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Abstract

Solving real life optimisation problems is a challenging engineering ven-

ture. Since the early days of research on optimisation it was realised that

many problems do not simply have one optimisation objective. This led

to the development of multi-objective optimizers that try to look at the

optimisation problem from different points of view and reach a set of com-

promised solutions among the different objectives. The presented research

brings together recent advances in the field of multi-objective optimisation

and particle swarm optimisation raising several challenges. This is tackled

from different aspects including the proposal of new archiving techniques

to developing new methods and quality measures. Smart Multi-objective

Particle Swarm Optimisation based on Decomposition (SDMOPSO) is first

proposed to incorporate multi-objective problem decomposition techniques

with PSO. A novel archiving technique is developed using a clustering based

mapping approach between the objective and solution spaces and is applied

to general multi-objective optimizers. D2MOPSO is introduced as a new

MOPSO that uses problem decomposition and a new archive utilising dom-

inance based mapping between objective and solution spaces. Finally the

thesis presents a novel multi-objective quality measure that uses mutual

information to compare among solutions generated by different algorithms.

The contributions are all tested on standard test suits and are used to solve

two real-life problems: a) Channel selection for Brain-Computer Interfaces,

and b) Effective cancer chemotherapy treatments. The two problems are

real challenges in the two respective fields. Two different modelling ap-

proaches of the channel selection problem are presented: one is based on

binary representation of the channels, while the other is continuous in a

projected space of the channel locations. The results are very competitive

with the commonly used methods.

i



List of Publications

• N. Al Moubayed, A. Petrovski and J. McCall, D 2 MOPSO: Multi-Objective

Particle Swarm Optimizer Based on Decomposition and Dominance, Evolutionary

Computation, MIT Press.

• N. Al Moubayed, A. Petrovski and J. McCall, Mutual information for perfor-

mance assessment of multi objective optimisers: Preliminary results, The 14th

International Conference on Intelligent Data Engineering and Automated Learn-

ing (IDEAL’2013).

• N. Al Moubayed, A. Petrovski and J. McCall, D 2 MOPSO: Multi-Objective

Particle Swarm Optimizer Based on Decomposition and Dominance, Evolution-

ary Computation in Combinatorial Optimization (EvoCop 2012) Volume 7245 of

Lecture Notes in Computer Science, Springer Berlin / Heidelberg, pp 75-86.

• N. Al Moubayed, B. Awwad Shiekh Hasan, J. Q. Gan, A. Petrovski and J. Mc-

Call, Continuous Presentation for Multi-Objective Channel Selection in Brain

Computer Interfaces, proceedings of the World Congress on Computational In-

telligence, WCCI 2012, Brisbane, Australia, IEEE.

• N. Al Moubayed, A. Petrovski and J. McCall, Clustering-Based Leaders Selec-

tion in Multi-Objective Particle Swarm Optimisation, Intelligent Data Engineer-

ing and Automated Learning (IDEAL 2011), Volume 6936 of Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, pp. 100-107.

• N. Al Moubayed, A. Petrovski and J. McCall, Clustering based Framework for

Leaders Selection in Multi-Objective Evolutionary Algorithms, Proceedings of

the 13th annual conference on genetic and evolutionary computation (GECCO

2011), Dublin, Ireland, ACM, pp. 96-96.

ii



• N. Al Moubayed, A. Petrovski and J. McCall, Multi-Objective Optimisation

of Cancer Chemotherapy using Smart PSO with Decomposition, In 3rd IEEE

Symposium on Computational Intelligence in Multicriteria Decision-Making in

conjunction with IEEE Symposium Series on Computational Intelligence (SSCI

2011), April 2011, Paris, France, IEEE.

• N. Al Moubayed, A. Petrovski and J. McCall, A Novel Smart Multi-Objective

Particle Swarm Optimisation using Decomposition, In Parallel Problem Solving

from Nature (PPSN XI), 2010, volume 6239 of Lecture Notes in Computer Sci-

ence, Springer Berlin / Heidelberg, pp. 1-10.

• N. Al Moubayed, B. Awwad Shiekh Hasan , J. Q. Gan, A. Petrovski and J.

McCall, Binary-SDMOPSO and its Application in Channel Selection for Brain-

Computer Interfaces, In 10th Annual Workshop on Computational Intelligence

(UKCI 2010), September 2010, Colchester, UK, IEEE.

iii



Acknowledgements

I would like to thank my PhD advisors, Doctor Andrei Petrovski and Pro-

fessor John McCall, for supporting me during these past four years. Andrei

was always supportive and has given me the freedom to take decisions and

follow my research interests. He has always given me his invaluable advice

and opinion. Without his support and encouragement I would not have

achieved what I have achieved and I definitely would not be able to publish

as much. John is a very sweet person, his kindness will make you instantly

love him and never forget him. He is very smart, funny, friendly and has

a real Scottish spirit. I enjoyed every single discussion and learnt from his

great experience.

I will forever be thankful to my beloved husband who was and still is a true

and great supporter. Bashar, thank you for standing by me, being positive

at all times and most of all thanks for being patient with my, sometimes,

irritable mood and stubbornness, and giving me all the love and care in the

world. I love you loads and all the words in the world cannot express my

appreciation. you are the meaning of my life and with you I am not afraid

of anything, The outcome of my PhD is not only a thesis and some papers

but also an awesome baby girl. Julie, you made my life bright and beautiful,

you are my sunshine. I cannot be anything but happy and excited when

you are around.

I especially thank my mom, dad, and brothers. they have never stopped

supporting me for a second. They put their faith in me and gave me all the

support in the world. Dad and mum, you are great parents and I would

not imagine my life without you both. Samer, thank you for your support,

advice and funny jokes, thanks for being so loving and caring. Hsnee, my

ii



little angel, thanks for your care, love and amazing music, you rocked my

life dude.

I thank my lovely dog, Lassie, who kept my feet warm while writing up

and accompanied me in my walks and breaks. Lassie you are a piece of my

heart.

I dedicate this thesis to my family, my husband, Bashar, my beautiful baby,

Julie and my dog, Lassie for their great support and love. I love you all

from all of my heart.

iii



Contents

Abstract i

List of Publications ii

Acknowledgment ii

List of Figures ix

List of Tables xiv

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Aims and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline and Organization . . . . . . . . . . . . . . . . . . . . . . 6

2 Literature Review 7

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Single Objective Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Population-based Metaheuristics . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Initial Population . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.3 Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.4 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Particle Swarm Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



CONTENTS

2.4.2 Theoretical analyses and Convergence . . . . . . . . . . . . . . . 18

2.5 Multi-objective Optimisation . . . . . . . . . . . . . . . . . . . . . . . . 20

2.6 Multi-objective Evolutionary Algorithms . . . . . . . . . . . . . . . . . . 23

2.6.1 Algorithms based on Aggregation Functions . . . . . . . . . . . . 23

2.6.2 Non-dominated Sorting Genetic Algorithm (NSGA) and NSGAII 25

2.6.3 Multi-objective Evolutionary Algorithms based on Decomposi-

tion (MOEA/D) . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.7 Multi-Objective Particle Swarm Optimisation . . . . . . . . . . . . . . . 27

2.8 Archiving in MOPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.1 Leaders in MOPSO . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8.2 Archiving and Spreading of Nondominated Solutions . . . . . . . 30

2.8.2.1 Kernel: . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.2.2 Adaptive Grid Algorithm . . . . . . . . . . . . . . . . . 31

2.8.2.3 Niche Count . . . . . . . . . . . . . . . . . . . . . . . . 31

2.8.2.4 Clustering . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.2.5 ε−dominance . . . . . . . . . . . . . . . . . . . . . . . . 32

2.8.2.6 Nearest Neighbour Density Estimator . . . . . . . . . . 33

2.8.3 Diversification and Avoidance of Local Optima . . . . . . . . . . 35

2.8.3.1 Position Update . . . . . . . . . . . . . . . . . . . . . . 35

2.8.3.2 Turbulence . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.9 Multi-objective PSO algorithms . . . . . . . . . . . . . . . . . . . . . . . 37

2.9.1 Aggregating Approaches . . . . . . . . . . . . . . . . . . . . . . . 37

2.9.2 Pareto-based Approaches . . . . . . . . . . . . . . . . . . . . . . 38

2.9.3 Combined Approaches . . . . . . . . . . . . . . . . . . . . . . . . 41

2.9.4 Decomposition-based Approaches . . . . . . . . . . . . . . . . . . 42

2.9.5 Convergence Properties of MOPSO . . . . . . . . . . . . . . . . . 43

2.10 Quality Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.10.1 Error Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10.2 Generational Distance . . . . . . . . . . . . . . . . . . . . . . . . 46

2.10.3 Inverted Generational Distance . . . . . . . . . . . . . . . . . . . 46

2.10.4 Hypervolume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10.5 ε Indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.11 Benchmark Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

v



CONTENTS

3 Methods 50

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 SDMOPSO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.1 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.2 Why SDMOPSO? . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.3 Experiments and results . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Clustering based Framework for Leaders Selection . . . . . . . . . . . . 60

3.3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . 62

3.3.2 Density Based Spatial Clustering . . . . . . . . . . . . . . . . . . 62

3.3.3 The Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 67

3.3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.4 D2MOPSO: MOPSO based on Decomposition and Dominance . . . . . 74

3.4.1 Archiving based on Crowding Distance in Objective and Solution

Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4.2 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.4.3 Novelty of D2MOPSO . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.4 Selected Test Problem . . . . . . . . . . . . . . . . . . . . . . . . 82

3.4.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.4.6 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.4.7 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.8 Numeric Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.4.9 Visual Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.4.10 Analysis of Computational Complexity . . . . . . . . . . . . . . . 91

3.4.11 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Applications 106

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Channel Selection for Brain-Computer Interfaces . . . . . . . . . . . . . 108

4.2.1 Modeling Multi-Objective Channel Selection Problem . . . . . . 109

4.2.2 The Binary SDMOPSO . . . . . . . . . . . . . . . . . . . . . . . 110

vi



CONTENTS

4.2.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 111

4.2.3.1 Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.2.3.2 Feature Extraction and Classification . . . . . . . . . . 111

4.2.4 Continuous Presentation for Multi-Objective Channel Selection

in Brain-Computer Interfaces . . . . . . . . . . . . . . . . . . . . 117

4.2.5 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 119

4.2.5.1 Sequential Forward Floating Search . . . . . . . . . . . 119

4.2.5.2 Data Recording and Pre-processing . . . . . . . . . . . 120

4.2.5.3 Feature Extraction and Classification . . . . . . . . . . 121

4.2.5.4 D2MOPSO parameter settings . . . . . . . . . . . . . 121

4.2.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.3 Finding Effective Cancer Chemotherapeutic Treatments: . . . . . . . . . 125

4.3.1 Cancer Chemotherapy . . . . . . . . . . . . . . . . . . . . . . . . 126

4.3.1.1 Medical Aspects of Chemotherapy . . . . . . . . . . . . 126

4.3.1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . 127

4.3.2 Customized-SDMOPSO for Cancer Chemotherapy Treatment . . 130

4.3.3 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . 131

4.4 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5 Mutual Information for Performance Assessment of Multi Objective

Optimisers 142

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.2 Measuring Quality of Multi-objective Optimizers . . . . . . . . . . . . . 144

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.1 Mutual Information . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.3.2 Measuring Quality with Mutual Information . . . . . . . . . . . 147

5.3.3 Processing Pareto Fronts as Images . . . . . . . . . . . . . . . . . 148

5.3.4 Handling Outliers: . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.1 Selected Test Problem . . . . . . . . . . . . . . . . . . . . . . . . 151

5.4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

vii



CONTENTS

6 Conclusions 159

6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6.2 Future Work: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.3 In Conclusion ... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

References 165

viii



List of Figures

2.1 Diagram of an empty topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection. . . . . 16

2.2 Diagram of a local best topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection, while

the non-directed link represents a two-way link between two particles. . 16

2.3 Diagram of a global best topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection, while

the non-directed link represents a two-way link between two particles. . 16

2.4 Diagram of a start topology. A circle represents a particle and the di-

rected arrow represents a direct link indicates a self connection, while

the non-directed link represents a two-way link between two particles. . 17

2.5 Diagram of a tree topology. A circle represents a particle and the directed

arrow represents a direct link indicates a self connection, while the non-

directed link represents a two-way link between two particles. . . . . . . 17

2.6 A chart diagram of the general PSO algorithm. . . . . . . . . . . . . . . 19

2.7 An example of a multi-objective optimisation problem: A) the parti-

cles/solutions in the search space B) the corresponding Pareto front. . . 22

2.8 Example of the result of a clustering algorithm (Gaussian Mixture Model). 33

2.9 To the left, the area dominated, in a minimization problem, by a certain

solution is highlighted. To the right the area being dominated has been

extended by a value proportional to the ε parameter. . . . . . . . . . . . 34

ix



LIST OF FIGURES

2.10 ε−dominance in two dimensional objective space. The red dots are the

selected particles. In box B the black particle is removed as it is domi-

nated by the red one. In box D the red and the black particles are not

comparable, i.e. no one dominates the other, so the red particle is chosen

as it is more to the left. Box C is discarded because it is dominated by

B and D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Example of nearest neighbour density estimator in two dimensional space. 35

2.12 An example of Sigma-MOPSO. . . . . . . . . . . . . . . . . . . . . . . . 39

2.13 Illustration of the Gaussian distribution used by dMOPSO for generating

a new particle. The personal best and the global best are used to define

the mean and variance of the Gaussian distribution. . . . . . . . . . . . 43

3.1 (a, e, i) are the PFtrue and the rest are the approximated ones . . . . . 57

3.2 (a, d) are PFtrue and the rest are the approximated ones . . . . . . . . . 58

3.3 Example of clusters produced by Density Based Spatial Clustering . . . 64

3.4 Example of the algorithm at work while mapping clusters. . . . . . . . . 65

3.5 The two PF approximations for ZDT1. . . . . . . . . . . . . . . . . . . . 69

3.6 The two PF approximations for ZDT2. . . . . . . . . . . . . . . . . . . . 69

3.7 The two PF approximations for ZDT3. . . . . . . . . . . . . . . . . . . . 69

3.8 The two PF approximations for ZDT4. . . . . . . . . . . . . . . . . . . . 70

3.9 The two PF approximations for ZDT6. . . . . . . . . . . . . . . . . . . . 70

3.10 The two PF approximations for Viennet2. . . . . . . . . . . . . . . . . . 70

3.11 The two PF approximations for Viennet3. . . . . . . . . . . . . . . . . . 71

3.12 Box plots to demonstrate the average distance between each solution of

the actual Pareto front and its closest solution in the approximated PF.

NSGAII results are at the left of each sub plot, while NSGAII/C results

are at the right side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.13 Coverage set results for the two algorithms. For each problem 2 bars

are drawn, the left bar represent the percentage of solutions produced

by NSGAII that dominate these produced by NSGAII/C, the right bar

represents the opposite percentage. . . . . . . . . . . . . . . . . . . . . . 72

x



LIST OF FIGURES

3.14 Dominance-based ranking for the non-dominated solutions of the leaders’

archive using the crowding distance values in both solution and objective

spaces. X-axis is the crowding distance in the solution space, Y-axis is

the crowding distance in the objective space. The numbers next to each

particle represents its rank. In this example the particles ranked with 3

are the best. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.15 Swarm of 20 particles in a sample objective space. When only decompo-

sition is used 8 particles are directed to promising regions in the space,

the remaining 12 are directed to unpromising ones, i.e. 60% of the swarm

is wasting the search effort. . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.16 Plot of the non-dominated solutions with the lowest IGD values in 30

runs of D2MOPSO, MOEA/D and OMOPSO for solving Viennet4. . . 84

3.17 Plot of the non-dominated solutions with the lowest IGD values in 30

runs of D2MOPSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.18 Plot of the non-dominated solutions with the lowest IGD values in 30

runs of MOEA/D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.19 Plot of the non-dominated solutions with the lowest IGD values in 30

runs of dMOPSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.20 Plot of the non-dominated solutions with the lowest IGD values in 30

runs of OMOPSO. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.21 The evaluation of IGD for the four algorithms. . . . . . . . . . . . . . . 94

3.22 The evaluation of Hyper Volume for the four algorithms. . . . . . . . . . 95

3.23 The evaluation of the four algorithms for Viennet4. . . . . . . . . . . . . 102

4.1 Solutions obtained by OMOPSO. The approximated Pareto front related

to every subject is marked by the corresponding letter. . . . . . . . . . . 112

4.2 Solutions obtained by MOEA/D. The approximated Pareto front related

to every subject is marked by the corresponding letter. . . . . . . . . . . 114

4.3 Solutions obtained by Binary-SDMOPSO. The approximated Pareto front

related to every subject is marked by the corresponding letter. . . . . . 115

4.4 Box plot of the accuracies achieved using the three methods. The average

accuracy using each of the method is also shown. . . . . . . . . . . . . . 116

xi



LIST OF FIGURES

4.5 Box plot of the number of selected channels achieved using the three

methods. The average number of selected channels using each of the

method is also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.6 Projected Biosemi 64+2 EEG channel locations. The numbering scheme

follows the standard Biosemi numbering. Inclusion circles are drawn

around each channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.7 The structure of the synchronous trials . . . . . . . . . . . . . . . . . . . 120

4.8 Frequency of Channels selected via SFFS . . . . . . . . . . . . . . . . . 122

4.9 Results using D2MOPSO. Results of each subject are plotted with a

polynominal fit of degree 2 to show the approximated Pareto Front. . . 123

4.10 Comparison between accuracy results obtained using SFFS andD2MOPSO124

4.11 Frequency of Channels selected via D2MOPSO . . . . . . . . . . . . . . 125

4.12 Approximated Pareto fronts . . . . . . . . . . . . . . . . . . . . . . . . . 134

4.13 The reference set obtained by merging all the non-dominated solutions

generated by the three algorithms . . . . . . . . . . . . . . . . . . . . . . 134

4.14 Box plot of the IGD achieved using the three methods (the central line

in every box represents the median; the average IGD using each of the

algorithms is shown as a numeric value) . . . . . . . . . . . . . . . . . . 135

4.15 Drug doses for one of MOEA/D solutions . . . . . . . . . . . . . . . . . 137

4.16 Drug doses for one of NSGA-II solutions . . . . . . . . . . . . . . . . . . 137

4.17 Drug doses for one of c-SDMOPSO solutions . . . . . . . . . . . . . . . 138

5.1 An example of two unequal PFs with the same histogram. The blue PF

(A) is the true PF for ZDT1 and the red PF (B) is a shifted copy of the

blue PF. IMI(A,A) = IMI(A,B) = 1. . . . . . . . . . . . . . . . . . . . . 148

5.2 The blue dots belong to a hypothetical true PF. The red dots belong to

a hypothetical approximated PF. The dots within the circle belong to

the approximated PF and are considered outliers. . . . . . . . . . . . . . 150

5.3 Results of ZDT1 using three algorithm: NSGAII,SPEAII, and IBEA

compared using four indicators: IIGD, Iε, Ihv, and IiMI . . . . . . . . . . 153

5.4 Results of ZDT2 using three algorithm: NSGAII,SPEAII, and IBEA

compared using four indicators: IIGD, Iε, Ihv, and IiMI . . . . . . . . . . 154

xii



LIST OF FIGURES

5.5 Results of ZDT3 using three algorithm: NSGAII,SPEAII, and IBEA

compared using four indicators: IIGD, Iε, Ihv, and IiMI . . . . . . . . . . 155

5.6 Results of ZDT4 using three algorithm: NSGAII,SPEAII, and IBEA

compared using four indicators: IIGD, Iε, Ihv, and IiMI . . . . . . . . . . 156

5.7 Results of ZDT6 using three algorithm: NSGAII,SPEAII, and IBEA

compared using four indicators: IIGD, Iε, Ihv, and IiMI . . . . . . . . . . 157

xiii



List of Tables

2.1 A comparison among commonly used problems: F1 is the number of

objectives. F2 is the geometry of the Pareto Front. F3 does the problem

have any bias (+) or not (-). F4 the number of constraints. . . . . . . . 49

3.1 Indicators values for the three methods applied on nine test problems:

the values are presented as [GD,R-metrics] . . . . . . . . . . . . . . . . . 58

3.2 Inverted Generational Distance results for the two algorithms . . . . . . 71

3.3 Average Generational Distance results for the two algorithms . . . . . . 73

3.4 A comparison among the decomposition-based MOEA under study . . . 84

3.5 A comparison of computational complexity . . . . . . . . . . . . . . . . 92

3.6 Results of IIGD on unconstrained bi-objective test problems . . . . . . . 96

3.7 Results of Ihv on unconstrained bi-objective test problems . . . . . . . . 97

3.8 Results of Iε on unconstrained bi-objective test problems . . . . . . . . . 98

3.9 Results of IIGD on unconstrained three-objective test problems . . . . . 99

3.10 Results of Ihv on unconstrained three-objective test problems . . . . . . 100

3.11 Results of Iε on unconstrained three-objective test problems . . . . . . . 101

3.12 Results of IIGD on constrained test problems . . . . . . . . . . . . . . . 102

3.13 Results of Ihv on constrained test problems . . . . . . . . . . . . . . . . 103

3.14 Results of Iε on Constrained test problems . . . . . . . . . . . . . . . . . 104

3.15 Main Features of the Performance Measures . . . . . . . . . . . . . . . . 104

4.1 RESULTS USING OMOPSO . . . . . . . . . . . . . . . . . . . . . . . . 113

4.2 RESULTS USING MOEA/D . . . . . . . . . . . . . . . . . . . . . . . . 114

4.3 RESULTS USING Binary-SDMOPSO . . . . . . . . . . . . . . . . . . . 115

4.4 Results using SFFS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



LIST OF TABLES

4.5 Maximum Results using D2MOPSO . . . . . . . . . . . . . . . . . . . . 124

4.6 The side-effects of the drugs used through the treatment . . . . . . . . . 132

4.7 Drug profiles of the anti-cancer agents used . . . . . . . . . . . . . . . . 133

4.8 Inverted Average Generational Distance results for the three algorithms 135

4.9 Cardinality measure results for the three algorithms . . . . . . . . . . . 136

5.1 Values of the quality indicators with and without outliers in the approx-

imated PF. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

5.2 Statistical significance of the difference between the IIGD values for the

different algorithms applied on the 5 problems. A 4 means the method

indicated by the column is significantly better than that indicated by

the raw, i.e. p < 0.05. / mean the raw is significantly better than the

column. - means there is no significant difference, i.e. p > 0.05. The

problems are ordered as follows: ZDT1-ZDT4,ZDT6 . . . . . . . . . . . 156

5.3 Statistical significance of the difference between the Iε values for the

different algorithms applied on the 5 problems. A 4 means the method

indicated by the column is significantly better than that indicated by

the raw, i.e. p < 0.05. / mean the raw is significantly better than the

column. - means there is no significant difference, i.e. p > 0.05. The

problems are ordered as follows: ZDT1-ZDT4,ZDT6 . . . . . . . . . . . 157

5.4 Statistical significance of the difference between the Ihv values for the

different algorithms applied on the 8 problems. A 4 means the method

indicated by the column is significantly better than that indicated by

the raw, i.e. p < 0.05. / mean the raw is significantly better than the

column. - means there is no significant difference, i.e. p > 0.05. The

problems are ordered as follows: ZDT1-ZDT4,ZDT6. . . . . . . . . . . . 158

5.5 Statistical significance of the difference between the IiMI values for the

different algorithms applied on the 8 problems. A 4 means the method

indicated by the column is significantly better than that indicated by

the raw, i.e. p < 0.05. / mean the raw is significantly better than the

column. - means there is no significant difference, i.e. p > 0.05. The

problems are ordered as follows: ZDT1-ZDT4,ZDT6. . . . . . . . . . . . 158

xv



Chapter 1

Introduction

“Human beings, viewed as behaving systems, are quite simple. The apparent complexity

of our behavior over time is largely a reflection of the complexity of the environment in

which we find ourselves.”

-Herbert A. Simon, The Sciences of the Artificial

1



1.1 Motivation

1.1 Motivation

In the late 1980s, Eshel Ben-Jacob began to study the self-organization of bacteria in

the hope of understanding more complex biological systems. He developed new pattern-

forming bacteria species, Paenibacillus vortex and Paenibacillus dendritiformis.

P. dendritiformis revealed an intriguing collective ability, which is viewed as a pre-

cursor of collaborative intelligence, the ability to switch between different morphotypes

to better adapt with the environment (Ben-Jacob (2003)). Scientists have only recently

started to understand, how bacteria can quickly adapt to changes in the environment,

distribute tasks, learn from experience, prepare for the future and make decisions. Bac-

teria in a colony, numbering many times the population on Earth, exchange chemical

messages to synchronize their behavior.

Ants were first characterized by entomologist W. M. Wheeler as cells of a single

superorganism . What appears to be independent individuals can actually work so

closely as to become indistinguishable from a single organism (Wheeler (1912)). Later

research regarded some insect colonies as examples of collective intelligence. The con-

cept of ant colony optimization algorithms, introduced by Marco Dorigo, became

a popular theory of evolutionary computation. Colonies allocate workers to different

tasks, and workers switch from one task to another in response to changing conditions.

Kennedy & Eberhart (1995) studied the collective behaviour of a flock of birds and

showed that they manifest a collective intelligence behaviour in the environment. His

simulation of the bird flocks led to a family of optimisation algorithms that can be

collectively called: Particle Swarm Optimization (PSO).

Collective intelligence in principle assumes the individuals are simple in nature but

the interaction among the individuals yields sophisticated behavior. This principle is

exploited in order to solve complex optimisation problems by making the individuals

navigate the search space of the problem in order to cover the surface of the function to

be optimized. This simple but revolutionary idea lead to great advances in optimisation

and metaheuristics with applications in many fields of science and engineering.

However, many real-life applications are far more complicated than the assumption

that there is one ultimate goal of the optimisation process. Some problems can have

several competing goals, so that getting closer to one goal may lead the individuals

further away from the other goals. To tackle these problems a compromise must be
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1.2 Aims and Objectives

reached among all the goals of the optimisation process. This has shown to be a real

challenge to the optimization community.

The motivation of this research is to look at PSO from a multi-objective perspec-

tive, i.e. modify the original PSO method so that it can handle complex problems

with conflicted optimisation goals. The thesis builds on the state-of-the-art of both

PSO and multi-objective optimisation and contributes to both fields on different levels

and through the different stages of the optimisation process. As the real judge of an

optimizer is its applicability in the real world, the thesis applies the newly developed

methods on real-life applications showing the potential of these methods and their

impact.

1.2 Aims and Objectives

The main goal of the thesis is to enrich the discipline of multi-objective optimisation

with a set of new techniques to tackle challenging problems in the extension of PSO

to the multi-objective domain. These new techniques will cover the main steps in a

multi-objective PSO from neighbourhood definition of the particles to archiving and

quality testing. The thesis builds on recent development in multi-objective optimisation

which uses decomposition with genetic algorithms as the way to break down the multi-

objective problem into simpler single objective ones and then solve these problems

simultaneously. Decomposition is incorporated in the two main algorithms presented

(SDMOPSO and D2MOPSO), in addition to a new concept for archiving which creates

a mapping between objective and solution spaces.

The secondary aim of the thesis is to test the developed techniques on real-life prob-

lems. To this end two problems were solved using the new algorithms: 1) The channel

selection in Brain-Computer Interfaces 2) The dose regulation in Cancer chemotherapy.

The thesis presents several solutions to these two problems in terms of problem design

and results interpretation. The work on these two problems was in close collaboration

with experts in the respected fields to ensure the quality of the data analysis.

The third, and final, objective of the thesis is to develop a new quality assessment

measure for multi-objective optimisers. For the first time, the thesis presents a novel

measure that uses mutual information as the basis for an indicator that sees the Pareto
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1.3 Methodology

fronts as images and applies mutual information to measure the quality of the approxi-

mated PF given the true one. This novel approach is much robust against outliers than

the other commonly used measures as demonstrated in the thesis.

It should be stressed that although the thesis uses PSO as the basic optimiser, the

developed techniques are general and can be used by other evolutionary optimisers

(e.g. GA) as demonstrated in Section 3.3 where the new archive is applied on NSGAII

instead of PSO.

1.3 Methodology

The research carried out in this thesis followed a strict procedure to guarantee high

quality results and robust conclusions. This is demonstrated by my publications in

high impact journals and conferences. The procedure consists of the following steps:

• problem identification: identify interesting research questions to answer and study

the possibility of making significant contribution to address these questions.

• development: a solution(s) of the problem is considered and algorithms and meth-

ods are developed to tackle the problem in hand. The newly developed methods

are tentatively tested in order to get feedback and adjust the methods accordingly.

• experimental design: to thoroughly test the developed methods experiments are

run using standard problems. The results are compared to those of the state-of-

the-art and based on the outcome of the comparison going back to development

might be necessary.

• publication: the results are written and submitted to appropriate medium of

publication in order to get feedback from the community to enhance the work.

The first identified problem was the definition of particles’ neighbourhood within

multi-objective PSO. The state-of-the-art MOPSO used techniques borrowed from the

single objective PSO. I , on the other hand, have incorporated the decomposition ap-

proach into PSO in order to redefine the neighbourhood in PSO to better solve multi-

objective problems. This work resulted in the development of Smart Multi-Objective

PSO based on Decomposition (SDMOPSO).
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Secondly the issue of archiving the generated solutions was tackled. The commonly

used archives rely only on information in the objective space alone without into consid-

eration the information in the solution space. Hence, I developed two solutions to map

the two spaces and building an archive based on either clustering or ε−dominance. This

lead to Clustering based framework for Leaders Selection (CLS), and later the develop-

ment of a new MOPSO algorithm: MOPSO based on Decomposition and Dominance

(D2MOPSO).

The last theoretical identified challenge was the assessment of multi-objective opti-

mizers. I have introduced a novel measure based on mutual information which is robust

towards outliers.

A major evaluation part of any newly developed approach is the choice of evaluation

problems. All the newly developed methods and algorithms were tested on commonly

used test suits for multiobjective problems and real-life problems.

1.4 Summary of Contributions

The thesis contains four main tracks:

1. Archiving: this is a very important part of any evolutionary algorithm. Maintain-

ing the solutions found within the optimisation process, deciding which solutions

to dismiss and how to select the current leaders are all very sensitive part of any

optimization process especially in the multi-objective paradigm. The thesis pro-

poses a novel approach of archiving that maps the search and objective spaces to

enhance the output solutions and their diversity.

2. Algorithms: two distinct algorithms are proposed in the thesis, namely SD-

MOPSO and D2MOPSO. They both share the inclusion of the concept of

decomposition, but they differ in how to deploy this concept and integrate it

within the framework of PSO.

3. Quality Measures: the thesis proposes a new quality measure of the Pareto Front,

i.e. the solution set of the optimiser, in order to compare among different algo-

rithms. The measure uses mutual information capable of circumventing a major

drawback of most of the trendy measures by using not the distance calculation

(Euclidean or otherwise), but statistical information instead.
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4. Applications: The real test of an optimisation algorithm is by testing it on real-life

problems. Since the beginning of the work, I have collaborate with the Brain-

Computer Interfaces (BCI) group in the university of Essex and have applied my

algorithms on some technical problems related to selecting the best channels of

a BCI system for control. I have also tested part of my work on the problem

of deciding the dose of chemotherapy treatment for patients in order to enhance

their quality of life while on treatment.

1.5 Thesis Outline and Organization

Next chapter reviews the basic concepts behind Particle swarm optimisation and multi-

objective optimisation leading to identifying the problems to be addressed in the fol-

lowing chapters. Chapter 3 describes the developed methods in this thesis including a

new archiving technique and new algorithms for MOPSO. Chapter 4 applies some of

the methods developed on real-life problems, while Chapter 5 introduces novel quality

assessment method for multi-objective optimisers. Chapter 6 concludes the thesis.
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Chapter 2

Literature Review

“Artificial Intelligence, IT’S HERE. ”

-Business Week cover, July 9, 1984
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2.1 Introduction

2.1 Introduction

Intuitively, optimisation is the selection of the best element, with regard to some cri-

teria, from a set of possible elements. In its simplest form, an optimisation problem is

about finding the value that minimizes (or maximizes) a given function, i.e. objective

function,(Gershenfeld (1998)). Practically, the shape of the objective function is un-

known and the optimisation is usually restricted with constraints in the search space

complicating the optimisation process.

