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ABSTRACT 
 

This report is a state of the art review of whole life costing in the construction industry. It is 

the first of a series reporting on-going research undertaken within the research project 

‘Developing An Integrated Database For Whole Life Costing Applications In Construction’. 

This project is funded by the EPSRC and undertaken by a unique collaboration between two 

teams of researchers from the Robert Gordon University and the University of Salford. 

 

The fundamental basics of whole life costing (WLC) are introduced. First, the historical 

development of the technique is highlighted. Then, the suitability of various WLC 

approaches and techniques are critically reviewed with emphasis on their suitability for 

application within the framework of the construction industry. This is followed by a review 

of WLC mathematical models in the literature. Data requirements for WLC are then 

discussed. This includes a review of various economic, physical, and quality variables 

necessary for an effective WLC analysis of construction assets. Data sources within the 

industry are also highlighted with emphasis on current data collection and recording systems. 

In addition, the requirements of a data compilation procedure for WLC are outlined. 

 

The necessity of including the analysis of uncertainty into WLC studies is discussed. 

Attempts to utilise various risk assessment techniques to add to the quality of WLC decision-

making are reviewed with emphasis on their suitability to be implemented in an integrated 

environment.  

 

Essential requirements for the effective application of WLC in the industry are outlined with 

emphasis on the design of the cost break down structure and the information management 

throughout various life cycle phases. Then, directions for further future research are 

introduced. 
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CHAPTER 1 

WHOLE LIFE COSTING -  
AN INTRODUCTION  

 

 

1.1 BACKGROUND 

Historically, designs were aimed at minimising initial construction costs alone. However, 

during the 1930s many building users began to discover that the running costs of buildings 

began to impact significantly on the occupiers’ budget (Dale, 1993). It became obvious that 

it is unsatisfactory to base the choice between different alternatives on the initial construction 

cost alone. This becomes even clearer by the emergence of a number of recent trends as 

issues of concern for design professionals, including: facility obsolescence, environmental 

sustainability, operational-staff-effectiveness, total quality management (TQM), and value 

engineering (VE) (Kirk and Dell’Isola, 1995). Thus, another costing technique currently 

known as ‘whole life costing’ (WLC) has developed over the years. The designation of 

Whole Life Costing (WLC) has altered considerably over the years. The technique has 

previously been called, in no particular order, terotechnology, life cycle costing (LCC), 

through-life-costing, costs-in-use, total-life-costing, total-cost-of-ownership, ultimate life 

cost, and total cost (Kirk and Dell’Isola, 1995; Hodges, 1996; Seeley, 1996; Whyte et al., 

1999, Edwards et al. 2000). These terms are now less commonly applied and therefore WLC 

is used throughout this document. 

 
Practical interest in WLC in the construction industry dates back to 1950s when the Building 

Research Establishment (BRE) supported a research on ‘costs-in-use’ (Stone, 1960). Then, 

the British Standards Institution published BS 3811 (BSI, 1974), which describes the 

sequence of life cycle phases. A guide to WLC was published by the department of industry 

(Committee of Terotechnology, 1977). Next, the Royal Institute of Chartered Surveyors 

(RICS) commissioned many studies on WLC (Flanagan et al., 1983; RICS, 1986, 1987). The 

Society of Chief Quantity Surveyors in Local Government prepared a report in the form of a 

practice manual (Smith et al, 1984). Another guide to WLC-related techniques was published 

by HM Treasury (HMSO, 1991) and was later updated in 1997 (HMSO, 1997). 

 

In the last decade, numerous papers and textbooks in the area of WLC and related topics 

have been published reflecting the increased interest in the technique. Examples include 
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Flanagan et al. (1989), Fabrycky and Blanchard (1991), Ferry and Flanagan (1991), Bull 

(1993), Kirk and Dell’Isola (1995), Garnett and Owen (1995), Ashworth (1996a, 1996b), 

Woodward (1997); Asiedu and Gu (1998), Al-Hajj and Horner (1998), El-Haram and Horner 

(1998), Al-Hajj and Aouad (1999), Whyte et al. (1999), Kishk and Al-Hajj (1999, 2000a, 

2000b, 2000c, 2000d, 2001a, 2001b) and Edwards et al. (2000), among others. 

 

Recently, a centre for Whole Life Performance has been established at the Building Research 

Establishment (BRE) to provide the Secretariat to an industry-led Whole Life Costs Forum 

(WLCF) (CPN, 2000). This Forum is intended to enable members to pool and receive typical 

WLC information through a members-only database, and produce industry-accepted 

definitions, tools, and methodologies (Edwards et al., 2000). 

 
 
1.2 DEFINITION OF WHOLE LIFE COSTING 

Several definitions of WLC exist. At its most basic, WLC includes the systematic 

consideration of all costs and revenues associated with the acquisition, use and maintenance 

and disposal of an asset. The BS ISO 15686-1 of service life planning  (BSI, 2000) defines 

WLC as  

 

‘a tool to assist in assessing the cost performance of construction work, 
aimed at facilitating choices where there are alternative means of 
achieving the client’s objectives and where those alternatives differ, not 
only in their initial costs but also in their subsequent operational costs.’ 

 

Another useful definition is adopted by the construction best practice programme (CBPP, 

1998a) 

‘... the systematic consideration of all relevant costs and revenues 
associated with the acquisition and ownership of an asset’ 

 

 

1.3 USES OF WHOLE LIFE COSTING 

Ferry and Flanagan (1991) argue that application of WLC, in any environment, exists on two 

levels. The lower level of life cycle costing is represented as a 'Management Tool' to aid the 

decision making process. The higher level of life cycle costing is termed the 'Management 

System' whose continuous operation dictates that responsibility for asset management should 

be retained. In general terms, they argue that during the management of a typical project, all 

stages, except project initiation, have a potential use for WLC.  
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1.3.1 Whole Life Costing as a Decision-Making Tool 

The primary use of WLC is to be used in the effective choice between a number of 

competing project alternatives. Although this can be done at any stage of the project, the 

potential of its effective use is maximum during early design stages (figures 1.1 and 1.2). 

This is mainly because most, if not all, options are open to consideration (Griffin, 1993).  In 

addition, the ability to influence cost decreases continually as the project progresses, from 

100% at project sanction to typically 20% or less by the time construction starts (Paulson, 

1976; Fabrycky and Blanchard, 1991). Further more, once the building is delivered, there is a 

very slim chance to change the total cost of ownership because the decision to own or to 

purchase a building normally commits users to most of the total cost of ownership (HMSO, 

1992). According to Kirk and Dell’Isola (1995) and Mackay (1999), 80-90% percent of the 

cost of running, maintaining and repairing a building is determined at the design stage.  

 

C
os

t

Concept Design Development Construction
Operation &

ReplacementMaintenance

Time

Net saving potential

implement

Cost reduction
potential

Cost to

Major revision required

Document revision required

No major document 
revision required

 
Fig. (1.1): Relationship of whole life cost savings and time of 

implementation (Flanagan et al., 1989). 
 

1.3.2 Whole life costing as a Management Tool 

The use WLC can also be used as a management tool to identify the actual costs incurred in 

operating assets. The primary objective is to relate running costs and performance data. 

Thus, it could be useful for clients who want to estimate the actual running costs of the 

building and also for budgeting purposes. In addition, it can be a valuable feedback device to 

assist in the design. This issue is discussed in more detail in chapter 5. 
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Fig. (1.2): WLC committed, cost incurred, knowledge, and ease of  
change (Fabrycky and Blanchard, 1991). 

 

 

1.4 IMPLEMENTATION OF WLC IN THE INDUSTRY 

1.4.1 Current WLC Practice 

Although most principles of WLC are well developed in theory, it has not received a wide 

practical application yet. Larsson and Clark (2000) described WLC as ‘the dog that didn’t 

bark’. A recent survey undertaken by BRE for DETR indicates that life cycle costing is 

currently used extensively only in PFI projects and public procurement (Clift and Bourke, 

1999; CBPP, 2000b). Other surveys indicate also that building sectors in other international 

countries have not fully adopted the WLC methodology (Wilkinson, 1996; Sterner, 2000).  

 

1.4.2 Barriers Facing WLC Implementation 

Many researchers (Brandon, 1987; Ashworth, 1987, 1989, 1993, 1996; Flanagan et al., 1989; 

Ferry and Flanagan, 1991; Al-Hajj, 1991; Bull, 1993; Wilkinson, 1996; Bhuta and Sarma, 

1997; Smith et al., 1998; Sterner, 2000; among others) have tried to highlight areas causing 

difficulties in the application of WLC in the industry. Kishk and Al-Hajj (1999) categorised 

these difficulties on the parts of the industry practices, the client, and the analyst and the 

analysis tools currently employed in WLC. 
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1.4.2.1 Industry Barriers 

The capital cost of construction is almost always separated from the running cost.  It is 

normal practice to accept the cheapest initial cost and then hand over the building to others to 

maintain. In addition, there is no clear definition of the buyer, seller, and their 

responsibilities towards the operating and maintenance costs (Bull, 1993).  Furthermore, 

there is a lack of motivation in cost optimisation because the design and cost estimating fees 

are usually a percentage of the total project cost (McGeorge, 1993). However, the expansion 

of new project delivery systems such as private finance initiative (PFI) and build, operate 

and transfer (BOT) seems to overcome these obstacles.   
 

1.4.2.2 Client Barriers 

Bull (1993) pointed out that there is also a lack of understanding on the part of the client.  

This may increase the possibility of subjective decision making.  In addition, there are 

usually multiple aspects of needs desired by clients (Chinyio et al., 1998). Most of these 

aspects can not be assessed in a strict WLC framework (Kishk et al., 2001). This is mainly 

because either they are in conflict with the main WLC objective or because they are mostly 

‘non-financial’. Some of these factors are even intangible such as aesthetics. In many cases, 

these intangibles are also in conflict with results of WLC (Picken, 1989; Wilkinson, 1996). 

 

1.4.2.3 Analysis Difficulties 

The major obstacle facing the analyst is the difficulty of obtaining the proper level of 

information upon which to base a WLC analysis. This is because of the lack of appropriate, 

relevant and reliable historical information and data (Bull, 1993). In addition, costs of data 

collection are enormous (Ferry and Flanagan, 1991).  Furthermore, the time needed for data 

collection and the analysis process may leave inadequate time for the essential dialogue with 

the decision-maker and the re-run of alternative options. This is one of the reasons why 

computerised models are valuable (Griffin, 1993). Another difficulty is the need to be able to 

forecast, a long way ahead in time, many factors such as life cycles, future operating and 

maintenance costs, and discount and inflation rates (Ferry and Flanagan, 1991). Besides, the 

uncertainty surrounding the variables in any WLC exercise should be properly assessed. 

 

1.4.3 The Way Ahead 

As discussed in the previous section, the absence of sufficient and appropriate data was, and 

still is, the major barrier to the application of WLC in the industry. According to and Al-Hajj 
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(1991), WLC application, in a way, is still trapped in a vicious circle containing a series of 

causes and consequences (figure 1.3). In order to move forward in the application of WLC, 

the circle would have to be broken somewhere. This state of the art review is the starting 

point in an EPSRC funded project to achieve this objective. 

