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Abstract

The Vector Space Model (VSM) of text representation suffers a number of limitations for text
classification. Firstly, the VSM is based on the Bag-Of-Words (BOW) assumption where terms
from the indexing vocabulary are treated independently of one another. However, the expressive-
ness of natural language means that lexically different terms often have related or even identical
meanings. Thus, failure to take into account the semantic relatedness between terms means that
document similarity is not properly captured in the VSM. To address this problem, semantic in-
dexing approaches have been proposed for modelling the semantic relatedness between terms in
document representations. Accordingly, in this thesis, we empirically review the impact of se-
mantic indexing on text classification. This empirical review allows us to answer one important
question: how beneficial is semantic indexing to text classification performance. We also carry
out a detailed analysis of the semantic indexing process which allows us to identify reasons why
semantic indexing may lead to poor text classification performance. Based on our findings, we
propose a semantic indexing framework called Relevance Weighted Semantic Indexing (RWSI)
that addresses the limitations identified in our analysis. RWSI uses relevance weights of terms to
improve the semantic indexing of documents.

A second problem with the VSM is the lack of supervision in the process of creating document
representations. This arises from the fact that the VSM was originally designed for unsupervised
document retrieval. An important feature of effective document representations is the ability to
discriminate between relevant and non-relevant documents. For text classification, relevance infor-
mation is explicitly available in the form of document class labels. Thus, more effective document
vectors can be derived in a supervised manner by taking advantage of available class knowledge.
Accordingly, we investigate approaches for utilising class knowledge for supervised indexing of
documents. Firstly, we demonstrate how the RWSI framework can be utilised for assigning su-
pervised weights to terms for supervised document indexing. Secondly, we present an approach
called Supervised Sub-Spacing (S3) for supervised semantic indexing of documents.

A further limitation of the standard VSM is that an indexing vocabulary that consists only of
terms from the document collection is used for document representation. This is based on the
assumption that terms alone are sufficient to model the meaning of text documents. However for
certain classification tasks, terms are insufficient to adequately model the semantics needed for
accurate document classification. A solution is to index documents using semantically rich con-
cepts. Accordingly, we present an event extraction framework called Rule-Based Event Extractor
(RUBEE) for identifying and utilising event information for concept-based indexing of incident
reports. We also demonstrate how certain attributes of these events e.g. negation, can be taken
into consideration to distinguish between documents that describe the occurrence of an event, and
those that mention the non-occurrence of that event.

keywords: Semantic Indexing, Text Classification, Semantic Relatedness, Supervised Seman-
tic Indexing, Supervised Indexing, Sentiment Classification, Event Extraction
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Chapter 1

Introduction

The explosion of user generated content on the Web has produced significant interest in deriv-

ing valuable information and insights from text in order to support intelligent decision making

by business organisations as well as governments. Text mining is the research discipline that is

concerned with the discovery and utilising of information from unstructured text. The applica-

tions of text mining today include: information management, customer experience management,

marketing, business intelligence, security, and healthcare, to name just a few. An important area

of text mining is text classification. Text classification is the task of categorising unstructured text

documents into one or more predefined categories. The significance of text classification is set to

increase due to the fact that many text mining tasks can be framed directly as text classification

tasks, or rely on text classification as an important intermediate step. We include a list of some of

the more popular applications of text classification below.

• Document Management and Retrieval: Modern document management and retrieval sys-

tems commonly index documents belonging to different topics separately. This is in order

to allow learning of user interests and to support personalisation. Text classification is em-

ployed to classify new documents automatically into the defined categories.

• Message Filtering and Organisation: Categorisation of emails is important for maintaining

an organised inbox and comes standard in many modern email client systems. The most

basic email classification is to categorise emails as Spam and Non Spam. However, some

email clients also categorise in-coming mail into Social and Promotion for social media and

promotional emails respectively. Examples of emails for each category are relatively easy to

1



1.1. Vector Space Model 2

collect which provides opportunity for using text classification to automatically categorise

emails.

A Similar idea is also applicable for organising the timeline of micro-blogging sites e.g.

Twitter. The velocity of messages (called tweets) flowing into a user’s timeline can be

difficult to keep track of. However, organising these tweets by topic can allow the user to

easily navigate to important or relevant tweets.

• Opinion Mining: Opinion text is frequently generated in the form of reviews and user com-

ments which provides ample opportunity for marketing and predictive analytics. Opinion

mining is typically interested in categorising opinion text into positive and negative opinion

categories which can naturally be modelled as a text classification task.

• News Categorisation: News reports are naturally presented to readers in different sections

by topic. Thus, news categorisation is a suitable application for text classification, in order

to ease the burden of manual categorisation of huge volumes of news reports produced daily.

The datasets used in this thesis (described in Section 2.6) have been chosen to reflect the

scenarios discussed above e.g. Ohsumed for document management, 20 Newsgroups for message

filtering, Reuters Volume 1 for news categorisation and Movie Reviews for opinion mining.

1.1 Vector Space Model

One of the most widely used models of text representation is the Vector Space Model (VSM)

which was originally proposed by Salton (Salton, Wong & Yang 1975) for the task of information

retrieval (IR). Since then, the VSM along with its fundamental ideas and concepts has been suc-

cessfully adopted for text classification. The main idea behind the VSM is to represent documents

as vectors in an n-dimensional space of features. The basic set of features that has been tradi-

tionally used for text representation in the VSM is the set of all unique terms V , in the document

collection, called the vocabulary. The use of terms as features in the VSM is based on 4 main

assumptions as follows:

• Given any document, the set of terms in the document capture the meaning or semantics of

that document
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Figure 1.1: Example vector space with three documents and three terms

• The relevance of a term to a document (local relevance) is a function of the frequency of

occurrence of the term in that document

• Given any document collection, some terms are more useful for discriminating between

relevant and irrelevant documents in that collection (global relevance)

• The global relevance of any term can be measured as a function of the frequency of occur-

rence of the term in the document collection.

Thus, each term from the vocabulary occupies a separate dimension in the vector space and any

given document di can be represented as a vector in the space of terms as shown in Equation 1.1.

~di = (ti,1, ti,2, ..., ti,n) (1.1)

Where ti,j is a combination of the local and global weight of term tj in document di and

represents how much tj contributes to the understanding of the semantics of di. ti,j also represents

the magnitude of document dj in the dimension of term ti in the vector space. Hence, the set of all

term weights ti,j of any document dj provide the exact location dj in the term-document space.

Figure 1.1 shows a trivial example of a vector space with three terms, information, text and

class, and three documents, d1, d2 and d3. The positions of each document in the space is deter-

mined by the weights of the vector components of that document along the dimensions of the three
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terms. Accordingly, the similarity between any two documents in the space can be computed as a

function of the distance between the document vectors in the space. For example from Figure 1.1,

d1 and d2 are more similar because they are closer to each other than they both are to d3. From

this, it is evident that accurately estimating the similarity between documents in the VSM depends

very much on effective weighting of terms in document vectors . Salton (Salton & Buckley 1988)

identified three main factors that an effective term-weighting strategy for the VSM should satisfy:

• Relevant documents should be retrieved

• Non-relevant documents should be avoided

• Document length should be normalised

Based on these three factors, the normalised tf-idf weighting, which employs a combination of

within-document term frequency (local weight) and inverse document frequency (global weight),

was introduced (Salton & Buckley 1988). The term frequency component of tf-idf estimates the

relevance of a term ti to a document dj as a function of the frequency of ti in dj . This is based on

the intuition that the frequency with which a term is used in a document is directly related to the

relevance of the term to that document. The inverse document frequency component is designed

to assign higher weight to terms that are concentrated in a few documents. This is based on the

notion that more specific terms are better at distinguishing the small set of relevant documents

from the larger set of irrelevant documents.

There are a few fundamental limitation with Salton’s VSM. The first is the assumption of term

independence where, the VSM assigns different terms to different dimensions in the vector space

with no relationship between these different dimensions. Thus, two documents that do not share

identical terms in common will be positioned very distant from each other in the term-document

space. However, terms in a vocabulary are not completely independent and often, different terms

have very similar or identical meaning. This means that document similarity is not properly cap-

tured by the VSM and addressing this problem will require a model of similarity or relatedness

between vocabulary terms to be introduced.

A second limitation of Salton’s VSM is the complete lack of supervision. Recall that an

important consideration when generating document vectors is the ability to distinguish between

relevant and non-relevant documents. Because the VSM was originally proposed for unsupervised
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document retrieval, the notion of relevance was estimated using inverse document frequency of

terms. However, for text classification, relevance information is explicitly provided in the form of

document class labels. Therefore, there is opportunity in the case of text classification to take ad-

vantage of supervision in order to generate more effective document vectors than would otherwise

be produced if class knowledge is ignored.

Thirdly, the VSM represents documents in the space of unique terms from the collection. This

is based on the assumption that terms are sufficient to model the meaning of documents. However,

this is more of a simplifying argument than a completely accurate one. Indeed, it is well understood

that terms often fail to model the right level of semantics needed for accurate document retrieval or

classification. Addressing this limitation often requires documents to be represented using more

semantically rich concepts as features.

In the next section, we discuss text classification algorithms that are popularly used for docu-

ment categorisation with the VSM.

1.2 Text Classification Algorithms

Text classification using the VSM involves training a classifier Φ on a collection of training doc-

uments D where each document dj ∈ D is associated with a class label. Thus, given a new

document dq with unknown class, dq is represented as a vector ~dq = (tq,1, tq,2, ..., tq,n) in a term-

document space. The classifier Φ can now be applied to the vector ~dq to determine the class mem-

bership of document dq. In the following sub-sections, we describe the two main classification al-

gorithms used with the vector space document representations, k-Nearest Neighbour and Support

Vector Machines. These two algorithms are also known to produce the best performance on text

classification, compared to other classifiers e.g Naive Bayes, Rocchio and C4.5 (Joachims 1998).

1.2.1 k-Nearest Neighbour

The k-Nearest Neighbour (kNN) algorithm is based on the intuition that the class of any given

document is likely to be the same as that of the documents most similar to it. Recall that in the

VSM, similarity between documents is estimated by the distance between their vector representa-

tions is Euclidean space. Thus given any document dq, the kNN classifier would assign to dq the

class of the majority of documents in the neighbourhood of dq in the term-document space. This
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Figure 1.2: Illustration of nearest-neighbour classification of a document dq.

Metric Formula
Euclidean

√∑n
i (d1,i − d2,i)2

Dice 2|d1∩d2|
|d1|+|d2|

Jaccard |d1∩d2|
|d1|+|d2|

Cosine
∑n

i d1,id2,i

‖d1‖‖d2‖

Table 1.1: Document similarity/distance metrics.

is illustrated in Figure 1.2.

An important consideration for kNN classification is the similarity metric to use for obtaining

the neighbours of dq. A number of distance and similarity metrics can be used e.g. Euclidean,

Dice, Jaccard and Cosine. Given any two document vectors ~dq and ~dj , a list of these metrics is

given in Table 1.1. Note that Dice and Jaccard metrics are not vector distance measures. Rather

both metrics measure the similarity between two sets. However we include them here because of

their popular use for computing document similarity.

Cosine metric has emerged as the most popular measure of similarity for text documents. Also,

comparative evaluations with some of the metrics e.g Euclidean (Chakraborti, Mukras, Lothian,

Wiratunga, Watt & Harper 2007), have shown cosine to perform better. The superiority of Cosine

over the other metrics can be attributed to a few reasons. Firstly, Euclidean metric measures the

absolute distance between two points in space. This means that two vectors that have the same

direction (contain the same terms) can have a huge difference computed by Euclidean metric
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because the common terms have huge differences in weights (or magnitude).

Secondly both Dice and Jaccard metrics measure similarity between documents as a function

of the amount of terms that is shared between them, compared to the amount of terms available

in the union of the two documents. This means that documents that have a higher proportion

of shared terms are more similar. However, note that the relative weight or importance of the

terms is not taken into account. This makes both metrics limited in their application to the VSM

where much semantic information is typically encoded in the weights of terms. Accordingly, in

the remainder of this thesis, we use cosine similarity metric for identifying the neighbourhood of

any given document.

Typically with kNN, more than one neighbouring document is considered for deciding the

class of the query document dq. Therefore, it is often the case that the neighbouring documents

do not all belong to same class. As shown in Figure 1.2, neighbours of dq include four documents

from the same class (blue cross) and one document from a different class (red dot). In this case, a

strategy is required to decide which of the classes to assign to dq. Given a setE of documents in the

neighbourhood of dq, where each document dj ∈ E has corresponding class label cj and similarity

sj with dq, two strategies are commonly employed for deciding the class of dq as follows:

• Majority Voting Strategy: Here, a tally of all documents dj ∈ E, organised by class, is made

and dq is assigned to the class with the maximum number of documents.

• Similarity Weighted Voting Strategy: A disadvantage of the majority voting strategy is that

it assumes all neighbours to be equally important in determining the class of dq. However,

it is intuitive to assume that more similar neighbours should contribute more to the classifi-

cation decision. Thus, in the similarity weighted strategy, each neighbour contributes to the

decision with a weight equivalent to its similarity to dq. This way, more similar neighbours

contribute more to determining the class of dq than less similar ones. For this reason, we

use the similarity weighted voting strategy throughout this thesis.

1.2.2 Support Vector Machines

Support Vector Machines (SVMs) are an example of kernel learning algorithms that have been

successfully adopted for text classification (Joachims 1998) using the vector space model. SVMs

work for text classification by mapping documents from an original term-document space into a
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Figure 1.3: Illustration of SVM classification of a document dq.

higher dimensional space, and then finding the optimal hyperplane in that space that separates,

by the widest margin, positive and negative examples of a target class. Thus, SVM is naturally

a binary class classifier and requires adaptation for muti-class classification tasks e.g. by running

multiple one-vs-all classifications for each class (Duan & Keerthi 2005). Given any new document

dq with unknown class label, an SVM classifier would map dq to a position on one side of the

hyperplane and assign dq to the class of documents on that side of the hyperplane as shown in

Figure 1.3.

SVMs have proven to be very effective for text classification and are often considered to be

the state-of-the-art in classifiers. However, other studies suggest instance-based learners such as

k Nearest Neighbour (kNN) are equally competitive with SVM performance (Yang & Liu 1999)

especially with proper document representation (Colas & Brazdil 2006). In addition, kNN is

much simpler to implement than SVM and requires less parameter tuning. kNN also provides

good scalability to higher numbers of classes as it naturally supports multi-class classification.

1.3 Research Motivation and Objectives

Text representation using the VSM employs a fundamentally flawed assumption, that terms in a

document are independent of one another and thus occupy independent dimensions of the vector

space. This assumption was originally included in the design of the VSM in order to simplify



1.3. Research Motivation and Objectives 9

the computation required to work with the model. Accordingly, the more two documents contain

different terms, the further away they are from one another in the vector space. However, natural

language text is inherently characterised by variety and diversity in word usage which means that

different (but semantically related) terms are often used to express the same idea. In the VSM how-

ever, documents that contain non-identical but semantically related terms would be positioned far

apart in space. This means that the exact lexical match used in the VSM for computing document

similarity is not sufficient for estimating the full semantic similarity between documents.

To address the limitation imposed by the term independence assumption, semantic indexing

approaches were introduced. Examples of popular semantic indexing approaches include La-

tent Semantic Indexing (LSI) (Deerwester, Dumais, Landauer, Furnas & Harshman 1990) and

the Generalised Vector Space Model (GVSM) (Wong, Ziarko, Raghavan & Wong 1987). These

approaches address the problem of term independence by applying semantic transformation oper-

ations to document representations in order to reflect the semantic relatedness between vocabulary

terms. The effect of semantic indexing on document vectors is that the semantic relatedness be-

tween terms becomes encoded in the resulting term weights. While some improvements have been

realised using semantic indexing, the benefit has not been consistent. Thus, the primary goal of

this thesis is to investigate the performance of semantic indexing on text classification with a view

to identifying limitations in the current state-of-the-art. Our goal is then to develop algorithms and

techniques that address these limitations.

A second limitation of the VSM for text classification is the lack of supervision in the process

of creating document representations. Effective document vectors should be good at distinguishing

between relevant and non-relevant documents. Because the VSM was originally designed for

unsupervised document retrieval, heuristics such as idf were developed in order to approximate the

notion of relevance. However, in text classification, relevance information is explicitly provided

in the form of class labels. It is therefore intuitive that more effective document vectors can be

constructed using supervised approaches that take into account class membership of documents.

Accordingly, a second aim of this thesis is to optimise the process of document indexing for text

classification by proposing supervised approaches that take advantage of class knowledge.

A further limitation of traditional VSM is that the indexing vocabulary is composed of arbitrary

terms from the content of documents. However, for certain types of tasks, a terms-based index

is not sufficient for capturing the semantics needed for accurate document classification. Some
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approaches have been proposed for addressing this limitation by indexing documents using vectors

of concepts defined in a lexicon or an ontology. Note that this approach is also referred to as

semantic indexing (Fernandez, Cantador, Lopez, Vallet, Castells & Motta 2011). Unlike the first

type of semantic indexing which learns the conceptual structure of text by learning the semantic

relatedness of terms, this second type of semantic indexing uses explicit concepts as an indexing

vocabulary. Accordingly, a secondary goal of this thesis is to explore the use of semantic indexing

that involves the encapsulation semantics at higher levels of abstraction in the VSM. In particular,

we will explore the utility of semantically-richer (such as events and entities) indexing vocabulary,

over semantically-poor term-based features on text classification tasks.

In order to address the three limitations of the VSM discussed above, this thesis has the fol-

lowing five objectives:

1. Conduct an analysis of the performance of semantic indexing for text classification.

2. Propose a new semantic indexing framework that addresses the limitations identified in 1.

3. Develop a supervised extension of the framework developed in 2 that utilises class knowl-

edge for optimised semantic indexing.

4. Investigate the application of the semantic indexing frameworks developed in 2 and 3 to

other classification tasks e.g. sentiment classification.

5. Explore the use of higher level semantic concepts e.g. events for document indexing.

1.4 Contributions

The most significant contribution of this thesis is the development of the Relevance Weighted Se-

mantic Indexing (RWSI) framework which introduces relevance weighting into semantic indexing.

Our development of the RWSI framework is based on our discovery that term relevance is essen-

tial for effective semantic indexing and that this information is not captured in traditional semantic

indexing approaches. A key advantage of the RWSI framework is that it is flexible enough to be

used with any semantic relatedness metric and also, any effective term weighting approach.

A second significant contribution is the development of the supervised sub-spacing (S3) frame-

work for introducing supervision into semantic indexing. The key idea of S3 is to create separate
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sub-spaces for each class within which semantic indexing transformations are applied exclusively

to documents that belong to that class. In this way, S3 is able to modify document representations

such that documents that belong to the same class are made more similar to one another.

The third contribution of this thesis is the application of the S3 framework to the task of sen-

timent classification. S3 is able to produce document representations that are more effective for

sentiment classification by learning semantic relatedness and term weights exclusively from the

set of documents belonging to the same sentiment class. Doing so allows S3 to emphasise the

semantic associations of terms belonging to the same sentiment category in document represen-

tations. We further demonstrate how sentiment scores from a sentiment lexicon can be used to

further improve the performance of S3 on sentiment classification.

Our fourth contribution is a demonstration of the utility of events for document indexing.

Accordingly, we present an unsupervised heuristic approach for the extraction of events called

RUle-Based Event Extractor (RUBEE). RUBEE uses natural language processing together with a

set of rules for extracting events and their attributes from the content of a given text document.

Our final contribution is a detailed evaluation of semantic indexing with semantic related-

ness knowledge extracted using both knowledge-resource-based, and distributional approaches.

Considering that extracting semantic relatedness is a computationally expensive process, we pro-

pose an approach for determining when and when not to apply semantic relatedness using meta-

learning.

1.5 Thesis Outline

The rest of this thesis is outlined as follows: In Chapter 2, a review of relevant background and

related works is presented. We discuss, in detail, text representation using the VSM and further

explain the main limitations of text representation using the VSM for text classification. We dis-

cuss a number of semantic indexing and supervised document indexing approaches that have been

proposed for addressing these limitations and we analyse the strengths and limitations of these

approaches. We conclude Chapter 2 with a discussion of the datasets we use in our experiments

and a chapter summary.

In Chapter 3, we empirically review the performance of semantic indexing for text classifi-

cation by analysing the performance of a variety of semantic indexing approaches on a number
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of text classification datasets. Our goal in this chapter is to evaluate whether consistent improve-

ments in text classification performance is realised from semantic indexing. We use our findings

from this evaluation to develop a case-based system to recommend, given any dataset, whether or

not to employ semantic indexing. We conclude the chapter with an evaluation of our developed

case-based system and a discussion of our results.

In Chapter 4, we present a detailed analysis of the semantic indexing process. We demon-

strate how relevance information of terms is not captured during semantic indexing which leads to

poor text classification performance. Accordingly, we present the Relevance Weighted Semantic

Indexing (RWSI) framework which utilises relevance weights of terms for improved semantic in-

dexing of documents. We also demonstrate how the RWSI framework can be utilised exclusively

for assigning supervised weights to terms for supervised document indexing.

Semantic indexing is traditionally an unsupervised process. Accordingly, the document repre-

sentations produced are not optimal for text classification. In Chapter 5 we present a supervised

framework called Supervised Sub-Spacing (S3) for supervised semantic indexing of documents.

S3 works by partitioning the term document space into class-based subspaces and applies the

RWSI semantic indexing framework to each sub-space independently.

In Chapter 6, we investigate the applicability of our developed semantic indexing approaches

to the task of sentiment classification. Sentiment lexicons are commonly used in sentiment clas-

sification to provide sentiment scores of terms. Thus, we demonstrate how sentiment scores from

a sentiment lexicon can be utilised with the S3 framework for improved sentiment classification

performance.

In Chapter 7 we present our exploration of semantic indexing using higher level semantic con-

cepts. Accordingly, we present an algorithm called RUBEE for the extraction of event information

from the content of incident reports for the purpose of document indexing. We also present a

framework for using events for semantic indexing of documents. We further demonstrate how

attributes like the polarity (negation) of events can be utilised in the indexing approach. In our

evaluation, we compare the RUBEE framework with term-only document indexing using the ap-

proach presented in Chapters 4 and 5. Results show our events-based index to lead to better text

classification performance compared to term-based indexing.

We conclude this thesis in Chapter 8 with a summary of our main contributions and proposals

for future extensions to our work.



Chapter 2

Literature Review

Text representations enable automatic processing of natural language text documents by provid-

ing computational models that sufficiently capture the semantics of these documents. However,

sufficiently and effectively modelling the semantics of natural language is non-trivial. The VSM

has been proposed for the purpose of text representation. However, there are three main problems

with the traditional VSM that limit the performance of this model for text classification. These

problems are outlined as follows:

• Variation in indexing vocabulary;

• Lack of supervision in document representation; and

• Use of terms only for document indexing

Several approaches have been proposed for addressing the limited semantics of the standard

BOW model. One such approach is the use of phrases, rather than individual terms, for document

indexing. This is important because multi-term expressions occur often in documents, and these

multi-term expressions typically have a meaning that is different to that of the individual terms in-

dependently e.g. “machine learning”. Thus, indexing documents using phrases attempts to index

documents using such phrases in order to preserve their meaning. The most popular approach iden-

tify these phrases statistically by looking for sequences of terms that occur frequently (Caropreso,

Matwin & Sebastiani 2000). However, experimental results have not been able to convincingly

prove that phrases are useful for text classification (Sebastiani 2002).

13
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Another attempt at overcoming the limitation of the standard BOW for text classification is the

use of distributional features (Xue & Zhou 2006). Here, the authors argue that the compactness

(the spread of the distribution of a term in document) and position of first appearance of a term

in a document are more important than frequency of appearance. Accordingly, this approach uses

a vector Vj to represent a document dj , where the weight of each term ti in vj can be derived by

measuring the compactness (CP), position of first appearance (FA) or term frequency (TF) of ti

in dj . The proposed representation was evaluated using both SVM and kNN classifiers on three

datasets. Results show distributional features improved classification performance compared to a

standard BOW representation and also, that the performance of distributional features is closely

related to the length and writing style of documents. Note however, that the distributional features

proposed in (Xue & Zhou 2006) work are not the same as distributional semantic relatedness which

is the interest of this work. The key difference is that distributional features propose to replace

the frequency counts of terms in the standard VSM with vector representations that capture the

position of first appearance of terms and also a measure of the compactness of the appearance of

terms in a document. Thus, unlike distributional semantic relatedness approaches, distributional

features do not model the semantic relatedness between terms.

While the above two approaches are interesting in their own rights, they do not address the

first two problems we outlined. For example, the use of distributional features does not take into

account the semantic relatedness between terms and neither does it utilise supervision. The use of

phrases for indexing on the other hand only attempts to take into account sequential relationship

between terms rather than general semantic relatedness. Thus, a phrasal approach will not take

into account the fact that ‘coffee’ and ‘tea’ are both types of hot drinks. Accordingly, in this thesis,

we are interested in approaches that address the three problems outlined above.

The problem of variation in vocabulary is due to the expressiveness of natural language text

which has always presented a big challenge for automated text processing. Natural language text is

inherently characterised by variety and diversity in word usage. For example, different terms can

be, and often are, used to denote the same thing e.g. the terms ‘buy’ and ‘purchase’ are pretty much

synonymous and can be used interchangeably. In addition, some words tend to be conceptually

similar even though not synonymous. For example the terms ‘bus’ and ‘car’ are similar because

they are both types of ‘motor vehicle’. However, the two words are not synonymous. Words

can also share some other types of relationships based on common association e.g. the words
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‘coal’ and ‘fire’. In general, these types of relationships between words are referred to as semantic

relatedness (Budanitsky & Hirst 2006).

Failure to take into account semantic relatedness between terms leads to problems for auto-

mated text processing. This problem is commonly referred to as the vocabulary mismatch in IR

literature (Girill 1985). Vocabulary mismatch happens when a set of one or more relevant docu-

ments Dr is not retrieved in response to a query q, simply because the documents di ∈ Dr do not

contain the exact same terms as the query q. Note that documents in Dr are considered relevant

because they contain terms that are semantically related and hence, close in meaning to the terms

in q. However, retrieval in the vector space model is based on an exact match between query and

document terms and hence, the reason for the failure to retrieve documents in Dr. This same

problem transfers to text classification using the VSM. Text classification algorithms such as kNN

and SVM also depend on a direct match between terms in the query document dq and the learned

classification model, ϕ, in order to decide which category to assign to dq. Thus, addressing this

problem requires semantic indexing approaches that attempt to model the semantic relatedness

between terms in document representations.

The second problem of lack of supervision in the process of creating document representa-

tions arises from the fact that traditional VSM was designed for unsupervised document retrieval.

An important goal of document representation in the VSM is to discriminate between relevant

and non-relevant documents. Accordingly, the tf-idf weighting scheme was introduced (Salton &

Buckley 1988) to approximate the notion of relevance in unsupervised document collections. The

tf component of the weight captures the local relevance of a term to a document as a function

of the frequency of the term in that document. On the other hand, the idf component captures

the global relevance of terms by assigning higher weight to terms that are concentrated in fewer

documents. This is based on the notion that more specific terms are better at distinguishing the

small set of relevant documents from the larger set of irrelevant documents. However, for text

classification, relevance information is explicitly available in the form of class label of documents.

Thus, a more effective term weighting scheme can be derived in a supervised manner by taking

into account class knowledge. Accordingly, many approaches have proposed applying supervi-

sion to document indexing by introducing supervised term weights that are learned using class

knowledge.
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The third problem arises from the fact that the standard VSM assumes that terms alone are

sufficient to model the meaning of text documents. While significant improvements over term-

based indexing vocabulary have proved very difficult to achieve (Gomez, Cortizo, Puertas & Ruiz

2004, Castells, Fernandez & Vallet 2007, Mudinas, Zhang & Levene 2012), for certain types of

classification tasks, terms are insufficient to adequately model the distinction between relevant and

non-relevant documents. The limitations of the keyword indexing vocabulary is usually addressed

by indexing documents using concepts either from a lexicon (Gomez et al. 2004) or from an

ontology (Kiryakov, Popov, Terziev, Manov & Ognyanoff 2004). This approach to document

representation is also referred to as semantic indexing (Fernandez et al. 2011). However, the

concepts provided by general purpose lexicons and ontologies do not necessarily have enough

coverage to adequately model the semantics of all target domains. On the other hand, building and

maintaining domain specific lexicons and ontologies requires significant knowledge engineering

effort which makes this a very expensive option. Accordingly, as a secondary objective of this

thesis, we explore the use of information extraction for indexing of incident reports using event

information extracted directly from the textual content of these reports. This allows us to be able

to tackle semantic classification tasks such as filtering out incident documents that report injuries

from those that don’t.

In the following sections, we present a critical review of works done in the area of seman-

tic relatedness extraction, semantic indexing, supervised document indexing, as well as concept-

based indexing, in order to identify the extent to which they address the identified problems with

traditional VSM. Our goal is to analyse the strengths and to highlight the limitations of current

state-of-the-art approaches, and to propose techniques for addressing these limitations.

