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ABSTRACT 

Oral delivery of insulin used for the management of Type 1 Diabetes could be referred to as one 

of the major long term goals of diabetes research. However, the bioavailability of orally 

administered insulin is significantly compromised by enzymatic degradation in the GI tract and 

poor enteral absorption of the protein due to its macromolecular size and hydrophilicity. Nano-

sized polymer-protein polyelectrolyte complexes (PECS) formed by electrostatic interactions 

between insulin and Polyallylamine-based polymers at pH 7.4 have been adapted to facilitate 

oral insulin delivery. 

 Polyallylamine (15kDa) was quaternised by methylation of its primary amines using methyl 

iodide to yield quaternised Paa (QPaa). Average level of polymer quaternisation was 

determined by elemental analysis and was found to be 72 ± 2mol%. Subsequent thiolation of 

Paa and QPaa using two different thiolation procedures involving carbodiimide mediated 

conjugation to N-acetylcysteine (NAC) and modification of the polymers using 2-iminothiolane 

hydrochloride yielded their respective NAC and 4-thiobutylamidine (TBA) conjugates: Paa-

NAC/QPaa-NAC and Paa-TBA/QPaa-TBA. Estimation of the free thiol content of these thiomers 

by iodometric titration showed that both Paa-NAC and QPaa-NAC displayed 60 ± 1.2 and 60 ± 

4.3µmol free thiol groups per gram polymer, while Paa-TBA and QPaa-TBA conjugates displayed 

490 ± 18 and 440 ± 21µmol free thiol groups per gram polymer respectively.  

Mixing optimal mass ratios of each polymer and insulin in Tris buffer at pH 7.4 resulted in the 

formation of soluble nanocomplexes. Complexes were characterised by transmittance 

measurements, particle size analysis, zeta potential, complexation efficiency, and transmission 

electron microscopy (TEM). Stable polymer-insulin complexes were observed to have 

hydrodynamic sizes between 50-200nm, positively charged zeta potential values ranging 

between 20-40mV and high insulin complexation efficiency (> 90%). Complexation of insulin 

with TBA conjugates however appeared to alter insulin conformation affecting the detection of 

complexed insulin by HPLC. TEM analysis revealed the formation of bilayered nanovessicles as 

well as conventional single-layered nanoparticles on complexation of insulin with QPaa and 

thiolated Paa/QPaa derivatives. In-vitro assessments of enzyme-protective effect of QPaa, Paa-

NAC and QPaa-NAC insulin complexes showed that when compared to a free insulin control, all 

the aforementioned complexes could protect insulin from degradation by trypsin and α-

chymotrypsin, but not from pepsin. In-vitro mucin adsorption assays showed that all polymers 

exhibited a similar mucoadhesive profile with their corresponding insulin PEC, with thiolated 

Paa derivatives adsorbing >20% more mucin than Paa. Thiolation of QPaa did not result in a 
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noticeable improvement in its mucoadhesive capacity indicating that polymer-mucin thiol-

disulphide interactions may be hindered by the presence of quaternary groups.  

The IC50 of each polymer was determined by MTT assays carried out on Caco-2 cells with or 

without the inclusion of a 24-hour cell recovery period. An MTT assay conducted without a 

recovery period indicated that quaternisation of Paa was associated with a 6-fold improvement 

in its IC50; also cells subjected to a 24-hour recovery period following treatment with QPaa 

(0.001-4mgml-1) showed no signs of toxicity. Thiolation of Paa resulted in slight (≤ 2 fold) 

improvements in IC50, while thiolation of QPaa resulted in a decrease in IC50 values obtained 

both with and without a cell recovery period. Each polymer was subsequently labelled with 

rhodamine B isothiocyanate (RBITC) and complexed with fluorescein isothiocyanate (FITC)-

insulin. Monitoring uptake of these complexes by Caco-2 cells using fluorescence microscopy 

with DAPI staining indicated that uptake of QPaa and QPaa-TBA complexes was mainly 

intracellular being localised within the perinuclear area of cells highlighted by DAPI. Hence, 

intracellular uptake of PECS by Caco-2 cells was enhanced by Paa quaternisation and TBA-based 

thiolation of QPaa. 

Keywords: Polyelectrolyte complexation, insulin, polyallylamine, mucoadhesion, thiolation, 

quaternisation, nanoparticles, transmucosal transport. 
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1. INTRODUCTION 

 

The regulation of blood glucose supply in the body is mediated by the hormone insulin [1]. 

Insulin is a peptide hormone secreted by the beta-cells of the pancreatic islets, on stimulation by 

an influx of glucose into the cells [2]. Secreted insulin is conveyed directly to the liver via the 

portal vein, from where it maintains glucose homeostasis by stimulating the hepatic anabolism 

of glucose and storage compounds like glycogen depending on the energy requirements of the 

peripheral tissues [2]. When the body is in the fasting state, insulin concentrations are low 

stimulating hepatic glucose production (by gluconeogenesis and glycogenolysis) and 

subsequent release of glucose into the circulation while post-prandial insulin concentrations are 

high suppressing hepatic glucose synthesis and facilitating the entry of glucose into peripheral 

tissues [1]. 

Acute insulin deficiency in humans caused by auto-immune destruction of pancreatic beta-cells 

results in Insulin Dependent Diabetes Mellitus (IDDM or Type I diabetes), a condition 

characterised by chronic hyperglycaemia resulting in physiological anomalies such as polyuria 

(excretion of large volumes of dilute urine), polydipsia (marked thirst), polyphagia (difficulty in 

swallowing) and weight loss in sufferers [2]. Other types of diabetes include Non-insulin 

Dependent Diabetes Mellitus (or Type II diabetes) which is due to insulin resistance and 

gestational diabetes which is induced by pregnancy [3].  

Generally, diabetes is irreversible and treatment is normally geared towards maintaining 

glucose concentration within safe/healthy limits, normally between 3.5-8mmol/L [1]. 

Maintaining adequate glycaemic control in people suffering from IDDM, requires the 

administration of exogenous insulin [3]. The use of exogenous insulin therapeutically is limited 

by the fact that due to the proteinous constituents of the hormone, insulin is only effective if 

administered parenterally. This is because the body’s digestive processes have been designed to 

breakdown any ingested protein/peptide without undue differentiation between normal 

dietary proteins and therapeutic ones. Therefore, oral administration of insulin is currently not 

feasible and exogenous insulin formulations are often given subcutaneously [4]. The availability 

of only the invasive route for insulin delivery is a major constraint in the management of IDDM, 

because the chronic nature of the condition implies that patients require insulin therapy for 

relatively long periods of time. Single daily doses of parenteral insulin have also been found to 

be inadequate in sustaining glycaemic control and most patients require at least two to three 

injections of insulin daily for optimum control of blood glucose levels [5]. This treatment 

procedure predisposes diabetics to physiological stress and pain due to multiple injections, risk 
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of infections and local reactions at injection sites and complications in the administration 

process like precipitation of insulin in the injection pump [3]. 

Also, parenteral administration of insulin creates a significant difference in the normal 

physiological distribution of insulin in the body [6, 7]. Normally, insulin concentrations are 

much higher in the portal circulation than in the systemic circulation as opposed to parenterally 

administered insulin which brings the concentration of systemic insulin up to that in the portal 

circulation. This non-physiological insulin distribution has been associated with the occurrence 

of peripheral hyperinsulinaemia which causes hypoglycaemia, weight gain, neuropathy, 

retinopathy, atherosclerosis and hypertension due to insulin resistance in diabetics [7]. The 

need to eliminate these drawbacks as well as offer diabetics a better quality of life has prompted 

researchers to explore other routes of delivering insulin without compromising the therapeutic 

effects of the drug. The oral route offers an excellent alternative being the easiest and most 

convenient route of drug administration and also demanding less time and effort from medical 

personnel and carers [8]. Exogenous insulin distribution on oral administration also mimics the 

natural physiological fate of insulin in the body, closely replicating the direct delivery of 

endogenous insulin to the liver, where its effects of suppressing or facilitating hepatic glucose 

production are fundamental in sustaining glucose homeostasis [9]. 

Therefore, research in the past years has been focused on the development of novel 

formulations of insulin that can deliver therapeutic doses of the drug in its active form to its site 

of action through the oral route.  

1.1. PROBLEMS ASSOCIATED WITH ORAL INSULIN DELIVERY   

The achievement of a suitable oral insulin formulation is mitigated by the susceptibility of 

insulin to proteolytic digestion in the gut and difficulties in the systemic absorption of 

hydrophilic macromolecules like proteins from the GIT. Insulin is degraded in the GIT by pepsin 

in gastric juice and proteases (carboxypeptidase, chymotrypsin and trypsin) in the intestinal 

lumen [3, 5, 6, 7]. Fragments from the above process are further broken down by brush border 

peptidases and a cytosolic enzyme referred to as insulin-degrading enzyme (IDE) [10, 11]. IDE 

is a neutral thiol metalloproteinase involved in intracellular metabolism of insulin in 

hepatocytes, adipocytes, kidney, muscle cells, enterocytes and other cells [12]. 

Insulin absorption from the gut is limited by the GIT epithelium, a semipermeable lipoidal sieve 

consisting of a layer of columnar epithelial cells tightly held together by tight junctions or zona 

occludens [11, 13]. The GIT membrane only permits the transcellular passage of lipophilic 

molecules across it or paracellular transport of small hydrophilic molecules through the 
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numerous aqueous pores between the cells [13]. Insulin being a hydrophilic macromolecule 

with logP values < 0, is therefore unable to permeate the GIT epithelium unaided either 

transcellularly or paracellularly [14, 15], considering the molecular weight cut-off for the 

paracellular pathway is estimated to be 200Da [14]. The presence of the glycocalyx, a layer of 

mucus consisting of sulphated mucopolysaccharides which lies above the intestinal mucosa also 

constitutes a further permeation barrier (figure 1) which must be overcome before ingested 

drugs can be absorbed [3, 5]. 

 

Fig. 1: Barriers to intestinal drug absorption. 

Digestive enzymes that degrade proteins can also be found in the intestinal microvilli, mucus or 

glycocalyx [5, 14].  Consequently, the bioavailability of insulin given orally is markedly low, 

estimated to be less than 1% [16]. 

Another problem encountered in the development of oral insulin formulations is retaining the 

integrity and bioactivity of insulin during formulation and manufacturing procedures. Insulin 

like all proteins has a fragile and complex internal structure that defines its biological activity 

[5]. Disturbances of the primary, secondary, tertiary or quarternary structure of insulin can lead 

to deactivation and/or denaturation leading to loss of pharmacological activity [5]. Key 

determinants of protein stability include the intrinsic conformational stability of the protein 

native, bioactive state and colloidal stability of the protein molecules in solution governed by 

the extent of repulsive forces between the molecules. Physical degradation of insulin may 

involve unfolding into its biologically inactive conformation and aggregation into oligomers at 
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concentrations above 0.1µM aqueous solution and hexamers with different absorption 

characteristics than the monomer [17]. Aggregation also has the detrimental effect of producing 

larger structures which exhibit poor membrane permeability. Insulin can also undergo chemical 

degradation involving the formation of covalent modifications like deamidation, oxidation and 

disulphide bond shuffling.  

Process conditions can affect the integrity of the protein structure. Insulin is prone to thermally 

induced denaturation. High temperatures lead to a disruption of its native conformation leading 

to unfolding, aggregation and loss of activity. The pH of the insulin solution affects the charge 

density on the molecule. Excessive charge repulsion caused by the presence of highly charged 

insulin molecules in solution tends to destabilize its folded conformation causing a loss of 

activity. While, at pH values close to the isoelectric point (pI) where proteins have both 

positively and negatively charged constituents, protein-protein interactions that favour the 

formation of aggregates are possible. The presence of cosolutes in an insulin solution also 

affects its conformational stability and equilibrium solubility. These solutes can be 

differentiated into protein denaturants like urea and guanethidine chloride that prefer to 

weakly bind to the unfolded state of the protein favouring unfolding and protein stabilisers like 

high concentrations of sugars, polyols and ammonium sulphate that  enhance the stability of 

insulin by binding to the bioactive conformation. Solutes like salts and electrolytes affect the 

intramolecular electrostatic interactions between protein molecules as well interact with 

charged groups on the surface of the insulin molecule. Other formulation excipients that may 

affect the stability of insulin in solution include preservatives and surfactants.  

In spite of these militating factors, the development of oral formulations of insulin that can 

overcome these barriers and maximise the bioavailability of orally administered insulin is still 

ongoing. Various strategies focused mainly on designing stable formulations that can protect 

insulin from enzymatic degradation in the gut as well as facilitate its absorption from the GIT 

have been attempted with varying levels of success. Some approaches involve the use of known 

absorption enhancers like fatty acids, while others involve the use of more recent and smart 

polymers or carrier systems that can protect insulin from proteolytic digestion while also 

mediating its absorption across the GIT epithelium. Subsequent sections of this review highlight 

the different pharmaceutical technologies and formulations that have been developed and 

evaluated for oral insulin delivery.  

1.2. APPROACHES IN THE DEVELOPMENT OF ORAL INSULIN FORMULATIONS 

Attempts to design an efficient oral delivery system for insulin are numerous with each concept 

focusing on the need to ensure that sufficiently therapeutic concentrations of the active drug 
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gets to the target sites. In order to achieve this, oral insulin delivery systems need to be stable in 

the GIT environment, protect the drug from enzymes that cause its inactivation and also enable 

enteral absorption of insulin. So far, research has indicated that only formulations that are able 

to efficiently and simultaneously fulfil all of the above requirements can lead to any significant 

improvement in the bioavailability of orally administered insulin. A detailed review of various 

formulations investigated for oral delivery of insulin is carried out in subsequent sections 

below. 

 

1.2.1. Co-administration with functional excipients 

Enzyme-protective, stabilising and absorption-enhancing agents have been administered 

concurrently with oral insulin in a bid to enhance bioavailability.  

The concurrent use of protease inhibitors with insulin was shown to improve its bioavailability 

by limiting the rate of proteolytic degradation [18, 19, 20] and maximising the amount of oral 

insulin available for absorption. Incorporating a trypsin inhibitor into gelatine microspheres 

containing insulin was observed to yield an enhanced hypoglycaemic effect [21]. The 

bioavailability of insulin loaded into alginate/chitosan microspheres was also found to be 

improved by the use of betacyclodextrins which reduce hydrolysis and enzymatic degradation 

[22]. Examples of protease inhibitors that have been used as described include sodium 

glycocholate, aprotinin, bacitracin, soybean trypsin inhibitor and camostat mesilate. Studies 

have however indicated that protease inhibitors may be more effective in curtailing enzymatic 

degradation of insulin if the drug is released in the large intestine, due to the lower enzymatic 

activity of that region relative to the small intestine [20, 23, 24]. However, the long term effects 

of enzyme inhibitors on the body which include disruption of the digestion of dietary proteins, 

risk of absorption of unwanted or toxic proteins and the potential stimulation of protease 

secretion due to feedback regulations [25] could outweigh the benefits of these protease 

inhibitors. 

Facilitating the absorption of insulin across the intestinal epithelium have resulted in the use of 

permeation enhancers like bile salts, salicylates, long chain fatty acids and surfactants which 

enhance insulin absorption by increasing the permeability of the lipid bilayer cell membranes of 

the epithelial cell lining [5]. It has been shown that oral insulin dispersed in different fatty acids 

(lauric, palmitic and stearic acid) emulsified using sodium glycocholate was capable of inducing 

hypoglycaemia in rabbits, with the greatest hypoglycaemic effect being observed with palmitic 

acid [26]. Unsaturated fatty acids containing the same number of carbon atoms were found to 

be unable to produce a similar effect. This difference was ascribed to the presence of double 
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bonds within the structure of unsaturated fatty acids causing the formation of fluid micelles that 

are capable of initiating minimal disruption at the lipid bilayers, when compared to the rigid 

micelles formed by their saturated counterparts. Surfactants like the polysorbates and chelating 

agents have also been included in oral insulin formulations as absorption enhancers, but 

relatively high concentrations of these chemicals were needed to produce cell membrane 

disruption and their use associated with cell membrane solubilisation and intestinal wall 

damage [27, 28]. The use of these absorption enhancing agents is also limited by their lack of 

specificity, as they compromise the integrity of the mucosal surface allowing harmful contents 

of the intestine like toxins and biological pathogens access to the systemic circulation. 

Paracellular transport of insulin across the GIT epithelium has also been investigated. Some 

agents have been found to mediate the reversible and controlled opening of the tight junctions 

between adjacent epithelial cells increasing tight junction permeability. Zonula occludens toxin 

(ZOT), a protein produced by Vibrio cholera has been found to be able to effect safe, reversible 

and dose-dependent increase in tight junction permeability by acting specifically on the actin 

filaments of the zona occludens found at the jejunum and ileum only [5]. In vivo, ZOT has been 

shown to elicit a 10-fold increase in the absorption of insulin from the ileum and jejunum of 

rabbits, with no effect observed in the colon [29]. Diabetic animals given a combination of ZOT 

and insulin orally have also been shown to demonstrate survival rates and reduction in blood 

glucose concentration similar to those treated with parenteral insulin [5].  Other agents that 

have been found to be able to mediate reversible opening of the tight junctions include chitosan, 

thiolated polymers and some alkylglycosides [14]. However, increasing the bioavailability of 

oral insulin by only paracellular transport has been criticised by many researchers, who insist 

that this pathway is still limited by the large size of the insulin molecule [30, 31]. 

Studies into the beneficial effects of stabilising agents in oral insulin delivery have been carried 

out with results showing documented improvements of hypoglycaemic effect and insulin 

bioavailability when co-administered with excipients that enhance insulin stability. Peptides 

and proteins have a delicate and complex three-dimensional structure that is difficult to 

stabilise.  The tendency of insulin to self-associate and aggregate has been linked to the 

presence of a hydrophobic segment near the beta-chain terminus [32, 33]. This destabilisation 

and aggregation can lead to either loss of bioactivity due to denaturation/deactivation or 

reduction in paracellular absorption due to association of insulin into hexameric or dimeric 

aggregates too large to access the paracellular route. The ability of polyol-surfactants and 

polymeric surfactants to offer steric stabilisation of insulin has been shown [34], while 

saccharides, amino acids and urea were observed to stabilise insulin by increasing the 
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intramolecular hydrophobic interaction of the protein [35]. Recent studies have also shown that 

alkylmaltosides like dodecylmaltoside have the ability to limit insulin aggregation by the 

formation of a complex with the drug [36]. Though, negligible improvements in bioavailability 

(0.5-1%) were observed after coadministration of insulin and dodecylmaltoside to diabetic rats. 

The Chinese plant exudate, Sanguis draxonis which has been found to stabilise oral insulin 

formulations by promoting disaggregation in insulin formulations elicited significant 

hypoglycaemic effect when co-administered with insulin in streptozocin-induced diabetic rats 

[37]. 

1.2.2. Chemical modification of insulin 

Another approach employed by scientists to enhance oral absorption of insulin entails the 

chemical attachment of functional moieties like polymers, targeting ligands and recognition 

sites to the insulin molecule creating altered chemical entities with physicochemical properties 

that promote absorption of insulin from the GIT. Basically, the nature of the linkage used should 

be such that the regeneration of the insulin molecule on reaching the target site is assured. 

Therefore most functional moieties are attached to insulin by means of covalent or hydrolysable 

bonds that can be cleaved off after absorption. In cases where the active drug is to be delivered 

to the target site and systemic circulation as the conjugate, the pharmacological activity, 

pharmacokinetics, biocompatibility and renal clearance of the new entity must be well-defined.  

The different types of chemically modified insulin developed for oral delivery are given below. 

1.2.2.1. Polymer-insulin conjugation  

Polymer-drug conjugation technology was pioneered by Jatzkewitz in 1955, who developed a 

depot formulation for mescaline by attaching the alkaloid to poly (N-vinylpyrrolidone) using a 

dipeptide spacer (glycyl-L-leucine) [38]. Abuchowski and Davis extended this concept to 

peptide and protein delivery by demonstrating that site-specific attachment of 

polyethyleneglycol (PEG) to proteins shielded digestible portions of the protein from enzymatic 

attack [39], yielding conjugates with improved solubility, reduced immunogenicity and 

allergenicity and retained bioactivity[40,41]. 

Recently NOBEX Corporation have developed an oral insulin delivery system comprising an 

amphiphillic oligomer (consisting of a short chain hydrophilic PEG unit linked to a lipophillic 

alkyl group) covalently bound to the lysine-29 of the ß-chain of human recombinant insulin 

[42]. The conjugated derivative called Hexyl-Insulin Monoconjugate 2 (HIM-2) achieves 

improved resistance against enzymatic degradation by steric hindrance, preventing attacking 

enzymes from getting to their target sites. Also the improved solubility of the drug conjugate 
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enhances its compatibility with most formulation excipients while the presence of an 

amphiphillic oligomer with both lipophillic and hydrophilic components enhances permeation, 

by facilitating the passage of the drug through aqueous and lipid barriers of the GIT epithelium. 

The attachment of oligomers to insulin also minimises the risk of the aggregation into multiple 

self-association forms. 

However, the overall effects of the attachment of protective oligomers on insulin have to be 

properly evaluated and optimised. This is because the presence of these amphiphiles may 

interfere with the ability of the drug to bind to cell receptor sites resulting in loss of activity or 

they may alter the pharmacokinetics of the drug due to hindered systemic degradation and 

clearance [42]. Results of oral administration of HIM-2 to normal volunteers and both Type I 

and II diabetics showed that the conjugate elicited substantial hypoglycaemic action and a rapid 

absorption profile. Bioavailability studies are yet to be carried out in humans, but results of the 

clinical trials suggest an apparent bioavailability of 5%. The low bioavailability of this 

formulation indicates that more work needs to be done before this conjugate can be used 

therapeutically. 

1.2.2.2. Conjugation of insulin to Receptor-recognisable ligands 

Improving transcellular insulin absorption by conjugation of insulin to endogenous receptor-

recognisable ligands to induce endocytotic internalisation of the conjugate, on binding of the 

ligand to its specific receptor sites has been attempted. This method of receptor mediated 

transcytosis has the advantage of not compromising the integrity of the cell membrane and is 

also unlimited by the size of the molecule being transported [14]. 

Endogenous cellular transport systems exploited for this purpose include the covalent 

attachment of cobalamin to insulin, utilising the normal Vitamin B12 absorption pathway for oral 

insulin uptake. On oral administration, the conjugated cobalamin binds to intrinsic factor 

(released in the stomach) in the duodenum, after which this complex subsequently travels down 

to the ileum and binds to the intrinsic factor receptor located on GI epithelilal cells initiating 

uptake of the bound insulin [43]. The cobalamin-insulin conjugate is absorbed into the 

bloodstream by an intrinsic factor receptor-mediated transcytotic process. The efficacy of this 

system is however limited by the minimal amount of intrinsic factor receptors available in the 

gut, hence significantly limiting the amount of insulin that can be absorbed [44]. 

Another receptor-recognition based oral insulin formulation is based on the conjugation of 

insulin to transferrin (the transport protein for iron) via disulphide linkages promoting 

absorption of insulin via transferrin receptor-mediated transcytosis [45, 46]. This transferrin-
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conjugation based system may be more advantageous than the cobalamin-based system due to 

the high density of transferrin receptors in the GIT and the stability of transferrin against tryptic 

and chymotryptic digestion [47, 48]. Oral administration of the insulin-transferrin conjugate 

elicited a slow but prolonged dose-dependent hypoglycaemic effect in fasted streptozocin-

induced diabetic rats [49]. Transport of insulin by transferrin-receptor mediated transcytosis 

was observed to be enhanced by the use of brefeldin A, a fungal metabolite toxic to intestinal 

epithelial cell organelles and Tryphostin-8, a GTPase inhibitor [50, 51]. 

The use of receptor-mediated endocytotic processes to facilitate oral absorption of insulin and 

improve bioavailability is limited by the fact that at high concentrations of the drug, the carrier 

systems become saturated [52]. Absorption can also be limited by metabolic inhibitors like 

dinitrophenol and by the presence of competing substrate analogs [13]. 

1.2.2.3. Use of Cell-Penetrating Peptides (CPPs) 

These are also referred to as Protein Transduction Domains, a class of short peptides (less than 

30 residues) known to translocate across the cell membrane into the cytoplasm in a receptor 

and energy independent manner [52, 53]. Most cell-penetrating peptides were derived from 

sequences of membrane interacting proteins like fusion proteins, signal peptides, 

transmembrane domains and antimicrobial peptides [54].  

Cell-penetrating peptides transport their cargo into the intracellular compartment by directly 

disrupting the lipid bilayer structure or mediating cellular internalisation by endocytosis or 

direct translocation [55, 56]. Also, the presence of a net positive charge on these peptides has 

been reported to be directly related to their ability to translocate across cell membranes by the 

formation of electrostatic interactions with phospholipid head groups [53]. 

