
 
 

 
 

OpenAIR@RGU 
 

The Open Access Institutional Repository 
at Robert Gordon University 

 
http://openair.rgu.ac.uk 

 
This is an author produced version of a paper published in  
 

Journal of Chemical Technology and Biotechnology (ISSN 0268-2575, 
eISSN 1097-4660) 

 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

MCCULLAGH, C., SKILLEN, N., ADAMS, M. and ROBERTSON, P. K. J., 
2011. Photocatalytic reactors for environmental remediation: a 
review. Available from OpenAIR@RGU. [online]. Available from: 
http://openair.rgu.ac.uk 

 
 

Citation for the publisher’s version: 
 

MCCULLAGH, C., SKILLEN, N., ADAMS, M. and ROBERTSON, P. K. J., 
2011. Photocatalytic reactors for environmental remediation: a 
review. Journal of Chemical Technology and Biotechnology, 86 (8), 
pp. 1002-1017. 

 
 

 
Copyright 

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 
details. The item will be removed from the repository while the claim is investigated. 

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk


file:///H|/OpenAir%20documents%20and%20files/Morgan%20Adams/Adams%20JCTB%20statement.txt[07/11/2014 14:05:46]

 This is the accepted version of the following article: MCCULLAGH, C., SKILLEN, N., ADAMS, M. and 
ROBERTSON, P. K. J., 2011. Photocatalytic reactors for environmental remediation: a review. Journal of Chemical 
Technology and Biotechnology, 86 (8), pp. 1002-1017, which has been published in final form at 
http://dx.doi.org/10.1002/jctb.2650



1 
 

Photocatalytic reactors for Environmental Remediation: A review. 1 

 2 

Cathy McCullagh, Nathan Skillen, Morgan Adams and Peter K.J. Robertson* 3 

IDeaS, Innovation, Design and Sustainability Research Institute, Robert 4 

Gordon University, Schoolhill, Aberdeen, AB10 1FR, UK 5 

*Corresponding Author: 6 

Tel:       +44 1224 263750 7 

Fax:      +44 1224 262759 8 

peter.robertson@rgu.ac.uk 9 

 10 

 11 

12 

mailto:c.mccullagh@rgu.ac.uk


2 
 

Abstract 1 

OVERVIEW 2 

Research in the field of photocatalytic reactors in the past three decades has 3 

been an area of extensive and diverse activity with an extensive range of 4 

suspended and fixed film photocatalyst configurations being reported. The key 5 

considerations for photocatalytic reactors, however, remain the same; effective 6 

mass transfer of pollutants to the photocatalyst surface and effective 7 

deployments and illumination of the photocatalyst. 8 

IMPACT 9 

Photocatalytic reactors have the potential versatility to be applied to the 10 

remediation of a range of water and gaseous effluents. Furthermore they have 11 

also been applied to the treatment of potable waters.  12 

APPLICATIONS 13 

Photocatalytic reactors are being scaled-up for consideration within waste and 14 

potable water treatment plants.  Furthermore systems for the reduction of 15 

carbon dioxide to fuel products have also been reported. 16 

Keywords: Photocatalyst, reactor, fluidised bed, immobilised film, suspended 17 

catalyst mass transport, rate control. 18 

19 
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INTRODUCTION 1 

The application of semiconductor photocatalysis in the fields of engineering and 2 

science is an important area of research which has grown significantly in the last 3 

three decades with increasing numbers of publications appearing every year 1-6. 4 

Semiconductor photocatalysis has been applied to a diverse array of 5 

environmental problems including air, potable and wastewater treatment.  This 6 

versatile process has also been utilised for the destruction of micro-organisms 7 

such as bacteria6, 7, viruses 8 and for the inactivation of cancer cells9, 10. 8 

Semiconductor photocatalysis has also been applied to the photo-splitting of 9 

water to produce hydrogen gas 11-14, nitrogen fixation 15-18 and for the remediation 10 

of oil spills 19-21.  11 

Heterogeneous photocatalysis for the remediation of polluted water streams falls 12 

into two distinct areas. Firstly the focus is on basic chemical transformations on 13 

semiconductor photocatalyst materials. These investigations have concentrated 14 

on the examination of basic photocatalytic processes such as including 15 

photocatalytic material science, surface interactions on photocatalysts, reaction 16 

mechanisms and kinetics that impact on the processes on a molecular level 1-5.  17 

 18 

In order to demonstrate the viability of semiconductor photocatalysis for 19 

environmental remediation, reactor design is an equally critical factor. Effective 20 

reactor design research and development aims to scale up lab bench scale 21 

processes to industrially feasible applications. Scaling up photocatalytic reactors 22 

is, however a complex process with many factors needing consideration to yield 23 

a technically and economically efficient process. These factors include 24 

distribution of pollutant and photocatalyst, pollutant mass transfer, reaction 25 
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kinetics and irradiation characteristics. The issue of effective photocatalyst 1 

illumination is particularly important as this essentially determines the amount of 2 

water that may be treated per effective unit area of deployed photocatalyst. A 3 

wide range of photocatalytic reactors have been developed and used in both 4 

basic research and pilot scale studies. The central problem of scale-up of 5 

photocatalytic reactors is the provision of sufficient high specific surface area of 6 

catalyst and the uniform distribution of illumination across this area. 7 

 8 

Mechanism of heterogeneous photocatalysis 9 

As a process for water purification, photocatalysis has vast advantages over 10 

many existing technologies. The technique can result in the mineralisation of 11 

pollutants rather than transferring them to an alternative phase, such as is the 12 

case with activated carbon adsorption. Furthermore photocatalysis does not 13 

require the use of hazardous materials such as hypochlorite, peroxide or ozone4. 14 

Titanium dioxide is the catalyst of choice as it is inexpensive, non-toxic, 15 

chemically stable and is highly photocatalytically active2.  TiO2 acts as a 16 

photocatalyst due to its electronic structure, characterised by an electronically 17 

filled valence band and empty conduction band22 separated by a band gap. If a 18 

photon of energy greater than or equal to the bandgap energy, Eg, is absorbed 19 

by TiO2, an electron is promoted from the valence band to the conduction band. 20 

This generates a reducing electron in the conductance band and an oxidising 21 

hole in the valence band (figure 1). The excited conduction band electrons may 22 

recombine with the valence band holes generating heat energy. Alternatively 23 

they may be trapped in surface states, undergo reactions with electron donating 24 

or accepting species that are adsorbed on the TiO2 surface. The electron and 25 
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holes formed are highly charged and result in redox reactions, which can 1 

ultimately result in the mineralisation of aqueous pollutants. Hydroxyl radicals 2 

are believed to be generated on the surface of TiO2 through a reaction of the 3 

valence band holes with adsorbed water, hydroxide or surface titanol groups (Eq 4 

2). The photogenerated conductance band electrons react with electron 5 

acceptors such as oxygen which generates superoxide (O2
-) (Eq 4). 6 

Thermodynamically the redox potential of the TiO2 electron/hole pair should 7 

enable the production of hydrogen peroxide, primarily via the reduction of 8 

adsorbed oxygen3, 23, 24(Eqn 1-7). 9 

 10 

              TiO2 + hν → TiO2(e-
cb + h+

vb)     (1) 11 

         h+
vb + OH-

,ads → OH•
,ads                         (2) 12 

           OH•
,ads + Reactant → Oxidised products           (3) 13 

            e-
tr + O2,ads → O2

•-    (4) 14 

           O2
•- + H+ → HO2

•     (5) 15 

                   HO2
• + HO2

• → H2O2 + O2       (6) 16 

                     H2O2 + e-
cb → ●OH + OH-        (7) 17 

 18 

 Figure 1 illustrates the basic processes involved in photocatalysis. 19 

 20 

Figure 1: 21 

 22 

 23 

 24 
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TYPES OF REACTOR CONFIGURATIONS 1 

A wide variety of reactor configurations have been reported in the literature over 2 

the past 30 years including:  3 

• annular photoreactor 25, 26,  4 

• packed bed photoreactor 27,  5 

• photocatalytic Taylor vortex reactor 28-31,  6 

• fluidised bed reactor 32, 33,  7 

• coated fibre optic cable reactor 34,  8 

• falling film reactor 35,  9 

• thin film fixed bed sloping plate reactor 36,  10 

• swirl flow reactor 37,  11 

• corrugated plate reactor 38.     12 

 13 

Table 1 shows a comprehensive yet not exhaustive overview of photoreactor 14 

type, reactant phase, experimental targets, catalyst employed and industrial 15 

applications.    16 

Table 1. 17 

Examples of these various reactors will be considered in the following sections. 18 