2.1 Semantic Relatedness

Addressing the problem of variation in indexing vocabulary requires the use of semantic relat-

edness metrics, which quantify the degree to which any two given terms are related in mean-

ing (Gracia & Mena 2008). Thus, semantic relatedness is defined in a broad sense to include any

type of semantic relationship (Resnik 1995). For example, two terms can have (almost) identical

meaning e.g. ‘shout’ and ‘yell’, or conceptually similar e.g. the words ‘sneakers’ and ‘boots’ both

denote types of ‘footwear’. Words can also share a semantic relationship based on common asso-
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ciation e.g. the words ‘coal’ and ‘fire’, or be related because one is a part of the other (meronymy)

e.g ’wheel’ and ’cart’.

More formally, we define semantic relatedness as a function that accepts a pair t1 and t2

from a set of terms V and returns a numeric value of how related the two terms are as show

in Equation 2.1. Accordingly, the higher the semantic relatedness between any two terms, the

stronger the relationship between the terms. We also define semantic relatedness to be bound

between the range {0, 1}. This is done for two reasons. Firstly, this allows for defining an upper

bound on semantic relatedness such that identical terms have a semantic relatedness of value of 1

and completely un-related terms have semantic relatedness of 0. Secondly, semantic relatedness is

only useful as a relative value on a scale rather than in absolute terms. For example, the fact that

the semantic relatedness between ’car’ and ’bus’ is 0.8 is more valuable if we know that this is out

of a maximum possible value of 1.0.

Rel(t1, t2) : V × V → < (2.1)

The computation of semantic relatedness between terms has many applications that go beyond

semantic indexing. Indeed, semantic relatedness computation has its roots in artificial intelli-

gence and psychology, with the works on spreading-activation theory (Quillan 1966, Collins &

Loftus 1975). Since then, more work on computing semantic relatedness has been done in the

area of natural language processing for applications such as malapropism detection and correc-

tion (Budanitsky & Hirst 2006), word sense disambiguation (Patwardhan, Banerjee & Pedersen

2003), lexical selection for automatic machine translation (Wu & Palmer 1994b), multiple choice

synonym detection (Turney 2002, Weale, Brew & Fosler-Lussier 2009), and plagiarism detec-

tion (Chen, Yeh & Ke 2010).

Semantic relatedness has traditionally been computed using several different approaches. These

approaches can be broadly categorised into distributional and knowledge-resource-based as illus-

trated in figure 2.1. Distributional approaches involve using co-occurrence between terms in a

target corpus as a measure of their relatedness. In this way, terms that co-occur more often are

judged to be more similar than terms that co-occur less often. Several algebraic functions (e.g.

cosine similarity and LSI) and information-theoretic measures (e.g PMI) can be employed for this

purpose. On the other hand, knowledge-resource-based approaches employ the aid of a (typically
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manually constructed) knowledge resource that contains a sufficient number of terms and relation-

ships between these terms. The structure of these knowledge resources can typically be viewed as

a graph where terms are nodes and the relation between terms are edges. This allows for comput-

ing the semantic relatedness between terms as a function of the path connecting the two terms in

the knowledge resource.

Figure 2.1: Semantic Relatedness.

The most popular knowledge resource used for computing semantic relatedness is the WordNet

lexicon (Miller 1995). Terms within WordNet are inter-connected through links representing the

semantic and lexical relationships between them. This structure can be viewed as a graph or

taxonomy which allows for measuring relatedness between terms by means of combining shortest

path between term pairs and information about the depth of nodes in the taxonomy. Another

knowledge resource which has recently become very popular is Wikipedia. Similar to WordNet,

Wikipedia’s category structure can also be viewed as a taxonomy and similar measures used with

WordNet can then be adapted for measuring term relatedness using Wikipedia.

Other approaches go beyond Wikipedia and exploit the entire Web as a means for extracting

semantic relatedness knowledge e.g. using page counts (Cilibrasi & Vitanyi 2007). Page count of

documents returned in response to a search engine query provides useful evidence of relatedness

between the terms in the query. This can then be quantified as a semantic relatedness metric i.e.

the higher the proportion of documents that contain both terms, the more related the two terms

are. However page count can often be misleading as it does not consider the intended context of

terms and the semantics within which they are used in the result pages. Sophisticated approaches
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Figure 2.2: Term Relatedness from a taxonomy structure.

using text snippets 1 can be used to improve on page count by exploiting lexico-syntactic patterns

in these snippets (Bollegala, Matsuo & Ishizuka 2007).

2.1.1 Knowledge-Resource-Based Approaches

In the following subsections, we describe WordNet and Wikipedia and present techniques for

extracting semantic relatedness from these resources.

WordNet

WordNet, is a lexical database for the English language (Miller 1995), which has been used ex-

tensively for extracting term-relatedness knowledge. Terms within WordNet are grouped into sets

of cognitive synonyms often referred to as concepts. Concepts are further grouped based on their

grammatical function into noun, verb, adjective and adverb dictionaries. Concepts within the same

dictionary are inter-connected through links representing the semantic and lexical relationships be-

tween them. This structure can be viewed as a graph where concepts are nodes and semantic links

are edges that form a path between concepts. Hence, computing the semantic relatedness between

any two terms t1 and t2 using WordNet involves mapping t1 and t2 to corresponding concepts c1

and c2 in WordNet and then estimating semantic relatedness as a function of the path between c1

and c2.
1small pieces of text extracted by the search engine around the query term
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Many different functions have been applied for computing semantic relatedness using Word-

Net which include distance-based metrics that compute relatedess as a measure of the shortest path

between concept pairs and the depth of nodes in the graph (Wu & Palmer 1994a), and also informa-

tion theoretic metrics that compute relatedness based on information content (Resnik 1995, Jiang

& Conrath 1997, Lin 1998).

The first category of WordNet semantic relatedness measures are the distance-based metrics.

The first of these is the Wu and Palmer metric (Wu & Palmer 1994b). Given any two terms t1 and

t2 which can be mapped to corresponding concepts c1 and c2 in WordNet, the semantic relatedness

between t1 and t2 can be computed using the Wu and Palmer (WUP) metric as follows:

RelWUP (t1, t2) =
2× depth(lcs(c1, c2))

len(c1, lcs(c1, c2)) + len(c2, lcs(c1, c2)) + 2× depth(lcs(c1, c2))
(2.2)

Where depth(c) is a function that returns the depth of the node c from the global root of the

WordNet noun hierarchy and lsc(c1, c2) is a function that returns the lowest common subsumer

(i.e. lowest common parent concept) of both concepts c1 and c2 and len(c1, c2) is a function

that returns the length of the path connecting c1 and c2 in WordNet. In this way, the Wu and

Palmer metric measures relatedness between two concepts by calculating the distance between the

two concepts to their common ancestor and scaling that distance with the depth of the common

ancestor in the taxonomy.

A second distance-based measure is the Leacock and Chodorow metric (Leacock & Chodorow

1998). The semantic relatedness between two terms t1 and t2 can be computed using the Leacock

and Chodorow (LCH) metric as:

RelLCH(t1, t2) = −log len(c1, c2)

2×max_depth(c)
(2.3)

Where max_depth(c) is the maximum depth of the taxonomy.

A general problem with calculating term relatedness based on the length of the path-length that

the length of the path between concepts in a taxonomy may not necessarily reflect the semantic

distance between the concepts in real-life. In other words, parts of the WordNet taxonomy are very

shallow where concepts are subsumed by very abstract concepts while other parts of the taxonomy

are very dense with many subsumption layers. For this reason, it is necessary to utilise approaches
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that are able to deal with the problem of disparity in distance between concepts in a taxonomy and

their actual semantic distance.

Information content based measures are designed to downplay the importance of the length of

links in the taxonomy by utilising additional evidence in the form of corpus statistics. The premise

behind these approaches is that relatedness between two concepts c1 and c2 can be estimated by

the extent to which they share information in common. This can be achieved by determining the

information content of the most common concept that subsumes both c1 and c2. For any concept

c, let p(c) be the probability of the occurrence of c. Then from information theory, the information

content of c can be calculated as:

IC(c) = −logP (c) (2.4)

The probabilities of concepts can be estimated from frequency counts gathered from large cor-

pora such as the one-million-word Brown Corpus of American English. An alternative approach

for calculating information content intrinsically from the taxonomy structure without the need for

an external corpus was introduced in (Seco, Veale & Hayes 2004). This approach called intrinsic

information content (IIC) calculates the information content of a concept based on it’s hyponym

count such that the more hyponyms a concepts has, the less information it conveys. The formula

for calculating IIC is given as:

IIC(c) = 1− log(hyp(c) + 1)

logtotal(c)
(2.5)

Where hyp(c) returns the number of hyponyms of the concept c and total(c) returns the total

number of concepts in the taxonomy. Thus the root concept has an IIC of 0 and a leaf concept has

the maximum IIC value of 1.

A number of semantic relatedness metrics have been devised that use information content.

The first metric proposed by Lin measures semantic relatedness between two concepts as the

ratio of the amount of information needed to describe the commonality between the two concepts

to the amount of information needed to describe each concept independently (Lin 1998). The

amount of information needed to describe the commonality between two concepts is defined as

the information content of the least common subsumer of both concepts. Semantic relatedness
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between two terms t1 and t2 using the Lin (LIN) metric is defined as follows:

RelLIN (t1, t2) =
2× IC(lcs(c1, c2))

IC(c1)IC(c2)
(2.6)

Another semantic relatedness metric that uses information content was proposed by Jiang and

Conrath, which measures the difference between the amount of information needed to describe the

commonality between two concepts and the amount of information needed to describe each con-

cept independently (Jiang & Conrath 1997). Accordingly, semantic relatedness can be computed

using the Jiang and Conrath (JCN) metric as follows:

RelJCN (t1, t2) = 2× IC(lcs(c1, c2))− IC(c1)IC(c2) (2.7)

The Jiang and Conrath Metric is by default a distance measure i.e. the higher the the Jiang and

Conrath measure between two concepts, the more unrelated the two concepts are. The Jiang and

Conrath metrics is converted to similarity measure by taking the inverse.

Despite its popularity, WordNet has recently been criticised for having limited coverage and

scope of applications (Gracia & Mena 2008). The implication for semantic indexing is that some

terms from the indexing vocabulary may not have corresponding entries in WordNet. This restricts

semantic relatedness computation to only the terms that are covered by the WordNet vocabulary

which excludes many domain specific terms, abbreviations and slang. WordNet is also known

to suffer from sparsity in connections between concepts (Boyd-graber, Fellbaum, Osherson &

Schapire 2006). Concepts are typically connected using hierarchical parent-child connections.

This means that it is not straightforward to compute the relatedness between related concepts

that are not connected through a common parent concept. Also, the different dictionaries within

WordNet are independent with very limited inter-connections between them. This means that

most metrics are only able to compute semantic relatedness between terms from the same part-

of-speech category. This is quite restrictive and does not allow for capturing the full relatedness

between terms

Wikipedia

Unlike WordNet, Wikipedia, a free online encyclopedia, boasts vast coverage in orders of mag-

nitude greater than that of lexical databases and thesauri. Wikipedia is particularly attractive as a
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source of semantic knowledge because each Wikipedia page provides a comprehensive descrip-

tion of a single topic or concept and can thus be seen as a representation of that concept. Several

techniques have been introduced for calculating term relatedness using Wikipedia. A very pop-

ular technique is the Explicit Semantic Analysis (ESA) approach presented in (Gabrilovich &

Markovitch 2009). This approach attempts to explicitly represent the meaning of natural language

by representing text documents in a high-dimensional space of Wikipedia concepts. Let D be a

collection of documents where each document di is represented using a tf-idf vector ~di where each

entry vj ∈ ~di is the tf-idf weight of word wj ∈ di. Let V be the vocabulary covered by the docu-

ment collection D. Let C be the collection of all Wikipedia concepts. An inverted index K called

a semantic interpreter is created where each vector ~kj ∈ K represents the association between the

corresponding term wj and the concepts in C. Thus the semantic interpretation of a document di

from the term-document space to the concept space is given by

~ci =
∑
wj∈di

vj . ~kj (2.8)

Where ~ci is the concept vector representation of the document di. Thus the similarity between

two documents di and dl can be computed by calculating the cosine similarity of their correspond-

ing concept vectors ~ci and ~cl.

A recent review of the ESA approach revealed that this approach works by exploiting term

co-occurrence in Wikipedia (Gottron, Anderka & Stein 2011). The authors also found that using

Wikipedia as an index collection for building the semantic interpreter did not perform best i.e.

other collections such as the Reuters corpus provided even better results. Furthermore, a semantic

index vector with random weights was found to perform nearly as good as the index vector created

using Wikipedia pages. This leads to the conclusion that while the ESA approach is effective in

improving text retrieval, it is neither taking advantage of, nor exploiting the semantic structure of

Wikipedia. In other words, the ESA approach cannot be regarded as a true knowledge-resource-

based approach for estimating term relatedness as the semantic interpreter could equally be created

from any suitable document collection or corpus with equal or better results.

A second category of Wikipedia-based metrics treat the Wikipedia category structure as a

taxonomy. Consequently, existing taxonomy-based metrics like the ones used for WordNet can

be adapted to work with the Wikipedia category structure. Such an approach was first intro-
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duced in (Strube & Ponzetto 2006) where the authors investigate three categories of term relat-

edness measures - distance based (Leacock & Chodorow (Leacock & Chodorow 1998) and Wu

& Palmer (Wu & Palmer 1994a)), information content based (Resnik (Resnik 1995)), and text

overlap based (extended gloss overlap (Banerjee & Pedersen 2003)) metrics.

The results of some studies indicate that Knowledge-resource-based approaches are known to

produce estimates of semantic relatedness that more closely match human judgment (Budanitsky

& Hirst 2006). However for the purpose of text classification, a more useful estimate of se-

mantic relatedness is one that better reflects the relatedness between terms in the target cor-

pus (Chakraborti, Wiratunga, Lothian & Watt 2007). This is definitely an advantage for distri-

butional approaches which can easily be ported to any specific domain or target corpus. Indeed,

this is very much the reason behind the success of techniques such as LSI and LDA that model

semantic relatedness that are specific to the underlying document collection. Also, knowledge

resources are typically far from being complete and without anomalies. In particular, WordNet is

well known for being sparse and having very limited coverage of domain-specific terms (Boyd-

graber et al. 2006). Also, knowledge resources typically contain multiple senses of the same term.

This is particularly worse for Wikipedia where, for example, the word car has over 50 senses in-

cluding the names of movies, music, sports, people and places. For some terms, the number of

senses could easily scale up to several hundreds. This means that the performance of semantic in-

dexing using WordNet and Wikipedia depends on effective mapping of terms to the correct sense

within these resources. These reasons make distributional approaches particularly attractive as an

effective and efficient option for computing semantic relatedness.

2.1.2 Distributional Approaches

Co-occurrence of terms within a given context in text corpora has been used extensively to infer

semantic relatedness. The principal motivation behind using corpus co-occurrence for term re-

latedness is the distributional hypothesis which states that words that occur in the same context

tend to have similar meaning. Thus two terms are similar to the degree to which they co-occur

within similar contexts as shown in figure 2.3. Several word contexts have been exploited for

obtaining term relatedness. For example, the hyperspace analogue for language (HAL) model in-

troduced in (Lund & Burgess 1996) uses a window of words on either side of the target word as

context. A word context derived from syntactic relations is presented in (Padó & Lapata 2007).
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Figure 2.3: Term Relatedness from Corpus Distribution.

Using syntactic relationships rather than simple co-occurrence allows to abstract over word order

and to also restrict consideration to associations of a defined semantic type rather than arbitrary

co-occurrences. Thus, the algorithm presented in (Padó & Lapata 2007) is designed to construct

semantic spaces from text annotated with grammatical relations. A more semantically rich event

context for words is presented in (Yan, Maxwell, Song, Hou & Zhang 2010) where sentences

are annotated with event information using the PropBank predicate-argument structure (Palmer,

Gildea & Kingsbury 2005).

All contexts presented so far have an associated processing cost. For example determining

context from window length requires a certain number of words on either side of each target word

to be maintained. Also, a context derived from syntactic and semantic relationships requires the

text to be annotated with such relationships. A much simpler approach is to consider the entire

document as the word context (Deerwester et al. 1990). Thus two words are similar to the extent

to which they occur is similar documents. A document context is also preferred in cases where

documents in the training corpus have short length. In the following sections we present three

different techniques for extracting term relatedness from corpus co-occurrence.

Document Co-occurrence

Documents are considered to be similar in the vector space model (VSM) if they contain a similar

set of terms. In the same way, terms can also be considered similar if they appear in a similar set

of documents. Given a standard term-document matrix D where columns vectors represent doc-
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uments and the row vectors represent terms, the similarity between two terms can be determined

by finding the distance between their vector representations. The relatedness between two terms,

t1 and t2 using the cosine similarity metric is given in equation 2.9.

RelDocCooc(t1, t2) =

∑n
i=0 t1,it2,i
‖ t1 ‖‖ t2 ‖

(2.9)

Latent Semantic Indexing

Recall that LSI uses SVD to exploit co-occurrence patterns of terms and documents to create a

semantic concept space which reflects the major associative patterns in the corpus. In this way, LSI

brings out the underlying latent semantic structure in texts. Accordingly, the semantic relatedness

of these terms can be obtained from the LSI decomposition. Given a term-document matrix D,

the decomposition of D is shown in equation 2.10.

D = U × S × V (2.10)

Where U is a term by dimension matrix, S a diagonal matrix of singular values and V a

document by dimension matrix. The U , S, V matrices are truncated to k dimensions which

represent the k most important concepts in the term-document space. Multiplying the truncated U

and S matrices produces rank-reduced term by dimension matrix U ′ as shown equation 2.11.

U ′ = U × S (2.11)

Semantic relatedness can thus be computed using an approach similar to 2.9 by calculating the

cosine similarity of term vectors in U ′ as shown in equation 2.12.

RelLSI(t1, t2) =

∑n
i=0 t1,it2,i
‖ t1 ‖‖ t2 ‖

(2.12)

Where t1 ∈ U ′ and t2 ∈ U ′.

Normalised Positive Pointwise Mutual Information

The use of mutual information to model term associations is demonstrated in (Church & Hanks

1990). Given two terms t1 and t2, mutual information compares the probability of observing
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t1 and t2 together in a given context (in this thesis we use a document level context), with the

probability of observing them independently as shown in equation 2.13.

PMI(t1, t2) = log2
P (t1, t2)

P (t1)P (t2)
(2.13)

If a significant association exists between between t1 and t2, then the joint probability P (t1, t2)

will be much larger than the independent probabilities P (t1) and P (t2) and thus, PMI(t1, t2)

will be greater than 0. Positive PMI (PPMI) is obtained by setting all negative PMI values to 0.

The probability of a term t can be calculated as the document frequency of t normalised by the

frequency of all words in all documents.

P (t) =
df(t)∑N
i=1 df(ti)

(2.14)

Where df(t) returns the document frequency of t, and N is the total number of terms in

the vocabulary. PMI values do not lie within the range 0 to 1 and thus, we need to introduce a

normalisation operation. We normalise PMI as shown in equation 2.15.

RelPMI(t1, t2) =
PPMI(t1, t2)

−log2P (t1, t2)
(2.15)

The different approaches reviewed in this section present an opportunity for studying the per-

formance of different semantic relatedness methods for semantic indexing. However, note that

all of the semantic relatedness metrics reviewed in this section, and all of the semantic indexing

approaches reviewed in section 2.2 are unsupervised. This means that the semantic document rep-

resentations produced are not optimised for text classification. The result of this is that the benefit

of traditional semantic indexing to text classification may be limited by the lack of supervision. In

the next section, we review approaches that have been proposed for supervised semantic indexing.

2.2 Semantic Indexing

Once we have understood how to compute semantic relatedness, we now need to understand how

this can be utilised to address the problem of variation in indexing vocabulary. Semantic indexing

is a technique that utilises semantic relatedness between vocabulary terms in order to improve

document representations (Deerwester et al. 1990). Thus, given a document d represented by the
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vector ~d, the general aim of semantic indexing is to apply a transformation function on ~d in order

to obtain a new representation ~d′ which better models the semantic relatedness between the terms

present in d and all related terms in the indexing vocabulary V as presented in equation 2.16.

d′ = φ(d) (2.16)

In this way, semantic indexing aims to allow reasoning beyond the exact terms present in

documents to other semantically related terms in order to improve classification performance. The

effect of semantic indexing is that the representations of similar documents are brought closer

together in the term-document space.

In the following sub-sections, we review a number of approaches to semantic indexing using

both knowledge-resource-based (WordNet), and distributional approaches.

2.2.1 Semantic Indexing using WordNet

Early work on semantic indexing using WordNet for text classification can be found in (Scott &

Matwin 1998). The proposed approach represents documents using semantic vectors of WordNet

synsets. The idea is to map individual terms in a given document to synsets and their hypernyms

(parents), and then using this using this to form a new vector representation for the document

called a hypernym density representation. Creating the hypernym density representation involves

three steps. Firstly, part-of-speech tagging is applied to all terms in the document. Secondly, the

synsets and corresponding hypernyms of all nouns and verbs are obtained from WordNet. A pa-

rameter h >= 0 is used to limit the height of the hypernym hierarchy being considered. Lastly,

the density of each synset, which is the number of occurrences of the synset in the document di-

vided by the number of words in the document, is computed. Evaluation was performed on six

text classification corpora using a rule-learning algorithm called RIPPER (Cohen 1995). Results

show the hypernym density representation to lead to a reduction in error rate on two datasets com-

pared to a standard BOW representation. However, on the remaining four datasets, no significant

improvement is observed over the BOW representation.

A more comprehensive evaluation of the hypernym density representation on larger dataset

sizes is presented in (Scott 1998). Evaluation was again performed using the RIPPER learning

algorithm. Results again show no significant improvement from the hypernym density representa-
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Figure 2.4: Details of LSI showing the truncation of the U , S and V matrices and the reconstructed
semantic term document matrix D′

tion compared to BOW. Note that both (Scott & Matwin 1998) and (Scott 1998) do not explicitly

utilise WordNet for semantic relatedness computation. Rather, WordNet synsets (concepts) are

used directly for indexing. Similar approaches have also been presented in (Gonzalo, Verdejo,

Chugur & Cigarrin 1998, Gomez et al. 2004, Rosso, Molina, Pla, Jimenez & Vidal 2004). In this

thesis, we refer to this as concept-based (semantinc) indexing which we discuss in further detail

in Section 2.5.

2.2.2 Latent Semantic Indexing

A popular semantic indexing approach is Latent Semantic Indexing (LSI) which uses singular-

value decomposition (SVD) to exploit co-occurrence patterns of terms in documents to create a

semantic concept space which reflects the major associative patterns in the corpus (Deerwester

et al. 1990). In this way, LSI brings out the underlying latent semantic structure in texts. Given

a term-document matrix D, SVD is used to decompose D into three matrices: U , a term by

dimension matrix; S a diagonal matrix of singular values; and V , a document by dimension matrix.

By ordering the singular values in S in decreasing order of size, S can be truncated to retain only

the top k largest singular values which correspond to the k most important concepts in the term-

document space. The U and V matrices are also truncated to the same rank as S. The product

of the rank reduced U , S and V matrices produces a term-document matrix D′ where the latent

semantic structure of documents and terms are better modelled. This process is illustrated in

Figure 2.4.

Figure 2.5 illustrates the process of semantic indexing of a document collection using LSI. Ini-
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Figure 2.5: Semantic indexing of a document using LSI

tial BOW vector representations are generated for the documents in the collection which together

form the term-document matrix. LSI is then applied on the entire term-document matrix in order

to map individual terms in the indexing vocabulary to latent concepts. The result of this process is

that document representations are transformed such that the weights of terms in the new semantic

vectors produced, reflect the membership of these terms to the latent concepts in the collection.

This way, the sparseness in the document vectors is reduced because the conceptual relatedness

between terms is now captured in the new document representations

LSI has a number of limitations as a framework for semantic indexing. Firstly, LSI provides

little flexibility over how the semantic relatedness of terms is computed. Semantic relatedness



2.2. Semantic Indexing 31

between terms are implicitly computed in the SVD process and captured in the resulting rank-

reduced term-document matrix D′. However, what if one wishes to use another approach for

computing semantic relatedness and not SVD? It is not clear from figure 2.1.2 how one can intro-

duce semantic relatedness computed using other approaches for use in semantic indexing.

Secondly, many instances of poor text classification performance from semantic indexing us-

ing LSI have been reported in the literature. For example LSI was found to produce very poor

results for text classification on the 20 Newsgroup dataset. (Zelikovitz & Hirsh 2001). Similarly,

LSI was also found to perform poorly in text classification on the Reuters 21578 dataset, com-

pared to standard non-semantic VSM representation (Zhang, Yoshida & Tang 2008). An extensive

evaluation of LSI on several text classification datasets using both kNN and SVM classifiers is pre-

sented in (Cachopo 2007) and on the 20 Newsgroup dataset, LSI was found to consistently lead to

a decrease in classification accuracy. An explanation for this poor performance of LSI is provided

in (Zelikovitz & Hirsh 2001) and (Liu, Chen, Zhang, ying Ma & Wu 2004) where the authors

attribute the poor performance of LSI to its inability to capture the discriminatory characteristics

of the respective classes in document representations.

A third limitation of LSI is computational cost. The SVD matrix decomposition is a com-

putationally expensive operation. In most cases, computing SVD for large document collections

is impractical and LSI is typically applied only to a sampled subset of documents instead of the

entire collection (Schütze, Hull & Pedersen 1995).

These limitations of LSI highlight the need for a framework that explicitly separates between

semantic indexing and semantic relatedness computation. Indeed, many approaches have been

proposed for computing semantic relatedness (some of these approaches are discussed in Sec-

tion 2.1) and it is important to review the performance of semantic indexing using these individual

approaches on text classification. To achieve this, a flexible framework is required that allows

semantic relatedness computed using any approach to be utilised for semantic indexing.

2.2.3 Latent Dirichlet Allocation

Another semantic indexing approach worth mentioning is Latent Dirichlet Allocation (LDA). LDA

is a generative probabilistic model in which each term in the vocabulary is modelled as a finite

mixture over a set of topics, and each topic is modelled as a mixture over a set of topic probabilities.

One of the goals of LDA is to find more concise descriptions of documents in a collection while
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Figure 2.6: Document generation using LDA.

preserving the essential relationships that are useful for estimating similarity between documents.

Accordingly, LDA aims to discover useful statistical relations between terms in a corpus. It is

assumed that the resulting topics are a more accurate estimation of the semantics of documents.

Thus, by reducing document representations to the space of latent topics from the corpus, much

of the inherent semantic relatedness between the individual terms in the vocabulary are implicitly

captured in the new representation. LDA is based on the intuition that when writing a document,

the author typically thinks of a number of topics that are relevant to that document with different

probabilities of relevance. The author then proceeds to draw terms from these topics in order to

compose the document as show in figure 2.6. Thus, given any document d with observed words

w, the relevant topic distribution can be obtained by inferring the probability distribution of the

words w over all topics (Steyvers & Griffiths 2007).

For text classification, we need to be able to compute document similarity using LDA-based

representations. The similarity between any two documents d1 and d2 can be computed by mea-

suring the similarity of their corresponding topic distributions θ1 and θ2. The distribution of topics

over a document can be regarded as a feature vector of the document in the space of topics. Thus,

similarity between documents can be computed using any standard geometric similarity functions
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e.g. cosine as shown in Equation 2.17.

Sim(d1, d2) =

∑k
i θ1,iθ2,i

‖ θ1 ‖‖ θ2 ‖
(2.17)

Unlike LSI, LDA is not designed particularly for the VSM even though, as equation 2.17

shows, it can be adapted for use in the VSM. For this reason, LDA is more widely used in proba-

bilistic text retrieval models which are a more natural fit for the LDA model (Wei & Croft 2006).

Also, similar to LSI, LDA provides very little flexibility over how semantic relatedness is com-

puted. Rather, semantic relatedness between terms is inherently captured in the probabilistic map-

ping of terms to latent topics. This further highlights the advantage of having a framework that

separates between semantic indexing and semantic relatedness computation.

2.2.4 Generalised Vector Space Model

The Generalised Vector Space Model (GVSM) was introduced in (Wong et al. 1987) as a technique

for introducing a measure of relatedness between terms into document vector representations. In

the GVSM, all terms ti in the indexing vocabulary V are assumed to have a corresponding vector

representation ~ti in euclidean space. Accordingly, the relatedness between any two terms ti and

tj can be computed as a function of the distance between their vector representations ~ti and ~tj

. The relatedness between any two terms is thus represented by a numerical value where totally

unrelated terms have a relatedness value of zero and higher values represent stronger relatedness.

If we assume (for sake of simplicity) that the similarity between any two documents q and d is

obtained as the dot product of their respective vector representations ~q and ~d, then this can be

obtained in the GVSM as shown in equation 2.19:

Sim(~q, ~d) =

|q|∑
i

|d|∑
j

wi~tiwj~tj (2.18)

Sim(~q, ~d) =

|q|∑
i

|d|∑
j

wiwj~ti~tj (2.19)

Where wi and wj are the initial (tf-idf, binary e.t.c.) weights for the terms ti ∈ d and tj ∈

q respectively. Note that the product of the two term vectors, ~ti and ~tj , provides the semantic
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relatedness between the corresponding terms ti and tj as shown in equation 2.20.

