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Abstract

Content based video retrieval (CBVR) has been strongly motivated by a variety of real-
world applications. Most state-of-the-art CBVR systems are built based on Bag-of-visual-
Words (BovW) framework for visual resources representation and access. The framework,
however, ignores spatial and temporal information contained in videos, which plays a
fundamental role in unveiling semantic meanings. The information includes not only the
spatial layout of visual content on a still frame (image), but also temporal changes across
the sequential frames. Specially, spatially and temporally co-occurring visual words, which
are extracted under the BovW framework, often tend to collaboratively represent objects,
scenes, or events in the videos. The spatial and temporal information discovery would be
useful to advance the CBVR technology.

In this thesis, we propose to explore and analyse the spatial and temporal information
from a new perspective: i) co-occurrence of the visual words is formulated as a correla-
tion matrix, ii) spatial proximity and temporal coherence are analytically and empirically
studied to refine this correlation. Following this, a quantitative spatial and temporal
correlation (STC) model is defined. The STC discovered from either the query example
(denoted by QC) or the data collection (denoted by DC) are assumed to determine speci-
ficity of the visual words in the retrieval model, i.e. selected Words-Of-Interest are found
more important for certain topics. Based on this hypothesis, we utilized the STC matrix to
establish a novel visual content similarity measurement method and a query reformulation
scheme for the retrieval model. Additionally, the STC also characterizes the context of the
visual words, and accordingly a STC-Based context similarity measurement is proposed
to detect the synonymous visual words. The method partially solves an inherent error of
visual vocabulary under the BovW framework.

Systematic experimental evaluations on public TRECVID and CC WEB VIDEO video
collections demonstrate that the proposed methods based on the STC can substantially
improve retrieval effectiveness of the BovW framework. The retrieval model based on
STC outperforms state-of-the-art CBVR methods on the data collections without stor-
age and computational expense. Furthermore, the rebuilt visual vocabulary in this thesis
is more compact and effective. Above methods can be incorporated together for effec-
tive and efficient CBVR system implementation. Based on the experimental results, it
is concluded that the spatial-temporal correlation effectively approximates the semantical
correlation. This discovered correlation approximation can be utilized for both visual con-
tent representation and similarity measurement, which are key issues for CBVR technology
development.

Keywords: Video Retrieval, Bag-of-visual-Words, Spatial and Temporal
Information
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Chapter 1

Introduction

This chapter introduces fundamental concepts of content based video retrieval (CBVR)

technology, challenges and opportunities encountered in developing the CBVR technology,

as well as the research objectives, contributions, and outline of this thesis.

1.1 Content based Video Retrieval

Digital video technology has developed quickly in recent decades and cheap recording

instruments, such as cameras and smart phones, have become very popular around the

world. A vast number of video clips are continuously produced by not only professional

video program broadcasters like the BBC, but also amateur users, and even unmanned

recorders like various visual sensors. As a result, there are always billions of hours of

videos maintained by broadcasters or commercial video websites. For example, 72 hours

of video are uploaded to the commercial video website YouTube every minute, and more

than 200 millions of video have been shared on the website (Youtube 2013).

Thus, there is urgent need for advanced information retrieval technology which helps

users to access desired videos more efficiently and effectively. The available information

contained by a video normally includes (Smeaton 2006) : 1) video metadata, which are

textual information such as titles, summary, authors, copyrights and format information;

2) audio information, which is provided by the auditory channel in form of music, back-

ground sounds, and speeches; 3) transcripts, some of which are already packaged within

the video, and they can also be discovered by optical character recognition technology; 4)

visual information contained in temporally sequential images provided by visual channel.

Besides, the online videos are always archived within web pages, which also provide some

extra textual information which may be related to the videos.

Current video resources organizing and archiving technology widely utilized by com-

mercial websites largely relies on the tagged textual information embedded with the videos.

This scheme has an advantage that most existing text information access and manage-

1
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ment technology can be directly utilized to organize the video resources. The text directly

covers the semantics and thus the computational perceptual problem is avoided. However,

the textual descriptions are not always sufficient, because a dynamic video has very rich

content (far more than still images and textual articles) and it is very challenging for video

producers to manually generate adequate textual descriptions.

A scheme to overcome the deficiency of textual clues in video data is to leverage

speech recognition or optical characters recognition technology (Bakker & Lew 2002) to

discover textual description from the audio and transcripts information. Although such

technologies have made a significant progress during the previous decade (Hauptmann

2002), many videos ( e.g. music video, silent movie, amateur videos) lack prior transcripts.

Moreover, in other cases, the transcripts can not effectively cover the huge visual content

contained in the raw visual data. As a consequence, this scheme can not completely satisfy

the requirements of certain real-world applications.

A broad range of applications have motivated novel technologies to directly analyze

and understand the visual content (Hu, Xie, Li, Zeng & Maybank 2011) , for example,

copyright infringement detection, landmark/object recognition, digital library, harmful

video tracing, abnormal event detection, automatic remote surveillance, and so on. Related

research topics include content base image/video retrieval, video semantic indexing, hot

event detection, and image/video annotation.

These topics have attracted the interests of researchers from all over the world. For

example, The National Institute of Standards (NIST) and Technology has organized and

sponsored an annual workshop, namely Text Retrieval Conference Video Retrieval Eval-

uation (TRECVID) since 2001. It provides public and large scale video resources and

evaluation tools. A majority of studies in the video retrieval research community , e.g.,

(Smeaton, Over & Kraaij 2006), (Smeaton, Over & Kraaij 2009), have applied their sys-

tems with the TRECVID data and tasks.

The importance and popularity of the visual-content based video access technology

have led to an inter-discipline scientific field: content based video retrieval (CBVR), which

is a hybrid between Information Retrieval (IR) and Computer Vision. A number of con-

cepts, definitions, theoretical frameworks, and powerful technologies are inherited from

these two traditional computer science fields. In the next section, key definitions and

terminologies utilized in this thesis are introduced and explained in details.

1.2 Background and Terminologies

The CBVR is a branch of visual information retrieval, which aims to help users automati-

cally obtain visual information which is relevant to the information need of users from

large scale visual data collection.

At first, the information need is often described by a query given by the users. The
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Figure 1.1: Google: Image search by given example

modalities of query vary from textual words to visual example. For example, as shown

in Figure 1.1, the well known search engine Google released its new image search service

in 2011: users can upload or select an image and search for related images. This case is

always referred to as Query-by-Example (QBE) in the literatures, which is an important

application of CBVR.

Within the information retrieval research community, objectives of retrieval systems are

defined as relevances to the query. Here, relevance is a subjective criteria. Theoretically,

only real world users are able to judge the relevance, and the system can only predict the

degree of relevance. The prediction computation is often defined as relevance function.

There is no fixed connotation of this concept, because different users may have different

preferences. For example, some users may look for visual content with similar color whilst

others will search for a specific object. The various purposes of real world information

services also ask for different relevant criteria. Figure 1.2 and Figure 1.3 presented a

few examples for near duplicate video searching and generic topic searching respectively,

and videos on each row are relevant to an identical topic. The relevances of the former

application share a large degree of visual similarity, whilst the latter application shows

more concern about semantics.

The large amount of raw visual data should be abstracted as a visual content repre-

sentation that enables the system to index and retrieve videos more efficiently. Moreover,

the raw data is also of very low level semantic meaning, and the representation extraction

could encode higher level semantics into metadata, which would make the retrieval system

more effective. Accompanied by progress in computer vision, the visual content of the

video is always represented by a bunch of visual features. A visual feature is defined as

an attribute or aspect of visual information (Smeaton et al. 2009). These features may

be global features like color (Carson, Belongie, Greenspan & Malik 2002a), (Hu 2005),

shape, texture (Carson, Thomas, Belongie, Hellerstein & Malik 1999) of the image/video,
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Figure 1.2: Relevances of Near Duplicate Video Searching

or local features, which are concrete patterns around a few salient points in the video.

More information regarding features can be found in the next chapter.

Based on the invented local features, a novel video content representation framework

is proposed, namely the Bag-of-visual-Words (BovW) model. As firstly introduced

in the context of visual object search (Sivic & Zisserman 2006), high dimensional feature

descriptors, such as SIFT (Lowe 2004) and SURF (Bay, Ess, Tuytelaars & Van Gool 2008),

are extracted to represent the stable and salient regions surrounding the points-of-interest

detected by certain local feature detectors. The regional descriptors generated from the

collection or a training dataset are clustered and each cluster forms a visual word. Given

an image (or a keyframe in a video), the region descriptors in the image are then quantized

into discrete visual words. Specifically, the quantization function maps a region descriptor

onto its closest cluster centroid. The region descriptor is then called an instance of the

corresponding visual word (in this thesis, we use the term visual word and “instance of

visual word” interchangeably, for convenience, unless explicitly distinguished). As a result,

an image can be represented as a bag of visual words. A pair of descriptors mapped onto

an identical visual word are considered as a match between their visual contents.

This representation framework has become very powerful for CBVR. It represents the

visual content as a number of basic elements: visual words, which play similar role to words

in the textual document representation. This characteristic enables a CBVR system to

utilize a series of methods, whose retrieval effectiveness has been proven in the textual

information retrieval field: Term Frequency and Inverse Document Frequency(TF-IDF)

(Sivic & Zisserman 2006), inverted document indexing structure, query expansion(Chum,

Mikulik, Perdoch & Matas 2011), vector space model (Zhao, Wu & Ngo 2010), feedback
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Figure 1.3: Relevances of Generic topics Searching

(Chum, Philbin, Sivic, Isard & Zisserman 2007), etc. Given its simple structure and

descriptive ability, the BovW model has succeeded in many related fields such as: ob-

ject recognition (Zhang, Tian, Hua, Huang & Li 2009) and categorization (Zhang, Liu,

Ouyang, Lu & Ma 2009), event detection (Ke, Sukthankar & Hebert 2005), and video

event classification (Ballan, Bertini, Bimbo & Serra 2009).

However, the BovW framework has a few inherent drawbacks, and development of

CBVR also meets a number of theoretical and practical challenges as outlined in the next

section.

1.3 Challenges and Opportunities

The BovW framework has enabled the CBVR system to efficiently search for resources

via a similarity measurement based on the visual representations of videos. It has been

reported in the previous research that visual words, which are based on low level visual

features, are not always as effective as textual words for IR application (Zhang, Jia &

Chen 2011) (Zhang, Tian, Hua, Huang & Li 2009). The major obstacle is contributed by

the so called “semantic gap” between visual features’ similarity and the true relevance of

videos (Datta, Joshi, Li & Wang 2008). The gap is partially caused by a few drawbacks of

the BovW model, which are summarized as Ignorance of Spatial-Temporal Information:

Amongst the fundamental problems of the BovW model is that it always neglects ge-

ometrical information associated with the visual words. For example, the representation

assumes that each visual word is independent and ignores its spatial position and tim-

ing information. Recently, the spatial and temporal information has been demonstrated
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to be very important for the visual content representation (Galleguillos, Rabinovich &

Belongie 2008) (Wang, Jiang & Ngo 2008). Neglecting spatial-temporal information also

leads to losing the context of visual words. The context is not only a clue regarding the

inherent connection between the visual words (Zhou, Tian, Yang & Li 2010) , but may also

determine their semantics (Su & Jurie 2011) . Without such information, the descriptive

ability of the visual words would definitely be harmed (Chum et al. 2011). A model with

which to quantitatively discover the spatial-temporal information for video representation

is still an open problem for researchers. It is always expensive, in terms of computa-

tional and storage to directly embed such information into the video representation and

retrieval model. How to effectively and efficiently utilize the spatial-temporal information

for CBVR is one of the most important challenging questions.

Different with short queries of a few words normally used in textual information re-

trieval, the CBVR system can easily enable user query by visual example. As shown by

many previous advanced visual information retrieval system (Flickner, Sawhney, Niblack,

Ashley, Huang, Dom, Gorkani, Hafner, Lee, Petkovic, Steele & Yanker 1995), (Smeulders,

Worring, Santini, Gupta & Jain 2000), (Smeaton, Wilkins, Worring, de Rooij, Chua &

Luan 2008), visual example (image/video) is convenient for the users to describe the clue

of their desired information. On one hand, users can directly express their information

interests precisely without composing good textual query for retrieval. On the other hand,

rich information is contained in the query example, which can be considered as clues of

relevances. The Query-by-Example technology provides another important opportunity

for the system to capture the information need and discover relevant information.

However, at the same time, this opportunity is also a great challenge that rich infor-

mation is mixed together with other messy information in the query example and videos.

Users’ desired information and irrelevant information cannot be distinguished without

visual content relationship modelling, where spatial-temporal information can play impor-

tant role. More specifically, the ignorance of spatial-temporal information leads to the

following two problems for the retrieval models.

• Ineffective Visual Content Representation and Relevance Prediction. The lack of

spatial-temporal information would increase the like hood of irrelevant results being

retrieved and relevant results being missed by the CBVR system. A single visual

words always contains little information, but visual concepts are always composed of

multiple visual words. As a consequence, without the spatial-temporal constraints,

the system cannot effectively represent the visual contents and accurately measure

the similarity.

• Quantization Errors of the Visual Words. The quantization process without spatial-

temporal context may result in less reliable visual vocabulary and less distinctive

visual words. For example, some visual word represents different meanings in various
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spatial-temporal contexts (Nister & Stewnius 2006), which are like polysemy words in

text. Some others visual words may always appear in the same or similar context and

represent an identical visual concept (Zhang, Huang, Hua, Jiang, Gao & Tian 2010),

which are like synonymous words. Compared to relatively more concrete textual

words, the spatial-temporal context information is even more important for the visual

words (Fernando, Fromont, Muselet & Sebban 2012) in retrieval tasks. How to

address these errors incurred by the BovW framework is another important challenge

faced by researchers.

It should be pointed out that the discovery of relationship between words is also an

attractive topic in textual retrieval. For example, Topic Model assembles frequently co-

appearing words as topic to describe the content of documents. A number of feature

selection or reduction technology are invented to emphasize descriptive words. These

methods can be applied under BovW framework for CBVR. But, the spatial-temporal

information contained in the video opens different door to develop video retrieval, and this

thesis aims to address the above-mentioned challenges by discovering the neglected spatial-

temporal information, and efficiently using such information to improve the effectiveness

of the BovW framework for CBVR tasks. The research objectives will be introduced in

the next section.

1.4 Research Objectives

This work aims to address the above challenges and develop novel CBVR technology via

spatial-temporal information discovery. The main research objectives are as follows:

1. To explore existing literatures in the area of Spatial-Temporal Information and build

a quantitative spatial-temporal information discovery framework;

2. To establish novel relevance prediction and visual content model, which incorporates

the spatial-temporal information discovered;

3. To build more descriptive visual words based on the spatial-temporal information

for CBVR;

1.5 Contributions

• Spatial-Temporal Correlation Model The use of spatial-temporal information

to preserving semantics in video representation and processing has been extensively

studied. For example, plenty of works have investigated the embedding of geometric

information into the visual words(Cao & Li 2007).
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Intuitively, co-occurring visual words often tend to collaboratively interpret the lay-

out of visual concept, i.e. visual object, person, event, and etc. The co-occurring

relationship between these visual words implies that they may be semantically re-

lated to each other. This clue has been utilized in recent work to improve the visual

content representation in related fields (Galleguillos et al. 2008).

The spatial proximity and temporal motion between co-occurring visual words char-

acterize higher level correlations between them. We assume that it is an approxima-

tion of semantic correlation among corresponding visual words. For example, closer

visual words are more likely to be related to each other (Chen, Chen & Chien 2008).

Based on the paradigm of the textual IR research community, we proposed to de-

fine a concept: Spatial-Temporal Correlation (STC) between the visual words. This

work has proposed to build a novel and uniform framework to model the co-occurring

visual words and their STC.

• Representation Reformulation Model based on the STC The BovW frame-

work normally assumes that all the visual words are priorly equal and independent.

It distinguishes the visual words with weights defined by term specificity, e.g., Term

Frequency. Rich visual informations are always mixed in video, and the traditional

term weighting such as TF-IDF is found to be not effective enough to address the

important visual content (Chum et al. 2011).

It is found that the importance of different visual words in the representation are

different for CBVR, with respect to the searcher’s interest points elected in the

query, i.e. selected Words-of-Interests are more Important. We propose to re-weight

the visual word according to its correlation with others in the video. A stronger

correlation is seen as indicating a closer association with the visual topic of the

video, which is equivalent to an assumption that noise tends to be singular and

unstable. While the STC can be discovered by the proposed method, it is utilized

to emphasize the descriptive visual words for visual content representation. This

novel term weighting scheme is used to reformulate the query in this thesis, and it

is defined as Query Correlation (QC) weights.

Another idea is that the term weights should also be distinguished by STC discovered

from entire video data collection. Inspired by the inverse document frequency, we

assume that visual words with higher STC in the data collection are less informative.

We defined this term weighting scheme as Inverse Documents Correlation (IDC).

The present thesis has utilized these term weights to reformulate the query repre-

sentation, which is equivalent to a novel similarity measurement function for the

retrieval model. We have conducted a number of practical experiments to evaluate

its effectiveness.
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• Rebuilding the visual vocabulary via the Spatial-Temporal Context A

more compact visual vocabulary would definitely result in a more descriptive visual

content representation. We propose to utilize spatial-temporal context, which is

characterized by the STC, to reduce redundancy in the visual vocabulary of the

BovW model.

We assume that the semantics of visual words can also be differentiated by their

context. Based on this assumption, synonyms are detected based on the context

similarity measurement. Afterwards, the detected synonyms are merged to form a

more compact visual vocabulary. In this way, the new representation of videos can

be more descriptive based on the rebuilt visual vocabulary.

This thesis also conducts series of experiments to evaluated its effectiveness in CBVR

applications.

The above proposed approaches, this work aims to address the challenges and real-

ize the research objectives. The methodology for implementation and evaluation of the

approaches in various typical CBVE tasks are summarized in the next section.

1.6 Methodology

To boost the research activities, Information Retrieval research community always pro-

duces public data collection (Everingham, Van Gool, Williams, Winn & Zisserman n.d.),

which includes a number of documents and a series of standard topics or given queries.

The advantages of this methodology is that the researchers can compare their approaches

more easily and accurately.

The common evaluation criteria utilized by Information Retrieval research community

include precision, recall and mean average precision, which is also used in this thesis to

compare our methods with state-of-the-art.

Precision and Recall are widely used criteria. Precision presents the ratio of positive

results to retrieved documents:

Precision =
Relevant Retrieved Result

Number of All Retrieved Results
(1.1)

Recall defines the ratio of positive results to number of all relevant documents in the

ground-truth:

Recall =
Relevant Retrieved Result

Total Relevant Documents
(1.2)

The precision and recall are both used to evaluate top-N retrieved results. To summa-

rize the performance, Mean Average Precision is the mean value of average precisions
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Table 1.1: Video Search of TrecVID
Year Search task Query Availability Evaluation Resources

2001 Video Search Only Textual Topics Precision and Recall 10 hours

2002 Video Search Topics and Images MAP 68 hours

2003 Video Search Topics and Images MAP 120 hours

2004 Video Search Topics and Images MAP 70 hours

2005 Video Search Topics and Images MAP 80 hours

2006 Video Search Topics and Images MAP 82 hours

2007 Video Search Topics and Images MAP 50 hours

2008 Video Search Topics and Images MAP 100 hours

2009 Video Search Topics and Images MAP 80 hours

2010 Instance Search Instances’ Images Location and Accuracy 200 hours

2011 Instance Search Instances’ Images Location and Accuracy 200 hours

2012 Instance Search Instances’ Images Location and Accuracy 200 hours

for all topics, where the average precision of each topic is defined as the average value of

precision associated with relevant documents in retrieved rank:

Average Precision =

∑
Precision(k)

Total Relevant Documents
(1.3)

where Precision(k) denotes the precision of documents ranked not lower than kth relevant

document.

To validate the research proposals of this work, a number of retrieval function modules

are designed and implemented to construct an experimental prototype CBVR system.

The implementation is programmed with C++ and supported by public computer vision

toolsets OpenCV. The OpenCV toolset provides a bunch of standard image processing

algorithm and their interfaces. Based on this toolset, videos codec and uncompressing,

images preprocessing, and a number of feature detection and extraction methods can be

implemented and compared, which is a fundament of CBVR system built for this thesis.

The system is able to complete common QBE-CBVR applications, and this work takes

two typical applications as examples: near-duplicate video detection and generic topic

video retrieval. To evaluate the effectiveness of our proposals, we tested the proposed

methods with two publicly available data collection resources to make our evaluation

comparable with other researchers: CC WEB VIDEO and TRECVID2002 video dataset.

Each data collection includes a list of topics and relevant videos associated with the topics,

which consists ground-truth.

TrecVID is hosted by NIST, and it organizes a series of activities related to video

understanding, archiving and retrieving technologies development. Specifically, it annu-

ally releases retrieval tasks and corresponding video collection and calls for participation

of world-wide researchers and their CBVR system. The searching task and video data

released by TrecVID are summarized in Table 1.1. Before 2009, the search task normally
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includes a set of unannotated videos and a number of topics. The attendants need to com-

pose their own queries manually or semi-automatically, and to use the queries to search

for relevant videos of each topic.

After 2010, the video search task has been replaced by instance search, which pro-

vides common query example with modal of images for targeting visual objects (Smeaton

et al. 2009). This thesis aiming to investigate on development of query by video example

technology for CBVR. Because of this purpose, we do not choose these data collections.

In this thesis, the video search task in TRECVID2002 is utilized as evaluation task in

this thesis. We must follow its rule to compose our own query, because query in modality

of video example is not available to us. To make our results comparable and repeatable by

other researchers, we do not use external visual resources to compose queries but randomly

select a relevant video from ground truth as a query for every run of video search. As

discussed in (Donald & Smeaton 2005), MAP of the video search on this collection can

achieve 6.9%, but they fuse both visual information and textual information to achieve

this result.

CC WEB VIDEO is a near-duplicate video detection data set, which is one of the

typical applications of CBVR technology. For example, the search engine engineers may

want to reduce the repeated results and diversify the top-ranked documents; the copyright

infringement detection may need to find out the visual resources, which contain specific

content. The relevant videos are normally very similar to each other, and they only

slightly differ from on some small points: the watermark, logo, background, jointed with

other video clip, and etc.

As described above, using the two types of public video retrieval tasks, effectiveness of

CBVR methods in this thesis can be completely evaluated based on the common criteria

used in IR research community.

1.7 Thesis Organization

The remainder of the thesis is organized as follows:

In Chapter 2, we review a variety of visual features that have been developed for visual

content understanding, representation and access technology in Section 2.1. Following

this, in Section 2.2, we presented the background of the Bag-of-visual-Word framework,

including its visual content representation and similarity measurement. We also reviewed

recent works on improving the BovW model in this section. In Section 2.3, we then move

to recent works to address spatial and temporal information in visual content. The state-

of-the-art approaches to utilizing this spatial-temporal information for visual information

retrieval technology are also discussed in this section.

Chapter 3 describes the proposed Spatial-Temporal Correlation (STC) quantization

model. In Section 3.1, we presented a theoretical analysis and a quantization framework
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of the co-occurring relationship across different visual words. In Section 3.2, the formulated

spatial correlation discovery function based on proximity is introduced. In Section 3.3, we

define the temporal correlation preserved in motion coherences among visual words. A

series of discussions about the STC model are presented in Section 3.4.

In Chapter 4, we investigate approaches to improving retrieval performance of the

BovW framework based on the STC. We firstly presented a method to address descriptive

visual words in Section 4.1. Section 4.2 reveals a query reformulation method to emphasize

the descriptive visual words according to the STC in the query example (QC). Following

this in Section 4.3, we theoretically analyse the impact of the STC discovered from data

collection (IDC). A series of practical experiments are constructed to evaluate the STC

based retrieval models, and the experimental results are shown in Section 4.4.1.

Chapter 5 presents a novel visual vocabulary rebuilding scheme. Firstly, causes and

results of quantization errors are analyzed theoretically in Section 5.1. We then define

the context of visual words based on the STC in Section 5.2. In Section 5.3, we propose

to measure the context similarity and detect synonyms in visual vocabulary. Section 5.4

illustrates performance of the constructed visual vocabulary in a group of practical exper-

imental results.

Chapter 6 presents the implementation of a prototype system and the evaluation of

our methods in two typical CBVR applications. The architecture of the experimental

prototype system is introduced in Section 6.1. Sections 6.2 and 6.3 describe additional ex-

perimental results when applying it to typical CBVR tasks including Near-duplicate video

detection and generic topic video retrieval respectively. Section 6.4 puts forth discussions

about the combination of our approaches.

Finally, in Chapter 7, we conclude this thesis by summarizing our contributions in

Section 7.1. We also addressed the limitations of our work and propose future directions

in Section 7.2.



Chapter 2

Literature Review

In this chapter, we provide an introduction to and a critical review of the existing the-

oretical achievement and important invented technologies, which is a background of our

research. We focus the visual content analysis and understanding, and its utilization in

visual information retrieval. Specifically, we will discuss the opportunities involved by

spatial-temporal information discovery and state-of-the-art progress. The scope of cur-

rent progress in parsing, represention and retrieval of visual content is defined under the

following criteria:

Data Scope This thesis aims to develop the technology searching videos against data

collection from diverse domains, for example the web video dataset. The query and video

data are processed without the domain information. The use of domain knowledge in

visual content representation and the retrieval research will not be referred to in this

review.

Query Modality This project considers the queries with modality of visual example

as most important opportunities for our technology development. In order to concentrate

on visual content representation and similarity measurement problems, the utilization of

text information is not in the scope of future research.

Core Technique Retrieval will be formalized into two scientific theories: i) A theory

to mathematically characterize the visual content. Because raw video data is normally

considered to be not concrete enough, CBVR systems are always based on various visual

features extraction theory. ii) A theory to assess the similarity between a pair of videos.

The common objective of this theory is to predict relevances between visual contents

based on the extracted visual features. The two theories are strongly correlated, but for

convenience, this thesis reviews the progresses concerning these two topics respectively.

Bag-of-visual-Words Framework Most state-of-the-art retrieval methods are proposed

based on the BovW framework. We review the background, structure, and a selection of

algorithms of the BovW framework, which is concrete but effective for CBVR.

13
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Spatial-Temporal Information The ignored spatial and temporal information in BovW

framework is found to be bottleneck of CBVR technology development. Therefore, a series

of attempts to model and utilize spatial-temporal information within the visual resources.

The literatures related to these topics is reviewed and discussed in Section 2.3.

2.1 Visual Content and Similarity

Raw video data, for example a streaming of colored pixels, is always not concrete enough

for video content understanding and visual information retrieval. Although some very

early works directly used simple gray values of pixels for object recognition, most modern

visual information analysis technology utilize some method to abstract and combine of

the pixels values (Datta et al. 2008). These methods are always called visual feature

extraction, which is one of most important backgrounds of CVBR development.

Fundamentally, a video is a series of temporally aligned images: V = f1, f2, f3, ......., fM ,

where each image f is called a frame of the video. The mathematical characterization of

the visual content in a still frame is always identical to the image representation problem

in the image processing and understanding research.

At first, we explore and review visual features proposed for image and video repre-

sentation. In the literature, the video content representation methods are based on the

extraction of visual features from images at different levels:

• Low level global feature: color, shape, texture, and etc.;

• Mid-level feature: regional signature, local feature, and etc.;

• Visual concept: visual entity and event.

In addition, we introduce research progress on video shot boundary detection, which

divides a sophisticated video program into a sequence of simple and concrete video shots.

Finally, we review image similarity measurement approaches based on different cat-

egories of representation formulation, and approaches for measuring the video similarity

based on the key frame similarities.

2.1.1 Global Visual Features

In the early years, extensive research efforts have been made to investigate on visual

content representation based on the low level global visual feature (Zhang & Petkovic

1996). The global feature is so named because it describes a global property of an image

without considering components in the image. For example, color composition of the

image is a typical global feature. As shown in the Figure 2.1, the color composition is

always modelled as histograms of intensity values associated with all pixels appearing in



2.1. Visual Content and Similarity 15

the image. Colored pixels in an image can be identified by I = {x, y, ci}, where x, y denote

coordinates of the pixel on the image. The image representation based on the color feature

is normally formulated as follows:

CI(ci) =
∑
x,y

{I(x, y) = ci} (2.1)

where ci is ith discrete color value defined. It means that the ith bin of the color histogram

shown in Figure fig:color is counting the number of corresponding pixels appearing in the

image that fall into it.