 

Lack of sufficient and
appropriate data

Lack of confidence
in any results

Lack of real
evaluation

No real feedback
on performance

 

Figure (1.3): The viscous circle of WLC implementation (Al-Hajj, 1991). 
 

 

1.5 AIM AND OBJECTIVES 

The aim of the research work reported in this paper is to undertake a state-of-the-art review 

of whole life costing to identify the strengths and gaps in existing knowledge in order to 

inform the development of an integrated computer-based WLC system.  

 

The objectives are: 

• To review WLC fundamentals and models. 

• To outline WLC data requirements. 

• To review risk assessment techniques applicable to WLC modelling. 

• To review existing WLC implementation models. 

 

 

1.6 LAYOUT OF THE REPORT 

The rest of the report consists of three parts. The first part includes chapters 2 and 3, and 

deals with the basic principles and requirements of WLC. Chapter 2 is a critical review of the 

basic principles of WLC with emphasis on the advantages and disadvantages of various 

WLC mathematical models and decision-making techniques. In chapter 3, the data 

requirements for WLC are discussed. This is followed by a review of potential sources of 

data. Then, the compilation of various data items for WLC is discussed in more detail with 

emphasis on the utilisation of databases.  

 



 7 

The second part, chapter 4, is devoted to a critical review of various techniques proposed to 

handle risk and uncertainty in WLC modelling, with special emphasis on the suitability of 

these techniques to be utilised in an integrated environment.  

 

The third part, chapters 5, deals with the logic of WLC implementation with emphasis on the 

essential requirements for an efficient information management system. Finally, conclusions 

and directions for further research are introduced in chapter 6. 
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CHAPTER 2 

MATHEMATICAL MODELLING OF  
WHOLE LIFE COSTS 

 

 

2.1 INTRODUCTION 

An outline introduction to WLC, including its historical background, was provided in chapter 

1, and this chapter aims to examine the technique in greater detail through a critical review 

of its basic concepts and modelling considerations. In the next section, the concept of time 

value of money is briefly introduced. Then, various approaches applicable to WLC-based 

decision-making are critically reviewed with emphasis on the suitability of these approaches 

to be used in the framework of the construction industry. Then, mathematical WLC models 

found in the literature are reviewed in. 

 
 
2.2 TIME VALUE OF MONEY 

In a typical WLC analysis, the analyst is concerned with a number of costs and benefits that 

flow throughout the life of a project. A sum of money in hand today is worth more than the 

same sum at a later date because of the money that could be earned in the interim. Therefore, 

alternatives can be compared to each other on a fair basis only if the time value of money is 

taken into consideration. Interest formulas are simple mathematical equations that quantify 

the impact of time on money. The basic interest formula is expressed as 

 
FAtPA f ⋅=                                                         (2.1) 

 
where PA  is the present amount of money, FA  is the future amount of money, and ft  is a 

factor required to transform future money to present money. 

The factor ft  is a function of the interest rate r , and the time(s) of occurrence(s) of the sum 

FA . Thus, there are various factors for different situations. These factors are easily derived 

and are available in most financial and engineering economic texts (e.g. Fabrycky and 

Blanchard, 1991; Kirk and Dell’Isola, 1995). For example, the present worth factor, PWS , 

used to determine the present amount, PA , of a single future amount FA , incurred at time t  

(figure 2.1a) is given by: 

 
TrPWS −+= )1(                                                    (2.2) 
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Another example is the PWA  factor used to calculate the present worth of a series of T  

equal annual sums of money (figure 2.1b),  

 

T

T

rr
rPWA

)1(
1)1(

+
−+

=                                                (2.3) 

 

0

Time

PA= ?

0

A

a) A single present worth 

Time

b) Present worth of annuity 

(PWS).

 (PWA).

FA

PA= ?

 

Figure (2.1): Visualisation of the use of interest formulas. 
 

Because future costs are ‘discounted’ to a smaller value when transformed to the present 

time, it is common practice to use the term ‘discount rate’ in reference to the interest rate. 

 

 

2.3 WLC DECISION RULES 

As discussed in chapter 1, the primary objective of a whole life costing analysis is to 

facilitate the effective choice between a number of competing alternatives. Many decision 

criteria that can be used to rank alternatives in a WLC context have been proposed. These 

criteria are briefly reviewed in this section. 

 

2.3.1 Net Present Value 

Based on the definition of WLC (Sec. 1.2), the most obvious decision approach is to base the 

choice on whole life costs as represented by the net present value (NPV) of various 
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competing alternatives. The NPV of an alternative i , iNPV , is defined as the sum of money 

that needs to be invested today to meet all future financial requirements as they arise 

throughout the life of the project. Obviously, the best alternative, *A , is the one with 

minimum NPV. 

 

Because WLC focuses on cost rather than income, it is usual practice to treat costs as 

positive and income as negative. Mathematically, the NPV is expressed as 

 

i
d

T

t
it

d
T

t
it

d
ii SAVMOCNPV −++= ∑∑

== 11
0                               (2.4) 

where 

iC0  ≡ The initial construction costs of alternative i . 

∑
=

T

t
it

d O
1

 ≡ The sum of discounted operation costs at time t . 

∑
=

T

t
it

d M
1

 ≡ The sum of discounted maintenance costs at time t . 

i
d SAV  ≡ The discounted salvage value = iT

d
iT

d DCRV − . 

iT
d RV  ≡ The discounted resale value at the end of the analysis period. 

iT
d DC  ≡ The discounted disposal costs. 

T  ≡ The analysis period in years. 

 
 
Some researchers (e.g. Khanduri et al., 1993) criticised the NPV as being a large number 

which may not have much meaning to the client. Another limitation of the NPV approach 

arises when comparing alternatives with different lives because a residual arbitrary value has 

to be attributed to cover the remaining years (Flanagan et al., 1989).  

 

2.3.2 Equivalent Annual Cost (EAC) 

Rather than being expressed as a one-time net present value, this method converts all costs of 

an alternative to a uniform equivalent annual cost (EAC). The EAC is related to the NPV by 

the PWA factor (Eq. 2.3) as follows 

 

i

i
i PWA

NPV
EAC =                                                      (2.5) 
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In this way, alternatives with different lives can be compared without the need to attribute 

residual values. However, it should be noted that the EAC is an average number and do not 

indicate the actual cost that will be incurred during each year of the life cycle (Khanduri et 

al., 1993, 1996). The ranking criterion in this case is that the preferred alternative, *A , has 

the minimum EAC. 

 

2.3.3 Discounted Payback Period 

The discounted payback period (DPP) is defined, as the time, usually in years, required for 

the expected annual savings, taking into account the time value of money, to accumulate to 

payback the invested amount. Obviously, the preferred alternative, *A , should have the 

shortest payback period. 

 

Although this method considers the time value of money, it has two drawbacks. First, it 

ignores all cash flows outside the payback period (HMSO, 1997). Secondly, an evaluation of 

the acceptable payback period is necessary, for which no method is established. Thus, many 

researchers (e.g. Flanagan et al., 1989; Dale, 1993, Kelly and Male, 1993) recommend that it 

should only be used as a screening device before the application of more powerful criteria. 

 

2.3.4 Internal Rate of Return (IRR) 

The internal Rate of Return (IRR) is defined as the percentage earned on the amount of 

capital invested in each year of the life of the project after allowing for the repayment of the 

sum originally invested. The ranking criterion is that the preferred alternative, *A , has the 

maximum IRR. Mathematically, the IRR for an alternative i , is the interest rate r* that 

makes NPV = 0, i.e. 

0* == ii NPVrIRR                                                 (2.6) 

 
The IRR has an obvious advantage because it is presented as a percentage with an obvious 

interpretation (Flanagan et al., 1989). Besides, it does not require a discount rate unlike the 

preceding approaches. However, it has two drawbacks (Flanagan et al., 1989; Dale, 1993; 

Ashworth, 1999). First, the calculation of IRR needs a trial and error procedure. Secondly 

and more importantly, it assumes that an investment will generate an income which is not 

always the case in the construction industry.  
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2.3.5 Net Savings (NS) 

The net savings (NS) is an easily understood traditional investment appraisal technique. It is 

calculated as the difference between present worth of the income generated by an investment 

to the amount invested (Kelly and Male, 1993). The ranking criterion is that the preferred 

alternative, *A , has the maximum NS. This method, however, suffers from the main 

disadvantage of the IRR method, i.e. it implies that an investment will generate an income.   

 

2.3.6 Savings to Investment Ratio (SIR) 

The savings to investment ratio (SIR) is another traditional investment appraisal technique. It 

is calculated as the ratio of the present worth of the income generated by an investment to the 

initial investment cost. The higher the ratio, the greater the pound savings per pound spent 

and consequently the preferred alternative, *A , should have the maximum SIR. Again, this 

method suffers from the same disadvantage of the NS method.  

 

 

2.4 Mathematical WLC MODELS  

Almost all models found in the literature employ the NPV approach (Eq. 2.4a). However, 

different nomenclature and/or cost breakdown structure (chapter 5) are used to describe 

principal components of WLC. The American Society for Testing and Materials (ASTM, 

1983) published the following model  

 

NPV = C + R - S + A + M + E                                               (2.7) 

where  

C ≡ Investment costs; 

R ≡ Replacement costs; 

S ≡ The resale value at end of study period; 

A ≡ Annually recurring operating, maintenance, and repair costs (except 
energy costs); 

M ≡ Non-annually recurring operating, maintenance, and repair costs 
(except energy costs); and 

E ≡ Energy costs. 

 

The most unique feature of this model is the separation of energy costs, and hence different 

discount rates can be employed to reflect different inflation rates. 
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Bromilow and Pawsey (1987) proposed a model as a generalisation of a previous model 

developed by Bromilow and Tucker (1983). This model is expressed as 

 
T

d

m

j

tT

t
jtjt

n

i

tT

t
ititi )rd()r(C)r(C CNPV −

=

−

==

−

=

+−++++= ∑∑∑∑ 111
1 11 1

0                (2.8) 

 
where  

iC0  ≡ the procurement cost at time t=0, including development, design 

and construction costs, holding charges, and other initial 

associated with initial procurement; 

itC  ≡ the annual cost at time t (0 ≤ t ≤ T), of function i (0 ≤ i ≤ n), which 

can be regarded continuous over time such as maintenance, 

cleaning, energy and security;  

jtC  ≡ the cost at time t of discontinuous support function j (0 ≤ j ≤ m), 

such as repainting, or replacement of components at specific times. 

jtit rr &  ≡ discount rates applicable to support functions i and j respectively. 

d  ≡ the value of asset on disposal less costs of disposal; and 

dr  ≡ the discount rate applicable to asset disposal value. 

 

The main feature of this model is the classification of maintenance activities as non-annual 

recurring costs and those that remain continuous. 

 

Many researchers (e.g. Flanagan et al., 1989) have employed the following simple NPV 

formula based on the discounted cash flow (DCF) technique 
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To use this formula, it is necessary first to express every cost by a number of equivalent cash 

flows over the analysis period. However, this may be computationally expensive. Besides, 

the contribution of each cost to whole life costs can not be easily followed.  