Rel(ti, tj) = ~ti~tj (2.20)

Therefore, the term vectors ~ti and ~tj need not be known so long as the similarity between terms

ti and tj (rel(ti, tj)) is known (Tsatsaronis & Panagiotopoulou 2009). Accordingly equation 2.19

can be rewritten as follows:

Sim(~q, ~d) =

|q|∑
i

|d|∑
j

wiwjrel(ti, tj) (2.21)

Thus, equation 2.21 allows any approach to be used for obtaining rel(ti, tj). This way,

the GVSM provides a convenient framework where the computation of semantic relatedness

(rel(ti, tj)) is separated from semantic indexing. This allows any effective approach for the com-

putation of semantic relatedness to be utilised for semantic indexing.

Semantic indexing using the GVSM model has been widely applied to text classification albeit

sometimes without explicit reference to the name GVSM e.g. (Chakraborti, Wiratunga, Lothian &

Watt 2007, Gabrilovich & Markovitch 2009, Nasir, Karim, Tsatsaronis & Varlamis 2011). Note

also that LSI can be used with the GVSM where SVD is used for acquiring semantic relatedness

between terms and GVSM is used for semantic indexing. This further demonstrates the advantage

of separating semantic relatedness computation from semantic indexing. In the next sub-section,

we present a detailed review of several approaches that have been proposed for semantic related-

ness computation .

2.3 Supervised Semantic Indexing

The main limitation of conventional semantic indexing approaches for supervised tasks is that

these techniques are agnostic to class knowledge. This means that the semantic representations

produced using these approaches are not necessarily the best fit for the class distribution of the

document collection (Aggarwal & Zhai 2012). This is a well recognised problem and a number

of supervised extensions to traditional semantic indexing approaches have been proposed. We

discuss the most popular of these approaches in the following sub sections.
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2.3.1 Supervised LSI

An extension of LSI called supervised LSI (SLSI) that iteratively computes SVD on term similar-

ity matrices of separate class is presented in (Sun, Chen, Zeng, Lu, Shi & Ma 2004). A separate

term-doc matrix is constructed for each class and in each iteration, SVD is performed on each

class-specific term-doc matrix. The most discriminative eigen vector across all categories is se-

lected as the basis vector in the current iteration. The effect of the selected eigen vector is then

subtracted from the original term-document matrix. The iteration continues until the dimension of

the resulting space reaches a predefined threshold. The evaluation compared three types of rep-

resentations: standard BOW without semantic indexing, unsupervised LSI and SLSI using kNN

and SVM classifiers. Results show SLSI performs better than LSI. However, SLSI only achieved

marginal gains over BOW using kNN while both SLSI and LSI failed to perform better than SVM.

2.3.2 Sprinkled LSI

A more promising supervised extension to LSI which uses an approach called sprinkling where

class-specific artificial terms are appended to representations of documents of the corresponding

class (Chakraborti, Lothian, Wiratunga & Watt 2006). LSI is then applied on the sprinkled term-

document space resulting in a concept space that better reflects the underlying class distribution of

documents. An overview of the sprinkling process is shown in Figure 2.7.

Sprinkling involves generating a set of artificial terms for each class in the training corpus.

Document representations is the term-document matrix D are then augmented with the artificial

terms that correspond to their respective class. A higher order term-relatedness approach e.g.

LSI is then applied on the augmented term-document space which results in stronger associations

between terms that occur more often within documents of the same class. An important consider-

ation for sprinkling is the number of artificial terms to sprinkle. In (Chakraborti et al. 2006), the

authors found sprinkling 16 terms per-class to give optimal performance. A more sophisticated

approach called adaptive sprinkling which optimises the number of sprinkled terms for each in-

dividual dataset based on dataset complexity is presented in (Chakraborti, Wiratunga, Lothian &

Watt 2007). Adaptive sprinkling exploits the confusion matrix of each dataset produced by a clas-

sifier. A confusion matrix records the performance of the classifier such that the columns of the

matrix represent the instances predicted by the classifier and the rows represent the actual instances
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Figure 2.7: Sprinkling.

that belong to the class. The non-diagonal entries of the confusion matrix therefore represent the

instances the are misclassified by the classifier. The larger the entry in a non-diagonal cell, the

harder that class is to the classifier. In this way, adaptive sprinkling allocates more artificial terms

to the harder classes.

Sprinkled LSI was compared with unsupervised LSI and SVM on a number of classification

tasks. Results showed sprinkled LSI to significantly out perform both unsupervised LSI and SVM.

However, a major limitation of sprinkling and adaptive sprinkling is that both techniques are only

applicable to higher order term relations. This is because the ‘sprinkled’ term-document space

has no effect on first-order term relations. Therefore, there is a need for a more general approach

for utilising class knowledge for semantic indexing. Particularly, we need a method that is inde-

pendent of the type and order of semantic relatedness. Furthermore, adaptive sprinkling requires

the number of artificial terms used for sprinkling to be optimised for each individual class which

introduces a significant overhead if the number of classes is large.
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Figure 2.8: Graphical model of LDA and SLDA

2.3.3 Supervised LDA

A supervised version of LDA called sLDA is presented in (Blei & McAuliffe 2008). Here, a

response variable (class label, real value, cardinal or ordinal integer value) associated with each

document is added to the LDA model. Thus the topic model is learned jointly for the documents

and responses such that the resultant topics are good predictors of the response variables. The

difference between LDA and sLDA topic modelling approaches is illustrated in figure 2.8.

Figure 2.8 is a graphical model representation of LDA (top) and sLDA (bottom). As can be

observed, the main difference between the two models is that sLDA includes a response variable

Yd which is conditioned on the response parameters η and δ. This means that prediction is also

built into sLDA i.e. given any document, it is possible to predict the response variable Yd directly

from the sLDA model without the need to use any classifier. Thus, sLDA is more than simply a

semantic indexing technique.
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The predictive performance of sLDA on two regression tasks compared with LDA and lasso

(L1-regularized linear regression) suggests moderate improvements on both tasks. However,

sLDA inherits much of the disadvantages of LDA including computational cost and choice of

an optimal number of topics.

2.4 Supervised Document Indexing

Term weighting is a critical part of document indexing in the VSM. The goal of term weight-

ing is to assign, for each term tj in the indexing vocabulary and for each document di, a weight

wi,j which represents how much tj contributes to the discriminative semantics of di. Because

of the unsupervised nature of the traditional tf-idf term weighting scheme, it is not likely to be

optimal for text classification. In particular, the suitability of idf for text classification has been

challenged (Debole & Sebastiani 2003). The aim of idf is to assign higher weight to terms that

better distinguish the small set of documents that are likely to be relevant to any given query from

the much larger set of irrelevant documents in the collection. Note that this assumption is more

intuitive for information retrieval where typically, a large heterogeneous collection of documents

is expected to cater for a diverse multitude of user information needs or topics. However, for

text classification, the set of topics (i.e. classes) are much fewer (in many cases just two) and

are explicitly labelled in the training collection. Thus, a number of supervised document index-

ing approaches have proposed replacing the idf component of the tf-idf weighting scheme with a

supervised alternative which better captures the class distribution of terms as presented in equa-

tion 2.22 (Debole & Sebastiani 2003, Deng, Tang, Yang, Li & Xie 2004, Lan, Tan & Low 2006).

wi,j = tfi,j × δ(tj) (2.22)

Where wi,j is the weight of term tj in document di, tfi,j is the term frequency of tj in di

and δ(tj) is a function that returns the supervised weight of tj . In practice, δ(tj) is typically

obtained using supervised feature selection metrics e.g. Chi-square, Information Gain, Gain Ratio

or Mutual Information. For example, supervised weighting with χ2 using the approach presented

in equation 2.22 is as shown in equation 2.23.

wi,j = tfi,j × χ2(tj) (2.23)
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Given the entire vocabulary V of a document collection, feature selection is a technique used

for selecting a subset U ⊂ V of the most important terms for use as an optimised indexing

vocabulary. This involves computing for each term tj ∈ V , a statistical score of term importance

which is used to rank all terms in V . Terms that rank below a certain threshold are subsequently

excluded from the new indexing vocabulary U . Note that this score of term importance can be

used as a weight for terms such that more important terms have a greater contribution to document

representation.

Feature selection approaches can be categorised into supervised and unsupervised. For the pur-

pose of this discussion, we will focus exclusively on supervised feature selection metrics. Many

supervised feature selection techniques have been proposed in the literature which include Infor-

mation Gain (IG), Chi squared (χ2), Mutual Information, Gain Ratio (GR) and Odds Ratio (OR).

The mathematical formulations of these feature selection metrics are given in table 2.1, where

p(tj , ck) is the probability that a document contains the term tj and belongs to the class ck, p(tj)

is the probability that a document contains the term tj , and ck is the probability that a document

belongs to class ck.

Function Formula

Chi-squared χ2(tj , ck) =
(P (tj ,ck)P (t̄j ,c̄k)−P (tj ,c̄k)P (t̄j ,ck))2

P (tj)P (t̄j)P (ck)P (c̄k)

Information Gain IG(tj , ck) =
∑

c∈{ck,c̄k}
∑

t∈{tj ,t̄j} P (t, c)log P (t,c)
P (t)P (c)

Gain Ratio GR(tj , ck) =

∑
c∈{ck,c̄k}

∑
t∈{tj ,t̄j}

P (t,c)log
p(t,c)

p(t)p(c)∑
c∈{ck,c̄k} P (c)logP (c)

Mutual Information MI(tj , ck) = log
P (tj ,ck)

P (tj)P (ck)

Odds Ratio OR =
df(tj ,ck)/df(t̄j ,ck)
df(tj ,c̄k)/df(t̄j ,c̄k)

Table 2.1: Supervised Feature selection metrics.

Let N be the number of documents in the collection, Nck the total number of documents

that belong to class ck, df(tj) the number of documents in the collection that contain the term

tj , df(tj , ck) the number of documents belonging to class ck that contain term tj . Then, the

probabilities in table 2.1 can be computed as follows:
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p(tj , ck) = df(tj , ck)/N

p(tj) = df(tj)/N

p(ck) = Nck/N

A comparative analysis on feature selection techniques for text classification found χ2 and IG

to give the best performance (Yang & Pedersen 1997). These results are supported by another

comparative study of a larger set of feature selection metrics where IG and χ2 were found to

give the best performance in terms of precision (Forman 2003). IG is a measure of the information

available for category prediction by knowledge of the presence or absence of a term in class. Thus,

the higher IG value of a term tj , the more important tj is for class prediction. On the other hand,

χ2 measures the lack of independence between a term tj and a class ck. Accordingly, the higher

the χ2 score of a term tj the more important tj is for class prediction. Despite the differences in the

fundamental approach of IG and χ2 to feature selection, both techniques are good at measuring the

predictiveness of terms, hence their good performance on feature selection. This means that both

IG and χ2 are likely to produce good results when used for providing supervised term weights.

Indeed, this intuition is supported by results of a comparative study of tf-idf and supervised term

weighting approaches presented in (Deng et al. 2004). The supervised weights considered are:

tf-CHI which combines tf with χ2, and tf-OddsRatio which combines tf with Odds Ratio where,

in both cases, tf is combined with the supervised weight as shown in equation 2.22. Results of a

comparative evaluation on text classification using SVM showed tf-CHI to outperform the other

weighting schemes while the second best weighting scheme was tf-OddsRatio.

A more extensive comparative analysis using different classifiers: Rocchio, SVM and KNN,

is presented in (Debole & Sebastiani 2003). Here also, the authors use the same approach as

equation 2.22 for supervised term weighting using χ2, Gain Ratio (GR) and Information Gain

(IG), and compared these with standard tf-idf. Of the three supervised weighting approaches, GR

produced the best result across all three classifiers followed by χ2. Supervised weighting with IG

was found to produce rather disappointing results. Also, the results show that supervised weighting

does not always produce improvements as all three supervised approaches were outperformed by

tf-idf on a number of datasets.
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Mixed performance from supervised weighting was also reported in (Lan et al. 2006). Here,

the authors propose a new supervised weighting component called relevance factor (rf) which as-

signs a weight wi,j to a given term ti with respect to class cj , proportional to the relative frequency

ti in cjas shown in equation 2.24.

rf = log(2 +
f(ti, cj)

f(ti, c̄j)
) (2.24)

Where f(ti, cj) is the frequency of ti in cj and f(ti, c̄j). A comparative evaluation was per-

formed to compare supervised term weighting using tf-rf, tf-CHI, tf-IG and tf-OddsRatio, and

unsupervised term weighting using term frequency (tf ), tf-idf and binary on text classification us-

ing kNN and SVM. Supervised weighting was done using equation 2.22. Results showed that

supervised term weighting was not consistently better than unsupervised term weighting. Of the

supervised term weighting approaches, only tf-rf was found to outperform tf-idf. The other su-

pervised term weighting approaches, tf-CHI, tf-IG and tf-OddsRatio, all performed consistently

worse than tf-idf.

The lack of consistent improvement from supervised document indexing indicates that effec-

tive use of supervised weighting for document representation remains an open research problem.

Indeed, all the approaches reviewed share the same assumption that that the idf component of

tf-idf should be replaced by a supervised weighting scheme e.g. χ2 or IG. However, while

the intuition for the introduction of supervised weights is sound, the need to replace idf is less

so. Indeed, empirical evidence shows that idf does work well for text classification (Debole &

Sebastiani 2003, Lan et al. 2006). Thus, given the success of tf-idf in text classification, there

is no sound justification why a supervised weighting scheme needs to replace idf. An effective

supervised document indexing scheme should be able to introduce supervision by building upon

tf-idf (or any other successful term weighting scheme). This way, supervised document indexing

should be able to combine the benefits of both unsupervised weighting e.g. idf, and supervised

term weights in a systematic fashion.

2.5 Concept-Based Document Indexing

The limitation of terms to adequately model the semantics of text documents means that some-

times, more semantically rich indexing units are required. In this section, we will review a number
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of proposed approaches for the indexing of documents using conceptual information. These ap-

proaches typically represent documents using vectors of concepts from a lexicon or an ontology.

Most often, general purpose lexicons and ontologies are used for these approaches e.g. WordNet

and The Kim Ontology (Popov, Kiryakov, Kirilov, Manov, Ognyanoff & Goranov 2004).

Several approaches have been proposed for indexing of text documents using WordNet con-

cepts (Gonzalo et al. 1998, Scott 1998, Gomez et al. 2004, Rosso et al. 2004). The primary aim

of WordNet-based approaches is to address word ambiguity by mapping terms to specific, dis-

ambiguated concepts in WordNet. Thus, these approaches are largely similar, and mainly differ

on details such as the specific approach used for mapping from document terms to WordNet con-

cepts. Other considerations include how to filter irrelevant concepts and how to assign weights to

concepts in the new document representation (Gomez et al. 2004). For document indexing, these

approaches either replace the Bag-Of-Words (BOW) vector with a Bag-Of-Concepts (BOC) vec-

tor (Scott 1998, Rosso et al. 2004), or augment the BOW vector by introducing new dimensions

for concepts (Gomez et al. 2004). An important limitation of these WordNet-based approaches

however, is that they are sensitive to the quality of word sense disambiguation used for mapping

terms to concepts (Gomez et al. 2004).

Other approaches have proposed an extended VSM that uses concepts from ontologies for

semantic indexing of documents (Kiryakov et al. 2004, Popov et al. 2004, Vallet, FernÃąndez &

Castells 2005). These approaches also index document using either an exclusive concept-based

vector (Vallet et al. 2005) or using a combination of a BOW vector and a BOC vector (Kiryakov

et al. 2004, Popov et al. 2004). The advantage of using ontologies for document indexing com-

pared to WordNet is that the set of concepts in ontologies typically contain good coverage of

named entities (i.e. persons, places, organisations e.t.c.). Ontologies also contain rich seman-

tic connections (relationships) between concepts which allow for inferential reasoning (e.g. that

’Nile’ is an instance of the concept River). This makes the use of ontologies particularly attractive

for use in IR because they allow for answering complex queries such as “give me a list of all rivers

in Africa”. However, note that achieving this requires concepts to be extracted form the both

queries and text documents, and mapped to concepts in the ontology. Also, mapping extracted

concepts to an ontology is only necessary if the target ontology contains relationships of interest,

and also, if mechanism exist to support this type of inference.

The use of ontologies for document indexing presents interesting opportunities. However,
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ontology-based document indexing is a research area that is still in its infancy and requires satis-

factory levels of performance at many stages (e.g. having a suitable ontology, a mapping approach

from document terms to concepts, inference mechanisms e.t.c.) in order to derive benefit (Vallet

et al. 2005). Accordingly, in this thesis, we investigate the use of information extraction to derive

a concept-based indexing vocabulary directly from the contents of text documents. An important

advantage of this approach is that our indexing vocabulary is not limited to the set of concepts

available in WordNet , or any ontology.

2.6 Datasets

The evaluation of the techniques and algorithms developed in this thesis is carried out using text

classification datasets covering various different domains including news stories, incident reports,

medical abstracts, online reviews and discussion forums. The variety in domain of these datasets is

designed to allow for a more robust evaluation of our approaches. Also, these corpora are designed

for a variety of different classification tasks e.g. sentiment classification (Movie Reviews, Amazon

Reviews, Twitter Dataset), topic classification (Reuters Volume 1, Ohsumed, 20 Newsgroups) and

semantic classification (Incident Reports). This also allows us to evaluate the suitability of our

approaches for various different types of classification tasks.

In the experiments in this thesis, we use a total of 37 binary-class datasets, and 5 multi-class

datasets, each with equal number of documents in each class. Binary classification is important

because most text classification problems consist of binary classification tasks (Sebastiani 2002).

For example, the first group of 13 datasets come from the Ohsumed corpus. Also, multi-class

classification problems can easily be framed as a number of binary classification tasks. These

datasets are created from a number of different source corpora as shown in 2.2. An overview of

these datasets and their corresponding source corpora is given in Table 2.2. We describe these cor-

pora in detail in the following sub-sections. Our binary-class datasets were created by combining

documents from similar classes e.g. the HardW dataset is a combination of the 2 hardware classes

of the 20 Newsgroups dataset i.e. comp.sys.ibm.pc.hardware and comp.sys.mac.hardware. These

types of datasets are expected to represent a more challenging classification boundary because of

the similarity between the two classes. A complete listing of the combination of classes for each

dataset is given in Appendix C.
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Datasets Corpus Ave Dataset
Voc. Size
(Terms)

Ave. Doc.
Length
(Terms)

BactV, CardR, NervI, MouthJ,
NeopE, DigNut, MuscS, En-
doH, MaleF, PregN, ImmunoV,
NervM, RespENT, Ohsumed01,
Ohsumed02, Ohsumed03,
Ohsumed04

Ohsumed 13,000 65

Hardw, MedSp, CryptE,
ChrisM, MeastM, GunsM,
AutoC, Science

20 Newsgroups 15,980 76

StratM, EntTour, EqtyB, FudA,
InRelD, NProdRes, ProdNP,
OilGas, ElectG

Reuters 18,304 104

Fire, Collision, Rollover, Coll-
Roll, MiscInc, CraneFP, ShovFP

Incident Re-
ports

1,340 19

MovieRev MovieReviews 33,345 232

Table 2.2: Datasets used in this thesis and their source corpora, along with statistics of average
vocabulary size and average document length.

2.6.1 Ohsumed

This is a subset of MEDLINE, an online database of medical literature, and comprises a collection

of 50,216 medical references from medical journals from the year 1991 2. The Ohsumed collection

is unequally divided into 23 classes according to different disease types e.g. Virus Diseases.

This corpus contains documents written in clean language with a high number of domain-specific

medical terms. The original categorisation of documents in this collection is non-disjoint which

means the same document can be categorised under two or more different classes if it is relevant

to all those classes. For our experiments, we selected only documents that belong to a single class.

We created a total of 13 binary class datasets from this corpus, each dataset containing 100

documents, balanced equally between the two classes. The 13 datasets have an average vocabu-

lary size of about 13,000 unique terms per dataset. The average document length of the datasets

is 65 unique terms. This corpus has widely been used in topic-based text classification experi-

ments (Joachims 1998)

2Available for download at http://disi.unitn.it/moschitti/corpora/ohsumed-all-docs.tar.gz
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2.6.2 20 Newsgroups

This corpus is a collection of 20,000 documents collected from Newsnet newsgroups messages 3.

The collection is partitioned almost equally into 20 classes of 1,000 documents each, according

to newsgroup topics. For example, the class sci.space contains messages relating to space. The

corpus contains documents with user generated content which means that spelling is not perfect.

Documents have an email-style format which means that they often contain address headers and

signature which contain information such as email addresses, names and addresses. Documents

also contain replies to previous messages where the previous message is quoted in the document.

All these make the 20 Newsgroups a noisy corpus where the content of documents are mixed with

non-topic text.

We created 7 binary datasets from this corpus where each dataset contained 500 documents

in each class. The total vocabulary size of the documents is 15,980 unique terms and the average

document length is 76 terms.

2.6.3 Reuters Volume 1

This corpus is an archive of 806,791 news stories provided by the global news provider, Reuters (Lewis,

Yang, Rose & Li 2004). This corpus is available by making an application to Reuters Ltd 4. The

collection comprises all news stories produced by Reuters journalists within a one year period

starting from August, 1996. Documents within the collection are tagged with descriptive metadata

specifying codes for topic, region and industry sector. Topic codes represent the subject area of

each news story. These are organised into four hierarchical groups with top-level categories: Cor-

porate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT) and Markets (MCAT).

Industry codes are used to indicate the type of business or industry referred to by the news story

and are also arranged in a hierarchy. Region codes indicate the geographical region referred to in

the news story. Only topic codes and industry codes where used when creating datasets for our

evaluations.

Documents in this corpus are produced by professional news journalists which means that they

are often written in clean language without misspellings. However, many documents also contain
3Available for download at http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
4Details of how to obtain this Corpus is available http://trec.nist.gov/data/reuters/reuters.html
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tabular data where much of the content is numbers (e.g. share prices). These types of documents

present potential challenges for identifying a clear class boundary. This is because having a high

frequency of numbers in documents tends to lead to a more sparse document representations as

different instances of the same number do not mean the same thing.

A total of 9 binary-class datasets were created from the Reuters corpus with an average vocab-

ulary size of 18,304 unique terms per dataset The average document length is 104 unique terms.

Two of these datasets, OilGas and ElectG, constitute of classes from the industries, CRUDE OIL

EXPLORATION & NATURAL GAS EXPLORATION, and ELECTRICITY PRODUCTION &

GAS PRODUCTION respectively, rather than topic.

2.6.4 Incident Reports

This corpus was created using incident reports crawled from the Government of Western Aus-

tralia’s Department of Mines and Petroleum website 5 in November 2011. Incident reports are

organised on the website in categories e.g. Outbreak of fire, indicating the nature of the incident.

The distribution of reports in each category is quite variable with some categories having less than

50 reports and others having more than 200. We selected only categories having more than 200

reports.

Under each incident category, incident reports are further classified into Injury and NoInjury

categories depending on whether or not injuries were sustained in the incidents they describe. At

the time of crawling the website, each incident report was available as a single html file which we

downloaded and extracted the incident description from, in order to create the datasets. Incident

reports are professionally written and clean. However, they are also very brief and straight to the

point in their description.

We created a total of 7 datasets with an average vocabulary size of 1,340 unique terms per

dataset. Documents in the datasets have an average length of 19 terms. Each dataset contains a

total of 200 documents distributed equally over the two classes (i.e. 100 documents per class).

The datasets have been made available online 6.

5http://dmp.wa.gov.au
6https://www.dropbox.com/sh/myrdhqq9ccf00dd/AABIBmfZhTzRypdCWum7oBF-a?dl=0
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2.6.5 Movie Reviews

This is a sentiment classification corpus comprising movie reviews from the Internet Movie Database

(IMDB) (Pang, Lee & Vaithyanathan 2002). We used version 1.0 of this corpus which contains

1400 reviews, half of which are classified as expressing positive sentiment while the other half

is classified as negative 7. Accordingly, the classification task for this dataset is to determine the

sentiment orientation of any given review.

Despite this corpus being popularly referred to as a movie reviews dataset, documents contain

much more than just the review of the movie including a list of cast and a synopsis. We treat the

entire corpus as a single dataset. This dataset has a vocabulary size of 33,345 unique terms and an

average document length of 232 terms, making this the dataset with the longest documents in our

collection.

2.7 Chapter Summary

In this chapter, we discussed text representation using the Vector Space Model (VSM). We showed

how the use of the traditional VSM for text classification suffers three major limitations. The first

is the problem of variation in indexing vocabulary. This is commonly addressed using semantic

indexing approaches which aim to capture semantic relation between terms and use this infor-

mation to generalise document representations away from low-level expressions to higher-level

semantic concepts. Much work has been done in using semantic indexing for text classification.

However, the lack of consistent improvement indicates that a proper investigation into the role of

semantic indexing for text classification is required. Accordingly, in this thesis, we evaluate the

performance of semantic indexing on text classification tasks. This evaluation allows us to answer

one important question, how beneficial is semantic indexing for text classification? We also carry

out a detailed analysis of the semantic indexing process in order to identify reasons why semantic

indexing may lead to poor text classification performance. Based on our findings, we propose a

semantic indexing framework that addresses the limitations identified in our analysis.

The second limitation of the VSM is the problem of suboptimal document vectors due to the

lack of supervision. We reviewed a number of approaches that have been proposed for supervised
7Download at http://www.cs.cornell.edu/people/pabo/movie-review-data/mix20_rand700_tokens_cleaned.zip
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document indexing using supervised term weighting. These approaches use the popular tf-δ(t)

technique which combines term frequency (tf ) with a supervised weighting function (δ(t)). How-

ever, the lack of conclusive improvements from these supervised indexing approaches indicates

that the proper use of supervised weighting for document representation remains an open research

challenge. Indeed, all the approaches reviewed share the same assumption that the idf component

of tf-idf should be replaced by a supervised weighting scheme e.g. χ2 or IG. However, the need

to replace idf is not well motivated especially when empirical evidence shows that idf does work

well for text classification (Debole & Sebastiani 2003, Lan et al. 2006). Thus a proper frame-

work for supervised document indexing should be able to combine the advantages of both idf and

supervised term weights in a systematic fashion. Accordingly in this thesis, we investigate the

application of our indexing framework for the supervised document indexing.

Traditional semantic indexing approaches are not optimised for text classification because of

the lack of supervision at all stages of the process. We reviewed a number of approaches that

have been proposed for supervised semantic indexing e.g. supervised LSI (SLSI), sprinkled LSI

(SprLSI) and supervised LDA (SLDA). However, evaluation of SLSI has not shown conclusive

improvement over LSI while SprLSI requires complex parameter tuning e.g. the optimal number

of terms to use for sprinkling which so far needs to be determined individually for each dataset.

SLDA also requires complex parameter tuning e.g. the optimal the number of topics to use. Fur-

thermore, sLDA is a computationally expensive process and can easily take several hours to com-

plete even on small datasets (Xu, Chen, Weinberger & Sha 2012). These reasons make simpler

and computationally efficient semantic indexing approaches preferable.

The limitation of a term-based indexing vocabulary is typically addressed using either an in-

dexing vocabulary of concepts from a lexicon e.g. WordNet or an ontology. However, the two

options are far from being satisfactory solutions. For certain domains and tasks e.g. semantic

indexing of incident reports, both approaches do not capture the type of semantic concepts (i.e.

events) needed for effective document indexing. Accordingly, in Chapter 7 of this thesis, we

investigate the use of information extraction for semantic indexing of incident reports.



Chapter 3

When to use Semantic Indexing

Semantic indexing is used to address the problem of variation in indexing vocabulary by discover-

ing semantic relations between terms and using this knowledge to identify conceptual similarity.

The expectation is that the semantic representations produced by semantic indexing should lead to

better text classification performance. Indeed, semantic indexing using LSI, as well as semantic

relatedness mined using first and higher order term associations were found to improve text clas-

sification performance in (Chakraborti, Wiratunga, Lothian & Watt 2007). An evaluation of LSI

on six classification datasets also showed the average performance of LSI to be better than that of

a basic BOW representation (Cardoso-cachopo, Tulisbon, Av & Pais 2007).

However, although semantic representations have proven quite beneficial, it remains to be

determined whether semantic indexing consistently improves text classification performance. For

example, semantic indexing using LSI in (Cristianini, Shawe-Taylor & Lodhi 2002) produced no

significant improvement while in (Zelikovitz & Hirsh 2001), (Liu et al. 2004) and (Zhang et al.

2008), LSI performed worse than not using semantic indexing. In (Smeaton 1997), the authors

report poor document retrieval performance in an IR task, from semantic indexing using WordNet.

In addition, (Basili, Cammisa & Moschitti 2005) found that semantic indexing using WordNet

only improved text classification performance when limited training documents are available (in

general less than 100 documents). This led the authors to conclude that semantic indexing does

not improve classification performance if there is sufficient training data.

For these reasons, in this chapter we address two important questions:

1. How much improvement on text classification performance can we achieve with semantic
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indexing?

2. Can we predict instances when semantic indexing is likely to improve classification perfor-

mance?

