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Abstract 

 

An investigation is conducted into the cognitive effects of using 

different computer based instructions media in acquisition of specific novel 

human skills. With recent rapid advances in computing and multimedia 

instructional delivery, several contemporary research have focussed on the 

best practices for training and learning delivered via computer based 

multimedia simulations. More often than not, the aim has been cost 

minimisation through an optimisation of the instructional delivery process 

for efficient knowledge acquisition. The outcome of such research effort in 

general have been largely divergent and inconclusive. 

 The work reported in this thesis utilises a dual prong methodology to 

provide a novel perspective on the moderating effects of computer based 

instructional visualisations with a focus on the interaction of interface 

dynamism with target knowledge domains and trainee cognitive 

characteristics. The first part of the methodology involves a series of 

empirical experiments that incrementally measures/compares the cognitive 

benefits of different levels of instructional interface dynamism for efficient 

task representation and post-acquisition skilled performance. The first of 

these experiments utilised a mechanical disassembly task to investigate 

novel acquisition of procedural motor skills by comparing task comprehension 

and performance. The other experiments expanded the initial findings to 

other knowledge domains as well as controlled for potential confounding 

variables. The integral outcome of these experiments helped to define a novel 

framework for describing multimodal perception of different computer based 

instruction types and its moderating effect on post-learning task 

performance. 

 A parallel computational cognitive modelling effort provided the 

complementary methodology to investigate cognitive processing associated 

with different instructional interfaces at a lower level of detail than possible 

through empirical observations. Novel circumventions of some existing 

limitations of the selected ACT-R 6.0 cognitive modelling architecture were 

proposed to achieve the precision required. The ACT-R modifications afforded 
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the representation of human motor movements at an atomic level of detail 

and with a constant velocity profile as opposed to what is possible with the 

default manual module. Additional extensions to ACT-R 6.0 also allowed 

accurate representation of the noise inherent in the recall of spatial locations 

from declarative memory. The method used for this representation is 

potentially extendable for application to 3-D spatial representation in ACT-R. 

These novel propositions are piloted in a proof-of-concept effort followed by 

application to a more complete, naturally occurring task sequence. The 

modelling methodology is validated with established human data of skilled 

task performances. 

 The combination of empirical observations and detailed cognitive 

modelling afforded novel insights to the hitherto controversial findings on the 

cognitive benefits of different multimodal instructional presentations. The 

outcome has implications for training research and development involving 

computer based simulations. 

 

Keywords: cognitive modelling, instructional design, interface dynamism, 

cognitive psychology, cognitive architectures, computer based training. 
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"I can do all things through Christ which strengtheneth me.” 
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Chapter 1  

 

Introduction 

 

1.1 Overview 

 

 Salomon (1994) tells the story of a seeing person describing the colour 

red to a blind person as “warm and soft”. The blind person replies “Oh, it is 

like velvet, isn’t it? So why don’t you call it velvet?” This story captures the 

essence of abstract representation of our natural environment and the 

attendant inadequacy of representation media in general. Symbolic systems 

are used extensively to represent aspects of the natural world such as written 

text, spoken languages, graphic images, videos and Braille letterings. 

However, no single symbolic system can be generalised adequately to 

represent all knowledge domains. More often than not, symbolic systems 

have narrow information foci and extending them beyond such primary 

confines of focus can lead to distorted communication and misapplication. 

 Recent and rapid advances in computing and information technologies 

have made multimedia symbolic representation systems easier to create and 

apply to training and instructional delivery. The advent of modern, powerful 

computing devices affords rapid development of rich instructional interfaces 

that leverage on multimedia components like videos, pictures, text and 

animations to describe the target knowledge or skill to be acquired in the 

training process. Such multimedia instructions can also be applied at 

minimal cost and with relative safety especially in training scenarios where 

immersion in actual operational environment is not feasible during training 

such as in fire-fighting or emergency response to nuclear disasters. 

Consequently, computer based instructional delivery have become quite 

attractive and almost ubiquitous to the extent that it is now an acceptable 

alternative standard to well established training methods in some fields such 
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as Advanced Cardiac Life Support (ACLS) component of medical training 

(Platz, Liteplo, Hurwitz & Hwang, 2011). However, it is arguable that the 

advances in computing technologies that have made such symbolic 

representation systems possible have not been matched by commensurate 

advances in its adaptation to fit the psychological characteristics of the 

intended human trainees.  

Substantive contemporary research efforts have focussed on the 

optimisation of knowledge acquisition via computer based multimedia 

instructional delivery with inconclusive findings. Of particular relevance to 

the work reported in this thesis is the aspect that investigates the cognitive 

effects and comparative benefits of different levels of dynamic visualisation 

components of computer based multimedia instructional delivery. Dynamism 

of instructional visualisations refers to the time-dependent changes of the 

visuo-spatial objects in the interface that can portray continuously varying 

concepts and processes in the target knowledge domain of training. Previous 

related research has compared the cognitive effects and knowledge transfer 

benefit of dynamic versus static visualisation content of instructional 

interfaces with largely inconclusive findings. A meta-analysis of some of 

these studies identified several variables that may moderate knowledge 

acquisition through such interface components including the target 

knowledge domain and the cognitive characteristics or abilities of the learner 

(Höffler & Leutner, 2007). The inconsistent and divergent findings of related 

research effort on the topic may therefore be due to insufficient separation 

and control for the individual effect of these moderating variables and the 

subsequent integration of their effects. There has also been little empirical 

work to further validate the moderating roles of these variables and how they 

could be integrated with the learner’s cognitive characteristics to optimise 

knowledge acquisition and transferability through computer based 

multimedia instructions. 

 In view of this, a series of progressive and independent studies was 

conducted to investigate the cognitive benefits of dynamic versus static 

instructional visualisations and their effects on post-learning task 

performance. The focus is on the moderating effect specific to the target 
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knowledge domain with particular reference to the acquisition of novel 

procedural skills while controlling for all other potentially confounding 

variables. Furthermore, a dual-prong methodology is utilised, which include 

novel paradigms for low-level investigation of the atomic cognitive processes 

involved in the skill acquisition process as opposed to the high-level approach 

of contemporary related studies. The methodology involves a series of 

empirical experiments conducted in parallel with cognitive computational 

modelling that leverages the power of well-established cognitive architectural 

frameworks. The computational modelling aspect also include substantial 

extension to the base cognitive architecture to overcome some of the problems 

hitherto associated with the modelling of complex human procedural skill 

acquisition and execution. The scope of the empirical and computational 

modelling work is described further in Section 1.5 of this chapter. 

 

1.2 Research Objectives 

 

 The aims of the research reported in this thesis are as follows: 

 

• To investigate the cognitive effects of different levels of dynamic 

visualisation components of computer based instructional interfaces in 

the acquisition of novel procedural knowledge. 

• To identify the cognitive mechanisms that support the acquisition of 

novel procedural knowledge and their effects on post-learning task 

performance. 

• To conduct empirical investigations with human participants for 

validating the cognitive roles of different instructional interface 

visualisations in the acquisition and transfer of skilled procedural 

knowledge. 

• To develop cognitive architecture-based computational models of 

human procedural knowledge acquisition via computer based 

instructions, which fits with empirical data. 
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• To contribute to Human Computer Interaction knowledge of the 

cognitive effects and roles of different levels of dynamic visualisation 

components of instructions using an interdisciplinary methodology. 

 

1.3 Research Design and Methodology 

 

 The research methodology is a parallel combination of empirical observations 

and cognitive computational modelling as depicted in Figure 1.1 below. The series of 

empirical experiments afforded incremental measurements of post-learning 

performance effects of using different levels of dynamic instructional visualisations in 

acquiring novel procedural skills/knowledge. The general design of these experiments 

is shown in Figure 1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1 Overview of Research Methodology 

 

Figure 1.2 General Design of Experiments 
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Independent comparisons of instructional interfaces with different visualisations 

contents were made under controlled laboratory conditions. The cognitive effects of 

these learning formats were based on the analysis of post-learning performance 

metrics of task execution such as time on task, number of errors made and robust 

recovery from deviations to ideal task execution sequence. The first experiment 

focused on the acquisition of novel procedural motor skills by knowledge domain 

novices and used a mechanical disassembly task to compare task comprehension and 

performance while controlling for selected extraneous factors. The results provided 

some novel insight into the cognitive roles of different instructional visualisations but 

were not conclusive enough to generalise to a wider learning context, which includes 

skill acquisition in other related knowledge domain. Subsequently, a second 

experiment was conducted that focused on novel skill acquisition in the related but 

different knowledge domain of spatial navigation. The third experiment in the series 

returned the focus to the acquisition of novel procedural motor skills but controlled 

for domain expertise. 

The net result of the series of empirical experiments was the definition of a 

hybrid cognitive model for multimodal acquisition of procedural knowledge in the 

context of computer based multimedia instructions. The model accounted for high 

level performance metrics of learners that acquired a novel procedural knowledge 

through instructional interfaces with different levels of dynamic visualisation 

contents. However, it abstracted much of the details of low level cognitive processing 

associated with the perception of such visualisations, their integration with retrievals 

from long term declarative memory and the intertwined role of the integral mental 

task representation in subsequent, observable post-learning task performance. To 

investigate these low level details, the hybrid cognitive learning model was formalised 

through a series of computational modelling effort within the framework of a modern 

cognitive architecture. The general design of computational modelling effort is shown 

in Figure 1.3 and a complete description of the methodology is provided in Chapter 6 

of this thesis. A novel approach was utilised to circumvent the present limitations of 

the selected cognitive architecture for modelling complex human motor actions. This 

novel paradigm was successfully piloted in the first, proof of concept computational 

modelling effort by applying it to a single step of an entire task sequence. In the 

second, follow-up work, the cognitive modelling method was extended to more natural 

and complete task sequences with equally impressive outcomes. 
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 The back-to-back paradigm of empirical observations and integrated cognitive 

computational modelling afforded a novel insight to the controversial cognitive role of 

different levels of dynamic visualisations in multimedia instructional delivery. It 

combines traditional methods of inquisition with powerful but relatively modern 

cognitive computational modelling approaches to produce a generic framework for 

multimodal acquisition of novel procedural knowledge, which has implications for 

education, research and training involving computer based training simulations. 

 

 

 

 

 

 

 

  

 

Figure 1.3 Generic cognitive modelling methodology 
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1.4 Research Contributions 

 

The research reported in this thesis address the computer science aspect of a 

long-standing psychology question – What are the cognitive effects of instructional 

interface visualisations and the implications for optimizing computer based learning 

tools? This question is the subject of several contemporary studies as will be 

highlighted in the course of the report. The current research makes novel 

contributions to the existing body of knowledge by integrating methods across 

selected disciplines to approach the problem. Extensions were made to the definition 

of the range of interface visualisations and the notion of an ‘interactive’ interface was 

clarified to resolve the hitherto diverse and conflicting results of related previous 

studies. Additionally, the research methodology utilises the increasingly acceptable 

technique of computational cognitive modelling to conduct detailed examination of the 

cognitive processes that underlie overt behaviour in interaction with different 

instructional interface visualisations. To achieve this, novel extensions of the base 

framework of the selected cognitive modelling architecture are defined. This afforded 

the modelling of complex human cognition and associated performance than would 

otherwise have been possible with the original definition of the cognitive modelling 

architecture. Furthermore, the novel extensions defined hints at possible approaches 

for extending the base architecture to modelling problems in extra dimensions than 

originally specified. More details of these novel contributions of the thesis would be 

highlighted in the subsequent chapters and a list of the associated journal/conference 

publications is contained in Appendix A of this report. 

 

1.5 Scope of the Report 

 

Chapter 1 provides an overview of the work presented in this thesis. The fine 

detail commences in Chapter 2 with a critical review of selected research literature on 

the human skill acquisition process and its dependence on external symbolic 

knowledge representations using visualisations and artefacts. The literature review 

examines the human cognitive architecture from the interdisciplinary perspective of 

psychology, neurophysiology and cognitive computational modelling with a view to 

eliciting the constraints it imposes on different knowledge acquisition scenarios. A 
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thorough understanding of the learning constraints imposed by the limitations of the 

human cognitive architecture is fundamental to subsequent evaluation of more 

modern research on the cognitive benefits or otherwise of different instructional 

presentation formats. The literature review also serves the purpose of clearly defining 

the focus of this research work and how its novel contributions fit into the current 

body of knowledge especially the computer science aspects of interactive learning via 

computer based simulations. 

 The empirical studies are reported in Chapters 3, 4 and 5. The first 

experiment reported in Chapter 3 was conducted to provide the initial framework for 

evaluating novel skill acquisition through instructional interfaces with different 

visualisations but equivalent information content. It replicates certain aspects of 

previous related research but extends such to include additional levels of dynamic 

visualisations in the comparison. Furthermore, certain extraneous moderating 

variables as identified from relevant research literature were controlled to develop 

the initial framework of a hybrid cognitive learning model for the acquisition of novel 

procedural knowledge via computer based training simulators. The experiment 

reported in Chapter 4 extends the hybrid cognitive learning model to novel skill 

acquisition in a different but related procedural knowledge domain. The objective is to 

extend the generalisability of the hybrid cognitive learning model for novel procedural 

knowledge acquisition. In Chapter 5, the cognitive learning model is examined 

further for the effect of previous knowledge or domain expertise on novel procedural 

knowledge acquisition with interesting results. The findings of the experiment 

reported in Chapter 5 have implications for rapid retraining/rerolling of domain 

experts to accommodate new technologies or changes to workplace processes. 

 The design and implementation of the cognitive computational models are 

described in a series of 2 experiments reported in Chapter 6. Experiment 1 details the 

design and implementation of the initial proof-of-concept of the modelling approach. It 

describes the selection of a limited range of task execution sequence for modelling as 

well as the rationale for the choice of the implementation cognitive modelling 

architecture. It further details the novel extensions made to the base cognitive 

modelling architecture to enable implementation of low-level cognitive processes that 

drive high-level, observable post-learning human task performance in procedural 

knowledge acquisition. The mathematical foundations of the developed models are 

also reported. Experiment 2 extends the novel computational modelling paradigm 
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piloted in Experiment 1 to a more complete and natural sequential task execution. 

The objective is to highlight the flexibility and extensibility of our approach to 

modelling a wider range of more complex and natural human task performance. The 

results of the computational modelling experiments reported in Chapter 6 were 

evaluated against equivalent human empirical data from previous research. 

 Chapter 7 provides a general discussion that fits together the findings of the 

different stages of this research effort. It provides a coherent overview of the results, 

addresses the research questions and discusses the implications for curriculum 

development and training simulation design. Chapter 7 also discusses the limitations 

of the research and concludes the thesis with suggestions for possible future research 

on the subject of knowledge acquisition and the cognitive benefits associated with 

different levels of dynamism in instructional visualisations. 

 

 



 

 

Chapter 2  

 

Selective Literature Review 

 

2.1 Overview 

 

 The cognitive role of symbolic multimedia representations in learning has 

generated intense research interest over time. This chapter reviews selected extant 

research literature relevant to the cognitive effects of different visualisation 

components in the instruction interface in a knowledge domain specific context. 

 The acquisition of novel knowledge from instructional media involves a series 

of cognitive processes. External stimuli are perceived through different modalities 

such as visual, verbal or somatosensory. The input percept undergoes processing, 

which may involve selective filtering, task features’ mapping, task specific knowledge 

retrieval, knowledge integration and transfer to post-learning task performance. 

Central to these processes is the learner’s cognitive architecture consisting of sensory 

units, information pathways, storage and processing mechanisms. Various 

approaches and theoretical frameworks for human cognitive architecture will be 

reviewed in this chapter, which would highlight its well-accepted limitations and the 

adaptations to overcome these limitations. 

 Contemporary theories of knowledge acquisition from symbolic multimedia 

representations are also reviewed. The discussion is focussed on how these theories 

are grounded in the reference framework of human cognitive architecture and the 

restrictions imposed on learning. The chapter further reviews the implications of 

these theories on opposing instruction design paradigms of the cognitive effects of 

different visualisations in the instruction interface. A meta-analytical review of these 

opposing arguments reveals that several variables moderate knowledge acquisition 

from multimedia representations including the knowledge domain and the cognitive 

characteristics of the learner. A hybrid cognitive learning model is proposed from 

different approaches to studying human cognitive architecture as the basis of further 

10 
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experiments to investigate the cognitive effects of the instructional visualisations 

within the context of other moderating factors. 

 

2.2 Learning and Human Cognitive Architectures 

 

 The question ‘what is learning?’ has driven scientific research for centuries 

resulting in distinctive but complementary perspectives of the subject. The process 

through which humans perceive, process, acquire and transfer knowledge/skill is 

complex. A well-accepted view adopted in this thesis is that learning is a process that 

engages the learner in sense making activities that are shaped by previous knowledge 

(Greeno, Collins, & Resnick, 1996). Therefore, a complete understanding of the 

learning process requires a prerequisite examination of the human cognitive 

architecture that supports it. The human mind has been shown to exhibit the 

contrasting characteristics of an apparently unlimited storage capacity but a 

disproportionate limitation for attention and real-time information processing 

(Atkinson & Shiffrin, 1968).  

 There are two well accepted approaches to the supportive role of cognitive 

architectures in perception, cognition and behaviour – behaviourist and cognitivist. 

The behaviourist approach describes cognition from the perspective of stimuli 

perception and behavioural responses (Paivio, 1986). The target knowledge of a 

learning process is represented as partial simulations of sensory, motor and 

introspective states that are stored distributively in modality specific brain areas as 

active simulations of the perceived states (Barsalou, Niedenthal, Barbey & Rupert, 

2003a). The alternative cognitivist view is based on an information-processing model 

in which information is abstracted from input stimuli and internally processed in a 

format independent of the source modality. Section 2.3. of this chapter describes the 

knowledge representation distinction of these alternate paradigms in greater detail. 

This section focuses on only the more widely accepted cognitivist, information-

processing approach and its implication for learning. 

 The problem of learning is largely an explanation of why only a selective 

subset is retained from the complete set of input percepts. Broadbent (1958) proposed 

a filter theory to explain this phenomenon. The theory suggested that a filtering 

operation is performed on sensory percepts prior to entering the cognitive processing 
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system. This filtering is an adaptive response to prevent overloading and to optimise 

the function of the limited capacity cognitive processing system. Broadbent’s model, 

as depicted in Figure 2.1, makes a clear distinction between the ‘source’ of the stimuli 

and the ‘channel’ of information processing. A source presents stimuli from different 

spatial locations, which may be incompatible. The channel however is a result of the 

filtering process and presents a coherent set of events with some common 

characteristics, which are batched together for subsequent processing. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Broadbent’s information-flow model of human cognitive architecture 

(Broadbent, 1958, pp 299) 

 

Atkinson and Shiffrin (1968) extended Broadbent’s model to include the 

memory structures and integrated processes that support post-perception cognition. 

Their model is also premised on the information processing paradigm and included 

permanent, functional structures and fixed processes, which are selectively 

controllable (see Figure 2.2). More importantly, Atkinson and Shiffrin’s model 

specifies separate structures of the cognitive system and describes a 3-component 

framework that includes the sensory register, short term memory (STM) and long 

term memory (LTM). External stimuli are selectively forwarded to the STM where 

they are integrated with additional information retrieved from the LTM. The STM 

therefore functions as a Working Memory (WM) that holds current task specific 

information relevant to performance. The WM is further characterised by a severe 

limitation to retain information without rehearsal. This concept of a WM that 

integrates selective external stimuli and prior information retrieved from the LTM is 

one of the most powerful features of Atkinson and Shiffrin’s model. It provides 
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powerful insights into the general workings of the human memory system and 

particularly succeeded in highlighting the constraints of attention.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2 Atkinson and Shiffrin’s model of human cognitive architecture  

(Atkinson & Shiffrin, 1968) 

 

It is arguable however that the model left open some important questions like the 

exact nature of information flow between the structures, how the flow is controlled, 

the differential processing of various stimuli and the internal processes and 

structures that helps to overcome the apparent limitations of the WM. Further 

research effort were therefore focused on the detailed structure of the WM and how it 

encodes information for fast retrieval to moderate performance. Chase and Simon, 

(1973) proposed that the WM consists of chunks that are indexed by a discrimination 

net, which affords rapid categorisation of domain specific percept. The WM is also 

central to Holding (1985) SEEK (Search, Evaluation, Knowledge) theory, in which it 

stores explored concept or maintains an index of recent actions. Ericsson and Kintsch 

(1995) suggested that the capacity of the WM may be larger than traditionally 

proposed. Their Long Term Working Memory (LT-WM) theory describes a more 

involved role of the LTM in the maintenance of task-relevant information for 

performance. Additionally, abstracted information from external stimuli are thought 

to be encoded in a hierarchical structure of patterns and schemas. These are 

subsequently retrievable through a fan effect that affords rapid spreading activations 

across the stored schema. 
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In a radical departure from the unitary storage perspective, Baddeley and 

Hitch (1974) proposed a 3-component model of the WM, which processes perceived 

stimuli through separate cognitive channels. The model, as depicted in Figure 2.3,  

 

 

 

 

 

Figure 2.3 Baddeley and Hitch’s 3-component model of WM 

 

 

 

 

 

 

 

 

 

Figure 2.4 An extension of Baddeley & Hitch’s model of WM,  

which includes an episodic buffer (Baddeley, 2000) 

 

has separate processing channels for verbal-phonological and visual-spatial percept. 

It also includes a central executive module for control and manipulation of all 

cognitive processes through an attention mechanism. The phonological loop and 

visual-spatial modules therefore act as slave systems to the central executive. 

Baddeley & Hitch’s multicomponent model has been widely accepted. It is consistent 

with Card, Moran and Newell’s, (1983) human processor model and Paivio’s, (1986) 

dual coding theory. It’s specification of a dual processing channel however does not 

cover the full spectrum of possible sensory percept available to the learner. Although 

the auditory and visual channels account for a large part of the external percept 

spectrum, it may be argued that the human learner is quite capable of considerable 

cognitive processing and learning from other modalities such as olfactory, 

somatosensory and gustatory. Baddeley (1981) also highlighted this limitation of the 

multicomponent model and suggested that the two slave systems were only initial 
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specifications of several other possible subsidiary systems of the WM. Baddeley (2000) 

later extended this model to include an episodic buffer, which provides an interface 

between the two slave systems (see Figure 2.4). The buffer also supports the 

integration of information abstracted from multi-dimensional external percept with 

retrievals from the LTM. The central executive utilises the episodic buffer through 

selective attention mechanism to model the external environment as well as generate 

novel cognitive representations that facilitates problem solving and skilled task 

execution.  

In this thesis, Baddeley’s extended WM model provides the baseline 

theoretical framework for the role of human cognitive architecture in learning from 

instructional interfaces with different visualisation components. The episodic buffer is 

hypothesised to support the integration of multisensory data with retrievals from 

LTM to aid task comprehension and the transfer of novel knowledge/skills. Several 

aspects of this process however are not fully understood. For instance, questions 

remain as to how the integrated data consisting of multisensory information and 

declarative knowledge retrievals are encoded during cognitive processing? Is the task 

comprehension and subsequent performance moderated by factors such as the 

knowledge domain, learner’s individual abilities and/or the type of visualisations 

employed? Can knowledge/skill transfer be optimised in the learning process through 

more efficient instructional visualisations combinations that exploits their effects on 

the cognitive processing? To answer these questions, it is imperative to have a sound 

understanding of how mental task representations are internally hosted during 

cognitive processing associated with learning and subsequently referenced in post-

learning task performance. The fidelity of the multidimensional encoding of task 

related information integrated with declarative knowledge retrievals is critical to task 

comprehension and skill transfer in the learning process. It appears therefore that 

manipulating the sensory percept through instructional design techniques that 

optimises the type of visualisations content would moderate the skill 

acquisition/knowledge transfer possible in a learning episode. The next section of this 

chapter explores the different approaches to knowledge representation in cognitive 

processing associated with learning. In a later section, contemporary divergent 

findings on the cognitive roles of different instructional visualisations in knowledge 

acquisition are reviewed. The theoretical frameworks of these findings is also 

discussed and a hybrid knowledge representation model is used to argue for a 
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moderating effect of the knowledge domain. The experimental work to investigate this 

proposal is presented in later chapters of the thesis. 

 

2.3 Knowledge Representation in Skills Acquisition 

 

The concept of ‘representation’ is concerned with how one entity may stand in 

place of another. It therefore recognises the separation of the ‘represented’ from the 

‘representing’ entities and defines the relationship between them (Johnson, 1992). In 

the research literature, two broad theoretical perspectives have defined the nature of 

knowledge representation in human cognition and performance. The first is a 

behaviourist approach, which emphasizes the synergy between perception and 

observable behaviour otherwise characterised as the stimulus-response view (Paivio, 

1986). This paradigm is also referred to as ‘embodied cognition’ and it argues that 

human bodily states, such as postures and arm movements, are central to information 

processing and knowledge representation in cognition. Therefore, knowledge is 

viewed as modality-dependent partial simulations of sensory, motor and introspective 

states that are distributively stored in modality specific brain areas as active 

simulations of the perceived state. Embodied cognition approaches skip the 

intermediate stimuli representation and processing, focussing on only its perception 

and overt response behaviour. For example, Bargh, Chen and Burrows, (1996) 

conducted a study in which participants were requested to form sentences from a list 

of short, control words that are presented visually. Certain words were included in 

the list as primers such as ‘gray’, ‘bingo’ or ‘florida’ to connote elderliness. They 

observed that after the experiment, the primed participants took a relatively longer 

time to walk to the elevator than others even though there was no suggestion that 

this was an assessed part of the procedure. This suggested that the processing of the 

word(s) associated with a social condition (the state of being elderly) induced a 

relatively bodily effect of moving slowly in the critical participants. Winkielman, 

Berridge and Wilbarger, (2005) also found that when participants are subliminally 

primed with angry or happy faces while being prompted to select the gender of 

visually presented faces, those that viewed happy faces were prone to drinking more 

of a flavoured drink that was offered after the experiment. These studies suggest that 

behaviour may be the automatic resultant of perceived stimuli, which may be 
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subliminal and therefore not represented by some form of conscious internal 

abstraction. 

Embodied states have also been shown to induce higher cognitive activities 

and affective states in a reverse process. Wells and Petty, (1980) had people nod their 

heads vertically or shake it horizontally to test the effectiveness of a set of 

headphones while listening to agreeable or disagreeable subliminal audio messages. 

At the end of the experiment session, nodding participants were found to agree more 

with the message, irrespective of its original content and despite the fact that the 

nodding action was meant to test the usability of the headset only. A corresponding 

disagreement effect was observed in the head-shaking participants. Furthermore, the 

intensity of nodding or shaking was found to correlate with the agreeableness or 

otherwise of the audio messages. In summary, the modality dependent view or 

embodied cognition emphasizes the association of the stimulus and overt response 

rather than an intermediate abstraction of knowledge to explain cognition. Modal re-

enactment of perceptual, action and retrospective states are considered central to 

skill acquisition and task performance rather than symbolic amodal knowledge 

representation. Perception, cognition and action are therefore viewed as tightly 

coupled processes that are mutually dependent and skilled task performance is driven 

by modality-specific, cognitive level re-enactments of original percepts and not by 

abstract semantic representations that are amodal (Barsalou et al., 2003a; Barsalou 

Simmons, Barbey & Wilson, 2003b; Jonides, Lacey & Nee, 2005). 

The alternative paradigm is modality-independent knowledge representation 

in which cognition is underpinned by the abstraction and internalisation of 

information extracted from external stimuli. This approach is rooted in the 

information-processing framework of the human mind. Learning, skill acquisition and 

task performance are therefore driven by cognitive processes that involve the active 

creation and interaction with mental task models that are amodal, semantic 

abstractions of the input stimuli (Anderson, Qin, Jung & Carter, 2007). The 

acquisition of novel knowledge or skill is preceded by the creation of an internal 

mental representation of the perceived problem state and its solution sequence. 

Subsequent task performance is then achieved by active reference to this internal, 

abstract representation for every stage of the solution execution. This view aligns well 

with Fitts and Posner, (1967) three-level description of skill acquisition as depicted in 

Figure 2.5. Novel skill acquisition progresses through three stages – cognitive, 
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associative and automatic. Each level is characterized by progressively effortless task 

performance and reducing reliance on the mental task model. 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 2.5 A depiction of Fitts and Posner’s (1967) model of skill acquisition  

 

Rasmussen’s (1982) skill-, rule- and knowledge-based (SRK) model of human 

error and Logan’s (1988) instance theory of automatisation also specify information 

abstraction as part of the cognitive processes associated with skill acquisition and 

mental task models that drive post-acquisition performance. 

 The modality-dependent and modality-independent paradigms present 

diametrically opposed views of the role of knowledge representation in learning 

associated cognitive processes. Both approaches have been argued for using brain 

imaging data. For example, Jonides, Lacey and Nee, (2005) have cited neural imaging 

analysis data from Wager and Smith, (2003) to argue for an association between 

perceptual mechanisms that encode external stimuli and structures that store 

representations of such stimuli in the WM. Conversely, the posterior parietal cortex 

has been implicated in the hosting of abstract knowledge representation that 

integrates visual and motor signals from external stimuli independently of their input 

modality (Gold & Shadlen, 2007; Freedman & Assad, 2011). More importantly 

however, other studies have advocated that knowledge representation may not simply 

be associated with input modality but moderated by other variables. Schumacher, 
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Faust and Magnuson (1996) found that certain brain regions are sensitive to the 

content of the stimuli (e.g. verbal information) but insensitive to the modality of the 

input (visual or auditory presentation). Anderson et al., (2007) also proposed a mixed 

model where different brain regions were associated with various levels of cognitive 

processing along the modality specific vs abstract representation spectrum. In that 

study, perceptual brain structures were observed to respond in a modality-specific 

manner, lateral cortical regions exhibited hybrid functions of central as well as 

content-related processing while the functions of the caudate and cingulate areas 

appears to be completely independent of modality or content.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 A proposed hybrid cognitive model for learning and skill acquisition 

 

Consistent with this, a novel hybrid knowledge representation approach is 

proposed in this thesis that combines aspects of the embodied cognition and amodal 

representation paradigms. This model, as shown in Figure 2.6, suggest that an 

abstract mental referent is created as part of the cognitive processes in novel skill 

acquisition and subsequent task execution is achieved by reference to this mental 

model. However, the perceptual-action loop is eventually able to override this mental 

model in skilled performance and modify behaviour in accordance with unfolding 

execution and unexpected circumstances. This allows for accurate (due to a mental 

representation) but robust (due to overriding perception-action processes) learning 
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and task execution. The hybrid model suggested in this thesis is consistent with 

modality-dependent and modality independent theoretical frameworks of novel skill 

acquisition such as Barsalou et al., (2003a) embodied cognition model, Fitts and 

Posner’s (1968) three-level model, Rasmussen’s (1982) SRK model, and Logan’s (1988) 

instance theory of automatisation. The focus of this thesis however is on the 

differential cognitive processing of various stimuli content types that are perceived 

through the same modality. This will be achieved through the reverse application of 

the proposed hybrid model to investigate the effect of equivalent dynamic versus 

static instructional visualisations on the fidelity of the integral mental task referent, 

and measured through empirical observations of post-learning task performance. 

 

2.4 Theories of Multimedia Representations in Skills Acquisition 

 

Several contemporary learning theories have highlighted the central role of 

instructional content and mental task models in knowledge/skill acquisition. For 

example, Sweller’s, (1988) cognitive load theory (CLT) utilises an information-

processing view of human cognition to describe learning and skill acquisition in the 

context of ‘cognitive loads’ or difficulty imposed on the cognitive system in the skill 

acquisition process. The CLT describes a schematisation process through which 

relative information is organised in human memory in a tree-like structure or 

schema. By following the branches of the tree or tracking the nodes of the schema, 

humans are able to store and retrieve larger amounts of information than would 

otherwise be possible given the identified limited capacity of WM. This tree-like 

structure has also been used to explain the strategic thought processes of chess 

players (see e.g. Chi, Glaser & Rees 1982 to provide an exemplar reference). Sweller 

(1994, 2005) further suggested that schema formation is enhanced by continuous 

practice/re-experience of stimuli until automation is achieved where information 

retrieval from the LTM allows the WM to be bypassed. However, the speed of schema 

creation and achieving automation is influenced by the ‘cognitive load’ of target 

knowledge. Three forms of this cognitive load were identified; the first is intrinsic 

cognitive load, which describes the fixed, inherent difficulty of the acquirable 

knowledge or skill and represents the basic minimum load to overcome for cognition 

to occur. The second is extraneous load, which is defined as the load imposed by the 
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instructional medium through which the knowledge is delivered and is therefore 

subject to instructional design. It is extrinsic to the target knowledge and constitutes 

a controllable barrier to knowledge acquisition. The final form is germane load, which 

is defined as the generative processing of instruction and the construction of new 

knowledge schemas to facilitate progressive expertise in task performance. The 

germane load is therefore associated directly with schema construction and task 

comprehension characteristic of expertise. In a more recent revision of the CLT, the 

germane load is no longer considered to be an independent source of cognitive load. It 

is redefined as the WM capacity required to process the element interactivity that 

constitutes intrinsic cognitive load. It is therefore dependent on the intrinsic cognitive 

load and contends with extraneous cognitive load for WM resources (Sweller, 2010). 

The CLT assumes that cognitive loads are additive and their summation should not 

exceed the WM capacity for effective learning to occur. Germane and extraneous 

cognitive loads interact with available WM capacity to determine the effectiveness of 

instructions. The intrinsic cognitive load is not subject to manipulation but may be 

presented incrementally through properly designed instructions that adapts to the 

expertise level of the learner. More importantly for this thesis, the CLT specifies 

certain principles that moderate learning and skill acquisition (Sweller, Ayres, & 

Kalyuga, 2011). One of these is the borrowing and reorganising principle, which 

suggests that learning is primarily achieved through borrowing existing schemas 

from other people’s knowledge for example by mimicking, reading or listening to 

them. The borrowed schemas undergo reorganisation, which may result in random 

changes, prior to integration with the learner’s declarative knowledge. The 

alternative and secondary method for learning is specified in another principle – 

randomness as genesis for problem solving. This principle advocates that where 

source knowledge does not exist, the learner must generate new knowledge by 

randomly generating procedures to solve a problem and testing each for effectiveness.  

The randomness associated with generating novel solutions or reorganising perceived 

information imposes cognitive loads on limited WM resources. Once knowledge 

schemas are formed in LTM however, its subsequent retrievals to facilitate task 

performance imposes minimal WM cost as compared to organising external percept 

from the senses. Using the same argument, well designed and organised instructions 

may facilitate efficient transfer to the LTM. Therefore, for learners with no prior 

knowledge, the incoming percept must be well organised to achieve optimal skill 
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acquisition. Knowledge that is well organised prior to presentation is more effective 

as it bypasses the need to generate organisational structure and facilitates efficient 

transfer to the LTM through the creation of more effective mental task models. The 

CLT has influenced instructional design for several years by suggesting that 

instructions that balance the cognitive load for the learner through the minimisation 

of extraneous load and the maximisation of germane load within the boundaries of 

the WM capacity will optimise learning. However, the CLT has some shortcomings. 

For instance, it has not been able to account for the apparent variability of task 

difficulty for different expertise levels. Contrary to its assumption of fixed intrinsic 

load, further research has shown that task difficulty does not remain constant for 

different levels of expertise and that expertise is transferrable across related tasks 

(Schnotz & Kurschner 2007).  

 Mayer’s, (2005) Cognitive Theory of Multimedia Learning (CTML, see Figure 

2.7) is another contemporary skill acquisition reference framework that is premised 

on the limited WM capacity of the human information-processing cognitive paradigm. 

The theory makes three basic assumptions in describing the cognitive processing 

associated with skill acquisition from multimedia instructions including text, static 

pictures and dynamic animations. The first is that auditory and visual stimuli are 

processed through separate channels. Secondly, the channels have limited processing 

capacity and thirdly, that humans engage in active learning by selectively organising 

inputs from the separate processing channels and integrating these with prior 

knowledge at a later stage of cognitive processing. These assumptions are consistent 

with the dual coding theory (Paivio, 1986) and Baddeley and Hitch’s model of the WM 

(Baddeley & Hitch, 1974; Baddeley, 2000). 