The exact mode of action of CPPs is still not clear, but investigations indicate that the pathway 

for cellular uptake may depend on the specific sequence of each peptide.Examples of cell-

penetrating peptides used to facilitate cellular uptake of various molecules include the 

drosophila homeotic transcription factor antp, transcription factor VP22 from Herpes simplex 

virus type-1, HIV-1 transactivating transcriptional factor (TAT) and penetratin from the third 

helix of the homeodomain of antennapedia [52, 53]. The use of CPPs in oral delivery of insulin 

has however been limited to the conjugation of insulin to TAT. Conjugation of insulin to TAT has 

been reported to significantly increase its uptake across Caco-2 cells [57]. Penetratin has also 

been shown to be ineffective in the transfer of large proteins, thereby limiting its use in the 

formulation of oral insulin delivery systems [58]. The majority of the data obtained from the use 

of CPPs has indicated that they cause no toxicity in-vivo or cell membrane damage [54, 59]. The 
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use of CPPs as oral delivery systems is affected by the availability of relatively limited data on 

their use. 

1.2.2.4. Protein Lipidization 

Lipid modification of insulin by covalent conjugation or non-covalent complexation with 

hydrophobic lipid moieties increases the lipophilicity of the drug, making it more easily 

absorbed through the GIT epithelium and increasing its stability to enzymatic degradation [44]. 

Lipidization of macromolecules often results in a reduction in biological activity, therefore 

reversible lipidization techniques that ensure the post-absorptive regeneration of the active 

drug from their lipid conjugates are currently the focus of research groups developing such 

systems [60].  

Reversible Aqueous Lipidization (REAL) technology involves the conjugation of peptide drugs to 

lipid moieties by attaching hydrophobic groups covalently to the drug molecule through the use 

of lipidizing reagents. This lipidization technique is yet to be extended to the development of 

insulin for oral delivery, although the system has been successfully used for oral delivery of 

salmon calcitonin [60]. A significant disadvantage of peptide lipidization is efflux from intestinal 

epithelial cells by P-glycoprotein and multidrug resistance protein 2, an effect observed with 

lipophillic cyclopeptides [44]. 

Another formulation which enhances enteral insulin absorption by increasing lipophilicity has 

been developed by Emisphere Technologies. This system comprises a set of carrier molecules, 

called Eligen carriers  that are small, hydrophobic molecules that bind non-covalently to insulin, 

altering the tertiary structure of insulin and exposing internal hydrophobic amino acid residues 

that are in a complex with improved lipophilicity, increased flexibility and better absorption 

profile [61]. On getting into the systemic circulation, the dilution effect of the bloodstream 

causes the complex to dissociate leading to regeneration of insulin. Then, insulin is postulated to 

fold back to its normal bioactive conformation, exerting its pharmacological effect on target 

cells. These suggested conformational changes of insulin have been supported with data from 

near-UV spectroscopy which monitors alterations in the tertiary structure of the molecule.  

Eligen carrier molecules that have been taken through preclinical studies and clinical trials 

include N-8-[2-(hydroxyl-benzoyl) amino] caprylate sodium (SNAC) and 4-[(2-hydroxy-4-

chlorobenzoyl) amino]butanoate sodium (4-CNAB). Preclinical studies and clinical trials have 

shown that co-administration of Eligen carriers with insulin increase the resistance of insulin to 

enzymatic degradation in GI fluids, improves absorption of insulin through the GIT epithelium 

and normalizes blood glucose levels. The potential effect of  long term use of high 
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concentrations of these Eligen molecules contained in a dose of this formulation have to be 

clarified. 

1.2.3. Use of mucoadhesive systems  

The immobilization of an oral dosage form at the absorption site can enhance uptake of the drug 

by creating a concentration gradient that leads to increased uptake of the drug from the dosage 

form [14]. Mucoadhesion is mediated primarily by the ability of certain materials to interact 

with mucin residues present in the intestinal mucosa either chemically or by the formation of 

non-chemical bonds [62]. Different theories of mucoadhesion have been put forward to explain 

the diverse range of possible mucoadhesive interactions observed experimentally [63]. One of 

the earliest theories of mucoadhesion was the wetting theory which described the ability of 

low viscosity liquid adhesives to spread and penetrate into the surface irregularities of a 

mucosal surface, overcoming interfacial tension to create adhesive bonds [64, 65]. Others 

include the electrostatic theory which emphasizes that the creation of mucoadhesive bonds 

involves the transfer of electrons and requires the presence of an electrical double layer across 

the adhesive interface [66]. While the diffusion theory takes into consideration the ability of 

polymeric chains to interpenetrate into mucin chains attaining sufficient depth within the 

glycoprotein matrix to sustain a permanent mucoadhesive bond [67]. This depth attained has 

been found to be dependent on the polymer molecular weight, cross-linking density and 

diffusion coefficient, with minimum depth for good mucoadhesive bonds being estimated to be 

within the range of 0.5-2µm [68]. The adsorption theory of mucoadhesion places emphasis on 

the nature of the different chemical groups present at the interacting surfaces which results in 

an interplay of different types of forces (covalent, hydrophobic association, electrostatic, van 

der Waals interaction) facilitating the mucoadhesion process [69, 70]. 

Mucoadhesion has been applied in the promotion of enteral insulin absorption by incorporating 

insulin in materials that adhere tightly to the intestinal mucosa, prolonging the residence time 

of the drug at its absorption site and maximising uptake of the drug [71]. The attachment of 

mucoadhesive dosage forms containing insulin to the intestinal mucosa also limits enzymatic 

degradation, as the close interaction of the carrier to the mucosal surface reduces the exposure 

of the drug to proteolytic enzymes in the intestinal lumen [71]. Mucoadhesive materials found 

to be useful in the delivery of oral insulin include mucoadhesive polymers and lectins. Polymers 

with uniquely mucoadhesive properties include chitosan, polyethyleneglycol (PEG) and cross- 

linked polyacrylic acid [3, 72]. Chitosan is a naturally occurring polysaccharide obtained from 

chitin found in the shells of crustaceans [62]. Chitosan has been widely used in the development 

of different forms of oral insulin delivery systems due to its absorption enhancing capability and 
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strong mucoadhesive properties which are believed to be due to the presence of positively 

charged groups on its structure (Fig. 2) that interacts with negatively charged mucin groups 

forming a tightly bound complex [62].  

 

 

Fig. 2: Chemical structure of Chitosan 

The administration of different types of chitosan-based dosage forms has been associated with 

significant hypoglycaemic effect in-vivo. The ability of polyethylene glycol chains to 

interpenetrate and entangle with the mucosa layer, facilitates the adhesion of dosage forms 

containing PEG to the intestinal mucosa improving uptake of insulin [73].  

Thiolated polymers have also been observed to be strong mucoadhesives [74]. This has been 

linked to the availability of reactive thiol groups within their structure, which are capable of 

forming disulphide bonds with cysteine-rich domains of mucus glycoproteins which 

significantly promotes the retention of high concentrations of the drug at the absorption site 

enhancing intestinal absorption of insulin.  Some thiomers have also been found to maximise 

the amount of insulin available for absorption by chelating the metal ions of endogenous 

proteases thereby curtailing their activity [75]. Examples of thiolated polymers useful for oral 

insulin delivery include thiolated chitosan and thiolated polycarbophil [74, 76]. The use of 

thiolated polymers must be carefully evaluated to prevent polymer thiol-disulphide interactions 

with insulin which may result in loss of activity. Mucoadhesive patches containing insulin, 

carbopol 934, pectin and sodium carboxymethylcellulose compressed into a 1-4mm radii disc 

designed for enteral insulin absorption was able to induce dose-dependent hypoglycaemia in 

healthy rats [77]. Micropatches small enough to travel between intestinal villi have also been 

developed using silicon oxide, porous silicon or poly (methyl methacrylate) for oral insulin 

delivery [77]. 
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Lectins are proteins or glycoproteins of nonimmunological origin that specifically recognise 

sugar molecules and can bind to glycosylated domains/mucins present in the mammalian 

mucosa [78]. Lectins therefore promote mucoadhesion by a specific biointeraction process with 

sugars present in glycolipids and glycoproteins of mammalian mucosa. Non-toxic plant lectins 

include Solanum tuberosum lectin (STL), Dolichos biflorus agglutinin (DBA), Ulex europaeus 

isoagglutinin I (UEAI) and Wheat germ agglutinin (WGA) [79]. WGA has a molecular weight of 

36KDa and binds to N-acetylglucosamine and sialic residues [80]. WGA has been shown to 

exhibit the highest mucin binding capability to human intestinal cell lines and human 

colonocytes, but minimal mucoadhesive properties at low pH and would not be highly bound to 

the stomach mucosa lining [81]. WGA is therefore the most commonly used lectin in oral insulin 

delivery, where it has been used to functionalize different oral insulin delivery systems enabling 

site-specific adhesion of these carrier systems to the intestinal mucosa. WGA conjugated 

alginate microparticles were observed to promote the intestinal absorption of insulin in diabetic 

rats [80]. pH-sensitive hydrogels functionalized with WGA have also been developed for oral 

insulin delivery [81]. 

One major problem associated with the use of mucoadhesive systems is that the body carries 

out a continuous turnover of the GI mucus layer every 12-24 hours [82]. This therefore limits 

the time for drug absorption site through the mucosa to this timeframe, irrespective of the 

mucoadhesive capacity of the carrier system. Hence, ideally drug release from the 

mucoadhesive system should have taken place prior to the body’s mucus turnover cycle. 

1.2.4. Use of particulate carrier systems 

Oral insulin delivery systems featuring encapsulation or entrapment of the drug in particulate 

structures of various sizes, morphology and functionality can be designed to respond to a 

variety of environmental stimuli.  The post-absorptive fate of a drug is often dictated by its 

unique physicochemical and pharmacokinetic profile. Therefore the introduction of a polymeric 

wall enclosing the drug molecule may modify its pharmacokinetic profile altering parameters 

such as drug absorption, drug distribution within subcellular/cellular compartments, transport 

across biological barriers and also metabolism and degradation of the drug [83]. Different 

particulate structures employed as carrier systems for oral insulin are discussed below. 

1.2.4.1. Nanoparticles 

These are polymeric, submicron (<1µm), colloidal systems that can be used to encapsulate and 

deliver drug moieties into the systemic circulation. These nanoparticles can be in form of 

nanospheres, which contain the drug dispersed throughout a polymer matrix (figure 3A), or as 



14 

 

vesicular structures called nanocapsules made up of a fluid drug-loaded core surrounded by a 

singular polymeric wall (figure 3B) [84].  

      

A)   Nanosphere                                                        B) Nanocapsule 

  

Fig. 3: Different types of nanoparticulate structures A) nanosphere B)nanocapsule .    

Nanoparticulate carriers are more readily transported across the intestinal mucosa than micro 

scale carrier systems [85]. 

Entrapment of insulin in nanoparticles has also been observed to lead to increased insulin 

bioavailability and enhanced hypoglycaemic effect when administered orally [86, 87]. The outer 

polymeric membrane of nanocapsules has also been shown to serve as a protective coat for 

encapsulated insulin preventing enzymatic degradation. In-vitro incubation of insulin-loaded 

poly(alkylcyanoacrylate) nanoparticles in media containing gastric and pancreatic proteolytic 

enzymes showed retention of least 75% of incorporated insulin, while free insulin in the media 

was largely degraded [86, 87]. 

Nanoparticles can be taken up by the membraneous epithelial cells (M cells) located on the 

specialized epithelium covering the aggregates of lymphoid follicles known as Peyer’s patches 

[88]. M cells are specialised cells involved in the transport of macromolecules, particles and 

organisms from the gut by endocytosis. Research has indicated that this route is favoured for 

the transport of smaller hydrophobic nanocapsules which seem to have a higher affinity for M 

cells than absorptive cells [89]. Nanoparticles (with diameters below 150nm) also translocate 

across the intestinal epithelium via the paracellular pathway, poly (isobutylcyanoacrylate) 

nanocapsules have been detected in the intercellular spaces between intestinal absorptive cells 

and lumen of the capillaries [45, 90] 

The mechanism of absorption of nanoparticles from the GIT varies depending on the 

physicochemical properties of the constituent polymer and the surface properties of the 

particle. Nanoparticles having different functionalities can be tailor-made by careful selection of 

    Drug molecules 

Inner drug-loaded core 

corecore 

  
  

 Outer polymeric coat 

Drug molecules 
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parent polymers that possess the target properties. For example, nanoparticles with prolonged 

activity and long-circulating half-lives can be created by coating them with PEG, which provides 

a coat of hydrophilic chains that repel plasma proteins and prevent degradation [84]. This effect 

has also been achieved by the addition of poloxamer 188 to insulin loaded chitosan –

tripolyphosphate nanoparticles, which on oral administration elicited a prolonged 

hypoglycaemic effect in diabetic rats due to delayed clearance [91]. Chitosan has also been 

shown to improve paracellular transport of insulin by mediating the reversible opening of tight 

junctions between cells. Insulin-loaded chitosan nanoparticles given orally to diabetic rats 

normalised glucose levels for several hours [92, 93].  

pH-sensitive nanoparticles containing methacrylic acid grafted with PEG have been shown to 

curtail the release of insulin in the stomach, facilitating its release at near neutral pH [94]. These 

particles exhibited hypoglycaemic effects that lasted for about 6 hours in diabetic rats. Insulin 

loaded nanoparticles bearing receptor-recognisable ligands like Vitamin B12 on their surfaces 

have also been used to facilitate internalisation of insulin by receptor-mediated endocytosis 

[95]. Vitamin B12 functionalised nanoparticles counter the aforementioned problems of low 

loading efficiency inherent in the direct conjugation of cobalamin to insulin by initiating active 

uptake of nanoparticles. A significant advantage of the use of nanoparticles in the delivery of 

oral insulin is that nanoparticles tend to concentrate mostly in the liver irrespective of their 

composition [96]. The uptake of nanoparticles by the liver enhances glycaemic control by 

suppressing hepatic glucose production using insulin encapsulated within the nanoparticles, 

when they are taken up to be degraded. Problems associated with the use of nanoparticles in 

oral insulin delivery include the risk of disruption of the delicate insulin structure during the 

intense processing conditions required for the production of some types of nanoparticles [97]. 

1.2.4.2. Microspheres 

Insulin intended for oral administration can be encapsulated within the core of polymer 

particles with dimensions within the micron range (about 1-500 µm) known as microspheres or 

microparticles. Microspheres are often prepared using a water-in-oil-in-water (w/o/w) 

technique to incorporate the protein, and drug release from microsphere is normally through 

bulk or surface degradation of the polymeric structure [98]. These polymeric microspheres 

have been shown to be capable of protecting encapsulated proteins from degradation, while 

also enhancing their absorption by translocating through the Peyer’s patches or absorptive 

epithelium of the intestine [5, 99, 100]. Oral insulin delivery by encapsulation in microspheres 

also encourages better hypoglycaemic control because microspheres concentrate in the liver 

thereby effectively supplying insulin required for the suppression of hepatic glucose production. 
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Different designs and fabrications of microspheres have been employed for oral insulin delivery. 

Enteral absorption and transport of microspheres has been shown to be favoured by making the 

microsphere sizes smaller [101]. Insulin-loaded pH-sensitive microspheres composed of 

poly(methacrylic acid) and polyethylene glycol have been shown to well absorbed from the 

ileum and elicited a marked hypoglycaemic effect in healthy rats [102]. These microspheres 

exhibited good mucoadhesive properties due to the presence of the PEG moiety and pH-

modulated insulin release by pH-dependent swelling of interpolymer complexes formed 

between protonated components of the microsphere. The microspheres were also observed to 

demonstrate marked inhibition of tryptic activity, which may be ascribed to the ability of the 

matrix polymer to bind to calcium ions required for initiation of enzymatic activity. 

Another novel formulation of insulin microspheres consists of charge-interaction complexes 

containing negatively charged insulin loaded poly(lactic-co-glycolic acid) microparticles 

coupled with positively charged micromagnets [103]. These charge-interaction complexes are 

localized at the intestinal region through the application of an external magnetic field to the 

subjects ingesting the formulation. Only the microparticles are absorbed from the intestine. 

Mice fitted with a magnetic belt were given the complex and the amount of insulin retained in 

the intestinal tract was compared to that retained in a control group. The mice given the 

charged complex were observed to retain 32.5% of administered insulin while the control 

group only retained 5.4% of administered insulin. 

Other formulations of microspheres observed to be useful in enhancing oral insulin delivery 

include mucoadhesive chitosan microspheres and microspheres enclosing absorption 

enhancers and protease inhibitors along with insulin [104, 105]. The problem associated with 

the use of microspheres in oral insulin delivery is the risk of inactivation or denaturation of 

insulin during the intensive processing conditions often encountered in the preparation of 

microsphere formulations. 

1.2.4.3. Liposomes 

These are tiny, vesicular self-assembly systems formed when phospholipids are dispersed in 

aqueous media [106]. Liposomes consist of hydrophobic and hydrophilic domains with the 

ability to encapsulate or solubilise different types of drugs based on their polarity. Liposomes 

have been shown to be able to protect insulin from enzymatic degradation. Insulin loaded 

liposomes coated with chitosan and chitosan-EDTA conjugates were observed to protect insulin 



17 

 

from degradation by pepsin and trypsin resulting in a bioavailability of 8.91% on oral 

administration to rats [107]. 

Liposomes bearing targeting moieties and functional coatings have been developed to enhance 

the bioavailability of orally administered liposomal insulin. For example, insulin has been 

incorporated within the core of liposomes equipped with an outer envelope of Sendai virus 

(SEV) enables the delivery of insulin directly into the cell cytoplasm by the process of 

membrane fusion [108]. This type of liposomes termed fusogenic liposomes can effect 

intracellular insulin delivery, though the presence of insulin-degrading enzyme in the cytosol 

can effectively limit the usefulness of this technique if an enzyme inhibitor is not co-

administered with the liposome formulation. The use of these fusogenic liposomes have been 

linked with marked improvements in the absorption of insulin. An American company, Diasome 

have also encapsulated insulin within Hepatic-Directed Vesicles (HDV) which are basically 

liposomes of about 150nm in diameter featuring a hepatic targeting moiety in their lipid bilayer 

[7]. This delivery system facilitates the direct transport of liposomal insulin to the liver greatly 

reducing the amount of insulin required for the induction of significant hypoglycaemic effect. 

Chitosan coated liposomes reduced tryptic digestion of insulin and improved enteral insulin 

absorption, exhibiting a marked hypoglycaemic effect for four hours on oral administration to 

diabetic mice [109]. However the use of liposomes in insulin delivery is challenging due to the 

inability of lipid-based systems to entrap sufficient quantities of hydrophilic drugs resulting in 

low drug loading efficiency [14]. Other disadvantages include low GIT stability and leakage of 

entrapped drug [106]. 

1.2.5. Hydrogels  

A hydrogel consists of a three-dimensional network of hydrophilic polymer chains that do not 

dissolve but swell up in water, absorbing large amounts of water within their structure [110]. 

This makes them similar to natural tissue and possibly contributes to their good 

biocompatibilty profile [111]. Hydrogels retain their physical integrity in solution due to the 

presence of numerous cross linkages between consituent polymer groups within their structure 

[112]. These cross linkages may be in form of covalent bonding or non-chemical bonds like 

hydrogen bonding, hydrophobic interaction, crystallinity, stereocomplex formation and ionic 

association. The physical properties of a hydrogel are often determined by the nature of these 

cross-linkages as well as the characteristics of the polymers used for constructing the hydrogel.  
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Smart hydrogels that are designed to facilitate drug release in response to specific stimuli 

peculiar to the disease in question have been found to be very useful in drug delivery. Hydrogels 

can be made to respond to changes in pH, temperature, light and the presence of microbes. This 

type of intelligent self-regulated drug delivery systems are well suited for the delivery of insulin 

for the management of Type I diabetes because they can be designed to recognise fluctuations in 

blood glucose concentration initiating an adequate response. 

 

 

Fig. 4: Diagrammatic representation showing release of drug molecules from hydrogels using 

the swelling mechanism (adapted from Jeong, S.H., Huh, K.M. and Park, K. (2006) Hydrogel drug 

delivery systems.  In I. F. Uchegbu and A.G. Schatzlein [Ed] Polymers in drug delivery. Taylor and 

Francis group, Boca Raton, 49-61. 

Hydrogels which show pH-responsive swelling behaviour can be used to protect insulin from 

acid-catalysed degradation in the stomach by hindering its release from the dosage form. 

Reversible pH-dependent swelling is induced by the presence of polymers bearing side groups 

that are prone to protonation or deprotonation based on the pH of the surrounding medium. 

Grafting another suitable polymer onto such pH-sensitive polymers can lead to complexation by 

formation of temporary crosslinks such as hydrogen bonding or ionic interactions when the 

polymer is protonated thereby favouring the retention of structural integrity and hindering the 

release of any incorporated drug when the hydrogel is in media with pH values below its pKa. 
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When such hydrogels are in contact with medium above their pKa values, the side groups 

become deprotonated exhibiting interchain repulsion and decomplexation which leads to 

swelling and water absorption promoting the release of the incorporated drug (figure 4 above). 

Hydrogels that modulate drug release based on the formation of hydrogen bonds are known as 

complexation hydrogels [111]. Hydrogels that exhibit pH-dependent complexation are referred 

to as pH-responsive complexation hydrogels [111]. 

An example of a complexation hydrogel that has been used for oral insulin delivery is poly 

(methacrylic acid) (MAA) grafted with polyethyleneglycol (P (MAA-g-EG)) [113, 114]. The 

carboxylic acid groups of MAA (pKa 4.9) are responsible for facilitating pH-dependent 

formation of hydrogen bonds with the oxygen moiety of the polyethyleneglycol chains. P(MAA-

g-EG ) complexation hydrogel confines insulin release to the small intestine and enables 

localization of the drug at the absorption site due to the mucoadhesive properties of PEG chains 

which penetrate into the mucosal layer. The oral administration of insulin-loaded P(MAA-g-EG ) 

hydrogel in Wistar rats resulted in a decrease in membrane resistance of Caco-2 monolayer and 

a bioavailability of 12.8% [115]. Insulin was also protected in simulated gastric fluid and 

released in simulated intestinal fluid.  Other monomers used in the formation of hydrogels for 

protein delivery include N-isopropyl acrylamide, acrylic acid, 2-hydroxyethyl methacrylate, 

ethylene glycol dimethacrylate and polyvinylalcohol [111]. 

Glucose-sensitive hydrogels have also been developed for oral insulin delivery. The addition of 

glucose oxidase to pH-sensitive hydrogels enables them further sensitivity to the presence of 

glucose. Decrease in the pH of the surrounding medium due to the conversion of glucose to 

gluconic acid by glucose oxidase within the hydrogel triggers hydrogel swelling and 

corresponding insulin release on entry of glucose into the hydrogel [116]. Concanavalin A (Con 

A), a glucose binding protein can be used to physically cross-link glucose-attached polymer 

chains [117]. The incorporated insulin needs to be modified with glucose to foster association 

with Con A, which is a gel in the absence of free glucose transforms to the sol state in the 

presence of free glucose enabling rapid release of insulin. Phenylboronic acid and its derivatives 

have also been shown to be good glucose complexing agents useful for the formation of glucose-

sensitive insulin delivery systems as described above [118]. 

Superporous hydrogels with mucoadhesive properties made up of poly (acrylic acid-co-

acrylamide)/O-carboxymethyl chitosan have also been shown to be effective in oral delivery of 

insulin [119]. These are enteric, super-absorbent and fast-swelling hydrogels that adhere to the 

intestinal mucosa when swollen, facilitating paracellular insulin transport by opening up the 

tight junctions using the mechanical pressure exerted by the swollen hydrogel. Insulin-loaded 
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superporous hydrogels were shown to multiply transport of insulin across rat intestine and 

colon ex vivo by 2 to 3 folds. Other hydrogel systems that have been used for oral insulin 

delivery include microflora –activated colon-targeted hydrogels made up of amidated calcium 

pectinate/calcium pectinate and molecular weight modulated hydrogel beads containing N-

isopropylamide, butyl methacrylate and acrylic acid [120, 121].  

Although the use of hydrogels in drug delivery has been largely successful, ensuring faster 

release of insulin by hastening the response of the hydrogel to environmental stimuli can be 

achieved by minimising the dimensions of the hydrogel [122].  

A review of the data from the use of these different oral insulin delivery systems indicates that 

successfully delivering a therapeutic concentration of active insulin to target organs will require 

a combination of efficient carrier and targeting technologies to overcome the overwhelming 

barriers present at different phases of the delivery process. Invariably, the achievement of a 

functional oral delivery system for insulin will involve innovative optimisation of pre-existing 

macromolecular carriers to enable effective GI peptide stabilisation and delivery.  

