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Abstract—A generic framework for evolving and 

autonomously controlled systems has been developed and 

evaluated in this paper. A three-phase approach aimed at 

identification, classification of anomalous data and at prediction 

of its consequences is applied to processing sensory inputs from 

multiple data sources. An ad-hoc activation of sensors and 

processing of data minimises the quantity of data that needs to be 

analysed at any one time. Adaptability and autonomy are 

achieved through the combined use of statistical analysis, 

computational intelligence and clustering techniques. A genetic 

algorithm is used to optimise the choice of data sources, the type 

and characteristics of the analysis undertaken. The experimental 

results have demonstrated that the framework is generally 

applicable to  various problem domains and reasonable 

performance is achieved in terms of computational intelligence 

accuracy rate. Online learning can also be used to dynamically 
adapt the system in near real time.  

Keywords—computational intelligence; evolving and 

autonomous systems; anomalies; robot controls  

I.  INTRODUCTION  

There is a growing demand for intelligent and autonomous 
control in engineering applications in order to achieve a more 
reliable and appropriate operations in an uncertain 
environments [1]. This is especially true when some 
constraints are present that cannot be satisfied by human 
intervention with regard to decision-making speed in life 
threatening situations (e.g. automatic collision systems, 
exploring hazardous environments)  or to process large 
volumes of data). Because machines are capable of processing 
large amounts of heterogeneous data much faster and are not 
subject to the same level of fatigue as humans, the use of 
computer-assisted control in many practical situations is 
preferable. 

Data obtained from sensors is commonly used for robot 
control and navigation. Due to the fast pace of computational 
advancements, the quality of the data obtained from the 
sensors as well as the quantity of the sensors themselves have 
increased dramatically. The vast availability of data that can 
be measured has shifted recent research focus onto another 
challenging task of intelligently processing this data and 

inferring useful information. These inferences may be used to 
dynamically control relevant computing processes (e.g. 
evaluating the reliability of the data obtained) which may be 
used to control different computing processes (e.g. activate 
another sensor, collect additional data to verify the problem) 
or operate connected physical entities (e.g. manoeuvre the 
robot away from obstructions). The complexity of this task 
increases exponentially especially in a real-time automated 
process control scenario. The information about a possible 
failure is generally more useful before the failure takes place, 
especially when prevention and damage control can be carried 
out in order to either completely avoid the failure, or at least 
alleviate its consequences.  

Computational Intelligence (CI) techniques have been 
successfully applied in various application domains [2]. These 
techniques however require training data to provide reliable 
and reasonably accurate specification of the context in which 
the system operates. The context or pattern(s) of interest 
enables the system to highlight potential anomalies in the data 
so that intelligent and autonomous control of the underlying 
process can be carried out. 

Anomalies are defined as incidences or occurrences, under 
a given circumstances or a set of assumptions, that are 
different from the expectance. By their nature, these 
incidences are rare and often not known in advance. This 
makes it difficult for the computational intelligence techniques 
to form an appropriate training dataset. Moreover, dynamic 
problem environments can further aggravate the lack of 
training data by the increased likelihood of intermittent 
anomalies. Computational intelligence techniques that are 
used to tackle dynamic problems should therefore be able to 
adapt to environmental/contextual changes. 

In this paper, a multi-tiered framework for evolving, 
autonomous learning systems with heterogeneous input 
sources has been developed and evaluated on robot navigation 
data. The framework is aimed at tackling problems in a real-
time input data stream in dynamic problem environments, 
where the pattern(s) of interest (e.g. anomalies or faults) are 
relatively new and data related to them are limited or 
unknown. In order to achieve this, both statistical analysis and 
computational intelligence techniques are applied within the 



framework together with the online learning capability that 
allows for adaptive and autonomic problem solving. The 
framework has been successfully applied in the field of traffic 
surveillance [3], smart home environment as well as 
automotive process control [4]. This paper reports the 
evaluations on the applicability of the framework, on a 
different problem domain with minimal adjustments. The 
framework is used to evaluate the data obtained from the 
sensors: identify anomalies in this data and confirm the 
trustworthiness of these anomalies by evaluating data obtained 
from additional sensors.  