Many optimisation methods have been developed over the years. Rothlauf (2011)

provided detailed taxonomy of optimisation methods and the principles of solving an

optimisation problem. Here we focus only on a particular type of optimizers, namely

evolutionary algorithms, which are usually seen as metaheuristics. Metaheuristics make

few or no assumptions on the problem to be solved which does not guarantee finding

the optimal solution(s) to the problem. However, this same property allows for solving

complicated optimisation problems.

Many problems in science and engineering require the simultaneous optimisation of

more than one objective simultaneously. The challenge of solving multi-objective prob-

lems raises from the complexity of these problems and the difficulty of finding reasonable

solutions for all objectives. It is usually the case that enhancing the performance in

terms of one objective would result in the deterioration of the other objectives. The

solutions generated by the optimizer are then trade-off solutions among the different

objectives (Coello Coello et al. (2007)).

Coello Coello et al. (2007) argued that the use of evolutionary algorithms (EAs) to

solve multi-objective problems is mainly motivated by their population-based nature.

This allows the generation of optimal solutions (called Pareto optimal solution as will

be discussed later) in a single run. In addition, some multi-objective problems can be

very complicated to be solved by conventional deterministic optimizers.

2.2 Single Objective Optimisation

Historically single objective optimisation was first developed in order to solve problems

where there is only one goal to optimise. Most, if not all, evolutionary algorithms

started by a single objective version and then some where extended to account for the

multiobjective case.
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2.2 Single Objective Optimisation

A minimisation/maximization single objective optimisation problem is defined as

the minimization/maximization of a function f(x) : Ω ⊆ Rn → R,Ω 6= ∅ subject

to gi(x) ≤ 0, i = {1, . . . ,m}, and hj(x) = 0, j = {1, . . . , p}, x = (x1, . . . , xn) ∈ Ω

(Coello Coello et al. (2007)).

gi(x) ≤ 0 and hj(x) = 0 are constraints that must be fulfilled while optimizing f(x).

Ω contains all possible x that can be used to evaluate f(x) and satisfy its constraints.

The method for finding the global optimum (minimum or maximum) which may not

be unique is referred to as global optimisation.

For a minimization problem, the value f∗ = f(x∗) > −∞ is called a global minimum

(or global optima in general) if and only if

∀x ∈ Ω : f(x∗) ≤ f(x) (2.1)

x∗ is by definition the global minimum solution , f is the objective function, and

the set Ω is the feasible region of x.

The shape of f(x) determines the difficulty of the optimisation problem. For a

relatively simple function exact optimisation can be sufficient (e.g. analytical and

numerical methods, Dynamic programming, etc... Rothlauf (2011)). In practice f(x)

can be much more difficult to optimize so heuristic based methods are needed (Rothlauf

(2011)), which in turn can cause the optimizer to fall in what is called a local optima.

The local optima is similar in definition to the global one, f∗, except that it is applied to

a smaller region of the search space. It is worth noting that local optima is not a unique

value for f(x) which could complicate the optimisation problem. Local optima can be

a problem for a lot of optimizers and especially the deterministic ones. Evolutionary

algorithms may perform better to tackle this particular issue as they are stochastic in

nature and then may have better chance of getting out of a local optima (El-Ghazali

(2009)).

There is a comprehensive literature on single objective optimisation: numeric linear

algebra (Ciarlet (1989)), Dynamic programming (King (2002)), and many others. Here

we are only interested in a type of approximate optimizers namely the population-based

metaheuristics (Back (1996); El-Ghazali (2009)).

9



2.3 Population-based Metaheuristics

2.3 Population-based Metaheuristics

Population-based metaheuristics are stochastic optimizers and contain a considerable

number of algorithms that are mostly inspired by nature, e.g. Evolutionary Algo-

rithms (EAs), Particle Swarm Optimisation (PSO), estimation of distribution algo-

rithms (EDAs) and many others. Despite their intrinsic differences these algorithms

share some common concepts:

• a population of potential solutions is initialized. The population and its members

are called differently in different algorithms.

• a new generation of the population is generated based on the experience of the

previous generation.

• the new generation is integrated with the old one using some selection criteria.

• this search process continues until a stopping condition is met, e.g. a pre-set

number of iterations is reached.

The implementation of these concepts varies significantly among different algo-

rithms. Understanding how each of these steps is tuned and implemented is essential

to get the best out of any population-based optimizer. These concepts are further

discussed in some detail in the following sections.

2.3.1 Initial Population

By definition population-based metaheuristics are exploration search algorithms, i.e.

the algorithm starts by exploring large areas of the search space and then narrows

down the search throughout the optimisation process.

Maaranen et al. (2007) argued that the initialization step plays a crucial role in

the effectiveness of the algorithm. When generating the initial solutions, the most

important aspect is the diversity of these solutions. If the initial solutions are not

diverse enough, i.e. do not cover large areas of the search space, they could lead the

algorithm to a premature convergence, i.e. falling into a local optima (El-Ghazali

(2009)).

Unlike other approaches, in the context of Evolutionary algorithms and PSO the

most common population initialization method is the random generator (El-Ghazali
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2.3 Population-based Metaheuristics

(2009)). The random generator is usually performed using pseudo-random numbers

utilising classical generators, e.g. recursive lagged Fibonacci, (Gentle (2003)).

2.3.2 Generation

In this phase, a new population is generated following the adopted generation strategy.

There are mainly two generation strategies here:

• Evolutionary based: the solutions are selected and reproduced using a variation

operators (e.g. mutation) acting directly on the current population, so that the

newly generated solutions are directly obtained from the variables representing

the solutions in the current population. Evolutionary algorithms and scatter

search are examples of such algorithms (El-Ghazali (2009)).

• Backboard based: In this approach the members of the population contribute to

a shared memory of the system. This share memory is then used to generate

the new solutions. Particle swarm optimisation is an example of an algorithm

that adopts this strategy. In PSO the best particle in the current population

is considered the leader and affects the evolution of the solutions of the future

particles in the swarm. The shared memory is then formed by this information

interaction among the particles in the swarm (Section 2.4).

2.3.3 Selection

Once the new solutions are generated then the algorithm has to select the new popula-

tion from the old population and the generated solutions. The simplistic method would

be to use the generated solutions as the new population. Evolutionary algorithms usu-

ally applies a selection mechanism where the best solutions of the two sets are selected

to form the new population. In backboard-based heuristics there is not a direct selec-

tion mechanism as the information exchange among the populations’ members dictates

the generation of the new population.

2.3.4 Stopping Criteria

Deciding on the stopping criteria is important as the algorithm should stop when it

has converged on one side but it should not continue much after convergence is reached
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as it causes wasting computational power. Stopping criteria can be static, i.e. the

search ends when a fixed condition is satisfied, e.g. number of iterations, number of

objective evaluations, etc. Alternatively an adaptive stopping criteria can be used such

as a measure of objective approximation, or some statistics regarding the diversity of

the reached solutions so far.

Next the Particle Swarm Optimisation is described in detail as it is the dominantly

used algorithm in this work.

2.4 Particle Swarm Optimisation

Kennedy & Eberhart (1995) first proposed the idea of Particle Swarm Optimisation

(PSO) as a method to attain computational intelligence based on the social interaction

of individuals rather than the cognitive and intelligence competency of one individual.

They established this type of intelligence by simulating the behavior of flocks of birds

or fish and then developed a powerful optimisation method, namely PSO, (Eberhart

et al. (1996); Kennedy & Eberhart (1995, 1997a)).

In principle PSO distributes a set of entities, called particles, in the search space

of an optimisation problem. Each of these particles evaluates the objective function

at its current location. In order to determine its next step the particle combines its

experience with the locations of the particles with the best fit, i.e. leaders, with some

random perturbations. In one iteration all the particles are moved and then the swarm

as a whole moves, as a flock of birds converging for food, hopefully towards an optimum

value of the function. The first application to PSO was to tune the parameters of a

neural network (Eberhart et al. (1996)) but soon it gained popularity especially in

problems with continuous search spaces (Engelbrecht (2007)), despite a binary version

of the algorithm (Kennedy & Eberhart (1997a)).

Angeline (1998) and Eberhart & Shi (1998) compared the mostly used evolutionary

algorithms, genetic algorithms (GA) and PSO and two main distinctions can be made

between the two:

1. Evolutionary algorithms rely on three main mechanisms: parent representation,

selection of individuals, and the fine tuning of parameters. On the other side,

PSO does not use an explicit selection mechanism but rather uses leader(s) to
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guide the optimisation process. The offspring generation in PSO is different from

GA in terms of using the backboard approach rather than the evolutionary one.

2. Another key difference between PSO and evolutionary algorithms is the way the

particles are manipulated. PSO direct particles by manipulating their velocity

and direction as a result using both the particle’s personal best and the global

best (the leader’s). On the other hand EA uses mutation operators that can set

the direction of the individual in any direction.

According to Reyes-Sierra & Coello (2006) there are two main reasons for the pop-

ularity of PSO:

1. The PSO algorithm is relatively simple. The use of only one operator to create

new solutions makes its implementation straightforward. In addition, there are

plenty of reliable implementations online.

2. PSO is found to be very effective in many application domains producing com-

petitive results at a low computational expense.

To solve a problem in a D dimensional search space using PSO, each particle is

composed of three D dimensional vectors: the current position −→xi , the previous best

position
−−−→
pbesti, and the velocity −→vi (Kennedy & Eberhart (1995); Poli et al. (2007)). −→xi

is designed to be a point in the search space. During optimisation the particle positions

are evaluated after each iteration as solutions to the problem. If a new position is better

than what has been found so far, then it is stored in
−−−→
pbesti. The goal of the particle

within the optmisation is then to keep enhancing
−−−→
pbesti. The particle moves to a new

position in the search space by adding −→vi to −→xi . The algorithm adjusts −→vi which in

returns changes the direction and speed of the change in position.

By definition the particle alone can not solve the optimisation problem. It can only

operate in collaboration with the other particles in the swarm. The interaction among

the particles in the swarm is governed by the neighbourhood definition, usually referred

to as topology or social network. Each particle communicates with the other particles

in its neighbourhood and is affected by the best particle in this neighbourhood, denoted

local best −−−→plbest to distinguish it from the global best of the whole swarm −−−→pgbest.
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Similar to other population-based metaheuristics PSO starts by randomly initializ-

ing the particles in the swarm. The position of each particle is then changed according

to its own experience and that of its neighbours. The position of particle pi at time t

is changed by adding the velocity −→vi (t) to the current position:

−→xi(t+ 1) = −→xi(t) +−→vi (t+ 1) (2.2)

The velocity vector reflects the socially exchanged information and is defined in the

following way:

−→vi (t+ 1) = W−→vi (t) + C1r1(−→x pbesti −
−→xi(t+ 1)) + C2r2(−→x leader −−→xi(t+ 1)) (2.3)

where r1, r2 ∈ [0, 1] are random values. leader refer to either the global leader or local

leader depending on the topology used. C1, C2 are learning factors, and W is the

inertia weight.

2.4.1 Parameters

PSO has a very few number of parameters to be set. The first parameter is the size of

the population. This is usually set empirically and it would normally increase with the

increase of dimensionality.

C1, C2 are called the learning factors or acceleration coefficients and represent the

magnitude of the particle in the direction of its personal best and its neighbourhood.

The values of C1 and C2 can affect the optimization significantly as it can either make

the PSO more responsive to change or unstable. These parameters in short control the

exploration exploitation balance of the algorithm and hence must be carefully chosen.

The inertia weight, W ∈ [0, 1], controls the influence of the previous velocity vectors

on the calculation of the current velocity. W is seen as a friction coefficient (Poli et al.

(2007)), and so can be considered as the fluidity of the medium in which a particle

moves. It might then be useful to start with a relatively high W (e.g. 0.9) which causes

the particles to behave in an explanatory mode, and then gradually reducing W to

around 0.4 where the system would be more exploitive. The strategy of updating W ,

or not at all, is very important to the optimisation process. Eberhart & Shi (2000)

used a fuzzy system to adapt W . Zheng et al. (2003) showed that increasing inertia

weight can produce good results.
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2.4 Particle Swarm Optimisation

Eberhart et al. (2001) showed that based on the network topology of the swarm,

the movement of the particle can be greatly influenced by the neighbouring particles

where the neighbourhood is defined by the swarm’s topology. Following are some of

the commonly used topologies (Engelbrecht (2007)).

• Empty Topology: here the particles are only driven by their experience, pbest,

which means that the particle is isolated from all the other particles. In this case

C2 is set to zero. Fig. 2.1 shows an example of such a topology.

• Local best Topology: Each particle is directed by its neighbourhood. The neigh-

bourhood has a fixed size (n) and the movement of each particle is influenced by

the best performing particle in this neighbourhood. Fig. 2.2 presents an example

of this network.

• Global best Topology: Also called fully connected topology. Each particle is

influenced by a global leader of the swarm, i.e. the particle with the best perfor-

mance, in addition to its own experience. In order to achieve this each particle is

connected to every other particle in the swarm, Fig. 2.3.

• Star Topology: In this case only one particle, focal, is considered the head of the

swarm and all other particles are directly connected to it but are isolated from

each other. focal compares performance among all particles in the swarm and

adjusts its direction accordingly, Fig. 2.4.

• Tree Topology: All particles are arranged in a tree where each node of the tree

contains only one particle. Each particle is influenced by its own experience,

pbest, and that of the particle just above it in the tree. A child particle will

replace its parent if it had reached a better solution, Fig. 2.5.

There are other network topologies that can be used and these are well discussed

in (Poli et al. (2007)).

Figure 2.6 illustrates the general PSO algorithm (single optimization). In line with

the population-based paradigm, PSO starts with an initialization step which includes

both velocities and positions. The corresponding pbest of each particle is also initialized

and the leader is identified (the leader definition depends on the network topology used).

Then and for a maximum number of iterations the particles move in the search space
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2.4 Particle Swarm Optimisation

Figure 2.1: Diagram of an empty topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection.

Figure 2.2: Diagram of a local best topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection, while the non-directed

link represents a two-way link between two particles.

Figure 2.3: Diagram of a global best topology. A circle represents a particle and the

directed arrow represents a direct link indicates a self connection, while the non-directed

link represents a two-way link between two particles.
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Figure 2.4: Diagram of a start topology. A circle represents a particle and the directed

arrow represents a direct link indicates a self connection, while the non-directed link

represents a two-way link between two particles.

Figure 2.5: Diagram of a tree topology. A circle represents a particle and the directed

arrow represents a direct link indicates a self connection, while the non-directed link

represents a two-way link between two particles.
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2.4 Particle Swarm Optimisation

directed by their experience and the leader constrained by the network topology, the

particles then update their velocity, position, and pbest using Eq. 2.2, and Eq.2.3.

Finally the leader is updated and the iterations continue until the maximum number

of iterations is reached.

2.4.2 Theoretical analyses and Convergence

Behind the apparently simplicity of PSO, it raises serious challenges for the theoretical

understanding of its behaviour. Firstly, PSO consists of a large number of interacting

particles. The particles themselves are simple to model but the interaction among

these particles makes the modelling of such dynamic a complicated issue. Secondly,

the particles has a memory which adds unpredictable factor to the modelling of the

particles dynamics. This stochastic nature prevents the use of standard mathematical

tools. Thirdly, the fitness functions can vary a lot and with them the behaviour of

PSO.

For these reasons there is still no full mathematical modelling of PSO that captures

fully its behaviour, however there are some attempts to tackle this issue (e.g. Blackwell

(2007); Engelbrecht (2005); Kadirkamanathan et al. (2006)). Poli et al. (2007) provides

a comprehensive review of these modelling attempts.

Engelbrecht (2005) showed that PSO is sensitive to the choice of control parameters.

Most theoretical work on PSO made several simplification assumptions, the swarm is

usually considered consisting of one particle in a one dimensional space, pbest and gbest

are assumed constant throughout the process and so are φ1 = C1r1 and φ2 = C2r2.

Under these conditions the swarm convergence is defined as follows.

Definition 1 Giving the sequence of global best solutions {gbest}∞t=0, the swarm is

converged iff: limt→∞ gbestt = p

where p is an arbitrary position in the search space.

Ozcan & Mohan (1998) studied PSO under the previous conditions without consid-

ering the inertia weight. They showed that the trajectory of the particle can be seen

as a sinusoidal wave where the initial conditions and parameter setting dictates the

amplitude and frequency giving that 0 < φ < 4 where φ = φ1 + φ2.

Van Den Bergh et al. (2002) built a similar model that accounts for inertia weight

as well. Van Den Bergh et al. (2002) showed that when W > (C1 +C2)−1, the particle
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Figure 2.6: A chart diagram of the general PSO algorithm.
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converges to φ1pbest+φ2gbest
φ1+φ2

. Then he generalized to the case where φ1 and φ2 are not

constant and he concluded that the swarm converges to (1 − a)pbest + agbest where

a = C2
C1+C2

.

Clerc & Kennedy (2002) presented an analytical analysis of PSO with constriction

coefficients to prevent the velocity from growing out of bounds.

The analysis discussed so far prove, under certain assumptions, the convergence of

PSO, but to ensure the convergence to the local or global optimum, two conditions

must be met: 1) monotonicity, i.e. gbest at a generation t can not be worse than gbest

at the previous generation t − 1. 2) the algorithm should generate a solution in the

neighbourhood of the optimum from any solution −→x in the search space.

Van Den Bergh et al. (2002) showed that PSO satisfies the first condition but not

the second one so the original PSO can not be considered a global, or local, optimizer as

there is no guarantee that it will reach a global/local optimum. The solutions suggested

for this premature convergence problem of PSO include using mutation operators, or

sub-swarms, or the reinitialisation of the swarm when the algorithm is converged. These

simple solutions are usually effective enough for PSO to work in practice.

So far the algorithms and methods described are all interested in solving problems

with a fitness function containing only one objective. Next section describes a more

sophisticated type of problems: multi-objective optimisation problems, where more

than one objective is involved in the optimisation problem complicating the job for the

optimizer.

2.5 Multi-objective Optimisation

The traditional way of looking at optimisation problems as single objective, i.e. the

fitness function is only concerned with one quantity to optimize, can lead in some real-

life situations to sub-optimal solutions of the problem due to the misrepresentation of

the optimisation problem. An alternative type of optimisation is described as multi-

objective optimisation in which there are more than one objective. These objectives

are usually conflicting in nature so any improvement in one objective often happens at

the expense of deterioration in other objective(s). The optimisation challenge there-

fore is to find the entire set of trade-off solutions that satisfy all conflicting objectives

(Coello Coello et al. (2007)). Multi-objective optimization has roots in mathematical
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optimization with the first multi-objective evolutionary algorithm (MOEA) presented

in 1985, Schaffer (1985). The field has grown rapidly in the last 10 to 15 years and is

now known a dominant area of research within the optimization community.

Coello Coello et al. (2007) presented a sophisticated description of the formal def-

inition of multi-objective problems (MOPs). Here I use simplified definitions that is

commonly used in the literature (Reyes-Sierra & Coello (2006)).

MOP is an optimization problem in the solution/search space Ω ⊂ Rn where an n-

dimensional vector −→x = [x1, x2, . . . , xn]T ∈ Ω is defined and is referred to as the decision

variables vector. The problem’s objective is then defined as a vector of objectives in

the objective space:
−→
f (−→x ) ∈ ∆ ⊂ Rm:

−→
f (−→x ) = [f1(−→x ), f2(−→x ), . . . , fm(−→x )]T (2.4)

where m ≥ 2 is the number of objectives, fi : Rn → R, i = 1, . . . ,m are the objective

functions. For a minimization problem, without any loss of generality, the goal of the

optimizer is to minimize
−→
f (−→x ) subject to

gi(
−→x ) ≤ 0, i = 1, 2, . . . , k, (2.5)

hi(
−→x ) = 0, i = 1, 2, . . . , p, (2.6)

where gi, hj : Rn → R, i = 1, . . . , k, j = 1, . . . , p are the constraint functions of the

problem. From now on,
−→
f (−→x ) and

−→
f are used interchangeably.

Definition 2 Given two vectors −→x ,−→y ∈ Rm, then −→x is said to dominate −→y if −→x 6= −→y
and f(−→x ) ≤ f(−→y ) and is denoted by −→x ≺ −→y . −→x ≤ −→y ⇐⇒ xi ≤ yi, for ∀i = 1. . . . ,m.

Definition 3 A vector of decision variable −→x ∈ Ω is said to be nondominated with

respect to Ω if there does not exist another −→y ∈ Ω such that
−→
f (−→y ) ≺

−→
f (−→x ).

Definition 4 Let F ⊂ Rn be the set of feasible solutions in the search space, i.e. the

solutions do not violate the constraints.
−→
x∗ ∈ F is Pareto optimal if it is nondominated

with respect to F .

The Pareto optimality of a solution guarantees that any enhancement of one objec-

tive would results in the worsening of at least one other objective.
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Figure 2.7: An example of a multi-objective optimisation problem: A) the parti-

cles/solutions in the search space B) the corresponding Pareto front.

Definition 5 The Pareto optimal set P ∗ is defined as P ∗ = {−→x ∈ F |−→x is Pareto

optimal}.

Definition 6 A Pareto Front PF ∗ is the image of P ∗ in the objective space:

PF ∗ = {
−→
f (−→x ) ∈ Rm|−→x ∈ P ∗}

The goal of the multi-objective optimizer is then to locate the Pareto optimal set

in F which, in practice might be unachievable or partly undesirable. Fig. 2.7 shows an

example of particles (represented in solutions) in the search space ( Fig. 2.7 (A)) and

the Pareto front they form ( Fig. 2.7 (B)).

Solving MOPs is highly dependent on the structure of the PF, in addition to the

number of objectives as the number of optimal solutions necessary to find a good

approximation of the PF tends to grow with the increase in the number of objectives.

A multi-objective evolutionary algorithm aims at producing an approximated PF that

fully covers the PF.
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2.6 Multi-objective Evolutionary Algorithms

2.6 Multi-objective Evolutionary Algorithms

MOPs can be solved using a wide range of algorithms and approaches, classified in detail

by Cohon (2004). However, here we are only interested in multi-objective evolutionary

algorithms (MOEA).

The basic algorithm design is based on using the Pareto-based fitness assignment to

identity the nondominated individuals of the current population. All MOEAs however,

share four abstract goals:

• Preserve nondominated points.

• Progress the current PF towards the true PF.

• Maintain diversity of the points on the approximated PF.

• Prevent loss of good solutions by archiving them and maintaining the archive.

Following is a description of some common MOEAs that are more related to this

thesis with a more detailed description given in (Coello Coello et al. (2007)):

2.6.1 Algorithms based on Aggregation Functions

This is the oldest and probably the simplest approach to solve MOPs (Tucker (1957)).

It is known that a Pareto optimal solution to a MOP can be seen as the optimal solution

of a scalar optimisation problem in which the objective is an aggregation of all fi’s. It

transforms a multi-objective problem into a single objective one using an aggregation

function A : Rm → R, where m is the number of objectives. The weighted average is

the most commonly used function. A minimization MOP is transformed to the form:

min
m∑
i=1

λifi(
−→x ) (2.7)

where λi ≥ 0 and
∑m

i=1 λi = 1. Assigning the weights to the objectives can be a

challenging task taking into consideration that unbalanced weights could lead to biased

optimisation to the objective with the largest weight.

The weighted average is part of the family of linear aggregation functions. Other

nonlinear function have also been used in the literature. Miettinen (1999) reviewed
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2.6 Multi-objective Evolutionary Algorithms

several aggregation functions, the most popular of those include Tchebycheff and the

boundary intersection method (Das & Dennis (1998); Mattson et al. (2004)).

In the Tchebycheff approach the scalar optimization problem is formed as:

mingte(
−→x |λ,−→z ∗) = min1≤i≤m{λi|fi(−→x )− z∗i |} (2.8)

where −→z ∗ = (z∗1 , . . . , z
∗
m)T is the reference point, i.e. z∗i = min{fi(−→x )}. For each

optimal point −→x ∗ there is a weight vector λ such that −→x ∗ is the optimal solution for

Eq. 2.8 so it is possible to obtain Pareto optimal solutions by changing the weight

vector λ.

Tchebycheff does not generate a smooth enough function for problems with a con-

tinuous PF. An approach that is designed for continuous problems is the Boundary

Intersection (BI) approach (Das & Dennis (1998)). Geometrically BI approaches aim

to find intersection points between the most top boundary and a set of lines radiating

from the reference point. If these lines are evenly distributed then a good approximation

of PF is expected.

mingbi(
−→x |λ,−→z ∗) = d (2.9)

subject to
−→
f (−→x )−−→z ∗ = d.λ. The constraint

−→
f (−→x )−−→z ∗ = d.λ ensures that

−→
f (−→x ) is

always on the line with direction λ and passing through −→z ∗. The goal is to push
−→
f (−→x )

towards the boundary of the attainable objective set. One difficulty of this approach

is solving the equality constraint. An equivalent definition can be used called penalty

BI (PBI) as follows:

mingpbi(
−→x |λ,−→z ∗) = d1 + θd2 (2.10)

subject to −→x , where

d1 =
||(
−→
f (−→x )−−→z ∗)Tλ||

λ
(2.11)

and

d2 = ||
−→
f (−→x )− (−→z ∗ + d1λ)|| (2.12)

θ > 0 is a preset penalty parameter. If −→y is the projection of
−→
f (−→x ) on line L then

d1 is the distance between −→z ∗ and −→y and d2 is the distance between
−→
f (−→x ) and L.

PBI, and BI, usually produces better distributed approximated PF than Tchebycheff

24



2.6 Multi-objective Evolutionary Algorithms

and usually ensures that if −→x dominates −→y then they do not have the same gpbi value

unlike Tchebycheff (Zhang & Li (2007)).

2.6.2 Non-dominated Sorting Genetic Algorithm (NSGA) and NS-

GAII

NSGA (Srinivas & Deb (1994a)), and its extension NSGAII (Deb et al. (2002)), is one

of the early and most commonly used MOEAs. NSGA ranks the individuals in several

layers. The first of which contains all the non-dominated individuals in the population

and considered the highest rank. These are then removed from the optimisation process

and then the same ranking procedure is repeated until all the individuals are put into

these layers. To maintain the diversity, a dummy fitness function is shared among all

individuals in one layer. The individuals in the layers closer to the PF have better

ranking, hence they get higher chance of reproduction than the rest of the population.

NSGAII is similar in principle to NSGA but uses a different ranking mechanism.

The ranking of an individual is determined by the total number of the individuals

dominated by it and also the number of individuals dominating it. To maintain the

diversity of the points on the PF a crowding distance is utilised in order to spread the

points over the whole PF. NSGAII compares two individuals based on the ranking as

in NSGA in addition to the crowding distance. If two individuals have the same rank

then the one with less crowding distance is selected for mating and producing the next

generation.

2.6.3 Multi-objective Evolutionary Algorithms based on Decomposi-

tion (MOEA/D)

Following the aggregation function approach the approximation of the PF can be de-

composed into a number of scalar objective optimization sub-problems (Zhang & Li

(2007)). This is the idea behind a family of mathematical programming methods for

multi-objective optimization. In evolutionary algorithms each individual solves one

aggregation problem, i.e. different weights for the objectives in the weighted average

function, then each individual is assigned a relative fitness that reflects its utility for

selection and hence the scalar optimizers can easily be extended to MOPs with their

techniques easily applied (Zhang & Li (2007)).
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Zhang & Li (2007) presented MOEA/D which explicitly decompose the MOP into

N scalar optimization sub-problems and then solves them simultaneously by evolving

a population of solutions. The population at any generation is composed of the best

solutions found so far for all sub-problems. A neighbourhood relationship is defined

among the individuals based on their aggregation coefficients, i.e. λi in Eq.2.7. An

individual uses the information of its neighbouring sub-problems to optimise its own.

In the following description of the algorithm the Tchebycheff approach is used for

decomposition.

Let λ1, . . . , λN be a set of evenly spread weight vectors, which are fixed throughout

the optimization process, and −→z ∗ be the reference point. The problem of approximating

the PF it is decomposed to N scalar sub-problems using the Tchebycheff approach.

Similar to Eq. 2.8 the objective function of the jth sub-problem is

gte(−→x |λj ,−→z ∗) = min1≤i≤m{λji |fi(
−→x )− z∗i |} (2.13)

where λj = (λj1, . . . , λ
j
m)T . MOEA/D minimizes all the N objective functions simulta-

neously in a single run. An important feature of MOEA/D is that if two weight vectors

λi and λj are close then gte(−→x |λi,−→z ∗) and gte(−→x |λj ,−→z ∗) must be close to each other.

The neighbourhood of λi is the set of closest weight vectors which is translated as

the neighbourhood of the ith sub-problem consists of the sub-problems with the weight

vectors of the neighbourhood of λi. The population at one generation consists of the

best solution found so far for each sub-problem.

In the initialization phase of MOEA/D the Euclidean distance is measured between

any two weight vectors. Then for each weight vector the closest T weight vectors form

the neighbourhood. The neighbourhoods are used to exchange information among the

individuals and used to generate the offspring of the current population. Unlike other

MOEA, MOEA/D does not use crowding distances to maintain the diversity of the

population (see the next section for more details on diversification) because MOEA/D

decomposes the MOP into scalar optimization sub-problems. The diversity among

the sub-problems is thought to lead to the diversity in the population, so when the

decomposition method and the weight vectors are properly chosen then the resulted sub-

problems will be evenly distributed. Algorithm 2.1 summarizes the steps of MOEA/D.
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Algorithm 2.1 MOEA/D

1: Initialize external archive EP.

2: Compute the Euclidean distances between any two weight vectors and then work

out the closest T weight vectors to each weight vector.

3: Generate an initial population randomly

4: Randomly Initialize z, the best value found so far for all objectives.

5: for for each sub-problem i do

6: randomly select two individuals and generate a new solution y using genetic

operators

7: Apply a problem-specific improvement heuristic on the produced solution

8: update z if new solution is better

9: update neighbouring solutions

10: remove all vectors in EP dominated by F(y)

11: add F(y) to EP if no vector in EP dominates F(y)

12: end for

13: Repeat Steps 5-12 until stopping criteria is reached.

MOEA/D, and its extension for expensive problem (Zhang et al. (2010)), has found

a good success in the field and is considered one of the dominant algorithms for the

last few years.

Next, the multi-objective PSO is reviewed in detailed as it is the basic algorithm

used throughout this thesis.

2.7 Multi-Objective Particle Swarm Optimisation

Applying PSO to multi-objective optimisation problems requires changing some aspects

of the original algorithm to adapt to the special requirements of such problems and

hence to achieve the abstract goals defined in Section 2.6.

Considering PSO is a population-based metaheuristic, it would be beneficial to

generate several distinct nondominated solutions in a single run of the algorithm. In

line with other MOEAs three points must be addressed (Coello Coello et al. (2007)):

• Leaders selection: this is one of the most sensitive issues in multi-objective PSO.

The selection mechanism should give preference to the nondominated solutions

over dominated ones.
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• Archiving: the nondominated solutions produced throughout the optimization

process should be retained , or at least a subset of them, to report the nondomi-

nated solutions on several runs and not only the current one. It is also desirable

that the kept solutions are well spread over the PF.

• Diversity: the algorithm should maintain a certain level of diversity in the solu-

tions produced throughout the optimization process to avoid converging into a

single solution, or a small set of solutions.

Although these issues are also important in any MOEA they are particularly impor-

tant for Multi-objective PSO (MOPSO), and especially when it comes to maintaining

the diversity of the solutions as PSO does not have the random element available to

Genetic Algorithms, ( using mutation for instance).

In the single objective case the leader(s) is predetermined by the topology of the

social network of the swarm. In the multiobjective case things become much more

complicated as each particle can have several leaders from which only one can be used

to update the particle’s position. This set of leaders is usually kept outside the swarm

and is referred to as ‘external archive’. The external archive contains the nondominated

solutions found so far. The solutions in the external archive are considered leaders to

the particles in the swarm. By the end of the optimization run the content of the

external archive is considered the output of the algorithm.