We address the first question by empirically evaluating the performance of both knowledge-

resource-based and distributional semantic relatedness techniques on a number of text classifica-

tion datasets. To address the second question, we investigate the use of meta learning for predicting

when to use semantic indexing. The objective of meta-learning is to produce proper guidance on

the right algorithm to use, from a number of available algorithms and techniques, according to

the nature of the problem. (Vilalta, Giraud-Carrier, Brazdil & Soares 2004). Our hypothesis is

that datasets which do not benefit from semantic indexing will likely have similar attributes. Ac-

cordingly, we present several attributes of text datasets that are predictive of the performance of

semantic indexing. We use these attributes in a meta case-based system to predict, given any text

dataset, whether or not to apply semantic indexing for representation. Being able to accurately

predict when semantic indexing is not likely to improve retrieval performance means that we can

conveniently avoid the overhead of semantic indexing in the first place.

The rest of this chapter is structured as follows, in Section 3.1 we review the performance of

semantic indexing on text classification tasks, using four different knowledge-resource based and

three different distributional approaches for computing semantic relatedness. In Section 3.2, we

introduce meta-learning and present our case-based approach for predicting when to use semantic

indexing along with a description of the dataset attributes which we use for case representation. An

evaluation of our case-based approach is also presented. We conclude this chapter with a summary

in Section 3.3.

3.1 Performance of Semantic Indexing

We address our first question of whether semantic indexing always improves text classification

performance by running a number of text classification experiments where, for each evaluation,

we have two types of representations of the same dataset, one a baseline Bag-Of-Words (BOW)

representation and a second semantic representation produced using semantic indexing. Accord-

ingly, the benefit from semantic indexing can be quantified as the extent to which text classifica-
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tion performance on the semantic representations improve on the BOW baseline representations.

Since our representation is based on the Vector Space Model (VSM), we need a semantic index-

ing approach for introducing semantic relatedness into the vector representations of documents.

To achieve this, we use the generalised vector space model (GVSM) which we described in Sec-

tion 2.2.4. This allows us to experiment with several different approaches for computing semantic

relatedness. Accordingly, our evaluation is divided into 2 subsections. In sub-section 3.1.2, we

present a comparative analysis of semantic indexing using the knowledge resource WordNet for

providing semantic relatedness. In subsection 3.1.3, we present semantic indexing using distri-

butional approaches. In all cases, pairwise semantic relatedness values are computed using the

respective semantic relatedness approach and provided to the GVSM for semantic indexing.

3.1.1 Experiment Setup

In all experiments in this thesis, we report classification accuracy in percentage over 5 runs of 10-

fold cross validation. This means that each dataset is divided into 10 equal parts called folds, with

each fold containing equal number of documents from all classes. Each fold is then used in turn

as a test set and the remaining 9 parts are used for training. The 5 runs are achieved by randomly

re-arranging the order of documents in each dataset and running another 10-fold cross validation.

Classification is performed using a similarity weighted kNN approach with k=3, where each test

document is taken in turn and the cosine similarity metric is used to identify the 3 most similar

documents in the training set and the class of the documents with the highest weight (similarity)

is assigned as the class of the test document. The value of k = 3 was chosen after conducting

experiments with different values of k (3, 5, 10, 15 and 20) and no significant difference (using

an Anova test) was found for the results produced by the different values of k. The value of 3 for

k was chosen over higher values for efficiency sake. A table with the results of this comparative

analysis of the k is presented in Appendix B.

Accuracy is calculated as shown in Equation 3.1.

Accuracy =
tp+ tn

tp+ tn+ fp+ fn
(3.1)

where tp stands for true positives, tn for true negatives, fp for false positives and fn for false

negatives. The definitions of these terms are best understood with the help of a confusion matrix
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Ground Truth
c1 c̄1

Classifier
c1 True Positives False Positives
c̄1 False Negatives True Negatives

Table 3.1: Confusion Matrix.

shown in Table 3.1. Across the top of this table are the observed class labels (ground truth), while

along the left side are the classes predicted by the classifier and each cell contains a count of the

number of predictions made by the classifier that match the appropriate class label.

Statistical significance is reported at 95% using paired t-Test. Standard pre-processing opera-

tions i.e. lemmatisation and stopwords removal are also applied to all datasets. Feature selection

using χ2 metric is used to limit our term-document space to the top 100 most informative terms

for the incident reports datasets (due to their smaller vocabulary size) and top 300 terms for all

other datasets.

3.1.2 Semantic Indexing using Knowledge-resource-based Approaches

In this section we present classification results of semantic indexing using WordNet for providing

semantic relatedness. We include in our comparison, semantic relatedness computed using Wu &

Palmer, Lin, Leacock & Chodorow and Jiang & Conrath metrics (see Section 2.1.1). Accordingly,

we compare the following representations:

• BASE- Baseline VSM representation, no semantic indexing

• WUP - Semantic indexing with semantic relatedness computed using Wu & Palmer metric

• LIN - Semantic indexing with semantic relatedness computed using Lin metric

• LCH - Semantic indexing with semantic relatedness computed using Leacock & Chodorow

metric

• JCN - Semantic indexing with semantic relatedness computed using Jiang & Conrath metric

Text classification results are presented in Table 3.2. Results presented with a ‘+’ sign rep-

resent a statistically significant improvement compared to the baseline (BASE) and best result in

each row is presented in bold. Values with the ‘-’ represent a statistically significant decline in
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Dataset BASE WUP LIN LCH JCN
Ohsumed

BactV 85.1 76.3- 77.2- 86.2+ 85.2
CardR 90.0 82.8- 84.2- 90.6 89.2
NervI 91.4 83.4- 85.1- 90.4- 88.9-
MouthJ 89.9 86.4- 89.8 83.1 88.7-
NeopE 91.6 85.9- 91.2 84.1 91.9
DigNut 87.8 80.3- 88.4 77.7 88.4
MuscS 83.1 76.7- 83.2 73.5 84.0
EndoH 91.4 79.4- 89.1- 75.6 91.3
MaleF 92.3 86.9- 92.3 85.2 92.0
PregN 89.7 80.3- 87.4- 78.2 87.5-
ImmunoV 78.7 72.6- 77.7 70.1 76.5-
NervM 84.5 81.4- 83.9 76.0 85.5
RespENT 87.2 77.4- 87.7 72.6 87.7

20 Newsgroups
Hardw 89.8 87.9- 88.2- 90.4 90.1
MedSp 95.9 89.6- 89.4- 95.2 95.3
CryptE 95.9 71.6- 71.5- 92.7- 95.4
ChrisM 88.9 81.9- 88.5 79.4 89.0
MeastM 95.1 89.3- 94.8 82.8 95.2
GunsM 93.4 85.5- 91.4- 82.5 92.3-
AutoC 94.4 83.8- 93.3 80.1 94.7

Reuters
StratM 88.8 77.5- 76.2- 85.5- 88.0
EntTour 94.7 82.5- 85- 92.7- 94.6
EqtyB 95.7 83.3- 86.3- 93.7 95.7
FundA 90.3 77.0- 76.5- 85.2- 90.8
InRelD 92.6 82.1- 83.6- 90.7- 92.2
NewProdRes 85.9 74.5- 75.5- 81.7- 85
ProdNP 87.4 79.2- 79.8- 83.7- 86.7
OilGas 87.8 80.5- 80.4- 85.4 85.7
ElectG 88.7 76.1- 78- 86.2- 87.8

Incident Reports
Fire 84.4 88.5+ 87.5+ 83.5- 85.0
Collision 82.2 75.5- 77.5- 81- 83.0
Rollover 79.8 73.5 78.5 80.0 78.0
CollRoll 86.5 81.5- 83.5- 87.0 85.5
MiscInc 84.0 83.5 81.5- 82.0- 78.0-
CraneFP 87.5 72- 71- 87.5 84.5
ShovFP 88.3 75.0- 77.0- 84.5 85.0

Movie Reviews
MovieRev 71.3 68.3- 67.7- 69.1- 71.4

Table 3.2: Classification accuracy of semantic indexing using knowledge-based approaches.

text classification performance compared to BASE. As can be observed, very few improvements

are realised from the knowledge-resource based approaches. In fact, most results are statistically

significantly worse than BASE. Jiang & Conrath (JCN) has been shown to provide better perfor-
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mance than the other WordNet metrics in NLP tasks such as synonymy detection (Budanitsky &

Hirst 2006). This is reflected in our results where JCN performs best out of all WordNet based

semantic relatedness approaches. Nonetheless, JCN produces no significant improvement over

BASE.

The poor performance of WordNet based approaches on text classification is likely due to the

fact that, being external to the training corpus, WordNet does not reflect the relatedness between

terms that is suited to the discriminatory semantics of the target corpus. Take for example the

BactViral dataset. This dataset contains documents related to bacterial diseases in one class and

those related to viral diseases in the other. Note that many of the terms in both classes will be about

diseases, medications, symptoms and other medical vocabulary. Therefore, WordNet is likely

to establish strong semantic relatedness among terms from different classes because WordNet is

actually ignorant of the class divide existing in the corpus. For example, the LIN metric assigns

a similarity value of 0.82 out of a maximum of 1.0 to the terms ‘bacteria’ and ‘virus’. Given that

these two terms belong to different classes and are important for discriminating between the two

classes, it is easy to see how assigning a high similarity value to the term pair can quickly blur the

class distinction between documents.

In addition, word sense ambiguity and vocabulary coverage are likely to have an adverse effect

on the performance of semantic relatedness computation using WordNet. For example, across

all the datasets, an average of over 20% of the terms from the indexing vocabulary are missing

from WordNet. Also, the average number of senses per term across all datasets is 4.6 with some

datasets having an average of over 6 senses per term. All these are likely to lead to noisy semantic

relatedness values between terms. In our approach for computing semantic relatedness using

WordNet, we do not employ word-sense disambiguation. Rather, we adopt the popular approach

of taking the maximum relatedness between any combination of the senses of the two given terms

as described in (Budanitsky & Hirst 2006).

Because of the poor results achieved using WordNet based semantic relatedness approaches,

we do not take this class of approaches any further in this thesis.

3.1.3 Semantic Indexing using Distributional Approaches

In this section, we present a comparative analysis of semantic indexing with semantic relatedness

computed using distributional approaches. We include three distributional semantic relatedness
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approaches in our study: document co-occurrence, NPMI and LSI (see Section 2.1.2). All ex-

periments with LSI in this thesis are performed using the JAMA matrix package 1. Here also,

the GVSM is used for semantic indexing by providing semantic relatedness computed using the

respective approach. Accordingly, we compare the following representations:

• BASE: Baseline BOW approach without term relatedness

• DOCCOOC: Term relatedness estimated from document co-occurrence

• NPMI: Term relatedness calculated using Normalised Positive Pointwise Mutual Informa-

tion

• LSI: Term relatedness estimated from latent semantic analysis

Classification accuracies are presented in Table 3.3. Again, values with the ‘+’ sign repre-

sent a significant improvement in text classification accuracy compared to the baseline and ‘-’

represent a significant decline in classification accuracy and best results in each row presented in

bold. In comparison with the knowledge-resource based approaches (see Table 3.2) much signif-

icant improvement in text classfication accuracy has been achieved using distributional semantic

relatedness approaches. Semantic indexing using these distributional approaches has resulted in

statistically significant improvement in 45.95% of the datasets using DOCCOOC, 43.24% using

LSI and 45.95% using NPMI. However, on many other datasets, text classification performance

was not improved by semantic indexing. On some datasets, semantic indexing has even led to a

decline in classification accuracy. For example, semantic indexing using DOCCOOC resulted in a

significant drop in classification accuracy on 4 datasets, MedSp, CryptE, OilGas and ElectG, while

no significant improvement was realised from DOCCOOC on 16 datasets e.g. MeastM, GunsM,

AutoC and BaseH. Similarly, NPMI and LSI also performed significantly worse than BASE on

10 and 4 datasets respectively and produced no significant improvement on 10 and 17 datasets

respectively.

Overall, the datasets created from the Ohsumed corpus benefited the most from semantic in-

dexing. The Ohsumed corpus, being a collection of academic abstracts, contains the most profes-

sionally written documents of all other corpora. This means that noise from misspellings is likely

to be minimal on this group of datasets. The style of the documents in this corpus is also consistent
1http://math.nist.gov/javanumerics/jama/
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Dataset BASE DOCCOOC NPMI LSI
Ohsumed

BactV 85.1 88.6+ 90.0+ 87.5+

CardR 90.0 92.2+ 93.8+ 90.7
NervI 91.4 91.0 92.9+ 90.5
MouthJ 89.9 92.2+ 92.9+ 92.0+

NeopE 91.6 93.8+ 94.2+ 94.0+

DigNut 87.8 91.3+ 93.2+ 91.5+

MuscS 83.1 87.0+ 91.1+ 86.5+

EndoH 91.4 95.8+ 96.5+ 95.4+

MaleF 92.3 94.9+ 95.6+ 95.1+

PregN 89.7 90.4 90.9+ 90.4
ImmunoV 78.7 82.5+ 84.8+ 82.7+

NervM 84.5 88.1+ 91.0+ 87.8+

RespENT 87.2 88.1 91.0+ 88.3

20 Newsgroups
Hardw 89.8 90.9+ 91.2+ 90.3+

MedSp 95.9 93.8− 95.8 93.6−

CryptE 95.9 90.3− 91.8− 90.6−

ChrisM 88.9 90.5+ 89.9+ 90.5+

MeastM 95.1 95.3 94.9 95.3
GunsM 93.4 94.0 94.0 94.0
AutoC 94.4 95.1 96.2+ 95.0

Reuters
StratM 88.8 89.4 83.7− 89.6
EntTour 94.7 95.7+ 95.3 95.6+

EqtyB 95.7 95.5 94.8− 95.6
FundA 90.3 92.0+ 89.9 92.1+

InRelD 92.6 94.1+ 91.7 94.3+

NProdRes 85.9 86.9 80.4− 86.7
ProdNP 87.4 89.3+ 88.4 88.9+

OilGas 87.8 86.3− 85.7− 86.2−

ElectG 88.7 84.6− 84.0− 84.5−

Incident Reports
Fire 84.4 87.0 85.8 86.9
Collision 82.2 80.9 76.8− 81.3
Rollover 79.8 79.1 77.7 78.2
CollRoll 86.5 83.6 80.5− 84.3
MiscInc 84.0 84.1 82.0 84.1
CraneFP 87.5 88.3 82.4− 87.9
ShovFP 88.3 86.6 88.3 83.8−

Movie Reviews
MovieRev 71.3 78.6+ 81.8+ 79.3+

Table 3.3: Classification accuracy of semantic indexing using distributional appraoches.

i.e. unlike the Reuters corpus where sometimes, the entire content of a document is a single table

of values which provides little benefit for semantic indexing. Semantic indexing has also proven
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beneficial on the Movie Reviews (MovieRev) dataset. This demonstrates the utility of semantic

indexing for sentiment classification. Semantic indexing has not produced much improvements

on the other dataset groups (20 Newsgroups, Reuters and Incident Reports). This is likely due to

the noise in the datasets produced by the informal writing style of documents, and inconsistency

in the format of documents. It thus seems evident that clean, formal documents are important for

the performance of semantic indexing. This finding is in contrast to (Xue & Zhou 2006) where

more informal documents were found to benefit more from their distributional features approach.

This is not surprising because distributional features are quite different from distributional seman-

tic relatedness. Distributional features propose replacing frequency counts in document vector

representations with measures of first appearance and compactness of terms within a document.

In contrast, the aim of distributional semantic relatedness is to model the semantic relationship

between pairs of terms based on the co-occurrence of these terms in the corpus.

Table 3.3 also suggests a relationship between the length of documents as well as the size of

datasets, and the performance of semantic indexing. Note that no significant improvement from

semantic indexing is observed on the incident reports group of datasets which have 200 documents

per dataset, compared to the other groups that have 1000 documents per dataset (see Section 2.6

for more details on the datasets). This is perhaps because the sizes of these datasets do not allow

for learning beneficial semantic relatedness knowledge from co-occurrece statistics. Contrast this

with all other corpora where at least some significant improvement is observed.

Distributional semantic relatedness approaches sometime fail because of their tendency to

occasionally establish relationships that are too general and hence not very discriminatory. For

example in the BactViral dataset, the terms "biopsy" and "treat" co-occur 10 times which indicates

a strong relationship. However, the two words co-occur almost equally across class boundaries

which means that the relationship between them is a weak indicator of class membership. In

contrast, the words "endoscopy" and "helicobacter" co-occur 5 times, all within the Bacterial

class which makes this relationship a stronger indicator of class membership. Because of the

higher co-occurrence frequency between "biopsy" and "treat", the semantic relation between them

is likely to be stronger than the relation between "endoscopy" and "helicobacter".

Considering the additional cost of acquiring term-relatedness, it is important to empirically

determine when it is beneficial to use semantic relatedness in text retrieval. In the next section,

we explore the use of meta-learning for predicting, given any dataset, whether or not to apply
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semantic indexing.

3.2 Predicting When to use Semantic Indexing

To be able to predict when and when not to use semantic indexing, we turn to meta-learning. The

primary goal of meta-learning is to produce proper guidance on the right algorithm to use, from

a number of available algorithms and techniques, according to the nature of the problem. (Vilalta

et al. 2004). Much work has been done in the area of meta-learning. For example a meta-learner

to recommend the appropriate classifier given a dataset is presented in (Bensusan, Giraud-Carrier

& Kennedy 2000). We wish to use meta-learning to recommend, given a dataset, whether or not

to use semantic indexing.

Given that we already have a rich collection of datasets for which we know the performance of

semantic indexing, we would ideally like to use a supervised meta-learning approach. In machine

learning, framing problems as supervised tasks makes it easier to achieve higher levels of perfor-

mance. Thus, given a dataset, we would like our meta-learner to assign to that dataset the binary

decision of whether or not to use semantic indexing, using a model learned from a collection of

datasets for which we have prior knowledge of the performance of semantic indexing. Ideally,

semantic indexing should only be used if doing so will lead to significant improvement in text

classification performance compared to not using semantic indexing. Thus our training dataset

will consist of instances (datasets) labeled with the decision to use semantic indexing if semantic

indexing produced a significant improvement in text classification performance, and the decision

not to use semantic indexing if semantic produced no significant improvement.

To develop our meta-learning system, we decided to use case-based reasoning . Case-based

reasoning is a problem solving methodology where, given a new problem, the solution of the most

similar case from a database of previously solved cases is adapted for solving the new problem.

Similarity between cases is computed by computing the similarity between the attributes of these

cases. Case-based reasoning is suitable for our task based on the assumption that datasets for

which semantic indexing does not work are likely to share some attributes in common. Hence,

we expect the decision (whether or not to use semantic indexing), that applied to the most similar

cases to a given problem, to be suitable for the new problem dataset.

Case-based reasoning has been widely adopted for developing meta-learning systems. For ex-



3.2. Predicting When to use Semantic Indexing 59

ample, a meta case-based technique for selecting case-base maintenance algorithms is presented

in (Cummins & Bridge 2011). In this approach, an individual meta-case models an entire case-

base where the case solution is the maintenance algorithm that provides the best performance on

that case-base and the case description comprises a set of attributes that are derived using dataset

complexity metrics. Another case-based approach for selecting the best sentiment lexicon given

a sentiment classification dataset is presented in (Ohana, Delany & Tierney 2012). Here also, a

dataset is represented as a single case where the case solution is the best performing sentiment lex-

icon for the dataset. The case description is modelled as an n-dimensional feature vector derived

from document, sentence and term-level statistics of as well counts of part-of-speech information

and punctuations. The attributes chosen for case representation are designed to capture the sub-

jectivity of the corresponding dataset. Another system is presented in (Lindner & Studer 1999)

which uses a case-based approach to select the best classification algorithm for a dataset. The

datasets considered in this work are not limited to textual datasets, thus, the attributes used for

case representation are designed to capture characteristics of datasets that contain both numeric

and symbolic attributes.

3.2.1 Case-Based Prediction Framework

Figure 3.1 shows both the training and test phases of our case-based system. Given a collection

of training datasets, the case generator creates a case representation for each dataset. The case

description comprises a set of nine attributes a1 to an (discussed in Section 3.2.2) that capture

the properties of the dataset. The case solution is a binary judgement of whether or not to apply

semantic indexing to the dataset. A case is labelled with the solution to use semantic indexing

(Sem) if the improvement from applying semantic indexing is statistically significant. Otherwise,

we label the case with the decision not to use semantic indexing (¬Sem). For example for the

DOCCOOC technique, semantic indexing produced a significant improvement on the Hardware

with accuracy of 90.9% compared to BASE (89.9%) (see table 3.3) and the decision to use semantic

indexing is selected as the case solution for Hardware. On the other hand on the MedSpace dataset,

DOCCOOC produced a decline of 2.1 % in accuracy and thus the solution for this case is not to

use semantic indexing. For computing similarity between cases, we use the Manhattan distance,
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Figure 3.1: Case-based approach using dataset meta-data to predict when to use semantic indexing.

given in equation 3.2, as a simple, baseline similarity function.

Dist(a, b) =

N∑
i=1

(|ai − bi|) (3.2)

In the next section, we discuss the set of attributes used for case representation.

3.2.2 Dataset Attributes

Several different attributes have been considered in previous works for capturing the characteristics

of datasets. A common baseline approach is presented in (Lindner & Studer 1999) where several

statistical measures are used to characterise datasets. Note that no motivation is given for the

choice of characteristics or meta-attributes. The meta-attributes used include number of instances,

number of features of the dataset, ratio of symbolic features, number of classes, default error

rate, standard deviation of class distribution, relative probability of defective instances, number of

records with missing values, relative probability of missing values and number of missing values.
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Attribute Name Description
AveTermCount Average number of terms per document
MaxDocFreq Maximum term document frequency
AveDocFreq Average term document frequency
MaxIDF Maximum term Inverse Document Frequency
AveIDF Average term Inverse Document Frequency
Nearest Neighbour Similarity Average similarity of nearest neighbours
AveNSim Average neighbourhood similarity
MinNSim Minimum neighbourhood similarity
MaxNSim Maximum neighbourhood similarity

Table 3.4: Summary of dataset attributes used for meta-case representation.

Note that all of these meta-attributes are not useful for our task of predicting the performance of

semantic indexing on text datasets. For example, term-document matrices are typically sparse with

most feature values missing in any one document. Thus, it is unlikely that the measure of missing

values is a good indicator of the performance of semantic indexing. Also, the number of instances

and attributes are the same for all datasets, except the incident report datasets. Thus, these are also

excluded from consideration as features. The authors also propose additional information theoretic

features which are only applicable to symbolic dataset features and thus are not applicable for text

datasets.

The authors in (Peng, Flach, Soares & Brazdil 2002), propose using meta-attributes created

from measuring the characteristics of decision trees generated from the datasets. Here also, no

justification was given for this choice of meta-attributes. This approach involves generating a

decision tree from the dataset and then measuring attributes such as the number of nodes, number

of branches and height of the decision tree. Given that our classifier of choice is kNN, it is not

clear how useful the characteristics of a decision tree will be at predicting the performance of

semantic indexing used with kNN.

The work in (Cummins & Bridge 2011) presents a meta learning approach for the selection

of case-base maintenance algorithms. The meta-attributes used to characterise case-bases were

chosen to model the complexity of these case-bases as case-base complexity is seen as the im-

portant predictor of the performance of case-base maintenance algorithms. The meta-attributes

considered are divided into three categories: Measures of Overlap of Attribute Values, Measures

of Separability of Classes and Measures of Geometry, Topology and Density of Manifolds. Note

that all the meta-attributes in the three categories are supervised, meaning that the class labels
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of data instances (documents in our case) need to be considered. However, recall that the VSM

and semantic indexing are not limited to supervised tasks. On the contrary, both the VSM and

semantic indexing were originally designed for unsupervised document retrieval. Accordingly, it

is highly desirable to consider unsupervised meta-attributes that are applicable for both supervised

and unsupervised tasks.

Considering the limitations of the meta-attributes proposed in previous works, and the lack

of strong motivation behind them, we propose a new set of meta-attributes. Recall that semantic

indexing is applied to the term-document space representation of a document collection and not

the actual document collection itself. Thus when selecting meta-attributes, we choose the types

of attributes that are typically used for creating vector representations of documents e.g. term

frequency and inverse document frequency. Also, because our classifier of choice is kNN, we use

attributes that describe the neighbourhood structure of the datasets. A summary of the attributes we

consider is presented in table 3.4. We describe these attributes in detail in the following sections. A

table of the attributes and corresponding values used in our experiments is provided in Appendix D.

Average Terms Per Document

This is a measure of the average number of terms per document which is calculated after text

preprocessing: stopwords removal, term normalisation and feature selection. Thus, the count of

terms in a document is restricted to the terms from the indexing vocabulary. This is calculated as

shown in equation 3.3.

TermCount(di) =
∑
tj∈T

di (3.3)

Where ti is a term in document di and T is the entire indexing vocabulary. The average term

count for the entire dataset is calculated by taking the average term count for all documents in the

dataset as in equation 3.4.

AveTermCount =

∑
di∈D TermCount(di)

|D|
(3.4)
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Document Frequency

The document frequency of a term ti is a count of the number of documents in which ti occurs.

Document frequency is often used as a feature selection technique under the premise that very rare

terms are not informative and thus do not contribute much to document retrieval. At the same time,

terms that appear in almost all documents are also not very discriminatory and can be considered

noisy in the term document space. Such high frequency terms are also likely to co-occur with

almost every other term thus polluting the generalisation process. Hence we utilise two metrics to

measure the effect of document frequency: Maximum DF (MaxDocFreq) which is the maximum

document frequency over all terms and Ave. DF (AveDocFreq) which is the average document

frequency of over all terms.

Inverse Document Frequency

Inverse Document Frequency (IDF) is a function designed to give a weighting inversely propor-

tional to the document frequency of terms. IDF captures the premise that terms with very high

document frequency are less informative than terms that occur less often. The formula for IDF

is given in equation 3.5 where N is the total number of documents and df(t) is the document

frequency of t.

IDF (t) = log2
N

df(t)
(3.5)

We use the Maximum IDF (MaxIDF) and the Average IDF (AveIDF) to obtain a measure

of rare terms in our datasets.

Nearest Neighbour Similarity

We measure the tightness of the clustering of documents in a dataset using the distance between

each document, and the other documents in its neighbourhood as shown in Figure 3.2. Nearest

Neighbour Similarity of a document dj is calculated by iteratively retrieving successively larger

neighbourhoods k of dj up to the neighbourhood size K (we use K = 10) and computing the

similarity between dj and all documents in its neighbourhood. This is shown in equation 3.6.

Pk(dj) =

∑k
i=1 Sim(dj , di)

k
(3.6)
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Figure 3.2: Nearest Neighbour Similarity calculated using the distance of a target document dj to
its k nearest neighbours.

Where Sim(dj , di) is the cosine similarity between document dj and di. The final Nearest Neigh-

bour Similarity measure for the entire dataset is computed as the average Nearest Neighbour Sim-

ilarity of all documents dj .

Neighbourhood Similarity

Figure 3.3: Neighbourhood similarity of document dj measures using the distance between k
nearest neighbours of dj .

While Nearest Neighbour Similarity measures the distance between a target document and its
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nearest neighbours, this metric calculates the average pair-wise similarity between all k nearest

neighbours of the target document dj as shown in Figure 3.3. We use a neighbourhood size

of k = 10. We then calculate the average, minimum and maximum neighbourhood similarity

over all documents to obtain the Average Neighbourhood Similarity (AveNSim), Minimum

Neighbourhood Similarity (MinNSim) and Maximum Neighbourhood Similarity (MaxNSim)

respectively for that dataset.

The average similarity between the nearest neighbours of a document tells us how tightly clus-

tered the neighbourhood of that document is. In turn, the aggregation over all documents provides

us with information about how tightly clustered documents are in the entire term document space.

3.2.3 Evaluation

The aim of this evaluation is to determine how well our meta case-based approach (CBR) predicts

when and when not to use semantic indexing for text representation. We compare this with a

baseline approach (BASELINE) that always applies semantic indexing. Our hypothesis is that our

case-based approach should be able to identify datasets that are not likely to benefit from semantic

indexing which allows for applying semantic indexing to datasets in a systematic fashion. Accord-

ingly, we treat this as a classification task where accuracy is measured as the percentage of test

cases that are labelled with the correct decision (to generalise or not). We report the classification

accuracy over a leave-one-out validation using a 3-NN approach.

Overall DOCCOOC NPMI LSI
BASELINE 55.81 41.86 46.51 37.21
CBR 79.07 81.4 88.37 72.09
CBR+ 86.05 86.05 93.02 79.07

Table 3.5: Classification accuracy of predicting when to use semantic representation.

From the results shown in Table 3.5, it is clear that our meta case-based system predicts when

to apply semantic indexing with high accuracy. The results in the Overall column represent the

accuracy of our prediction across all semantic indexing techniques. That is, deciding to use se-

mantic indexing always, using the best semantic indexing approach, we match all datasets that are

labelled with the decision to use semantic indexing (55.81%) but we also apply semantic indexing

to many other datasets (44.19%) that that do not benefit from semantic indexing. However, using

our case-based approach, we selectively apply semantic indexing to datasets only when we should,
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Parameter Value
Encoding Integer
Genotype Range of Values 0 - 10
Individual Length 9
Population Size 100
Selection Strategy Tournament

Table 3.6: Genetic Algorithm Parameter Settings.

and avoid doing so when we should not with accuracy of 79.07% . The other columns (DOCCOOC,

NPMI and LSI) provide a break-down of our performance for each individual semantic relatedness

technique respectively.

