated using the following 

expression: 

 

𝑅𝑝𝑟𝑜 = 𝑡𝑚
𝑘𝑚

         (21) 

 

𝑡𝑚  Ris the height of the membrane and  𝑘𝑚 is the phase conductivity of the membrane. The 

membrane phase conductivity depends on the temperature and water concentration at the 

anode side and is expressed as  

 

𝑘𝑚 = 100 �0.00514 �𝑀𝑚,𝑑𝑟𝑦

𝜌𝑚,𝑑𝑟𝑦
� 𝐶𝐻2𝑂𝑎 − 0.00326� exp �1268 � 1

303
− 1

𝑇
��        (22) 

 

• Concentration overpotential (𝜂𝑐𝑜𝑐𝑐): 

 

At high current densities, polarization losses are dominated by the concentration overpotential 

which is caused by slow diffusion of the gas phase through the porous regions. The 

concentration overpotential can be determined by:        

𝜂𝑐𝑜𝑐𝑐 = −𝑅𝑇
𝑐𝐹

ln �1 − 1
𝐼𝐿
�        (23) 

 

where  𝐼𝐿 is the limiting current density:    
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𝑖𝐿 = 𝑐𝐹𝐷ℎ𝐶𝑘,𝑜
𝐻𝑑

  
        (24)

 

 

2.5 Diffusion Models  

 

The effective diffusivity through a porous medium can be expressed as 

 

𝐷𝑘
𝑒𝑒𝑒 =   𝑓 (𝜀)𝐷𝑘         (25) 

 

where 𝐷𝑘
𝑒𝑒𝑒is the effective diffusivity and 𝐷𝑘 is diffusivity of the species in a plain medium. 𝑓(𝜀) is 

a function of porosity and various correlations are available to determine this function. Most of 

the PEM fuel cell models use the Bruggeman correlation to explain the diffusion of species 

through porous gas diffusion layers and catalyst layers. Various other correlations have been 

considered in this paper. 

 

According to the Bruggeman correlation, the function can be expressed as, 

 

𝑓(𝜀) =  𝜀1.5         (26) 

 

Dawes et al. [13] developed a percolation theory based effective diffusivity model, where the 

function is expressed as, 

 

𝑓(𝜀) =  (𝜀−0.11)0.9

(1−0.11)0.9        (27) 
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Neale and Nader [23] used the following correlation to explain the diffusion through an isotropic 

porous medium; 

 

𝑓(𝜀) =  2𝜀
3−𝜀

           (28) 

 

Mezedur et al. [11] suggested a diffusion model for a multi-length scale, particle based porous 

medium as 

𝑓(𝜀) =  [1 − (1 − 𝜀)0.46]       (29) 

     

Tomadakis and Sotirchos [10] suggested the following percolation theory based diffusion model 

for random fibrous porous medium  

 

𝑓(𝜀) =  𝜀 �𝜀−𝜀𝑝
1−𝜀𝑝

�
𝛼
        (30) 

 

where  𝜀𝑝 is the percolation threshold and equal to 0.11. 𝛼 is an empirical constant which 

depends on the direction. 𝛼 is 0.521 and 0.785, for in-plane and through-plane diffusion, 