Suspended Liquid Reactors 19 

Slurry/Suspension systems 20 

TiO2 catalysts have been investigated in both slurry/suspension systems and 21 

immobilised systems. The main advantage of using photocatalyst slurries is the 22 

larger surface area compared to the immobilised system. The separation of the 23 



7 
 

nanometre catalyst particles is, however, expensive and is a major drawback in 1 

the commercialisation of this type of system 39. Nan Chong et al. 40 have reported 2 

the use of H-titanate nanofibres in an annular slurry photoreactor. They studied 3 

congo red as a model compound but one of the key advantages was the settling 4 

velocity of the catalyst. Using Kynch’s theory batch settling trials revealed that 5 

the H-titanate nanofibre photocatalysts resulted in a settling velocity of 8.38 x 6 

10-4-4 m s-1. The authors proposed that these novel nanoparticles could deliver a 7 

true engineering solution to catalyst separation on an industrial scale. It was 8 

also reported that it was difficult to effect irradiation of all the photocatalyst 9 

particles in the slurry in the unit due to shielding from the light source of the 10 

particles in the body of the unit form particles closer to the reactor walls.. 11 

Therefore depth of light penetration into the slurry reactor was restricted.  12 

 13 

It has been reported the ratio between backward reflected and incident photon 14 

flow is strongly influenced by the geometry within the reactor. The Apparent 15 

Napierian Extinctance (ANE) coefficient for slurries is a parameter which is 16 

related to the photon absorption rate41 . ANE depends on the particle size and is 17 

inversely proportional to the particle size where: 18 

     (ANE)λ= - ln (I/Io)   (8)  19 

I is the outgoing light intensity after interaction with catalyst suspension and Io 20 

represents the light intensity obtained in a blank setup. The absorption of light 21 

within slurry systems cannot be separated from scattering, which makes kinetic 22 

analysis of experiments more challenging 42.  23 
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An alternative approach is to attach the catalyst to a transparent stationary 1 

support over which the contaminated water passes. In such a system it is 2 

possible achieve effective illumination of all the photocatalyst deployed in the 3 

reactor 43, 44. There are, however, also problems associated with immobilised 4 

systems which include the dependence on mass transfer of pollutant to the 5 

photocatalyst surface and the ensuring effective access to the photocatalyst 6 

surface of both activating photons and reacting molecules to the photocatalyst 7 

surface45. The photocatalyst film thickness may affect the internal mass transfer 8 

as it may not be possible to access the photocatalyst material in the proximity of 9 

the support-catalyst interface. Each of these factors will result in a reduction in 10 

the rates of decomposition in immobilised film photocatalyst units when 11 

compared to slurry processes.  12 

 13 

An early slurry based reactor effected the complete mineralisation of chloroform 14 

to chloride and CO2 
46. This study was further supported by Kormann et al 47 who 15 

demonstrated the complete dehalogenation of chloroform but also illustrated an 16 

increase in [Cl-] as a function of time. Pramauro et al. 48 reported the complete 17 

degradation of monuron (figure 2a), a persistent herbicide, within one hours 18 

photocatalysis.    The reaction conditions investigated were simulated solar 19 

irradiation, TiO2 slurry and a batch reactor. Several intermediate products were 20 

determined after 30 minutes irradiation; these were not detected at the end of 21 

the irradiation time. The complete degradation and dechlorination of 3,4-22 

dichloropropionamide (figure 2b), another persistent herbicide was reported by 23 

Pathirana and Maithreepala 49 using a TiO2 suspension photocatalytic reactor.  It 24 

was reported that the dechlorination of the herbicide was dependent on TiO2 25 
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concentration, and higher photocatalyst levels caused TiO2 a shielding effect of 1 

the incident light. Li Puma and Yue 50 investigated the kinetics of degradation of 2 

single component and multi-component systems of chlorophenols.  They studied 3 

the simultaneous use of short, medium and long wavelength ultra-violet light to 4 

investigate the integration of simultaneous photocatalysis and photolysis. The 5 

optimal loading of photocatalyst for the geometry of their batch reactor via the 6 

oxidation of 2-CP to CO2 was determined as part of this investigation  with 7 

mineralization rates achieving a 3-fold increase up to a maximum photocatalyst 8 

loading of 0.5 mg L-1. In the single component experiments the kinetics were too 9 

complex to allow the authors to determine whether the photolytic pathway 10 

would be preferential to the photocatalytic pathway or vice versa. During the 11 

multi-component experiments they observed that the overall oxidation kinetics 12 

were controlled by the reactant in excess, as the substrate present in smaller 13 

concentrations was found to degrade at a much slower rate than that in the 14 

single-component experiments. Overall the authors demonstrated that the entire 15 

course of photocatalytic oxidation of single-component and multi-component 16 

systems of chlorophenols can be predicted satisfactorily using simple kinetic 17 

models that could be useful in the design and modelling of large scale 18 

photocatalytic reactors. This work was followed by studies of a pilot-scale 19 

continuous-flow laminar falling film slurry photocatalytic reactor (LFFSIW)51, 20 

which utilised commercially available UV lamps. A comprehensive investigation 21 

of this unit was reported looking at a range of parameters including; the 22 

wavelength and intensity of the incident irradiation source, the influence of 23 

additional oxidising reagents, the concentrations of both reactants and 24 

photocatalyst and the irradiation time. Li Puma and Yu also studied six different 25 

photon based processes, and determined that the UVC photocatalysis/UVC 26 
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photolysis/UVC peroxidation process was superior to UVA photocatalysis, UVC 1 

photocatalysis/UVC photolysis, UVA photocatalysis/UVA peroxidation, UVC 2 

photolysis/UVC peroxidation and UVC photolysis systems. The results of the 3 

experiments conducted at different incident radiation intensities clearly indicated 4 

that low-wattage UVC lamps were preferable to high-wattage UVC lamps 5 

because enhancements of reactor conversions due to higher lamp power were 6 

offset by an increase in electricity costs.  7 

FIGURE 2 8 

Further work by Li Puma and Yue 35 compared the effectiveness of a range of 9 

photooxidation processes in a falling film pilot reactor. They investigated UVA-10 

photocatalysis, UVA-photocatalysis-peroxidation, UVC-photolysis, UVC-11 

photolysis-peroxidation, UVC-photocatalysis-photolysis and UVC-photocatalysis-12 

photolysis-peroxidation. They selected salicylic acid as a model compound for all 13 

experiments. The highest conversion of salicylic acid was 58%, which was 14 

obtained with the UVC-photolysis-peroxidation process. Conversely the highest 15 

conversion to CO2 was obtained with the UVC-photocatalysis-photolysis-16 

peroxidation process (28%) and the lowest value was with the UVA-17 

photocatalysis process (1.7%). The mineralisation efficiency of the photocatalytic 18 

and the photolytic-photocatalytic processes was in the range 58-65%, far above 19 

that of the photolytic process which was in the range of 14-18%.  20 

 21 

San et al. 52 investigated the photodegradation of 3-aminophenol (3-AP) in a TiO2 22 

batch suspension photoreactor.  They reported that this process followed 23 

pseudo-first-order kinetics, with the apparent rate constant depending on the 24 
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initial 3-AP concentration. Furthermore the addition of electron acceptors 1 

enhanced the reaction rate significantly.  2 

 3 

A study of the adsorption and photocatalytic degradation of the safira HEXL dye, 4 

has been reported using a TiO2 slurry reactor53.  The authors concluded that the 5 

dye adsorption to the photocatalyst surface was critical for the efficient 6 

photocatalytic degradation. The process was also pH dependent with an 7 

improved degradation rate observed near the point of zero charge of TiO2. The 8 

slurry TiO2 catalyst has also been employed within an internally circulating 9 

bubble column reactor for the degradation of trichloroethylene with a removal 10 

efficiency of 97% reported54. Employing a photocatalyst filtration with a bubble 11 

column reactor and TiO2 slurry may be efficient process for the destruction of 12 

phenoxyacetic acid55. This overcomes one of the major drawbacks of slurry 13 

systems, separation of catalyst from remediated waste stream.  14 

 15 

Adams et al 56 reported the comparison of a standard flat plate reactor with a 16 

novel drum reactor57 for the removal of oil and gas hydrocarbon contaminants 17 

from water. The flat plate design was constructed from polymethylmethacrylate 18 

(PMMA) and was as a small scale lab unit, however, a ‘concertina’ designed 19 

reactor was proposed for the scale up. The drum reactor concept was a single 20 

pass continuous flow system for the treatment of waste water/effluents which 21 

utilised rotating paddles to ensure an even distribution of catalyst56 (figure 3).  22 