1.3. POLYELECTROLYTE COMPLEXATION 

Recent advances in the design of functional polymeric drug delivery systems have led to the 

utilisation of association complexes formed by non-chemical bonding of one polyelectrolyte to 

another as novel carriers for the delivery of drugs. These polymers are held together by forces 

such as that due to electrostatic interaction, hydrophobic association, hydrogen bonding and 

van der Waals forces. Polyelectrolyte complexes (PECS) formed spontaneously from the 

electrostatic interaction between oppositely charged polyelectrolytes through the process of 

polyelectrolyte complexation have gained attention in the pharmaceutical industry due to their 

potential applications in the formulation of protein delivery systems. Polyelectrolytes are 

polymers that have a net negative (polyanions) or positive charge (polycations) at near neutral 

pH values [123]. They are normally soluble in water due to electrostatic interactions with water 

molecules and mixing oppositely charged polyelectrolytes in aqueous media may result in the 

formation of water-soluble, stable, nano-sized PECS as shown in figure 5 below.  
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Fig. 5: Polyelectrolyte complex formation between an oppositely charged polymer and protein. 

Polyelectrolyte complexation is an equilibrium process stabilised not only electrostatically, but 

also sterically through the presence of hydrophilic chains which repulse each other stabilising 

the PECS [124,125]. The nature of the complexes formed varies with the stoichiometry of the 

mixture .The process can be described as occurring in three phases [126]. The first phase 

involves the formation of a primary complex stabilised by coulombic forces, while the second 

phase entails the stabilisation of the primary complex either by the creation of new bonds 

within the complex and/or rectifying the distortions of the polymer chains. The final step 

involves spontaneous intercomplex aggregation mainly by hydrophobic association. The nature 

of the complexes formed varies with the stoichiometry of the mixture [127] and factors that 

affect the formation and stability of PECS include polyelectrolyte concentration, polymer 

molecular weight, pH and ionic strength of the solution, solvents, ion site, charge density and 

temperature [128].  

Formulation parameters like solvent composition, polyelectrolyte concentration and mixing 

ratio affects the type and stability of complexes obtained. Interpolymer chain repulsion 

dominates at low charge ratios causing a macroscopic phase separation with each phase mostly 

containing separate polymers, while high charge ratios lead to complex precipitation due to 

maximum electrostatic interaction reducing solvent interaction [128, 129]. Intermediate charge 

ratios optimise the effects of interchain repulsion, electrostatic interaction and solvent 

interaction to create a stable dispersion [130]. pH has a marked effect on complexation, 

especially with polyampholytes which may be polycationic or polyanionic depending on if the 

pH of the solution is below or above their pI [131]. pH also influences the degree of ionisation of 

charged groups and may hence affect charge density [131, 132]. High charge density facilitates 

high complexation efficiency and consequently drug loading and also enhances PEC stability 

[133]. Ionic strength of the solvent affects PEC stability, at high ionic strength electrical double 

layer screening by counterions may diminish the influence of electrostatic forces and allow 

short-range inter-complex interactions to dominate increasing the potential for PEC aggregation 

[129, 134].  Research conducted on chitosan-Lignosulfonate PECS, showed that the type of 

complexes obtained may also vary with temperature [135]. High temperatures (100˚C) 

facilitated the formation of compact complexes, with a positive change in enthalpy driving the 

release of bound small molecules like water and counter ions resulting in an increase in entropy 

favouring complexation.  Polymer characteristics like molecular weight affect chain 

conformation and flexibility and influence the morphology of complexes produced [136].  
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Investigative techniques employed in PEC characterisation include turbidimetric measurements 

to monitor precipitation, viscosity measurements, Fourier Transform Infrared Spectroscopy 

(FTIR), Thermal analysis, Nuclear Magnetic Resonance Spectroscopy, powder X-ray diffraction, 

Static Light Scattering, Circular Dichroism and other analytical procedures [137]. The 

spontaneous formation of nano-sized complexes by polyelectrolyte complexation has the 

advantage of being a more benign process than other methods of manufacturing nanoparticles, 

which usually require the use of aggressive processing/manufacturing conditions, toxic organic 

solvents, excessive heat, sonication and agitation thereby reducing the risk of protein 

deactivation/denaturation. 

1.4. THE USE OF POLYELECTROLYTE COMPLEXATION FOR ORAL INSULIN DELIVERY 

The concept of polyelectrolyte complexation has been applied to the development of oral 

formulations of therapeutic macromolecules by electrostatic linkage to a polymeric carrier 

molecule. However tailoring its use to oral protein delivery involves rational optimisation of 

polymer structure to provide a robust network to facilitate optimum complexation, enzymatic 

protection and GI absorption of proteins. Polyelectrolyte complexation conveniently creates a 

platform where various functionalities shown to improve oral protein bioavailability can be 

imparted into the delivery system by modification of the carrier polymer rather than the protein 

molecule intended for oral administration. This serves the purpose of preserving the original 

structure and/or activity of the drug while attempting to improve its therapeutic efficacy.  

In oral insulin delivery, polyelectrolyte complexes containing insulin have been the subject of 

extensive research. Proteins and peptides are ampholytes, hence based on the pH of their 

solution they can exist as either polycations or polyanions in aqueous media [131]. Insulin for 

example is negatively charged above its pI of 5.5; polymer-protein PEC formation can therefore 

occur spontaneously in aqueous/buffer solutions at neutral pH containing insulin and 

polycations/positively charged polymeric carriers (Fig. 5). Cationic polymers which at 

physiologic pH feature protonable amine groups that can undergo electrostatic complexation 

with negatively charged insulin are often suitable in the design of polymer-insulin PECS [11]. 

These complexes are often positively charged, spherical nanoparticles, with hydrodynamic sizes 

between 100-400nm in aqueous or buffer solutions [124]. Incorporating insulin intended for 

oral administration into a dosage form of the size range described above enhances uptake by 

transcytotic transport of nanoparticles through Peyer’s patches (aggregates of lymphoid 

follicles partly covered by the highly specialized M cells which have the ability to transport 

macromolecules, particles and organisms from the gut by endocytosis) [23, 24, 25].  
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In addition, the presence of a positive charge on these nanocomplexes implies that at 

physiological pH, they are capable of interacting electrostatically with negatively charged 

groups present at epithelial tight junctions causing them to open transiently allowing the 

paracellular transport of insulin across the epithelium [26]. These positively charged complexes 

also promote transmucosal insulin absorption by interacting with negatively charged 

components of the intestinal mucosa like sulphate residues and sialic acid (which by virtue of its 

pKa of 2.6 is completely ionised at intestinal pH). Insulin–loaded polyelectrolyte nanocomplexes 

can be designed to be mucoadhesive, tight-junction modulating, amphiphillic and enzymatically 

protective by associating insulin with polymers that possess such abilities. Polyelectrolyte 

complexes applied for oral delivery of insulin are discussed below.  

1.4.1. Amphiphillic polyelectrolytes 

Improving the bioavailability of oral insulin requires absorption of the drug through both 

aqueous and lipid layers/barriers in the body. Data obtained from various research groups 

suggests that achieving this may entail the use of formulations that impart an optimum balance 

of both hydrophilic and lipophilic properties to the delivery system. Amphiphillic polymers 

which contain hydrophilic and hydrophobic components can exist naturally or can be 

synthesized by grafting a hydrophobic pendant group/polymer onto a hydrophilic backbone. 

Complexation of amphiphillic polyelectrolytes (AP) with insulin molecules has been reported to 

promote uptake of insulin by Caco-2 cell monolayers [136].  

A series of positively charged AP consisting of polyallylamine (Paa) made amphiphillic by 

hydrophobic substitution with various lipid pendant groups (palmitoyl, cetyl and cholesteryl 

groups) has been attempted for use in oral insulin delivery [136, 137,138]. The Paa backbone 

was also further modified by quaternising its primary amines resulting in a permanently 

charged AP (QPaa) with enhanced aqueous solubility [136]. Complexation with negatively 

charged insulin was carried out in tris(hydroxymethyl)aminomethane (Tris) buffer resulting 

mostly in spherical nano-sized PECS , although the palmitoyl-substituted AP yielded fluffy 

aggregates. These quaternised Paa-based PECs exhibited good insulin loading efficiency, protect 

insulin from peptic and tryptic degradation [137, 138].  

Another AP system that has been used to facilitate oral insulin delivery is hydrophobic 

poly(lactic-co-glycolic acid) (PLGA) or poly(lactic acid) (PLA) grafted onto a hydrophilic 

poly(vinyl alcohol) backbone yielding an AP termed ‘PVA-g-PLA’ [139]. The AP was made 

cationic and more water-soluble by the attachment of amino groups, diethylaminopropylamine 

(DEAPA) to the PVA backbone [140]. The stability of the resultant PECs was observed to be 
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modulated solely by level of hydrophilic modification (DEAPA), while increase in hydrophobic 

substitution was observed to facilitate insulin loading efficiency.  

These PVA-g-PLA-insulin PECs were capable of limiting tryptic degradation of insulin, reducing 

transepithelial electrical resistance (TEER) of Caco-2 cell monolayers and promoting cellular 

internalisation of insulin. All these effects were shown to be significantly enhanced by increase 

in the level of PLA grafting, indicating the importance of hydrophobic interactions in facilitating 

oral insulin delivery. Further work defining the exact mechanisms of the actions of these APs 

and their hypoglycaemic effect and bioavailability in-vivo would still be required before they 

can be used. 

1.4.2. Polycations and their derivatives 

Currently, the most common polycation used in the formulation of PECS containing insulin for 

oral administration is chitosan. Chitosan is very useful in the oral delivery of hydrophilic 

macromolecules due to its ability to facilitate paracellular transport via the reversible opening 

of the tight junctions. This is mediated by electrostatic interactions between the protonated 

amino groups of chitosan and negatively charged groups present in mucus, tight junction 

proteins and glycoproteins on cell surfaces [140, 141]. The role of chitosan in the promotion of 

enteral insulin absorption is however limited by its pKa of 5.5, which makes it soluble in only 

acidic pH conditions at which chitosan is cationic and in an uncoiled state but unfavourable for 

the release of proteinous drugs or peptides [140, 141]. This also means that at intestinal pH 

conditions at which the permeation effects of chitosan are required, it will be insoluble and 

ineffective. 

Therefore derivatives of chitosan which are soluble at neutral or alkaline pH conditions have 

been developed and applied as polyelectrolytes for enhancing oral absorption of insulin. This 

includes different forms of quaternised chitosan which are produced by methylation of the 

primary amines on C-2 using methyl iodide [140, 141]. The presence of a quaternary 

ammonium moiety on these chitosan derivatives imparts a permanent pH-independent positive 

charge to the polymer that fosters electrostatic interaction with tight junction sites to enhance 

paracellular transport of insulin [144]. The most commonly used quaternised chitosan is 

trimethyl chitosan (TMC). Optimisation of the level of quaternisation has been found to be vital 

in facilitating paracellular transport and mucoadhesion using quaternised chitosan [140, 141]. 

High levels of quaternisation have been associated with decreased mucoadhesivity due to 

reduced chain flexibility, interpenetration and steric hindrance [145, 146] while lower levels of 

quaternisation reduce interactions with mucus, also causing corresponding decreases in 

mucoadhesion. 
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Quaternised chitosan has been shown to be able to elicit its tight junction modulating effect 

when administered either as a macromolecular dispersion or as a polymer-insulin PEC. 

However, research favours the use of quaternised chitosan-insulin PECs which encourage both 

transcellular and paracellular insulin transport, while also enabling close interactions of the 

dosage form with mucus [133]. This mucoadhesive effect promotes the permeation enhancing 

effect of chitosan on the intestinal mucosa and retains high amounts of the drug at the 

absorption site creating a concentration gradient that increases uptake of the drug. 

Consequently, the administration of insulin-loaded TMC PECS to rats was observed to cause a 

greater increase in insulin transport across the ex-vivo mucosa and a larger drop in blood 

glucose than was observed on administration of insulin with quaternised chitosan solutions. 

TMC PECs have been observed to reduce tryptic degradation of insulin considerably [31].  

Also used in the formation of PECs are thiolated chitosan derivatives which contain chitosan 

conjugated to thiol-containing compounds via amide or amidine bonds. As described earlier 

thiolated chitosan derivatives are strongly mucoadhesive and mediate their absorption 

promoting effect via localization of the drug at the absorption site thereby enhancing drug 

uptake [147]. Thiolated trimethyl chitosan/ insulin PECS have been reported to show a higher 

degree of mucoadhesiveness and permeation enhancing effect than trimethylchitosan PECS, 

resulting in a more potent hypoglycaemic effect on ileal and oral administration in normal rats 

[147]. 

However, PECs are largely unstable in the gastric fluid due to the fact that electrostatic 

interactions may be lost by fluctuations in the charge of the insulin moiety at acidic pH [148]. 

Hence APs may perform better as PECS due to the presence of hydrophobic as well as 

electrostatic interactions in the formation and stabilisation of AP PECs. The formulation of PECs 

as part of an enteric-coated solid dosage form may also be a viable approach to countering their 

instability in gastric fluid. 

1.5. OBJECTIVES OF THE WORK 

Polyallylamine (Paa) (available as the hydrochloride salt) is a cationic polymer composed of free 

primary amine groups attached to a hydrocarbon backbone. The work reported herein entails 

optimising the structure of Paa through quaternisation and thiolation for the formulation of 

polymer-insulin polyelectrolyte complexes intended for oral administration. Subsequent 

chapters of the thesis report the impact of the aforementioned modifications on the physical 

characteristics, insulin complexation efficiency, morphology, enzyme-protective capacity, 

mucoadhesive capacity, cytotoxicity and cellular uptake of the resultant insulin PECS. 
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2. POLYMER SYNTHESIS AND CHARACTERISATION 

 

2.1. INTRODUCTION 

This chapter focused on chemical alteration of the structure of Paa aimed at improving its 

function in the areas of complexation, enzymatic protection and transmucosal/transepithelial 

transport of insulin intended for oral delivery.  The chemical procedures applied in optimising 

the structure of Paa includes methylation of the primary amines of Paa using methyl iodide to 

yield QPaa and immobilisation of different types of reactive thiol groups on both QPaa and Paa 

to yield novel Paa and QPaa based thiomers. As mentioned in chapter one, quaternisation 

stabilises polycationic charge thereby enhancing processes like tight junction opening, insulin 

complexation and mucoadhesion that benefit from charge-based interactions. Thiolation is 

primarily geared towards improving the mucoadhesive properties of each polymer by 

facilitating polymer-mucin thiol-disulphide bonding.   

Thiolation of Paa/QPaa was possible either through carbodiimide mediated coupling of the 

primary amine groups of the polymer to N-acetylcysteine (NAC) creating a stable amide bond or 

by reacting the polymers with 2-iminothiolane which yields the 4-thiobutylamidine derivatives 

of the parent polymer. The success of the synthesis process was evaluated by determining the 

level of polymer substitution using elemental analysis and iodometric titration to determine 

free thiol content for thiomers. Further structural characterisation was carried out by Nuclear 

Magnetic Resonance (1H NMR) and Fourier Transform Infrared Spectroscopy (FTIR). Other 

characterisation techniques used include zeta potential determination to quantify surface 

charge of the different polymers and Differential Scanning Calorimetry (DSC) to assess thermal 

properties of the polymers. The mucoadhesive profile of thiolated derivatives was also 

evaluated in comparison to that of their parent polymers by comparing the results of a mucin 

adsorption assay.  

2.2. MATERIALS AND METHODS 

2.2.1. MATERIALS 

Poly(allylamine hydrochloride) (average Mw = 15kDa), tris(hydroxymethyl)aminomethane 

(Tris base) (≥ 99%), iodomethane, amberlite IRA-96 resin (20-50 mesh), sodium iodide, N-(3-

Dimethylaminopropyl)-N’-ethyl carbodiimide hydrochloride (EDAC), sodium hydroxide, N-

hydroxysuccinimide (NHS), N-acetylcysteine, 2-iminothiolane hydrochloride, sodium 

borohydride, phosphate buffer saline (PBS), iodine solution (0.5M), starch solution (2%) and 
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Porcine gastric mucin (crude type II) were all purchased from Sigma-Aldrich UK. Other solvents 

used were of HPLC grade and were obtained from Fisher Scientific, UK. 

2.2.2 SYNTHESIS OF POLYMERS 

The methods used for the purification and quaternisation of Paa were adapted from previous 

work of Thompson et al [136]. 

2.2.2.1. Production and purification of Paa free base 

Polyallylamine hydrochloride (10g) was dissolved in 100ml distilled water and the solution 

titrated with sodium hydroxide pellets up to pH 13. The mixture was stirred continuously at 

500rpm for 1 hour and then dialysed (molecular weight cut-off - 7kDa) against 5L distilled 

water with six water changes carried out over 24 hours. The purified polyallylamine was 

obtained by lyophilising the dialysate for 48 hours with a freeze drier (VirTis adVantage, 

Biopharma Process Systems, UK). 

2.2.2.2. Quaternisation of Paa 

Polyallylamine (0.6g, 0.04mmol) was dissolved in 100ml methanol in a round bottomed flask. 

Sodium hydroxide (0.56mg) and Sodium iodide (0.25mg) were stirred into the mixture until all 

solutes were completely dissolved. The flask was placed in an oil bath maintained at 36°C under 

a fume hood, after which methyl iodide (3.51ml, 56mmol) was subsequently added into the 

reaction mixture. The reaction was carried out for 3 hours under nitrogen. The white precipitate 

formed at the base of the reaction flask was collected, while the supernatant was added 

dropwise into 400ml of diethylether. Diethylether (200ml) was added into the flask containing 

the white precipitate and both ether suspensions left standing overnight at room temperature. 

The diethylether was then decanted and the white precipitates left to dry under the fumehood.

  

The dried precipitates were dissolved in a 1:1 mixture of ethanol and water (100ml) and the 

solution dialysed (molecular weight cut-off - 7kDa) for 24hours with six water changes. The 

dialysate was then passed through an Amberlite 93 exchange resin column, previously washed 

with HCl (2M 100ml) and titrated to neutral pH using distilled water. QPaa was obtained after 

freeze drying the column eluent for 48 hours. 

2.2.2.3. Synthesis of Paa and QPaa N-acetylcysteine conjugates 

Thiolation of Paa/QPaa by conjugation to N-acetylcysteine via an amide bond was carried out 

separately using a similar method to Yin et al. [147] (Fig. 6). N-acetylcysteine (250mg; 
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1.53mmol) was dissolved in 100ml of deionised water into which EDAC and NHS were added 

consecutively up to a final concentration of 200mM to activate the carboxylic acid groups of N-

acetylcysteine. The mixture was adjusted to pH 4-5 using 2M HCl and left stirring at room 

temperature for 1 hour, after which Paa/QPaa (250mg) was added into the reaction mixture 

and the pH of the mixture readjusted to between pH 4-5. The reaction was carried out under 

nitrogen at room temperature for 5 hours without exposure to light. A control experiment 

containing equivalent concentrations of N-acetylcysteine and Paa without EDAC/NHS was also 

set up in the same way and allowed to run simultaneously. 

The reaction mixtures for the test and control experiments were then dialysed (molecular 

weight cut-off - 7kDa) in the dark at 4°C, once against 5mM HCl, twice against 5mM HCl 

containing 1% NaCl, once again against 5M HCl and finally against 0.4mM HCl. The polymer 

conjugates were isolated by dialysis and then freeze dried. The lyophilised product obtained 

was characterised and stored at -20°C. 
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Fig. 6: Thiolation reaction for EDAC/NHS mediated coupling of N-acetylcysteine to Paa/QPaa.  

2.2.2.4. Modification of Paa and QPaa using 2-iminothiolane 

The thiolation of Paa and QPaa using amidine linkages was carried out separately following the 

method previously described by Bernkop Schnurch et al. [149] (Fig. 7 below). Paa/QPaa 
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(500mg) was dissolved in 50ml deionised water and the pH adjusted to 6.5 using 5M HCl. 2-

iminothiolane hydrochloride (400mg) was added into the flask, and the reaction left stirring 

under nitrogen. The experiment was conducted at room temperature in the dark for 14 hours. 

The polymer conjugates were then isolated by dialysis and freeze dried as described in 2.2.2.3, 

after which they were also characterised and stored at -20°C.  

 

Where ‘R’ represents Paa/QPaa 

Fig. 7: Reaction scheme for Paa/QPaa thiolation using 2-iminothiolane 

2.2.3. STRUCTURAL CHARACTERISATION OF POLYMERS  

2.2.3.1. Elemental analysis 

The relative abundance of carbon, hydrogen, nitrogen and chlorine in samples (1mg) of each 

polymer was estimated using a Perkin Elmer series 2 elemental analyser (Perkin Elmer, UK). 

Elemental analysis was used to determine the average degree of polymer quaternisation as 

shown in the calculation below. Elemental analysis results are expressed as the percentage 

content of each element in the sample. Subtracting the number of mols of carbon in Paa from 

that in QPaa gives the additional moles of carbon added onto the Paa backbone after 

quaternisation. Expressing this difference as a percentage of the total number of additional mols 

of carbon expected if full quaternisation was obtained (which is equal to 3) gives the degree of 

polymer quaternisation (in mol %) [136]. The quaternisation process was done in triplicate and 

the average degree of quaternisation was determined for each sample.   
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2.2.3.2. Determination of free thiol content 

The amount of free thiol groups immobilised on each thiolated conjugate was estimated by 

iodometric titration using a 2% starch solution as indicator. Each thiomer (10mg) was dissolved 

in 1ml of deionised water acidified with a drop of 2M HCl. 1% starch indicator (300µl) was 

added into the polymer solution before titrating the solution with a 1mM iodine solution until a 

permanent blue colour characteristic of the iodine-starch complex was observed [150]. The 

amount of thiol groups (in mols) per gram of polymer was estimated from a calibration plot 

prepared from titrating iodine against increasing concentrations (2-100mgml-1) of an N-

acetylcysteine reference standard (R2= 0.99).  Iodometric titrations for each polymer as well as 

the controls were carried out in triplicate.  

2.2.3.3. Determination of disulphide bond content 

The total amount of thiol substituents per gram of polymer was obtained by reducing the 

disulphide bonds formed during the thiolation reaction using sodium borohydride (NaBH4) via 

the reaction below, followed by determination of free thiol content as described above.  

A 1ml solution (1mgml-1) of each thiomer in tris buffer pH 7.4 was prepared in a glass vial and 

mixed with 4% sodium borohydride solution (2ml) and the reaction incubated at 37°C for 

1hour in a shaking water bath. The reaction was then stopped by slowly adding 400µl of 5M HCl 

with gentle stirring. Each reaction mixture was subsequently subjected to iodometric titration 

as described above and the free thiol content obtained used to obtain the total thiol substitution. 

The disulphide bond content of each thiomer was estimated by subtracting free thiol content 

obtained for each polymer prior to the reduction process from the total thiol content which was 

obtained after treatment with the reducing agent. This was done in triplicate. 

Total thiol substitution was also determined by carrying out elemental analysis on all thiolated 

polymers using the method described in section 2.2.3.1. to obtain sulphur content (%). 

2.2.3.4. FT-IR 

Structural elucidation was carried out by obtaining FTIR spectra of dry lyophilised polymer 

samples. Each spectra was obtained by collecting 28 scans per spectrum between 4000-600cm-1 

at a resolution of 4cm-1 using a Thermo-Nicolet  FTIR spectrophotometer (Thermo Fisher 

Scientific, USA). Wavenumbers for identified peaks were obtained using the in-built OMNIC 

software attached to the equipment. 
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2.2.3.5. Zeta potential 

The zeta potential (mV) of 1mgml-1 polymer solutions in tris buffer pH 7.4 contained in folded 

capillary cells was determined at 25°C by photon correlation spectroscopy (PCS) (Zetasizer 

Nano-ZS, Malvern Instruments, UK). 

2.2.3.6. Thermal analysis (DSC) 

Polymer samples (2-3mg) were placed in hermetic aluminium pans and then subjected to DSC 

analysis  within -90°C to 370°C  at a heating rate of 20°Cmin-1 under nitrogen using a Q100 

differential scanning calorimeter (TA instruments, UK) precalibrated with an indium reference 

standard [138, 151].  

2.2.4. IN-VITRO EVALUATION OF MUCOADHESIVE CAPACITY OF POLYMERS 

Serial dilutions (0.1-1mgml-1) of mucin in tris buffer were prepared from a 1mgml-1 stock 

solution of porcine mucin in tris buffer pH 7.4 obtained by probe sonication. The absorbance of 

each diluted mucin sample at 251nm was obtained by UV spectrometry (Agilent G1103A photo 

diode array, Agilent Technology, China) and the values plotted against the equivalent sample 

concentration to obtain a standard calibration curve (R2= 0.99).  