Figure 2.1: The color histogram of image

The color composition extraction idea is straightforward, and it has been widely used

in many visual content retrieval systems (Pentland, Picard & Sclaroff 1995), (Carson

et al. 1999), (Ponceleon, Srinivasan, Amir, Petkovic & Diklic 1998). The color information

could be combined with additional information like relationships between the pixels to form

new features. For example, visual feature namely color correlograms (Huang, Kumar,

Mitra, Zhu & Zabih 1997) incorporate spatial distance between the color pixels into the

feature. If there are N types of color appear in the image, the correlogram histogram may

include N ×N ×D bins as follows:

CorrelI(ci, cj , d) = {‖(I(x, y) = ci), (I(x, y) = cj)‖ = d} (2.2)

where ‖∗, ∗‖ denotes the physical distance between the two pixels, which are in color bins

ci and cj respectively. In this way, the color correlogram describes the visual content with

a combination of physical distance and color information.

Another kind of visual perception of the image is texture information. The feature

extraction technologies utilized to describe this information include: edge detection (Tu

& Zhu 2002) (Jain & Vailaya 1996), Hough transformation (Ballard 1981) (Illingworth &

Kittler 1988), color co-occurrence matrix (Palm 2004), and etc. An example is shown in

the Figure 2.2, the edge detection is a typical method aiming to characterize the visual

shape of objects.
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Figure 2.2: The edge detection of image

The edge detection normally computes spatial derivation of the pixels’ intensities. Most

classical detection technologies are often grouped according to their derivation expression

as: first-order detector and second-order detector. The first-order detector utilizes the

first order deviation and captures strength of the intensity change over the spatial space.

The second-order detector utilizes the second order derivation and captures the change

rate of the intensity gradient. Recently, advance edge detectors are always designed by

incorporating scale space model (Lindeberg 1996). The edge features can also be archived

in the form of a histogram (Park, Jeon & Won 2000) for the visual content representation.

The global feature is not always sufficient to describe a particular object or entities in

an image to achieve a more accurate retrieval process. Figure 2.3 illustrates one of the

inherent problems for the global feature representation. The similarity based on the color

feature does not match well with the visual similarity, because sun is on a different scale

in the two images and extra information in the two images interferes the match of sun.

Other problems of global feature representation include cluttering, change of view point,

and geometric distortion. To address these limitations, region-based feature/local feature

has been investigated in recent years. It has been shown that a representation model based

on the local features has an advantage in object matching and access (Savarese, Winn &

Criminisi 2006).

2.1.2 Regional and Local Feature

The regional/local feature describes the visual information within a region or local area

of the image.

The first direction is to cluster the nearby pixels as a region, and mark it with the

global features extracted from the divided region. The feature associated with each region
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(a) sun in sky (b) sun

(c) color histogram of a (d) color histogram of b

Figure 2.3: The rigid objects in images are hard to represented by global feature

is called the regional signature. For example, if the regions around the sun in Figure 2.3(a)

and Figure 2.3(b) are extracted from all of the images, the system would be able to match

them easily.

An essential process when it comes to extracting the regional feature is image partition.

The process could be formulated as follows:

Im = {(z1) + (z2) + (z3) + . . .+ (zk)} (2.3)

where each zk denotes a regional feature, which is a signature of the corresponding sub-

region. Intuitively, a very first idea is that an image could be gridded, and it forms several

equal sub-images (Wong & Pun 2008). Other similar applied approaches includes using

K-means clustering (Chen et al. 2008) to divide original images.

Further development is utilizing the normalized cut criterion (Shi & Malik 2000), and

the image partition problem is converted to a weighted graph partition problem. More

complex approaches based on Bayesian statistical framework (Tu & Zhu 2002) , Gaussian

Mixture model (Carson, Belongie, Greenspan & Malik 2002b) were also proposed recently.

However, computational complexity and reliability of partition remains an open prob-

lem (Datta et al. 2008), and the computation complexity always limits their application

to real world search engines.

Another direction to overcome the drawback of global features is to use the local

feature. Firstly, the system detects salient points in the images, which may be invariant
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(a) Original Image (b) Local Feature Extracted

Figure 2.4: An example of local feature extracted from the image

to scale or affine transformation(Mikolajczyk & Schmid 2004). For example, in Figure 2.4,

with a number of detected salient points and their nearby local area are denoted by orange

circles. The scale of the feature is identified by the size of the circle.

Figure 2.5: Match of local feature descriptors

As shown in Figure 2.5, the feature describes an area near the extracted points. Be-

cause the feature is invariant to distortion and rotation (Bay et al. 2008), it could be used

to match the visual content of different scale in different images. The detailed progress in

reference to the local features will be discussed in the Section 2.2.

The above features are all extracted to represent still images. Several features are

specially designed for motion videos. A video can be seen as a visual volume of frames
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in time. Various detectors are designed to detect the salient points in volume, which

represents salient ”spatial-temporal corners” or ”sub-volume” of a video. For example,

Spatial-Temporal Interest Points (STIP) (Laptev & Lindeberg 2003), (Cao, Tian, Liu,

Yao, Zhang & Huang 2010) and Volumetric features (Ke et al. 2005).

The advantages of the local feature have been demonstrated in the recent CBVR de-

velopment. This thesis also follows this research trend. The visual content representation

framework in this thesis is based on the local feature extraction technology.

2.1.3 Visual Concepts

A visual concept is a visual feature on a higher semantic level. A visual concept could be

manually annotated by human beings or learned and recognized from the low level visual

features by automatic technologies like (semi-)supervised learning, video understanding,

and visual object categorization (Oomoto & Tanaka 1993) . Both object entity and event

concept, such as car, person, a goal, or airplane setting off, are defined as visual concepts.

In this way, a video is represented as a collection of visual concepts. The video retrieval

based on these semantic concepts is more straightforward for human perception. There

have been many ambitious attempts to introduce the automatic visual concept annotation

into the video retrieval (Adali, Candan, C, shing Chen, Erol & Subrahmanian 1996)

(Decleir, Hacid & Kouloumdjian 1999) and solve the problem of mapping the query visual

example of the user to desired visual concepts (Hauptmann, Christel & Yan 2008) .

Video retrieval based on visual concepts is an important research area. It is also very

compatible with queries which are in modality of text description, because the concepts are

always identified in the form of textual tags. However, the semantic concept recognition

is always as difficult as low level feature based visual information retrieval (Smeaton et al.

2006), and the semantic visual concept extraction is still an open problem in the video

understanding and retrieval research community. There is a significant challenge due to the

fact that the visual content may have multiple, hidden or suppressed semantic meanings.

It should be pointed out that this thesis does not focus on the visual concept an-

notation, although the two share a similar motivation: that is , the problem with the

low semantic level of the local features. We are aiming to develop the CBVR technology

directly based on the low level local features.

2.1.4 Shot Boundary Detection

A typical raw video is always composed of a sequence of video shots, and each shot records

a meaningful action or event, which is produced by a single camera. To facilitate finer

visual content representation and retrieval, the video can be segmented into video shots.

This process is a common prerequisite step for the automatic visual content access and

retrieval. Moreover, compared to the raw video or other structural levels of video (frame,
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scene, etc.), the video shot is more appropriate for indexing, retrieval and management

(Cooper 2004). In this thesis, the term “video” is used interchangeably with “video shot”,

except that they are explicitly distinguished.

As is evident from Figure 2.6, the video can be divided into several intervals, and

the shot boundary detection technology is to detect the key frames where shot transition

happens.

Figure 2.6: The video segmented as video shots

The shot boundary is always classified into two categories according to whether the

change of shot is abrupt or gradual: cut and gradual transition (Yuan, Wang, Xiao, Zheng,

Li, Lin & Zhang 2007) . Both the global feature (Boreczky & Rowe 1996) (Lienhart 1998)

and the local feature (Zheng, Yuan, Wang, Lin & Zhang 2005) could be used to track the

transition of visual content between adjacent shots.

Under the representation framework, the shot boundary detection can be transferred to

a threshold determination problem. Initially, the standard thresholding model (Lienhart

2001) determines the threshold in a hard decision manner. However, the gradual transition

would incurr interferences like dissolve, wipe, fade in/out, and a number of methods are

proposed to address this problem. For example, adaptive threshold was proposed based on

Bayesian formulation (Vasconcelos & Lippman 2000). A unified model (Bescos, Cisneros,

Martinez, Menendez & Cabrera 2005) was proposed to map the inter-frames difference to

the decision space and determine the threshold. Furthermore, some detection methods

(Qi, Hauptmann & Liu 2003) (Cooper 2004) are based on machine learning approaches

like supervised/unsupervised classification.

With the above-described development of the shot boundary detection technology,

videos are often divided and stored as video shots in the visual resource. It provides a well

prepared foundation for video indexing, query, and access.
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2.1.5 Similarity Measurement

Although video representation and similarity measurements could be structured without

considering the frame-intervals, the accurate video content similarity measurements are

normally constructed as a two-step process: i) to measure the frame level similarity with

image similarity measurement function; ii) to calculate videos’ similarity based on the

frame level similarity.

Recent years have seen a large number of visual similarity frameworks proposed in

recent years. The motivations of the visual content similarity measurement design can be

summarized as follows (Datta et al. 2008):

• Agreement with visual similarity;

• Robustness to noise;

• Computational efficiency;

• Regional-based query match.

The similarity measurement frameworks differs from each other according to the used

visual feature for representation model. Figure 2.7 (Datta et al. 2008) shows some examples

of the similarity measurement technologies developed for the corresponding visual feature.

Given the progress that took place in the computer vision field, we could extract

the local or regional features to represent the image/video. A key-frame of video could

be represented mathematically by a single vector (global feature), multi vectors (feature

based on local region), or a summary of vectors, or index of entity. A video could be

represented as a number of key-frames. The similarity measurement has been formulated

as computing the difference between the representations.

In the Figure 2.7, the distances are calculated as a measurement of “dissimilarity” by

these technologies.

The problem could be formulated, in general, as computing the distance between two

sets of vectors.

We generally denote a vector of feature to represent an image as Im = {(z(m)
1 , t

(m)
1 ),

(z
(m)
2 , t

(m)
2 ), . . . , (z

(m)
k , t

(m)
k )}, where zi represents a feature vector and ti represent the

weight assigned to the vector in the image. Given two images, ,m = 1, 2, the first step

is to match the components of I1 and I2 one by one, and the distances calculated are

summed up at the end to calculate the distance between the two images.

Wang et al. (Wang, Li & Wiederhold 2001) proposed an advanced metrics that softly

weights the distance between the regional features. It distributes the weight factors t
(1)
i

and t
(2)
j to the significant factor si,j for a pair of vectors z

(1)
i and z

(2)
j . The distance

between two images is aggregated from the pair-wise distance between the vectors as:
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Figure 2.7: The different types of image similarity measurement

D(I1, I2) =

k1∑
i=1

k2∑
j=1

si,j · d(z
(1)
i , z

(2)
j ) (2.4)

where the weights si,j are determined according to various constraints, for example
∑

i si,j =

t
(2)
j and

∑
j si,j = t

(1)
i . One special case of Equation 2.4 is proposed by using Hausdorff

Distance for image retrieval (Ko & Byun 2002). It matches the z
(1)
i to its closest vector

within I2 and vice versa. The distance between images is defined as:

D(I1, I2) = max(max
i

min
j
d(z

(1)
i , z

(2)
j ),max

j
min
i
d(z

(1)
i , z

(2)
j ) (2.5)

Another approach is to measure the two images by seeking a si,j with which the

distance D(I1, I2) is minimized. The definition of the distance based on the above idea is

thus:

D(I1, I2) = min
si,j

k1∑
i=1

k2∑
j=1

si,j · d(z
(1)
i , z

(2)
j ) (2.6)

This distance is identical to the Mallows Distance in the case of discrete distribution

(Mallows 1972).

The Earth Mover Distance (EMD) is one of the efficient algorithms to approximately

measure the Mallows Distance between a set of visual vectors and another set of visual

vectors. One advantage is that EMD allows for modelling of the similarity between the

local regions within an image and another images (Rubner, Tomasi & Guibas 1998).

After the frame level similarities have been computed, the video similarity can be

structured. We generally identify the frame-level similarity as sim(Ii, Ij), and the video

similarity could be computed with the highest similarity score among all possible pairs
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of key frames compared. This method is especially suitable for the video shot similarity

measurement, which is proposed by Peng et al. (Peng & Ngo 2005a). The similarity

measure between two video shots can be formulated as:

simv1,v2 = max
f1∈v1,f2∈v2

sim(f1,f2) (2.7)

Another method is to compute the average similarity between all possible the key-

frames pairs (Shang, Yang, Wang, Chan & Hua 2010) , (Ren, Lin, Zhang, Tang & Gao

2009a). It could be formulated as follows:

simv1,v2 =
1

N1 ×N2

∑
f1∈v1

∑
f2∈v2

sim(f1,f2) (2.8)

where N1 and N2 are the number of key-frames sampled from the two videos respectively.

Besides, the frame is as a part of the video, and the video can be naturally formulated

as a set of vectors, each of which is the representation of a frame. The EMD algorithm

could also be used for the video similarity measurement (Peng & Ngo 2005b). Moreover,

the temporal order of frames can also be involved in the video similarity, which will be

discussed in Section 2.3.

Under the BovW framework, many similarity measurement approaches used in text

retrieval are also applied in the frame level and video level similarity measurement, which

will be discussed in the following section. This thesis aims to improve the BovW frame-

work, and the frame level similarity measurement is built upon those methods.

It has been demonstrated that good feature should satisfy the requirement to over-

come occlusion, rotation, translation, change of view points and illumination. This thesis

utilizes the popular local feature and the videos similarity measurement method proposed

by Peng et al. (Peng & Ngo 2005a). However, a major disadvantage of local feature is

that it is always of high dimension. Both the visual feature matching and video similar-

ity measurements involve in high computational expense, which strongly harms practical

feasibility of CBVR technology. The Bag-of-visual-Word framework was proposed in such

background and is objective to solve this problem.

2.2 Bag-of-visual-Words Framework

The CBVR framework based on the BovW model was initially proposed by Sivic et al.

(Sivic & Zisserman 2006), whose idea was to approximate the textual information retrieval.

The general structure of the framework is shown in Figure 2.8.

The core idea is to quantize visual features to a limited number of clusters, and the

clusters are used as basic elements to model the video content. The elements are named

as visual words, and the visual word collection is called visual vocabulary.
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Figure 2.8: The basic architecture of CBVR based on bag of visual word

The basic architecture of query by example video retrieval consists of several function

modules: salient content detection, descriptors generation, vocabulary building, video

indexing, rank videos according to the similarity.

The technology development associated with the function modules is reviewed in the

following sections.

2.2.1 Salient Points Detector

As discussed in the last section, visual content is normally represented by local features

describing a number of regions extracted surrounding salient points. The salient points

are always called points-of-interest in the research community, and the points-of-interest

detection algorithms are always called detectors.

The points-of-interest are expected to be insensitive to local geometric and photometric

changes. The main idea is that the extreme points are more insensitive to these distortions.

Several types of detecting technology based on edge detectors are developed, generally

called Corner-interest detector, because they are originally inspired by the idea to detect

the intersection of multiple edges. For example, Harris-Laplacian (Mikolajczyk & Schmid

2004) ascertains the points with maximum dissimilarity to neighborhood through the

Harris function.

Another type of points-of-interest detector is often referred to as blob-detector, which

aims to detect extreme points in the local area. The Hessian-Laplacian (Mikolajczyk

& Schmid 2004) localizes the point-of-interest by selecting the extreme response to the

Hessian determinant and local maxima to Laplacian of Gaussian. Laplacian of Gaussian

(LoG) was proposed (Bretzner & Lindeberg 1998) to detect local extremes, both in the
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Figure 2.9: SIFT Descriptor

scale space and the pixel space. With this approach, the pixel space is initially smoothed

by the Gaussian Kernel to reduce noises. Difference of Gaussian (Lowe 2004) is an effective

approximation of LoG.

Several experimental results (Jiang & Ngo 2009) show that the LoG and DoG outper-

form the Harris-Laplacian and affine Harris in object categorization tasks. It is argued

that the blob-like detector is more suitable than corner-like for the interesting object

representation.

Another blob-like region detector is the Maximally Stable Extremal Regions (MSER)

method (Matas, Chum, Urban & Pajdla 2004), which is designed to find the stable image

region in different viewpoints. It has a number of advantages such as invariance to affine

transformation and multi-scale detection.

Other than visual content detection, some researchers have utilized the oversampling

scheme to capture sufficient information from the visual resource (Chum et al. 2011). Mul-

tiple detectors can be applied simultaneously to the image to capture more information.

However, these schemes may suffer from expensive computational cost and higher risk of

noise information.

2.2.2 Feature Descriptor

After the salient regions are extracted, each region should be modelled as a set of ordered

data. This formulation function is called feature descriptor. One of the most widely used

feature descriptors for the BovW framework is the SIFT feature.

Scale Invariant Feature Transform (SIFT) was first proposed by Lowe (Lowe 2004). An

orientation (gradient) is assigned to each salient point to record the affine transformation.

As shown in Figure 2.9 (Lowe 2004), for each point at each scale in the region around the

salient point location, the gradient magnitude and the orientation are computed.

Next, an orientation histogram is created. It consists of 36 bins covering a 360 degree

range of orientations. The points are weighted by the Gaussian weighting function. Each

descriptor consists of four histograms, and each histogram has eight bins. This produces
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a vector with 4*4*8=128 elements. The normalization of that vector will increase the

invariance to illumination changes. As a result, the signature z of the SIFT feature

normally contains a 128-dimensions vector s, a main direction vector d, a scale value σ,

and a physical position x, y determined by the detector used.

Other popular local features utilized by the researchers include PCA-SIFT (Ke &

Sukthankar 2004) and SURF (Bay et al. 2008), Gradient Location and Orientation His-

togram (Mikolajczyk & Schmid 2005), and etc.

In this thesis, the retrieval system is built upon the most commonly used detectors

and features: LoG and DoG, SIFT and SURF, which provide a mathematic description

of local visual information. However, directly matching the local visual information via

key-point features is neither efficient nor effective . We focus on how to better use it for

relevance prediction, rather than improving feature description.

2.2.3 Visual Vocabulary

As discussed in Section 2.1.5, direct similarity measurement between the features is a

computationally expensive process, because an advance local feature is always a high di-

mensional vector and an image may contain many features. The computational cost is one

of the most important bottlenecks for large scale CBVR. To simplify the similarity com-

parison between the features, the solution provided by the BovW framework is to cluster

the features to a number of categories. In this way, the feature similarity is simplified as

a boolean computation: the categories of the features match or not.

In most previous works (Sivic & Zisserman 2006) , (Niebles, Wang & Fei-fei 2006), the

K-Means algorithm (Lloyd 1982) is utilized to cluster the descriptors without supervision.

The number of clusters K ranges from 60 (Ren, Lin, Zhang, Tang & Gao 2009b) to 32,357

(Zhang, Tian, Hua, Huang & Li 2009), and K is also the size of vocabulary. It is argued

that a larger vocabulary is reasonable for object categorization and semantic retrieval

(Jiang & Ngo 2009).

To reduce the computation cost of K-means for large scale clustering, Philbin et al.

(Philbin, Chum, Isard, Sivic & Zisserman 2007) have proposed an approximate K-means

method to build a larger scale visual vocabulary. Similarly, Nister et al. (Nister & Stewnius

2006) used the hierarchical K-means algorithm to construct a vocabulary tree, which

resulted in significant reduction of the computation cost. The method scales the size

of vocabulary up to 1,000,000, because it recursively uses the K-Means to quantize the

descriptors generated.

Above methods employe the hard mapping scheme, which maps a feature to a single

visual word in the original BovW model. Other than the clustering algorithm, the Gaussian

Mixture Model (ByJason Farquhar & Shawe-Taylor 2005) can also be adopted to generate

the visual vocabulary. The GMM model softly assigns a visual feature to multiple visual

words probabilistically. Moreover, supervised learning information (Fernando et al. 2012)
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is exploited based on the GMM model to improve the discriminative power of visual words.

A main problem with visual vocabulary in the traditional BovW is that it is generated

by an unsupervised cluster algorithm, which may influence the descriptive ability of visual

word. The supervised learning method was also adopted to select discriminative visual

words and expand the visual vocabulary (Zhang, Tian, Hua, Huang & Li 2009). The

visual vocabulary can also combine other information with the visual feature. For example,

Zhang et al. (Zhang et al. 2010) proposed to build visual vocabulary incorporating the

contextual information into more informative visual words.

The visual vocabulary buildt based on the unsupervised methods may lead to quantiza-

tion errors. However, the semantic information is not always sufficient to build contextual

visual vocabulary for general domain video retrieval. This thesis aims to consider the

spatial-temporal context to improve the visual vocabulary building.

2.2.4 Video Representation and Indexing

The video indexing process is to construct a lookup table of the video collection to facilitate

efficient retrieval. Similar to other representation frameworks discussed in Section 2.1.5,

a frame in a video is often represented by the BovW framework as a weighted vector of

the visual words appearing:

I = {(w1, t1), (w2, t2), (w3, t3), . . . , (wK , tK)} (2.9)

where wi is ith visual word and ti is a weight assigned to it.

Similar to the textual IR community, the weighting scheme (Baeza-Yates & Ribeiro-

Neto 1999) is important for retrieval performance. There are three major term weighting

scheme used for CBVR: Binary, Term Frequency (TF), TF-inverse document frequency

(TF-IDF). The Binary scheme uses ”1” or ”0” to identify whether the word appears in

the frame. The TF scheme weights a visual word according to how many times it appears

in the frame. The TF-IDF takes document frequency into consideration: the more frames

in which a visual word appears, the less information that visual word contains.

Recently, a proposed scheme (Jiang & Ngo 2009) weights a single feature to multiply

nearby visual words in the descriptor space. Because it differs from 1-to-1 hard matching,

it is named as soft matching scheme. A visual word may be correspond to several possible

visual meanings, and the soft matching will reduce the risk of losing relevant information.

It has been proven that it can improve the object recognition performance, however, the

improvement decreases slightly along with the increasing vocabulary size.

In addition to simple linear vocabulary, the vocabulary tree (Nister & Stewnius 2006)

provides a scalable and discriminatory method to organize the vocabulary of the visual

words rather than a simple list. In this way, the videos are organized in a hierarchical

structure. It is also argued that the hierarchical structure can elaborate linguistic and
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ontological factors of the visual words (Jiang & Ngo 2009).

If a large visual vocabulary is applied, the video representation becomes very sparse.

To speed up index and query, the videos collection can be stored in the inverted file

indexing structure, which is inspired by the textual information retrieval.

The above weighting schemes neglected the spatial and temporal information, and the

visual words are assumed to be independent in the video representation, indexing, and

query, which will affect the retrieval performance of the BovW framework.

2.2.5 Similarity Measurement

The retrieved videos are normally ranked according to their visual similarities to the

query example, each of which is normally computed based on the key frame similarity in

Section 2.1.5. The key frame similarity under the BovW framework can be computed by

cosine function:

sim(fd, fq) ≈
∑K

i=1 fq(wi)× fd(wi)
l(fd)× l(fq)

(2.10)

where l(f) is the L2-norm of a vector.

The linear scan of the videos collection for ranking score computation is computa-

tionally expensive for the real-time video detection. Some non-linear methods under the

BovW framework are proposed to achieve a higher ranking efficiency. For example, Lo-

cality Sensitive Hashing (LSH) (Hu 2005) is proposed to reduce the high-dimension score

computation of large scale data collection. Another similar method proposed for image

retrieval is based on the min-hash (Chum, Philbin & Zisserman 2008) algorithm. The

ranked results retrieved based on the BovW framework can be re-ranked according to

other information constraints ignored by the BovW model, for example, spatial constraint

(Sivic & Zisserman 2006).

The BovW model is designed to approximate the function of the Bag-of-Word model

in the textual information retrieval. Inspired by the success in the textual information

retrieval certain types of technology like relevance feedback (Hopfgartner 2007) are also

used to develop the CBVR technology.

The visual words is not as effective as textual word for retrieval, because the spatial-

temporal relation between visual words has been ignored, despite its obvious importance

for video retrieval, mainly due to two reasons. First, the visual words within a frame

are assumed independent of each other and the spatial relationship is discarded. Second,

the temporal motions of visual words between the sequential frames are neglected. The

spatial-temporal relation would definitely link individual visual words as a whole by filling

up their blank context and better describing the visual object.
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2.3 Improving BovW Framework via Spatial-Temporal In-

formation

As discussed in the previous section, the ignorance of spatial-temporal information is one

of the largest drawbacks of the BovW model for CBVR technology. The spatial temporal

layout of the visual words is obviously a clue of the visual object, which determines the

semantic of the visual content. Intensive research has been investigated to discover the

spatial-temporal information hidden in the videos. Furthermore, the spatial-temporal

constraint can be seen as context of the visual words, which can be incorporated into

the advance similarity function to improve the CBVR technology. The spatial-temporal

relationship between the visual words also determines discriminative ability of the visual

words, and it is utilized to build a more descriptive visual vocabulary and represent the

visual content more effectively. Related works of the above ideas are discussed in the

following sections.

2.3.1 Spatial-Temporal Information Modeling

A visual word, which contains little direct information about high-level meaning, and

one object always consists of more than one visual words. The spatial-temporal layout

of several visual words may form the structure of a visual object, and thus the spatial-

temporal connection between the visual words should be modelled to represent the visual

object.

Spatial Information A straightforward discovery method to model the spatial re-

lationship which exists between a pair of visual words is to count their co-occurrence

frequency. The co-occurrence between visual words can be seen as a simple way to model

spatial information in the image (Galleguillos et al. 2008). Like the textual information

process and retrieval, the statistical co-occurrence of visual words is utilized to discover

the latent topic, for example, using pLSA (Bosch, Zisserman & Muñoz 2006).

The co-occurrence may be too rough, because not all of the co-occurrence on a single

image is meaningful. The spatial relationship between the visual words can be refined

by K-Nearest-Neighbors or ε-Nearest-Neighbors (Yuan & Wu 2008). Only several nearest

neighbors or neighbors appearing within a certain range are considered as spatial related

visual words.

Another way to refine the spatial information modelling is by partitioning an image into

a series of sub-images, following which the co-occurrences are trimmed to the visual words

appearing within the identical sub-images. For example, the visual words in the images

can be grouped with respect to the color appearance (see Figure 2.10). Cao et al. (Cao

& Li 2007) proposed a Spatial Coherence Latent Topic Model (Spatial-LTM) that models

the visual words co-occurring within a local area that has similar color appearance. The

segmentation method is always computationally expensive, and how to obtain a reliable
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Figure 2.10: Image segmented by color appearance

segmentation remains an open problem (Datta et al. 2008). As a result, the spatial

information is some times encoded in a simpler way, for example, the image is equally

divided into several grids. The visual words are encoded with the indexed grid to represent

the visual content (Zhang et al. 2011).

However, the globally spatial coherence of visual words generally loses the scale in-

formation. One method to address the scale problem is to consider the segmentation

of the image on different scale levels. Spatial Pyramid Matching (Lazebnik, Schmid &

Ponce 2006) is proposed to approximate the global geometric correspondence. It parti-

tions the image into hierarchical sub-images to model the spatial relation of visual words

and improve the similarity measurement.

Another direction is to directly compute and encode the distance between the visual

words to model the scale information. For example, Correlograms of visual words was

proposed by Savarese et al. (Savarese et al. 2006) to capture the spatial correlation on

different scales and visual words pairs as well. However, in these methods, the distance

(scale information) between visual words is quantized into fixed bins to save the storage

and computational cost.

The spatial model of the fully connected visual words will be very complex if there are

a large number of visual words within the frame. The complexity will grow exponentially

along with the increase of the visual words. As a compromise, several sparser topologies

have been proposed. A ”part and structure” model named constellation model (Fergus,

Perona & Zisserman 2003) was proposed to capture the objects with the local features and

their connection. However, it suffers from its complexity, and it could only deal with 20-30

regions per image. This means that the method could not be used for BoW framework,

because BoW normally generates 400-600 local feature descriptors per image.

Recent years have seen the proposal of the star topology (Fergus, Perona & Zisserman

2005),which simplifies the representation model by reducing the connection between the

nodes in the model. A hierarchy spatial connection model (Bouchard 2005) was proposed
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Figure 2.11: Process Video as Spatial-Temporal Volume

as a generative model to characterize the geometry of the visual object categories. The

Markov model can significantly simplify the full connections model to a multiplication of

the nearest connection. For example, the 2D-HMM model has been proposed (Othman &

Aboulnasr 2003) to model the dependency between the co-occuring visual words. However,

there is an argument that the assumption made in the Markov model, in which a visual

word depends only on its nearest neighbor, is too strong and will lead to the loss of spatial

information. Wu et al. (Wu, Hu, Li, Yu & Hua 2009) considered correlations between

each pair of co-occurring visual words in a frame to form a visual language model with

supervised leaning.