 

Al-Hajj (1991) and Al-Hajj and Horner (1998) developed simple cost models to predict the 

running and maintenance costs in buildings. These models are based on the finding that for 
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defined building categories identical cost-significant items can be derived using a statistical 

approach. These models can be expressed in the form 
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where  

Rc ≡ the present discounted running costs over period T measured from 
time of procurement; 

cmf ≡ cost model factor (constant for various building categories). 

C(csi) ≡ cost significant items: decoration, roof repair, cleaning, energy, 
management cost, rates, insurance and porterage. 

 

Then, NPV  can be calculated as (Al-Hajj, 1996): 
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These models represent a significant simplification. However, their accuracy lie outside the 

expected range specified by Al-Hajj (1991) as revealed by the investigation carried out by 

Young  (1992). She pointed out that these inaccuracies might be due to three reasons. First, 

the data recording system of one of the sources is different from the BMI-based system used 

to develop the models. Secondly, the models do not take account of different materials or 

components used in various buildings. Thirdly, the occurrence of occasional high cost items. 

The first two reasons were mentioned by Al-Hajj (1991) as limitations of his models. In 

addition, he employed the moving average technique to account for the third limitation.  

 

However, there are four more shortcomings that seem to limit the generality of these models. 

First, the cost-significant relationships are assumed to be linear which might not be always 

the case. Secondly, data sets used to develop the models are limited. Thirdly, a simple data 

normalisation procedure ( 2/£ m ) is adopted. This procedure does not yield accurate results 

(Kirkham et al., 1999) because it ignores other factors such as age, location, level of 

occupancy, and standards of operation and management. Fourthly, historic maintenance data, 

in terms of time and cost, represent only that which was affordable (Ashworth, 1999). This 

issue is discussed in more detail in the following chapter. 
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Sobanjo (1999) proposed a WLC model based on the fuzzy set theory (FST). Assuming that, 

all costs and values can be treated as either single future or annual costs, the model employs 

the PW and PWA factors (Eqs. 2.2 and 2.3) to calculate the NPV, as follows 
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Sobanjo’s model has the apparent advantage of being simple. Besides, it assumes that each 

cost type, e.g. initial, consists of the summation of a number of costs, which gives the analyst 

some flexibility. However, the model can handle only single future costs and annual costs. 

This means that non-annual recurring costs can only be treated as a number of single future 

costs which is a computationally expensive procedure. In addition, the frequencies of these 

costs must be assumed certain to determine the number of the recurrences of these costs. 

Other aspects of this model will be discussed in chapter 4. 

 

The model developed by Kishk and Al-Hajj (2000a) calculates the life cycle cost of an 

alternative i , as the net present value, of all costs and the salvage value of that alternative as 
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This model has three unique features. First, a discount factor (equation 2.14) was formulated 

to deal with non-annual recurring costs. Secondly, the derivation of an automatic expression 

for the number of occurrences of these costs (equation 2.15). This expression accounts for 

the fact that non-annual costs recurring at the end of the last year of the analysis period are 

not taken into consideration. Thirdly, annual costs are assumed to be the summation of nari 

components, Aj, e.g. maintenance and operating costs.  This was done to allow for more 
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flexibility in the assignment of different uncertainty levels to various annual costs depending 

on the nature of every cost. 

 

In a subsequent paper (Kishk and Al-Hajj, 2000d), they developed a model that calculates 

the life cycle cost of an alternative i , as an equivalent annual cost  
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where iAES , iAEI , iAEO , and iAEN  are uniform annual equivalence factors for salvage 

value and initial, non-recurring, non-annual recurring costs, respectively. These factors are 

given by  
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This model has the same advantages of the previous model. Besides, the calculation of whole 

life costs as EACs is another merit when dealing with options with different lives as 

discussed in Sec. 3.3.2. Other aspects of these models are discussed in Chapter 4. 

 

 

2.5 SUMMARY 

This chapter was devoted to review the key fundamentals of WLC modelling. The time value 

of money and the concept of economic equivalence allow money spent over various points in 

time to be converted to a common basis. Six economic evaluation methods commonly used 

in whole life costing analyses were reviewed. The most suitable approaches for WLC in the 

framework of the construction industry are the net present value and equivalent annualised 
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methods. The later is the most appropriate method for comparing alternatives of different 

lives. 

 

A review of the mathematical LCC models was also carried out. Most of these models use 

the same basic equation. However, they differ in the breakdown of cost elements. Each of 

these models seems to have some advantages and disadvantages. The ASTM WLC model 

distinguishes between energy and other running costs which is useful in adopting different 

discount rates for these two cost items. The model developed by Bromilow and Pawsey 

(1987) distinguishes between periodic and continuous maintenance activities. The concept of 

cost significance was introduced into WLC by Al-Hajj (1991). This concept simplifies WLC 

by reducing the number of cost items required. However, these simple models have some 

shortcomings that seem to limit their generality. Sobanjo’s model is simple but it can not 

effectively handle non-annual recurring costs. The models developed by Kishk and Al-Hajj 

(2000a, 2000d) are developed such that calculations are both automated and optimised. This 

is mainly facilitated by the derivation of automatic expressions for calculating the number of 

occurrences on non-annual recurring costs. Besides, compact expressions are formulated for 

various discount and annualisation factors. In this way, the main disadvantage of Sobanjo’s 

model has been tackled. 
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CHAPTER 3 

ON THE DATA REQUIREMENTS OF  
WHOLE LIFE COSTING 

 

 

3.1 INTRODUCTION 

An investigation into the variables in the mathematical models discussed in chapter 2 would 

reveal that data requirements fall into two main categories: discounting-related data and cost-

related data. The first category includes the discount and inflation rates and the analysis 

period. The second category includes cost data and the time in the life cycle when associated 

activities are to be carried out (i.e. life cycle phases). On the other hand, Flanagan et al. 

(1989) realised that buildings are different from other products, e.g. cars, in that buildings 

tend to be ‘one-off’ products. Other data categories like quality, occupancy and performance 

data are therefore also crucial when dealing with buildings. In the following three sections, 

various WLC data categories are outlined with emphasis on characteristics and sources of 

these data items. Then, the process of data compilation is discussed in some detail. 

 
 
3.2 Discounting-Related Data 

3.2.1 The Discount Rate 

The selection of an appropriate discount rate has a significant influence on the outcome of 

any WLC exercise (Flanagan et al., 1989; Ashworth, 1999). Various criteria proposed in the 

literature to the election of the discount rate are discussed in the following subsections.  

 

3.2.1.1 Cost of Borrowing Money  

The discount rate may be established as the highest interest an organisation expects to pay to 

borrow the money needed for a project. This method is favoured by Hoar and Norman 

(1990) as it indicates the marketplace value of money. However, it does not take into account 

for risk of loss associated with the loan (Flanagan et al., 1989). 

 

3.2.1.2 Risk Adjusted Rate 

In this approach, the disadvantage of the cost of borrowing money is eliminated by including 

an increment which reflects variable degrees of risk between projects and the uncertainty of 

future events as suggested by Rueg and Marshall (1990). However, it is not easy to quantify 

risk as a percent increment (Flanagan and Norman, 1993, Kirk and Dell’Isola, 1995). Hoar 
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and Norman (1990), even argue that it is inappropriate to include a risk premium in the 

discount rate. 

 

3.2.1.3 Opportunity Rate of Return 

In this approach, the discount rate is defined as the rate of return that could be earned from 

the best alternative use of the funds devoted for the project under consideration. It is the most 

realistic one, since it is based on the actual earning power of money (Kelly and Male, 1993). 

However, such an opportunity cost may be ambiguous because it is often impossible to 

identify the best alternative use (Finch, 1994). Besides, it is difficult to apply for public 

sector projects (Kirk and Dell’Isola, 1995). 

 

3.2.1.4 After-Inflation Discount Rate  

This method is based on the assumption that the private sector will seek a certain set rate of 

return over the general inflation rate. This rate is also called ‘the net of inflation discount 

rate’, fr , and is calculated as  

 

1 - 
1
1  

f
rrf +

+
=                                                   (3.1) 

 

where f is the inflation rate. This method is favoured by Many researchers (e.g. Flanagan et 

al., 1989; Dale, 1993; Kirk and Dell’Isola, 1995). Other researchers, however, prefer to 

ignore inflation on the assumption that it is impossible to forecast future inflation rates with 

any reasonable degree of accuracy (Ashworth, 1999). 

 

3.2.1.5 Role of Judgement 

Because the discount rate should reflect the particular circumstances of the project, the client 

and prevailing market conditions, Ashworth (1999) recognised the role of judgement in the 

selection of the most correct rate. However, he emphasised that this judgement should be 

done within the context of best professional practice and ethics. 

 

3.2.2 The Time-Scale 

Flanagan et al. (1989) differentiated between two different time-scales: the life of the 

building, the system, or the component under consideration and the analysis period.  
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3.2.2.1 The Life 

The life expectancy of a building may be theoretically indefinite, if it is correctly designed 

and constructed and properly maintained throughout its life. However, in practice, this life is 

frequently shorter due to physical deterioration and various forms of obsolescence (Flanagan 

et al., 1989). This view is supported by the opinions of Aikivuori (1996) and Ashworth 

(1996a, 1999) who questioned the usefulness of scientific data because it is almost solely 

concerned with component longevity and not with obsolescence. Different sorts of 

obsolescence that need to be considered by designers and users are summarised in Table 

(3.1).  

 
Table (3.1): Building life and obsolescence (RICS, 1986). 

Condition Definition Examples 

Deterioration 
Physical 

 
Deterioration beyond  
normal repair 

 
Structural decay of  
Building components 

Obsolescence 
Technological 

 
Advances in sciences and 
engineering results in 
outdated building 

 
Office buildings unable to 
Accommodate modern 
Information and Communi-
cation technology. 

Functional (Useful) 
 

Original designed use 
of the building is no 
longer required 

Cotton mills converted 
in shopping units 
Chapels converted into 
Warehouses 

Economic Cost objectives are 
able to be achieved 
in a better way 

Site value is worth more 
than the value of the current 
activities. 

Social Changes in the needs of 
society result in the lack of 
use for certain types of 
buildings 

Multi-storey flats unsuitable 
for family accommodation 
in Britain 
 

Legal Legislation resulting in  
the prohibitive use of 
buildings unless major 
changes are introduced 

Asbestos materials, 
Fire regulations 
 

 

Ashworth (1999) pointed out that obsolescence relates to uncertain events as can be clearly 

seen in Table (2.1). He analysed data about the estimated life expectancy of softwood 

windows from a RICS/BRE paper (RICS/BRE, 1992). The analysis shows a life expectancy 
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of about 30 years, with a standard deviation of 22 years and a range of 1 to 150 years. 

Consequently, he concluded that it is not possible to select a precise life expectancy for a 

particular building component on the basis of this sort of information. This is mainly because 

important data characteristics, e.g. the reason for the variability of life expectancies, are not 

included. Ashworth (1999) listed other published sources of information such as the 

HAPM’s component life manual (HAPM, 1992, 1999a), guide to defect avoidance (HAPM, 

1999b) and workmanship checklists (HAPM, 1999c) However, these sources provide further 

evidence of the variability of building component data.  