Assessment of the mucoadhesive capacity of each polymer was determined by measurement of 

the amount of mucin adsorbed by each polymer using a similar method to that described by 

Modi. et al. [152]; 0.25ml of a 0.5mgml-1 solution of each polymer in tris buffer pH 7.4 was 

mixed with 1mgml-1 mucin in tris buffer pH 7.4 and the mixture incubated at 37°C in a shaking 

water bath for 5 hours. Control samples were also prepared by mixing the aforementioned 

mucin in tris buffer solution with only 0.25ml tris buffer at pH 7.4 and then incubated as 

described above. All control and test samples were subsequently transferred into separate 

eppendorf tubes and centrifuged at 10,000rpm for 30minutes, and the concentration of mucin 

in each supernatant measured by UV spectrometry at 251nm as described earlier.   Percentage 

(%) of total mucin adsorbed to each sample of polymer was calculated as shown below: 

 % mucin adsorption (Mad) = [Mo – Ms] / Mo × 100 

Where, 

MO = concentration of free mucin in control supernatant 

MS = concentration of free mucin in the sample supernatant 

 



32 

 

2.2.5.  IN-SITU CROSSLINKING AND REDUCTION IN FREE THIOL CONTENT OF THIOMERS 

Samples (4mg) of each thiomer were hydrated in 1ml of tris buffer and buffered to pH 8 using 

0.1M tris base, after which 3ml of PBS was added into each thiomer solution. The samples were 

incubated at 37°C in a shaking water bath and the change in the free thiol content of each 

sample with time estimated over 8 hours, by withdrawing 1ml of each sample every 2hours and 

titrating with iodine solution as described in 2.2.3.2. (any solids formed were separated out by 

centrifuging the sample at 10,000rpm for 10minutes, prior to titration).  

2.3. RESULTS AND DISCUSSION 

2.3.1. VALIDATION OF POLYMER SYNTHESIS  

The average degree of quaternisation of QPaa as estimated by elemental analysis was found to 

be 72 ± 2 mol% (mean ± S.D; n=3) at an average yield of 76.2 ± 5% (mean ± S.D; n=3). 

Immobilisation of reactive thiol groups on primary amino groups on the Paa/QPaa backbone 

was carried out using two types of covalent bonds. Paa and QPaa were coupled via a stable 

amide bond to N-acetylcysteine using a water-soluble carbodiimide cross-linker (EDAC) and 

NHS to form Paa/QPaa-N-acetylcysteine conjugates as shown in fig. 8.  
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Fig. 8: Presumptive structure of repeating units of NAC conjugates of a) Paa: Paa-NAC b) 

QPaa:QPaa-NAC. 

Paa and QPaa were also coupled to 4-thiobutylamidine via a reaction with 2-iminothiolane 

hydrochloride, a thiol-containing imidoester forming Paa/QPaa-4-thiobutylamidine conjugates. 

These TBA conjugates have a protonated amidine bond which bears an extra positive charge on 

the thiol constituent at pH 7.4 as can be seen in fig. 9 below [74, 153].                                      
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Fig. 9: Presumptive structure of repeating units of thiobutylamidine conjugates of a) Paa: Paa-

TBA b) QPaa:QPaa-TBA. 

Optimisation of the coupling reaction between the polymers and N-acetylcysteine necessitated 

the inclusion of NHS in the cross-linking reaction as shown in figure 6 to stabilise the O-

acylisourea intermediate product of the EDAC-carboxylic acid reaction which is susceptible to 

hydrolysis and consequently has a short life span in aqueous media [154]. The reaction was also 

carried out under nitrogen and at pH 4.5 to limit air or pH-induced oxidation of thiol groups to 

the reactive thiolate anion S- resulting in the formation of intramolecular disulphide bond 

formation [155]. An N-acylated amino acid was used during the reaction to prevent the 

occurrence of unwanted side reactions resulting in the formation of oligo/poly cysteine 

conjugates [150]. After lyophilisation, all polymer conjugates appeared as white, powders of 

fibrous structure which were readily soluble over a wide pH range (3-8). The mean percentage 

yield (n=3) of Paa-NAC and QPaa-NAC conjugates was found to be 68.8 ± 2.8% and 73.6 ± 2.3 %  

respectively, while the percentage yield of the Paa-TBA and QPaa-TBA conjugates was 

calculated as 73.1 ± 4.4%  and 83.6 ± 7.7 % respectively. 

The total sulphydryl group content of each conjugate as well as the amount available as free 

thiols (SH) and disulphide (S-S) bonds was estimated by iodometric titration as described in 

section 2.2.3.2. and the results shown in Table 1 below. 
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Table 1: Total thiol content, free thiol and disulphide bond content of thiomers (indicated values 

are mean ± S.D.) (n = 3). 

Polymer Free SH content 

(µmolg-1) 

S-S bond content 

(µmolg-1) 

Total thiol Substitution  

(µmolg-1) 

Paa-NAC 60 ± 1.2 280 340 ± 4.1 

QPaa-NAC 60 ± 4.3 220 280 ± 3.3 

Paa-TBA 490 ± 18 590 1080 ± 28 

QPaa-TBA 440 ± 21 560 1000 ± 31 

 

The negligible amount of thiol groups (0.2 ± 0.06µmolg-1 polymer) detected in control samples 

obtained from similar NAC conjugation experiments carried out without the addition of 

EDAC/NHS into the reaction mixture showed that EDAC/NHS was essential in the synthesis of 

NAC-based thiomers.  

The coupling efficiency of the EDAC/NHS mediated thiolation process was relatively low 

resulting in the attachment of fewer molecules of the sulphydryl-containing moiety on the 

polymer backbone than polymer conjugates obtained using 2-iminothiolane. This contributed to 

the relatively low levels of thiolation observed in Paa/QPaa-NAC conjugates as can be seen from 

Table 1 above. The relatively low coupling efficiency of the EDAC-mediated thiolation process 

has previously been reported by other research groups [147, 150] working on the thiolation of 

similar polycations using EDAC concentrations ranging between 25-200mM and has been 

attributed to a side reaction of EDAC with the nucleophilic thiolate anion that results in the 

formation of an adduct that is subsequently hydrolysed to one of the reaction by-products, urea 

[156]. In contrast, the reaction of Paa/QPaa with 2-iminothiolane was observed to proceed with 

greater efficiency considering the relatively high levels of sulphydryl groups substitution 

obtained for Paa-TBA conjugates shown in table 1 .  

Elemental analysis results confirmed the presence of sulphur within thiolated samples. Sulphur 

content of NAC conjugates (n=2): Paa-NAC and QPaa-NAC was found to be 334 ± 9 and 319 ± 

12µmolg-1 respectively. The sulphur content of Paa-TBA and QPaa-TBA was 1,143± 15 and 
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1,109 ± 9µmolg-1 respectively. These results were found to be similar to the total thiol content 

obtained by iodometric titration shown in table 1 above.  

2.3.2. FTIR SPECTROSCOPY 

Results of FTIR analysis of polymer samples are shown in figures 10 and 11 below. 

 

 

Figure 10: FTIR spectra of Paa and thiolated Paa derivatives 
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Figure 11: FTIR spectra of QPaa and thiolated QPaa derivatives 
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a strong band at 1614 cm-1 corresponding to the C=N group and another peak at 1505 cm-1 

which correlates with the C-N stretch/N-H bend of the amide II band [159].  

Quaternised Paa derivatives were characterised by N-H stretching vibration at approximately 

3355 cm-1, C-H stretching vibrations at 2717 cm-1 and 2952 cm-1, N-H absorption band at 1632 

cm-1 (figure 11). Quaternised samples also showed a C-H deformation band at 1479 cm-1 and a 

peak corresponding to the quaternary nitrogen at approximately 960 cm-1[160]. In addition to 

the above features, thiolated QPaa samples also displayed new peaks at about 1560 cm-1 which 

could be attributed to the C-N stretch/N-H bend found in thiolated Paa samples at 

approximately 1500 cm-1. QPaa-NAC also exhibited a weak band at 1700 cm-1 associated with 

the C=O group of the amide bond,  while QPaa-TBA showed relatively stronger bands at 3019 

and 2844 cm-1 assigned to CH2 stretching mode probably resulting from its relatively higher 

level of side chain substitution [158, 161].  

FTIR analysis of thiolated derivatives showed that NAC and TBA conjugates from the same 

parent polymer (Paa or QPaa) were largely similar in microstructure.  

2.3.3. THERMAL ANALYSIS (DSC) 

DSC gives information on melting point temperature (Tm) and glass transition temperature (Tg) 

of polymers. Tg is a kinetic transition which defines the point (temperature) at which the 

molecules of the polymer display a significant change in mobility [162]. Both parameters define 

the solid state physical and mechanical properties of polymers at ambient or body temperature 

and also guides their final application in biological systems [163]. Below the Tg, amorphous 

polymers are glassy or brittle, while above this Tg value the polymer becomes rubbery [163]. 

Factors related to polymer structure that may affect their thermal properties include chain 

stiffness, chain polarity and chain architecture. [162] 

The impact of variations in the structure of different Paa derivatives on their physical and 

mechanical properties was reflected by DSC. Paa has no bulky side groups attached to it and 

hence has a relatively streamlined shape. This facilitates packing of the polymer molecules into 

crystallites increasing Tm [162, 163]. The DSC thermogram of Paa (figure 12) showed a sharp Tm 

occurring at about 138°C suggesting a semi-crystalline structure. The Tm appeared to occur 

simultaneously with decomposition of the polymer chains and may imply that the temperature 

required to disrupt the polymer crystallites also led to degradation of polymer chains. The Tg of 

Paa was found to be -12°C which implies that the polymer is rubbery at ambient or body 

temperature (consistent with experimental observations). Thiolation of Paa was found to be 

associated with a slight increase in Tm from approximately 138 to about 150°C. However, while 
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Paa-TBA which contains the amidine bond appears to have retained a semi-crystalline structure 

exhibiting a sharp Tm at about 140°C -150°C, Paa-NAC exhibited a shallow, broad endotherm at 

about the same temperature. This difference could likely be due to the fact that the amidine 

group exhibits relatively less branching than N-acetyl cysteine and the protonated amidine bond 

is also more likely to partake in intermolecular bonding strengthening the crystal lattice. 

Although both thiolated Paa samples showed no Tg on their DSC thermograms, Paa-TBA samples 

were observed to change from glassy to rubbery at room temperature, indicating that this 

polymer may have a Tg which was too subtle to be observed in the DSC thermograms. 

 

Figure 12: DSC thermograms of Paa and thiolated Paa derivatives 

The attachment of bulky side groups to polymers increases the stiffness of the chain raising Tg 

[162]. Quaternisation which involves the attachment of bulky quaternary groups to the 

Paa/thiolated Paa backbone may hinder close packing of the crystallites and limit 

intermolecular hydrogen bonding thereby increasing system disorder [164]. This could be seen 

by the broad endothermic peaks exhibited by quaternised samples (figure 13). The quaternary 

group also creates steric bulk limiting chain flexibility and mobility of the polymer molecules. 

Hence, all quaternised polymers remained partially amorphous and brittle at ambient 

temperature except for QPaa-NAC which was soft but not rubbery. Quaternised derivatives 
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exhibited no Tg and the Tm of quaternised samples was much higher than their non-quaternised 

counterparts (290-300°C). This is similar to the thermal profile of QPaa-based AP, which 

showed similarly higher Tm than their non-quaternised Paa-based AP and no Tg [136].  

The relatively higher Tm exhibited  by quaternised polymers may be because these polymers are 

already in an extended conformation in their crystallite as a result of the increased stiffness of 

the polymer chain caused by the bulky quaternary group [164, 165]. This reduces their entropy 

of melting (∆Sm) or “gain in randomness” during their melting transition. According to the 

equation which defines Tm as ∆Hm/∆Sm (where ∆Hm represents the enthalpy of melting), this 

reduction in ∆Sm will lead to an increase in Tm [164, 165]. The increase in Tm of quaternised 

polymers has also been attributed to a possible ionic interaction between CH2N+(CH3)3 and Cl- 

facilitating packing of the chains into a crystal structure restoring some degree of order to the 

polymer structure [136]. QPaa also appeared to show decomposition of polymer chains 

occurring alongside its Tm. The disappearance of the sharp endothermic peaks seen in Paa and 

Paa-TBA indicated substitution of their primary amine groups. 

 

Figure 13: DSC thermograms of QPaa and thiolated QPaa derivatives. 
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2.3.4. ZETA POTENTIAL 

The surface charge of the each polymer was analysed by zeta potential measurement. The 

results of the zeta potential measurements carried out on sample solutions of each polymer in 

tris buffer pH 7.4 are detailed in table 2 below. 

Table 2: Zeta potential (mV) of 1mgml-1 solutions of polymers in tris buffer pH 7.4. Values 

indicated are mean ± S.D. (n=3) 

 

Results shown in table 2 above shows that the surface charge of the polymers was found to vary 

with the nature of the substituting group. Quaternisation enhanced the cationic charge of both 

Paa and thiolated Paa derivatives. However, while thiolation using 2-iminothiolane resulted in 

retention of cationic charge of both parent polymers (Paa and QPaa), conjugation of Paa/QPaa 

to NAC resulted in a reduction of cationic surface charge. This difference is probably related to 

the substitution of protonable primary amine groups with the uncharged amide bond present in 

NAC-based thiomers while the cationic substructure of the amidine group (figure 8 and 9) 

facilitates the retention of cationic charge in TBA-based thiomers. The marked variation in the 

surface charge of the thiomers obtained could have significant implications on the capacity of 

the polymer to complex with insulin as well as promote processes like tight junction opening 

and mucoadhesion that benefit from charge-based interactions. Polymer surface charge could 

also influence the biodistribution and cellular uptake of insulin PECS formed from the polymers 

[30, 166]. 

2.3.5. IN-VITRO EVALUATION OF MUCOADHESIVE PROPERTIES 

Evaluation of the mucoadhesive capacity of each polymer based on their in-vitro mucin 

adsorption profile indicated that both quaternised and thiolated polymers showed better 

mucoadhesive properties than the unmodified Paa backbone as can be seen in figure 14.  

Thiolated Paa (Paa-NAC and Paa-TBA) exhibited the highest level of mucin adsorption amongst 

the different polymers tested performing better than their quaternised counterparts exhibiting 

similar levels of thiolation. This brings into view the fact that mucoadhesive interactions are 

dependent on the ability of the functional groups present on the backbone of the carrier 

Polymer Paa   QPaa Paa-NAC QPaa-NAC Paa-TBA QPaa-TBA 

Zeta potential 41.9 ± 2 45.0 ± 3 35.7 ± 1 37.4 ± 1 46.9 ± 1 48.4 ± 1 
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polymer to access and efficiently interact with compatible components of the mucin 

glycoproteins [167]. Thus polymer-mucin interactions are governed by multi-factorial 

mechanisms which determine the nature and strength of the mucoadhesive bonds and 

consequently, the mucoadhesive performance of the polymer [167]. A high level of polymer 

charge density and substitution (quaternisation, hydrophobic or thiolation) could result in a 

greater degree of interchain repulsion resulting in conformational changes which may decrease 

chain flexibility and limit interpenetration/entanglements between polymer-mucin molecules 

[145, 146]. Also, steric hindrance created by the presence of a high proportion of attached 

groups on the polymer backbone which may limit access to compatible groups by shielding 

charged groups thereby reducing mucoadhesive interaction [168]. 

 

 

Fig. 14: Mucoadhesive capacity (% mucin adsorption) of the polymers and thiolated conjugates. 

(mean ± S.D.; n=3) 
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content of Paa-TBA greatly outweighs that of Paa-NAC, Paa-TBA was slightly less mucoadhesive 

than Paa-NAC.  

This could be associated with the high level of thiol substitution of Paa-TBA influencing polymer 

conformation and affecting mucin interaction or could also be as a result from the polymer thiol 

groups being more reactive with themselves (intra-chain thiol-disulphide crosslinking) than 

with those of the mucin glycoproteins. However, it appears steric effect becomes more 

pronounced with the QPaa-based thiomers which were already substituted with quaternary 

groups as can be seen from figure 14, here only QPaa-NAC which had a low level of thiolation 

exhibited better mucoadhesive properties than QPaa as a result of thiolation. On the contrary, 

QPaa-TBA showed reduced mucoadhesive properties, as this thiomer exhibited similar levels of 

mucoadhesion with the unmodified backbone which signifies a noticeable loss in the mucin-

interaction facilitating effects of both quaternisation and thiolation. This was probably caused 

by steric hindrance as well as reduced chain flexibility as a result of the high degree of both 

quaternary and thiol substitution present in QPaa-TBA, therefore resulting in a cumulative 

inhibition of effective polymer-mucin interactions realised with both Paa-TBA and QPaa. This 

effect has been observed by other groups working with similar quaternised thiomers. 

Therefore, although the mucoadhesion facilitating effects of polymer thiolation can be clearly 

seen by the marked increase in mucin adsorption of Paa due to thiolation, the results also 

highlight the need to optimise levels of substitution/quaternisation of the parent polymer to 

obtain the beneficial effects of these alterations on mucoadhesion.  

2.3.6. EVALUATION OF IN-SITU CROSSLINKING PROPERTIES 

Oxidation of free thiol groups above pH 5 results in the formation of intermolecular and 

intramolecular disulphide bonds [169] as shown in the reaction scheme below. 

2R-SH + 1/2O2                                              RS-SR + H2O 

This means that thiolated polymers are capable of forming in-situ crosslinked gel networks 

above pH 5.  The change in free thiol content of the different thiomers in phosphate buffer pH 8 

was monitored by iodometric titration. It was observed that with the exception of Paa-TBA all 

other thiomers did not show any drop in level of free thiol content over the 8 hour incubation 

period and their solutions remained clear. Paa-TBA solutions on the other hand became cloudy 

in 1 hour and at the 2 hour time period, a visibly crosslinked network was observed within the 

vial as shown in figure 15 below. Centrifugation of this sample and analysis of the supernatant 

for the presence of free thiol by iodometric titration indicated that no free thiols could be 
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detected. This confirms the crosslinking of free thiols to disulphides at pH 8 occurred 

simultaneously with the formation of this network structure, a characteristic exhibited by 

thiolated polymers.  

The crosslinking process was observed to be initiated by the addition of PBS into the solution of 

Paa-TBA in Tris buffer, implying that the process of thiol oxidation to disulphides may have 

been catalysed by the metal ions present in the buffer solution. This ability of metal ions to 

catalyse such oxidative processes has been previously documented by other research group 

[170]. The presence of tris in the buffer mixture was also observed to play a role in the 

formation of the swollen or expanded crosslinked network shown in figure 15 below 

 

Fig. 15: In-situ crosslinked network formed by Paa-TBA after 2 hours incubation in 

tris/phosphate buffer solution. 

Hydration of the dry polymer sample (Paa-TBA) with PBS was observed to lead to the formation 

of a collapsed gel, so the expanded network observed when PBS is added into a solution of Paa-

TBA in tris buffer could be a direct effect of the increase in cationic charge of the polymer in tris 

buffer pH 7.4 (protonation of the primary amine group of tris base by HCl creates more positive 

charges within the system) resulting in increased interpolymer chain repulsion and consequent 

swelling [111, 171]. Such crosslinked polymer networks that undergo volume phase transitions 

like shrinking/swelling in response to external environmental conditions have been used in the 

design of hydrogels and bioadhesive systems that control the release of incorporated drugs 

based on changes in the porosity of the dosage form in response to different stimuli [111]. 

The disparity in the crosslinking behaviour of Paa-TBA and Paa-NAC could be associated with 

the difference in the nature (charge) of the linkage bearing the thiol substitutents. Paa-NAC thiol 

groups are attached via an uncharged amide bond while the amidine linkage through which the 

thiol groups of Paa-TBA are attached to the Paa backbone is cationic, hence creating a significant 

electrostatic difference in the local environment of the respective thiol moieties of Paa-TBA and 

Paa-NAC. Such differences in the charge density of neighbouring attached groups have been 

1 hour 2 hours 
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shown to greatly influence thiol-disulphide exchange reactions [172, 173]. The formation of 

disulphide crosslinks by thiolated groups attached to the quaternised thiomers could have been 

impeded by the bulky quaternary ammonium groups present on the polymer backbone 

sterically limiting inter-chain thiol-disulphide interactions, as the close proximity of interacting 

thiol groups has been shown to improve the crosslinking process [174].  This steric effect may 

however be beneficial in limiting unwanted disulphide bond formation occurring between the 

thiomer and insulin.  

The tendency of Paa-TBA to form an in-situ crosslinked network at physiological pH would be 

considered advantageous as such crosslinked systems have been used in various drug delivery 

applications due to their ability to offer controlled (pH-dependent) release of incorporated 

materials as well as extend the residence of dosage forms at the site of application [153, 161, 

175].                                                   

2.4. CONCLUSION 

Thiolation of Paa and QPaa was possible either through EDAC/NHS mediated coupling of the 

primary amine groups of the polymer to N-acetylcysteine or by modifying the polymers with 2-

iminothiolane yielding the N-acetyl cysteine and 4-thiobutylamidine derivatives respectively. 

Thiolated derivatives from the same parent polymer were observed to be similar in structure 

despite differences in the thiol substituent used. DSC results showed that unlike the Paa 

backbone, no Tg was observed for Paa derivatives. Quaternisation of polymers also resulted in 

an upward shift in Tm.  

Thiolated Paa derivatives were shown to have improved mucoadhesive qualities, with Paa-TBA 

also exhibiting in-situ crosslinking properties. However, thiolation of QPaa did not yield 

thiomers with significant improvements in mucoadhesive properties when compared to the 

parent polymer possibly due to their high level of quaternisation/substitution.  
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3. FORMULATION, CHARACTERISATION AND EVALUATION OF Paa-BASED POLYMER-

INSULIN POLYELECTROLYTE COMPLEXES 

 

3.1. INTRODUCTION 

This chapter gives an overview of the processes involved in the development of optimal 

formulations of polymer-insulin PECS using Paa, QPaa and their thiolated derivatives by 

characterisation of the complexes obtained using techniques like Photon Correlation 

Spectroscopy (PCS) (for determination of particle size, polydispersity index (PDI) and zeta 

potential), UV spectroscopy (for turbidity measurements) and Transmission electron 

microscopy (TEM) amongst others. The section also evaluates the in-vitro capacity of polymer, 

insulin PECS prepared from different polymers to protect complexed insulin from enzymatic 

degradation. The mucoadhesive properties of PECS were also evaluated using the mucin 

adsorption method. 

3.2. MATERIALS AND METHODS 

3.2.1. MATERIALS 

Insulin (27 units per mg/Umg-1, from bovine pancreas), tris(hydroxymethyl)aminomethane 

(Tris base) (≥ 99%), pepsin (3640 Umg-1, from porcine gastric mucosa), α-chymotrypsin (TLCK 

treated, Type VII from bovine pancreas,  ≥ 40 Umg-1), trypsin (TPCK treated, from bovine 

pancreas,  11,004 Umg-1) and Porcine gastric mucin (crude type II) were all purchased from 

Sigma-Aldrich UK. Mercodia Bovine insulin ELISA kit and sample buffer were obtained from 

Diagenics Ltd. UK. 

Trifluoroacetic acid (TFA) and Acetonitrile (HPLC grade) were all purchased from Fischer 

Scientific, UK. Other chemicals used were of analytical grade. 

Polymers used for the formulation of test insulin PECS include Paa, Paa-TBA, Paa-NAC, QPaa, 

QPaa-TBA and QPaa-NAC. 

3.2.2. PREPARATION OF POLYMER, INSULIN COMPLEXES 

A series of test formulations of PECS were prepared at room temperature by mixing equal 

volumes (2ml) of separate solutions of each polymer with insulin in a glass vial  while varying 

polymer:insulin (P : I) mass ratio between 0.2-2:1 and insulin stock solution concentration at 

two different concentration levels (0.5 and 2mgml-1). For the parent polymers (Paa and QPaa), 

the complexation process was also carried out with different buffer systems (sodium hydroxide 
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or Tris buffer both at pH 7.4), while complexation of insulin with thiolated Paa/QPaa derivatives 

was carried out in tris buffer pH 7.4 only. After mixing the polymer and insulin solutions, the pH 

of each formulation was adjusted to pH 7.4 (using either 0.1M Tris base or 0.01M HCl as 

required) and the complexes were left to stand for 2 hours at room temperature before 

characterisation [137]. 

3.2.3. CHARACTERISATION OF POLYMER, INSULIN COMPLEXES 

The identification and selection of optimal formulations of polymer, insulin PECS from each 

polymer was based on the assessment of the physical properties, stability and insulin 

complexation efficiency of each test PEC formulation using the parameters described below. All 

measurements were carried out as complexes were made (day 0) and after the formulations 

were left standing at room temperature for 72 hours (day 3). 