The CBR+ row shows results of the Case-Based approach with optimal weights learned for the

meta-case attributes using a Genetic Algorithm (GA) where the set of weights used range from 0 to

10. A comprehensive review of applying weighting to kNN retrieval is provided in (Wettschereck,

Aha & Mohri 1997). GA’s are computational search heuristics that mimic the process of natural

selection. In a GA, a population of candidate solutions called individuals are evolved towards an

ideal solution over generations, using mechanisms such as selection, inheritance, mutation and

crossover. For our GA implementation, we use an integer encoding with values in the range 0

to 10, and an individual length of nine to represent the weights and attributes respectively. Each

attribute of an individual is referred to as a Genotype. Additional parameter settings include a

population size of a hundred and a tournament selection strategy. These parameter settings are

provided in Table 3.6.

From these results we can see that our set of attributes are predictive of the effectiveness of

applying semantic relatedness for text representation.

The weights learned for our attributes by the genetic algorithm can be divided into high, Near-

est Neighbour Similarity; medium, MaxIDF, Ave. Tokens Per Doc., MaxDocFreq and MaxN-

Sim; and low, AveDocFreq, AveIDF, AveNSim and MinNSim. The high weight assigned to

Nearest Neighbour Similarity indicates the importance of the similarity between documents in a

dataset in determining the performance of semantic indexing. Note that lower values of Nearest

Neighbour Similarity indicate higher variation in vocabulary in these datasets. This indicates that

better semantic relatedness can be extracted from datasets that have less variable vocabulary indi-

cated by a higher Nearest Neighbour Similarity. Higher variation in indexing vocabulary of these

datasets can be attributed to their short length. However, in general, other factors such as informal
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language and inconsistency in document style can contribute to increasing variation in indexing

vocabulary. Note that although this attribute is important for determining the performance of se-

mantic indexing, the performance of semantic indexing is not dependent exclusively on this single

attribute. From Table D.1 in Appendix D, we can see that there are datasets with similar Nearest

Neighbour Similarity that have contrasting performance with respect to semantic indexing. Hence,

the use of meta-learning allows us to leverage the other attributes to improve the accuracy of our

prediction.

3.3 Chapter Summary

In this chapter, we investigated the benefit of semantic indexing for text classification. We used

the GVSM framework in our study to test four different knowledge-resource based approaches and

three different distributional approaches for computing semantic relatedness. The performance of

the semantic indexing with the knowledge-resource-based approaches showed very little improve-

ment with many of the results being significantly worse than not using semantic indexing. Note

that while these WordNet based metrics have been widely evaluated on linguistic tasks such as

synonymy detection and word pair association, to the best of our knowledge, this is the first time

such a comprehensive evaluation has been reported using these metrics on text classification.

In contrast however, distributional approaches showed more potential for semantic indexing

with substantial gains in text classification performance. However, the performance of distri-

butional semantic relatedness approaches also revealed that semantic indexing does not always

improve text classification performance and may sometimes even be harmful. Our results suggest

that datasets with documents written in a more professional and consistent style benefit more from

semantic indexing. We also observed that datasets with fewer and shorter documents benefited

less from semantic indexing.

Considering that semantic indexing introduces additional overhead to the process of text rep-

resentation, we set out to determine when and when not to apply semantic indexing using meta-

learning. Accordingly, we presented a case-based approach for predicting when to use semantic

indexing. Results show that our case-based approach is able to correctly predict the performance

of semantic indexing on a range of datasets with over 80% accuracy. Again, to the best of our

knowledge, this is the first time any attempt has been made to predict when to apply semantic



3.3. Chapter Summary 68

indexing.

An important consideration when building a case-based system is the choice of attributes for

case representation. The attributes we used were obtained from several statistical metrics that

capture various important characteristics of text datasets. These range from statistics of document

frequencies of terms to measures of clustering of document neighbourhood. The high accuracy

achieved in predicting when to use semantic indexing indicates that the attributes used for case

representation capture characteristics of text datasets that are predictive of the performance of

semantic indexing.

We further used a genetic algorithm to learn the relative importance of our attributes. The

high weight assigned to the Nearest Neighbour Similarity attribute indicates the importance of the

structure of a dataset is in determining the performance of semantic indexing. From Table D.1

in Appendix D, we observe that the incident report datasets for which semantic indexing did

not work, all datasets had a much lower Nearest Neighbour Similarity compared to the other

datasets. This implies that for the incident report datasets in particular, the sparseness in the

datasets affected the quality of semantic relatedness extracted. Sparseness in these datasets can be

attributed to the short length of the documents which means that any one document contains only

a few terms from the vocabulary, thereby reducing the similarity between documents.



Chapter 4

Relevance Weighted Semantic Indexing

Semantic indexing has not resulted in consistent improvement in text classification performance.

Our intuition on this is that the semantic indexing process does not properly capture the relevance

of terms in document representations. It is well known that all terms in a corpus do not have the

same importance with some terms being better at discriminating between classes, making them

more relevant to the classification task. For example, to identify documents that belong to the class

Sports , the terms “goal”, “match”, “team” and “football” are more relevant than terms like “rain”,

“happy” and “glass”. Thus, it is important for semantic indexing that such class-indicative terms

are recognised and assigned higher importance or weight in document representations. While

semantic indexing captures the semantic relatedness between terms, we argue that it is not good at

capturing the class-indicativeness or relevance of terms.

In this chapter, we introduce a novel framework called Relevance Weighted Semantic In-

dexing (RWSI) which extends the GVSM by capturing both local (within-document) and global

(collection-wide) term relevance for semantic indexing. Global relevance of terms can be learned

directly from the training corpus using supervised term weighting functions.

A second aim of this chapter is to demonstrate the utility of supervised indexing for text clas-

sification. Accordingly, we demonstrate how the RWSI framework can be used exclusively for

supervised document indexing, using an approach we call Relevance Weighted Indexing (RWI).

A comparative evaluation of our RWI with the standard tf-δ(t)(see Section 2.4) approach shows

RWI to lead much more consistent improvement in text classification performance.

This chapter is organised as follows: in Section 4.1 we provide a detailed analysis of the

69
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inner workings of the GVSM. In Section 4.2 we present an analysis of how term weights can

be adversely affected by semantic indexing and demonstrate how this can be addressed using

vector normalisation. In Section 4.3 we highlight the need for relevance weighting and present

the RWSI framework which extends the GVSM framework by introducing relevance weights of

terms for semantic indexing. In Section 4.5, we demonstrate the RWI approach which utilises the

RWSI framework for supervised document indexing. Evaluations are presented in Section 4.6.

We conclude this chapter with a summary in Section 4.7.

4.1 Analysis of GVSM

The traditional vector space model (VSM) assumes independence between terms. However, this

independence assumption is an over simplification because different terms within an indexing

vocabulary often have related or even identical meanings. The implication of the term indepen-

dence assumption is that the similarity between related documents can only be correctly estimated

if these documents share the exact same lexical terms. The GVSM framework was proposed for

capturing the relevant dependencies between term in document representations (Wong et al. 1987).

In this section, we provide a comprehensive analysis of semantic indexing using the GVSM. In

Section 2.2.4 we formally presented the GVSM. For the sake of completeness, we repeat some of

the mathematical equations that are the basis for the GVSM. Given any two documents q and d,

their similarity can be computed in the GVSM as:

Sim(q, d) =

n∑
i

n∑
j

ui~tiwj~tj (4.1)

Where n is the dimension of the vector space (i.e. the number of terms in the indexing vocab-

ulary), ui and wj are the initial (tf-idf, binary e.t.c.) weights for the terms ti and tj in the query

q and document d respectively, and ~ti and ~tj are vector representations of ti and tj respectively.

The product of the two term vectors, ~ti and ~tj , provides the relatedness between the correspond-

ing terms ti and tj . Thus, the product of the two term vectors, ~ti and ~tj , in Equation 4.1 can

be replaced with the a function, Rel(ti, tj), that returns the relatedness between terms ti and tj .
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Accordingly equation 4.1 can be rewritten as follows:

Sim(q, d) =
n∑
i

n∑
j

uiwjRel(ti, tj) (4.2)

Sim(q, d) =
n∑
i

ui

n∑
j

wjRel(ti, tj) (4.3)

Introducing the function Rel(ti, tj) allows for using any approach for computing the relat-

edness between terms ti and tj without restricting to the vector product of term vectors. Recall

that document d is represented as a vector ~d in euclidean space with dimension the size of the

vocabulary V as shown in Equation 4.4.

~d = (w1, w2, ..., wn) (4.4)

Where the corresponding weight, wi ∈ ~d, of each term ti ∈ V is non-zero only if ti occurs

in d, and zero otherwise. The same applies for ~q. Therefore, from Equation 4.3, for each term

ti ∈ V , the original weight of ti in ~d (including zero weight if ti is absent in d) is replaced by∑n
j wjRel(ti, tj). Accordingly, even if ti does not occur in d, it now gets a corresponding weight

w′i =
∑n

j wjRel(ti, tj) in the new semantic representation of d, if ti is related to one or more

terms tj ∈ d with non-zero weight. This is illustrated in Equation 4.5.

d′ = (
n∑
j

wjRel(t1, tj),
n∑
j

wjRel(t2, tj), ...,
n∑
j

wjRel(tn, tj)) (4.5)

w′i =
n∑
j

wjRel(ti, tj) (4.6)

d′ = (w′1, w
′
2, ..., w

′
n) (4.7)

Where w′i is the new semantic weight of term ti in d′. Observe from Equation 4.5 that d′ is

simply the product of the document vector d and an n × n matrix which we will call T where

each entry τi,j in T corresponds to the value Rel(ti, tj). In other words, the matrix T captures the

semantic relatedness of all pairs of terms ti and tj in V . Each column j of T correspond to a vector

vj which captures the semantic relatedness of the term tj and all other terms ti ∈ V . Document
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vectors of the entire collection can also be represented in the form of a document-term matrix

which we will call D. Hence from Equation 4.5, the transformation of the entire document-term

matrix can be expressed as:

D′ = D × T (4.8)

Equation 4.8 requires semantic relatedness values to be computed for all pairs of terms ti and

tj in V , and used to populate the term-term semantic relatedness matrix T . Each vector ~τi ∈ T

provides the semantic relatedness of the corresponding term ti with all terms tj ∈ V . Because

any term can be at most similar to itself, all entries on the leading diagonal of T (i.e. i = j) are

consequently assigned a value of 1. Thus, all other entries in T are required to be normalised

between 0 and 1, with the value 1 in any cell corresponding to identical term pairs and 0 to

dissimilar. The normalisation of the values of T ensures that a term can never be more related to

another term than it is to itself. The impact of equation 4.8 will be to boost the presence of related

terms that were not contained in the original documents, which in turn has the beneficial effect of

making the vector representations of documents that belong to the same class more similar.

4.2 Preserving Local (Within-Document) Relevance

The initial weight wi assigned to a term ti in a document d, is designed to reflect the importance

or relevance of ti to d. However, note from Equation 4.5 that the weight w′i of ti in the semantic

document representation d′ is not exclusively determined by the original weight wi of term ti.

Rather, w′i is strongly influenced by the weight wj of the term tj ∈ d that ti is semantically related

to, and also by the strength of this semantic relatedness (Rel(ti, tj)). This means that if ti is

strongly related to many other terms tj ∈ d, then ti receives a relatively high weight w′i, regardless

of its original relevance to d. The reverse is also the case, i.e., if ti is related to only a few terms

tj ∈ d, then ti receives a relatively low weight. This is certainly an undesired consequence of

semantic indexing because, if ti was initially assigned a relatively low weight wi due to it being

less important or relevant to document d, the aggregation of the semantic relatedness of ti, if ti is

related to enough other terms, could result in a high weight w′i in d′. In other words, the relevance

of ti to d is easily lost during semantic indexing, in favour the semantic relatedness between ti and

the terms tj in d.
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This problem of loss of local relevance in term weights is of particular concern in situations

where semantic relatedness is computed from corpus co-occurrence statistics. In a typical corpus,

any term ti is likely to have non-zero co-occurrence with many other terms tj in the collection.

Thus, a term ti which is initially absent, or assigned a low weight in the vector of a document

dj can easily end up having the highest weight after semantic indexing if it co-occurs often with

many other terms in the corpus. Hence, by computing term weights as an aggregation of semantic

relatedness, the cumulative effect of less important terms can result in significant amounts of noise

being added to document representations.

D =

t1 t2 t3 t4 t5
d1 0.0 0.7 0.6 0.0 0.0
d2 0.8 0.0 0.0 0.5 0.0
d3 0.1 0.9 1.0 0.0 0.0
d4 0.3 1.0 0.7 0.0 0.0

T =

t1 t2 t3 t4 t5
t1 1.0 0.5 0.8 0.7 0.3
t2 0.5 1.0 0.2 0.2 0.3
t3 0.8 0.2 1.0 0.0 0.1
t4 0.7 0.2 0.0 1.0 0.3
t5 0.3 0.3 0.1 0.3 1.0

D′ =

t1 t2 t3 t4 t5
d1 0.83 0.82 0.74 0.14 0.27
d2 1.15 0.5 0.64 1.06 0.39
d3 1.35 1.15 1.26 0.25 0.40
d4 1.36 1.29 1.14 0.41 0.46

Figure 4.1: Example of semantic indexing using the GVSM

We illustrate this point further with the aid of an example. Figure 4.1 shows a sample document-

term matrix D with 4 documents and 5 terms, a matrix T which captures the semantic relatedness

between all pairs of terms in the vocabulary, and a semantic document-term matrix D′ containing

semantic document representations derived from D and T using Equation 4.8. Note from Fig-

ure 4.1 that document d1 in D does not contain the term t1. However after semantic indexing,

term t1 has the highest weight in d′1. A similar result is seen in d3 and d4 where t1 has low weights

of 0.1 and 0.3 respectively. However, after semantic indexing, t1 again has the highest weight in

d′3 and d′4 i.e. 1.35 and 1.36 respectively. This happens simply because t1 is semantically related
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to all the terms in d1, d3, and d4. However, t1 could have been absent or assigned low weights

in d1, d2 and d4 because it is not directly important to these documents. For example if these

documents had been about cars and t1 was the term ’Honda’, even though ’Honda’ is relevant

to the topic of cars, it is certainly overrated to think that ’Honda’ should be the most important

term in d1, d3 and d4, simply because ’Honda’ is semantically related to the other terms in these

documents. Indeed many documents about cars will have nothing to do with ’Honda’. Likewise,

many documents containing the term ’Honda’ could also be about the company or motorcycles

and have nothing to do with cars. It is clear then that local (within-document) term importance

is ignored using the approach in Equation 4.8, resulting in noisy representations. This problem is

even more acute in real-world situations where, because of the high dimensionality of document

vectors, larger discrepancies can easily result from aggregating semantic relatedness over all terms

in a document.

To address the problem of loss of local relevance from semantic relatedness aggregation, we

introduce a modification to the approach in Equation 4.8 which is to normalise all row vectors

~d ∈ D and all column vectors ~τ ∈ T to unit length before taking their product. Normalisation is

achieved by taking the L2 norm of the corresponding vectors ~d and ~τ . This ensures that the length

of the vectors are taken into account i.e. terms that are semantically related to many document

terms now get penalised to prevent such terms from dominating document representation. The

computation of the L2 norm of a vector v is given in equation 4.9.

‖ v ‖=
√

Σn
i=1v

2
i (4.9)

Thus, we can modify Equation 4.8 to reflect this normalisation as follows:

D′ = Drn × T cn (4.10)

Where Drn is the term document matrix D with all rows L2 normalised, and T cn is the se-

mantic relatedness matrix T with all columns L2 normalised. Figure 4.2 shows the semantic

document-term matrix D′ from Figure 4.1 with L2 normalisation applied before taking the prod-

uct of the matrices D and T . Note that the distribution of terms in the document vectors of D′

better reflect their original distribution in D. For example t1 no longer has the highest weight in

documents d1, d3 and d4. This highlights the importance of the normalisation function as an es-
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D′ =

t1 t2 t3 t4 t5
d1 0.57 0.75 0.62 0.12 0.26
d2 0.78 0.45 0.52 0.88 0.37
d3 0.64 0.72 0.72 0.14 0.26
d4 0.69 0.86 0.70 0.26 0.32

Figure 4.2: Resulting term-document from Figure 4.1, after semantic indexing with L2 normali-
sation.

sential component of the semantic indexing process for preserving local (within-document) term

importance. Thus, in the remainder of this thesis, the row vectors and column vectors of the D

and T matrices respectively are always L2 normalised before matrix multiplication, even if, for

the sake of convenience, the superscript notation (Drn and T cn) is not explicitly used.

4.3 Global Term Relevance Weighting

The analysis in Section 4.2 reveals that an important relationship exists between semantic indexing

and term weighting. It also shows that the eventual weight w′i, of a any term ti in the semantic

document representation d′ largely depends on the strength of semantic relatedness between ti and

all original terms tj ∈ d. However, it is also important when computing w′i to also consider the

global importance or relevance of term ti. It is well known that all terms in a corpus do not have

equal importance with some terms having a higher discriminatory power, while many others are

not particularly important for distinguishing between classes. However, the resulting weight wi of

any term ti ∈ d′ from Section 4.2 does not tell us anything about the discriminatory power of ti.

If fact, given any two terms t1 and t2 in d′, from their respective weights w1 and w2 in ~d′, there is

no way to tell which of the two terms is more relevant for distinguishing between classes and thus,

more likely to improve classification performance. In order to capture the importance of terms in

d′, we introduce a new relevance weight ωi for ti that represents the global discriminatory power

of term ti as shown in equation 4.11.
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d′ = (ω1

n∑
j

wjRel(t1, tj), ω2

n∑
j

wjRel(t2, tj), ..., ωn

n∑
j

wjRel(tn, tj)) (4.11)

w′′i = ωi

n∑
j

wjRel(ti, tj) (4.12)

d′ = (w′′1 , w
′′
2 , ..., w

′′
n) (4.13)

Equation 4.11 can be represented in the form of three matrices: a document-term matrix D,

semantic-relatedness matrix T , and term-weights matrix W , as shown in Equation 4.14.

D′ = (Drn × T cn)×W (4.14)

Where W is a n × n diagonal matrix and each entry i, j on the leading diagonal (i.e. i = j)

corresponds to the relevance weight of term ti ∈ V . Alternatively, the RWSI framework can be

viewed as a matrix transformation function H that accepts a conventional term document D and

produces a semantic equivalent term document matrix D′ as shown in Equation 4.15.

H :D → D′ (4.15)

The relevance weight of any term ti can be estimated using a number of different approaches.

However, given the supervised nature of text classification, a good estimate of term relevance can

be computed using supervised term weighting approaches. A comprehensive discussion on super-

vised term weighting was presented in Section 2.4. A basic approach for computing supervised

term weights is to use supervised feature selection algorithms. Supervised feature selection pro-

vides a statistical score of term importance by looking for informative patterns in the distributions

of terms across the different classes in the corpus. Terms whose distributions are more predictive

of any one class are assigned a higher weight.

Supervised term weights can be used to populate the leading diagonal of the term weights

matrix W . Introducing term weights into Equation 4.14 enables more important terms to have a

higher weight in d′ which allows them to have a higher influence on document similarity. Many
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supervised feature selection techniques have been proposed in the literature. However, Informa-

tion Gain (IG) and Chi squared (χ2) have been found to be particularly well suited for text clas-

sification (Yang & Pedersen 1997, Forman 2003). Importantly, any effective feature weighting

technique can be easily used with the RWSI framework to provide useful term weights.

4.4 Order of Matrix Multiplication

D =

d1 d2 d3 ... dm
t1 d11 d12 d13 ... d1m

t2 d21 d22 d23 ... d2m

t3 d31 d32 d33 ... d3m
...

...
...

...
...

tn dn1 dn2 dn3 ... dnm

T =

t1 t2 t3 ... tn
t1 t11 t12 t13 ... t1n
t1 t21 t22 t23 ... t2n
t1 t31 t32 t33 ... t3n
...

...
...

...
...

t1 tn1 tn2 tn3 ... tnn

W =

t1 t2 t3 ... tn
t1 ω11 0 0 ... 0
t2 0 ω22 0 ... 0
t3 0 0 ω33 ... 0
...

...
...

...
...

tn 0 0 0 ... ωnn

D′ =

d′1 d′2 d′3 ... d′m
t1 d′11 d′12 d′13 ... d′1m
t2 d′21 d′22 d′23 ... d′2m
t3 d′31 d′32 d′33 ... d′3m
...

...
...

...
...

tn d′n1 d′n2 d′n3 ... d′nm

Figure 4.3: Illustration of semantic indexing using RWSI framework.

The order of matrices presented in equation 4.14 is strictly defined. From the properties of
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matrices, matrix multiplication is not commutative i.e. A×B 6= B×A. Thus the order of matrix

multiplication presented in equation 4.14 is important. The term relations matrix T is multiplied

with the term-document matrix D first, before term weights are introduced using the matrix W .

Because matrix multiplication is associative, the same results is obtained by first multiplying the

W and T matrices to introduce term weights into term-term relations, and then the result can be

multiplied into the term-document matrix D. Changing the order and multiplying the W and D

matrices first will lead back to the situation where the final weight of a term is determined by the

weights of the terms that it is related to. Consequently, an unimportant term that happens to be

related to many important terms can end up with a high weight. We illustrate this situation using

the matrices shown in figure 4.3.

Consider the equation D′ = (D ×W ) × T where term weights are introduced before terms

relations. The entry d′11, which is the weight of term t1 in document d′1 in the semantic rep-

resentation matrix D′ is obtained as: d′11 = d11t11ω11 + d21t12ω22 + d31t13ω33 + .... Note

that the final weight of t1 in d′1 is influenced by the relevance weights of all terms in the vo-

cabulary with non-zero relation to t1. Contrast this with the result of our proposed approach:

d′11 = ω11(d11t11 + d21t12 + d31t13 + ...). Note how in this approach, the weight of t1 in d′1 is

only influenced by the relevance weight of t1. This ensures that the final weight of any term ti in

d′j will be proportional to its respective global relevance weight.

4.5 Relevance Weighted Indexing (RWI)

The RWSI framework is not exclusively for semantic indexing. The relevance weighting approach

is also effective for supervised document indexing (without semantic relatedness). Recall that in

Section 2.4, we described supervised document indexing as the use of supervised term weights for

document representation. Thus, it is important to investigate the effect of supervised term weights

independently of the influence of semantic relatedness. Semantic indexing can easily be turned off

in the RWSI framework by replacing the semantic relatedness matrix T with the identity matrix I

as shown in Equation 4.16.

D′ = (Drn × I)×W (4.16)

Accordingly, we refer to supervised document indexing using equation 4.16 as Relevance
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Weighted Indexing (RWI).

4.6 Evaluation

The aim of our experiments in this section is to evaluate the performance of our RWSI frame-

work for document indexing. Because of the relationship between term weighting and semantic

indexing, we decided to evaluate the performance of the RWSI framework separately for binary

and tf-idf document representations. This allows us to test how the performance of semantic in-

dexing varies between a simpler term weighting approach (binary) and a more complicated term

weighting scheme such as tf-idf. Accordingly, the evaluation of RWSI on binary representations

is presented in Sub-section 4.6.1 and our evaluation on tf-idf representations is presented in Sub-

section 4.6.2. In both sub-sections, we include in our comparative evaluation baseline BOW repre-

sentations (no semantic relatedness), semantic representations obtained using the GVSM, and also

semantic representations obtained using LSI. For both GVSM and RWSI, we use the document

co-occurrence approach (see Section 2.1.2) for computing semantic relatedness. For RWSI, we

compute term relevance weights for the matrix W using the Chi squared (χ2) function.

In Sub-section 4.6.3 we evaluate the performance of using the RWSI framework for supervised

document indexing (without semantic relatedness). This allows us to test the utility of the RWI

supervised term weighting approach.

All evaluations are performed using standard text classification tasks using a similarity-weighted

k Nearest Neighbour (kNN) algorithm where k = 3 and distance is calculated using the cosine

similarity metric. Text classification performance is reported using accuracy (see Section 3.1.1).

Evaluation is performed using 5-times, 10-fold cross validation with stratification where each fold

contains equal number of documents from all classes. Significance is reported at 95% using a

standard t-test. For text pre-processing, standard operations of tokenisation and lemmatisation are

applied. We also eliminate rare terms (terms with document frequency less than 3). In contrast

with Chapter 3, χ2 feature selection is applied on the vocabulary space of datasets. This allows us

to measure the full effect of the terms relevance weighting using the χ2 function.
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4.6.1 Semantic Indexing with binary document vectors

In this part of the evaluation, we test the performance of semantic indexing using the RWSI frame-

work on binary document vectors, which means that each document vector di in the document-

term matrixD is created using a binary weighting scheme. Accordingly, we compare the following

four representations:

• Basebin - Baseline binary document vectors without semantic indexing

• GV SMbin - Semantic indexing with binary document vectors using the GVSM framework

(see Section 4.2)

• RWSIbin - Semantic indexing with binary document vectors using our proposed RWSI

framework (see Section 4.3)

• LSIbin - Semantic indexing with binary document vectors using LSI (see Section 2.2.2)

Results are presented in Table 4.1 with highest accuracy in each row shown in bold. Values

with the ‘+’ sign indicate a statistically significant improvement compared to the baselineBasebin

whiles the sign ‘-’ indicates a significantly worse result compared to Basebin. Overall results

shows that semantic indexing using the RWSI framework (RWSIbin) generally performs better

than Basebin and GV SMbin. The improvements realised using RWSIbin compared to Basebin

are statistically significant on 23 out of 37 datasets. On the other hand, the improvements realised

using GV SMbin compared to Basebin are significant only on 9 datasets. However, results of

GV SMbin are generally better than Basebin. In contrast, LSIbin consistently performs worse

thanBasebin. The poor performance of LSI in our evaluation, while unexpected, is not surprising.

Similar poor performance of LSI has been previously reported e.g. (Zelikovitz & Hirsh 2001), (Liu

et al. 2004), (Kim, Howland & Park 2005), and (Zhang et al. 2008). According to (Zelikovitz &

Hirsh 2001) and (Liu et al. 2004), the poor performance of LSI is due to its inability to capture the

discriminatory power of terms in document representations. This further confirms our hypothesis

that semantic indexing results in a loss of term relevance and that this information is necessary for

good text classification performance.

Comparing RWSIbin with GV SMbin, RWSIbin performs significantly better on 19 datasets.

GV SMbin performs better than RWSIbin on 4 datasets (CryptElectron, ChristianMisc, MarketAd-
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Dataset Basebin GVSMbin RWSIbin LSIbin
Ohsumed

BactV 81.11 84.53+ 86.86+ 77.69−

CardR 86.74 88.00 93.91+ 83.71−

NervI 86.08 89.81+ 92.04+ 77.38−

MouthJ 81.83 84.18+ 90.91+ 79.97−

NeopE 86.58 87.84 92.39+ 82.66−

DigNut 85.17 87.98+ 89.34+ 83.80
MuscS 77.82 82.13+ 87.25+ 76.09
EndoH 86.80 88.85+ 93.98+ 83.02−

MaleF 86.99 87.25 93.89+ 84.36−

PregN 83.15 86.16+ 88.06+ 80.99−

ImmunoV 76.00 76.69 79.51+ 72.86−

NervM 76.52 82.24+ 86.71+ 71.91−

RespENT 81.55 84.27+ 88.40+ 80.44

20 Newsgroups
HardW 91.1 89.1 92.9+ 84.2
MedSp 97.03 97.52 98.38+ 92.41−

CryptE 97.73 97.97 95.06− 71.39−

ChrisM 93.06 93.08 90.86− 81.94−

MeastM 97.66 97.89 97.64 89.74−

GunsM 95.46 95.80 94.97 84.07−

AutoC 93.39 94.66 95.08+ 91.12−

Reuters
StratM 86.9 85 88.5+ 83.0
EntTour 92.7 93.7 90.1 90.7
EqtyB 94.38 92.07− 94.17 89.32−

FundA 86.92 85.00− 89.46+ 81.60−

InRelD 91.58 90.41 91.96 88.81−

NProdRes 83.42 81.50 84.93 78.24−

ProdNP 88.27 87.56 86.12− 85.28−

OilGas 85.15 83.05− 88.87+ 81.85−

ElectGas 85.02 81.16− 88.19+ 80.44−

Incident Reports
Fire 83.80 87.38 89.45+ 84.78
Collision 83.05 81.68 86.10 81.97
Rollover 80.02 80.55 80.87 77.30
CollRoll 85.48 83.80 90.10+ 84.02
MiscInc 84.25 85.60 85.17 82.28
craneFP 78.3 79.9 76.5 76.4
ShovFP 84.90 76.02− 76.83− 74.76−

Movie Reviews
MovieRev 68.63 70.03 72.53+ 63.72−

Table 4.1: Comparison of classification accuracy on different representations using binary vectors.

vert and FinInsurance). The poor performance of RWSIbin on these datasets is likely due to poor

weights being learned using χ2. Perhaps, lack of homogeneity in the documents belonging to the

same class in these datasets is responsible for the inability of χ2 to learn relevant term weights for
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these datasets. In general, the results show that semantic indexing is beneficial when used with

binary document representations and that our RWSI framework in particular significantly outper-

forms both traditional BOW representations as well as semantic representation using the GVSM

.