Recent work also utilized the probabilistic model to estimate the relationship between

the visual words. Generally, the visual words appearing in the image are treated as

observed samples, which are assumed to follow a certain distribution. For example, Liu

& Chen (Liu & Chen 2009) have modeled the visual object with a mixture of Gaussian

distributions of visual words, and utilized the EM algorithm to determine the parameters

of the distribution. This method demonstrates that the spatial proximity may be related

to the probability that they belong to an identical visual object.

As demonstrated in previous works, the spatial proximity between each pair of visual

words is always important. However, there lacks an efficient way to quantitatively model

the statistical spatial relations between the visual words under the BovW framework. This

thesis aims to discover the spatial correlation based on the proximity of visual words.

Temporal Information The temporal information is largely contained in the video

data. It is extremely important to represent the temporal visual content, such as the

human action and other events in videos. For example, it is hard to distinguish between

the launching and landing of an airplane without the temporal information.

Based on our critical investigation of the related literatures, the temporal information

modeling can be roughly grouped into two types of method. The first one is to treat

video as spatial temporal volume (Ke et al. 2005) (see Figure 2.11), and transfer the

temporal axis to the third spatial axis. The spatial-temporal information within the video
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is modeled with 3-D spatial information.

Another group of methods model the temporal information via capturing temporal

motion in the videos. Like common video analysis tools, e.g. Optical Flow method,

some methods track the visual words on the continuous frames of video, and the modeled

appearing/motion/dissolving of visual words represents the temporal information of video

(Brand, Oliver & Pentland 1997) (Niebles et al. 2006).

Wang et. al. (Wang et al. 2008) have argued that the relative motion of the visual

features records the temporal pattern of the video content. They have proposed a method

which assigns the visual features with relative motion directions and models the visual

event by the visual features and their relative motion directions. This work has shown the

descriptive ability of the temporal information to represent the visual event in the videos.

However, it directly embeds the temporally relative motion into the video representation,

which raises up the storage expense.

Kovashka & Grauman (Kovashka & Grauman 2010) have proposed to select a series of

areas, in which the visual features and their orientations with respect to the central visual

feature are recorded. The temporal actions are modeled by the organized visual words

based on their relative motion to the central visual word. This method was proposed to

recognize the human action.

For key frames based videos indexing and access system, modelling the motions is

always a more convenient method to discover the temporal information. However, few

methods have explored the possibility of building a uniform formulation to model the

temporal and spatial correlation between the visual words. The present thesis will focus

on this topic and propose a novel method.

2.3.2 Enriching Content Representation and Indexing with Geometric In-

formation

The modeled spatial-temporal information using the previous methods could be utilized to

enrich the information contained in the BovW based visual content representation. Firstly,

the additional geometric information is added into the visual words vectors, which will be

beyond the histogram. Secondly, the spatial-temporal information will be used to address

the descriptive ability of visual words, and indirectly improve the content representation.

As shown in Equation 2.9, the classical BovW based image representation is based on

a term-weighting scheme. Taking SIFT/SURF as an example, the additional geometric

information, e.g. physical position, main direction, and scale factor, associated with the

feature, can be stored with the visual word (Zhao et al. 2010). The new formulation of

visual representation is as follows:

I = {(w1, z1), (w2, z2), (w3, z3), . . . , (wn, zk)} (2.11)
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where zi is a package of geometric information: zi = {x, y, d, σ}, and n is the number of

visual words appearing in the image. As previously stated, the storage cost of full spatial

information as previous is high, and calculating the relative spatial relation is computa-

tionally expensive. As shown in Section 2.3.1, the physical position {x, y} is proposed to

be quantized into discrete values (Jégou, Douze & Schmid 2010), which relatively saves

the storage cost of representation, especially when multiple visual words are concatenated

together.

Similar to spatial information, the additional temporal information can also be utilized

to improve the retrieval performance. Qu et al. (Qu, Bashir, Graupe, Khokhar & Schonfeld

2005) introduced a series of methods to detect and represent the view-point invariant

motion trajectory of an object. The visual words motion trajectories are extracted and

incorporated into visual content representation, based on which the video classification,

retrieval and recognition could be performed.

The storage expense normally increases if we directly enrich the representation with

geometric information. To avoid the extra storage cost, researchers have proposed ap-

proaches utilizing the spatial relationship as the constraint condition to improve visual

content representation. Liu & Chen (Liu & Chen 2009) proposed to emphasise the Objects-

of-Interest in the visual content representation. The object extraction highlights certain

visual content but ignores other contents. Temporal information was also used by Sivic &

Zisserman (Sivic & Zisserman 2006) to select stable features, which continuously appear

in several neighboring frames.

In this thesis, we would like to keep the simple structure of BovW, and so it also aims to

construct an efficient spatial-temporal constraint to improve the video representation. But

unlike other existing technologies, here we aim to identify and emphasize more descriptive

visual words rather than interesting visual content via the spatial-temporal constraints.

2.3.3 Descriptive Visual Vocabulary

As discussed in Section 2.2.3, in the earliest attempt to build the BovW representation,

Sivic et al. (Sivic & Zisserman 2006) proposed to use an unsupervised algorithm, e.g. K-

Means, to cluster the SIFT descriptors and generate the visual vocabulary. The semantics

of the visual words are at a low level, owing to the unsupervised clustering.

A method proposed to promote the semantic level of visual words is to discover the

semantic meaning of visual words through supervised learning (Zhang, Tian, Hua, Huang

& Li 2009). The descriptive visual words for a pre-defined category of visual objects

are selected by the algorithm. However, the practical utility of the supervised learning

algorithm is always limited by the lack of manual tags. Some unsupervised statistical

learning methods have been proposed to discover the latent topic (Cao & Li 2007) of

visual content, where the topic consists of a number of frequently co-occurring visual

words.
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Figure 2.12: Each red round represents a center of a visual word. The ambiguity: visual
word h has multiple meanings (green rectangle and blue diamond); The synonyms: visual
word b and g has identical meaning (yellow triangles)

Furthermore, the spatial-temporally co-occurring visual words are proposed to be con-

catenated into the combination of visual words, which is termed as a visual phrase or

visual sentence (Zheng & Gao 2008). Such combination tends to be more informative than

the single visual word, and thus it promotes the descriptive ability of visual vocabulary.

The pattern of concatenated visual words can either be discovered by supervised (Zhang,

Tian, Hua, Huang & Li 2009) or unsupervised learning (Zhang et al. 2011) techniques,

which aim to discover stable and meaningful spatial-temporal connection between visual

words. Other than simple visual words combination, Zhang et al. (Zhang et al. 2010)

have proposed to build a semantic visual vocabulary by concatenating spatial contextual

information to groups of visual words. Visual word correlogram (Savarese et al. 2006) and

correlation were proposed to represent the visual content for objects recognition.

It has been demonstrated by these works that the co-occurrence and spatial-temporal

correlation between visual words are clues of descriptive ability, which inspired the present

work to utilize this information to address the descriptive visual words.

The descriptive ability of visual vocabulary is also interfered the problem of ambiguity

and synonyms. In Figure 2.12, the black points is the samples of visual features, and red

rounds denotes the centers of visual words. Rectangle, diamonds and triangles, represents

a few visual features, whose meaning is denoted by its color and shape. The ambiguity

is that features of different meanings (blue and green ones) are mapped into identical

visual words. Most of the aforementioned approaches optimize the visual vocabulary

by addressing the ambiguity problem with the idea that additional information helps to

distinguish the blue and green feature in order to reduce false positive matching.

The synonyms problem means that some feature descriptors of the same meaning are
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mapped onto different visual words, for example, the yellow triangles are mapped into

visual words g and h separately in Figure 2.12. This problem has also attracted significant

attention in the research community (Perronnin, Dance, Csurka & Bressan 2006). A

major idea to tackle the problem is to softly map a feature to multiple visual words

(Winn, Criminisi & Minka 2005) to reduce probability to lose the relevant information.

Jiang et al. (Jiang & Ngo 2009) built an ontology that specifies the relationship between

visual words in the feature space, and softly assigns a feature into nearby visual words.

For the application of image/video retrieval, Chum et al. (Chum et al. 2011) proposed to

learn a generative model from data collections to expand the query with originally missing

visual words.

This thesis aims to address the semantics of visual words and solve the synonyms

problem in a novel perspective: using the spatial-temporal context of visual words (part

of related works will be reviewed in Section 2.3.5). In real world applications, the visual

vocabulary could also be constructed with multiple features, either by concatenating mul-

tiple features into a long vector before the quantization (Hsu & Chang 2005) or combining

the visual words after quantizing the different features separately (Zhang, Liu, Ouyang,

Lu & Ma 2009). However, this thesis only exploits vocabulary based on single feature

(SIFT) to demonstrate our approach to improve the CBVR technology. Moreover, it can

be easily applied to the visual vocabulary based on other single or combined features.

2.3.4 Ranking via Spatial-Temporal Constraints

The BovW framework ranks videos according to visual similarity between the query and

videos, which is normally computed by the overlapped visual words contained in the two

representation vectors. However, there may exists false matches in the content comparison.

This problem has been noticed in the earliest BovW work (Sivic & Zisserman 2006). It

has been proposed to rank the videos via a spatial consistency check, which is shown in

Figure 2.13. The idea is motivated by the fact that the visual object has local spatial-

temporal consistency, and the correctly matched visual object does not simply rely on

matched visual words independently. In addition, the correctly matched visual words

must be supported by the surrounding matched visual words. However, the local spatial

consistency check is computationally expensive, and can only be used in the re-ranking of

a small number of retrieval results (Sivic & Zisserman 2006).

The additional geometric information, e.g. scale, main direction, can also be used as

similarity measurement constraint to reduce the false matched visual content. For exam-

ple, Jegou et al. (Jégou et al. 2010) proposed a visual words matching framework based

on the so-called geometric weak consistency constraints (WGC), which assumed that main

direction and scales of matched visual words should have some degree of consistency. This

method and its variant Tight Geometric Constraint (TGC) achieved promising perfor-

mance for applications such as near duplicate image/video search and video automatic
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Figure 2.13: Spatial Consistency of Visual Words

annotation (Zhao et al. 2010). Spatial Pyramid Matching and its variants (Lazebnik

et al. 2006) address the similarity comparison problem on a different scale, and generally

promote the accuracy.

A topic model (Cao & Li 2007) enhanced image similarity is always formulated as

follows:

sim(Id, Iq) ≈ λ× simw(Id, Iq) + (1− λ)× simt(ld, lq) (2.12)

where simw and simt identify the similarity based on the statistical visual words and

latent topic respectively, and λ is a combination factor.

Other than latent topic discovery, Chum et al. (Chum et al. 2007) proposed a gen-

erative model based the query expansion model, which is built based on the first round

retrieval results, for image retrieval. The spatial dependency between visual words in the

pseudo feedback set and the original query is used to address the visual words related

to the query. The retrieval performance is improved by the query expansion, and some

relevant information missing from by the initial results are recovered.

Unlike these approaches, this thesis utilizes the spatial-temporal correlation between

visual words rather than extra geometric or feedback information to construct the con-

straints for similarity scoring function to rank the retrieved results.

2.3.5 Context of Visual Words

The context of textual word is an important topic in the field of nature language processing

to better understand the text resources. Similarly, the context of visual word is also

important for visual content accessing and retrieval. In the computer vision field, the

context of visual word is usually defined by the interaction between the visual word and

other pixels, object, region, and information in other modalities (text, audio, and etc.).

The most commonly defined context of visual words is shaped by its interaction with

other words in the nearby region. For example, Bolovinou and et al. (Bolovinou, Pratikakis

& Perantonis 2013) defined the spatial correlogram between visual words as context and

encoded it into visual content representation. The spatial context has also been incor-
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porated into the contextual visual vocabulary construction in other works (Zhou, Wang,

Wang & Feng 2010) (Zhang et al. 2010).

Except for the intra-frame context, the inter-frame context of visual words is also

utilized for visual information matching, which is a typical method in textual information

retrieval (Skov, Larsen & Ingwersen 2008). In CBVR, the inter-images correlation of the

visual words was explored as the context (Zhou, Tian, Yang & Li 2010) to discover the

latent semantic connection.

In recent work, the multi-modal information contained in the visual documents has

attracted an increasing attentions. The multiple modality context is incurred by the multi-

modal information. The information other than visual content can also be seen as context.

For example, an image link graph is analyzed for image context exploration (Zhou, Tian,

Yang & Li 2010). Textual information associated with visual content is defined as the

semantic contexts in (Su & Jurie 2011) to address the disambiguation problem of visual

words.

The semantical context of visual information is not always available for large scale

CBVR. In most cases, we must sufficiently utilize the intra-image or intra-video context

to develop the CBVR technology. Visual words correlation can be seen as a type of this

context, and we will propose novel methods defining and utilizing this context to enhance

the video retrieval model in this thesis.

As demonstrated in this section, utilizing spatial-temporal information would definitely

be a key to further improve state-of-the-art BovW framework. However, existing works

lack a uniform model for both spatial and temporal information, especially the relation be-

tween visual words. And queries in modality of visual example normally contain rich such

information, but few theoretical investigation on how to effectively discover and efficiently

use this information to develop CBVR technology can be found in the reviewed literatures.

These challenges motivate us to propose our methods presented in next chapters.

2.4 Summary

The previous sections have reviewed the recent research progress in the CBVR and its

related topics. The descriptive ability of global features suffers from the geometric incon-

sistency of visual content like scale variant, clutter and distortion. The quality of regional

feature is heavily reliant on the reliable partition approach, and robust partition is still an

open problem for researchers. It has been shown that the local feature based visual con-

tent describing methods have recently begun to dominate the CBVR research. A typical

CBVR framework utilizing the local features is the BovW model.

The BoW framework is an attractive topic. It provides a compact and efficient frame-

work and has shown a promising performance on visual content modeling for a number

of research topics: object recognition, image retrieval, image annotation, and so on. Fur-
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thermore, it has been found that extensive researches have been undertaken to enhance

the BovW model with additional spatial-temporal information which is generally ignored

by the classical BovW model, and some progress has been made.

However, there are still many challenges facing the application of the spatial-temporal

information for BovW based CBVR technology.

Firstly, the traditional spatial-temporal information modeling relies on region based

methods or neighborhood based methods, e.g. K-nearest-neighbors, ε-nearest-neighbors.

More compact, quantitative, flexible, and uniform spatial-temporal information discovery

and representation models should be investigated .

Secondly, the existing works revealed the possibility of utilizing the additional spatial-

temporal constraint to measure the similarity. However, the relationship between the

spatial-temporal constraint and term specificity of the visual words has not been fully

discussed. Is it effective to address the descriptive visual words for the visual content

representation via appropriate spatial-temporal constraints? This is still an open question.

Finally, the spatial and temporal information has been used to build more informative

and contextual visual vocabulary for the BovW model. With this said however, it lacks

theoretical analysis to compensate the quantization errors via the spatial-temporal context

characterization.



Chapter 3

Spatial-Temporal Correlation

Modeling

In the previous chapter, we have reviewed the literatures relating to retrieval models for

CBVR. As we pointed out, one of the major limitations of the state-of-the-art BovW

framework based CBVR model is the ignorance of spatial-temporal information. We

reviewed a number of different methods for spatial-temporal information discovery under

the classical BovW framework. Various modelling methods which utilizes this relation

from a new perspective are presented in this Chapter.

First of all, we introduce our co-occurrence model for the visual words in a individual

frame/image. It is defined according to the layout of a visual entity, which is always

composed of co-occurring visual words. We formulate the co-occurrence model as a form

of correlation matrix, and each element of the matrix is weighted according to pair-wise

co-occurring visual words. Furthermore, the video level and videos collection level visual

words co-occurrences are formulated as an accumulation function based on the frame level

co-occurrence.

Although it has been assumed that the co-occurring visual words describe the identical

visual entity, the fact is that an image/frame always contains rich information and more

than one visual entities. This assumption could be refined to better model the correlation

between co-occurring visual words. We would consider physical distance between the visual

words and make a principled assumption that the spatial proximity represents the degree

of relation. Based on a series of theoretical analyses, we select the Gaussian Function to

model the spatial correlation.

Other than the spatial information, we also discover temporal information to model the

correlation between the visual words. Here, we propose to tracked the temporal motion of

visual words on the continuous frames, and define a motion vector for each visual word as

its temporal action. In this way, another important assumption is made that the correlated

visual words should move more coherently, because a visual object always tends to move

39
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a

b

Figure 3.1: Co-occurring instances a and b of visual words wi and wj within a frame

as an integrated component. The motion coherent quantization function is also assumed

to follow the Gaussian Distribution. The correlation matrix is then formulated based on

a spatial and temporal correlation function.

Finally, we defined a concept, namely the Spatial-Temporal-Correlation (STC), to

summarize the above correlations, and we present an approach to combine the spatial and

temporal correlation. We will also analyze and discuss possible applications of the STC.

3.1 Co-Occurrence Model

In this section, we make an assumption that visual words appearing simultaneously in a

single frame are actually semantically related to each other, and the co-occurrence indicates

the relation degree. To model this co-occurrence between the visual words, we calculate

the frequency with which they co-appear in a frame.

SIFT feature and approximate K-Means clustering are very popular visual content pre-

processing algorithm and visual words generation methods in recent researches. To make

our methods comparable with other work, we also use these two methods to pre-process

the videos and generate visual words. It should be point out that our STC generation

method can be applied for all types of visual words generated by different methods.

As discussed in Chapter 2, we want a quantization model to figure out which visual

words are more closely correlated using spatial and temporal information. So we count the

times they co-occur in the videos. Because this idea is quite straightforward that correlated

words should more likely co-occur with each other. Matrix-like form is naturally utilized

in this section to model the one-to-one relation between visual word. In this way, the

relation is clearly quantized and easily to be used in future application.

3.1.1 Co-occurring Visual Words in A Frame

As defined in the previous chapter, the BovW framework describes a frame as f = {(z1, t1),

(z2, t2), . . . , (zk, tk)} , where zi represents a feature vector and ti ∈ {w} represent the index

of visual word assigned to the ith feature vector according to the visual vocabulary. Each zi
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is called an instance of the corresponding visual word. For example, as shown in Figure 3.1,

the local features a and b are instances of visual words wi and wj respectively.

The co-occurrence between a pair of visual words is defined by counting the instances

co-occurring in the current frame. The computation function is defined as follows:

cc(i, j) =
∑
t=wi

∑
t=wj

1 (3.1)

In practice, to save the storage expense, the frame representation is always indexed in a

simpler form. Normally, the frame can also be represented by a term frequency histogram

vector f of the visual words as:

f =
(
tf1 tf2 tf3 · · · tfK

)
(3.2)

where an element of vector f(i) represents the term frequency of ith visual words in the

current frame, and K is the scale of visual vocabulary. It should be pointed out that

the term frequency is here defined as raw frequency as an example, which represents the

number of terms in the current frame. Other types of term frequency can also be utilized.

For example, the binary term frequency can also be utilized in the vector, the frame level

co-occurrence computed is then binarized.

In this histogram form of the frame representation, the number of each appearing visual

words has been given in the vector, and the co-occurrence computation in Equation 3.1

can be redefined as follows:

cc(i, j) =
∑f(i)

a=1

∑f(j)
b=1 1

= f(i)× f(j)
(3.3)

where we can align the computed co-occurrence associated with ith visual word to construct

a row vector as follows:

cci =
(
cc(i, 1) cc(i, 2) cc(i, 3) · · · cc(i,K)

)
(3.4)

This vector is defined as co-occurrence vector of ith visual word in the current frame,

which actually represents the histogram of its co-occurring visual words. An example of

the vector is shown in the Figure 3.2. Furthermore, the co-occurrence matrix of this

frame can be easily constructed by aligning the row vectors associated with all visual

words. The form of co-occurrence matrix is represented as follows:

Cf =


cc1
cc2
...

ccK

 (3.5)
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Figure 3.2: Co-occurrence Vector: The histogram of co-occurring visual words of A in a
frame

where each entry of the co-occurrence matrix Cf is computed by the Equation 3.3:

Cf (i, j) = f(i) × f(j). Therefore, the computation of Cf is equivalently formulated as

the tensor product of the term frequency vector f and itself. The formulated function

is as follows:

Cf = f ⊗ f

= fT × f
(3.6)

The co-occurrence matrix only considers the pair-wise co-occurrence, which is like a

bi-gram model. The co-occurrence matrix can be easily expanded to N -order tensor to

model the n-gram co-occurrence, which is its tensor product with the term frequency

vector f :

Cf
n = Cf

n−1 ⊗ f (3.7)

where n identifies the order of tensor C.

However, the storage and computation expense will increase exponentially along with

increasing n. In the remaining part of this thesis, the discussion and application only

focuses on the bi-gram model, which is in the form of above co-occurrence matrix.

3.1.2 Co-occurrence Matrix for Videos

The co-occurrence matrix for a video could be in a similar form to the function for a frame

presented in Section 3.1.1. If we represented a video with term frequency vector, in the

same form as term frequency of a frame:

v :=
(
tf1 tf2 tf3 · · · tfK

)
(3.8)

The co-occurrence computation for a video can be in exactly the same form as the

frame level computation function:
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Cv = v ⊗ v (3.9)

However, this representation normally does not describe the content of video suffi-

ciently, even for well segmented video shots. In CBVR, the frame based video representa-

tion is utilized more often. Typically, a video is represented by a sequence of frames:

v :=



f1

f2

f3

...

fN


(3.10)

where N identifies the number of frames contained in the video and each f is a vector

representing the content of the corresponding frame. Compared to the representation in

Equation 3.8, this representation sometimes has too much redundant information. Because

many neighboring frames are actually very similar, the researchers often sample key frames

to save the storage and indexing cost. For example, only the I-frames in MPEG videos

are utilized.

If each f is assumed to be a row vector, this representation of video is equivalent to

a term-frame matrix. The general form of the matrix V can be seen in Figure 3.3, where

each entry of the matrix is a weight of the corresponding visual word in the relevant frame.

K Visual Words

N
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W1,1 W1,2 W1,K

W2,1 W2,2 W2,KW2,3

WN,1 WN,2 WN,K

W1,3

WN,3

Figure 3.3: The term-key frames representation of video
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This term-frame matrix is in the same form as the term-documents matrix, which is

widely utilized in the textual information retrieval research domain. Similar to the method

used in the textual information retrieval research (Kaliciak, Song, Wiratunga & Pan 2012),

the co-occurrence matrix of a video is computed by the visual word-frame matrix V as

follows:

Cv = V T × V (3.11)

Equation 3.11 is a multiplication between two very large but sparse matrixes, and as

such it is not easy or necessary to directly compute the multiplications. Following Kaliciak

et al. (Kaliciak et al. 2012), the computation could be simplified as follows:

Cv =
∑
f∈v

fT × f (3.12)

Equation 3.12 can be understood as an accumulation of frame level co-occurrences,

because Equations 3.12 and 3.6 can be incorporated as follows:

Cv =
∑
f∈v

Cf (3.13)

This shows that the video level co-occurrence has been modeled as a summarization of

the frame level co-occurrences. For convenience, a video collection is also considered a

collection of the key frames of the individual videos. Here, the representation of a videos

collection d is defined as:

d :=



v1

v2

v3

...

vNv


(3.14)

where Nv indicates the number of videos in the collection. Because the representation

is in a similar form to Equation 3.10, the co-occurrence matrix can be computed in the

similar way. It could be computed by accumulating the video level co-occurrence:

Cd =
∑

v∈dC
v

=
∑

f∈dC
f

(3.15)

In general, both a video or a video collection can be represented as a collection of key

frames, whilst the co-occurrence matrix is formulated as the summarization of the frame

level co-occurrence matrixes.
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3.1.3 Co-occurrence and Visual Words Correlation

The true correlation of visual words is actually the semantic relationship between visual

words, for example, the visual word representing “tyre” is related to “windscreen”. In

visual information understanding, this correlation is unfortunately unknown to the system

without considering additional semantic information. In this thesis, we utilize the co-

occurrence relationship to approximate the semantic correlation, and the co-occurrence is

here defined as a co-occurring correlation.

Generally, a group of correlated visual words can be defined as:

ph1,2,3,··· ,n := {wi1 , wi2 , wi3 , · · · , win} (3.16)

where n indicates the order of the group and ij indicates that the (ij)
th visual word is

correlated to this group. This visual words group can be named as a n-order joint term.

In this thesis, we discuss the 2-order correlated visual words ph(i1, i2) as an example.

As shown in the previous section, the appearance of pair-wise visual words can be

obtained from the co-occurrence matrix. The probability of the joint term ph can be

approximated according to the proportion:

p(phi1,i2) ≈ C(i1, i2)

2 ∗ sum(C)
(3.17)

where sum denotes the computation which sums up all the elements of a matrix. Actually,

if we define the normalized co-occurrence matrix as follows:

Cnorm :=
C

sum(C)
,fnorm :=

f

sum(f)
(3.18)

Then, the p(ph) can be approximated by an entry of 0.5∗Cnorm. This proportion roughly

indicates the significance of the corresponding joint term. When the samples are large

enough, the proportion can also be seen as an approximation of probability of its appear-

ance. As a result, it provides a reasonable quantization of the correlation.

The co-occurrence has been largely influenced by the term frequency of visual words.

We propose to capture an accurate correlation by the conditional probability. For example,

the conditional probability p(wi1 |wi2) can be approximated by a generalization process:

p(wi2 |wi1) = p(ph)
p(wi1 )

≈ Cnorm(i1,i2)
fnorm(i1)

(3.19)

where f can be replaced by term frequency representation of video v to formulate the

video level conditional probability:
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a

b

dab

Figure 3.4: Spatial distance between the co-occurring instances a and b of visual words
wi and wj within a frame

pv(wi2 |wi1) ≈ Cv
norm(i1, i2)

1
N

∑
fnorm(i1)

(3.20)

If the prior visual words appearance distribution were uniform or the videos collection was

large enough, the denominator of Equation 3.20 could be dropped:

pd(wi2 |wi1) ≈ K ∗Cd
norm(i1, i2) (3.21)

where K denotes the number of visual words.

Following this, we assume that the co-occurring correlation is proportional to the

computed conditional probability p(wi2 |wi1). For each visual word, we construct a column

vector to define its co-occurring correlation with all other words. Naturally, a co-occurring

correlation matrix would be constructed by aligning the column vectors as:

Corr :=



p(w1|w1) p(w1|w2) p(w1|w3) · · · p(w1|wK)

p(w2|w1) p(w2|w2) p(w2|w3) · · · p(w2|wK)

p(w3|w1) p(w3|w2) p(w3|w3) · · · p(w3|wK)
...

...
...

. . .
...

p(wK |w1) p(wK |w2) p(wK |w3) · · · p(wK |wK)


(3.22)

where each entry of the matrix can be pf , pv, and pd, which represents the correlation dis-

covered on different levels respectively. It should be noted that the conditional probability

is only an estimation of the correlation based on frequency, and it does not necessarily

fulfills a specificy distribution.

In summary, the co-occurrence model can be used to discover some meaningful corre-

lation information. The discovered correlation is defined as the conditional probability of

visual word co-appearing with another.
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Figure 3.5: The visual features located in A and B respectively are not related to each
other.

3.2 Spatial Proximity

As shown in the Equation 3.3, the co-occurring correlation model is constructed based

on a trivial assumption: any instance of co-occurring visual words equally determines

the correlation between them. This assumption neglects a great deal of information, i.e.,

the spatial proximity. Actually, the spatial proximity is strongly related to the semantic

correlation between the visuals words, for example, visual informations associated with an

entity tend to appear closely.

While common visual entity segmentation technology introduces expensive computa-

tional cost and may not be reliable, we formulate a proximity based function to discover

the spatial information. Based on the discovered spatial information, a finer co-occurring

model is constructed. In this section, we present the expanded spatial correlation matrix

and discuss how we use it to approximate the semantic correlation.

3.2.1 Spatial Layout of Visual Information

As shown in the Figure 3.4, the co-occurring instances of visual words are located on

different positions on the frame. In the previous section, all these co-occurrences are

assumed to be equal. A normal frame always contains many different visual objects.

Some co-occurring visual words are not truly related to each other, but others are related

when they belongs to an identical object layout.

An example is shown in Figure 3.5. Here, a number of features are located in the

areas A and B, which are surrounded by two red rectangle respectively. The features

in the area A represents the face of the person and those in B represents light spots.

Semantically, if two features are located in A and B respectively, they should not be

considered as correlated. Inspired by this observation, we can make finer definition of the
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a b
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d

dmax

Figure 3.6: Visual objects larger than the shadow area are likely to cover all the instances

co-occurrence, which is aiming to more precisely model the assumption that only instances

of visual words representing identical visual objects are correlated with each other. The

assumption is defined as follows:

csa,b,c,··· :=

{
1 a, b, c, · · · ∈ Oi
0 otherwise

(3.23)

whereOi is a set of instances of visual words representing a visual object. To get the defined

correlation between visual words, all visual entities must be firstly precisely extracted. As

a result, the modelling of true co-occurrence is not always practical because of the huge

computational expense of the reliable object extraction methods. We can only approximate

the true correlation with the spatial proximity information.