respectively.  
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Table 1  

Physical parameters and boundary conditions used for the base case simulation  

Gas channel length              L= 100 mm  
Gas channel width                W = 1 mm                    [17] 
Gas channel height               Hch = 1 mm                   [17] 
Diffusion layer height               Hd = 0.254 mm              [16-17] 
Catalyst layer height               Hct = 0.0287 mm            [16-17] 
Land area width                   Wl = 1 mm                    [17] 
Membrane thickness               𝑡𝑚  = 0.23 mm               [24] 
Permeability                      K = 1.76x 10-11 m2          [16-17] 
Faraday Constant                F = 96485.309 C mol-1 
Operating pressure               P = 101325 Pa  
Operating temperature             T = 323 K                      [24] 
GDL porosity                εgdl = 0.4                        [16] 
CL porosity                εcl   = 0.4 
Dry mass of membrane                Mm,dry = 1.1 kgmol-1 
Dry density of membrane             ρm,dry  = 2000 kgm-3 
Fuel/ air stoichiometric ratio          𝜉𝑎/𝜉𝑐= 5/5                       [24] 
Electron number of anode            𝑛𝑎 = 4 
Reaction 
Electron number of cathode            𝑛𝑐 = 2 
Reaction 
Relative humidity of inlet fuel           RHa = 100%                   [24] 
Relative humidity of inlet air           RHc = 0%                       [24] 
Oxygen mass fraction of inlet air  𝜔𝑂 = 0.232 
H2 diffusion coefficient            Dh, ref = 0.915 × 10-4 m2s-1 [17] 
at reference state 
Oxygen diffusion coefficient           DO, ref = 0.22 × 10-4 m2s-1    [17] 
at reference state 
Water vapour diffusion coefficient       Dw, ref = 0.256 × 10-4 m2s-1 [17] 
at reference state  
Anode exchange current density     ia,ref   = 2.0 × 108 Am-3       [17] 
cathode exchange current density     ic,ref   = 160  Am-3              [17] 
Hydrogen reference concentration   Ch,ref  =  56.4 mol m-3        [17] 
Oxygen reference concentration   Co,ref  =  3.39 mol m-3        [17] 
Anode transfer coefficient           𝛼𝑎 R = 0.5                           [17] 
Cathode transfer coefficient          𝛼𝑐= 0.5                            [17] 
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2.6 Numerical procedure  

 

The governing equations and the auxiliary equations have been solved to investigate the 

complex electrochemical processes and transport phenomena using a finite volume CFD method. 

The convection term in the governing equations have been descretised by second order upwind 

and the diffusion terms by the hybrid scheme. The SIMPLE algorithm has been selected at the 

pressure-velocity coupling. Appropriate source terms have been applied to the governing 

equations for the catalyst layers using user defined functions. The source terms, diffusivity 

model and electrochemistry algorithm were written in C++ UDFs which has been interpreted by 

the CFD solver FLUENT. An explicit electro-chemistry model has been used where an average 

current density has been specified and all other electro-chemical parameters have been 

calculated based on the iterative solution of the conservation equations of the mass fraction of 

species. Since the focus of the present study is on species transport, the explicit 

electrochemistry modelling allows reducing modelling complexity without the need for solving 

the transport equation for electric potential, but at the same time allows the investigation of 

diffusion of species through the GDL realistically. It would, however, be interesting to investigate 

the anisotropic electrical resistance through solving a transport equation of electric potential in 

future work. A symmetry boundary condition has been applied on the side surfaces of the porous 

regions (Fig. 1). No slip condition has been applied to the external walls. The solution of the 

governing conservation equations has been considered to be converged when the relative 

residual reached below 10-6.  
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2.7 Computational domain and physical parameters 

 

A representative section of a PEM fuel cell comprised of a three-dimensional straight channel has 

been considered in the present study (Fig. 1). The geometry is similar to the computational work 

of Liu [16] and Min [17]. Physical dimensions of the computational domain as well as relevant 

fuel cell parameters are given in Table 1. The computational domain has been meshed with 

quadrilateral grids of 12700 cells. A grid sensitivity test using up to 480000 cells has proved that 

the grid size of 12700 cells is sufficient to provide grid independency. Simulations have been 

carried out on a quad core Xeon workstation running on serial server.  Each simulation took 

approximately 1000 iterations to converge in approximately 15 minutes of run time.  

 

 

3 RESULTS AND DISCUSSION 

 

3.1 Effects of effective diffusivity 

 

The predominate flow direction within a parallel or serpentine fuel cell channel is longitudinal. 

However, in order for the reaction to take place, the reactants flow through the GDL to the 

catalyst layer. The flow of the reactants in the GDL is perpendicular to main the flow direction. It 

is therefore expected that the diffusion of species plays a key role in species transport and this is 

the focus of the present study.  Figure 2 shows a comparison of various diffusivity models 

against the most widely used Bruggeman model. Dawes et al [13] and Neale and Nader [23] 

models produce higher values of effective diffusivity compared to the Bruggeman over the whole 

range of porosity, whereas the Mezedur et al [11] model starts at higher values, but quickly falls 
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below the Bruggeman model. Tomadakis and Sotirchos [10] is the only model that takes into 

account the anisotropy of the GDL layer and shows the in-plane permeability is greater than the 

through-plane permeability and that both the in-plane and through-plane permeability are lower 

than the Bruggeman model. The porosity of the GDL in the present model has been taken as 