 

 

 

 

 

 

 

 

 

Figure 2.7 Mayer’s Cognitive Theory of Multimedia Learning model (Mayer, 2005) 
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The CTML further specifies five cognitive processes associated with multimedia 

learning: the selection of words for the verbal channel, the selection of images for the 

visual channel, the organisation of selected words into a verbal model and selected 

images into a pictorial model and lastly the integration of verbal and/or pictorial 

models with prior knowledge retrieved from the LTM.  The CTML provides a 

powerful explanation of the cognitive processes involved in novel skill acquisition. It 

is consistent with previous models of memory and learning such as Atkinson and 

Shiffrin’s (1968) model, the CLT (Sweller, 1988) and Schnotz & Kurschner’s (2007) 

extension of the CLT to accommodate different levels of task difficulty and skill 

transferability associated with expertise.  

The CTML however has a potential fundamental flaw that limits its 

applicability for investigating the moderating effects of instructional content 

dynamism. It assumes that in the generation of the pictorial model from viewing an 

animation, the relevant segments of the dynamic stimuli are compressed into visual 

images and held in visual memory as snapshots. This is premised on the assumption 

of a limited processing capacity of the channel, which would otherwise be 

overwhelmed in attempting to process all parts of the animation. This thesis argues 

however that a dynamic construct that captures the intrinsic transitions portrayed by 

the dynamic stimuli (video, animation or interactive) is also integrated into the final 

mental task representation. The hybrid cognitive learning model proposed in this 

thesis (see Figure 2.4) is consistent with the selective processing of input stimuli and 

subsequent integration with retrievals of prior knowledge. However, it extends to 

include the transitions construct intrinsic to dynamic visualisations only in the final 

mental task model. This results in a more complete representation of the task by 

dynamic visualisations over their static equivalent and affords enhanced post 

learning task performance in specific knowledge domains. This thesis argues 

therefore for a novel construct of an intrinsic quality of instructional components to 

capture and enhance the transfer of transitory, coordinating information necessary 

for the skilled performance of procedural tasks. By implication, dynamic 

visualisations content of instructions such as videos or animations may afford an 

enhanced capacity to capture and transfer the coordinating transitory information 

that is intrinsic to the expert performance of selected skilled procedural tasks than 

possible with static images. This is consistent with the conclusions of a meta-analysis 
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of 26 previous related studies by Höffler and Leutner, (2007, 2011). Höffler and 

Leutner’s meta-analysis describes several factors that may moderate the effectiveness 

of different instructional visualisation components. Pertinent to the objective of this 

thesis, they suggested that the relative effectiveness of dynamic versus static 

instructional visualisation contents may be dependent, amongst other factors, on the 

target knowledge domain with three specifications – declarative, problem-solving and 

procedural. Premised on this, the hybrid cognitive learning model proposed in this 

thesis is applied to investigate the cognitive effects of instructional dynamism with 

emphasis on the acquisition of procedural knowledge. The thesis presents a series of 

experiments that explores this proposition in the context of different procedural 

knowledge domains including the acquisition of motor and spatial navigation skills. 

Furthermore, a computational modelling approach is utilised to provide a novel 

perspective on the intertwined role of cognitively processed dynamic vs static stimuli 

in post-learning performance of procedural tasks. The computational modelling 

approach is framed in the context of the Adaptive Control of Thought – Rational 

(ACT-R) cognitive architecture framework. The theoretical framework and 

architectural infrastructure of ACT-R is discussed in the next section. 

 

2.5 Computational Modelling in Cognitive Architectures 

 

 Computational modelling with cognitive architectures is increasingly becoming 

a methodology of choice for many human factors studies. Cognitive architectures are 

general frameworks that afford computational modelling of human behaviour and 

cognitive performance. Some examples of widely accepted cognitive architectures 

include EPIC (Kieras & Meyer, 1997), SOAR (Laird, Newell & Rosenbloom, 1987) and 

ACT-R (Anderson, Bothell, Byrne, Douglass, Lebiere, & Qin, 2004; Anderson, 2005). 

These frameworks capture the capabilities and limitations of human cognitive and 

behavioural performance including perception, memory and motor processes. By 

specifying these limitations and capabilities, cognitive architectures afford the 

implementation of computational behavioural models that are psychologically valid 

and compares well with actual human performance. 

 In the work reported in this thesis, a computational methodology is used to 

model the cognitive effects of instructional components dynamism on knowledge 
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domain dependent skill acquisition. The method afforded a low-level observation of 

atomic cognitive processes that define skill acquisition and drive post-learning task 

performance. Furthermore, it provides cognitive modelling data that was validated 

against empirical human data to have a fuller understanding of the moderating 

effects of dynamic versus static instructional visualisations.  

The ACT-R architecture (version 6.0) was selected for the modelling effort 

because of its advanced and modular implementation, which is easily extensible. 

ACT-R is a theory of human cognition, which extends an original Human Associative 

Memory (HAM) theory (see Anderson & Bower, 1973, 1974). ACT-R modifies the 

HAM theory by assuming a distinctive and basic categorisation of knowledge 

structures into declarative and procedural (Anderson et al., 2004). Declarative 

knowledge is composed of logical units or chunks that encode facts such as 1+3=4 or 

target object ‘a’ is at Cartesian coordinate (4, 10) in a reference plane. Procedural 

knowledge on the other hand consists of condition-action rules that manipulate 

declarative knowledge and external percept. These rules, otherwise referred to as 

productions, specify some set of conditions which when fulfilled, triggers an 

appropriate action which could be the creation/modification of knowledge chunks 

and/or the execution of other task performance actions. The ACT-R theory is 

implemented as a hybrid cognitive architecture based on a symbolic central 

production system influenced by massively parallel subsymbolic processes, which are 

represented by a set of mathematical equations (Taatgen & Anderson, 2002; 

Anderson, 2005). The symbolic aspect consists of a set of modules for processing 

different kinds of information, which are interfaced through the central production 

system by their matching buffers. The modules operate in parallel through internal 

subsymbolic processes and communicate through the information deposited in their 

buffers. The central production system coordinates the behaviour of these modules by 

recognizing patterns in their buffers and making requested changes.  

An overview of the ACT-R 6.0 architecture is shown in Figure 2.8 with 

production system as the core, which drives central executive functions and 

interactions between the other structures. The exact number of modules is not 

specified by the architecture but some core modules have been implemented that 

affords the modelling of a wide range of human cognition and performance. The 

critical aspects of the architecture that are pertinent to the modelling work in this 

thesis are the perceptual-motor system (vision, audio, motor and vocal modules), goal 
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system, declarative knowledge mechanism and the procedural system. The 

perceptual-motor system allows the architecture to interact with the external world. 

Much of the modules of the perceptual-motor system are based on original aspects of 

the EPIC cognitive architecture (Meyer & Kieras, 1997) and the Human Processor 

Model (Card, Moran & Newell, 1983). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 2.8 An overview of ACT-R (adapted from Anderson et al., 2004) 

 

The vision and motor modules are of particular relevance to the modelling of 

the moderating effect of instructional dynamism as investigated in this thesis. The 

vision module implements two subsystems – visual-location and visual buffers – that 

define the ‘where’ and ‘what’ respectively of perceived visual stimuli. The visual-

location buffer model pre-attentive visual processing (Treisman & Gelade, 1980) 

through chunks that represent the location of a perceived object in the visual field. 

The visual buffer provides the mechanism that attends to these visual-locations and 

encodes the perceived objects.  The motor module essentially functions as the 

architecture’s limbs by affording the execution of rudimentary motor actions to 
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perform tasks and interact with the external world. Motor performance is decomposed 

into a hierarchical structure that specifies categories of all possible movements. The 

motor module further controls movement timings through fine specification of its 

distinct internal states in the cognition cycle. The execution time for simple 

movements are specified as internal module constants while that for more complex 

movements are calculated based on Fitts’s Law as (ACT-R 6.0 Reference Manual, pp 

297): 
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 The goal system allows the ACT-R architecture to maintain task specific states 

that keeps track of intentions to control behaviour towards achieving an objective. It 

affords modelling of the human ability to select a specific course of action from a 

range of alternatives and align thought processes in the absence of supportive 

external percepts. Closely linked to the goal module is the imaginal module, which 

maintains context-relative information during task performance. 

 The declarative module is perhaps the most developed aspect of the ACT-R 

architecture. It specifies the declarative knowledge structure and the associated 

mechanisms for input of external percept and retrieval of prior knowledge from the 

LTM. Declarative facts are represented by units of chunk, which may be added or 

retrieved from the LTM. The addition and retrieval of knowledge chunks is controlled 

by subsymbolic processes specified by a set of equations. One of these is the chunk 

activation equation, which defines the procedure for chunk retrievals (Anderson et al., 

2004):  

 

     �� =  �� + ∑ ������   

 

 

 

All the chunks in the declarative memory are assigned activation levels, which 

reflect their past utility and relevance to the current task context. The activation level 

where T = movement time in seconds 

b = a motor action type parameter 

D = distance moved to a specified end target 

W = width of the target 

-   2.1 

where Bi = base level activation of chunk i 

Wj = attentional weight of element j 

Sji = strength of association from element j to chunk i 

-   2.2 
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of the chunk determines its likelihood and latency of retrieval in each cognitive cycle. 

Only chunks with activations above a specified threshold may be eligible for retrieval. 

The activation equation is extensible to accommodate various task contexts that may 

be encountered in modelling cognition. This extensibility is particularly crucial for the 

computational modelling work reported in this thesis. It afforded a novel extension of 

the architecture to capture atomic spatial locations for representing movement 

trajectories in post-learning motor execution. Further details of the extensions made 

to the activation equation in this thesis are provided in the cognitive modelling 

experiments reported in Chapter 6. The declarative module further specifies several 

other mechanisms that provide context-relative knowledge manipulation in task 

performance such as strength of association between memory chunks (Pirolli & 

Anderson, 1985), practice effect (Anderson, Fincham & Douglass, 1999) and retrieved 

content similarities/error modelling (Lebiere, Anderson & Reder, 1994; Taatgen, 

Lebiere & Anderson, 2006). 

 The procedural system provides central executive control and integrates the 

distributive processing that occurs in the other modules to achieve coherent cognition. 

It interacts with the other modules by detecting and matching patterns that appear 

in their buffers through specified condition-action rules to drive cognitive processing 

and task performance. The condition-action rules are referred to as productions and 

only one rule (production) may be selected for execution from all the matches during 

each cognition cycle. Cognition in ACT-R is therefore a hybrid phenomenon where 

distributive parallel processes in the other modules are moderated by serial, executive 

functions of the procedural system. The production selection process is noisy as a 

number of productions may match the selection criteria. The determination of which 

production is eventually selected for execution is controlled by their utility values. 

The utility value of a production is defined as: 

 

   �� =  	�
 − ��  
 

 

 

A modeller usually specifies the productions that drive cognition and performance in 

the domain being modelled. However, ACT-R’s procedural system also defines a 

where Pi = probability of production i achieving a goal 

G = current goal value 

Ci = cost of achieving the goal through production i 

-   2.3 
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production compilation process through which new productions may be created online 

by running models to simulate learning and expertise (Taatgen & Lee, 2003). 

 ACT-R is a complex theory of the human mind complemented by a 

computational architecture that affords modelling to investigate and predict cognition 

and performance. The functions of the separate modules present a hybrid paradigm 

that supports both the perception-action behaviourist as well as the abstracted 

processing cognitivist perspective of human cognition. For instance, the audio and 

vision module function as purely perceptual systems while the motor and speech 

modules are dedicated for the processing of motor and vocal outputs respectively. 

Other modules however, such as the imaginal, goal and procedural modules, exhibit 

processing that is completely abstracted away from input or output modalities 

(Anderson et al., 2007) 

 This thesis applies the ACT-R 6.0 framework to investigate the low-level 

details of the moderating effect of instructional dynamism on skill acquisition and 

performance in specific knowledge domains. The manual modules of the base ACT-R 

6.0 architecture are capable of executing rudimentary movements only and cannot be 

readily applied to simulate the atomic movements of fine skill execution that is being 

investigated. A novel methodology is therefore utilised that leverages on the 

extensibility of the architecture to overcome this limitation. The details of this 

methodology are discussed further in Chapter 6. 

 

2.6 Summary 

 

 The limitation of the human cognitive architecture for real time processing of 

large amounts of information is well established in literature. Different theoretical 

perspectives, ranging from behaviourist stimulus response to cognitivist abstract 

processing, have been proposed on how the cognitive architecture adapts to overcome 

this limitation in the acquisition of novel knowledge/skill.  

 Learning models based on these theoretical frameworks have informed 

different approaches to investigating the cognitive effects of various instructional 

compositions. For instance, the CTML have suggested that different channels exist 

for processing various input stimuli from multimedia instructions in skill acquisition. 

Other models have emphasized a modality dependent perspective that is devoid of 
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information abstraction. The emerging accepted view is that of an integral process 

that integrates external percept from instructions with declarative retrieval of prior 

knowledge to effect task comprehension and drive post-learning task performance. 

The effect of extraneous moderating factors, such as instructional component 

dynamism and modalities of perception, on skill uptake and transferability however 

remains controversial. Meta-analytical reviews of the different perspectives have 

suggested a knowledge domain dependent role of multimedia instructions that 

comprises dynamic and static visualisations. This thesis proposes a hybrid cognitive 

learning model for a novel approach to investigating the moderating effects of 

instructional interface dynamism. A series of experiments were conducted to validate 

this model. The first experiment that applies it to the acquisition of novel procedural 

motor skills is presented in the next chapter. Subsequent chapters present further 

experiments that examine other factors such as the variation of the primary 

knowledge domain, individual learner abilities and prior knowledge/expertise. A 

computational modelling technique is also employed for detailed investigation of the 

interaction of instructional dynamism, task comprehension and skill transferability 

as measured by post learning task performance. 



 

 

Chapter 3  

 

Experiment 1 – Acquisition of Novel Procedural 

Motor Skills 

 

3.1 Overview 

 

 The work presented in this chapter investigates the divergent findings in the 

current literature on the cognitive effects of different levels of dynamic visualisation 

contents in instruction. An important area of contemporary research with such 

divergent conclusions is the comparative benefit of dynamic visualisation components 

of Computer Based Training (CBT)/simulator interfaces like videos, animations or 

user controllable objects as compared to static presentation formats that use e.g. 

diagrams and text. The experiment in this chapter applies the novel hybrid cognitive 

learning model proposed in Chapter 2 to empirically compare the effectiveness of 

instructions with different visualisation contents. It further argues for an intrinsic 

quality of instructional format construct that makes dynamic visualisations more 

suitable for skill acquisition and transferability in specific knowledge domains. The 

hypotheses made to drive the experiment are clearly stated in a later section.  

 

3.2 Dynamic versus Static Components of Instruction 

 

 Dynamic visualisations are visual-spatial representations capable of 

portraying not only training artefacts, but also underlying processes such as changes 

in positions and trajectories of the artefacts whilst performing a skilled task. Static 

visualisations can also portray visual-spatial orientations but have limitations 

especially for processes involving continuous changes in artefact orientations such as 

those typical in manipulative skills like component disassembly in engineering 

training.  
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 Using the framework of cognitive load theory (CLT), Mayer, Hegarty, Mayer 

and Campbell (2005) compared the learning outcomes of animation-based instructions 

with those using a series of static pictures that convey equivalent information and 

suggested that static media enable deeper learning than animation can afford 

because of reduced extraneous cognitive loads and more germane processing. As 

highlighted in the review in Chapter 2, the CLT assumes that three different types of 

cognitive load are interacting in learning from instructions – extraneous, intrinsic 

and germane cognitive loads (Sweller, 2005, 2010). As a general rule therefore, an 

optimal instructional design paradigm will minimise extraneous cognitive load, 

maximise germane generative processing but have no effect on the intrinsic 

component. The effect of learner’s prior knowledge was further investigated with 

static visualisations and found to be more effective than dynamic alternative for low-

knowledge learners. No differences in format effectiveness were found for high 

knowledge learners (Mayer et al, 2005; Kalyuga, 2008). Schnotz and Rasch (2005) 

extends this argument to propose a negative effect for high-knowledge learners 

because dynamic visualisations are thought to inappropriately facilitate learning in a 

task by reducing germane cognitive processing instead of extraneous cognitive loads. 

Kalyuga (2011) suggested that dynamic visualisations are not more efficient than 

static components of instruction because of their transience effect. Dynamic 

visualisations by nature present transitory and continuous information. The 

processing demands required to hold previous information in memory to be integrated 

with later information as they are presented in the dynamic stream may therefore 

overwhelm WM resources quickly. In contrast, static components, such as diagrams 

or pictures, afford more permanence of information, which may be revisited and 

therefore releases the learner from having to retain otherwise large amounts of 

information in WM during processing. Other studies have also argued that static 

instructional visualisations encourage the active creation of mental task models 

(Tversky, Morrisson & Bertrancourt, 2002; Hegarty, Kriz, & Cate, 2003) and 

enhances task comprehension through mental rotation and manipulation (Hegarty, 

2004, 2005).   

 Interestingly, contrasting findings have been reported in yet other studies that 

suggest a benefit of dynamic instructional visualisations over statics in certain 

contexts. For instance, Wong, Marcus, Ayres, Smith, Cooper, Paas and Sweller (2009) 

have proposed a different paradigm to comparing the effectiveness of dynamic versus 
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static instructional visualisations using the framework of the CLT. They suggest a 

distinction between biologically primary and secondary knowledge (see Geary, 2005; 

2007) and argue that the CLT applies to the acquisition of biological secondary 

knowledge only. Wong et al. (2009) defined biologically secondary knowledge as that 

which is acquired through conscious, effortful processing in WM as against biological 

primary knowledge, which humans have evolved to acquire easily and automatically. 

Dynamic visualisations may therefore be beneficial in aiding the acquisition of 

biologically secondary knowledge such as human movement-based tasks because it 

utilises a human movement WM processor to support the creation of more accurate 

mental task models. In a series of experiments, Ayres, Marcus, Chan & Qian (2009) 

presented empirical evidence to suggest that the transiency of dynamic visualisations 

makes them more effective than static in specific learning contexts such as the 

acquisition of motor skills. This effect was attributed to the possible existence of a 

human mirror-neuron system that facilitates knowledge acquisition through mimicry 

(Rizzolatti, 2005). In a more recent study, Wong, Leahy, Marcus and Sweller (2012) 

extends the argument on the transiency effect to propose that transient dynamic 

instructional visualisations may impose overwhelming cognitive loads only when 

presented in very long segments. Paradoxically, the permanence benefit attributable 

to static visualisations is only evident in long presentation segments, which may also 

overwhelm WM capacity in specific circumstances such as when forward and 

backward referencing is limited by learning time. The appropriate segmentation of 

dynamic instruction visualisations would therefore overcome the transiency effect 

and make them more effective than equivalent static visualisations for knowledge 

acquisition. The benefit of dynamic instructional visualisations over static have also 

been attributed to its realism (Höffler, & Leutner, 2007), degree of afforded user 

control (Schwan & Riempp, 2004), its use in an observational learning context (Van 

Gog, Paas, Marcus, Ayres, & Sweller, 2009) and interestingly, when carefully 

integrated with static visualisations (Arguel & Jamet, 2009).  

 In spite of the contrasting findings, a developing convergence is that the 

effectiveness of different visualisations is dependent on the learning context. In the 

meta-analysis of 76 studies, Höffler and Leutner (2007) highlighted several moderator 

variables that may impact the effectiveness of different instructional visualisations.  

Of particular relevance to the experiment reported in this chapter, the meta-analysis 

suggests that dynamic visualisations are significantly superior to statics in a 
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‘representational’ context as opposed to ‘decorational’. Furthermore and more 

importantly, the meta-analysis identifies the type of acquired knowledge as a 

moderator variable of instructional visualisations’ effectiveness and defines three 

different knowledge domains – declarative, problem-solving and procedural-motor. 

This chapter therefore argues, on the basis of this categorisation, for an alternative 

approach to the comparison of the benefit of dynamic over static visualisations with 

particular focus on the procedural-motor knowledge domain. The definition of the 

knowledge domain is a crucial step for investigating the effectiveness of visualisation 

components of instructions. The divergent view of the reviewed studies on the 

effectiveness of the various instructional formats may be due to the fact that separate 

categories of learning processes are being described. One is the learning of cognitive 

tasks (declarative knowledge) that requires little or no physical manifestation of a 

skill to demonstrate that such knowledge has in fact been acquired (Yang, Andre & 

Greenbowe, 2003; Mayer et.al., 2005; Cohen & Hegarty, 2007). The post learning 

phase tests of skill acquisition in such studies are usually achieved by questions 

designed to measure speed and accuracy of recall as well as to predict or interpret 

states of the systems being studied. Another category involves the learning of 

manipulative, procedural actions or skilled motor movement to execute some complex 

task (Schwan & Riempp, 2004; Arguel & Jamet, 2009; Ayres et al., 2009). With 

respect to this second category, it is suggested that a more accurate determination of 

the effectiveness of the instructional format would be a test of the ability to execute 

the actual motor (or procedural) tasks post-learning, such as through performance 

measurements of assembly/disassembly. The speed and accuracy of the 

assembly/disassembly of physical components in such instances would provide a more 

valid basis for assessing the comparative advantages of different instructional 

formats for learning the motor skills. Furthermore, the dynamic visualisation content 

of the various instructional interfaces should imply an attribute of the interface to 

provide abstract representation of the target motor skill set during the learning 

process rather than varying the rate of information delivery as proposed in some of 

the reviewed studies.  

 Höffler and Leutner’s (2007) meta-analysis found the largest beneficial effect 

size of dynamic visualisations in the acquisition of procedural-motor knowledge. The 

meta-analysis however restricted the definition of dynamic instructional 

visualisations to animations and videos only. The experiment reported in this chapter 
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is focussed on the acquisition of procedural skill in the motor knowledge domain. 

However, it extends the definition of dynamic visualisations to include interactive 

simulations in a virtual environment. Additionally, it utilises performance 

measurements of actual task execution to evaluate the effectiveness of different 

instructional formats for learning a procedural motor skill. Previous studies have also 

indicated an interaction between instructional interface dynamism and the learner’s 

previous knowledge/experience as well as spatial abilities (Yang, Andre & Greenbowe, 

2003; Cohen & Hegarty, 2007; Hegarty & Kriz, 2007).  Spatial visualisation ability, in 

this context, is defined as the “processes of apprehending, encoding, and mentally 

manipulating spatial forms” (Carroll, 1993). The reported experiment controls for 

prior knowledge and spatial ability through focussing on novel skill acquisition by 

novice learners and using a minimised stratification technique for the random 

assignment of the learners (Conlon, & Anderson, 1990). The approach is also 

consistent with the conceptualisation of a separate and distinct WM motor processor 

for the processing of biologically primary knowledge (Wong et al., 2009). It however 

extends this concept to investigate the independence of the learner’s spatial abilities 

from the interaction between dynamic instructions and motor skills acquisition. 

 The reference cognitive framework for this experiment is the hybrid cognitive 

learning model proposed in Chapter 2 (see Figure 2.4). It combines behaviourist and 

cognitivist perspectives of cognition to define the role of the abstract mental referent 

that is created in the acquisition of a novel procedural skill. The experiment however 

focusses on the initial stages of novice trainees learning a procedural skill, which is 

characterised by the generation of an abstract task referent that drives execution.  

 

3.3 Aims 

 

 The experiment was conducted to answer the research question: Are 

instructional interfaces that afford dynamic information, such as video and 

interactive, more effective than static pictures/diagrams in learning motor skills by 

novice trainees? The hypotheses are as follows: 
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Null Hypotheses 

H00 Instructions with more dynamic visualisation contents would have no effect on 

the post-learning performance time of a procedural motor skill by the novice 

learner as compared to those with equivalent static visualisation alternatives.  

H01 Instructions with more dynamic visualisation contents would have no effect on 

the post-learning performance accuracy of a procedural motor skill by the novice 

learner as compared to those with equivalent static visualisation alternatives. 

H02 The interaction of instructional interface dynamism and post-learning 

performance of a procedural motor skill would be dependent on the novice 

learner’s spatial visualisation ability. 

 

Alternate/Positive Hypotheses 

H11 Instructions with more dynamic visualisation contents would yield faster post-

learning performance of a procedural motor skill by the novice learner than 

those with equivalent static visualisation alternatives.  

H12 Instructions with more dynamic visualisation contents would yield more 

accurate post-learning performance of a procedural motor skill by the novice 

learner than those with equivalent static visualisation alternatives. 

H13 The interaction of instructional interface dynamism and post-learning 

performance of a procedural motor skill would be independent of the novice 

learner’s spatial visualisation ability. 

 

3.4 Method 

 

3.4.1 Design  

 

 A between-groups experimental design was used to compare the performances 

of three different groups of participants while carrying out a post-learning phase 

disassembly/assembly task. First, participants completed the Paper Folding Test 

(Ekstrom, French, Harman, & Dermen, 1976) to measure their spatial visualisation 

abilities. The spatial visualisation ability scores are used as a covariate in later 

analysis of the data to control for any confounding effect on the task performance 

measures. Participants were then randomly assigned based on gender and spatial 
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visualisation abilities minimisation stratifiers (Conlon, & Anderson, 1990) to the 

three levels of the instructional interface type independent variable - static, video and 

interactive. The dependent variable was performance with dependent measures being 

total task execution time (in seconds) and task execution accuracy (number of errors). 

The total task execution time refers to the time taken by each participant to complete 

the disassembly/assembly task after exposure to a particular instructional interface 

to learn that task. It was regarded as a valid measure of the quality of the 

instructional interface consistent with the approaches of previous related research 

(Ayres et al., 2009; Wong et al., 2009). The quality and effectiveness of the 

instructional interface to engender motor skills was also evaluated by the accuracy of 

task execution after exposure to the training interface. This was reflected in the 

number of errors observed by each participant and counted during the later analysis 

of the video footage of task execution. 

 

3.4.2 Participants  

 

 Ninety-one aircraft maintenance engineering trainees (3 women and 88 men, 

between the ages of 16 and 40 years, M = 23.5, SD = 4.5) were paid N500.00 

(equivalent to about £2.50) for voluntary participation in the experiment. All 

participants were new recruits on the Aircraft Engineering Technology Diploma 

programme at the Air Force Institute of Technology (AFIT), Kaduna, Nigeria. They 

had at least the West African Examination Council Certificate (WAEC)1 and were 

classified as novices with no prior engineering practice experience. Local ethical rules 

based on the British Psychological Society (BPS)2 guidelines were complied with to 

ensure safety and wellbeing of all participants. 

 

3.4.3 Materials  

  

 Participants disassembled a specially devised LEGOTM truck model, replaced a 

specified component, and reassembled the model after exposure to the instructional 

interface for learning the task. The truck model provides a good representation of 

                                    
1 www.waecnigeria.org  
2 http://www.bps.org.uk/what-we-do/ethics-standards/ethics-standards 
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typical motor tasks encountered in engineering maintenance and was also equally 

novel to all the participants as evident through a pre-test questionnaire (see below). 

The model truck measures 20x20x9 cm and 22 sequential procedural steps were 

required to execute the required task. The instructions were delivered on a Toshiba 

Portege M800 running under Windows 7 Professional and connected to an external 

17” HP L1950g monitor, a standard keyboard and a PS2 optical mouse. Video footage 

of participant’s execution of task was captured using minoHD Flip Model F460 video 

camera and transferred to the laptop hard drive for later analysis. 

 A pre-test questionnaire asked participants to report their names, age, gender, 

academic qualifications and any previous experience with LEGO or similar models. 

Similarly, a post-test questionnaire was used to capture the participant’s assessment 

of the training interface. It consists of five questions asking the participants to rate on 

a scale ranging from 1 (Very easy) to 5 (Difficult) how easy, responsive, confusing, 

helpful or interesting they thought the training interface was. Samples of the pre- 

and post-test questionnaires along with the experiment’s briefing sheet/consent form 

are included in Appendix B of this thesis. 

 With regards to the Paper Folding Test (Ekstrom et al., 1976), the test taker is 

asked to imagine that a piece of paper is folded and a hole punched through it. The 

requirement is to choose from a set of possible choices, which figure will show the 

result when the paper is unfolded. The licence granted by the Educational Testing 

Service (ETS)3 to the author for the use of this test is included in Appendix B. 

 The instructions for the static group were delivered as a Microsoft PowerPoint 

2007 presentation consisting of 13 slides. The first and second slides contained 

general information on the task requirements while the remaining 11 slides 

presented pictures of sequential procedural steps required for executing the 

disassembly task. Two pictures were presented for each step of the procedure with the 

first/upper picture showing the state of the model before and the second/lower picture 

showing the state after the execution of the instruction for that particular procedural 

step. The instruction for each procedural step is included as text contiguous to the 

pictures on the same slide. Visual cues were used to identify the component of 

interest at each procedural step and controls were provided for forward and backward 

navigation of the slide sequence. The assembly instructions are a reverse 

                                    
3 www.ets.org  
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presentation of the 11 disassembly slides with the upper and lower pictures switched. 

Additionally, the participant is instructed to ‘attach’ the components as opposed to 

‘detach’ in the disassembly instructions. A sample screenshot for the static 

instructions interface is shown in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 Sample screenshot of the static instructions interface 

 

 The video-based instructions were also presented as a Microsoft PowerPoint 

2007 slide show similar to the static instructions with the exception that all the static 

step-wise pictures were replaced with equivalent short video clips. The video clips 

were created by recording the execution of the entire disassembly/assembly process in 

a studio equipped with apparatus to ensure evenly distributed lighting. The process 

was repeatedly recorded until a skilfully executed, error-free footage was obtained. 

The video was then broken down into 22 short clips showing single procedural steps 

of the process using Windows Live Movie Maker 2009. The clips are on average 22 

seconds long with the longest at 49 seconds and the shortest 4 seconds. Each clip was 

then presented as individual PowerPoint slides arranged in the sequence for 

executing the task. The instruction for each procedural step is included as text 

contiguous to the video clip on the same slide. The participant is able to navigate 

forward or backward through the slide sequence as well as repeat the playback of the 
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clip in each slide. A sample screenshot for the video instructions interface is shown in 

Figure 3.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2 Sample screenshot of the video instructions interface 

 

The instructions for the third group were presented via an interactive 

interface that allowed the participants to manipulate virtual components of the model 

in a simulation of the disassembly/assembly task using the mouse. A high definition 

video of the process similar to that used by the video-based group was rendered as a 

sequence of static pictures using Adobe PhotoshopTM CS4 Extended. A Java program 

was then written to stitch together the rendered sequence of static pictures and 

produce simulated movement of each individual component using the mouse press 

and drag feature. The instruction for each procedural step is included as contiguous 

text that was presented as soon as the previous step is completed. Participants were 

also able to repeat the simulation and the virtual components were designed to 

detach/attach along the same trajectories as applicable for their equivalent physical 

truck component. A sample screenshot for the interactive instructions interface is 

shown in Figure 3.3. 
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Figure 3-3 Sample screenshot of the interactive instructions interface 

 

3.4.4 Procedure  

 

 All the participants were assembled in a hall and given general information 

about the experiment. After obtaining informed consent, they completed the pre-test 

questionnaire and three participants were excluded from further participation at this 

stage because they reported prior experience with LEGO models. Next, participants 

completed the Paper Folding Test (Ekstrom et al., 1976) and were randomly assigned 

to the three experimental groups. Subsequent participation was in individual sessions 

based on the instructional interface grouping but utilising a similar procedure across 

the groups. First, the participant is given some practice in manipulating the 

instructional interface using a separate but similar example interface. The example 

interface shows the disassembly/assembly of a pen and was designed in the same 

format as the experimental group instructional interface. After becoming familiar 

with the interface and its controls, the participant is allowed access to the actual 

instructional interface to learn the disassembly/assembly process without 

interference. The participant was allowed up to 10 minutes for this learning phase 

and could indicate readiness to commence the testing phase (disassembly/assembly of 

the physical truck model) at any time or would be asked to do so when the time 
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allowed is up. It is important to note that none of the participants exceeded the 

allowed learning time nor were able to see the physical truck model during the 

learning phase. Furthermore, participant no longer had access to the instructional 

interface once the testing phase has commenced. Participants were allowed a 

maximum of 15 minutes to complete the testing phase and their performance was 

recorded in high definition video for later analysis. Determination of the timing of the 

learning and testing phases was based on the outcome of prior pilot experiment 

sessions as well as on the approaches adopted in previous related studies (see Ayres, 

et al., 2009; Imhof, Scheiter, & Gerjets, 2011). The participant then completed a post-

test questionnaire to report how the instructional interface they were exposed to 

aided their subsequent task performance.  

 

3.4.5 Data Capture  

 

 Performance time and accuracy for each participant were scored by analysing 

captured video data. Video data were analysed by 3 independent reviewers and 

discrepancies in the scores were resolved through consensus. Only the first 11 

procedural steps constituting the disassembly of the model were analysed. The 

reassembly portion (steps 12 - 22) was not analysed as many of the participants 

(about 40%) failed to proceed substantially beyond the 11th procedural step. Data 

from 7 participants were also omitted from the final analysis for the following 

reasons; 1 due to video equipment failure, and 6 for failure to comply with the 

required procedure. Task time was measured in seconds starting from the 

detachment of the first component and ending with the successful removal of the last 

component. In 20 instances, the time spent to retrieve components accidentally 

dropped on the floor during the procedure was discounted from the total task time. 

With respect to task accuracy, every deviation from the procedural 

sequence outlined in the instruction was counted as an error. However, all other 

occurrences that are not linked to the task sequence, such as accidentally dropping 

components on the floor were not counted as errors. 
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3.5 Results 

 

 The data was summarised and means and standard deviations for task 

performance times, error counts and spatial visualisation ability scores of the static, 

video and interactive instruction groups are shown in Table 3.1. The data was 

analysed using SPSSTM version 17 and the statistical modelling outputs are presented 

in Appendix B. A Kolmogorov-Smirnov test of normality showed that the task 

performance time and error measures were not normally distributed (p < .05 in both 

measures). As a result, non-parametric tests were used as tests of differences for both 

measures. The observed distribution of task performance measures is consistent with 

previous related studies (see Ayres et al. 2009; Wong et al. 2009). Alpha level was set 

at .05 and Kruskal-Wallis tests revealed statistically significant differences in task 

performance times, χ2 (2, 81) = 8.03, p < .05 and error counts χ2 (2, 81) = 23.3, p < .01 

across the three instructional groups. The static group recorded the highest median 

score for task performance times (Md = 123) and error counts (Md = 5). The median 

score for task performance times (Mdt) and error counts (Mda) of the other groups 

are: video (Mdt = 97, Mda = .5), interactive (Mdt = 94, Mda = 1).  

  

 
Instructional interface group 

 
Static Video Interactive 

 
N M SD N M SD N M SD 

Task time (s) 26 138.92 55.44 28 99.14 31.08 27 107.26 44.19 

Task errors 26 4.88 3.15 28 1.21 1.40 27 1.52 1.40 

Test scores 26 7.27 2.51 28 7.61 2.70 27 8.59 3.64 

 

Table 3.1 Means and standard deviations for the instruction groups 

 

 After a Bonferroni adjustment, the alpha level was set at .025 and post-hoc 

Mann-Whitney U tests indicated that the static group took significantly more time to 

complete the task than the video (Z = -2.62, p < .025, r = .29) and interactive groups (Z 

= -2.25, p < .025, r = .25). Additional Mann-Whitney U tests also indicated that the 

static group were significantly less accurate in the task performance than the video (Z 

= -4.35, p < .025, r = .48) and interactive groups (Z = -3.9, p < .025, r = .43). There 
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were no statistically significant differences between the task performance times (Z = -

.34, p > .025) and error counts (Z = -.93, p > .025) of the video and interactive groups.  