 

Flanagan et al. (1989) identified manufacturer and suppliers as another valuable source of 

lifespan data. However, their information may be described under ideal or perfect 

circumstances that rarely occur in practice (Ashworth, 1999). Another possible problem is 

that it might be of a commercial nature, i.e. suppliers might tend to favour their products. 

Kelly and Male (1993) pointed out another difficulty as manufacturers’ data is usually 

obtained in terms of ranges of life. They gave the following example  

‘... these fans work for two years, they come with a two year guarantee but 
providing they are well maintained will run for 8-12 years no bother. We’ve 
some, which are still going after 16 years’ 

 

Kelly and Male (1993) identified also trade magazines as a source that gives similar sort of 
data. 
 

3.2.2.2 The Analysis Period 

Anderson and Brandt (1999) and Hermans (1999) reported that information on the actual, 

real-life periods of use of building components is still lacking almost completely. Salway 

(1986) recommended that for whole life costing purposes the time scale should be the lesser 

of physical, functional and economic life. By definition, the economic life is the most 

important from the viewpoint of cost optimisation as pointed out by Kirk and Dell’Isola 

(1995). Other researchers, e.g. Hermans (1999), recommended that the technological and 

useful lives must also be considered when the economic life of an item is estimated. 

 

In general, almost all researchers agreed that it is not recommended to assume a very long 

analysis period. The main reason, pointed out by Mcdermott et al. (1987), is that the further 

one looks into the future the greater the risk that assumptions used today will not apply. In 

addition, cash flows discounted on long time horizon are unlikely to affect significantly the 
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ranking of competing alternatives (Flanagan et al, 1989). Furthermore, refurbishment cycles 

are likely to become shorter in the future for many buildings (Ashworth, 1996a, 1996b, 

1999).  

 

3.3 Cost and Time Data 

By definition, cost data required for WLC purposes include initial costs and future follow-on 

costs that may include maintenance and repair costs, alteration costs, replacement costs, 

salvage value, among others. 

 

3.3.1 Initial Costs 

These are the costs for the development of the project including design and other 

professional fees as well as construction costs. Compared to future costs, initial costs are 

relatively clear and visible at early stages of projects (Kirk and Dell’Isola, 1995). However, 

even initial cost estimates may not be reliable as observed by Ashworth (1993) referring to 

the finding of Ashworth and Skitmore (1982) that estimates of contractors tender sums are 

only accurate to about 13%. 

 

3.3.2 Maintenance and Repair Costs 

Maintenance has been defined to include the costs of regular custodial care and repair 

including replacement items of minor value or having a relatively short life (Kirk and 

Dell’Isola, 1995). Sources of maintenance and repair data cited in the literature include 

historical data from clients and/or surveyors’ records, cost databases and maintenance price 

books. 

 

The basic problem of with historical maintenance data is that it is mostly combined for 

accounting purposes falling into broad classification systems that are too coarse to disclose 

enough information for other purposes (Ashworth, 1993, 1999; Kelly and male, 1993; 

Wilkinson, 1996). A second problem with historical maintenance data is that not all 

companies and organisations have preventive and planned maintenance policies and in many 

situations, maintenance work is budget oriented rather than need oriented (Flanagan et al., 

1989; Ashworth, 1996a, 1996b, 1999). Another related problem was identified by Mathur 

and McGeorge (1990) who argued that maintenance costs are heavily dependent on 
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management policy. Some owners endeavour to maintain their buildings in an as new 

condition whilst others accept a gradual degradation of the building fabric.  

 

The second source of maintenance data cited in the literature is cost databases (e.g. Neely 

and Neathammaer, 1991; Ciribini et al., 1993; Kirk and Dell’Isola, 1995). Neely and 

Neathammaer (1991) developed and implemented four databases at the US Army 

Construction Engineering Research Laboratory. The simplest database contains average 

annual maintenance per square foot by building use. The most detailed database contains 

labour hours per square foot, equipment hours per square foot, and material costs per square 

foot. Kirk and Dell’Isola (1995) referred to a similar database called BMDB available 

through ASTM. These databases are ‘constructed’ rather than ‘historical-based’ in that they 

are mostly based on ‘expert opinion’, trade publication data, and data in manufacturers’ 

literature. They pointed out that maintenance task frequencies are the most subjective portion 

of these databases as they are mostly based on professional experience. The validity of 

existing cost databases is, however, questionable as Smith (1999) reported that there was a 

38% difference between two commercially available cost databases when estimating the cost 

for new facilities for an American federal agency. 

 

Another resource of maintenance data is the BMI building maintenance price book published 

annually by the BMI (e.g. BMI, 2001). The contents of this book are based on the experience 

of the compilers, together with estimators specialising in the maintenance field and some on 

the results of work-studies carried out in maintenance departments. In this context, it is 

useful to quote the following note from the BMI building maintenance price book (BMI, 

2001)  

‘... The measured rates represent a reasonable price for carrying out the work 
described. However, the very nature of maintenance work means that no two jobs 
are identical and no two operatives tackle tasks in exactly the same way’. 

 

Again, this highlights the importance of high quality professional judgement in adjusting 

data from historical records and other sources to suit a particular project.  

 

3.3.3 Replacement Costs 

Replacement costs are those expenses incurred to restore the original function of the facility 

or space, by replacing facility elements having a life cycle shorter than that planned for the 

entire facility and not included the previous category (Kirk and Dell’Isola, 1995). As 
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discussed in Sec. 3.2, data required to maintain a building in its initial state is seldom 

available. Another problem in dealing with replacement costs is their dynamic nature due to 

the changes of the quality and standards of components as pointed out by Ashworth (1999). 

He concluded that this might distort any cost retrieval system and consequently any WLC 

predictions that may already have been made. This highlights once more the need to high 

quality judgement and the incorporation of the analysis of uncertainty into WLC studies. 

 

3.3.4 Refurbishment and Alteration Costs 

Many buildings may incur costs, which can not be categorised as repair, maintenance or 

replacement costs in the context of fair wear and tear, e.g. refurbishment and alteration costs. 

These are usually associated with changing the function of the space or for modernisation 

purposes. For example, when a tenant leaves an office, the owner must have the space redone 

to suit the functional requirements of the new tenant (Kirk and Dell’Isola, 1995).  

 

In handling this cost category, it is required to anticipate both the costs and cycle of 

alteration, which seems to be a difficult task. Analysts can work around this difficulty by 

either studying the alteration cycles in comparable buildings. If data is not available, the ease 

of change or alterability of various design schemes can still be treated as a non-financial 

factor which can be incorporated in the decision making process (Kishk et al., 2001). 

 

3.3.5 Operating Costs 

This category includes cost items relating to energy, cleaning, general rates, insurance and 

other costs related to operating the facility under consideration (Kirk and Dell’Isola, 1995). 

Energy costs of buildings depend heavily on the use and hours of building systems 

operations, weather conditions, the performance level required by owners, the building’s 

design and insulation provisions. This why Kirk and Dell’Isola (1995) emphasised the role of 

professional skills and judgement in adjusting historical data on energy costs before 

projecting for the expected level of use in a proposed design alternative. Bordass (2000) 

discussed in some detail the danger of making comparisons of costs without having good 

reference information. He illustrated his arguments in the context of comparing energy 

consumption of some offices in the UK with comparable Swedish data.  

  

Cleaning costs of buildings, depend on the type of building, function of spaces to be cleaned, 

type of finishes, cleaning intervals (Flanagan et al., 1989; Ashworth, 1999). It should be 
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noted, however, that cleaning costs of some elements, e.g. windows, seems to be identical 

and can therefore be eliminated in the decision-making process.  

 

Other operating costs such as rates, insurance premiums and security costs seems to affect 

the whole life costs of buildings. Ashworth (1999) listed some factors affecting the rateable 

values of buildings including the location, size, and amenities available. He pointed out also 

that safety factors such as type of structure, materials used and class of trade affect the 

insurance premiums and security costs.  

 

3.3.6 Taxes 

The inclusion of taxes in WLC calculations is important in the assessment of projects for the 

private sector. According to Ashworth (1999), this tends to favour alternatives with lower 

initial costs because taxation relief is generally available only against repairs and 

maintenance.  

 

3.3.7 Denial-to-Use Costs 

These costs include the extra costs occurring during the construction or occupancy periods, 

or both, because income is delayed. For example, an earlier availability of the building for its 

intended use by selecting a particular alternative may be considered as a monetary benefit 

because of the resulting additional rental income and reduced inspections, and administrative 

costs (Lopes and Flavell, 1998).  

 

3.3.8 Salvage Value 

The salvage value is the value of the facility at the end of the analysis period. This could be 

resultant of the component having a remaining life, which could be used or sold. It is 

calculated as the difference of the resale value of the facility and disposal costs, if any.  

 

3.4 Other Data Requirements 

Other data requirements include physical, occupancy and quality data.  Cost data are of 

uncertain value without being supplemented by these types of data (Flanagan et al., 1989). 

Physical data relate to physical aspects of buildings that can be measured such as areas of 

floor and wall finishes. Physical data are necessary in all cost estimating methods. Besides, 

cost data need to be interpreted with physical data. Different buildings used for the same 
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purpose but with different physical aspects will incur different costs as previously mentioned 

when discussing energy costs. Al-Hajj (1991) has shown that building-size and number-of-

storeys as well as design purpose, influence the running costs of buildings.  

 

Hobbs (1977) and Flanagan et al. (1989) stressed the importance of the hours of use and 

occupancy profile as other key factors especially for public buildings such as hospitals and 

schools. This view was supported by Martin (1992) who showed that users and not floor-area 

had the greatest correlation with costs-in-use of hospitals.  

 

On the other hand, quality and performance data are influenced by policy decisions such how 

clean it should be and how well it should be maintained. Data related to quality is highly 

subjective (Flanagan et al. 1989) while performance data is often incomplete, diffuse and 

largely unstructured (Bartlett and Howard, 2000). 

 

 

3.5 SUMMARY 

The data requirements to carry out a life cycle costing analysis are outlined. Five data 

categories were identified: (1) the economic variables. (2) cost data; (3) occupancy data; (4) 

physical data; and (5) performance and quality data. The economic variables that influence 

whole life costing were discussed. Various factors affecting the selection of an appropriate 

discount rate were also discussed. The ‘the net of inflation discount rate’ is recommended by 

many researchers to be used in WLC. This is because it takes into consideration the effect of 

inflation on costs. The analysis period or the time frame over which costs are projected is a 

key issue in any WLC analysis. Many definitions of the expected life of a building or a 

component are used. The most important lives are the economic life and the useful life. In 

addition, various deterioration and obsolescence forms that affect the choice of the period of 

analysis were outlined. 