0.4. At this porosity, Dawes [13] model predicts 40% and Neale and Nader model [23] predicts 

20% higher effective diffusivity compared to the Bruggeman model and Mezedur et al [11], 

Tomadakis and Sotirchos [10] in-plane and through-plane models predict 10%, 20% and 35% 

lower diffusivity compared to the Bruggeman model. Clearly each of these diffusivity models 

produces a widely different estimate and it is not entirely clear which of these models is a better 

fit for the numerical modeling of the gas diffusion layer of a PEM fuel cell. The reason behind the 

wide differences in the trend of the effective diffusivity seem to stem from the fact that these 

correlations were developed and fitted to certain experimental results and geometries and none 

of these experiments and models used similar geometry and physical parameter values. The 

reported correlations for the effective diffusivity were developed for different porous media, for 

example, packed spherical particles (Bruggeman and Neale and Nader model [23]), multi-length 

scale particles based porous media (Mezedur et al [11]), isotropic fibrous web (Dawes [13]) and 

anisotropic fibrous web (Tomadakis and Sotirchos [10]).  The extent to which these differences 

in the effective diffusivity contribute to the overall fuel cell performances has been discussed 

below. 

 

Figure 3 shows the effect of effective diffusivity on the fuel cell performance at different current 

densities. The figure also shows experimental data of Ticianelli et al [24]. For average current 

densities below 0.5 Acm-2, smaller differences in cell voltages among different diffusivity models 

have been observed. While, for higher current densities significant variations have been 
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observed up to an average current density of 1 Acm-2.  Both Mezedur et al [11] and Tomadakis 

and Sotirchos [10] model provide a much closer prediction compared to the experimental data. 

In particular, Tomadakis and Sotirchos [10] model prediction is very close to experimental data, 

though there is still a discrepancy between the simulation and experimental value. This 

discrepancy can be attributed to the single phase modeling of water. The water has been 

considered to be present only in vapour form in the present study. The experimental data of 

Ticianelli et al [24] has been widely used as a kind of benchmark for validating numerical 

modeling [16, 25]. However, the exact geometry of the fuel cell used in the experiment of 

Ticianelli [24] is unknown. The operating pressure, temperature and the Nafion 117 membrane 

used in the Ticianelli et al experiment [24] have been utilised in the present study. Where 

relevant parameters are not known from the Ticianelli et al experiment [24], these have been 

taken from previous reported modeling studies [16-17, 25] and are given in Table 1. It should be 

noted that the ability of the present model to reproduce the experimental polarization curve is a 

necessary validation check, but is not particularly informative as any modelling study can 

reproduce the experimental data by adjusting some of the many parameters involved. The 

strength of the present modelling study lies in providing detailed insight into the transport 

mechanism and its interactions.  

 

To understand the variation of cell performance with diffusivity models, oxygen and water vapour 

contour plots from the cathode side have been plotted. Figure 4 shows the oxygen contour plots 

of the catalyst/membrane interface at 0.5 Acm-2 and 1.0 Acm-2. At both current densities, the 

mass fraction of oxygen has been overpredicted by Dawes et al [13] and Neale and Nader [23] 

models compared to the Bruggeman, while the Mezedur et al [11] and Tomadakis and Sotirchos 

[10] model underpredict the mass fraction of oxygen. This effect is more prominent at the higher 
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current density. A closer inspection of the mass fraction of oxygen predicted by Tomadakis and 

Sotirchos [10] model reveals a much more uniform oxygen distribution due to taking into 

account more realistic in-plane diffusion which is higher than the through-plane diffusion.   

   

Figure 5 shows the mass fraction of water vapour distribution predicted by various effective 

diffusivity models on the catalyst/membrane interface for 0.5 Acm-2 and 1.0 Acm-2 respectively. 

The predicted mass fraction of water vapour is higher under the land area compared to the 

channel area. There are large differences on the predicted peak values of water vapour among 

the different diffusivity models specially at 1.0 Acm-2 current density. Dawes et al [13] and Neale 

and Nader [23] models produce lower peak water vapour values compared to the Bruggeman 

model, whereas Mezedur et al [11] and Tomadakis and Sotirchos [10] produces higher water 

vapour level.  

