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ABSTRACT
Most of the state-of-art approaches to Query-by-Example
(QBE) video retrieval are based on the Bag-of-visual-Words
(BovW) representation of visual content. It, however, ig-
nores the spatial-temporal information, which is important
for similarity measurement between videos. Direct incorpo-
ration of such information into the video data representa-
tion for a large scale data set is computationally expensive
in terms of storage and similarity measurement. It is also
static regardless of the change of discriminative power of vi-
sual words with respect to different queries. To tackle these
limitations, in this paper, we propose to discover Spatial-
Temporal Correlations (STC) imposed by the query exam-
ple to improve the BovW model for video retrieval. The
STC, in terms of spatial proximity and relative motion co-
herence between different visual words, is crucial to identify
the discriminative power of the visual words. We develop
a novel technique to emphasize the most discriminative vi-
sual words for similarity measurement, and incorporate this
STC-based approach into the standard inverted index archi-
tecture. Our approach is evaluated on the TRECVID2002
and CC WEB VIDEO datasets for two typical QBE video
retrieval tasks respectively. The experimental results demon-
strate that it substantially improves the BovW model as
well as a state of the art method that also utilizes spatial-
temporal information for QBE video retrieval.

Categories and Subject Descriptors
H.3.4 [Information Search and Retrieval]: Query for-
mulation,Retrieval models,Search process

General Terms
Theory
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Spatial-Temporal Correlation, discriminative visual word,
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1. INTRODUCTION
The last decade has witnessed a rapid growth of video data
over the Internet and online data repositories. There has
been an urgent demand for more effective and efficient content-
based video retrieval technology. In this paper, we focus on
the Query-by-Example (QBE) video retrieval, which enables
users to give a video example as the query to search against a
data collection to find similar videos [26]. It is widely applied
to many practical tasks such as near-duplicate video search,
copyright infringement detection, instance search, etc.

Most state-of-art approaches to large scale content based vi-
sual retrieval are based on the Bag-of-visual-Words (BovW)
model. As firstly introduced in the context of visual object
search [23], high dimensional feature descriptors, such as
SIFT [13] and SURF [1], are extracted to represent the stable
and salient regions surrounding points-of-interest detected
by local feature detectors. Popular detectors include Harris-
Affine [14], Hessian-Affine [14], and Difference of Gaussian
[13]. The regional descriptors generated from the collection
or a training dataset are clustered and each cluster forms a
visual word. Then given an image (or a keyframe in a video),
the region descriptors in the image are quantized into dis-
crete visual words. Specifically, the quantization function
maps a region descriptor onto its closest cluster centroid.
The region descriptor is then called an instance of the cor-
responding visual word (in this paper, we use the term “vi-
sual word” and “instance of visual word” interchangeably,
for convenience, unless explicitly distinguished). As a re-
sult, an image can be represented as a bag of visual words.
A pair of descriptors mapped onto an identical visual word
are considered as a match between their visual contents. The
similarity between two images can be measured based on the
distance between their BovW representations.

In QBE video retrieval, a video is represented by a sequence
of sampled key frames, each of which is represented by a
bag (usually as a frequency histogram) of visual words. The
similarity between two videos is obtained by aggregating the
similarities of key frames across the two videos [4] . To al-
leviate the possible mismatches caused by unstable quan-
tization, e.g. near identical regions being assigned to dif-
ferent visual words, soft-quantization of visual words [20,
8] has been proposed to map each descriptor onto multiple



(a) Frame 1 in
the query.

(b) Frame 2 in
the query.

(c) Key frame in
Video 1

(d) Key frame in
Video 2

Figure 1: Emphasizing the discriminative visual
words to compensate the neglect of spatial-temporal
internal structure. Query consists of two frames is
represented by visual words A, B, C and D, and the
video 2 is likely to be more relevant than 1)

neighboring visual words (in the descriptor feature space).
Despite its simple structure, the BovW model has shown
a promising performance in the fields such as object/event
recognition [25] and image/video retrieval [21].