Note that both RWSI and GV SM produce best results on datasets from the Ohsumed corpus.

This again shows that the clean language and structure of documents in this corpus makes them

very suitable for learning distributional semantic relatedness. GV SMbin produces no significant

improvement on any other corpus. However, RWSIbin produces significant improvements on three

datasets from the 20Newsgroups corpus, four datasets from the Reuters corpus, two datasets from

the Incidents report corpus, as well as on the movie reviews dataset.

4.6.2 Semantic Indexing with tf-idf document vectors

In this sub-section, we demonstrate semantic indexing with the RWSI framework, applied to tf-idf

document vectors. Accordingly, we compare the following representation schemes:

• Basetf-idf - Baseline tf-idf document vectors

• GV SMtf-idf - semantic indexing on tf-idf document vectors using document co-occurrence

for semantic relatedness (see Section 4.2)

• RWSItf-idf - semantic indexing on tf-idf document vectors using document co-occurrence for

semantic relatedness and χ2 for relevance weighting (see Section 4.3)

• LSItf-idf - Semantic indexing with tf-idf document vectors using LSI (see Section 2.2.2)

Results of the comparative analysis are presented in table 4.2 showing classification accuracy.

Best results in each row are presented in bold font. Significant improvements over the baseline

(Basetf-idf) are again presented with ‘+’ sign, while ‘-’ indicates a significantly worse result com-

pared toBasetf-idf. From the results, we can see that the best classification performance is achieved

using RWSItf-idf. The performance of RWSItf-idf is significantly better than Basetf-idf on 24 out of

37 datasets. RWSItf-idf is significantly better than GV SMtf-idf on 31 datasets. Observe that the

performance of GV SMtf-idf is rather poor. GV SMtf-idf is not significantly better than Basetf-idf on

any dataset and performs significantly worse on 3 datasets.
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Dataset Basetf-idf GVSMtf-idf RWSItf-idf LSItf-idf

Ohsumed
BactV 84.50 84.54 89.60+ 83.55
CardR 87.22 87.69 94.48+ 87.48
NervI 89.06 88.43 92.71+ 89.12
MouthJ 86.38 85.03 91.50+ 85.64
NeopE 87.71 86.86 93.83+ 86.49
DigNut 87.83 87.57 91.82+ 88.51
MuscS 82.39 82.43 89.49+ 83.21
EndoH 90.31 90.12 94.50+ 89.17
MaleF 86.54 85.66 94.48+ 86.13
PregN 84.33 84.55 88.26+ 84.02
ImmunoV 75.72 74.18 79.84+ 76.68
NervM 85.56 85.78 88.88+ 85.12
RespENT 83.39 82.82 89.10+ 83.42

20 Newsgroups
HardW 89.7 87.1 92.9 62.6
MedSp 97.87 97.89 98.84+ 96.64
CryptE 97.66 96.40− 97.18 91.03−

ChrisM 94.44 92.71− 91.96− 91.59−

MeastM 98.34 97.18− 98.34 95.82−

GunsM 96.20 95.79 95.30 93.52−

AutoC 96.37 94.61− 97.65+ 95.48
Reuters

StratM 82.9 81.3 88.6+ 84.5
EntTour 90.7 90.7 92.3+ 91.5
EqtyB 92.48 89.78− 94.99+ 92.10
FundA 84.69 81.02− 89.80+ 83.80
InRelD 89.18 87.85 91.97+ 87.78
NProdRes 78.86 77.86 82.22+ 79.31
ProdNP 85.87 84.35 86.26 84.26
OilGas 84.75 83.18 87.64+ 83.83
ElectG 83.59 82.65 87.84+ 83.29

Incident Reports
Fire0 82.12 81.20 88.98+ 80.65
Collision 73.25 75.87 84.18+ 70.32
Rollover 77.52 76.97 77.98 75.83
CollRoll 82.12 81.08 85.68+ 77.32−

MiscInc 80.60 83.70+ 81.32+ 77.78
CraneFP 78.9 79.6 74.5 78.9
ShovFP 69.94 71.74 75.44 67.29

Movie Reviews
MovieRev 68.08 65.02− 69.96 64.57−

Table 4.2: Comparison of classification accuracy on different representations using tf-idf vectors.

Note that the poor performance of GV SMtf-idf is relative to the performance of Basetf-idf and

not in absolute terms i.e. the performance of GV SMtf-idf is about the same as that of GV SMbin

in Table 4.1. This supports our argument in Section 4.3 that unless relevance weights are intro-
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duced, information on the global relevance of terms is lost during semantic indexing. Basetf-idf

generally performs better than Basebin due to the introduction of idf which provides unsuper-

vised relevance weights of terms. However, the benefit from idf is lost during semantic indexing

by the GVSM leading to the poor results observed with GV SMtf-idf. Nonetheless, RWSItf-idf man-

ages to outperform Basetf-idf because of the explicit use of term relevance weighting by the RWSI

framework.

The performance of LSI on tf-idf document vectors is generally much better than LSIbin. This

shows that LSI works better on tf-idf representation than on binary representation, perhaps because

LSI is also able to implicitly take advantage of relevance information from idf . The performance

of LSItf-idf is largely comparable to that ofBasetf-idf, with LSItf-idf performing significantly worse

than Basetf-idf on only 7 datasets. However, no significant gains are achieved using LSItf-idf over

Basetf-idf.

Here also, the group of datasets that performs best with semantic indexing is still the Ohsumed

group of datasets. RWSItfidf produced significant improvements on all 13 datasets in this group.

The second group of datasets that benefited most from semantic indexing is the Reuters group

with significant improvements from RWSItfidf on 8 of the 9 datasets in the group. This is double

the number compared to RWSIbin. On close examination, the significant improvements on these

datasets is relative to the poor performance of Basetf-idf. In other words, the use of idf on these

datasets has led to a decline in performance using Basetf-idf compared to Basebin. However,

the decline in performance is not realised with RWSItfidf which still performs comparable to

RWSIbin. The implication of this is that semantic indexing using the RWSI framework is able to

avoid situations where idf is

In general, comparing the results for tf-idf in Table 4.2 with those of binary representation

in Table 4.1, Basetf-idf is better than Basebin on only 18 out of 37 datasets (48.65%) while

GV SMtf-idf performs better than GV SMbin on only 9 datasets. This means that both Basebin

and GV SMbin perform better than their respective tf-idf representations on more than 50% of

the datasets. This indicates that for text classification, tf-idf is not always a superior weighting

scheme compared to binary. In contrast however, RWSItf-idf performs better than RWSIbin on 28

datasets (75.68% of datasets). This indicates that the RWSI framework benefits more from the

more complicated tf-idf term weighting approach.
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Dataset tf-idf tf-CHI RWI-CHI
Ohsumed

BactV 84.50 81.11− 87.35+

CardR 87.22 85.20− 90.80+

NervI 89.06 87.13− 90.16
MouthJ 86.38 86.94 89.24+

NeopE 87.71 82.42− 90.81+

DigNut 87.83 84.30− 90.81+

MuscS 82.39 84.70+ 87.12+

EndoH 90.31 86.88− 91.93+

MaleF 86.54 86.71 92.40+

PregN 84.33 87.28+ 87.36+

ImmunoV 75.72 75.34 77.94
NervM 85.56 82.03− 85.15
RespENT 83.39 82.09 84.91

20 Newsgroups
HardW 89.7 84.1 90.6
MedSp 97.87 96.31− 97.85
CryptE 97.66 92.17− 95.29−

ChrisM 94.44 87.15− 91.76−

MeastM 98.34 95.49− 96.96−

GunsM 96.20 91.36− 94.24−

AutoC 96.37 90.10− 95.01−

Reuters
StratM 81.3 84.4 86.8+

EntTour 90.3 93.3 95.2+

EqtyB 92.48 91.85 94.39+

FundA 84.69 89.00+ 90.54+

InRelDef 89.18 92.84+ 92.40+

NProdRes 78.86 84.90+ 84.23+

ProdNP 85.87 84.36 86.47
OilGas 84.75 86.95+ 87.79+

ElectGas 83.59 83.82 82.86
Incident Reports

Fire 82.12 55.17− 80.40
Collision 73.25 81.90+ 82.22+

Rollover 77.52 65.82− 81.97+

CollRoll 82.12 84.78 86.13+

Incidents 80.60 81.03 81.52
CraneFP 78.90 81.50 81.60
ShovFP 69.94 81.56+ 76.93+

Movie Reviews
MovieRev 68.08 65.78− 69.35

Table 4.3: Comparison of supervised indexing approaches against tf-idf.
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4.6.3 Supervised Indexing

In this sub-section, we compare our RWI supervised term weighting approach with the proposed

tf-δ(t) supervised term weighting approach where idf is replaced with a supervised weighting

alternative δ(t). For both approaches, we use χ2 for obtaining supervised term weighting. Ac-

cordingly we compare the following three representations:

• tf-idf- traditional tf-idf weighting

• tf -CHI - supervised weighting using tf -χ2

• RWI-CHI - using the RWSI framework with tf-idf document vectors and χ2 for supervised

term weighting, without semantic relatedness.

Results are presented in Table 4.3 where values with the ‘+’ indicate a significant improve-

ment over tf-idf performance, and values with ‘−’ indicate a signifcant decline in performance

compared to tf-idf. Observe from Table 4.3 that the best results are obtained using our proposed

RWI-CHI weighting scheme. Specifically, RWI-CHI is better than tf-idf on 28 datasets and the

improvements on 20 of these datasets are statistically significant. RWI-CHI performs significantly

worse than tf-idf on only 5 datasets: CryptElectron, ChristianMisc, MideastMisc, GunsMisc, Au-

toCycle. Note that 4 of these datasets are exactly the same ones that tf-idf performed better than

RWSItf-idf which further supports our argument that for these specific datasets, term relevance is

not well captured by χ2. In contrast however, supervised indexing using the tf -CHI approach

does not produce consistent improvements compared to tf-idf. tf -CHI produces significant im-

provements only on 8 datasets while it performs worse than tf-idf on 16 datasets. Note that this is

consistent with the findings of (Debole & Sebastiani 2003) and (Lan et al. 2006) that the tf-δ(t)

supervised approach is often inferior to traditional tf-idf. From these results, it is evident that

the RWI supervised indexing approach is able to take advantage of the best of both idf and χ2

for effective term weighting. This also reveals that contrary to previous assumptions (Debole &

Sebastiani 2003, Deng et al. 2004, Lan et al. 2006), idf and supervised term weights are comple-

mentary and work well together for improved text classification performance.
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4.7 Chapter Summary

In this Chapter, we presented a comprehensive analysis of semantic indexing in the VSM. We also

provided insights that demonstrate the relationship between semantic indexing and term weighting.

We further demonstrated how after semantic indexing, the final weight of a term ti in the semantic

vector of a document d is determined by the number of terms ti is semantically related to and

the strengths of these semantic relationships, regardless of the initial relevance of ti to d. The

implication of this is that local (within-document) importance of terms is lost during semantic

indexing. We showed how this can lead to undesired consequences where the weights of less

relevant terms are over emphasised by semantic indexing. Consequently, we demonstrated how

this problem can be addressed by converting document vectors ~t and semantic relatedness vectors

~τ into unit vectors using an L2 normalisation function.

We also presented arguments for the need to capture information on the global relevance of

terms during semantic indexing. Accordingly, we presented the Relevance Weighted Semantic

Indexing (RWSI) framework which introduces term relevance weighting into semantic indexing.

We further demonstrated how for text classification, term relevance weights can be learned us-

ing supervised feature selection algorithms. We further demonstrated how the RWSI framework

can be used for supervised document indexing using the Relevance Weighted Indexing (RWI) ap-

proach. We presented a comprehensive evaluation of the RWSI framework using both binary and

tf-idf document vectors. In both cases, RWSI performs significantly better than both a baseline

Bag-Of-Words (BOW) representation with no semantic indexing, as well as semantic indexing

using both the GVSM and LSI frameworks. Semantic indexing using GVSM leads to marginal

and inconsistent improvements over the baseline. Indeed for tf-idf representations, the GVSM

hardly made any improvement over BOW representation. This highlights the fact that the global

relevance of terms which was captured by idf had been lost during semantic indexing using the

GVSM. However, RWSI still produces much significant improvement over baseline tf-idf. Thus,

an important contribution of this chapter is providing empirical evidence for how the performance

of semantic indexing is adversely affected by the inability to capture global term relevance, which

is largely responsible for the inconsistent improvements earlier reported.

Finally, we presented a comparative evaluation of supervised indexing using our RWI approach

with tf-idf, and the popular tf-δ(t) approach. Results show supervised indexing using our RWSI
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framework to significantly outperform both tf-idf and tf-δ(t). The result of using tf-δ(t) is gen-

erally worse than tf-idf with only a few improvements. However, the improvements from RWSI

are consistent which shows the effectiveness of the RWSI framework for supervised document

indexing. Overall, our evaluations show that the best text classification performance is achieved

with semantic representations produced using the RWSI framework with tf-idf document vectors.



Chapter 5

Supervised Semantic Indexing

Semantic indexing is traditionally an unsupervised process. Accordingly, the semantic indexing

approaches we have looked at so far in Chapters 3 and 4 have applied semantic document trans-

formations in an unsupervised manner, ignoring class knowledge in the process. For distributional

approaches, semantic relatedness of terms is computed from the entire corpus without particular

focus on the class membership of terms. The result of this is that the resulting semantic doc-

Figure 5.1: Two-dimensional visualisation of terms in the space of Positive and Negative sentiment
classes.

89
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ument representations produced are not likely to be the best fit for the class distribution of the

corpus (Bai, Weston, Grangier, Collobert, Sadamasa, Qi, Chapelle & Weinberger 2009, Aggarwal

& Zhai 2012).

Consider the example term-document space for a collection of movie reviews shown in Fig-

ure 5.1. For the purpose of illustration, terms are shown in the space of Positive and Negative

sentiment classes rather than individual documents. Extracting semantic relatedeness from this

term-document space is likely to lead to strong relation between the terms ‘good’ and ‘actor’ be-

cause of their proximity within the space. This is likely to happen simply because ‘actor’ is a term

that occurs frequently in the corpus and thus, co-occurs often with many other terms in the vocab-

ulary. However, establishing a strong association between ‘good’ and ‘actor’ is likely be a source

of noise for documents belonging to the Negative sentiment class that also happen to contain the

term ‘actor’. An intuitive approach for addressing this problem is to apply class-specific seman-

tic relatedness values separately to documents belonging to the Positive and Negative sentiment

classes, rather than having a single set of semantic relatedness values for the entire corpus. This

way, the term ’actor’ is likely to have a weak semantic relation with ’good’ in the representation

of documents belonging to the Negative class, because of the low frequency of occurrence of the

term ’good’ in that class.

In this chapter, we present a novel approach called Supervised Sub-Spacing (S3) for introduc-

ing supervision to the semantic indexing process. S3 works by creating a separate sub-space for

each class within which semantic indexing transformations are applied exclusively to documents

that belong to that class. Accordingly, S3 requires a separate set of semantic relatedness and term

relevance weights to be provided for each class. In this way, S3 is able to modify document repre-

sentations such that documents that belong to the same class are made more similar to one another.

In addition, S3 is flexible enough to work with a variety of semantic relatedness metrics and yet,

powerful enough that it leads to consistent improvements in text classification accuracy, compared

to unsupervised semantic indexing.

This chapter is organised as follows, in Section 5.1, we present S3 and describe how super-

vision is introduced into semantic relatedness extraction. The assignment of class-specific term

relevance weights is a key step in the S3 process. Accordingly, in Section 5.2, we present our

approach for learning a class-based term relevance weights. Section 5.3 presents visualisations of

a typical term-document space before and after S3 transformation, which allows us to demonstrate
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how S3 brings closer together the representations of documents belonging to the same class. Eval-

uations of semantic indexing using S3 are presented in Section 5.4. We conclude with a chapter

summary in Section 5.5.

5.1 Supervised Sub-Spacing

Figure 5.2: Overview of Supervised Sub-Spacing approach to supervised semantic indexing

The primary intuition behind S3 is that a separate set of semantic relatedness values and term

relevance weights should be computed for terms with respect to each class. Thus the semantic

relatedness between any two terms ti and tj in class ck would reflect how semantically close the

two terms are in class ck. Likewise, the weight of any term ti in class ck would also indicate

how important ti is with respect to class ck. To achieve this, we assume that the entire term-

document space is composed of N term-document sub-spaces, one for each of N classes in the

training corpus. We then apply a transformation function, which consists of assigning semantic

relatedness and term weighting, to each sub-space such that documents that belong to the same

class are processed together and separate from documents of other classes. Computing semantic
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relatedness and term weights in class-partitioned subspaces has the desired effect of making the

representations of documents that belong to the same class more similar.

An overview of the S3 process is shown in Figure 5.2 where the transformation applied to

each subspace is the RWSI function introduced in Chapter 4. Note that while the S3 process

is not restricted to only binary-class situations, Figure 5.2 highlights only two classes (blue and

red) for the purpose to illustration. The term document matrix D, with terms on the rows and

documents on the columns, is partitioned by class. Each document vector dj ∈ D is expected

to belong to at most one class. Semantic transformations are then applied to each class specific

sub-space. Finally, a semantic term-document space D′ of the same dimensions as the original

term-document space D, is created by the union of all document vectors from all individual class-

based sub-spaces. Note that this final step is necessary to illustrate that, conceptually, the kNN

classifier identifies the k most similar documents by looking at all documents from all classes.

However in practice, kNN can be applied separately to each sub-space and then the final ranked

list of most similar documents can be composed from the results of the individual sub-spaces.

More formally, a standard term-documents matrix D is initially created from the training cor-

pus where

D =

N⋃
i=1

Di = D1 ∪D2 ∪ ...DN (5.1)

D is an m × n matrix where m is the total number of documents in the training corpus, n

is the number of terms in the indexing vocabulary, and N is total number of classes. Each sub

matrixDi has dimensions p×n where p ≤ m i.e. sub-spaceDi contains at most the same number

of documents as D and has the same row dimension as D. We define a linear transformation

function:

H : Di → D′i (5.2)

which transforms each document vector v ∈ Di into its semantic representation equivalent

v′ ∈ D′i. For the function H , we use our RWSI framework which we introduced in Chapter 4.

Thus, details of the linear transformation are as follows.

H(Di) = (Drn
i × T cn

i )×W (5.3)
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Where Ti is an n× n matrix such that each entry tjk ∈ Ti represents the strength of the class-

specific semantic relatedness between vocabulary terms tj and tk. Each entry in Ti is normalised

between 0 and 1 with all entries along the leading diagonal (tjk where j = k) equal to 1 i.e. the

relatedness between any term and itself is 1 (maximum similarity). The semantic term-document

space (D′) can be constructed from the union of the individual semantic sub-spaces as follows:

D′ =

N⋃
i=1

D′i = D′1 ∪D′2 ∪ ...D′N (5.4)

Computing semantic relatedness for each class involves applying any standard semantic relat-

edness function e.g. document co-occurrence, PMI or LSI (see Section 2.1) on the collection of

documents that belong to that class. In this way, a separate set of pair-wise semantic relatedness

values are learned with respect to each class ck, for each term ti in the indexing vocabulary V .

In Chapter 4 we motivated the need to capture term relevance weights for semantic indexing.

However, according to the S3 approach, semantic knowledge needed for semantic indexing is

provided with respect to each class and not the entire corpus. This means that, unlike in Chapter 4

where term relevance is computed with respect to the entire corpus, for S3, a separate set of term

relevance weights needs to be calculated with respect to each class. Accordingly, in the next

section we describe our approach for computing class-based term relevance weights.

5.2 Class Relevance Term Weighting

The assignment of class-specific relevance term weights for each class is key to the S3 semantic

indexing approach. Thus, within the S3 framework, any given term tj can have different weights

for different classes ck ∈ C, each representing the relevance of tj to that class. It is therefore

intuitive to assume that, given a term tj ∈ T and candidate class ck ∈ C, the higher the probability

that a document belonging to class ck contains tj , the more tj is considered to be predictive of ck.

This means that the class specific weighting for any term tj with respect to class ck can be derived

as a function of the probability of observing tj in a document belonging to class ck. Accordingly,

we can define a simple class relevance weighting (CRW) function as the conditional probability
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that a document belonging to the class ck contains the term tj as shown in equation 5.5.

CRW(tj , ck) = p(dck |tj) (5.5)

The conditional probability p(dck |tj) can be decomposed using Bayes’ theorem. Recall that in

the VSM, a document is simply a set of terms di = {tj}. Therefore, according to Bayes’ theorem,

the conditional probability p(dck |tj) can be written as shown in equation 5.6.

CRW(tj , ck) = p(dck |tj) =
p(dtj |ck)p(ck)

p(dtj )
(5.6)

Where p(dtj |ck) is the conditional probability that a document contains the term tj given that

the document belongs to class ck and p(dtj ) is the probability that any document in the collection

contains the term tj , regardless of the class membership of that document. Both probabilities

p(dtj |ck) and p(dtj ) can be estimated from observed frequency counts in the corpus as shown in

equation 5.7.

p(dtj |ck) =
df(tj , ck)

Nck

p(dtj ) =
df(tj)

N
(5.7)

Where df(tj , ck) is the number of documents that belong to class ck that contain term tj ,

df(tj) is the number of documents in the entire collection that contain tj , Nck is the number of

documents that belong to class ck and N is the number of documents in the entire collection.

One can argue that other functions can equally be applied to learn class-predictive term weights.

The first proposal might be to use the probability of the term given the class i.e. p(tj |ck). Surely,

the higher the conditional probability p(tj |ck), the more likely it is that tj is relevant to ck. How-

ever, one major fault with this argument is that we are assuming higher relevance of the term tj to

the class ck on the basis of higher document frequency of tj in ck. In other words, terms will only

have a high weight if they appear in many documents in the class. Given that it is unlikely to have

more than a handful of terms appearing in most documents in any given class, using p(tj |ck) for

term weights will not produce ideal class-predictive term weights.

A second potential term relevance weighting scheme can be adopted from information theory.
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Mutual Information measures the mutual dependence between any two given variables. Accord-

ingly, we can derive class-specific weights for any term tj as the mutual information of tj with the

class ck as shown in equation 5.8.

MI(tj , ck) = log2
p(tj , ck)

p(tj)p(ck)
(5.8)

Indeed, equation 5.8 has been widely used as a measure of term-goodness for feature selection.

However, note that mutual information is affected by marginal probabilities of terms. This means

that MI tends to assign higher weights to rare terms (Yang & Pedersen 1997). MI is also aggressive

at assigning zero weight to terms that are not considered to be mutually dependent with the target

class. However, this aggressive strategy is not likely to be beneficial for the purpose of assigning

class-specific term weights as many of the terms will then be eliminated from indexing. Figure 5.3

shows a comparison of the histograms of term weights derived using our CRW(tj , ck) approach

with p(tj |ck) and MI(tj , ck) approaches.

Figure 5.3 shows the distribution of the three different term weighting approaches for 241

distinct terms with respect to the Bacterial class in the BactV dataset with equal distribution of

documents in both classes. All weights are normalised between 0 and 1 to allow for comparison

between the different term weighting approaches. The x-axis shows bin ranges for the weights in

increments of 0.05. Binning is necessary because the weights are continuous values. It is intuitive

to assume that each class ck ∈ C in a balanced, binary-class corpus will contain a good number of

highly relevant terms, a few average terms that are distributed almost equally across both classes,

and a large number of low relevance terms that are more relevant to the other class c′k. Thus, we

expect an ideal weighting class-predictive weighting function to reflect this distribution. From

figure 5.3, we can see that the distribution of weights learned using our proposed CRW is the one

that best reflects the desired distribution of weights.

We further illustrate the difference between the three weighting schemes with the aid of an

example. Let t1, t2 and t3 be three terms and ck be the class for which we wish to calculate

class-predictive term weights. Let the sample corpus contain 400 terms, 100 in class ck and 300

in class c̄k. Let the distribution of terms t1, t2 and t3 in the corpus be as shown in Table 5.1. Term

t1 occurs in 7 documents that belong to class ck and once in a document that does not belong

to ck. Thus, the numbers shown under the columns ck and c̄k are document frequencies of the
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Figure 5.3: Comparison of the histograms of term weights derived using CRW, probabilities (Prob)
and Mutual Information (MI).

corresponding row terms within and outside of class ck respectively. Accordingly, the CRW, Prob

and MI weighting of the terms t1, t2 and t3 for class ck and the complement of ck are as shown
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in Table 5.2. Note that the values of MI have been normalised to between 0 and 1 for the sake of

comparison with the other two weighting metrics.

Term ck c̄k
t1 7 1
t2 7 6
t3 30 5

Table 5.1: Distribution of sample terms in the corpus.

Term ck c̄k
CRW Prob MI CRW Prob MI

t1 0.875 0.070 0.310 0.125 0.003 0.000
t2 0.539 0.070 0.190 0.461 0.020 0.000
t3 0.857 0.300 0.476 0.143 0.017 0.000

Table 5.2: Comparison of term weighting schemes.

Note that terms t1 and t3 have a much higher occurrence in documents of class ck and thus are

good predictors of this class. However, this fact is only recognised by the CRW function which

assigns a correspondingly high weight to both t1 and t3. Prob assigns the same weight to t1 and

t2 despite the fact that t2 is not a good predictor of class. This is because Prob. does not utilise

information on the occurrence of a term outside of the class of interest. Also, note that none of the

terms is assigned a high weight by Prob. which illustrates the likelihood of Prob. to assign low

weight to predictive terms. These reasons obviously make Prob. unsuitable for class-predictive

term weighting.

MI on the other hand is very sensitive to the occurrence of terms outside of the target class

ck. Note that term t1 only manages to achieve a weighting of 0.310 despite the fact that t1 occurs

in only a single document outside of ck. This sensitivity is further highlighted in the case of t3

which occurs just 5 times outside of ck, yet MI assigns this a weight of 0.476. This highlights the

tendency of MI to downplay the importance of terms that can be considered to be highly predictive

of class. Thus, MI is not ideal for learning class-predictive term weights. In contrast, the properties

of CRW make it very suitable for class-predictive term weighting.
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Figure 5.4: Original term-document space.

5.3 Term Space Visualisation

To illustrate the effect of S3 on document representations, we present visualisations of the BactV

dataset in Figures 5.4 and 5.5. Recall that this is a binary-class dataset created from the Ohsumed

corpus, with 500 documents in each class (see Section 2.6). Chi Squared feature selection has

also been applied to limit the vocabulary to 300 terms. The column dimensions of Figure 5.4

represent documents while the row dimensions represent terms. Each light coloured point in

the space represents a non-zero value, indicating the presence of a term in a document. The dark

points are zero-valued indicating the absence of the corresponding term (row) in the corresponding

document (column). The space has been organised such that the left half contains documents that

belong to the first class and then second half contains documents that belong to the second class.

Figure 5.5 shows the same term-document space after semantic indexing using S3. Note the

difference between the left and right sides of the space is now clearly visible. This indicates how

document vectors belonging to the same class have been transformed to be very similar to one

another and very different to documents of the other class by incorporating class-specific semantic
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Figure 5.5: Term-document space after S3 transformation.

knowledge.

5.4 Evaluation

The aim of this evaluation is three-fold. Firstly, we wish to determine how standard term related-

ness metrics are affected by the introduction of supervision using our S3 approach. To achieve this

we compare classification performance on document representations obtained using the following

strategies.

• BASE: Basic BOW representation without semantic indexing

• DOCCOOC: Unsupervised semantic indexing using RWSI with document co-occurrence

(DOCCOOC) for semantic relatedness (see Section 2.1.2);

• NPMI: Unsupervised semantic indexing using RWSI with NPMI for semantic relatedness

(see Section 2.1.2)
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• S3COOC: Supervised semantic indexing using our S3 approach with DOCCOOC for se-

mantic relatedness

• S3NPMI: Supervised semantic indexing using our S3 approach with NPMI for semantic

relatedness

Our expectation is that in comparison with DOCCOOC and NPMI, S3COOC and S3NPMI

should lead to better text classification performance. The results for BASE serve as a baseline to

measure the improvement achieved using semantic indexing.

The second aim of this evaluation is to study the isolated effect of our probability-based CRW

term weighting approach. To achieve this, we create a new representation, S3crw, where only

class-specific term weights are applied to document representations without semantic relatedness

and compare the performance of S3crw with S3COOC and S3NPMI, as well as with BASE. We aim

to determine how much of the performance of S3 is influenced by the assignment of class-specific

relevance weights.

Thirdly, we compare the performance of the two S3-based techniques, S3COOC and S3NPMI,

to state-of-the-art text classification algorithms. Thus we include a comparison with the following

approaches:

• SVM: Basic BOW representation with a Support Vector Machine classifier.

• SPLSI: Supervised semantic indexing using Sprinkled Latent Semantic Indexing approach

(see Section 2.3.2) with kNN classifier.