3.2.3.1. Particle size analysis 

The average hydrodynamic diameter (H. diameter) and polydispersity index (PDI) of insulin 

complexes formed by each polymer was analysed at 25°C by PCS (Zetasizer Nano-ZS, Malvern 

Instruments, UK) after 1ml of each complex formulation had been transferred into a plastic 

cuvette. The PDI of the sample gives an indication of the mean size distribution of the particles 

present in a sample of the PEC suspension. 

3.2.3.2. Zeta Potential Measurements 

The zeta potential of complexes formed within each test sample was determined by filling a 

folded capillary cell with a sample of each complex formulation and analysing at 25°C by PCS. 

3.2.3.3. Transmittance studies 

In order to evaluate the colloidal stability of complexes formed and objectively define 

macroscopic appearance of each test formulation, the turbidity of 2ml samples of each PEC 

suspension was measured by determining the percentage transmittance of each complex 

suspension at 630nm using an Agilent G1103A photo diode array (Agilent Technology, China). 

Tris buffer pH 7.4 and insulin stock solutions were used as controls. 

3.2.3.4. Complexation efficiency 

The amount of insulin present in each complex formulation and the corresponding control stock 

solution  was quantified by HPLC analysis using a Shimadzu HPLC system composed of a DGU-

20As degasser attached to an LC-20AD pump with a SIL-20A autosampler, a CTO-10ASvp 
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column oven (at 25ºC) and a RF-10Axl fluorescence detector (excitation = 276 nm; emission = 600 

nm). 

The stationery phase was an XBridgeTm BEH 130 C18 Column (150mm x 4.6mm) (Waters, U.K.) 

and the mobile phase was water/acetonitrile (68.5:31.5) buffered to pH 2 with TFA at a flow 

rate of 1mlmin-1. 

The insulin peak was detected at 5 minutes and the insulin concentration detected calculated 

from a calibration curve prepared from dilutions of a standard stock solution (0.015-1.5 mgml-1; 

R2 = 0.992; n=3). For Paa, QPaa and their NAC conjugates, complexation efficiency (%) of each 

PEC was obtained by expressing the amount of insulin detected as mentioned above as a 

percentage of the total amount of insulin incorporated in the sample. Complexation efficiency of 

PECS prepared from TBA-conjugates was obtained by first subtracting insulin concentration 

detected by HPLC from total amount of insulin incorporated and then expressing this value as a 

percentage of total insulin. Complexation efficiency of these complexes was also calculated 

using insulin concentrations detected by a Mercodia bovine insulin ELISA kit (Diagenics Ltd., 

UK). Briefly, Paa-TBA insulin complexes prepared at 0.8:1 P : I ratio were diluted down to 

2.5µg/L using ELISA sample buffer and the amount of insulin contained in equivalent lml 

samples of complex and control was obtained following the method outlined in the assay kit. 

The insulin content of both control and complex samples were determined using the values 

obtained from a calibration plot (R2 = 0.98) prepared from insulin standards provided in the kit 

(0.05-3µg/L). Results were obtained in triplicate. 

3.2.3.5. Transmission Electron Microscopy (TEM) 

The morphology of polymer, insulin complexes was visualised using a LEO 912 energy filtering 

transmission electron microscope at 100/120kV. Formvar/Carbon-coated 200 mesh copper 

grids were glow discharged and complex solutions dried down to a thin layer onto a hydrophilic 

support film.  Aqueous methylamine vanadate (1%) (Nanovan; Nanoprobes, Stony Brook, NY, 

USA) was applied and the set-up air dried before imaging [137].  

Subsequent to the optimisation process described above, stable PEC formulations were 

identified for each type of polymer tested. These optimal formulations were used for further 

evaluation processes detailed below. 

 

3.2.4. IN-VITRO ENZYMATIC DEGRADATION STUDIES 

Trypsin (6.4mgml-1, 2.7 x 10-4M), test complex suspensions and insulin control (0.25mgml-1) 

(each 4.5ml) solutions were prepared separately in pH 8 Tris buffer and incubated in a water 
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bath at 37°C for 2 hours. Trypsin (0.05ml) was then added into each complex solution. Aliquots 

of the mixture (0.2ml) were withdrawn every 30 minutes and mixed with ice cold TFA solution 

(0.015ml, 0.1% v/v) to stop enzymatic activity. The experiment was conducted for 4 hours at 

37°C with samples being analysed by the HPLC process described earlier. Results obtained were 

compared with an insulin control subjected to similar conditions as the complexes. The same 

process was repeated with α-chymotrypsin (5mgml-1, 2.0 x 10-4 M) in pH 8 Tris buffer. 

Peptic degradation studies were carried out by dissolving pepsin  (0.1mgml-1, 2.8 x10-6M) in 

0.01M HCl  after which both complex and enzyme solutions were then buffered to pH 2 with a 

drop of 5M HCl and incubated in a water bath at 37°C for 2 hours. Pepsin (0.016ml) was added 

into the complex solutions and samples (0.15ml) were drawn from each mixture every 30 

minutes and put into ice cold Tris base (0.15ml, 0.1M) to halt enzyme activity. This experiment 

was also conducted for 4 hours at 37°C with samples being analysed by HPLC. Results obtained 

were compared with insulin controls (0.25mgml-1) subjected to similar conditions as the 

complexes. HPLC analysis was subsequently carried out on each sample to determine the 

amount of non-degraded insulin remaining as a function of time.  

3.2.5. IN-VITRO EVALUATION OF MUCOADHESIVE CAPACITY OF COMPLEXES 

Assessment of the mucoadhesive capacity of each polymer, insulin PEC formulation was 

determined by measurement of the amount of mucin adsorbed by the complexes using the 

mucin adsorption assay described in section 2.2.4. [152]. PEC formulations composed of 

0.5:0.25 mgml-1 P: I mass ratio were prepared for each test polymer as described earlier. 

Experiments were carried out by mixing 1ml of mucin in tris buffer pH 7.4 solution (1mgml-1) 

with a 0.25ml sample of each test PEC formulation. Controls were prepared by mixing 0.25ml of 

Tris buffer pH 7.4 with 1ml (1mgml-1) mucin solution and incubated as described for test 

samples An additional test sample containing  a similar mixture of mucin and 0.25ml of insulin 

in tris buffer pH 7.4 (0.25mgml-1) was also prepared. These mixtures were subsequently 

incubated at 37°C on a shaking water bath for 5 hours.  

All control and test samples were subsequently transferred into separate Eppendorf tubes and 

centrifuged at 10,000rpm for 30minutes, and the concentration of mucin in each supernatant 

measured by UV spectrometry at 251nm. Percentage (%) of total mucin adsorbed to each 

sample of polymer was calculated as described in section 2.2.4. 

3.2.6. STATISTICAL ANALYSIS 

All results are expressed as the mean ± standard deviation of three experiments. 
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3.3 RESULTS AND DISCUSSION  

3.3.1. FORMULATION DEVELOPMENT AND OPTIMISATION 

Developing stable formulations of polymer, insulin PECS involved evaluating the impact of 

varied polymer: insulin (P: I) mass ratios, insulin stock concentration level and different buffer 

systems on the physical properties and stability of complexes formed.  

Parameters used in the evaluation and subsequent selection of optimal formulations included:  

insulin complexation efficiency which shows the proportion of incorporated insulin available as 

nano-sized PECS; particle size analysis comprising measurements of hydrodynamic diameters 

as well as the size distribution (PDI) of complexes formed and turbidity measurements 

(expressed as %transmittance) which reflects the stability and macroscopic properties of the 

formulation. The average zeta potential of each formulation was determined and used alongside 

the aforementioned properties to evaluate the overall stability profile of the test formulation. 

TEM imaging was also carried out on both stable and unstable samples of selected complexes.  

Good formulations of these PECS should contain discrete, nano-sized complexes exhibiting 

hydrodynamic diameters between 50-200nm and PDI values between 0.1-0.3 showing a 

uniform particle size distribution. These complexes should also exhibit high insulin 

complexation efficiency and high transmittance values indicating minimal aggregation of PECS. 

3.3.1.1. Evaluation of Paa, insulin complexation in Tris buffer pH 7.4 

Paa, insulin PECS were prepared in Tris buffer pH 7.4 using both 0.5 and 2mgml-1 insulin stock 

solutions at mass ratios between 0.2-2:1 and analysed as described above at Day 0 (2 hours 

after PEC preparation) and at day 3 (72 hours after PEC preparation). Zeta potential of 

complexes was carried out only at day 0. Results are shown in figures 16-19 and Table 3 below. 

Table 3: Zeta potential (mV) of Paa, insulin PECS prepared in Tris buffer pH 7.4 using 0.5 and 

2mgml-1 insulin stock at day 0 (n=3; mean ± S.D). 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 1:1 2:1 0.2:1 0.8:1 1:1 2:1 

Zeta (mV) 29.8 ± 2 31.2 ± 1 33.9 ± 1 34.2 ± 3 29.9 ± 2 36.1 ± 1 38.6 ± 4 35.3 ± 2 
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A)  

 

B)  

 

Fig. 16: Particle size analysis of Paa, insulin complexes in Tris buffer pH 7.4 at day 0. Results 

show A) Hydrodynamic diameter B) PDI of PECS prepared at varied P: I mass ratios using 0.5 

and 2mgml-1 insulin stock. (n=3; mean ± S.D.) 
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A)  

       B)  

 

Fig. 17: Particle size analysis of Paa, insulin complexes in Tris buffer pH 7.4 at day  

3. Results show A) Hydrodynamic diameter B) PDI of PECS prepared at varied P: I mass ratios 

using 0.5 and 2mgml-1 insulin stock. (n=3; mean ± S.D.)
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Fig. 18: % Transmittance and Complexation efficiency of Paa, insulin PECS prepared in Tris buffer pH 7.4 at different P: I mass ratios using 0.5 and 

2mgml-1 insulin stock solution (Day 0) (n=3; mean ± S.D.)
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Fig. 19: % Transmittance and Complexation efficiency of Paa, insulin PECS prepared in Tris buffer pH 7.4 at different P: I mass ratios using 0.5 and 

2mgml-1 insulin stock solution (Day 3) (n=3; mean ± S.D.)
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Complexation of Paa with insulin was carried out initially in Tris buffer pH 7.4 using the 

0.5mgml-1 insulin stock solution. Results at day 0 show that at P: I mass ratio between 0.2-1:1, 

Paa complexes yielded clear formulations with corresponding high transmittance values (figure 

18). However, complexes exhibited relatively larger particle sizes at P:I mass ratios of 0.2:1 

suggesting the existence of weaker P: I interaction at this ratio although the formulation 

appeared stable. Particle sizes increased again at P : I mass ratio of 2:1 and PECS turned 

translucent displaying a corresponding decrease in transmittance.  Increasing P : I mass ratio to 

2:1 may result in compression of the electrical double layer around suspended particles 

reducing the magnitude of the repulsive barrier between PECS (figure 20) and increasing the 

chances of aggregation consequently elevating particle sizes. 

 

Fig. 20: Representation of Electrostatic double layer repulsion between polyelectrolyte 

particles. 

However, formulations at higher P : I mass ratios (2:1) showed no sign of precipitation or phase 

separation suggesting the zeta potential of the complexes formed was sufficient to keep the 

particles suspended in the system. However, the PDI value for these complexes was high (> 0.3) 

indicating a broadening in the size distribution of complexes formed.  

Raising the concentration level of the insulin stock used to 2mgml-1 resulted in translucent 

formulations (as shown in figure 21B below) with relatively larger particle sizes and lower 

transmittance values. Across the different mass ratios used, the stability profile of complexes 

followed a similar trend with that obtained at 0.5mgml-1 with PECS at the upper and lower 

margins of the mass ratio combinations (0.2:1 and 2:1) exhibiting much larger particle sizes as 

can be seen in figure 16.   
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Fig. 21: Paa, insulin complex formulations A) Clear PEC formulation obtained from the              

0.5mgml-1 insulin stock at P : I mass ratios between 0.2-1:1 B) translucent PEC formulation 

obtained from the 2mgml-1 insulin stock  

The translucent appearance of complexes could be a direct effect of the higher concentration of 

complexes in the suspension and/or as a result of intercomplex associations as interparticulate 

distances fall allowing attractive forces to predominate. Hence complexes exhibit large particle 

sizes as they probably exist as aggregates not discrete units. PDI values for complexes prepared 

at the higher insulin stock concentration level appeared to be generally lower (< 0.3) than was 

observed with PECS prepared using the 0.5mgml-1 insulin stock, suggesting that the 

complexation process was more uniform with increase in polyelectrolyte concentration.  Insulin 

complexation efficiency was observed to be high (≥ 90%) at all P: I mass ratios for both insulin 

stock concentration levels.  

Paa, insulin complexes were left standing for 72 hours at room temperature and characterised. 

Results of analysis at day 3 indicate that for both 0.5 and 2mgml-1 insulin stock, complexes 

prepared at P: I mass ratio of 0.2:1 showed visible signs of precipitation causing an increase in 

particle sizes and fall in transmittance and complexation efficiency values (figures 17 and 19). 

The instability observed at 0.2:1 could be as a result of the lower zeta potential (<30mV) of 

complexes at this mass ratio, as zeta potential values above 30mV have been found to be 

important in stabilising dispersions of colloidal particles [176]. This is in agreement with the 

results of similar work which reports the formation of unstable aggregates at low P: I mass 

ratios presumed to be as a result of excess of the interacting protein [140].  

 

PEC formulations at P: I mass ratios of 2:1 appeared more turbid at day 3, than formulations at 

P: I mass ratios between 0.4-1:1 which retained high transmittance and insulin complexation 

B A 
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efficiency values with slight increases in particle size. These results indicate that in Tris buffer 

pH 7.4, P : I mass ratios between 0.4-1:1 were optimal formulations for the preparation of Paa, 

insulin PECS. 

 

3.3.1.2. Evaluation of QPaa, insulin complexation in Tris buffer pH 7.4 

 Characterisation of QPaa, insulin PECS prepared in Tris buffer pH 7.4 was also carried out at 

day 0 and day 3. Zeta potential values were carried out only at day 0. Results are displayed in 

figures 22-25 and Table 4 below. 

Table 4: Zeta potential (mV) of QPaa, insulin PECS prepared in Tris buffer pH 7.4 using 0.5 and 

2mgml-1 insulin stock at day 0 (n=3; mean ± S.D.). 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 1:1 2:1 0.2:1 0.8:1 1:1 2:1 

Zeta (mV) 27.8 ± 4 30.4 ± 1 34.2 ± 3 30.4 ± 3 29.8 ± 1 32.6 ± 2 33.0 ± 1 33.8 ± 1 
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A)  

B)   

Fig. 22: Particle size analysis of QPaa, insulin complexes in Tris buffer pH 7.4 at day  

0. Results show A) Hydrodynamic diameter B) PDI of PECS prepared at varied P: I mass ratios 

using 0.5 and 2mgml-1 insulin stock. (n=3; mean ± S.D.) 
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Day 3 size analysis results showed that QPaa, insulin PECS prepared at 0.2:1 P: I mass ratio 

were above 1µm. Hence results were not included in figure 23 below. 

A)  

B)  

Fig. 23: Particle size analysis of QPaa, insulin complexes in Tris buffer pH 7.4 at day 3. Results 

show A) Hydrodynamic diameter B) PDI of PECS prepared at varied P: I mass ratios using 0.5 

and 2mgml-1 insulin stock. (n=3; mean ± S.D.) 
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Fig. 24: % Transmittance and Complexation efficiency of QPaa, insulin PECS prepared in Tris buffer pH 7.4 at different P: I mass ratios using 0.5 and 

2mgml-1 insulin stock solution (Day 0) (n=3; mean ± S.D.)
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Fig. 25: % Transmittance and Complexation efficiency of QPaa, insulin PECS prepared in Tris buffer pH 7.4 at different P: I mass ratios using 0.5 and 

2mgml-1 insulin stock solution. (Day 3) (n=3; mean ± S.D.)
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In Tris buffer pH 7.4, results show that QPaa insulin PECS prepared using the 0.5mgml-1 insulin 

stock at low P: I mass ratio of 0.2:1 contained flocculated precipitates which settled at the 

bottom of the vial, creating a two-phased system composed of a clear supernatant layer and a 

flocculated bottom layer as shown in figure 26 below.  

 

Fig. 26: QPaa, insulin PECS in Tris buffer pH 7.4 at P: I mass ratio 0.2:1 showing flocculated 

precipitation at the bottom of the vial after 2-4 hours of preparation. 

Therefore, QPaa PECS at low P: I mass ratio (0.2:1) exhibited large particle sizes, low 

transmittance values and low insulin complexation efficiency (figure 22 and 24) as most of the 

incorporated insulin was present within this flocculated structure rather than as nano-sized 

PECS. The flocculation effect observed at low P: I mass ratio may suggest that polymer chains 

could adsorb onto multiple insulin complexes at high interparticulate distances creating a 

bridge between individual complexes and causing flocculation (figure 27) [177].  

 

Fig. 27: Schematic illustration of polymer bridges initiating the formation of flocculated particles 

Polymer chains 

2-4 Hours 
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Polymer, insulin PEC 

Rapid phase separation was evident at Day 0 in QPaa PEC formulations made at 0.2:1 P: I mass 

ratios, while the onset of precipitation for similar Paa-based formulations started at day 3. This 

difference in the nature of interaction of Paa and QPaa with insulin at low P: I ratio could be 

associated with the variations in their chemical composition. N-methylation in QPaa may 

facilitate more intracomplex (QPaa-insulin) hydrophobic interactions at the expense of 

hydrophilic interactions with the bulk aqueous phase. However, increasing the P: I mass ratio to 

values between 0.4-1:1 stabilised the system enhancing the formation of small nano-sized 

complexes (<100nm) of uniform size distribution which displayed high transmittance values 

(>90%). The formulations were stable showing no visible signs of precipitation or phase 

separation. This increase in complex stability may arise from increase in repulsive forces 

between individual particles and/or steric forces as the surface area of particles covered by 

hydrophilic polymer chains increases as illustrated in figure 28 below.  

 

Fig. 28: Diagrammatic representation of steric repulsion between hydrophilic polymer chains. 

However, a slight increase in PEC size and reduction in transmittance values at 2:1 P: I ratio 

showed that further increase in P:I ratio/polyelectrolyte concentration may result in 

compression of the double layer, reducing the magnitude of the repulsive barrier between 

individual complexes and increasing the chances of aggregation consequently elevating particle 

sizes [177, 178].  QPaa, insulin complexes displayed a more uniform size distribution (PDI 

values were < 0.3) than Paa complexes. This suggests that at the lower insulin stock 

concentration level (0.5mgml-1), P : I interaction was more efficient and uniform with 

quaternised than non-quaternised Paa.  

With the exception of complexes prepared at 0.2:1 which exhibited turbidity and 

precipitation/flocculation (figure 29A below), raising the concentration level of the insulin stock 

used in the preparation of QPaa, insulin PECS to 2mgml-1 also resulted in the formation of 

translucent but stable formulations with relatively larger particle sizes and lower transmittance 

values than similar PECS prepared using the 0.5mgml-1 insulin stock. PEC formulations were 

Hydrophilic polymer chains 

Polymer, insulin PEC 
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however free from precipitation indicating PECS may be in the form of aggregates of complexes 

which still remain suspended in the system (figure 29C below) because of their high zeta 

potential. Except for the 0.2:1 P: I mass ratio, insulin complexation efficiency was observed to be 

high (> 90%) for all other QPaa, insulin PEC formulations. Complexation efficiency of stable 

QPaa, insulin complexes was observed to be higher than equivalent Paa, insulin complexes 

suggesting that P: I interaction was strengthened by quaternisation.  

 

Fig. 29: TEM images of QPaa, insulin complexes prepared in Tris buffer pH 7.4 A) large 

precipitates obtained using the 0.5mgml-1 insulin stock at 0.2:1 P: I mass ratio B) small discrete 

spherical complexes obtained using the 0.5mgml-1 insulin stock at 0.8:1 P: I mass ratio C) 

complexes prepared at 0.8:1 P : I mass ratio using the 2mgml-1 insulin stock showed aggregates 

of spherical complexes. 

Results of analysis at day 3 suggest that QPaa, insulin complexes prepared between P : I mass 

ratios of 0.4-1:1 were stable formulations exhibiting minimal changes in particle size, 

complexation efficiency and transmittance values. While, PEC formulations at 0.2:1 P : I mass 

ratio contained precipitates exceeding the nano-range by day 3. Therefore, optimal P : I mass 

ratio for the formulation of QPaa, insulin PECS was observed to range between 0.4-1:1. 

3.3.1.3. Evaluation of Paa/QPaa, insulin complexation in sodium hydroxide buffer  

Preparation of Paa and QPaa, insulin PECS was carried out as described in section 3.1.1. using 

sodium hydroxide buffer at pH 7.4 instead of Tris buffer and the formulations characterised at 

day 0 and day 3. Results are shown in tables 5-6 and figures 30-37 below.   

 

A B C 
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Table 5: Zeta potential (mV) of Paa, insulin PECS in NaOH buffer pH 7.4 at day 0 (n=3; mean ± 

S.D.). 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 1:1 2:1 0.2:1 0.8:1 1:1 2:1 

Zeta (mV) 29.8 ± 3 27.0 ± 1 22.9 ± 1 28.5 ± 2 24.6 ± 4 22.4 ± 3 21.5 ± 3 20.1 ± 2 
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Size analysis showed 2mgml-1 insulin stock-based Paa, insulin PECS in sodium hydroxide buffer 

were precipitated with sizes above 1µm. Results were not included in figures 30 and 31 below.

  

A)  

B)        

 

Fig. 30: Size analysis of Paa, insulin PECS in NaOH buffer pH 7.4 at day 0. Results show A) 

Hydrodynamic diameter B) PDI of PECS at varied P: I mass ratios (n=3; mean ± S.D.)                  
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Size analysis showed PECS prepared at 0.2:1 P: I mass ratio were precipitated with sizes above 

1µm, hence these results were also not included in figure 31 below. 

 

A)  

B)  

Fig. 31: Size analysis of Paa, insulin PECS in NaOH buffer pH 7.4 at day 3. Results show A) 

Hydrodynamic diameter B) PDI of PECS at varied P: I mass ratios. (n=3; mean ± S.D.)
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Fig. 32: % Transmittance and Complexation efficiency of Paa, insulin PECS prepared in NaOH buffer pH 7.4 at different P: I mass ratios using 0.5 and 

2mgml-1 insulin stock solution. (Day 0) (n=3; mean ± S.D.)
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Complexation efficiency and % Transmittance of 2mgml-1 insulin stock based Paa, insulin complexes in sodium hydroxide buffer was not repeated at 

72 hours due to excessive precipitation. 

 

 

Fig. 33: % Transmittance and Complexation efficiency of Paa, insulin PECS prepared in NaOH buffer pH 7.4 at different P: I mass ratios using    

0.5mgml-1 insulin stock solution. (Day 3) (n=3; mean ± S.D.) 
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Table 6: Zeta potential of QPaa, insulin PECS in NaOH buffer pH 7.4 at Day 0 (n =3; mean ± S.D.) 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 1:1 2:1 0.2:1 0.8:1 1:1 2:1 

Zeta (mV) 22.3 ± 3 28.3 ± 1 27.8 ± 2 28.7 ± 2 29.8 ± 1 31.8 ± 1 31.9 ± 3 33.0 ± 2 

 

A)  

B)  

Fig. 34: Size analysis of QPaa, insulin PECS in NaOH buffer pH 7.4 at day 0. Results show                 

A) Hydrodynamic diameter B) PDI of PECS at varied P: I mass ratios. (n=3; mean ± S.D.) 
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A)  

B)  

* Size analysis showed 2mgml-1 insulin stock-based PECS prepared at 0.2:1 P: I mass ratio were 

precipitated with sizes above 1µm. 

Fig. 35: Size analysis of QPaa, insulin PECS in NaOH buffer pH 7.4 at day 3. Results show A) 

Hydrodynamic diameter B) PDI of PECS at varied P: I mass ratios. (n=3; mean ± S.D.)
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Fig. 36: % Transmittance and Complexation efficiency of QPaa, insulin PECS prepared in NaOH buffer pH 7.4 at different P: I mass ratios using    0.5 

and 2mgml-1 insulin stock solution. (Day 0) (n=3; mean ± S.D.) 
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Fig. 37: % Transmittance and Complexation efficiency of QPaa, insulin PECS prepared in NaOH buffer pH 7.4 at different P: I mass ratios using 0.5 

and 2mgml-1 insulin stock solution. (Day 3) (n=3; mean ± S.D.)
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Changing the buffer system from Tris to sodium hydroxide resulted in an overall reduction 

in the stability and insulin complexation efficiency of all formulations as can be seen in 

figure 30-37 above.  