A major limitation of the BovW model, especially for QBE
video retrieval, is that the spatial-temporal relation between
visual words has been neglected, despite its obvious impor-
tance for similarity measurement of visual contents, mainly
due to two reasons. First, the visual words within a frame
are assumed independent of each other and the spatial re-
lationship is discarded. Second, the temporal motions of
visual words across the sequential frames are neglected.

Figure 1 shows an illustrative example. Here, we make a
simplified assumption that the relevant videos should in-
clude the person appearing in the query. In Frame 1, the
visual words A and B representing visual content of this per-
son are messed up by another irrelevant visual word C. The
BovW model, on one hand, discards the spatial relationship
between A and B within the Frame 1, and on the other hand,
neglects the motion of A and B from Frame1 to Frame 2. In
the similarity measurement, the BovW model assumes that
all visual words have an equal discriminative power. As a
result, Video 1 and Video 2 are considered equally similar to
the query. However, Video 2 is more likely to be relevant to
the query, because the spatial relationship and motion co-
herence between A and B strongly implies that they belong
to an identical object and should be more discriminative
than C and D with respect to this query. Thus the spatial-
temporal correlation of visual words A and B is a strong clue
of relevance.

To overcome the limitations, various approaches (described
in more detail in Section 2) have been proposed to incor-
porate the spatial-temporal constraints associated with vi-
sual words. Some recent image/video retrieval methods add
position, scale, main orientation and motion primitives of
each visual word directly into the BovW representation, and
then, for example, enhance the similarity measurement with
Weak/Tight Geometric Constraint (WGC/TGC) verifica-
tion of matched visual words between two images/videos [7,
32]. Nonetheless, the injected information results in a signif-
icant increase of computation cost in the similarity match.
Another direction is to expand the vocabulary with spatially
correlated visual word combinations [30, 29, 33] to form ”vi-
sual phrases”. However, it tremendously increases the stor-
age cost of visual content representation, and does not take
into account the temporal (motion) constraint.

To tackle the aforementioned limitations, instead of expand-
ing or adding extra spatial-temporal information directly
into the BovW representation, we propose to identify and
emphasize the most discriminative visual words (for exam-
ple, A and B in the Figure 1) through exploiting the spatial-
temporal correlation in an integrated manner, among differ-
ent visual words in the query. The emphasizing of discrim-
inative visual words would revise the query representation
and exclude the irrelevant information, which compensates
the neglect of spatial-temporal information. Furthermore,
the spatial-temporal information discovery from query ex-
ample does not result in extra storage cost for data represen-
tation nor increased complexity in similarity measurement.

We propose the characterize the discriminative visual words
based on spatial proximity and temporal motion coherence.
In the consecutive frames, an inherent object often has an
explicit spatial structure and intensive spatial relationship.
The motion of object layout across neighboring frames in a
video often has a characteristic of coherence. This spatial-
temporal relationship can be utilized to approximate the
possibility that the visual words are associated with an iden-
tical object, and such visual words usually have more dis-
criminative power. In this paper, we base our proposed
method on two assumptions on the discriminative visual
words: i) they co-occur closely in a frame; ii) they move
coherently across sequential frames. The spatial proximity
and motion coherence is termed as spatial temporal correla-
tion (STC).

In this paper, we present a novel technology to model the
STC imposed by a query. Specifically, we propose to model
the pair-wise STC by a Gaussian distribution based on the
assumption that the layout of objects follows the law of
Mixture Gaussian distribution [2, 12]. A similarity measure
based on STC is developed, which emphasizes the discrim-
inative visual words with respect to the query. Essentially,
this leads to reformulation of the key frames of the query
video, effectively involving the discriminative visual words
that may or may not originally appear in the key frame and
excluding the noisy ones. The discriminative power of a vi-
sual word are determined by both the STC matrix and their
frequencies. Furthermore, it is important to note that the
retrieval technology can be easily incorporated into standard
inverted indexing architecture to achieve high computational
efficiency.