• sLDA: Supervised semantic indexing using supervised Latent Dirichlet Allocation (see Sec-

tion 2.3.3).

For SVM, we use the libSVM package, for LSI we use the Java Matrix (JAMA) package while

for sLDA, we use a freely available C++ implementation 1. For SVM, and sLDA, we use the

default parameter settings of the respective packages. For SPLSI, we use 16 artificial terms per

class for sprinkling as described by the authors in (Chakraborti et al. 2006).

Standard preprocessing operations i.e. lemmatisation and stopwords removal are applied to all

datasets. For all experiments (except SVM and sLDA), we use a similarity weighted kNN classifier
1Available at: http://www.cs.cmu.edu/ chongw/slda/
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(with k=3) and using the cosine similarity metric to identify the neighbourhood. Feature selection

is also used to limit our indexing vocabulary to the top 300 most informative terms for all datasets

except those derived from the incidents report corpus. The documents in these datasets are small in

number and their entire vocabulary sizes are generally small so we opted for post feature selection

vocabulary size of 100 terms for these datasets. We report classification accuracy averaged over 5

runs of 10-fold cross validation. Statistical significance is reported at 95% using the paired t-test.

5.4.1 Results

Results of comparison between BASE, DOCCOOC, NPMI, S3COOC and S3NPMI are presented

in Table 5.3. Values with + represent a significant improvement over BASE while values with −

represent a significant drop in classification accuracy compared to BASE. Values in the S3COOC

and S3NPMI columns that are presented in bold represent a significant improvement over their

unsupervised counterparts i.e. DOCCOOC and NPMI respectively. Overall results indicate S3-

based representations to be significantly superior to their non-supervised counterparts. Comparing

DOCCOOC and S3COOC, our S3 approach produced an improvement in accuracy on over 89.19%

of the datasets and improvements on 75.68% of the datasets are statistically significant. On the

other hand, S3NPMI produced better results on 64.86% of datasets compared to NPMI, with im-

provements on 59.46% of the datasets being statistically significant. Note also that no significant

depreciation in performance compared to BASE was observed with any of the S3-based represen-

tations. Compare this with significant drop in accuracy observed on 4 datasets with DOCCOOC

and on 6 datasets with NPMI. This indicates that S3 successfully addresses the problem of noisy

term relatedness that could harm classification performance.

Consistent with our observations in Chapters 3 and 4, the group of datasets that benefits

the most from supervised semantic indexing is the Ohsumed group. On this group of datasets,

S3COOC produces significant improvements compared to the DOCCOOC on all 13 datasets, while

S3NPMI produces improvements over NPMI on 7. Significant improvements are also realised

on the Reuters and Incident Report datasets where S3COOC produced significant improvements

on 7 and 4 datasets compared to DOCCOOC respectively. Similarly on these groups of datasets,

S3NPMI performs better than NPMI on 8 and 5 datasets respectively. The dataset with the least

improvements is the 20Newsgroups dataset. Recall that this is the only dataset with user generated

content and most likely contains the highest level of noise in its documents. Accordingly, our eval-
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Dataset BASE DOCCOOC NPMI S3COOC S3NPMI
Ohsumed

BactV 85.1 88.6+ 90.0+ 90.3+ 90.6+

CardR 90.0 92.2+ 93.8+ 94.3+ 94.0+

NervI 91.4 91.0 92.9+ 94.0+ 93.1+

MouthJ 89.9 92.2+ 92.9+ 94.0+ 94.1+

NeopE 91.6 93.8+ 94.2+ 95.4+ 95.4+

DigNut 87.8 91.3+ 93.2+ 92.6+ 93.2+

MuscS 83.1 87.0+ 91.1+ 90.9+ 91.8+

EndoH 91.4 95.8+ 96.5+ 96.3+ 96.7+

MaleF 92.3 94.9+ 95.6+ 95.7+ 95.5+

PregN 89.7 90.4 90.9+ 92.8+ 92.2+

ImmunoV 78.7 82.5+ 84.8+ 85.5+ 85.5+

NervM 84.5 88.1+ 91.0+ 90.0+ 90.9+

RespENT 87.2 88.1 91.0+ 92.0+ 93.1
20 Newsgroups

Hardw 90.1 90.9+ 91.3+ 92.5+ 92.64+

MedSp 95.9 93.4− 95.8 95.6 95.2
CryptE 96.3 90.3− 91.8− 96.0 95.4
ChrisM 88.9 90.5+ 89.9+ 90.8+ 88.9+

MeastM 95.6 95.3 94.9 95.8 94.7
GunsM 93.7 94.0 94.0 94.1 93.9
AutoC 93.7 95.1 96.2+ 95.8+ 96.2+

Reuters
StratM 88.5 89.4 83.7− 92.0+ 91.4+

EntTour 94.3 95.7+ 95.3 95.2+ 94.3
EqtyB 95.5 95.5 94.8− 95.9+ 95.9+

FundA 89.4 92.0+ 89.9 92.6+ 91.5+

InRelD 92.3 94.1+ 91.7 94.2+ 93.9+

NProdRes 85.5 86.9 80.4− 89.6+ 86.5+

ProdNP 87.7 89.3+ 88.4 90.2+ 89.9+

OilGas 87.3 86.3− 85.7− 88.1 87.7
ElectG 88.7 84.6− 84.0− 87.1 88.3

Incident Reports
Fire 87.3 93.4+ 92.3+ 92.7+ 94.1+

Collision 88.6 91.2+ 93.3+ 93.9+ 95.7+

Rollover 86.1 89.5+ 90.7+ 92.2+ 92.2+

CollRoll 90.6 93.9+ 93.4+ 96.1+ 95.5+

MiscInc 81.5 84.4+ 89.8+ 88.7+ 90.4+

CraneFP 93.8 94.6 95.4 94.7 95.5+

ShovFP 94.1 95.4+ 96.2+ 95.4 96.0+

Movie Reviews
MovieRev 70.7 78.8 82.2 83.4+ 85.0+

Table 5.3: Comparison of supervised and unsupervised term relatedness on binary classification
tasks.

uation shows that clean documents are important for effective distributional semantic relatedness

extraction.
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Dataset BASE DOCCOOC NPMI S3COOC S3NPMI
Science 80.8 77.9 73.2 82.6+ 83.0+

Ohsumed01 52.0 51.7 52.5 56.7+ 58.0+

Ohsumed02 45.2 44.3 43.0 55.0+ 55.6+

Ohsumed03 47.8 50.2 50.0 58.4+ 56.1+

Ohsumed04 31.9 33.5 32.8 40.6+ 39.2+

Table 5.4: Comparison of supervised and unsupervised term relatedness on multi-class classifica-
tion tasks.

Table 5.4 compares between BASE, DOCCOOC, NPMI, S3COOC and S3NPMI on multi-

class classification tasks. Note that the results are consistent with that of binary classification.

Both S3COOC and S3NPMI significantly outperform the unsupervised approaches, NPMI and

S3COOC. Also note the Science and Ohsumed02 datasets where the performance of NPMI and

DOCCOOC is worse that BASE. Again, the use of supervision by S3COOC and S3NPMI produces

significant improvements compared to BASE which further supports that supervision addresses the

problem of noise associated with unsupervised semantic relatedness.

5.4.2 S3 for Supervised Term Weighting

In this section we evaluate the performance of S3 for supervised term weighting. Given the im-

portance of class relevance term-weighting to S3, it is important to study the isolated effect of

the class relevance term weighting without semantic relatedness. This also allows us to determine

the effectiveness of S3 and the CRW approach for supervised term weighting. Table 5.5 com-

pares the results obtained with S3crw which is S3 with class relevance weighting only (without

semantic relatedness) with the performance of BASE, S3COOC and S3NPMI where values with +

indicate significant improvement over BASE. Significant improvements are achieved using S3crw

on 51.35% of the datasets compared to BASE. This shows that S3 is effective for supervised term

weighting even in the absence of semantic relatedness. However, the improvement achieved using

S3crw is not as substantial as that achieved using S3-based semantic representations (S3COOC

and S3NPMI) where significant improvement is achieved, compared to BASE, on over 70% of the

datasets. This shows that the combination of semantic relatedness and class relevance weighting

using S3 produces the best improvements in text classification performance.
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Dataset BASE S3crw S3COOC S3NPMI
Ohsumed

BactV 85.1 85.6 90.3+ 90.6+

CardR 90.0 91.8+ 94.3+ 94.0+

NervI 91.4 91.9 94.0+ 93.1+

MouthJ 89.9 91.0+ 94.0+ 94.1+

NeopE 91.6 93.7+ 95.4+ 95.4+

DigNut 87.8 89.9+ 92.6+ 93.2+

MuscS 83.1 85.5+ 90.9+ 91.8+

EndoH 91.4 93.3+ 96.3+ 96.7+

MaleF 92.3 93.6+ 95.7+ 95.5+

PregN 89.7 90.4+ 92.8+ 92.2+

ImmunoV 78.7 80.5+ 85.5+ 85.5+

NervM 84.5 85.2+ 90.0+ 90.9+

RespENT 87.2 89.9+ 92.0+ 93.1
20 Newsgroups

Hardw 90.1 90.9+ 92.5+ 92.64+

MedSp 95.9 95.6 95.6 95.2
CryptE 96.3 95.0 96.0 95.4
ChrisM 88.9 90.1 90.8+ 88.9+

MeastM 95.6 94.6 95.8 94.7
GunsM 93.7 93.0 94.1 93.9
AutoC 93.7 94.1 95.8+ 96.2+

Reuters
StratM 88.5 90.7 92.0+ 91.4+

EntTour 94.3 94.6 95.2+ 94.3
EqtyB 95.5 96.0+ 95.9+ 95.9+

FundA 89.4 90.9+ 92.6+ 91.5+

InRelD 92.3 94.1+ 94.2+ 93.9+

NProdRes 85.5 88.3+ 89.6+ 86.5+

ProdNP 87.7 88.2 90.2+ 89.9+

OilGas 87.3 88.8+ 88.1 87.7
ElectG 88.7 89.5+ 87.1 88.3

Incident Reports
Fire 87.3 87.3 92.7+ 94.1+

Collision 88.6 89.6 93.9+ 95.7+

Rollover 86.1 89.0+ 92.2+ 92.2+

CollRoll 90.6 92.1 96.1+ 95.5+

MiscInc 81.5 82.4 88.7+ 90.4+

CraneFP 93.8 93.0 94.7 95.5+

ShovFP 94.1 93.3 95.4 96.0+

Movie Reviews
MovieRev 70.7 71.1 83.4+ 85.0+

Table 5.5: Comparison of term-weighting only with S3.



5.4. Evaluation 105

Dataset SVM SPLSI sLDA S3COOC S3NPMI
Ohsumed

BactV 90.2 88.6 89.3 90.3 90.6
CardR 93.7 93.7 92.76 94.3 94.0
NervI 92.2 90.3 91.9 94.0 93.1
MouthJ 91.8 93.4 92.3 94.0 94.1
NeopE 93.5 94.5 94.8 95.4 95.4
DigNut 91.6 90.7 91.5 92.6 93.2
MuscS 89.8 89.7 89.2 90.9 91.8
EndoH 94.0 95.4 93.7 96.3 96.7
MaleF 94.4 94.7 92.9 95.7 95.5
PregN 89.6 91.9 89.6 92.8 91.4
ImmunoV 82.4 83.3 81.0 85.5 83.6
NervM 88.3 90.0 87.7 90.0 90.9
RespENT 90.5 92.0 90.2 92.0 93.1

20 Newsgroups
Hardw 92.4 92.9 91.3 92.5 92.64
MedSp 97.1 95.3 95.7 95.6 95.2
CryptE 96.9 89.1 93.7 96.0 95.4
ChrisM 90.8 90.6 91.7 90.8 88.9
MeastM 95.7 93.2 95.0 95.8 94.7
GunsM 92.2 93.5 92.68 94.1 93.9
AutoC 95.9 95.6 97.0 95.8 96.2

Reuters
StratM 89.7 92.7 91.1 92.0 91.4
EntTour 96.0 94.7 93.6 95.2 94.3
EqtyB 96.1 96.0 95.2 95.9 95.9
FundA 90.9 91.3 93.1 92.6 91.5
InRelD 92.0 93.4 94.9 94.2 93.9
NProdRes 85.2 85.8 87.7 89.6 86.5
ProdNP 86.4 89.3 87.8 90.2 89.9
OilGas 88.8 86.6 88.6 88.1 87.7
ElectG 90.6 89.2 93.02 87.1 88.3

Incident Reports
Fire 91.9 92.3 46.4 92.7 94.1
Collision 89.7 95.5 46.2 93.9 95.7
Rollover 91.5 89.8 50.2 92.2 92.2
CollRoll 93.8 96.2 50.8 96.1 95.5
MiscInc 92.5 89.1 50.6 88.7 90.4
CraneFP 94.6 95.2 45.1 94.7 95.5
ShovFP 97.7 95.1 43.9 95.4 96.0

Movie Reviews
MovieRev 80.1 75.7 81.7 83.4 85.0

Table 5.6: Comparison of S3 techniques with SVM, SPLSI and sLDA

5.4.3 Comparison with state-of-the-art

Table 5.6 compares the results our two S3 approaches with those of SVM, Sprinkled LSI (SPLSI)

and supervised LDA (sLDA). Values in bold represent the best results in each row. The overall
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significant improvement over SVM indicates a clear advantage from S3-based representations for

text classification. For instance, S3COOC is better than SVM on 69.44% of the datasets, (signifi-

cantly on 51.35% of the datasets) while S3NPMI is better than SVM on 67.56% (significantly on

48.64%). In comparison with SPLSI, S3COOC performs better on 75.67% of the datasets (signif-

icantly on 67.56%). On the other hand, S3NPMI outperforms SPLSI on 70.27% of the datasets

with significant improvements also on 62.16%.

Comparing S3COOC with sLDA, S3COOC is better on 78.38% of datasets (significantly on

64.86%). In contrast, sLDA is significatly better than S3COOC on only 2 datasets: AutoCycle and

ElectGas. Observe that sLDA performs particularly poorly on the incident report datasets, Fire,

Collision, Rollover, CollRoll, MiscInc and ShovFP. These datasets have a total of only 200 doc-

uments (100 documents per class). This indicates that perhaps the number of documents in these

datasets is too small for sLDA to learn accurate supervised topic models. Note that accuracy is

about 50% for these datasets (about 46% for Fire and Collision). However, S3COOC and S3NPMI

produce the best accuracies on these datasets except on MiscInc and ShovFP where SVM performs

best. This shows that semantic indexing with S3 is effective on both large and small datasets.

5.5 Chapter Summary

In this chapter, we have introduced a novel technique called Supervised Sub-Spacing (S3) for

introducing supervision into semantic indexing. We presented a detailed evaluation of this ap-

proach on 36 datasets from a variety of different domains including news stories, medical abstracts

and incident reports. We investigated S3 with two semantic relatedness metrics: document co-

occurrence (DOCCOOC) and Normalised Point-wise Mutual Information (NPMI). Results show

S3 leads to improvements in the performance of these two metrics on over 80% of the datasets.

We also compared two S3-based approaches (S3COOC and S3NPMI) with SVM, a supervised ver-

sion of Latent Semantic Indexing (SPLSI) that uses a technique called Sprinkling, and supervised

LDA (sLDA). Results show that our S3-based approaches outperform SVM, SPLSI and sLDA on

over 70% of datasets.

The effectiveness of S3 lies in its ability to transform document representations such that

documents that belong to the same class are made more similar to one another while, at the same

time, making them more dissimilar to documents of a different class. We presented visualisations
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of a typical term-document space before and after S3 transformation in order to demonstrate the

effect of S3 on document representations. We also showed how supervised term weighting using

the class relevance term weighting (CRW) approach contributes to improved text classification

performance.

The S3 technique we presented here has a number of additional advantages compared to other

supervised semantic indexing approaches. Firstly, unlike sLDA and SPLSI, S3 is not tied to

any specific semantic relatedness approach (i.e. LDA with SLDA, and LSI with SPLSI). We

demonstrated this by using S3 with both DOCCOOC and NPMI semantic relatedness approaches.

Secondly, unlike sprinkling, S3 does not require higher order semantic relatedness. This means

that S3 does not apply restrictions to the type of semantic relatedness metric that can be used. A

third advantage is that S3 does not require any parameter tuning whereas sprinkling requires a

predetermined number k of artificial terms to be injected into the vocabulary while sLDA requires

the optimum number of topics to be determined. In both cases, it is unlikely that globally optimum

parameter settings exists and thus, the optimum number of sprinkled terms as well as the optimum

number of topics will have to be determined individually for each dataset which further contributes

to the complexity of these approaches.



Chapter 6

Case Study: Sentiment Classification

using S3

Sentiment classification is the task of assigning opinion documents to the categories “Positive”

and “Negative” in order to indicate the type of opinion or sentiment expressed in the docu-

ments (Liu 2010). Sentiment classification can essentially be modelled as a binary classification

task, which means that techniques used for traditional text classification are equally applicable

for classifying opinion documents. To train a machine learning classifier, a collection of opinion

documents with known sentiment labels is used. A common document representation approach

for sentiment classification is also a standard VSM where all terms in the opinion documents are

used as features (Pang et al. 2002). Given any new opinion document dq with unknown sentiment

class, the classifier is then used to predict the appropriate sentiment category to assign dq. Dif-

ferent machine learning algorithms have been successfully employed for sentiment classification

e.g. SVM, Naive Bayes and Maximum Entropy (Pang et al. 2002) with typically high sentiment

classification accuracy (Muhammad, Wiratunga, Lothian & Glassey 2013).

Despite the success of machine learning for sentiment classification, recent works indicate

that machine learning approaches can benefit from using background knowledge from sentiment

lexicons (Melville, Gryc & Lawrence 2009, Dang, Zhang & Chen 2010, Mudinas et al. 2012).

Combining the two approaches has a number of benefits. Firstly, it allows machine learning clas-

sifiers to utilise general knowledge relevant for sentiment classification, thus, avoiding overfitting

the training data. Secondly, supplementing training data with knowledge from sentiment lexicons
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has the potential to reduce the number of training examples required to build accurate classi-

fiers. However, achieving significant improvements using this combined approach has proved

difficult (Mudinas et al. 2012).

In this chapter, we present a case study of applying our S3 approach (see Chapter 5) to the task

of sentiment classification. We also demonstrate how background knowledge from a sentiment

lexicon can be utilised with the S3 approach for improved sentiment classification performance.

This Chapter is organised as follows: In Section 6.1 we describe the application of S3 to the

task of sentiment classification. Section 6.2, describes how the SentiWordNet lexicon is used

to provide sentiment scores of terms which are then utilised for semantic indexing of subjective

text using S3. We present the datasets we use for evaluation in Section 6.3. Evaluation of S3 on

sentiment classification tasks is presented in Section 6.4. We conclude the chapter with a summary

in Section 6.5

6.1 S3 for Sentiment Classification

Given the similarity that exists between sentiment classification and standard text classification, we

expect similar improvements which were achieved using semantic indexing on text classification

to be achieved on sentiment classification. Hence, the aim of this chapter is to apply semantic

indexing using the S3 approach to the task of sentiment classification. An overview of S3 applied

to sentiment classification is presented in Figure 6.1.

Recall that in sentiment classification, the objective is to classify opinion documents into ‘Pos-

itive’ and ‘Negative’ sentiment classes. Thus, sentiment classification is essentially a binary clas-

sification task involving these two classes. Accordingly, applying S3 for semantic indexing of

opinion documents involves partitioning the term-document space D into ‘Positive’ and ‘Nega-

tive’ classes (Dpos and Dneg respectively) and then learning semantic relations (Tpos and Tneg)

and class relevance weights (Wpos and Wneg) separately for ‘Positive’ and ‘Negative’ documents.

This way, semantic relatedness between positive opinion terms is emphasised within the represen-

tations of positive documents. Similar emphasis is also applied to negative terms within negative

document representations. Document transformation is then applied to the class-specific term-

document spaces (Dpos and Dneg) to produce the semantic term-document spaces D′pos and D′neg

respectively. The final semantic term-document space D′ is constructed as a union of D′pos and
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Figure 6.1: Semantic indexing for sentiment classification using S3

D′neg.

The effect of S3 on opinion documents is that the representations of positive documents are

brought closer together in the vector space and are made more distant from the representations

of negative documents. This results in a more linearly separable term-document space which in

turn should improve sentiment classification performance. The partitioning of opinion documents

into subspaces by S3 also provides opportunity for utilising additional class-specific knowledge

to further improve document representation, as we will discuss in the next section.

6.2 Combining S3 with SentiWordNet

So far, we have demonstrated how class relevance weights can be learned directly from the training

corpus. However, for sentiment classification, the relevance of a term to a sentiment category can

be learned from sources other than corpus statistics e.g. sentiment lexicons. A sentiment lexicon is

a collection of opinion terms together with an indication of the sentiment that these terms convey.
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Typically, a sentiment term is associated with a numerical value along each sentiment dimension

(Positive and Negative) in the lexicon, indicating the strength of the opinion associated with that

term along that dimension. For example, the term “excellent” could be associated with the positive

score 0.9 and negative score 0.1 out of a maximum possible score of 1.0, indicating that “excellent”

is strong indicator of positive sentiment and a weak indicator of negative sentiment. Approaches

that use sentiment lexicons for sentiment classification typically make a classification decision

using the scores returned by the sentiment lexicon for all terms in a document.

Our goal here is to utilise sentiment scores from a sentiment lexicon to improve semantic

indexing of opinion documents using S3. Note that, similar to the class relevance term weights,

sentiment scores from lexicons also provide the degree of relevance of a sentiment term to a

sentiment class. Thus, we aim to use sentiment scores from a sentiment lexicon as further evidence

for the relevance of sentiment terms by combining with the class relevance weights extracted from

the corpus. Accordingly, we wish to obtain a new weight w(ti, cj) for a term ti by augmenting the

class relevance weight CRW (ti, cj) of ti extracted from corpus statistics, with the class-specific

sentiment score (score(ti, cj)) of ti obtained from a sentiment lexicon as shown in equation 6.1.

w(ti, cj) = αCRW (ti, cj) + (1− α)score(ti, cj) (6.1)

Where bothCRW (ti, cj) and score(ti, cj) are normalised within the range 0 and 1. The value

α is used to control the contribution from the class relevance weight and that from the sentiment

lexicon to the final weight w(ti, cj). For the purpose of this work, we use the value α = 0.5.

We decide to use of a combination of both CRW and sentiment score because, we view the

two as being complementary. Indeed, while sentiment lexicons are certainly useful, they have been

found to not be sufficient for sentiment classification for a number of reasons (Liu 2012). Firstly,

the context within which a term is used is very important for accurately determining its sentiment.

However, context is not available to sentiment lexicons, and this needs to be captured directly

from the documents. A second reason why using a combined approach is better is the problem of

lexicon coverage. Sentiment lexicons are only able to provide scores for terms that exist in their

dictionary which means that sentiment scores will not be available for terms that exist outside of

the dictionaries of the sentiment lexicon. However, by combining with CRW, we enure that the

scores of terms that may be absent from the lexicon are still captured.
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Figure 6.2: Representation of the position of a synset in three-dimensional sentiment space as
provided by SentiWordNet.

For the purpose of this work, we use SentiWordNet (Baccianella & Sebastiani 2010) which

is a high coverage sentiment lexicon developed as an extension to the popular WordNet lexical

resource. Accordingly, SentiWordNet has very much the same structure as WordNet with terms

grouped together into synonym sets called synsets or concepts (we use the words synset and con-

cept to denote the same thing). Synsets are further assigned into one of Noun, Verb, Adjective

and Adverb dictionaries based on their part-of-speech category. Each synset in SetiWordNet is

associated with scores along three sentiment dimensions, a negative score, a positive score and

an objective score, indicating how strongly that entry is associated with the respective sentiment

dimension. The positive, negative and objective scores of each entry sum to a total of 1.0. An

alternative way of visualising this is in a three dimensional sentiment space where a synset can be

considered as occupying a position in this space as show in Figure 6.2.

Given any lemmatised term ti, we obtain its sentiment score from SentiWordNet by matching

ti the appropriate synset in SentiWordNet. Terms are matched to synsets by searching for matching

entries in the Noun, Verb, Adverb and Adjective dictionaries in that order. The order used for

dictionary lookup corresponds to the order of size of the dictionaries i.e. the dictionary with the

most number of entries is the Noun dictionary followed by the Verb dictionary etc. If a matching

entry is found in any dictionary then the lookup is abandoned and subsequent dictionaries are not

searched. Our decision not to use part-of-speech tagging means that our approach is not limited by

the accuracy of a part-of-speech tagger. Also, many part-of-speech tagger use a more expansive

set of part-of-speech categories than the four categories used by SentiWordNet. This means that

a mapping is required from the part-of-speech label assigned by the tagger to the appropriate
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Figure 6.3: Matching synsets for the term ’fantastic’ in SentiWordNet showing both negative and
positive sentiment scores for each sense

part-of-speech dictionary in SentiWordNet.

The final sentiment score of term ti is obtained as the average score of all matching synsets in

the target dictionary, along the positive and negative sentiment dimensions. For example the term

‘fantastic’ matches 5 synsets in the Noun dictionary as shown in Figure 6.3. Thus, the score of

‘fantastic’ for the Positive class is obtained as the average of the positive scores of all 5 senses.

The same approach is used for the Negative class.

Once the class-specific sentiment score score(ti, cj) of ti has been obtained, w(ti, cj)
′ is com-

puted by combining score(ti, cj) and w(ti, cj) using a linear interpolation approach as shown in

equation 6.1.

6.3 Datasets

A summary of the datasets used in our evaluation is provided in Table 6.1 which shows the names

of each dataset, the number of documents and the average vocabulary size, which is the average

number of unique terms in each document. All datasets contain only the binary sentiment classes

Postive and Negative with equal distribution of documents between the two classes. We describe

these datasets in detail in the following sub-sections.

Dataset Number of documents Ave doc. Vocabulary Size
Movie Reviews 1000 197.4

Amazon Reviews 1000 18.0
Twitter Dataset 900 5.9
Hotel Reviews 1000 48.8

Table 6.1: Overview of datasets used for evaluation showing number of documents in each dataset.
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6.3.1 Movie Reviews

This is a sentiment classification corpus comprising movie reviews from the Internet Movie Database

(IMDB) (Pang et al. 2002). We used version 1 of this corpus which contains 1400 reviews, half of

which are classified as expressing positive sentiment while the other half is classified as negative.

Accordingly, the classification task for this dataset is to determine the sentiment orientation of any

given review.

6.3.2 Amazon Reviews

This is another sentiment classification corpus consisting of customer reviews obtained from the

Amazon website. We used version 1 of this dataset which is described in (Blitzer, Dredze &

Pereira 2007). Four types of products were considered in the dataset: books, DVDs, electronics

and kitchen appliances. The original user reviews had a star rating between 1 and 5. We trans-

formed this into binary sentiment classes using the same approach as (Blitzer et al. 2007) where

reviews with star rating less than 3 are considered negative and those with star rating of 4 and 5

are considered positive.

6.3.3 Twitter Dataset

This is a collection of 5513 tweets on four topics: Apple, Google, Microsoft and Twitter, available

from Sanders Analytics 1. All tweets have been manually classified into one of three sentiment

categories: negative, positive, neutral, including an additional uncategorised category for tweets

that are not considered to bear any sentiment. We utilise only the positive and negative sentiment

classes for our evaluation.

6.3.4 Hotel Reviews

This is a collection of hotel reviews obtained from the TripAdvisor website as described in (Wang,

Lu & Zhai 2010). The corpus contains a total of 235,793 reviews, each with a user assigned

star rating between 1 and 5. We convert these ratings into binary sentiment classes by labeling

reviews with a star rating lower than 3 as negative while reviews with a rating above 3 are tagged
1http://www.sananalytics.com/lab/twitter-sentiment/
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as positive. We then randomly select 500 reviews from each of the positive and negative classes to

create our evaluation dataset.

We took subsamples of the original corpora to create our datasets for the sake of computational

efficiency.

6.4 Evaluation

The aim of our evaluation is two-fold. Firstly, we wish to determine the performance of semantic

indexing using S3 on sentiment classification. Secondly, we wish to evaluate the performance of

extending S3 with sentiment scores from SentiWordNet. To achieve this we compare sentiment

classification performance on document representations obtained using the following strategies.

• BASE: Basic BOW approach without term relatedness

• S3COOC: Supervised term-relatedness extracted using our S3 approach with DOCCOOC

term-relations (see Section 5.1)

• S3NPMI: Supervised term-relatedness extracted using our S3 approach with NPMI term-

relations (see Section 5.1)

• S3COOCSWN: S3COOC augmented with SWN sentiment scores (see Section 6.2)

• S3NPMISWN: S3NPMI augmented with SWN sentiment scores (see Section 6.2)

We apply standard text pre-processing steps of stopwords removal and lemmatisation. We

eliminate terms with a document frequency of less than 3. We then use Chi squared feature se-

lection to limit the vocabulary to the top 300 terms for each dataset. Classification accuracy is

reported using a similarity weighted kNN classifier (with k=3) and using the cosine similarity

metric to identify the neighbourhood. Our expectation is that semantic indexing using S3COOC

and S3NPMI will produce better results on sentiment classification compared to non semantic rep-

resentation (BASE) because of S3’s ability to produce semantic document representations that are

a better fit for the underlying class distribution. We also expect that the use of sentiment scores in

S3COOCSWN and S3NPMISWN should lead to even better sentiment classification performance

compared to S3COOC and S3NPMI.
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Dataset BASE S3COOC S3NPMI
MovieReviews 70.7 83.4+ 85.0+

AmazonReviews 65.9 78.7+ 81.3+

TwitterData 71.6 82.9+ 82.7+

HotelReviews 64.5 68.4+ 67.3+

Table 6.2: Results of semantic indexing using two S3-based representation.