FIGURE 3 23 
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The reactor set up utilised three connecting drum reactors. The paddles 1 

positioned on the inside of the reactor drum were placed as to allow the removal 2 

of pellets from the reaction solution allowing for exposure to UV illumination 3 

before returning to the main stock56, 57. Dependant on the level of contaminant 4 

present the effluent would pass from one ‘drum’ to another for prolonged 5 

treatment. On average the sample would reside in each drum for approximately 6 

3 min with the overall reaction time at approximately 10 min. In the event of the 7 

final sample still being of a high hydrocarbon concentration the effluent would be 8 

recirculated into the system. As an attempt to develop a reactor deemed more 9 

environmentally efficient, pelletised catalyst was used to reduce downstream 10 

processing restrictions associated with the filtration of powdered catalyst. While 11 

both designs proved effective in the removal of hydrocarbons the drum reactor 12 

achieved 90 % removal in less than 10 min. This high level of reduction over a 13 

short period of time is attributed to samples passing through the 3 consecutive 14 

drums each with 200 g of TiO2 catalyst present, therefore utilising 600 g for the 15 

entire system. The flat plate design was investigated in regards to optimising 16 

conditions to provide maximum destruction. It was concluded that a lower 17 

angled plate increases retention times of compounds and thus a chance of 18 

successful catalyst-pollutant interface56. The addition of air and hydrogen 19 

peroxide to increase destruction proved effective with 80% degradation over 135 20 

min recorded for H2O2 compared to 40 % for air alone.   21 

In a subsequent paper McCullagh et al. 58 described the degradation of 22 

methylene blue (MB) in a slurry continuous flow drum reactor (figure 4). A 98 % 23 

degradation of MB over 60 min of illumination utilising a high loading weight of 24 

30 g L-1 of TiO2 pellets was reported. The investigation of different loading 25 

weights concluded that a maximum weight of 180 g of catalyst was attainable. 26 
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While 98% degradation was recorded for 30 g catalyst (Pellet form) over 60 min, 1 

the use of Degussa P25 as a photocatalyst was significantly more efficient with  2 

90% of the MB be decomposed within 20 min photocatalysis.  3 

FIGURE 4 4 

Further evaluation of the drum reactor has been carried out in the remediation 5 

of oily waste water (OWW) from an interceptor tank59. This study showed the 6 

unit achieved a 50% reduction in abundance for both decane and dodecane after 7 

90 min UV photocatalysis along with a >50 % abundance reduction in 8 

tetradecane. Following a further 90 min illumination period of the OWW in the 9 

reactor all volatile organic compounds (VOC) initially identified were almost 10 

completely removed. Additionally total organic carbon TOC was investigated 11 

showing a 35 % reduction in TOC for OWW samples passed twice through the 12 

reactor. The results highlighted demonstrate a high efficiency for a novel 13 

photocatalytic reactor with large scale applications as a polishing technique to be 14 

coupled with current water treatment processes 59.   15 

Mass Transfer Limitations within TiO2 slurry reactors 16 

Mass transfer within slurry reactors has not received a great deal of attention 17 

primarily as such problems have not been recognised as being major 18 

impediments to the application of a slurry reactor. Chen and Ray 60 did not 19 

observe either intra or extra particle diffusive limitations when working with a 20 

suspended solid reactor. Considering the optical thickness of the suspension 21 

Martin et al.61 found a loss in reactor efficiency when the optical thickness of the 22 

suspension was greater than an calculated optimum level. For large catalyst 23 

loading restrictions with mass and radiation transport inside the catalytic particle 24 

has been reported by Mehrotra et al. 62.  Peralta Muniz Moreira 63 found no 25 
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diffusion limitations within their reactor when pseudo 1st order kinetics were 1 

applied along with the Weiz and Prater criterion.  How mass transport influences 2 

the rate of reaction within slurry reactors is very important in order to obtain 3 

relevant kinetic information about the reaction but also for photoreactor design. 4 

Ballari et al. 64 investigated the effects of photocatalyst irradiation, photocatalyst 5 

loadings, flow rates, total suspension volume and changes in illumination length 6 

of the reactor. They found significant concentration gradients that were likely to 7 

cause limitations in mass transport resulted from the non-uniformity of the 8 

irradiation area. The authors state that these concentration gradients are difficult 9 

to avoid but could be eradicated if a fully developed turbulent flow operated 10 

within the reactor. They concluded that mass transport problems could be 11 

overcome using a 1 g/L catalyst loading, irradiation rates of 1 x 10-7 Einsteins 12 

cm-1 s-1 and effective mixing.  13 

 14 

Fluidised bed reactors 15 

The application of fluidised bed reactors have been extensively reported with 16 

round 1000 published on this topic over the past 6 years 32, 64-74. Fluidised bed 17 

reactors are capable of utilising an upward stream of fluid (gas or liquid) to allow 18 

particles in a stationary phase to be brought to a suspended or ‘fluidised’ state 19 

allowing for photocatalytic transformations to occur (figure 5).  20 

FIGURE 5 21 

The advantages of this style of reactors include:  22 

• a low pressure drop,  23 

• high throughput and  24 
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• high photocatalyst surface area which consecutively allows for increased 1 

catalyst-reactant interaction.   2 

 3 

In 1992 Dibble and Raupp66 used a flat plate fluidised bed reactor (figure 6) to 4 

photoxidise trichloroethylene (TCE). A quantum efficiency range of 2-13 % was 5 

achieved with a reaction rate peaking at 0.8µmol TCE (g of catalyst)-1 min-1 [2 6 

µmol/(g of TiO2)-1 min-1]. These results are significant in that they are 7 

comparable to results produced in a liquid-solid slurry system for the oxidation 8 

of TCE, specifically demonstrating an order of magnitude increase. TCE is a 9 

standard evaluation test carried out by many including more recently Lim and 10 

Kim who investigated a circulated fluidised bed reactor (CFDB) 67. The design of 11 

this reactor used a loop seal which allowed particles that were carried up by the 12 

air stream to flow back down and re-enter the system. Several other factors 13 

were investigated in this paper including UV wavelength, initial TCE 14 

concentration, circulation rate and O2 and H20 concentrations.  15 

FIGURE 6 16 

A two-dimensional fluidised bed reactor was used by Lim et al.75 in order to 17 

decompose NO. Reported in the research was efficient contact between the 18 

catalyst (P-25) and reactant gas (NO) which, when coupled with good UV-light 19 

transmission allowed for increased NO decomposition in comparison to an 20 

annular flow-type photoreactor. A series of altering conditions were tested as a 21 

means to increase photocatalytic efficiency including; initial gas concentration, 22 

residence time of gas, reaction temperature and irradiation intensity. A 23 

particular point of interest in this publication surrounded the superficial gas 24 

velocity and light transmission interaction. Results displayed in figure 7 show 25 



16 
 

increasing superficial gas velocity increased light transmission with light intensity 1 

significantly increasing at approx. 1.3 Umf (minimum fluidisation velocity) which 2 

equated to a sharp increase in NO conversion at 1.3 Umf. Below this value the UV 3 

light was not capable of transmitting through the catalyst bed. An increasing 4 

trend is observed until the Umf reaches 2.5, where a 70 % photocatalytic 5 

decomposition of NO was recorded. Conversion recorded after this point was 6 

regarded as a result of NO bypassing through bubbles and the reduction of gas 7 

residence time in the catalysts bed69, 75. Based upon their results Lim et al. 75 8 

concluded that NO photocatalytic decomposition required adequate residence 9 

time and an effective NO gas velocity to enable the appropriate bubble size 10 

formation enabling appropriate contact between UV light and the TiO2-NO 11 

system.      12 

 FIGURE 7 13 

Son et al.70 investigated the use of combined TiO2 particles with Al2O3 in an 14 

attempt to overcome the drawbacks associated with fluidised reactors for 15 

photocatalysis. Paz 65 reported that fluidisation of small particles such as P-25 16 

was challenging due to ‘drifting’ from the primary operation area in the unit. 17 