To achieve this objective, the hard decided co-occurrence is changed to soft weighting

according to the probability that these instances belongs to an identical visual object.

This scheme is here defined as spatial co-occurrence. The definition is adapted to:

csa,b,c,··· := p(a, b, c, · · · ∈ Oi) (3.24)

This probability is obviously unknown to the system, and we can only make an esti-

mation based on additional informations such as shape and scale of the visual object. But

these informations are generally also unknown. However, we can estimate this probability

according to the area of the object. We can assume that if the area of the visual object

is larger enough, its layout will more likely cover all the instances. In other words, this

group of instances correlate with each other. As shown in Figure 3.6, if the layout area

of the visual object associated with instance a is larger than the shadow, it is likely to

cover all the instances in the group. This area threshold can be estimated according to

the maximum distances between the instances. If we let the maximum distance between

the instances be maxa1,a2∈{a,b,c,··· }(da1,a2), then the probability of spatial co-occurrence is
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formulated as follows:

p(a, b, c, · · · ∈ Oi) ≈ p(a(Oi) > (2π
3 − 1) ∗ (maxa1,a2∈{a,b,c,··· }(da1,a2))2)

≈ p(a(Oi) > (maxa1,a2∈{a,b,c,··· }(da1,a2))2)
(3.25)

where a(O) denotes the area of the object Oi, and da1,a2 denotes the Euclidean Distance

between a pair of instances. When the area of the visual object is totally unknown, the

probability of spatial co-occurrence should be approximately proportional to the inverse

of the maximum distance’s square between the instances group. This assumption could

be formulated as follows:

csa,b,c,··· ∝∼
1

max(da1,a2)2
(3.26)

This assumption means that the more closely the instances appear, the greater is

the probability of spatial co-occurrence between them. This assumption matches well

with human intuition, and the proximity has been shown to be utilized to discover useful

information(Zhang, Marszalek, Lazebnik & Schmid 2006, Liu & Chen 2009).

This is all due to the fact that the distribution of visual object area is often not

uniform. In practice, important visual objects in a video, which is easily perceived by

normal human, can not be too large or too small in a fixed size frame. Intuitively, the

shape of distribution of the visual object is generally similar to the curve in Figure 3.7(a).

Based on Equation 3.25, the spatial co-occurrence equals the cumulative probability

that an area is larger than d2. Then, the spatial co-occurrence function should monotoni-

cally decrease with the variable d2, although it should not be linearly proportional to d2.

A reasonable shape of co-occurrence function should look like the shape shown in Fig-

ure 3.7(b). A typical function which matches this shape is similar to Gaussian function.

Inspired by the previous research (Liu & Chen 2009, Carson et al. 2002a) which found

that the visual objects’ spatial layout can be modeled by a Gaussian Mixture Model, the

spatial co-occurrence between a group of instances in a frame can be quantized in a similar

form:

csa,b,c,··· ∝∼ e
−κmax(da1,a2 )2 (3.27)

where κ is a parameter to control the width of the function. Theoretically, κ should be

inversely proportional to the expectation of the area of the visual object. If the object

appears in the frames which are often small, then κ should be larger and fewer instances

are assumed to be spatially correlated. Otherwise, κ should be smaller and more instances

are correlated.
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(a) The distribution of object area (b) Spatial correlation to distance

Figure 3.7: The spatial co-occurrence is cumulative probability of the visual object area.

The pair-wise instances spatial correlation should be formulated as:

csa,b ≈ e
−κd2a,b (3.28)

In summary, we propose to utilize the proximity between the instances to refine the

co-occurrence between visual words, and the proximity is quantized according to physical

distance between the instances. In this thesis, Euclidean Distance is utilized as an example,

and other distance metrics can also be used.

3.2.2 Spatial Correlation Matrix

According to the frame level co-occurrence defined in Equation 3.3, we calculate the spatial

level visual words co-occurrence based on the spatial co-occurrence modeled in the previous

section. The function is formulated as follows:

csi,j =

{ ∑fq(wi)
a=1

∑fq(wj)
b=1 e−κd

2
a,b fq(wi)&fq(wj) 6= 0

0 otherwise
(3.29)

where da,b =
√

(xa − xb)2 + (ya − yb)2 utilize the Euclidean Distance. The spatial vector

of ith visual word in the frame is formulated as:

csi =
(
cs(i, 1) cs(i, 2) cs(i, 3) · · · cs(i,K)

)
(3.30)

and the spatial matrix of the frame is constructed as:

Sf =


cs1
cs2
...

csK

 (3.31)
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where each entry of the Sf is calculated using Equation 3.29. Similarly, video level and

videos collection level spatial matrix can be accumulated as:

Sv =
∑
f∈v

Sf (3.32)

and

Sd =
∑
f∈d

Sf (3.33)

where v denotes the set of frames in the video and d denotes the frame set constructing the

videos collection. The spatial matrix adapts each co-occurrence according to the spatial

proximity, and then quantitatively represents term correlation. Similar to the idea that

the visual words correlation is approximated by the probability of the appearing group

in the previous section, here we construct the normalized spatial matrix to compute the

joint visual words probability:

Snorm =
S

sum(S)
(3.34)

where each entry of Snorm is an adjusted joint probability p(wi, wj). Furthermore, the

conditional probability of p(wj |wi) can be computed accordingly by adapting Equations

3.19, 3.20 and 3.21.

pfs (wj |wi) ≈
Sfnorm(i, j)

fnorm(i)
(3.35)

and

pvs(wj |wi) ≈
Svnorm(i, j)

1
N

∑
fnorm(i)

(3.36)

and

pds(wj |wi) ≈ K ∗ Sdnorm(i, j) (3.37)

Finally, a K ×K spatial correlation matrix is constructed by assigning corresponding

conditional probability to elements:

Corrs :=



ps(w1|w1) ps(w1|w2) ps(w1|w3) · · · p(w1|wK)

ps(w2|w1) ps(w2|w2) ps(w2|w3) · · · ps(w2|wK)

ps(w3|w1) ps(w3|w2) ps(w3|w3) · · · ps(w3|wK)
...

...
...

. . .
...

ps(wK |w1) ps(wK |w2) ps(wK |w3) · · · ps(wK |wK)


(3.38)

where each ps can be the value computed by either pfs , pvs , or pds , which construct the

spatial correlation matrices on different levels.
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In this section, we formulate the estimation function for visual word correlation based

spatial proximity information, which is defined as spatial correlation. The discovery of

temporal information for correlation estimation will be demonstrated in the next section.

3.3 Temporal Correlation

The temporal information is another important characteristic of the video content, and it

makes the videos different from still images. As discussed in the literature review chapter,

the discovery of temporal information will help to understand the content of video. We

are aiming to quantitatively model the temporal information to approximate a finer visual

words correlation.

The temporal information utilized in this thesis is described as the motion of the

visual words. If an instance of a visual word can be tracked between the continuous

frames, the instance will look as if it is moving from an older position to a new position,

which is described by the term “motion”. Without geometric distortions or changes of

viewpoint, the instances representing identical visual objects tends to move coherently.

The assumption will help us to refine the co-occurrence model, and better approximate

the visual words correlation.

3.3.1 The Temporal Motion of Visual Word

As presented in previous chapters, a video can be represented as an ordered sequence of

frames. The order of frames, which contains temporal information, often plays a key role

in visual entity representation. Firstly, the sequenced frames representation of a video is

formulated as follows:

v := {f1,f2,f3, · · · ,fn,fn+1, · · · ,fN} (3.39)

where N is the total number of the frames, and fn and fn+1 denotes the continuous

frames. Each f contains a number of instances of visual words. In this thesis, the temporal

motion is defined between the continuous frames. As shown in Figure 3.8, in between the

continuous frames the instances look like they are moving from one position to another. If

we capture this movement, we can utilize the motion to discover the temporal information

hidden in the video content.

Let us assume that the physical layout of the frame as an Euclidean Space, and the

position of an instance a on frame fn is identified by an ordered pair (xa, ya). The visual

word, to which the instance a is mapped, is denoted by wa.

We need to track the position of the instance in the next frame to capture its temporal

motion. The neighboring key frames are always very similar to each other, and we utilize

a simple scheme to track the visual words. The corresponding visual feature in the next
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Figure 3.8: The captured motion of instance between the continuous frames.

frame should also be mapped to visual word wa. The target instance should be one element

of the set:

za = {z|tz = wa}. (3.40)

where tz denotes the visual word instance z is mapped to. The number of the instances

set za could be identified by fn+1(wa).

In this section, the nearest instance of visual word wato the older position (xa, ya) is

assumed to be the tracked a′ corresponding to L2 Norm:

a′ := arg min
z∈za

d(z, a) (3.41)

where d(z, a) is the distance between the older position (xa, ya) and newer position(xz, yz),

for example, the Euclidean Distance
√

(xz − xa)2 + (yz − ya)2. Other distance metrics can

also be used here. To avoid the falsely tracked instance, we set a tracking area A to track a.

While the neighboring frames should not be very different, and the movement of instance

normally does not exceed a limit. The area of A is empirically determined by the key

frame sampling ratio. A smaller tracking area A should be utilized for a higher sampling

ratio, which means that more key frames are sampled. Otherwise, a bigger tracking area

A should be used to relax the tracking limit. In this way, the final tracking function is

formulated as:

a′ :=

{
arg maxz∈za d(z, a) (xz, yz) in A

Null otherwise
(3.42)

If the instances can not be tracked, the inconsistent instances will be assumed as noise

and reduced from the frame representation, which is similar to the method proposed by

Sivic & Zisserman (Sivic & Zisserman 2006) to select the visual words surviving at least

3 key frames.

Afterwards, each instance is associated with a tracked instance at the next frame. It is

assumed to move from (xa, ya) to (xa′ , ya′), and a motion vector is contracted to describe
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(a) Key Frame 1 (b) Key Frame 2

Figure 3.9: The relative motion can be a clue of the visual object.

its motion as follows:

ma : =
(
xa′ − xa ya′ − ya

)
=

(
∆xa ∆ya

) (3.43)

where ma is a 2-order vector.

3.3.2 Relative Motion Modeling and Temporal Correlation

As discussed in the previous section, the motion of each instance is captured by its as-

sociated motion vector. According to the previous definition of instance correlation, the

correlated instances should tend to describe the identical object. The temporal informa-

tion, especially the motion associated with the instances, could be utilized to address this

problem, and the instances representing identical visual objects tend to move in a coherent

manner.

An example is demonstrated in Figure 3.9, where a person moves from the old position

in frame 1 shown in Figure 3.9(a) to the newer position shown in Figure 3.9(b). Although

the position has a little visual difference, the visual person keeps its shape and structure.

As a result, the relative positions of instances describing the person tend to be temporally

consistent. These instances tend to move in a coherent manner, e.g., instances a and b

associated with the person move to the same direction in Figure 3.9(a), but the other

instance outside the person tends to move in a different direction.

As the motion vector captures the motion of instance in continuous frames, the relative

motion between pair-wise instances can be captured by the relative motion vector. As

illustrated in Figure 3.10, instances a and b are assigned with the modelled motion vectors

ma and mb. Based on these two vectors, the relative motion vector can be formulated as:
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Figure 3.10: Relative Motion between a pair of instances of visual word
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Figure 3.11: The relative motion can be caused by the affine transformation of visual
object.

∆ma,b = ma −mb

=
(

∆xa −∆xb ∆ya −∆yb

) (3.44)

The relative motion vector simultaneously describes the direction and scale difference

between two motion vectors. The L2-Norm of ∆m quantizes the motion difference, and it

is inversely proportional to the motion coherence between the instances.

According to the above discussion, the motion coherence of the instances is assumed

to be a clue regarding the connection to an identical visual object, and co-occurring in-

stances representing identical visual objects have been defined to approximate the seman-

tic correlation. The relative motion vector could be used to construct a finer quantitative

co-occurrence model to approximate the semantic correlation.

However, related instances may also move relatively in the neighboring frames. For

example, although a few visual words represent identical visual object, a number of affine

transformations of the visual object would lead to relative motion between the visual

words.

For example, the rotation and scaling of object would result in the relative motion

between visual words, which is shown in Figure 3.11. This relative motion, caused by affine
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transformation of visual object, can be named as positive relative motion, and otherwise

negative relative motion in this section. It is hard to distinguish between the positive

and negative relative motion without additional information, for example, the center of

the visual object. The probability of pair-wise instances with a certain degree of relative

motion being correlated to identical visual objects could only be roughly estimated.

We assume that the prior probability distribution of visual object O and instance pair

{a, b} are both uniform, and the maximum likelihood function and posterior distribution

should be in a similar form:

p({a, b} ∈ O|∆ma,b) = k ∗ p(∆ma,b|{a, b} ∈ O) (3.45)

Because the motion are tracked in between neighboring and very similar frames, other pro-

jective transformations are not considered in this temporal information discovery model.

The probability of visual object O generating two instances {a, b} with a relative motion

∆ma,b is determined by two independent factors: the degree of affine transformation and

the average distance d̄ca,b between object center and the the two instances. The larger the

affine transformation or dca,b is, the larger is the generative probability. In other words,

the degree of freedom here is two.

We make an assumption that the probability of {a, b} being correlated to each other

is inversely proportional to square of L2 Norm of the relative motion vector:

p({a, b} ∈ O|∆ma,b) ∝∼
1

‖∆ma,b‖2
(3.46)

where ‖m‖ represents the L2 Norm of the vector m. Note that other norm metrics can

also be used in this arrangement.

Thus, the probability p(∆ma,b|{a, b} ∈ O) is assumed to be in an accumulation of that

the d̄ca,b and affine transformation is large enough, which is like this:

p(∆ma,b|{a, b} ∈ O) =
∫
p(∆ma,b|d̄ca,b)p(d̄ca,b) +

∫
p(∆ma,b|f(O))p(f(O))

where d̄ca,b > εd(∆ma,b) and f(O) > εf (∆ma,b)
(3.47)

where f(O) denotes the affine transformation of the visual object, and εd and εd denotes the

thresholds of the average distance and affine transformation, which should be determined

by the relative motion.

If the prior distribution of f(O) and d̄ca,b is more likely not to be very small and big,

then function of temporal correlation of instances and the relative motion could be roughly

depicted as Figure 3.12.

Note that this function is similar to the function in Figure 3.7, and thus we utilize a

similar form function with the spatial co-occurrence to quantize the temporal information
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Figure 3.12: The shape of temporal correlation and relative motion function

and in turn enhance the co-occurrence of instances, known as temporal co-occurrence.

The formulated function is as follows:

csa,b ≈ k ∗ e−γ‖∆ma,b‖
2

(3.48)

where parameter k indicates the scale coefficient of temporal correlation, and parameter γ

controls the decreasing rate of temporal correlation along with the expansion of the relative

motion. The γ is normally determined by the sampling ratio, and a higher sampling ratio

normally leads to a larger γ, which means fewer instances are assumed to be correlated to

each other.

In summary, the co-occurrence between the instances is quantized according to the

norm of the relative motion vector constructed. In the following section, the temporal cor-

relation between visual words will be approximated based on the temporal co-occurrence

quantized.

3.3.3 Temporal Correlation Matrix

The original frame level co-occurrence is defined by Equation 3.3. We replace the normal

co-occurrence between a pair of instances with the temporal co-occurrence based on the

relative motion, and the frame level visual words temporal co-occurrence is modeled by

the quantization function Equation 3.48. The function is formulated as follows:

cti,j =

{ ∑fq(wi)
a=1

∑fq(wj)
b=1 e−γ‖∆ma,b‖

2
fq(wi)&fq(wj) 6= 0

0 otherwise
(3.49)

where ma,b utilizes the relative motion quantized in the previous section as an example,

and cti,j identifies that it is quantized for ith and jth visual words. The temporal vector

of ith visual word in the frame is formulated by assigning all the possible temporal co-

occurrences to the corresponding position to form a vector:
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cti =
(
ct(i, 1) ct(i, 2) ct(i, 3) · · · ct(i,K)

)
(3.50)

Based on this arrangement, a temporal matrix of a frame is defined as follows:

T f =


ct1
ct2
...

ctK

 (3.51)

where each entry of the T f is calculated by Equation 3.49. Similar to the video level and

videos collection level co-occurrence matrix and spatial matrix, the temporal matrix can

be formulated by an accumulative function:

T v =
∑
f∈v

T f (3.52)

and

T d =
∑
f∈d

T f (3.53)

where v denotes the set of frames representing the video and d denotes the frame set

composing the videos collection representation. The temporal matrix modifies each co-

occurrence according to the temporal motion coherence, and it can be seen as representing

the temporal coherence based term correlation. Similar to the definition made that the

term correlation is approximated by the probability, we normalize the temporalmatrix to

compute the probability of a jointed pair-wise visual words group:

Tnorm =
T

sum(T )
(3.54)

where each entry of Tnorm is an estimated probability p(wi, wj) modified by a temporal

coherence constraint. The modified conditional probability of p(wj |wi) can be computed

accordingly by adjusting Equations 3.19, 3.20 and 3.21.

pft (wj |wi) ≈
T f
norm(i, j)

fnorm(i)
(3.55)

and

pvt (wj |wi) ≈
T v
norm(i, j)

1
N

∑
fnorm(i)

(3.56)

and

pdt (wj |wi) ≈ K ∗ T d
norm(i, j) (3.57)

where the distribution of visual words term frequency in the videos collection is also

assumed to be uniform.
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Finally, a K ×K temporal correlation matrix is constructed by locating the con-

ditional probability to the corresponding position:

Corrt :=



pt(w1|w1) pt(w1|w2) pt(w1|w3) · · · pt(w1|wK)

pt(w2|w1) pt(w2|w2) pt(w2|w3) · · · pt(w2|wK)

pt(w3|w1) pt(w3|w2) pt(w3|w3) · · · pt(w3|wK)
...

...
...

. . .
...

pt(wK |w1) pt(wK |w2) pt(wK |w3) · · · pt(wK |wK)


(3.58)

where each pt can be either pft , pvt , or pdt , with which the temporal correlation matrices on

different levels are constructed respectively.

In this section, we formulate the estimation function for visual word correlation with

temporal motion coherence information, which is defined as temporal correlation. The

discussion of the combination of spatial and temporal correlation will be presented in the

next section.

3.4 Spatial-Temporal Correlation and Discussion

3.4.1 Spatial-Temporal Correlation

In Sections 3.1, 3.2, and 3.3, the co-occurring correlation, spatial correlation, and

temporal correlation are formulated respectively. The correlation function is actually in

a similar form as that shown by Equations 3.22, 3.38, and 3.58. The only difference is

that the probability estimation methods are based on different information.

Both Equation 3.38 and 3.58 expand the co-occurring correlation matrix with ad-

ditional spatial and temporal information respectively. A natural idea is to explore the

possibility of expanding the co-occurring relation with combined spatial and temporal

information to formulate the spatial-temporal correlation between the visual words.

The first possibility is to directly combine the two constraints, i.e., spatial proximity

and temporal motion coherence to a spatial-temporal constraint to modify the weights of

each co-occurring instances group. However, the spatial proximity and relative motion are

in different dimensions. The unit of spatial proximity is “pixels” and relative motion is

“pixels per key frames”. It is not appropriate to directly combine the two quantization

constraints.

A solution is to utilize the similar formulation of Equations 3.38, and 3.58. The

value of elements of spatial and temporal correlation matrices is given by ps(wi|wj) and

pt(wi|wj), which represents a conditional probability between two visual words estimated

based on different information. We could fuse the two estimated probabilities, rather

than fusing the information. The fusion function of probability is assumed to be a linear
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addition, and the function is formulated as follows:

pst(wi|wj) =
ps(wi|wj) + k ∗ pt(wi|wj)

1 + k
(3.59)

where k denotes the parameter to balance the spatial and temporal constraints in the

combined probability.

The fused probability is used to approximate the semantic correlation, defined as

Spatial-Temporal Correlation (STC). The correlation matrices within a frame, a video

and a videos collection are calculated by fusing the spatial matrix and temporal matrix:

Corrst =
1

1 + kst
× (Corrs + kst ∗Corrt) (3.60)

where, Corrst is a K ×K matrix and each entry of it is computed by Equation 3.59 for

the corresponding pair of visual words. The balancing parameter kst is used to adjust the

relative weights of discovered temporal and spatial information. A larger kst means that

the temporal information plays a bigger role. In this thesis, the value of kst is empirically

selected.

In summary, an STC matrix Corr is generated based on information which is main-

tained in spatially or temporally co-occurring visual words. The way in which the STC is

incorporated to improve the BovW framework based information retrieval model will be

described in the next chapters.

3.4.2 Discussions on the Correlations

We have formulated the (spatial/temporal) co-occurrence matrix and the derived (co-

occurring/spatial/temporal) correlation matrix. This section is aiming to discuss potential

utilization of the matrices in the information retrieval model.

The co-occurrence matrix, spatial matrix, and temporal matrix are all symmetric ma-

trices, which describe the information of the two co-occurring visual words, which can be

seen as a joint term in the model:

C = CT

S = ST

T = T T

(3.61)

where MT represents the transpose matrix of M . As shown in the Equation 3.61, c(i, j)

always equals c(j, i), and it means that the order of wi and wj in the joint term has not

been taken into consideration. If c(i, j) is larger than c(k,m), the joint term {wi, wj}
(spatial/temporal adjusted) co-occurs more frequently than {wk, wm} within the corre-

sponding videos collection.

Unlike the co-occurrence matrix, the correlation matrix formulated is not symmetric.
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Each entry describes the degree to which a visual word depends on another visual word

as follows:
Corr 6= CorrT

Corr(i, j) ≈ p(wi,wj)
p(wj)

6= Corr(j, i)
(3.62)

If we defined the kth column vector of a matrix M as M(ik) and nth row vector of M

as M(jn), the relationship between the co-occurrence matrix and correlation matrix can

be summarized as follows:

Corr(ik) = Kk ×C(jk) (3.63)

because C is a symmetric matrix, the relation function can be re-formulated as:

Corr(ik) = Kk ×C(ik) (3.64)

where Kk is a term frequency coefficient associated with kth visual word, which has been

discussed in previous sections.

Theoretically, according to Equation 3.64, each column vector Corr(ik) represents the

correlation of all other visual words with visual word wk, and each row vector Corr(jk)

describes the correlation degree of wk with all other words.

The column vector can also be seen as the quantized context of the visual word wk,

because it describes how other visual words depend on wk. A row vector describes the

degree to which instances of wk are related to surrounding instances.

The above characteristics of the correlation matrix motivates our methods to improve

the BovW framework for the CBVR model, and our methods will be discussed in the next

chapters. In summary, the correlation matrix quantitatively models the spatial-temporal

relation existing between a pair of visual words. Noted that the correlation matrix can be

easily expanded to a higher order tensor to describe the correlation between more visual

words.

3.5 Summary

We have proposed a quantitative analysis framework to discover the statistical co-occurrence

between the visual words. The co-occurrence is modeled by a constructed co-occurrence

matrix. Furthermore, the co-occurrence can be refined according to the spatial and tem-

poral constraints, which are based on the information discovered between them.

The spatial-temporal constraints aim to approximate the probability that co-occurring

visual words describe an identical visual object. To achieve this objective, we have made

a couple of assumptions based on the spatial and temporal relationship between the visual

word instances. Firstly, visual word instances which appear spatially closely to each other

are more likely to describe an identical visual object. Secondly, the instances which move

coherently on continuous frames of video are more likely to truly co-occur.
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The spatial and temporal co-occurrence is quantized according to the physical distance

and relative motion. Considering a couple of practical factors, the models of spatial and

temporal co-occurrence both utilize a Gaussian-like function. The co-occurrence matrix is

computed by re-weighting the each co-occurrence based on the quantized spatial-temporal

information.

The co-occurrence matrix is refined to construct a spatial/temporal correlation ma-

trix. The entry of the correlation matrix represents the degree of correlation between

corresponding visual words, and it can also be seen the context of the visual word.

We also attempted to combine the spatial and temporal constraints and fuse the formu-

lated spatial and temporal correlation matrix. The concept of STC is defined to summarize

the modeled correlations.



Chapter 4

STC-based Representation

Reformulation

In Chapter 3, the spatial-temporal correlation has been quantitatively modelled. In this

Chapter, the STC extracted from the video will be firstly utilized to distinguish the more

descriptive visual words in the visual content. The descriptive visual words, which are

defined as Words-of-Interest, are assumed to be strongly correlated with each other. This

assumption is established based on the intuition that meaningful visual content tends to

be collaboratively represented by several correlated visual words.

We expect that emphasizing the descriptive visual words will improve the retrieval

model. The proposed approach aims at assigning higher weights to the more descriptive

visual words, based on the STC incurred by the query video. We define the modified visual

words weighting scheme as Query Correlation (QC). The utilization of QC in the retrieval

model would reformulate the query representation, which is equivalent to enhancing the

similarity measurement with additional spatial-temporal information discovered from the

query.

In addition to the STC discovered from query video level, the STC discovered from

the whole video collection is also assumed to be related to the descriptive ability of visual

words. Similar to Inverse Document Frequency, we assume that visual words co-occurring

with others in less number of videos within the collection are more descriptive. Based on

this idea, we define an Inverse Document STC (IDC) as another visual words weighting

scheme. The IDC weighting scheme will also be used to reformulate the video representa-

tion for the retrieval model.

It should be pointed out that, in this section, we focus primarily on evaluating the

approach in Query-by-Example (QBE) retrieval (Weng, Li, Cai, Zhang, Zhou, Yang &

Zhang 2011). A series of experiments are performed against two widely used video col-

lections which are publically available for the video retrieval research community. Nev-

ertheless, the proposed approach can be applied to many other practical tasks such as

63
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near-duplicate video search, copyright infringement detection, instance search, etc.

4.1 Words-of-Interest

In videos, the information of interesting to the users, is constantly mixed up with redun-

dant information. One idea is to utilized the spatial and temporal information to identify

and emphasise the interesting information. In this section, we aim to established a couple

of hypothesis for selecting descriptive visual words representing the information. Effec-

tiveness of the hypothesiss and selection schemes for video retrieval is evaluated with some

preliminary experiments.

4.1.1 Words-of-Interest Selection based on Spatial Proximity

As discussed in Chapter 2, a drawback of the BoW framework is that it ignores inter-word

relationships and assumes that visual words are independent. This framework always

characterize the descriptive ability of the visual words only according to the appearing

frequency. However, there is a problem with this technology. When a large scale visual

vocabulary is utilized, most visual words only appear a few times. The descriptive ability

of visual word can not be effectively distinguished by term frequency. In this section,

we refer to the descriptive visual word that are of user’s interest, as Words-of-Interest

(WoI), and the two terms descriptive visual words and WoI are used interchangeably. The

mixture of WoI and other words would lead to irrelevant results for CBVR technology.

To address this problem, various supervised or unsupervised learning technologies are

proposed to indicate the interesting visual content within the video. For example, Liu &

Chen (Liu & Chen 2009) proposed a method to represent a video by extracting regional

characteristics, namely Object-of-Interests (OoI). However, the offline OoI extraction may

exclude some relevant information, because the interests of users are very hard to determine

prior to an online search. Zhang et al. (Zhang, Tian, Hua, Huang & Li 2009) proposed

to select Descriptive Visual Words (DVP) through supervised training to improve the

performance of image retrieval and object recognition. These methods are proposed based

on the spatial co-occurring information. We aim to construct an unsupervised discovery

method to discover the words-of-interest for the CBVR model.

In this section, we propose a novel approach based on the selected WoI according to the

spatial proximity imposed by a given video. The WoI selection is based on assumptions

that a salient visual word tends to co-occur with and is close to the other important

ones. Accordingly, we rank the importance of the visual words and select the WoI without

supervised learning and training data. The proposed WoI selection algorithm ranks the

visual words based on two criteria: i) the WoIs co-occur more frequently in the video, and

ii) the Wols are of a greater spatial proximity with each other. The two criteria can be

quantified by the spatial correlation matrix proposed in the last chapter.



4.1. Words-of-Interest 65

(a) Visual words (yellow cir-
cles) on Frame 1

(b) Visual words on Frame 1

(c) WoIs (orange circles) on
Frame 1

(d) WoIs on Frame 2

Figure 4.1: An example of Word-of-Interest Selection based on the Spatial Proximity.