 

Cost data include initial costs, maintenance and repair costs, alteration and replacement 

costs, associated costs, demolition costs, and other costs. Cost data are essential for the 

research. However, without being supplemented by other types of data, they are of uncertain 

value. This is mainly because cost data need to be interpreted in the context of other data 

categories. Sources of WLC data were also discussed.  
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Main sources include historical data, manufacturers’ and suppliers’ data, predictive models 

and professional judgement. Some attempts to build WLC databases utilising these sources 

were critically reviewed. Existing databases have two limitations. A simple data 

normalisation procedure was used. In addition, almost all of these databases do not record all 

the necessary context information about the data being fed into them. 
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CHAPTER 4 

UNCERTAINTY AND RISK  
ASSESSMENT IN WHOLE LIFE COSTING 

 

 

4.1 INTRODUCTION 

WLC, by definition, deals with the future and the future is unknown. As discussed in chapter 

2, there is a need to be able to forecast a long way ahead in time, many factors such as life 

cycles, future operating and maintenance costs, and discount and inflation rates. This 

difficulty is worsening by the difficulty in obtaining the appropriate level of information and 

data as discussed in chapter 3. This means that uncertainty is endemic to WLC. Therefore, 

the treatment of uncertainty in information and data is crucial to a successful implementation 

of WLC. In this chapter, various risk assessment techniques applicable to WLC are critically 

reviewed. These approaches are the sensitivity analysis, probability-based techniques, and 

the fuzzy approach. 

 

4.2 THE SENSITIVITY ANALYSIS 

The sensitivity analysis is a modelling technique that is used to identify the impact of a 

change in the value of a single risky independent parameter on the dependent variable.  The 

method involves three basic steps (Jovanovic, 1999): 

• The assignment of several reasonable values to the input parameter, 

• The computation of corresponding values of the dependent variable, and 

• The analysis of these pairs of values. 

 

In WLC calculations, the dependent variable is usually a whole life cost measure (usually the 

NPV or the EAC) of the least-cost alternative and the input parameter is an uncertain input 

element. The objective is usually to determine the break-even point defined as ‘the value of 

the input-data element that causes the WLC measure of the least-cost alternative to equal that 

of the next-lowest-cost alternative’ (Kirk and Dell’Isola, 1995). Flanagan et al. (1989) 

recommend the use of the spider diagram to present the results of the analysis. As shown in 

Fig. (4.1), each line in the spider diagram indicates the impact of a single parameter on 

WLC. The flatter the line the more sensitive WLC will be to the variation in that parameter. 
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The major advantage of the sensitivity analysis is that it explicitly shows the robustness of 

the ranking of alternatives (Flanagan and Norman, 1993, Woodward, 1995). However, the 

sensitivity analysis has two limitations. First, it is a univariate approach, i.e., only one 

parameter can be varied at a time. Thus, it should be applied only when the uncertainty in 

one input-data element is predominant (Kirk and Dell’Isola, 1995). Secondly, it does not aim 

to quantify risk but rather to identify factors that are risk sensitive. Thus, it does not provide 

a definitive method of making the decision. 
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Figure (4.1): Sensitivity analysis spider diagram (Flanagan et al., 1989).  

 

 

4.3 PROBABILITY-BASED TECHNIQUES 

In the probabilistic approach to risk analysis, all uncertainties are assumed to follow the 

characteristics of random uncertainty.  A random process is one in which the outcomes of 

any particular realisation of the process are strictly a matter of chance. In the following 

subsections, two probability-based techniques are reviewed: (1) the confidence index 

approach; and (2) the Monte Carlo simulation technique.   

 

4.3.1 The Confidence Index Approach 

The confidence index technique (Kirk and Dell’Isola, 1995; Kishk, 2001) is a simplified 

probabilistic approach. It is based on two assumptions: (1) the uncertainties in all cost data 

are normally distributed; and (2) the high and low 90% estimates for each cost do in fact 

correspond to the true 90% points of the normal probability distribution for that cost. For two 
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alternatives A and B, a confidence index, CI, is calculated and a confidence level is assigned 

to the WLC calculations according to the value of CI as follows: 

• For CI < 0.15, assign low confidence. This is equivalent to a probability less than 0.6. 

• For 0.15 < CI < 0.5, assign medium confidence. This is equivalent to a probability 

between 0.6 and 0.67. 

• For CI < 0.5, assign high confidence. This is equivalent to a probability over 0.67. 

  

The CI approach is considered valid as long as (Kirk and Dell’Isola, 1995): 

• The low and high 90% estimates are obtained from the same source as the best estimates; 

and considered to represent knowledgeable judgement rather than guesses.  

• The differences between the PW of the best estimate of each cost and the PWs of the 

high and low 90% estimates are within 25% or so of each other, i.e. 

 
 

The necessary assumption of normally distributed data and the above two restrictions limit 

the generality of the confidence index technique. 

 
 

4.3.2 The Monte-Carlo Simulation  

Monte Carlo simulation is a means of examining problems for which unique solutions cannot 

be obtained. It has been used in WLC modelling by many authors (e.g. Flanagan et al., 1987, 

1989; Ko et al., 1998; Goumas et al., 1999). In a typical simulation exercise, uncertain 

variables are treated as random variables, usually but not necessarily uniformly distributed. 

In this probabilistic framework, the WLC measures, usually the NPVs, also become random 

variables. In the last phase of evaluation, various alternatives are ranked in order of 

ascendant magnitude and the best alternative is selected such that it has the highest 

probability of being first. Figure (4.2) illustrates this process for the case of two competing 

alternatives. As noted by Flanagan et al. (1989), the decision-maker must weigh the implied 

trade-off between the lower expected cost of alternative A and the higher risk that this cost 

will be exceeded by an amount sufficient to justify choice of alternative. They also noted that 

although the technique provides the decision-maker with a wider view in the final choice 

between alternatives, this will not remove the need for the decision-maker to apply 

judgement and there will be, inevitably, a degree of subjectivity in this judgement  
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Simulation techniques have been also criticised for their complexity and expense in terms of 

the time and expertise required to extract the knowledge (Byrne, 1997 and Edwards and 

Bowen, 1998). 
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Figure (4.2): Choice between alternatives in a probability analysis 

(Flanagan et al., 1989).  
 

4.3.3 Other Limitations of the Probabilistic Techniques 

The main assumption in probabilistic risk assessment techniques is that all uncertainties 

follow the characteristics of random uncertainty. This implies that all uncertainties are due to 

stochastic variability or to measurement or sampling error; and consequently are expressible 

by means of probability distribution functions (PDFs). Therefore, PDFs are best derived 

from statistical analysis of significant data. But, as previously discussed, historic data for 

WLC is sparse. In view of the limited availability of ‘hard data’, subjective assessments for 

the likely values of uncertain variables have to be elicited from appropriate experts (Byrne, 

1996; Clemen and Winkler, 1999). Some researchers claim that it is possible to produce 

meaningful PDFs using subjective opinions (Byrne, 1996). However, the authenticity of such 

assessments is still suspected as Byrne (1997) pointed out 

 

As revealed by the review of various data elements (chapter 3), facets of uncertainty in WLC 

data are not only random but also of a judgmental nature. This mainly because most data rely 

on professional judgement. Besides, WLC data for a particular project is usually incomplete. 

Vesely and Rasmuson (1984) identified lack of knowledge to be virtually always of a 

judgmental nature as well. This suggests that probabilistic risk assessment fall short from 

effectively handle uncertainties in whole life costing. 
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4.4 The Fuzzy Approach 

The shortcomings relating to the sensitivity analysis and probabilistic techniques suggest that 

an alternative approach might be more appropriate. Recently, there has been a growing 

interest in many science domains in the idea of using the fuzzy set theory (FST) to model 

uncertainty (Kaufmann and Gupta, 1988; Ross, 1995; Kosko, 1997, to mention a few).  The 

fuzzy set theory seems to be the most appropriate in processes where human reasoning, 

human perception, or human decision making are inextricably involved (Ross, 1995; Kosko, 

1997). In addition, it is easier to define fuzzy variables than random variables when no or 

limited information is available (Kaufmann and Gupta, 1985). Furthermore, mathematical 

concepts and operations within the framework of FST are much simpler than those within the 

probability theory especially when dealing with several variables (Ferrari and Savoia, 1998). 

 
Byrne (1995) pointed out the potential use of fuzzy logic as an alternative to probability-

based techniques. In a subsequent paper (Byrne, 1997), he carried out a critical assessment of 

the fuzzy methodology as a potentially useful tool in discounted cash flow modeling. 

However, his work was mainly to investigate the fuzzy approach as a potential substitute for 

probabilistic simulation models. However, some researchers claim that probability may be 

viewed as a subset of the fuzzy set theory (e.g. Zadeh, 1995). In this sense, FST should not 

treated as a replacement of the probability theory. Rather, it should be viewed as the source 

of additional tools that can enlarge the domain of problems that can be effectively solved 

(Kishk and Al-Hajj, 2000b). 

 

Kaufmann and Gupta (1988) described how to manipulate fuzzy numbers in the discounting 

problem. They introduced an approximate method to simplify the mathematical calculations 

with fuzzy numbers. In this method, a function )(Af , where A  is a triangular fuzzy number 

(TFN), can be approximated in general by another TFN. Sobanjo (1999) employed this 

simplified method to introduce a methodology for handling the subjective uncertainty in life 

cycle costing analyses. The model has the apparent advantage of being simple. However, it 

has the following limitations. First, the interest rate, rehabilitation times, and the analysis 

period were assumed to be certain. Moreover, only TFNs were considered in representing 

decision variables. However, an expert should give his own estimates together with a choice 

of the most appropriate membership function for every state variable.  

 

Kishk and Al-Hajj (2000a, 2000b) developed a powerful algorithm based on the fuzzy set 

theory (FST) and interval analysis (Fig. 4.6). This algorithm is superior to that presented by 
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Sobanjo (1999) due to its ability to deal with judgmental assessments of all state variables. In 

addition, it can manipulate various shapes of fuzzy quantities. The algorithm employs an 

exceptionally derived WLC mathematical model (equations 2.13-2.15). A similar algorithm 

to deal with alternatives with different lives was proposed in Kishk and Al-Hajj (2000d).  

 

Figure (4.3) illustrates how to choose between two competing alternatives in the fuzzy 

approach. The net present values of two alternatives are shown in the figure. In areas 2A , 

alternative A is better than B, whereas B is better than A in areas 3A . Kishk and Al-Hajj 

(2000c) outlined the following two confidence measures 
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The factors 1CI  and 2CI  may be interpreted as measures of the confidence in the two 

statements: ‘A is better than B’ and ‘A is at least as good as B’, respectively. 
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Figure (4.3): Choice between alternatives in the fuzzy approach 

(Kishk and Al-Hajj, 2000c).  
 

The FST have been also employed by several researchers to deal with discounted cash flow 

(DCF) analysis. Examples include Buckley (1987), Ward (1985, 1989), Chiu and Park 

(1994), Wang and Liang (1985), Lai and Ching-Lai (1993), Liang and Song (1994), Perrone 

(1994), Chen (1995), Kahraman and Tolga (1995), Sobanjo (1999), Kuchta (2000), 

Kahraman et al. (2000), Mohamed and McCowan (2001), among others. However, almost all 

these methodologies focus on DCF as a budgeting tool rather than a decision making tool. 