Combining the catalyst, however, with larger particles such as Al2O3 could 18 

eliminate this problem and as such many researchers use an Al-TiO2 catalyst. 19 

Son 70 focused on the decomposition of acetic acid and ammonia utilising a three 20 

phase photocatalytic system. Decomposition during the research was enhanced 21 

when carried out in the three-phase fluidised bed reactor, showed significant 22 

improvement over use in a steady reactor. Production of N2 and CO2 were 23 

monitored as means of measuring acetic acid and ammonia decomposition. In 24 

terms of acetic acid decomposition the fluidised bed showed increased efficiency 25 
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over that of a conventional steady reactor along with increased efficiency by the 1 

addition of Al-TiO2 instead of solely TiO2; the conversion of acetic acid to CO2 2 

reached approximately 90 % after 600 min with 10 mol% Al-TiO2. A similar 3 

trend was observed for ammonia decomposition with a conversion rate of >95 % 4 

being reached with 10 mol% Al-TiO2 compared to that of 70 % in the steady 5 

reactor. A point of interest is the suppression of the more undesirable products 6 

of NO2 and NO3 with the use of Al-TiO2 when compared to increased levels with 7 

pure TiO2. In a previous study which used a FeTiO2 material it was reported that 8 

the anatase structure of the catalyst transformed into a rutile structure after 9 

methanol destruction71. Son et al. 70, however, found replacing the Fe with Al 10 

produces a catalyst with increased stability, thus providing enhancing ammonia 11 

decomposition. They concluded from their results that the removal of VOC 12 

efficiency is increased by both the use of Al-TiO2 combined particles and a 13 

fluidised reactor.  14 

 15 

Nelson et al.72 reported the comparison of a fluidised TiO2 system for methanol 16 

oxidation with a packed bed reactor. They concluded that fluidisation resulted in 17 

faster rates of photocatalytic decomposition than achieved on the packed bed 18 

unit. A rate of 2.0 x 10-7 mol/cm3 cat/min for CO2 production was achieved for 19 

the fluidised reactor compared to a CO2 production rate of 1.0 x10-7 mol/cm3 20 

cat/min obtained with the packed bed reactor. It was reported that the use of 21 

both static mixing and vibration in the process to reduce photocatalyst 22 

separation rates was, however, only effective with Degussa P25 and not TiO2-23 

Al2O3. Overall TiO2-Al2O3 was found to be an effective photocatalyst which is in 24 

agreement with the results obtained by Paz 65.  25 
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 1 

The drawbacks to fluidising pure TiO2 has led to an increased number of papers 2 

reporting results using combined catalyst, demonstrated by Kuo et al. 32 who 3 

investigated the removal  of toluene vapours from a continuous gas stream. The 4 

specific limitations include the ‘loss or trapping’ of powder within a photoreactor 5 

due to the fine structure of TiO2. These problems can often result in the 6 

powdered catalyst ‘drifting’ away from the main area of operation. The 7 

investigation used activated carbon (AC) particles with a TiO2 coating to 8 

overcome any fluidisation problem and promote good evenly distributed catalyst. 9 

The research investigated the impact of altered relative humidity (RH), varied 10 

TiO2 loading weights, and the use of glass beads (GB) in replacement of AC 11 

along with and without the use of a reflector. The use of activated carbon solely 12 

is effective in the removal of toluene, however, upon saturation of the AC 13 

particles toluene removal decreased significantly. It was established that 30% 14 

RH was optimal for efficient toluene removal. Interestingly increasing RH did not 15 

result in increased rates of toluene removal suggesting there is competitive 16 

adsorption between water and toluene molecules at higher levels of RH. The 17 

degradation of toluene vapours was accredited to both the use of activated 18 

carbon and photocatalysis, however, saturation resulted in certain restrictions 19 

when solely using AC. The results displayed that the combination of AC removal 20 

of toluene and the photocatalytic removal could significantly extend toluene 21 

removal duration. In comparing the effectiveness of the two catalyst types it was 22 

found that the GB/TiO2 was half as effective as AC/TiO2 catalyst for toluene 23 

removal. 24 

 25 



19 
 

Voronstov et al. 74 also investigated the use of vibration to improve fluidisation of 1 

granular photocatalysts for the decomposition of gaseous acetone. A variety of 2 

fixed bed constructions were investigated together with the vibrofluidised bed 3 

system to enable an efficient comparison. The vibrofluidised bed system was the 4 

most effective with an 8.7 % in quantum efficiency being achieved. The high 5 

efficiency of the vibrofluidised bed was, interestingly, attributed to the external 6 

vibrations used together with the ‘periodic light phenomenon’. This phenomenon 7 

resulted from the eccentric movement photocatalyst movement within the 8 

reactor which consequently enabled increased absorption of scattered light.      9 

 10 

A fluidised bed system utilising an upward stream of air which brought TiO2 11 

pellets to a fluidised state has also been reported 76. The reactor consisted of a 12 

reaction chamber which contained a foraminated member supporting a bed of 13 

mobile photocatalysts along with an aeration device to allow for agitation of 14 

photocatalytic particles. The aeration device generated gas bubbles through a 15 

perforated shelf allowing agitating of photocatalysts. The reactor configuration 16 

was utilised for the treatment of waste water in a flow through style process. 17 

The reactor concept was designed to reduce or completely remove the need for 18 

moving parts, thus allowing for a reactor concept with a reduced foot print 19 

suggesting a more energy efficient design. To ensure the constant agitation of 20 

the particles the terminal settling velocity of the particles must not exceed the 21 

velocity of any upward flow of the liquid through the perforated shelf by more 22 

than 10 ms. The reactor retained the advantage of the use of pellets which both 23 

allow for reduced downstream processing and via agitation present a number of 24 

faces capable of excitation by illumination. 25 
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Immobilised Liquid Reactors 1 

Fixed bed 2 

Al-Ekabi and Serpone 77 investigated TiO2 supported on a glass matrix for the 3 

photo-decomposition of phenol, 4-chloropheol, 2,4-dichlorophenol, and 2,4,5-4 

trichlorophenol. The degradation followed first order kinetics with the reaction 5 

occurring on the surface of the semiconductor. The irradiation source was an 6 

AM-1 filter simulating solar irradiation. A fixed bed reactor system employing a 7 

fibre-optic cable (OFR) was reported by Pill and Hoffmann 34. The system was 8 

conceived to allow for remote light distribution to photocatalysts, to effectively 9 

determine of quantum yields through effective light flux measurement. 10 

Furthermore OFR allowed for reactor reuse to assess different coatings and light 11 

input angles, and to minimise potential heating and photocatalyst delamination. 12 

They anchored TiO2 particles onto quartz fibres and light was transmitted to the 13 

TiO2 particles via radial refraction of light out of the fibre. A maximum quantum 14 

efficiency of ø = 0.011 for the oxidation of 4-chlorophenol was achieved. This 15 

can be compared to a maximum quantum efficiency of ø = 0.0065 for 4-16 

chlorophenol oxidation in a TiO2 slurry reactor.  17 

This study was followed with an investigation into the application of the OFR 18 

system towards the photocatalytic degradation of pentachlorophenol, oxalate 19 

and dichloroacetate 34. Relatively high apparent quantum efficiencies of ø = 20 

0.010, 0.17, and 0.08 were achieved for PCP, OX and DCA respectively, with 21 

complete mineralisation reported. It was concluded that the OFR system had the 22 

advantages of a fixed-bed unit together with the kinetic efficiency of a slurry 23 

reactor. The OFR configuration enhanced the not only the distribution but also 24 

the uniformity of activated photocatalyst within a particular reaction volume 25 
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compared to standard fixed-bed designs. These characteristics reduced mass 1 

transport limitations for photochemical conversion efficiency and allowed higher 2 

processing capacities. Furthermore, potential light loss via absorption or 3 

scattering by the reaction medium was minimised. The OFR system could be 4 

used in batch or continuous flow operation for both liquid and or gas phase 5 

reactions. The transmission cable also allowed for remote light delivery to the 6 

photocatalyst.  7 

 8 

Nogueira and Jardim 78 reported the photodegradation of methylene blue using 9 

solar irradiation on a fixed bed reactor with TiO2 immobilised on a flat glass plate 10 

as a support. They investigated the slope of the plate and found that it 11 

influenced the methylene blue photodegradation because of 2 factors:  12 

i. the fluid thickness film which flowed over the plate and  13 

ii. the light intensity that reached the system.  14 

 15 

They reported a limited range of slopes 22º – 25º and found that 95.8 % of the 16 

model compound was degraded at 22º slope while 89 % was degraded at 25º 17 

angle. Ray and Beenackers78 proposed a distributive type fixed bed reactor 18 

system that employed hollow glass tubes as of light conductors for distribution 19 

to photocatalyst particles. The reactor configuration increased the surface to 20 

volume ratio while eliminating the potential light loss through absorption and 21 

scattering by reaction matrix. This configuration facilitated a large surface of 22 

photocatalyst to be deployed within a relatively small reactor volume. Between 23 