The rest of the paper is organized as follows: Section 2 re-
views the related work on incorporating spatial-temporal in-
formation in content based image/video retrieval; Section 3
describes our STC-based video retrieval technology in detail;
Section 4 presents the experimental settings and results for
an extensive evaluation on two typical QBE video retrieval
tasks; Section 5 concludes the paper and points out future
research directions.

2. RELATED WORK
There have been some recent approaches that utilize the spa-
tial or temporal constraint associated with the visual words
to improve the BovW model. For example, spatial infor-
mation is introduced into image/video retrieval [18, 19, 23]
for a post-retrieval re-ranking, which matches visual words
through verification of their neighboring visual words be-
tween two images. Sivic et al. [23] employed weak tempo-
ral constraint to remove the visual words which can not be
tracked in 3 consecutive frames of video. Chum et al. [5]
proposed a generative model to expand the query based on
the strong spatial constraints discovered from the first round
retrieval results and the query for image retrieval.

Utilizing additional spatial-temporal information incorpo-
rated in the video representation, the idea of the WGC/TGC
[7, 32] is that the scales and the main direction variations
of the correctly matched visual words should be consistent.
Spatial Pyramid Matching [11] is proposed to approximate
the global geometric correspondence. It partitions the image
into hierarchical sub-images to model the spatial relation of
visual words and improve the similarity measurement.

Machine learning based technologies have been proposed to
join related visual words into visual phrases according to the
spatial constraint. Sivic et al. [22] applied the latent seman-
tic indexing based on co-occurring visual words. Zhang et
al. [29] developed a supervised learning technique to com-
bine co-occurring pairs of visual words to representative vi-
sual phrases for known categories of images. Zhang et al.
[30] proposed an approach to quantize an image into bins
and encode the spatial information with the co-occurred vi-
sual words as geometry-preserving visual phrases to achieve
higher discriminative power. However, these approaches
largely increase the dimensionality of visual content rep-
resentation. Temporal information is commonly used in
the recent video analysis technology based on the BovW
model. For example, Wang et al.[25] proposed to incorpo-
rate a number of motion primitives of each visual word into
the BovW representation of videos. Nevertheless, the above
approaches usually directly include the spatial-temporal in-
formation into visual content representation, and the storage
and computational cost is often high. This is one of the ma-
jor obstacles for developing large scale content-based visual
information retrieval technology. Furthermore, the spatial-
temporal information incorporated in video representation is
also not straightforward to be deployed with inverted index
architecture.

There have been approaches to deriving the discriminative
features according to spatial-temporal constraints at the pixel
level for image/video retrieval. For example, similar to spa-
tial points-of-interest detection, various spatial-temporal lo-
cal points-of-interests detectors are proposed, such as Spatial-

Temporal Interest Points [10, 2] and Volumetric features [9].
The spatial-temporal local detectors are designed to detect
the salient ”spatial-temporal corners” or ”sub-volume” of a
video at pixel level, which has succeeded in action or event
recognition. Nonetheless, at the pixels level it would not
be able to capture the spatial-temporal constraints from a
”semantic” perspective. Furthermore, there are attempts to
enhance the BovW by utilizing higher level spatial-temporal
constraints between multiple visual words. Object-of-Interest
extraction according to spatial-temporally distribution of
the visual words are proposed [12], and it improves the visual
object search. However, the Object-of-Interest based repre-
sentation would lose much information associated with the
background of videos. Overall, these are interesting direc-
tions for further exploration but out of scope of this paper,
where we focus on the visual words level in line with the
state of the art in QBE video retrieval.

3. VIDEO RETRIEVAL BASED ON STC
3.1 Video Representation based on the BovW

Model
In this paper, each video in a collection is represented as
a set of key frames vd = {fd}, where each key frame fd
is represented by a K dimensional vector (K denotes the
size of vocabulary) of visual words occurring in the frame:
f = {wi} where the weight wi of the ith visual words in f is
its Term Frequency (TF). Similarly, a given query example,
which is also a video, is represented as vq = {fl} where fl
is a frame. For efficiency, a bunch of key frames {fq} ⊂
vq is sampled for the video similarity measurement. Note,
however, that we use all frames {fl} in the query for spatial-
temporal correlation detection and measurement as shown
in the next subsections.