Besides, they have many drawbacks that limit their effective implementation (Kishk, 2001).  
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4.5 The Integrated Approach 

Kishk and al-Hajj (1999) and Kishk (2001) proposed an integrated framework to handle 

uncertainty in WLC. It is based on the simple idea that a complex problem may be 

deconstructed into simpler tasks. Then, the appropriate tools are assigned a subset of tasks 

that match their capabilities as shown in figure (4.4). Data is evaluated in terms of 

availability, tangibility and certainty. The levels of these measures increase, and hence the 

problem complexity decreases, from left to right. In situations where all data can be known 

with certainty, the problem is deterministic and can be modelled as such (Curwin and Slater, 

1996). Thus, closed form solutions can provide the basis for decision making. If outcomes 

are subject to uncertainty, however, alternative modelling techniques are required. According 

to the type of uncertainty, either the probability theory or the fuzzy set theory can be used. 

This way, the manner in which parameter uncertainty is described in the model can be more 

consistent with the basic nature of the information at hand. The lower part of Fig. (4.4) 

reflects the need to integrate all forms of solutions attained through various theories before a 

decision can be made. Certain data, i.e. represented by ordinary real numbers, may be seen as 

special cases of FNs or PDFs, and consequently can be easily integrated with either random 

or non-random data as represented by FNs or PDFs, respectively.  
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Figure (4.4): The integrated WLC framework (Kishk, 2001). 
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More recently, Kishk and Al-Hajj (2001a, 2001c) have developed an algorithm to combine 

stochastic and subjective data as represented by probability density functions (PDFs) and 

fuzzy numbers (FNs), respectively, within the same model calculation. This algorithm is 

motivated by the fact that historic data may exist for some uncertain input parameters; and 

consequently, meaningful statistics can be derived for these parameters. In such cases, one 

might consider it more realistic to assign PDFs to these parameters. All PDFs are then 

properly transformed to equivalent FNs using a sound transformation technique (Kishk and 

Al-Hajj, 2001a). Thus, the fuzzy approach discussed in the previous section can be used.  

 

 

4.6 SUMMARY 

The commonly used approaches to uncertainty and risk assessment in WLC modelling were 

critically reviewed. These are: the sensitivity analysis, probabilistic and fuzzy techniques. 

Although the sensitivity analysis approach is simple, it is effective only when the uncertainty 

in one input-data element is predominant. Furthermore, it does not provide a definitive 

method of making the decision. The confidence index method is a simplified probabilistic 

method that has been found to lack the generality of application. Simulation techniques are 

more powerful but they have been criticised for their complexity and expense in terms of the 

time and expertise required. Besides, probability theory can deal only with random 

uncertainty.  

 

Two fuzzy approaches were critically reviewed. The fuzzy algorithms designed by Kishk 

and al-Hajj (2000a, 2000b, 2000c, 2000d) are superior to that presented by Sobanjo (1999) 

due to their ability to deal with judgmental assessments of all state variables. In addition, 

these algorithms can manipulate various shapes of fuzzy quantities. Finally, a recent 

integrated approach proposed by Kishk and Al-Hajj (2001a, 2001c) is outlined. This 

approach can handle both statistically significant data and expert assessments as represented 

by probability density functions (PDFs) and fuzzy numbers (FNs), respectively, within the 

same WLC model calculation. This way, the manner in which parameter uncertainty is 

described in the model can be more consistent with the basic nature of the information at 

hand. 
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CHAPTER 5 

IMPLEMENTATION OF WLC  
 
 

5.1 INTRODUCTION 

In this chapter, the implementation of WLC in a typical project is discussed in more detail. 

The next two sections are devoted to discuss the main activities of WLC in a typical project. 

Then, the level of WLC implementation in a typical project is discussed with emphasis on its 

implications regarding data collection, recording and feedback. Special emphasis is given to 

the required features of the cost break-down structure (CBS). The chapter concludes with an 

overview of the whole life costing software in use within the construction as well as other 

industries. 

 

 

5.2 STAGES OF IMPLEMENTATION 

Although opinions differ as to the sequence in which various WLC activities should be 

implemented, three stages of the application of WLC can be identified (Flanagan and 

Norman, 1983; Seeley, 1996). The first activity is called whole life cost analysis (WLCA) 

and includes collecting and analysing historic data on the actual costs of occupying 

comparable buildings. The primary objective is to relate running costs and performance data 

and provide feedback to the design team about the running costs of occupied buildings. The 

second activity, known as whole life costing management (WLCM), is derived from WLCA. 

It identifies those areas in which the costs of using the building as detailed by WLCA can be 

reduced. The primary objective is to assess and control costs throughout the whole life of the 

building to obtain the greatest value for the client. The third activity, known as whole life 

costing planning (WLCP), can be considered as part of WLCM. It constitutes the prediction 

of total costs of building, part of a building, or an individual building element. It also 

includes planning the timing of work and expenditure on the building, taking into account 

the effects of performance and quality (Seeley, 1996). 

 

Flanagan and Norman (1983) devised a method of grouping WLC activities into a 

hierarchical structure as illustrated in Fig. (5.1). The main point is that as the design 

develops, the initial WLC plan based on level 1 will be replaced by a detailed plan at level 3. 

As shown in the figure, this structure fits into the RIBA plan of work with the conventional 

cost planning sequence on the left-hand side of the figure.  
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InceptionBudget Forecast

Establish tax aspects of the building.

Client with conjunction with QS establishes
the budget range for running cost targets for
total building for investment appraisal.

FeasibilityBudget Estimate
Modify running cost targets in light of
further information. Break down running
costs into £/m2 items. (Budget WLCP)

Identify historical data on running costs of
homogeneous building.

LEVEL 1

Outline
Proposals

Brief Cost Plan &
Price Prediction

Establish use pattern of the building.

LEVEL 2

Scheme
Design

Measurement Information

Produce detailed WLCP for building.

Detailed Cost Plan

Produce brief WLCP.

Produce WLCP for individual elements.
Compare WLCP with capital cost plan.

Evaluate alternative design options.

Detail
Design

Cost Checks Undertake cost checks on WLCP as design
develops

Produce taxation cost plan.

Production
Information

Cost Checks Compare capital cost plan with WLCP.

Bill of
Quantities

Produce detailed information on taxation
cost plan.

ConstructionDetailed WLCA after
12 Months Occupancy

Check WLCA with WLCP

Assist client cash flow by producing details
on capital allowances as cost is incurred.

LEVEL 3

 
Fig. (5.1): WLC and the RIBA plan of work (Flanagan and Norman, 1983). 

 

The main point is that as the design develops, the initial or budget WLC plan based on level 

one will be replaced by a detailed plan at level three. As shown in the figure, this structure 

fits into the RIBA plan of work with the conventional cost planning sequence on the left 



 38 

hand side of the figure. It should be noted, however, that WLC can be used at any time in the 

design process (Flanagan and Norman, 1983). 

 

Kirk and Dell’Isola (1995) stressed that owners must take the responsibility for setting 

realistic goals in planning and budgeting phases and giving assistance as necessary to design 

professionals. In this way, WLC does not become just another paperwork exercise. 

 

 

5.3 LOGIC OF IMPLEMENTATION  

In the last two decades, the search for a practical WLC implementation approach has been 

the concern of many groups of practitioners and researchers. Two of these implementation 

methodologies are briefly outlined in the following paragraphs. Figure (5.2) shows 

schematically a seven-step implementation model described in Ferry and Flanagan (1991). 

As shown, the implementation steps flow sequentially in a logical order. This model is 

typical of various sequential methodologies available in the literature. 

 

Compile Data

Compute WLC for Alternatives

Compare Results

Evaluate Results for Uncertainty and Risk

Report Findings & Conclusion

Identify Objectives, Constraints & Alternatives

Establish Assumptions and WLC Procedure

 

Fig. (5.2): The Seven-Step implementation model of Ferry and Flanagan (1991). 

 

Figure (5.3) shows another WLC logic flow recommended by Kirk and Dell’Isola (1995). 

The first requirement is the input data with which alternative would be generated. Then, 
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various WLC components are predicted. These predictions would be tempered by non-

economic comparisons before the final selection is made. This is sometimes necessary 

because in many cases these intangibles have a decisive role to play. For example, the 

decision to replace a window would require analysis of energy efficiency, maintenance 

requirements, aesthetics as well as elemental juxtaposition before optimum choice can be 

determined (Piper, 1996). 
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Fig. (5.3): WLC implementation logic (Kirk and Dell'Isola, 1995). 

 

As shown, input data requirements are classified into three main categories: the specific 

project information, site data and facility components data. The first two categories are 

usually easily accessible. However, there is no readily available a storage and retrieval 

format containing facility components data. Another unique feature of this model is that it 

adopts a feedback procedure for the implementation of WLC. A recycle is usually needed for 

development of other alternatives or refinement of existing alternatives. Furthermore, this 

procedure is in line with the basic nature of design as an iterative process towards the 

achievement of the goal of cost optimisation.  

 

5.4 The Cost Break Down Structure 

In WLC implementation, two costing methods can be identified: systems’ costing; and 

detailed costing (Kirk and Dell’Isola, 1995). System costs allocates funds to the various 
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functional elements of a facility and allows the designer to make early cost comparisons 

among alternatives. In the detailed costing approach, it is necessary to breakdown the facility 

into its constituent elements whose costs can be distinctly defined and estimated. This cost 

break down structure (CBS) may be seen as another way of classifying costs, with the 

classification being WLC oriented. It links objectives and activities with resources and 

constitutes a logical subdivision of cost by functional activity, area, major element of a 

system, and/or more discrete classes of common items (Fabrycky and Blanchard, 1991).  

 

5.4.1 Basic Characteristics of a CBS 

The complexity of a CBS and the identification of cost elements and their corresponding 

scope depend on the scope and objectives of the WLC exercise. However, any CBS should 

exhibit the following desirable characteristics (Fabrycky and Blanchard, 1991; HMSO, 1992) 

• All cost categories should be considered and identified in the CBS. 

• Each cost element included in the CBS should be clearly defined so that all parties 

involved have a clear understanding of what is included in a given cost category and 

what is not. 

• Costs must be broken down to the level necessary to provide visibility required in the 

decision-making process. Besides, cost-significant areas should be easily identifiable. 

• The CBS should be designed in a way that different levels of data could be inserted 

within various categories. Besides, each cost element should be identifiable with a 

significant level of activity/work.  

• The CBS should be coded to allow an analysis of specific areas of interest while virtually 

ignoring other areas. 

• Costs that are reported through various information systems must be compatible and 

consistent with those comparable cost factors in the CBS. 

 

5.4.2 Examples of CBSs 

Table (5.1) show an example of the cost breakdown structure given in The Surveyors’ 

Construction Handbook (RICS, 1999). In this CBS example, the cost categories identified 

are obviously too broad to be useful at all design stages. Fabrycky and Blanchard (1991) 

criticised this sort of CBSs also in that they do not ensure accountability and control 

In addition, the cost analyst cannot readily determine what is and what is not included, nor 

can he or she validate that the proper relationships or parameters have been utilised in 
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determining that are inputted into such a structure. Furthermore, this CBS lacks many of the 

desirable characteristics mentioned in the previous section. 

 

Table (5.1): Major project break down structure (RICS, 1999). 