Algorithm 2.2 outlines the general structure of a MOPSO. As in the single objective

version, MOPSO starts by initializing the particles in the swarm, but here the external

archive is also initialized by the nondominated initialized particles. Next, some sort

of quality measure is calculated for all the leaders in order to decide on one leader

for each particle of the swarm (Step 12: of Algo. 2.2). At every generation a leader

is selected for each particle (Section 2.8.1) and the particle moves using Eq. 2.2 and

Eq. 2.3. The particle is then evaluated and pbest is updated. A new particle replaces

its pbest when the pbest is dominated or the two are not comparable, i.e. they are

both nondominated to each other. The leaders archive is then updated and the same

quality measure is recalculated. This process continues until a fix number of iterations

is reached (Reyes-Sierra & Coello (2006)).
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Algorithm 2.2 General MOPSO Algorithm

1: Initialize swarm

2: Initialize leaders in the external archive

3: Measure the quality of the leaders

4: for iteration=1 to maxItr do

5: for each particle do

6: Select leader

7: Update position

8: Evaluation

9: Update pbest

10: end for

11: Update leaders in the external archive

12: Measure the quality of the leaders

13: end for

14: Return the content of the external archive

2.8 Archiving in MOPSO

Looking closely at the intrinsic characteristics of PSO and the general structure of

MOPSO there seems to be three main issues to address (Pulido (2005)): 1) the leaders

selection and update, 2) maintaining the leaders archive, 3) the creation of new solu-

tions. These issues are usually discussed as archiving approaches in MOPSO. Next I

discuss these three points in more detail:

2.8.1 Leaders in MOPSO

As mentioned above, the traditional definition of a leader in PSO does not apply directly

in the multi-objective case as there are several leaders who are all equally good solutions.

One could circumvent this issue altogether by using an aggregation function as described

in Section 2.6.1, or by optimizing each objective separately. However, most methods

redefine the concept of the leader.

The key issue though is the selection of the leader for each particle. The common

approach is to consider every nondominated particle as a leader and then either select

one randomly to update the particle’s position or using a quality measure to compare

among these leaders.
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A popular family of quality measures of the leaders is based on density measures.

Several other measures are also used in the literature which will be discussed in more

detail in the next section and Section 2.10.

2.8.2 Archiving and Spreading of Nondominated Solutions

Nondominated solutions generated throughout the whole search process should be kept

so that they are returned at the end of the optimization process. Rudolph (1998) pro-

vided a theoretical and analytical motivation for archiving the nondominated solutions.

An external archive is typically used by MOPSO to retain the nondominated so-

lutions. In principle the external archive operates on two main constraints for adding

a new particle to the archive: 1) the particle should be nondominated with respect to

the particles already in the archive. 2) the particle dominates at least one particle in

the archive in which case the latter particle is deleted and replaced by the former one.

This definition of the external archive have two main drawbacks (Coello Coello

et al. (2007)). First, the size of the archive may increase very quickly. Secondly, the

particles in the external archive can crowd in certain regions of the objective space

while leaving empty areas in the PF. The increasing size of the archive can raise a

real challenge to the optimizer as it makes updating the archive on every generation a

very computationally expensive process. If the size of the swarm is not large enough,

MOPSO can be in a situation where all particles of the swarm are feasible candidates to

enter the archive making the total complexity of update the archive O(kMN2) where

N is the size of the swarm, k is the number of objectives, and M is the number of

iterations. Storing large number of non-dominated solutions does not only have high

computational cost but also seems to be useless for most of the decision makers when

it exceeds a reasonable size limit.

To circumvent this issue the external archives are bounded to a fixed size (e.g.

Raquel & Naval Jr (2005)) making it necessary to add a criterion for retaining non-

dominated solutions when the archive is full. MOEAs provide some techniques that

can be used for this purpose, with the most commonly used ones described next. The

goal of these methods is not only to reduce and control the size of the archive but also

to retain the leaders of the swarm that will generate a well spread PF. The particles

in the archive must not be crowded in small regions in the objective space but rather
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spread out and be diverse enough to find novel solutions. Most of the leader selection

techniques then can also be viewed as the ways to diversify the generated solutions.

It must be noted that, practically, three archives should be used when extending

PSO for multi-objective optimization: one for storing the global best solutions, one

for the personal best values and a third one for storing the local best (if applicable).

However, few authors report the use of more than one archive in their MOPSOs and

the same leader selection techniques are applied to the three archives, so only external

archive is mentioned here without any loss of generality.

2.8.2.1 Kernel:

Kernel methods (Fonseca & Fleming (1993)) define the neighborhood of a solution using

a kernel function that takes the distance between two solutions as the argument. The

density estimator of a solution is represented by the sum of the kernel function values

(usually referred to as crowding distance). The individuals with the highest crowding

distance are preferred. The crowding distance is a value assigned to each individual

indicating the density of the individual’s location.

2.8.2.2 Adaptive Grid Algorithm

This technique is first introduced for Pareto Archived Evolution Strategy (PAES)

,Knowles & Corne (2000). The algorithm divides the objective space in a recursive

manner and favours the less crowded cells. Each solution is placed in a certain grid

location based on the values of its objectives which are used as coordinates. A map

of such a grid is maintained, indicating the number of solutions that reside in each

grid location. The algorithm has knowledge of the objectives limits and continues up-

dating the solutions’ geographical information when a new solution is introduced that

breaks one or more of the objective limits. Since the procedure is adaptive, no extra

parameters are required (except for the number of divisions of the objective space).

2.8.2.3 Niche Count

In function optimization, the location of each optimum is referred to as niche. The

idea behind niche count is that stable sub-populations at each optimum can be formed

by suitably sharing the fitness associated with each niche. When a particle is sharing
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resources with others, its fitness degrades in proportion to the number and closeness to

particles that surround it within a certain perimeter. A neighbourhood of a particle is

defined in terms of a parameter called σ that indicates the radius of the neighbourhood

(Deb & Goldberg (1989); Goldberg & Richardson (1987) ).

2.8.2.4 Clustering

The problem of clustering, also known as unsupervised learning, is the problem of

identifying groups, or clusters, of data points in a multidimensional space (Bishop

et al. (2006)). Assuming we have a dataset {x1, . . . , xN} of N data points in a D-

dimensional space. The goal is then to partition the data into K clusters. Intuitively,

the cluster consists of data points with inter-point distances smaller than the distance

between points of different clusters. K is usually unknown but assumption can be

made depending on the clustering algorithm, e.g. K-means requires K to be set in

before clustering while average linkage method uses the data itself to decide on K. For

leader selection the solutions in the external archive are clustered with every cluster

is represented by one particle usually at its centre. These representative particles

are considered the new reduced none-dominated set (Morse (1980); Zitzler & Thiele

(1999)). Figure 2.8 is an example of the output of a clustering algorithm (Gaussian

Mixture Model is this case,Bishop et al. (2006)) where each cluster’s data are coloured

in a distinct colour and the boundaries represent the spread of a Gaussian distribution

that models the cluster.

2.8.2.5 ε−dominance

ε−dominance is a soft dominance approach, in which the dominance region of a so-

lution is extended by a parameter ε (Figure 2.9 explains graphically the concept of

ε−dominance). This concept has been used for the leader selection problem in MOPSO

from the external archive (Laumanns et al. (2002)). By using ε−dominance the objec-

tive space is divided into boxes of size ε. In each of these boxes only one particle is kept

according to some criteria ( Alvarez-Benitez et al. (2005); Moore & Chapman (1999)),

Fig. 2.10 shows an example of a two dimensional objective space with ε−dominance

in application. ε− dominance as illustrated here guarantees that the selected solutions

are nondominated with respect to all solutions generated during the run. From Fig.

2.10 we can see that the parameter ε controls the number of boxes in the space and
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Figure 2.8: Example of the result of a clustering algorithm (Gaussian Mixture Model).

hence the size of the resulted external archive. Mostaghim & Teich (2003a) studied

the differences in terms of computational cost and convergence between clustering and

ε−dominance based management of the archive and found that ε−dominance is much

less computationally expensive and does not affect the convergence of the algorithm.

2.8.2.6 Nearest Neighbour Density Estimator

This concept was first used in NSGAII (Deb et al. (2002)). In this approach the dis-

tance between a given solution i and its kth nearest neighbour is taken into account

to estimate the density of the solution. Solutions in the archive are ranked according

to their crowding distance. The crowding distance is defined as the circumference of

the cuboid defined by the particle’s left and right neighbours. The particles with the

highest crowding distance are preferred as they are in a less crowded regions. Figure

2.11 demonstrates an example of the nearest neighbour density estimator in two ob-

jectives space. For one solution (i) the nearest two non-dominated solutions along the

two objectives are i + 1 and i − 1 on each sides. Cuboid is the rectangle surround-

ing i. Solutions with larger cuboid circumference are preferred to those with smaller

circumference.
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Figure 2.9: To the left, the area dominated, in a minimization problem, by a certain

solution is highlighted. To the right the area being dominated has been extended by a

value proportional to the ε parameter.

Figure 2.10: ε−dominance in two dimensional objective space. The red dots are the

selected particles. In box B the black particle is removed as it is dominated by the red

one. In box D the red and the black particles are not comparable, i.e. no one dominates

the other, so the red particle is chosen as it is more to the left. Box C is discarded

because it is dominated by B and D.
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Figure 2.11: Example of nearest neighbour density estimator in two dimensional space.

2.8.3 Diversification and Avoidance of Local Optima

One of the most attractive features of PSO is its fast convergence. Unfortunately,

this comes at the cost of risking premature convergence, i.e. falling in a local optima

(Section 2.2). Reyes-Sierra & Coello (2006) argued that the main reason behind the

premature convergence of PSO is the lack of diversity within the swarm which can be

credited to the topology of the network or the inappropriate number of particle. It is

then crucial to promote diversity in PSO to control its convergence.

It is clear from the leader selection mechanisms, discussed in the previous section,

that they intrinsically promote diversity by trying to retain in the archive those solution

that are not crowded and are well spread on the PF. However there are two other

approaches in which one can promote diversity and avoid local optima during the

creation of new particles:

2.8.3.1 Position Update

As argued before, the swarm neighbourhood topology determines the speed of infor-

mation transfer among the particles in the swarm. For example in the case of fully

connected network the information is transferred faster than within a tree topology

since the particles have smaller neighbourhoods. Following the same argument the

topology determines how fast the diversity is lost within the swarm. The fully con-

nected network would lose diversity much faster than other topologies with smaller
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neighbourhoods. So the choice of the topology is essential to the preservation of the

diversity in the swarm.

The Inertia weight is another parameter that can affect diversity, as it controls the

impact of the particle experience on the current velocity (Eq. 2.3). In other words

it controls the trade-off between exploration (looking at the global perspective of the

search space) and exploitation (focusing on local information) (Shi & Eberhart (1998)).

A large inertia weight allows for the exploration for new regions in the search space,

while a small inertia weight focuses the search and fine-tunes it in a local area.

Shi & Eberhart (1999) argued that the linear decrease of the inertia weight from a

large value at the beginning of the optimisation to a small value at the end would give

PSO a more global look at the beginning and fine-tuned results at the end.

Shi & Eberhart (1998) presented a view of the velocity update of the particles in

PSO as a “conscience” mutation, because they argued PSO’s update mechanism is

similar to mutation in evolutionary algorithms but it is guided by the experience of the

particles in PSO.

2.8.3.2 Turbulence

Despite the “conscience” mutation of PSO, some craziness might be necessary according

to Kennedy & Eberhart (1995). This irrational behaviour of some particles in the swarm

is referred to as turbulence and is reflected as a change in a particle’s flight that is out

of control.

During the optimisation process the swarm might stagnate, i.e. the velocity vectors

are almost zero for all particles so there is no change in the swarm and PSO is stuck

in a local optima. Because in PSO the leader(s) drives all the swarm, if the leader(s)

is stuck in a local optima and there is not enough velocity for any other particle to

become the new leader then the whole swarm will come to a halt. The turbulence

provides the swarm a chance of escaping this local optima by changing the trajectories

of some particles in random directions which would hopefully generate new leader(s)

and hence escape the local optima, thereby potentially speeding up the convergence

(Stacey et al. (2003)).

Turbulence, or mutation, seems to provide a good answer for immature convergence

in PSO. However, similar to genetic algorithms the application of mutation is not

straightforward. The first choice to make is the type of mutation operator to apply.
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There are many mutation operators used in the literature. The choice of the operator

is crucial to the optimization process, and it is usually not very easy to decide on one,

taking into account the significant impact it can have on the optimization. Once the

mutation operator is chosen, it is applied with certain probability on some solutions but

then another questions raise: how to set this probability, when to apply mutation, and

in which component of the particle. Despite some use of this approach in the literature

(e.g. Stacey et al. (2003)), I have decide in this work to avoid using it in order to keep

PSO itself very simple with less parameters to tune.

2.9 Multi-objective PSO algorithms

The taxonomy of MOPSO algorithms is very close to that of the general MOEA. In this

thesis a slightly modified taxonomy is used (Coello Coello et al. (2007)) which classifies

MOPSOs as follows:

• Aggregating approaches.

• Pareto-based approaches.

• Combined approaches.

• Decomposition-based approaches.

Next we discuss these different classes with an emphasis on decomposition-based

approaches as they are the most related to the work undertaken.

2.9.1 Aggregating Approaches

These approaches uses directly the techniques described in Section 2.6.1 to aggregate

the several objectives into one objective and then treat the multi-objective optimisation

problem as a single optimisation problem. Parsopoulos & Vrahatis (2002) presented a

MOPSO algorithm that adopts three aggregation functions: 1) the weighted sum dis-

cussed in Section 2.6.1 2) a dynamic aggregation function that gradually modifies its

weights during optimisation 3) the weights of the aggregated function change abruptly

during optimisation. Baumgartner et al. (2004) divides the swarm into a set of sub-

swarms, each of which has a different set of weights for the aggregation function. These
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sub-swarms evolve independently to find their own leaders, and then a gradient tech-

nique is used to identify the Pareto optimal solutions.

2.9.2 Pareto-based Approaches

In these approaches Pareto dominance is used for leader selection. In other words

leaders are considered the nondominated particles with respect to the swarm. However,

as discussed before, other criteria for leader selection and diversification are usually used

giving a variety of MOPSO algorithms.

Ray & Liew (2002) used the Pareto dominance concept and combined it with the

nearest neighbourhood density estimator to promote diversity (based on a roulette

selection scheme of leaders utilizing this value). Fieldsend et al. (2002) uses an uncon-

strained elite external archive with a special data structure called “dominated tree”

which is used to define gbest. The archive interacts with the population to determine

leaders.

Coello Coello & Lechuga (2002); Coello Coello et al. (2004) developed a MOPSO

algorithm that uses an external archive in which every particle adds its current location

after each cycle. The search space is divided into hypercubes. Each hypercube has a

fitness related to the number of particles in it. To select a leader the roulette-wheel

selection mechanism is used first to select the hypercube then the leader is randomly

chosen from within the hypercube. Mutation operator is also applied on the particles.

Pulido & Coello Coello (2004) used the Pareto dominance to determine the particle’s

flight direction. Clustering is used to split the swarm into sub-swarms in order to en-

hance the distribution of particles in the search space. The external archive is replaced

by an elitism mechanism where sub-swarms exchange their leaders.

Sigma MOPSO was proposed by Mostaghim & Teich (2003b), in which each

particle −→x is assigned a value, σ, based on its location in the objective space:

σ =
f2

1 (−→x )− f2
2 (−→x )

f2
1 (−→x ) + f2

2 (−→x )
(2.14)

for a bi-objective problem, where f1, f2 are the objectives (Fig.2.12). Using this defini-

tion: all the particles where f1(−→x ) = af2(−→x ), i.e. are located in the objective space on

a line with slope a, would have the same σ. The leader for the corresponding solution
−→x is the one that has σleader with the closest distance to σ. The clustered particles in
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Figure 2.12: An example of Sigma-MOPSO.

the swarm have similar σ, making them moving in the same direction, as a result of

selecting a set of clustered leaders. This might compromise the coverage and diversity

of the approximated PF. Hence Sigma-MOPSO requires a large swarm (Parsopoulos

& Vrahatis (2008)). Turbulence operator is also used in this algorithm within the

search space. Mostaghim & Teich (2004) proposed a covering MOPSO algorithm (cv-

MOPSO) as an extension to sigma MOPSO, which successively improve the previous

external archive so in the first phase cvMOPSO runs with a restricted size external

archive to get a good approximation of PF. On the second phase the non-dominated

solutions obtained from the first phase are considered the input external archive of

the cvMOPSO. The particles are divided into sub-swarms around each non-dominated

solution after the first generation. The motivation of having the sub-swarms is to cover

the gaps between the non-dominated solutions.

Bartz-Beielstein et al. (2003) analysed the application of archiving techniques into

MOPSO and proposed a method which uses deletion and selection techniques, e.g. the

adaptive grid. The deletion paradigm is based on the contribution of each particle to

the diversity of the PF. Selecting methods are either inversely related to the fitness of

the particles or the previous success of the particle.
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Li (2003) adapted techniques from NSGAII into MOPSO. When the particle up-

dates its position, instead of using its pbest all the pbest of the swarm and the newly

reached solutions are combined into one set. The algorithm then selects solutions of

this set to form the current swarm using non-dominated sorting. The leaders are se-

lected randomly from an external leaders archive in which the leaders are stored based

on two mechanisms: niche count and a nearest neighbour density estimator. Mutation

operator is also used at each iteration to the particle with the lowest density estimator.

OMOPSO (Sierra & Coello Coello (2005)) is a popular approach and is used

in this thesis to compare with the new approaches proposed. OMOPSO is based on

Pareto dominance and uses a nearest density estimator for leader selection using a

binary tournament approach. Two external archives are used: one for storing the

leaders during the optimization process, and the second to store the final solutions.

The density estimator is utilized to filter out the list of leaders when the maximum

limit of the external archive is reached so that only the leaders with the highest density

estimator are kept in the archive. ε-dominance decides on the particle to stay in the

archive of the final solutions. A fully connected network is used. The swarm is divided

into three sub-swarms temporarily in order to apply a mutation operator separately to

each sub-swarm then the mutated sub-swarms are put back together to perform the

leader selection. Algorithm 2.3 outlines the algorithm of OMOPSO as described by

Sierra & Coello Coello (2005).

Algorithm 2.3 OMOPSO

1: Initialize swarm. Initialize leaders. Send leaders to ε-archive

2: crowding(leaders), g=0

3: while g¡gmax do

4: for each particle do

5: Select leader. Flight. Mutation. Evaluation. Update pbest

6: end for

7: Update leaders, Send leaders to ε-archive

8: crowding(leaders), g++

9: end while

10: Report results in ε-archive

Ho et al. (2005) proposed a novel formula to update the velocity and position of the

particles by changing three main features of Eq. 2.3: 1) r1, r2 are considered dependent,
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and r2 is set to 1 − r1, 2) (1-W ) is incorporated in the second and third terms of Eq.

2.3, where W is a random variable between 0 and 1; 3) an assumption is made that the

particle might have to fly back so the sign of the first term in Eq. 2.3 is flipped with a

probability of 50%.

A new diversification mechanism was proposed by Villalobos-Arias et al. (2005)

which utilizes stripes that are applied on the objective function space. The main idea is

the assumption that the Pareto front of the problem is similar to the line determined by

the minimal points of the objective functions. In this way, several points (called stripe

centers) are uniformly distributed around a strip, and the particles are associated with

the nearest strip center which is considered the leader. The leader is selected minimizing

a weighted sum of the minimal points of the objective functions. The authors showed

that their approach can circumvent some drawbacks of other popular mechanisms such

as ε-dominance and sigma.

ClustMPSO is a hybrid MOPSO proposed by Janson & Merkle (2005) which com-

bines PSO with clustering technique, namely K-means, to divide the swarm into sub-

swarms. Each sub-swarm has it is own non-dominated front and then the fronts from

all sub-swarms are combined into the approximated PF. The leaders of the particles are

randomly selected from the non-dominated front of the sub-swarm they are associated

with. pbest is updated for each particle based on dominance relations. A domination

relationship is also defined among the sub-swarms. A sub-swarm is dominated if all its

particles do not belong to the combined PF.

2.9.3 Combined Approaches

These approaches try to combine different types of approaches to benefit from the

advantages of more than one approach and to circumvent the drawbacks of either

approach.

Mahfouf et al. (2004) introduced the adaptive weighted PSO (AWPSO) algorithm,

in which the velocity increases with time. The goal is to enhance the global search

ability at the end of the run and to help avoiding local optima. A weighted aggregation

function is used for performance evaluation and to guide the selection of the personal

and global bests. Dynamic weights used to generate Pareto optimal solutions. To

maintain the diversity of the solutions, a mutation operator is applied to the positions

of some particles.
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2.9.4 Decomposition-based Approaches

Since the introduction of the decomposition approach in evolutionary algorithm (Zhang

& Li (2007)) it drew a lot of interest from the evolutionary algorithms community. The

first trial to incorporate MOEA/D with PSO was MOPSO/D followed by my algorithm

SDMOPSO, and then dMOPSO. Section 3.4.10 presents analytical comparison among

the different methods while following we briefly present these methods (except for

SDMOPSO which will be discussed in detail in Section 3.2).

MOPSO/D (Peng & Zhang (2008)) is a multi-objective optimization method that

uses the MOEA/D framework to solve continuous MOPs. MOPSO/D substitutes the

genetic algorithm in MOEA/D with PSO. It relies fully on decomposition to update

the personal and global information. Each particle is associated with one global best,

so an update of a particle position can trigger position update in its neighbour’s global

best(s) resulting in duplications and making the algorithm prone to falling into local

optima. Hence, mutation is employed trying to escape the local optima. Algorithm 2.4

presents the main body of MOPSO/D.

Algorithm 2.4 MOPSO/D

1: Initialize the weight vectors (Section 2.6.3)

2: Generate an initial swarm and the reference point z∗

3: Initialize pbest and gbest

4: iteration=0

5: for iteration=1 to maxItr do

6: for each particle do

7: Update position

8: Improve solution if distance between old and new positions is less than a thresh-

old

9: Update z∗, pbest, and gbest

10: remove dominated solutions from external archive

11: end for

12: end for

13: Return the content of the external archive as the final output

dMOPSO: dMOPSO (Mart́ınez & Coello Coello (2011)) uses decomposition to

update the leaders’ archive and to select the swarm leader(s). The archive stores the

particles with the best aggregation values for each particle in the swam, whereas the
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Figure 2.13: Illustration of the Gaussian distribution used by dMOPSO for generating

a new particle. The personal best and the global best are used to define the mean and

variance of the Gaussian distribution.

particles’ personal memory stores the position with the best aggregated value found

so far. To maintain the diversity of the swarm and to avoid local optima, dMOPSO

re-initializes the particles’ memory using a Gaussian normal distribution (Fig. 2.13

shows an example of such a distribution) when the particle exceeds a certain age (i.e.

number of iterations with no update). This may lead to losing all the experience

gained throughout the exploration process, as well as adding more complexity to the

algorithm. Besides, it uses decomposition as a way to substitute dominance. With the

absence of dominance, the decomposition strategy is confined to leading the swarm into

a limited number of destinations equal to the swarm size (the number of λ vectors).

With complicated Pareto fronts (i.e. disconnected) and the limited size of the swarm,

dMOPSO tends to fail to cover the entire PF. Algorithm 2.5 presents the outlines of

the dMOPSO algorithm.

2.9.5 Convergence Properties of MOPSO

So far there is not any study of the convergence of MOPSO. However following the

discussion in Section 2.4.2 it is possible to choose the algorithm parameters in a way to

guarantee convergence (Reyes-Sierra & Coello (2006)). The two conditions required to

ensure convergence in the single objective PSO (Section 2.4.2) still hold for the multi
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Algorithm 2.5 dMOPSO Algorithm

1: Initialize weight vectors

2: Initialize the swam with randomly generated particles

3: Initialize velocity, pbest, and gbest

4: iteration=0

5: for iteration=1 to maxItr do

6: for each particle do

7: if particle has aged then

8: reset particle’s memory

9: else

10: update velocity and position

11: end if

12: Repair particle’s bounds

13: Evaluate particle and update pbest and z∗

14: end for

15: Update gbest

16: end for

17: Return the content of the external archive

objective case with the first condition (monotonicity) is changed to: The solutions

contained in the external archive at iteration t + 1 should be non-dominated with

respect to the solutions generated in all previous iterations.

ε-dominance based archiving ensures that this condition is satisfied as it guarantees

that for any solution discarded from the archive one with equal or dominating objective

vector is accepted. For a given MOPSO approach there is a roadmap to ensure the

satisfaction of the first condition but it remains to explore if it satisfies the second

condition in order to ensure global convergence to the true Pareto front.

2.10 Quality Measures

As with single objective optimisation, two factors are important when assessing a multi-

objective optimiser: the quality of the found solutions, and the time spent to find them.

However the stochastic nature of evolutionary algorithms results in the relation between

time and quality not fixed, but rather represented by a probability distribution function.

Hence, when discussing quality in evolutionary algorithm we need to look at it from a
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probabilistic point of view. Additionally having a set of solutions (Pareto front) instead

of a single outcome of the multi-objective optimisation process makes quantifying the

quality of these solutions much harder. This is added to having multiple runs and

the necessity to statistically quantify the behaviour of the optimiser over these runs

increasing the difficulty of quality assessment (Fonseca et al. (2005b)).

According to a review, Fonseca et al. (2005b), there are two main approaches for

quality assessment: a) model the outcome of the optimizer as a probability density

function in the objective space. b) the indicator approach which quantifies the outcome

of a run with a number with statistical analysis applied to these performance values.

Several studies emphasized the importance of design and application of quality measures

and especially how the statistical tests are applied and interpreted (Knowles & Corne

(2002); Okabe et al. (2003); Zitzler et al. (2003b)).

In principle the easiest way to compare between the performances of two multi-

objective optimizers is by comparing directly the resulted output of the two methods

(e.g. using an indicator of quality like the ones described later). This would work if

the optimizers are deterministic, i.e. running the optimizer twice will return the same

results.

MOPSO, and multi-objective evolutionary algorithms in general, are stochastic in

nature, due to the random element in the algorithms, i.e. running the algorithm twice

would most likely produce a different set of results. For this reason the optimizer should

be run repeatedly and the probability density function is then empirically estimated.

Comparing two optimizers would then mean comparing their probability density func-

tions which then implicate the issue of statistical hypothesis testing (Fonseca et al.

(2005a)).

In the literature, there are two main approaches to assess the quality of produced

PFs. The most common one is the indicator approach where a PF is mapped, using a

defined function, to a real number then a standard statistical hypothesis test is applied

on the indicator values (Fonseca et al. (2005b)). The second approach is usually referred

to as the attainment function method in which for each objective vector there is a

probability p that the produced approximation set contains an objective vector that

weakly dominates z. The attainment function then gives a probability estimate of z to

be attained in one optimization run with a statistical test procedure to count for all

the runs (Grunert da Fonseca et al. (2001)).
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A comprehensive survey on quality indicators can be found in (Fonseca et al.

(2005b)). However, in the following sub sections we list in brief the commonly used

indicators:

2.10.1 Error Ratio

The error ratio metric IER reports the number of vectors in the approximated PF,

PFapprox that are not in the true PF ,PFtrue (Van Veldhuizen (1999)). The metric re-

quires that PFtrue is known and that the MOEA approaches the PF. Formally speaking,

the metric is represented as in:

IER =

∑|PFapprox|
i=1 ei
|PFapprox|

(2.15)

where || is the determinant operator and ei is zero when the ith vector of PFapprox is

an element of PFtrue and ei = 1 when the ith vector is not an element of PFtrue. The

smaller the value of IER the better the approximation of PF.

2.10.2 Generational Distance

The generational distance indicator, IGD, measure how far on average PFapprox from

PFtrue (Coello Coello et al. (2007)). As with the error ration it requires the knowledge

of the true PF and is mathematically defined as follows:

IGD =
(
∑n

i=1 d
p
i )

1/p

|PFapprox|
(2.16)

where di is the Euclidean distance between each member i of PFapprox and the closest

member of PFtrue, and p is usually set to 2. || is the cardinality operator.

2.10.3 Inverted Generational Distance

The inverted generational distance, IIGD, (Van Veldhuizen & Lamont (1998)) measures

the uniformity of distribution of the obtained solutions in terms of dispersion and

extension. The average distance is calculated for each point of the actual PF (PFtrue),

denoted as A, and the nearest point of the approximated PF (PFapprox), denoted as

B.

IIGD(A,B) =

(
∑
a∈A

(min
b∈B
‖ F (a)− F (b) ‖2))1/2

|A|
(2.17)
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2.10.4 Hypervolume

The hypervolume indicator, Ihv, (Zitzler & Thiele (1998)) measures the volume of the

objective space that is weakly dominated by a PF approximation (A). Ihv uses a

reference point v∗ which denotes an upper bound over all objectives. v∗ is defined as

the worst objective values found in A (i.e. v∗ is dominated by all solutions in A). Using

the Lebesgue measure (Λ), Ihv is defined as:

Ihv(A) = Λ
( ⋃
a∈A
{x |a ≺ x ≺ v∗|}

)
. (2.18)

2.10.5 ε Indicator

The ε indicator, Iε, (Zitzler et al. (2003c)) measures the minimum distance which a PF

approximation (A) has to be translated in the objective space to weakly dominate the

actual PF B. The ε-Indicator is defined as:

Iε(A,B) = min
ε∈R
{∀b ∈ B, ∃b′i − ε ≤ bi,∀1 ≤ i ≤ n} (2.19)

Using quality indicators is an attractive approach of quality assessment due to

its simplicity. It has , however, some shortcomings: 1) each indicator looks at the

performance from only one perspective, e.g. spread, diversity, or dominance, which

may skew the conclusions drawn. 2) In the case of incomparable PFs an indicator will

actually give an inaccurate result. 3) For indicators that use distance functions, outliers

can cause a real problem in disturbing the calculation of the indicator. 4) Quality

indicators do not take the statistics of the data in the objective space into account which

can be vital information to properly assess the quality of the performance. Fonseca

et al. (2005b) discussed other important aspect that should be considered when using

quality measures such as scaling and normalization and the possible combination of

quality measures.

The attainment function method on the other hand distances itself from the indi-

cator approach by estimating probability density functions of the attained objectives

and then apply statistical tests to compare amongst the different PFs which circumvent

most of the issues raised by the use of quality indicators but at the expense of a high

computational requirements that they cannot be used for large number of objectives.
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Chapter 5 takes an approach which models the output of the optimizer directly

as an empirical probability density function and then calculates the mutual informa-

tion between the approximated PF and the theoretical one. The higher the mutual

information, the closer the approximation to the theoretical PF.

2.11 Benchmark Problems

Artificially constructed test problems offer many advantages over real-world problems

for the purpose of general performance testing. Test problems can be designed to be

easy to describe, easy to understand and visualize, easy to implement, fast, and their

optima are often known in advance.

In the literature, many test problems have been designed over the years with several

different properties to test for convex, concave, constrained and unconstrained real-life

problems. Huband et al. (2006) provided detailed analysis of the commonly used test

problems. Table 2.1 briefly summarizes the problems used in this thesis with their main

features:

• F1: Number of Objectives.

• F2: Pareto Optimal Geometry. The geometry of the Pareto optimal front can

be convex, linear, concave, mixed, degenerate, connected, disconnected, or some

combination of the former.

• F3: Bias. A test problem may or may not be biased.

• F4: Number of constraints.

The methods introduced in this thesis use different combinations of these problems

as a general check of the performance of the proposed methods. However, tests on

real-life problems are also applied to study the realistic application of these methods.