II. DATA-DRIVEN FRAMEWORK FOR EVOLVING AND 

AUTONOMOUS LEANING SYSTEMS 

The integration between computing processes and physical 
entities creates a dynamic problem environment of a network 
of interacting elements. This concept is prevalent in the field 
of sensor networks and robotics. Data about the real world 
environment can be transmitted to the computing processes 
within the system through monitoring and sensing; while 
inferences, which reflect policies of the system, are obtained 
by enabling the intelligent processing of these input data 
streams, and are used to autonomously control other 
computing processes or operate connected physical entities in 
the real world [5]. These interactions between computing 
processes and physical entities may results in changes in the 
robot’s real world environment and therefore dynamically 
alter the resulting computing processes and operations of 
physical entities. 

Fig. 1. illustrates the multi-tiered data driven framework 
for evolving and autonomous learning systems [3], where each 
tier or layer is dedicated to a certain context processing task, 
ranging from low-level context acquisition up to high-level 
context application using either existing or acquired 
knowledge. 

 

Fig. 1. A data-driven framework for building autonomous learning systems 

The framework in Fig. 1 spans a number of well-known 
and well-established disciplines that include machine learning, 
system identification, data mining, computational intelligence, 
signal processing, control theory and pattern recognition. The 

interconnections between computing processes and physical 
entities that must instantaneously exchange, parse and act 
upon heterogeneous data in a coordinated way, creates two 
major challenges: how best to process the amount of data 
available from various data sources that need to be processed 
at any given time and the choice of computing processes or 
physical entity configuration in response to the information 
obtained from the data collected and analysed. Fig. 2 
illustrates a systematic approach to handling the challenges 
related to the volume of data, its veracity and velocity by 
optimising the balance between data availability and its 
quality. 

 

Fig. 2. Systematic approach to handling data and computing processes  

The processing of the input data stream is segregated into 
identification, classification and prediction phases; which 
corresponds to the two middle layers in Fig.1 (i.e. Processing 
and Selection layers). The identification phase minimises the 
volume of data and the data processing cost by analysing only 
inputs from easy to process data sources using anomaly 
identification techniques such as outlier detection or other 
statistical analyses. Identified potential anomalies are then 
passed onto the classification phase and classified into 
different types. At the end of the process, the prediction phase 
examines the consequences of the discovered anomalies being 
present in the operations of the underlying system.   

Such an approach allows for the acquisition of data and/or 
activation of the necessary physical entities on an ad-hoc 
basis, depending on the outcome at each phase. Moreover, the 
accuracy attained at the specified phases can be enhanced by 
incorporating additional data from alternative sources. 

III. PROCESSING ANOMALIES WHERE THE PATTERN(S) OF 

INTEREST IS UNKNOWN 

Computational intelligence techniques and expert systems 
have been successfully applied to tackling many anomaly 
detection problems where patterns of interest are known. 
Anomalies are rare and often incidences that are unexpected, 
and/or deviate excessively from the norm. Detecting 
anomalies with unknown pattern(s) of interest is even more 
complicated. Statistical analyses and clustering are examples 
of techniques that are commonly used to tackle such 
characterisations [6]. Fig. 3 illustrates a more detailed process 
for the systematic approach depicted in Fig. 2 where statistical 
analysis and computational intelligence techniques are 
combined to autonomously identify suitable pattern(s) of 
interest for anomalies in the input data stream and learn from 
the experience when similar anomalies occur again. The 
approach is aimed at dealing with real-time systems that 
integrate a number of computing processes and physical 
entities. The logistical challenges of controlling physical 
entities is tackled in an ad-hoc basis, by executing required 



computing processes or activating necessary physical entities 
to obtain relevant data and processed required information 
when needed. 

 

Fig. 3. Systematic approach to process anomalies where data related to the 

pattern(s) of interest is limited or unknown 

 

From Fig. 3, “Input Sources” can be homogenous or 
heterogeneous sensors (e.g. ultrasound, thermal); or it can be 
computing processes (e.g. performing calculations, activating 
additional sensors); or even physical entities (e.g. changing the 
robot’s direction and manoeuvres away from the obstruction). 
The “Statistical Analysis” refers to STATISTICAL 
FUNCTIONS and time windows, for example, an AVERAGE 
(of data from an input source) over the last 5 seconds. The 
time windows can be continuous (e.g. time t0-t10, time t1-t11 
and so on); or in consecutive but non-repetitive chunks (e.g. 
time t0-t10, time t11-t20 and so on); or in separation distances 
(e.g. t0 and t10; t1 and t11). A statistical analysis can also be 
nested, for example an AVERAGE of DIFFERENCE between 
two input values measured at two different time steps having a 
time window of 10 in between the two measurements. 