Paa, insulin complexes were observed to be more adversely affected by this change to 

sodium hydroxide buffer than QPaa, insulin complexes. At the 0.5mgml-1 insulin stock 

concentration level, P : I complexation was still evident for both polymers. However at this 

concentration level, while QPaa, insulin interaction was sufficient to result in the 

production of small compact complexes at P : I ratios of 0.8-1:1, the particle size of  

corresponding Paa, insulin complexes was observed to be noticeably larger than average 

particle sizes of any other set of 0.5mgml-1 insulin stock –based complexes.  This suggests 

that although complexation took place, P : I interaction was weak resulting in loosely held 

complexes and the low transmittance values obtained indicated that these complexes were 

also more susceptible to aggregation than those prepared in Tris buffer. The effect may be 

more pronounced in Paa than in QPaa complexes which benefit from the stabilising effect 

of the quaternary ammonium group on polymer charge. 

 Increasing insulin stock concentration level to 2mgml-1 allows for other factors like 

reduction in interparticulate distances (allowing attractive forces to dominate) and double 

layer compression which initiates further destabilisation of the system to occur. Hence, 

QPaa, insulin PECS displayed increased particle size, more turbidity and reduced 

complexation efficiency with increase in insulin stock concentration level (figures 34-37). 

However, Paa, insulin PECS completely precipitated out of the system resulting in very 

turbid formulations which displayed particle sizes outside the nano-range and negligible 

insulin complexation efficiency.  

This destabilising effect of sodium hydroxide buffer on P : I complexation could be 

attributed to the screening effect of the salt ions on the repulsive charges exhibited by 

dispersed particles; this could compress the double layer and reduce the charge barrier to 

the point at which precipitation sets in [179].The difference in the dynamics of the 

complexation process in sodium hydroxide buffer and Tris buffer pH 7.4 may be related to 

the fact that sodium hydroxide is neutralised by HCl in the buffer solution producing 

neutral sodium chloride salt. On the other hand, Tris base is protonated by HCl creating a 

higher balance of positive charges when the polyelectrolytes are dissolved in Tris buffer 

[171]. This may explain the higher zeta potential of complexes in Tris than sodium 
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hydroxide buffer at pH 7.4 (Tables 3-6) with negative effects on P : I interaction and 

complex stability in sodium hydroxide buffer.  

3.3.1.4. Evaluation of insulin complexation with NAC conjugates 

Insulin PECS were prepared in Tris buffer pH 7.4 using both Paa-NAC and QPaa-NAC. 

Complexes were prepared using both thiomers and 0.5 and 2mgml-1 insulin stock at mass 

ratios of 0.2:1, 0.8:1 and 2:1. Complexes from each thiomer were characterised as in section 

3.2 at Day 0 (2 hours after PEC preparation) and at day 3 (72 hours after PEC preparation). 

Zeta potential of complexes was carried out only at day 0 (table 7).  

Table 7: Zeta potential (mV) of Paa-NAC, insulin PECS and QPaa-NAC, insulin complexes 

prepared in Tris buffer pH 7.4 using 0.5 and 2mgml-1 insulin stock at day 0 (n=3; mean ± 

S.D.). 

 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 2:1 0.2:1 0.8:1 2:1 

Paa-NAC 23.8 ± 1 29.2 ± 3 30.8 ± 3 23.3 ± 2 30.4 ± 4 32.9 ± 4 

QPaa-NAC 19.5 ± 3 28.7 ± 3 29.0 ± 2 18.7 ± 2 31.4 ± 0 32.9 ± 2 

 

Paa-NAC, insulin and QPaa-NAC, insulin complexes prepared at 0.2:1 P : I mass ratio were 

excessively precipitated and particle sizes were outside the nano-range. Results were 

therefore not included in figures 38 and 39 below. 

 

 

 

 

 

 

 



 

 

75 

 

A. 
 

 
B.  

Fig. 38: Hydrodynamic diameter of Paa-NAC and QPaa-NAC insulin PECS prepared in Tris 

buffer pH 7.4 at different P: I mass ratios using 0.5 and 2mgml-1 insulin stock solution (day 

0). All values are mean ± S.D. (n=3). 
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A. 
 

 
B.  

Fig. 39: Hydrodynamic diameter of Paa-NAC and QPaa-NAC insulin PECS prepared in Tris 

buffer pH 7.4 at different P : I mass ratios using 0.5 and 2mgml-1 insulin stock solution (day 

3). All values are mean ± S.D. (n=3). 
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Fig. 40: Transmittance and Complexation efficiency (%) of Paa-NAC, insulin PECS made at 

various P : I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 0) (n= 3; mean ± S.D.) 

 

Fig. 41: Transmittance and Complexation efficiency (%) of Paa-NAC, insulin PECS made at 

varied P : I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 3) (n= 3; mean ± S.D.). 
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Fig. 42: Transmittance and Complexation efficiency (%) of QPaa-NAC, insulin PECS made at 

various P : I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 0) (n= 3; mean ± S.D.) 

 

 

Fig. 43: Transmittance and Complexation efficiency (%) of QPaa-NAC, insulin PECS made at 

various P : I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 3) (n= 3; mean ± S.D.) 
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Figures 38-43 show that the complexation profiles of insulin PECS prepared with both 

NAC-conjugates (Paa/QPaa-NAC) were quite similar. For both 0.5 and 2mgml-1 insulin 

stock concentration levels, precipitation and phase separation at 0.2:1 P : I mass ratio was 

observed to occur almost instantaneously, while PECS prepared at 2:1 P : I mass ratio 

exhibited more compact sizes and higher transmittance values than their non-thiolated 

counterpart. Optimal P : I mass ratios for insulin complexation with NAC-based thiomers 

was found to be between 0.8-2:1 for both insulin stock concentration levels, as complexes 

prepared at this mass ratios were observed to be  stable to aggregation at day 3 (figures 39, 

41 and 43). 

3.3.1.5. Evaluation of insulin complexation with TBA conjugates 

Insulin PECS were prepared in Tris buffer pH 7.4 using both TBA conjugates (Paa-TBA and 

QPaa-TBA). Complexes were prepared using both thiomers and 0.5 and 2mgml-1 insulin 

stock at mass ratios of 0.2:1, 0.8:1 and 2:1. Complexes from each thiomer were 

characterised as in section 3.2 at Day 0 (2 hours after PEC preparation) and at day 3 (72 

hours after PEC preparation). Zeta potential of complexes was carried out only at day 0 

(table 8).  

Table 8: Zeta potential (mV) and PDI of Paa-TBA, insulin complexes in Tris buffer pH 7.4 

prepared at different P : I mass ratios using the 0.5 and 2mgml-1 insulin stock solution. (n= 

3; mean ± S.D.). 

 0.5mgml-1 insulin stock 2mgml-1 insulin stock 

Mass ratios 0.2:1 0.8:1 2:1 0.2:1 0.8:1 2:1 

Paa-TBA 20.1 ± 3 35.1 ± 6 35.4 ± 1 20.1 ± 3 37.7 ± 5 42.0 ± 5 

QPaa-TBA 18.4 ± 3 37.0 ± 8 38.3 ± 0 26.4 ± 6 37.0 ± 0 40.9 ± 1 

 

Paa-TBA, insulin and QPaa-TBA, insulin complexes prepared at 0.2:1 P : I mass ratio were 

excessively precipitated and particle sizes were outside the nano-range. Results were 

therefore not included in figures 44 and 45 below. 
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A. 
 

 
B.  

Fig. 44: Hydrodynamic diameter of Paa-TBA and QPaa-TBA insulin PECS prepared in Tris 

buffer pH 7.4 at different P : I mass ratios using 0.5 and 2mgml-1 insulin stock solution (day 

0). All values are mean ± S.D. (n=3). 
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A. 

 
B.  

Fig. 45: Hydrodynamic diameter of Paa-TBA and QPaa-TBA insulin PECS prepared in Tris 

buffer pH 7.4 at different P: I mass ratios using 0.5 and 2mgml-1 insulin stock solution (day 

3). All values are mean ± S.D. (n=3). 
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Fig. 46: Transmittance and Complexation efficiency (%) of Paa-TBA, insulin PECS made at 

various P: I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 0) (n= 3; mean ± S.D.) 

 

 

Fig. 47: Transmittance and Complexation efficiency (%) of Paa-TBA, insulin PECS made at 

various P: I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 3) (n= 3; mean ± S.D.). 
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Fig. 48: Transmittance and Complexation efficiency (%) of QPaa-TBA, insulin PECS made at 

various P: I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 0) (n= 3; mean ± S.D.) 

 

Fig. 49: Transmittance and Complexation efficiency (%) of QPaa-TBA, insulin PECS made at 

various P: I mass ratios using 0.5 and 2mgml-1 insulin solutions (day 3) (n= 3; mean ± S.D.) 
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Interaction between TBA conjugates and insulin also yielded nano-sized, positively-

charged PECS. The size range of Paa/QPaa-TBA insulin complexes was similar to that 

obtained for the NAC-conjugates with complexes prepared at 0.2:1 P: I mass ratio 

containing precipitates. For Paa-TBA/QPaa-TBA, insulin complexes prepared at P: I mass 

ratios above 0.2:1, complexation efficiency results showed that the insulin peak detected by 

HPLC appeared to be absent in PEC formulations (shown in figures 50 and 51) without any 

obvious sign of precipitation or instability being observed in the samples. The run time for 

this analysis was also increased from 10-15 minutes to check if the insulin peak had 

shifted, but no insulin peak could still be detected within this timeframe. 

This led to the assumption that the structure of complexed insulin was altered on 

complexation with the polymer thereby affecting the normal interaction of the protein with 

components of the HPLC system specifically the stationary phase. The insulin content 

(detected by HPLC) of complexes was observed to gradually decline from 100% as the 

complexes were made to approximately < 10% at the 2hour timepoint, it was presumed 

that P : I complexation taking place resulted in the decline in the amount of insulin detected 

by HPLC. Therefore insulin complexation efficiency was expressed as the amount of insulin 

detected at this time interval (which is presumed to be detected by HPLC because it has not 

interacted with the polymer) subtracted from total insulin incorporated. 
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Fig. 50: HPLC Chromatogram of insulin control in Tris buffer pH 7.4 (0.5mgml-1) 

 

 

Fig. 51: HPLC Chromatogram of Paa-TBA, insulin complex in Tris buffer pH 7.4 (0.5mgml-1 

insulin stock, 0.8:1 P: I mass ratio. 

no insulin peak 

Insulin peak 
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It was observed that acidification of Paa/QPaa-TBA insulin complexes using 2M HCl 

resulted in a distinct insulin peak similar to that obtained on acidification of a similar 

insulin control solution reappearing on HPLC analysis of the acidified complex formulation 

(shown in figures 52 and 53). 

 

Fig. 52: HPLC Chromatogram of acidified insulin control (Tris buffer pH 7.4) 

 

 

Fig. 53: HPLC Chromatogram of acidified Paa-TBA, insulin PECS (Tris buffer pH 7.4) 

insulin peak (acidified complex) 

insulin peak (acidified control sample) 
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This may indicate that the effect of TBA conjugates on complexed insulin may be caused by 

covalent (thiol-disulphide) bonding between the thiomers and insulin at pH 7.4, which may 

have been reversed by protonation of reactive thiolate ions on acidification [155].The 

increased reactivity of the thiol groups on TBA conjugates compared to NAC conjugates 

may have been brought about by the cationic substructure of the amidine thiol-bearing 

moiety enhancing the affinity of the polymer thiols for the cysteine groups on insulin. This 

sort of P : I interaction could have deleterious effects on the conformation of the insulin 

chains and may affect the ability of the protein to interact with its receptor [180]. 

Confirmation of this reduction of insulin content of Paa-TBA insulin complexes was carried 

out using an insulin ELISA kit. Complexes were prepared at 0.8:1 P: I ratio (0.5mgml-1 

insulin stock) as described in section 3.2 and analysed with an ELISA kit. Results confirmed 

that after 2 hours, only 11.8 ± 4.2% of insulin was available as opposed to 97.8 ± 0.2% of 

insulin present in the control. Other techniques like circular dichroism could be used in the 

future in investigating the nature of conformational change in insulin complexed with TBA-

conjugates [140]. 

3.3.2.. COMPARATIVE EVALUATION OF PHYSICAL AND MORPHOLOGICAL PROPERTIES 

OF OPTIMAL POLYMER, INSULIN COMPLEXES 

Based on results of the formulation optimisation process in 3.1. PECS prepared in Tris 

buffer pH 7.4 at 0.8:1 P : I mass ratio using the 0.5mgml-1 insulin stock solution were 

identified as optimal formulations across all the polymers tested. The properties of insulin 

complexes of the various polymers formed at 0.8:1 P: I mass ratio (0.5mgml-1 insulin stock 

solution) are summarised in Table 9 below. 
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Table 9: Hydrodynamic size, PDI, zeta potential (mV), complexation efficiency and % 

transmittance of polymer, insulin complexes prepared at 0.8:1 P: I mass ratio (0.5mgml-1 

insulin stock solution) on day 0. (Mean ± S.D.; n=3) 

 Hydro-

dynamic 

Size (nm) 

PDI Zeta 

potential 

(mV) 

Complexation 

efficiency (%) 

Transmittance 

(%) 

Paa 104.0 ± 4 0. 45 ± 0.03 31.2 ± 2 83.68 ± 4 93.34 ± 2 

QPaa 75.0 ± 9 0.24 ± 0.05 30.4 ± 1 94.21 ± 5 93.62 ± 3 

Paa-NAC 74.8 ± 3 0.28 ± 0.03 29.2 ± 3 98.80 ± 9 95.30 ± 2 

QPaa-NAC 71.1 ± 9 0.27 ± 0.01 28.7 ± 3 92.44 ± 12 98.20 ± 2 

Paa-TBA 64.6 ± 9 0.43 ± 0.03 35.1 ± 6 94.80 ± 5 97.80 ± 3 

QPaa-TBA 54.0 ± 7 0.26 ± 0.04 37.0 ± 2 98.00 ± 10 99.30 ± 1 

 

3.3.2.1. Particle size analysis (Hydrodynamic size and PDI) 

Complexation of the various polymers with insulin in Tris buffer pH 7.4 resulted in the 

production of positively charged, nano-sized PECS at optimal P: I mass ratios.  PECS 

prepared using modified Paa derivatives (quaternised and/or thiolated ) were observed to 

be smaller (<100nm) than unmodified Paa complexes as can be seen in Table 9 above. 

Therefore suggesting that the processes of quaternisation and thiolation enhanced P: I 

interaction resulting in more tightly bound, compact complexes. This is expected as 

quaternisation reinforces the positive charge on the polymer facilitating the process of 

electrostatically induced P: I complexation. Thiolation results in the formation of 

disulphide bonds which creates hydrophobic regions within the polymer chains capable of 

mediating hydrophobic interactions with the insulin molecule hence providing additional 

forces for P : I complexation [149]. 

This improvement in complexation was reflected by thiolated QPaa (QPaa-NAC and QPaa-

TBA) complexes which benefits from the cumulative effects of quaternisation and 

thiolation displaying smaller sizes than both QPaa and their thiolated Paa counterparts. 

Further evaluation of results of particle size analysis in Table 9 above also indicated that 

complexes prepared from TBA-based thiomers were smaller and hence more compact than 

complexes from NAC-based thiomers. This could be related to the extra positive charge 

present on the amidine bond of TBA-conjugates providing a site for additional electrostatic 
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interaction with insulin and hence condensing PECS even more. QPaa-TBA formulations 

hence contained the smallest complexes suggesting this polymer interacts closely with 

insulin molecules.  

PDI of complexes gives an idea of the range of size populations of complexes present within 

the formulation. Apart from Paa and Paa-TBA complexes which exhibited a wider size 

distribution, the PDI of complexes was found to be quite narrow (0.2- 0.3).  

The size of nanocomplexes for oral delivery is very relevant in optimising their intestinal 

uptake as smaller-sized particles (< 300nm) have been found to be favoured in the 

processes like transcellular uptake by Peyers patches and paracellular uptake through tight 

junctional spaces [88, 181]. Particle size has also been found to affect the process of 

nanoparticle clearance by macrophages; as complexes with smaller sizes (<150nm) have 

been shown to exhibit a higher level of exocytosis [166, 177]. 

3.3.2.2. Zeta Potential 

The zeta potential of polymer, insulin complexes was observed to be positive and range 

between approximately 28-38mV. NAC conjugates displayed lowest zeta potential values, 

Paa and QPaa showed intermediate zeta potential values, while TBA conjugates had the 

highest magnitude of surface charge. This is in agreement with the charge on their 

constituent polymer chains shown in Table 2 in chapter 1, which showed there was a 

reduction in surface charge of NAC-based thiomers due to substitution with the neutral 

amide bond. However, complexes from TBA-based thiomers exhibited the highest zeta 

potential probably due to the extra-cationic charge conferred by the protonated amidine 

bond. The positive surface charge on complexes is beneficial in facilitating complexation 

with insulin and initiating processes like paracellular transport and mucoadhesion through 

electrostatic interaction with tight junction proteins and mucin respectively. Surface charge 

of nanoparticles affects their biodistribution [166]. Nanoparticles with a slight negative 

charge have been shown to accumulate better in tumor sites, while an elevation of positive 

surface charge was found to be associated with an increased affinity for the negatively 

charged cell membrane enhancing cellular uptake of cationic nanoparticles [166]. 

3.3.2.3. Complexation efficiency 

Insulin complexation efficiency did not vary greatly amongst the various polymers, as all 

complexes showed high insulin complexation efficiency (> 90%). However, as highlighted 
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earlier the structure of insulin complexed to TBA conjugates was altered in Tris buffer at 

pH 7.4, making it questionable as to whether it was a viable derivative for future study. 

3.3.2.4. Transmittance 

Turbidimetric measurements reflect the molecular weight and solubility of complexes 

present as these properties are directly related to the UV light scattering effects of the 

formulation [182]. High transmittance values obtained for optimal polymer, insulin PEC 

formulations displayed in Table 9 above indicated that the nanocomplexes formed were 

water soluble and discrete showing no turbidity or precipitation in the samples tested. 

3.3.2.5. TEM 

The morphology of different PECS prepared at 0.8:1 P: I mass ratio using the 0.5mgml-1 

insulin stock was elucidated using TEM. Paa, insulin complexes were not analysed by TEM 

.The images are displayed below in figures 54-58 below. 

 

   

Fig. 54: TEM micrographs of QPaa, insulin complexes A) nanovesicular complex with a 

bilayered outer corona B) nanoparticles with a single layer outer corona. 

Single layered corona 
B 

Bilayered outer corona 

A 
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Fig. 55: TEM micrographs of Paa-NAC, insulin complexes A) nanovesicular complex with a 

bilayered outer corona B) nanovesicles with a single layer outer corona. 

 

 

Fig. 56: TEM micrographs of QPaa-NAC, insulin complexes. A) nanoparticle with a single 

layer outer corona B) nanovesicular complex with a bilayered outer corona. 

B A 

B A 
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Fig. 57: TEM micrographs of Paa-TBA, insulin complexes A) nanovesicle with a bilayer 

outer corona B) nanovesicle with a bilayer outer corona magnification. 

 

  

 

Fig. 58: TEM micrographs of QPaa-TBA, insulin complexes. A) nanovesicle with a bilayer 

outer corona magnification B) nanoparticle with single outer layer.  

The TEM micrographs in figures 54-58 above show that quaternised polymers appeared to 

be capable of forming nanoparticles having a single layer of polymer chains as their outer 

corona and nano-sized vesicular structures with a distinctive bilayered outer corona. 

B A 

B A 
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However, non-quaternised thiomers (Paa-NAC/Paa-TBA) complexes appeared to form 

mostly nano-vesicles. These nano-vesicle bilayers appear to show darkened regions which 

suggests that these areas may have resisted staining indicating they are likely more 

hydrophobic than other regions of the complex [136].  

The formation of bilayer vesicles has been observed to be directly related to the 

hydrophobic content of the polymer, with nano-vesicular self-assembly being initiated by 

an attempt to minimise the high energy interaction between hydrophobic groups of the 

polymer and the aqueous disperse phase while also maximising interfacial area by 

sustaining low level interactions between hydrophilic groups and the disperse phase [183, 

184]. Also, water-soluble oppositely charged polyelectrolytes have been found to promote 

vesicle formation in non-vesicle forming water-soluble amphiphiles. This phenomenom 

arises due to partial charge neutralization by the adsorption of one polyelectrolyte onto the 

bilayer of the polymer of opposite charge, influencing the balance of opposing forces of 

electrostatic repulsion and hydrophobic interaction in favour of vesicle formation [185]. 

Considering that modification of Paa by thiolation and quaternisation imparts some level of 

hydrophobicity to the resultant constructs may suggest that interaction with anionic 

insulin molecules can promote the formation of the vesicles observed in the TEM 

micrographs through the aforementioned mechanism. 

TEM results further emphasize the role of hydrophobic interactions arising from the 

intramolecular disulphide bonds formed during the thiolation of the polymers in 

complexation with insulin. 

3.3.3.  IN-VITRO ENZYMATIC DEGRADATION STUDIES 

The ability of QPaa, Paa-NAC and QPaa-NAC complexes (optimal formulations at 0.8:1 P: I 

mass ratio-0.5mgml-1 insulin stock) to protect complexed insulin from degradation by the 

serine proteases trypsin, α-chymotrypsin and pepsin was assessed. The results were 

compared to that obtained for a similar control solution of free insulin and are illustrated in 

figures 59-62 below. 
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Fig. 59: Degradation curves of insulin and insulin PECS prepared from Qpaa, Paa-NAC and 

QPaa-NAC exposed to trypsin (mean ± S.D.; n=3). 

Results of exposure of polymer, insulin complexes to tryptic degradation showed that > 

90% of insulin contained within the complexes was still available after 240 minutes. Taking 

into consideration the amount of undegraded insulin  present within the control sample 

(64.3%) after 4 hours, approximately 30% of incorporated insulin was left undegraded as a 

result of complexation of the protein to Paa-NAC and QPaa-NAC. Although, the fact that 

88% of undegraded insulin was present in QPaa complexes after 4 hours and 96% insulin 

available in a similar formulation of QPaa-NAC after exposure to trypsin for the same time 

interval indicated that thiolation further enhanced enzymatic protection. Paa-NAC and 

QPaa-NAC complexes exhibited only slight variations in protection of insulin from the 

effects of trypsin.  
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Fig. 60:  Degradation curves of insulin and insulin PECs prepared from QPaa, Paa-NAC or 

QPaa-NAC complexes exposed to α-chymotrypsin (mean ± S.D.; n=3). 

 

Thiomer, insulin complexes showed a different insulin degradation profile on exposure to 

α-chymotrypsin. Thiolated QPaa (QPaa-NAC) insulin complexes showed increased 

resistance to degradation by α-chymotrypsin than either QPaa or Paa-NAC complexes. The 

amount of undegraded insulin available in QPaa-NAC complexes after 4 hours was 

observed to be 10% more than QPaa complexes, 15% more than Paa-NAC complexes and 

30% more than was present in the insulin control. This may show a synergistic effect was 

obtained from thiolation and quaternisation of the parent polymer, Paa, in terms of 

protection of insulin from degradation by α-chymotrypsin.  
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Fig. 61: Structure of insulin showing cleavage sites of trypsin (blue arrows)   and  

α-chymotrypsin ( red arrows ). 

In the three-dimensional structure of insulin, bonds prone to tryptic cleavage which 

include the carboxyl terminus of B29-Lys and B22-Arg are accessible at the B-chains as 

shown in figure 61 [186]. These carboxyl groups are deprotonated and hence negatively 

charged at pH 7.4. It may therefore be that the electrostatic binding of positively charged 

polymer molecules at this negative terminal shields susceptible bonds at this site from 

tryptic attack [187]. This sort of enzymatic protection/shielding of insulin by polymer-

insulin interactions have previously been reported by researchers working with modified 

chitosan and Paa [148, 187]. Hence, this protective effect would be limited to sites on 

insulin which are capable of coulombic interactions with compatible polymer chains. 

However, two bonds prone to cleavage by α-chymotrypsin are enclosed within the 

hydrophobic core of the insulin molecule [185] and complexation with a less hydrophobic 

polymer like QPaa may not allow for interaction of these regions with the polymer chains 

due to differences in polarity. Hence these areas may not be protected from the attacking 

protease.  

Conversely, polymer thiolation creates hydrophobic regions within the thiomer as seen 

with the TEM photos displayed in figures 54-58 due to intramolecular disulphide bond 

formation. Hence, protection of complexed insulin from proteolytic attack by                          

Disulphide bond 
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α-chymotrypsin observed with complexes prepared with NAC-conjugates may be because 

the thiomers are capable of protecting the bonds located within the hydrophobic core of 

insulin from degradation due to hydrophobic interactions between the thiomer and insulin 

occurring at this region. The ability of such hydrophobic intractions to offer improved 

protection of insulin associated within a PEC delivery system to degradation by serine 

proteases has been previously reported [138, 148].  