Next chapter takes the state of the art and the concepts discussed in this chapter and

advances them by introducing a novel method to incorporate decomposition and multi-

objective particle swarm optimisation, a new archiving technique based on clustering,

and a MOPSO that uses decomposition and dominance to outperform both.
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2.11 Benchmark Problems

Table 2.1: A comparison among commonly used problems: F1 is the number of objec-

tives. F2 is the geometry of the Pareto Front. F3 does the problem have any bias (+)

or not (-). F4 the number of constraints.

Problem F1 F2 F3 F4

ZDT1 2 convex - 0

ZDT2 2 concave - 0

ZDT3 2 disconnected - 0

ZDT4 2 convex - 0

ZDT6 2 concave + 0

DTLZ1 3 linear - 0

DTLZ2 3 concave - 0

DTLZ3 3 concave - 0

DTLZ4 3 concave + 0

DTLZ5 3 arch embedded - 0

DTLZ6 3 arch embedded + 0

DTLZ7 3 linear - 0

WFG1 2 convex + 0

WFG2 2 convex - 0

WFG3 2 linear - 0

WFG4 2 concave - 0

WFG5 2 concave - 0

WFG6 2 concave - 0

WFG7 2 concave parameter dependent 0

WFG8 2 concave parameter dependent 0

WFG9 2 concave parameter dependent 0

Viennet2 3 concave - 0

Viennet3 3 convex - 0

Viennet4 3 convex - 2

Kursawe 2 disconnected - 0

Schaffer 2 convex - 0

Fonseca 2 convex - 0

Tanaka 2 disconnected - 2

Srinivas 2 linear - 1

Osyczka2 2 convex - 6

Golinski 2 convex - 11

ConstrEx 2 convex - 1
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Chapter 3

Methods

“The wheel needs reinventing, but not just yet. ”

Nir Oren
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3.1 Introduction

3.1 Introduction

Following the success of MOEA/D, it was thought of as a good basis for developing

MOPSOs due to its simplicity and efficiency (Section 2.9.4). However, the early at-

tempts to build such hyper algorithms did not perform well as the main MOEA/D

algorithm was not changed to take into consideration the special properties of PSO.

I developed in this chapter two MOPSO based decomposition methods (SDMOPSO,

and D2MOPSO) as promising alternatives to the state-of-the-art; they also tackle

a delicate issue of mutiobjective optimization in general, and MOPSO in particular:

archiving. SDMOPSO provides a new neighbouring technique for MOPSO based on

decomposition. A novel approach of archiving is studied and then incorporated into a

new hybrid of MOPSO and decomposition: D2MOPSO. The advantage of these new

algorithms is demonstrated by comparing with the state-of-the-art on benchmark test

problems.

Chapter 4 demonstrate the usefulness of these algorithms in two real-world appli-

cations.

3.2 SDMOPSO

SDMOPSO (or Smart Multi-Objective Particle Swarm Optimisation using Decompo-

sition) follows MOEA/D (Zhang & Li (2007); Zhang et al. (2009)) in decomposing the

MOP into scalar aggregation problems. Decomposition transforms the MOP into a set

of distinct scalar aggregation problems. Every particle solves the corresponding prob-

lem by applying priorities to each objective according to its weighting vector (λi, see

Section 2.6.1 for the definition of λi). This assists the optimisation process in finding

potential solutions that are evenly distributed along the PF and to mitigate against

premature convergence. By associating every particle with a distinct scalar aggregation

problem, the exploration activity of each particle will be focused on a specific region in

the objective space and aimed at reducing the distance to the reference point.

SDMOPSO introduces a new approach for information exchange between neigh-

bouring particles without a need for extra evaluations. The motivation being that the

same solution in the objective space may have different aggregated values depending on

its λ; thus, a solution (i.e. a position in the decision space) is assigned to the particle

that uses it to produce the best aggregation value. If the new calculated position does
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3.2 SDMOPSO

not enhance the aggregated fitness of one particle, then the particle shares the new

position with its neighbours as this could enhance their aggregated fitness. In other

words, useless information for one particle can be effectively utilised by other particles,

depending on their λ. This leads to fewer objective function evaluations and results

in wider dissemination of the discovered information, facilitating thereby simultaneous

optimisation of the scalar problems. Taking into account the topological structure of

the PSO population, sharing the information with neighbours will help relaying the

discoveries of one particle to the entire swarm.

Many scalar approaches have been proposed to aggregate the objectives of a MOP,

discussed in Section 2.6.1. The weighted Tchebycheff method is used here. The ref-

erence point −→z ∗ is determined by SDMOPSO as the vector of best values for each

objective found so far by the optimisation process. Each particle is evaluated accord-

ing to Eq. 2.8 using the associated λ.

SDMOPSO uses a crowding archive to store the set of swarm leaders (Section 2.8).

The size of the crowding archive is fixed using ε-dominance (Sierra & Coello Coello

(2005)). At the end of each iteration the crowding archive is updated with the new

non-dominated particles in the current population, and the corresponding crowding

values are adjusted in accordance with the number of new updates. This approach

limits the size of the crowding archive and determines which particles to be deleted

when the maximum size is exceeded. This is done in such a way that the diversity of

Pareto optimal solutions is always maintained (Sierra & Coello Coello (2005) ).

3.2.1 The Algorithm

SDMOPSO starts by initializing the population and initializing N vectors: λ = {λ1, λ2,

. . . , λm}, where m is the number of objectives and N is the swarm size. λ vectors are

uniformly distributed in [0, 1]m subject to
∑m

i=1 λi = 1. Every particle is assigned

a unique λi. λi is selected so that it gives the best aggregated fitness value for the

initialized particle. In the case of a minimization problem the particle will be assigned

to λi that minimizes the aggregated fitness, taking into account that each λi is unique

and will be assigned to only one particle of the swarm. The particles’ memories pbest

are then initialized, and the initial velocity of each particle is set to zero. The size of

the crowding archive is set to the swarm size, and then is initialized using the non-

dominated particles in the swarm. The reference point
−→
z∗ is the vector in the objective
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3.2 SDMOPSO

space with the best objective values found so far. The neighbourhood will be initialized

by defining the neighbourhood size N. The neighbourhood of a particle j is defined by

the N particles that have associated λi vectors with the closest Euclidean distance to

λj .

Algorithm 3.1 SDMOPSO

1: Initialize the swarm with N particles and N λ vectors

2: for i = 1 to N do

3: assign the particle i to a fixed λ vector which minimizes the aggregate of the

objective functions.

4: initialize pbesti

5: end for

6: Initialize velocities
−→
V = {−→v1 , . . . ,

−→vN}, archive, neighbourhood and
−→
z∗

7: Crowding(archive)

8: for i = 1 to MaxIteration do

9: for j = 1 to N do

10: define particle j future Velocity, −→vj (t+ 1)

11: define particle j future Position, −→xj(t+ 1)

12: calculate scalar aggregate function for j

13: update the current population with the new particle j

14: update pbestj , archive, and z∗

15: end for

16: end for

17: Return the final result in the crowding archive

The second phase of the optimisation process is repeated for a pre-defined number

of iterations. During every iteration each particle defines a local view in the objective

space. The particle determines the next move by finding the new velocity and new

position using Eq. 3.1 and Eq. 2.2. The new velocity is calculated using the pbest

values of a randomly selected neighbour particle and that of the current particle. The

particle will then offer this local information (i.e. the decision vector and the corre-

sponding objective vector) to its neighbours (including itself) so that every particle of

the neighbourhood uses the new position and the evaluated objectives to calculate a

new aggregated fitness value. If the new position enhances the particle’s scaled fitness

value, then it is adopted as the new position of the particle. Only up to two particles
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3.2 SDMOPSO

are allowed to update (as suggested in Zhang et al. (2009) ) their information and take

advantages of this local information in order to avoid duplication of particles in the

swarm. Evaluating the new information using different λi will not involve additional

objective function evaluations as it only reads the stored values.

−→vi (t+ 1) = W−→vi (t) + C1r1(−→x pbesti −
−→xi(t+ 1)) + C2r2(−→x nbesti −

−→xi(t+ 1)) (3.1)

where nbesti is the index of a random neighbouring particle from the set of N

neighbours of particlei, r1, r2 ∈ [0.1, 1] are random values, W ∈ [0.1, 0.5] is the inertia

weight, and C1, C2 ∈ [1.2, 2.0] are the learning factors that take uniformly distributed

random values in their defined ranges.

After the particle updates its position and velocity, it has to update its pbest as

well. The pbest value will be replaced with the new position only if the new position

dominates pbest, or if both are mutually non-dominate. The crowding archive is then

updated with new non-dominated particles, if found, subject to the crowding restric-

tion. Finally, the reference point will be updated if needed. The final result of the

optimisation will be the content of the crowding archive when the run of SDMOPSO

is complete. The pseudo-code of the SDMOPSO Algorithm is listed in Algorithm 3.1.

3.2.2 Why SDMOPSO?

SDMOPSO introduces the following improvements to the basic MOPSO:

• SDMOPSO enhances the approximation of the PF for a MOP by decomposing

the original MOP into scalar aggregation problems and facilitating simultaneous

optimisation of these scalar problems. As will be observed in the next section

when it is compared to other MOPSOs.

• SDMOPSO associates every particle with a λ vector according to the best scalar

aggregated fitness value. This will potentially enhance the distribution of the ini-

tial population and, together with the way the information is exchanged between

the particles in the swarm, can eventually lead to saving processing time.

• SDMOPSO uses the crowding archive to retain the diversity of the leaders, and

hence the distribution of the final solutions. This is implemented using crowding-

based selection method to choose the solutions to be deleted or replaced when

the archive is full.
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3.2 SDMOPSO

• SDMOPSO conserve the simplicity of PSO while improving the MOPSO by better

exploitation of the particles’ local information. Each particle pre-processes its

next move and exchanges the discovered information with the entire swarm in

order to facilitate simultaneous optimisation of all scalar problems. This could

also help mitigating premature convergence to local optima.

3.2.3 Experiments and results

The SDMOPSO method is tested on several standard problems defined in the test suite

(Coello Coello et al. (2007)) - 9 representative problems were chosen (Schaffer, Fonseca,

Kursawe, Viennet2, Viennet3, ZDT1-4, and ZDT6 . They cover diverse MOPs with

convex, concave, connected and disconnected PFs. The method is then compared to

MOEA/D (Zhang et al. (2009)) and OMOPSO (Sierra & Coello Coello (2005)).

jMetal framework (Durillo et al. (2006)) is used to implement MOEA/D and OMOPSO

because it is a general framework that implements the state-of-art multi-objective al-

gorithms. Each algorithm is run 30 times for each test problem. For the bi-objective

problems each algorithm uses 300 iteration per run, and 150 individuals per generation.

For the three-objective problems the corresponding values of 600 iterations and 300 in-

dividuals were used. All compared algorithms adopt real encoding and perform the

same number of objective evaluations. For the sake of a fair comparison, the number of

the non-dominated solutions found by each algorithm is limited to a fixed threshold (100

for bi-objective problems and 1000 for the three-objective problems). MOEA/D uses

differential evolution crossover (DE) with (probability = 1.0) and (differential weight

= 0.5), polynomial mutation with (probability = 1/number of decision variables), the

mutation distribution index is equal to 20, and the neighbourhood size is set to 30.

OMOPSO uses turbulence probability of 0.5. C1, C2 were set to a random value in the

range [1.5, 2.0]. r1, r2 are set to a random value in [0, 1], and W to a random value in

[0.1, 0.5]. SDMOPSO uses the parameters explained in the previous section and neigh-

bourhood size N =30. Both OMOPSO and SDMOPSO use ε=0.0075, the crowding

archive of size 150 for bi-objective problems and 300 for three-objective problems. The

PF produced by each algorithm is the union of PFs after 30 runs (PFapproximated).

To validate our approach, two indicators are used for estimating the convergence

and diversity of the solutions. The first performance indicator is a generational distance
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(GD) (El-Ghazali (2009); Knowles & Corne (2002)), explained in Section 2.10.2. To

apply this measure, all the objective values are scaled to be in the range [0,1].

The second indicator is the R-metrics (El-Ghazali (2009); Knowles & Corne (2002)).

R-metrics is a hybrid indicator that simultaneously measures the convergence and di-

versity of the found solutions. R-metrics uses a set of utility functions u (e.g. aggre-

gation function), which can be any scalar functions. In this thesis, we use a weighted

Tchebycheff function with a sufficiently large number of evenly distributed normalized

weighting vectors λ. R-metrics compare two reference sets in our experiments: A is

PFtrue related to the problem under test, and B is PFapproximated. Then the indicator

is defined as follows:

IR2(A,B) =

∑
λ∈Λ u

∗(λ,A)− u∗(λ,B)

|Λ|
(3.2)

where Λ = {λ1, . . . , λm}, λi ∈ [0, 1] and
∑m

i=1 λi = 1.

These two indicators are used to compare PFapproximated with PFtrue; their values

are used here to quantitatively evaluate the performance of SDMOPSO in comparison

with that of MOEA/D and OMOPSO.

Table 5.2 shows the average over 30 runs of the results obtained after applying GD

and R-metrics measures, the last row presents the p-value resulted of applying Wilcoxon

sign rank statistical test between the SDMOPSO and the other two methods. This test

was selected as recommended in (Desmar (2006)) . Fig.3.1 and Fig.3.2 depict PFtrue

and PFapproximated for the three algorithms under investigation.

3.2.4 Discussion

SDMOPSO divides the MOP into scalar aggregation problems which are solved si-

multaneously using PSO. The information exchange method proposed herein helps

avoiding local optima without a need for applying any genetic operator and utilises the

local information more effectively by facilitating simultaneous optimisation of all scalar

problems. In order to maintain the diversity of the final solutions, SDMOPSO uses a

crowding archive.

The previous use of PSO within the MOEA/D framework (Peng & Zhang (2008))

has several limitations. Every particle updates its position using its personal best

and global best information without considering the neighborhood best, which can be
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(a) Schaffer PF (b) SDMOPSO (c) MOEA/D (d) OMOPSO

(e) Fonseca PF (f) SDMOPSO (g) MOEA/D (h) OMOPSO

(i) Kursawe PF (j) SDMOPSO (k) MOEA/D (l) OMOPSO

Figure 3.1: (a, e, i) are the PFtrue and the rest are the approximated ones
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3.2 SDMOPSO

(a) Viennet2 PF (b) SDMOPSO (c) OMOPSO

(d) Viennet3 PF (e) SDMOPSO (f) OMOPSO

Figure 3.2: (a, d) are PFtrue and the rest are the approximated ones

Table 3.1: Indicators values for the three methods applied on nine test problems: the

values are presented as [GD,R-metrics]

Problem SDMOPSO MOEA/D OMOPSO

Schaffer [0.0165,0.00212] [0.0242,0.0002] [0.0164,0.0029]

Fonseca [0.0038,2.94E-04] [0.004,3.00E-05] [0.0037,5.48E-04]

Kursawe [0.0335,1.22E-03] [0.0343,8.91E-04] [0.0323,9.43E-04]

Viennet2 [0.0067,2.31E-10] [0.049,3.38E-07] [0.0062,7.06E-10]

Viennet3 [0.0096,8.65E-07] [3.3616,5.76E-03] [0.0107,5.51E-07]

ZDT1 [0.0044,0.004] [0.0055,0.0044] [0.0037,2.29E-03]

ZDT2 [0.0051,0.003] [0.0044,0.0017] [0.0038,0.0012]

ZDT3 [0.0043,0.003] [0.014,0.0067] [0.0043,0.0041]

ZDT4 [1.4319,0.3068] [0.7714,0.2338] [1.4329,0.3744]

ZDT6 [0.003,0.0013] [0.0029,0.0012] [0.0031,0.0011]

Average [0.1519,0.0322] [0.4271,0.0255] [0.1517,0.0387]

Std [0.4498,0.0965] [1.0581,0.0732] [0.4503,0.1179]

p-value [-,-] [0.1602,0.6953] [0.4453,1]
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an important asset for maintaining the diversity of the solutions and avoiding local

optima. MOPSO/D uses a mutation operator, which can contribute to the complexity

of the method and thus reduces the advantage of PSO over GA. MOPSO/D does not

incorporate the non-dominance concept within the optimization process, which could

potentially lead to premature convergence.

The results presented in this section show that OMOPSO, MOEA/D and SD-

MOPSO perform similarly on problems with two objectives (Schaffer, Fonseca, Kur-

sawe, ZDT1-4 and ZDT6). When looking at three-objective problems, both SDMOPSO

and OMOPSO outperform MOEA/D. However the statistical test over all datasets

shows insignificant difference in the indicator values among all the methods. The ad-

vantage of the MOPSO-based methods in 3D MOPs could be explained by the fact

that EA-based techniques offer advantages in problems where some structure exist in

the decision space - the reproduction operators can exploit this structure very effec-

tively. When, however, such a structure does not exist or is confounded by the interplay

of several competing objectives, MOP heuristics aimed at uniform exploration of the

solution space can perform better (Fleischer (2003)). The results of our experiments

support this hypothesis.

For Viennet3, SDMOPSO seems to have better diversity than OMOPSO as OMOPSO

does not fully cover the PF (Fig.3.2e and Fig.3.2f). For other test problems, SD-

MOPSO and OMOPSO perform similarly. The major algorithmic difference between

SDMOPSO and OMOPSO is that OMOPSO uses mutation (Sierra & Coello Coello

(2005)), whereas SDMOPSO does not apply any genetic operator. Mutation is usually

regarded as turbulence that is beyond a particle’s own control (Reyes-Sierra & Coello

(2006)). The usage of mutation operator by PSO is generally justified because of a very

high convergence speed of this method. Such convergence speed could be a disadvan-

tage in solving MOPs, because it may lead to a false PF (Coello Coello et al. (2004))

due to falling into local optima. SDMOPSO, on the other hand, handles this issue by

making every particle in the swarm pre-process its moves and to share this information

with its neighbours. This results in a better exploitation of the local information, which

alleviates the effect of premature convergence to local optima.
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3.3 Clustering based Framework for Leaders Selection

Section 2.8.2 discussed the need to keep the generated solutions throughout the op-

timization process in an archive. A selection mechanism is necessary to select the

leader(s) of the particles. Selection is a main step in evolutionary algorithms due to its

strong impact on the search direction during the evolutionary process (Back (2002)).

Various selection operators have been proposed for different algorithms, surveyed in

(Back (2002)). Proportional selection is one of the most common selection strategies.

Proportional selection assigns selection probabilities according to the relative objective

value of individuals (Holland (1992)). Tournament selection chooses a set of n individ-

uals from the population and then select the best individual from this set and copy it

to the next generation; this process is iterated until the population of the next gen-

eration is fully selected. Linear ranking (Baker (1985); Grefenstette & Baker (1989))

maps individual’s indices to selection probabilities using a linear function. A non-linear

function may also be used, and the method is referred to as non-linear ranking selection

(Michalewicz (1994)). (µ, λ) approach operates on offspring and tries to reduce it to

the size µ by choosing the µ best individuals while µ+ λ approach chooses the best µ

individuals from a set that combines the original population and the offspring together

(Back (2002)).

Selection implies the comparison among individuals. Most MOEA use the domina-

tion concept for comparison among individuals (Deb et al. (2002); Ghosh (2004); Zitzler

& Thiele (1999)). GAs usually apply the selection operator on the current population,

where individuals are selected and the non-dominated ones are qualified to survive

and replace the parents in the next generation. MOPSOs, on the other hand, use an

archive of leaders. The leaders are the set of the non-dominated individuals found so

far. All leaders are qualified to guide the search. The selection operator is then ap-

plied to choose one leader from the archive (Al Moubayed et al. (2010); Coello Coello

et al. (2004); Sierra & Coello Coello (2005)). The leader selection used are mostly

dependent on the domination relation to determine the best individuals, where only

the non-dominated solutions in the population are responsible of moving and evolving

the remaining solutions in the space through the optimization process. This assumes

that the non-dominated solutions are the closest solutions found so far to the Pareto

front. This can be a strong assumption, especially with sparse datasets, which might
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mislead the optimization process into local optima. In addition, selection operators are

argued to have a tendency to reduce the population variance (Raghuwanshi & Kakde

(2004)).

The majority of MOEA aim at finding non-dominated solutions as close as possi-

ble to the PF and to maintain the diversity of these solutions in the objective space

without taking into account the diversity of these solutions in the solution space. This

might result in discarding potentially important regions in the solution space from the

optimization process.

Wang et al. (2009) used a uniform and orthogonal design for generating the initial

population, ensuring thereby an evenly distributed and fair coverage of the solution

space at least at the start of the optimization process. They also proposed a clustering

method for selecting non-dominated solutions.

The leaders selection technique proposed in this section, however, goes further and

defines a framework for leaders selection based on clustering the individuals in the

current population in the solution space as well as in the objective space and then

defining a corresponding relation between the clusters in both spaces. We propose a

new technique for creating a set of solutions (archive) that covers most of the potentially

good regions in both the solution space and the objective space; the leaders will then

be selected from this archive.

The clustering based leaders selection (CLS) framework uses density based spatial

clustering in order to create the clusters in both spaces. Density based clustering does

not require a predefined number of clusters and build clusters of arbitrary shapes,

which is advantageous to our framework in order to guarantee its general application

to any optimisation problem. The individual is represented in the solution space by

its decision variable vector and in the objective space by its objective values. Each

individual is assigned into two clusters one in the objective space and the other in the

solution space. Should two individuals fall in the same cluster in the solution space, it

does not necessarily mean they belong to the same cluster in the objective space and

vice versa.

Most real world problems have large number of decision variables. This raise a seri-

ous challenge for clustering in a multi-dimensional space with low number of samples.

In this thesis this issue is solved using the principal component analysis (PCA). PCA
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is applied in order to reduce the dimensionality in spaces of dimensions higher than

three.

The CLS framework: Clustering based leaders selection operates on population

of individuals. It uses Density Based Spatial Clustering (discussed in Section 3.3.2) to

assign each individual into one solution space cluster and one objective space cluster.

This clustering technique is chosen because of its ability to discover a dynamic number

of clusters with arbitrary shapes and variable number of individuals in each cluster.

This approach has a wide applicability and adaptivity with very few parameters to tune.

The clustering takes place after ensuring that the individuals’ solution and objective

spaces are of dimensionality lower than four. For spaces with higher dimensions, PCA

is employed to reduce the dimensions (discussed in the following section).

3.3.1 Principal Component Analysis

PCA is a mathematical procedure that applies an orthogonal projection to convert

data of possibly correlated variables into a set of values of uncorrelated variables called

principal components. The number of principal components is usually less than the

number of original variables. The resultant first principal component has the highest

variance, and each succeeding component in turn has the highest variance possible under

the constraint that it be orthogonal to the preceding components. In principle, PCA

involves evaluating the mean x and the covariance matrix S of the data set and then

finding the M eigenvectors of S corresponding to the M largest eigenvalues (Bishop

et al. (2006)).

PCA is applied within the CLS framework when the number of variables in the

search space is larger than 3. This is important as the clustering performance is usually

sensitive to the dimensionality of the data.

3.3.2 Density Based Spatial Clustering

Through the optimization process the individuals of the population move gradually

towards specific regions, which represent the Pareto front in the objective space and

Pareto optimal set in the solution space. The population then is grouped into multiple

number of clusters, where high density regions (groups of individuals) are considered

as clusters and low density regions are considered as noise (Grira et al. (2005)).
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Spatial clustering aims at finding similar spatial attributes between objects in the

space. Dense regions that are near to each other are merged to form one cluster (Cohn

et al. (2003)). Density based spatial clustering (DBSC) (Ester et al. (1996)) is a spatial

clustering technique with few parameters to tune. The number of clusters generated

by DBSC is dynamic, i.e. the number of clusters is not predefined but is determined

by the locations of the objects in the space (Basu et al. (2002)), resulting in clusters

with arbitrary shapes.

DBSC algorithm starts by randomly selecting a point n from the space. A neigh-

borhood of n contains all the points in the space which exist in the circle surrounding

n with a predefined radius ε, dist(n,m) ≥ ε. The neighborhood Nε(n) is only created if

it contains a minimum number of points MinPts; otherwise the point n is considered a

noise point (outlier) and no cluster is considered. If the neighborhood contains MinPts

points or more |Nε(n)| ≥ MinPts, a cluster is created. This process is repeated for

every point in the defined cluster in order to check if there are more points can be

placed in the cluster in order to expand it. Expanding one cluster is done by adding

all the reachable points by the cluster’s neighborhood. When the cluster cannot be

expanded further, another point is selected from the space and the same process is

repeated. The process terminates when each points belong to one cluster or labelled as

a noise point. The distance between two points is calculated using a distance function

dist(x, y), where x, y are two points from the data space. MinPts, ε and dist(x, y) are

the only parameters to be defined in order to create the clusters (Ester et al. (1996)).

Following is an outline of the DBSC algorithm:

Algorithm 3.2 DBSC

1: define a spatial dataset DS, MinPts, ε and dist(x, y)

2: for each point is not assigned to a cluster and is not labeled as noise n do

3: Find the neighborhood of n, N(n)

4: Place all points of the neighborhood in one cluster

5: for each point ∈ N(n) do

6: Go to 3

7: Expand the Original Cluster if possible

8: end for

9: end for

10: Return the set of clusters found
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Figure 3.3: Example of clusters produced by Density Based Spatial Clustering

Fig. 3.3 demonstrates the final result of applying DBSC on a synthesized dataset.

3.3.3 The Algorithm

CLS aims at covering all the potentially good regions in both the objective and the

solution spaces and maintaining a good level of diversity in both of them. This is done

by clustering the individuals in the objective and solution spaces and incorporating the

diversity information using ε dominance.

A dimensionality reduction technique needs to be used in order to reduce the number

of the objectives and variables of each individual and to enhance the clustering quality.

PCA is applied when needed as explained in Section 3.3.1. After PCA, the DBSC is

applied to implement clustering.

The variable vector of each individual defines its location in the solution space while

the objective vector defines the individual’s location in the objective space. DBSC

assigns all individuals into two sets of clusters using the individuals’ images in both

spaces.

At the end of the clustering phase, two sets of clusters are created; one in each

space. Each individual has two images, one in the solution space (i.e. the variables

vector) and one in the objective space (i.e. the objective values). After clustering in

both spaces, each individual is assigned to a cluster in each space depending on its

image in that space. This defines an indirect mapping between the two spaces. Should

two individuals belong to the same cluster in one space, it does necessarily mean they
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Figure 3.4: Example of the algorithm at work while mapping clusters.

belong to same cluster in the other space. Each individual is marked by an index

in the population and each cluster in either space has a unique index. These added

information facilitate mapping the individual into the clusters. Fig. 3.4 demonstrates

this indirect relation.

A non-dominated cluster is a cluster in the objective space that contains at least

one non-dominated individual. CLS exploits the relation between the non-dominated

clusters in the objective space and the related clusters in the solution space. Following

is a formal representation of the algorithm.

Let O be the set of clusters in the objective space and V the set of clusters in the

solution space. A cluster o ∈ O is a non-dominated cluster if and only if ∃a ∈ o and

a ∈ PF . The set of non-dominated clusters is then called O
′
. Then we can define the

function:

φ(c) = {v : v ∈ V and ∃Xa ∈ v : Fa ∈ c} (3.3)

where c ∈ O and Xa is the image of an individual a in the solution space and Fa is the

image of a in the objective space. For a set of clusters C in the objective space, the

function Φ(C) is defined as:

Φ(C) = {φ(c) : c ∈ C} (3.4)
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The selection function Ψ is defined as follows:

Ψ : A→ {0, 1} (3.5)

where A is the current population, and

Ψ(a) =


1 : Fa ∈ PF
1 : Fa /∈ PF, Fa ∈ o, o ∈ O

′
, φ(o) /∈ Γ

0 otherwise

(3.6)

where Γ ⊆ V is the set of clusters selected so far. Γ = {c ∈ V : ∃ a,Xa ∈ c,Ψ(a) = 1}.

Algorithm 3.3 CLS

1: if |Xa| ≥ 4 then

2: for i=1 to N do

3: PCA(Xai)

4: end for

5: end if

6: if |Fa| ≥ 4 then

7: for i=1 to N do

8: PCA(Fai)

9: end for

10: end if

11: [O,V]=Apply-DBSC

12: if |O|=0 and |V|=0 then

13: Continue-Algorithm

14: else

15: for all o ∈ O′
do

16: for all Fa ∈ o do

17: if Ψ(a) = 1 then

18: add a to leaders-archive

19: add Λ(a) to set of selected clusters Γ

20: end if

21: end for

22: end for

23: end if

Algorithm 3.3 outlines the algorithm to build the leaders’ archive, where Continue-

Algorithm skips the building of the archive and continues the evolutionary algorithm
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which might happens in early stages of the optimization process where the individuals

are sparse, and Λ(a) ∈ V : Xa ∈ Λ(a).

The leaders archive is characterized with a limited size where it maintains the

diversity in both the solution space and the objective space. ε dominance is used here

to retain the diversity when the archive reaches its maximum size, taking into account

that at least one individual from each non-dominated cluster in the objective space as

well as one from the related clusters in the solution space must be maintained in the

archive. Maintaining the clusters’ representatives would not exceed the maximum size

of the archive as the size of the archive is set to the population size and the maximum

number of clusters possible is smaller than half the population size ( because each

cluster contains at least 2 solutions).

DBSC is used to implement the clustering step. DBSC as explained in the previous

section, assigns the adjacent solutions recursively to the same cluster. When solving

MOP with continuous PF the algorithm converges, at the end of the optimization

process, to a state where the solutions in the approximated PF are assigned to one

cluster. At the beginning several clusters might be found and gradually through the

process the solutions will converge and fall into one non-dominated cluster. When

solving MOP with disconnected PF, the algorithm converges and the number of the

non-dominated clusters generated will be approximately similar to the number of the

disconnected parts of the PF.

CLS can be integrated easily with any MOEA. For MOEA that employs selection

operator on the whole population (e.g. GA), each individual selected from the popu-

lation is mated with another individual selected from the leaders archive. While for

MOEAs that select the leaders from an archive (e.g. MOPSO) the archive is replaced

by the leaders archive proposed in this work.

3.3.4 Experiments and Results

To verify our method, CLS is integrated with NSGAII to form a new method called

NSGAII based on Clustering (NSGAII/C). This is done by customizing NSGAII where

one parent to mate is selected from the population but the second parent is selected

from the leaders archive created by CLS. CLS takes place at the beginning of each

iteration till the process meets a stopping condition.
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NSGAII/C is tested on several standard test problems defined in the test suite

(Coello Coello et al. (2007)). The selected test problems are ZDT1, ZDT2, ZDT3,

ZDT4, ZDT6, Viennet2, and Viennet3. These were chosen as they cover diverse MOPs

with convex, concave, connected and disconnected PFs. ZDT1-ZDT4 and ZDT6 are

two-objective problem with 30 decision variables. Viennet2 and Viennet3 are three-

objective problems with 2 decision variables. NSGAII/C uses PCA to reduce the solu-

tion space’s dimensionality when solving ZDT1-4 and ZDT6 while PCA is absent when

solving Viennet2 and Viennet3. Results obtained using NSGAII/C are then compared

to these obtained using the original NSGAII.

NSGAII uses a Simulated Binary Crossover (SBX) with probability equal to 0.9, and

a polynomial mutation with probability equal to the inverse of the number of decision

variables (i.e. 1/30 and 1/2), the mutation and the crossover distribution indexes are

equal to 20 (Deb et al. (2002)).

NSGAII/C uses the same parameters as NSGAII; also it uses clustering imple-

mented by DBSC. Before applying DBSC, the variables and objectives are normalized.

ε is set to 0.1, MinPts is set to 3, and Euclidean distance function, dist(xi, yj), is used.

The approximation of the Pareto fronts produced by each algorithm is the combina-

tion of PFs obtained after each of 30 experimental runs. For the bi-objective problems

each algorithm uses 300 individuals per generation. For the three-objective problems

the corresponding values of 600 individuals were used. All compared algorithms adopt

real encoding and perform the same number of objective evaluations of 60000.

Figures 3.5-3.11 depict the two PF approximations produced by NSGAII and NS-

GAII/C for the seven MOPs under investigation, where parts of the figure is zoomed in

a separate square to show the details of the approximated PFs for easier comparison.