The BovW model usually involves a very large vocabulary,
and the representation vector f is sparse. Therefore, the
inverted index architecture can be applied. For each visual
word, a table is built to list all the frames where it appears.
The key frame similarity sim(fd,fq) is measured by the
cosine function, which can be approximated by:

sim(fd,fq) ≈
∑K
i=1 score(wi)

l(fd) ∗ l(fq)
(1)

where scoring function score(wi) is defined as:

score(wi) = fq(wi) ∗ fd(wi) (2)

where l(f) is the L2-Norm of vector f , and score(wi) is the
scoring function of each matched visual word across fd and
fq, given by the multiplication of the corresponding TFs.
The scores are accumulated to compute a similarity score
between two key frames. In this paper, it is assumed that
the video data are well segmented shots or the videos are
short and consist of few shots. We then adopt the shot
similarity measurement method proposed by Peng et al [17]
where the highest similarity score among all possible pairs
of key frames compared is used to measure the similarity
between two video shots:

simvd,vq = max
fd∈vd,fq∈vq

sim(fd,fq) (3)



(a) Visual words in the
key frame of query video

(b) Spatial correlation
based emphasizing

(c) Motion coherence
based emphasizing

(d) Emphasizing the
discriminative visual
word not appearing in
the key frame

Figure 2: An example of visual words emphasizing approach. In (b), (c) and (d), the color intensity indicates
the importance.

3.2 Characterizing Discriminative Visual Words
We aim to improve the BovW model by emphasizing the
visual words satisfying the spatial proximity and temporal
motion coherence constraints. Effectively, these visual words
tend to be associated with an identical object. Tradition-
ally, this association was addressed by image segmentation,
which is computationally expensive [6]. Reliable segmen-
tation and acceptable segmentation quality are also open
questions. In this paper, we approximate the discrimina-
tive power of visual words according to the two assumptions
proposed in Section 1. We develop a novel characterizing
scheme by considering its spatially and temporally corre-
lated visual words.

Regarding the spatial correlation, it can be measured by
the proximity between visual words, e.g. the inverse of Eu-
clidean Distance [28, 12]. An example is illustrated in Figure
2(a). Visual word A is located in a close proximity to B, C
and E in the key frame of the query, and visual word A
is assigned with a higher discriminative power as shown in
Figure 2(b).

In addition, in the temporally consecutive frames, the reoc-
curring visual words are tracked according to the L2 Norm.
Each tracked visual word moves to new position in the next
frame, and associated with a motion vector (Figure 2(c)).
We propose to measure the relative motion with respect to
two visual words to indicate how the two visual words move
coherently. In Figure 2(c), visual words A, B, and C move
coherently to right, and they are assigned with a higher dis-
criminative power.

Eventually, if a visual word had a strong STC with other
words appearing in the same frame of query, the visual word
is assumed to have a higher discriminative power.

Based on the above principles, our scoring function based
on STC for a visual word in a key frame of the query video

is then formulated as follows:

score′(wi) =

K∑
j=1

fq(wi) ∗ st(i, j) ∗ fd(wj) (4)

where st(i, j) measures the STC between the ith and jth vi-
sual words. The formulation of STC measurement function
will be shown in the next subsection.

3.3 The STC Measurement Function
As discussed in previous section, the STC measurement is
formulated based on the principles shown in Figure 2. The
STC between a pair of visual words should be inversely pro-
portional to the physical space distance and relative motion
associated.