In the Identification column, the dotted light green square 
(the one on the top) may represent an AVERAGE of the 
distance between the robot and the wall over the last 5 
seconds. An ultrasound sensor may be used to measure the 
distance between the robot and the wall, this is represented by 
the pink squares Input Source #1 in Fig. 3. The slanted light 
green square (the one in the middle of the identification 
column) may represent a DIFFERENCE of the distance 
between the robot and the wall from the previous 
measurement. A different ultrasound sensor (e.g. on the 
opposing direction to the first sensor) may be used to measure 
this distance, this is represented by the blue squares Input 
Source #2. The non-patterned light green square (the one at 
the bottom of the identification column) may represent the 
distance between the robot and the wall without applying any 
form of statistical analysis. These three light green squares in 
combined may represent a collection of statistical analyses 
applied to data gathered from different input sources that can 
be used to represent a pattern of interest (e.g. whether or not a 
data point is anomalous).  

When the problem space is well defined or when there is a 
clear definition of the pattern(s) of interest, the decisions about 

which input sources and data streams to use; which statistical 
analyses are used to process these input data streams; and 
which computational intelligence techniques are used to 
identify the pattern(s) of interest, are in most cases, made by 
human experts through knowledge and experimentations. 

In terms of data processing, the combinations of statistical 
analyses and time windows can be viewed as adding different 
filters to input data streams. Processed data is passed to 
different learning techniques and used to in different phases. 
This framework extends to include Classification and 
Prediction phases, where output from previous phases can be 
used in the later phases. For example, the abrupt change in 
distance may cause the identification phase to identify the data 
point as anomalous. The classification phase may then attempt 
to classify the cause of such changes as internal (e.g. the 
sensor itself is malfunction) or environmental (e.g. an 
obstruction) by evaluating and validating the anomalous data 
point with data from additional sensors. If the classification 
phase verified the anomaly and confirmed an obstruction, the 
prediction phase may activate additional sensors, search for an 
optimal path and manoeuvre the robot away from the 
obstruction. 

Fig. 4 illustrates an evolving and autonomous learning 
process for the systems when the problem space is not well 
defined by exploiting a meta-learning algorithm. In this case a 
Genetic Algorithm is used as the context-application controller 
that autonomously learns and makes decisions about these 
choices for techniques operating at the lower layers. 

 

Fig. 4. A data-driven multi-tiered framework for evolving and autonomous 

learning systems by applying genetic algorithm 

The genetic algorithm, shown in Fig. 4, can be used to 
autonomously evolve system’s parameters (e.g. input sources 
to use, statistical analyses to process the data streams, 



supervised or unsupervised learning techniques to be used), a 
task which is generally carried out empirically by 
practitioners. The parameter optimisation can extend to 
encompass technique specific parameter settings. Using an 
artificial neural network as an example, typical examples of 
technique specific parameters are the number of input, hidden 
and output nodes in the artificial neural network, acceptable 
error rates, and stopping criteria.  

After the meta-learning process has been carried out, the 
tuned learning technique(s) can be used to directly analyse the 
input data stream in order to provide the anomaly 
identification, classification, and ultimately prediction, 
capabilities. If required, this tuning process can be carried out 
continuously and in near-real time. 

IV. EXPERIMENTAL RESULTS 

The data-driven multi-tiered framework for evolving and 
autonomous learning systems is implemented in JAVA and 
the Encog machine learning library [7]. Artificial Neural 
Network (ANN), Support Vector Machine (SVM), Bayesian 
Network (Bayes) are the computational intelligence 
techniques currently available in the framework, together with 
the K-Means clustering technique. Built in statistical analyses 
include Difference, Average, Variance, Standard deviation, 
Summation, Min and Max.  

A. Anomalies in the Robot’s Sensor Data Streams 

The data is collected from a robot navigating through a 
room following the wall in a clockwise direction for four 
circuits, using 24 ultrasound sensors arranged circularly 
around its waist, each directed at 15° angle increments [8]. 
Sensor readings are sampled at a rate of 9 samples per second. 
Each value in the dataset indicates the distance between the 
robot to the wall at different time steps – the bigger the value, 
the further the robot is from the wall in the direction that that 
sensor is pointing at. 

The data stream passes through the three phases approach 
described in Fig. 2. The potential anomalies are picked up 
during the identification phase. Averages of four different time 
window lengths are used – 5, 10, 20 and 50 time steps to 
identify any abrupt changes in the data stream. A data point is 
identified as a potential anomaly when the current value is 3 
times higher or 50 times lower than the moving averages of at 
least two different time window lengths. 