70 and 100 fold increase in surface area per m3 of reactor volume was achieved 24 

compared to a conventional annular reactor configuration. The photo-25 
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degradation of special brilliant blue, a model dye pollutant, was investigated and 1 

a 90% photocatalytic destruction of the dye achieved after 100 min irradiation. 2 

This study was followed up with the development of a tube light reactor which 3 

had a 100-150 fold increase in surface area per unit volume of fluid being 4 

treated compared to a conventional annular reactor design and a 10-20 fold 5 

increase contrasted with an immersion reactor. In a study of a reactor volume of 6 

3.65 × 10-4 m3 containing 21 U-shaped lamps of diameter 0.45 cm coated with 7 

the a P25 photocatalyst, a 695% increase reactor efficiency was achieved 8 

compared with an annular photocatalytic reactor. Furthermore a 259 % increase 9 

in efficiency was obtained for the new unite compared with a slurry reactor. 10 

 11 

Feitz et al. 79 investigated two fixed bed photocatalytic reactors, a packed bed 12 

reactor and a coated mesh reactor, using solar illumination. They assessed the 13 

processing rate for 2 mg l-1 phenol solutions, and calculated a rate of 140 mg m-14 

2 h-1 for the packed bed reactor with a rate of 20 mg m-2 h-1for the coated mesh 15 

reactor. The lower activity obtained with the coated mesh reactor was believed 16 

to be due to insufficient photocatalyst surface contact, low levels of available 17 

attached TiO2 and a small reactor to tank volume ratio. Photonic efficiencies for 18 

the decomposition of 100 mg-1 dichloroacetic acid solutions using the packed bed 19 

unit were only 40% lower than suspension systems. They therefore proposed 20 

that this system was particularly effective for treating contaminated water. 21 

Dionysiou et al. 80 developed a TiO2 rotating disk reactor for the decomposition 22 

of organic pollutants in water (figure 8). They used a commercial TiO2 composite 23 

ceramic ball photocatalyst material. LiCl tracer studies performed under different 24 

disk angular velocities, between 5 and 20 rpm, demonstrated that mixing in the 25 
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rotating disk photocatalytic reactor RDPR was similar to that of a continuous 1 

stirred tank reactor. They reported the destruction of >90 % 4-Chlorobenzoic 2 

acid after 6 hours irradiation. The light intensity distribution within the reactor 3 

was also determined and found to vary from about 30 to 1500 µW/cm2 within 4 

the reactor. The RDPR has a number of advantages it eliminates the need for 5 

effluent filtration as the catalyst is immobilised, the 3-D nature of the flow 6 

created enabled effective mixing, whilst the formation of the thin film allowed 7 

more effective oxygen transport from the gas phase to the photocatalyst 8 

surface. The photonic efficiency calculated for the experiment at 4 rpm was 2.7 9 

%. The authors anticipate this value to improve with process optimisation81,82. A 10 

similar study by Hamill et al.82 reported the use of a sealed rotating 11 

photocatalytic reactor (RPC) of similar configuration to the Dionysiou RDPR 80, 81, 12 

83. They investigated the photo-degradation of dichlorobutene and examined the 13 

effects of mass transfer and combinations of pollutants. They reported that the 14 

RPC could effectively degrade a range of substrates and that the degradation 15 

rate was dependent on rotation speed. They also reported that this configuration 16 

could be applied to both volatile and non-volatile pollutants.  17 

FIGURE 8 18 

Mehrvar et al. 27 reported the use of a photoreactor with TiO2 coated tellerette 19 

packing. The tellerette packings were constructed from stainless steel welding 20 

wire which was ‘roughened’ to promote the adhesion of TiO2 to the surface. The 21 

wires were then wound in a spiral or ‘spring like’ structure to be formed. The 22 

wound wire was cut into smaller lengths and each individual ‘spring’  adjusted to 23 

allow the ends to be brought together to form the tellerete shape. The tellerette 24 

type packings were selected and manufactured on the basis that they would 25 
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permit sufficient light dispersion into the interior of the bed to maintain effective 1 

photocatalytic reaction rates with no significant mass transfer limitations. The 2 

photoreactor allowed substantial UV light penetration throughout its interior, and 3 

had no significant mass transfer limitations during the photocatalytic degradation 4 

of 1,2-dioxane. It was concluded that the range of attenuation coefficients of 5 

interest, the reaction rate at various radial positions will not be significantly 6 

mass transfer limited unless the photocatalyst activity is increased by at least 7 

one order of magnitude. 8 

 9 

A novel photocatalytic reaction system, composed of solution and gas spaces 10 

that were divided by a thin Teflon film and TiO2 coated mesh or cloth has been 11 

reported84. The activity of TiO2 immobilised on a stainless steel mesh and on a 12 

fibre-glass cloth using isopropanol as a model compound was investigated. 13 

Although both support materials yielded comparable photocatalytic activities the 14 

fibre glass cloth was the most stable. The Teflon membrane enhanced the O2 15 

levels in the reaction solution which increased the photocatalytic activity for the 16 

destruction of organic compounds in water. The benefit of this system for the 17 

photo-degradation of aqueous volatile organic carbons was that it did not require 18 

air bubbling, which resulted in volatilization of the contaminants to the 19 

atmosophere.  20 

 21 

Lim et al. 68 reported the use of an external lamp, annular photocatalytic reactor 22 

with TiO2 adsorbed on a quartz tube for the degradation of phenanthrene and 23 

pyrene from a dilute water stream. They reported that above a feed velocity of 7 24 
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cm min-1 the process was rate controlled and not influenced by mass transfer 1 

limitations.  2 

A tubular photocatalytic reactor for water purification using a ceramic cylindrical 3 

tube with a Pt-loaded TiO2 film coated on the inner surface of the tube has been 4 

developed by Zhang et al 85.  Phenol, trichloroethylene and bisphenol A were 5 

used as model pollutants to examine the effectiveness of the photoreactor. The 6 

complete degradation of each pollutant within 2 hours reaction time was 7 

observed with the authors concluding that the performance of the reactor was 8 

dependent on the aeration of the system.  9 

 10 

McMurray et al. 86 reported the use of a stirred tank reactor with immobilised 11 

Degussa P25 TiO2 for the degradation of oxalic acid and formic acid. The rate of 12 

degradation of both acids was not mass transfer limited with propeller speeds 13 

greater than 1000 rpm. They reported apparent quantum yields of 5 % for oxalic 14 

acid and 10 % for formic acid.  15 

 16 

A sol-gel prepared TiO2 coating on a tubular photocatalytic reactor with re-17 

circulation mode and a batch photocatalytic reactor was investigated by Lin at 18 

al 87 for the degradation of methylene blue and phenol. The sol-gel film 19 

synthesised demonstrated an effective photocatalytic activity for the 20 

decomposition of organic compounds in water and the authors proposed the use 21 

of this reactor for water purification. During a 180 minute photoreaction of 22 

phenanthrene, 67.6 % destruction was observed with a 40.1 % conversion to 23 

CO2. 24 
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 1 

Zhang et al.38 reported the use of a corrugated plate reactor configuration which 2 

was developed and assessed using 4-chlorophenol as model pollutant. They 3 

compared the new configuration with a flat plate reactor and a slurry reactor. 4 

The corrugated plate reactor was reported to be 150 % faster with  mass 5 

transfer rates 600 % higher than that of a flat plate reactor. The authors 6 

suggested that the enhanced performance of the corrugated configuration was a 7 

result of the relatively larger illuminated photocatalyst surface area per unit 8 

volume, coupled with an effective delivery of both photons and reactants to the 9 

photocatalyst surface.  10 

 11 

The photocatalytic oxidation of a non ionic surfactant was carried out in a 12 

labyrinth flow reactor with an immobilised photocatalyst bed88. The work focused 13 

on the effects of flow-rate for the decomposition of the non-ionic surfactant. The 14 

authors concluded that the optimum photodegradation of the surfactant was 15 

observed with a flow-rate of 11.98 dm3/h. They further studied the remediation 16 

of Acid Red 18, an azo dye 89. Long reaction times were investigated for the 17 

photo-degradation of Acid Red using an immobilised Aeroxide Degussa P25 18 

catalyst. Slower flow rates affected the efficiency of the system, with 19 

mineralisation times varying from 35 hours to 60 hours depending on flow rate. 20 