Consequently, QPaa-NAC which may incorporate charge-mediated and hydrophobic 

interactions with insulin on complexation yields a cumulative protective effect , being able 

to shield more susceptible sites on the insulin molecule from proteolytic degradation by                   

α-chymotrypsin than either QPaa or Paa-NAC. This result is in agreement with previous 

publications which showed that the ability of PECS formulated from Paa-based polymers to 

protect complexed insulin from the effects of α-chymotrypsin was enhanced when Paa was 

functionalised with both hydrophobic and quaternary groups [138].  

In addition to the shielding effect provided by the PEC polymeric network, thiomers can 

also provide enzyme-inhibitory advantages due to their ability to bind Zn2+ ions limiting the 

activity of several zinc-dependent enzymes [76, 173, 188].  Studies have shown that 

thiolation of polycarbophil (polycarbophil-cysteine conjugates) improved its ability to 

inhibit the activity of intestinal proteases like α-chymotrypsin, aminopeptidase-N and 

carboxypeptidases [76, 173]. This effect was attributed to the ability of thiomers to bind 

metal ion cofactors essential for the activity of intestinal proteolytic enzymes. However in-

vivo studies was not within the scope of the present research and the ability of these novel 

Paa-based thiomers to effect enzymatic protection of insulin via metal ion binding could 

not be evaluated. This may however be the subject of future investigations.  
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Fig. 62: Degradation curves of insulin and insulin PECs prepared from QPaa, Paa-NAC or 

QPaa-NAC complexes exposed to pepsin (mean ± S.D.; n=3) 

None of the insulin PECS prepared from both quaternised and/or thiolated Paa derivatives 

offer any protection of complexed insulin from degradation by pepsin, as complete 

degradation of insulin present in complexes was observed after 30 minutes of exposure of 

complexes to pepsin. This is likely as a result of the numerous sites on the insulin molecule 

susceptible to degradation by pepsin. Examples of sites susceptible to peptic degradation 

include sites before leucine, phenylalanine, tyrosine and tryptophan except if preceded by 

proline [138, 189]. Although, rapid peptic degradation of complexed insulin may also be 

accelerated by acidification of the complexes to simulate normal physiological pH 

conditions for peptic activity thereby making insulin positively charged (below its pI of 5.5) 

and destabilizing electrostatic polymer insulin interaction. Amphiphillic Paa-insulin 
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nanocomplexes which benefited from both hydrophobic and electrostatic interactions were 

observed to show some protective effect from peptic degradation [136, 138]. However, 

exposure of oral insulin formulations to the effect of pepsin can be prevented by the use of 

enteric formulations which target the release of insulin to the small intestine and distal 

parts of the GIT, hence curtailing insulin proteolysis by enzymes operating within the 

gastric region of the gut [140]. 

3.3.4. IN-VITRO EVALUATION OF MUCOADHESIVE CAPACITY OF COMPLEXES 

Assessment of mucin adsorption properties of polymer, insulin complexes prepared in Tris 

buffer pH 7.4 at 0.8:1 P: I mass ratio using the 0.5mgml-1 insulin stock solution (figure 63 

below). The results were compared to an insulin control. 

 

Fig. 63: Mucin adsorption profile of polymer, insulin complexes (mean ± S.D.; n=3) 

From figure 63 above, the mucin adsorption profile of insulin PECS was observed to be 

identical to that obtained for the polymer solutions in section 2.3, with modified Paa-based 

complexes showing better mucoadhesive properties than the unmodified backbone. This 
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implies that complexation of the polymers with insulin did not affect the mucoadhesive 

properties of the polymers. Thiolated Paa (Paa-NAC and Paa-TBA) PECS displayed the 

greatest mucoadhesive properties, while thiolation of QPaa did not offer any substantial 

improvement in the mucoadhesive profile of the quaternised backbone or its complexes. 

However, comparing the mucin adsorption profile of these complexes with that of the 

insulin control (mucin adsorption of insulin control was observed to be negligible (≤ 

0.00%) shows that complexation of insulin to Paa and its derivatives may create a platform 

for the application of  mucoadhesive interactions in oral insulin delivery. 

 

3.4. CONCLUSION 

The data collected from the above processes support the spontaneous formation of 

spherical, nano-sized PECS with good insulin complexation efficiency on mixing optimal 

mass ratios of Paa/QPaa and insulin in buffer solutions. The differences in the zeta 

potential of separate polymer and insulin solutions from that of their complexes indicate 

the role of electrostatic forces in the formation of these polymer-insulin complexes. 

Optimisation of the complexation process varying polyelectrolyte stoichiometry and type 

of buffer used for complex formation showed that most complexes were more stable in Tris 

than sodium hydroxide buffer and less stable when prepared at higher solute 

concentration levels of 2mgml-1 as compared to 0.5mgml-1 insulin stock levels. Generally, 

0.5mgml-1 insulin stock based complexes prepared between 0.8-1:1 mixing ratio were 

consistently stable for all polymers, with 0.8:1 showing the best stability profile. 

Electrostatic –induced polymer, insulin complexation carried out using Paa-based 

polymers was found to result in the formation of nano-sized, positively-charged complexes. 

However complexation efficiency data obtained showed that interaction of TBA-based 

thiomers with insulin in Tris buffer pH 7.4 may have altered the conformation of insulin 

affecting HPLC analysis of insulin. This was also confirmed by an insulin Elisa assay. QPaa, 

QPaa-NAC and Paa-NAC insulin complexes could protect insulin from the effects of trypsin 

and α-chymotrypsin to varying extents. In-vitro mucin adsorption profile of polymer, 

insulin complexes was basically similar to that of the free polymer.  All complexes showed 

good mucoadhesive properties when compared to free insulin, with all modified polymers 

performing better than the unmodified Paa backbone.  
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4. BIOCOMPATIBILITY AND CELLULAR UPTAKE OF COMPLEXES 

4.1. INTRODUCTION 

This chapter evaluates the performance of insulin PEC formulations in biological systems 

by assessing in-vitro cytotoxicity and cellular uptake of PECS using Caco-2 cell monolayers 

as a predictive model for human small intestinal epithelial cells.  

The biocompatibility of each polymer was evaluated by carrying out MTT assays on Caco-2 

cell monolayers treated with dilutions of each polymer in supplemented media. Cell 

monolayers were either subjected to a 24-hour recovery period in fresh media before the 

MTT assay (recovery period) or were assayed immediately after treatment with polymer 

solutions Therefore two IC50 values were obtained for each polymer (corresponding to the 

IC50 value of the polymer with/without a recovery period). 

Cellular uptake of nanocomplexes by Caco-2 cell monolayers was monitored over different 

time courses by fluorescence microscopy using PECS prepared by mixing optimal mass 

ratios (0.8:1) of rhodamine-tagged polymers and FITC-insulin in Tris buffer pH 7.4. Cell 

monolayers were stained with 4’6’Diamidino -2-phenylindole hydrochloride (DAPI) to 

determine the location of complexes in relation to the cell nuclei. Uptake of polymers was 

also quantified by measuring the amount of rhodamine-tagged polymer taken up after 

solubilisation of the cells by 2% Sodium dodecyl sulphate (SDS).  

Further investigations into the mechanism of PEC uptake were carried out using calcium-

free media as uptake medium to limit the function of calcium-dependent uptake 

mechanisms . Cells were also pre-incubated with insulin solution to saturate and so down-

regulate, insulin receptors prior to treatment with PECS.  

4.2. MATERIALS AND METHOD 

4.2.1. MATERIALS 

Caco-2 cells were obtained from ECACC, Wiltshire UK (passage number 45-70).Poly 

(allylamine hydrochloride) (15kDa), rhodamine B isothiocyanate (RBITC), fluorescein 

isothiocyanate (FITC)-insulin, Eagle’s minimum essential medium (EMEM), calcium-free 

EMEM, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), Triton X-

100, dimethylsulfoxide (DMSO) HPLC grade, Glycine, Dulbecco's phosphate buffered saline 

(PBS), SDS and trypan blue were from Sigma Aldrich, UK. L-glutamine (200mM), non-
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essential amino acids, trypsin-EDTA (0.05%) and DAPI was from Invitrogen, Scotland. 

Foetal calf serum-activated (FCS) was obtained from Biosera, UK. All other reagents used 

were of analytical grade. 

4.2.2. IN-VITRO CYTOTOXICITY ASSAY 

The IC50 value of each polymer which refers to the polymer concentration required to 

reduce cell survival by 50% was determined by MTT assay [1]. Caco-2 cells cultured at 

37°C in EMEM containing 10% (v/v) foetal calf serum, 1% (v/v) non-essential amino acids 

and 1% (v/v) L-glutamine at 5% CO2 and 95% humidity were trypsinised and used to seed 

96-well plates at a cell density of 10,000 cells per well using 200µl of cell suspension per 

well. The cells were grown at the same conditions for 72 hours, after which the culture 

media was aspirated and replaced with 200µl of polymer solutions (concentrations ranging 

between 0.001-0.5 mgml-1) prepared in EMEM without FCS. The polymer treatments were 

made up in EMEM without FCS to prevent interaction of the polymers with the proteinous 

components of FCS. 

 The plate was incubated for 24 hours after which 50µl of MTT (5mgml-1 in PBS) was added 

into each well and the plate wrapped in foil (to protect it from light) and incubated for 4 

hours. The plate was subsequently retrieved from the incubator and the contents aspirated. 

Each well was filled with DMSO (200µl) followed by 25µl of glycine buffer (7.5gL-1 glycine, 

5.9gL-1 NaCl, pH 10.5) and the plate read by UV spectrophotometry (SoftMax Pro 5.0, 

Molecular Devices, U.S) at 570nm. Cell viability (%) was calculated relative to the negative 

control (cells treated with Triton-X in PBS) and the positive control (untreated cells in 

EMEM) [137]. This process was repeated for each polymer with the polymer solutions 

replaced with fresh media (200µl) to allow the cells to recover for a 24-hour period before 

treating monolayers with MTT. Plots of % cell viability against polymer concentration were 

used to determine the IC50 value of the different polymers without/with a recovery period. 

4.2.3. LABELLING OF POLYMERS WITH RBITC 

For non-thiolated polymers, 5ml of RBITC in dimethylsulfoxide (1mgml-1) was added 

dropwise over 10 minutes into 95ml of a 0.05% (w/v) solution of polymer in double-

distilled water with gentle magnetic stirring. The stirring was continued for one hour and 

the mixture dialysed (molecular weight cut-off - 7kDa; Medicell UK) against 5L of double-

distilled water for 48 hours with 6 water changes every 24 hours [190]. 
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For thiolated polymers, the method was adjusted by replacing DMSO with methanol and 

keeping the pH of the reaction at 4-5 to limit oxidation of thiol groups to disulphides. 

Briefly, 5ml of RBITC in methanol (1mgml-1) was added dropwise over 10minutes into 

95ml of a 0.05% (w/v) solution of thiomer in double-distilled water acidified with 5M HCl 

to pH 4-5 [191]. Stirring was done under nitrogen for one hour and the mixture dialysed in 

the dark (MW cutoff-7kDa; Medicell UK) against 5L of 5mM HCl for 24 hours and 0.4mM 

HCl for a further 24 hours  ( 6 water changes every 24 hours). 

The polymer solution obtained from the dialysis process was freeze dried over 48 hours to 

yield a deep pink to purple solid. RBITC-tagged Paa and QPaa were stored in dessicators at 

room temperature, while RBITC-tagged thiomers were stored at -20°C.  

4.2.4. CELLULAR UPTAKE STUDIES 

4.2.4.1. Assessing cellular uptake of PECS by fluorescence microscopy 

Caco-2 cells were seeded at a density of 0.1 X 106 cellsml-1 in 24 well plates and grown over 

3 days at 5%CO2, 95% humidity and 37°C [192]. The media contained in the wells was 

aspirated and washed with PBS.  Fluorescent complexes were prepared in Tris buffer pH 

7.4 by mixing RBITC-labelled polymer with FITC-insulin at P: I mass ratios of 0.8:1 

(0.2:0.25mgml-1). The PEC concentrations used for the uptake experiments had to be 

optimised based on the IC50 values of each polymer obtained from MTT assays conducted 

without a recovery period. Each well was treated with PECS (0.005:0063mgml-1 P: I mass 

ratio for non-quaternised complexes; 0.016:0.020 mgml-1 P: I mass ratio for quaternised 

complexes in FCS-free EMEM) and incubated for time periods of 0.5-4 hours. PEC uptake 

experiments were repeated reversing the concentration of quaternised polymers used to 

that of non-quaternised polymers (0.005:0063mgml-1) to enable detection of 

concentration-based differences in uptake profile. The concentration of non-quaternised 

polymers used could not be increased to 0.016:0.020 mgml-1 P : I mass ratio, as this may 

lead to excessive damage of the cells during the polymer treatment step. 

After incubation with the PECS, treatment was removed and the cell layer subsequently 

washed (x2) with PBS and treated with Trypan blue to highlight non-viable cells. Uptake of 

complexes was assessed by examining Caco-2 cell monolayers under a fluorescence 

microscope (Leica DMI4000B, Leica Microsystems Ltd. UK) (magnification x20) post-

treatment with PECS using different filters set at excitation/emission wavelengths for FITC, 

RBITC and a combination of both. Images were captured on a camera fitted to the 
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microscope and are indicative of replicate wells. Uptake of control polymer and FITC-

insulin solutions at similar concentrations and time intervals was also assessed by 

fluorescence microscopy. 

4.2.4.2. Determination of cellular location of PECS 

Caco-2 cells were grown on 24 well plates and the monolayers treated with PECS following 

the method described in section 4.2.4.1. after which the monolayers were stained with 

18.8µgml-1 solution of DAPI in PBS for 10 minutes to highlight the nuclear region of the 

cells [193]. The monolayers were washed(x2) with PBS and treated with Trypan blue and 

rewashed prior to fluorescence microscopy. This gives an idea of the location of PECS in 

relation to the cell nuclei and enables the identification of complexes located within the 

perinuclear region. 

4.2.4.3. Investigation of PEC uptake mechanism  

Uptake experiments were carried out replacing EMEM (FCS-free) with calcium-free EMEM 

(FCS-free) as uptake media for 2 hours prior to treatment to inhibit the performance of 

calcium-dependent uptake mechanisms. Monolayers were also pre-incubated with 3µgml-1 

of insulin for 1 hour prior to treatment to enable saturation of insulin receptors and so 

inhibit insulin-receptor mediated uptake mechanisms. Cells from the experiments above 

were visualised under the fluorescence microscope and the results compared with that 

obtained from previous uptake experiments done in section 4.2.4.1. [192] 

4.2.4.4. Quantification of polymer uptake  

Caco-2 cells were cultured and treated with RBITC-labelled polymers (Paa, QPaa, QPaa-

NAC and QPaa-TBA) as described for uptake experiments. The cell layer was then washed 

(x 3) with PBS and the cell layer attached to each well and treated with 1ml of 2% SDS in 

PBS solution for 30 minutes to lyse cells [147].  The fluorescence intensity of the cell lysate 

obtained from the above procedure was measured by fluorescence spectrophotometer 

(Perkin Elmer LS55 Fluorescence Spectrophotometer, Perkin-Elmer, UK) using a 1ml 

quartz cuvette and excitation/emission wavelength set at 547/590nm for RBITC. The 

results obtained were input into calibration curves (R2 = 0.99) prepared using dilutions of 

the tagged polymers in 2% SDS (concentrations ranging from 0.3-10µgml-1). The values 

obtained were subsequently used to estimate the percentage of tagged polymer taken up 
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by the Caco-2 cells within 2 hours of incubation. The process was also repeated using 

calcium-free media as uptake medium. 

4.3. RESULTS AND DISCUSSION 

4.3.1. BIOCOMPATIBILITY TESTING 

Biocompatibility of each polymer was assessed based on IC50 values obtained from MTT 

assays conducted on Caco-2 cell monolayers treated with increasing concentrations of each 

polymer (0.001-4mgml-1) in supplemented media. MTT assays assess cellular metabolic 

activity by measuring the activity of cellular enzymes capable of reducing the dye to an 

insoluble purple formazan product in living cells [194]. Rapidly dividing cells show a high 

rate of MTT reduction giving out a deep purple colouration, while a lower rate of MTT 

reduction may reflect a loss of cell viability (cytotoxic effect) or a shift from the 

proliferative to the resting or quiescent state (cytostatic effect) [195]. Quiescent cells are 

usually still viable but metabolically inactive, therefore producing very little formazan.   

The toxicity profile of polymers was first evaluated without the inclusion of a cell recovery 

period and findings are described in the subsequent paragraphs. From the results of MTT 

assays conducted without a recovery period (WOR), plots of % cell viability versus log 

polymer concentrations prepared for each polymer is shown in figure 64 below. 
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Fig. 64: Caco-2 cell viability (%) as determined by MTT assay after 24 hour exposure to 

varied concentrations of Paa, QPaa and their thiolated derivatives without a recovery 

period (n =3; ± S.D.). 

IC50 values of each polymer obtained from MTT assays conducted without a recovery 

period are highlighted in Table 10 below. 

Table 10: IC50 values of Paa, QPaa and thiolated derivatives obtained without a recovery 

period. Values are mean ± S.D. (n = 3). 

 Paa QPaa Paa-NAC QPaa-

NAC 

Paa-TBA QPaa-TBA 

IC50(mgml-1) 0.009 ± 

0.003 

0.062 ± 

0.001 

0.011 ± 

0.009 

0.036 ± 

0.003 

0.023 ± 

0.002 

0.024 ± 

0.003 
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The unmodified Paa backbone showed the highest toxicity having the lowest IC50 value of 

0.009 ± 0.003mgml-1. This is expected as polycationic polymers like Paa and polylysine 

have been observed to be quite cytotoxic due to the availability of free protonable amine 

groups which have the ability to interact with anionic portions of glycoproteins on the cell 

membrane causing apoptosis [196]. Quaternisation decreases the number of these 

protonable primary amine groups per molecule improving biocompatibility [197], as may 

be seen by the marked improvements in IC50 exhibited by QPaa when compared to the non-

quaternised Paa backbone (Table 10). This is consistent with the results obtained from 

other research groups where quaternisation of other polycations was observed to be 

associated with improvements in their toxicity profile [149].  

Thiol substitution of the Paa backbone was also observed to result in an increase in IC50 

values (smaller than was obtained with quaternisation) with Paa-NAC displaying a lower 

IC50 value than Paa-TBA. This could be as a result of the lower level of primary amine 

substitution found in Paa-NAC (total thiol substitution-320 ± 4.1µmol compared to 1080 ± 

28µmol thiol groups found in Paa-TBA) implying that Paa-NAC has a higher level of free 

protonable primary amine groups to exert cytotoxic effects.  

Thiolation of QPaa resulted in a fall in IC50 suggesting that the thiol moieties had a negative 

effect on biocompatibility of the quaternised Paa backbone.  Thiols are capable of covalent 

interactions (thiol-disulphide reactions) with glycoproteins and can consequently damage 

protein components of cells irreversibly altering their structure/conformation [198]. 

Quaternisation increased the IC50 of Paa-NAC (IC50 increased from 0.011 ± 0.009 to 0.036 ± 

0.003mgml-1) as shown in figure 64 and table 10, but had no noticeable effect on the IC50 of 

Paa-TBA. Considering that QPaa-TBA had the highest level of total substitution (thiol and 

quaternary substitution combined) of primary amine groups, it should show the least 

toxicity. It is therefore surprising that Paa-TBA and QPaa-TBA have approximately the 

same IC50 (0.02mgml-1). This implies that the biocompatibility enhancing effects of the 

quaternary groups present in QPaa-TBA appear to have been completely mitigated by TBA-

based thiol substitution and may suggest that this thiol group has toxic effects on cells. This 

also highlights the fact that while quaternisation tends to completely mask the highly 

charged primary amine groups of Paa limiting their ability to damage cells, thiolation may 

only result in the replacement of one type of reactive groups (in this case free primary 

amine groups) with another type (thiol groups). The cationic substructure of the amidine 

linkage also makes it possible for these thiomers to initiate toxic effects associated with 



 

 

108 

 

cationic charge as well as effects arising from the actual thiol group as mentioned earlier, 

making these TBA conjugates more toxic than their NAC-counterparts [199]. 

The IC50 of each polymer was also evaluated after allowing the cells a 24-hour recovery 

period in supplemented EMEM post-treatment with polymers and similar plots of % cell 

viability versus log polymer concentrations prepared. The plots are shown in figure 65 

below. 

 

Fig. 65: Caco-2 cell viability (%) as determined by MTT assay post-24 hr recovery period 

and 24 hour exposure to varied concentrations of Paa, QPaa and thiolated derivatives (n 

=3; ± S.D.) 

IC50 values of each polymer obtained from MTT assays conducted with a recovery period 

are highlighted in Table 11 below. 
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Table 11: IC50 values of Paa, QPaa and their thiolated derivatives post-24 hour recovery 

period. Values are mean ± S.D. (n = 3) 

  Paa QPaa Paa-NAC QPaa-NAC Paa-TBA QPaa-TBA 

IC50(mgml-1) 0.013 ± 

0.005 

No 

toxicity 

0.064 ± 

0.002 

0.144 ± 

0.007 

0.033 ± 

0.009 

0.110 ± 

0.003 

 

The purpose of introducing a recovery period is to determine the extent to which cells can 

recover ( their metabolic activity) from the toxic effect of the different polymers. This may 

give more insight on whether the toxic effect of the polymers on cells are 

transient/reversible or permanent. Results shown in table 11 above indicate that the 

inclusion of a recovery period before treating the cells with MTT resulted in an upward 

shift in IC50 for all the polymers tested as may be seen in figure 66 below.  

 

Key: WOR-without recovery period; WR – with recovery period 

*  Results obtained from the MTT assay of QPaa with a recovery period indicated that the 

IC50 of the polymer was higher than the highest polymer concentration tested (4mgml-1). 

Fig. 66: IC50(mgml-1 ) of polymers as determined by MTT assay without a recovery period 

(WOR) and post-24 hour recovery period (WR) (n =3; ± S.D.). 
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Cells treated with QPaa showed 100% cell viability at concentrations up to 4mgml-1, with 

the polymer showing no toxicity(and hence no IC50 between 0.001-4mgml-1).  NAC-based 

thiomers also showed marked improvements (approximately 6-fold) in their IC50 after 

being subjected to a recovery period (figure 65 and 66). The effects of these polymers on 

cells appear to have been cytostatic rather than cytotoxic, as most of the cells affected were 

still viable and were able to recover full metabolic activity on removal of treatments and re-

culturing. Hence this suggests that the effects of these polymers on affected cells are largely 

reversible, and do not result in permanent irreparable damage. This is especially true for 

QPaa which appears to only show a cytostatic effect as no loss of cell viability was observed 

(100% cell viability) between the cencentration 0.001-4mgml-1 post-recovery (figure 65). 

On the other hand, polymers Paa and Paa-TBA showed little improvements in their IC50 

(about 1.5 fold) with the introduction of a recovery period (figure 66). This indicates that 

these polymers are largely cytotoxic, and their interactions with cells mostly causes 

irreparable damage to cells and marked loss in cell viability.  This again confirms the highly 

cytotoxic effect of the primary amine groups in Paa  and  suggests the amidine thiol 

substructure of Paa-TBA is a relatively cytotoxic moiety although less toxic than primary 

amine groups (TBA substitution of Paa improved IC50 both with and/or without a recovery 

period as may be seen in table 10 and 11).  Bearing in mind that the difference in level of 

thiol substitution between Paa-TBA and Paa-NAC may not allow direct comparison of their 

toxic effects on cells,  the presence of a protonable group within the amidine bond as 

compared to the uncharged amide bonds of Paa-NAC (refer to figure 8 and 9 in chapter 2) 

could however result in an increase in potential to cause toxic effects. QPaa-TBA also 

appeared to show cytostatic effects, although IC50 values were lower than QPaa and QPaa-

NAC. The IC50 of QPaa-TBA was improved considerably after the introduction of a recovery 

period much higher than what was observed with Paa and Paa-TBA, but to a lesser extent 

to QPaa and QPaa-NAC.  

Generally, considering the results of the cytotoxicity assays conducted with and/or without 

a recovery period the toxicity profile of the parent polymer was found to play a role in 

determining the biocompatibility of the thiolated derivatives. For non-quaternised 

thiomers where the parent backbone Paa was cytotoxic, the toxicity profile of the polymers 

followed this order: Paa > Paa-TBA > Paa-NAC. While for quaternised polymers where the 

parent backbone QPaa was found to be less-cytotoxic , the toxicity profile of the thiomers 

followed this order QPaa-TBA > QPaa-NAC > QPaa. This may then indicate that when 
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developing Paa-based thiomers, using QPaa as the parent polymer rather than Paa 

improves  the biocompatibility of the resultant thiomers.   