By using statistical analyses, any abrupt changes in the 
input data stream are flagged before passing onto the 
classification phase. The idea is to quickly flag up a potential 
anomaly at the identification phase by evaluating only one 
sensor input rather than processing the data from all 24 
sensors. During this second phase, these potential anomalies 
are validated or the level of signal interference is estimated by 
using additional data from adjacent sensors. There are two 
possible main outcomes during at classification phase: either 
the anomalies are confirmed or invalidated. The tasks of the 
prediction phase vary depending on the outcome of the 
classification phase. 

If the readings from the adjacent sensors do not 
corroborate the presence of an anomaly in terms of the 
measured distance, the result of the classification phase would 
be invalidation of the original sensor readings. For example, if 
sensors A, B and C are facing the directions of -15°, 0° and 
15° angle respectively from the direction to the wall, and if the 
change in distance of A and C is equal to 1 while the change 
in distance of B is equal to 5, it can be assumed that sensor B 
may be malfunctioning. As a result of this, the prediction 
component will interpolate a corrected value from the other 
two sensors, and keeping track of the frequency of the 
malfunction in order to alert the user about a potential 
breakdown of the equipment. 

On the other hand, if the sensor is performing correctly and 
the other sensors confirmed the abrupt changes. The most 
recent operation that was performed (i.e. propagating, turning 
or stopping the robot) is recorded as this operation must be 
causing the abrupt change.  The prediction phase might then 
be used to predict the outcome of continuing this operation, 
and if the outcome is undesirable, the operation will be 
automatically changed (e.g. switching maneuvering 
directions). 

B. Offline Learning 

The developed framework is aimed at anomalies with 
limited data related to the patterns of interest. The system 
therefore is initiated with a simple anomaly identification 
process using statistical analyses (i.e. moving average with 
different time windows). These potential anomalies are 
labelled and used for the learning purpose of different 
computational intelligence techniques. Given the feedbacks 
from human users, the system gradually and automatically 
switches from simple statistical analyses to more sophisticated 
pattern recognitions.  

Generally, computational intelligence techniques perform 
differently on various real life problems. The most obvious 
distinction between the techniques is the optimal balance 
between accuracy of prediction and training speed. The 
rationale behind having a number of computational 
intelligence techniques available in the framework is to allow 
the system to automatically apply the best technique to the 
current problem solving stage. Table 1 summarises the number 
of false negatives and false positives (shown as their ratio) 
when various computational intelligence techniques are 
applied to the dataset. The performance of the developed 
framework is compared with that of WEKA [9]. 

In this context, false negatives are defined as the data 
points identified by the statistical analysis node as being 
anomalous (or normal in the case of false positives), but the 
computational intelligence techniques failed to identify them 
as such. 

 

 

 



TABLE I.  THE NUMBERS OF FALSE NEGATIVES AND FALSE POSITIVES 

FOR DIFFERENT COMPUTATIONAL INTELLIGENCE TECHNIQUES (A) ON THE 

UNBALANCED DATASET AND (B) ON THE BALANCED DATASET 

 Multi-tiered WEKA 

 (a) (b) (a) (b) 

ANN 3/6 1/0 7/3 0/1 

SVM 14/3 0/0 13/7 0/1 

BAYES 72/0 0/0 17/3 0/0 

K-Means 72/0 17/0 69/1104 19/2 

 

When an unbalanced dataset (i.e. with a significant 
difference in the size of normal and abnormal data sets) was 
used (columns (a)), the proposed framework was unable to 
correctly identify any of the 72 anomalous data points with 
either a Bayesian network or K-Means clustering.  At the same 
time, when using WEKA, over 1000 data points were 
incorrectly clustered by K-Means clustering. When a balanced 
dataset (i.e. when an equal number of anomalous and normal 
data points are presented in the training dataset) was used 
(columns (b)), the number of incorrectly identified data points 
is greatly reduced – in particular, the support vector machine 
and Bayesian network (BAYES) within the multi-tiered 
framework correctly identified all anomalous data points. 

The choice between using a balanced or unbalanced 
dataset to train the computational techniques depends on the 
time constraint and on the ability to sample from the entire 
normal dataset. For instance, an unbalanced dataset is 
typically larger, and therefore necessitates longer training 
times for all computational intelligence techniques. 