 21 

An annular photocatalytic reactor, assimilated to a plug flow reactor, with a fixed 22 

bed of Degussa P25 immobilised onto a fibre glass support was reported for the 23 

remediation of gaseous acetone 26 (figure 9). There was no limitation on mass 24 
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transfer observed either internally or externally under the experimental 1 

conditions investigated.  2 

FIGURE 9 3 

An internally illuminated monolith reactor (IIMR) has been reported in the 4 

investigation of multi-phase photocatalysis 90, 91. The IIMR had side light emitting 5 

fibres incorporated within the channels of a ceramic monolith containing a TiO2 6 

photocatalyst coated individual channel walls. Photonic efficiencies obtained with 7 

this reactor were below those obtained for a slurry reactor but greater than that 8 

reported for an annular photoreactor and a reactor configuration with side light 9 

fibres immersed in a TiO2 slurry. The authors reported that the IIMR had a larger 10 

area of catalyst exposed to illumination and this is its key advantage over other 11 

photocatalytic reactors.  12 

 13 

Immobilised Gas Reactors 14 

The use of the Optical Fibre Reactor (OFR) for the photoreduction of CO2 to fuels 15 

by a visible light activated catalyst has been reported by Nguyen and Wu92. The 16 

optical fibres were coated with a gel-derived TiO2-SiO2 mixed photocatalyst. The 17 

OFR reactor operated on the principle of incident light being split in two beams 18 

when first in contact with the surface of the fibre. Part of the light penetrated the 19 

layer of catalyst on the fibre and creates excitation, while the other beam shall 20 

reflected off the fibre and transmit along the length of the optical fibre. This 21 

allowed the light to gradually spread through the length of the reactor. Two 22 

photocatalysts were utilised in this investigation; Cu-Fe/TiO2 along with Cu-23 

Fe/TiO2-SiO2. The products obtained in this study included ethylene and 24 
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methane, along with traces of ethane and methanol. The product formation 1 

under UVA illumination demonstrated selectivity towards the photocatalyst used, 2 

with the exception of methane which was evolved with each of the 3 

photocatalysts. The highest rate of methane production, 1.860 µmol/g-cat h was 4 

found when the catalyst Cu(0.5 wt.%)-Fe(0.5 wt.%)/TiO2-SiO2-acetyl acetone 5 

(acac) on optical fibres was used. Ethylene evolution was selective in production 6 

and was only seen over Fe and Cu containing catalysts; the highest production 7 

rate of 0.575 µmol/g-cat h was found when the catalyst Cu(0.5 wt.%)-Fe(0.5 8 

wt.%)/TiO2 on optical fibres was used. In comparison natural sunlight (from a 9 

solar concentrator) produced a production rate of 0.279 µmol/g-cat h with the 10 

catalyst Cu(0.5 wt.%)-Fe(0.5 wt.%)/TiO2-SiO2-acac on optical fibres, 11 

significantly higher than the rate for the TiO2-SiO2 catalyst. These results 12 

achieved were attributed to the increased surface area from the use of TiO2-SiO2 13 

in comparison to pure TiO2 and the presence of Cu and Fe metals to shifted the 14 

light absorption into the visible spectrum. The benefits of this system included 15 

uniform light distribution throughout the reactor, a feature not seen in traditional 16 

packed bed designs and the visible light driven catalyst which the authors 17 

concluded enhanced the applicability as a commercial and industrial application.    18 

   19 

FIGURE 10 20 

Immobilised Vapour Reactors 21 

The development of a cost effective and ease-of-use catalyst support for an 22 

immobilised system was investigated by Haijiesmaili et al93. This investigation 23 

focused on TiO2 being supported upon a 3-dimensional carbon foam for the 24 

oxidation of gaseous methanol in a vapour phase flow-through photoreactor. An 25 
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impregnation technique was adopted for the production of the TiO2 supported 1 

carbon foam; carbon foam was immersed into a TiO2 (P25)-containing 2 

water/ethanol (1:1) solution followed by drying. The photoreactor was 3 

established by packing the carbon foam supported TiO2 into a Pyrex tube with 4 

internal illumination from an 8 W central UV-A light. Results were based upon 5 

methanol conversion and CO2 and formaldehyde selectivity. The methanol 6 

conversion with the carbon foam supported TiO2 was dependent on TiO2 loading 7 

where TiO2 loadings of 7.7, 9.4, 16.3 and 28.5 wt% achieved methanol 8 

conversions of 52, 57, 61 and 75 % respectively. A maximum methanol 9 

conversion of 81% was achieved for a 666 wt% TiO2 loading. These results were 10 

impressive compared to those obtained in the photoreactor where the TiO2 11 

photocatalyst was simply coated on the inside of the reactor wall. In this case 12 

the highest methanol conversion reached was 22 %, where after any increase in 13 

TiO2 loading resulted in a screening effect of excess particles and resulted in no 14 

further increase in methanol conversion. CO2 and formaldehyde selectivity 15 

further supported the findings in the paper with CO2 reaching 44 % compared to 16 

7 % wall coated reactor. The efficiency of the carbon foam supported TiO2 17 

photoreactor was attributed to the ability to increase the exposed surface of the 18 

carbon foam and hence increase the surface to reactor ratio which allowed for 19 

increasing the TiO2 content within the reactor. The authors concluded the 20 

reactors air to surface ratio and ability to perform at very low pressure drops 21 

allow its use in practical applications. 22 

 23 

Suspension vs. Immobilised Reactors: A Comparison 24 



30 
 

Dutta and Ray28 developed a Taylor vortex photocatalytic reactor that created 1 

unsteady Taylor-Couette flow between two co-axial cylinders through re-2 

circulation of fluids from the body of the reator to the inner cylinder wall, coated 3 

with TiO2, (figure 11 a and b). The Taylor-Couette flow is the movement of 4 

viscous fluids in between a pair of coaxial cylinders which experience inner 5 

centrifugal instability when the inner cylinder rotates differentially with respect 6 

to the outer cylinder. They investigated the effect of the Reynolds number 7 

(figure 11 c) and catalyst loading on the photodegradation and compared the 8 

results with that of a slurry reactor. They noted that increasing the Reynolds 9 

number increased the rate of photodegradation of their model pollutant orange 10 

II demonstrating that external mass transfer controlled the overall reaction rate, 11 

figure 12.  12 

FIGURE 11 13 

The performance of a suspended catalyst system, an immobilised catalyst where 14 

the wall of the reactor was coated and an immobilised system packed with 15 

coated glass beads has been compared for the photodegradation of formic 16 

acid 94.  Mass transfer limitations were observed in the immobilised system with 17 

the catalyst coated on the reactor wall. However aerating the system overcame 18 

this mass transfer problem. The performance of the packed bed reactor was 19 

investigated for two different sized beads (d= 1.3 and 2 mm) to gain an 20 

understanding of the photocatalytic activity. The authors concluded that large 21 

beads enhanced the photocatalytic activity. 22 

 23 

A pilot reactor utilising a TiO2 coated 15 pores-per-inch alumina reticulated foam 24 

monolith incorporated in the space between a centrally deployed UV lamp and 25 
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the internal wall of the reactor has been compared with a Degussa P25 TiO2 1 

slurry system 95. Results for the degradation of 1,8-diazobicyclo[5.4.0]undec-7-2 

ene (DBU) indicated that the foam monolith immobilised photocatalyst system 3 

was more efficient compared to the slurry photocatalyst reactor suggesting that 4 

the immobilised system could be scaled up for water purification.  5 

 6 

Three different reactor configurations, slurry reactor, wall reactor and fixed-bed 7 

reactor, were compared for the photocatalytic disinfection of Escherichia coli 8 

aqueous suspensions and methylene blue photodegradation (figure 12). Titania 9 

was in suspension for the slurry reactor, was immobilised on the reactor wall for 10 

the wall reactor and was immobilised on the packing in the fixed bed reactor96. 11 