All substituted polymers showed better biocompatibility profile than the parent polymer, 

Paa. Also quaternisation improved overall biocompatibility considerably with all 

quaternised polymers having better IC50 and cell recovery rates than non-quaternised 

polymers. Thiolation improved the IC50 of Paa but made QPaa more toxic, while TBA-based 

thiomers were observed to be more toxic than their NAC-based counterparts. Futher 

biocompatibility issues to be aware of include the fact that the particulate nature of PEC 

delivery system may increase its potential to elicit immune responses in-vivo and affect its 

biodistribution/cellular trafficking altering toxicity profile [199, 200]. 

4.3.2. Cellullar uptake of complexes 

4.3.2.1. Determination of uptake profile of optimal polymer, insulin PECS 

After a 2 hour treatment with PECS, results of uptake experiments were recorded as 

images of Caco-2 cells visualised using separate fluorescent filters specific for insulin-FITC, 

RBITC-tagged polymers and a FITC/RBITC combination filter to identify areas of polymer, 

insulin colocalisation. Results are shown in figure 67-72  and are indicative of replicate 

wells. Images were taken of the same region of the cell layer using the brightfield and then 

the different filter sets. 

 



 

 

112 

 

 

Fig. 67: Fluorescent microscopy images of Caco-2 cells treated with Paa, insulin complexes 

viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) RBITC filter. 

Scale bar -50µm. 
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Fig. 68: Fluorescent microscopy images of Caco-2 cells treated with QPaa, insulin 

complexes viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) 

RBITC filter. Scale bar -50µm. 
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Fig. 69: Fluorescent microscopy images of Caco-2 cells treated with Paa-NAC, insulin 

complexes viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) 

RBITC filter. Scale bar -50µm. 
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Fig. 70: Fluorescent microscopy images of Caco-2 cells treated with QPaa-NAC, insulin 

complexes viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) 

RBITC filter. Scale bar -50µm. 
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Fig. 71: Fluorescent microscopy images of Caco-2 cells treated with Paa-TBA, insulin 

complexes viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) 

RBITC filter. Scale bar -50µm. 

 

 

C D 

A B 



 

 

117 

 

 

Fig. 72: Fluorescent microscopy images of Caco-2 cells treated with QPaa-TBA, insulin 

complexes viewed using A) brightfield B) RBITC/FITC combination filter C) FITC filter D) 

RBITC filter. Scale bar -50µm. 

 

 The uptake profile of different PECS by Caco-2 cells was observed to vary with the type of 

polymer used in the formulation . Results showed that only complexes prepared using 

QPaa and QPaa-TBA appear to be internalised by cells, with others only being associated 

with the cell membrane.  Polymer, insulin colocalisation was confirmed using the 

RBITC/FITC combination filter by the appearance of numerous light yellow fluorescent 

spots within the cell layer as may be seen in figure 68A and 72A above . These spots also 

show up as red rhodamine and white FITC  fluorescence under the separate RBITC and 

FITC filter respectively. For all results detailed in section 4.3.2.1, the brightfield image of 

the same section of the cell layer was also examined and imaged to determine cell viability 
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based on the  appearance of the blue/black trypan blue stain which indicates non-viable 

cells. Cellular uptake of other complexes e.g. QPaa-NAC appeared to be more cell 

membrane-associated as the red RBITC staining was observed to be limited to the cell 

membrane area (figure 70D) . 

Uptake of complexes was not instantaneous but was observed to be time-dependent, with 

the cell layer being observed to attain visible intracellular fluorescence (PEC uptake) 

between 1-4 hours. Figure 73 below shows the progression in QPaa, insulin PEC uptake 

from 0.5-4 hours as indicated by the increase in the level of fluorescence observed in the 

cell layer.  

 

Fig.73: Fluorescent microscopy images of Caco-2 cells treated with QPaa, insulin complexes 

viewed using RBITC/FITC combination filter to show complex uptake at 0.5, 1, 2 and 4 

hours. Scale bar -50µm. 
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Similar results were obtained between 0.5-2hrs for QPaa-TBA, insulin PECS (Figure 74 

below). 

 

Fig. 74: Fluorescent microscopy images of Caco-2 cells treated with QPaa-TBA, insulin 

complexes viewed using RBITC/FITC combination filter to show complex uptake at 0.5, 1 

and 2 hours. Scale bar -50µm. 

 

The observed differences in the uptake profile of different complexes was also found to be 

unaffected by the variation between the concentration of quaternised and non-quaternised 

complexes used for the uptake experiments. Uptake experiments were repeated reducing 

the amount of QPaa and QPaa-TBA complexes used from 0.016:0.020 to 0.005:0063mgml-1 

P: I mass ratio to match the concentration used for Paa and non-quaternised thiomers 

(figures 75 and 76 below). 
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Fig. 75: Fluorescent microscopy images of Caco-2 cells treated with 0.005:0063mgml-1 (P: I 

mass ratio) of QPaa, insulin complexes viewed using A) brightfield B) RBITC/FITC 

combination filter C) FITC filter D) RBITC filter. Scale bar -50µm. 
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Fig. 76: Fluorescent microscopy images of Caco-2 cells treated with 0.005:0063 mgml-1 (P: I 

mass ratio) of QPaa-TBA, insulin complexes viewed using A) brightfield B) RBITC/FITC 

combination filter C) FITC filter D) RBITC filter. Scale bar -50µm. 

 

QPaa and QPaa-TBA, insulin PECS were still observed to be taken up by cells even with the 

lower PEC concentration used (figures 75 and 76). This indicates that uptake of  PECS was 

determined by differences in structure of the polymer used in the PEC formulation rather 

than the concentration of complexes used for the uptake experiment. The effect of 

increasing the amount of Paa and non-quaternised complexes used (to match that used for 

quaternised polymers) could not be evaluated because of the low IC50 of non-quaternised 

polymers. 

Determining the precise location of complexes in the cell was carried out using DAPI 

nucleic acid stain to highlight the perinuclear region (figure 77). 
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Fig. 77: Fluorescent microscopy images of Caco-2 cells treated with PECS and DAPI. A) Paa 

PECS on RBITC/FITC combination filter B) QPaa PECS on RBITC/FITC combination filter C) 

QPaa-TBA PECS on RBITC/FITC combination filter. Scale bar -50µm. 

Results indicated that uptake of QPaa and QPaa-TBA complexes was mostly intracellular. 

For both QPaa and QPaa-TBA complex formulations, distinct regions of polymer, insulin 

colocalisation could be observed (as bright spots) under the blue DAPI stain, suggesting 

that these complexes were located within the cell cytoplasm.  Paa complexes did not appear 

to be localised under the blue DAPI stain as can be seen in figure 77A above. 

4.3.2.2. Polymer structure-cellular uptake relationship 

The nature of the polymer used in PEC formulation was observed to play a vital role in 

determining the cellular uptake of the resultant complexes. Major factors that may affect 

the ability of the polymer to facilitate PEC uptake include structural composition of the 

polymer, charge density, molecular weight, polymer conformation as well as 

hydrophilic/lipophilic balance [201, 202, 203]. The properties of the original polymer may 

also be altered after complexation with insulin, resulting in a complex with different 

physicochemical properties from the parent molecules. Also, for thiomers which have 

disulphide bonds created during the thiolation process, due to the highly reducing 

conditions present within the cell cytoplasm these bonds may be reduced when the 

polymers are taken up into cells [204]. This implies that for thiomers like TBA conjugates 

which appear to be covalently bound to insulin on complexation (refer to section 3.3.1.5.), 

insulin may be released intracellularly from the PEC if it is taken up into cells and polymer-

insulin disulphide bonds are reduced. 

 While most quaternised polymers (with the exception of QPaa-NAC complexes) were able 

to facilitate intracellular uptake of complexed insulin, complexes prepared from non-
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quaternised polymers were all poorly taken up by Caco-2 cells, confirming the importance 

of the quaternary group in promoting the cellular uptake of PECS. Quaternisation enhanced 

the ability of Paa and Paa-TBA to promote the uptake of insulin complexes, but did not 

noticeably enhance the uptake profile of Paa-NAC. Cellular uptake of Paa-NAC/QPaa-NAC 

PECS may have been affected by substitution of cationic primary amine groups of Paa/QPaa 

with the uncharged amide bond of the thiol moiety resulting in products with a lower 

charge density when compared to their parent polymers. This can be seen in the relatively 

lower zeta potential of these NAC conjugates shown in table 2 in section 2.3.4. (35-37mV 

for NAC conjugates as compared to 40 -48mV for other polymers). Uptake of QPaa-TBA 

complexes by Caco-2 cells highlights that the cationic substructure of the amidine bond 

results in retention of cationic charge post-thiolation favouring intracellular uptake of 

these complexes. These results suggests that quaternisation and TBA-based thiolation 

which stabilise polycationic charge were fundamental in facilitating the uptake of QPaa and 

QPaa-TBA insulin complexes, emphasizing that interaction of polymers with anionic 

glycoproteins present in the cell membrane may play a key role in initiating the process of 

PEC uptake.  

The uptake of polymer control solutions at the same concentration used for each PEC 

formulation was also assessed and results are shown in figures 78-80 below. 
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Fig. 78: Fluorescent microscopy images of Caco-2 cells treated with A) QPaa  -brightfield              

B) QPaa-RBITC filter C) QPaa-TBA- brightfield D) QPaa-TBA-RBITC  filter. Scale bar -50µm. 

 

These results show that at the 2 hour timepoint, QPaa and QPaa-TBA solutions appear to be 

taken up intracellularly as with corresponding complexes. 
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Fig. 79: Fluorescent microscopy images of Caco-2 cells treated with A) Paa  -brightfield B) 

Paa-RBITC filter C) QPaa-NAC- brightfield D) QPaa-NAC-RBITC filter. Scale bar -50µm. 

 

However unlike their PEC formulations, Paa and QPaa-NAC were also taken up by Caco-2 

cells as a shown in figure 79 above. This implies that complexation of Paa and QPaa-NAC 

with insulin may have limited the ability of charged sites on these polymers to interact with 

the cell membrane and initiate uptake of PECS. This may be due to polymer, insulin 

complexation rendering charged sites on these polymers unavailable for interaction with 

the cell membrane. The PEC network may also create a steric barrier that prevents sites on 

the polymer from accessing compatible cell membrane components thereby limiting 

uptake [205]. Paa and QPaa-NAC polymers however show better uptake than Paa-TBA and 

Paa-NAC polymers shown in figure 80 below. 
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Fig. 80: Fluorescent microscopy images of Caco-2 cells treated with A) Paa – NAC-

brightfield B) Paa-NAC-RBITC filter C) Paa-TBA- brightfield D) Paa-TBA-RBITC filter. Scale 

bar -50µm. 

 

Uptake of Paa-TBA and Paa-NAC was observed to be minimal as was observed with their 

insulin PECS (figure 80). This is probably because unlike Paa which may benefit from the 

high charge density and reduced tendency for steric hindrance conferred by the presence 

of free unsubstituted primary amine groups enabling cellular uptake, interaction of 

thiolated Paa derivatives with cellular components may be sterically hindered. Also 

without the benefit of quaternisation, cellular interactions of thiolated Paa derivatives may 

be affected by fluctuations in the magnitude of their polycationic charge with change in the 

pH of the cellular environment. 

Further work was carried out to quantify the uptake of these polymer control solutions. 

This was done by solubilising the cell layers with 2% SDS after treating the cells with 
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polymer solutions for 2 hours as in the uptake experiment in 4.3.2.2. above and measuring 

the fluorescence of the resultant lysate using fluorimetry.  This experiment was carried out 

for only the following polymer solutions: Paa, QPaa and thiolated QPaa derivatives which 

were observed to have been taken up by the cells (figures 78 and 79 above). Thiolated Paa 

solutions were not analysed as their cellular uptake appeared to be poor. The results are 

detailed in Table 12 below. 

Table 12: Percentage uptake of polymers by Caco-2 cells (n = 3; mean ± S.D.) 

 Paa QPaa QPaa-NAC QPaa-TBA 

% Polymer 

uptake 

12.55 ± 0.83 22.88 ± 1.77 26.48 ± 1.40 28.50 ±  0.38 

 

The results of the quantification experiment shown in Table 12 above are consistent with 

the results of fluorescence microscopy, showing that all quaternised polymers were taken 

up by the cells and the percentage of quaternised polymers taken up approximately double 

the amount of Paa uptake. The analysis was however not done with polymer, insulin 

complexes due to difficulties in getting a good calibration curve for insulin-FITC with the 

fluorimeter.  However fluorescence microscopy has shown polymer, insulin colocalisation 

was evident for QPaa and QPaa-TBA. The results of the quantification process also confirm 

fluorescence microscopy results which show cellular uptake of Paa and QPaa-NAC from 

their polymer solutions, even though uptake of their insulin PECS appeared to be 

negligible.  

From the cellular uptake studies of polymers and their corresponding insulin PECS, only 

QPaa and QPaa-TBA showed the best uptake profile both as a simple polymer solution and 

in association with insulin as a PEC delivery system. Based on these findings, they appear 

to be the most suitable polymers for use in facilitating oral delivery of insulin and hence 

these polymers (QPaa and QPaa-TBA) would be the focus of further investigations detailed 

in the sections below. 

4.3.2.3. IDENTIFYING MECHANISMS OF CELLULAR UPTAKE 

To clarify the mechanisms involved in the cellular uptake of PECS into the cytoplasm, the 

cell layers were either pre-incubated for 2hours in calcium free EMEM to inhibit calcium-

dependent uptake processes or 1hour in free insulin (3µgml-1) to saturate insulin receptors 
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and down-regulate insulin receptors prior to treatment with PECS . The cell layers were 

examined by fluorescence microscopy to evaluate any changes in the uptake of QPaa and 

QPaa-TBA PECS in response to down-regulation of insulin receptors.  

 

                      

Fig. 81: Fluorescent microscopy images of Caco-2 cells post treatment with QPaa, insulin 

complexes in A) normal media using RBITC/FITC combination filter  B) calcium-free media 

using RBITC/FITC combination filter C) normal media using RBITC filter  D) calcium free 

media using RBITC filter  E) normal media using FITC filter  F) calcium free media using 

FITC filter. Scale bar -50µm. 
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Fig. 82: Fluorescent microscopy images of Caco-2 cells post treatment with QPaa-TBA, 

insulin complexes in A) normal media using RBITC/FITC combination filter  B) calcium-free 

media using RBITC/FITC combination filter C) normal media using RBITC filter  D) calcium 

free media using RBITC filter  E) normal media using FITC filter  F) calcium free media 

using FITC filter. Scale bar -50µm. 

Figures 81 and 82 above show the uptake of QPaa and QPaa-TBA, insulin PECS in normal 

and calcium-free media compared to those from normal uptake conditions (in FCS-free 
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supplemented EMEM). Cell layers incubated in calcium-free media before treatment with 

QPaa and QPaa-TBA, insulin PECS were observed to still show uptake similar to the results 

obtained in normal media as may be seen in figures 81 and 82 above. This may imply that 

the processes involved in the cellular uptake of both QPaa and QPaa-TBA insulin PECS 

appear to be independent of calcium-based mechanisms.   

The results of the uptake experiments conducted with cells incubated with insulin prior to 

treatment with QPaa and QPaa-TBA, insulin PECS compared to that obtained from uptake 

experiments carried out in normal media is shown in figures 83 and 84 below. 
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Fig. 83: Fluorescent microscopy images of Caco-2 cells treated with QPaa-TBA, insulin 

complexes where cells are pre-incubated with A) normal media on RBITC/FITC 

combination filter B) 3µgml-1 insulin on RBITC/FITC combination filter C) normal media on 

RBITC filter D) 3µgml-1 insulin on RBITC combination filter E) normal media on FITC filter 

F) 3µgml-1 insulin on FITC combination filter. Scale bar -50µm. 

Pre-saturation of insulin receptors did not affect uptake of QPaa-TBA insulin complexes, 

which were still observed to be taken up regardless of the down-regulation of insulin 

receptors as shown in figure 83 above. 
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Fig. 84: Fluorescent microscopy images of Caco-2 cells treated with QPaa-TBA, insulin 

complexes where cells are pre-incubated with A) normal media on RBITC/FITC 

combination filter B) 3µgml-1 insulin on RBITC/FITC combination filter C) normal media on 

RBITC filter D) 3µgml-1 insulin on RBITC combination filter E) normal media on FITC filter 

F) 3µgml-1 insulin on FITC combination filter. Scale bar -50µm. 

However, the pre-saturation process appeared to have a noticeable effect on the uptake of 

QPaa, insulin complexes as figure 84 above show that unlike figure 84 A) where the interior 

of the cells contains PECS figure 84 B) shows poor uptake of the fluorescent complexes 
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after pre-incubation with insulin. The images taken with the RBITC and FITC filters also 

confirm poor uptake of the formulation (figure 84D and 84F respectively), indicating that 

with QPaa, insulin complexes the uptake process appears to benefit from interaction of 

complexed insulin with receptors on the cells. Insulin receptors have been found to be 

present on the luminal surface of the small intestine [206] and several studies have 

confirmed active transcytosis of insulin through the intestinal epithelial cells [15, 207]. 

This highlights the active role the insulin receptor may play in the uptake of complexed 

insulin into the cells.  

This implies that the conformation of QPaa allows for complexed insulin to be held on or 

near the surface of the PEC enabling the insulin molecule adequate interaction with its 

receptor. Some reviews have however stated that for interaction of insulin with its receptor 

to take place, insulin has to be in its monomeric state and that insulin hexamer and 

aggregate formation is promoted by changes in environmental pH in vivo [208]. Hence 

complexation of insulin with QPaa which possesses a quaternary group may limit pH-

dependent changes of insulin from the monomeric to the hexameric state enhancing insulin 

receptor –mediated uptake. The stabilising effect of polymer-insulin linkage on insulin 

structure has been previously documented by other groups.  Linkage of Vit B12 or PEG to 

the Lys-29 residue of insulin was reported to inhibit formation of the insulin hexamer, 

facilitating interaction of the insulin monomer with insulin receptors on the surface of the 

epithelial cells and contributing to a marked increase in the oral insulin bioavailability of 

these formulations [42, 209].  

Further work is needed to clarify the exact mechanisms responsible for cellular uptake of 

these complexes. This may involve the use of specific inhibitors like sodium azide which 

inhibits metabolic processes as well as cytochalasin D and nocodazole, which are inhibitors 

of the endocytotic trafficking pathway [192]. Hypothesizing on the fate of the complexes in 

the cytosol, it is hoped that insulin PEC delivery systems will not only initiate uptake of the 

protein, but also facilitate transport of complexes across the cells (transcytosis). In an 

attempt to effect and control PEC uptake and transport in biological systems, future work 

may be directed at functionalization of PECS using receptor-recognisable ligands to 

facilitate active receptor-mediated transcytosis as opposed to relying on passive uptake 

mechanisms depicted in the present work. This concept is already being investigated by 

groups using the vit B12 ligand to produce receptor-mediated transcytosis of nanoparticles 

via the vit B12 receptors [95]. 
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4.4. CONCLUSION 

The biocompatibility of the parent polymer Paa was improved by both thiol and quaternary 

substitution, with quaternisation offering a more substantial improvement in 

biocompatibility profile than thiolation. Thiolation was observed to lower the IC50 of QPaa, 

although QPaa, Paa-NAC and QPaa-NAC appeared to be largely cytostatic rather than 

cytotoxic. Cellular uptake of polymer, insulin complexes was observed to be highly 

dependent on polymer structure, with QPaa and QPaa-TBA showing the best potential for 

facilitating intracellular uptake of complexed insulin by Caco-2 cells. Uptake of QPaa-TBA 

insulin PECS was found to be unaffected by both down-regulation of insulin receptors and 

inhibition of calcium-dependent uptake mechanisms. However, cellular uptake of QPaa, 

insulin PECS was independent of calcium-based mechanisms but appeared to be affected 

by down-regulation of insulin receptors. 
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5. GENERAL CONCLUSIONS 

The report has shown that thiolation of Paa and QPaa was possible either through 

EDAC/NHS mediated coupling of the primary amine groups of the polymer to N-

acetylcysteine  creating a stable amide bond or by reacting the polymers with 2-

iminothiolane which yields the 4-thiobutylamidine derivatives of the parent polymer. 

Estimation of free thiol and disulphide bond content of each thiolated derivative indicated 

that the efficiency of the EDAC/NHS mediated coupling process was relatively lower than 

thiolation using 2-iminothiolane. Subsequent complexation of Paa/QPaa and their thiolated 

derivatives with insulin in Tris buffer pH 7.4 yielded nano-sized, positively-charged insulin 

PECS at P: I mass ratios between 0.8-2:1. However, the optimal P: I mass ratio for all PEC 

formulations was observed to be 0.8 :1. The complexation process was also found to be less 

efficient at the higher insulin stock concentration of 2mgml-1 and in sodium hydroxide 

buffer pH 7.4. Complexation efficiency data showed that interaction of TBA-based thiomers 

with insulin in Tris buffer pH 7.4 affected HPLC analysis of complexed insulin which may 

suggest that the conformation of the protein has been altered. TEM images showed that 

most PECS were in form of bilayered nanovessicular structures or conventional single-

layered nanoparticles.  

Assessment of the ability of QPaa, QPaa-NAC and Paa-NAC PECS to shield complexed 

insulin from proteolytic degradation by trypsin, α-chymotrypsin and pepsin showed that 

all formulations are effective against tryptic degradation with about 30% more undegraded 

insulin being recovered from complexes than an equivalent sample of free insulin. QPaa-

NAC complexes were observed to offer the best protection of complexed insulin from the 

effects of α-chymotrypsin containing approximately 30% more undegraded insulin than 

the insulin control solution after 4 hours. PECS were unable to protect insulin from the 

effects of pepsin. Evaluation of the mucoadhesive ability of the polymers and their 

corresponding insulin PECS indicated that complexation of the polymers with insulin did 

not have any effect on their mucoadhesive properties. Quaternisation enhanced the 

mucoadhesive properties of Paa, although thiolated Paa derivatives (Paa-NAC and Paa-

TBA) exhibited the highest mucin adsorption capacity. However, thiolation of QPaa did not 

yield substantial improvements in mucin adsorption capacity. 

Cytotoxicity assays carried out on Paa, QPaa and their thiolated derivatives indicated that 

an improvement in the biocompatibility profile of Paa was obtained due to thiolation and 

quaternisation. Qpaa was found to be largely cytostatic within the concentration of 0.001-
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4mgml-1. However thiolation of QPaa was found to make the polymer less biocompatible. 

TBA conjugates were found to be more cytotoxic than their NAC-based counterparts 

probably as a result of the protonated amidine group substructure. Amongst the novel 

thiomers synthesized,  QPaa-NAC was found to have the best biocompatibility profile. 

Cellular uptake studies showed that QPaa and QPaa-TBA insulin complexes showed the 

best uptake profile, with both PEC formulations being taken up intracellularly by Caco-2 

cells within 1-2hours. Uptake of both QPaa and QPaa-TBA complexes was found to be 

independent of calcium-based uptake mechanisms while uptake of QPaa complexes was 

affected by down-regulation of insulin receptors.  

Therefore future work would be focused on further development of PEC  formulations 

prepared from QPaa and QPaa-TBA , which showed the most promising potential in terms 

of cellular uptake of complexed insulin. For QPaa-TBA, insulin PECS preliminary 

investigations would be needed to ascertain that insulin complexed to the polymer is 

pharmacologically active. This may involve in-vivo studies to evaluate the physiological 

response (i.e. induction of hypoglycemia) obtained on parenteral administration of QPaa-

TBA, insulin PEC formulations as compared to an equivalent insulin standard. Also, the fate 

of complexes after being taken up by cells would be investigated. This would help clarify 

the timing and process of insulin release from the PEC and identify major cellular 

pathways/ mechanisms that may be involved in the PEC uptake process. Other areas that 

would be incorporated in future studies include investigating the ability of the thiomer, 

QPaa-TBA to chelate metal ions required by proteases thereby offering enhanced 

enzymatic protection in-vivo and specific functionalisation of PECS with receptor-

recognisable ligands like Vit B12 to facilitate the process of active receptor-mediated 

uptake. Finally, future studies may also look at further modification of polymer structure 

by the attachment of hydrophobic grafts to the backbone of quaternised thiomers and 

evaluation of the performance of the new construct in terms of facilitating oral insulin 

delivery. 

The results obtained so far indicate that these Paa-based polymer, insulin PECS specifically 

QPaa and QPaa-TBA formulations showed considerable potential in promoting the delivery 

of insulin through the oral route. 
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