To validate our approach, three indicators are used for measuring the convergence

and diversity of the solutions: IIGD, IGD, and the Set Coverage (ISC).

ISC(A,B) calculates the percentage of solutions in B that are dominated by at least

one solution in A, where A and B are two approximation of the PF produced by a two

specific method (Zitzler et al. (2003b)).

ISC(A,B) =
|b ∈ B, ∃a ∈ A : a � b|

|B|
(3.7)
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Figure 3.5: The two PF approximations for ZDT1.

Figure 3.6: The two PF approximations for ZDT2.

Figure 3.7: The two PF approximations for ZDT3.
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Figure 3.8: The two PF approximations for ZDT4.

Figure 3.9: The two PF approximations for ZDT6.

Figure 3.10: The two PF approximations for Viennet2.
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Figure 3.11: The two PF approximations for Viennet3.

ISC(A,B) does not necessarily equal 1 − ISC(A,B). ISC(A,B) equals 1 when all

the solutions in B are dominated by some solutions in A, while ISC(A,B) = 0 when

no solution in B is dominated by any solution in A.

The first two measures are unary indicators as they compare the obtained solutions

with the Pareto front, while the third one is a binary indicator as it compares solutions

obtained by two optimization methods.

Table 3.2 and Table 3.3 show the results obtained after applying IIGD and IGD

measures. Fig. 3.12 shows box plots to compare the Euclidean distance values obtained

while calculating IIGD, using Eq. 2.17, between the two methods. There does not seem

to be any significant differences on all the problems except for ZDT6 which can be

explained by a better coverage of NSGAII/C of the PF compared to NSGAII. Fig.

3.13 demonstrates the results obtained by applying ISC measure.

Table 3.2: Inverted Generational Distance results for the two algorithms

Problem NSGAII NSGAII/C

ZDT1 3.04E-05 1.14E-05

ZDT2 3.50E-05 1.19E-05

ZDT3 3.76E-05 1.75E-05

ZDT4 5.62E-05 1.16E-05

ZDT6 4.38E-04 1.50E-05

Viennet2 4.74E-05 4.81E-05

Viennet3 1.66E-05 1.73E-05
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Figure 3.12: Box plots to demonstrate the average distance between each solution of

the actual Pareto front and its closest solution in the approximated PF. NSGAII results

are at the left of each sub plot, while NSGAII/C results are at the right side.

Figure 3.13: Coverage set results for the two algorithms. For each problem 2 bars

are drawn, the left bar represent the percentage of solutions produced by NSGAII

that dominate these produced by NSGAII/C, the right bar represents the opposite

percentage.
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Table 3.3: Average Generational Distance results for the two algorithms

Problem NSGAII NSGAII/C

ZDT1 4.26E-05 2.59E-05

ZDT2 2.88E-05 9.18E-06

ZDT3 4.78E-05 3.86E-05

ZDT4 1.26E-03 2.65E-05

ZDT6 5.47E-04 1.07E-04

Viennet2 3.45E-05 3.27E-05

Viennet3 9.87E-06 1.00E-05

3.3.5 Discussion

In this section, a new framework for leaders selection was introduced within a multi-

objective evolutionary optimization process. The method is based on simultaneous

clustering in the solution and objective space and then mapping the two cluster sets

to create a leader archive that potentially approximate better Pareto front. CLS uses

DBSC as a priori knowledge of the number of clusters in the solution or the objective

space are usually unavailable. DBSC cannot cope with sparse data in high dimensional

space and small number of samples, PCA is utilized for dimensionality reduction within

the CLS framework to enhance the quality of clustering.

The proposed algorithm, is tested on 5 two-dimensional MOPs and 2 three-dimensional

MOPs. The PF approximations shown in Fig 3.5- 3.9 demonstrate the dominance of

solutions obtained by NSGAII/C over the solutions obtained by NSGAII. The PF

approximation produced by NSGAII/C is also closer to the actual PF. Fig.3.10 and

Fig.3.11 show a very similar solutions produced by both algorithms where no strong

domination exists. These results are confirmed by different analytical measures. Ta-

ble 3.3 presents the generational distance measure, which shows that NSGAII/C is

closer to the actual PF than NSGAII for all 2-D MOPs, whilst there is no difference for

3-D MOPs. Table 3.2 presents the spread of the solutions obtained and shows better

spread for NSGAII/C over NSGAII. Fig. 3.13 demonstrates the set coverage measure

of the two methods, and shows NSGAII/C solutions to highly dominate the majority

of solutions produced by NSGAII.

CLS is a general framework, different clustering algorithms may be used instead of
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DBSC, PCA can be substituted by any other dimensionality reduction technique, and

the mapping definition can also be replaced by any other mapping function( e.g. one

that incorporates prior knowledge about the MOP).

Clusters in the objective space may also be ranked and a decision maker can be

involved in directing the optimization processes toward regions according to this prior

knowledge. Eliminating the worst ranked clusters and re-sampling new solutions in

regions of interest is another approach that worth further investigation.

A drawback of the clustering approach is that it can be computationally expensive.

However, the idea of mapping both objective and solution spaces is very attractive and

potentially very useful. The next section presents an algorithm that takes a simpler

approach for this mapping.

3.4 D2MOPSO: MOPSO based on Decomposition and

Dominance

Designing effective measures for diversification of solutions to a MOP and for their

uniform distribution along the Pareto optimal front is a challenging research problem

(Reyes-Sierra & Coello (2006)). multi-objective metaheuristics can be classified into

four categories: decomposition-based (scalar), criterion-based, dominance-based, and

indicator-based approaches (discussed in detail by El-Ghazali (2009)). It would be

interesting therefore to ascertain whether/how these approaches can be combined or

enhanced to achieve a better preservation of solution diversity, and as a consequence,

a closer approximation of the Pareto optimal front. Hybridising different search ap-

proaches is reported in (Zhou et al. (2011)).

D2MOPSO utilizes a hybrid approach of dominance (e.g., Sierra & Coello Coello

(2005)) and decomposition (e.g., Zhang & Li (2007)). This approach achieves fast con-

vergence to the true Pareto Front without resorting to the use of genetic operators (e.g.,

mutation). Also, a better exploitation of the information discovered during the search

enables the suggested multi-objective PSO approach to be applied to problems that

necessitate complex system optimisation. D2MOPSO introduces a bounded leaders’

archive based on the crowding distance in both objective and solution spaces to store

the non-dominated particles. The leaders are then selected from the archive using the

aggregation value as the selection criterion.
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The main difference between SDMOPSO and D2MOPSO is in how they incorpo-

rate the decomposition concept. SDMOPSO uses decomposition to define the neigh-

bourhoods and only exchange information locally, while D2MOPSO uses decomposi-

tion for leader selection only and does not define a neighbourhood but utilizes global

information instead. In addition D2MOPSO uses the newly developed bounded lead-

ers’ archive.

3.4.1 Archiving based on Crowding Distance in Objective and Solu-

tion Spaces

Dominance-based approaches to multi-objective optimisation use the concept of domi-

nance and Pareto optimality to guide the search process. The majority of dominance-

based MOPSOs use a fixed-size leaders’ archive to store trade-off solutions found

through the optimisation process (Coello Coello et al. (2007)). Thus, the selected

leaders influence significantly the optimisation process; maintaining the archive and

selecting the leaders therefore are main challenges for MOPSO.

MOPSO aims at minimizing the distance between the solutions in the archive and

the true PF, whilst maximizing the diversity of these solutions in the objective space.

Several density estimators are employed to tackle these challenges. Some commonly

used techniques are discussed in Section 2.8.2 and also listed in (El-Ghazali (2009)).

Most archiving techniques maintain the quantity and diversity of the solutions in

the objective space without taking into account the diversity of these solutions in the

solution space, which might result in discarding potentially important regions there.

The previous section tackled this issue using an approach based on clustering both ob-

jective and solution spaces. The major drawback of this approach is its computational

complexity. The archiving technique suggested in this section provides a more efficient

alternative that uses a density estimator in both the solution and the objective spaces.

Each particle has two crowding distance coordinates one in each space. Therefore,

the crowding distance is a two-dimensional vector where the first dimension charac-

terizes crowding in the objective space, and the second in the solution space. We use

crowding distance (kernel density estimator, Section 2.8.2.1) defined as follows:

CD(−→pi ) =
( AS∑
j=1

‖ −→pi ,−→pj ‖Ω,
AS∑
j=1

‖ F (−→pi ), F (−→pj ) ‖∆
)

(3.8)
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Figure 3.14: Dominance-based ranking for the non-dominated solutions of the leaders’

archive using the crowding distance values in both solution and objective spaces. X-axis

is the crowding distance in the solution space, Y-axis is the crowding distance in the

objective space. The numbers next to each particle represents its rank. In this example

the particles ranked with 3 are the best.

where AS is the size of the archive, −→pi is the particle i’s decision variable vector. CD(−→pi )
is a vector of the crowding distances in the solution (Ω) and objective (∆) spaces.

The crowding distance is only calculated when the maximum archive size is ex-

ceeded, and a replacement of some particles is needed. The elimination process starts

by crowding the particles in both spaces. The elimination then considers the parti-

cles’ two crowding distances in order to decide whether the particle to be removed or

substituted.

A domination relationship and dominance-based ranking are applied to the created

crowding space. The particle with the worst rank is then replaced, with one selected

randomly in the case of a tie. This is used in many MOEAs to sort the solutions in

the objective space (Zitzler et al. (2003a)). Fig. 3.14 demonstrates an example of the

dominance-depth ranking used. The mutually non-dominated solutions of the leaders’

archive are ranked in the crowding space using their crowding values.

Algorithm 3.4 outlines the proposed archiving algorithm, where the operator r(a)

assigns a ranking value rank to the set a, CD is defined in Eq. 3.8, and Φ is the empty

set.
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Algorithm 3.4 Dominance-depth ranking in the crowding space

1: if Size(leadersArchive) ≥ MaxSize then

2: for pi in leadersArchive do

3: CD(pi)(Eq.3.8)

4: end for

5: temporaryArchive = leadersArchive

6: rank = 0

7: while temporaryArchive 6= Φ do

8: generate set a, containing the nondominated particles in temporaryArchive

9: assign rank to each individual in a

10: rank = rank + 1

11: temporayArchive = temporaryArchive \ a
12: end while

13: replace the particle with the worst rank.

14: end if

3.4.2 The algorithm

Decomposition assists the optimisation process to find potential solutions that are

evenly distributed along the PF (Li & Zhang (2009)). By associating each particle

with a distinct aggregation problem (i.e. λ value), the direction of exploration activity

of each particle is focused on a specific region in the objective space and is aimed at

reducing the distance to the reference point.

Substituting entirely the dominance approach with decomposition in MOPSO (i.e.

using the aggregation value instead of dominance as the leaders’ selection criterion)

might lead to premature convergence as each particle is strictly directed to one desti-

nation. At some point during the optimisation process, the particles would be unable

to update their positions and personal best memory as the local best and neighborhood

information become static. In addition, solving a MOP with complicated PF raises a

serious challenge as some λ vectors direct the corresponding particles to unattainable

areas. In such cases, part of the swarm would be exploring undesirable regions in the

objective space for a considerable number of evaluations. Fig 3.15 demonstrates this

problem where only eight out of twenty particles are directed towards the true PF. One

may suggest adjusting the initialization of λ vectors to cover only attainable regions.

This solution, however, only works if the true PF is known a-priori, which is not the
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Figure 3.15: Swarm of 20 particles in a sample objective space. When only decompo-

sition is used 8 particles are directed to promising regions in the space, the remaining

12 are directed to unpromising ones, i.e. 60% of the swarm is wasting the search effort.

case for most, if not all, real-life problems.

Another limitation of decomposition relates to how it operates in high-dimensional

objective spaces. It struggles to produce a sufficient number of non-dominated solu-

tions that cover the entire PF as the space to be covered by the swarm/population

using λ vectors grows exponentially with the number of dimensions. This requires the

decomposition-based approaches to use a large swarm/population in order to offer a

good PF coverage, increasing therefore the number of necessary function evaluations,

which can be a disadvantage for real-life problems with expensive or difficult to obtain

evaluations.

To overcome all these drawbacks within MOPSO framework, D2MOPSO integrates

both dominance and decomposition. The bounded leaders’ archive, Section 3.4.1, uses

dominance to store only non-dominated particles. The personal best values are up-

dated, and the leaders are selected using the decomposition’s aggregation function.

D2MOPSO uses PBI (Section 2.6.1) to transform the optimisation objective de-

fined by Eq. 2.4 into N scalar optimisation problems, where N is the swarm size.

By changing the weights and using the reference point defined above, Pareto optimal

solutions may be approximated.

The following steps summarize D2MOPSO:

Initialization : D2MOPSO starts by initializing the swarm with N particles and
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N λ vectors. Every particle is assigned a unique λ vector that gives the best aggregated

fitness value (e.g., minimum in case of minimization problem) for the initialized particle.

The initial value of the particle’s memory pbesti is its own information (
−−−→
pbesti = −→xi) as

it lacks any exploration experience at the beginning of the search process. The initial

velocity of the particle is set to zero (−→vi0 = 0). The leaders’ archive is set to a fixed size,

and is initialized by the non-dominated particles in the swarm. The reference point
−→
z∗

is the vector in the objective space with the best objective values found so far.

Evolution : During this phase D2MOPSO goes through a pre-set number of

iterations. At iteration (t), the particle determines the next move by calculating the

new velocity and new position using Eq. 3.9 and Eq. 2.2, which involve
−−−→
pbest and the

information about a global leader selected from the leaders’ archive.

−→vi (t+ 1) = W ∗ −→vi (t) + C1.r1.(
−−−→x−−−→
pbesti

−−→xi(t))

+ C2.r2.(
−−−→x−−−→
lbesti

−−→xi(t)) (3.9)

where
−−−→
pbesti is the personal best performance of particlei,

−−−→
lbesti is a leader se-

lected from the archive, r1, r2 ∈ [0, 1] are uniformly distributed random variables,

W ∈ [0.1, 0.5] is the inertia weight, and C1 = C2 = 2.0 are the learning factors.

These parameters are defined following other recent MOPSOs (Al Moubayed et al.

(2010); Mart́ınez & Coello Coello (2011); Peng & Zhang (2008); Sierra & Coello Coello

(2005)).

In order to ensure the decision variables fall into the predefined boundaries in the

solution space, after each update their values are checked as follows:

(−→xi d,−→vi d) =

{
(
−−−→
mind,−−→vi d) if −→xi d <

−−−→
mind

(−−−→maxd,−−→vi d) if −→xi d > −−−→maxd
(3.10)

where i is the particle index, d is the index of the decision variable within the deci-

sion variables vector.
−−−→
mind and −−−→maxd are the lower and upper boundaries of decision

variable d respectively.

During leader selection (Algorithm 3.5 , where
−−−→
lbesti is the selected leader for the

corresponding particle i) each particle selects the leader that gives the best aggregation

value using the particle’s λ and the aggregation function in Eq. 2.10.
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Algorithm 3.5 Leaders’ Selection

1: for i = 2 to N do

2:
−−−→
lbesti =

−−−→
lbest1 % intialize

−−−→
lbesti with the first local best.

3: for j = 2 to Size(leaders’ archive) do

4: if g(
−−−→
lbesti|λi,

−→
z∗) > g(

−−−→
lbestj |λi,

−→
z∗) then

5:
−−−→
lbesti =

−−−→
lbestj

6: end if

7: end for

8: Select lbesti as leader for particle i

9: end for

After the particle updates its position and velocity, it has to update its
−−−→
pbesti as

well.
−−−→
pbesti is replaced only if the new aggregation value is better:

if g(
−−−→
pbesti|λi,

−→
z∗) > g(−→xi |λi,

−→
z∗)

then
−−−→
pbesti = −→xi (3.11)

The leaders’ archive is then updated with any new non-dominated particles subject

to the crowding restriction explained in Section 3.4.1. The reference point is updated

when a better objective value is found. When a particle updates its position, the new

position is checked against
−→
z∗ and update it if necessary.

if
−→
z∗j <

−−−→
fj(xi) then

−→
z∗j =

−−−→
fj(xi) : j ∈ [1, ..,m] (3.12)

Finally, the external archive, which contains all the non-dominated solutions found

during the optimization process, is updated to contain the new non-dominated particles.

The use of the external archive is optional as it is not involved in the evolution process,

but it is recommended as it may contain better coverage and distributed solutions than

the leaders’ archive.

Termination : The algorithm terminates when the maximum number of iterations

is reached. The content of the external archive is used to approximate the PF. If the

external archive is not used, then the leaders’ archive is considered.

Algorithm 3.6 lists a pseudo-code for D2MOPSO, where CheckBoundaries vali-

dates the decision variables and adjust them when necessary.
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Algorithm 3.6 D2MOPSO

1: Initialize the swarm with N particles and N λ vectors

2: for i = 1 to N do

3: assign the particle i to the λ vector that gives the best aggregation value

4: initialize velocities
−→
V = {−→v1 , . . . ,

−→vN} and
−−−→
pbesti

5: Initialize leaders’ archive, external archive and
−→
z∗

6: end for

7: for t = 1 to MaxIterations do

8: for j = 1 to N do

9: Select
−−−→
lbestj (Algorithm 3.5)

10: update Velocity, −→vj (t+ 1) (Eq. 3.9)

11: update position,
−−−−−−→
xj(t+ 1) (Eq. 2.2)

12: CheckBoundaries(−→xj(t+ 1)) (Eq. 3.10)

13: evaluate the new position (The corresponding problem fitness function)

14: update
−−−→
pbestj (Eq. 3.11)

15: update leaders archive (Algorithm 3.7 which uses Algorithm 3.4)

16: update
−→
z∗ (Eq. 3.12)

17: update external archive

18: end for

19: end for

20: Return the final result in the external archive
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D2MOPSO can solve both constrained and unconstrained continuous MOPs. An

additional step is required when creating and updating the leaders’ archive to accom-

modate constrained problems. The constraints are evaluated for each particle so that

the leaders’ archive update process is biased towards particles which do not violate the

constraints (or breach the constraints to a lesser degree).

Algorithm 3.7 outlines the update of the leaders’ archive with a new particle
−→
S ,

where Size is the size of leaders’ archive, breachConst checks if the particle has violated

the constraints, constraints evaluates the constraints; valid(
−→
S ) is correct if

−→
S has

caused the removal of at least one particle from the archive or if it was not dominated

by any other particle.

3.4.3 Novelty of D2MOPSO

Dominance and decomposition are commonly used approaches in multi-objective evo-

lutionary algorithms (Coello Coello et al. (2007); Deb et al. (2002); Li & Zhang (2009);

Sierra & Coello Coello (2005)), but, to the best of our knowledge, they have mostly

been used separately. Nasir et al. (2011) introduced the concept of a fuzzy dominance

and only used decomposition when one solution fails to dominate the other in terms

of fuzzy dominance level. D2MOPSO is designed to take advantage of both concepts

so that decomposition is used to select the leaders from a dominance-based archive.

D2MOPSO maintains the algorithmic simplicity of MOPSO by not utilizing any ge-

netic or sampling operators. D2MOPSO also uses a novel archiving technique that

maintains diversity in both the objective and the solution spaces. Table 3.4 compares

among five state-of-the-art decomposition-based MOEA.

3.4.4 Selected Test Problem

To test D2MOPSO, I included the same problems used to test SDMOPSO with addi-

tional 17 other problems. This is due to D2MOPSO being the more mature approach

for decomposition and MOPSO, so it has to be rigorously tested.

D2MOPSO is tested on 27 (5 constrained and 22 unconstrained) standard MOPs.

The selected test problems cover diverse MOPs with convex, concave, connected and

disconnected PFs, with two and three optimisation objectives. These problems were

frequently used to verify the performance of several algorithms in the field of multi-

objective optimisation (Al Moubayed et al. (2010, 2011); Coello Coello et al. (2007);
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Deb et al. (2002); Li & Zhang (2009); Mart́ınez & Coello Coello (2011); Nebro et al.

(2008); Sierra & Coello Coello (2005)).

The following unconstrained bi-objective problems are selected: Shaffer (Deb &

Agrawal (1994)), Fonseca (Fonseca & Fleming (1998)), Kursawe (Kursawe (1991)) in

addition to the bi-objective version of WFG toolkit (WFG1-8 and WFG9) proposed in

(Huband et al. (2005)). For three-objective problems, the following MOPs are used:

Viennet2 and Viennet3 (Vlennet et al. (1996)), in addition to the DTLZ family (DTLZ1-

6 and DTLZ7) proposed in (Deb et al. (2005)), which cover scalable MOPs with the

number of decision variables of 7, 12, 12, 12, 12, 12, and 22 respectively.

To cover constrained bi-objective MOPs: three bi-constraints problems( Srinivas

(Srinivas & Deb (1994b)), Constr Ex (Deb et al. (2002)) and Tanaka (Tanaka et al.

(1995))) are used in addition to the six- and eleven-constraint problems Osyczka2

(Osyczka & Kundu (1995)) and Golinski (Kurpati et al. (2002)) respectively. A three-

objectives three-constraint problem (Viennet4 (Vlennet et al. (1996))) is also examined.

3.4.5 Experimental Setup

D2MOPSO is compared to MOEA/D (Zhang et al. (2009)), dMOPSO (Mart́ınez &

Coello Coello (2011)) and OMOPSO (Sierra & Coello Coello (2005)) 1.

Thirty independent runs are performed for each test problem. For the bi-objective

problems, 300 iterations per run and 150 particles per generation are used for all algo-

rithms. For the three-objective problems, 600 iterations and 600 individuals are used.

All algorithms under comparison adopt real encoding, perform the same number of

objective function evaluations and use the same aggregation function with θ = 5.

MOEA/D uses the differential evolution crossover (DE) (probability = 1.0 and

differential weight = 0.5), polynomial mutation (probability = 1/number of decision

variables), the mutation distribution index is equal to 20, and the neighbourhood size

is set to 30.

dMOPSO sets the age threshold to 2; C1, C2 are assigned random values in the

range [1.2, 2.0]. It uses a global set of size N , where N is the swarm size (the number

of λ vectors): N = 150 for bi-objective problems, and N = 600 for three-objective ones.

1jMetal Framework Durillo et al. (2006) is used to implement MOEA/D and OMOPSO. dMOPSO

implementation was provided by the authors.
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OMOPSO uses turbulence probability of 0.5. C1, C2 were set to random values in

the range [1.5, 2.0], ε-crowding archive with ε=0.0075 and leaders’ archive of size N .

Both OMOPSO and dMOPSO set r1, r2 to random values in [0, 1], and w to a

random value in [0.1, 0.5]. 1

D2MOPSO uses the parameters explained in the previous section with AS equals

to 100 for the bi-objective problems and to 300 for the three-objective problems.

3.4.6 Performance Metrics

To validate our approach, three indicators: IIGD, Iε, and hypervolume, which estimate

the convergence and diversity of the solutions, are used.

Table 3.4: A comparison among the decomposition-based MOEA under study

MOEA/D MOPSO/D SDMOPSO dMOPSO D2MOPSO

Decomposition x x x x x

Dominance - - x - x

Mutation x x - - -

Memory reinit. - - - x -

nbest x x x - -

lbest - - - x x

Leaders’ archive - x x x x
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(a) Viennet4: D2MOPSO
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Figure 3.16: Plot of the non-dominated solutions with the lowest IGD values in 30 runs

of D2MOPSO, MOEA/D and OMOPSO for solving Viennet4.

1The values are chosen according to recommendations by the algorithms’ authors.
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Algorithm 3.7 Leaders’ Archive Update

1: for each
−→
S in the swarm do

2: for i = 1 to SizeOfArchive do

3: if breachConst(
−→
S ) & breachConst(−→pi ) then

4: if constraints(
−→
S ) > constraints(−→pi ) then

5: remove −→pi
6: else

7: if constraints(
−→
S ) < constraints(−→pi ) then

8: break

9: else

10: if constraints(
−→
S ) > constraints(−→pi ) then

11: remove −→pi
12: else

13: break

14: end if

15: end if

16: end if

17: else

18: if !breachConst(
−→
S ) & breachConst(−→pi ) then

19: remove −→pi
20: else

21: break

22: end if

23: end if

24: end for

25: if valid(
−→
S ) then

26: add
−→
S to archive (Algorithm 3.4)

27: end if

28: end for
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Figure 3.17: Plot of the non-dominated solutions with the lowest IGD values in 30 runs

of D2MOPSO.
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Figure 3.18: Plot of the non-dominated solutions with the lowest IGD values in 30 runs

of MOEA/D.

Table 3.15 summarizes the main features of the performance measures used in this

section. In order to calculate accurate measures and produce informative plots the

objective values are normalized by the true PF, i.e. the minimum and maximum of

each objective value of the true PF are used to normalise the objective values of the

approximated PF.

3.4.7 Results and Discussion

3.4.8 Numeric Comparison

Tables 3.6, 3.7, and 3.8 contain the results of applying Ihv, IIGD and Iε respectively

to the bi-objective problems, whereas Tables 3.9, 3.10, and 3.11 and Tables 3.12, 3.13,

and 3.14 show the results for the three objective and constrained problems respectively.

Each raw, of these tables, presents results from one problem solved by the four methods

discussed before (D2MOPSO, MOEA/D, dMOPSO, and OMOPSO) except for Tables

3.12, 3.13, and 3.14 which include results from D2MOPSO, MOEA/D and OMOPSO
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Figure 3.19: Plot of the non-dominated solutions with the lowest IGD values in 30 runs

of dMOPSO.
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Figure 3.20: Plot of the non-dominated solutions with the lowest IGD values in 30 runs

of OMOPSO.
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only.1 The results of each problem contain three pieces of information: Med., the

median value of the indicator over 30 runs; Irq., the inter quartile ranges of the indicator

value over 30 runs; p., the p-value of a Wilcoxon signed-rank test applied to 30 runs

of D2MOPSO and the corresponding algorithm. A non-parametric statistical test is

applied as the values are not guaranteed to follow the Gaussian normal distribution

(Shapiro-Wilk normality test shows that some values do follow a Gaussian distribution

but others do not).

3.4.9 Visual Comparison

To visually demonstrate the performance of the different algorithms seven problems

were selected: Four bi-objective (Schaffer, Fonesca2, WFG1, and WFG5); two three-

objective (DTLZ1, and DTLZ7); and a constrained problem (Viennet4). These prob-

lems are selected to demonstrate the output of D2MOPSO in both cases where it

outperforms and under performs (although slightly) the other methods. The approx-

imated Pareto fronts found by D2MOPSO (PFapprox in blue with PFtrue in red) are

plotted in Fig. 3.17. The results from MOEA/D, dMOPSO, and OMOPSO experi-

ments are illustrated in Fig. 3.18, Fig. 3.19 and Fig. 3.20 respectively.

Although different methods might perform similarly in terms of finding the approx-

imated Pareto front, the number of iterations each algorithm requires to reach this PF

may vary. To visually check the convergence of the different methods when solving

various problems, the convergence of the four algorithms on the previously selected

subgroup of problems is presented. Fig. 3.21 shows the change of IGD per iteration

for each method on the seven selected problems. Fig. 3.22 depicts similar plots for the

change in the hyper-volume indicator, whereas Fig. 3.23 plots the changes of IGD and

hyper-volume for Viennet4.

The Kruskal-Wallis test, which is a nonparametric version of the classical one-way

ANOVA and an extension of the Wilcoxon rank sum test to more than two groups,

is applied to the unconstrained problems and yielding a value of p = 0.0092 < 0.05

(among the four methods), and p = 0.0066 < 0.05 when applied on all the problems 2.

1dMOPSO has not been applied to the constrained problems because it is specially designed for

non-constrained continuous problems, as stated by the authors, so the comparison would not be fair.
2dMOPSO is excluded as it does not solve constrained problems
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There are some anomalies in the presented tables that should be noted. In Table

3.10, the values of hyper-volume for D2MOPSO, dMOPSO, and OMOPSO applied to

problem DTLZ3 are all zero. This is due to the failure of the algorithms to produce a

reasonable approximation of the PF. This results in an invalid rank sum test, which is

indicated as −− in the table. In Table 3.13, MOEA/D has not succeeded to approxi-

mate a reasonable PF for Osyczka2 resulting in a zero hyper-volume. Finally, Tanaka

has a hyper-volume of 1 for MOEA/D (Table 3.13) and a negative ε value (Table 3.14),

which is impossible because it means the approximated PF dominates the true PF. This

can be explained by the fact that MOEA/D could not find any solution that satisfies

the problem constraints as it converges to an infeasible solution. For DTLZ3, the only

method able to approximate the PF is MOEA/D.

3.4.10 Analysis of Computational Complexity

D2MOPSO combines the advantages of both decomposition ( used by MOEA/D)

and dominance (adopted in OMOPSO). By doing so, it capitalizes on the benefits of

both techniques. In order for D2MOPSO to be a viable alternative for the state-of-

the-art methods, it should have a similar (or better) computational complexity. In this

section we compare the computational complexity of D2MOPSO to that of MOEA/D,

MOPSO/D, SDMOPSO, dMOPSO, and OMOPSO.

MOEA/D updates its population using a set of T neighbors. The newly produced

solutions replace one or more individuals in the neighborhood based on the aggregation

values. Therefore, for a population of size N the complexity is of the order O(NT ) ∼
O(N). When MOEA/D uses an archive of size K ≥ N , then the complexity becomes

O(KN +NT ) ∼ O(KN) as each individual will be compared to all the particles in the

archive. Similarly, MOPSO/D and SDMOPSO have the complexity of O(N2 +NT ) ∼
O(N2) as K = N . The global best set, of size N , in dMOPSO is updated at each

iteration using a newly formed set of size 2N (as it results from the merge of the global

best set with the swarm); hence the computational complexity is O(2N2) ∼ O(N2)

as the aggregation value for each individual must be evaluated against the possible

Nλ vectors. OMOPSO uses the leaders’ archive of size N , therefore it requires an

algorithm of complexity O(N2) to be updated. In addition, it uses an ε−dominance

archive with a size depending on ε and the range of objectives. However, assumption
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Table 3.5: A comparison of computational complexity

MOEA/D MOPSO/D SDMOPSO dMOPSO OMOPSO D2MOPSO

No Arch. O(N) - - O(N2) - O(N)

Arch. O(KN) O(N2) O(N2) O(KN) O(KN) O(KN)

can be made that it is of size K > N making the total computational complexity of

OMOPSO O(KN +N2) ∼ O(KN).

D2MOPSO uses the leaders’ archive (of size L ≤ N) which is updated on each

iteration. In order to select the global leader for each particle, all solutions in the

leaders’ archive are checked for the best aggregation value. The complexity would then

be O(2LN) ∼ O(N) iff L� N . When an external archive (of size K > N) is used, the

complexity becomes O(KN+2LN) ∼ O(KN). The external archive is only used when

the method is expected to generate a very large number of non-dominated solutions,

as shown in Table 3.5.

We can conclude from this analysis that D2MOPSO has similar computational

complexity to the other state-of-the-art algorithms.

3.4.11 Discussion

D2MOPSO is presented as a novel multi-objective particle swarm optimisation algo-

rithm that combines decomposition and dominance. The decomposition simplifies the

optimisation problem by transforming it to a set of single-objective problems, whereas

dominance facilitates the leaders’ archiving process. Decomposition is used to update

the personal information and to select the global leaders.

A new archiving technique is also presented, which considers the diversity in both

the search and objective spaces. By doing so, the archive helps covering promising

regions in both spaces. Crowding distance is used to implement the new archive in this

thesis, but it can be substituted by any of the other techniques explained in Section

3.4.1.

An extensive experimentation is carried out covering the different types of PFs. To

quantify the performance of D2MOPSO, three distinct quality measures are used to

compare its performance with three state-of-the-art algorithms: a) MOEA/D, a ge-

netic algorithm based decomposition algorithm. b) dMOPSO, a decomposition-based
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MOPSO. c) OMOPSO, a dominance-based MOPSO. The results are supported by sev-

eral statistical tests that count for direct and multiple comparison conditions. For un-

constrained bi-dimensional problems, D2MOPSO outperforms the other methods (ex-

cept for WFG8) with respect to IIGD, Ihv and Iε. For unconstrained three-dimensional

problems, D2MOPSO performs better in terms of IIGD, Ihv, and Iε in all problems

except for DTLZ1, and DTLZ3. For constrained problems, D2MOPSO outperforms

the other algorithms in terms of IIGD. According to Ihv, D
2MOPSO under-performs

in only one problem: ConstrEx. With respect to Iε, D
2MOPSO yields similar results

- outperforming in the case of Osyczka2, and Srinivas.