The spatial proximity expectation of the ith visual word can be formulated based on

the quantized spatial correlation:

s̄i =
∑

corrs(i, j) ∗ p(wj) (4.1)

where p(wj) is the probability that visual word wj occurs in the frame. The probability

can normally be estimated by the normalized term frequency of the visual word wj . If

the number of instances of the visual words in the frame is denoted by Nf , the spatial

proximity expectation of wi can be computed as:

s̄i ≈
1

Nf

∑
corr(i, j) ∗ f(wj) (4.2)

Furthermore, we define a proximity rank vector for all the visual words:

Rw = {ri} (4.3)

where i = 1, 2, 3, · · · ,K and K is the size of visual vocabulary, and the initial value of ri

is given by ri = s̄i.

If a visual word is of greater proximity, the visual words co-occurring closely with it

tend to be more descriptive. Accordingly, we propose a recursive ranking algorithm in
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Algorithm 4.1, where the visual words ranked on top of Rw are selected as WoI:

Algorithm 4.1 Calculate The Spatial Proximity Ranking

Require: Spatial Correlation Matrix Corrs, Term frequency vector f , max-
iter(maximum iteration steps)

Ensure: Visual word rank Rw

R0
w = r

for k=0 to k=maxiter do
Rk+1
w = Corrs ×Rk

w;
Normalize(Rw);
if
∑

(Rk+1
w (i)−Rk

w(i)) < ε then
break;

end if
i++;

end for
Sort(Rw);

WoI = {wj}, j = id1, id2, · · · , idNwoi (4.4)

where idk is the index of kth WoI in the visual vocabulary, and Nwoi is the number of the

selected WoI.

In this way, the representation of a frame is divided into two parts: visual words and

WoI. The WoI representation is formulated as:

f́ =
(
f(id1) f(id2) f(id3) · · · f(idNwoi)

)
(4.5)

An example of WoI representation of the frame is shown in Figure 4.1. Indeed, a number

of instances of visual words, which are close to each other, are selected to represent the

visual content.

4.1.2 Word-of-Interest Selection based on Temporal Coherence

In the previous section, WoIs were selected according to the spatial proximity from the

visual vocabulary. As discussed in Chapter 3 the temporal correlation is quantized in a

similar formulation to that of the spatial correlation matrix. We can adjust the assumption

made to select the WoI based on temporal constraint in addition to the spatial information.

Similarly, we formulate a hypothesis that the WoIs would appear and move in a rel-

atively coherent manner across neighboring framesin a video, while non-WoI occur more

singularly and randomly. Here, the definition temporal motion coherence is similar to the

one in Chapter 3, whereby it is the degree to which a visual word moves coherently with

other words on the temporally aligned frames in the video. The visual vocabulary can

be ranked according to the average temporal coherence t̄ of individual words, which is

calculated as:
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t̄i =
∑

corrt(i, j) ∗ p(wj) (4.6)

In Section 4.1, the WoI with high spatial proximity can be selected, when the iteratively

computed s̄i is lower than an empirical selected threshold. The temporal correlation matrix

can be done in the same form, and a similar computation method can be used to select

the temporal coherence based WoI. However, a pre-fixed empirical threshold may not

be suitable for temporal coherence based WoI selection. The sizes of frames tend to be

uniform in different videos, although the temporal scale varies significantly across different

visual content. As a result, the visual words motion in frames covers a wide range of values,

and a uniform threshold may not be suitable in this selection.

To tackle this problem, the EM algorithm (Dempster, Laird & Rubin 1977) is used

to adaptively classify the visual words into WoI and non-WoI based on temporal motion

coherence.

More formally, each visual word is associated with a hidden variable z ∈ {z+, z−}.
Here, z+ indicates that the visual word is WoI, while z− indicates that it is not. Natu-

rally, p(z+) represents the probability of a visual word belonging to WoI. The appearing

probability of a visual word with a certain motion coherence is denoted by p(t̄|z). We

assume that p(t̄|z+) and p(t̄|z−) are both Gaussian distributions. From these definitions,

the joint distribution of p(t̄, z) is defined as p(z)(t̄|z) , and we simplify the problem by

assuming that z and t̄ are independent variables. All distributions are unknown as yet,

and the parameters should be estimated using the EM algorithm.

The steps of the EM algorithm for estimating the unknown distribution are given as

follows:

Algorithm 4.2 EM algorithm for WoI selection

E-step:
p(z|t̄) = c1p(z)p(t̄|z);
Ep(z|t̄)[log p(t̄|Φ)] =

∏
j

∑
i p(zi)p(t̄j |zi)

M-step:
Φnew = argmaxΦEp(z|t̄)[log p(t̄|Φ)]

where Φ is a set of parameters to be estimated, c1 is the nominalization factor to

guarantee that the sum of p(z|t̄) equals 1. The estimated p(t̄|z+) identifies the location of

WoI in the temporal motion coherence rank. We choose the visual words located within

the standard deviation of the Gaussian distribution p(t̄|z+) as WoI. After all, the frame

level similarity can be measured based on the WoI.

In this section, it is demonstrated how to select the WoI using STC information.

However, this selection arbitrarily set binary values to the visual words (to be WoI or

not), which may not be precisely enough to distinguish descriptive power of visual words.

In the next section, we will discuss how to softly weights the visual words with STC
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(a) Frame 1 in
the query.

(b) Frame 2 in
the query.

(c) Key frame in
Video 1

(d) Key frame in
Video 2

Figure 4.2: Emphasizing the descriptive visual words to compensate the neglect of spatial-
temporal internal structure. Query consists of two frames and is represented by visual
words A, B, C and D, whilst the video 2 is likely to be more relevant than 1)

information.

4.2 Query Reformulation

As discussed in Section 4.1, spatial and temporal information can be utilized to address

the interesting visual words in video content. However, the emphasizing of them for video

retrieval is still arbitrary. This inspires us to further analyse and investigate on how to

emphasis the descriptive visual content (i.e. WoI) and whether it may compensate the loss

of spatial and temporal information in the retrieval function. The spatial and temporal

information incurred by query is obviously a clue of relevance.

Figure 4.2 shows an illustrative example. Assume that the relevant videos should

include the person appearing in the query. In Frame 1, visual words A and B, which

represent the visual content of a person are messed up by another irrelevant visual word

C. The BovW model, on one hand, discards the spatial relationship between A and B

within Frame 1, and on the other hand, neglects the motions of A and B from Frame 1 to

Frame 2. In the similarity measurement, the BovW model assumes that all visual words

have an equal descriptive power. As a result, Video 1 and Video 2 are considered equally

similar to the query. However, Video 2 is more likely to be relevant to the query, because

the spatial relationship and motion coherence between A and B strongly implies that they

belong to an identical object and should be more descriptive than C and D with respect

to this query. Thus, the spatial-temporal correlation of visual words A and B is a strong

clue of relevance.

Various approaches (described in detail in Chapter 2) have been proposed to incor-

porate the spatial-temporal constraints associated with visual words. Some recent im-

age/video retrieval methods add the position, scale, main orientation and motion primi-

tives of each visual word directly into the BovW representation, and then, for example, en-

hance the similarity measurement with Weak/Tight Geometric Constraint (WGC/TGC)
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verification of matched visual words between two images/videos (Jégou et al. 2010), (Zhao

et al. 2010). Nonetheless, the injected information results in a significant increase of com-

putation cost in the similarity match.

To tackle the aforementioned limitations, instead of expanding or adding extra spatial-

temporal information directly into the BovW representation, we propose to identify and

emphasize the more descriptive visual words (for example, A and B in Figure 4.2) through

exploiting the spatial-temporal correlation among different visual words in the query in an

integrated manner. Emphasizing descriptive visual words would revise the query represen-

tation and exclude the irrelevant information, thus compensating the neglect of spatial-

temporal information. Furthermore, the spatial-temporal information discovery from the

query example does not result in extra storage cost for data representation nor increased

complexity in similarity measurement.

Inspired by the improvement achieved based on our approach in the previous section,

we propose to characterize the descriptive visual words based on spatial proximity and

temporal motion coherence incurred by the query. In the consecutive frames of the query,

an inherent object often has an explicit spatial structure and intensive spatial relationship.

The motion of object layout across neighboring frames in the query often has a character-

istic of coherence. This spatial-temporal relationship can be utilized to approximate the

possibility that the visual words are associated with an identical object, and such visual

words usually have more descriptive power for the query. We base our proposed method

on two assumptions regarding the descriptive visual words: i) they co-occur closely in a

frame; ii) they move coherently across sequential frames.

In this section, a STC-based similarity measure function is developed for adjusting the

visual words weights to namely Query Correlation (QC) with respect to STC. Essentially,

this leads to the key frames reformulation for the query video, effectively involving the

descriptive visual words that may or may not originally appear in the key frame and

excluding the noisy ones. The QC weights of the visual words are determined by both

the STC matrices and their frequencies. Furthermore, it is important to note that the

retrieval technology can be easily incorporated into standard inverted indexing architecture

to achieve high computational efficiency.

4.2.1 Characterizing descriptive Visual Words

Let us start with a revisit to the formulation of the retrieval model based on classical BovW

framework. A given query example, which is also a video, is represented as vq = {fl} where

fl is a frame. For efficiency, a number of key frames {fq} ⊂ vq are sampled for the video

similarity measurement. Note, however, that we use all frames {fl} in the query for spatial-

temporal correlation detection and measurement. In addition, each video collection in the

video collection is represented as a set of key frames vd = {fd}, whereas each element of

the ith visual words wi in f is its Term Frequency (TF).



70 STC-based Representation Reformulation

The BovW model usually involves a very large vocabulary, and the representation

vector f is sparse. Therefore, the inverted index architecture can be applied: for each

visual word, a table is built to list all the frames where it appears and its occurence

frequencies in these frames. The key frame similarity sim(fd,fq) is measured by the

cosine function, which can be approximated based on the inverted index structure using:

sim(fd,fq) ≈
∑K

i=1 score(wi)

l(fd) ∗ l(fq)
(4.7)

where l(f) is the L2-Norm of vector f , and score(wi) is the scoring function for each

matched visual word wi across fd and fq, given by multiplication of the corresponding

TFs:

score(wi) = fq(wi) ∗ fd(wi) (4.8)

The scores are accumulated to compute a similarity score between two key frames. It

has been assumed that the video data are well segmented shots or the videos are short and

consisting of few shots. We then adopt the shot similarity measurement method proposed

by Peng et al. (Peng & Ngo 2005a) where the highest similarity score among all possible

pairs of key frames compared is used to measure the similarity between two video shots:

simvd,vq = max
fd∈vd,fq∈vq

sim(fd,fq) (4.9)

We aim to improve this similarity function by emphasizing the visual words in the

query that fulfill the spatial proximity and temporal motion coherence constraints. Ef-

fectively, these visual words tend to be associated with an identical object in the query.

Traditionally, this association was addressed by image segmentation, which is computa-

tionally expensive (Datta et al. 2008) and a high computationally cost in the online query

is not acceptable for modern CBVR technology. It has been preliminarily shown that the

visual words, which are more interesting when it comes to representing the visual con-

tent, can be extracted according to the two assumptions proposed in Section 4.1. Here,

we develop a further characterizing scheme for the query video to improve the retrieval

model.

Regarding the spatial correlation, it is measured by the proximity between visual words,

e.g. the inverse of Euclidean Distance (Zhang et al. 2006, Liu & Chen 2009). An example

is illustrated in Figure 4.3(a). Visual word A is located in a close proximity to B, C and

E in a key frame of the query, and visual word A is assigned with a higher descriptive

power as shown in Figure 4.3(b). In contrast, visual word D is located singularly, and as

a result, it is assigned a lower descriptive power.

In addition, in the temporally consecutive frames, the reoccurring visual words are

tracked according to the L2 Norm. Each tracked visual word moves to a new position

in the next frame, and is associated with a motion vector (Figure 4.3(c)). We propose
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(a) Visual words in the key
frame of query video

(b) Spatial correlation based
emphasizing

(c) Motion coherence based
emphasizing

(d) Emphasizing the de-
scriptive visual word not ap-
pearing in the key frame

Figure 4.3: An example of visual words emphasizing approach. In (b), (c) and (d), the
color intensity indicates the importance.
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to measure the relative motion with respect to two visual words in order to indicate how

the two visual words move coherently. In Figure 4.3(c), visual words A, B, and C move

coherently to the right, and they are assigned with a higher descriptive power. The visual

word D moves in a different direction, which has been defined as low motion coherence,

and it would not be emphasized in the query.

Eventually, both the spatial and temporal relationship can be modelled by the STC

technology in Chapter 3. Hence, we can state a hypothesis as follows:

When a visual word has a strong STC with other words appearing in the same frame

of query, it has a higher descriptive power.

Accordingly, our scoring function based on STC for a visual word in a key frame of

the query video is then formulated as follows:

score′(wi) =
K∑
j=1

fq(wi) ∗Corr(i, j) ∗ fd(wj) (4.10)

where Corr(i, j) measures the correlation between the ith and jth visual words. Here, we

defined Corr(i, i) = 1 and Corr(i, j) < 1 as shown in the theoretical analysis in Chapter

3.

As shown in Equation 4.10, traditionally the similarity scoring of wi is only determined

by the matched instances of corresponding wi in the video. In the STC based similarity

measurement, it also depends on whether its correlated wj appears in the data video. The

score assigned fq(wi)∗Corr(i, j)∗fd(wj) has a coefficient Corr(i, j), which is determined

by the STC discovered from the query. It can be replaced by Corrs(i, j), Corrt(i, j),

or Corrst(i, j) which represents different aspects of STC discovered respectively as intro-

duced in Chapter 3.

It should be noted that, in the last section, Corrf is utilized and the WoIs are selected

based on the frame level correlation. When the query is a video example, then, the video

level correlation can be leveraged to address the descriptive visual words. As shown in

Figure 4.4, the Corrq denotes the correlation matrix which is incurred by the query

video. It means that this correlations between the visual words is learned from the query

video, rather than the individual key frame, and we define it as QueryCorrelation (QC).

Using this method, the hidden clue from the video query is discovered, to better predict

the relevances.

Formally, Equation 4.10 is rewritten to incorporate the QC into the similarity scoring

function as:

score′(wi) =
K∑
j=1

fq(wi) ∗Corrq(i, j) ∗ fd(wj) (4.11)

Based on this scoring function, the video similarity measurement would be reformulated,

and the formulation of QC based similarity measurement function will be discussed in the
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Query

Corr
q

Frame

Frame

Key Frame

Figure 4.4: QC: Spatial and Temporal Correlation discovered from the Query

next subsection.

4.2.2 Key Frame Reformulation and Similarity Measurement

By incorporating a QC-based scoring function (Equation 4.11), the key frame similarity

measure in Equation 4.8 becomes:

sim(fd,fq) ≈
∑K

i=1 score
′(wi)

l(fd) ∗ l(fq)
(4.12)

However, direct computation of Equation 4.12 is difficult to implement for the inverted in-

dex architecture due to the STC computation for the query. The original scoring function

of Equation 4.8 corresponds to the inner product between the query and data represen-

tation vectors, which can be easily applied to the inverted index system. To facilitate a

similar computation, the numerator of Equation 4.12 is rewritten as follows:

K∑
i=1

score′(wi) =
K∑
i=1

K∑
j=1

fd(wj) ∗ fq(wi) ∗Corrq(i, j)

=
K∑
j=1

fd(wj) ∗
K∑
i=1

Corrq(i, j) ∗ fq(wi)

=

K∑
j=1

qc(wj) ∗ fd(wj)

(4.13)

The weighting vector qc = Corrq×fq and qc ∈ RK , where qc(wi) denotes the descriptive

power (also called emphasizing weights) of the ith visual word, and can also be directly
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used as the emphasizing weights. Corrq is the K ×K STC matrix.

As shown in Equation 4.13, the QC is injected into the scoring function in order

to emphasize the descriptive visual words in the keyframes, which is equivalent to key

frame reformulation. It must be noted that the QC is measured using all frames in the

query (Figure 4.4), and as a result, some visual words may be brought by the QC into

the reformulated key frame, even though their original term frequency on the key frame

is zero. For example, as shown in Figure 4.3(d), the visual word G is added with its

corresponding weights, because of its strong QC with A, B, C and E in the whole query.

In this way, the QC based approach would, to some extent, compensate the information

loss caused by the key frame sampling.

It is interesting to compare Equations 4.10 and 4.13. Equation 4.13 demonstrates

our assumption that the scoring function should not be completely determined by the

matching of “independent” visual words, but also the visual words are correlated via

spatial and temporal information. Equation 4.13 presents the approach to emphasize the

descriptive elements in the visual content representation. After all, these two equations

are mathematically equivalent, which shows that emphasizing the descriptive visual words

in the query is equivalent to compensating the spatial-temporal correlation neglected by

the BovW framework.

An example of QC weights computed for a random frame by Equation 4.13 is shown

in Figure 4.5. As shown in the diagram, some weights are extreme large, which may

greatly influence the relevance scores. We want to avoid the risk to over-estimate some

relevance by strong bias on some individual visual words. As a result, Equation 4.14 has

been utilized to further quantize the emphasizing weights of the descriptive visual words

in the key frame:

qc(wi) =


2 for qc(wi) > σ

1 for σ/2 < qc(wi) < σ

0 for else

(4.14)

As shown in Figure 4.6, the choice of σ determines the number of descriptive visual

words. Figure 4.6 represents some examples of the qc(wi) computed for various queries.

Given the same detector is used, the descriptive power distributions for different queries

are not very different. Thus a static threshold σ can be empirically selected for all queries

(σ=1 in our experiment). The effect of quantization scheme will be discussed in the

Experiments section.

The keyframe representation of the query is finally reformulated as:

f ′q = fq + kqc ∗ qc (4.15)

where kqc is a parameter to determine the role of QC weight in the query representation.

In this way, the Term Frequency is adjusted by QC weights, this adjust can be summarized



4.2. Query Reformulation 75

Figure 4.5: QC weights computed for an frame of a query

Figure 4.6: The quantization threshold σ decides the number of emphasized visual words.
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as:

Weight = TermFrequency + QueryCorrelation (4.16)

This equation shows that not only frequently appearing visual words is important for

current query in our retrieval model, but also the strongly spatial-temporal correlated

visual words are also important for it. As a result, QC is used as an additional weight to

traditional term weights, for example, TF.

Based on Equations 4.12 and 4.15, the frame level similarity measurement function

becomes:

sim′(fd, fq) ≈
∑K

i=1 f
′
q(wi) ∗ fd(wi)

l(fd) ∗ l(fq)
(4.17)

It is important to note that the key frame reformulation will not significantly increase

the number of non-zero elements in the key frame representation. It would not only

involve the descriptive visual words, but also exclude the noises. Furthermore, it avoids

the extra computational and memory costs of the direct inclusion of the spatial-temporal

information in video representation and indexing.

Having said that, in this thesis, we are more interested in how the STC-based approach

can improve the retrieval effectiveness. In the following sections, we present an extensive

empirical evaluation.

4.3 Inverse Documents STC

According to the assumptions made for the QC, STC incurred by the query have been

assumed to reveal how visual words relevant to the topic. Considering the STC contained

within video collection, an idea is that the weight of a visual word should be modified in

the retrieval model whilst considering if they are correlated to other visual words in the

current video collection.

We assume that the more likely a visual word wi is to co-occur with other words, the less

descriptive ability it has for the retrieval against the current video collection. For example,

if there were two visual words representing “screen” and “keyboard” respectively. The

“screen” co-appears more often with other visual information such as: “iPad”, “tv-set”,

“GPS cable”, and etc., and “keyboard” appears more singularly in the video collection.

The visual word “screen” would be less descriptive as a result of the larger number of

visual words it co-occurs with correlation. When a user searches with a visual query

“Desktop”, the “keyboard” is more descriptive for this topic than the “screen”: a video

only containing “keyboard” is more likely to be related to “Desktop” than the a video

containing a single “screen” only.

In Chapter 3, the co-occurring correlation has been quantized as a matrix Corrd

(shown in Figure 4.7), which accumulates the video level correlation through the entire



4.3. Inverse Documents STC 77

video

video

video

video

video

video
video video

video

videovideo

video
video

Video Collection

Corr
d

Figure 4.7: Co-occurrence correlation extracted from entire video collection.

collection. We can formulate a notion of “document correlation” for an individual visual

word as follows:

dc(i) =

K∑
j=0

Corrd(i, j) (4.18)

where dc(i) denotes the document correlation for the ith visual word. Theoretically, it

should be normalized around 1. If the distribution of visual words in the visual content

were uniform, all the dc(i) should be equally 1. For computation convenience, we scale

the dc to:

d̄c(i) = K ∗ dc(i)∑
dc(i)

(4.19)

A high document correlation associated with single visual word has been assumed to

harm its descriptive ability. We then define a concept Inverse Document Correlation (IDC)

as follows:

idc(i) = 1 + log(
1

d̄c(i)
) (4.20)

where each idc(i) should be non-negative and inverse to the document correlation dc of

wi with respect to other visual words.

By incorporating the new term weights IDC, the keyframe representation of the query

is then reformulated as:

f ′q(i) = fq(i) + kidc ∗ tf(i) ∗ idc(i) (4.21)

where idc is a K dimensional vector, in which each element is calculated by Equation 4.20,

and kidc is a parameter to scale the IDC weights in the representation. Combining QC

and IDC results in:

f qcidcq = fq + kqc ∗ qc + kidc ∗ idc (4.22)

As shown in Euqation 4.22, IDC reduce the weights of visual words which are more likely
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to co-occur with other visual words within the data sets. In another words, it relatively

emphasis more on the visual words which appear solely and less, which are assumed to

contain more useful information for retrieval. This IDC is similar to the idea behind the

Inverse Document Frequency (IDF), which is another common term weighting scheme for

textual retrieval. It implies that words appearing in more documents are less descriptive

and should be assigned with a lower weights in the retrieval model. Similarly, IDC implies

that the words appearing more likely with other words are less descriptive.

The weights for visual content representation can be reformulated as:

Weight = TermFrequency + InverseDocumentCorrelation (4.23)

which can be combined with Equation 4.16 to characterize the representation reformulation

function based on the STC discovered from both query and document collection:

Weight = TF + QC + IDC (4.24)

Note that this representation reformulation is equivalent to the new similarity mea-

surement scheme. The frame level similarity measurement is computed according to:

sim(fd, fq) ≈
∑K

i=1 f
qcidc
q (wi) ∗ fd(wi)
l(fd) ∗ l(fq)

(4.25)

In summary, we build a retrieval model using term weights QC and IDC in addition to

classical video representation, which is based on, for example, TF term weighting scheme.

4.4 Experiments

The goal of these experiments is to evaluate the effectiveness of the STC-based repre-

sentation reformulation, so as to improve the BovW retrieval model. Accordingly two

Query-by-Example video retrieval tasks are used: (1) QBE near-duplicate video search

task; (2) general topics QBE video retrieval task. The QBE video retrieval for general

topics is always a more challenging task. The topics cover the various user intentions,

who may search for a specific object/scene or a category of shot. The visual similarity of

the desired object may be relatively small in the relevant videos. For example, as shown

in Figure 4.8, one of the topics of this task is searching for videos which contain women

wearing long dresses. In the relevant videos, the persons may appear differently, and only

a small amount of visual content of the relevant videos is visually matched to the query.

In our experiments, Points-of-Interest are detected by the Hessian detector, which

works well to overcome the occlusion and cluttering (Mikolajczyk, Tuytelaars, Schmid,

Zisserman, Matas, Schaffalitzky, Kadir & Gool 2005). The salient regions are described

by the SIFT feature. Hierarchical K-means is used for visual vocabulary construction.
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Figure 4.8: Typical frames of relevant videos of topic ”Women in long dresses”

Mean Average Precision (MAP) is used as the main performance indicator, and we

also show the Precision-Recall curves of different models.

The classical BovW model and a state of the art BovW enhancement approach based

on Tight Geometric Constraint (TGC) (Zhao et al. 2010) are used as the baselines. The

TGC method is implemented with a publicly available toolkit SOTU (Zhao 2009).

4.4.1 Experimental Set Up

Two commonly used video collections are selected for the experiments:

(DATA1) CC Web Video Near-duplicate video search is performed on video collection

CC Web Video (Wu, Ngo, Hauptmann & Tan 2009). Most videos in this data-collection

are short videos, most of which are 3-5 minutes long and not longer than 10 minutes.

They are presented on the websites: Youtube, Yahoo and Google Video. From the original

video collection, totally 336K key frames are extracted to represent the videos in the video

collection. The videos in the ground truth are labeled by “Exact duplicate”, “Similar”,

“Major Changed”, “Long version” and “Not Relevant”. The evaluation is performed for

24 topics, using 69 queries respectively selected from “Exact”, “Similar” and “Major

Changed” videos. 10 key frames are sampled from each query for retrieval. The average

number of the relevant videos is 84.7 per topic.

(DATA2) TRECVID2002 It is selected to perform the general topic video retrieval. The

videos in this video collection contain diversified video sources: old film, news, documen-

tary and advertisement, whilst the topics cover various information needs. The video

collection consists of approximately 10K shots segmented from 133 videos based on the

shot boundary ground truth provided by TRECVID2002. In total, 79K keyframes are
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Figure 4.9: The influences of κ and γ on spatial and temporal matrix

sampled (1 keyframe per 2 second) to represents the shots. The TRECVID retrieval task

consists of 22 topics, however, it does not provide queries in modality of video. To evaluate

query-by-video-example retrieval model, the users of this video collection must compose

the queries by themselves to perform the searching. To make our work more repeatable

and comparable with other researchers, we do not use external visual resources to compose

the queries for experiments in this thesis. We randomly select relevant videos from the

ground truth as query examples for each topic, and then delete them from the ground

truth. In total, 71 queries run are performed as QBE video search in the experiment. On

average, each topic is associated with 23 relevant shots.

4.4.2 Parameters

As presented in the previous sections, our STC based representation reformulation method

includes several parameters: the spatial proximity parameter κ, the temporal coherence

parameter γ, the QC parameter kqc, and the IDC parameter kidc.

As shown in Equations 3.29 and 3.49, the κ and γ determine the scale of STC

discovery, which are defined in Chapter 3. We could demonstrate their influences on the

STC matrix by a defined value H, which accumulates all entries of the spatial matrix or

the temporal matrix as follows:

Hs(κ) = sum(Sd)

Ht(γ) = sum(T d)
(4.26)

Figure 4.9 demonstrates the changes of Hs and Ht computed from TRECVID2002

along with the κ and γ. It can be seen from Figure 4.9 that both Hs and Ht decrease

with the increasing κ and γ, and it perfectly fulfills our theoretical analysis.

Furthermore, the Hs decreases more quickly where κ increases from 0.02 to 0.1. Ac-
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Figure 4.10: The influences of parameters on the performance of STC

cording to Equation 4.27, the Hs should change most quickly when more spatial distances

are around 1
κ , thus demonstrating that the the spatial distances between visual words are

likely to be distributed in a range of 10-50 pixels.

d2Hs
∂κ∂da,b

= 0

⇒ ∂(−da,b∗e
−κda,b )

∂da,b
= 0

⇒ e−κda,b ∗ (1− κda,b) = 0

⇒ 1− κda,b = 0

⇒ 1
κ = da,b

(4.27)

Compared to the spatial proximity, the decease of Ht is a lot smoother. This is due to

the fact that the distribution of the Norm of relative motion vectors between the visual

words is more uniform. The Norm of relative motion vectors is relatively concentrated in

a range γ = 0.01− 0.02.

Furthermore, we preliminarily demonstrate the influence of κ and γ on the retrieval

performance of STC-based technologies. The retrieval performance on TRECVID2002 are

demonstrated in terms of MAP, and we utilize the QC based query reformulation as an

example.

As shown in Figure 4.10(a), observation reveals that the performance of QC technology

is not sensitive to the value of κ, and the value of MAP is always around 0.0701. The

higher performance is achieved by κ ≈ 0.02, which matches the spatial proximity between

more visual words shown in Figure 4.9. In addition, γ also do have little effect on the

performance of STC in Figure 4.10(b). A higher performance is achieved at γ = 0.01−0.02.

Generally, too large κ and γ (κ > 0.05 or γ > 0.02) always leads to a lower retrieval

performance, which may be caused by the ignorance of some meaningful visual word

correlation. Because, a larger parameter means that more visual word correlation will be

neglected.
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Simultaneously, the performance of temporal correlation based QC reformulation is

more stable than spatial correlation, which is shown in Figure 4.10(b). It is also coincident

with the relative smoothness of Ht demonstrated by Figure 4.9.

In summary, the performance of QC technology does not strongly rely on the value

selection of parameters κ and γ. In the following experiments, we empirically choose

κ = 0.02 and γ = 0.02, which have achieved a higher performance in these results.

Furthermore, kqc determines the proportion of the QC weights in the formulated query

representation for CBVR, and a higher kqc will assign more QC weights to the represen-

tation. Naturally, it would also impact the retrieval performance of QC method. We still

use QC method running on TRECVID2002 as an example, and the results are displayed

in Figure 4.11.