The authors investigated the effect of increasing catalyst layer thickness and 12 

compared it to increasing concentration of catalyst in the slurry system. The 13 

results for methylene blue photo-oxidation were in good agreement for both 14 

slurry and immobilised system. For the photocatalytic disinfection, however, this 15 

was not the case. The increased density of TiO2 film caused by the heat 16 

treatment reduced the surface area of catalyst available for the micro-organisms 17 

and therefore reduced the photocatalytic activity was observed. When the 18 

immobilised reactor was investigated for effluents sampled from a wastewater 19 

treatment plant, however, they required comparable irradiation times to the 20 

slurry system to reach the bacterial detection limit.  21 

FIGURE 12 22 

 23 

Industrial Applications  24 
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The potential industrial applications for semiconductor photocatalysis are wide 1 

and diverse ranging from treating oil and gas effluent to potable water.  The 2 

reality of research based photoreactor designs are, however, that very few 3 

laboratory scale test reactors are ultimately feasible in terms of industrial scale 4 

up.   In an industrial environment the volume and rate of waste effluent 5 

production is in the order of hundreds of cubic meters i.e. millions of litres per 6 

day.   Typically laboratory photoreactors have a capacity of between 1 ml and 1 7 

L, with a UV illumination source between 36 W and 500 W.   Transforming a 8 

even 1 L capacity reactor to a 1 m3 capacity unit is not a simple transformation, 9 

with the relationship between materials, volume, catalyst loading, turbidity and 10 

UV penetration presenting complex challenges. 11 

Examples where industrial scale photoreactors have been employed on a large 12 

scale are those of a solar activated designs.   Solar photoreactors have the 13 

advantage of not requiring artificial light sources but do require huge amounts of 14 

space and are also depend on the solar insolence97-99. 15 

 16 

Pilot Scale Studies 17 

Imoberdorf et al 100 propose a scaled up multi-annular photocatalytic reactor for 18 

the remediation of air pollution.  This consists of four concentric cylindrical 19 

borosilicate glass tubes (figure 13).   The illumination source, Philips TL18W UV 20 

lamp, was placed on the central axis of the system.  With the available reaction 21 

length of 177 cm the total surface area available for radical production was 5209 22 

cm2, a significant increase compared to the 81 cm2 of the laboratory test reactor.  23 

Using a sol gel process a thin layer of TiO2 was coated on two walls of the 24 
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reactor which were in contact with the gas flowing through each annulus of the 1 

unit.    2 

FIGURE 13 3 

In this study Imoberdorf et al. 100 examined the mechanisms of radiative 4 

transfer, rate kinetics and mass transfer.   They proposed that the process 5 

should be free from mass transfer limitations with a reactor operated under the 6 

kinetic control. It was found that it was possible to make accurate predictions of 7 

reactor behaviour, based purely on the chemical reaction fundamentals, reactor 8 

engineering and radiation transport theory.  This took no account of the 9 

adjustable or unknown parameters of photoreactor design. 10 

Shu and Chang 101 have reported the investigation of a pilot scale thin gap 11 

annular plug flow (TGAPF) and photoreactor and recirculated batch reactor for 12 

the degradation of azo dye waste water using H2O2 instead of a semiconductor 13 

photocatalyst.   The TGAPF system was tested using acid orange 10 at a 14 

concentration of 20 mg/L-1 with a simulated waste  water prepared in a tank 15 

reservoir at a volume of 100 L.  The TGAPF reactor having a capacity of 3000 ml 16 

and the dye was pumped through the TGAPF reactor at a rate of 1.5 L/min-1 to 17 

6.5 L/min-1, which gave a through put of 2.35 – 9.32 m3 day-1. The UV lamp 18 

source was a 5000 W medium pressure mercury at 253.7 nm and was positioned 19 

centrally in the quartz housing.  This configuration allowed a azo dye 20 

degradation rate of 0.26 min per L of dye to 99% of original concentration, e.g. 21 

100 L in 26.9 min.   When compared to the degradation rate of the recirculated 22 

batch reactor the TGAPF reactor was 233 times more efficient, with the batch 23 

reactor taking 6267 min to degrade the same volume and concentration of azo 24 

dye. 25 
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 1 

These two examples of scaled up pilot photoreactors show that there is the 2 

potential for increasing capacity, although it is worth noting that the Shu and 3 

Chang TGAPF reactor does require a 5000 W UV source which is both expensive 4 

and  has significant associated operating costs.    5 

 6 

The double skin sheet reactor (DSSR) comprises a flat transparent box 7 

framework constructed from PLEXIGLAS® 98, 102(figure 14). The photocatalyst 8 

was deployed as a suspension in the waste water and the slurry was then 9 

pumped through the channels of the unit. After the degradation process the 10 

photocatalyst had to be removed from the suspension either by filtering or by 11 

sedimentation.  The DSSR has been demonstrated to utilize both direct and the 12 

diffuse portion of solar radiation. A pilot scale DSSR, has been investigated for 13 

the treatment of industrial wastewater effluent in Wolfsburg, Germany99. 50 % 14 

of the organic pollutants in the waste water were degraded within between eight 15 

and eleven hours irradiation. The efficiency of the photocatalytic process was 16 

found to be dependent on the initial pollutant concentration, the time of 17 

illumination, and, not surprisingly, the solar UV light flux density.  18 

FIGURE 14 19 

Conclusions 20 

The research detailed in this review highlight the diversity in photocatalytic 21 

reactor design along with their potential applications.  Suspended Liquid 22 

Reactors, Immobilised Liquid Reactors, Immobilised Gas Reactors and 23 
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Immobilised Vapour were considered and, where appropriate, compared in an 1 

attempt to address the advantages and disadvantages of individual designs.  2 

The following conclusions could be drawn from considering the current state of 3 

the art in this field; 4 

1. Slurry and suspended systems offer the advantage of increased surface 5 

area allowing increased photocatalyst and reactant interaction and has 6 

proved effective in the treatment of wastewater. Limited light penetration 7 

and downstream processing procedures, particularly with respect to 8 

catalyst separation, however, restrict these concepts for 9 

commercialisation and scale up. 10 

 11 

2. Fluidised bed reactors also present excellent photocatalyst surface area to 12 

pollutant ratios for photocatalytic transformations. Research has 13 

demonstrated that these systems have been effective for both gas and 14 

liquid phase photocatalysis. This has enabled the use of highly efficient 15 

powders such as Degussa P25 which benefit from the ‘periodic light 16 

phenomenon’ created by fluidised systems. Drawbacks to the system 17 

include the loss or ‘drifting’ of particles within the system and downstream 18 

processing restrictions.     19 

 20 

3. Fixed bed designs utilise immobilised catalysts which have the advantages 21 

of no downstream processing restrictions such as separation and filtration 22 

and allow operation on both a batch and continuous flow phase. There are 23 

restrictions regarding this system including difficulty in the illumination of 24 

the entire support containing the catalyst and mass transfer limitations 25 
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affected by catalyst thickness. Furthermore in order to achieve and 1 

effective surface area of photocatalyst relative to the effluent being 2 

treated, scaled up units require a significant “footprint”. 3 

 4 

4. Comparisons of the systems demonstrate that given the correct 5 

parameters the individual concepts are effective.  While many 6 

comparisons of systems describe the immobilised catalyst reactor set-up 7 

as having decreased efficiency or restrictions due to mass transfer 8 

limitations, it was reported that if such restrictions were overcome results 9 

were comparable to that slurry and fluidisation systems.   10 

 11 

As has been demonstrated here, a vast array of photoreactor concepts have 12 

been reported, all displaying varying engineering characteristics in terms of 13 

efficiency for pollutant transport, photocatalyst deployment and activation. 14 

These characteristics are all critical however the future of photoreactor 15 

technology does not solely rely in the design of the reactor itself, but in the 16 

development of more effective photocatalysts, particularly in rate limited 17 

systems.   The development of photocatalysts that can achieve greater 18 

conversion efficiencies at lower irradiation energies, and ultimately visible light 19 

absorbing materials will be a critical component in ensuring wide scale adoption 20 

of this versatile technology.    For industrial applications photoreactors need to 21 

meet the challenge of capacity, ruggedness, reliability and ease of use.   22 

Currently the only design of photoreactor which is capable of processing the 23 

level of waste water required is that of suspension reactors, but as noted in this 24 

review they are far from infallible. Ultimately however, the application of 25 
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semiconductor photocatalysis for remediation is has real scope for impacting on 1 

water pollution and hence global water scarcity.   2 

  3 
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Reactor Type Reactant Phase  
 