 

Water management is a big challenge which needs to be tackled for improving the performance 

of a PEM fuel cell. There are several techniques available to meet this challenge including 

optimising operating parameters (gas flow rate, pressure, temperature, relative humidity, 

stoichiometry etc.) and flow field design and configurations [26-27]. In addition, extra systems 

and components (extra valves, electro-osmotic pumps, and acoustic wafers) have been shown to 

improve fuel cell performance by removing water quickly [26-27]. However, these extra 

components lead to increased complexity and parasitic losses. Therefore, there is a continued 

need for model development and parametric study for optimising operating conditions and flow 

field design for water management. The main implication of the present finding is that any water 

management strategy developed based on the Bruggeman correlation may lead to inadequate 

water removal from the GDL.  
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3.2 Effect of GDL permeability  

 

In order to investigate the effects of GDL permeability on cell performance, simulations have 

been carried out for a range of permeability (𝟏 × 𝟏𝟎P

-10 m2 to 𝟏 × 𝟏𝟎P

-14 m2). These values have 

been chosen as the most representative values of commonly used GDLs in the reported 

experimental and numerical studies.  Table 2 shows the combinations of different case studies. C 

stands for case studies in the table. C11, C22 and C33 stand for isotropic permeability 

combinations. Similarly, C12, C13, C21, C23, C31 and C32 stand for anisotropic permeability 

combinations. Though various combinations of permeability values have been simulated, in 

practice, the in-plane permeability of GDL is much higher than the through-plane permeability. 

Therefore, cases C11, C12, C13 are of greater relevance to the practical situation and have been 

reported here. Simulations have been carried out to investigate the effect of permeability at 

average current densities of 0.5 and 1 Acm-2. The catalyst layer permeability has been fixed for 

all the case studies at 1 x 10-10.  

 

 

Table 2 

Combinations of permeability for the model study 

 

In plane 
Permeability 
x-z direction 

Through plane Permeability 
y direction 

 1x10-10 1x10-12 1x10-14 
1x10-10 C11 C12 C13 
1x10-12 C21 C22 C23 
1x10-14 C31 C32 C33 
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Figure 6 shows vector plots at the mid plane of the assembly at different permeability cases 

(C11, C12, C13, C22, and C33). In these plots vector lengths are kept constant as the velocity 

varies widely among different zones. At the high permeability case, the velocity direction is 

mainly longitudinal inside the GDL (C11) caused by the high convective velocity in the flow 

channel. At low permeability cases however (C22 and C33) the direction of flow changes inside 

the GDL, and becomes perpendicular to the main flow directions. This is more evident in the 

anode as the velocity in the anode channel is much lower than in the cathode channel. In the 

case of anisotropic permeability (C12 and C13), the velocity vector plots are quite similar to C11 

highlighting that the effects of lower through plane permeability is negligible.  

 

The cell voltage predictions obtained from the simulations have been summarised in Table 3. It 

is observed from the Table 3, for the isotropic simulation cases (C11, C22, C23), that the effect 

of permeability is negligible at both current densities. Again for anisotropic permeability 

combinations from C11 to C13, the effect of anisotropy on cell voltage is negligible. The effects 

of permeability (both isotropic and anisotropic) are insignificant on both oxygen and water 

vapour distribution as shown in Figures 7 and 8. These figures show the profile of mass fraction 

of oxygen and water vapour at the GDL/CL interface at the inlet, middle and outlet locations. 

Dawes et al [13] have also shown that the effects of permeability on current density ceases 

below a permeability of 5 x 10-11. It can be safely concluded that the uncertainty in the 

permeability value has less of an effect on the cell performance compared to the effective 

diffusivity as the dominant force for species transport through a GDL is diffusion. Ahmed et al 

[21] have also shown that the effects of anisotropy are negligible if the permeability is high in 

one direction. 
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Table 3 

Cell Voltage at isotropic and anisotropic conditions  
 

Case 
Studies 

Cell Voltage 
0.5 Acm-2 1.0 Acm-2 

C11 0.596 0.237 
C22 0.594 0.233 
C33 0.594 0.232 
C12 0.594 0.233 
C13 0.594 0.233 
 

 

4 CONCLUSION 

 

Numerical Modelling plays a significant role in optimizing performance and developing new 

architectures for PEM fuel cells. Developing an accurate computational model involving a 

complex set of parameters is challenging. Moreover, there are many uncertainties in specifying 

different physical parameters. In this study, a three-dimensional, steady state, single phase, 

explicit electro-chemistry PEM fuel cell model has been developed to study the effects of two 

such parameters, the effective diffusivity and permeability of a gas diffusion layer.   