In general, D2MOPSO is demonstrated to be highly competitive to the other

algorithms with the advantage of no requirement of parameter tuning and a comparable

computational overhead (Section 3.4.10).

3.5 Conclusion

The chapter started by presenting a new algorithm that integrates decomposition into

MOPSO, SDMOPSO. Despite its demonstrated relative success, SDMOPSO is prune to

falling into local optima because it relies fully on the local neighbourhood information

and does not exploit the global information in the swarm.

A novel framework (CLS) for archiving was presented that maps indirectly the

search and objective space via clustering both space and mapping the particles among

the two sets of clusters. This has shown to be very beneficial not only for MOPSO

but for the general evolutionary multi-objective optimizers. However, it suffers from

the high complexity of clustering from one side and the difficulty of clustering high-

dimensional data on the other side.

D2MOPSO builds on the experience of the previous two approaches and addresses

their limitations. The proposed algorithm integrates decomposition into MOPSO and

incorporates both local and global information. An archiving technique is used which

is simple and effective based on a mapping between search and objective spaces using

a crowding distance measure: ε-dominance.

All the techniques are extensively studied and analysed on standard problems. A

detailed analysis of the performance of SDMOPSO and D2MOPSO is also presented.

However, the real test of any optimisation method is on real-life applications. Next
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Figure 3.21: The evaluation of IGD for the four algorithms.
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Figure 3.22: The evaluation of Hyper Volume for the four algorithms.
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Table 3.6: Results of IIGD on unconstrained bi-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

Fonseca2

Med. 2.41e-004 5.03e-004 6.49e-004 1.20e-003

Irq. 1.38e-005 1.89e-006 5.55e-006 1.28e-004

p – 3.02e-011 3.02e-011 3.02e-011

Kursawe

Med. 6.74e-005 1.30e-003 2.02e-004 3.78e-004

Irq. 1.76e-005 1.51e-005 8.75e-006 1.98e-005

p – 3.02e-011 3.02e-011 3.02e-011

Schaffer

Med. 9.88e-005 1.27e-002 6.26e-003 1.81e-004

Irq. 1.89e-005 6.73e-003 2.16e-006 1.22e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG1

Med. 1.45e-004 1.86e-003 4.73e-003 3.77e-003

Irq. 2.96e-004 3.65e-004 4.75e-005 8.92e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG2

Med. 1.82e-005 1.16e-003 7.94e-004 1.13e-004

Irq. 9.42e-006 3.32e-005 9.78e-005 2.42e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG3

Med. 6.84e-004 6.84e-004 1.52e-003 6.84e-004

Irq. 1.42e-007 2.51e-008 1.11e-006 7.58e-008

p – 4.20e-010 3.02e-011 3.02e-011

WFG4

Med. 4.87e-005 1.95e-004 2.85e-004 2.71e-004

Irq. 1.98e-005 4.55e-005 3.91e-005 6.67e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG5

Med. 5.31e-004 5.39e-004 5.39e-004 5.70e-004

Irq. 1.48e-006 2.05e-007 2.23e-006 1.16e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG6

Med. 1.53e-005 8.55e-005 1.86e-004 1.98e-004

Irq. 1.14e-006 6.44e-007 2.32e-005 3.65e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG7

Med. 1.48e-005 9.24e-005 1.79e-004 1.60e-004

Irq. 1.01e-006 3.30e-007 1.45e-005 1.95e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG8

Med. 1.03e-003 8.70e-004 6.80e-004 1.04e-003

Irq. 1.37e-004 1.50e-004 1.65e-004 1.23e-005

p – 2.88e-006 8.89e-010 3.03e-002

WFG9

Med. 6.26e-005 1.16e-004 1.85e-004 2.22e-004

Irq. 9.63e-006 2.52e-005 8.82e-006 3.04e-005

p – 3.02e-011 3.02e-011 3.02e-011
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Table 3.7: Results of Ihv on unconstrained bi-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

Fonseca2

Med. 3.14e-001 3.12e-001 3.09e-001 3.07e-001

Irq. 1.93e-005 4.01e-007 1.08e-004 5.22e-004

p – 3.02e-011 3.02e-011 3.02e-011

Kursawe

Med. 4.04e-001 3.92e-001 3.96e-001 3.90e-001

Irq. 4.91e-004 3.44e-004 7.25e-004 9.11e-004

p – 3.02e-011 3.02e-011 3.02e-011

Schaffer

Med. 8.33e-001 7.09e-001 8.22e-001 8.32e-001

Irq. 2.94e-005 9.82e-002 6.75e-006 7.99e-005

p – 3.02e-011 3.02e-011 3.02e-011

WFG1

Med. 6.31e-001 3.81e-001 1.19e-001 1.57e-001

Irq. 2.71e-002 5.41e-002 2.56e-003 5.57e-002

p – 3.02e-011 3.02e-011 3.02e-011

WFG2

Med. 5.65e-001 5.53e-001 5.55e-001 5.61e-001

Irq. 1.64e-004 2.32e-003 1.25e-003 8.64e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG3

Med. 4.44e-001 4.42e-001 2.77e-001 4.42e-001

Irq. 5.39e-005 6.79e-006 2.32e-004 1.65e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG4

Med. 2.20e-001 2.10e-001 2.01e-001 2.07e-001

Irq. 1.20e-003 3.41e-003 2.38e-003 1.03e-003

p – 3.02e-011 3.02e-011 3.02e-011

WFG5

Med. 1.99e-001 1.96e-001 1.95e-001 1.93e-001

Irq. 4.50e-005 1.80e-005 8.42e-005 6.89e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG6

Med. 2.13e-001 2.11e-001 2.01e-001 2.07e-001

Irq. 8.21e-005 1.44e-005 1.52e-003 6.16e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG7

Med. 2.14e-001 2.11e-001 2.01e-001 2.07e-001

Irq. 6.64e-005 5.73e-006 1.47e-003 7.03e-004

p – 3.02e-011 3.02e-011 3.02e-011

WFG8

Med. 1.48e-001 1.52e-001 1.65e-001 1.46e-001

Irq. 2.67e-003 1.44e-003 7.46e-003 1.07e-003

p – 6.53e-008 2.23e-009 3.52e-007

WFG9

Med. 2.41e-001 2.39e-001 2.31e-001 2.32e-001

Irq. 9.93e-004 1.99e-003 6.12e-004 9.57e-004

p – 4.20e-010 3.02e-011 3.02e-011
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Table 3.8: Results of Iε on unconstrained bi-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

Fonseca2

Med. 1.88e-003 4.12e-003 6.41e-003 1.05e-002

Irq. 1.96e-003 1.47e-005 2.77e-004 3.20e-003

p – 9.51e-006 8.48e-009 1.46e-010

Kursawe

Med. 6.42e-002 3.58e-001 1.18e-001 1.50e-001

Irq. 2.40e-002 1.58e-002 1.42e-002 1.35e-002

p – 3.02e-011 7.39e-011 3.02e-011

Schaffer

Med. 4.69e-003 7.29e-001 9.03e-002 1.37e-002

Irq. 1.37e-003 3.43e-001 5.50e-005 2.33e-003

p – 3.02e-011 3.02e-011 3.02e-011

WFG1

Med. 8.31e-002 5.85e-001 1.13e+000 1.12e+000

Irq. 1.22e-001 1.14e-001 4.12e-002 1.16e-001

p – 3.02e-011 3.02e-011 3.02e-011

WFG2

Med. 3.71e-003 1.14e-001 9.39e-002 2.80e-002

Irq. 3.51e-003 6.12e-001 6.68e-003 6.53e-003

p – 3.02e-011 3.02e-011 6.01e-008

WFG3

Med. 2.00e+000 2.00e+000 3.00e+000 2.00e+000

Irq. 4.84e-004 7.17e-005 1.89e-004 2.14e-004

p – 1.07e-009 3.02e-011 1.34e-005

WFG4

Med. 1.45e-002 5.75e-002 6.73e-002 5.67e-002

Irq. 7.28e-003 2.14e-002 1.05e-002 1.09e-002

p – 3.02e-011 3.02e-011 3.02e-011

WFG5

Med. 5.20e-002 6.96e-002 7.20e-002 9.00e-002

Irq. 2.53e-004 3.58e-004 4.95e-004 5.80e-003

p – 3.02e-011 3.02e-011 3.02e-011

WFG6

Med. 4.05e-003 1.79e-002 5.41e-002 4.22e-002

Irq. 8.72e-004 1.27e-003 1.14e-002 1.13e-002

p – 3.02e-011 3.02e-011 3.02e-011

WFG7

Med. 3.63e-003 2.09e-002 4.31e-002 4.57e-002

Irq. 3.62e-004 1.08e-003 3.68e-003 1.07e-002

p – 3.02e-011 3.02e-011 3.02e-011

WFG8

Med. 5.08e-001 3.93e-001 5.06e-001 5.31e-001

Irq. 1.11e-002 2.01e-001 8.85e-002 1.71e-002

p – 4.73e-001 7.62e-001 3.09e-006

WFG9

Med. 1.28e-002 3.50e-002 3.93e-002 4.99e-002

Irq. 1.40e-003 1.22e-002 2.52e-003 8.76e-003

p – 3.02e-011 3.02e-011 3.02e-011
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Table 3.9: Results of IIGD on unconstrained three-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

DTLZ1

Med. 4.72e-002 4.75e-004 4.72e-002 1.88e-001

Irq. 6.65e-002 1.20e-006 6.65e-002 1.34e-001

p – 3.02e-011 1.00e+000 2.03e-007

DTLZ2

Med. 4.19e-005 1.09e-004 1.18e-004 9.25e-005

Irq. 3.61e-007 2.94e-008 8.17e-007 7.23e-006

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ3

Med. 3.54e-001 3.87e-004 6.14e-001 1.76e+000

Irq. 3.78e-001 7.17e-007 5.07e-001 8.46e-001

p – 3.02e-011 4.43e-003 9.92e-011

DTLZ4

Med. 2.09e-004 3.88e-004 4.39e-004 2.71e-004

Irq. 1.82e-006 1.03e-006 5.32e-006 5.52e-006

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ5

Med. 1.08e-005 1.80e-004 1.06e-004 1.68e-004

Irq. 9.91e-006 9.63e-008 6.55e-006 5.49e-005

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ6

Med. 2.90e-005 1.81e-004 1.80e-004 1.72e-004

Irq. 1.20e-005 9.01e-009 9.28e-008 3.83e-005

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ7

Med. 1.95e-004 1.37e-003 4.11e-004 1.47e-004

Irq. 1.75e-005 1.52e-005 6.35e-007 3.46e-006

p – 3.02e-011 3.02e-011 3.02e-011

Viennet2

Med. 6.91e-005 2.23e-003 1.56e-003 1.08e-003

Irq. 1.33e-005 1.24e-006 7.02e-006 4.29e-004

p – 3.02e-011 3.02e-011 3.02e-011

Viennet3

Med. 2.02e-003 4.98e-003 4.12e-003 6.85e-004

Irq. 2.26e-003 1.39e-006 2.86e-006 5.75e-004

p – 3.02e-011 3.02e-011 6.53e-007
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Table 3.10: Results of Ihv on unconstrained three-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

DTLZ1

Med. 8.16e-001 7.76e-001 0.00e+000 0.00e+000

Irq. 9.96e-003 3.10e-004 0.00e+000 0.00e+000

p – 7.88e-012 1.00e+000 5.58e-003

DTLZ2

Med. 4.63e-001 4.53e-001 4.42e-001 4.61e-001

Irq. 1.70e-004 1.09e-005 7.52e-004 2.46e-004

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ3

Med. 0.00e+000 4.49e-001 0.00e+000 0.00e+000

Irq. 0.00e+000 4.06e-005 0.00e+000 0.00e+000

p – 1.21e-012 – –

DTLZ4

Med. 4.61e-001 4.49e-001 4.38e-001 4.59e-001

Irq. 1.57e-004 3.03e-005 8.09e-004 3.99e-004

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ5

Med. 9.56e-002 8.78e-002 9.11e-002 9.13e-002

Irq. 8.36e-005 6.03e-006 3.08e-004 7.40e-004

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ6

Med. 9.46e-002 8.78e-002 8.78e-002 9.08e-002

Irq. 1.91e-004 1.32e-007 7.17e-006 5.46e-004

p – 3.02e-011 3.02e-011 3.02e-011

DTLZ7

Med. 3.27e-001 2.64e-001 3.04e-001 3.21e-001

Irq. 6.88e-004 1.49e-003 4.13e-004 2.14e-003

p – 3.02e-011 3.02e-011 3.02e-011

Viennet2

Med. 9.31e-001 8.45e-001 9.03e-001 8.81e-001

Irq. 1.24e-004 1.38e-004 3.47e-004 1.41e-002

p – 3.02e-011 3.02e-011 3.02e-011

Viennet3

Med. 8.40e-001 8.18e-001 8.31e-001 8.09e-001

Irq. 2.95e-004 4.02e-005 4.13e-005 9.01e-003

p – 3.02e-011 3.02e-011 3.02e-011
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Table 3.11: Results of Iε on unconstrained three-objective test problems

Problem D2MOPSO MOEA/D dMOPSO OMOPSO

DTLZ1

Med. 1.18e+000 3.28e-002 1.18e+000 3.81e+000

Irq. 1.27e+000 4.14e-004 1.27e+000 2.09e+000

p – 3.02e-011 1.00e+000 3.52e-007

DTLZ2

Med. 1.85e-002 3.31e-002 3.75e-002 1.96e-002

Irq. 1.99e-003 8.01e-004 1.65e-003 2.52e-003

p – 3.02e-011 3.02e-011 1.68e-004

DTLZ3

Med. 1.48e+001 4.07e-002 2.84e+001 8.91e+001

Irq. 1.45e+001 1.55e-003 2.90e+001 4.24e+001

p – 3.02e-011 3.77e-004 3.02e-011

DTLZ4

Med. 2.73e-002 4.10e-002 4.48e-002 2.43e-002

Irq. 2.27e-003 2.06e-003 1.40e-003 1.89e-003

p – 3.02e-011 3.02e-011 3.83e-006

DTLZ5

Med. 2.85e-003 1.56e-002 1.25e-002 1.08e-002

Irq. 3.91e-003 2.12e-005 1.11e-003 3.09e-003

p – 3.02e-011 2.67e-009 1.56e-008

DTLZ6

Med. 7.54e-003 1.56e-002 1.56e-002 1.14e-002

Irq. 9.46e-003 5.03e-009 2.60e-005 2.56e-003

p – 1.11e-006 1.11e-006 1.63e-002

DTLZ7

Med. 5.20e-002 1.46e-001 7.31e-002 4.02e-002

Irq. 1.00e-002 3.66e-003 1.18e-003 1.33e-002

p – 3.02e-011 5.57e-010 7.70e-004

Viennet2

Med. 5.26e-003 6.03e-002 3.52e-002 4.83e-002

Irq. 7.28e-004 1.62e-004 4.58e-004 1.99e-002

p – 3.02e-011 3.02e-011 3.02e-011

Viennet3

Med. 2.66e-002 1.06e-001 5.22e-002 1.39e-001

Irq. 7.39e-003 1.68e-004 1.40e-004 4.38e-002

p – 3.02e-011 3.02e-011 3.02e-011
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Figure 3.23: The evaluation of the four algorithms for Viennet4.

Table 3.12: Results of IIGD on constrained test problems

Problem D2MOPSO MOEA/D OMOPSO

ConstrEx

Med. 2.42e-003 1.02e-002 2.92e-004

Irq. 1.04e-003 1.76e-007 2.40e-005

p – 3.02e-011 3.02e-011

Golinski

Med. 9.65e-003 2.65e-002 9.65e-003

Irq. 9.90e-003 3.74e-008 3.61e-003

p – 3.02e-011 9.82e-001

Osyczka2

Med. 3.98e-003 2.57e-001 4.49e-003

Irq. 7.56e-004 2.57e-003 5.63e-003

p – 3.02e-011 7.48e-002

Srinivas

Med. 1.05e-005 1.42e-004 1.11e-005

Irq. 3.47e-006 1.14e-007 5.52e-006

p – 3.02e-011 3.04e-001

Tanaka

Med. 3.36e-004 4.71e-002 3.95e-004

Irq. 8.25e-005 0.00e+000 5.27e-005

p – 1.21e-012 6.55e-004

Viennet4

Med. 1.74e-004 8.72e-004 1.44e-004

Irq. 3.07e-005 4.44e-006 5.16e-005

p – 3.02e-011 1.76e-003
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Table 3.13: Results of Ihv on constrained test problems

Problem D2MOPSO MOEA/D OMOPSO

ConstrEx

Med. 7.12e-001 9.02e-001 7.74e-001

Irq. 2.49e-002 2.82e-005 5.02e-004

p – 3.02e-011 3.02e-011

Golinski

Med. 9.68e-001 9.96e-001 9.62e-001

Irq. 1.45e-003 0.00e+000 1.72e-003

p – 5.22e-012 3.02e-011

Osyczka2

Med. 6.34e-001 0.00e+000 7.09e-001

Irq. 3.78e-002 0.00e+000 9.66e-003

p – 1.21e-012 3.02e-011

Srinivas

Med. 5.45e-001 5.36e-001 5.45e-001

Irq. 1.66e-004 1.64e-005 7.42e-005

p – 3.02e-011 2.23e-001

Tanaka

Med. 3.04e-001 1.00e+000 3.00e-001

Irq. 4.21e-004 0.00e+000 2.45e-003

p – 1.21e-012 3.02e-011

Viennet4

Med. 8.70e-001 7.64e-001 8.74e-001

Irq. 5.45e-004 6.90e-004 5.09e-004

p – 3.02e-011 2.99e-011
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3.5 Conclusion

Table 3.14: Results of Iε on Constrained test problems

Problem D2MOPSO MOEA/D OMOPSO

ConstrEx

Med. 1.14e-001 2.20e-002 1.51e-002

Irq. 5.32e-002 2.09e-005 3.05e-003

p – 3.02e-011 3.02e-011

Golinski

Med. 7.24e+000 2.58e+000 3.78e+001

Irq. 3.09e+000 0.00e+000 1.05e+001

p – 5.22e-012 3.02e-011

Osyczka2

Med. 1.56e+001 9.69e+001 2.58e+001

Irq. 3.93e+000 7.02e-001 1.41e+001

p – 3.02e-011 3.83e-005

Srinivas

Med. 8.74e-001 2.51e+000 1.28e+000

Irq. 8.73e-001 3.25e-002 4.30e-001

p – 4.98e-011 5.83e-003

Tanaka

Med. 1.53e-002 -4.29e-002 1.35e-002

Irq. 4.59e-003 0.00e+000 2.37e-003

p – 1.21e-012 1.33e-002

Viennet4

Med. 1.31e-001 3.49e-001 9.78e-002

Irq. 2.16e-002 1.21e-003 1.63e-002

p – 3.02e-011 3.79e-010

Table 3.15: Main Features of the Performance Measures

IIGD Ihv Iε

Goal Hybrid Hybrid Diversity

Monotone No Strict Mon

Parameter Ref set Ref point Ref set

Min/Max Min Max min
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3.5 Conclusion

chapter shows the performance and applicability of the proposed method on two real-

life applications: Channel selection for Brain-Computer Interfaces, and regulation of

Cancer Chemotherapy doses. The two problems are support by novel representation

and detailed analysis of the results compared to the state of the art in either problem.
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Chapter 4

Applications

“When you know better you do better. ”

Maya Angelou
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4.1 Introduction

4.1 Introduction

Many real-life optimisation problems have several conflicting objectives that necessitate

finding trade-off solutions in large search spaces with disjoint regions of feasibility. It

has been discovered that problems of this nature can be effectively handled by com-

putational intelligence techniques Liang et al. (2008), including Genetic Algorithms

Petrovski (1999); Petrovski & McCall (1999), and Particle Swarm Optimisation (PSO)

A. Petrovski & McCall (2004).

The PSO algorithm, in particular, has proven to be very efficient and capable of

providing competitive solutions in many application domains Wang et al. (2004)Jaishia

& Ren (2007)Hasan et al. (2010), including medicine Li et al. (205). Multi-objective

implementations of PSO have also been developed and proved their ability to provide

viable solutions Reyes-Sierra & Coello (2006)Baltar & Fontane (2006). In A. Petrovski

& McCall (2004) and Hassan et al. (2005), the authors have observed that although

PSO and GA on average demonstrate the same effectiveness in terms of solution quality,

PSO is more computationally efficient and uses fewer fitness function evaluations as

indicated by two standard statistical tests. Moreover, in contrast to GA, PSO requires

less subjective tuning of parameters, which simplifies its implementation Hassan et al.

(2005).

The aim of this chapter is to demonstrate the applicability of the developed algo-

rithms in real-life problems and to show its potential impact on different fields of science

and engineering. Two problems are used to test SDMOPSO and D2MOPSO: channel

selection for Brain-Computer Interface, and Dose optimization for cancer chemother-

apy.

Following the literature, the channel selection problem is first represented using

binary variables which requires SDMOPSO to be modified to accommodated these

variable. A new representation is then introduced which uses continuous variables. The

new representation is tested using D2MOPSO.

The other application is the finding of effective Cancer chemotherapeutic treatments

that balances complicated aspects of the therapy in order to give the patient good

quality of life during the treatment while effectively targeting the tumour.
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4.2 Channel Selection for Brain-Computer Interfaces

4.2 Channel Selection for Brain-Computer Interfaces

Brain-Computer Interface (BCI) research aims at developing a communication mean

between the human brain and the machine to provide an alternative control pathway

for the user. BCI applications vary from gaming to helping severely paralyzed patients

Birbaumer et al. (2003); Tsui et al. (2009); Wolpaw et al. (2002). The user of a BCI sys-

tem can perform several well-studied mental tasks to communicate and control Neuper

& Pfurtsheller (1999); Pfurtscheller & da Silva (1999); Pfurtscheller et al. (2005). The

machine must be able to recognize these tasks from brain signals accordingly within

a suitable time window for control. Motor imagery tasks are commonly used in BCI

environment due to their good separability and the understanding of their neurological

mechanisms Hasan & Gan (2011).

Non-invasive BCI uses Electroencephalography (EEG) signals associated with pre-

defined mental tasks. The number of channels used by an EEG system can vary ac-

cording to experiment paradigm and hardware design. It usually ranges between 10

and 256 channels. For real-life BCI application it is important to select a smaller set

of channels with as little sacrifice as possible in classification accuracy.

In order to avoid a large number of channels one can choose several electrode posi-

tions that are known from neurophysiological studies. Although this approach can be

very useful, it ignores the fact that different subjects respond differently and the opti-

mal positioning of the electrodes may vary. The other way to circumvent this problem

is to use a large number of channels and use a method to reduce the dimensionality of

the input features or to select the best set of channels for each subject.

Common Spatial Patterns (CSP) Dornhege et al. (2006) is a well-known spatial

filter that is widely used in BCI. CSP is useful for channel selection as it can be used

to filter out the channels that provide less discriminate data. CSP requires the data

from all the channels to be available online before the dimensionality is reduced. CSP

depends on the estimation of the covariance matrices of multiple channel EEG data,

which is usually very sensitive to noise.

The problem of channel selection is usually looked at as a search problem. The idea

is to search the space of possible combinations of channels in order to find the optimal

combination that produces the best classification accuracy. In Gan (2006), the author

argues that feature selection is advantageous over dimensionality reduction in terms of
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4.2 Channel Selection for Brain-Computer Interfaces

interpretability. Feature selection (and similarly channel selection) using several search

methods has been used frequently in the literature.

In Jin et al. (2008) Digital Particle Swarm Optimization (DPSO) was used, where

each particle contained a number of binary variables, which is equal to the number

of channels, and cross validation results were used as the fitness function. In Jun

& Meichun (2008) a mixture of CSP and PSO based method was used for channel

selection. In Dyson et al. (2009); Gan et al. (2011) Sequential Floating Forward Search

(SFFS) based methods were employed for channel/feature selection.

Most search-based solutions presented in the literature are single-objective methods.

The classification accuracy is usually chosen as the only search criterion. The shortcom-

ing of this approach is that the optimization process does not take into consideration

the trade-off between the number of channels selected and the desirable classification

accuracy. In theory, more channels would provide extra information that can help en-

hance the classification accuracy. In practice this might not be very accurate. It could

be even desirable to sacrifice the accuracy in order to have fewer channels and hence a

BCI system which can react to the user input within a more reasonable time window.

Hasan et al. (2010), was first to study a multi-objective approach to this problem using

MOEA/D and OMOPSO.

4.2.1 Modeling Multi-Objective Channel Selection Problem

The modeling of the channel selection problem consists of defining the objective func-

tions to be optimized and the representation of the problem in order for the optimiza-

tion method to be able to solve it. Whilst the definition of the objective function is

independent of the selected optimization method, the problem representation is highly

correlated to the optimization method.

The first objective function is the classification error rate defined as E = 1 − CV
where CV is the cross-validation result. The second objective function is the number of

selected channels N . The optimal solution(s) would have minimum number of channels

with lowest error rate and hence minimize E and N .

Each channel is represented by a binary variable c ∈ {0, 1}, where c = 1 if the

channel was selected for classification and c = 0 otherwise. This is a very simplistic

modelling of the problem but the commonly used one in the literature for the single

objective approach. Section 4.2.4 introduces a novel alternative presentation.
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The basic PSO was originally designed for real-valued problems (continuous or

discrete) which necessitates customizing SDMOPSO to handle binary variables. SD-

MOPSO adopts the Modified Discrete Binary PSO algorithm (MBPSO) for this pur-

pose (Shen et al. (2004)) . The method is applied on the channel selection problem in

Brain-Computer Interfaces (Hasan et al. (2010)).

4.2.2 The Binary SDMOPSO

Originally, PSO was designed to handle continuous and discrete problems with real-

value decision variables. The particles change their positions by updating their decision

variables using Eq.2.2 and Eq.2.3. For binary problems, Kennedy & Eberhart (1997b)

customized the definition of PSO (KBPSO) in order to handle binary problems where

the decision variables are bits of 0s or 1s. Each bit is only allowed to change its value

to 1 or 0 or keep its value without change.

The velocity update does not change, but the resulted real value must be normalised

between (0 and 1) using sigmoid limiting transformation Eq.4.1.

S(−→vij) =
1

1 + e−
−→vij

(4.1)

where i is the index of the particle and j is the decision variable (bit) to be updated.

Then the position update uses Eq.4.2.

−→xij =

{
1 if rand ≤ S(−→vij)
0 otherwise

(4.2)

where rand is a real random value in [0, 1].

In this scenario MBPSO (Shen et al. (2004)) an improved version of KBPSO is

adopted, where the update position is replaced by the following:

−→xij(new) =


−→xij(old ) : 0 < S(−→vij) ≤ α−−−−→
pbestij : α < S(−→vij) ≤ 1

2(1 + α)
−−−−→
nbestij : 1

2(1 + α) < S(−→vij) ≤ 1

(4.3)

where
−−−−→
pbestij ,

−−−−→
nbestij are the personal best and neighbouring best of i and α called

static probability is a random value in [0, 1]. Here, nbest replaces the global best (gbest)

used in (Shen et al. (2004)).
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The choice of nbest instead of gbest is important to accommodate the neighbours

topology in SDMOPSO. This binary version of SDMOPSO has the same advantages

of SDMOPSO in terms of information exchange and decomposition of solution space

with the extra support of binary problems.

4.2.3 Experiments and Results

4.2.3.1 Data Set

In this study the Dataset 1 for BCI Competition IV was used. The challenge is the

classification of continuous EEG without trial structure (Blankertz et al. (2007)). The

dataset is divided into training data and testing data. The calibration data are syn-

chronous trials for 7 subjects (3 of the datasets are synthesized data). The evaluation

data are soft-cued trials. For each subject 3 motor imagery tasks (right hand, left hand

and foot, where the foot side was chosen by the subject) were recorded but only the

most separable 2 tasks were provided. 59 channels were used to record EEG data. The

aim was to test the channel selection method, the evaluation data were not used. More

technical details and information about data acquisition and recording method can be

found in (Blankertz et al. (2007)).

4.2.3.2 Feature Extraction and Classification

The original dataset was sampled at 1000Hz. Another downsampled version (at 100Hz)

was used here as provided by the authors. Autoregressive features of order 6 were

extracted, with a 4 samples shift window, resulting in 25 samples per second. Linear

Discriminant Analysis (LDA) was used to classify the extracted features. When the

number of features is more than 20, Principle Component Analysis (PCA) was used to

reduce the dimensionality of the input.

Binary-SDMOPSO is compared here with results using MOEA/D and OMOPSO.

Binary-SDMOPSO uses a swarm of 59 particles. These parameters were set similar to

the one used in (Hasan et al. (2010)). The inertia weight W is set to a random value in

the range [0.1, 0.5], C1 and C2 are set to 2, r1 and r2 are set to random values in [0,1].

For OMOPSO and MOEA/D the parameters were set as in (Hasan et al. (2010)).

For OMOPSO the number of particles was set to 59, and the perturbation index (a

parameter for the mutation operator used in OMOPSO) is set to 0.5. W is set to a
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Figure 4.1: Solutions obtained by OMOPSO. The approximated Pareto front related

to every subject is marked by the corresponding letter.

random value in the range [0.1, 0.5], C1 and C2 are set to random values in the range

[1.5, 2.0]. As recommended in (Sierra & Coello Coello (2005)).

MOEA/D uses a single crossover operator to generate the offspring in addition to

a mutation operator. The mutation probability equals to 0.05.

In order to save computational time, all the previous methods use a lookup table

that contains all the previously tested combination of channels. This guarantees that

the same combination of channels will not be tested more than once if two (or more)

individuals ended up having the same solution.

Each individual/particle contains 59 binary variables, whose value can be 1 (the

channel is selected) or 0 (the channel is not selected). All methods terminate after 200

iterations.

The 7 subjects were named as “a”, “b”, “c”, “d”, “e”, “f”, “g”. Subject “e” was

not included in the study as the size of data is different from the other datasets.

Table 4.1 shows the solutions when using OMOPSO, with the highlighted rows being

the “best” solution in terms of accuracy and number of selected channels as chosen by

the experts in the field. Figure 4.1 shows the solutions provided by OMOPSO for the

6 subjects, which are the resulted Pareto front for each subject. Table 4.2 and Fig. 4.2

present the results when using MOEA/D in the same way as for OMOPSO. In a similar

way Table 4.3 and Fig. 4.3 present the results for Binary-SDMOPSO. The solutions

presented in the tables and figures are just the non-dominated solutions.
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Table 4.1: RESULTS USING OMOPSO

Subject Number of Se-

lected Channels

Cross Validation

Accuracy

a

2 0.56

3 0.602

4 0.6024

5 0.6097

6 0.615

7 0.6231

8 0.6239

b

2 0.48

3 0.555

6 0.558

c

1 0.468

2 0.52

3 0.55

6 0.556

7 0.56

10 0.57

13 0.571

d

2 0.5222

3 0.57

4 0.572

5 0.5859

6 0.5869

7 0.594

10 0.571

f

1 0.4848

2 0.581

3 0.6007

g

1 0.59

2 0.626

3 0.6371

4 0.64
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Table 4.2: RESULTS USING MOEA/D

Subject Number of Se-

lected Channels

Cross Validation

Accuracy

a

1 0.5652

2 0.6093

3 0.6183

b

2 0.5726

3 0.5815

4 0.59

c
2 0.5401

3 0.5454

d
1 0.5684

3 0.5832

f

1 0.5544

2 0.5845

3 0.6087

5 0.6166

g

2 0.6319

3 0.6381

4 0.6404

Figure 4.2: Solutions obtained by MOEA/D. The approximated Pareto front related

to every subject is marked by the corresponding letter.
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Table 4.3: RESULTS USING Binary-SDMOPSO

Subject Number of Se-

lected Channels

Cross Validation

Accuracy

a
1 0.5905

2 0.6123

b
1 0.5782

2 0.6167

c

1 0.564

2 0.5825

3 0.5977

7 0.6059

d
1 0.5696

3 0.609

f
2 0.5861

6 0.5939

g
1 0.5204

2 0.6244

Figure 4.3: Solutions obtained by Binary-SDMOPSO. The approximated Pareto front

related to every subject is marked by the corresponding letter.
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Figure 4.4: Box plot of the accuracies achieved using the three methods. The average

accuracy using each of the method is also shown.