C. Online Learning 

With offline learning, the computational intelligence 
techniques are trained only once and then applied. Therefore, 
no training time is spent during the problem solving process. 
However, this type of learning constrains the use of the 
framework in dynamic problem environments. Online 
learning, on the other hand, is more suitable to dynamic 
problems, where the training process is carried out using 
recently obtained data points, making the computational 
intelligence techniques more adapted to the current problem 
solving stage. With the use of parallel and/or distributed 
computing, the training process can be speeded up, allowing 
for near-real time problem solving capability. 

The results on the online learning are shown in Fig. 5, Fig. 
6 and Fig. 7. These results are obtained using an artificial 
neural network and a support vector machine. The fluctuations 
in the results presented in these figures can be explained by 
the fact that the chosen computational intelligence techniques 
are retrained every time three (or more) unseen anomalies are 
identified.  

Similar to the case of offline training, two types of datasets 
are used in this set of experiments – balanced and unbalanced. 
Fig. 5 compares the percentages of correctly identified 
instances, and shows that the performance of the 
computational intelligence techniques is greatly influenced by 

the selection of data points used in the training process (for a 
balanced dataset).     

However, with a smaller number of training instances, 
especially at the later training iteration, the training time on 
the balanced dataset is much quicker when compared to the 
training time with the unbalanced dataset. 

 

 

Fig. 5. The comparisons of correctly identified instances between aritifical 

neural network (NN) and support vector mahcine (SVM) 

Fig. 6 compares the number of false negatives and false 
positives when an unbalanced dataset is used for training the 
artificial neural network and support vector machine 
respectively. The number of false negatives and false positives 
are similar for both computational intelligence techniques; 
however, a larger percentage of false positives after the first 
training iteration can be observed in the case of using an 
support vector machine. The percentages of false negatives are 
larger than the number of false positives when an unbalanced 
dataset is used for training both techniques. 

 

  

Fig. 6. The comparisons of incorrectly identified instances between the 

number of false negatives and false positives on an unbalanced dataset using 

aritifical neural network (ANN) and support vector mahcine (SVM) 

Fig. 7 compares the number of false negatives and false 
positives when a balanced dataset is used to train the artificial 
neural network and support vector machine respectively. Both 
techniques correctly identified all anomalous data points; 



however, the numbers of false positives fluctuated from one 
training iteration to the next for both CI techniques. When 
compared to the results in Fig. 6, the unbalanced dataset 
performs better in terms of the number of false positives while 
the balanced dataset performs better in terms of the number of 
false negatives. 

 

 
Fig. 7. The comparisons of incorrectly identified instances between the 

number of false negatives and false positives on a balanced dataset using 
aritifical neural network (ANN) and support vector machine (SVM) 

Table 2 illustrates the effect when different numbers of 
newly identified anomalous instances are used as parameters 
for the framework to perform a retraining process for the 
chosen computational techniques. The results are obtained by 
applying an artificial neural network and support vector 
machine trained on both balanced and unbalanced datasets. In 
this experiment, the computational intelligence techniques are 
retrained when 3, 5, 10, 15 and 20 new anomalous data points 
are identified. 

TABLE II.  THE PERCENTAGES OF CORRECTLY IDENTFIED INSTANCES 

USING DIFFERENT NUMBER OF NEWLY IDENTIFIED ANOMALOUS DATA 

POINTS BEFORE RETRAINING 

 3 5 10 15 20 

NN (Balanced) 91.34 91.82 97.15 98.09 97.97 

SVM (Balanced) 87.14 87.21 85.79 86.14 90.71 

      

NN (Unbalanced) 99.54 99.71 99.54 99.82 99.88 

SVM (Unbalanced) 98.48 99.64 99.58 99.68 99.72 

 

The percentage of correctly identified instances generally 
increases when a larger number of newly identified anomalous 
data points are identified before a retraining process is carried 
out. The percentage of correctly identified instances is also 
dependent on whether a balanced or unbalanced training set is 
used. The proposed framework performs better when the 
unbalanced training dataset is used. However, the training 
process in the latter case is longer because of the larger 
training dataset. 

D. Meta-learning 

A major drawback of many computational intelligence 
techniques is the process of obtaining optimal parameters. 
Generally, the parameters are set empirically by combining the 
use of a human expert and conducting tuning experiments in 
order to obtain the optimal setting. 