Reactor Name   Experimentation  Catalyst Used  Industrial Application/ 
Comments 

Reference 

Immobilised  Liquid  Photocatalytic 
Membrane 
Reactor (PMR) 

Azo dye degredation Anatase-phase TiO2  103 

  Fixed Bed Waste water 
treatment  

TiO2  104 

  Corrugated 
plate 

4-chlorophenol 
degradation  

TiO2 (P25)  38 

  Rotating Disc 4-Chlorobenzoic acid 
degradation  

TiO2 (coated commercial 
ceramic and glass balls) 

 80 

  Carberry 
photoreactor  

4-chlorophenol 
degradation  

TiO2 (P25) on sodium glass 
support. 

 105 

  Optical Fibre 
Reactor (OFR)  

Degradation of 4-
chlorophenol 

TiO2 on quartz fiber cores  Water treatment  34 

 Gas Annular Wall PCE degradation  TiO2 Air purification  100 

  Circulated 
system 

CO2 reduction TiO2 (P25), ZrO2  106 

  Monolith Cyclohexane  TiO2 (Hombikat UV100) Air purification  90 

 Vapour Carbon foam-
based 
photoreactor  

Gaseous methanol 
oxidation  

TiO2 (P25) supported on carbon 
foam  

 93 
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Reactor 
Type 
 

Reactant 
phase  

Reactor Name Experimentation  Catalyst Used  Industrial Application/ 
comments  

Reference 

Suspended Liquid Photocatalysis-Ultrafiltration Reactor 
(PUR) 

Fulvic Acid  TiO2  (P25)  107 

  Rotating Drum Reactor Hydrocarbons  TiO2  (P25) Waterwater Treatment. 
Drinking water 
disinfection. 

56 

  Taylor Vortex Formate acid  TiO2 (P25)  29 

  Fountain Indigo carmine oxidation TiO2  108 

  Falling film slurry Salicylic acid oxidation TiO2 (P25)  51 

   Hydrogen production  CdS  109 

  Internally circulating slurry bubble 
column reactor  

TCE  TiO2 (P25)  53 

  Cocurrent downflow contactor 
reactor (CDCR) 

2,4,6-trichlorophenol (2,3,6-
TCP) 

TiO2 (VP Aeroperl 
P25/20) 

 110 

  Hybrid low-pressure submerged 
membrane photoreactor  

Removal of bisphenol A TiO2 (P25)  111 

  Hybrid photoreactor  Azo dye – reactive blue 69  TiO2 (P25) Wastewater treatment. 
Uses Solar irradiation  

112 

  Slurry reactor-immersed membrane  Synthetic wastewater  TiO2 (P25) Wastewater Treatment  113 

  Novel labyrinth bubble photocatalytic 
reactor  

Methyl orange degradation  TiO2 immobilised on 
quartz glass. (Used in 
suspension) 

Wastewater treatment. 
Built on a commercial 
scale. 

114 

  Fluidised bed photoreactor  MC-LR destruction  TiO2 coated activated 
carbon 

 33 

  Standard slurry photoreactor  Methylene blue degradation  AgBr/nanoAlMCM-41 Visible light activated. 115 

    p-CaFe2O4/n-Ag3VO4 Visible light activated. 116 
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   Methyl orange oxidation  Ag2Mo4O13  117 

   Hydrogen production Nb2Zr6O17−xNx Visible light activated  118 

    Cu2WS4 Visible light activated  119 

    ZnIn2S4 Visible light activated 120 

 

 

 

Table 1: Overview of photoreactor type, reactant phase, experimental targets, catalyst employed and industrial applications.
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Figure 3: 1 
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Figure 5: 1 
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Figure 7: 1 
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Figure 9: 1 

 2 

 3 

 4 

Figure 10: 5 

 6 

 7 

 8 

 9 

 10 

 11 

 12 



54 
 

Figure 11: 1 
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Figure 12: 1 

 2 

 3 

Figure 13: 4 

 5 

 6 

 7 

 8 

 9 



56 
 

Figure 14: 1 
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Captions for Figures 1 

 2 

Figure 1: Page 5 3 

Processes that occur on photo-excitation of TiO2 4 

 5 

Figure 2: Page 10 6 

Chemical structure of the herbicides Monuron and 3,4-dichloropropionamide. 7 

 8 

Figure 3: Page 11 9 

Schematic of photocatalytic drum reactor 10 

 11 

Figure 4: Page 13 12 

(A) Temporal absorption spectral pattern displaying the degradation of MB over 13 
a 60 min time period and (B) effect of UV only, 30g catalyst (pellet form) only, 14 
UV combined with 30g catalyst and Degussa P25 (powder) effect on MB 15 
degradation. 16 

 17 

Figure 5: Page 14 18 

Schematic of fluidised bed reactor utilised for the destruction of microcystin-19 
LR33. 20 

 21 

Figure 6: Page 15 22 

Schematic of flat plate fluidised bed reactor displaying the illumination direction 23 
and catalyst bed location66. 24 

 25 

Figure 7: Page 16 26 

Results observed for the effect of (A) superficial gas velocity and (B) voidage on 27 
light transmission with measuring light at (a) 96mm, (b) 53mm and (c) 10mm75. 28 

 29 

 30 
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Figure 8: Page 23 1 

Schematic representation of Rotating Disc Photo Reactor80. 2 

 3 

Figure 9: Page 27 4 

Schematic representation (A) and sectional drawing (B) of the annular 5 
photoreactor26. 6 

 7 

Figure 10: Page 28 8 

Schematic of Optical Fibre Photo Reactor displaying light transmission along 9 
coated fibres92. 10 

 11 

Figure 11: Page 30 12 

(A) Schematic of taylor vortex reactor29 and (B) Image of Taylor vortex 13 
photocataalytic reactor. (C) Progress of time-dependent Taylor vortex flow 14 
around critical Reynolds number, Rec = 11128.  15 

 16 

Figure 12: Page 32 17 

(A) A slurry reactor, using suspensions of Degussa P25 TiO2. (B) A wall reactor, 18 

immobilizing Degussa P25 TiO2 onto the 15-cm long glass tube that constitutes 19 

the inner-tube wall of the reactor. (C) A fixed-bed reactor, immobilizing Degussa 20 

P25 TiO2 onto 6mm_ 6 mm glass Raschig rings placed into the annular reactor 21 

volume96 22 

 23 

Figure 13: Page 33 24 

Schematic representation of a pilot-scale multi-annular photocatalytic 25 
reactor, (A) UV lamp, (B) distribution heads, and (C) borosilicate glass tubes100 26 

 27 

Figure 14: Page 35 28 

Schematic View of a DSSR reactor
102 showing the inner structure of the transpa-29 

rent structured box made of PLEXIGLAS® (reproduced from xx with permission 30 
from Elsevier BV). 31 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4M4KDM9-1&_user=138221&_coverDate=02%2F28%2F2007&_alid=1632661090&_rdoc=4&_fmt=full&_orig=search&_origin=search&_sort=d&view=c&_acct=C000011479&_version=1&_urlVersion=0&_userid=138221&md5=2af3618b56be3207a33b6cd732dabb1c#fd1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFK-4M4KDM9-1&_user=138221&_coverDate=02%2F28%2F2007&_alid=1632661090&_rdoc=4&_fmt=full&_orig=search&_origin=search&_sort=d&view=c&_acct=C000011479&_version=1&_urlVersion=0&_userid=138221&md5=2af3618b56be3207a33b6cd732dabb1c#fd2
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