As has been shown in [12, 3], the visual objects’ spatial
layout can be modeled by a Gaussian Mixture Model. The
spatial correlation between pair-wise visual words in a frame
of the query video is then formulated as follows:

si,j =

{ ∑fq(wi)
a=1

∑fq(wj)

b=1 e−κd
2
a,b for fq(wi)&fq(wj) 6= 0

0 otherwise
(5)

where da,b =
√

(xa − xb)2 + (ya − yb)2 denotes the Euclidean

distance between the ath instance of the ith visual word
and the bth instance of the jth visual word in the frame,
as shown in Figure 3. It should be noted that in a frame
represented by a very large vocabulary, there usually exists
only one instance for each visual word, and the spatial cor-
relation sa,b between the two instances directly represents
the spatial correlation between the two visual words. The
parameter κ analogs the inverse of variance in the Gaussian
Distribution, which controls the decreasing speed of the spa-
tial correlation. Generally, the larger is the parameter κ, the
more visual words are considered as spatial correlated.

Similar to the spatial correlation measurement, the modeling
of temporal motion coherence is also based on the Gaussian



Figure 3: Relative Motion between a pair of in-
stances of visual word

distribution. The measurement function is formulated by:

ti,j =

{ ∑fq(wi)
a=1

∑fq(wj)

b=1 e−γ‖∆ma,b‖2 for fq(wi)&fq(wj) 6= 0
0 otherwise

(6)
where ∆ma,b denotes the relative motion between instance
a of the ith visual word and instance b of the jth visual word
in the frame. The relative motion vector ∆ma,b is calculated
by:

∆ma,b = ma −mb (7)

where m denotes the motion vector of the tracked instance
of the visual word in consecutive frames, as shown in Fig-
ure 3. Similarly, the parameter γ in Equation 6 controls the
decreasing of temporal correlation along with the expansion
of the relative motion.

Equations 6 and 5 are combined to model the STC for a pair
of visual words. To simplify the computation, an addition is
utilized to fuse the two correlations. If any visual word in the
pair is not tracked in next frame, the temporal correlation
is set to zero. The STC within a frame and the entire query
video are calculated as:

stli,j = (sli,j + tli,j)

STi,j =

L∑
l=1

stli,j
(8)

where stli,j represents the STC between the ith and jth visual

words in the lth frame of query video vq, and L denotes the
total number of frames in vq. STi,j is the STC between the
ith and jth visual words measured based on the entire query.
In this way, the STC of singular and rarely appearing visual
words are relatively reduced.

In summary, an STC matrix ST is generated for the query,
and each entry of ST is a pair-wise correlation computed
by Equation 8. How the STC incorporated to improve the
BovW based similarity measurement will be described in the
next subsection.

3.4 Key Frame Reformulation and Similarity
Measurement

By incorporating STC-based scoring function (Equation 4),
the key frame similarity measure in Equation 2 becomes:

sim(fd,fq) ≈
∑K
i=1 score

′(wi)

l(fd) ∗ l(fq)
(9)

However, direct computation of Equation 9 is difficult to im-
plement for the inverted index architecture due to the STC

computation. The original scoring function of Equation 2
corresponds to the inner product between the query and
data representation vectors, which can be easily applied to
inverted index system. To facilitate a similar computation,
the numerator of Equantion 9 is rewritten as follows:

K∑
i=1

score′(wi) =

K∑
i=1

K∑
j=1

fd(wj) ∗ fq(wi) ∗ st(i, j)

=

K∑
j=1

fd(wj) ∗
K∑
i=1

st(i, j) ∗ fq(wi)

=

K∑
j=1

α(wj) ∗ fd(wj)

(10)

The weighting vector α = ST×fq and α ∈ RK , where α(wi)
denotes the discriminative power (also called emphasizing
weights) of the ith visual word, and can also be directly
used as the emphasizing weights. ST is the K × K STC
matrix computed by Equation 8.

As shown in Equation 10, the STC is injected into the scor-
ing function for emphasizing the discriminative visual words
in the keyframes, which is equivalent to key frame reformu-
lation. It must be noted that the STC is measured using all
frames in the query (Equation 8), and as a result, some vi-
sual words may be brought by the STC into the reformulated
key frame, even though their original term frequency on the
key frame is zero. For example, as shown in Figure 2(d), the
visual word G is added with corresponding weights, because
of its strong STC with A, B, C and E in the whole query.
In this way, the STC based approach would, to some extent,
compensate the information loss caused by the key frame
sampling.