In the multi-tiered framework, this process is assisted by a 
meta-learning procedure that uses genetic algorithms (GA). 
The inputs from the sensors at the context-acquisition layer 
can be analysed in terms of the presence of anomalous data 
using three different mathematical functions: moving average 
(2), instantaneous change (3) and standard deviation (4): 

 

 
 

 
 

 
 

Each of these mathematical functions also depend on the 

window size W . Ten different values of this parameter were 
used in the meta-learning experiment, these were 5, 10, 15, 20, 
25, 30, 35, 40, 45 and 50.  

The meta-learning process in the framework has been 
implemented by applying a genetic algorithm with fixed-size 
chromosomes that encoded the input processing mathematical 

function (2) – (4) and the corresponding window size W  as 
chromosome alleles. Other genetic algorithm parameters are: 
the crossover rate (50%), mutation rate (10%), the population 
size is 10, and the percentage of population allowed to mate is 
24%.   

The fitness of each chromosome is proportional to the 
number of incorrectly identified instances in the input data 
stream (i.e. the total number of false negatives and false 
positives) when a particular combination of functions (2) – (4) 

with the corresponding window sizes W is used to process the 
sensor inputs and to train the computational intelligence 
techniques – artificial neural network in our experiments.  

The input nodes for the artificial neural network consist of 
current input sensor values and the ones processed using the 
mathematical functions encoded in the chromosomes. Fig. 8 
illustrates the square root of the mean, the median and the 
minimum fitness of the genetic algorithm’s population over 
time. The first performance measure is used to reflect the 
worst scenarios when the artificial neural network 
misinterpreted a large proportion of input data. 

 



 
Fig. 8. The performance of a genetic algorithm meta-learning procedure 

As can be seen from Fig. 8, the fitness of the population 
improves over time. Due to the simplicity of the fitness 
function, it appears that different input processing functions 
produce similar overall fitness values. A more complex fitness 
function can be used to include other factors affecting the 
performance, such as input processing and computational 
intelligence technique training times. The meta-learning 
procedure can be made more sophisticated so that it can be 
applied to other computational intelligence techniques (SVM, 
BAYES), or even to enable selection of an optimal 
computational intelligence technique most suitable for solving 
the problem at hand. 

V. CONCLUSIONS 

The developed adaptive multi-tiered framework for 
automated ad-hoc navigations of the robot and the controls of 
its sensors has been developed and extensively tested. 
Adaptability and autonomy of the framework are achieved 
through the combined use of statistical analysis and 
computational intelligence techniques. By selectively 
choosing a different number of inputs at the three phases of 
processing data (i.e. the identification, classification and 
prediction), the effects of various anomalies in the input 
stream can be made more effective.  

The experiments conducted on several datasets have 
demonstrated that reasonable performance is achieved in terms 
of accuracy of data processing and its speed. The versatility of 
the proposed methodology is demonstrated by successful 
applications of the suggested framework to tracking a wall-
following robot, to surveilling traffic [3], to environment 
monitoring in smart homes [4], and to controlling the level of 
electromagnetic interference in motor vehicles [10]. 
Moreover, the performance of the proposed framework 
operating in the online learning mode also looks promising, 
even with a small number of data points used in the training 
process. 

In the case of online learning, it may be useful to retain 
previously obtained parameters and settings of the 
computational intelligence nodes. However, this would imply 
that additional time is required for comparing previously 
obtained settings with the current ones. If the optimal settings 

are required to achieve the best performance and the 
processing time is not a crucial factor, then the comparisons 
would allow for fewer fluctuations in terms of the number of 
correctly identified instances of anomalous data, especially in 
the case when a balanced dataset is used for training. In a 
dynamic problem environment, these optimal settings are seen 
as less important however. 

In data-driven intelligent systems, input variables, the type 
of statistical measures used for pre-processing the input data, 
and the parameters of various computational intelligence 
techniques are usually obtained empirically. Another 
contribution of the work presented in this paper is the 
adaptation of a meta-learning procedure that is used to semi-
automatically tune the set of input variables, the techniques to 
pre-process input data, and the salient features of the 
computational intelligence algorithms capable of identifying 
data patterns of interests that are used by the context-
processing and context-selection layers of the multi-tiered 
framework.  As was demonstrated in the paper, the meta-
learning procedure shows some potential in autonomously 
guiding the adaptive selection of the most effective salient 
features and parameter settings for the computational 
intelligence techniques. 

The data-driven evolving choices of the genetic algorithm 
and autonomous system has the generality to be applied across 
a wide range of problem domains requiring processing, 
analysis and interpretation of data obtained from 
heterogeneous resources. Further investigations will be 
directed towards extending the functionality of the system, 
improving its efficiency, and enhancing its scalability. 
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