Figure 4.11: The parameter kqc and the performance of STC

When kqc = 0, the QC reformulated query is equivalent to the original query. Along

with increasing kqc, the retrieval performance also increases. However, it is not true

that a larger QC would necessarily result in better results. When kqc is larger than 1.5,

the performance decreases. It means that over-emphasis the QC would lead to a risk of

decreasing the retrieval performances. Generally, the better performance is achieved by

kqc = 1 or 1.25. In the following experiments, the value of parameter kqc is empirically

selected as 1 to simplify the computation.

4.4.3 QC Evaluation

In this section, we perform the experiments to evaluate the query representation modified

method by QC weighting scheme. The performances of four variations of the approaches

proposed in this section are reported, namely the QC-based retrieval models with and

without weights quantization (Equation 4.14), denoted by qc-st-BovW and qc-raw-st
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respectively; and retrieval model only based on either spatial or temporal correlation,

denoted by qc-s-BovW and qc-t-BovW respectively.

In this experiment, we test the vocabulary of size 20k/5k for CC WEB VIDEO/TREC

-VID2002 respectively. The goal is to evaluate whether or not the proposed QC technique

can effectively compensate the neglect of spatial-temporal structure for the BovW model

for either smaller or larger vocabulary.

Precision and Recall

qc-st-BovW

qc-raw-st

BovW

TGC

qc-s-BovW

qc-t-BovW

Figure 4.12: Overall performance in CC WEB VIDEO

The overall performance of QC based retrieval approaches in CC WEB VIDEO is dis-

played by the Precision-Recall curves in Figure 4.12. The qc-st-BovW simply outperforms

both the classical BovW and TGC methods. The overall performance reveals that the

QC approach effectively emphasises the descriptive visual words in the retrieval function,

and more relevant videos are retrieved. Especially, the QC improves the quality of the top

ranked results, which is important for real-world application and its potential cooperation

with other technology, e.g., pseudo feedback. The qc-raw-st performs similarly but slightly

lower than the qc-s-BovW, qc-t-BovW and qc-st-BovW.

Noted that the qc-raw-st performs nearly the same as the qc-st-BovW, qc-s-BovW

and qc-t-BovW in terms of Precision-Recall curves. However, as shown in Figure 4.12,

the precision of top ranked results retrieved by qc-raw-st is not as good as qc-st-BovW

and other two approaches. These results may be owing to the extreme weights assigned

to some visual words which may actually be noise and involve irrelevant results. The

weights quantization scheme has effectively reduced the risk of extreme weights for the

descriptive visual words generated by the QC-based key frame reformulation and makes

the qc-st-BovW perform more stably.
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The performance difference between qc-s-BovW, qc-t-BovW and qc-st-BovW in terms

of Precision-Recall curve is not obvious. It shows that the performances are very similar,

and it may be because the spatial and temporal correlation has emphasized the same num-

ber of visual words as descriptive. As we know, both the spatial and temporal correlations

are extensions of the co-occurrence correlation, and they have an overlapping part. The

difference between two correlations will be shown in terms of MAP in the next section.

In CC WEB VIDEO, the queries are classified as “Exact”, “Similar” and “Major

Changed”, based on the similarity between the query example and most relevances in

the ground truth. The “Exact” and “Similar” queries always have a higher quality, and

the quality of “Major Changed” is normally the lowest. As a result, the influence of query

quality on the retrieval performance of QBE-CBVR system is obvious. The results of good

queries (“Exact” and “Similar”) are a lot better than the other type of queries, which can

be observed in the experimental results.

Figures 4.13 and 4.14 present the retrieval performances of different approaches

using “Exact” and “Similar” queries respectively. In terms of the precision-recall shown

in Figure 4.13 and Figure 4.14, the classical BovW model performs adequately well on

the “Exact” and “Similar” queries. Most positive results are ranked on top of the list,

thus the precision is as high as nearly 100%. The other baseline TGC maintains a similar

performance with BovW for both types of queries. The proposed qc-s-BovW, qc-t-BovW

and qc-st-BovW perform comparable to the baselines, and qc-t-BovW performs better

than others on top results for the “Similar” queries.

Generally, with “good” queries, which is not challenging for retrieval, all the approaches

perform very well and closely to each other. However, it is not always an easy task to

select a “good” query for video search. A robust CBVR system should be able to handle

various queries of different qualities. We aim to test whether or not the QC improve the

ability of the BovW framework to deal with hard queries.

For “Major Changed” queries, which are of low quality, as shown by the Precision-

Recall curves in Figure 4.15, BovW performs a lot worse than on the “good” queries, and

Precisions decrease very quickly around the point where Recall=0.55. It is also an evidence

that these queries are harder tasks for the BovW framework. TGC performs a little better

than the BovW, and it shows the effectiveness of additional TGC verification to enhance

the BovW framework. Nevertheless, the qc-st-BovW outperforms the classical BovW

model, and it also outperforms the TGC as shown in Figure 4.15. We can conclude that

it substantially improves the performance of the BovW framework in terms of Precision-

Recall for the hard queries.

If we summarize the above observations, it can be shown that the difference between the

QC and the two baselines BovW and TGC, which is presented in the overall performance

(Figure 4.12), is mainly due to the fact that retrieval performances of the “bad” queries

have been improved .
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In summary, the evaluation on CC Web Video shows that both TGC and qc-st-BovW

effectively improve the performance of the BovW model in terms of Precision and Recall

curve. The qc-st-BovW largely outperforms TGC on lower quality queries, which is more

challenging for classical BovW model, and it has also performed comparably to TGC on

high quality queries.

qc-st-BovW

qc-raw-st

BovW

TGC

qc-s-BovW

qc-t-BovW

Figure 4.13: Performance of “Exact” queries in CC WEB VIDEO

qc-st-BovW

qc-raw-st

BovW

TGC

qc-s-BovW

qc-t-BovW

Figure 4.14: Performance of “Similar” queries in CC WEB VIDEO
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Figure 4.16: Precision-Recall curve for 7 typical queries for TRECVID2002
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Figure 4.15: Performance of “Major Changed” queries in CC WEB VIDEO

TRECVID2002 is a more challenging task for the retrieval system, which can also be

shown by the experimental results. As displayed by Figure 4.16, the precision-recall curve

is lower than Figure 4.15, and the effectiveness of BovW for this task is much lower than

for CC WEB VIDEO.

Firstly, 7 typical topics (special individual, persons, objects, and land view) are se-

lected to evaluate the performance of the QC method on the general topic video retrieval.

The results in Figure 4.16 shows that qc-st-BovW outperforms the classical BovW model

and TGC model. TGC and BovW perform comparable in this task. The relevances in

the general topic retrieval experiments have fewer visual similarities, and the additional

information verification in the similarity measurement would not be as effective as in the

near duplicate visual content search.
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Table 4.1: MAP performance of QC on CC WEB VIDEO
MAP E S M Overall

BovW 0.939 0.919 0.511 0.8120

TGC 0.940 0.913 0.553 0.8268(+0.010)

qc-st-BovW 0.944 0.927 0.619 0.8503(+0.033)

qc-raw-st 0.929 0.930 0.625 0.8477(+0.030)

qc-s-BovW 0.938 0.925 0.619 0.8360(+0.021)

qc-t-BovW 0.941 0.926 0.615 0.8486(+0.032)

Precision and Recall of QC (TREC2002)

Figure 4.17: Performance of QC method Regarding Precision-Recall for all topics for

TRECVID2002

The overall performance comparison of QC method and original BovW is illustrated

in Figure 4.17. It shows that qc-st-BovW outperforms BovW model in terms of average

Precision of all topics on different Recall points. We can conclude that the QC based

approach could improve the performance of BovW framework for TRECVID2002 in terms

of the Precision-Recall criteria.

Mean Average Precision

Mean Average Precision is a summarization criteria of precision and recall, which computes

the average precision of all the retrieved positive results.

The performances of our approaches and baselines for CC WEB VIDEO in terms of

MAP are presented in Table 4.1, where E, S, M denotes “Exact”, “Similar” and “Major

Changed” queries, respectively. On average, the qc-st-BovW outperforms the classical

BovW by 4%, which is statistically significant (p-value=0.046). The qc-st-BovW performs

much better than TGC on “bad” queries: it outperforms TGC by approximately 10% and

BovW by around 20% on the “Major Changed” queries. It is clear that the improvement

of the QC approaches is a result of its performances on “bad” queries.

It is also shown in Table 4.1 that qc-s-BovW performs similarly to qc-t-BovW, and
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it means that both spatial and temporal correlation could be used to improve the BovW

model in the near duplicate video search application. Furthermore, the STC, which com-

bines both spatial and temporal information, generally outperforms any one of them for

CC WEB VIDEO.

Furthermore, Table 4.2 presents the Average Precisions of different approaches on

TRECVID2002. It is shown that qc-st-BovW outperforms the classical BovW model.

The average improvement is 10%.

TGC fails to improve the classical BovW model for this general topic video retrieval

task in terms of MAP. On average, qc-st-BovW outperforms both of the two baselines

in terms of MAP.According to Table 4.2, the spatial correlation is more crucial than the

temporal correlation, while qc-s-BovW outperforms qc-t-BovW on average. Differing with

CC WEB VIDEO, the visual contents representing users’ desire are often mixed up with a

large amount of noise within the query videos of TRECVID2002. Thus the QC technique

based on the spatial proximity assumption may contribute more than the motion coherence

to the reduction of noise. Nevertheless, detailed discussion on the topic that to compare

the spatial and temporal correlation will be demonstrated in Chapter 6.

The weights quantization scheme has improved the performance of QC-based ap-

proaches as shown in Table 4.2. qc-st-BovW performs more stably than qc-raw-st, and

qc-raw-st performs worse than the BovW baseline on 3 topics although it achieves high-

est performance on the other two topics. Additional evidence is shown in Table 4.2, and

the weights quantization scheme has promoted the precision on the top ranked retrieved

results.

Table 4.2: MAP: QC performance on TRECVID2002

Approaches qc-s-BovW qc-t-BovW qc-st-BovW qc-raw-st

MAP (22 topics) 0.0702 0.0700 0.0701 0.0698

Average Precision on

10% Recall (22 topics)

0.250 0.250 0.250 0.246

In summary, the evaluation demonstrates that the QC technology can effectively im-

prove the performance of the classical BovW framework in terms of MAP, and the qc-

st-BovW performs more stably than the TGC-based approach on the two QBE CBVR

tasks.

4.4.4 IDC Evaluation

IDC coefficients and Parameters

According to Equation 4.20, the number of generated IDC weights equals the scale K

of visual vocabulary, and each visual word is associated with a fixed IDC weight for the

current video collection. The statistic of the IDC weights is demonstrated by Table 4.3.
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Both the average value of the IDC weights generated from TRECVID2002 and CC WEB VIDEO

are around 1 after the normalization of Equations 4.19 and 4.20, which matches our the-

oretical analysis in the previous section. For both video collections, the deviation of IDC

weights generated by temporal correlation is larger than the other two, thus meaning

that the computed temporal correlations for the visual words differ more with each other.

Compared to the other two, the temporal correlation extraction process has an extra step

of visual word tracking, and it has reduced some co-occurrence of visual words. This step

may contribute to the larger standard deviation existing in Table 4.3. The number of

videos in the video collection CC WEB VIDEO is larger than TRECVID2002, and the

standard deviation associated with the former video collection is also bigger.

Table 4.3: Statistics of IDC coefficients
IDC Cooc IDC SC IDC TC

Average (TRECVID2002) 1.076 1.088 1.125

Standard Deviation 0.2154 0.2456 0.2715

Average (CC WEB VIDEO) 1.346 1.327 1.576

Standard Deviation 0.6726 0.6261 0.9163

The IDC weighting scheme is computed based on Equation 4.21, which has a parameter

kidc. It determines the role of IDC weights in the reformulated query example. We expect

that different values of the kidc would have effect on the performance of the IDC approach.

The performance comparison is shown in Figure 4.18. Here, the IDC weighting with co-

occurring correlation matrix is utilized for TRECVID2002 as an example, in which the

preliminary evaluation is in terms of MAP.

Overall, the performance of IDC does change significantly with various values of the

parameter kidc: the variation of MAP is less than 0.001. As shown in Figure 4.18, the

best performance is achieved by kidc = 0.5-1. Note that the performance of IDC will

decrease when kidc is too large (kidc > 1.5). In this case, too much IDC weights slightly

harm the retrieval performance of the BovW model. For computation convenience, in the

following experiments, the value of kidc is empirically selected as 1. Nevertheless, it can

be preliminarily concluded that the effectiveness of the IDC approach is not very sensitive

to the parameter selection.
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Figure 4.18: Performance of IDC and parameter kidc

Precision-Recall Curve

Overall, the performance of the IDC approach on TRECVID2002 is displayed in Fig-

ure 4.19, in which the IDC weighting scheme computed based on co-occurrence, spatial

proximity, and temporal correlation are denoted by “idc-c”,“idc-s”, and “idc-t” respec-

tively. It can be seen that the IDC approaches all outperformed the baseline original

BovW model. The IDC weighting scheme slightly improves the descriptive ability of vi-

sual word for the video collection TRECVID2002. Especially, the retrieval performance

improvement is more obvious for the top ranked results.

In Figure 4.19, the performance difference between “idc-c”,“idc-s”, and “idc-t” is not

very obvious. The reason may be that the IDC coefficients are computed based on the

accumulation over entire video collection, and the spatial and temporal refinement do not

significantly change the co-occurrence values of the visual words.

The IDC technology does not obviously outperform BovW for CC WEB VIDEO in

terms of a Precision-Recall curve shown in the Figure 4.20. Only on the several Recall

points less than 30%, the Precision of the IDC approach is higher than the BovW model,

and for the Recall points 95% and 100%, the Precision of IDC approaches is slightly lower

than the BovW model. This may reveal that representation reformulation based on the

IDC weighting scheme has increased the risk of ignoring some relevant visual words.

In summary, according to the Precision-Recall criteria, the experimental results of two

video collections shows that the IDC has improved the BovW model for the CBVR task.

Some positive effects of the IDC weighting scheme on characterizing descriptive visual

words could be observed in the experimental results.
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Figure 4.19: Performance of IDC method Regarding Precision-Recall for all queries for
TRECVID2002

Figure 4.20: Performance of IDC method Regarding Precision-Recall for all queries for
CC WEB VIDEO
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Table 4.5: Average Precision for all topics (TRECVID2002) of IDC
topic BovW IDC-c IDC-s IDC-t

75 0.0879 0.0886 0.0887 0.0890

76 0.0631 0.0629 0.0640 0.0672

79 0.0407 0.0407 0.0409 0.0410

80 0.0493 0.0494 0.0495 0.0496

81 0.0679 0.0680 0.0680 0.0681

82 0.0526 0.0527 0.0528 0.0529

84 0.0315 0.0303 0.0312 0.0302

85 0.0510 0.0512 0.0511 0.0512

86 0.1659 0.1989 0.1967 0.2018

87 0.0319 0.0445 0.0445 0.0454

88 0.0455 0.0438 0.0448 0.0437

89 0.0457 0.0430 0.0441 0.0445

90 0.1242 0.1244 0.1242 0.1245

91 0.0487 0.0482 0.0481 0.0489

92 0.0351 0.0354 0.0354 0.0341

93 0.0391 0.0376 0.0375 0.0383

94 0.0324 0.0320 0.0316 0.0331

95 0.0616 0.0638 0.0638 0.0645

96 0.0773 0.0758 0.0753 0.0765

97 0.0596 0.0604 0.0605 0.0601

98 0.0251 0.0250 0.0253 0.0248

99 0.3779 0.3787 0.3786 0.3788

MAP

The performances of IDC approaches in terms of MAP are demonstrated in Table 4.4. It

shows that the IDC-t approache outperforms BovW by 0.01 and 0.03 for the two video col-

lections respectively. The IDC weighting scheme based on temporal correlation performs

better than that based on the spatial correlation, and it also improve the performance of

IDC-c. This is due to that the temporal correlation may be more stable in the IDC com-

putation over entire video collection, while the visual words tracking process has reduced

some meaningless or random co-occurrence between the visual words.

Table 4.4: MAP performance of IDC

BovW IDC-c IDC-s IDC-t

TRECVID2002 0.0681 0.0694 0.0692 0.0698

CC WEB VIDEO 0.812 0.814 0.813 0.815

Based on the experiments of general topics video retrieval, the average Precision for all

the topics has been displayed in Table 4.5. In the experimental results of TRECVID2002,

IDC approach statistically significantly (P-value=0.046) outperforms the baseline on 18
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Table 4.6: 5 topics IDC outperforms mostly BovW(TRECVID2002)
topic BovW IDC-c IDC-s IDC-t Difference

Eddie Rickenbacker 0.0879 0.0886 0.0887 0.0890 0.002

James Chandler 0.0631 0.0629 0.0640 0.0672 0.004

Overview of Cities 0.1659 0.1989 0.1967 0.2018 0.035

Oild Field 0.0319 0.0445 0.0445 0.0454 0.014

Nuclear Explosion 0.0616 0.0638 0.0638 0.0645 0.003

Average 0.082 0.092 0.092 0.009 12.2%

Table 4.7: 4 topics BovW outperforms IDC (TRECVID2002)
topic BovW IDC-c IDC-s IDC-t Difference

Price Tower 0.0315 0.0303 0.0312 0.0302 -0.0015

Map of US 0.0455 0.0438 0.0448 0.0437 -0.002

Living Butterfly 0.0457 0.0430 0.0441 0.0445 -0.002

live Beef 0.0391 0.0376 0.0375 0.0383 -0.001

Average 0.041 0.039 0.038 0.039 -4.9%

out of 22 topics.

On average, IDC outperforms the BovW 5%. Further query-by-query analysis are

shown in Table 4.6 and 4.7. It is shown that IDC outperforms BovW on top 5 topics by

12.2%, and the BovW performs better than IDC on 4 topics average by 4%.

We can find out that IDC would improve performance of classical BovW framework

based on above experimental results. At first, the performance improvement is statistically

significant. Secondly, IDC outperforms BovW on most topics. The average performance

differences ,where IDC outperforms BovW, is 0.009 and it is 0.002 where BovW outper-

forms IDC. However, the improvement is not very obvious. Especially, if the improvement

on topic ”Overview of Cities” was excluded, the average improvement is 0.004.

Based on experimental results of near duplicate video search against video collection

of CC WEB VIDEO. The Average Precision comparison is shown in Table 4.8 and the

IDC approaches perform better on 17 out of 24 topics.

The statistic significance is not adequate enough to prove the effectiveness of IDC.

At first, the average improvement of IDC method to classical methods is not very big.

As shown in Table 4.4, the promotion of MAP is less than 3% for both data collection.

Secondly, the improvement is sensitive to the parameters. As shown in Figure 4.18, larger

kidc will largely reduce the MAP of IDC. Finally, the query-by-query analysis shows that

IDC perform not stable in between the queries. For example, although it improves the

results of some queries, it performs a lot worse than as classical BovW framework for topic

17 and 19 of data collection CC WEB VIDEO. In summary, the p-value of AP is larger

than 10%.

The 6 topics IDC performs best is shown in Table 4.9, and the average improvement
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Table 4.8: Average Precisions of all topics (CC WEB VIDEO)
topic BovW IDC-c IDC-s IDC-t

1 0.9607 0.9724 0.9607 0.9719

2 0.9768 0.9853 0.9848 0.9846

3 0.9187 0.9483 0.9480 0.9733

4 0.9293 0.9911 0.9837 0.9827

5 0.9797 0.9909 0.9888 0.9858

6 0.6178 0.7529 0.7497 0.7583

7 0.7262 0.8218 0.8099 0.7929

8 0.5657 0.5533 0.5377 0.5114

9 0.6622 0.6099 0.6045 0.5941

10 0.9683 0.9749 0.9752 0.9724

11 0.7216 0.7154 0.7638 0.7128

12 0.7939 0.7524 0.7317 0.7531

13 0.9784 0.9975 0.9962 0.99562

14 0.7793 0.8858 0.8793 0.8816

15 0.6848 0.7130 0.7105 0.7213

16 0.9868 0.9859 0.9751 0.9722

17 0.9422 0.6567 0.6376 0.6588

18 0.4475 0.4886 0.4850 0.4359

19 0.8252 0.7019 0.7010 0.7251

20 0.8384 0.8924 0.8831 0.8334

21 0.7873 0.8128 0.7865 0.8116

22 0.5907 0.6040 0.5961 0.5856

23 0.5479 0.6485 0.6057 0.5693

24 0.9910 0.9921 0.9921 0.9858
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Table 4.9: APs of 6 topics IDC outperforms mostly BovW (CC WEB VIDEO)
topic BovW IDC-c IDC-s IDC-t Difference

”the urban ninja” 0.6178 0.7529 0.7497 0.7583 0.141

”kingdom hearts 2” 0.7262 0.8218 0.8099 0.7929 0.067

”little indian dancing
kid”

0.7216 0.7154 0.7638 0.7128 0.052

”ronaldinho ping pong” 0.7793 0.8858 0.8793 0.8816 0.106

”2 pac-changes” 0.8384 0.8924 0.8831 0.8334 0.045

”shakira hips don’t lie” 0.5479 0.6485 0.6057 0.5693 0.101

Average 0.705 0.786 0.782 0.758 11.5%

Table 4.10: APs of 5 topics BovW outperforms IDC (CC WEB VIDEO)
topic BovW IDC-c IDC-s IDC-t Difference

”free hugs campaign” 0.5657 0.5533 0.5377 0.5114 0.054

”where the hell is matt” 0.6622 0.6099 0.6045 0.5941 0.068

”napoleon dynamite” 0.7939 0.7524 0.7317 0.7531 0.04

”i write sins not
tragedies”

0.9422 0.6567 0.6376 0.6588 0.294

”sony bravia tv ad” 0.8252 0.7019 0.7010 0.7251 0.10

Average 0.758 0.655 0.649 0.651 13.3%

is 11.5%. The result of worst 5 topics is shown in Table 4.10, and on average, BovW

outperform 13.3% than IDC. Obviously, we can not conclude the effectiveness of IDC

based on the current experimental results on data collection CC WEB VIDEO.

The unstable retrieval performance can be caused by that IDC may over-weight some

visual words and under-weight other visual words. As shown in Table 4.3, the IDC weights

of TRECVID2002 has smaller variance than data collection CC WEB VIDEO. If we com-

pare performances of the IDC methods for two data collection shown in Table 4.5 and

Table 4.8, we can easily found that IDC performs more stable for TRECVID2002, and

the p-values comparison (0.04 vs 0.11) also indicates the same scenario. The comparison

shows that larger variance will involve in retrieval risk.

It is worthy to point out that the topic ”i write sins not tragedies” looks like an

extreme point, because only on this topic BovW outperforms IDC more than 0.1. If this

topic was excluded, the average decreased performance is -7%, which is less than the

average performance difference shown in Table 4.9. There is not such extreme points in

the better results of IDC shown in Table 4.9. In summary, the effectiveness of IDC is

not fully supported by the result, but the results have still revealed some possibility that

performance of BovW may be improved through STC discovered from video collection,

for example, idea similar to IDC.

The AP of best performing queries is 0.082 on TRECVID2002, which is nearly double as

poor queries (AP = 0.041). But, APs of the best and worst queries for IDC are not different
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in the other data collection CC WEB VIDEO. The best queries are normally persons and

general scenario, and the poor queries are normally specific visual information. A possible

explanation is that the IDC discovered from diversified information may be more useful

for retrieval.

Considering the above evaluations based on both Precision-Recall curve and MAP

criteria, the experimental results in this section have shown the effectiveness of IDC ap-

proaches. We can conclude that the improvement is not stable and the statistical sig-

nificance is not large. The overall improvement of IDC approaches is not significant as

the QC methods when we compare the performance displayed by the Table 4.2 and 4.4.

However, we have at least opened a door in the direction that characterizing descriptive

visual words via spatial-temporal correlation discovering from entire video collection could

improve the BovW model for the CBVR technology development.

4.5 Summary

In this Chapter, we have proposed two novel term weighting schemes based on the different

levels of spatial temporal correlation (STC) for the CBVR retrieval model, both of which

reformulates the representation of the videos under the BovW model. The schemes are

based on two defined concepts QC and IDC.

At first, the STC discovered from a query video is defined as Query Correlation (QC). It

is used to charactorize the descriptive visual words in the similarity measurement, which

is based on an assumption that the visual word with a higher QC is more descriptive.

Furthermore, we developed a method to emphasize the weights of descriptive visual words

and then reformulate the query representation. The similarity measurement function can

be directly implemented based on this characterized QC weights for the CBVR technology.

Secondly, the STC discovered from a video collection is defined as Documents Cor-

relation (DC). Inspired by the Inverse Document Frequency (IDF), the higher DC of

individual visual word is assumed to be an indication that the corresponding visual word

is less descriptive. Based on this hypothesis, a novel weighting scheme, namely Inverse

Documents Correlation (IDC), has been proposed for the visual words to reformulate the

representation. In this way, the spatial and temporal information discovered from the

video collection is also utilized in the established retrieval function.

A series of experimental results on the near-duplicate web video search and general

topic video retrieval tasks show that the QC weighting approaches substantially improve

the classical BovW model without increasing storage cost for video representation. The

QC weighting approach has also outperformed a state-of-the-art TGC-based approach on

challenging tasks. We can conclude that the descriptive visual words can be characterized

and emphasized based on the QC, and this strategy effectively compensates the neglec-

tion of the spatial-temporal information and the information loss during the key-frame
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sampling.

The experimental results also show that the IDC could improve the performance of

the BovW model for the CBVR tasks. The improvement for a video collection is not

statistically significant enough. There is a need for further evidences to support the

assumption to adjust the weights of visual words based on the computed IDC weights.

Our evaluation has at least opened the door for future research in this direction.

Another future research direction is to investigate on the exploration of context knowl-

edge, e.g. text information or users’ feedback, with the spatial-temporal information to

improve the descriptive ability of visual words. Furthermore, some optimization technolo-

gies could be explored to speed up the process of discovering descriptive visual words with

STC.

In conclusion, it has been proven that the STC extracted from both the query video

and the video collection can be incorporated into the retrieval function. The experimental

results have shown its substantial effectiveness to improve the classical BovW framework

on two types of CBVR tasks. Besides the representation and the similarity measurement

function, another important step in the CBVR technology is the building of the visual

vocabulary. How to utilize the STC to improve this process will be discussed in the next

Chapter.



Chapter 5

Rebuilding the visual vocabulary

based on STC

This chapter presents our approach, utilizing the discovered spatial and temporal informa-

tion, to improve a key procedure of the Bag-of-visual-Words (BovW) model. We are aiming

to rebuild a proper visual vocabulary, which is originally built by clustering a number of

visual features (e.g. using K-means, GMM, etc). Two types of errors may occur in the

building process. These will be referred to as the “UnderQuantize” and “OverQuantize”

problems in this chapter. The former problem causes ambiguities and often leads to false

visual content matches, and the latter generates synonyms and may result in losing true

relevances. Unlike most state-of-the-art methods which concentrated on disambiguating

the visual words, this chapter aims to address the “OverQuantize” problem by leveraging

spatial and temporal context similarity between the visual words.

The context of a visual word is defined to its spatially/temporally co-occurring visual

words, and then the STC model developed in Chapter 3 provides a computing framework to

model this context. We assumed that the semantic of a visual word is not only determined

by its position in the feature space, but it can also be detected or verified according to the

characterized context. Based on this hypothesis, the visual words, which always appear

in a similar context, are detected as synonyms caused by the quantization errors. In this

Chapter, the detected synonyms are assumed to be the redundancy of the initial visual

vocabulary.

These synonyms detected from the initial visual vocabulary are then merged to form

a new vocabulary. We expecte that the new visual vocabulary would be more compact

and descriptive. This scheme is evaluated on the TRECVID2002 and CC WEB VIDEO

video collections for two typical Query-By-Example (QBE) video retrieval applications.

Experimental results demonstrate substantial improvements in retrieval performance over

the classical BovW model. We also show that our approach can be utilized in combination

with a state-of-the-art disambiguation method to further improve the performance of the

98
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CBVR.

5.1 Quantization Errors of Visual Vocabulary

As was reviewed in Chapter 2, to efficiently index the local features, an unsupervised

clustering method is always applied to a set of training features, and each feature is

quantized to its nearest visual word. Although significant progress has been made, the

visual words are not always as effective as textual words in information retrieval. One

of the possible explanations is that the textual words always have relatively concrete

semantics, but the meaning of a clustered visual word is not as stable. This is mainly

because of two types of quantization errors which may hamper the retrieval.