A. Capital / Initial Costs: C. Maintenance Costs 
• General • Main structure. 

- Land • External decorations. 
- Fees on acquisition • Internal decorations. 
- Construction cost. • Finishes, fixtures and fittings. 
- Taxes. • Plumbing and sanitary services. 

 • Heat source. 
• Financing Cost • Ventilation and air treatment  

- Finance for land purchase and     system. 
  construction. • Electrical installations. 
- Loan charges. • Gas installations. 

 • Lift and conveyor system. 
 • External works. 

B. Operation Cost:  
• Energy.  
• Cleaning. D. Occupancy Cost 
• Insurance. • Client occupancy costs. 
• Security and Health.  
• Manpower.  

- Staff. E. Residual Values 
- Management & administration of  • Resale value 
  the building. • Demolition and site clearance. 

• Land charges (Rates). • Renovation /refurbishment cost. 
• Equipment associated with occupier’s 

occupation. 
 

 

One way to work out these limitations is to utilise the cost element concept outlined in the 

BS 5760 (BSI, 1997). This concept can be illustrated by a three-dimensional matrix as shown 

in Fig. (5.4). This matrix involves identification of the following aspects of a product/work: 

• Breakdown of the product to lower indenture levels. 

• The time in the life cycle when the work/activity is to be carried out. 

• The cost categories of applicable resources such as labour, materials, fuel/energy,  etc. 

(that is the cost categories). 

 

This approach has the advantages of being systematic and orderly, thus giving a high level of 

confidence that all essential costs have been included. 
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Figure (5.4): The cost element concept (BS 5760, 1997). 

 

5.4.3 The CBS and the Management of Information 

As discussed in Sections 5.2 and 5.3, the management of information within a WLC exercise 

includes the collection, analysis, recording of data and feedback of the WLC results. To 

support the WLC process, the costs information should be collected and recorded in a format 

consistent with the defined breakdown structure.  

 

Costs associated with various elements may be further allocated between recurring and non-

recurring costs, or expanded to a detailed year by year costs. In this way, the appropriate 

mathematical model can be employed to predict various contributions of the whole life cycle 

costs. Obviously, a database should be established and maintained to capture the results of 

these various WLC exercises, in order to serve as a source of experience feedback. In this 

way, the CBS may be considered as a standard framework within which costs can be tracked 

and related from project inception through construction and occupancy stages. 

 

5.4.4 The CBS and the CAD Application 

Within this project, the implementation medium will be an integrated environment with a 

CAD application (Autodesk Architectural Desktop) to allow the user to create, manage and 

manipulate various components of the facility under consideration. Thus, it is essential to 

discuss other essential features of the CBS to be in line with CAD applications. In a typical 
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CAD application, a facility is defined as a collection of objects. These objects are usually the 

components, elements, systems or subsystems of the facility. In other words, these objects 

represent the work breakdown structure (WBS) of the facility. This suggests that an 

elemental format of the CBS is crucial for the implementation in the integrated environment. 

Furthermore, an elemental format relate well with the kind of decisions that are made at 

various design stages as noted by Kirk and Dell’Isola (1995). They described how previously 

in the USA, a 16 division Construction Specification Institute (CSI) format was common, 

using trade packages (which were heavily product and materials based). However relatively 

recently an elemental format called UNIFORMAT continues to gain popularity.  

 

5.4.5 The CBS: Further Considerations 

5.4.5.1 Standardisation 

Because the CBS should be coded to allow an analysis of specific areas of interest and to 

facilitate the flow of information around various life cycle phases, a selection of a standard 

WBS seems inevitable. Whyte et al. (1999) studied this issue in some detail. They reviewed 

vrious attempts to standardisation through the Co-ordinated Project Information (CPI) and 

other initiatives. Some of these systems are summarised in the following. Table (5.2) shows 

a taste of the elemental code (Holmes et al., 1985). Holmes pointed out that most elemental 

code is hierarchical with up to 6 digits at the most detailed level but only three digits at the 

recommended minimal level. They also suggest that that practice of Elemental coding has 

been around for several years, not least in the 1964 Report on the Costing of Management 

and Maintenance for Local Authority Housing. 

 

Table (5.2): Elemental Codification  (Holmes et al., 1985). 

1 External  Painting  

2 Internal Painting  

3 Structure 34:  
roofs 

344:   
roof gutters 

3441:   
pitched roof 

34411:   
valley gutter 

4 Structural fixings and 
internal finishes 

 

5 plumbing (excl. heating)  

6 heating and other services  

7 external site works  

8 ancillary services  

9 other buildings etc.  
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Table (5.3): BMI Property-Occupancy-Cost-Analysis Form (BMI, 1991). 

0.0  Improvements and adaptations 
 

1.0  Decoration 
1.1 External decoration 
1.2 Internal decoration 
 

2.0  Fabric 
2.1 External walls 
2.2 Roofs 
2.3 Other structural items 
2.4 fittings and fixtures 
2.5 Internal finishes 
 

3.0  Services 
3.1 Plumbing and internal drainage 
3.2 heating and ventilation 
3.3 lifts and escalators 
3.4 electrical power and lighting 
3.5 other M & E services 
 

4.0  Cleaning 
4.1 windows 
4.2 external surfaces 
4.3 internal 
 

5.0 Utilities 
5.1 gas 
5.2 electricity 
5.3 fuel oil 
5.4 solid fuel 
5.5 water rates 
5.6 effluent and drainage costs 

 
6.0  Administrative costs 

6.1 services attendants 
6.2 laundry 
6.3 portage 
6.4 security 
6.5 rubbish disposal 
6.6 property management 

 
7.0  Overheads 

7.1 property insurance 
7.2 rates 

 
8.0  External works 

8.1 repairs & decoration 
8.2 external services 
8.3 cleaning 
8.4 gardening 

 

Table (5.3) shows the standard form for Property-Occupancy-Cost-Analysis produced by the 

Building Maintenance Information service (BMI). The aim of this standard format is to allow 

standardisation of the system of collection and presentation of data. Expected elements for 

occupancy costs are detailed with elemental divisions standardised and referenced as shown 

in Table (5.3). The BMI defined an element for occupancy cost analysis purposes as:  

 
‘… expenditure on an item which fulfils a specific function irrespective of 
the use or form of the building.’ 

 

The actual list of elements is, however, a compromise between this definition and what is 

considered practical. Cost elements are expressed as a ‘cost per 100 m2 per annum’ to allow 

comparisons between the cost of achieving various defined functions, or maintaining defined 

elements, in one building with those in another.  

 

The BMI publishes a price information book that seeks to establish realistic competitive rates 

for maintenance services work. The contents of this book (e.g. BMI, 1999) are based on the 
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experience of the compilers, together with estimators specialising in the maintenance field 

and some on the results of work study carried out in maintenance departments The BMI 

coding of elements (with firstly labour rates in £/hr and then measured work rates in £/unit, 

following a similar pattern) that divides and subdivides work as shown in Table (5.4). 

 

Table (5.4): BMI rate codes (BMI, 1999). 

1. scaffolding; ..., ..., ... 

2. demolition's and alterations; ..., ..., ... 

3. excavation and concrete; ..., ..., ... 

4. brickwork, underpinning & stonework; ...  

5. roofing; ..., ..., ... 

6. woodwork; ..., ..., ... 

 7. plumbing; ..., ..., ... 

 8. electrical work; ..., ..., ... 

 9. internal and external finishing; ...,  

10. glazing; ..., ..., ... 

11. painting and decorating; ..., ..., ... 

12. external works and drainage; ..., ..., 

 

According to Whyte et al. (1999), if a standardised breakdown of building elements is sought 

to improve the processes of whole life costing, BMI codifications appear to offer a logical 

choice. This conclusion seems reasonable in the sense that these publications are virtually the 

only regular sources of information on occupancy and maintenance data in the UK. 

However, it seems more reasonable to choose the well-known codification of the BCIS 

standard form of cost analysis (Table 5.5) because it is more element oriented. Besides, it is 

originally designed for initial costs and is combatable with existing systems such as OSCON 

(Aouad et al., 1997). 

 

5.4.5.2 Elemental Interaction 

As discussed above, a standard format for the WBS is important but is not enough. The 

collection, recording and feedback of information through the CBS should reflect interaction 

between various elements in the CBS as discussed in the window example in Sec. 5.3. 

 

5.4.5.3 Cost Significance and Cost Indifference 

Because WLC requires the compilation of large databases and that these are costly to 

compile, it seems useful to employ the concept of ‘cost significance’ proposed by Al-Hajj 

(1991). This concept has its roots in the famous '20:80' Pareto’s rule. It seeks to isolate the 

major variables that contribute significantly to costs over the life span of a building. For the 

principle to be employed for an elemental CBS, however, a new definition is needed Al-Hajj 

work was based on generic running costs of buildings. 
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Table (5.5): The BCIS Standard Form of Cost Analysis for Building Projects. 

 1- Substructure   5- Services, continued 
 2- Superstructure   5E Heat source  

 2A Frame   5F Space heating and air treatment  
 2B Upper floors   5G Ventilating system  
 2C Roof   5H Electrical installations  
 2D Stairs   5I Gas installations  
 2E External walls   5J Lift and conveyor installations  
 2F Windows and external doors   5K Protective installations  
 2G Internal walls and partitions   5L Communication installations  
 2H Internal doors   5M Special installations  

 5N Builder’s work in connection with services  
 3 - Internal finishes  5O Builder’s profit and attendance on services  

 3A Wall finishes   
 3B Floor finishes   6 - External Works 
 3C Ceiling finishes   6A Site works  

  6B Drainage  
 4 - Fittings and furnishings  6C External services  
  6D Minor building works  
 5 - Services   

 5A Sanitary appliances   7 - Preliminaries 
 5B Services equipment   
 5C Disposal installations   8 - Contingencies 
 5D Water installations   

 

Another potential for reducing the size of the database is to exclude costs that are identical 

for all alternatives under consideration. In this way, only costs that will contribute to the final 

choice between competing alternatives are considered. An example of the usefulness of this 

principle is that the cleaning cost of a window can be excluded in the choice between 

‘double-glazed’ and ‘single-glazed’ windows. It should be noted, however, that the 

utilisation of these principles depends on the scope and objectives of a particular WLC 

exercise. For example, when an analyst is interested in predicting the whole life cycle costs, 

it is necessary to include all cost elements of the facility under consideration. 

 

5.4.5.4 Handling Various Data Sources 

As discussed in chapter 3, the gathered data is expected to be from different sources and with 

different uncertainty types and levels. The CBS should be designed to accommodate the 

variability of data collection method(s), parameter definitions, statistics indicating variability 

in parameter values, references, reliability, geographical relevance, ... etc. In other words, the 

context of the data should be recorded.  
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5.5 WLC SOFTWARE 

Whyte et al. (1999) reviewed in some detail several applications purporting to provide WLC 

support. They felt that opportunities to complement the decision making process of building 

design remain under-exploited. Besides, there appear to be gaps in areas that examine 

elemental links. Currently, there exist new user-friendlier versions of some of these software 

applications (Table 5.6).  To identify the usefulness of these applications, they have been 

evaluated against four criteria: (1) availability; (2) WLC models employed; (3) risk analysis 

capabilities; and (4) scope of application. 