Equation 11 has been utilized to further quantize the em-
phasizing weights of the discriminative visual words in the
key frame. This is to avoid the risk of assigning an extreme
weight to some individual visual word:

α′(wi) =

 2 for α(wi) > σ
1 for σ/2 < α(wi) < σ
0 for else

(11)

As shown in Figure 4, the choice of σ determines the num-
ber of discriminative visual words. Figure 4 represents some
examples of the α′(wi) computed for various queries. Given
the same detector is used, the discriminative power distri-
butions for different queries are not very different. Thus a
static threshold σ can be empirically selected for all queries
(σ=1 in our experiment). The effect of quantization scheme
will be discussed in Section 4.

Based on Equations 9 and 10, the frame level similarity
measurement function becomes:

sim′(fd, fq) ≈
∑K
i=1α

′(wi) ∗ fd(wi)
l(fd) ∗ l(fq)

(12)

It is important to note that the key frame reformulation
will not largely increase the number of non-zero elements
in the key frame representation. It would not only involve
the discriminative visual words, but also exclude the noises.
Furthermore, it avoids the extra computational and memory



Figure 4: The quantization threshold σ decides the
number of emphasized visual words.

costs of the direct inclusion of the spatial-temporal informa-
tion into video representation and indexing.

Having said that, in this paper, we are more interested in
how the STC-based approach can improve the retrieval ef-
fectiveness. In the next section, we present an extensive
empirical evaluation.

4. EXPERIMENTS
The goal of these experiments is to evaluate the effectiveness
of the STC-based approach to improve the BovW model.
In general, the video relevance can be defined on two lev-
els: the visual level and concept level. Accordingly two
Query-by-Example video retrieval tasks are used: (1) QBE
near-duplicate video search task for searching visually sim-
ilar videos; (2) general topics QBE video retrieval task, for
retrieving “conceptually” similar videos.

In our experiments, salient points are detected by the Hes-
sian detector, which works well to overcome the occlusion
and cluttering [15]. The salient regions are described by
SIFT feature. Hierarchical K-means [16] is used for visual
vocabulary construction.

Mean Average Precision (MAP) is used as main performance
indicator, and we also show the Precision-Recall curves of
different models.

The classical BovW model and a state of the art BovW en-
hancement approach based on Tight Geometric Constraint
(TGC) [32] are used as the baselines. The TGC method is
implemented with a publicly available toolkit SOTU [31].
The performances of four variations of the similarity mea-
surement approaches proposed in this paper are reported,
namely the STC-based retrieval models with and without
weights quantization (Equation 11), denoted by st-BovW
and raw-st respectively; and retrieval model based on spa-
tial (temporal) correlation only, denoted by s-BovW (t-
BovW).

4.1 Experimental Set Up
Two datasets commonly used datasets are selected for the
experiments:

(1) CC_Web_Video Near-duplicate video search is performed
on data collection CC Web Video [27]. Most videos in this
data-collection are short videos which are mostly 3-5 minutes
long and not longer than 10 minutes. They are presented
on the website of Youtube, Yahoo and Google Video. From
original data collection, we randomly selected 4590 videos
to form the experimental data collection, and totally 336K
key frames are extracted to represent the videos in the data
collection. The videos in the ground truth are labeled by
“Exact duplicate”, “Similar”, “Major Changed”, “Long ver-
sion” and “Not Relevant”. The evaluation is performed for
24 topics, using 69 queries respectively selected from “Ex-
act”, “Similar” and “Major Changed” videos. 10 key frames
are sampled from each query for retrieval. The average num-
ber of the relevant videos is 84.7 per topic.