Figure 4.5: Box plot of the number of selected channels achieved using the three meth-

ods. The average number of selected channels using each of the method is also shown.
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The application of Wilcoxon sign rank statistical test shows no significant difference

in terms of accuracy (p=0.5625 > 0.05 between OMOPSO and Binary-SDMOPSO and

p=0.6875 > 0.05 between MOEA/D). In terms of the number of selected channels, there

is a significant difference between OMOPSO and Binary-SDMOPSO (p=0.0313 < 0.05)

but none between MOEA/D and Binary-SDMOPSO(p=0.125 > 0.05). Figure 4.4 and

Fig. 4.5 show box plots to compare among the three methods.

4.2.4 Continuous Presentation for Multi-Objective Channel Selection

in Brain-Computer Interfaces

The modeling of the channel selection problem so far is similar to that in single-objective

case: the number of variables is equal to the number of channels with each channel can

be either selected or not. The goal of the optimization method is to minimize two

objectives: the number of channels and the error rate. The drawback of this modelling

is that it does not count for the spatial relations among the channels making it prone

to selecting outlier channels (i.e. channels that are known to have no correlation with

the performed mental tasks).

A new presentation of the channel selection problem is presented based on the

projection of the real channel positions in 3D into a two dimensional space. First the

maximum number of channels to select is defined by the variable C. The number of

decision variables would then be 2C as each channel is represented by its x and y

coordinates in a projected 2D space of the channels 3D locations. The variables are

real variables and can take any value within the space of the EEG cap. Each channel

location is surrounded by an inclusion circle with radius R. A solution is defined as a

set of tuples

si = {(x1, y1), (x2, y2), . . . , (xC , yC)} (4.4)

Each tuple (xi, yi) is a point in the 2D cap space and is considered a selected

channel if it falls within an inclusion circle. Should the point fall into two inclusion

circles, the closest channel location is selected using Euclidean distance. Duplicated

selected channels are ignored when calculating the objective values.

The first objective function is the classification error rate defined as E = 1 − CV
where CV is the cross-validation result. The second objective function is the number

of selected channels C‘ ≤ C. The optimal solution(s) would have minimum number of

channels with lowest error rate and hence minimize E and C‘.
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Figure 4.6: Projected Biosemi 64+2 EEG channel locations. The numbering scheme

follows the standard Biosemi numbering. Inclusion circles are drawn around each chan-

nel.
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D2MOPSO is used as the multi-objective optimizer based on particle swarm op-

timization. For solving multi-objective channel selection problem, the particles in

D2MOPSO move continuously in the projected 2D space to locate the channels that

achieve lowest error rate with fewer channels. This approach is tested on 10 partic-

ipants performing right vs left motor-imagery tasks and the results are compared to

Sequential Floating Forward Search (SFFS) based method.

In addition to combining dominance and decomposition, D2MOPSO normalizes

the MOP objectives. This ensures equal priorities for all objectives, thereby preventing

one objective from dominating the others when the aggregation is applied. The objec-

tive values are normalized using a sigmoid limiting transformation function defined in

Eq.4.5. The Sigmoid limiting transformation is chosen as it does not need any prior

knowledge of the objectives’ ranges.

S(fi(
−→p )) =

1

(1 + e−fi(
−→p ))

(4.5)

The normalized value of each objective is used instead of the objective values:

S(F (−→p )) = (S(f1(−→p ), f2(−→p ), . . . , fm(−→p ))) instead of F (−→p ).

The particle’s position is a solution to the channel selection problem. The position

is presented as:

−→p = {x1, y1, x2, y2, . . . , xC , yC}

= {p1, p2, p3, y4, . . . , p2∗C−1, p2∗C} (4.6)

where C is the maximum number of selected channels, xi, yi are coordinates in the cap

space as defined in Eq.4.4.

4.2.5 Experiments and Results

4.2.5.1 Sequential Forward Floating Search

In order to have a baseline comparison of the new method, Sequential Forward Floating

Search (SFFS) approach is used. SFFS is a comprehensive search single objective algo-

rithm. It starts by selecting the single best channel (with CV as the search criterion).

The algorithm continues by combining the selected channel with all the non-selected

channels one by one and as a result selects the best two channels and so on. This is
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Figure 4.7: The structure of the synchronous trials

called the growing phase as opposed to the pruning phase in which a channel is removed

from the selected set of channels and the criterion is checked again. If the criterion has a

higher value with lower number of channels then the new channels set is adopted. The

algorithm alternates between growing and pruning phases until a maximum number

of channels N is selected or the maximum number of iteration is reached (Gan et al.

(2011)).

4.2.5.2 Data Recording and Pre-processing

EEG data were recorded from 10 healthy subjects using a (64+2)-channel Biosemi sys-

tem. Standard synchronous motor-imagery training was used (Pfurtscheller & Neuper

(2001)) with two motor-imagery tasks: left hand, and right hand. No feedback sessions

were recorded. Figure 4.7 shows the structure of the trials.

Data were originally recorded at 256Hz but downsampled to 25Hz after feature

extraction. Common reference was used in this study. Butterworth bandpass filter

(1−45Hz) is used to remove possible external interference. No artifact removal methods

were applied but data were visually checked.

For each subject, data were recorded over 4 sessions with 10 minutes break in

between. Every session consisted of 20 trials per class. In total 160 trials were recorded.

The first 4 seconds of every trial are ignored as it does not contain any task-related

information (Pfurtscheller & Neuper (2001)).

In order to get the channel locations a Biosemi 64+2 channels locations file provided

by EEGLAB (http://sccn.ucsd.edu/eeglab/channellocation.html) is utilized. This pro-

vides a three-dimensional view of the channels which is projected onto a two-dimensional

plane that goes through the assumed center of the brain (i.e. the origin used to define

the location of the channels in the 3D space) and parallel to the XY plane.
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4.2.5.3 Feature Extraction and Classification

µ(8 ∼ 12Hz) and low β(13 ∼ 16Hz) rhythms are extracted from each channel by

applying a bandpass FIR filter at the corresponding frequency band. The filtered data

are squared and then averaged within consecutive time intervals (Kilmesch (1999)).

If a channel is selected both its µ and β features are used. Extracted features from

the selected channels are combined together to form one feature vector of maximum 20

features (the maximum number of selected channels is set to 10). Linear Discriminant

Analysis (LDA) was used to classify the extracted features with an averaging window

of 1 second to smooth the classifier output. 4-fold cross validation is applied, based on

trial by trial classification, and is used to calculate the error rate.

4.2.5.4 D2MOPSO parameter settings

D2MOPSO employs a swarm of 100 particles that evolve through 100 generations.

The inertia weight W is set to a random value in the range [0.1, 0.5], C1 and C2 are set

to 2, r1, r2 are set to random values in [0, 1], and α and β are set to 10%. The algorithm

was run 10 times per subject to avoid any bias due to the random initialization.

The maximum number of possible selected channels is set to 10 which means the

solution space, in which the swarm evolves, has 20 dimensions (see Eq.4.6). Decision

variables (pi : i ∈ [1, 2C]) are bounded by an upper and lower limit to constrain these

variables within the space of the EEG cap.

4.2.6 Results

First the results using SFFS are presented as a baseline to check the validity of the

results obtained using D2MOPSO. Table 4.4 lists the results achieved on the 10

subjects. Figure 4.8 shows a histogram of the selected channels over all 10 subjects

with a Gaussian fit of the distribution of the selected channels.

Figure 4.9 plots the results obtained using D2MOPSO, where the results of each

subject is plotted in distinct color with a ploynominal fit of degree 2 of the result to

show the approximated Pareto Front for each subject.

To compare with SFFS in terms of classification accuracy only, Table 4.5 shows the

maximum accuracy achieved for each of the 10 subjects. A two-sided t-test shows a

significant enhancement (p = 0.04 < 0.05) of classification accuracy (taking the max
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Table 4.4: Results using SFFS

Subject Cross Validation Accuracy% Number of Channels

Subject-1 67.05 10

Subject-2 68.17 10

Subject-3 80.17 10

Subject-4 67.20 10

Subject-5 75.29 7

Subject-6 65.16 8

Subject-7 73.71 10

Subject-8 67.69 6

Subject-9 72.22 8

Subject-10 62.37 9

Average 69.90 8.8

Std 5.34 1.47

Figure 4.8: Frequency of Channels selected via SFFS
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Figure 4.9: Results using D2MOPSO. Results of each subject are plotted with a

polynominal fit of degree 2 to show the approximated Pareto Front.

accuracy for D2MOPSO) which is supported by Figure 4.10 (the majority of points

are under the unity line). The number of channels is harder to compare as D2MOPSO

provides a wide range of solutions as shown in Fig. 4.9, but comparing with the highest

accuracy obtained by D2MOPSO shows insignificant difference (p = 0.1527 > 0.05)

suggesting that D2MOPSO is capable of achieving higher classification accuracy for

the same number of channels.

Figure 4.11 illustrates the distribution of channels selected for 10 subjects and using

all the solutions obtained in the 10 runs per subject (after removing any dominated

solutions), showing a wider distribution than that in Fig. 4.8. This can be interpreted as

D2MOPSO is able to widen its search space and provide more diverse solutions which

reflects the goal of the continuous problem presentation in the first place. Looking at

Fig. 4.6 it is clear that channels in the motor cortex area have diverse channel numbers

which explains why the wider distribution of channels in Fig. 4.11 achieves higher

classification accuracy.
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Table 4.5: Maximum Results using D2MOPSO

Subject Cross Validation Accuracy% Number of Channels

Subject-1 68.03 10

Subject-2 70.70 9

Subject-3 80.11 9

Subject-4 66.78 9

Subject-5 77.39 10

Subject-6 70.03 10

Subject-7 74.81 10

Subject-8 67.39 9

Subject-9 73.07 10

Subject-10 70.03 10

Average 71.83 9.6

Std 4.43 0.52

Figure 4.10: Comparison between accuracy results obtained using SFFS and

D2MOPSO
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Figure 4.11: Frequency of Channels selected via D2MOPSO

4.3 Finding Effective Cancer Chemotherapeutic Treatments:

This section presents a novel approach to optimising doses in cancer chemotherapy with

respect to conflicting treatment objectives aimed at reducing the number of cancerous

cells while limiting the amounts of anti-cancer drugs used. The approach is based on

a customized version of SDMOPSO. The novelty of the algorithm is in providing

particles in the swarm with information from a set of defined neighbours and leaders

that assists in finding versatile chemotherapeutic treatments.

As demonstrated in the previous section SDMOPSO, implemented in its original

and binary form, provides an effective tool for addressing multi-criteria decision-making

problems that have a vast space of possible solutions, but cannot be solved by tradi-

tional optimisation methods due to either difficulties in obtaining gradients of objective

functions or the presence of a large number of constraints. One example from such a

class of problems is the optimisation of chemotherapeutic treatments that use multiple

anti-cancer drugs - the size of the solution space increases exponentially when new drugs

are being added. At the same time, the exploration of the solution space is hindered

by various treatment constraints and the necessity to consider several optimisation
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objectives, often of conflicting nature.

Traditional optimisation methods (gradient-based or simple heuristics) cannot find

optimal solutions for this problem. Similarly, the methods of mathematical program-

ming are impeded by the multiplicity of feasible regions in the solution space. On the

other hand, it has been found in (A. Petrovski & McCall (2004); Petrovski & McCall

(1999, 2001) and Tan et al. (2002)) that population-based computational intelligence

algorithms (GA and PSO in particular) provide a good alternative to the conventional

optimisation methods for a class of non-linear, multi-constrained chemotherapy de-

sign problems. However, the efficiency of conventional GA and PSO algorithms in

finding good chemotherapeutic treatment schedules remains an issue, as well as their

capability of handling conflicting optimisation objectives. For this reason, this section

examines what potential benefits the smart multi-objective PSO with decomposition

(SDMOPSO) can bring to bear on the cancer chemotherapy problem. Furthermore,

given its performance in binary-coded search spaces, SDMOPSO can also be applied to

a wider class of dynamic chemotherapy optimisation problems. One examples of such

a problem is given by Allmendinger & Knowles (2010), where the authors are trying to

identify efficacious drug combinations drawn from a non-static set of anti-cancer agents

represented by a binary string.

4.3.1 Cancer Chemotherapy

Cancer chemotherapy is an inherently complex treatment modality, in which many

factors are involved in determining its success or failure. In particular, chemotherapy

carries a high risk due to drug toxicity, i.e. the more effective drugs tend to be more

toxic (Feng & Chien (2003)). As a result, finding effective chemotherapeutic treatments

is a multi-objective optimisation problem affected by such factors as the drugs used,

the condition of a patient, the drugs’ dosages, their form and schedule. In the next

subsections we will clarify some of the related issues that are going to be used for

modelling and optimisation of cancer chemotherapy.

4.3.1.1 Medical Aspects of Chemotherapy

Drugs used in cancer chemotherapy all have narrow therapeutic indices. This means

that the dose levels at which these drugs significantly affect a tumor are close to those
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levels at which unacceptable toxic side-effects occur. Therefore, more effective treat-

ments result from balancing the beneficial and adverse effects of a combination of

different drugs, administered at various dosages over a treatment period (Petrovski &

McCall (2001)).

The beneficial effects of cancer chemotherapy correspond to treatment objectives

which oncologists want to achieve by means of administering anti-cancer drugs. Nom-

inally, the optimal treatment schedule is the one found to be the most efficacious from

the set of schedules evaluated during clinical trials. For new drugs, Phase I trials

evaluate the toxicity of an anti-cancer drug on a given schedule, and Phase II trials

establish the efficacy of the schedule (Harrold & Parker (2009)). Several schedules may

be considered, and the schedule yielding the most promising result in a statistically

controlled trial is considered optimal from a clinical perspective. Novel chemotherapy

schedules found to be efficacious in Phase II trials are compared to the current standard

of practice against specific forms of cancer in Phase III trials. Similarly, for approved

drugs, chemotherapeutic treatment is generally broken down into cycles. At the end of

the first cycle the main objective is to evaluate toxicity, and at the end of the second -

to determine the efficacy of the drug schedules.

The main purpose of the present paper is to investigate how the techniques of

Computational Intelligence can assist in multi-objective optimisation of chemotherapy

schedules that use approved, rather than novel, anti-cancer drugs. Therefore, the main

treatment objective we are going to be interested in are controlling the drug toxicity

and improving treatment efficacy in terms of the reduction of tumour size. The next

subsection mathematically describes these objectives and associated constraints.

4.3.1.2 Problem Formulation

The adverse effects of cancer chemotherapy stem from the systemic nature of this

treatment: drugs are delivered via the bloodstream and therefore affect all body tissues.

Since most anti-cancer drugs are highly toxic, they inevitably cause damage to sensitive

tissues elsewhere in the body. In order to limit this damage, toxicity constraints need

to be placed on the amount of drug applied at any time interval, on the cumulative

drug dosage over the treatment period, and on the damage caused to various sensitive

tissues (Wheldon (1988)). In addition to toxicity constraints, the tumour size (i.e. the
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number of cancerous cells) must be maintained below a lethal level during the whole

treatment period for obvious reasons.

The goal of cancer chemotherapy therefore is to achieve the beneficial effects of

treatment objectives without violating any of the constraints mentioned above. In or-

der to solve the optimisation problem of cancer chemotherapy, we need to find a set of

treatment schedules, which satisfy the toxicity and tumour size constraints yielding at

the same time acceptable values of treatment objectives. This set will allow the oncolo-

gist to make a multi-criteria decision on which treatment schedule to use, given his/her

preferences or certain priorities. In the remainder of this section we will define the

search space of the decision vectors for the cancer chemotherapy optimisation problem,

specify the constraints imposed on these vectors, and particularise the optimisation

objectives.

Anti-cancer drugs are usually delivered according to a discrete dosage programme

in which the doses are administered at times t1,t2,...,tn (Martin & Teo (1994)). In the

case of multi-drug chemotherapy, each dose is a cocktail of d drugs characterised by

the concentration levels Cij , where i ∈ 1, n and j ∈ 1, d, of anti-cancer drugs in the

bloodplasma. Optimisation of chemotherapeutic treatment is achieved by modification

of these variables. Therefore, the solution space Ω of the chemotherapy optimisation

problem is the set of control vectors c = Cij representing drug concentration profiles.

However, not all of these profiles will be feasible as chemotherapy treatment must be

constrained in a number of ways. Although the constraint sets of chemotherapeutic

treatment vary from drug to drug, as well as with cancer type, they have the following

general form.

• Maximum instantaneous dose Cmax for each drug acting as a single agent:

g1(c) =
{
Cmaxj − Cij : ∀i ∈ 1, n,∀j ∈ 1, d

}
≥ 0 (4.7)

• Maximum cumulative Ccum dose for drug acting as a single agent:

g2(c) =
{
Ccumj −

n∑
i=1

Cij : ∀j ∈ 1, d
}
≥ 0 (4.8)

• Maximum permissible size Nmax of the tumour:

g3(c) =
{
Nmax −N(ti) : ∀i ∈ 1, n

}
≥ 0 (4.9)
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• Restriction on the toxic side-effects of multi-drug chemotherapy:

g4(c) =
{
Cs−effk −

d∑
j=1

ηkjCij

: ∀i ∈ 1, n,∀k ∈ 1,m
}
≥ 0 (4.10)

The factors ηkj in the last constraint represent the risk of damaging the kth organ or

tissue (such as heart, bone marrow, lung etc.) by administering the jth drug. Estimates

of these factors for the drugs most commonly used in treatment of breast cancer, as

well as the values of maximum instantaneous and cumulative doses, can be found in

(Baker (1985)) and (Cassidy & McLeod (1995)), but are also summarised in Table 4.6

and Table 4.7 in Section 4.3.3.

The objectives of cancer chemotherapy optimisation, as was previously mentioned,

relate to the efficacy of treatment schedules and their toxicity levels. In order to

characterise treatment efficacy, we simulate the response of a tumour to chemotherapy

using Gompertz cell-growth model with a linear cell-loss effect due to administration

of anti-cancer drugs (Martin & Teo (1994)):

dN

dt
= N(t).

[
λ ln

( Θ

N(t)

)
−

d∑
j=1

Kj

n∑
i=1

Cij

{
H(t− ti)−H(t− t(i+1))

}]
(4.11)

where N(t) represents the number of tumour cells at time t ; λ, Θ are the pa-

rameters of tumour growth, H(t) is the Heaviside step function; Kj are the quantities

representing the efficacy of anti-cancer drugs, and Cij denote the concentration levels

of these drugs. One advantage of the Gompertz model from the computational opti-

misation point of view is that Eq. 4.11 yields an analytical solution (Martin & Teo

(1994)) for N(t).

Then, the efficacy of a chemotherapeutic schedule can be measured as the degree

of reduction of the tumour size during the treatment interval, formulated as follows

(Petrovski (1999)):

minimise F1(c) =
n∑
i=1

N(ti) (4.12)
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subject to the state equation (Eq. 4.12) and the constraints (4.7)-(4.10).

The second optimisation objective of cancer chemotherapy related to treatment

toxicity is proportional to the application time for cytotoxic drugs and the duration

of treatment (Martin & Teo (1994)). These measures correspond to the total amount

of toxic anti-cancer drugs in the blood plasma and can be modeled by the following

objective:

minimise F2(c) =
d∑
j=1

exp(1 +Kj)
n∑
i=1

C2
ij (4.13)

subject to the constraints (4.7)-(4.10).

4.3.2 Customized-SDMOPSO for Cancer Chemotherapy Treatment

In order to cope with a high dimensionality of the solution space for the chemotherapy

optimisation problem and to avoid premature convergence, SDMOPSO requires tuning

the process of updating particles’ velocities so that it can effectively use the global

information about the search space. This information is presented by the global non-

dominated leaders found during the search through the optimisation process. To reduce

the computational cost and to enhance the solutions’ diversity in the objective space, a

very small crowding archive is used ”Archiveleaders”(size ≈ 10, ε=0.0075) to store the

non-dominated solutions found so far.

The customisation of SDMOPSO to the chemotherapy optimisation problem is

twofold. Firstly, the customised-SDMOPSO (c-SDMOPSO) integrates the global in-

formation into the velocity update equation - each particle in addition to its personal

experience and local information uses the global leader information to discover new

locations in the solution/objective space. This is done by replacing Eq. 2.3 with the

following equation:

−→vi (t) = W ∗ −→vi i(t− 1) + C1 ∗ r1 ∗ (−→x pbesti −
−→x i(t))

+ C2 ∗ r2 ∗ (−→x nbesti −
−→x i(t))

+ C3 ∗ r3 ∗ (−→x gbesti −
−→x i(t)) (4.14)

where gbesti is a global leader for the particlei, r1, r2, r3 ∈ [0, 1] are random values,

w ∈ [0.1, 0.5] is the inertia weight, and C1, C2, C3 ∈ [1.0, 2.0] take uniformly distributed
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random values. gbesti is selected from the leaders’ archive ( gbesti ∈ Archiveleaders)
in such a way that its aggregation value, defined by Eq. 4.15, is the closest one to the

aggregation value of particlei calculated using the λ vector associated with particlei.

As the ranges of the objectives’ values can differ considerably and are rarely known

a priori for the majority of real life problems, a normalization technique need to be

applied to all the objectives before aggregating them. This will ensure equal priorities

for both objectives in our case, thereby preventing one objective from dominating the

other when the aggregation is applied. The objective values are normalized using a

sigmoid limiting transformation defined by Eq.4.1.

The aggregation function will then use the normalized values for each objective as

follow:

minimize g(−→x |λ,−→z ∗) = max
1≤i≤m

{λi|S(fi(
−→x ))−−→z ∗i |} (4.15)

Secondly, when converging to a local optima, the particles will not be able to diverge

again because of using the same gbesti, pbesti and similar nbesti. The c-SDMOPSO

algorithm resolves this issue by redefining the position update method - it allows each

particles to change its location regardless whether it is a better position in terms of

the aggregation value or not. The method still guides the particles in the objective

space using the information on best global leaders and neighbours. In c-SDMOPSO

the fittest position does not necessary survive, but it is always stored in the archive

pool. One particle might move to a worse location in the objective space in order to

be able to move to a better one in the next iteration(s).

4.3.3 Experiments and Results

The customised version of SDMOPSO (c-SDMOPSO) is compared with results ob-

tained by NSGAII and MOEA/D (Li & Zhang (2009)).

All methods used have a population or swarm of size 300 individuals/particles and

terminate after 600 iterations of the evolution cycle. Each individual/particle contains

100 real variables - a schedule of 10 drugs each of which has 10 doses - with the value

in the range [0, 15]. The results presented in Fig. 4.12 are the set of non-dominated

solutions obtained after 20 different runs of each algorithm.
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As stated in Section II, the optimisation problem of cancer chemotherapy we are

trying to address has two objectives - minimisation of the area under the tumour curve

(Eq.4.12) and minimisation of the toxicity level in the bloodplasma after administration

of anti-cancer drugs (Eq.4.13). The details of anti-cancer drugs used in our experiments

are shown in Table 4.6 and Table 4.7.

Table 4.6: The side-effects of the drugs used through the treatment

Drugs Bone marrow Kidney Periph.nerves Liver Heart

Adriamycin 3 0 0 0 2

Epirubicin 3 0 0 0 1

Taxotere / Taxol 3 0 2 0 1

Cyclophosphamide 2 0 0 0 0

Fluorouracil 0 0 0 0 0

Cisplatinum 1 3 3 0 0

Methotrexate 1 1 0 1 0

Mitomycin-C 2 0 0 1 0

Prednisolon 0 0 0 0 0

Vincristine 0 0 2 0 0

NSGAII uses a Simulated Binary Crossover (SBX) with probability equal to 0.9,

and a polynomial mutation with probability equal to the inverse of the number of

decision variables (i.e. 1/100); the mutation and the crossover distribution indexes are

equal to 20 (Deb et al. (2002)).

MOEA/D uses a differential evolution (DE) crossover with probability equal to 1.0

and a differential weight of 0.5, a polynomial mutation with the same probability as

that of NSGA-II (i.e. 1/100), the mutation distribution index is equal to 20, and the

neighbourhood size is set to 20 (Li & Zhang (2009)).

c-SDMOPSO uses the parameters specified in Eq.4.14 with a neighbourhood size

equal to 30 and the Archiveleaders size equal to 10.

The approximation of the Pareto fronts (PF) produced by each algorithm is the

combination of PFs obtained after each of 20 experimental runs (PFapprox).

To validate our approach, two indicators are used. The first performance indicator

is the inverted generational distance (IIGD). To apply this measure, all the objective
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Table 4.7: Drug profiles of the anti-cancer agents used

Drugs Cmaxj Ccumj Pj Kj(
∗10−3)

Adriamycin 75 550 1 5.605

Epirubicin 75 700 1 4.484

Taxotere / Taxol 100/130 1000/1500 0.75/0.577 7.29

Cyclophosphamide 2000 10000 0.0375 3.9235

Fluorouracil 3000 30000 0.025 2.242

Cisplatinum 120 600 0.625 4.335

Methotrexate 10000 100000 0.0075 1.6815

Mitomycin-C 15 40 5 2.242

Prednisolon 100 1000 0.75 1.121

Vincristine 2 30 200 2.242

values are scaled to be in the range of [0,1]. The second indicator is the cardinality

measure Icardinality(A,B), which calculates the percentage of solutions in A that belongs

to B, where A is an approximation of the PF produced by a specific method and B is

a reference set (El-Ghazali (2009)).

Icardinality(A,B) ==
|A ∩B|
|B|

(4.16)

In this section IIGD indicator is used to compare PFapprox obtained by each algo-

rithm with PFref , which is a reference set that contains the non-dominated solutions

found by the three algorithms restricted to keeping 100 best solutions only. The ref-

erence set uses a crowding archive to guarantee the solutions are equally distributed

along the PF in the objective space (Sierra & Coello Coello (2005)). Using the reference

set as the first argument (A) in Eq.2.17 allows us to evaluate the effectiveness of the

solutions by measuring the uniformity of distribution together with the distance to the

reference set (see Table 4.8).

The cardinality indicator is based on the reference set (PFref ) used by IGD, and

compares the PFapprox obtained by each algorithm against PFref (see Table 4.9).

The IIGD and Icardinality values are used to quantitatively evaluate the performance

of the c-SDMOPSO algorithm in comparison with that of NSGAII and MOEA/D. As
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Figure 4.12: Approximated Pareto fronts

Figure 4.13: The reference set obtained by merging all the non-dominated solutions

generated by the three algorithms
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Table 4.8: Inverted Average Generational Distance results for the three algorithms

Measure MOEA/D NSGA-II c-SDMOPSO

IGD 0.0633 0.0342 0.0062

mean 0.5121 0.2503 0.0348

max 1.1577 0.6989 0.2393

min 0.0 0.0 0.0

median 0.5139 0.2332 0.0136

Std 0.3753 0.2344 0.0519

Figure 4.14: Box plot of the IGD achieved using the three methods (the central line

in every box represents the median; the average IGD using each of the algorithms is

shown as a numeric value)

can be seen from Table 4.8, c-SDMOPSO yields a significantly better measure of IIGD,

which indicates a closer approximation of the true Pareto front for the multi-objective

optimisation problem under investigation. Furthermore, a better approximation is

achieved by c-SDMOPSO consistently across all experimental runs as the box plot in

Fig. 4.14 demonstrates.

The approximated Pareto fronts PFapproxi obtained by each algorithm under in-

vestigation are shown in Fig. 4.12; these PF s are combined together where only the

non-dominated solutions are kept (see Fig. 4.13) to form the reference set (PFref ) used

for obtaining quantitative comparative characteristics. A visual analysis of Fig. 4.12
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Table 4.9: Cardinality measure results for the three algorithms

MOEA/D NSGA-II c-SDMOPSO

20% 36% 44%

reveals that in terms of finding the solution closest to the reference point z∗ in Eq. 4.15

(in our case - the origin), NSGA-II produces the best result.

However, if we take into consideration the diversity of the solutions found, it is

apparent that the c-SDMOPSO algorithm can provide the oncologists, who make deci-

sions on the most appropriate course of treatment, with a richer choice of options. This

is particularly relevant to curative treatments, represented by the trail of solutions in

the bottom right corner in Fig. 4.12 - the treatment schedules represented by these

solutions use considerable amounts of cytotoxic drugs and thus are primarily aimed at

curing cancer.

Moreover, if we examine the composition of the Pareto reference set PFref , shown in

Fig. 4.13 and summarised in Table 4.9, it becomes clear that almost half of the solutions

(44%) in the PFref have been found using c-SDMOPSO, proving the effectiveness of

this algorithm in the context of multi-objective chemotherapy optimisation.

Figure 4.15, Fig. 4.16 and Fig. 4.17 show the actual treatment schedules found

by MOEA/D (S1), NSGA-II (S2), and c-SDMOPSO (S3) respectively, which have also

been highlighted in Fig.4.12. These schedules represent dose sequences of anti-cancer

drugs listed in Tables 4.6 and 4.7 (the character strings along the y-axis contain the

first three letters of the drug names).

As can be seen from Fig. 4.15, MOEA/D prioritises the second optimisation ob-

jective (see Eq.4.13) that tries to minimise treatment toxicity. The schedule uses small

amount of drugs, and the only drug, substantial doses of which are administered, is

Prednisolon that does not have toxic side-effects on any of the organs listed in Table

4.6.

Figure 4.16 shows the treatment schedule found by NSGA-II. An interesting obser-

vation that can be made from this schedule is that it uses substantial doses of seven

(out of ten) drugs, but avoids administering the anti-cancer agent (Taxotere/Taxol)

with severe toxic effects on the majority of organs that are taken into account (see

Table 4.6).
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Figure 4.15: Drug doses for one of MOEA/D solutions

Figure 4.16: Drug doses for one of NSGA-II solutions
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Figure 4.17: Drug doses for one of c-SDMOPSO solutions

An interesting compromise is shown in Fig. 4.17, where one of the treatment sched-

ules found by c-SDMOPSO is illustrated. The schedule uses a smaller overall amount

of drugs, but initiates the treatment with two doses of Taxotere/Taxol, followed by the

administration of less toxic drugs.

4.4 Conclusion and Discussion

This section demonstrated the potential impact of the developed algorithms in real-life

applications. Despite the occasional need of modifying the algorithms to better suit

some problems the general framework of the algorithms have shown to be robust and

competitive to the state-of-the-art.

The first problem, channel selection for BCI, was first solved using a traditional bi-

nary representation which required a binary version of SDMOPSO. Binary-SDMOPSO

employs the velocity equation defined in Section 3.2. Binary-SDMOPSO replaces Eq.

2.3 with Eq. 4.1 and Eq. 4.3 in order to update the particle positions. Eq. 4.1 is a

limiting transformation function that normalizes the velocity value. Eq. 4.3 updates

the corresponding bit of the particle position directly by cloning bit from pbest, nbest

or keep it without change according to the static probability variable α.

In addition to that, Binary-SDMOPSO takes advantage of the simplicity of SD-

MOPSO, it does not use any evolutionary operators but instead it handles the early

convergences problem by making every particle in the swarm to pre-process its moves
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and to share this information with its neighbours. This results in a better exploitation

of the local information, which alleviates the effect of premature convergence to local

optima.

The results presented chapter show that Binary-SDMOPSO is competitive to other

state-of-the-art multi-objective optimization methods on the problem of channel selec-

tion for BCI. Although there was no significant difference in the classification accuracy

a significant difference in the number of selected channels was demonstrated between

OMOPSO and Binary-SDMOPSO with no significant difference with MOEA/D.