 The spatial visualisation ability scores were normally distributed 

(Kolmogorov-Smirnov p > .05). A one-way between groups ANOVA, with instructional 

interface type as the independent variable, revealed no statistically significant 

difference, F (2, 78) = 1.41, p > .05, in the spatial ability scores of the groups. Two one-

way between groups ANCOVAs were further conducted with the spatial visualisation 

ability  scores as covariate to check for confounding effects of the participant’s spatial 

abilities. The independent variable remained instructional interface type while 

dependent variables were task performance time and error count respectively. 

Preliminary checks were conducted to ensure that the covariate met the assumptions 

of the procedure. Following adjustment for spatial ability scores in the first ANCOVA, 

there was a significant difference in task performance times F (1, 77) = 5.52, p < .01, 

partial eta squared = .13. There was no significant effect of spatial visualisation 

ability scores on the task performance times F (1, 77) = 3.42, p > .05, partial eta 

squared = .04. Similarly, after adjusting for spatial visualisation ability scores in the 

second ANCOVA, there was a significant difference in task performance error counts 

F (1, 77) = 23.24, p < .01, partial eta  squared = .38. There was no significant effect of 

spatial visualisation ability scores on the task performance error counts F (1, 77) = 

1.19, p > .05, partial eta squared = .02. 

 As depicted in Figure 3.4, the video and interactive groups were 40% and 30% 

faster than the static group while Figure 3.5 further shows that the two groups (video 

and interactive) were 303% and 221% more accurate than the static group 

respectively. Correlations between self-reported assessment of the training interface 

and the instructional interface type are shown in Table 3.2. There were no significant 

correlations between the self-reported measures and the instructional interface type. 

These measures were therefore excluded from subsequent analysis.  Overall, these 

results provide evidence to support the alternate hypothesis that more dynamically 

complete information (such as video and interactive) will yield significantly higher 

rates of skill acquisition when learning a novel motor task. 
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Figures 3.4 & 3.5 Mean task time and error count for the instructional groups 

       

 1 2 3 4 5 

1. Ease of use - - - - - 

2. Responsiveness .116 - - - - 

3. Degree of confusion -.174 -.119 - - - 

4. Helpful interaction .190 .207 -.135 - - 

5. Interesting interface .036 .194 .048 .105 - 

6. Interface type -.063 .085 -.049 .041 .021 

    (N = 81)     

 

Table 3.2 Self-reported interface assessment and instructions group correlations 

 

3.6 Discussion 

 

 The experiment investigated the interaction between procedural motor skill 

acquisition and the dynamism of interface visualisations by comparing the post-

learning task performances of three groups of participants. It was proposed that the 

training interfaces that contain dynamic information showing the continuous stages 

of execution of the target motor skill would yield faster task performance times and 

fewer errors than other static interfaces independent of the learner’s cognitive 

abilities. The results of the experiment provide initial evidence to support this view as 
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participants that learned the tasks via interfaces with more dynamic informational 

content (video and interactive) performed significantly faster and more accurately 

than other participants that use the interface lacking such information (static). Null 

hypotheses H00 and H01 were therefore rejected and the alternate hypotheses H11 and 

H12 were accepted. Arguably, the results also suggest that the video and interactive 

groups were able to construct a more accurate and complete mental representation of 

the task than the static group, which subsequently aided their better performance. 

They may have been able to do this because they had a richer set of input stimuli 

including transitory and dynamic movements involved in manipulating the device 

components to achieve the motor task. These results are consistent with the findings 

of Höffler and Leutner (2007) and Ayres et al. (2009) that realistic animations 

portraying procedural motor knowledge are more effective than statics for learning 

procedural tasks. However, while the experiment replicated these findings, it further 

extended the definition of dynamic interfaces to include interactive interfaces that are 

directly manipulated by the participants. It was observed that such interactive 

interfaces were equally effective because they afford procedural motor knowledge and 

the dynamic information related to the movement of the device components.  

 The procedural task executed in the experiment involves a series of carefully 

coordinated psychomotor movements to achieve the overall disassembly task. In the 

context of procedural learning, Smith and Ragan (2005) have defined procedures as 

“… series of steps initiated in response to a particular class of circumstances, to reach 

a specified goal” (p. 205). More importantly, Smith and Ragan (2005) also observed 

that psychomotor actions have a cognitive element and involves the integration of 

muscular movements with a procedural rule. This “rule-governed aspect of motor skill 

performance” provides the sequencing control required for skilled task execution 

(Gagné, 1985; Gagné, Briggs, & Wager, 1992, p. 93).  It is arguable therefore that the 

extent to which the instructional interface is able to support the creation of accurate 

mental task models in the acquisition of novel procedural motor skills, may be 

directly related to the dynamic, procedural-motor information that is intrinsic to the 

interface. This intrinsic procedural-motor information content of the training 

interface reflects the qualitative association between the target motor skill and the 

interface. It may define the capacity of the instruction delivery format to capture the 

motor coordinating information intrinsic to the execution of skilled procedural motor 

tasks such as the manipulation of mechanical components and devices. It may also 
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affect novel motor skill acquisition by enabling a more accurate construction of the 

mental task model, which drives subsequent task performance. Using a related 

argument, Van Gog et al. (2009) have suggested that the mirror neuron system might 

help explain why instructions with dynamic visualisation content are more effective 

than statics for learning human motor tasks. The experiment results provide indirect 

support of this view although it did not attempt to address it specifically. The focus 

has been on using a simple human motor task only whereas a dual approach that 

includes a non-human motor task, such as motor action in monkeys, will be more 

appropriate to investigate the mirror neuron paradigm (see Rizzolatti, 2005).  

 The concept that an intrinsic quality of the training medium is associated with 

the target skill set presents an intriguing insight into the supportive role of interface 

visualisation especially with respect to the cognitive characteristics of the trainee. 

Establishing this concept however will require the definition of this quality, which the 

experiment results do not provide. A more precise methodology that can examine the 

detailed cognitive processes involved in constructing the abstract task 

representations as well as how this drives subsequent performance would be 

required. Further experiments would also be required to investigate the intrinsic 

supportive role of the interface visualisation in a different knowledge domain from 

procedural motor skill acquisition. This proposed associative construct is developed 

further in Chapter 6 of this thesis through computational modelling techniques using 

the ACT-R cognitive architecture (see Anderson et al., 2004; Anderson, 2005). The 

cognitive computational modelling effort is focussed on decompiling the intertwined 

role of stimuli perception, declarative recall and motor control that is evident in the 

post-learning task performances. Prior to this however, the cognitive role of the 

associative construct is explored further in experiments that investigate other 

knowledge domains and learner characteristics. These experiments are presented in 

the next 2 chapters of the thesis. 

 Interestingly, the results of the current experiment do not show statistically 

significant interaction between spatial visualisation ability and subsequent task 

performance measures. This is in contrast to the view expressed by Cohen and 

Hegarty (2007) and Hegarty and Kriz (2007). It is suggested that the redefinition of 

the cognitive role of abstract mental task representations as described in the 

introductory section of this chapter has given a clearer picture of the effect of spatial 

abilities especially with reference to novice learners. Hypothesis H02 was therefore 
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rejected and hypotheses H13 accepted. Additionally, Smith and Ragan (2005) have 

proposed that in order to demonstrate procedural learning, the learner must be able 

to apply hypothetical mental models or ‘productions’ of thought through the 

recognition, recollection and application of a procedure. Therefore, ‘knowing’ the steps 

of a procedure is not enough but a demonstration of the knowledge is required 

through the actual application of it. Consistent with this, it may be argued that using 

the actual execution of motor tasks to assess the post-learning effectiveness of the 

instructional interface is more appropriate for measuring skill acquisition than using 

probing questions, which are designed to infer implicit behavioural changes. 

 

3.7 Limitations of the Results  

 

 It was argued that the interaction between instructional interface dynamism 

and skill acquisition may be knowledge-domain dependent. This experiment however 

is limited to computer based skill acquisition in the procedural-motor knowledge 

domain only. In particular, it focusses on procedural motor skill acquisition by novice 

aircraft engineering trainees. More studies involving other skill 

acquisition/knowledge domains as well as more heterogeneous learner groups would 

be required to generalise the results. Such studies are the subject of further 

experiments that were conducted and reported in the next 2 chapters of the thesis. 

Additionally, it is arguable that constraining access to the instructional interface 

during actual task execution is counterintuitive and reduces the overall impact of the 

experiment methodology approach. This constraint is however acceptable as it is 

consistent with the methodology adopted in previous relevant studies that were 

reviewed. Moreover, the objective of the experiment was to investigate the cognitive 

effect of different levels of instructional dynamism on early stage post-learning 

performance only. The experiment design was further guided by an additional 

objective of contributing to the extant literature through an extension of the 

definition of dynamic interface visualisations to include those that afford interactive 

manipulation of virtual components in the learning context.  

 

  



3.8 Conclusion  

 

49 

 

3.8 Conclusion 

 

 In conclusion, this experiment has arguably provided evidence for a motor 

associative factor of an instructional interface, which supports procedural motor skill 

acquisition. The results show that learning novel procedural skills from dynamic 

interfaces with intrinsic motor information content may be more effective than using 

static interfaces irrespective of the learner’s cognitive abilities. The learner’s cognitive 

abilities, in this context, refer to the spatial visualisation abilities as measured by the 

Paper Folding Test and used as a covariate in the statistical analysis.  The results 

however are limited by a focus on the acquisition of procedural-motor knowledge by 

novices only. Consequently, a further experiment was conducted to investigate the 

interaction of instruction interface dynamism with post-learning task performance in 

the different knowledge domain of spatial navigation skills. This experiment is 

reported in Chapter 4.  



 

 

Chapter 4  

 

Experiment 2 – Acquisition of Novel Spatial 

Navigation Skills 

 

4.1 Overview 

 

The work reported in this chapter extends the findings of the previous 

experiment to investigate the cognitive effect of dynamic versus static instructional 

visualisations in a different domain of procedural skill acquisition. Experiment 1 

reported in Chapter 3 argued that the cognitive benefit of dynamic over static 

instructional visualisations for learning novel skills may be domain-specific and 

independent of the learner’s spatial visualisation ability. Experiment 2 reported in 

this chapter extends these findings through empirical investigations to the different 

domain of the acquisition of novel spatial navigation skills.  

  

4.2 Mental Representations in Domain-specific Cognitive Task 

Processing 

 

 The representational theory of mind proposes that our experiences and 

activities are underpinned by mental representations (Chandrasekaran, Banerjee, 

Kurup, & Lele, 2011). The exact nature of these representations is still subject to 

debate but a widely received view is that of the mental imagery theory (Kosslyn & 

Pomerantz, 1977; Pylyshyn, 2002; Kosslyn, 2005; Kosslyn, Shephard, & Thompson, 

2007). Importantly, the mental imagery theory distinguishes between perception and 

mental imagery. Perceptual representations require external stimuli, but mental 

imagery refers to representations that exists or persists in the absence or after the 

removal of the stimuli. The mental imagery theory is particularly well developed with 

respect to visual perception and visual mental imagery. A core component of the 

theory is the retinotopical similarity in the neuro-architecture for visual perception 
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and visual mental imagery, which has also been established in other related 

neuroscience research (Tootell, Silverman, Switkes, & De Valois, 1982; Fox, Mintun, 

Raichle, Miezin, Allman, & Van Essen, 1986; Fox, Miezin, Allman, Van Essen, & 

Raichle, 1987; Yang, Heeger, & Seidemann, 2007). In the mental imagery theory, this 

neuro-architectural similarity is defined through the visual buffer component. During 

visual perception, the visual buffer is thought to encode the object (shape, texture and 

colour) and spatial properties of the stimulus. Visual mental imagery however is the 

result of an ‘unpacking’ process through which a mental representation akin to the 

original visual stimulus is sequentially reconstructed in the visual buffer. An 

attention-shifting mechanism evident in visual perception is also active in visual 

mental imagery through which retrievals from long-term memory are sequentially 

integrated for the reconstruction of the mental image (Kosslyn, 2005).  

 This thesis proposed a hybrid cognitive learning model in Chapter 2 (see 

Figure 2.6), which is consistent with the mental imagery theory and integrates modal 

and amodal paradigms of the cognitive processing that underpins the acquisition of 

novel procedural skills. This model suggests that an abstract mental referent is 

created as part of the cognitive processing involved in procedural skill acquisitions. 

The model further emphasizes the active referential role of this mental 

representation in subsequent task performances especially at the early novice learner 

stages. More importantly though, the model extends the mental imagery theory with 

the addition of a third motion component to the visual buffer to explain the 

comparative benefit of dynamic instructional visualisations over static components in 

the acquisition of such procedural skills. Dynamic visualisations afford stimuli that 

can intrinsically encode transitory information inherent in the external percept. This 

intrinsic information is encoded through the motion component of the expanded 

visual buffer as well as in long-term memory. The additional information encoded 

through the motion component arguably improves the fidelity of the subsequent 

mental referent resultant of the ‘unpacking’ process in sequential mental imagery 

reconstruction, thus accounting for improved task performances associated with the 

dynamic instructional components. Experiment 1 reported in Chapter 3 of this thesis 

provides initial evidence for the cognitive benefit of the intrinsic transitory 

information afforded by dynamic visualisations over equivalent static alternatives. 

The experiment reported however was limited to investigating novel procedural skill 

acquisition in the motor knowledge domain only. Experiment 2 reported in this 
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chapter extends the investigation by applying the proposed hybrid cognitive learning 

model to novel learning in another procedural knowledge domain namely, spatial 

navigation.  

 

4.3 Sequential Representations in Spatial Navigation 

 

 Traditionally, spatial navigation planning has been defined as a multi-level 

problem solving process (Timpf, & Kuhn, 2003; Zhang, 2008; Holscher, Tenbrink, & 

Wiener, 2011). The relevant cognitive level components of this process include 

perceptual scanning, knowledge-based retrievals and memory-based decisions 

(Reitter & Lebiere, 2010). In viewing spatial navigation as a sequential process, the 

memory-based decision making process is considered as the core of the model depicted 

in Figure 4.1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1 A model of cognitive processing components of spatial navigation 

 

Visually perceived information is integrated with knowledge-based retrievals in this 

core component to determine executive actions in the resolution of navigational 

problems. From a cognitive architecture perspective, spatial knowledge 

representations have been modelled with different abstract structures including 

algebraic framework (Banerjee, & Chandrasekaran, 2010), multi-dimensional arrays 

(Glasgow, 1998; Lathrop, & Laird, 2007) and multi-layered hierarchies of 
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spatial/object properties (Kosslyn, 2005). Conceptually however, acquired spatial 

knowledge is thought to exist either as survey way-planning or sequential route 

representations (Thorndyke & Hayes-Roth, 1982; McNamara & Shelton, 2003). The 

survey representation is an allocentric, map-like view of spatially laid out landmarks 

organised within a common reference system. The route representation on the other 

hand is egocentric and consists of sequentially organised spatial locations encoded 

along with respective action objects, which are executed in support of a navigational 

task.  

 Within the context of the acquisition of novel spatial navigation skills, 

previous studies have established an association between the initial learning 

perspective and spatial knowledge representations. The effect of this association on 

subsequent navigation performance is however still subject to debate (see Denis, 

2008; Shelton & McNamara, 2004; Pazzaglia & Taylor, 2007). The acquisition of novel 

navigation skills may be viewed as a sequential process in general, where spatial 

knowledge representations of the task environment are developed incrementally as 

the learner interacts with the instructions. This sequential view of spatial knowledge 

acquisition is consistent with the neuroscience research of brain structures that 

support navigation performance. For instance, the posterior parietal cortex has been 

implicated in the sequential integration of visual and motor signals for navigation 

task decision-making (Gold, & Shadlen, 2007; Andersen, & Cui, 2009; Freedman, & 

Assad, 2011). More importantly, empirical evidence has further suggested that the 

acquisition of spatial navigation knowledge is cognitively sequential (Nitz, 2006; 

Harvey, Coen, & Tank, 2012). This may imply therefore that external factors such as 

the composition of task instructions will have an effect on the construction of mental 

spatial representations and post-learning navigation performance. Other factors that 

have been shown to affect navigational performance include the learner’s age (Moffat, 

Elkins & Resnick, 2006; Rogers, Sindone III and Moffat 2012), gender (Dabbs, Chang, 

Strong & Milun, 1998; Coluccia & Louse, 2004), spatial abilities (Pazzaglia & DeBeni, 

2006; Meneghetti, DeBeni, Pazzaglia & Gyselinck, 2011) and the nature and 

characteristics of the task environments (Moffat, Hampson & Hatzipantelis, 1998; 

Waller, 2000; Richardson, Powers & Bousquet, 2011).  
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4.4 Experiment Objectives 

 

 The experiment was conducted to investigate the effect of dynamic 

visualisation components of instruction versus equivalent static alternatives on novel 

post-learning navigation performance using a virtual environment. A virtual 

navigation environment was chosen because it is flexible and can be readily 

manipulated to capture the dynamics of survey (static) vs route-oriented spatial 

knowledge acquisition. Available technology also affords the creation of virtual 

environments with high levels of presence, which can promote natural behaviour that 

are evident in real world navigation tasks. The following hypotheses were stated: 

 

Null Hypotheses 

H00 Equivalent dynamic or static visualisation components of an instructional 

interface would result in equal comprehension and post-learning performance of 

a novel spatial navigation task.  

H01 The interaction of instructional interface dynamism and post-learning 

performance of a novel spatial navigation task would be dependent on the novice 

learner’s spatial orientation ability. 

 

Alternate/Positive Hypotheses 

H11 Dynamic visualisation components of an instructional interface would support 

the creation of more complete and efficient mental models of a novel spatial 

navigation task than equivalent static visualisation alternatives.  

H12 The cognitive benefit of more efficient mental models of a novel spatial 

navigation task afforded by dynamic visualisation components of the instruction 

interface over equivalent static alternatives is due to an intrinsic motion 

attribute of the dynamic visualisations. 

H13 The more efficient mental models afforded by dynamic visualisation components 

of the instructional interface over equivalent static alternatives would yield 

faster post-learning performance of a novel spatial navigation task. 

H14 The more efficient mental models afforded by dynamic visualisation components 

of the instructional interface over equivalent static alternatives would yield 

more accurate post-learning performance of a novel spatial navigation task. 
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H15 The more efficient mental models afforded by dynamic visualisation components 

of the instructional interface over equivalent static alternatives would yield 

more robust post-learning performance of a novel spatial navigation task (i.e. 

faster recovery from errors or deviations to the optimal route). 

H16 The interaction of instructional interface dynamism and post-learning 

performance of a novel spatial navigation task would be independent of the 

novice learner’s spatial orientation ability. 

 

4.5 Method 

 

4.5.1 Design 

 

 A 2 x 3 mixed factorial design was used to compare the post-learning 

navigation performances of groups of learners.  The between-groups factor contrasts 

the performances of the groups by manipulating the dynamic visualisations content of 

the instructional interface. There were two levels of the intervention – static and 

dynamic. These levels refer to the different interface visualisations used for 

presenting equivalent spatial information for learning an optimal route though a 

virtual environment. The within-group factor was designed to compensate for the 

effect of task complexity, which was identified as a possible covariate from a pilot run 

of the experiment. Three levels of the navigation tasks in a novel virtual environment 

were designed to be performed in the order of increasing complexity. The first level 

was designed to be simple as navigational performance at that level is arguably still 

subject to the effect of learning to control movements in the novel virtual 

environment. The third level navigation task on the other hand was quite complex as 

it was designed to overwhelm participant’s cognitive processing resources. Extended 

analysis was therefore limited to the performance on the level two task only, which 

was designed to be of medium complexity and less subject to the participant’s 

unfamiliarity with the virtual environment and movement controls. The within-group 

aspect also extends the investigation to observe an expected convergence of 

performance due to the practice effect.  

The dependent variable was navigational performance measured by the travel 

path length and time, route completion rate and route retrieval robustness. The path 
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length is defined as the total distance travelled while navigating a designated optimal 

route through the virtual navigation environment. The path time is the corresponding 

navigational time measured in seconds. Travel path length and time have been 

identified as valid navigation performance measures in previous related research 

(Richardson et al., 2011). The route completion rate is the mean count of all 

successfully completed navigation trials along the optimal route expressed as a 

percentage of the total trials performed by each experimental group. The efficiency of 

route error recovery (i.e. route retrieval robustness) is the ratio of the furthest point 

reached along the optimal route to its total length. It assesses the depth of the 

participant’s spatial knowledge representation of the optimal route as acquired from 

interacting with the instruction. It’s also a measure of the participant’s robust 

navigational performance, which reflects the efficiency of recovery from deviations 

along the optimal route. All the performance measures were bounded by a specified 

time limit. Furthermore, the effect of the learner’s spatial orientation ability and 

prior video gaming experience on the performance measures were controlled. 

 

4.5.2 Participants 

  

Sixty students at Robert Gordon University (42 males, 18 females, mean age = 

24.25, SD = 1.06) were paid £10.00 each for voluntary participation in the experiment. 

Local ethics rules as well as the BPS guidelines were complied with to ensure the 

well-being of all participants. 

 

4.5.3 Materials 

 

4.5.3.1 Virtual Navigation Environment 

 

 Three levels of a virtual maze environment were created for navigation with 

an increasing order of complexity; Level One – Easy, Level Two – Medium and Level 

Three – Hard. The mazes were designed and implemented with the MazeSuite 

application (Ayaz, Shewokis, Curtin, Izzetoglu, Izzetoglu, & Onaral, 2011). Each maze 

was designed to have one optimal navigation route from a start point to a marked end 

point. The optimal routes are divided into curved and straight-line segments bounded 
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by the start, turning and end points. There are 11, 24 and 39 straight line segments 

in maze levels one, two and three respectively. Additionally, the levels two and three 

mazes have one and two curved segments respectively. Movement in the mazes is 

controlled by a Cyborg FLY 5 joystick. Translations are executed by pushing the 

joystick forward or pulling it backward. Turnings/rotational movements are executed 

by pushing the joystick left or right during translations or while stationary. The 

virtual mazes are presented to the participant on an HP Compaq 8200 Elite SFF 

running under Windows 7 Enterprise 64-bit. The PC is connected to an HP L1950g 

19” LCD monitor that affords 1100 horizontal and 580 vertical field of view of the 

virtual navigation environment. A separate console comprising a similar monitor and 

associated keyboard/mouse were connected to the PC for the experiment procedural 

control. A screenshot of the view while navigating part of the level two maze is shown 

in Figure 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2 Sample screenshot of the virtual navigation environment 

 

4.5.3.2 Navigation Instructions 

 

 The two levels of navigation instructions – static and dynamic – are presented 

through a macro-enabled Microsoft PowerPoint 2007 slideshow consisting of 15 slides. 

Slides 1 – 4, 7, 10, 13, and 15 provide textual instructions for general guidance. Slides 

6, 9, and 12 are blank spacer slides for procedural control of the experiment while the 
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different navigational instructions are presented interchangeably through slides 8, 

11, and 14. The corresponding practice instructions for the different learner groups 

are presented on slide five. The instruction for the static group is a line map of the 

maze showing the walls as black lines against a white background and the optimal 

route as a green trace. The direction of movement along the optimal route is indicated 

by start and endpoint labels as well as directional arrows at the segment boundaries. 

Star-shaped links are inserted at all segment boundaries along the optimal route. 

Placing the mouse pointer over these links activates macro modules that display an 

egocentric view of the maze environment as the corresponding segment boundary is 

approached. The egocentric views are displayed in an embedded 240 x 300 pixels 

window placed closed to the corresponding boundary segment on the same slide. The 

displayed image and embedded window position are automatically updated as the 

mouse pointer is moved to other segment boundary links either in sequential or 

random order.  The map also shows the location of reference landmarks such as static 

objects or parts of the maze walls with a different colour/texture from the immediate 

surrounding walls. A screenshot of the static instructions interface for the level two 

maze, which includes the embedded in-maze view window, is shown in Figure 4.3.  

The dynamic group instruction on the other hand is an animation showing a 

single navigational run through the respective maze levels along the optimal route. 

The animation is superimposed on the lower left corner with a dynamically updated 

map showing a trace synchronised with the current location in the maze. The 

superimposed map however neither shows the location of the reference landmarks nor 

the direction of movement at segment boundaries, which have to be acquired as the 

animation is played. The participant may pause, rewind or fast-forward the playback 

of the animation as required. A screenshot of the dynamic instructions interface for 

the level two maze is shown in Figure 4.4. 

 

4.5.3.3 Questionnaires 

 

The pre-test questionnaire captures the participant’s age, gender, dominant 

hand used and any disability (specifically dyslexia, epilepsy and related photo-

sensitivity). Participants were further asked to report any previous video game 

playing experience, the period of the experience and the frequency of play at start, 

peak and current game play experience. A sample of the pre-test questionnaire is 
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included in Appendix C. The post-test participant’s self-assessment of performance is 

reported on five scales of the NASA Task Load Index (TLX)4. The physical demand 

scale of the NASA TLX was excluded from the assessment as the physical effort 

required for the navigation task is considered negligible and irrelevant for subsequent 

analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Sample screenshot of the static instructions interface 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-.4 Sample screenshot of the dynamic instructions interface 

                                    
4 http://humansystems.arc.nasa.gov/groups/TLX/ (accessed 15 February 2013) 
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4.5.3.4 Card Rotations Test 

 

 The card rotations test (Ekstrom et al., 1976; associated ETS licence is 

included in Appendix C) was used to measure participant’s spatial orientation ability 

as a potential confounding covariate. It is a two-part test of 10 problems each. For 

each problem, the test taker is asked to compare a uniquely shaped card with eight 

other cards of different orientations and required to determine if the first card can be 

made to look like each of the subsequent eight cards. The uniquely shaped card may 

be mentally rotated for comparison but cannot be flipped or reshaped. 

 

4.5.4 Procedure 

 

 Participants were randomly assigned to either of the two instruction-based 

learner groups – static or dynamic.  The experiment was conducted in individual 

sessions of 90 minutes on the average. The participant completes the pre-test 

questionnaire followed by the timed card rotations test. Thereafter, the participant 

interacts with instruction type specific to his/her learner group seated in front of the 

monitor. Interaction with the instruction and task execution was sequenced into 

seven phases as follows – practice, level one instruction, level one task execution 

(three trials), level two instruction, level two task execution (three trials), level three 

instruction, level three task execution (two trials). The activities involved in each of 

these phases are described below.  

 In the practice phase, the participant is allowed up to five minutes to view 

sample instructions corresponding to their experimental group and practice 

controlling movements through the virtual maze environment using the joystick. The 

practice phase ends when the participant indicates readiness to proceed or 

automatically, if the allowed time expires. No relevant performance data except the 

actual practice time were recorded for this phase.  

 The details of the instruction presentation and task execution phases for the 3 

maze levels are similar except for differences in the times allowed for learning and 

task execution as well as the number of task trials. Maximum learning times of 5, 8, 

and 15 minutes and task execution times of 4, 7 and 10 minutes were allowed for 

maze levels one, two, and three respectively. Furthermore in the task execution 

phases, participants executed three trials each of maze levels one and two and two 
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trials of maze level three. The participant may choose to proceed from the 

instruction/learning phase to the task execution phase at any time before the 

expiration of the learning time allowed or would be automatically switched to the task 

execution phase if the learning time expires. The participant controlled pacing 

through the instruction slide sequence without interference except for when the 

experimenter is requested to terminate the learning/instruction phase early and/or 

load the task execution environment.  

 Participants’ navigational performance was automatically recorded by the 

MazeSuite application as separate files for each trial run. Each participant’s overall 

performance data was therefore recorded in 8 separate files for subsequent analysis. 

Lastly, the participant completes the NASA TLX to end the session. 

 

4.5.5 Data Capture and Analysis 

 

 Navigational performance dependent measures of travel path length, time, 

route completion rate and route retrieval robustness were extracted by using the 

MazeSuite application to analyse the performance files recorded for each participant. 

The path length was expressed in maze units and path time in seconds. The computed 

route retrieval robustness ratios were sorted by quarter percentiles into very low, low, 

normal and high categories based on the static and dynamic instruction groups.  

 Participant’s spatial orientation ability and video game playing experience 

were further analysed as potential navigation performance confounding variables. 

The spatial orientation ability was measured by the score achieved on the card 

rotations test. The video game playing experience is expressed as a composite score 

calculated from the participant’s self-reported amount of game play (how long they’ve 

been playing), frequency of play at start (how often they played when they started), 

frequency of play at peak (how often they played when they were playing the most) 

and frequency of current game play. Different weights were assigned to these 

variables in the calculation of the composite score to reflect their relevance to 

performance on the current virtual navigational task. Data from four participants 

that reported no previous gaming experience (two each from the static and dynamic 

groups) were excluded from this analysis in particular. Participant’s gender was not 

analysed as a covariate because of difficulties associated with the recruitment of 

volunteers for the experiment. The analysis of the data was particularly labour 
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intensive due to the large number of extensively detailed observations afforded by the 

MazeSuite application. The complete analysis of each participant’s performance files 

took about 90 minutes on average.  

 

4.6 Results 
 

 The data was summarised and means and standard deviations of the travel 

path length (in maze units), path time (seconds), spatial orientation ability scores and 

composite video gaming experience scores for the static and dynamic groups are 

shown in Table 4.1.  

 

 
Instructional interface 

 
Static Dynamic 

 
N M SD N M SD 

Path Length - Level 1 Trial 1 31 117.26 50.61 29 73.33 4.42 

Path Length - Level 1 Trial 2 31 86.37 28.08 29 71.94 2.32 

Path Length - Level 1 Trial 3 31 71.76 1.82 29 71.75 2.41 

Path Length - Level 2 Trial 1 31 347.17 175.27 29 171.65 97.70 

Path Length - Level 2 Trial 2 31 287.00 195.49 29 143.83 66.58 

Path Length - Level 2 Trial 3 31 240.46 148.18 29 109.55 6.83 

Path Length - Level 3 Trial 1 31 482.09 162.67 29 466.33 234.77 

Path Length - Level 3 Trial 2 31 553.70 247.02 29 399.48 220.48 

Path Time - Level 1 Trial 1 31 50.55 20.76 29 34.83 10.92 

Path Time - Level 1 Trial 2 31 29.34 6.53 29 29.27 8.48 

Path Time - Level 1 Trial 3 31 26.13 5.45 29 26.96 5.24 

Path Time - Level 2 Trial 1 31 299.91 148.43 29 167.40 135.19 

Path Time - Level 2 Trial 2 31 248.15 163.28 29 156.56 154.10 

Path Time - Level 2 Trial 3 31 197.67 155.41 29 68.44 26.88 

Path Time - Level 3 Trial 1 31 454.54 171.63 29 415.78 211.39 

Path Time - Level 3 Trial 2 31 432.95 186.98 29 344.25 228.72 

Spatial Ability Score 31 86.45 28.61 29 97.00 37.97 

Video Gaming Score 29 11.16 4.50 27 12.81 4.32 

 

Table 4.1 Means and standard deviation for navigation performance measures, 

spatial ability and video gaming experience 
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 The data was analysed using SPSSTM version 17 and the statistical modelling 

outputs are presented in Appendix C. Large standard deviations were observed in 

some of the performance measures especially for the more complex upper task levels. 

A Kolmogorov-Smirnov test of normality however showed that the performance 

measures were normally distributed (p > .05 for all measures). As a result, parametric 

tests of differences were used for the analysis. Multivariate analysis of variance 

(MANOVA) using the Wilks lambda was performed to test for instructional group 

performance differences in path length and time across all trials. The results of the 

MANOVAs are shown in Table 4.2.  

   

 

Multivariate tests 
Between-subject effects 

 

 
F(2, 

57) 
p 

Wilks 

Lambda 

Partial eta 

squared 
 F(1, 58) p 

Partial eta 

squared 

Level 1 Trial 1 11.67 .00* .71 .29 
length 

time 

21.66 

13.19 

.00** 

.00** 

.27 

.19 

Level 1 Trial 2 3.92 .03* .88 .12 
length 

time 

7.60 

.00 

.01** 

.97 

.11 

.00 

Level 1 Trial 3 .24 .79 .99 .00 
length 

time 

.00 

.36 

.98 

.55 

.00 

.01 

Level 2 Trial 1 11.08 .00* .72 .28 
length 

time 

22.52 

13.01 

.00** 

.00** 

.28 

.18 

Level 2 Trial 2 7.00 .00* .80 .20 
length 

time 

14.02 

4.98 

.00** 

.03 

.20 

.08 

Level 2 Trial 3 11.16 .00* .72 .28 
length 

time 

22.57 

19.49 

.00** 

.00** 

.28 

.25 

Level 3 Trial 1 .44 .65 .99 .02 
length 

time 

.09 

.61 

.76 

.44 

.00 

.01 

Level 3 Trial 2 3.44 .03* .89 .11 
length 

time 

6.48 

2.72 

.01** 

.10 

.10 

.05 

 

* alpha = .05 

** alpha = .03 

 

Table 4.2 Multivariate analysis of variance results for navigation performance 

measures across all maze levels 
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The dynamic group had statistically significant better performance on all 

navigational measures than the static group except for on the third trial of the level 

one maze and on the first trial of the level three maze. The alpha level was set at .03 

after Bonferroni adjustment and follow-up univariate comparisons revealed that the 

dynamic group had better performance on all dependant measures except for the path 

time of the second trials of the level one and three mazes respectively.  The plots in 

Figures 4.5 and 4.6 show the variations in the mean path length and time of the level 

two maze trials.  

 Two sets of multivariate analysis of covariance (MANCOVAS) were conducted 

on the level two maze trials with spatial orientation ability and video game 

experience as covariates respectively. Preliminary checks for linearity, homogeneity 

of variance-covariance matrices and multicollinearity were satisfactory. The results of 

the MANCOVAs are shown in Table 4.3. Following adjustment for the spatial 

orientation ability scores in the first set of MANCOVAs, there were statistically 

significant differences in the navigational performance of the two instruction groups 

across all trials of the level two maze. There were also statistically significant 

differences in performance measures attributable to the spatial orientation ability 

except for on the third trial of the level two maze. After Bonferroni adjustment, 

univariate comparisons show that the dynamic group had better performances on all 

the dependant performance measures except for the path time of the second trial of 

the level two maze. The effects of the spatial orientation ability however were only 

significant for the path times.  

Similarly, after adjusting for the video gaming experience in the second set of 

MANCOVAs, there were statistically significant differences in the navigational 

performance of the two instruction groups across all trials of the level two maze. 

There was a statistically significant effect of the video gaming experience on the 

dependent performance measures in only the first trial of the level two maze. 

Following Bonferroni adjustment, univariate comparisons show that the dynamic 

group had better performances on all the dependent performance measures except for 

the path time of the second trial of the level two maze. The effect of the video gaming 

experience was however significant for only the path time. 
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Figure 4.5 Mean path length plot for the level 2 maze task 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6 Mean path time for the level 2 maze task 
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Table 4.3 Multivariate analysis of covariance results for level 2 maze trials 

 

    

  

Multivariate tests 
Between-subject effects 

  

Task Effect 

Fa p 
Pillai’s 

Trace 

Partial eta 

squared 

Performance 

measure 
Fa p 

Partial eta 

squared 

Level 2 Trial 1 

Instruction 10.15 .00* .27 .27 
length 

time 

20.49 

11.05 

.00** 

.00** 

.26 

.16 

Spatial Ability 4.33 .02* .13 .13 
length 

time 

1.03 

6.32 

.31 

.02* 

.02 

.10 

Level 2 Trial 2 

Instruction 6.33 .00* .18 .18 
length 

time 

12.33 

3.47 

.00** 

.07 

.18 

.08 

Spatial Ability 6.05 .00* .18 .18 
length 

time 

1.77 

10.73 

.19 

.00** 

.03 

.16 

Level 2 Trial 3 

Instruction 9.99 .00* .26 .26 
length 

time 

20.21 

17.27 

.00** 

.00** 

.26 

.23 

Spatial Ability 1.77 .18 .06 .06 
length 

time 

3.18 

3.55 

.08 

.07 

.05 

.06 

Level 2 Trial 1 

Instruction 10.01 .00* .28 .28 
length 

time 

20.12 

10.03 

.00** 

.00** 

.28 

.16 

Gaming Score 4.95 .01* .16 .16 
length 

time 

.40 

5.72 

.53 

.02** 

.00 

.10 

Level 2 Trial 2 

Instruction 5.71 .01* .18 .18 
length 

time 

11.40 

4.07 

.00** 

.04 

.18 

.07 

Gaming Score 2.80 .07 .10 .10 
length 

time 

.34 

4.24 

.56 

.04 

.00 

.07 

Level 2 Trial 3 

Instruction 9.60 .00* .27 .27 
length 

time 

19.39 

16.76 

.00** 

.00** 

.27 

.24 

Gaming Score .79 .46 .03 .03 
length 

time 

1.16 

1.59 

.29 

.21 

.02 

.03 

 
a F(2,56) for Spatial Orientation Ability Covariate (n=60) 

a F(2,52) for Video Gaming Experience Covariate (n=56)  

* alpha = .05 

** alpha = .03 
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Table 4.4 Chi-square test results for instruction groups vs route completion rate 

  

 

 

 

 

 

 

 

 

Table 4.5 Chi-square results for instruction groups vs route retrieval robustness 

 

The results of two sets of Chi-square tests for independence between the 

instruction groups /route completion rate and the instruction groups/route retrieval 

robustness for the level two maze trials are shown in Tables 4.4 and 4.5 respectively. 