The first error tends to occur when the quantization is too rough, and visual features

with different meaning may be quantized into the same visual word. The ambiguous visual

words will result in false visual content matches. In the present Chapter, we refer to this

type of quantization error as “UnderQuantize”. As can be seen in Figure 5.1, the feature

space is shown as a square and the feature points with identical meaning are identified by

the same color. When the size of the vocabulary K equals 4, then all features 1, 2, and 3

are quantized into the same visual word A in Figure 5.1(a). This “UnderQuantize” error

is more likely to occur when a small vocabulary is used.

A larger sized vocabulary may help to disambiguate the visual words, and then the

granularity of individual visual words becomes finer. As shown in Figure 5.1(b), the size

of vocabulary increases from 4 to 9, and cells become smaller than those in Figure 5.1(a).

This ensures distinction between features 1 and 3. However, increasing the vocabulary size

to address the “UnderQuantize” problem could bring in the second type of quantization

error, where visual features representing similar visual information will be quantized into

different visual words. It is referred to as “OverQuantize” error, which would cause a

“synonyms” problem. As shown in Figure 5.1(b), the features 1 and 2 are quantized into

visual words A and C respectively. This “OverQuantize” error would cause a loss of the

relevant visual information in the retrieval process, which would also hurt the performance

of the BoVW model.

In previous research, intensive investigations were devoted to reducing the “Under-

Quantize” error in order to achieve a more accurate visual content match. Recently,

large vocabularies (Nister & Stewnius 2006), (Philbin et al. 2007) have often been used

to address the “UnderQuantize” problem, and additional contextual information (Zhang

et al. 2010) was utilized to further verify the matched visual words. However, there is a

trade-off between the two types of errors, i.e., the smaller “UnderQuantize” error, and the

bigger “OverQuantize” error.

The “OverQuantize” problem has attracted much attention in the past years. Philbin

et al. (Chum et al. 2007) claimed that a major drawback of the BovW-based visual infor-
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Figure 5.1: Two types of quantization error. K is the size of visual vocabulary.

mation retrieval is that it may miss some relevant information. Clearly, the “OverQuan-

tize” error is one of the key factors contributing to the lost relevances. Jiang et al. (Jiang

& Ngo 2009) have proposed to softly quantize a feature into multiple visual words to re-

duce the risk of missing relevant information. Another type of soft-matching equivalent

schemes (Chum et al. 2011) was proposed to expand the query with the synonymous and

related visual words to promote performance and indirectly tackle this problem.

Our work focuses on addressing the “OverQuantize” problem. The main idea is to

integrate multiple synonymous visual words into an single visual word, and then rebuild a

more compact and descriptive visual vocabulary. For example, if the visual words A and

C in Figure 5.1(b) are merged, then features 1 and 2 can be correctly matched. Because

the appearance of features has been used by the initial visual vocabulary to classify the

meaning of visual words, extra context information should be used to detect the synonyms.

Building a contextual visual vocabulary has also attracted much attention. For exam-

ple, the context aware visual word clustering methods proposed by (Yuan & Wu 2008)

and (Wang, Yuan & Tan 2011) directly utilized the co-occurrence information of visual

features in the regularized clustering. However, this regularized and iterative clustering al-

gorithm can not be easily generalized to the unseen data. Our method detects and merges

the synonyms in the initial visual vocabulary, and the generalization is as straightforward

as the classical BovW framework.

We aim to utilize the context of visual words to address the problem of “OverQuantize”.

Here, we define the context of an individual visual word as its spatially or temporally co-

occurring visual words. It is assumed that the visual words with similar meaning tend

to occur in a similar context. For example, if the visual features representing “nose” are

“OverQuantize”-ed into two different visual words by the BovW model, then, they both

may still tend to appear in the same context, such as visual words representing “eyes”,
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(a) A (b) C

(c) E

Figure 5.2: The histogram of co-occurring visual words of A, C, and E

“ears”, and “mouth”. A simple example can be illustrated by Figure 5.2. Both visual

words A and C often co-occur with F and H, whilst at the same time E always co-occurs

with B and I. Therefore, A and C are more likely to be synonyms and E is more likely to

be different from them.

As was discussed in Chapter 4, the video content is always a mixture of large amounts

of miscellaneous information, and the context of a visual word can be defined based on

the STC model extracted from video collections. The most straightforward method is to

count the number of the frames, in which it co-occurs with other visual words. Inspired by

the effectiveness of STC to improve the CBVR retrieval model, this method is extended

to define the spatial and temporal context of visual word.

A context vector (as can be seen in Figure 5.2) is then formulated for each visual

word, w, in a video collection, and each entry of the vector represents the weight of a

corresponding visual word that co-occurs with w. Thus, the context similarity between a

pair of visual words is (inversely) measured by the distance between their context vectors.

Nevertheless, the original feature information (i.e., appearance) of visual words should

not be completely ignored in determining the similar visual words. It can be used for the

appearance similarity verification. For example, in Figure 5.1(b), A and G are far from

each other in the feature space, and they may not be considered as synonyms, even though

their contexts are similar.

In real world applications, the visual vocabulary could also be constructed with mul-
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tiple features, either by concatenating multiple features into a long vector before the

quantization (Hsu & Chang 2005) or combining the visual words after quantizing the dif-

ferent features separately (Zhang, Liu, Ouyang, Lu & Ma 2009). However, we only exploit

vocabulary based on a single feature (SIFT) to demonstrate the effectiveness of our con-

text similarity model and rebuilding approach, and it can be easily applied to the visual

vocabulary based on other single or multiple features.

The framework of our method is shown in Figure 5.3. At first, an initial visual vocab-

ulary is generated by clustering the training features. All features are then quantized as

visual words according to the initial vocabulary. A context matrix representing the cross

relationships between visual words is computed based on the spatial-temporal informa-

tion. Furthermore, similar visual words are selected according to the context similarity

computation. Finally, we merge these visual words after an appearance verification, and

a more compact visual vocabulary is then formed. The details of each procedure will be

presented in the following sections.

Figure 5.3: Proposed framework for the vocabulary rebuilding.

5.2 Spatial-Temporal Context of Visual Words

The initial visual vocabulary is generated by the approximate K-Means clustering algo-

rithm (Philbin et al. 2007), which is able to build a large scale vocabulary. To focus our

research on the “OverQuantize” problem, the initial visual vocabulary has been selected

to be large enough, and the size K of the visual vocabulary could be as large as tens of

thousands.
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Recall that in a classical BovW framework, each video in a video collection D is

represented as a sequence of key frames vd = {fd}. In the query-by-example (QBE) video

retrieval, the key frame similarity sim(fd,fq) can be measured by a Cosine function,

which is approximated by Equation 4.7. The video similarities are formulated based on

this frame level similarity, which is applied to the key frames sampled from the query and

video document.

As discussed in Section 5.1, the context of a visual word is defined as the co-occurring

relationship with other visual words. It means that the features appearing in the neighbor-

hood of a visual word should be recorded to represent its context as shown in Figure 5.4.

When we discuss the context of a visual word, it is named as center visual word in this

section.

It has been illustrated in Chapter 3 that the co-occurrence matrix quantitatively cap-

tured relationships between the visual words co-appearing within a frame. The defined

context of a center visual word can be characterized by a corresponding row vector of this

matrix.

Corr
f

Figure 5.4: Context of a center visual word in a frame could be modeled by its neighboring

visual words.

Furthermore, the STC of visual words extracted from a single frame may be not ad-

equate for the context similarity measurement. Thus, we can utilize the STC extracted

from the entire video collection. The context of a visual word is defined based on the

correlation matrix modelled for the video collection:

ctxtci (j) = Corrd(i, j) (5.1)

where the ctxtci (j) represents the co-occurrence level correlation. A context vector is then

formulated considering all other visual words, and each entry is calculated by Equation 5.1.

In this way, the context vector is in the same form as a raw vector of the video collection

level co-occurrence matrix:
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Corr d

Figure 5.5: Context of a visual word in the video collection could be modeled as a corre-
lation vector.

Ctxti = Corrd(i) (5.2)

where Ctxt is a K dimensional vector and Corrd(i) is the ith raw vector of the matrix

Corrd.

Practically, a visual word always co-occurs with a variety of visual information con-

tained in the frame, and the different visual words should not be equally related to its

context. It is also reasonable to measure the relation based on the spatial proximity.

Closer visual words should contribute more to the context of the central visual word. It

has been demonstrated that correlation based on spatial proximity can be modelled using

the STC matrix. Following this approach, the spatial proximity context of a visual word

can be formulated as follows:

ctxtsi (j) = Corrds (i, j) (5.3)

Similarly, a spatial context vector is constructed by aligning the elements computed

by Equation 5.3 as follows:

Ctxtsi = Corrds (i) (5.4)

Note that the video is a sequence of temporally aligned frames, and a visual word

also has the temporal context. The visual words, which moved more coherently with the

central visual word, are assumed to contribute more to its temporal context. Similar to

the spatial context, the temporal context is then also modelled by a temporal correlation

matrix. The context computation is formulated as:

ctxtti(j) = Corrds (i, j) (5.5)

Given Equation 5.5. We can use it to derive the temporal context vector for a visual
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word:

Ctxtti = Corrdt (i) (5.6)

where Corrdt (i) is the ith raw vector of the temporal correlation matrix.

Furthermore, to make the modelled context vectors comparable between the different

visual words, the vector Ctxti is normalized as:

Ctxti =
Ctxti
‖ Ctxti ‖1

(5.7)

where ‖ ∗ ‖1 denotes the 1st order Norm of the vector. The co-occurrence context Ctxtc,

spatial context Ctxts, and temporal context Ctxtt, can all be normalized based on Equa-

tion 5.7. After the normalization, each element of the row vector Ctxtci indicates the

degree of probability that the ith visual word co-occurring with other visual words.

In the next section, we will discuss our method in measuring the visual words context

similarity to rebuild a visual vocabulary.

5.3 Context Similarity and Rebuilding the Visual Vocabu-

lary

As discussed in Section 5.2, the synonymous visual words will be detected by examining the

context similarity between visual words. The context of a visual word has been modelled

as a K dimensional vector. The context similarity between visual words can be inversely

measured by the distance between the correlation vectors. The distance dc between two

co-occurrence context vectors is formulated as:

dcD(i, j) ≈
K∑
k=1

|Cci (k)− Ccj (k)| (5.8)

where Manhattan Distance |Cci − Ccj | is used as an example, and other distance metrics

can also be used for the context similarity measurement. Similarly, the distances ds and

dt, which are based on the spatial correlation and temporal correlation respectively, can

also be computed using Equation 5.8.

The larger the d(i, j) is, the more similar the two visual words are in terms of the

corresponding contexts. Thus, a set of pair-wise synonyms Ws = {(wi, wj)} is selected.

The selection procedure can be formulated as follows:

(wi, wj)

{
∈Ws if dD(i, j) < ε

/∈Ws otherwise
(5.9)

where dD can be replaced by either dcD, dsD or dtD, which would consider co-occurrence,

spatial or temporal context respectively. The parameter ε is an empirically selected thresh-
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old to determine the visual words which should be merged. In our experiment, ε is set to

a range between 0.1 and 0.5, and the results will be demonstrated in Experiments section.

In addition, we utilize the appearance of the visual words for the similarity verification.

The visual words close in the feature space should represent similar visual appearances.

A set of nearest visual words Ni = {wn} to the visual word wi is detected using the K-d

tree algorithm. When the wj does not belong to the set Ni, it is not allowed to be merged

with wi. This principle guarantees that the merged synonyms are not only similar with

respect to the context, but also in their visual appearances. Based on this arrangement,

the representation of the frames can be updated according to the rebuilt visual vocabulary.

For example the term frequency of wi can be updated as follows:

tf ′(wi) =

{
tf(wi) + tf(wj) if (wi, wj) ∈Ws & wj ∈ Ni

f(wi) otherwise
(5.10)

, and the other term specifies such as IDF can be updated accordingly.

If we denote the number of merged pair-wise visual words by Km, and the initial

visual vocabulary is pruned as a new visual vocabulary. Thus, the size of rebuilt visual

vocabulary becomes K−Km. The similarity between the query example and a data video

is then measured based on the updated frame representation as:

simvd,vq = max
f ′d∈vd,f ′q∈vq

sim(f ′d,f
′
q) (5.11)

5.4 Experiments

The main objective of our experiments in the present chapter is to evaluate the effective-

ness of our ocabulary rebuilding approach to detect the synonyms, which are caused by

the “OverQuantize” problem. Hessian detector (Mikolajczyk et al. 2005) and the SIFT

descriptor (Lowe 2004) are utilized for visual features extraction. The initial visual vo-

cabulary is clustered by the K-means algorithm and visual features are quantized into the

nearest cluster centroid and mapped to corresponding visual word.

The rebuilt visual vocabulary is evaluated by the performance of the Query-by-Example

video retrieval on two different commonly used video collections. The classical BovW

model is used as a baseline, which is denoted by BovW. The performances of three

variations of visual vocabulary rebuilding approaches proposed in this Chapter are re-

ported, namely the co-occurring, spatial, and temporal correlation based approaches

(Equation 5.11), denoted by c-corr , s-corr, and t-corr respectively.

Furthermore, we also evaluated the effectiveness of our approach to improve the visual

word disambiguation methods. The effectiveness is also referred to as the compatibility

between our approaches and disambiguation methods. We choose Tight Geometric Con-

straint (TGC) (Zhao et al. 2010) as an example to be in combination with the rebuilt
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visual vocabularies.

5.4.1 Experimental Set-Up

Two commonly used video retrieval datasets are also selected for the experiments:

(1) TRECVID2002 The dataset TRECVID2002 (Smeaton et al. 2006) is selected to

perform the general topic video retrieval.

(2) CC Web Video Near-duplicate video search is performed on video collection CC Web Video

(Wu, Ngo, Hauptmann & Tan 2009).

5.4.2 Experiment 1: General Topics QBE Video Retrieval

The relevance in the general topics QBE video retrieval is defined at the concept level. It

is a challenging task, and the scale of initial vocabulary in this experiment is selected to

be 5K, which is relatively small and suitable for this task.

Parameters

As shown in Figure 5.6, our approach merges a number of visual words based on the

similarities of the co-occurrence, spatial, and temporal context modelled for corresponding

pair-wise visual words. The number of merged visual words Km increases proportionally

to value of the threshold ε defined for context similarity measurement in Equation 5.10.

This observation fulfills our theoretical analysis.

Figure 5.6: The number of merged visual words generated based on different threshold for

TRECVID2002 video collection.

It is also clear that with increasing ε, the Km of the c-corr increases much faster than

that of the s-corr and the t-corr. This means that more visual words are similar with
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Figure 5.7: Overall Precision-Recall performance of rebuilt vocabulary for general topics
QBE video retrieval (TRECVID2002).

respect to the co-occurring context, and few of them are similar in the spatial-temporal

context. This result may be due to the fact that fewer visual words are related to the

context of a center visual word, when the context is narrowed by spatial or temporal

constraints.

Intuitively, different selected values of the parameter ε would lead to different perfor-

mances of the rebuilt visual vocabularies. The performances difference would be demon-

strated in the following experimental results in the form of MAP.

Improving the Retrieval Model

The overall performance in terms of Precision-Recall curve on TRECVID2002 is shown

in Figure 5.7. It can be seen that the rebuilt visual vocabulary generally outperforms

the original visual vocabulary. It is shown that at the Recall points ranging from 5% to

35%, the corresponding Precision of c-corr is higher than BovW, which means that more

relevances are ranked higher. Thus, the c-corr seems to compensate the missing relevances

by the classical BovW model in this experiment. Furthermore, while the differences in

performance between c-corr, t-corr, and s-corr are not great, the three methods all

outperforms the baseline BovW.

In order to capture influence of various ε (Figure 5.6) on the retrieval performance of the

visual vocabulary rebuilding model, we compare the performances of visual vocabularies,

which are rebuilt by merging different numbers of visual words. Figure 5.8 illustrates

the performances of a variety of rebuilt vocabularies in terms of MAP criteria. The

performances are arranged according to the number of merged visual words Km.
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Figure 5.8: MAP performance of rebuilt vocabularies merging different numbers of visual
words.

It can be seen from Figure 5.8 that the performances of the methods c-corr, t-corr,

and s-corr generally arise along with the increasing of Km. The best performance of

the three methods is achieved by merging 150-250 out of 5K visual words. However,

it does not necessarily imply that merging more visual words would always result in

better performance. It shows a trade-off that too much merged visual words will lead

to “UnderQuantization” error. For example, if we increase the Km up to 1538, the MAP

of t-corr will drop to 0.06891 from the best performance 0.0781. It can be concluded that,

using the detection models, around 3%-5% visual words are “OverQuantize”-ed during the

original quantization process of the BovW model for the TRECVID2002.

It is also clear from Figure 5.8 that the performance of s-corr is better than the c-

corr and t-corr. This shows that the spatial context of visual words is more meaningful

than the simple co-occurring correlation. Furthermore, s-corr outperforms t-corr with

respect to the MAP criteria. For video collection TRECVID2002, we can preliminarily

conclude that the discovered temporal relationship across visual words between consecutive

keyframes may not be so effective as the spatial correlation. The detailed discussion about

this topic will be demonstrated in Chapter 6.

The topic-to-topic average Precision comparison is demonstrated in Table 5.1. The

s-corr outperforms BovW on more topics (16 out of 22 ) and on average, s-corr out-

performs the initial vocabulary by 5.4%, which is statistical significant (P-value = 0.047).

These results clearly demonstrate that the rebuilding process improves the initial vocab-

ulary and partially solves the “OverQuantize” problem.



110 Rebuilding the visual vocabulary based on STC

Table 5.1: Average Precision Comparison for TRECVID2002
AP BovW c-corr s-corr t-corr

75 0.0677 0.0951 0.0938 0.0951

76 0.0471 0.0633 0.0583 0.0639

79 0.0334 0.0359 0.0341 0.0356

80 0.0469 0.0471 0.0483 0.0472

81 0.0718 0.0681 0.0685 0.0681

82 0.0384 0.0316 0.0328 0.0319

83 0.0576 0.0634 0.0634 0.0607

85 0.195 0.194 0.206 0.1950

86 0.0444 0.04566 0.04720 0.04348

87 0.0397 0.05016 0.0504 0.0504

88 0.0544 0.0564 0.0545 0.0542

89 0.1231 0.1250 0.1245 0.1248

90 0.0447 0.0372 0.0356 0.0402

91 0.0783 0.0902 0.0902 0.0904

92 0.0389 0.0345 0.0378 0.0344

93 0.0417 0.0377 0.0383 0.0366

94 0.0315 0.0297 0.0329 0.0291

95 0.0681 0.0682 0.0689 0.0684

96 0.0626 0.0642 0.0641 0.0646

97 0.0791 0.0717 0.0639 0.0664

98 0.0255 0.0311 0.0345 0.0317

99 0.337 0.3788 0.3787 0.3789
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Compatibility with TGC approach

Furthermore, to test whether or not the rebuilt vocabulary is compatible with the other

enhancement approach for the BovW framework, we incorporated it into the TGC ap-

proach as an example. TGC is one of the common techniques used to disambiguate visual

words with additional geometric information constraints. It has been proven to be effective

to promote the accuracy of visual content similarity measurement.

As shown in Figure 5.9, TGC has an advantage that it could promote the average

Precision of the top ranked results. However, the additional constraint of similarity mea-

surement deteriorates the “OverQuantize” problem, and relevances are even more likely

to be missed as shown by the relative lower Recall at tail of the curve. When we compare

the performance shown in Table 5.2 and Table 5.1, the TGC does not performs so good

as the BovW in terms of MAP. The “OverQuantize” problem does also exist for the TGC

method.

Figure 5.9: Precision-Recall performance of TGC approaches based on the rebuilt vocab-

ularies for TRECVID2002

To evaluate the compatibility of the rebuilt vocabularies with the TGC method, we

tested the TGC approach based on the videos and queries representation indexed accord-

ing to the rebuilt visual vocabularies. The overall Precision-Recall curve is presented in

Figure 5.9, and c-corr, s-corr, and t-corr outperforms the baselines TGC and BovW.

The rebuilt vocabularies maintain high Precision of the TGC for the top ranked results,

and also improved the performance on the middle Recall points.

As can be seen in Table 5.2 which presents an MAP performances comparison between

c-corr, s-corr, and t-corr. s-corr performs better than the other two, however all three

methods outperform the original TGC approach in terms of MAP. In comparison with
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Table 5.2: MAP Comparison for TRECVID2002
TGC c-corr

+TGC
s-corr
+TGC

t-corr
+TGC

MAP 0.0589 0.0716 0.0720 0.0710

the performances shown in Table 5.1, the s-corr+TGC performs comparable with the

BovW. Moreover, the s-corr+TGC approach has a great advantage that it has higher

Precision on top ranked retrieval results. The rebuilt vocabulary partially overcomes the

drawback of the TGC approach. We conclude that the rebuilt vocabularies based on

context similarity are compatible with the TGC approach.

As shown in Figure 5.10, when more visual words are merged, the performance of TGC

is better. This observation is similar to the results shown in Figure 5.8. It shows that

reducing redundancy in the initial visual vocabulary not only works for the classical BovW

framework, but could also improve the performance of the TGC. It seems that fewer visual

words are redundant for the TGC method. The corr+TGC methods perform stable in

terms of MAP, when more than 100 visual words are merged. It may be because of that

the TGC utilizes additional information to disambiguate the visual words in the similarity

measurement.

Figure 5.10: MAP performance of TGC approaches based on rebuilt vocabularies merging

different number of visual words.

In summary, the evaluation on the QBE general topic video retrieval task shows that

the rebuilt visual vocabulary based on the spatial-temporal context not only effectively

improves the performance of the classical BovW model, but is also compatible with other

BovW model enhancement methods such as the TGC.
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5.4.3 Experiment 2: QBE Near-Duplicate Video Search

The near duplicate video search is another important application of QBE-CBVR technol-

ogy. The search targets are always nearly identical to the queries. There is always a high

degree visual similarity between the query example and the relevances, and it requires

more accurate match of visual features. As a result, a larger size (20K) visual vocabulary

is used to achieve higher visual content matching accuracy. Furthermore, another chal-

lenge is that the queries used are not always of high quality as introduced in Chapter 5.

The robustness of the retrieval model with queries of various qualities is important for this

application.

The overall Precision-Recall curve is shown in Figure 5.9, and it demonstrates that

c-corr outperforms BovW. The curves associated with c-corr, s-corr, and t-corr are

not very different with respect to the Precision-Recall criteria, and all rebuilt vocabularies

outperform the initial visual vocabulary.

Figure 5.11: Precision-Recall performance of based on rebuilt vocabulary based

The performances comparison regarding MAP is displayed in Table 5.3. The first

column shows the different values of parameter ε used in Equation 5.10. Firstly, it is

shown that t-corr slightly outperforms the other two rebuilt vocabularies. This may

be due to the fact that camera movements in the web videos are often slower than the

professional videos, such as movies and advertisements, because the web videos are often

recorded by simple instruments. The discovered temporal relationships may be more

meaningful. Secondly, it has been pointed out in Section 5.4.1 that the larger the ε value

is, the more visual words are merged. In this experiment, the best performance is achieved

at ε = 0.2. It is also shown that merging more visual words may not necessarily result in

a better performance. For example, vocabularies based on ε = 0.5 performed worse than
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Table 5.3: MAP Comparison of rebuilt vocabularies generated by difference merging
thresholds for CC WEB VIDEO

ε c-corr s-corr t-corr

0 0.8010

0.1 0.8243 0.8246 0.8346

0.2 0.8295 0.8293 0.8364

0.5 0.8181 0.8257 0.8360

Table 5.4: MAP Comparison of rebuilt vocabularies for different queries for
CC WEB VIDEO

BovW c-corr s-corr t-corr

Exact 0.9395 0.9451 0.9451 0.9454

Similar 0.9111 0.9078 0.9082 0.9092

Major Changed 0.5498 0.6446 0.6446 0.6448

ε = 0.2. Empirically, in this experiment, the number of merged redundant visual words

should be around 40-70 (out of 20K visual words), which is less than the 150-200 visual

words merged by visual vocabularies of the best performance in the general topic video

retrieval experiment. In the near duplicate video search application, the relevances have

high degrees visual similarity, and explicit visual content description always lead to more

accurate similarity prediction and better retrieval performance. As a result, it is always

necessary to build a larger visual vocabulary. Due to the same reason, fewer visual words

should be considered as redundancy.

Table 5.4 presents the performances of different queries. It is shown that the queries

grouped as “Major Changed” are harder than the other two. The rebuilt vocabularies

outperforms initial vocabulary when “Major Changed” queries are running, whilst per-

forms comparably with BovW for the other two. It is shown that the rebuilding model

has improved the ability of the BovW model to deal with hard queries and maintained

the good retrieval performance on the easier queries.

The topic-to-topic comparison regarding Average Precision is presented in Table 5.5,

where ε is selected as 0.2 to demonstrate the best performances. Rebuilt vocabulary out-

performs baseline BovW (P-value=0.0234, 0.0200, 0.01023 for c-corr, s-corr, and t-corr

respectively). It can be concluded that the rebuilt visual vocabulary could effectively im-

prove the performance of the initial clustered visual vocabulary. When the performances

of the three rebuilt vocabularies are compared, the visual vocabulary rebuilt based on

temporal correlation performs best. The extra tracking procedure of the temporal infor-

mation extraction may have reduced some meaningless visual words, which just randomly

appear in the context .

In summary, the evaluation on the QBE near-duplicate video search task shows that

the rebuilt visual vocabulary based on spatial-temporal context can effectively improve
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Table 5.5: MAP Comparison of rebuilt vocabularies for different queries of
CC WEB VIDEO

topic BovW c-corr s-corr t-corr

1 0.9607 0.9606 0.9609 0.9707

2 0.9769 0.9822 0.9821 0.9823

3 0.9187 0.9706 0.9707 0.9738

4 0.9293 0.9911 0.9912 0.9912

5 0.9798 0.9887 0.9931 0.9917

6 0.6178 0.6933 0.6951 0.6998

7 0.7263 0.7618 0.7618 0.7623

8 0.5657 0.4740 0.4664 0.4744

9 0.6622 0.9243 0.8982 0.9205

10 0.9683 0.9707 0.9707 0.9708

11 0.7217 0.7253 0.7038 0.7086

12 0.7239 0.7024 0.7131 0.7345

13 0.9784 0.9952 0.9952 0.9959

14 0.7793 0.8932 0.8820 0.8869

15 0.6848 0.6929 0.6928 0.6929

16 0.9868 0.7083 0.9009 0.9810

17 0.9423 0.9837 0.9840 0.9849

18 0.4476 0.4854 0.4825 0.4843

19 0.8252 0.8510 0.8916 0.9402

20 0.8384 0.8929 0.8939 0.8981

21 0.7873 0.8417 0.8417 0.8417

22 0.5908 0.5921 0.5922 0.5921

23 0.5480 0.5627 0.5627 0.5628

24 0.9910 0.9903 0.9903 0.9903

MAP 0.8010 0.8295 0.8290 0.8347
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the performance of initial visual vocabulary generated by the classical BovW model.

5.5 Summary

In this Chapter, we present our novel approach which rebuild the visual vocabularies to

address the “OverQuantize” problem of the classical BovW model. The reasonable cause

of this quantization error and the trade-off in between with “UnderQuantization” error

have been theoretically discussed. We assumed that the synonyms can be detected based

on the context similarity measurement.

The context of a visual word has been defined by the co-occurring feature instances

with it, and its STC vector extracted from specific video collection has been directly

utilized to quantitatively characterize its context. Furthermore, we compute the Euclidean

Distance between the context vectors of pair-wise visual words to inversely measure the

context similarity. The visual words, whose computed similarity are above a threshold,

are detected as synonyms. Afterwards, the similar visual words are merged to rebuild a

new visual vocabulary. The visual content representation and retrieval model of the BovW

framework can be renewed based on the rebuilt visual vocabulary.

A series of experimental results on the general topic video retrieval and the near-

duplicate video search tasks indicate that the rebuilt visual vocabulary generally promotes

the retrieval performances. Experimental results also demonstrated that the rebuilt vo-

cabulary is compatible with another state-of-the-art BovW enhancement approach TGC.

It is clearly shown that rebuilding technology based on the spatial-temporal context effec-

tively reduces the redundant visual words in the initial visual vocabulary, and contributes

to solving the “OverQuantize” problem.

In addition, the performances of rebuilt visual vocabulary, which merge different num-

bers of visual words, have also been discussed. We can conclude that the visual vocabu-

laries for the different video collections always have a certain numbers of redundant visual

words, and the number is empirically determined in this thesis.



Chapter 6

System and Additional Evaluation

A prototype retrieval system is implemented following the classical BovW framework. The

present chapter introduces the architecture and components of this software platform. We

implemented the presented representation reformulation and visual vocabulary rebuilding

methods, and integrated them into the system.