 

The diffusion of species through a gas diffusion layer has been modeled by using the 

Bruggeman, Dawes et al [13], Neale and Nader [23], Mezedur et al [11], Tomadakis and 

Sotirchos [10]. Among these models, Tomadakis and Sotirchos [10] is the only model which 

takes into account the anisotropy of fibre distribution, whereas the Bruggeman correlation is the 

most widely used effective diffusivity model for PEM fuel cell Modelling. Simulation results show 

that the effective diffusivity model has significant effects on the prediction of fuel cell 

performance. Dawes, and Neale and Nader models provide higher values of cell voltage 

compared to the Bruggeman model, while Mezedur et al, Tomadakis and Sotirchos anisotropic 
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models produce lower values of voltage compared to the Bruggeman model. The Tomadakis and 

Sotirchos anisotropic model produces a cell voltage much closer to the experimental values. 

 

The simulation result shows significant changes in the flow direction inside the GDL layer for 

lower isotropic permeability cases. For anisotropic permeability where the in-plane permeability 

is higher than through plane permeability, there appears to be small changes in the flow 

direction. In addition, the simulation results show that the effect is insignificant in cell voltage 

prediction for isotropic and anisotropic cases within the realistic permeability range of 10-10 to 

10-14. 

 

The main conclusion from the study is that the effect of effective diffusivity is significant and the 

anisotropic diffusivity model should be utilized in PEM fuel cell Modelling. The effect of 

permeability is found to be insignificant and any realistic value of permeability could be safely 

specified in a PEM fuel cell Modelling. 

 

NOMENCLATURE 

ak   water activity 
A  specific area of the catalyst layer (m-1) 
C  molar concentration (mol m-3) 
D  diffusion coefficient (m2 s-1) 
E  equilibrium thermodynamic potential (V) 
F  Faraday constant (96485.309 C mol-1) 
H  Height (m) 
i  reaction rate (Am-3) 
I  average current density (Am-2) 
K  permeability (m2) 
L  length (m) 
M  molar mass (kg mol-1) 
Mm,dry  dry mass of membrane (Kg mol-1) 
n  electron number for reactions 
nd  electro-osmotic drag coefficient 
P  pressure (Pa) 
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R  gas constant (8.314 J mol-1 K-1) 
RH  relative humidity 
S  source term 
T  temperature (K) 
u   velocity vector (m s-1) 
Vcell  cell voltage (V) 
W  width (m) 
X  molar fraction 
 
Greek symbols 
𝛼  net water transfer coefficient 
ε  porosity 
η  overpotential (V) 
µ  viscosity (kg m-1 s-1)  
ρ  density (kg m-3) 
ω  mass fraction 
ζ  stoichiometric ratio 
 
 
Subscripts and superscripts 
 
0  before diffusion layer 
a  anode 
act  activation  
av  average 
c  cathode  
conc  concentration 
eff  effective 
H2  hydrogen 
k  species 
L  limiting 
m  membrane 
O2  oxygen 
ohm  ohmic polarization 
ref  reference 
w  water    
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Figure 1: Schematic diagram of the three-dimensional PEM fuel cell model 
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Figure 2: Comparison of effective diffusivity models at different porosity  
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Figure 3: Comparison of diffusivity models for simulating voltage-current polarization curve 
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Figure 4: Contour of the mass fraction of oxygen at the catalyst/membrane interface 

Figure 4 
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(e) Tomakadis and Sotirchos [10] 
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Figure 5: Contour of the mass fraction of water vapour at the catalyst/membrane interface 
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(e) Tomadakis and Storichos [10] 
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Figure 6: Velocity vector at midplane for different permeability cases 
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Figure 7: Profile of the mass fraction of oxygen at the GDL/catalyst interface 
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Figure 8: Profile of the mass fraction of water vapour at the GDL/catalyst interface 
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