There were significant associations between instruction groups and the route 

completion rates as well as the route retrieval robustness. As shown in figures 4.7 

and 4.8, the dynamic group had higher route completion rate and retrieval robustness 

than the static group across all trials of the level two maze. 

 

 

 

 

  

Task 
Chi-square 

(Yates continuity) 
p phi 

Level 2 Trial 1 7.57 .01* -.39 

Level 2 Trial 2 4.68 .03* -.31 

Level 2 Trial 3 6.12 .01* -.36 

 
* alpha = .05 

df = 1; n = 60 

   

Task Chi-square df p Cramer’s V 

Level 2 Trial 1 9.91 3 .02* .41 

Level 2 Trial 2 9.84 3 .02* .41 

Level 2 Trial 3 7.97 2 .02* .36 

 
* alpha = .05 

n = 60 
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Figure 4.7 Bar chart of the route completion rates for the level 2 maze trials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8 Bar chart of the route retrieval robustness measures  

for the level 2 maze trials 
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4.7 Discussion 

 

4.7.1 Dynamic Visualisations and Procedural Skills Acquisition 

 

 A mixed design of between and within group comparisons was used to 

investigate the effect of dynamic visualisation components of instruction on the 

acquisition of spatial navigational skills. The post-learning performance of two groups 

of participants navigating three levels of a virtual maze environment was 

subsequently compared. It was expected that the dynamic instruction group would 

yield better navigational performance than the static instruction group after 

controlling for the effects of potential confounding variables. Furthermore, a within-

trial improvement as well as a convergence of performance measures between the 

groups due to a practice effect was expected. The results provide evidence that the 

dynamic group had significantly better navigational performance in general than the 

static group on the measures of travel path length and time. The dynamic group’s 

significantly better performance was particularly consistent across all trials of the 

level two maze, which was designed to be of medium complexity and protected from 

the adverse effects of the participant still adjusting to the virtual task environment. 

The route completion rate and retrieval robustness measures were also consistently 

better for the dynamic group than the static. In the lower complexity level one maze, 

a faster convergence in performance measures was observed across all trials in both 

groups. In the highly complex level three maze however, performance convergence 

was less consistent and a significant difference in the compared groups was only 

observed on a later (2nd) trial. Taken together, this may suggest an interaction 

between task complexity, practice effect and instructional dynamism. However, the 

results do not provide conclusive evidence for this interaction and further studies will 

be required to replicate and explore this further. 

 It is argued that the dynamic group may have recorded better navigational 

performance because they had a more complete and efficient mental representation of 

the learned task, which included a motion variable component. The extension of the 

base mental representation to include additional transition information and the 

motion relative spatial locations of features in the virtual task environment may 

account for the subsequent improvement in post-learning performance. This is 
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consistent with the core concept of the mental imagery theory that distinguishes 

between perception inputs and mental imagery (Kosslyn, 2005). The current 

experiment results however extend the visual buffer structure of the mental imagery 

theory with the addition of a motion processor for more efficient mental 

representations of procedural tasks. This is consistent with the proposition of a motor 

processor to explain improved motor performance attributable to dynamic 

presentations (Wong et al., 2009) and the explanation of learning effects by the motor-

neuron system proposed by Van Gog et al. (2009). The results provide novel evidence 

for these associations by showing how intrinsic instructional dynamism may activate 

cognitive motion-variable dependent processes in the acquisition of procedural skills. 

Additionally, the result is also consistent with the hybrid cognitive learning 

processing model proposed in Chapter 2 of this thesis and validates the assumption 

that dynamic instructional components possess an intrinsic quality for more efficient 

transfer of domain-dependent procedural skills. Based on these results, Null 

hypothesis H00 was rejected and alternate hypotheses H11, H12, H13 and H14 were 

accepted.  

 

4.7.2 Effects of Spatial Abilities and Video Gaming Experience 

 

 Spatial orientation abilities and video gaming experience has been shown to 

affect human navigational performance (Meneghetti et al., 2011; Richardson et al., 

2011). The effect of video gaming experience in particular is more evident in the 

navigation of virtual environment like the mazes used in this study. In the analysis of 

the current experiment, the level two maze trials were selected for extended 

investigation, which includes controlling for the effect of the participant’s spatial 

ability and video gaming experience. Interestingly the results, while consistent with 

previous findings, show a significant effect of the participant’s spatial orientation 

ability in the path time measures of the first two trials only, which disappears on the 

third trial. Similarly, the effect of the video gaming experience was significant for the 

path time measures in the first trial only with performance quickly converging on 

subsequent trials. This suggest that the  participant’s spatial ability and video 

gaming experience may only account for improvements in time-dependent cognitive 

processing of visual stimuli and not for memory retrieval dependent processes that 

support travel path computations. The path length measure of navigational 
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performance is particularly dependent on efficient memory retrieval processes of 

stored spatial knowledge for travel path computations. In contrast to spatial 

orientation ability and video gaming experience, the effect of the instructional 

dynamism was consistently significant for the path length measure across all trials. 

This may be due to the formation of a more complete and effective spatial knowledge 

representation afforded by the instructional dynamism, which supports more efficient 

memory retrievals for path computation. Null hypothesis H01 was therefore rejected 

and the alternate hypothesis H16 was accepted. The robustness of navigational 

performance as measured by the route retrieval robustness rate was consistently 

higher for the dynamic group than the static group across all trials of the level 2 

maze. The alternate hypothesis H15 was therefore accepted as the findings suggest 

that the more efficient mental task representations of the dynamic group afforded 

faster recovery to temporary disruptions in spatial orientation during navigation. The 

beneficial effect of spatial orientation and video gaming experience however were 

confined to the cognitive processing of perceived external stimuli and reflects only in 

the travel time measures. Furthermore, the effect of these confounding factors 

converges faster than for the instructional dynamism, which may suggest a higher 

susceptibility to the practice effect.  

 

4.8 Limitations 

 

 The results have limitations for generalisation as the spatial navigation 

performance effects of some potential confounding variables, such as the participant’s 

age and gender, were not controlled. This was due to constraints imposed by the 

experiment recruitment process. However, the potential confounding effects of these 

variables were minimised through random assignment of the participants to the 

compared groups based on the minimisation stratifiers of age and gender.  

The results are further limited in accounting for the detailed effect of spatial 

orientation ability and video gaming experience. Although the findings provide 

evidence suggesting a benefit of the spatial orientation ability and video gaming 

experience for process level perception operations only, these can only provide partial 

explanations and remains inconclusive. More comprehensive studies, which may 

include eye tracking methodology, would be required to conduct further investigations 
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to establish this finding. The eye-tracking data may afford detailed investigation of 

the salient aspects of the compared interfaces and attention profile that support 

improved task performances.  

The use of a virtual task environment may also restrict the generalisation of 

the results to navigational tasks in the real world. However, the virtual environment 

was utilised consistently across the compared groups. Furthermore the effect of prior 

video gaming experience, which has been shown to be particularly confounding for 

task performance in virtual environments, was also controlled. 

 

4.9 Conclusion and Further Work 

 

 In conclusion, this study provides evidence for a motion variable component of 

instructional interfaces, which is associated with improved transfer of novel 

procedural motor skills consistent with the hybrid cognitive learning model proposed 

in Chapter 2. The current experiment extends that model beyond the motor 

knowledge domain through empirical investigations in a related but separate domain 

of the acquisition of novel spatial navigational skills. It was found that the benefit of 

dynamic instructions for the acquisition of novel spatial navigation skills persists 

after controlling for extraneous factors like task complexity, spatial orientation ability 

and video gaming experience. 

 The results are limited in explaining the effect of other established factors like 

age and gender because of constraints of the recruitment process. It also provides 

limited evidence for a process level beneficial effect of spatial orientation ability and 

video gaming experience in the acquisition of spatial navigational skills. More 

comprehensive studies using eye tracking methodology were suggested to investigate 

this association. The findings of the current experiment are not conclusive on the 

subject of the beneficial effect of instructional dynamism in general. They provide 

further evidence of an association between instructional composition and target 

knowledge domain for novice learners. An important question remains unanswered – 

what is the cognitive benefit of dynamic versus static instructional visualisation 

components for domain experts learning a novel procedural skill. This question is 

addressed in the next experiment reported in Chapter 5. 



 

 

Chapter 5  

 

Experiment 3 – Domain Expertise in Procedural 

Skills Acquisition 

 

5.1. Overview 

 

 Chapter 3 of this thesis reports an experiment that demonstrates that 

dynamic visualisation components of instructional interfaces may be more cognitively 

beneficial than equivalent static alternatives for the acquisition of procedural motor 

skills by domain novices. This effect was attributed to an intrinsic quality of the 

dynamic visualisations that affords the portrayal of transitory information, which is 

critical to the comprehension and acquisition of the target skill. The cognitive benefit 

of dynamic visualisations over equivalent statics was also found in Experiment 2 

reported in Chapter 4, which investigated novel acquisition in the different 

knowledge domain of spatial navigation. The participants of this latter experiment 

were also novices with respect to the target knowledge domain. These 2 experiments 

combined provide evidence for an interaction of instructional interface dynamism 

with novel skill acquisition/performance of domain novices, which is associated with 

an intrinsic quality of the visualisations to facilitate the creation of more accurate 

mental task models. The current chapter reports further work to answer the next 

logical question – would the cognitive benefit of dynamic instructional interface 

visualisations over equivalent statics persist for domain expert learners of a novel 

intra-domain procedure? Essentially, this question seeks to find the cognitive effects 

of intra-domain transferability of expertise and how this interacts with dynamic 

versus static interface components in skill acquisition and post-learning task 

performance. The experiment conducted to investigate this question is reported. 
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5.2 Domain Expertise and Novel Skills Acquisition 

 

Expertise has been defined as characterised by maximal adaptations to 

representative tasks within a domain (Ericsson, 2004; Gegenfurtner & Seppänen, 

2013). The domain specificity of expertise however is not generally accepted. For 

instance, Ericsson (2008) argues that expertise is essentially reproducibly superior 

task performance in a knowledge domain citing several examples of reference 

domains including chess, typing, athletics and medical surgery. Expertise in a specific 

domain is evident by consistently superior ad hoc performance without advanced 

preparation. Thus an expert athlete may be expected to be ready for competition at 

any time even if a race is delayed. Similarly, an expert medical doctor would be 

expected to respond adequately to a roadside accident patient as well as to scheduled 

patient appointments in the clinic. This view emphasizes the domain specificity of 

expertise and its characterisation by readiness to perform at any given time with 

relatively little preparation (Ericsson & Smith, 1991). The domain specific perspective 

generally infer a well-structured knowledge base of experts engendered by prolonged 

exposure, practice and experience with the domain. This facilitates automatic task 

execution and decision making but also an inflexible transferability to novel inter-

domain tasks due to the rigidifying effect of long practice (Mayer & Wittrock, 1996; 

Feltovich, Spiro & Coulson, 1997). 

 An alternative approach to expertise defines it as not domain specific but 

comprising knowledge components that is generalizable across novel and unfamiliar 

tasks. This connotes a blurred inter-domain boundary and the structural similarity of 

tasks in different knowledge domains affords an optimal adaptation channel through 

which the transfer of expert strategies may occur (Barnett & Koslowski, 2002; 

Schwartz, Bransford & Sears, 2005). Interestingly, this perspective also emphasizes 

the core importance of extensive practice to the development of expertise consistent 

with this aspect of the domain specific approach to expertise. The growth trajectories 

of the 2 core factors of the optimal adaptation channel – innovation and efficiency – is 

thought to develop and improve over time and practice as well (Schwartz et al., 2005 

pp 38-39). 

 In an attempt to reconcile the different approaches to the domain specificity of 

expertise, Gegenfurtner and Seppänen, (2013) proposed 3 broad aspects of transfer 
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evident in expert performance. The first is the transfer of domain-general skills, 

which suggests that continuous practice in a knowledge domain facilitates the 

development of general heuristics or a repertoire of strategies that may be applied in 

other structurally similar task environments. The second aspect is the transfer of 

domain-specific skills where continuous practice facilitates intra-domain transfer to 

novel tasks only. Domain specific adjustment may be evident to accommodate the 

novel tasks. The third aspect describes transfer of domain-specific skills in context 

only. This is characterised by continuous practice in a domain, which facilitates the 

development of superior performance but it is relatively difficult to transfer expertise 

to novel inter- or intra-domain tasks. Irrespective of the diverse approaches to the 

domain specificity of expertise, the notion that expertise is developed through 

extensive practice of domain representative tasks is consistent. This factor is core to 

the selection of participants for the experiment reported in this chapter. Expertise 

from a cognitive science perspective, is defined at the micro-cognition level and refers 

to cognitive processes such as memory capacity and performance. Domain experts 

possess knowledge structures that afford competent, skilled and controlled task 

execution as compared to novices. Experts are able to think more qualitatively and 

process larger amount of information at a given moment with respect to a specific 

task (Farrington-Darby & Wilson, 2006).  

The experiments reported in Chapters 3 and 4 of this thesis provide evidence 

for an interaction between the instructional interface visualisations and the cognitive 

processing associated with task comprehension and post-learning performance by 

domain novices. This effect was attributed to the intrinsic, transitory element of the 

dynamic interface visualisations that facilitates a more complete mental task 

representation and skill transferability than using equivalent static visualisations. 

Furthermore, the interaction was found to be independent of the novice learner’s 

spatial ability. Would the cognitive benefit associated with dynamic interface 

visualisations facilitate more efficient mental representation and task performance in 

domain experts acquiring a novel intra-domain skill? This question was investigated 

in the current experiment reported. There have been very few previous studies of the 

moderating effect of domain expertise on the interaction of interface dynamism and 

mental task representations/skill acquisition. The existing studies more often than 

not do not distinguish sufficiently between domain expertise and individual cognitive 

characteristics such as spatial visualisation or orientation abilities. This has led to 
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inconsistent findings that are not applicable in the general context. For instance, 

Boucheix and Schneider (2009) conducted 2 experiments to compare the cognitive 

effects of static versus dynamic interface visualisations on the comprehension of a 

dynamic mechanical system by domain experts versus novices. They concluded that 

dynamic interface visualisations may be beneficial for domain novices but are 

incompatible and ineffective for the experts when compared with using equivalent 

static interface visualisations. This conclusion however is arguably flawed because of 

the assumption that lower spatial ability equates to lower prior experience or 

expertise in a mechanical knowledge domain. Spatial ability has been defined as an 

individual capacity to perceive forms, shapes and positions of objects in a visual field, 

create mental representations of these forms, shapes and positions and mentally 

manipulate the resulting representations (Carrol, 1993). Spatial ability comprises 

several sub-factors including spatial visualisation, spatial relations, perceptual speed, 

closure speed and flexibility of closure (See Carrol, 1993 for a full review). Domain 

expertise however, as discussed in the early part of this section, is associated with 

“consistently superior performance on a specialised set of representative tasks for the 

domain” (Gegenfurtner, Lehtinen & Saljo, 2011). Domain expertise therefore is 

separate and distinct from an individual cognitive characteristic such as spatial 

ability. Domain expertise is developed through extensive experience and performance 

of tasks in the reference domain. An investigation of the moderating effect of domain 

expertise on novel skill acquisition through simulations with dynamic versus static 

interface visualisations would require a more stringent methodology that 

counterbalances the factor of spatial ability to discount for its confounding effect. The 

intrinsic loads imposed by interface visualisations have also been found to interact 

with domain expertise (Spanjers, Wouters, Van Gog & Van Merriënboer, 2011). In 

that study, the intrinsic load was manipulated by using segmented versus continuous 

animation interfaces to investigate a problem-solving domain. The results are 

however limited as the comparison did not include the cognitive effects of static 

visualisation components. Furthermore, the participants involved were neither 

complete novices nor full experts with respect to the domain of measurement, which 

further reduces the generalisability of the results. 

Extending from the findings of Experiments 1 & 2 of this thesis (Chapters 3 & 

4), it is arguable that the skill acquirable in a specific learning episode using dynamic 

versus static interface visualisations is dependent on 3 variables: the nature of the 
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information to be perceived (e.g. motor actions, spatial navigation, abstract 

mathematical concepts etc), the medium of presentation (dynamic versus static 

interface visualisations) and the restrictions of the cognitive processing system. The 

interactions of these 3 variables are depicted in Figure 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1 Components of the integral learning process 

 

The limitations of the cognitive processing system are well established in literature 

and were extensively discussed in Chapter 2 of this thesis. Domain expertise may 

moderate cognitive processing limitations as experts have more developed domain 

knowledge schemas, which imposes less processing cost on WM (Spanjers et al., 

2011). Domain expertise however, may not completely eliminate the restrictions of 

limited WM resources. As depicted in the hybrid cognitive model (Figure 2.6), the 

restrictions of the cognitive architecture could prevent expert learners from accessing 

the WM bypass loop for the acquisition of novel intra-domain skills. The integral 

effect of the 3 variables depicted in Figure 5.1 therefore should define an association 

between the instructional interface visualisations and the target knowledge domain. 

This association would be independent of the domain expertise to the extent that the 
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current learning task is novel. With respect to the domain of procedural motor skills 

acquisition specifically, Experiment 1 reported in Chapter 3 argues that an intrinsic 

transitory information attribute of dynamic interface visualisations makes them more 

effective for supporting associated cognitive processing than equivalent static 

alternatives. This is consistent with the concept of a specialised ‘movement processor’ 

component of WM (Wong et al, 2009). The experiment reported in this chapter 

extends this finding to investigate the moderating effect of domain expertise on the 

acquisition of novel intra-domain procedural motor skills. The following hypotheses 

are stated: 

 

Null Hypotheses 

H00 Comparison of equivalent dynamic versus static interface visualisations would 

yield no significant differences in the acquisition of a novel procedural motor 

skill by domain experts.  

H01 The moderating effect of dynamic versus static interface visualisations on the 

post-learning performance of a novel procedural motor skill would be dependent 

on the spatial visualisation ability of domain expert learners. 

 

Alternate/Positive Hypotheses 

H11 The intrinsic transitory information attribute of dynamic interface 

visualisations would facilitate the creation of a more efficient mental task model 

in the acquisition of a novel procedural motor skill by domain expert learners 

than possible with equivalent static visualisations.  

H12 The cognitive benefit of more efficient mental models afforded by dynamic 

interface visualisations over equivalent static alternatives would yield faster 

post-learning performance of a novel procedural motor task irrespective of prior 

domain knowledge/expertise. 

H13 The cognitive benefit of more efficient mental models afforded by dynamic 

interface visualisations over equivalent static alternatives would yield more 

accurate post-learning performance of a novel procedural motor task 

irrespective of prior domain knowledge/expertise. 

H14 The interaction of interface dynamism and post-learning performance of a novel 

procedural motor task would be independent of domain expertise and the 

learner’s spatial visualisation ability. 
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5.3 Method 

 

5.3.1 Design  

 

The experiment design is the same as described in Section 3.4.1. 

 

5.3.2 Participants 

 

Twenty-four aircraft maintenance engineering experts (all males, from 31-

55years old, M = 44, SD = 5.5) were paid £5.00 for voluntary participation in the 

experiment. All participants had at least 12 years (and up to 35 years) of professional 

aircraft maintenance engineering at the 401 Aircraft Maintenance Depot (ACMD) of 

the Nigerian Air Force, Lagos, Nigeria. BPS ethical guidelines were complied with to 

ensure the wellbeing of all participants. 

 

5.3.3 Materials 

 

The same LEGOTM truck model, computer system, monitor, video camera, 

questionnaire, paper folding test, and instructional materials as described in Section 

3.4.3 were used for the experiment. 

 

 

5.3.4 Procedure 

 

Participants performed the same disassembly/assembly task described in 

Section 3.4.4 with the exception that all phases of the experiment were conducted in 

individual sessions. The familiarisation phase was up to 5 minutes and was not 

recorded. Based on the outcome of the pre-test questionnaire, 4 participants were 

excluded from continuing because they reported previous experience with models 

similar to the truck model in use.  
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5.3.5 Analysis 

 

Captured video data were analysed to extract performance time and accuracy 

similar to the procedure described in Section 3.4.5. Discrepancies in the scores were 

resolved through consensus by 3 independent reviewers. However, the entire 22 

procedural steps of the disassembly/assembly process were analysed as against only 

the first 11 steps analysed in Section 3.4.5. No participant’s data was excluded from 

the final analysis. 

 

5.4 Results 

 

The data was analysed using SPSSTM version 17 and the statistical modelling 

outputs are presented in Appendix D. Table 5.1 shows the mean task performance 

time and error count as well as standard deviations for the static (S-group), video (V-

group) and interactive (I-group) groups respectively. A one-way between-groups 

ANOVA was conducted to explore the effect of instruction interface type on task 

performance. There was a statistically significant difference in the task performance 

time (F (2, 17)= 19.59, p<.05) and accuracy (F (2, 17)= 35.65, p<.05) for the three 

instructional groups. The effect size, calculated using eta squared, was .70 and .81 for 

task time and accuracy respectively.  

 

 

 

 

 

 

 

 

Table 5.1 Means and standard deviations for the compared groups 

 

Post-hoc comparisons using Tukey HSD test indicated that the mean task time for 

the S-group (M = 322.14, SD = 59.30) was significantly different from the V-group (M 

= 239.86, SD = 28.12, p = .02) as well as the I-group (M = 150.00, SD = 56.10, p = .00). 

There was also a significant difference between the mean task time for the V-group 

and I-group (p = .01). Similarly, Tukey HSD further reveals significant differences 

 Instruction interface group 

 S-group V-group I-group 

 N M SD N M SD N M SD 

Task time (s) 7 322.14 59.30 7 239.86 28.12 6 150.00 56.05 

Task errors 7 7.71 1.38 7 3.00 1.73 6 1.33 1.03 

Test score 7 7.00 1.00 7 6.14 .90 6 7.00 .63 
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between the mean error count for the S-group (M = 7.71, SD = 1.38) and the V-group 

(M = 3.00, SD = 1.73, p = .00) as well as the I-group (M = 1.33, SD = 1.03, p = .00). 

However, the differences between the mean error count for the V-group and I-group 

did not reach statistical significance (p = .12).  

Two one-way between groups ANCOVAs were further conducted with spatial 

ability test scores as covariate. The dependent variables were task performance times 

and error counts respectively and preliminary checks confirmed the underlying 

assumptions of the homogeneity of variances were not violated (F (2, 17)= .74, p>.05 

and F (2, 17)= 1.48, p>.05 respectively). After adjusting for spatial ability in the first 

ANCOVA, a significant difference remained in task performance times (F (2, 16)= 

18.53, p<.01, partial eta squared=.67). There was no significant effect of spatial 

ability on task performance times (F (1, 16)= .08, p>.05, partial eta squared=.01). 

Similarly, adjusting for spatial ability in the second ANCOVA still showed a 

significant difference in task performance error counts (F (2, 16)= 32.76, p<.01, 

partial eta squared=.81) and no significant effect of spatial ability on the error counts 

(F (1, 16)= .04, p>.05, partial eta squared=.00).  A graphical analysis of task 

performance measures is presented in Figures 5.2 and 5.3 depicting the significant 

effect of the dynamic contents of the instructional interfaces. Overall, the V-group and 

I-group were 34% and 115% faster and 157% and 480% more accurate than the S-

group respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figures 5.2 & 5.3 Plots of task time and accuracy across interface types 
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‘  

5.5 Discussion 

 

The experiment investigated the cognitive benefit of dynamic interface 

visualisations over static in the acquisition of a novel intra-domain procedural motor 

skill and the moderating effect of prior domain knowledge/expertise. The cognitive 

effect of dynamic versus static interface visualisations have been earlier found to be 

independent of the domain novice learner’s spatial visualisation ability and this could 

be extendable to the domain expert in the context of novel skill acquisition. This 

hypothesis was tested in this experiment. By controlling for the effect of other 

variables such as the learner’s spatial visualisation ability and interface information 

equivalency, it was observed that domain experts, training to acquire a novel intra-

domain skill, recorded significantly better measures of actual task performance after 

interacting with dynamic compared to static interface visualisations. The results 

suggest that irrespective of previous domain knowledge, trainees in the V and I 

groups were able to generate a more accurate and complete mental representation of 

novel procedural motor skills than those in the S-group, which accounts for their 

significantly higher task performance measures. Null hypothesis H00 was therefore 

rejected and the alternate hypotheses H11, H12 and H13 were accepted. 

The experiment methodology carefully controlled for the confounding effect of 

the spatial visualisation ability of the participants through stratified randomisation. 

This ensured counterbalanced distribution of the participants to the compared groups 

to compensate for individual spatial abilities and afforded a more direct observation 

of the effect of domain prior experience or expertise. Null hypothesis H01 was rejected 

and the alternate H14 was accepted. The test knowledge domain was the acquisition of 

procedural motor skills, which is related to the participant’s expertise as they all had 

several years of aircraft maintenance engineering experience. In contrast to the 

conclusions of Boucheix and Schneider (2009), dynamic interface visualisations, such 

as videos and interactive re-enactment of the novel skill to be acquired, were found to 

yield faster and more accurate post-learning performance measures of the target 

skills. This provides evidence that dynamic interface visualisations affords more 

complete representations of novel procedural motor skills and facilitates the creation 

of more efficient mental task models than equivalent static alternatives. The creation 
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of more efficient mental task models by the dynamic visualisations may be due to the 

intrinsic encoding of the transitory information that links the different stages of the 

disassembly/assembly task thus translating to better comprehension and post-

learning task performance. The individual cognitive characteristics of the 

participants, such as spatial visualisation abilities, could not be a moderating factor 

as proposed by Boucheix and Schneider (2009) as it had been compensated for 

through the current experiment’s randomisation methodology. The results are also 

consistent with Spanjers’ et al. (2011) proposal for an interaction between the 

intrinsic cognitive load imposed by interface visualisations and domain expertise. It is 

arguable however that the current results extends the Spanjers’ et al (2011) initial 

comparisons to include static versus dynamic interface visualisations. This afforded a 

fuller understanding of the cognitive effects of interface dynamism than possible 

through the comparison of segmented versus continuous dynamic visualisations as 

implemented in Spanjers et al. (2011) study. Furthermore, the participants in the 

current experiment are fully experts in the test reference domain having acquired 

several years of experience as aircraft maintenance engineers.  This field of expertise 

is especially characterised by manual dexterity and excellent eye-hand coordination 

to perform continuously varying motor manipulations similar to the 

disassembly/assembly task that was used in the current experiment. The participants 

in Spanjers et al. (2011) however could neither be classified as full experts nor 

complete novices, which limits the generalizability of their findings.  

Consistent with the Cognitive Load Theory (CLT), the dynamic interface 

visualisation arguably imposed less extraneous cognitive load on the participants 

irrespective of their prior domain expertise because the current acquisition task was 

novel. This implies that the beneficial cognitive association of certain instructional 

modalities over others for domain-specific skill acquisition may be independent of 

prior domain knowledge or expertise to the extent that the skill to be acquired is 

novel. With respect to the current experiment’s reference domain of procedural motor 

skill acquisition, this argument aligns well with Wong et al. (2009, 2012) suggestion 

of a distinct ‘motor processor’ that is dedicated to the efficient processing of dynamic 

visual stimuli. Furthermore, some previous studies as discussed in Chapter 2 have 

argued that static interface visualisations encourages ‘mental simulation’, which in 

turn enhances germane processing and skill transferability. Detailed video analysis of 

this experiment’s data however revealed that the S-group had problem in particular 
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with component manipulation that involves rotational movements during the 

disassembly/assembly task performance. Additionally, task comprehension and 

performance of this group did not improve despite the exclusive use of pointers and 

other visual cues to identify components of interest in the static instructions. A 

possible explanation might be that there exists a minimal threshold for step-wise 

procedural gaps in the instructions beyond which ‘mental simulation’ becomes 

impossible for the average learner to comprehend irrespective of prior domain 

experience or expertise when the tasks are novel. Beyond this threshold, schema 

formation processes, as described by the CLT, break down and participants resort to 

an ineffective stochastic approach to continuing with the disassembly just as observed 

with domain novices in Experiment 1 (Chapter 3). The range of tasks involved 

however do not afford direct comparison of the performance measures of the domain 

novices against the experts. The domain novices as reported in Chapter 3 were largely 

unable to proceed beyond the disassembly phase while all the expert participants in 

the current experiment completed the disassembly and assembly phases of the task.  

Further studies that use progressively reduced step-wise procedural gaps may be 

required therefore to establish and measure the minimal threshold required for static 

interface visualisations to facilitate ‘mental simulation’ of procedural motor 

skills/performance. 

 

5.6 Limitations 

 

Experiment 3 reported in this chapter was limited to the narrow domain of the 

acquisition of novel procedural motor knowledge by domain experts. The use of expert 

aircraft engineers as participants may suggest an interaction of the user’s 

experience/cognitive characteristics with task performance measures. However, this 

was controlled for by using a task that is novel to all the participants and excluding 

those reporting a previous experience with the same or similar models as the 

experiment’s. The procedural task was also well structured and required a finite 

sequence of logical steps thereby reducing the probability of selective performance 

criteria interference with participants’ previous knowledge or cognitive capabilities. It 

is arguable that the instructional interface for the I-group afforded a higher level of 

user interactivity than the S and V-groups, which could have moderated the results of 
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the study. The focus however was on the dynamic instructional content, which is the 

ability of the video and interactive interfaces to utilise visuospatial representations 

for portraying the entire range of transitory states involved in the skilled movements 

as against the fixed visuospatial representations afforded by the static instructions. 

Additionally, controls were embedded in all the instructional interfaces to allow 

replay, rewind or forward skip of each/entire instructional step(s) and minimise the 

effect of user controllability. A further limitation is the relatively low sample sizes but 

the size of the observed effect is large enough to justify the significant findings. 

However, subsequent evaluative studies should include more participants as well as 

retention and repeated performance measurements for a more robust assessment of 

the association of instructional format with knowledge domain. Future 

comprehensive studies should also explore inter-domain persistence or otherwise of 

the associative effects. Such further studies may include the use of eye tracking 

methodology to investigate differences at the process level  (cognitive and perceptual) 

in addition to the higher level performance measures (latencies and errors), which 

have been the focus of this study. 

 

5.7 Conclusion 

 

In conclusion, the findings of the experiment reported in this chapter have 

indicated a possible association between instruction and the acquisition of novel 

domain knowledge. Some previous studies have also shown similar results especially 

for the domain novice. The current study however extends to control for the effect of 

the learner’s previous knowledge by comparing the post-learning performance 

measures of aircraft engineering experts in a novel procedural task that is related to 

their domain of expertise. Significantly shorter time-on-task and fewer errors were 

observed for users of instructional interfaces with dynamic visualisations as opposed 

to those that used interfaces with static visualisations. This observation continues to 

hold even after discounting for the possible effects of the learner’s spatial abilities and 

portrays an intra-domain persistence of the beneficial association of dynamic 

instructions and procedural motor knowledge, which is independent of the learner’s 

expertise or cognitive abilities.  



 

 

Chapter 6  

 

Experiments 4 & 5 – Computational Cognitive 

Modelling of Procedural Skills Acquisition 

 

6.1 Overview 

 

 The experiments discussed so far in this thesis have investigated the cognitive 

effect of interface visualisations for procedural skill acquisitions using human 

participants. The findings of these experiments are often deductions based on 

empirical observations of human participants’ post-learning task performance 

measures, which provides an indication of the underlying cognitive processes that 

support the overt behaviour. The objective of the thesis research however includes 

facilitation of the development of intelligent computer assisted training simulators 

that exploit the interaction between interface visualisations and procedural skills 

acquisition rate to optimise training time and cost. Arguably, such an objective may 

not be achieved through inferences from empirical human participant data alone. 

Formal techniques for quantitative measurements would be required as the 

foundation infrastructure for the eventual development of a framework to support 

rapid simulation development and training curriculum integration. The quantitative 

measurements may be afforded by a computational cognitive modelling methodology 

that apply the empirical evidence of the previous experiments to formal, 

psychologically valid models of human learning and task performance. The field of 

cognitive computational modelling is becoming increasingly relevant to cognitive 

science and HCI research in general. In this chapter, 2 experiments are reported that 

uses a modern computational cognitive modelling methodology to investigate the 

cognitive effects of dynamic versus static visualisations in the interface and how this 

moderates procedural skill acquisition in simulator based training. Novel 

computational cognitive modelling techniques are proposed to overcome some of the 

well-established limitations of modern cognitive modelling architectures for accurate 
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simulation of detailed human motor actions. The experiments reported validates 

these novel modelling techniques in a two-step approach. The first (Experiment 4) is 

an initial proof-of-concept for the novel modelling techniques. The follow-up 

Experiment 5 then applies these techniques to a more complex human motor skills 

acquisition and task performance scenario, which is consistent with typical 

procedural skills training. The result of Experiment 4 are validated against 

equivalent human data from Experiment 1 reported in Chapter 3. Similarly, the 

results of Experiment 5 are validated against data sourced from the authors of a 

published related study. The rationale for using external data to validate Experiment 

5’s results is to increase the generalizability of the novel modelling methodology as 

will be expatiated in the following sections of this chapter.  

 

6.2 Modelling Skills Acquisition in a Cognitive Architecture 

 

 As noted in Section 2.5 of this thesis, computational modelling with cognitive 

architectures is increasingly becoming a methodology of choice for many human 

factors studies. Examples of cognitive architectures for human behaviour and 

performance modelling include EPIC (Kieras & Meyer, 1997), SOAR (Laird et al., 

1987) and ACT-R (Anderson et al., 2004; Anderson, 2005). These frameworks afford 

the implementation of computational behavioural models that are psychologically 

valid. The recent upsurge in the use of these architectures may be due to their 

increasing sophistication as well as the recognition of the interdisciplinary relevance 

of human factors in task performances. Comprehensive cognitive modelling 

architectures have also enabled an integrated theoretical approach to human factors 

research as opposed to the traditional paradigms that tend to explain separate 

aspects of human cognition only.  The need for such a comprehensive theoretical 

framework of cognition has long been recognised in cognitive science as expressed 

succinctly by Newell, (1990. pp. 17–18): 

 

“If a theory covers only one part or component, it flirts with trouble from the 

start. It goes without saying that there are dissociations, independencies, 

impenetrabilities, and modularities. These all help to break the web of each bit 

of behaviour being shaped by an unlimited set of antecedents. So they are 
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important to understand and help to make that theory simple enough to use. 

But they don’t remove the necessity of a theory that provides the total picture 

and explains the role of the parts and why they exist.” 