The results of Binary-SDMOPSO support the previous findings in (Hasan et al.

(2010)) on the usefulness of multi-objective view of the channel selection problem in

BCI. In general, MOEA/D and Binary-SDMOPSO were less prone to outliers (channels

that can not be credited to motor-imagery movements) than OMOPSO. This is reflected

by the smaller number of channels selected and their distribution.

A continuous presentation of the channel selection problem in Brain-Computer In-

terfaces was also introduced within the framework of D2MOPSO to offer a more natu-

ral way of solving the problem aiming at higher classification accuracy with lower num-

ber of selected channels. The usage of this presentation is not limited to D2MOPSO

but can easily be adopted in any other multi-objective (or even single objective) opti-

mizer capable of solving continuous problems (e.g. GA).

The continuous presentation has an advantage of better exploring the search space

by exploiting the spatial relationships among channels rather than looking at the chan-

nel selection problem as a discrete problem where channels are considered spatially

independent, which is demonstrated in Figure 4.11 and Figure 4.8.

In a typical scenario, a particle (assumed to be looking for one channel for simplicity)

will start from a random location within the 2D cap space and then navigate through

the channels to find the one channel that achieves the highest accuracy. When more

channels are needed the particle will use this navigability mechanism to maintain the

spatial relationship among channels resulting in a much homogeneous set of channels

for classification.

The results presented in Fig. 4.9 show predicted Pareto fronts (i.e. error rate goes

down with the increase of number of channels but only to a certain limit where the

error rate can increase again) for most subjects with some exceptions (e.g. Subject10

which showed an increase in error rate with the increase in the number of channels).
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The effectiveness of the multi-objective approach is minimizing the number of chan-

nels that can be used with insignificant sacrifice in accuracy is not discussed in the con-

tinuous presentation study in detail as this was previously studied and demonstrated in

(Hasan et al. (2010); Moubayed et al. (2010)). However, Figure 4.9 details the different

solutions obtained for each subject and it shows for most subjects similar results to

these found in (Hasan et al. (2010); Moubayed et al. (2010)).

The results presented here are based on synchronous BCI design (i.e. the timing

is controlled by the system) for the continuous presentation but self-paced (i.e. the

timing is controlled by the participant). The Synchronous problem is usually easier to

study and analyse. For this reason it was chosen for the continuous presentation study

to eliminate any implicit bias caused by the self-paced paradigm.

The chapter then moves to describe a customised version of Smart Multi-Objective

Particle Swarm Optimisation using Decomposition (c-SDMOPSO) and shows how it

can be applied to the multi-objective problem of cancer chemotherapy optimisation.

The novel features of c-SDMOPSO relate to the way how this algorithm integrates

the global information, the personal particle experience, and the local neighbourhood

information in the process of updating the velocities and positions of swarm particles

so that they are directed to potentially better regions in the solution space. The global

information is represented by the location of the swarm leaders, where the leaders

selected are non-dominated particles equally distributed in the objective space. Also,

the c-SDMOPSO algorithm normalises the values for different optimisation objectives

before their aggregation in order to provide equal objective priorities. In order to avoid

premature convergence, the particles in c-SDMOPSO update their positions regardless

of their aggregation values.

To demonstrate the effectiveness of c-SDMOPSO applied to the optimisation of

chemotherapeutic treatments, its performance is compared with that of two other Com-

putational Intelligence algorithms used for multi-objective optimisation and in multi-

criteria decision-making, namely NSGA-II and MOEA/D. The results obtained during

the comparative study demonstrate that c-SDMOPSO finds solutions to chemotherapy

optimisation problem of similar quality, but in larger quantities. One practical impli-

cation of this outcome is the possibility of providing a more advanced decision support

to the oncologists involved in seeking the most suitable treatment strategies.
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Further work in this problem domain could explore multi-objective optimisation

of combined cytostatic and cytotoxic cancer chemotherapy as suggested in (Villasana

et al. (2010)). This would necessitate the use of more complex mathematical mod-

els describing drug actions that take into account pharmacokinetic/pharmacodynamic

characteristics of anti-cancer agents and the occurrence of drug resistance in tumour

cells.

Another direction of research relates to the ability of Computational Intelligence

algorithms to incorporate user preferences (in terms of optimisation objectives and

control factors) that can change over time, and to prune the solutions found so that

the decision-maker is provided with sufficiently dissimilar (Liang et al. (2008)) options

applicable to different treatment scenarios.

The application of MOEA on real-life problems raises a serious concern regarding

the evaluation of the solutions generated by the optimizers. Different quality assess-

ment measures usually results in conflicting conclusions with some using an indicator

approach and others a probabilistic approach. The next chapter discusses the limi-

tations of the state-of-the-art in performance assessment for MOEA and proposes a

mutual-information based alternative which defines an indicator that utilizes probabil-

ity density functions. The defined indicator is more robust and reliable comparing to

the state of the art as the next chapter will show.
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Chapter 5

Mutual Information for

Performance Assessment of Multi

Objective Optimisers

“The problems are solved, not by giving new information, but by arranging what we

have known since long. ”

Ludwig Wittgenstein
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5.1 Introduction

So far the quality assessment of the solutions produced by the methods developed in this

thesis is based on established quality measures. Assessing the quality of multi-objective

solutions, however, and comparing the performance of different multi-objective opti-

misers is still not very well understood. Current trends either model the outcome of

the optimiser as a probability density function in the objective space, or defines an

indicator that quantify the overall performance of the optimiser. In this chapter an

approach based on the concept of mutual information is proposed. The approach mod-

els the probability density function of the optimisers’ output and use that to define

an indicator, namely the amount of shared information among the compared Pareto

fronts. This new approach is tested on several datasets within a unified framework

to compare it with other quality measures. The strength of the new approach is not

only in better assessment of performance but also the interpretability of the results it

provides.

In the infancy of this field of research visual comparison was used as the norm

to qualify the performance of the optimizers. The field, however, has grown out of

this simple approach and a separate field has developed to assess the performance of

multi-objective optimizers.

As with single objective optimisation, two factors are important when assessing a

multi-objective optimiser: the quality of the found solutions, and the time spent to

find them. However the stochastic nature of evolutionary algorithms results in the

relation between time and quality not fixed, but rather represented by a probability

distribution function. Hence, when discussing quality in evolutionary algorithm we need

to look at it from a probabilistic point of view. In addition having a set of solutions

(Pareto front) instead of a single outcome of the multi-objective optimisation process

makes quantifying the quality of these solutions much harder. This is added to having

multiple runs and the necessity to statistically quantify the behaviour of the optimiser

over these runs increases the difficult of quality assessment (Fonseca et al. (2005b)).

According to a review by Fonseca et al. (2005b), there are two main approaches

for quality assessment: a) model the outcome of the optimizer as a probability density

function in the objective space. b) the indicator approach which quantifies the outcome

of a run with a number with statistical analysis applied to these performance values.
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Several studies emphasized the importance of design and application of quality measures

and especially how the statistical tests are applied and interpreted (Knowles & Corne

(2002); Okabe et al. (2003); Zitzler et al. (2003b)).

This chapter introduces a novel approach for performance assessment of multiobjec-

tive optimizers. The approach uses mutual information as a measure which combines

the probabilistic approach and the indicator approach. Calculating mutual information

requires probabilistic modelling the measured variables and then a mutual information

based indicator is defined based on this modelling. Initially the objectives are consid-

ered independent and mutual information is calculated separately for each objective and

then a weighted sum approach is used to define an indicator. However, this approach

has some disadvantages which are discussed and an alternative indicator is proposed

which models the Pareto fronts as images. Mutual information is then calculated be-

tween these images. To validate and test this method, eight problems are tested using

three popular multi-objective optimizers and the results are tested using three popular

indicators in addition to mutual information.

5.2 Measuring Quality of Multi-objective Optimizers

In principle the easiest way to compare between two multi-objective optimizers’ per-

formance is by comparing directly the resulted output of the two methods (e.g. using

an indicator of quality like the ones will be discussed later). This would work if the

optimizers are deterministic, i.e. running the optimizer twice will return the same

results.

Multi-objective evolutionary algorithms are stochastic in nature, due to the random

element in the algorithms, i.e. running the algorithm twice would most likely produce

a different set of results. For this reason the optimizer should be run several times

and the probability density function is then empirically estimated. Comparing two

optimizers would then mean comparing their probability density functions which then

implicate the issue of statistical hypothesis testing (Fonseca et al. (2005a)).

In the literature, there are two main approaches to assess the quality of produced

PFs. The most common one is the indicator approach where a PF is mapped, using a

defined function, to a real number then a standard statistical hypothesis test is applied

on the indicator values. The second approach is usually referred to as the attainment
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function method in which for each objective vector there is a probability p that the

produced approximation set contains an objective vector that weekly dominates z.

The attainment function then gives a probability estimate of z to be attained in one

optimization run with a statistical test procedure to count for all the runs (Grunert da

Fonseca et al. (2001)).

Using quality indicators is an attractive approach of quality assessment due to its

simplicity. It has , however, some shortcomings:

• each indicator looks at the performance from only one perspective, e.g. spread,

diversity, or dominance, which may skew the conclusions drawn.

• In the case of incomparable PFs an indicator will actually give an inaccurate

result.

• For indicators that use distance functions, outliers can cause a real problem in

disturbing the calculation of the indicator.

• Quality indicators do not take the statistics of the data in the objective space

into account which can be vital information to properly assess the quality of the

performance.

Fonseca et al. (2005b) discussed other important aspect that should be considered

when using quality measures such as scaling and normalization and the possible com-

bination of quality measures.

The attainment function method, on the other hand, distances itself from the indi-

cator approach by estimating probability density functions of the attained objectives

and then apply statistical tests to compare among the different PFs, which circumvents

most of the issues raised by the use of quality indicators but on a high computational

expenses that they cannot be used for large number of objectives.

The approach adopted models the output of the optimizer directly as an empirical

probability density function and then calculates the mutual information between the

approximated PF and the theoretical one. The higher the mutual information the closer

the approximation to the theoretical.
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5.3 Methods

In this section we begin by defining the theoretical concepts behind mutual information.

This is followed by description of how these definitions can be used to assess the quality

of multi-objective optimizers.

5.3.1 Mutual Information

Intuitively speaking, mutual information measures how much information are shared

between two random variables X, Y . In other words how much knowledge of one

variable reduces the uncertainly about the other. Formally, mutual information is

defined as follows:

I(X,Y ) =
∑
Y

∑
X

p(x, y)log
p(x, y)

p(x)p(y)
(5.1)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution functions of X and Y respectively with

summation replaced by an integral in the case of continuous random variables.

I(X,Y ) measures the distance between the joint distribution/density functions of

X and Y . And since mutual information is measuring distance it is always positive,

i.e. I(X,Y ) ≥ 0, and symmetric, i.e. I(X,Y ) = I(Y,X).

If the two variables are dependent, then I(X,Y ) measures the shared information

between the two variables and it would be positive. If on the other hand, they are

independent, then I(X,Y ) = 0.

In practice and for numerical stability during implementation the multiplication/division

of probabilities is rewritten as a subtractions of log probabilities:

I(X,Y ) =
∑
Y

∑
X

p(x, y)
(

log p(x, y)− log p(x)− log p(y)
)

(5.2)

To complete the calculation of MI, the joint and marginal probabilities should be

calculated. To estimate the joint probability distribution/density function a two dimen-

sional histogram is used (Scott (1979)). The histogram is a classical non-parametric

density estimator. It estimates the probability density function of a random variable

X from a set of observed values {x1, . . . , xn} by dividing the space between minxi and

maxxi into L bins and then counting the number of observed values xi that fall into
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each bin. Once the density of p(x, y) is estimated the marginal probabilities are easily

calculated as p(x) =
∑

y p(x, y) and p(y) =
∑

x p(x, y). This approach is similar to the

approach used in (Peng et al. (2005)).

The mutual information as defined in the present context is not normalized, i.e. it

can take any positive value. Here we use a normalized version as defined in Witten &

Frank (2005):

U(X,Y ) = 2
I(X,Y )

H(X) +H(Y )
(5.3)

where H(X), H(Y ) are the marginal entropies of X and Y respectively. Please refer

to Witten & Frank (2005) for more on how to calculate the entropy function.

Mutual information has drawn a lot of attention mainly due to its simplicity and ro-

bustness. It has been applied in a wide range of applications, e.g. the image registration

of Magnetics Resonance Imaging (MRI) (Frackowiak (2004)) and the dimensionality re-

duction through feature selection in classification (Peng et al. (2005)).

5.3.2 Measuring Quality with Mutual Information

The way mutual information is applied would differ depending on the independence as-

sumptions among the objectives. The definition in Sec 5.3.1 is only valid for univariate

random variables, so if we work on the assumption that the objectives are all indepen-

dent then mutual information can be measured separately between the approximated

PF and the true PF, one objective at a time and then the mutual information indicator

is defined as:

IMI(A,B) =

n∑
i=1

αiU(Ai, Bi) (5.4)

where A is the approximated PF, B is the true PF, Ai is the values of objective i

from the PF A, U is the normalized mutual information function defined in Eq.5.3, n

is the number of objectives, and α is the weight vector where αi ≥ 0 and
∑n

i=1 α = 1.

The goal of the weight vector is to account for the cases where not all objectives have

the same priority so the objective with higher priority is given higher weight value.

The result of this indicator quantifies how much the approximated PF reduces

uncertainty about the true PF. The higher IMI then the better approximation A is to

the true PF.
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Figure 5.1: An example of two unequal PFs with the same histogram. The blue PF (A)

is the true PF for ZDT1 and the red PF (B) is a shifted copy of the blue PF. IMI(A,A)

= IMI(A,B) = 1.

On the positive side, this is a simple measure that can be applied to any MOP

regardless of the shape of the Pareto front. It does not require a reference point and does

not depend on one aspect of the data like spread or diversity. However, if the number of

points in either A or B is low then the estimation of the probabilities will not be reliable

and so would be IMI , but this is not the case in the majority of MOPs. Another major

drawback of this indicator is that the histogram estimation would allow two unequal

PFs to produce the same IMI if they have similar histograms, as demonstrated in

Figure 5.1. To circumvent this problem a novel method for mutual-information based

indicator is proposed in the next section.

5.3.3 Processing Pareto Fronts as Images

The main idea is to create a pixel-based image for each PF, and then calculate mutual

information among these newly created images. In order for these images to be com-

parable they should all have the same resolution per dimension (i.e. objective), have

the same origin and the same image size.

Given iA: the image of the approximated PF A and iB: the image of the true PF
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B then a new indicator is defined as:

IiMI(A,B) = U(iA, iB) (5.5)

where U is the normalised mutual information defined in Eq. 5.3.

The highest resolution possible for the images is the minimum difference between

two adjacent points of all the PF of interest which might be a very high resolution

that the generated images would be extremely large to be practical for processing,

so the resolution can be reduced in order to generate images of reasonable size. A

careful balance must be maintained as low resolution images could lead to a large lose

of information affecting the quality of the measure itself. Algorithm 5.1 summarizes

the steps to create the PF images.

Algorithm 5.1 Create Pareto Front Images

PFs = Scale(PFs)

ratio=CalculateRatio(PFs,Resolution)

for i=1 to N do

for j=1 to length(PFsi) do

pixelIndex=PFsi(j)*ratio.

PFImage(pixelIndex)=1;

end for

end for

where PFs is the set of all Pareto fronts to be compared, PFsi is the PF number

i, and N is the total number of PFs. Scale(PFs) ensures all PFs have the same origin

by subtracting the minimum objective value among all the PFs from all the PF points.

CaculateRatio(PFs) calculates the ratio between the required resolution and the maxi-

mum objective value among all PFs which is necessary to project from objective space

to the image pixel space (voxel space for the case of three objectives and so on). The

ratio actually represents the loss of information when shifting from the objective space

to the image space as, naturally, each pixel would average small region of the, usually

continuous, objective space. The higher the ratio the smaller the loss of information.

Going back to the problem of unequal PFs with equal histograms. If we used the

new measure as an indicator in Fig.5.1, then IiMI(A,A) = 1 and IiMI(A,B) = 0.0018

which clearly shows that the problem is resolved.
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5.3.4 Handling Outliers:

One of the main features of any quality indicator is its ability to handle outliers in the

approximated PF. Outliers can cause a bias in the quality measure calculation especially

if a distance measure is used. Some measures try to reduce this effect, for example IIGD

is calculated by starting from the true PF and then trying to find the closest points in

the approximated PF. Although this minimizes the effect of outliers, it still does not

provide a fair comparison as it will give the same value for an approximated PF with

or without the outliers.

Figure 5.2 demonstrates this effect . In this example we created a hypothetical true

PF and approximated PF that contains some outliers. To check the robustness of the

quality indicators we calculate the value of the indicator using the approximated PF

with and without the outliers, Table 5.1.

Figure 5.2: The blue dots belong to a hypothetical true PF. The red dots belong to a

hypothetical approximated PF. The dots within the circle belong to the approximated

PF and are considered outliers.
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Table 5.1: Values of the quality indicators with and without outliers in the approxi-

mated PF.

Indicator Without Outliers With Outliers

IIGD 0.0145 0.0145

Ihv 0.2284 0.2332

Iε 0.3911 0.3911

IiMI 0.0008 0.0007

5.4 Experiments

It is usually tricky to evaluate the evaluation metric. We tackle this issue indirectly by

comparing the results of three other quality measures and discuss how each, including

IiMI indicator, handle different cases of evaluation.

5.4.1 Selected Test Problem

To test the newly developed measure 5 standard two-dimensional MOPs are used:

ZDT1-ZDT4, and ZDT6 (Deb et al. (2005)). The selected test problems cover di-

verse MOPs with convex, concave, connected and disconnected PFs. These problems

were frequently used to verify the performance of several algorithms in the field of

multi-objective optimisation (Al Moubayed et al. (2011); Alvarez-Benitez et al. (2005);

Coello Coello et al. (2007); Deb et al. (2002); Nebro et al. (2008); Zhang et al. (2009)).

They were also used in Fonseca et al. (2005b) to compare among several common

indicators.

5.4.2 Experimental Setup

The test MOPs are solved using three popular multi-objective optimisation methods:

• NSGAII Deb et al. (2002): uses a fast non-dominated sorting approach.

• SPEAII Zitzler et al. (2001): uses an external archive of the generated solutions

with a clustering method to maintain diversity.

• IBEA Zitzler & Künzli (2004): computes tness values by comparing individuals

on the basis of an arbitrary binary quality indicator.

151



5.5 Results and Discussion

These are the same methods used to test the performance assessment framework in

Fonseca et al. (2005b). D2MOPSO was not used here as the assessment measure is

general by definition to the output of any multi-objective optimizer so I opted to use

only commonly used algorithms.

For each MOP the three methods were run 30 times using a population of 300

individual and lasted for 250 generations.

The quality of the approximated PFs from the five MOPs is measured using four in-

dicators: IIGD, Iε, Ihv, and IiMI . For IiMI calculation a resolution is set to 1000X1000.

5.5 Results and Discussion

To demonstrate the results of the approximated PF using the three methods and tested

by the four indicators, for each MOP four plots are generated each for each indicator.

Each of these plots contains a box plot representation of the values of one indicator

applied on the 30 runs for each of the three methods. The line in the centre of a box

represents the median with the edges of the box at the 25 and 75% levels and the outer

lines the 5 and 95% levels. Figures 5.3 - 5.7 show all the results for the ZDT family.

To further analyse and understand the performance of the different methods a non-

parametric statistical significance test is performed, namely Wilcoxon rank sum test.

The test compares between the values of the indicator of two methods at a time for

each MOP. If a significant difference is found p < 0.05 then the difference between

the median of the two sets is calculated based on this difference we can tell which

of the two methods performed better as stated by the indicator. For example in the

case of IIGD the smaller the indicator value the better the approximation of the PF,

so if median(IIGD(A,PF ))−median(IIGD(B,PF )) > 0 then method B is considered

better than method A in terms of IIGD. This is the same for Iepsilon and the opposite

for IiMI and Ihv.

Tables 5.2-5.5 demonstrate these results, where 4 means that the method in the

column is significantly better than the method in the raw. / indicates that the method

in the raw is significantly better than the method in the column. Because the compari-

son is symmetric the cell underneath the diagonal are left empty and so on the diagonal

as we are not comparing any method with itself.
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Figure 5.3: Results of ZDT1 using three algorithm: NSGAII,SPEAII, and IBEA com-

pared using four indicators: IIGD, Iε, Ihv, and IiMI .

Looking carefully at the figures and tables, the different indicators draw a rather

vague, and somehow confusing, picture about the performance of the different meth-

ods. Although most of the differences among the different methods are statistically

significant they do not always go in the same direction for different indicators. This

is a known issue in the quality assessment of multiobjective optimizers via indicators

Fonseca et al. (2005b). This is interpreted as different indicators provide different infor-

mation regarding the approximated PF so one can chose the optimizer based on what

is more relevant to the application.

The MI indicator seems to be giving a slightly different view from the rest of the

indicators. For instance, it is the only indicator to show no significant difference in

some cases which actually reflects more what we see from visual inspection of the

approximated PFs. It also usually shows less variance among the different runs and

fewer outliers (an outlier is represented by a red‘+’ sign in the box plots) which can be

credited to its probabilistic nature.
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Figure 5.4: Results of ZDT2 using three algorithm: NSGAII,SPEAII, and IBEA com-

pared using four indicators: IIGD, Iε, Ihv, and IiMI .

5.6 Conclusion

In this chapter we have presented preliminary results of a novel approach to use mutual

information as a quality measure of multionbjective optimisation algorithms. A new

indicator, IiMI , is defined that calculates the mutual information between two image

representation of the true and approximated PFs. The resulted measure quantifies the

reduction of uncertainty about the true Pareto front when the approximated PF is

known. In other words it measures the amount of information the approximated PF

tell us about the true PF. MI is always positive and equals to 1 when the approximated

PF completely match the true PF and 0 when the approximated PF does not hold any

information about the true PF.

By definition mutual information is only applied on univariate random variables and

hence an independence assumption is imposed among the objectives. If the objectives

are dependent, which would be the case in most problems, then the previous definition

of mutual information is not accurate. However, by transforming the PF to an image
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Figure 5.5: Results of ZDT3 using three algorithm: NSGAII,SPEAII, and IBEA com-

pared using four indicators: IIGD, Iε, Ihv, and IiMI .

all the dependency information are preserved and hence the indicator IiMI can be seen

as a multivariant approach.

Because the mutual information function uses estimated probability density func-

tions/ distributions, it is less affected by outliers and can produce a much more robust

results than the indicators that use distance functions.

The current results are obtained from only two dimensional data. However, the

same algorithms can be applied for higher dimension PFs .
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Figure 5.6: Results of ZDT4 using three algorithm: NSGAII,SPEAII, and IBEA com-

pared using four indicators: IIGD, Iε, Ihv, and IiMI .

Table 5.2: Statistical significance of the difference between the IIGD values for the

different algorithms applied on the 5 problems. A 4 means the method indicated by

the column is significantly better than that indicated by the raw, i.e. p < 0.05. /

mean the raw is significantly better than the column. - means there is no significant

difference, i.e. p > 0.05. The problems are ordered as follows: ZDT1-ZDT4,ZDT6

NSGAII SPEAII IBEA

NSGAII / / / / / / / / / /

SPEAII 4 / 4 / 4
IBEA
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Figure 5.7: Results of ZDT6 using three algorithm: NSGAII,SPEAII, and IBEA com-

pared using four indicators: IIGD, Iε, Ihv, and IiMI .

Table 5.3: Statistical significance of the difference between the Iε values for the different

algorithms applied on the 5 problems. A 4 means the method indicated by the column

is significantly better than that indicated by the raw, i.e. p < 0.05. / mean the raw

is significantly better than the column. - means there is no significant difference, i.e.

p > 0.05. The problems are ordered as follows: ZDT1-ZDT4,ZDT6

NSGAII SPEAII IBEA

NSGAII / / / / / 4 / / / 4
SPEAII 4 4 / / 4
IBEA
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Table 5.4: Statistical significance of the difference between the Ihv values for the dif-

ferent algorithms applied on the 8 problems. A 4 means the method indicated by the

column is significantly better than that indicated by the raw, i.e. p < 0.05. / mean the

raw is significantly better than the column. - means there is no significant difference,

i.e. p > 0.05. The problems are ordered as follows: ZDT1-ZDT4,ZDT6.

NSGAII SPEAII IBEA

NSGAII / / / 4 / 4 4 / / 4
SPEAII 4 4 / / 4
IBEA

Table 5.5: Statistical significance of the difference between the IiMI values for the

different algorithms applied on the 8 problems. A 4 means the method indicated by

the column is significantly better than that indicated by the raw, i.e. p < 0.05. /

mean the raw is significantly better than the column. - means there is no significant

difference, i.e. p > 0.05. The problems are ordered as follows: ZDT1-ZDT4,ZDT6.

NSGAII SPEAII IBEA

NSGAII − 4 − − − − 4 44 4
SPEAII 4 4 4 − 4
IBEA

158



Chapter 6

Conclusions

“ I think and think for months and years. Ninety-nine times, the conclusion is false.

The hundredth time I am right. ”

Albert Einstein
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6.1 Summary of Contributions

The thesis provides advances to several areas of research within the field of multi-

objective evolutionary optimisation in general and multi-objective particle swarm op-

timisation in particular. The thesis presents novel solutions to the combination of

multi-objective PSO and decomposition. First decomposition is employed to define the

neighbourhoods in MOPSO which resulted in the algorithm SDMOPSO. D2MOPSO

on the other hand applied decomposition for leader selection and combined that with a

novel archiving technique which maps the solution and objective spaces using crowding

distances in both spaces. A general framework for is also introduce which maps the

solution and objective spaces using clustering. The methods are validated on several

standard test suits and two real-life problems: Channel selection for Brain-Computer

Interfaces and Treatment doses for Cancer Chemotherapy. Finally the thesis provide

a new method for the assessment of multi-objective optimisers. Following is a detailed

description of the contribution of this thesis and a perspective of the possible future

work.

6.1 Summary of Contributions

The thesis contributes to the field of evolutionary multi-objective optimisation in gen-

eral and multi-objective Particle swarm optimisation in particular. The main contri-

butions can be summarized as follows:

• Multi-objective particle swarm optimisation based on decomposition: In this

thesis solutions are presented to incorporate the concept of decomposition into

MOPSO. First the neighbourhood relations among particles is changed in MOEA/D

to accommodate PSO which in turns modifies the information flow during optimi-

sation. This leads to better exploitation of local information among the particles.

The results of SDMOPSO is highly competitive to the state of the art in both

MOPSO and evolutionary multi-objective algorithms.

The next challenge was to address the issue of archiving the solutions found dur-

ing the optimisation process. A novel approach was first proposed which maps

the solutions and their corresponding objective values. This is done by clustering

both spaces and then find a mapping between the clusters in both spaces which is

developed as a general framework for archiving. Although, this approach proved
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effective it is too computationally expensive. The framework, however, is gen-

eral enough for the clustering to be substituted with another measure and to be

incorporated with almost any evolutionary multi-objective algorithm.

Finally, a new optimisation algorithm (D2MOPSO) is proposed, which also in-

corporates decomposition as a measure to select among leaders and it also uses

crowding with ε-dominance as a metric to replace clustering in the proposed

archive. These methods are tested on standard optimisation problems and are

extensively tested. The results on test suits are very competitive and show very

promising results not in terms of approximated PFs alone but also in terms of

computational complexity and performance. D2MOPSO is currently considered

the state of the art in MOPSO and has outperformed all the newly developed

methods in the literature that combines decomposition and MOPSO.

• Real-world applications for the developed methods: The proposed algorithms

were tested on two real-life problems: Channel selection for Brain-Computer In-

terfaces (BCIs) and the finding of effective cancer chemotherapeutic treatments.

The methods are tested against the-state-of-the-art in the respective fields. The

results obtained from both problems show significant improvement when using

SDMOPSO and D2MOPSO. These results were confirmed and approved by

experts in the respective fields.

In the channel selection problem for BCI I also proposed a novel problem repre-

sentation which represents the problem in a continuous, rather than discrete, 2D

space which suits better the nature of PSO. The results on BCI show significantly

better results not in terms of accuracy alone but also the interpretability of the

results and the distribution of the channels in relation to what is known from

neuroscience studies.

The solutions to chemotherapy optimisation problem of similar quality to the state

of the art, but in larger quantities. One practical implication of this outcome is

the possibility of providing a more advanced decision support to the oncologists

involved in seeking the most suitable treatment strategies.

• Mutual Information based assessment of multi-objective optimisation methods:

This is a novel assessment method for multi-objective optimisers. For the first
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time the assessment method is based on estimating the probabilistic distribution

of the solutions with a definition of an evaluation metric. A method is proposed

which sees the Pareto front as a pixelated image which are then compared using a

defined as the mutual information between the images representing Pareto fronts.

The new metric is superior to other measure as it is robust to outliers and is not

based on single property of the data as it looks at the distribution of the whole

approximated PFs.

The work resulted in one journal paper and 8 conference papers (including 4 book

chapters) in highly ranked conference in the field.

6.2 Future Work:

• The leaders selection is an extremely important step for all MOPSO methods.

However, more work is still needed to understand the actual effect and study the

movement of the particles accordingly.

• Storing all none-dominated particle is not only unpractical but also is not feasible

for most applications. Maintaining the leaders archive under a size restriction

is very important. More studies are needed to show how this can effect the

optimisation process and the convergence speed for the PF formed.

• Hybrid algorithms: the thesis showed that combining techniques from, usually,

independent approaches can be very beneficial. This is becoming more trendy

in the field but more work is necessary to take advantage of advances in several

fields of computational intelligence in general and evolutionary optimisation in

particular. Hybrid MOPSOs in particular have proven their effectiveness in the

field, so the combination of several MOPSOs seems like a potentially interesting

area to investigate.

• The introduction of machine learning techniques in quality measure, archiving,

and leaders selection have very promising future and needs to be investigated

more. A potential area of application can be on the very expensive problem, i.e.

when the evaluation function is very expensive or time consuming to conduct.
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Machine learning approaches can help prioritising the evaluations and hence re-

ducing the need for unnecessary evaluations.

• Methods validation: The proposed methods are validated on two real-life prob-

lems in addition to the standard test problems. However, testing on more real-life

problems will help understand the performance of the methods better and hence

potentially enhance the methods. This approach of evaluating new algorithms

on real-life problems as well as test suits is a very important step froward for

the field. As we have seen in this thesis different applications will have different

requirements which will as a result affect the design of the optimisation algorithm

itself to accommodate for these requirements.

• The developed archiving technique is a general one that can be applied for any

evolutionary multi-objective optimiser. It is of interest to study the impact of the

new archive on other state-of-the-art evolutionary algorithms other than MOPSO.

It is also of a great interest to provide analytical understanding of the effect of

this archiving technique on the optimisation process.

• The mutual information assessment measure must be studied in more detail espe-

cially for problems with more than two objectives. Although in theory it should

perform similarly to what been presented here, experimental tests might be nec-

essary to confirm this. Other information-based and multivariate statistical tests

can be very interesting in this domain. The future of these measure should be

more dependent on the distribution of the solutions and not only on measures

that take one, or few, aspect(s) of the data.

6.3 In Conclusion ...

The thesis offers comprehensive solutions to several aspects of multi-objective optimisa-

tion using decomposition with the framework of PSO. The thesis proposes novel archiv-

ing techniques with two MOPSO algorithms (SDMOPSO and D2MOPSO) which are

demonstrated to outperform the state of the art on standard test suits and real-life

problems. The channel selection problem for Brain-Computer Interfaces and the regu-

lation of Cancer chemotherapy treatments are both solved using the newly developed
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methods which also resulted in advances in the problem representation in either fields.

Finally a novel quality measure was developed based on mutual information which

overcomes shortcoming and limitations of the traditional quality measures by using

the distribution of the solution to define the metric. The work resulted in one journal

article and eight conference papers published in the highest ranking publication outlets

in the field.
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