 

Table (5.6): Existing WLC software. 

Software Vendor 

ACEIT 5.x Tecolote Research, Inc. http://www.aceit.com/ 

Ampsol  Ampsol Ltd. http://www.ampsol.com 

AssetDesk 1.1 Richmond Systems. http://www.richmondsys.co.uk/ 

BLCC 5.1 National Institute of Standards and Technology (NIST), USA. 
http://www.eren.doe.gov/femp/resources.html 

BridgeLCC 2.0 National Institute of Standards and Technology (NIST), USA. 
http://www.bfrl.nist.gov/bridgelcc/ 

CAMSLCC 2.2 CAMS Consulting Group. http://www.camsco.net 

CASA LOGSA. http://www.logsa.army.mil/alc/casa/ 

EDCAS 3.1 TFD Group. http://www.tfdg.com/ 

PipeCost Armtec Ltd. http://www.big-o.com/constr/softw.htm 

RelexLCC 7.3 Relex Software. http://www.relexsoftware.com/products/lcc.asp 

 

Table (5.7) summarise the main characteristics of these applications in relation to the above 

criteria. As shown, these applications vary from free simple spreadsheet models to 

sophisticated, commercial stand-alone applications. Besides, three main categories can be 

identified. In the first category, e.g. Ampsol, the application is used only as a financial tool to 

calculate the whole life cost of a single alternative. Obviously, the usefulness of this category 

is limited. In the second category, including most of the applications, an application is 

mainly used as a decision-making tool to identify the ideal alternative from a number of 

http://www.aceit.com/
http://www.ampsol.com/
http://www.richmondsys.co.uk/
http://www.eren.doe.gov/femp/resources.html
http://www.bfrl.nist.gov/bridgelcc/
http://www.camsco.net/
http://www.logsa.army.mil/alc/casa/
http://www.tfdg.com/
http://www.big-o.com/constr/softw.htm
http://www.relexsoftware.com/products/lcc.asp
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competing alternatives. In general, an NPV model with a generic CBS is employed. Besides 

either the SA and/or MCS is used to risk assess the results. One limitation of almost all these 

applications is that the CBS is built manually by the user and is mostly non-elemental. In the 

third category, e.g. AssetDisk, the application is used as an asset management system. 

Typically, it is mainly a database manager that has the capability to record, modify, analyse 

and manage WLC data for an asset. All existing applications within this class are 

commercial, general-purpose systems that would require extensive training of users. Thus, 

there is still a need to develop a WLCM application for building components. 

 

Table (5.7): Characteristics of existing WLC software. 
 

Software Availability Models Risk  Scope of Application 

ACEIT 5.x • Commercial. 
• Windows. 

NPV. MCS • Integrated suite of analysis tools. 
• WLC decision-making. 
• Generic CBS. 

Ampsol  • Free. 
• Web based. 

NPV None • Basic WLC calculations only. 
• Generic CBS.  

AssetDesk 1.1 • Commercial. 
• Windows. 

None None • WLC management. 
• Activity-based CBS. 

BLCC 5.1 • Free. 
• Platform-

independent 

NPV  
NS 
SIR 
IRR 
DPP 

SA • WLC decision-making. 
• Generic CBS. Single energy & 

water cost items and unlimited items 
for other categories. 

BridgeLCC 2.0 • Free. 
• Windows. 

NPV SA 
MCS 

• WLC decision-making. 
• Specific CBS suitable only to 

analyse bridges. 
CAMSLCC 2.2 • Free. 

• Spreedsheet. 
NPV None • WLC decision-making. 

• Generic CBS. Single cost item per 
cost category. 

CASA • Free. 
• Windows. 

NPV SA • WLC decision-making. 
• Generic CBS. 

EDCAS 3.1 • Commercial. 
• Windows. 

NPV None • WLC decision-making. 
• Generic activity-based CBS. 

PipeCost • Free. 
• Windows. 

NPV SA • WLC decision-making. 
• Generic CBS. Single cost item per 

cost category. 
RelexLCC 7.3 • Commercial. 

• Windows. 
NPV SA • WLC decision-making. 

• User-defined CBS. Unlimited cost 
items per category. 

 

 

5.6 SUMMARY 

This chapter was devoted to outline the main requirements of effective implementation of 

whole life costing. There are two approaches to implement the technique as a decision-
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making tool. In the first approach, the implementation is carried out sequentially. In the 

second approach, a logical order is also followed but a recycle procedure is adopted to 

generate new alternatives or refine existing alternatives if the decision is inconclusive. The 

latter approach is in line with design as an iterative process. On the other hand, WLC can be 

used as a management system to assess and control costs of various activities of occupied 

buildings, plan the timings of these activities and to provide feedback to the design stage of 

other projects 

 

In WLC implementation, it is necessary to breakdown the facility into its constituent 

elements whose costs can be distinctly defined and estimated. Several cost breakdown 

structures are mentioned in the literature. Common characteristics of these CBSs have been 

reported. Besides, other key features of the CBS to be employed in the development of WLC 

applications for the design and management of construction assets have been identified.  

 

Existing applications that provide whole life costing support have been also reviewed. In 

almost all these applications, an NPV model with a generic CBS is employed. Besides either 

the SA and/or MCS is used to risk assess the results. The main limitation existing 

applications is that the CBS is built manually by the user and is mostly non-elemental. 

Besides, various facets of uncertainty in WLC data are not effectively handled. 
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CHAPTER 6 

CONCLUSIONS AND THE WAY FORWARD 
 

6.1 CONCLUSIONS 
A state-of-the-art review of whole life costing in the construction industry has been carried 

out to identify the strengths and gaps in existing knowledge in order to inform the 

development of an integrated WLC system being developed within an EPSRC funded 

research project. Issues covered included decision-making criteria, mathematical models, the 

nature and sources of various WLC data requirements, handling uncertainty and effective 

implementation of the technique. The main findings are summarised in the following. 

• There are many difficulties in the implementation of WLC in the industry. Methods 

designed to tackle some of these difficulties exist but are, in general, disjointed. 

• Six economic evaluation methods commonly used in whole life costing studies have been 

reviewed. The most suitable approaches for WLC in the framework of the construction 

industry are the net present value and the equivalent annual cost methods. The latter is 

the most appropriate method for comparing alternatives of different lives. 

• Almost all published WLC models use the same basic equation but with a different cost 

breakdown structure. Two broad categories can be identified. The first category is based 

on the DCF technique and thus can only handle single future costs and annual costs. In 

the other category, non-annual recurring costs can be dealt with directly without the need 

to express each cost to a number of equivalent cash flows. Besides, the uncertainties of 

the frequencies of these costs can be effectively handled. Therefore, these models are 

more appropriate when WLC is used a decision-making tool. 

• The financial status of the client and the particular circumstances of projects have the 

major impact on the selection of the discount rate. This process seems to be of a highly 

judgmental nature. Although there is a controversy on considering inflation in WLC, its 

effect can be included in the discount rate.  

• Many definitions of the expected life of a building or a component are used. These 

definitions are based on various physical and obsolescence phenomena. The most 

important are the physical, economic and useful lives. The analysis period or the time 

frame over which costs are projected is mostly a result of obsolescence phenomena.  

Again, this is a highly judgmental factor because of the lack of data about the real life of 

building components. Even if this data exists, it is almost concerned with longevity and 

not with obsolescence. 
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• Cost data requirements include initial costs and future follow-on costs that might include 

maintenance, repair, alteration, replacement, operating costs and demolition costs. Other 

data categories including occupancy, performance and quality data, are also crucial. 

• Sources of cost data including historical records, manufacturers’ and suppliers’ 

information and cost databases and price books have been also discussed. This discussion 

revealed the importance of high quality judgement in adjusting data from historical 

records and other sources to agree with particular projects.  

• A number of WLC databases have been mentioned in the literature. These database are 

‘constructed’ rather than ‘historical-based’ in that they are mostly based on ‘expert 

opinion’, trade publication data, and data in manufacturers’ literature. However, existing 

databases have two major limitations. First, a simple data normalisation procedure of cost 

per unit area of the building is usually employed. This ignores other crucial information 

such as hours of use, occupancy profile, building size, building height, building type, 

quality and performance requirements. Secondly, statistics and other measures indicating 

the type and level of uncertainty of various data elements are not recorded.  

• The sensitivity analysis is effective only when the uncertainty in one input-data element 

is predominant and does not provide a definitive method of making the decision 

elsewhere. On the other hand, simulation methods have been criticised for their 

complexity and their expense. Other simplified probabilistic methods have been found to 

lack the generality of application. Another major flaw of probabilistic methods is that 

they follow the characteristics of random uncertainty. This implies that significant 

historic data should be available to produce a statistically meaningful analysis.  

• WLC does not fit completely into the framework of probability and statistics theories. 

On the other hand, the FST is a source of many concepts and tools that can enlarge the 

domain of WLC-based decision-making problems that can be effectively solved.  

• Two approaches for WLC implementation as a decision-making tool can be identified. In 

the first approach, the implementation is carried out sequentially. In the second approach, 

a logical order is also followed but a recycle procedure is adopted to generate new 

alternatives or refine existing alternatives if the decision is inconclusive. 

• WLC is mainly used as a management system during the occupancy stage of buildings 

where three activities can be identified. The first activity is to relate running costs and 

performance data and provide feedback to the design stage of other projects. The second 

activity is to effectively assess and control costs. The third activity is to plan the timing 
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of work and expenditure on the building, taking into account the effects of performance 

and quality.  

• To successfully implement WLC throughout the whole-life of buildings, it is crucial to 

employ an effective CBS. In addition to common desirable features, this CBS should be 

designed to accommodate the context information of WLC data and all the necessary 

measure that can reflect various facets of uncertainty of this data. 

• Existing WLC applications have been criticised for their inability to effectively handle 

various facets of uncertainty in WLC data. Besides, the lack of a standard CBS suitable 

for constructions assets. 

 

 

6.2 THE WAY FORWARD 

The construction of a resource database to house crucial information of building components 

and systems would facilitate the implementation of WLC during the design stage. Obviously, 

various data categories reviewed in chapter 2 should be all considered. Because almost all 

these categories are of uncertain nature, the structure of the database should be designed such 

that it can accommodate all the necessary information to reflect this uncertainty. Obviously, 

a WLC Decision-making application should be developed to utilise the resource database to 

generate a set of design alternatives for a given building element and identifies the ideal 

option for that element by minimising its whole life costs.  

 

A project specific database is also required to house data of the selected set of options for 

various elements. The project database will be utilised by another WLC management 

application to facilitate the management of the building during the occupancy stage. This 

application will allow four basic processes: (1) recording the actual performance and cost 

history of the building; (2) analysing this recorded data to predict future activities and their 

associated costs within the occupancy stage of the building (i.e. feed-forward of information) 

and to inform the design stage of other projects  (i.e. feedback of information); (3) assessing 

and controlling costs whereby the main activity is to identify cost significant item; and (4) 

producing various work and expenditure planning profiles. 

Detailed design of the structure of the resource and project databases, the WLC decision-

making application and the WLC management application will be reported in a series of 

future papers. 
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