(2) TRECVID2002 The general topic QBE video retrieval
task is performed on the dataset TRECVID2002 [24]. This
dataset contains various video sources: old film, news, doc-
umentary and advertisement. The retrieval task consists of
7 topics and each topic has at least 3 different queries. The
topics involve searching for specific person, object, action,
scene or instances of a category of person. The data collec-
tion is composed of 40 randomly selected videos, which are
segmented to approximately 3000 shots based on the shot
boundary data provided by TRECVID2002. Each shot is
normally no longer than 1 minute and associated with a sin-
gle scene or single semantic concept. Totally, 30K keyframes
are extracted. On average, each topic is associated with 23
relevant shots.

4.2 Experiment 1: QBE Near-Duplicate Video
Search

As shown by the Precision-Recall curves in Figure 5, the st-
BovW outperforms the classical BovW and TGC methods.
The raw-st performs similarly to the s-BovW, t-BovW and
st-BovW.

Figure 6(a), 6(b) and 6(c) present the performances of differ-
ent approaches using“Exact”,“Similar”and“Major Changed”
queries respectively. The “Exact” queries have the highest
quality, and the quality of “major changed” is the lowest.
The influence of query quality on the performance of QBE
video retrieval is obvious. The performance of good queries
(“Exact” and “Similar”) is a lot better than the other type
of queries.

Furthermore, as shown in Figure 6(a) and Figure 6(b), the
classical BovW performs adequately well on the “Exact” and
“Similar” queries. However, for “Major Changed” queries,
which are of low quality, as shown by the Precision-Recall
curves in Figure 6(c), both the st-BovW and TGC approaches
outperform the classical BovW model, and the st-BovW out-
perform TGC.

The performances in term of MAP are presented in Table
1, where E, S, M denotes “Exact”, “Similar” and “Major
Changed” queries, respectively. On average, the st-BovW
outperforms the classical BovW by 4%, which is statistically
significant (p-value=0.046). The st-BovW performs much
better than TGC for the low quality queries and slightly
better for higher quality queries. The st-BovW outperforms
TGC by about 10% and BovW by about 20% on the “Major



Figure 5: Precision-Recall curve for overall queries

(a) (b)

(c)

Figure 6: Query by video examples labelled by (a) “Exact”, (b)“Similar”, (c)“Major Changed”



Table 1: Mean Average Precision Comparison
MAP E S M Overall
BovW 0.939 0.919 0.511 0.8170
TGC 0.940 0.913 0.553 0.8268(+0.010)

st-BovW 0.944 0.927 0.619 0.8503(+0.033)
raw-st 0.929 0.930 0.625 0.8477(+0.030)

s-BovW 0.938 0.925 0.619 0.8360(+0.021)
t-BovW 0.941 0.926 0.615 0.8486(+0.032)

Figure 8: Typical frames of relevant videos of topic
”Women in long dresses”

Changed” queries.

Noted that the raw-st performs nearly the same as the st-
BovW, s-BovW and t-BovW in terms of Precision-Recall
curves, and in term of MAP on average. However, as shown
in Figure 5 and Figure 6(a), the precision of top ranked re-
sults retrieved by raw-st is not as good as other approaches.
This may be owing to the extreme weights assigned to some
visual words which may be noise in some cases. The weights
quantization scheme effectively reduces the risk of extreme
weights for the discriminative visual words generated by the
STC-based key frame reformulation and make the st-BovW
perform more stably.

In summary, the evaluation on the near duplicate video
search task shows that both TGC and st-BovW effectively
improve the performance of the BovW model. st-BovW
largely outperforms TGC on lower quality queries, which
is more challenging for classical BovW model, and it has
also performed comparably to TGC on high quality queries.

4.3 Results: General Topics QBE Video Re-
trieval

The QBE video retrieval for general topics is always a chal-
lenging task. The topics cover the various user intentions,
who may search for specific object/scene or a category of
shot. The desired object may appear visually different in
the relevant videos. For example, as shown in Figure 8, one
of the topics in this experiment is searching for videos that
contain women wearing long dresses. In the relevant videos,
the persons may appear differently, and only a small amount
of visual content maintained by the relevant videos are visu-
ally matching the query. In other words, there is semantic
gap between the visual similarity and topic relevance.