 

 Despite the increasing success of applying computational cognitive modelling 

to several traditional human factors problems however, the available cognitive 

architectures still lack functionalities for modelling more complex task performance 

scenarios such as the acquisition and performance of skilled and continuous human 

motor action. Existing cognitive architectures, such as ACT-R, have only rudimentary 

capabilities for modelling motor performance. As such, they are not readily capable of 

modelling the fine movements involved in skilled human motor performance, because 

such tasks are difficult. The modelling task is further compounded by the seemingly 

infinite degrees of movements possible in skilled motor performance coupled with the 

human ability to execute the required movement almost effortlessly (Viviani & Flash, 

1995). Computational modelling using a cognitive architecture has been applied to a 

wide range of human behavioural tasks in general but there are relatively few 

previous studies that have modelled human motor skill acquisition and performance 

in low-level detail. Modelling this category of knowledge domains not only involves 

the integration of percepts to create mental task representations but also specifying 

in detail the intertwined role of these mental models and the cognitive processes that 

decompile them in moderating subsequent task performance. An example of a 

relevant research effort is Kieras, Meyer, Ballas and Lauber’s (2000) computational 

modelling of Martin-Emerson and Wikens’, (1992) manual motor tracking and choice 

responses in latency tasks using the EPIC architecture. In more recent work, 

Salvucci, (2006) modelled automobile driving tasks using the ACT-R architecture. By 

leveraging the Embodied cognition, Task and Artefact (ETA) framework, Salvucci 

decomposed the driving task to a set of basic tasks (control, monitoring and decision 

making) that are subsequently integrated to accomplish the overall driving task. In 

particular, the control component captures all the motor actions that are associated 

with safe navigation during driving including manipulative lateral (steering) and 

longitudinal control (acceleration and braking). Salvucci’s implementation of these 

actions were however high-level and did not include the detailed integration of the 

mental task representation with the atomic motor processes. For instance, Salvucci 

simulated lateral control by integrating feedback from a 2-point shifting visual 
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attention model into a specified control equation that determines the degree of 

steering correction required to maintain safe navigation. There was no specification 

however of the detailed cognitive processes, which is integrated with low-level motor 

actions to effect the steering control. As such, Salvucci’s driver model did not account 

for the moderating role of mental task representations on the continuous motor 

control actions that effect the steering. Furthermore, Salvucci’s model does not 

account for how these mental representations were acquired in the first instance or 

the effect, if any, of different acquisition paradigms on subsequent motor 

performance.  

 In even more recent work, Byrne, O’Malley, Gallagher, Purkayastha, Howie 

and Huegel, (2010) modelled the fine manual control involved in a motor task. The 

task involved controlling a coupled disk configuration to hit two targets at the ends of 

a linear trajectory as described in Huegel, Celik, Israr and O’Malley, (2009). Byrne et 

al., (2010) made three key modifications to the base ACT-R cognitive modelling 

architecture to achieve the atomic manual control required for the smooth movements 

involved in the task. First, they increased the update rate of motor output location 

from 50ms to 3ms. Secondly, they modified the velocity profile of the movement using 

the ‘minimum jerk’ paradigm of Hogan, (1984) and lastly, they utilised ACT-R’s 

imaginal module to present intermediate virtual target markers to the motor module 

along the movement trajectory. These modifications enabled the modelling of the 

smoother, continuous movements involved in the task than can be afforded by the 

base ACT-R cognitive architecture. However, Byrne et al.’s, (2010) model does not 

account for the prior acquisition of cognitive mental task representations nor its 

intertwined role in subsequent post-learning motor control/performance. Most 

notably, their model uses the imaginal module for intermediate virtual target 

locations along the trajectory but does not specify how these intermediate locations 

are initially acquired or determined. This is very crucial for trajectory validation 

processes that are evident in post-learning task performance of acquired motor skills 

especially in mechanical component manipulation for assembly/disassembly.  

Experiment 1 reported in Chapter 3 of this thesis argues that learners create 

cognitive mental task representations in the acquisition of motor skills and these 

representations are implicated in the subsequent post-learning performance of such 

motor tasks. Furthermore, it was observed that dynamic instructional visualisations 

afford the creation of more accurate mental task representations and arguably lead to 
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better post-learning task performance than equivalent static visualisations. This 

cognitive benefit of dynamic instructional visualisations over static equivalents was 

shown to be dependent on the knowledge-domain (Höffler & Leutner, 2007) and 

independent of the learner’s expertise and spatial abilities. In this chapter, a novel 

sequence-of-points computational modelling approach is proposed to investigate this 

low level intertwining of cognitive processing and executive motor actions that drives 

the post-learning task performance in a motor knowledge domain. Similar to Byrne et 

al., (2010), certain aspects of the ACT-R cognitive architecture were modified for the 

modelling purposes. The methodology adopted however differentiates between mental 

task representations acquired from dynamic versus static instructional visualisations. 

It further specifies a detailed validation process for intermediate points along the 

movement trajectory that reflects the controlling role of the different cognitive mental 

task representations in post-learning skilled motor performance.  

 

6.3 The ACT-R Cognitive Architecture 

 

 ACT-R 6.0 was selected as the modelling architecture for the experiments 

reported in this chapter. The choice was based on its advanced and modular 

implementation, which facilitates the novel extensions required to simulate detailed 

human cognitive processes that support motor actions. ACT-R, as a theory of human 

cognition, was extensively discussed in the selective literature review - Chapter 2. 

The novel modelling techniques applied in this chapter leverages the extensibility of 

the ACT-R architecture through extensive modifications to the motor and imaginal 

modules. This allows the implementation of complex protocols that translate cognitive 

mental task representations into smoothly executed motor movements in simulating 

mechanical assembly tasks. ACT-R’s versatile chunk activation processes of the 

declarative module, especially the partial matching retrieval mechanism, was also 

utilised to simulate the noise inherent in smooth manipulative movements and enable 

robust motor performance despite the potentially infinite degrees of movement 

freedom possible.  
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6.4 Experiment 4 

 

6.4.1 The Task 

 

 Experiment 4 modelled a subset of the task and data of Experiment 1 as 

reported in Chapter 3 of this thesis. The fifth stage of the 11-step disassembly process 

was selected for detailed analysis and computational modelling. This step involves the 

rotation of the chassis of the model truck used in the experiment through π (pi) 

radians to access a component located underneath it as depicted in Figure 6.1. It was 

selected for computational modelling because it highlights the differential skills 

acquisition rate possible via the different instructional interface types. It is also a 

good example of the abstract and stochastic cognitive processing that results in 

observable skilled motor action. Additionally, it reduces the scope of work for the 

initial proof of concept modelling and avoids the substantial effort that would be 

required to model the entire task sequence at an early stage of the work. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1 The trajectory of the manipulated model truck component 

 

6.4.2 Movement Analysis and Strategies 

 

 A kinematic analysis (see e.g. Hamil & Knutzen, 2003) of the video data from 

Experiment 1 (Chapter 3) was conducted in slow motion to extract the time taken by 

each participant to execute the selected step of disassembly. Based on the 
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biomechanical human movement research of Hamil and Knutzen (2003), a reference 

point was selected on the rotated component, as shown in Figure 6.1, to represent the 

sum total of manipulations and the time taken by this reference to pass through the 

mid and end points of the ideal semi-circular trajectory were recorded. The accuracy 

of the component manipulation was also recorded as an alignment of the reference 

point to the required path as it transits through the midpoint of the trajectory. Raw 

data of the kinematic analysis are detailed in Appendix E. As evident from the data, 

the longest time observed for completion of the rotation was 16 seconds (participants 

121 & 124). A cut-off time of 17 seconds was therefore used in the computational 

modelling of this step as the criterion to determine successful component 

manipulation. As it is infinitely possible to achieve the component manipulation 

through stochastic processes, this cut-off time was also adopted for subsequent 

comparative performance analysis of data from the human participants and 

equivalent computational model outputs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.2 Kinematic analysis of manipulative motor movements 

 

 The kinematic analysis of the movement show that two broad strategies were 

at play. The first is a stochastic sequence of multidirectional movement observed 

mostly in the S-group participants. This group, as described in Chapter 3, were 

presented with only two pictures showing the initial and final states of the 
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manipulated component. They therefore lacked declarative knowledge of all the 

transitory intermediate states of component manipulation. The second strategy is a 

combination of the first with a more directed movement along the desired trajectory 

aided by declarative recall. This hybrid strategy featured prominently in the 

improved performance of the V-group as they had acquired the declarative knowledge 

of the initial and final component states as well as all intermediate transitory 

manipulations by watching a video clip of the executed step being performed by a 

skilled expert. Further detailed analysis shows that different performance protocols 

were applied at various quadrants of the motor movement as depicted in Figure 6.2. 

In the early stages, there is a tendency to initiate a randomly directed movement in 

the general direction of the perceived end state of the manipulated component. This 

rapidly changes to a search space in all directions within the second quadrant where 

most of the failures were recorded. However, once successfully past the mid-point, 

subsequent movement converges rapidly to the end-point of the trajectory. 

 It was further observed that despite the stochasticity of the motor movements 

at all stages of the trajectory, participants were able to determine when a sequence of 

random manipulations have sufficiently deviated so as not to satisfy the possible 

range of configurations for the initial and end positions of the manipulated 

component. In such instances, they attempt correctional movements to align with the 

trajectory or if sufficiently deviated, the attempt instance is aborted and the 

disassembly task is reset to start again.  

 

6.4.3 Modelling Continuous Motor Action - The Sequence-of-Points Technique 

 

 Two fundamental problems were posed by the computational modelling of the 

selected disassembly step. The first was to execute continuous motor actions required 

to rotate the component from the start to the end point of the semi-circular ideal 

trajectory. The second problem was to integrate underlying cognitive processing 

outputs with motor movements to align with the participant’s mental task model of 

the task as acquired through different instructional interfaces.   

 For the first problem, the ACT-R 6.0 cognitive architecture includes a motor 

module that specifies default mechanisms for modelling a range of motor movements 

such as typing and mouse movements. These default mechanisms however were not 

suitable for the selected task modelling purposes for certain reasons. For instance the 
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default mechanisms specify that aimed movements, such as pointing with the mouse, 

are executed by calculating the movement execution time based on Fitts’ Law (1954) 

and updating the cursor location when the simulated duration has elapsed. The 

computations involved assume that the movement is made towards a target and 

requires fixed start and end cursor locations. The selected modelling task movement 

strategy however specifies only the start location with the end location dependent on 

underlying stochastic cognitive processes. To resolve this, a reference point was 

selected, as depicted in Figure 6.1, through which all resolved component 

manipulation forces act (see Hamil & Knutzen, 2003). The default ACT-R motor 

module was then modified to simulate the movement of this reference point as 

sequences of fixed magnitude, variable direction unit vectors. The start location of 

each unit movement vector corresponds to the end location of the previous vector. The 

end locations however are determined through a separate process to reflect the 

random output of the underlying stochastic cognitive processes.  There was still a 

problem however as the default ACT-R motor module also assumes that aimed 

movements start and end with zero velocity. Additionally, the magnitude of the unit 

movement vectors was fixed at approximately 50ms to be consistent with previous 

related research (Meyer & Kieras, 1997; Salvucci & Gray, 2004). This resulted in a 

jerky movement profile with a very coarse output. The solution adopted was the 

modification of the movement velocity profile at the transitional boundaries between 

the unit movement vectors based on the dynamic cost optimisation approach for the 

mathematical modelling of human hand movements (Flash & Hogan, 1985), using the 

minimisation of the time integral of the square of jerk. According to Flash and Hogan, 

(1985), the location of a reference point at any time t along a straight line trajectory 

starting and ending with zero velocity is described by Equation 6.1: 
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For curved point-to-point movement, the equation is redefined to include intermediate 

points (at times t1, t2,...,tn) inserted between the start and end positions as shown in 

Equation 6.2. This equation was adapted for curved point-to-point movements by 

using a shifting boundary technique bound by t=0 and t=tf across the set of movement 

vector transition points to accurately implement a continuous velocity profile 

throughout the movement trajectory. The number of unit movement vectors in a 

movement sequence as well as their individual directions is however stochastically 

dependent on the current position in the trajectory and the selected productions firing 

per cycle of cognitive processing. This synergistic paradigm afforded the 

implementation of the observed ability of the human participants to select and 

execute a required movement despite the seemingly infinite degrees of possible 

movement. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The second problem was more important because it is linked directly to a core 

objective of the research, which is to investigate how the different resultant mental 

task models of the instructional interfaces drive post-learning motor performance. It 

was observed from the kinematic analysis that despite the stochasticity of the motor 

actions involved, participants were able to determine when a particular sequence of 

movements has become so inconsistent with the ideal rotation trajectory that 
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successful manipulation of the component is no longer possible. This tacit ability 

suggests that participants acquire a mental model of the rotational task during 

learning, which moderates the subsequent task performance. Furthermore, it is 

significantly differentiated in the post-learning performances of the compared groups, 

as reported in Experiment 1 (Chapter 3), with the dynamic visualisations group 

recording a more robust performance than the static visualisations group. Modelling 

this tacit ability requires specifying a control law that translates cognitive processing 

outputs into corrective motor actions at an atomic level of detail. To achieve this, 

Fajen and Warren’s (2003) dynamic model of steering and obstacle avoidance was 

adapted. This dynamic framework describes locomotor behaviour of goal-oriented 

steering in motor task performances. It consists of a system of actors and repeller 

components analogous to goals and obstacle in the visual field of task performance, 

which are represented by a set of differential equations. This dynamic model of 

steering was then adapted to define the limits of deviation allowable at the end of 

each unit movement vector execution. It also determines the mechanism for trajectory 

correction by specifying the magnitude of movement required to realign the trajectory 

of the reference point in the assembly task to enable successfully task completion. 

This modified control component is described by Equation 6.3:  

 

 

 

 

 

 

At the end of each unit vector execution of the movement sequence as depicted in the 

inset of Figure 6.2, the model determines the extent of trajectory deviation by 

comparing the location of the reference point with its mental task representation. The 

ideal component trajectory, which is defined by a separate hidden process, is used as 

a heuristic function to moderate this comparison. Deviation determination and the 

magnitude of corrective action required is controlled by setting parameters ki and Φ, 

which determines attractiveness of the ideal trajectory heuristic and the actionable 

threshold for remedial steering respectively. The motor control law provides the 

mechanism to execute corrective motor actions for component manipulation only and 

the same magnitude of the parameters ki and Φ were set for both the static 

     	
� = −�
�	� − 	
� = �
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      where 	� is the direction of the heading, 

                   	
 is the direction of the target and 
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 is the target attractiveness factor 
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visualisations group (S-model) and dynamic visualisations group (V-model) 

representations. The task performance is therefore dependent on the different mental 

task representations of the compared groups only.  

 

6.4.4 ACT-R Implementation 

 

 A single representational computational model structure was developed for the 

compared groups of human participants (static visualisation versus dynamic 

visualisation groups). The main differences between the groups are in the 

implementation of the declarative mental task representations and how this 

moderates subsequent task performance. These differences and how they are 

integrated with task performance are detailed in the rest of this section. 

 A model run cycle starts the simulation of component rotation by defining the 

ideal trajectory as a set of parametric equations within a Cartesian reference plane: 

 

        � =  − acos
  

        � = asin
 

 

The magnitude of the unit movement vectors was also defined as: 

 

        � =  �� ��

��
�   

 

 

The computed ideal trajectory is represented by a set of visual location chunks and 

selectively added to declarative memory through the visual module to simulate 

learning via dynamic or static visualisations. For the V-model implementation, the 

start, end and all intermediate visual location chunks of the ideal trajectory are 

added to declarative knowledge to simulate viewing a continuous presentation of the 

rotational movement as typical with dynamic instructions. For the S-model however, 

only the start and end visual location chunks are added to declarative knowledge 

thereby simulating viewing static pictures of the initial and final configurations of the 

rotated component respectively. Memory decay and recall difficulty associated with 

forgetting and random retrieval noise are handled by default ACT-R mechanisms 

where a = phase shift multiplier 

 v = angle subtended at the centre of the trajectory  
-  6.4 

where Wx = width of the ACT-R simulation window 

 Sr = fixed unit vector time based on previous 

related research (50ms)  

-  6.5 
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during subsequent task execution. The randomness inherent in recall for performance 

was further simulated through the ACT-R 6.0 partial matching mechanism as well as 

through extensions of the activation equation as shown in Figure 6.3. For the x-

coordinate component of the visual location chunk, partial matching was activated by 

defining a sim-hook function: 

 

 ������������� =  −1.0 ��	�
�
� �



���


�   

 

This equation defines a matching value for x-coordinate retrievals that range from 0 

to -1 as required for ACT-R 6.0 partial matching specifications. A ‘0’ value indicates 

most similarity between the current and retrieved values while a value of ‘-1’ implies 

the least similarity or a complete mismatch (ACT-R 6.0 Reference Manual, pp 217).  

 

 

 

 

 

 

 

 

 

Figure 6.3 Randomised retrieval of spatial location chunks defined on ACT-R 6.0 

partial matching mechanism and extensions of the activation equation 

 

The mismatch on the y-coordinate component of the visual location chunk is defined 

through a novel extension of ACT-R 6.0 activation equation. The activation equation, 

as earlier defined in Chapter 2 (Equation 2.2), may also be expressed for a retrieved 

chunk i as (ACT-R 6.0 Reference Manual, pp 214): 

 

        Ai = Bi + Si + Pi + ℇi  

 

 

 

 

         -  6.6 where ix = ideal trajectory x-coordinate 

 cx = current location x-coordinate  

 Vdiff = vertical distance between ix and cx 

-  6.7 
where Bi = base level activation 

 Si = spreading activation 

 Pi = partial matching value  

 ℇi = noise 



6.4.4 Experiment 4: ACT-R Implementation  

 

99 

 

The activation equation expressed in this form may be further extended with new 

terms by specifying an optional offset parameter (ACT-R 6.0 Reference Manual, pp 

220). The activation offset parameter is computed through a user defined function 

and added to the final activation value of a chunk during retrieval processing. This 

powerful feature of the ACT-R 6.0 cognitive architecture afforded an extension of the 

activation equation to simulate a retrieval mismatch penalty for the y-coordinate of 

the visual location chunks with possible future extensions also for the z-coordinate in 

3-D movements (see Figure 6.3). The y-coordinate activation offset for Experiment 4 

models is defined by: 

 

������� =  −1.0 ��	����� ���

���


�   

 

During a retrieval cycle, the activation value of all chunks in the model’s declarative 

memory is computed using the activation equation supplemented with the mismatch 

penalties for the x and y coordinates as described above. The chunk with the highest 

activation value is recalled if that value is above the retrieval threshold (rt) 

parameter. The rt was kept at ACT-R 6.0 default value of 0.0 for all simulation runs 

in Experiment 4. 

 If a retrieval effort fails, the manipulation of the task component proceeds 

through random determination of spatial locations as typical of the trial-and-error 

approach observed in human participants. Determination of the random spatial 

location is implemented through ACT-R 6.0 imaginal module. It is computed as a 

random location within a 360o circular reference of the current location (cx, cy) with a 

radius of half the unit vector magnitude (see Equation 6.5). The direction of a 

randomly determined location relative to the current spatial location is independently 

computed and restricted by the quadrant performance protocols as outlined in Section 

6.4.2 of this chapter (see Figure 6.2). The ACT-R 6.0 random module is utilised as the 

main randomness generator to drive the uncertainty in recalled spatial locations 

moderated by the performance protocol of each movement quadrant. It is a support 

module of ACT-R 6.0, which is designed to implement the architecture but not an 

integral part of the theory (ACT-R 6.0 Reference Manual, pp 24, 137). Therefore, it is 

not intended to model exact human behaviour. 

       -  6.8 where iy = ideal trajectory y-coordinate 

 cy = current location y-coordinate  

 Hdiff = horizontal distance between iy and cy 
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 Movement across unit vector boundaries is smoothed by a shifting boundary 

mechanism as specified in Section 6.4.3, Equation 6.2. Equidistant points, separated 

by half the magnitude of the unit movement vector, are selected on either sides of 2 

adjacent vectors boundary. The reference point through which all manipulative 

movements act is then reset to act from the selected lower boundary point to the 

upper point. This affords simulation of continuous movement through each vector 

boundary point and avoids the limitations of ending with zero movement velocities as 

inherent in the default motor calculations of ACT- 6.0 based on Fitts’ Law (see 

Equation 2.1). 

The core model productions are shown in the schematic diagram in Figure 6.4. 

The structure of the productions algorithm is essentially the same for the S-model 

and V-model implementation. Differences in task performance is therefore driven by 

the differential implementation of model’s declarative task representations as 

discussed above. The S-model starts with declarative knowledge of only the initial 

and final positions of the rotated component as corresponding to viewing static 

visualisations of these stages of the assembly. A top level goal then attempts to 

retrieve the next movement location for the rotated component’s reference point after 

the start position. The retrieval fails as its declarative knowledge does not include 

this location and it reverts to the random location determination strategy as outlined 

above. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Schematic outline of model’s productions – Experiment 4 
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When a random location is returned, the move-hand-to-location production fires to 

move the selected reference point to that location and simulate hand movement. The 

location is then validated against the model’s internal representation of the task 

acquired during the learning phase. If the spatial location is validated, the cycle is 

repeated by firing subsequent productions that attempts further failed retrievals and 

reversion to the random location determination strategy. However, if the location is 

determined to have sufficiently deviated, a corrective process is activated to restrict 

the search space for further random location determination as described in Section 

6.4.3 above. The actionable deviation threshold and search space restriction is 

controlled by the parameter Φ while the magnitude of the correctional movement is 

determined by the parameter ki. The corrective process terminates once the trajectory 

deviation is reduced below the minimal threshold Φ and the model reverts back to the 

retrieve-fail/random-locate strategy with further location validations. The productions 

cycle repeats until the specified cut-off time of 17 seconds is exceeded (see Section 

6.4.2 above for a determination of the cut-off criteria) or the last-loc-end-task 

production is fired to report a validated spatial location within a specified range of the 

end-position of the rotated component. 

The internal task representation of the V-model is different from that of the S-

model because it includes additional knowledge of the intermediate spatial locations 

between the start and end points of the component rotation. Its top level goal 

retrieval attempt is therefore more likely to be successful and the rotated component’s 

reference point is moved directly to the retrieved spatial location. Inaccuracies in 

spatial location chunk retrievals are implemented through the partial matching 

mechanism and novel extensions of the activation equation as described above. If the 

retrieval is successful, a production is fired to move the hand to the recalled location 

followed by a validation process similar to that for the S-model as outlined above. If 

the retrieval fails, the model reverts to the random-locate strategy used by the S-

model. The V-model therefore implements the hybrid strategy of task performance as 

determined from the kinematic analysis of the human participant’s movements. A 

validated spatial location could trigger the correct-deviation processes to bring it 

within the minimum deviation threshold before another retrieval attempt is fired. 

The production cycle of the V-model is also terminated if the specified cut-off time is 

exceeded or when the end of the trajectory is reported.   
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6.4.5 Model Validation 

 

 Model strategies and performance was validated by comparative analysis with 

empirical test data from Experiment 1 (Chapter 3). Model and human data were 

analysed in the same manner to generate directly comparable and more reliable 

performance measures. The human data was split into Development (n=28) and Test 

(n=59) for analysis. The model’s parameters were refined with development data and 

validated with the test data. Most of the ACT-R architecture parameters were kept at 

their default settings with the exception of the base-level constant, which was set to 

5.0 to reflect the recency of acquisition of the declarative knowledge through 

interaction with the task instructions. The transient noise and mismatch penalty 

parameters were also activated with values 0.2 and 1.0 respectively. The domain-

specific parameters, ki and Φ were initially set to reasonable values and then refined 

for qualitative and quantitative fit to the development data. Similar final values were 

estimated for the two models as detailed in Table 6.1. 

 

 

 

 

 

 
 

Table 6.1 Domain specific model parameters – Experiment 4 

 

The mean task execution time and trajectory alignment rate for the human data, 

equivalent sample of model outputs and 500 runs of the ACT-R models are reported 

in Table 6.2. SPSSTM version 17 statistical modelling outputs are presented in 

Appendix E. The measures for 500 model runs are presented as an indication of the 

model behaviour over a large sample size only. Further analysis/comparisons were 

conducted between human data and equivalent sample of model outputs only. The 

model’s quantitative predictions were very accurate on the performance measures of 

time to mid-trajectory (R2=.98, RMSE=.52), end-trajectory (R2=.98, RMSE=.56) and 

trajectory tracking (see Table 6.2). Independent-samples t-tests were further 

conducted for paired comparison of human and model data. The results, as detailed in 

Parameter Description Value 

ki Ideal trajectory attractiveness 1.0 

Φ Actionable deviation threshold 2.0 

cut-off  Model run-time limit (seconds) 17.0 
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Table 6.3, replicated the significant differences observed between the S-human and V-

human in the empirical data. Furthermore, no significant differences were found in 

within-group comparison of human and model performance measures. 

 

 

 

 

 

 

 

 

 

 

Table 6.2 Descriptive statistics for human and model  

performance measures – Experiment 4 

 

 

 

 

 

 

 

 

 

 

 

Table 6.3 Comparative analysis of human and model data – Experiment 4 

 

6.4.6 Discussion 

 

 A selected step Experiment 1 (Chapter 3) task is modelled in ACT-R 6.0 

cognitive architecture by using a novel sequence-of-points technique. The 

computational model implements similar productions structure for the two 

independent groups compared – static pictures versus video task instructions. The 

Category n 
Mid 
point 

End 
point 

Trajectory (%) 

M SD M SD Completed Aligned 
S-human 30 8.39 3.93 10.77 3.96 43.3 33.33 

S-model 30 8.56 3.48 10.55 3.6 40.0 23.33 

S-model(500) 500 9.70 3.89 10.89 3.36 43.6 40.6 

V-human 29 3.28 1.75 4.93 1.73 100 100 

V-model 29 3.2 .49 5.35 .7 100 100 

V-model(500) 500 2.85 .44 4.8 .61 100 100 

 

Paired 
Categories 

Time to mid-point Time to end-point 

t 
(df) 

p(two-
tailed) 

eta 
squared 

mean 
difference 

95% CI 
t 

(df) 
p(two-
tailed) 

eta 
squared 

mean 
difference 

95% CI 

S-model 
V-model 

5.31 
(11.18) 

<.01 .42 5.36 3.14 7.57 
5.0 

(11.35) 
<.01 .39 5.19 2.89 7.49 

S-human 
S-model 

-.12 
(23) 

.91 <.01 -.17 -3.26 2.91 
.12 
(23) 

.85 <.01 .30 -2.92 3.45 

V-human 
V-model 

.22 
(32.38) 

.83 <.01 .07 -.61 .76 
-1.22 
(37) 

.23 <.01 -.42 -1.13 .28 
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declarative knowledge structures were however different to reflect interaction with 

the respective static and dynamic visualisations components of the instructional 

interfaces. The model’s quantitative predictions on post-learning task performance 

were accurate and replicated the significant differences observed in the human data 

from the original study. This reinforces the argument that dynamic instructional 

visualisations may be more cognitively beneficial than static equivalents for the 

acquisition of procedural motor knowledge. The results are however limited as only a 

single step of an entire assembly sequence was modelled. A more complete 

comparison will include the entire assembly sequence of procedural motor tasks. This 

limitation is addressed in a follow-up Experiment 5 based on the sequence-of-point 

modelling paradigm in the ACT-R 6.0 architecture.   

 

6.5 Experiment 5 

 

6.5.1 The Task. 

 

 The objective of Experiment 5 was to extend the sequence-of-point modelling 

methodology to an entire sequence of procedural-motor task. A decision was taken to 

model a previously published related study instead of using data from experiments 

conducted in the course of the current research work. The aim is to provide a wider 

context for the justification of the sequence-of-point modelling methodology and 

extend its generalizability to independently sourced data. The experimental task of 

Watson, Butterfield, Curran and Craig, (2010) was therefore selected for modelling in 

Experiment 5. The task compares the effectiveness of dynamic and static computer 

multimedia instructions for learning a novel mechanical assembly task. Beyond the 

data reported in Watson et al. (2010), the raw experiment materials (videos and static 

presentations) and fine details of the procedure were also required for precise 

kinematic analysis. Mr Watson was therefore contacted directly and he was gracious 

enough to provide the requested materials as well as to grant permission for their 

use. Watson et al. (2010) experimental task was to assemble a device comprised of 49 

separate parts as depicted in Figure 6.5 and detailed in Table 6.4. The device must be 

put together in a particular sequence comprising four progressive stages – central 

gear assembly, frame, propeller and crank arm. Participants were independently 

grouped by three instructional interfaces – animated video, static diagrams and text - 
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and completed one post-learning assembly task per day for five consecutive days. 

Task performance of the independent groups was compared on the factors of device 

assembly time and errors.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.5 Schematic diagram of assembled device. Kinematic analysis of the 

numbered parts are detailed in Table 6.4 
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Table 6.4 Decomposition of assembly movements within a 2-D Cartesian framework 

Serial Code Component Thickness (units) Start  End  Trajectory 

1. C1 Spacer Ring (on long central rod) 26 0,300 250,300 Right 
2. C2 Left Metal Washer 7 0,300 237,300 Right 
3. C3 Left Gripping Screw 40 0,300 230,300 Right 
4. C4 Left Bevelled Gear 20 0,300 230,300 Right 
5. C5a Left Thin Washer 5 0,300 210,300 Right 
6. C5b Left Thin Washer 5 0,300 205,300 Right 
7. C5c Left Thin Washer 5 0,300 200,300 Right 
8. C5d Left Thin Washer 5 0,300 195,300 Right 
9. C5e Left Thin Washer 5 0,300 190,300 Right 

10. C6 Left Collar 15 0,300 185,300 Right 
11. C7 Left Beam 50 0,300 170,300 Right 
12. C8 Right Metal Washer 7 500,300 263,300 Left 
13. C9 Right Gripping Screw 40 500,300 270,300 Left 
14. C10 Right Bevelled Gear 20 500,300 270,300 Left 
15. C11a Right Thin Washer 5 500,300 290,300 Left 
16. C11b Right Thin Washer 5 500,300 295,300 Left 
17. C11c Right Thin Washer 5 500,300 300,300 Left 
18. C11d Right Thin Washer 5 500,300 305,300 Left 
19. C11e Right Thin Washer 5 500,300 310,300 Left 
20. C12 Right Collar 15 500,300 315,300 Left 
21. C13 Right Beam 50 500,300 330,300 Left 
22. C14a Upper Central Gear Assembly 200 250,0 250,300 Down 
23. C14b Lower Central Gear Assembly 200 250,600 250,300 Up 
24. D15a Upper Left Corner Piece 50 0,0 170,0 Right 
25. D15b Upper Right Corner Piece 50 500,0 330,0 Left 
26. D15c Lower Left Corner Piece 50 0,600 170,600 Right 
27. D15d Lower Right Corner Piece 50 500,600 330,600 Left 
28. D16 Upper Beam 50 250,0 250,220 Down 
29. D17 Lower Beam 50 250,600 250,380 Up 
30. E18 Thick Washer 11 250,500 250,600 Down 
31. E19 Thin Washer 5 250,500 250,589 Down 
32. E20 Propeller 7 250,500 250,584 Down 
33. E21 Thin Washer 5 250,500 250,577 Down 
34. E22 Outer Nut 7 250,500 250,572 Down 
35. E23 Gripping Screw 35 250,565 250,465 Up 
36. E24 Crank Arm 8 250,100 250,15 Up 
37. E25 Washer 5 250,100 250,23 Up 
38. E26 Nut 7 250,100 250,28 Up 
39. E27  Part-threaded Nut 35 250,35 250,135 Up 
40. N1 Tightening Screws (not modelled)     
41. N2 Tightening Screws (not modelled)     
42. N3 Tightening Screws (not modelled)     
43. N4 Tightening Screws (not modelled)     
44. N5 Tightening Screws (not modelled)     
45. N6 Tightening Screws (not modelled)     
46. N7 Tightening Screws (not modelled)     
47. N8 Tightening Screws (not modelled)     
48. N9 Tightening Screws (not modelled)     
49. L1 Long Central Rod Fixed Fixed Fixed Fixed 
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Some modifications were made to adapt the experiment for cognitive modelling. The 

data in the original study (Watson et al, 2010) describes the immediate post-learning 

performance effect on the first build as well as long term retention and performance 

convergence for the three compared groups over five builds. The cognitive modelling 

in Experiment 5 however is limited to the early stages of performance for the 

animated video (dynamic or V-group) and static visualisations (static or S-group) 

instruction groups only. The performance of the text group was not modelled as it is 

not relevant to the objective of the experiment. Furthermore, only the first post-

learning build for the V-group and S-group were modelled as the objective was to 

compare the performance effect of the mental task representations afforded by the 

different instructional visualisations and not long term retention or performance 

convergence. The methodology of Watson et al. (2010) also allowed for continuous 

reference to the instructions during the task execution and their subsequent data 

analysis separated the reference time from the actual build time. In contrast, the 

modelling technique in this experiment assumes a single interaction with the 

instructions with no further references during the task execution. Lastly, due to the 

restrictions imposed by the 2-D visual reference framework of the ACT-R 

architecture, the assembly of nine components whose trajectories were orthogonal to 

the main plane of assembly was not modelled (see Figure 6.5 & Table 6.4). 

 

6.5.2 Movement Analysis and Sequencing 

 

 The trajectories of the assembled components were analysed as linear 

movements between specific start and end points in a 2-D Cartesian reference plane 

(see Figure 6.5 & Table 6.4). The physical assembly components were represented as 

virtual objects with similar scales. The virtual reference start and end points for each 

assembled component were also scaled to correspond to actual manipulations of the 

physical model components. The trajectories were grouped into four categories based 

on the direction of movement from the start to the end points – right, left, up or down 

within the Cartesian reference framework. The virtual reference values in a 2-D 

space for the entire assembly task modelling is detailed in Table 6.4. The assembly 

starts with the central rod in place and the components are progressively attached in 

the order implied in Table 6.4 (component C2 to E27) until the task is completed.  
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6.5.3 Extending the Sequence-of-points Technique 

 

 The model’s production systems, as shown in Figure 6.6, is essentially the 

same as that for Experiment 4 with additional mechanisms to switch to the next 

component in the sequence or reset a failed assembly attempt. The next-component 

production is fired when the reference point of the component being assembled is 

within specified limits of its trajectory end point. A component’s assembly attempt 

may also be reset to the start position if the movements have substantially deviated 

from the ideal assembly trajectory that successful coupling is no longer possible. The 

reset mechanism allows the model to retry the assembly of such components in the 

same manner as observed in the analysis of equivalent human performance data. The 

main differences between the representative S-model and V-model was in the 

declarative mental task knowledge structures as applicable in Experiment 4. The S-

model’s mental task representation includes only the start and end spatial locations 

of each component’s assembly trajectory, which corresponds to viewing static pictures 

of the components in such configurations. It utilises the same retrieve-fail/random-

locate strategy as its equivalent representation in Experiment 4 and uses the same 

control process to correct deviations to the assembly trajectory. The V-model’s mental 

task representation includes knowledge of the start and end locations as well as all 

intermediate spatial locations of the assembly sequence corresponding to learning 

from dynamic instructional visualisations. It utilises the hybrid strategy as described 

in Experiment 4, which combines intermediate location retrieval attempts with the 

random-locate mechanism when retrieval fails. ACT-R’s partial matching mechanism 

and extensions of the activation equation are also used to simulate retrieved location 

inaccuracies as described in Experiment 4. 