With the developed system, we conducted a series of additional experiments to evaluate

the effectiveness of grouped approaches, which combined the QC, the IDC, or the rebuilt

vocabulary methods.

Based on the demonstrated experimental results, we summarized and discussed the

performance differences between the approaches leveraging spatial information and tem-

poral information respectively.

6.1 Function Modules of the Retrieval System

The retrieval system is implemented based on a C++ library OpenCV, which is publicly

available. The SIFT and SURF features have been utilized for the video representation.

The visual vocabulary is clustered by an open software cluto, which is able to handle

large scale and high-dimension features clustering. The videos are inversely indexed using

MySQL database.

The prototype system is built as a set of function modules, each of which is designed

to complete a specific process. Its architecture is shown in Figure 6.1. The red line and

arrow indicate the flow direction of data originally extracted from the query example. The

blue line and arrow present data generated from the video collection. For example,the

computations of function modules Rebuilt Visual Vocabulary and IDC Generation are

based on the video collection, and QC computation uses STC data generated from the

query video.

In this system, the function modules Feature Extraction, Video Indexing, and Query

Representation follow the classical BovW framework. We briefly introduce the other

117
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Figure 6.1: The Architecture of the prototype CBVR System based on the STC
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function modules, which are associated with methods presented in this thesis, as follows:

STC discovery Module: It could be applied to a video or a video collection. Output

of the module is a K ×K matrix, which is written down into .txt files. The module could

be utilized to discover either QC or DC based on co-occurring, spatial, or temporal corre-

lation. It should be pointed out that the input must be the raw visual words data, which

maintains the spatial and temporal information. Its input and output are summarized in

Table 6.1.

Table 6.1: STC Discovery
Input Output

raw visual words K ×K STC matrix

IDC generation Module: it generates a IDC weight for each visual word with inputed

STC matrix. IDC coefficients should be generated for specific video collection. The output

of this module is a K dimension vector. Each entry of it is associated with a specific visual

word. Its formulation is illustrated in Table 6.2

Table 6.2: IDC generation
DC idc value

K ×KMatrix K Vector

Visual Vocabulary Rebuilding Module: It has synonyms detection and index updating

functions. The detection uses the STC matrix discovered from a video collection. The

index updating function renews the index with rebuilt vocabulary. The structure of this

module is shown in Table 6.3.

Table 6.3: Visual Word Rebuilding
Input Output

STC matrix, Original Index Updated Index

Query Reformulation Module: it reformulates the query with QC or IDC weights. It

could also use the two STC based term weighting schemes simultaneously. The function

format of the Query Reformulation module is shown in Table 6.4:

Table 6.4: Query Reformulation
Input Output

QC matrix IDC coefficients Query Reformed Query

Finally, the Search Engine module measures the similarities between the query and

videos, and it ranks the videos with the similarity scores.

In the next section, the system is applied to the two different CBVR applications

respectively, and a series of additional experimental results are demonstrated to evaluate
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Figure 6.2: The performance of QC+IDC regarding the Precision-Recall Curve (general
topic video retrieval)

the effectiveness of our approaches.

6.2 General Topic Video Retrieval

The video collection TRECVID2002 selected to perform the general topic video retrieval

has been introduced in previous chapters. The retrieval task consists of 22 topics. To

search for relevant videos for each topic, a video in the ground truth is selected as query

example and the similar videos are retrieved by the CBVR system.

In Chapter 5, both QC and IDC term weights have been shown to be able to improve

retrieval performance of the classical BovW model. In this section, we are interested in a

particular question: whether or not the two approaches could co-operate with each other?

The combination of the QC and IDC approaches is to switch on both the QC and

IDC function modules, and it is denoted as QC+IDC. The overall performance of the

QC+IDC approach in terms of precision-recall curve is demonstrated in Figure 6.2. The

QC+IDC approach generally outperforms the original BovW framework. Because, pure

Qc or IDC is already able to improve the retrieval performance of the BovW model, we

need further evidence to support the effectiveness of the QC+IDC approach.

According to Equation 4.22, the QC+IDC approach has two parameters kqc and kidc,

which control the weights of QC and IDC in the representation, e.g. if kqc equals zero, the

QC+IDC approach will be equivalent to pure IDC. If we gradually increase the value of

kqc from 0, more QC will be added into the query representation.This procedure is defined
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Figure 6.3: The performance of IDC+QC regarding the MAP (general topic video re-
trieval)

as the IDC+QC. To be distinguished from the aforementioned method, the method which

uses a consistent kqc and gradually increasing kidc is denoted by QC+IDC.

The experimental results of IDC+QC are demonstrated in terms of MAP in Fig-

ure 6.3. Here, the QC is computed based on the spatial correlation and IDC is computed

based on the temporal correlation as an example, because they perform more stably in pre-

vious experiments. It can be seen from Figure 6.3 that the performance increases almost

linearly with the increasing kqc. It shows that the QC weights works stably to improve

the retrieval performance. This result matches the stable performance of the pure QC

observed in previous experiments, and it provides additional evidence for the conclusion

that the QC method could effectively improve the retrieval performance for the general

topic video retrieval application.

The performance of QC+IDC is illustrated in Figure 6.4. The results are not stable:

when kidc = 0.25 or 2, the QC+IDC outperforms the original QC in terms of MAP, and

on the other points the QC+IDC does not performs so good as the pure QC. It shows

that although the added IDC could improve the performance of QC approach, but it is

sensitive to the value of the parameter and is not stable. This is similar to the performance

of the pure IDC method, which is also not stable.

Again, it can be confirmed that the IDC formulated by this thesis could improve the

performance of the general topic video retrieval, although the effectiveness is not stable.

Considering all results shown in Figures 6.2, 6.3, and 6.4, the approaches QC and

IDC can co-operate with each other. The two methods could be combined to improve the

classical BovW model for this application.

Moreover, we also want to discuss a combination of the query reformulation and the re-

built visual vocabulary methods, which are both based on STC. The QC and rebuilt visual
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Figure 6.4: The performance of QC+IDC regarding the MAP (general topic video re-
trieval)

Figure 6.5: The performance of QC+N VOC (general topic video retrieval)

vocabulary function modules are switched on simultaneously to complete this evaluation.

It should be pointed out that the query is reformulated based on a co-occurring correla-

tion as an example, and the visual vocabulary rebuilding model considers the temporal

correlation. The combination method of the rebuilt visual vocabulary and QC approaches

is denoted as the QC+N VOC method.

The overall performance of the QC+N VOC method in terms of precision-recall curve

is illustrated in Figure 6.5, which compares the QC+N VOC with the baseline classical
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Figure 6.6: The MAP performance of QC+N VOC (general topic video retrieval)

BovW Model and pure QC method (denoted by QC). As can be seen in Figure 6.5, the

QC+N VOC generally outperforms the pure QC method and classical BovW model.

Furthermore, the performance of QC+N VOC is compared with pure QC and N VOC

methods in terms of MAP. The general comparison is shown in Figure 6.6. As shown,

the combination of QC + N VOC outperforms both pure methods regarding the MAP

criteria. This result shows that it is effective to integrate the query reformulation and

visual vocabulary rebuilding approaches.

It can be concluded: i) the methods QC and IDC via STC discovery could be integrated

with each other in the retrieval system for the general topic video retrieval; ii) the query

reformulation and visual vocabulary rebuilding approaches could be effectively integrated

to improve the performance of the classical BovW framework.

6.3 Near-Duplicate Video Detection

We utilize a public available video collection CC WEB VIDEO, which has been introduced

in previous chapters, for the near duplicate video detection application. For each topic,

a series of videos are defined by the CC WEB VIDEO as seed videos, and ground truth

files listed their near duplicate videos. All these videos are set as relevances for the the

near-duplicate video detection task.

Similar to the last section, the combination of QC and IDC query reformulation ap-

proaches is firstly performed. The terms QC+IDC and IDC+QC are named in the

same manner, which increases kidc or kqc with consistent kqc or kidc respectively.

Performance of the QC+IDC regarding MAP is illustrated in Figure 6.7. It is pre-
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Figure 6.7: The MAP performance of IDC+QC (Near duplicate video detection)

Figure 6.8: The MAP performance of QC+IDC (Near duplicate video detection)

sented that the performance of the QC+IDC is proportional to the value of the kqc.

This result shows that the QC is not in conflict with IDC and more QC will promote the

retrieval performance. This observation supports our conclusion made in Chapter 4 that

the QC is effective for near duplicate videos detection.

Moreover, performance of the IDC+QC regarding MAP is demonstrated in Fig-

ure 6.8. The added IDC weights do not exhibit stable performance in this application.

Although it could improve the performance of the QC method on an individual point

(kidc = 0.5), it harms the retrieval performance on other points.
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Figure 6.9: The MAP performance of QC+N VOC (Near duplicate video detection)

The results may imply that the added IDC weights have increased the risk of the

retrieval system. A reason may be that the IDC has enlarged the variance of the visual

words weights. It has been shown in Table 4.3 that the IDC coefficients have a large

standard deviation (larger than 0.9), which would involve in larger variance of the visual

words weights in the reformulated queries. The large variance means that too much prior

importances may have been assigned to some visual words, and tends to ignore certain

others. As a result, the retrieval performance becomes more risky.

The standard deviation of the IDC coefficients generated for CC WEB VIDEO is a

lot larger than TRECVID2002 as shown in Table 4.3. The performance of IDC in near-

duplicate video detection is more unstable than the former application as shown in Figures

6.4 and 6.7.

The above performances of the IDC can be summarized, and it could improve the

classical BovW for the near duplicate video retrieval when the appropriate parameter

is selected. However, we can say that it is unstable and sensitive to the value of the

parameter.

The visual vocabulary rebuilding has been shown to be effective in improving the

retrieval model for the near-duplicate video detection task in Chapter 5. We combine

the query reformulation method and the rebuilt visual vocabulary, whilst the method

is denoted by QC+N VOC. As an example, the QC is computed based on the co-

occurring correlation matrix, and the new vocabulary is built based on the co-occurring

correlation matrix extracted from CC WEB VIDEO data collection.

The performance of QC+N VOC is illustrated by the Figure 6.9. As demonstrated

by the histogram, the QC+N VOC outperforms both the N VOC and the QC methods,
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as well as the classical BovW model. We can conclude that integrating query reformula-

tion and visual vocabulary rebuilding would reinforce the two methods for this query-by-

example near duplicate video detection.

6.4 Spatial vs Temporal Information

According to Chapter 3, the spatial and the temporal correlation are both extensions of

the co-occurring correlation. As a result, the two correlations always contribute similarly

to the retrieval model, which has been shown in the experimental results demonstrated

in previous chapters. However, the two correlations still have two main differences: i)

the temporal correlation generation involved in a visual word tracking process, which

reduces some correlation; ii) the spatial correlation is more directly related with the visual

object than the temporal correlation. For example, visual words associated with still

background cannot be completely distinguished with pure temporal information. There

must be performance differences between approaches based on the two types of difference

information. This section will summarize the experimental results of the approaches based

on the two different correlations.

The QC can be quantized according to the spatial and temporal correlation in the

query video respectively, and the experimental results regarding MAP are summarized

in Table 6.5. The experimental results show that the spatial correlation outperforms the

temporal correlation for TRECVID2002 but the temporal correlation performs better for

CC WEV VIDEO.

Table 6.5: The MAP of QCs
Data collection spatial correlation temporal correlation

CC WEB VIDEO 0.8090 0.8186

TRECVID2002 0.0702 0.0700

Table 6.6 demonstrates the comparison of IDC weights generated based on the spatial

correlation and temporal correlation respectively. The experimental results of the two

data collections show that temporal correlation always outperforms spatial correlation for

the IDC approaches.

Table 6.6: The MAP of IDCs
Data collection spatial correlation temporal correlation

CC WEB VIDEO 0.803 0.804

TRECVID2002 0.0692 0.0698

The comparison of visual vocabularies rebuilt based on spatial and temporal corre-

lation respectively is shown in Table 6.7. The spatial correlation performs better for

TRECVID2002 and temporal correlation performs better for the CC WEB VIDEO.
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Table 6.7: The MAP of Rebuilt Visual Voabulary
Data collection spatial correlation temporal correlation

CC WEB VIDEO 0.8293 0.8364

TRECVID2002 0.0708 0.0706

As shown in Tables 6.5, 6.6, and 6.7, for CC WEB VIDEO, temporal correlation

outperforms the spatial correlation, and for TRECVID2002, the spatial correlation always

outperforms the temporal correlation, with the exception of the IDC approach. The

data collection CC WEB VIDEO contains the un-segmented web videos, in which key

frames are more different. The temporal correlation may have reduced noisy correlations

between the visual words. However, the data collection TRECVID2002 is composed of well

segmented video shots by the given shot boundary ground truth. The correlation based on

the spatial information may be more straightforward and meaningful. The performance

differences between the spatial and the temporal correlations are never very large, because

both of them are extended from the co-occurring correlation.

The spatial and temporal correlations can be combined to form the spatial-temporal

correlation matrix as demonstrated in the Chapter 3. The combination utilizes the spatial

and temporal information simultaneously as shown in Equation 3.60, which has a param-

eter kst to control the weights of temporal correlation within the ST matrix. For example,

if kst = 0, the ST correlation becomes pure spatial correlation.

Several experiments are conducted to evaluate the effectiveness of combining the two

different correlations, and the QC with more stable performance in the previous CBVR

experiments is utilized as an example.

Figure 6.10: The MAP performance of spatial+temporal correlation (near duplicate video

detection)
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Figure 6.11: The MAP performance of spatial+temporal correlation (general topic video
retrieval)

The performances of the QC based on the spatial-temporal correlation (denoted as

S+T) computed with different kst is shown in Figures 6.10 and 6.11 in terms of MAP

respectively. Larger kst means that more temporal correlation is contained in the S+T.

For near duplicate video detection, the S+T outperforms the pure spatial correlation on

some points. It has been shown in previous experimental results that temporal correlation

performs better in this task. The added temporal correlation makes the S+T outperform

the pure spatial correlation on these points.

The demonstrated performance of the S+T is not as good as pure spatial correlation

for general topic video retrieval. This may be because of that the temporal correlation is

not as meaningful as the spatial correlation in this application.

Direct integration of the spatial and temporal correlations does not obviously out-

perform the pure temporal or spatial information in these two applications, as shown in

Table 6.5. The effectiveness of the direct integration has not been fully supported by the

experimental results.

6.5 Summary

In the present chapter, the architecture of the experiment system has been introduced.

A series of additional experiments are conducted for the two common tasks, which

are the near duplicate video detection and general topic video retrieval. The two term

weighting schemes: QC and IDC are firstly combined together. They are shown to be

effective to co-operate with each other to promote the retrieval performances.

Furthermore, the query reformulation method is integrated into the rebuilt visual

vocabulary. A series of experimental results revealed that the combination method is
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effective to improve the CBVR technology.

The performance comparison between the spatial and the temporal correlation is also

demonstrated in the present chapter. It is illustrated that the spatial correlation works

better for unsegmented web videos, and the temporal correlation performs better for well

segmented TRECVID2002 videos.

A linear method to directly integrate the spatial and temporal correlation is proposed

in Chapter 3. However, the experimental results in the present chapter show that it is not

always effective to improve the pure spatial or the pure temporal correlation. A better

method to integrate the two correlations should be investigated in the future.



Chapter 7

Conclusions and Future Work

In this thesis, we aimed to tackle the limitations of the BovW framework by considering

the relationship across the visual words, which is characterized by spatial and temporal

correlation discovered from visual information. A novel framework, theory and methods

have been developed to improve descriptive ability of visual content representation and

retrieval model. This chapter concludes our main contributions and points out a future

direction.

7.1 Contributions

A novel spatial and temporal information discovery and quantization framework has been

proposed. It is assumed that spatially or temporally co-occurring instances are clues of

the correlation between the corresponding visual words.

The retrieval function is modified to incorporate the spatial and temporal correlation.

The correlations discovered from the query example and video collections would charac-

terize novel term weights of the visual words, and this model emphasizes the descriptive

visual words for different retrieval topics. The model reformulates the query representation

with the defined term weighting schemes and establishes a new similarity measurement

function.

The STC could be leveraged to define the context of a visual word in terms of its

co-occurring visual words. With the context similarities, an approach is developed to

detect synonymous visual words, and the detected synonyms are merged to rebuild a

more compact and effective visual vocabulary.

The following sections outline in details the main thesis contributions.

7.1.1 The Spatial and Temporal Information Discovery Framework

Our framework is aiming to quantitatively discover spatial and temporal correlation be-

tween co-occurring visual words, which is an approximation of semantic correlation be-

130
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tween the visual words. We must approximate this correlation for our retrieval technology

development, because this correlation can not be discovered directly from the visual in-

formation with existing technology.

If we consider the co-occurring visual words as a joint term, an instance of the joint

term is composed of instances of the corresponding visual words. Thus, the number of the

joint terms are KN , where N equals the order of the co-occurrence. The occurrence of

a joint term can be mathematically modelled by counting its frequency. The occurrence

of K2 joint terms (in this thesis, we focus on 2-words correlation) is formulated as a

K ×K matrix. Each entry of the matrix represents the frequency of a joint term, which

is equivalent to the co-occurrence of the corresponding visual words. To make the co-

occurrence comparable between different visual words, we normalize the co-occurrence

with the term frequency of corresponding visual words, and define the normalized co-

occurrences as co-occurring correlation. It is the first STC concept established for the

discovery framework. The computed co-occurring correlation is also in the form of K×K
matrix.

Furthermore, the co-occurring correlation could be refined according to additional

geometric information, because not all co-occurring visual words are actually related to

each other. We developed a method to refine the occurrence of a joint term according to

several spatial and temporal constraints. The constraints are established to approximate

the probability that co-occurring visual words perceptually belongs to identical visual

entity. In this case, the visual entity should geometrically cover all visual words, which are

truly “correlated”. In this way, we extend the co-occurrence to get a finer approximation

of the semantic correlation.

To achieve this objective, we set up the constraints using spatial proximity and tem-

poral motion coherence between the visual words. Firstly, when the visual words tend to

appear spatially closely to each other, they are more likely to be correlated. Secondly, if

the visual words always move coherently between continuous frames of a video, they are

more likely to be correlated.

The spatial proximity is quantized according to physical distance, and relative motion

is tracked to model the motion coherence between the visual words. The co-occurrence

computation model is adapted with a Gaussian Function to incorporate the modelled

spatial proximity or the motion coherence. Similar to the co-occurrence, the spatially

or temporally co-occurrences are also normalized by the term frequency of corresponding

visual words, and then are defined as two concepts spatial correlation and temporal

correlation. The constructed spatial or temporal correlation are both represented in the

form of K ×K matrices.

The three concept co-occurring correlation, spatial correlation and temporal

correlation are generally known as Spatial-Temporal Correlation, which is denoted by

STC in this thesis. The spatial correlation and temporal correlation are both extensions
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of the co-occurring correlation.

We also attempt to combine the spatial correlation and the temporal correlation. The

spatial proximity and the temporal motion coherence are hard to be directly fused, be-

cause they used different units of measurement. Then, we formulate a spatial-temporal

correlation matrix via linearly combing the two correlation matrices, because both of them

are estimated as a degree of probability of the true correlation.

Based on a series of practical experimental results, we concluded that the STC dis-

covered by the developed framework could effectively promote retrieval performance of

the BovW model. It is also shown that the spatial and the temporal correlation perform

differently in different CBVR applications. It can not be concluded that any correlation

is better, because no correlation consistently outperforms the other one.

7.1.2 The Video Retrieval Model via STC Discovery

We developed two novel visual word weighting schemes to modify the representation of

visual information based on the discovered STC. The schemes utilized the STC discovered

from the query video and the video collection respectively.

It is shown in preliminary exploration that a number of selected descriptive visual words

would better described the visual information for the retrieval model. These descriptive

visual words are called Words-of-Interest (WoI) in this thesis, and the WoI selection algo-

rithms are established based on the proposed spatial-temporal correlation.

Motivated by this exploration, we proposed an assumption that the visual words with

higher STC incurred by query video are of higher descriptive ability. Based on this hy-

pothesis, we emphasized the discriminative visual words in the similarity measurement

function. According to the theoretical analysis, this modified similarity measurement

model is actually equivalent to reformulating key frames of the query with a new term

weighting scheme. Here, the weight is computed by integrating the STC matrix discov-

ered from the query and the term frequency (TF) vector. We refer to this term weight as

Query Correlation (QC) weight. With this QC weighting scheme, the modified similarity

measurement function can be easily implemented for the inverted index videos structure.

The QC can be seen as an analog of a common concept: TF in traditional textual

IR. Inspired by another important concept Inverse Document Frequency (IDF), the STC

discovered from entire video collection are defined as Documents Correlation (DC). We set

up a hypothesis that higher DC with more visual words would harm descriptive ability of

a visual word. Based on this assumption, we defined another new term weighting scheme:

Inverse Documents Correlation (IDC), in which the visual words are inversely weighted

according to the discovered DC in similarity measurement model.

Both the QC and IDC weighting schemes reformulate the video representation for

the similarity measurement and relevance prediction. In this thesis, the two methods are

sometimes generally referred to as the query reformulation method. The method can be



7.1. Contributions 133

implemented without extra storage cost for the video index, because it does not directly

integrate additional geometric information into videos representations.

A series of experimental results demonstrate that the QC method substantially im-

proves the classical BovW model. It has also outperformed a state-of-the-art TGC-based

approach on challenging tasks. The results have verified our hypothesis that the dis-

criminative visual words characterized and emphasized according to QC would effectively

compensate the neglected spatial-temporal information by the classical BovW model. The

combination of the QC and rebuilt vocabulary (MAP = 7.2%) outperforms state-of-the-art

achievement on TrecVID2002 shown in (Donald & Smeaton 2005) (MAP = 6.9%), and it

should be noticed that the QC only uses visual information but the literature (Donald &

Smeaton 2005) fuse multiple information including textual information.

Experimental results also show that the IDC approach could improve the performance

of the BovW model for CBVR tasks. The improvement on an CBVR application is

not statistically significant. The failure of IDC may be a results of enlarged weighting

difference. IDC may involve in risk of overemphasizing some visual words and then lose

relevances, because it is found that the difference of visual words weights have increased

by IDC. Some isolated visual words may have been assigned with too large weights with

our linear IDC weighting function. However, the demonstrated improvement has at least

indicated a possibility to develop the CBVR technology with IDC, and more investigations

could be completed for this direction in the future.

In this thesis, the compatibility between the two query reformulation technologies has

also been discussed. It is shown by the experiments that the QC and IDC technologies

could co-operate with each other to improve the retrieval performances.

Overall, we can conclude that the developed video retrieval model via discovering both

spatial and temporal information from the query and the video collection is effective. Dis-

covering and utilizing STC in the retrieval model may involve in additional computation

complexity. However, considering the demonstrated performance improvement, the com-

putational cost is acceptable. Especially, the online computation of QC technology only

considers the spatial-temporal information within the query without adding extra storage

expense to the data videos. The IDC technology does not involve extra computational

complexity in on-line searching, and the IDC coefficients could be pre-computed offline.

7.1.3 Visual Vocabulary Rebuilding Method based on the STC

A novel approach is developed for rebuilding the visual vocabularies to address quantiza-

tion errors. Many factors may cause these errors in one of the most important procedures

of the BovW framework: visual vocabulary generation. Indeed, these errors would defi-

nitely lead to relevances prediction mistakes of the retrieval system. We aimed to solve a

defined “OverQuantize” problem, which is a special type of quantization error. It means

that various visual words always represent identical visual information, which are called
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synonymous visual words. We developed a technology to detect the synonyms based on

context similarity measurement between the visual words.

The context of a visual word in terms of its co-occurring visual words is utilized in this

method. The STC discovery framework provides a convenient tool to characterize this

context, and the STC vector extracted from a video collection is defined as the context of

the corresponding visual word. Following this, the spatial-temporal context of individual

visual word is defined accordingly with the spatial correlation and temporal correlation

respectively.

With the quantitative visual words context, the similarity of the context between pair-

wise visual words can be inversely measured by Euclidean distance between the two STC

vectors. Any visual words, whose computed similarity is below a threshold, are detected

as synonyms. The synonyms are merged to rebuild the initial visual vocabulary to be

more compact. Then, the visual content representations are renewed based on the rebuilt

visual vocabulary.

A series of experimental results on two common CBVR applications have shown that

the rebuilt visual vocabulary effectively promotes the performance of the initial vocabulary.

It is also demonstrated that the rebuilt vocabulary is compatible with TGC, which is an

state-of-the-art disambiguation approach under the BovW framework.

Based on the practical experimental results, we concluded that the proposed rebuilding

technology based on the STC effectively reduces redundancies in the initial visual vocab-

ulary and contributes to solving the “OverQuantize” problem. It can also be concluded

that some synonymous visual words can be detected according to their physical context

without additional semantical information.

In addition, the retrieval performance increases gradually, when the rebuilt visual

vocabulary increases the threshold and merges more detected synonymous visual words.

But if too many visual words are merged, the retrieval performance will decrease.

Furthermore, this thesis combines the query reformulation method and this visual

vocabulary rebuilding technology. The combination method has outperformed each sin-

gle technology in the experiments. We concluded that the two technologies co-operate

effectively with each other to enhance the BovW framework.

In summary, this thesis has presented a series of novel contributions: to discover

spatial and temporal information in the videos whilst to retrieve the videos considering

this information. It can also be concluded that the spatial and temporal information

discovery is effective for CBVR technology development.

7.2 Limitation

Although our method has made progress in developing CBVR technology, it has some

limitations at current stage.
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Current STC discovery technology relies on fixed parameters as shown in Chapter

3. These parameters should be adaptively selected according to individual visual words,

because the true correlation measurement actually varies from case to case due to change

of e.g. scale, direction, and background.

The query reformulation technology in Chapter 4 also has a limitation, namely that

directly combining the spatial and the temporal correlation has not succeeded in improving

the single correlation. The performance of IDC technology is not very stable.

Synonymous visual words detection technology in Chapter 5 utilizes the single geo-

metrical context and a hard-decision threshold to detect the perceptive similarity, which

may not be sufficient to find out all synonyms in the visual vocabulary.

7.3 Future Work

In the future, we will endeavor to overcome the limitations of this work highlighted in

Section 7.2 and make the work more general. First of all, additional constraints such

as appearance could be investigated to refine the parameters selection for STC discovery

technology. Other advanced spatial and temporal information discovery methods, for

example, foreground and background extraction, could also be utilized to characterize the

accurate spatial-temporal correlation.

One possible way in which to refine the query reformulation technology is to utilize

users’ feedback. The current STC based retrieval model has utilized the correlation from

query and video collection as shown in Chapters 4 and 5. Positive feedbacks from users

could provide a knowledge space, which is less noisy than the video collection but more

diverse than the query example. The discovered spatial and temporal information differs

from QC and IDC, and it may be used to establish a new weighting scheme for the retrieval

function, which will result in a new interactive video search model.

The synonymous visual words detection technology could incorporate additional se-

mantic information into the context similarity measurement. To achieve this objectives,

we will systematically investigate the semantic correlation between the visual words. Cur-

rently, the semantic correlation is approximated by the spatial temporal constraints. The

big gap between the visual correlation and the semantic correlation may be one of ma-

jor obstacles. We believe that the incorporating semantic modelling technology into the

spatial temporal correlation will effectively bridge this gap.

The spatial-temporal correlation technology can be developed with additional semantic

knowledge. For example, more videos are displayed in webs containing multi-modal infor-

mation, including textual information. Our work could represent a good starting point,

and we will extend the correlation formulation to multi-modal correlation, for example

text word-visual word correlation. We will investigate on whether or not the multi-modal

correlation would benefit the multi-modal information access and retrieval.
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The additional semantic knowledge can be used as a guide to build more complex

spatial-temporal correlation model. It has been proposed to build a hierarchical relation-

ship (Jiang & Ngo 2009) between the visual words with the semantic information. It set

up a vertical relations rather than horizontal correlation in our work. It is interesting

here to answer one particular question: how can we build a uniform model combining the

subordination and flat correlations to develop the retrieval technology?

Other than video retrieval, we believe that it is possible to use the correlation model for

other video processing and understanding tasks. In Chapter 4, a new similarity measure-

ment scheme is built based on the STC. The core idea is to softly measure the similarity

between a visual word and its correlated words. Minor expansions would enable this model

to compute the videos differences for supervised learning. The effectiveness of the corre-

lation model should be evaluated in more experiments, for example, videos classification

or categorization.

Our ultimate aim is to integrate all above research works into a uniform correlation

model. We believe that no visual feature should be considered independently in visual

information perception, especially the visual information retrieval and access. Not only

intra- or inter- videos but also the inter- modals correlations maintained in the multimedia

information should be modelled. The discovery would definitely be a new direction of the

video access and retrieval technology development.
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