In this experiment, we use a vocabulary of a small size 5000.
The goal is to evaluate if the proposed STC-based discrim-
inative visual words emphasizing technique can effectively
compensate the neglect of spatial-temporal structure in the
BovW model.

Table 2: Average Precision Comparison
AP BovW TGC st-

BovW
raw-st

Eddie Rick-
backer

0.1185 0.1119 0.1372 0.1510

Musician
playing music
instruments

0.1257 0.1083 0.1602 0.1490

Women in
long dresses

0.0816 0.0851 0.0960 0.1009

Overhead
Views of
Cities

0.1204 0.1096 0.1302 0.1162

Oil fields,
rig and Oil
Equipment

0.1586 0.1500 0.1411 0.1414

Map of the
Continental

0.1508 0.1638 0.1574 0.1243

Live beef or
Dairy Cattle

0.099 0.0845 0.1156 0.1132

Overall 0.1220 0.1162 0.1340 0.1280

Table 3: Mean Average Precision Comparison be-
tween STC based Approaches

Approaches s-BovW t-BovW st-BovW raw-st
MAP 0.1258 0.1140 0.1340 0.1280
Average Preci-
sion on 10% Re-
call

0.528 0.458 0.610 0.466

Figure 7 demonstrates that st-BovW outperforms the classi-
cal BovW model and TGC model. Table 2 presents the Av-
erage Precisions of different approaches on individual topics.
It is shown that st-BovW outperforms the classical BovW
model on 6 out of 7 topics. The average improvement is 10%
and it is statistically significant (p-value=0.044). The exper-
imental results prove that the discriminative visual words
emphasizing technique based on STC also improves the per-
formance of BovW model using relatively small vocabulary.

It is also shown in the Table 2, that st-BovW outperforms
TGC on 5 topics, except for two topics: “Oil fields, rig and
Oil Equipment” and “Map of the Continental”. On the other
hand, TGC fails in improving the classical BovW model in
other 4 topics.

As can be seen in Table 3, the spatial correlation seems to
become more crucial than temporal correlation. The evi-
dence is that s-BovW outperforms t-BovW on average. In
the query video for a general topic, the visual contents repre-
senting users’ desire are often messed up with large amount
of noise. Thus the emphasizing technique based on the spa-
tial proximity assumption is more effective than the motion
coherence to reduce the noise.

The weights quantization scheme has improved the perfor-
mance of STC-based approaches as shown in Table 2. ST-
BovW performs more stably than raw-st, and raw-st per-
forms lower than the BovW baseline on 3 topics although
achieving highest performance on other two topics. Another



Figure 7: Precision-Recall curve for queries with different key-frames

evidence is shown in Table 3, and the weights quantization
scheme has promoted the precision on the top ranked re-
trieved results.

In summary, the evaluation demonstrates that STC based
technique can effectively improve the performance of classi-
cal BovW, and st-BovW performs more stably than TGC-
based approach on the general topic QBE video retrieval.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a novel approach based on
the spatial temporal correlation (STC) for QBE video re-
trieval. The STC is discovered from the query and it is used
to address the discriminative visual words in the BovW sim-
ilarity measurement. Furthermore, we propose to empha-
size the discriminative visual words and reformulate the key
frames in the query. The similarity measurement function
can be easily implemented based on the quantized empha-
sizing weights.

A series of experimental results on the near-duplicate web
video search and general topic video retrieval tasks show that
the STC-based approach substantially improves the classical
BovW model without increasing storage cost for video repre-
sentation. The STC-based approach has also outperformed
the state of the art TGC-based approach on some challeng-
ing tasks. The results have verified our hypothesis that the
discriminative visual words can be characterized and em-
phasized according to STC to effectively compensates the
neglect of spatial-temporal information and the information
loss during the key-frame sampling in the classical BovW
model.

A possible future research direction is to investigate in de-
veloping new data representation model based on the dis-
criminative visual words according to the spatial-temporal

correlation discovered from the whole video collection.
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