 

6.5.4 Model Validation 

 

 The mean assembly times (in seconds) for 100 runs each of the S-model and V-

model and the corresponding data from human participants (Watson et al., 2010) are 

shown in Table 6.5. The table also shows data for 10 runs each of the cognitive models 

groups (S-model [10] &V-model [10]) for direct comparison with the equivalent sample 
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size of human participants from Watson et al. (2010) study. SPSSTM version 17 

statistical modelling outputs are presented in Appendix E.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.6 Schematic outline of model’s productions – Experiment 5 

 

 

 

 

 

 

 

 

 

 

Table 6.5 Descriptive statistics for human and model  

performance measures – Experiment 5 

 

It is important to note here the different attributes of the human and model 

data and how this was treated in the comparison analysis. The human data and its 

corresponding 10 runs of model data does not include timings for the sub stages of the 

assembly.  Although these timings were captured in the 100 runs of the models, the 

final comparison across all groups was limited to only the final build times. In the 

Watson et al.’s, (2010) study, the overall task performance time for the human 

participants were further broken down into reference time and net build time. In 

 

Group n Central 
Gear 

Frame Propeller Crank 
Arm/Total 

Error 
Counts 

M SD M SD M SD M SD M SD 

Diagram (static) 10 - - - - - - 710.9 
329.

0 
7 (total) 

S-model [10] 10 - - - - - - 692.2 
105.

9 
8.6 0.8 

S-model 100 
524.

5 
30.1 

620.
0 

32.
3 

650.6 32.7 682.8 33.8 84.7 13.4 

10 - - - - - - 522.6 92.9 1 (total) 
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developing the computational models however, no references were made to the 

instructional interface during the assembly task execution. Model output data was 

therefore compared to the appropriate net build times of human data only. 

Additionally, the sample size for human participants (Watson et al., 2010) was small, 

which may account for the large deviations reported in that study. Despite this, the 

reported human data clearly shows the trend of learning differences and interface 

effectiveness between the compared groups. The Animation group (dynamic) recorded 

considerably lower deviation than the Diagram (static) group indicating more 

consistent superior performance. This decreasing trend in performance time was also 

replicated in the models’ data. Interestingly, correspondingly large standard 

deviations were observed in only the S-model [10] and V-model [10] group’s data with 

more consistent deviations recorded for the 100-runs of model data. This may imply 

that the larger sample size of the 100-runs model groups afforded a more consistent 

measurement of task performance. The S-model [10] and V-model [10] group’s data 

were excluded from the subsequent analysis and results discussed in this thesis as 

the equivalent raw data of human participants from Watson et al.’s (2010) study were 

not provided as requested. 

 The ACT-R architecture and task domain parameters settings from 

Experiment 4 were retained with the exception that no cut-off time was set for the 

task. The cut-off criteria was not required as the task was to complete the entire 

assembly and not a sub step. The model’s quantitative data was analysed with 

similar parametric statistical tests to those used in the original study by Watson et 

al., (2010). An independent samples t-test revealed that the V-model’s mean task 

performance time (M = 515.5, SD = 75.0) was significantly faster than the S-model (M 

= 682.8, SD = 33.8; t(198) = 20.4, p = .0 (two-tailed)). The magnitude of the differences 

in the means was very large (mean difference = 167.4, 95% CI: 151.1 to 183.6, eta 

squared = 0.7). This is partially consistent with the results of Watson et al., (2010), 

which found a significant effect of instructional group on overall build times with the 

Animation group observed to be 28% faster than the Diagram group. Curiously 

however, no significant effect of the instructional group was observed for net build 

times. Watson et al.’s (2010) further analysis shows that only the difference between 

the Animation and Text instruction groups overall build times was significant (which 

was not modelled in this study) while that for the Animation versus Diagram group 

did not reach statistical significance. Only one assembly error was reported in the 
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assembly performance of the Animation (dynamic) group at Build 1 while seven 

errors were observed for the Diagram (static) group. The mean error counts for the 

models however were much higher. An independent samples t-test revealed that the 

S-model had significantly higher mean error count (M = 84.7, SD = 13.4) than the V-

model (M = 1.4, SD = 1.6; t(198) = 61.9, p = .0 (two-tailed)). The magnitude of the 

differences in the means was very large (mean difference = 83.3, 95% CI: 80.6 to 86.0, 

eta squared = 0.9). 

 

6.5.5 Discussion 

 

 A computational model was developed in the ACT-R 6.0 architecture to 

replicate the performance of dynamic versus static groups of human participants 

acquiring procedural skills for a sequential assembly task (Watson et al., 2010). The 

model utilised the sequence-of-point technique from Experiment 4 for individual 

component rotation and extended this with further productions to switch to the next 

component in the sequence when the sub-assembly was completed. It also included 

additional mechanisms that simulate component manipulation retrials for failed 

assembly attempts. The performance of human participants that learned the 

assembly task through static instructional visualisations was simulated by the 

model’s declarative knowledge that includes chunks of the start and end trajectory 

positions for each manipulated component (S-model). The declarative knowledge of 

the representative model for participants learning through dynamic instructional 

visualisations (V-model) however included chunks of the start and end component 

positions as well as all the intermediate spatial locations along the trajectory of 

manipulation.  

 In general, the model’s quantitative predictions replicated the trends observed 

in the equivalent analysis of human data from Watson et al., (2010). However, the 

analysis of the model’s data revealed statistically significant differences between the 

compared groups in contrast to the findings of Watson and his colleagues. An 

explanation for this could be that the methodology of Watson et al., (2010) was not 

powerful enough to detect statistically significant differences between the compared 

groups due to the low samples sizes used. Their data however clearly shows the trend 

of learning differences and interface effectiveness between the compared groups. In 

the Experiment 5 reported, the sample sizes for the model data were much larger 
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(100 model runs for each group), and the subsequent data analysis was powerful 

enough to detect significant differences in the performances of the compared groups.  

 

6.6 General Discussion 

 

 In a series of two experiments, a novel sequence-of-points method is applied to 

model the acquisition and execution of skilled, procedural-motor movements in ACT-

R 6.0 cognitive architecture. The first experiment of the series was essentially a proof 

of concept that applies the sequence-of-point approach to a selected single step of the 

sequential procedural task from Experiment 1 (Chapter 3). The modelled step was 

selected because its performance was significantly moderated by the level of dynamic 

visualisations components of the instructions for learning it. The second, follow-up 

experiment extends the modelling methodology to an entire task sequence from 

Watson et al. (2010) to overcome the limitation of the first experiment. Model data 

from both experiments were validated with equivalent empirical human data from 

the related studies with significantly accurate quantitative prediction outcomes. 

 The sequence-of-points method successfully addresses two key problems 

associated with modelling the acquisition of skilled human motor performance – the 

smooth execution of continuous movements along curved and linear trajectories and 

the simulation of the cognitive roles of different mental task representations in post-

learning task performance. The first problem is a long-recognised constraint in 

computational cognitive modelling of human motor performance. Most modern 

cognitive architectures have only rudimentary mechanisms for simulating motor 

performance and the modelling of smooth continuous movement trajectories is 

especially difficult (Flash & Hogan, 1985; Byrne et al., 2010). The sequence-of-point 

method addresses this problem by decomposing continuous motor movement 

trajectories into unit vectors of fixed magnitude and variable direction. This approach 

also specifies a continuous velocity profile across the transitional boundaries of 

sequential unit vectors based on Flash and Hogan’s (1985) dynamic cost optimisation 

method for the mathematical modelling of human movements. It is similar to the 

technique utilised in a related previous study by Byrne et al., (2010) but was 

restricted in that study to simple linear movements only. Additionally, Byrne et al.’s, 

(2010) approach relies solely on the imaginal module of the ACT-R cognitive 
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architecture for virtual visual targets for motor movement termination. In contrast, 

the approach in the current experiment affords modelling of curved as well as linear 

motor movements by specifying different parametric equations for various segments 

of the trajectory. Furthermore, it specifies a separate abstract process that integrates 

the task declarative knowledge with the mechanisms of the imaginal module to 

determine spatial locations for unit movement termination. This allows flexible, 

robust and on-the-fly determination of movement trajectory that simulates the effect 

of different instructional approaches on post-learning task performance.  

 The second problem is more important and relates directly to the overall 

objective of the study, which is to investigate the integrated, intertwined role of 

cognitive mental task representations acquired from different levels of dynamic 

instructional visualisations on post-learning procedural-motor task performance. This 

is modelled through the specification of different declarative knowledge structures of 

the mental task models acquired through instructions with varying levels of dynamic 

visualisations component. Furthermore, the approach adopted abstracts the 

underlying cognitive processing and trajectory computations from the ACT-R manual 

module, which executes the actual motor movements. The abstraction process relies 

on a process control law similar to Salvucci’s (2006) 2-points model for modelling 

lateral steering control in highway driver behaviour (see also Salvucci & Gray, 2004). 

Salvucci’s method however does not address prior learning and acquisition of mental 

task models through different instructional formats and the subsequent effect of this 

on post-learning performance. The specification of the control law in the current 

experiment is a novel application of Fajen and Warren’s (2003) steering model, where 

the ideal movement trajectory becomes the heuristic for the abstract process that 

integrates participant’s mental task model with actual motor execution. 

 The sequence-of-point modelling method combines the partial matching 

mechanism of the ACT-R retrieval module with a novel extension of the activation 

equation to simulate the stochasticity of spatial location recall during the motor task 

execution. This afforded the fairly accurate simulation of humans’ ability to select and 

execute a specific movement trajectory from the large degrees of freedom inherent in 

skilled procedural-motor performance (see e.g. Vivian & Flash, 1995). Such extensions 

of the ACT-R architecture could be further developed to modelling more natural 3-D 

spatial movements. One possible method could be the further extension of the 

activation equation to simulate spatial locations recall inaccuracies in a third ‘z’  
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coordinate for a 3-D reference framework. However, such an approach would require 

an upgrade of the visual system of the ACT-R architecture to support 3-D visual 

location chunks, which is not possible in the current version 6.0. 

 The comparative analysis of the model’s data with equivalent empirical data 

was more consistent in Experiment 4 than in Experiment 5. The inconsistencies with 

human data observed in Experiment 5 could be attributed to slight differences in the 

methodologies adopted, sample sizes and data analysis techniques. Watson et al.’s, 

(2010) sample sizes were quite small (10 participants per group) and the subsequent 

analysis is arguably not powerful enough to elicit statistically significant differences 

in the performances of the independent groups. In contrast, sufficient runs of the 

computational models were conducted (100 runs per group), which afforded 

statistically significant differences to be observed in the post-learning task 

performance measures. In general however, the computational model’s predictions 

were closely accurate for comparative human data in the two experiments conducted. 

The results provided evidence that dynamic instructional visualisations may be more 

effective for learning procedural-motor skills than their static equivalents. This is also 

consistent with the view that post-learning performance is moderated by the type of 

requested knowledge (Höeffler & Leutner, 2007), the level of dynamism of the 

instructional interface (Höeffler & Leutner, 2011) and dedicated processing of 

dynamic instructional percept through a separate WM motor processor construct 

(Wong et al., 2009). 

 

6.7 Limitations 

  

 The computational models developed in this study were implemented in the 

ACT-R 6.0 cognitive architecture version. Accordingly, the simulations were 

constrained to the 2-D spatial reference framework of the ACT-R visual system. The 

corresponding human performance data however involved natural 3-D spatial 

movement. This limitation was minimised by integrating well established 

mathematical models of human movement from previous related research in the 

design. Additionally, only the subset of procedural-motor movements that lie in a 2-D 

reference framework was modelled and all other with orthogonal trajectories were 

excluded. An extension of the ACT-R activation equation could be a possible 
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methodology for future work to extend the modelling to 3-D spatial movements. This 

would however require substantial upgrade to the visual reference system of the base 

ACT-R architecture. 

 The participant’s spatial ability and domain expertise has been established as 

a moderating factor for post-learning procedural-motor performance by previous 

related research (Höeffler, 2010; Höeffler & Leutner, 2011; Gegenfurtner et al., 2011). 

In contrast to the corresponding human data however, the models developed did not 

control for this factor, which limits the generalizability of the results. 

 

6.8 Conclusion 

 

 A novel computational modelling methodology is utilised to argue for a central 

cognitive role of acquired mental task representations in the post-learning 

performance of skilled motor tasks. The methodology distinguished mental task 

representations acquired from instructions with dynamic visualisation contents as 

opposed to those with static alternatives and demonstrated their comparative 

moderating effects on efficient transfer to actual motor performance. There were two 

components of the methodology, each addressing separate aspects of problems 

associated with detailed modelling of fine, human motor performance in 

contemporary cognitive architectures like the ACT-R 6.0. The first part is a sequence-

of-point technique for the specification of task-related spatial knowledge in 

declarative WM. This technique is based on the application of well-accepted 

mathematical models to generate list structures that simulate variously acquired 

mental task models in the declarative knowledge module of the base cognitive 

architecture. These structures are later integrated with the subsequent execution of 

the procedural motor task to simulate differences in performance corresponding to the 

different initial instruction formats. The second component of the methodology is a 

movement control mechanism for the integration of the mental task models to actual 

task execution. This is implemented as a motor control law based also on established 

mathematical models of human motor control. The motor control law affords the 

translation of variously acquired mental task representations into smooth, continuous 

human movement in the execution of the task. It also specifies a process for 

simulating the stochastic but effective selection of a desired movement trajectory from 
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an infinite range of alternatives that is inherent in human motor performance. The 

combination of the sequence-of-points technique and the movement control 

mechanism constitutes the methodology that affords the simulation of the atomic 

motor actions evident in skill acquisition and performance. To the best of the author’s 

knowledge, this is a novel paradigm for the computational modelling of skilled human 

motor performance, which overcomes the limitation of coarse motor output inherent 

in the default implementation of contemporary cognitive modelling architectures such 

as the ACT-R 6.0. 

 The methodology was validated through incremental development of ACT-R 

6.0 models in two experiments and the comparative analysis of the model’s outputs 

with equivalent empirical human data from previous studies. The first experiment’s 

model provided a proof of concept but was limited to a single step of a procedural task 

sequence. The second experiment’s model extended the methodology to the entire task 

sequence to overcome this limitation. The two model’s quantitative performance 

measures were fairly accurate and correlate significantly with the equivalent human 

data. This provides further evidence that dynamic instructional visualisations are 

more effective that their static alternatives for capturing the latent transitory 

information that are intrinsic and key to the efficient execution of skilled procedural 

motor tasks. The results are however limited as the model movements were 

implemented in 2-D space as opposed to the more natural 3-D human movements 

used in the comparative studies. This limitation is dictated by the underlying 

restrictions of the ACT-R 6.0 default visual module used for implementation and may 

be overcome in further studies by an extension of the sequence-of-point technique as 

we have specified. Future studies would also be required to evaluate the established 

effect of other performance moderating factors, such as the learner’s spatial ability, 

which was not accounted for in the implementation of the cognitive models. 

 

  



 

 

Chapter 7  

 

General Discussion and Conclusion 

 

7.1. Overview 

 

 The research presented in this thesis investigates the cognitive effects of 

different visualisations components of computer simulated instructional interfaces. 

The focus has been on the comparison of empirical performance measures of complex 

tasks/skills, which were acquired through instructional interfaces with different 

levels of dynamic components. The first set of experiments partially replicate and 

contribute to previous related studies through novel extensions of methodology. These 

experiments compared empirical post-learning performance data of different groups 

of human participants to infer the cognitive processes that support novel skills 

acquisition. The results also provide evidence for a novel hybrid cognitive learning 

model that describes the domain specific benefit of dynamic versus static 

visualisations components of the instructional interface. This first set of experiments 

was followed by another series that applied novel computational cognitive modelling 

techniques to examine the topic of interest. The increasingly acceptable methodology 

of cognitive modelling afforded psychologically valid and integrated descriptions of 

the underlying cognitive processes that drive overt performance of novel skills. Novel 

extensions to the base framework of the selected ACT-R 6.0 architecture were also 

described, which afford the atomic modelling of complex human skills acquisition and 

the integration of mental task representations with fine motor performance.  

 By way of summary and for convenience, the objectives of the research as 

stated in Chapter 1 are reproduced below and subsequently evaluated against the 

outcome of the work reported: 

 

• To investigate the cognitive effects of different levels of dynamic 

visualisation components of computer based instructional interfaces in 

the acquisition of novel procedural knowledge. 
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• To identify the cognitive mechanisms that support the acquisition of 

novel procedural knowledge and their effects on post-learning task 

performance. 

• To conduct empirical investigations with human participants for 

validating the cognitive roles of different instructional interface 

visualisations in the acquisition and transfer of skilled procedural 

knowledge. 

• To develop cognitive architecture-based computational models of 

human procedural knowledge acquisition via computer based 

instructions, which fits with empirical data. 

• To contribute to the HCI knowledge of the cognitive effects and roles of 

different levels of dynamic visualisation components of instructions 

using an interdisciplinary methodology. 

 

The first objective – investigation of the cognitive effects of interface dynamic 

content – was addressed from various perspectives by all the experiments reported. 

The empirical experiments described in Chapters 3, 4 and 5 compare directly the 

cognitive effects of manipulating the dynamic visualisation contents of instructional 

interfaces on post-learning task performance of human participants. 

The second objective is focussed on low-level description of the cognitive 

processes that support novel skill acquisition through different instructional 

interfaces. This objective was framed in the literature review of Chapter 2 

culminating in the deduction of a novel hybrid cognitive learning model to describe 

modal and amodal perspectives of skill/knowledge acquisition. Experiment 1 reported 

in Chapter 3 replicates evidence supporting the concept of a specialised ‘motor 

processor’ component of WM as established in related studies. The results of 

Experiment 1 also show that the specialised processor component of WM is consistent 

with the hybrid cognitive learning model proposed in Chapter 2. The work continues 

by extending this concept, through the subsequent Experiment 2 reported in Chapter 

4, to other procedural knowledge domain outwith motor skill acquisition. The 

cognitive mechanisms identified were examined in low level details by the 

computational cognitive models developed in the series of experiments reported in 

Chapter 6. 
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The third objective to conduct empirical investigations of novel procedural skill 

acquisition using human participants has been met with the experiments reported in 

Chapters 3, 4 and 5. A total of 180 human participants were sourced across the 

experiments reported in this thesis. The methodology of each experiment was varied 

to account for different perspective of the research question. 

The fourth objective to develop psychologically valid computational models of 

human procedural skill acquisition via computer based simulated learning was met 

by the cognitive modelling effort reported in Chapter 6. A series of experiments were 

described that utilise the ACT-R 6.0 cognitive architecture to iteratively model and 

investigate the cognitive mechanisms associated with novel procedural skill 

acquisition and post-learning task performance. The resultant models describe in 

atomic details the simulation of instructions, interface components perception, 

differential mental task models associated with interface components and integration 

of mental representations in subsequent task performance. The results of the 

modelling effort were validated with established empirical data to provide novel 

insights to the underlying cognitive mechanisms that drive procedural skill 

acquisition and performance. 

The final listed objective was to contribute to HCI knowledge regarding the 

cognitive benefits of instructional interface dynamism using an interdisciplinary 

approach. The methodology of the experiments described in the thesis integrates 

theories and techniques from various disciplines including neurophysiology, 

educational psychology, mathematical modelling, neuroscience, artificial intelligence 

and cognitive psychology. Relevant aspects of these disciplines were integrated 

together seamlessly to investigate and argue for the results that have been presented 

throughout the thesis. 

 

7.2. Hypothesis Testing 

 

 In the course of the research, several hypotheses were formulated to drive the 

reported experiments.  These hypothesis were tested and accepted or rejected based 

on the results of each experiment. The experiments and associated hypotheses were 

structured to focus on separate aspects of and incrementally address the overall 

research problem. To facilitate a general discussion cutting across all the reported 
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experiments, a revised and comprehensive version of all the hypotheses is 

enumerated below. This summarised version integrates the separate aspects to 

directly address the overall research objectives: 

 

Null Hypotheses  

H00 Instruction interfaces with more dynamic visualisation contents would have no 

effect on the post-acquisition performance time of novel procedural 

skills/knowledge as compared to those with equivalent static visualisation 

alternatives.  

H01 Instruction interfaces with more dynamic visualisation contents would have no 

effect on the post-acquisition performance accuracy of novel procedural 

skills/knowledge as compared to those with equivalent static visualisation 

alternatives. 

H02 The interaction of instructional interface dynamism and post-acquisition 

performance of novel procedural motor skills/knowledge would be dependent on 

the learner’s spatial abilities. 

H03 The moderating effect, if any, of dynamic versus static interface visualisations 

on the post-learning performance of novel, procedural and domain specific 

skills/knowledge would be dependent on the prior knowledge or expertise of the 

learner. 

 

Alternate/Positive Hypotheses  

H11 Dynamic visualisation components of an instructional interface would facilitate 

the creation of more complete and efficient mental models of novel procedural 

skills/knowledge than equivalent static visualisation alternatives.  

H12 The cognitive benefit of more efficient mental models of novel procedural 

skills/knowledge afforded by dynamic visualisations components of the 

instruction interface over equivalent static visualisation alternatives is due to 

an intrinsic motion attribute of the dynamic visualisations. 

H13 The cognitive benefit of more efficient mental models afforded by dynamic 

visualisations components of the instruction interface over equivalent static 

visualisations alternatives would yield faster post-learning performance of novel 

procedural skills/knowledge. 
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H14 The cognitive benefit of more efficient mental models afforded by dynamic 

visualisation components of the instruction interface over equivalent static 

visualisation alternatives would yield more accurate post-learning performance 

of novel procedural skills/knowledge. 

H15 The interaction of instructional interface dynamism and post-learning 

performance of novel procedural skills/knowledge would be independent of the 

learner’s spatial abilities. 

H16 The moderating effect of instructional interface dynamism and post-learning 

performance of novel procedural skills/knowledge would be independent of prior 

domain knowledge or expertise of the learner. 

H17 The more efficient mental task models afforded by dynamic visualisation 

contents of the instruction interface versus equivalent static alternatives would 

facilitate more robust post-learning performance of novel procedural 

skills/knowledge. 

 

Null hypotheses H00 and H01 were rejected as the post-learning performance time and 

accuracy afforded by dynamic instructional interface visualisations were found to be 

significantly faster and better than possible with equivalent static visualisation 

alternatives. This finding was consistent across the results of the experiments 

reported in Chapters 3, 4 and 5. The alternative hypothesis H13, H14 and H17 were 

therefore accepted.  

 The spatial orientation and visualisation abilities of the participants were 

controlled in the experiments reported in Chapter 3, 4 and 5. However, it was 

highlighted in Chapter 5 that spatial ability comprises of sub factors such as spatial 

visualisation, spatial relations (orientation), perceptual speed, closure speed and 

flexibility of closure (Carrol, 1993). The null hypothesis H02 may therefore be rejected 

only to the extent controlled for in the reported experiments. In line with this, spatial 

orientation and visualisation abilities were found not to have significant moderating 

effect on the cognitive benefits of instructional interface dynamism. The alternative 

hypothesis H15 was therefore accepted. 

 Experiment 3 reported in Chapter 5 found a significant effect and benefit of 

instructional interface dynamism irrespective of prior domain knowledge or expertise 

to the extent that the learned skill is novel. Null hypothesis H03 was therefore 

rejected and alternate hypothesis H16 accepted. 
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 The computational cognitive models developed in Chapter 6 afforded detailed 

investigation of the formation of mental task models from visual stimuli associated 

with novel learning and skill acquisition. They further modelled the integration of 

these mental task representations with subsequent task performance with a 

significant benefit observed for dynamic visualisations stimuli than equivalent static 

alternatives. Alternate hypotheses H11 and H12 were therefore accepted. 

 The acceptance/rejection of these hypotheses are further discussed in the 

following sections of this chapter. 

 

7.3. A Hybrid Cognitive Model of Multimodal Perception 

 

 The multimodal perception of external stimuli and the associated cognitive 

processes that integrates the percept into coherent mental models were discussed in 

Chapter 2. The thrust of the discussion argued for a novel hybrid cognitive learning 

model of stimuli perception from multimodal channels as typical in a multimedia 

learning environment. The model further describes the modality specific and 

cognitive processes that underlie the behavioural responses associated with 

perception of different stimuli. This model was subsequently used to argue that the 

particular attributes of different external stimuli may yield varying utilisation levels 

of the cognitive processing bandwidth afforded by each modal channel. The fidelity 

and completeness of novel mental task representations is therefore dependent on the 

attributes of the percept. For example, the transitory information carrying attribute 

of dynamic interface visualisations have been shown in Chapter 3 to afford more 

complete mental representation of a motor task than possible through equivalent 

static visualisations. The results presented in Chapter 3 shows that the post-learning 

performance of a novel motor task was faster and more accurate when the instruction 

interface comprised of dynamic visual stimuli versus static visual stimuli. This result 

is consistent with Wong et al, (2009) specialised ‘motor processor’ view and was 

extended through further experiments reported in Chapter 4 to the separate 

procedural knowledge domain of spatial navigation. In this second experiment, a 

novel ‘motion processor’ was proposed as an extension of the visual buffer component 

of the mental imagery theory (Kosslyn, 2005). This motion-variable dependent 

processor is argued to be activated by the additional translational information 
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inherent in the dynamic instruction interface, which portrays motion relative spatial 

features of the navigation space. The performance measures of navigation path length 

and time were therefore found to be consistently shorter and faster respectively for 

instances of novel spatial navigation skills acquired through interaction with dynamic 

instructions as opposed to static. The cognitive effect of interface dynamism was also 

found to be significantly different on the factors of route completion rate and robust 

performance. 

 The hybrid cognitive learning model was further applied to investigate the 

moderating effect of prior domain knowledge or expertise on the interaction of 

interface dynamism and novel procedural skills acquisition. The model, as presented 

in Chapter 5, was restructured to emphasize the central role of the learner’s cognitive 

architecture in the novel skills acquisition process and how it may be moderated by 

domain expertise. Overall, the empirical results reported in Chapter 5 show that 

while domain expertise may moderate cognitive architecture limitations by affording 

more developed knowledge schemas, it may not completely eliminate the established 

restrictions of the WM. Similar to domain novices therefore, the performance of 

experts on novel intra-domain procedural skills were also found to be moderated by 

instruction interface dynamism. The intrinsic attribute of dynamic instructional 

interface visualisations to facilitate the creation of more accurate mental task models 

as opposed to static visualisations may therefore be independent of domain prior 

knowledge or expertise to the extent that the learning task is novel. 

 In general, the experiments reported in Chapters 3, 4 and 5 addressed various 

aspects of the hybrid cognitive learning model to show the cognitive effects of 

instruction interface dynamism on novel procedural skill acquisition. The 

experiments’ methodologies also variously controlled for the potential confounding 

effect of extraneous variables such as the spatial visualisation, spatial orientation and 

prior video gaming experience. 

 

7.4. Computational Modelling and Architectural Extensions 

 

 The computational models discussed in this thesis allow a rigorous and 

detailed investigation of the cognitive effects of instructional interface visualisations 

than possible with empirical comparisons of independent groups. As highlighted in 
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Chapter 6, modern cognitive modelling architectures, such as ACT-R 6.0, have 

become established tools for application to a range of traditional human factors 

problems. The strength of these methods is that they afford the implementation of 

psychologically valid behavioural models that facilitate quantitative investigations of 

human factors problems. The models developed and discussed in the series of 

experiments reported in Chapter 6 required novel extensions to the base framework 

of the selected ACT-R 6.0 cognitive modelling architecture. The extensions made 

enabled modelling of atomic cognitive processes associated with learning a novel 

procedural skill via different instructional interface visualisations and how this is 

further integrated with subsequent task performance. Notably, a functional 

decomposition technique was used to represent complex human movements with 

mathematically derived unit vectors. Further novel extensions were then defined for 

ACT-R 6.0 activation equations to enable the Cartesian representation of 

intermediate locations along the modelled movement trajectories. 

 The integration of several thousand cycles of unit movements was moderated 

by separately defined control logic to replicate task execution and performance 

measures observed in the empirical data of equivalent groups of human participants. 

 

7.5. Main Findings 

 

 The work reported in this thesis contains several major findings, which are 

original contributions to the research area. These are enumerated below: 

 

• A novel hybrid cognitive learning model is proposed to explain domain specific 

skill acquisition via computer based instructional simulators. The model 

affords comparison of different interface formats and optimisation of the 

cognitive benefits associated with instructional delivery. 

• The proposition of an intrinsic attribute of the instructional interface that 

supports the presentation of transitory, domain specific information and 

facilitates task comprehension, development of expert mental models and 

performance. 
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• The discovery of the cognitive benefits of dynamic instructional presentations 

over static alternatives to facilitate novel, intra-domain skills acquisition and 

performance irrespective of prior domain expertise. 

• The validation of these discoveries through empirical investigations of human 

performance and computational simulations that utilizes modern cognitive 

modelling methodologies. 

• The proposition of a novel modelling methodology that extends the ACT-R 6.0 

cognitive architecture and affords the simulation of human motor learning and 

performance at an atomic level of detail. 

• The development of a psychologically valid computational cognitive model that 

simulates human interaction with dynamic versus static interface elements 

and the consequent effect on the performance of novel procedural task. 

 

7.6. Limitations 

 

 Some limitations were highlighted along with the discussion of each 

experiment reported in this thesis. These limitations are aggregated and discussed 

further in this section. 

 The thrust of the experiments conducted was to investigate the cognitive 

effects of instructional interface dynamism on novel skill acquisition. In doing this, 

the knowledge-domain for the investigation was largely restricted to tasks that were 

procedural and functionally decomposable to logical sequences of sub-tasks. Although 

it is arguable that the investigation spanned a range of different tasks, further 

experiments would be required to establish the cognitive effects under observation in 

other non-procedural knowledge domain e.g. declarative knowledge and problem-

solving knowledge. 

 Age and gender variables have been found in previous studies to have a 

moderating effect on spatial navigation performance. The restrictions imposed by the 

recruitment process of Experiment 2 reported in Chapter 4 however made it difficult 

to control for these potentially confounding variables. It was especially difficult to 

recruit across a wide age and gender range because the primary source of participants 

were university students. Voluntary participation in the experiment was sourced 

through advertisement posted on virtual and physical noticeboards across the Robert 
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Gordon University community. The methodology used however compensated for this 

limitation by randomly assigning available participants based on age and gender 

stratification to achieve a more even spread. An additional limitation of the findings 

in Chapter 4 is the inconclusive evidence for a process level moderating effect of 

spatial orientation and prior video gaming experience on spatial navigation 

performance. It is important to note that the potential confounding effects of prior 

video gaming experience on task performance in a virtual environment was controlled 

for in the experiment. Further investigation of this exciting finding however may 

benefit from the application of eye tracking methodology to correlate visual reference 

fields during learning with subsequent task performance. This was not pursued 

further in this work as it is considered tangential to the objectives of the research.  

 Experiment 3 reported in Chapter 5 involves a low sample size, which may 

arguably limit its generalisation. This was due to the problems associated with 

recruiting the special expertise required for participation in the experiment. It was 

difficult to arrange participation in the experiment around the busy schedules of the 

expert aircraft engineers recruited and in many instances, scheduled sessions had to 

be cancelled at the last minute because of emergency work requirements. 

 The limitations of the computational cognitive models that were developed in 

this work were highlighted in Chapter 6. Simulation of human motor performance in 

the models was restricted to a 2-D Cartesian reference plane as opposed to the more 

natural 3-D human movements. This limitations was imposed by the underlying 

restrictions of the base ACT-R 6.0 cognitive architecture framework. The default 

visual module and GUI device of this architecture are currently designed to 

implement a 2-D visual reference field. Substantial upgrade of the architecture would 

be required to support 3-D visual referencing and movement simulation. The models 

developed did not also account for the potential confounding effects of other 

extraneous variables such as the learner’s spatial ability and prior domain 

knowledge. 

 At this point, it is important to highlight the time and effort that were 

required to plan, setup, conduct and analyse the experiments reported in this thesis. 

A lot of time was dedicated to the review of extant literature at the initial planning 

stages in order to search for and reference related research. Following this, the design 

phase of the experiments involved several test runs and iterative refinement, which 

were not reported directly in the thesis. These test runs were conducted mostly with 
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participants from RGU research community and personal friends of the author and 

were very important for the discovery of problem areas prior to live implementation of 

the experiments. Some of the final experiments, like those reported in Chapters 3 and 

5, were conducted outside the United Kingdom with attendant logistics issues. It took 

about 10 months to secure the appropriate approval from the Ministry of Defence, 

Nigeria to access the secure sites and participants required for the experiments. As 

noted previously, these participants were required in particular because of their 

specific skills set. The conduct of the experiment was spread over several weeks to 

accommodate the individual sessions ranging from about 40 minutes for the 

experiment reported in Chapter 3 to approximately 120 minutes for that reported in 

Chapter 4. The subsequent analysis of the recorded sessions took an even longer time 

as the data has to be extracted through an iterative process of play, stop, rewind and 

play. This made the data extraction process painstakingly slow but meticulous. The 

development of the cognitive models was also difficult because of the complexity of the 

ACT-R 6.0 architecture and it’s novelty to the author. 

 Lastly, it is important to note and acknowledge the intensive revision cycles 

associated with each of the publication output of this research work. Each publication 

received inputs from anonymous peer reviews with the suggestions received in each 

review cycle incrementally integrated to produce the final refined experimental 

methods and results. The longest publication cycle took 13 months for the work 

reported in Chapter 3. 

 

7.7. Future Work 

 

 The work reported in this thesis would benefit from further experiments that 

would use revised methodologies to address some of the limitations highlighted in the 

previous section. As a starting point, such future experiments could be designed to 

directly compare the post-learning performance of novices versus experts on the 

acquisition of novel, intra-domain knowledge through different instructional 

interfaces. The direct comparison of novice versus expert performance would yield a 

fresh insight into the moderating effect of domain expertise on instructional interface 

dynamism. 
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 It will also be interesting to discover a threshold interface cognitive load for 

the moderating effect of instructional dynamism. The transitory nature of 

dynamically presented information imposes some cognitive load on the learner who 

has to keep portions of the previous frame in WM to integrate with subsequent 

frames for comprehension. Preliminary work by Spanjers et al., (2011) has 

manipulated the length of dynamic instructional visualisations to measure the 

cognitive benefits of segmented versus continuous presentation. Their work however 

did not directly compare these visualisations with other types such as static text, 

pictures or diagrams. A suggested methodology for further work would directly 

compare different instructional interface visualisations and manipulate the 

associated cognitive loads through gradual incrementation of the length and 

complexity of the visualisations. 

 Future experiments may also benefit from an eye-tracking methodology to 

investigate the salient aspects of dynamic versus static instructional interface 

visualisations. The eye-tracking data may support overall performance comparison by 

examining attention during interaction with the different instructional interfaces. It 

may also indicate the aspects of the instructional interface that directly support the 

development of expert mental task models and performance.  

 The computational cognitive models reported in this thesis may be developed 

further to account for extraneous factors, which were controlled for in the 

complementary empirical experiments such as spatial abilities, domain expertise and 

prior video gaming experience. A suggested methodology for this would be to pre-

populate the declarative memory structure of the models with chunks that represent 

prior domain expertise or knowledge. An alternative methodology may train the 

models on domain related skills for a while prior to applying them to novel 

skills/tasks of interest. A further improvement to the cognitive modelling 

investigative approach would be to extend the models for representing 3-D 

movements as highlighted in the previous section of this chapter. This would require 

extensive upgrade of the base ACT-R 6.0 architecture or the selection of another 

appropriate modelling architecture. It may be possible however to modify the current 

ACT-R 6.0 architecture by defining a novel device module that extends the default 

visual module and GUI device for 3-D visual referencing. Other possible modifications 

suggested in Chapter 6 include the extension of the activation equation and partial 

matching mechanism of the ACT-R 6.0 architecture for 3-D spatial modelling. 
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Post-test Questionnaire 
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Experiment Briefing Sheet/Consent Form 
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ETS Licence for VZ-2 Paper Folding Test 
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Statistical Modelling Outputs (SPSSTM version 17) 

 

 

GET   FILE='E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav'. 

MEANS TABLES=t_time t_errors test_s BY i_face   /CELLS MEAN 

COUNT STDDEV. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

Task time  * Interface type 81 100.0% 0 .0% 81 100.0% 

Task errors  * Interface type 81 100.0% 0 .0% 81 100.0% 

Test score  * Interface type 81 100.0% 0 .0% 81 100.0% 

 

Report  

Interface type Task time Task errors Test score 

Static Mean 138.92 4.88 7.2692 

N 26 26 26 

Std. Deviation 55.444 3.154 2.50691 

Video Mean 99.14 1.21 7.6071 

N 28 28 28 

Std. Deviation 31.079 1.397 2.69896 

Interactive Mean 107.26 1.52 8.5926 

N 27 27 27 

Std. Deviation 44.185 1.397 3.64015 

Total Mean 114.62 2.49 7.8272 

N 81 81 81 

Std. Deviation 47.066 2.675 3.00745 
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NPAR TESTS   /K-W=t_time t_errors BY i_face(1 3)   /MISSING 

ANALYSIS. 
 
NPar Tests 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
 
Kruskal-Wallis Test 

Ranks  

 Interface type N Mean Rank 

Task time Static 26 51.69 

Video 28 34.88 

Interactive 27 37.06 

Total 81  

Task errors Static 26 58.75 

Video 28 30.36 

Interactive 27 34.94 

Total 81  

 

Test Statistics a,b 

 Task time Task errors 

Chi-Square 8.030 23.354 

df 2 2 

Asymp. Sig. .018 .000 

a. Kruskal Wallis Test 

b. Grouping Variable: Interface type 

 

 

MEANS TABLES=t_time t_errors BY i_face   /CELLS COUNT MEDIAN. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
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Report  

Interface type Task time Task errors 

Static N 26 26 

Median 123.00 5.00 

Video N 28 28 

Median 97.00 .50 

Interactive N 27 27 

Median 94.00 1.00 

Total N 81 81 

Median 107.00 2.00 

 

NPAR TESTS   /M-W= t_time t_errors BY i_face(1 2)   /MISSING 

ANALYSIS. 
 
NPar Tests 

 
[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
 
Mann-Whitney Test 

Ranks  

 Interface 

type N Mean Rank Sum of Ranks 

Task time Static 26 33.33 866.50 

Video 28 22.09 618.50 

Total 54   

Task errors Static 26 36.92 960.00 

Video 28 18.75 525.00 

Total 54   

Test Statistics a 

 Task time Task errors 

Mann-Whitney U 212.500 119.000 

Wilcoxon W 618.500 525.000 

Z -2.623 -4.350 

Asymp. Sig. (2-tailed) .009 .000 

a. Grouping Variable: Interface type 
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NPAR TESTS   /M-W= t_time t_errors BY i_face(1 3)   /MISSING 

ANALYSIS. 
 
NPar Tests 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
 
Mann-Whitney Test 
 

Ranks  

 Interface type N Mean Rank Sum of Ranks 

Task time Static 26 31.87 828.50 

Interactive 27 22.31 602.50 

Total 53   

Task errors Static 26 35.33 918.50 

Interactive 27 18.98 512.50 

Total 53   

 

Test Statistics a 

 Task time Task errors 

Mann-Whitney U 224.500 134.500 

Wilcoxon W 602.500 512.500 

Z -2.251 -3.895 

Asymp. Sig. (2-tailed) .024 .000 

a. Grouping Variable: Interface type 

 
 

NPAR TESTS   /M-W= t_time t_errors BY i_face(2 3)   /MISSING 

ANALYSIS. 

 
 
NPar Tests 

 
 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
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Mann-Whitney Test 

Ranks  

 Interface type N Mean Rank Sum of Ranks 

Task time Video 28 27.29 764.00 

Interactive 27 28.74 776.00 

Total 55   

Task errors Video 28 26.11 731.00 

Interactive 27 29.96 809.00 

Total 55   

 

Test Statistics a 

 Task time Task errors 

Mann-Whitney U 358.000 325.000 

Wilcoxon W 764.000 731.000 

Z -.337 -.931 

Asymp. Sig. (2-tailed) .736 .352 

a. Grouping Variable: Interface type 

 

ONEWAY test_s BY i_face   /MISSING ANALYSIS. 
 
Oneway 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 

ANOVA  

Test score 

 Sum of Squares df Mean Square F Sig. 

Between Groups 25.268 2 12.634 1.411 .250 

Within Groups 698.312 78 8.953   

Total 723.580 80    

 

UNIANOVA t_time BY i_face WITH test_s   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face) 

WITH(test_s=MEAN)   /PRINT=ETASQ HOMOGENEITY   

/CRITERIA=ALPHA(.05)   /DESIGN=test_s i_face. 
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Univariate Analysis of Variance 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 

 

Tests of Between-Subjects Effects  

Dependent Variable:Task time 

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model 30066.631a 3 10022.210 5.244 .002 .170 

Intercept 193354.732 1 193354.732 101.177 .000 .568 

test_s 6539.956 1 6539.956 3.422 .068 .043 

i_face 21105.719 2 10552.860 5.522 .006 .125 

Error 147150.504 77 1911.046    

Total 1241324.000 81     

Corrected Total 177217.136 80     

a. R Squared = .170 (Adjusted R Squared = .137) 

 
Estimated Marginal Means 

 

Interface type  

Dependent Variable:Task time 

Interface type Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Static 137.216a 8.623 120.045 154.386 

Video 98.470a 8.269 82.003 114.936 

Interactive 109.602a 8.508 92.660 126.543 

a. Covariates appearing in the model are evaluated at the following values: Test score = 7.8272. 

 

UNIANOVA t_errors BY i_face WITH test_s   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face) 

WITH(test_s=MEAN)   /PRINT=ETASQ HOMOGENEITY   

/CRITERIA=ALPHA(.05)   /DESIGN=test_s i_face. 
 
Univariate Analysis of Variance 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
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Tests of Between-Subjects Effects  

Dependent Variable:Task errors 

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model 225.490a 3 75.163 16.691 .000 .394 

Intercept 103.945 1 103.945 23.082 .000 .231 

test_s 5.352 1 5.352 1.188 .279 .015 

i_face 209.344 2 104.672 23.243 .000 .376 

Error 346.757 77 4.503    

Total 1076.000 81     

Corrected Total 572.247 80     

a. R Squared = .394 (Adjusted R Squared = .370) 

 
 
Estimated Marginal Means 

 

Interface type  

Dependent Variable:Task errors 

Interface type Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Static 4.836a .419 4.002 5.669 

Video 1.195a .401 .396 1.994 

Interactive 1.586a .413 .763 2.408 

a. Covariates appearing in the model are evaluated at the following values: Test score = 7.8272. 

 
 

CORRELATIONS   /VARIABLES=ease response confused helpful interest 

i_face   /PRINT=TWOTAIL NOSIG   /MISSING=PAIRWISE. 

 
 
Correlations 

 
 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 3\field_afit_t.sav 
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Correlations  

  

Ease of use Responsiveness 

Degree of 

confusion 

Helpful 

interaction 

Interesting 

interface Interface type 

Ease of use Pearson Correlation 1 .116 -.174 .190 .036 -.063 

Sig. (2-tailed)  
.301 .120 .089 .752 .578 

N 81 81 81 81 81 81 

Responsiveness Pearson Correlation .116 1 -.119 .207 .194 .085 

Sig. (2-tailed) .301 
 

.288 .063 .082 .451 

N 81 81 81 81 81 81 

Degree of confusion Pearson Correlation -.174 -.119 1 -.135 .048 -.049 

Sig. (2-tailed) .120 .288 
 

.231 .669 .666 

N 81 81 81 81 81 81 

Helpful interaction Pearson Correlation .190 .207 -.135 1 .105 .041 

Sig. (2-tailed) .089 .063 .231 
 

.351 .717 

N 81 81 81 81 81 81 

Interesting interface Pearson Correlation .036 .194 .048 .105 1 .021 

Sig. (2-tailed) .752 .082 .669 .351 
 

.853 

N 81 81 81 81 81 81 

Interface type Pearson Correlation -.063 .085 -.049 .041 .021 1 

Sig. (2-tailed) .578 .451 .666 .717 .853 
 

N 81 81 81 81 81 81 
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Materials and Analysis Data – Experiment 2 

 

Pre-test Questionnaire 
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Statistical Modelling Outputs (SPSSTM version 17) 

 

MEANS TABLES=e1_exLen e2_exLen e3_exLen m1_exLen 

m2_exLen m3_exLen h1_exLen h2_exLen e1_exTi e2_exTi e3_exTi 

m1_exTi m2_exTi m3_exTi     h1_exTi h2_exTi sp_test comp_g BY 

i_face   /CELLS MEAN COUNT STDDEV. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

Extrapolated Length - Level 1 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 1 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 1 Trial 3  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 2 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 2 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 2 Trial 3  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 3 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Length - Level 3 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 1 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 1 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 
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Extrapolated Time - Level 1 Trial 3  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 2 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 2 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 2 Trial 3  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 3 Trial 1  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Extrapolated Time - Level 3 Trial 2  * 

Interface 
60 100.0% 0 .0% 60 100.0% 

Spatial Ability Score  * Interface 60 100.0% 0 .0% 60 100.0% 

Composite Game Experience Score  * 

Interface 
56 93.3% 4 6.7% 60 100.0% 

 

Report  

 Interface 

 Static Dynamic 

 Mean N Std. Deviation Mean N Std. Deviation 

Extrapolated Length - Level 1 Trial 1 117.2555 31 50.61344 73.3307 29 4.41955 

Extrapolated Length - Level 1 Trial 2 86.3669 31 28.07779 71.9426 29 2.32021 

Extrapolated Length - Level 1 Trial 3 71.7621 31 1.81527 71.7471 29 2.41037 

Extrapolated Length - Level 2 Trial 1 347.1695 31 175.26877 171.6526 29 97.69529 

Extrapolated Length - Level 2 Trial 2 286.9980 31 195.49470 143.8286 29 66.58368 

Extrapolated Length - Level 2 Trial 3 240.4633 31 148.17982 109.5494 29 6.83176 

Extrapolated Length - Level 3 Trial 1 482.0913 31 162.67236 466.3324 29 234.76856 

Extrapolated Length - Level 3 Trial 2 553.6952 31 247.02139 399.4832 29 220.48337 

Extrapolated Time - Level 1 Trial 1 50.5462 31 20.76339 34.8308 29 10.91746 

Extrapolated Time - Level 1 Trial 2 29.3408 31 6.53210 29.2724 29 8.47787 

Extrapolated Time - Level 1 Trial 3 26.1324 31 5.44877 26.9558 29 5.24088 

Extrapolated Time - Level 2 Trial 1 299.9101 31 148.43136 167.4046 29 135.18974 

Extrapolated Time - Level 2 Trial 2 248.1548 31 163.27688 156.5638 29 154.09549 

Extrapolated Time - Level 2 Trial 3 197.6680 31 155.40625 68.4434 29 26.87754 

Extrapolated Time - Level 3 Trial 1 454.5373 31 171.63365 415.7784 29 211.39424 
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Extrapolated Time - Level 3 Trial 2 432.9500 31 186.98362 344.2467 29 228.72027 

Spatial Ability Score 86.4516 31 28.60867 97.0000 29 37.96803 

Composite Game Experience Score 11.1638 29 4.49702 12.8111 27 4.32320 

 

GLM e1_exLen e1_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/PRINT=ETASQ HOMOGENEITY   /CRITERIA=ALPHA(.05)   

/DESIGN= i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Partial Eta 

Squared 

Intercept Pillai's Trace .901 258.647a 2.000 57.000 .000 .901 

Wilks' Lambda .099 258.647a 2.000 57.000 .000 .901 

Hotelling's Trace 9.075 258.647a 2.000 57.000 .000 .901 

Roy's Largest Root 9.075 258.647a 2.000 57.000 .000 .901 

i_face Pillai's Trace .290 11.665a 2.000 57.000 .000 .290 

Wilks' Lambda .710 11.665a 2.000 57.000 .000 .290 

Hotelling's Trace .409 11.665a 2.000 57.000 .000 .290 

Roy's Largest Root .409 11.665a 2.000 57.000 .000 .290 

a. Exact statistic 

b. Design: Intercept + i_face 
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Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model Extrapolated Length - Level 1 Trial 1 28908.538a 1 28908.538 21.663 .000 .272 

Extrapolated Time - Level 1 Trial 1 3700.490b 1 3700.490 13.191 .001 .185 

Intercept Extrapolated Length - Level 1 Trial 1 544241.122 1 544241.122 407.837 .000 .875 

Extrapolated Time - Level 1 Trial 1 109217.131 1 109217.131 389.321 .000 .870 

i_face Extrapolated Length - Level 1 Trial 1 28908.538 1 28908.538 21.663 .000 .272 

Extrapolated Time - Level 1 Trial 1 3700.490 1 3700.490 13.191 .001 .185 

Error Extrapolated Length - Level 1 Trial 1 77398.532 58 1334.457 
   

Extrapolated Time - Level 1 Trial 1 16270.896 58 280.533 
   

Total Extrapolated Length - Level 1 Trial 1 659557.176 60 
    

Extrapolated Time - Level 1 Trial 1 130655.855 60 
    

Corrected Total Extrapolated Length - Level 1 Trial 1 106307.070 59 
    

Extrapolated Time - Level 1 Trial 1 19971.386 59 
    

a. R Squared = .272 (Adjusted R Squared = .259) 

b. R Squared = .185 (Adjusted R Squared = .171) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 1 Trial 1 Static 117.255 6.561 104.122 130.389 

Dynamic 73.331 6.783 59.752 86.909 

Extrapolated Time - Level 1 Trial 1 Static 50.546 3.008 44.525 56.568 

Dynamic 34.831 3.110 28.605 41.057 

 
 

GLM e2_exLen e2_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
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General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .962 727.919a 2.000 57.000 .000 

Wilks' Lambda .038 727.919a 2.000 57.000 .000 

Hotelling's Trace 25.541 727.919a 2.000 57.000 .000 

Roy's Largest Root 25.541 727.919a 2.000 57.000 .000 

i_face Pillai's Trace .121 3.919a 2.000 57.000 .025 

Wilks' Lambda .879 3.919a 2.000 57.000 .025 

Hotelling's Trace .137 3.919a 2.000 57.000 .025 

Roy's Largest Root .137 3.919a 2.000 57.000 .025 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 1 

Trial 2 
3117.448a 1 3117.448 7.597 .008 

Extrapolated Time - Level 1 Trial 

2 
.070b 1 .070 .001 .972 

Intercept Extrapolated Length - Level 1 

Trial 2 
375510.969 1 375510.969 915.049 .000 
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Extrapolated Time - Level 1 Trial 

2 
51475.268 1 51475.268 906.769 .000 

i_face Extrapolated Length - Level 1 

Trial 2 
3117.448 1 3117.448 7.597 .008 

Extrapolated Time - Level 1 Trial 

2 
.070 1 .070 .001 .972 

Error Extrapolated Length - Level 1 

Trial 2 
23801.611 58 410.373   

Extrapolated Time - Level 1 Trial 

2 
3292.530 58 56.768   

Total Extrapolated Length - Level 1 

Trial 2 
405134.702 60    

Extrapolated Time - Level 1 Trial 

2 
54829.136 60    

Corrected Total Extrapolated Length - Level 1 

Trial 2 
26919.059 59    

Extrapolated Time - Level 1 Trial 

2 
3292.600 59    

a. R Squared = .116 (Adjusted R Squared = .101) 

b. R Squared = .000 (Adjusted R Squared = -.017) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 1 Trial 2 Static 86.367 3.638 79.084 93.650 

Dynamic 71.943 3.762 64.413 79.473 

Extrapolated Time - Level 1 Trial 2 Static 29.341 1.353 26.632 32.050 

Dynamic 29.272 1.399 26.472 32.073 

 

GLM e3_exLen e3_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
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General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .999 38537.070a 2.000 57.000 .000 

Wilks' Lambda .001 38537.070a 2.000 57.000 .000 

Hotelling's Trace 1352.178 38537.070a 2.000 57.000 .000 

Roy's Largest Root 1352.178 38537.070a 2.000 57.000 .000 

i_face Pillai's Trace .008 .238a 2.000 57.000 .789 

Wilks' Lambda .992 .238a 2.000 57.000 .789 

Hotelling's Trace .008 .238a 2.000 57.000 .789 

Roy's Largest Root .008 .238a 2.000 57.000 .789 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 1 

Trial 3 
.003a 1 .003 .001 .978 

Extrapolated Time - Level 1 

Trial 3 
10.157b 1 10.157 .355 .554 

Intercept Extrapolated Length - Level 1 

Trial 3 
308579.894 1 308579.894 68433.616 .000 

Extrapolated Time - Level 1 

Trial 3 
42228.347 1 42228.347 1475.677 .000 
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i_face Extrapolated Length - Level 1 

Trial 3 
.003 1 .003 .001 .978 

Extrapolated Time - Level 1 

Trial 3 
10.157 1 10.157 .355 .554 

Error Extrapolated Length - Level 1 

Trial 3 
261.533 58 4.509   

Extrapolated Time - Level 1 

Trial 3 
1659.742 58 28.616   

Total Extrapolated Length - Level 1 

Trial 3 
309186.825 60    

Extrapolated Time - Level 1 

Trial 3 
43901.521 60    

Corrected Total Extrapolated Length - Level 1 

Trial 3 
261.536 59    

Extrapolated Time - Level 1 

Trial 3 
1669.899 59    

a. R Squared = .000 (Adjusted R Squared = -.017) 

b. R Squared = .006 (Adjusted R Squared = -.011) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 1 Trial 3 Static 71.762 .381 70.999 72.525 

Dynamic 71.747 .394 70.958 72.536 

Extrapolated Time - Level 1 Trial 3 Static 26.132 .961 24.209 28.056 

Dynamic 26.956 .993 24.967 28.944 

 

GLM m1_exLen m1_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 
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Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .779 100.456a 2.000 57.000 .000 

Wilks' Lambda .221 100.456a 2.000 57.000 .000 

Hotelling's Trace 3.525 100.456a 2.000 57.000 .000 

Roy's Largest Root 3.525 100.456a 2.000 57.000 .000 

i_face Pillai's Trace .280 11.083a 2.000 57.000 .000 

Wilks' Lambda .720 11.083a 2.000 57.000 .000 

Hotelling's Trace .389 11.083a 2.000 57.000 .000 

Roy's Largest Root .389 11.083a 2.000 57.000 .000 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 1 461579.268a 1 461579.268 22.520 .000 

Extrapolated Time - Level 2 Trial 1 263072.761b 1 263072.761 13.011 .001 

Intercept Extrapolated Length - Level 2 Trial 1 4033159.180 1 4033159.180 196.770 .000 

Extrapolated Time - Level 2 Trial 1 3272105.508 1 3272105.508 161.835 .000 

i_face Extrapolated Length - Level 2 Trial 1 461579.268 1 461579.268 22.520 .000 

Extrapolated Time - Level 2 Trial 1 263072.761 1 263072.761 13.011 .001 

Error Extrapolated Length - Level 2 Trial 1 1188816.592 58 20496.838   

Extrapolated Time - Level 2 Trial 1 1172691.533 58 20218.820   

Total Extrapolated Length - Level 2 Trial 1 5779616.792 60    

Extrapolated Time - Level 2 Trial 1 4773723.887 60    
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Corrected Total Extrapolated Length - Level 2 Trial 1 1650395.861 59    

Extrapolated Time - Level 2 Trial 1 1435764.294 59    

a. R Squared = .280 (Adjusted R Squared = .267) 

b. R Squared = .183 (Adjusted R Squared = .169) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 1 Static 347.169 25.714 295.698 398.641 

Dynamic 171.653 26.585 118.436 224.869 

Extrapolated Time - Level 2 Trial 1 Static 299.910 25.539 248.789 351.031 

Dynamic 167.405 26.405 114.550 220.259 

 

GLM m2_exLen m2_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .700 66.507a 2.000 57.000 .000 

Wilks' Lambda .300 66.507a 2.000 57.000 .000 

Hotelling's Trace 2.334 66.507a 2.000 57.000 .000 
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Roy's Largest Root 2.334 66.507a 2.000 57.000 .000 

i_face Pillai's Trace .197 7.000a 2.000 57.000 .002 

Wilks' Lambda .803 7.000a 2.000 57.000 .002 

Hotelling's Trace .246 7.000a 2.000 57.000 .002 

Roy's Largest Root .246 7.000a 2.000 57.000 .002 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 2 307120.688a 1 307120.688 14.018 .000 

Extrapolated Time - Level 2 Trial 2 125693.979b 1 125693.979 4.977 .030 

Intercept Extrapolated Length - Level 2 Trial 2 2781080.474 1 2781080.474 126.942 .000 

Extrapolated Time - Level 2 Trial 2 2454227.611 1 2454227.611 97.187 .000 

i_face Extrapolated Length - Level 2 Trial 2 307120.688 1 307120.688 14.018 .000 

Extrapolated Time - Level 2 Trial 2 125693.979 1 125693.979 4.977 .030 

Error Extrapolated Length - Level 2 Trial 2 1270680.132 58 21908.278   

Extrapolated Time - Level 2 Trial 2 1464651.932 58 25252.620   

Total Extrapolated Length - Level 2 Trial 2 4423997.654 60    

Extrapolated Time - Level 2 Trial 2 4084511.893 60    

Corrected Total Extrapolated Length - Level 2 Trial 2 1577800.819 59    

Extrapolated Time - Level 2 Trial 2 1590345.911 59    

a. R Squared = .195 (Adjusted R Squared = .181) 

b. R Squared = .079 (Adjusted R Squared = .063) 

 
Estimated Marginal Means 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 2 Static 286.998 26.584 233.784 340.212 

Dynamic 143.829 27.486 88.810 198.847 
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Extrapolated Time - Level 2 Trial 2 Static 248.155 28.541 191.023 305.286 

Dynamic 156.564 29.509 97.495 215.632 

 
GLM m3_exLen m3_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
 
 
General Linear Model 

 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .763 91.796a 2.000 57.000 .000 

Wilks' Lambda .237 91.796a 2.000 57.000 .000 

Hotelling's Trace 3.221 91.796a 2.000 57.000 .000 

Roy's Largest Root 3.221 91.796a 2.000 57.000 .000 

i_face Pillai's Trace .281 11.157a 2.000 57.000 .000 

Wilks' Lambda .719 11.157a 2.000 57.000 .000 

Hotelling's Trace .391 11.157a 2.000 57.000 .000 

Roy's Largest Root .391 11.157a 2.000 57.000 .000 

a. Exact statistic 

b. Design: Intercept + i_face 
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Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 3 256791.004a 1 256791.004 22.566 .000 

Extrapolated Time - Level 2 Trial 3 250206.597b 1 250206.597 19.485 .000 

Intercept Extrapolated Length - Level 2 Trial 3 1835591.752 1 1835591.752 161.304 .000 

Extrapolated Time - Level 2 Trial 3 1061048.481 1 1061048.481 82.632 .000 

i_face Extrapolated Length - Level 2 Trial 3 256791.004 1 256791.004 22.566 .000 

Extrapolated Time - Level 2 Trial 3 250206.597 1 250206.597 19.485 .000 

Error Extrapolated Length - Level 2 Trial 3 660024.590 58 11379.734   

Extrapolated Time - Level 2 Trial 3 744760.305 58 12840.695   

Total Extrapolated Length - Level 2 Trial 3 2800556.324 60    

Extrapolated Time - Level 2 Trial 3 2091862.084 60    

Corrected Total Extrapolated Length - Level 2 Trial 3 916815.594 59    

Extrapolated Time - Level 2 Trial 3 994966.903 59    

a. R Squared = .280 (Adjusted R Squared = .268) 

b. R Squared = .251 (Adjusted R Squared = .239) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 3 Static 240.463 19.160 202.111 278.815 

Dynamic 109.549 19.809 69.897 149.202 

Extrapolated Time - Level 2 Trial 3 Static 197.668 20.352 156.928 238.408 

Dynamic 68.443 21.042 26.322 110.564 

 

GLM h1_exLen h1_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
 
General Linear Model 
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[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .861 176.035a 2.000 57.000 .000 

Wilks' Lambda .139 176.035a 2.000 57.000 .000 

Hotelling's Trace 6.177 176.035a 2.000 57.000 .000 

Roy's Largest Root 6.177 176.035a 2.000 57.000 .000 

i_face Pillai's Trace .015 .442a 2.000 57.000 .645 

Wilks' Lambda .985 .442a 2.000 57.000 .645 

Hotelling's Trace .016 .442a 2.000 57.000 .645 

Roy's Largest Root .016 .442a 2.000 57.000 .645 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 3 Trial 1 3720.974a 1 3720.974 .092 .762 

Extrapolated Time - Level 3 Trial 1 22508.760b 1 22508.760 .611 .437 

Intercept Extrapolated Length - Level 3 Trial 1 1.348E7 1 1.348E7 334.472 .000 

Extrapolated Time - Level 3 Trial 1 1.135E7 1 1.135E7 308.314 .000 

i_face Extrapolated Length - Level 3 Trial 1 3720.974 1 3720.974 .092 .762 

Extrapolated Time - Level 3 Trial 1 22508.760 1 22508.760 .611 .437 

Error Extrapolated Length - Level 3 Trial 1 2337124.687 58 40295.253   

Extrapolated Time - Level 3 Trial 1 2134994.003 58 36810.241   
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Total Extrapolated Length - Level 3 Trial 1 1.585E7 60    

Extrapolated Time - Level 3 Trial 1 1.355E7 60    

Corrected Total Extrapolated Length - Level 3 Trial 1 2340845.662 59    

Extrapolated Time - Level 3 Trial 1 2157502.763 59    

a. R Squared = .002 (Adjusted R Squared = -.016) 

b. R Squared = .010 (Adjusted R Squared = -.007) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 3 Trial 1 Static 482.091 36.053 409.923 554.260 

Dynamic 466.332 37.276 391.717 540.948 

Extrapolated Time - Level 3 Trial 1 Static 454.537 34.459 385.560 523.515 

Dynamic 415.778 35.627 344.462 487.095 

 

GLM h2_exLen h2_exTi BY i_face   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face)   

/CRITERIA=ALPHA(.05)   /DESIGN= i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .815 125.577a 2.000 57.000 .000 

Wilks' Lambda .185 125.577a 2.000 57.000 .000 
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Hotelling's Trace 4.406 125.577a 2.000 57.000 .000 

Roy's Largest Root 4.406 125.577a 2.000 57.000 .000 

i_face Pillai's Trace .108 3.436a 2.000 57.000 .039 

Wilks' Lambda .892 3.436a 2.000 57.000 .039 

Hotelling's Trace .121 3.436a 2.000 57.000 .039 

Roy's Largest Root .121 3.436a 2.000 57.000 .039 

a. Exact statistic 

b. Design: Intercept + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 3 Trial 2 356323.969a 1 356323.969 6.475 .014 

Extrapolated Time - Level 3 Trial 2 117892.935b 1 117892.935 2.720 .104 

Intercept Extrapolated Length - Level 3 Trial 2 1.361E7 1 1.361E7 247.375 .000 

Extrapolated Time - Level 3 Trial 2 9050452.420 1 9050452.420 208.830 .000 

i_face Extrapolated Length - Level 3 Trial 2 356323.969 1 356323.969 6.475 .014 

Extrapolated Time - Level 3 Trial 2 117892.935 1 117892.935 2.720 .104 

Error Extrapolated Length - Level 3 Trial 2 3191748.755 58 55030.151   

Extrapolated Time - Level 3 Trial 2 2513649.236 58 43338.780   

Total Extrapolated Length - Level 3 Trial 2 1.732E7 60    

Extrapolated Time - Level 3 Trial 2 1.176E7 60    

Corrected Total Extrapolated Length - Level 3 Trial 2 3548072.724 59    

Extrapolated Time - Level 3 Trial 2 2631542.171 59    

a. R Squared = .100 (Adjusted R Squared = .085) 

b. R Squared = .045 (Adjusted R Squared = .028) 

 
Estimated Marginal Means 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 3 Trial 2 Static 553.695 42.133 469.357 638.033 
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Dynamic 399.483 43.561 312.286 486.681 

Extrapolated Time - Level 3 Trial 2 Static 432.950 37.390 358.105 507.795 

Dynamic 344.247 38.658 266.864 421.629 

 

GLM m1_exLen m1_exTi BY i_face WITH sp_test   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   

/EMMEANS=TABLES(i_face) WITH(sp_test=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=sp_test i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .453 23.184a 2.000 56.000 .000 

Wilks' Lambda .547 23.184a 2.000 56.000 .000 

Hotelling's Trace .828 23.184a 2.000 56.000 .000 

Roy's Largest Root .828 23.184a 2.000 56.000 .000 

sp_test Pillai's Trace .134 4.326a 2.000 56.000 .018 

Wilks' Lambda .866 4.326a 2.000 56.000 .018 

Hotelling's Trace .154 4.326a 2.000 56.000 .018 

Roy's Largest Root .154 4.326a 2.000 56.000 .018 

i_face Pillai's Trace .266 10.145a 2.000 56.000 .000 

Wilks' Lambda .734 10.145a 2.000 56.000 .000 

Hotelling's Trace .362 10.145a 2.000 56.000 .000 

Roy's Largest Root .362 10.145a 2.000 56.000 .000 
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a. Exact statistic 

b. Design: Intercept + sp_test + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 1 482706.261a 2 241353.131 11.781 .000 

Extrapolated Time - Level 2 Trial 1 380055.248b 2 190027.624 10.260 .000 

Intercept Extrapolated Length - Level 2 Trial 1 664303.985 1 664303.985 32.428 .000 

Extrapolated Time - Level 2 Trial 1 870181.095 1 870181.095 46.983 .000 

sp_test Extrapolated Length - Level 2 Trial 1 21126.993 1 21126.993 1.031 .314 

Extrapolated Time - Level 2 Trial 1 116982.486 1 116982.486 6.316 .015 

i_face Extrapolated Length - Level 2 Trial 1 419693.046 1 419693.046 20.487 .000 

Extrapolated Time - Level 2 Trial 1 204596.716 1 204596.716 11.047 .002 

Error Extrapolated Length - Level 2 Trial 1 1167689.600 57 20485.782   

Extrapolated Time - Level 2 Trial 1 1055709.046 57 18521.211   

Total Extrapolated Length - Level 2 Trial 1 5779616.792 60    

Extrapolated Time - Level 2 Trial 1 4773723.887 60    

Corrected Total Extrapolated Length - Level 2 Trial 1 1650395.861 59    

Extrapolated Time - Level 2 Trial 1 1435764.294 59    

a. R Squared = .292 (Adjusted R Squared = .268) 

b. R Squared = .265 (Adjusted R Squared = .239) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 1 Static 344.261a 25.866 292.466 396.056 

Dynamic 174.762a 26.754 121.188 228.336 

Extrapolated Time - Level 2 Trial 1 Static 293.066a 24.594 243.817 342.315 

Dynamic 174.721a 25.439 123.780 225.661 

a. Covariates appearing in the model are evaluated at the following values: Spatial Ability Score = 91.5500. 
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GLM m2_exLen m2_exTi BY i_face WITH sp_test   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   

/EMMEANS=TABLES(i_face) WITH(sp_test=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=sp_test i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .442 22.162a 2.000 56.000 .000 

Wilks' Lambda .558 22.162a 2.000 56.000 .000 

Hotelling's Trace .792 22.162a 2.000 56.000 .000 

Roy's Largest Root .792 22.162a 2.000 56.000 .000 

sp_test Pillai's Trace .178 6.052a 2.000 56.000 .004 

Wilks' Lambda .822 6.052a 2.000 56.000 .004 

Hotelling's Trace .216 6.052a 2.000 56.000 .004 

Roy's Largest Root .216 6.052a 2.000 56.000 .004 

i_face Pillai's Trace .184 6.330a 2.000 56.000 .003 

Wilks' Lambda .816 6.330a 2.000 56.000 .003 

Hotelling's Trace .226 6.330a 2.000 56.000 .003 

Roy's Largest Root .226 6.330a 2.000 56.000 .003 

a. Exact statistic 

b. Design: Intercept + sp_test + i_face 
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Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum of 

Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 2 345281.978a 2 172640.989 7.984 .001 

Extrapolated Time - Level 2 Trial 2 357792.449b 2 178896.225 8.273 .001 

Intercept Extrapolated Length - Level 2 Trial 2 558121.850 1 558121.850 25.811 .000 

Extrapolated Time - Level 2 Trial 2 965373.440 1 965373.440 44.644 .000 

sp_test Extrapolated Length - Level 2 Trial 2 38161.290 1 38161.290 1.765 .189 

Extrapolated Time - Level 2 Trial 2 232098.470 1 232098.470 10.734 .002 

i_face Extrapolated Length - Level 2 Trial 2 266557.145 1 266557.145 12.327 .001 

Extrapolated Time - Level 2 Trial 2 74985.402 1 74985.402 3.468 .068 

Error Extrapolated Length - Level 2 Trial 2 1232518.841 57 21623.138   

Extrapolated Time - Level 2 Trial 2 1232553.462 57 21623.745   

Total Extrapolated Length - Level 2 Trial 2 4423997.654 60    

Extrapolated Time - Level 2 Trial 2 4084511.893 60    

Corrected Total Extrapolated Length - Level 2 Trial 2 1577800.819 59    

Extrapolated Time - Level 2 Trial 2 1590345.911 59    

a. R Squared = .219 (Adjusted R Squared = .191) 

b. R Squared = .225 (Adjusted R Squared = .198) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 2 Static 283.089a 26.574 229.876 336.303 

Dynamic 148.007a 27.487 92.966 203.048 

Extrapolated Time - Level 2 Trial 2 Static 238.515a 26.574 185.300 291.729 

Dynamic 166.869a 27.487 111.827 221.911 

a. Covariates appearing in the model are evaluated at the following values: Spatial Ability Score = 91.5500. 

 

GLM m3_exLen m3_exTi BY i_face WITH sp_test   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   
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/EMMEANS=TABLES(i_face) WITH(sp_test=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=sp_test i_face. 

 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 31 

2 Dynamic 29 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .397 18.461a 2.000 56.000 .000 

Wilks' Lambda .603 18.461a 2.000 56.000 .000 

Hotelling's Trace .659 18.461a 2.000 56.000 .000 

Roy's Largest Root .659 18.461a 2.000 56.000 .000 

sp_test Pillai's Trace .059 1.771a 2.000 56.000 .179 

Wilks' Lambda .941 1.771a 2.000 56.000 .179 

Hotelling's Trace .063 1.771a 2.000 56.000 .179 

Roy's Largest Root .063 1.771a 2.000 56.000 .179 

i_face Pillai's Trace .263 9.991a 2.000 56.000 .000 

Wilks' Lambda .737 9.991a 2.000 56.000 .000 

Hotelling's Trace .357 9.991a 2.000 56.000 .000 

Roy's Largest Root .357 9.991a 2.000 56.000 .000 

a. Exact statistic 

b. Design: Intercept + sp_test + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 3 291689.132a 2 145844.566 13.298 .000 
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Extrapolated Time - Level 2 Trial 3 293835.661b 2 146917.830 11.944 .000 

Intercept Extrapolated Length - Level 2 Trial 3 401187.178 1 401187.178 36.581 .000 

Extrapolated Time - Level 2 Trial 3 296459.633 1 296459.633 24.101 .000 

sp_test Extrapolated Length - Level 2 Trial 3 34898.129 1 34898.129 3.182 .080 

Extrapolated Time - Level 2 Trial 3 43629.063 1 43629.063 3.547 .065 

i_face Extrapolated Length - Level 2 Trial 3 221653.876 1 221653.876 20.211 .000 

Extrapolated Time - Level 2 Trial 3 212385.711 1 212385.711 17.266 .000 

Error Extrapolated Length - Level 2 Trial 3 625126.462 57 10967.131   

Extrapolated Time - Level 2 Trial 3 701131.242 57 12300.548   

Total Extrapolated Length - Level 2 Trial 3 2800556.324 60    

Extrapolated Time - Level 2 Trial 3 2091862.084 60    

Corrected Total Extrapolated Length - Level 2 Trial 3 916815.594 59    

Extrapolated Time - Level 2 Trial 3 994966.903 59    

a. R Squared = .318 (Adjusted R Squared = .294) 

b. R Squared = .295 (Adjusted R Squared = .271) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 3 Static 236.725a 18.925 198.828 274.623 

Dynamic 113.545a 19.575 74.346 152.744 

Extrapolated Time - Level 2 Trial 3 Static 193.488a 20.043 153.353 233.624 

Dynamic 72.911a 20.731 31.398 114.425 

a. Covariates appearing in the model are evaluated at the following values: Spatial Ability Score = 91.5500. 

 

GLM m1_exLen m1_exTi BY i_face WITH comp_g   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   

/EMMEANS=TABLES(i_face) WITH(comp_g=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=comp_g i_face. 
 
General Linear Model 
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[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 29 

2 Dynamic 27 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .442 20.603a 2.000 52.000 .000 

Wilks' Lambda .558 20.603a 2.000 52.000 .000 

Hotelling's Trace .792 20.603a 2.000 52.000 .000 

Roy's Largest Root .792 20.603a 2.000 52.000 .000 

comp_g Pillai's Trace .160 4.946a 2.000 52.000 .011 

Wilks' Lambda .840 4.946a 2.000 52.000 .011 

Hotelling's Trace .190 4.946a 2.000 52.000 .011 

Roy's Largest Root .190 4.946a 2.000 52.000 .011 

i_face Pillai's Trace .279 10.077a 2.000 52.000 .000 

Wilks' Lambda .721 10.077a 2.000 52.000 .000 

Hotelling's Trace .388 10.077a 2.000 52.000 .000 

Roy's Largest Root .388 10.077a 2.000 52.000 .000 

a. Exact statistic 

b. Design: Intercept + comp_g + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 1 466382.653a 2 233191.326 11.174 .000 

Extrapolated Time - Level 2 Trial 1 352673.029b 2 176336.515 9.623 .000 

Intercept Extrapolated Length - Level 2 Trial 1 538506.581 1 538506.581 25.805 .000 

Extrapolated Time - Level 2 Trial 1 769392.920 1 769392.920 41.986 .000 

comp_g Extrapolated Length - Level 2 Trial 1 8290.201 1 8290.201 .397 .531 
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Extrapolated Time - Level 2 Trial 1 104796.006 1 104796.006 5.719 .020 

i_face Extrapolated Length - Level 2 Trial 1 419845.512 1 419845.512 20.119 .000 

Extrapolated Time - Level 2 Trial 1 183814.050 1 183814.050 10.031 .003 

Error Extrapolated Length - Level 2 Trial 1 1106015.603 53 20868.219   

Extrapolated Time - Level 2 Trial 1 971222.506 53 18324.953   

Total Extrapolated Length - Level 2 Trial 1 5299430.654 56    

Extrapolated Time - Level 2 Trial 1 4221395.203 56    

Corrected Total Extrapolated Length - Level 2 Trial 1 1572398.256 55    

Extrapolated Time - Level 2 Trial 1 1323895.536 55    

a. R Squared = .297 (Adjusted R Squared = .270) 

b. R Squared = .266 (Adjusted R Squared = .239) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 1 Static 343.022a 27.057 288.751 397.292 

Dynamic 166.641a 28.059 110.361 222.921 

Extrapolated Time - Level 2 Trial 1 Static 283.736a 25.355 232.880 334.592 

Dynamic 167.029a 26.294 114.290 219.768 

a. Covariates appearing in the model are evaluated at the following values: Composite Game Experience Score = 11.9580. 

 

 

GLM m2_exLen m2_exTi BY i_face WITH comp_g   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   

/EMMEANS=TABLES(i_face) WITH(comp_g=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=comp_g i_face. 
 
 
General Linear Model 

 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 
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Between-Subjects Factors  

  Value Label N 

Interface 1 Static 29 

2 Dynamic 27 

 

Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .345 13.705a 2.000 52.000 .000 

Wilks' Lambda .655 13.705a 2.000 52.000 .000 

Hotelling's Trace .527 13.705a 2.000 52.000 .000 

Roy's Largest Root .527 13.705a 2.000 52.000 .000 

comp_g Pillai's Trace .097 2.795a 2.000 52.000 .070 

Wilks' Lambda .903 2.795a 2.000 52.000 .070 

Hotelling's Trace .108 2.795a 2.000 52.000 .070 

Roy's Largest Root .108 2.795a 2.000 52.000 .070 

i_face Pillai's Trace .180 5.712a 2.000 52.000 .006 

Wilks' Lambda .820 5.712a 2.000 52.000 .006 

Hotelling's Trace .220 5.712a 2.000 52.000 .006 

Roy's Largest Root .220 5.712a 2.000 52.000 .006 

a. Exact statistic 

b. Design: Intercept + comp_g + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 2 296009.360a 2 148004.680 6.463 .003 

Extrapolated Time - Level 2 Trial 2 238338.103b 2 119169.051 5.107 .009 

Intercept Extrapolated Length - Level 2 Trial 2 402665.626 1 402665.626 17.584 .000 

Extrapolated Time - Level 2 Trial 2 639279.655 1 639279.655 27.398 .000 

comp_g Extrapolated Length - Level 2 Trial 2 7795.129 1 7795.129 .340 .562 

Extrapolated Time - Level 2 Trial 2 98951.850 1 98951.850 4.241 .044 

i_face Extrapolated Length - Level 2 Trial 2 261078.098 1 261078.098 11.401 .001 
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Extrapolated Time - Level 2 Trial 2 94926.969 1 94926.969 4.068 .049 

Error Extrapolated Length - Level 2 Trial 2 1213643.457 53 22898.933   

Extrapolated Time - Level 2 Trial 2 1236659.397 53 23333.196   

Total Extrapolated Length - Level 2 Trial 2 4203299.938 56    

Extrapolated Time - Level 2 Trial 2 3709586.372 56    

Corrected Total Extrapolated Length - Level 2 Trial 2 1509652.817 55    

Extrapolated Time - Level 2 Trial 2 1474997.500 55    

a. R Squared = .196 (Adjusted R Squared = .166) 

b. R Squared = .162 (Adjusted R Squared = .130) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 2 Static 286.380a 28.343 229.530 343.229 

Dynamic 147.291a 29.393 88.336 206.246 

Extrapolated Time - Level 2 Trial 2 Static 240.195a 28.611 182.809 297.581 

Dynamic 156.326a 29.670 96.815 215.837 

a. Covariates appearing in the model are evaluated at the following values: Composite Game Experience Score = 11.9580. 

 

GLM m3_exLen m3_exTi BY i_face WITH comp_g   

/METHOD=SSTYPE(3)   /INTERCEPT=INCLUDE   

/EMMEANS=TABLES(i_face) WITH(comp_g=MEAN)   

/CRITERIA=ALPHA(.05)   /DESIGN=comp_g i_face. 
 
General Linear Model 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface 1 Static 29 

2 Dynamic 27 
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Multivariate Tests b 

Effect Value F Hypothesis df Error df Sig. 

Intercept Pillai's Trace .360 14.600a 2.000 52.000 .000 

Wilks' Lambda .640 14.600a 2.000 52.000 .000 

Hotelling's Trace .562 14.600a 2.000 52.000 .000 

Roy's Largest Root .562 14.600a 2.000 52.000 .000 

comp_g Pillai's Trace .029 .785a 2.000 52.000 .461 

Wilks' Lambda .971 .785a 2.000 52.000 .461 

Hotelling's Trace .030 .785a 2.000 52.000 .461 

Roy's Largest Root .030 .785a 2.000 52.000 .461 

i_face Pillai's Trace .270 9.599a 2.000 52.000 .000 

Wilks' Lambda .730 9.599a 2.000 52.000 .000 

Hotelling's Trace .369 9.599a 2.000 52.000 .000 

Roy's Largest Root .369 9.599a 2.000 52.000 .000 

a. Exact statistic 

b. Design: Intercept + comp_g + i_face 

 

Tests of Between-Subjects Effects  

Source Dependent Variable 

Type III Sum 

of Squares df Mean Square F Sig. 

Corrected Model Extrapolated Length - Level 2 Trial 3 236592.404a 2 118296.202 11.561 .000 

Extrapolated Time - Level 2 Trial 3 257344.263b 2 128672.131 10.506 .000 

Intercept Extrapolated Length - Level 2 Trial 3 290175.029 1 290175.029 28.359 .000 

Extrapolated Time - Level 2 Trial 3 212417.395 1 212417.395 17.344 .000 

comp_g Extrapolated Length - Level 2 Trial 3 11851.705 1 11851.705 1.158 .287 

Extrapolated Time - Level 2 Trial 3 19507.277 1 19507.277 1.593 .212 

i_face Extrapolated Length - Level 2 Trial 3 198411.530 1 198411.530 19.391 .000 

Extrapolated Time - Level 2 Trial 3 205268.180 1 205268.180 16.760 .000 

Error Extrapolated Length - Level 2 Trial 3 542311.354 53 10232.290   

Extrapolated Time - Level 2 Trial 3 649104.492 53 12247.255   

Total Extrapolated Length - Level 2 Trial 3 2469183.627 56    
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Extrapolated Time - Level 2 Trial 3 1879883.067 56    

Corrected Total Extrapolated Length - Level 2 Trial 3 778903.758 55    

Extrapolated Time - Level 2 Trial 3 906448.755 55    

a. R Squared = .304 (Adjusted R Squared = .277) 

b. R Squared = .284 (Adjusted R Squared = .257) 

 
Estimated Marginal Means 

 

Interface  

Dependent Variable Interface Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Extrapolated Length - Level 2 Trial 3 Static 232.195a 18.947 194.193 270.197 

Dynamic 110.943a 19.648 71.534 150.352 

Extrapolated Time - Level 2 Trial 3 Static 191.306a 20.728 149.730 232.882 

Dynamic 67.977a 21.496 24.861 111.092 

a. Covariates appearing in the model are evaluated at the following values: Composite Game Experience Score = 11.9580. 

 

CROSSTABS   /TABLES=m1_comp BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
 
Crosstabs 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Level 2 Trial 1 Completed * Interface Crosstabulati on  

   Interface 

Total    Static Dynamic 

Level 2 Trial 1 Completed Yes Count 14 24 38 

% within Level 2 Trial 1 Completed 36.8% 63.2% 100.0% 

% within Interface 45.2% 82.8% 63.3% 

% of Total 23.3% 40.0% 63.3% 

No Count 17 5 22 

% within Level 2 Trial 1 Completed 77.3% 22.7% 100.0% 
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% within Interface 54.8% 17.2% 36.7% 

% of Total 28.3% 8.3% 36.7% 

Total Count 31 29 60 

% within Level 2 Trial 1 Completed 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 

 

 

Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square 9.121a 1 .003   

Continuity Correctionb 7.573 1 .006   

Likelihood Ratio 9.512 1 .002   

Fisher's Exact Test    .003 .003 

Linear-by-Linear Association 8.968 1 .003   

N of Valid Cases 60     

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 10.63. 

b. Computed only for a 2x2 table 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi -.390 .003 

Cramer's V .390 .003 

N of Valid Cases 60  

 

CROSSTABS   /TABLES=m2_comp BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
 
Crosstabs 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 
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Level 2 Trial 2 Completed * Interface Crosstabulati on  

   Interface 

Total    Static Dynamic 

Level 2 Trial 2 Completed Yes Count 14 22 36 

% within Level 2 Trial 2 Completed 38.9% 61.1% 100.0% 

% within Interface 45.2% 75.9% 60.0% 

% of Total 23.3% 36.7% 60.0% 

No Count 17 7 24 

% within Level 2 Trial 2 Completed 70.8% 29.2% 100.0% 

% within Interface 54.8% 24.1% 40.0% 

% of Total 28.3% 11.7% 40.0% 

Total Count 31 29 60 

% within Level 2 Trial 2 Completed 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 

 

 

Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square 5.884a 1 .015   

Continuity Correctionb 4.675 1 .031   

Likelihood Ratio 6.023 1 .014   

Fisher's Exact Test    .019 .015 

Linear-by-Linear Association 5.786 1 .016   

N of Valid Cases 60     

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 11.60. 

b. Computed only for a 2x2 table 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi -.313 .015 

Cramer's V .313 .015 
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Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi -.313 .015 

Cramer's V .313 .015 

N of Valid Cases 60  

 

 

CROSSTABS   /TABLES=m3_comp BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
 
 
Crosstabs 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Level 2 Trial 3 Completed * Interface Crosstabulati on  

   Interface 

Total    Static Dynamic 

Level 2 Trial 3 Completed Yes Count 18 26 44 

% within Level 2 Trial 3 Completed 40.9% 59.1% 100.0% 

% within Interface 58.1% 89.7% 73.3% 

% of Total 30.0% 43.3% 73.3% 

No Count 13 3 16 

% within Level 2 Trial 3 Completed 81.3% 18.8% 100.0% 

% within Interface 41.9% 10.3% 26.7% 

% of Total 21.7% 5.0% 26.7% 

Total Count 31 29 60 

% within Level 2 Trial 3 Completed 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 
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Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) Exact Sig. (2-sided) Exact Sig. (1-sided) 

Pearson Chi-Square 7.646a 1 .006   

Continuity Correctionb 6.116 1 .013   

Likelihood Ratio 8.134 1 .004   

Fisher's Exact Test    .008 .006 

Linear-by-Linear Association 7.519 1 .006   

N of Valid Cases 60     

a. 0 cells (.0%) have expected count less than 5. The minimum expected count is 7.73. 

b. Computed only for a 2x2 table 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi -.357 .006 

Cramer's V .357 .006 

N of Valid Cases 60  

 

CROSSTABS   /TABLES=m1_p_cat BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
 
Crosstabs 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Route Robustness L2T1 * Interface Crosstabulation  

   Interface 

Total    Static Dynamic 

Route Robustness L2T1 Very Low Count 2 1 3 

% within Route Robustness L2T1 66.7% 33.3% 100.0% 

% within Interface 6.5% 3.4% 5.0% 

% of Total 3.3% 1.7% 5.0% 

Low Count 12 4 16 
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% within Route Robustness L2T1 75.0% 25.0% 100.0% 

% within Interface 38.7% 13.8% 26.7% 

% of Total 20.0% 6.7% 26.7% 

Normal Count 3 0 3 

% within Route Robustness L2T1 100.0% .0% 100.0% 

% within Interface 9.7% .0% 5.0% 

% of Total 5.0% .0% 5.0% 

High Count 14 24 38 

% within Route Robustness L2T1 36.8% 63.2% 100.0% 

% within Interface 45.2% 82.8% 63.3% 

% of Total 23.3% 40.0% 63.3% 

Total Count 31 29 60 

% within Route Robustness L2T1 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 

 

Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 9.909a 3 .019 

Likelihood Ratio 11.281 3 .010 

Linear-by-Linear Association 6.723 1 .010 

N of Valid Cases 60   

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is 1.45. 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi .406 .019 

Cramer's V .406 .019 

N of Valid Cases 60  

 
CROSSTABS   /TABLES=m2_p_cat BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
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Crosstabs 

 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Route Robustness L2T2 * Interface Crosstabulation  

   Interface 

Total    Static Dynamic 

Route Robustness L2T2 Very Low Count 0 1 1 

% within Route Robustness L2T2 .0% 100.0% 100.0% 

% within Interface .0% 3.4% 1.7% 

% of Total .0% 1.7% 1.7% 

Low Count 14 3 17 

% within Route Robustness L2T2 82.4% 17.6% 100.0% 

% within Interface 45.2% 10.3% 28.3% 

% of Total 23.3% 5.0% 28.3% 

Normal Count 3 3 6 

% within Route Robustness L2T2 50.0% 50.0% 100.0% 

% within Interface 9.7% 10.3% 10.0% 

% of Total 5.0% 5.0% 10.0% 

High Count 14 22 36 

% within Route Robustness L2T2 38.9% 61.1% 100.0% 

% within Interface 45.2% 75.9% 60.0% 

% of Total 23.3% 36.7% 60.0% 

Total Count 31 29 60 

% within Route Robustness L2T2 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 
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Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 9.840a 3 .020 

Likelihood Ratio 10.835 3 .013 

Linear-by-Linear Association 5.821 1 .016 

N of Valid Cases 60   

a. 4 cells (50.0%) have expected count less than 5. The minimum expected count is .48. 

 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi .405 .020 

Cramer's V .405 .020 

N of Valid Cases 60  

 
 

CROSSTABS   /TABLES=m3_p_cat BY i_face   /FORMAT=AVALUE 

TABLES   /STATISTICS=CHISQ PHI   /CELLS=COUNT ROW COLUMN 

TOTAL   /COUNT ROUND CELL. 
 
Crosstabs 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

4\spanav_data_refined.sav 

 

Route Robustness L2T3 * Interface Crosstabulation  

   Interface 

Total    Static Dynamic 

Route Robustness L2T3 Low Count 11 3 14 

% within Route Robustness L2T3 78.6% 21.4% 100.0% 

% within Interface 35.5% 10.3% 23.3% 

% of Total 18.3% 5.0% 23.3% 

Normal Count 2 0 2 

% within Route Robustness L2T3 100.0% .0% 100.0% 
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% within Interface 6.5% .0% 3.3% 

% of Total 3.3% .0% 3.3% 

High Count 18 26 44 

% within Route Robustness L2T3 40.9% 59.1% 100.0% 

% within Interface 58.1% 89.7% 73.3% 

% of Total 30.0% 43.3% 73.3% 

Total Count 31 29 60 

% within Route Robustness L2T3 51.7% 48.3% 100.0% 

% within Interface 100.0% 100.0% 100.0% 

% of Total 51.7% 48.3% 100.0% 

 

Chi-Square Tests  

 Value df Asymp. Sig. (2-sided) 

Pearson Chi-Square 7.968a 2 .019 

Likelihood Ratio 9.028 2 .011 

Linear-by-Linear Association 6.616 1 .010 

N of Valid Cases 60   

a. 2 cells (33.3%) have expected count less than 5. The minimum expected count is .97. 

 

Symmetric Measures  

  Value Approx. Sig. 

Nominal by Nominal Phi .364 .019 

Cramer's V .364 .019 

N of Valid Cases 60  
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Analysis Data – Experiment 3 

 

GET   FILE='E:\PhD Work\Thesis\Appendices\Chap 

5\field_acmd.sav'. MEANS TABLES=t_time t_errors test_s BY i_face   

/CELLS MEAN COUNT STDDEV. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 5\field_acmd.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

Task time  * Interface type 20 100.0% 0 .0% 20 100.0% 

Task errors  * Interface type 20 100.0% 0 .0% 20 100.0% 

Test score  * Interface type 20 100.0% 0 .0% 20 100.0% 

 

Report  

Interface type Task time Task errors Test score 

Static Mean 322.14 7.71 7.0000 

N 7 7 7 

Std. Deviation 59.303 1.380 1.00000 

Video Mean 239.86 3.00 6.1429 

N 7 7 7 

Std. Deviation 28.121 1.732 .89974 

Interactive Mean 150.00 1.33 7.0000 

N 6 6 6 

Std. Deviation 56.054 1.033 .63246 

Total Mean 241.70 4.15 6.7000 

201 



Appendix D  

 

202 

 

N 20 20 20 

Std. Deviation 85.017 3.083 .92338 

 
ONEWAY t_time t_errors BY i_face   /MISSING ANALYSIS   

/POSTHOC=TUKEY ALPHA(0.05). 
 
Oneway 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 5\field_acmd.sav 

 

ANOVA  

  Sum of Squares df Mean Square F Sig. 

Task time Between Groups 95774.486 2 47887.243 19.590 .000 

Within Groups 41555.714 17 2444.454   

Total 137330.200 19    

Task errors Between Groups 145.788 2 72.894 35.648 .000 

Within Groups 34.762 17 2.045   

Total 180.550 19    

 
Post Hoc Tests 

 

Multiple Comparisons  

Tukey HSD 

Dependent 

Variable 

(I) Interface 

type 

(J) Interface 

type 

Mean Difference (I-

J) Std. Error Sig. 

95% Confidence Interval 

Lower Bound Upper Bound 

Task time Static Video 82.286* 26.428 .016 14.49 150.08 

Interactive 172.143* 27.507 .000 101.58 242.71 

Video Static -82.286* 26.428 .016 -150.08 -14.49 

Interactive 89.857* 27.507 .012 19.29 160.42 

Interactive Static -172.143* 27.507 .000 -242.71 -101.58 

Video -89.857* 27.507 .012 -160.42 -19.29 

Task errors Static Video 4.714* .764 .000 2.75 6.68 

Interactive 6.381* .796 .000 4.34 8.42 

Video Static -4.714* .764 .000 -6.68 -2.75 
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Interactive 1.667 .796 .121 -.37 3.71 

Interactive Static -6.381* .796 .000 -8.42 -4.34 

Video -1.667 .796 .121 -3.71 .37 

*. The mean difference is significant at the 0.05 level. 

 

UNIANOVA t_time BY i_face WITH test_s   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face) 

WITH(test_s=MEAN)   /PRINT=ETASQ HOMOGENEITY   

/CRITERIA=ALPHA(.05)   /DESIGN=test_s i_face. 
 
Univariate Analysis of Variance 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 5\field_acmd.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface type 1 Static 7 

2 Video 7 

3 Interactive 6 

 

Levene's Test of Equality of Error Variances a 

Dependent Variable:Task time 

F df1 df2 Sig. 

.818 2 17 .458 

Tests the null hypothesis that the error variance of the dependent 

variable is equal across groups. 

a. Design: Intercept + test_s + i_face 

 

Tests of Between-Subjects Effects  

Dependent Variable:Task time 

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model 95994.143a 3 31998.048 12.386 .000 .699 

Intercept 12349.999 1 12349.999 4.780 .044 .230 

test_s 219.657 1 219.657 .085 .774 .005 
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i_face 95739.721 2 47869.860 18.529 .000 .698 

Error 41336.057 16 2583.504    

Total 1305708.000 20     

Corrected Total 137330.200 19     

a. R Squared = .699 (Adjusted R Squared = .643) 

 
Estimated Marginal Means 

Interface type  

Dependent Variable:Task time 

Interface type Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Static 320.903a 19.676 279.191 362.615 

Video 242.160a 20.771 198.127 286.193 

Interactive 148.760a 21.182 103.857 193.663 

a. Covariates appearing in the model are evaluated at the following values: Test score = 6.7000. 

 

UNIANOVA t_errors BY i_face WITH test_s   /METHOD=SSTYPE(3)   

/INTERCEPT=INCLUDE   /EMMEANS=TABLES(i_face) 

WITH(test_s=MEAN)   /PRINT=ETASQ HOMOGENEITY   

/CRITERIA=ALPHA(.05)   /DESIGN=test_s i_face. 
 
Univariate Analysis of Variance 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 5\field_acmd.sav 

 

Between-Subjects Factors  

  Value Label N 

Interface type 1 Static 7 

2 Video 7 

3 Interactive 6 

 

Levene's Test of Equality of Error Variances a 

Dependent Variable:Task errors 

F df1 df2 Sig. 

1.714 2 17 .210 
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Tests the null hypothesis that the error variance of the dependent 

variable is equal across groups. 

a. Design: Intercept + test_s + i_face 

 

Tests of Between-Subjects Effects  

Dependent Variable:Task errors 

Source 

Type III Sum of 

Squares df Mean Square F Sig. Partial Eta Squared 

Corrected Model 145.866a 3 48.622 22.430 .000 .808 

Intercept 3.432 1 3.432 1.583 .226 .090 

test_s .078 1 .078 .036 .852 .002 

i_face 142.013 2 71.007 32.756 .000 .804 

Error 34.684 16 2.168    

Total 525.000 20     

Corrected Total 180.550 19     

a. R Squared = .808 (Adjusted R Squared = .772) 

 
Estimated Marginal Means 

 

Interface type  

Dependent Variable:Task errors 

Interface type Mean Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

Static 7.691a .570 6.483 8.899 

Video 3.043a .602 1.768 4.319 

Interactive 1.310a .614 .009 2.611 

a. Covariates appearing in the model are evaluated at the following values: Test score = 6.7000. 
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Statistical Modelling Outputs – Experiment 4 (SPSSTM version 17)  

 

GET   FILE='E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav'. MEANS TABLES=t_mid t_end BY 

i_face   /CELLS MEAN COUNT STDDEV. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

Time to Mid-point  * Interface Type 831 74.3% 287 25.7% 1118 100.0% 

Time to End-point  * Interface Type 801 71.6% 317 28.4% 1118 100.0% 

 

Report  

Interface Type Time to Mid-point Time to End-point 

Static - Data Mean 8.3846 10.8462 

N 13 13 

Std. Deviation 3.92722 3.97589 

Video - Data Mean 3.2759 4.9310 

N 29 29 

Std. Deviation 1.75044 1.73063 

Static - Model Mean 8.5583 10.5458 

N 12 12 

Std. Deviation 3.48104 3.60192 

Video - Model Mean 3.2021 5.3536 

N 29 29 

Std. Deviation .49124 .70333 

Static - Model (500) Mean 9.6933 10.8924 

N 248 218 



Appendix E  

 

208 

 

Std. Deviation 3.88884 3.35665 

Video - Model (500) Mean 2.8474 4.7969 

N 500 500 

Std. Deviation .44327 .60839 

Total Mean 5.0869 6.6652 

N 831 801 

Std. Deviation 3.88053 3.39957 

 

 
* Chart Builder. GGRAPH   /GRAPHDATASET NAME="graphdataset" 

VARIABLES=i_face comp COUNT()[name="COUNT"] 

MISSING=LISTWISE REPORTMISSING=NO   /GRAPHSPEC 

SOURCE=INLINE. BEGIN GPL   SOURCE: 

s=userSource(id("graphdataset"))   DATA: i_face=col(source(s), 

name("i_face"), unit.category())   DATA: comp=col(source(s), 

name("comp"), unit.category())   DATA: COUNT=col(source(s), 

name("COUNT"))   COORD: polar.theta(startAngle(0))   GUIDE: 

axis(dim(1), null())   GUIDE: axis(dim(3), label("Interface Type"), 

opposite())   GUIDE: legend(aesthetic(aesthetic.color.interior), 

label("Completed Rotation"))   SCALE: linear(dim(1), 

dataMinimum(), dataMaximum())   SCALE: cat(dim(3), include("1", 

"2", "4", "5", "6", "7"))   SCALE: 

cat(aesthetic(aesthetic.color.interior), include("1", "2"))   ELEMENT: 

interval.stack(position(summary.percent(COUNT*1*i_face))), 

color.interior(comp)) END GPL. 
 
GGraph 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 
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* Chart Builder. GGRAPH   /GRAPHDATASET NAME="graphdataset" 

VARIABLES=i_face t_conf COUNT()[name="COUNT"] 

MISSING=LISTWISE REPORTMISSING=NO   /GRAPHSPEC 

SOURCE=INLINE. BEGIN GPL   SOURCE: 

s=userSource(id("graphdataset"))   DATA: i_face=col(source(s), 

name("i_face"), unit.category())   DATA: t_conf=col(source(s), 

name("t_conf"), unit.category())   DATA: COUNT=col(source(s), 

name("COUNT"))   COORD: polar.theta(startAngle(0))   GUIDE: 

axis(dim(1), null())   GUIDE: axis(dim(3), label("Interface Type"), 

opposite())   GUIDE: legend(aesthetic(aesthetic.color.interior), 

label("Conformity to Trajectory"))   SCALE: linear(dim(1), 

dataMinimum(), dataMaximum())   SCALE: cat(dim(3), include("1", 

"2", "4", "5", "6", "7"))   SCALE: 

cat(aesthetic(aesthetic.color.interior), include("21", "22"))   

ELEMENT: 

interval.stack(position(summary.percent(summary.percent(COUNT*

1*i_face, base.all()))), color.interior(t_conf)) END GPL. 
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GGraph 

 
 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 

 

 
 

 
 

T-TEST GROUPS=i_face(4 5)   /MISSING=ANALYSIS   

/VARIABLES=t_mid t_end   /CRITERIA=CI(.95). 

 
 
T-Test 

 
 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 
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Group Statistics  

 Interface Type N Mean Std. Deviation Std. Error Mean 

Time to Mid-point Static - Model 12 8.5583 3.48104 1.00489 

Video - Model 29 3.2021 .49124 .09122 

Time to End-point Static - Model 12 10.5458 3.60192 1.03979 

Video - Model 29 5.3536 .70333 .13061 

 

 

Independent Samples Test  

   
Time to Mid-point Time to End-point 

   
Equal variances 

assumed 

Equal variances 

not assumed 

Equal variances 

assumed 

Equal variances 

not assumed 

Levene's Test for Equality of 

Variances 

 
F 46.327 

 
40.793 

 

Sig. .000 
 

.000 
 

t-test for Equality of Means 
 

t 8.235 5.308 7.550 4.955 

df 39 11.182 39 11.349 

Sig. (2-tailed) .000 .000 .000 .000 

Mean Difference 5.35626 5.35626 5.19228 5.19228 

Std. Error Difference .65045 1.00902 .68773 1.04796 

95% Confidence Interval of 

the Difference 

Lower 4.04061 3.13982 3.80123 2.89436 

Upper 6.67192 7.57271 6.58334 7.49020 

 
 

T-TEST GROUPS=i_face(1 4)   /MISSING=ANALYSIS   

/VARIABLES=t_mid t_end   /CRITERIA=CI(.95). 

 
 
T-Test 

 
 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 
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Group Statistics  

 Interface Type N Mean Std. Deviation Std. Error Mean 

Time to Mid-point Static - Data 13 8.3846 3.92722 1.08922 

Static - Model 12 8.5583 3.48104 1.00489 

Time to End-point Static - Data 13 10.8462 3.97589 1.10271 

Static - Model 12 10.5458 3.60192 1.03979 

 

Independent Samples Test  

   
Time to Mid-point Time to End-point 

   
Equal variances 

assumed 

Equal variances 

not assumed 

Equal variances 

assumed 

Equal variances 

not assumed 

Levene's Test for Equality of 

Variances 

 
F .390 

 
.459 

 

Sig. .539 
 

.505 
 

t-test for Equality of Means 
 

t -.117 -.117 .197 .198 

df 23 22.969 23 22.995 

Sig. (2-tailed) .908 .908 .845 .845 

Mean Difference -.17372 -.17372 .30032 .30032 

Std. Error Difference 1.48940 1.48196 1.52187 1.51563 

95% Confidence Interval of 

the Difference 

Lower -3.25477 -3.23961 -2.84791 -2.83504 

Upper 2.90734 2.89217 3.44855 3.43568 

 
T-TEST GROUPS=i_face(2 5)   /MISSING=ANALYSIS   

/VARIABLES=t_mid t_end   /CRITERIA=CI(.95). 
 
T-Test 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 

6\combined_step_4_final.sav 

 

Group Statistics  

 Interface Type N Mean Std. Deviation Std. Error Mean 

Time to Mid-point Video - Data 29 3.2759 1.75044 .32505 

Video - Model 29 3.2021 .49124 .09122 

Time to End-point Video - Data 29 4.9310 1.73063 .32137 
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Group Statistics  

 Interface Type N Mean Std. Deviation Std. Error Mean 

Time to Mid-point Video - Data 29 3.2759 1.75044 .32505 

Video - Model 29 3.2021 .49124 .09122 

Time to End-point Video - Data 29 4.9310 1.73063 .32137 

Video - Model 29 5.3536 .70333 .13061 

 

Independent Samples Test  

   
Time to Mid-point Time to End-point 

   
Equal variances 

assumed 

Equal variances 

not assumed 

Equal variances 

assumed 

Equal variances 

not assumed 

Levene's Test for Equality of 

Variances 

 
F 16.077 

 
8.341 

 

Sig. .000 
 

.006 
 

t-test for Equality of Means 
 

t .219 .219 -1.218 -1.218 

df 56 32.383 56 37.004 

Sig. (2-tailed) .828 .828 .228 .231 

Mean Difference .07379 .07379 -.42252 -.42252 

Std. Error Difference .33761 .33761 .34690 .34690 

95% Confidence Interval of 

the Difference 

Lower -.60251 -.61357 -1.11743 -1.12539 

Upper .75010 .76116 .27240 .28036 
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Statistical Modelling Outputs – Experiment 5 (SPSSTM version 17)  

 

GET   FILE='E:\PhD Work\Thesis\Appendices\Chap 6\model-data-

expt-2.sav'. MEANS TABLES=tcentral tframe tpropeller ttotal errors 

BY group   /CELLS MEAN COUNT STDDEV. 
 
Means 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 6\model-data-

expt-2.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

tcentral  * group 200 100.0% 0 .0% 200 100.0% 

tframe  * group 200 100.0% 0 .0% 200 100.0% 

tpropeller  * group 200 100.0% 0 .0% 200 100.0% 

ttotal  * group 200 100.0% 0 .0% 200 100.0% 

errors  * group 200 100.0% 0 .0% 200 100.0% 

 

 

Report  

group tcentral tframe tpropeller ttotal errors 

Static Mean 524.52799 619.95513 650.57690 682.83974 84.67 

N 100 100 100 100 100 

Std. Deviation 30.139913 32.296970 32.742832 33.798547 13.352 

Dynamic Mean 388.60266 484.54759 499.56941 515.48241 1.42 

N 100 100 100 100 100 

Std. Deviation 67.777024 73.763069 74.302957 74.904913 1.695 

Total Mean 456.56533 552.25136 575.07315 599.16108 43.04 

N 200 200 200 200 200 

Std. Deviation 85.903316 88.501894 94.917905 101.965101 42.796 
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MEANS TABLES=t_model e_model BY group   /CELLS MEAN COUNT 

STDDEV. 
 
Means 

 

[DataSet2] E:\PhD Work\Thesis\Appendices\Chap 6\watson-data-

sim.sav 

 

Case Processing Summary  

 Cases 

 Included Excluded Total 

 N Percent N Percent N Percent 

Model Time  * Instruction Type 20 100.0% 0 .0% 20 100.0% 

Model Errors  * Instruction Type 20 100.0% 0 .0% 20 100.0% 

 

Report  

Instruction Type Model Time Model Errors 

Static Mean 692.23974 8.6000 

N 10 10 

Std. Deviation 105.859990 .84327 

Dynamic Mean 513.78241 .1000 

N 10 10 

Std. Deviation 71.047988 .31623 

Total Mean 603.01108 4.3500 

N 20 20 

Std. Deviation 126.807454 4.40424 

 

DATASET ACTIVATE DataSet1. T-TEST GROUPS=group(1 2)   

/MISSING=ANALYSIS   /VARIABLES=ttotal   /CRITERIA=CI(.95). 
 
T-Test 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 6\model-data-

expt-2.sav 
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Group Statistics  

 group N Mean Std. Deviation Std. Error Mean 

ttotal Static 100 682.83974 33.798547 3.379855 

Dynamic 100 515.48241 74.904913 7.490491 

 

Independent Samples Test  

   ttotal 

   Equal variances 

assumed 

Equal variances 

not assumed 

Levene's Test for Equality of 

Variances 

 F 35.085  

Sig. .000  

t-test for Equality of Means  t 20.365 20.365 

df 198 137.708 

Sig. (2-tailed) .000 .000 

Mean Difference 167.357330 167.357330 

Std. Error Difference 8.217717 8.217717 

95% Confidence Interval of the 

Difference 

Lower 151.151848 151.108104 

Upper 183.562812 183.606556 

 

T-TEST GROUPS=group(1 2)   /MISSING=ANALYSIS   

/VARIABLES=errors   /CRITERIA=CI(.95). 
 
 
T-Test 

 

[DataSet1] E:\PhD Work\Thesis\Appendices\Chap 6\model-data-expt-

2.sav 

 

Group Statistics  

 group N Mean Std. Deviation Std. Error Mean 

errors Static 100 84.67 13.352 1.335 

Dynamic 100 1.42 1.695 .169 
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Independent Samples Test  

   errors 

   Equal variances 

assumed 

Equal variances 

not assumed 

Levene's Test for Equality of 

Variances 

 F 140.363  

Sig. .000  

t-test for Equality of Means  t 61.856 61.856 

df 198 102.190 

Sig. (2-tailed) .000 .000 

Mean Difference 83.250 83.250 

Std. Error Difference 1.346 1.346 

95% Confidence Interval of the 

Difference 

Lower 80.596 80.581 

Upper 85.904 85.919 
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