Table 6.2 shows the results of comparing the standard S3 semantic representations with BASE

(baseline representation without semantic indexing). The results for BASE serve as a baseline

to measure the improvement achieved using semantic indexing. Best results for each dataset are

shown in bold. Values with the + sign indicate a statistically significant improvement compared

with BASE. Observe that semantic indexing using S3 leads to statistically significant improve-

ments on all datasets. S3NPMI outperforms S3COOC on the MovieReviews and AmazonReviews

dataset while S3COOC performs slightly better than S3NPMI on the TwitterData and HotelRe-

views datasets. Overall, the results show that sentiment classification benefits much from semantic

indexing using S3.

Dataset S3COOC S3NPMI S3COOCSWN S3NPMISWN
MovieReviews 83.4 85.0 85.4+ 85.8+

AmazonReviews 78.7 81.3 76.8− 81.0

TwitterData 82.9 82.7 84.2+ 85.1+

HotelReviews 68.4 67.3 70.7+ 68.1+

Table 6.3: Comparison of standard S3 and extended S3 with sentiment scores from SentiWordNet.

Table 6.3 presents results of of comparing standard S3 representations, with S3 representa-

tions extended with sentiment scores from SentiWordNet. Here also best results for each dataset

are shown in bold. Values in the S3COOCSWN and S3NPMISWN columns shown with a +

sign represent significant improvement in classification accuracy compared with their non-lexicon

based counterparts i.e. S3COOC and S3NPMI respectively while values with − represent a signifi-

cant depreciation in performance. As expected, the best results are generally achieved using either

S3COOCSWN or S3NPMISWN representations. Also, augmenting S3 with sentiment scores from

SentiWordNet produces significant improvements on all datasets except AmazonReviews where

the augmented representation resulted in a statistically significant decline in classification accu-

racy.
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Close examination of AmazonReviews dataset reveals that terms with strong sentiment are

often used in documents that belong to the opposite sentiment class. For example, we find the

following review in a document belonging to the Negative class:

“I just can’t imagine how anyone enjoyed this movie”

Note the use of the term ‘enjoyed’ in the review which has a positive sentiment score of 0.32 in

SentiWordNet. Accordingly, adding this score to the representation of documents belonging to the

Positive class will make short documents such as this one even more similar to the Positive doc-

uments when provided as a query document. Indeed in our evaluation, S3COOCSWN incorrectly

classifies this document as ‘Positive’ while S3COOC correctly classifies it as Negative because

S3COOC does not make use of a sentiment lexicon. Thus, in the S3COOC representation, the

weights of sentiment terms are a reflection of their distribution in the corpus. A similar problem is

also expected in situations where negation is used in a document e.g. “I did not enjoy this movie”.

This indicates that further contextual analysis is required when working with sentiment lexicons

in order to avoid these types of problems. Nonetheless, the significant improvements achieved on

most datasets indicate that our approach of augmenting S3 with sentiment scores from SentiWord-

Net is effective for sentiment classification.

Considering the popularity of sentiment analysis on tweets, it is important to discuss the stae-

of-the-art in sentiment classification on twitter. Recall from Table 6.2 that our baseline perfor-

mance on TwitterData is 71.6. This is comparable with the baseline achieved in (Agarwal, Xie,

Vovsha, Rambow & Passonneau 2011) (71.35) on a similar binary classification task, using a sim-

ilar unigram representation with SVM classifier. However, note that the improvements obtained

using the S3-based representations (82.9 and 82.7 using S3COOC and S3NPMI respectively)

and also using the the hybrid approach with SentiWordNet (84.2 and 85.1 using S3COOCSWN

and S3NPMISWN respectively) are much higher than the best performance reported in (Agarwal

et al. 2011) (75.39). The work in (Go, Bhayani & Huang 2009) presents a higher unigram base-

line performance of 82.2 using SVM. In (Lin & Kolcz 2012), a much larger dataset was used

(from 1 million to 100 million tweets) which produced baseline unigram accuracies of between

77.5 (for 1 million tweets) to 78.5 for (100 million tweets). However, note that unlike the dataset

used in our evaluation and the dataset presented in (Agarwal et al. 2011) where the ground truth

sentiment labels were obtained using manual annotation, the ground truths in (Go et al. 2009)
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and (Lin & Kolcz 2012) were obtained automatically using the distance supervision technique (Go

et al. 2009).

6.5 Chapter Summary

In this chapter, we demonstrated the application of the S3 semantic indexing approach to the

task of sentiment classification. We also demonstrated how sentiment scores from a sentiment

lexicon (SentiWordNet) can be utilised with S3 to improve sentiment classification performance.

Evaluation shows S3 to be very effective for sentiment classification, significantly outperform-

ing baseline BOW representation (without semantic indexing). Furthermore, combining S3 with

knowledge from a sentiment lexicon significantly improves the performance of S3 on sentiment

classification.

An important advantage of providing sentiment scores from a lexicon to S3 is that sentiment

lexicons provide a more general judgement of sentiment strength that is likely to help avoid over

fitting the training corpus. Accordingly, we presented an approach that utilises a simple, yet effec-

tive linear interpolation of class relevance term weights and class-specific sentiment scores. The

use of weighting parameters (α and β) in the combination allows for controlling the contribution

from the sentiment lexicon to the final document representation which helps to mitigate against

noise from the lexicon.



Chapter 7

Event Extraction for Concept-Based

Indexing

All document indexing approaches discussed so far are based on the same underlying assumption,

that terms alone are sufficient to model the meaning of text documents. However, for some tasks,

a more effective indexing vocabulary is better defined at a higher conceptual level rather than at

the lower level of keywords. Unlike keywords, concepts have much more semantic information

associated with them. Such semantically rich features are very useful in text classification tasks

where the class boundary of a document collection is defined by a semantic distinction rather than

topic. That is, the distinction between classes is not based on topic but rather some difference in

semantics in the content of the documents. For example in the domain of incident reporting, one

may wish to retrieve or categorise incident reports based on say incident cause, whether or not

injuries or fatalities are recorded in the report, and whether or not there were damage reported. In

such cases, the distinction between document categories is not related to topic, but rather to some

specific occurrence or event (i.e. cause, injury, or damage) described in the documents.

To support these types of semantic classification tasks, we turn to event extraction. Events

are defined as “a specific occurrence..., something that happens or a change of state”(LDC 2005).

These are typically expressed in text using single words (e.g., “fall” and “break”), or multi-word

expressions (e.g “take off”) (Filatova & Hatzivassiloglou 2003, LDC 2005, Sauri, Goldberg, Ver-

hagen & Pustejovsky 2009). Thus, given an incident report, we can observe that the important

conceptual information such as causes, injuries and damages are typically described using event

119
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expressions. Take for example the following snippets extracted from a report about a fire related

incident:

“Gas was leaking from the pipe”

“This resulted in a fire”

“The operator was severely burned”

Observe that the expressions ‘leaking’, ‘fire’ and ‘burned’ all satisfy the definition of “specific

occurrence” and “something that happened”. Thus, these three expressions are considered events

and they pretty much tell us the important occurrences in this incident. For example, ‘leaking’

tells us the occurrence that caused the incident (a gas leak), ‘fire’ tells us what type of incident it

was and ‘burned’ tells us the consequence of the incident. Accordingly, a proper document index

in this situation should not only capture these events, but also assign a high level of importance to

them. This is important in order to allow for comparing and classifying incident reports based on

incident cause, incident type or damages and injury types reported.

In this chapter, we present an unsupervised heuristic approach for extracting events from the

content of documents called RUBEE (RUle-Based Event Extractor). We further present a frame-

work for using events and event polarity (whether the occurrence of the event is negated or af-

firmed) for text representation with a view to improving text classification performance. Specifi-

cally, we study the effectiveness of an event-based representation in differentiating between docu-

ments that have very similar context (i.e. describe similar situations) but report different eventual-

ities. For this purpose we present results from an experiment designed to study the categorisation

of reports, on the basis of, whether or not injuries were sustained in similar incident scenarios. A

comparative study is used to analyse classification performance on document representation with

events extracted using RUBEE versus those extracted using a benchmark event extraction system

called EVITA (Saurí, Knippen, Verhagen & Pustejovsky 2005).

This chapter is structured as follows: Section 7.1 presents RUBEE, our event extraction algo-

rithm. Our proposed representation framework that uses both semantic and lexical information

for document indexing is presented in Section 7.2. Evaluations are presented in Section 7.3. We

conclude this chapter with a summary in Section 7.4.
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Figure 7.1: Event extraction process.

7.1 RUBEE- RUle-Based Event Extraction

RUBEE is an unsupervised rule-based event extraction algorithm which exploits knowledge from

linguistic analysis and a lexical database. A source document is read, tokenized, tagged with part-

of-speech information and sentences are parsed into syntactic and dependency structures using

the Stanford Parser (Marneffe, Maccartney & Manning 2006). This allows us to identify the

grammatical roles of tokens in the sentence e.g., whether a verb is a main verb or an auxiliary.

This information is used by RUBEE to decide whether candidate tokens should be accepted or

rejected as valid events. The event extraction process is shown in Figure 7.1. Here WordNet

(Miller 1995) is used to provide background knowledge for identifying event candidates. For

example hypernymy information is used to identify candidate nouns for event extraction. We note

that a glossary or ontology of events could also be utilised here instead of Wordnet. However, in

the absence of such resources, WordNet provides a satisfactory alternative.

RUBEE’s event extraction algorithm appears in Figure 7.2. The function pos(s) returns a

sequence of part-of-speech tags for the corresponding tokens in the sequence s. The part of speech

tags used in the algorithm (VB, RB, NN etc.) have the same meaning as defined in the Penn

Treebank tagset (Santorini 1990). Given a sentence S a regular expression is matched in order
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Let:
S = {t1, ..., tn}, a sentence which is a sequence of tokens ti
s ⊆ S, a subsequence of tokens in S
pi, a part-of-speech (pos) tag for token ti
p = {p1, ..., pn}, the sequence of all pos tags pi of tokens ti in s
pos(s)→ p, a function:
', a regular expression matching operator
C, the set of all candidate event tokens
E , the set of all selected events
V , the set of all verbs in WordNet
N , the set of all identified WordNet noun event Synsets

For each s ∈ S
If pos(s) ' VB.*RB|VB.*IN|VB.*RP

If s ∈ V
C = C + s

Else
C = C +mainverb(s)

Else if pos(s) ' VB.*
C = C + s

Else if pos(s) ' NN.*
If hypernym(s) ∈ N
C = C + s

Else if pos(s) ' JJ.*
If verbDerived(s)
C = C + s

For each c ∈ C
If not auxilliary(c) ∧ not NN_modifier(c)
E = E + c

For each e ∈ E
extractPolarity(e)

Figure 7.2: RUBEE Algorithm

to identify candidate token sequences based on part-of-speech information. Candidate events are

then filtered using a sequence of conditional statements to identify the final set of valid events.

Finally, the polarity (negative or positive) of each event is identified. We consider event candidates

from three parts-of-speech categories: verbs, nouns and adjectives. Corresponding extraction

heuristics for each of these part-of-speech categories are explained with examples below followed

by a discussion of how polarity information is used for event extraction.
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7.1.1 Verbs

Verbs typically express actions or happenings and as such, are good candidates for events. How-

ever, we use the following rules to filter out unlikely verb candidates:

• Auxiliaries: Auxiliary verbs are non-main verbs in a clause and typically serve to only

support the main verb. For example:

“Closing the lid would have prevented the hot material from falling".

In the preceding example (and all subsequent examples) the event is shown in bold and

the non-event verbs are underlined. The verbs “would" and “have" are auxiliary verbs that

modify the main event verb. Thus, only “prevented" is extracted as an event.

• Modifiers: Verbs often appear as modifiers of nouns and noun phrases e.g., “drilling team"

and “cutting equipment" Such verbs are not extracted as events.

• Verb+Particle and Verb+Preposition: These types of constructs have a different meaning

from their verb component e.g.,

“The regulator was turned off and the fire self extinguished"

“The fire was put out with a hand held extinguisher"

Such constructs are identified and extracted as events. We validate all extracted verb+particle

and verb+prep sequences by looking them up in WordNet. Thereafter, for any sequence of

words not known to WordNet (e.g., ‘spray over’) we extract only the main verb (‘spray’).

7.1.2 Nouns

Unlike verbs, most nouns are not events. Thus identification of noun events requires a more

selective process. A small set of WordNet synsets called event parents, were manually identified

and their hyponyms (child nodes) are maintained as relevant event expressions. These synsets were

identified by manually extracting noun events from a set of training documents, mapping each one

to a corresponding WordNet synset and then identifying a suitable hypernym from the root. A

hypernym is suitable if it is considered to denote a type of occurrence or event. For example

the noun events “extraction”, “combustion” and “absorption” are manually extracted from the
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training documents and the synset which subsumes these events is identified in WordNet. In this

case this is the synset “Physical Process” which is defined as “a sustained phenomenon or one

marked by gradual changes through a series of states”. The parent of “Physical Process” is the

synset “Physical Entity” which does not fit the description of a type of occurrence or eventuality.

Thus we created a rule which accepts nouns that are hyponyms of “Physical Process” as candidate

events. The final set of WordNet parent nodes used for selecting nouns are:

• Event: The first sense of event in WordNet is defined as “something that happens at a given

time and place". Hyponyms of this synset makes up the largest class of event words e.g.,

collision, movement and fire.

• Physical Process: This synset is defined as “a sustained phenomenon or one marked by grad-

ual changes through a series of states” and it includes the hyponyms ignition, combustion

and overheating.

• Ill Health: This is defined by WordNet as “a state in which you are unable to function nor-

mally and without pain". Hyponyms of this synset include the events: fracture, contusion

and laceration.

• Symptom (medicine): This has the definition: “Any sensation or change in bodily function

that is experienced by a patient". Relevant hyponyms include: soreness and pain.

• Injury: We ignore the first sense of “injury" because it is already a hyponym of the synset “Ill

Health". The second sense of “injury" has the definition“An accident that results in physical

damage". Hyponyms of this synset include the event concussion. Note that injuries (as

well as ill health and symptoms) are extracted as valid events because they fit within the

definition of “change of state”.

7.1.3 Adjectives

The last class of events types are adjectives, which often occur as participles e.g.,

“A fitter suffered a lacerated forehead"

“A light vehicle driver received a bruised shoulder"

These event types are extracted with the help of WordNet which is used to identify adjectival
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expressions that are derived from verbs. WordNet maintains a “participle of” relation between ad-

jectives and their corresponding root verbs. For example the adjective “elapsed” has a “participle

of” relation with the verb “elapse”. However, this strategy was found to have very limited cov-

erage. Instead an alternative strategy was used whereby morphological analysis is used to derive

the verb from the adjective before validating with Wordnet. Since participles typically have the

same spelling as past-tense verbs, a lemmatiser is used to transform the adjective into a root verb.

For example the adjective “fractured” is lemmatised to “fracture”. The lemma is then looked-up

in WordNet. If the lemma is a valid verb, the adjective is accepted as a valid event.

7.1.4 Event Polarity

The polarity of an event is negative if the occurrence of the event is explicitly negated in the text

and positive otherwise. Negative polarity is often expressed using a negative word e.g.,“not" and

“no". Event polarity is particularly important for retrieval because it helps to distinguish between

affirmed and negated occurrences of the same event. This helps to avoid false matching of events

that have opposite polarity. Take for example the following sentences:

“An operator suffered crush injuries"

“No contact with the electricity was made and no injuries were sustained"

Without identifying the polarity of injury, the two sentences can incorrectly be considered similar

even though the second example clearly negates the occurrence of injuries. Event polarity is

extracted using dependency parse information to check for negative modifiers and negations as

shown in Figure 7.3. All events that have a negative determiner (“no”), a negation modifier (“not”)

or are objects of a word that indicates negation (e.g “avoid”) are considered to have negative

polarity. Consequently all events are stored together with their corresponding polarity value which

is later utilised in our document representation and comparison strategy.

7.2 Document Indexing using Events

Once events have been extracted, they need to be utilised for document indexing. In this section

we present a framework for utilising extracted events for text document representation where doc-

uments are represented using both lexical and event features - lexical to capture general context



7.2. Document Indexing using Events 126

Let:
N = {n1, ..., nm}, a set of negation words
E = {e1, ..., em}, a set of events

For each e ∈ E
If hasNegDeterminer(e) ∨ hasNegModifier(e)
∨ isObjectOf(e, n ∈ N)
e = ¬e

Figure 7.3: Polarity Extraction Algorithm

and events to capture relevant conceptual information. Lexical features are represented using a

standard Bag-of-Words (BOW) indexing vocabulary where text is represented in a vector space

whose dimensions correspond to individual terms. Similarly, semantic information is represented

using a Bag-of-Events (BOE) vector representation where dimensions correspond to the event vo-

cabulary and separate dimensions are used to represent negative and positive polarity instances of

the same event. Thus a document is represented as a pair:

d = (~t,~e) (7.1)

Where ~t is the BOW representation and ~e is a BOE representation for the document d. Here

any standard text representation scheme such as binary vectors or tf-idf vectors can be used for

the entries of both ~t and ~e. Note that while ~e captures event information, ~t includes important

contextual information that may not be captured by ~e.

Figure 7.4 illustrates the representation of a sample document using our approach. Note that

the positive and negative polarity instances of the term ‘injury’ are represented using separate

dimensions. The weight of each entry in the BOE vector is thus a binary (0,1) or tf-idf weight for

the respective event. Similarity between documents is thus computed as shown in Equation 7.2.

SIM(dq, di) = (1 - α)Sim(~tq,~ti) + αSim(~eq, ~ei) (7.2)

Where SIM(dq, di) is the global similarity between a query document dq and any document di

from the training corpus, Sim(~tq,~ti) is the BOW similarity between dq and di, Sim(~eq, ~ei) is the

BOE similarity between dq and di, and α is a mixing parameter. Thus the similarity between two
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Figure 7.4: Representation of a document using BOW and BOE vectors.

documents is an aggregation of their terms and events similarities, whilst α controls the contribu-

tion of each representation’s similarity to overall global similarity. Note that increasing the value

of α increases the contribution of the BOE representation. Both Sim(~tq,~ti) and Sim(~eq, ~ei) are

obtained using the cosine similarity measure.

7.3 Evaluation

The aim of our experiments is to establish the utility of event-based semantic indexing for clas-

sification of incident reports. Our comparative study is applied to the following representation

schemes:

1. BOW : a BOW-only representation where α = 0

2. BOE: a BOE-only representation where α = 1

3. Comb: a combined representation where 0 < α < 1

We also wish to asses how our event extraction algorithm (RUBEE) compares to an alternative

event extraction approach, EVITA (Saurí et al. 2005). EVITA is a system for identifying and ex-

tracting events from text using a combination of linguistic analysis, heuristic rules and lexical

lookup. One of the key differences between EVITA and RUBEE involves the manner in which
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sentences are processed. While RUBEE uses full dependency parsing, EVITA uses chunking; a

form of shallow parsing that produces linguistically defined groups of adjacent words e.g., noun

phrases and verb phrases, rather than full parse trees. Although chunking is a less expensive op-

eration compared to parsing, parse trees provide richer syntactic information of sentences and so

are more useful for deep linguistic analysis. Consequently, EVITA’s rules are based on pattern

matching on word sequences while RUBEE’s rules are based on dependency-tree structures. An-

other key difference between RUBEE and EVITA is that unlike RUBEE, EVITA does not recognise

verb+particle and verb+prep event types. When such constructs are encountered, EVITA extracts

only the head verb.

Noun events are extracted by EVITA based on hypernymy information from WordNet. A

total of twenty five WordNet subtrees are used for this purpose and any noun event candidate

corresponds to a synset in any of these synsets is accepted as a valid event. However, details of

the synsets used are not given. Also, extraction of adjectival events in EVITA is based on lookup

whereby candidate adjectival events are accepted if they occur in the list of annotated events in

the TimeBank-1.2 Corpus which contrasts with the use of morphological analysis by RUBEE.

Attributes of events including polarity are extracted by EVITA using pattern matching techniques.

However, details of these pattern matching techniques are not given.

We also compare with a baseline event extraction technique that extracts all non-stopword

verbs as events without further linguistic analysis. Thus, we compare performance of BOE repre-

sentations generated using the following event extraction approaches:

1. VERBS: a baseline approach that extracts only verbs as events according to part-of-speech

information without further linguistic analysis

2. RUBEE (see Section 7.1)

3. EVITA: A benchmark event extraction system presented in (Saurí et al. 2005)

Accordingly, BOE representations obtained using the different event extraction approaches are

called BOEV ERBS , BOERUBEE BOEEV ITA respectively. The representation obtained by

combining events from RUBEE and BOW as described in Section 7.2 is called CombRUBEE .

Currently we determine the alpha value that results in best value empirically. We report text

classification accuracy using a with 3 nearest neighbours averaged over 5 runs of stratified 10-fold
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Name Domain Description Voc. Size
TRUCKC TruckCollision Incidents involving truck collision 1182
Fire Fire Incidents involving fire outbreak 1326
TRUCKR TruckRollover Incidents involving truck rollover 1031
LIGHTV LightVehicle Incidents involving light vehicle accidents 1064
MISCI MiscIncidents Miscellaneous incidents 1581
ROLLCOL RolloverCollision A combination of TruckR and TruckC incidents 1212

Table 7.1: Datasets

cross-validation experiments. Significance is reported from a t-test with 95% confidence.

7.3.1 Datasets

Several benchmark datasets were created using incident reports crawled from the Government of

Western Australia’s Department of Mines and Petroleum website 1 2. These incident reports are

pre-classified into “Injury” and “NoInjury” classes. Accordingly we treat this as a classification

task. Details of these datasets are given in Table 7.1. We also combine the TRUCKR and TRUCKC

datasets to form a new dataset called ROLLCOL. This new dataset is used to further test if event

information can help distinguish between collision and rollover incidents involving trucks. Each

dataset in Table 7.1 contains 200 documents; 100 documents in each class. This includes the

ROLLCOL dataset which contains 100 in each class selected at random from the TruckRollover

and TruckCollision datasets respectively. All have a similar vocabulary size (with MISCI having

the largest vocabulary) from which the indexing vocabulary will be drawn for each algorithm.

7.3.2 Results

From table 7.2, we observe that event-only representation with BOERUBEE was significantly

better than BOW on 4 of the datasets. Performance of BOERUBEE on the RollCol dataset is

not significantly better thanBOW whileBOW is significantly better than bothBOERUBEE and

BOEEV ITA on the MiscI dataset. The reason for this might be explained by the variety of differ-

ent types of incidents and injuries in this dataset introducing a degree of sparseness into the BOE

representation. BOERUBEE significantly outperforms BOEEV ITA on all datasets except the

RollCol dataset whereBOEEV ITA performs slightly (but not significantly) better. BOEV ERBS’s
1http://dmp.wa.gov.au
2Available for download at: http://bit.ly/1qtuFUo
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TruckC Fire TruckR LightV MiscI RollCol
BOW 80.5 84.7 78.4 81.0 84.7 83.4
BOEV ERBS 78.5 83.4 76.7 75.3 75.6 81.1
BOEEV ITA 80.8 82.7 74.4 81.3 78.6 87.1
BOERUBEE 84.5 90.0 85.4 85.1 81.0 85.2
CombRUBEE 87.5 90.0 86.4 88.1 88.6 91.1

Table 7.2: Classification accuracies of different representation schemes. Best results on each
dataset are presented in bold.

performance was generally poor compared to all other approaches including BOW . This shows

that the linguistic analysis used by the event extraction algorithms is important for correctly iden-

tifying event information for document indexing.

For the combined representation (CombRUBEE), we observed improvements over all 4 in-

dividual indexing schemes on all 6 datasets. Specifically, CombRUBEE performed significantly

better than BOW , BOEV ERBS and BOEEV ITA on all datasets. Comparing with BOERUBEE ,

CombRUBEE performed significantly better on all datasets with the exception of FIRE and TRUCKR.

This confirms our hypothesis that the lexical information in the BOW representation and the se-

mantic information in the BOE representation are complementary. Thus, a combination of both

leads to even better retrieval performance.

To further motivate the need for document indexing using semantically rich concepts rather

than using only terms, we include a comparative evaluation of CombRUBEE with semantic index-

ing using the RWSI and S3 frameworks on term-based (BOW) representations. Accordingly, we

compare CombRUBEE with the following representations:

• RWSI: Semantic indexing on BOW representation using RWSI framework (see Chapter 4)

• S3: Supervised Semantic indexing on BOW representation using S3 framework (see Chap-

ter 5)

Results of this comparative evaluation are presented in Table 7.3. Observe how the improve-

ments from semantic indexing using both RWSI and S3 are much less than that fromCombRUBEE .

The limited improvements from Semantic indexing is due to the fact that the discriminatory se-

mantics between the two classes is not well captured by co-occurrence statistics. This is expected

because, unlike topic classification, the distinction between the two classes in each dataset is due

to the presence and absence, as well the affirmation and negation of certain events, rather than a
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TruckC Fire TruckR LightV MiscI RollCol
BOW 80.5 84.7 78.4 81.0 84.7 83.4
RWSI 81.2 83.2 80.8 81.5 82.8 85.7
S3 83.0 84.2 82.4 86.8 84.9 87.8
CombRUBEE 87.5 90.0 86.4 88.1 88.6 91.1

Table 7.3: Comparison of CombRUBEE with term-based semantic indexing. Best results on each
dataset are presented in bold.

distribution of terms. The superior results achieved using CombRUBEE further demonstrates the

effectiveness of our event indexing approach for semantic text classification.

In Table 7.4 we present results for RUBEE with and without polarity information. Improve-

ments are realised with polarity information on all datasets except FIRE and MISCI. Improvements

on the TRUCKC and TRUCKR datasets are statistically significant. Table 7.5 provides statistics

of negations found in each dataset. Observe that in the FIRE datasets, a total of 8 events were

found with negative polarity. However, none of these were negations of injury events and thus,

no benefit was realised on classification accuracy. In contrast, 25 negations were extracted from

the TRUCKR dataset, 14 of which were negations of injuries. This leads to significantly better

classification accuracy on the TRUCKR dataset.

TruckC Fire TruckR LightV MiscI RollCol
BOERUBEE 84.5 90.0 85.4 85.1 81.0 85.2
BOERUBEE(NoPol) 82.7 89.9 81.7 84.2 81.6 84.8

Table 7.4: Classification accuracy of RUBEE with and without event polarity.

For the ROLLCOL dataset, a total of 46 negations were found in Table 7.5, 15 of which are

negations of injuries. However, recall that the task on this particular dataset is to distinguish be-

tween “Collision” and “Rollover” incidents. Thus negations of injuries are found in both classes

and are not useful for distinguishing between different classes. Also, unlike “Injury” and “NoIn-

jury” classes, “Collision” and “Rollover” incidents are not polar opposites. Consequently, out of

all negations found, none were negations of “Collision” or “Rollover” events. This further sug-

gests that polarity information is particularly useful for distinguishing between classes that are

polar opposites.

Figure 7.5 shows average accuracy for increasing values of α over all runs of the RUBEE

algorithm. Best results are generally obtained within the range 0.4 ≤ α ≥ 0.7. This indicates
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TruckC Fire TruckR LightV MiscI RollCol
Total event negations 42 8 25 27 20 46
Negations of injury events 9 0 14 9 3 15

Table 7.5: Statistics of negations extracted from all datasets

Figure 7.5: RUBEE’s performance as a function of α on each dataset

the BOE representation is largely responsible for the improved performance of the Combined

approach. The difference between the highest and lowest accuracy obtained between α = 0.1,

and α = 0.9 (i.e excluding BOW-only and BOE-only representations) is from 3.8% for Fire to

6.4% for the TruckR. However, note that (with the exception of the MiscI and RollCol datasets)

the variation in accuracy levels-off with higher values of alpha (α >= 0.5).

These results demonstrate the utility of event extraction for representing textual documents in

domains characterised by eventualities. The results also confirm our proposed document represen-

tation model effectively combines contextual information from terms with semantic information

from events. Lastly, the comparison between RUBEE and EVITA on these tasks points in favour of

RUBEE as an effective event extraction system.

7.3.3 Application of RUBEE to New Domain of Aviation Incidents

To further verify the effectiveness of our events-based indexing approach, and to test its porta-

bility, we include experiments on a dataset of aviation incident incident reports crawled from the

Skybrary website 3. Incident reports in this website are tagged with information to categorise the

reports according to cause e.g. bird strike and weather. Reports are also tagged with information
3http://www.skybrary.aero/index.php/Main_Page
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on the whether damages and injuries occurred in the incident. Accordingly we create a binary-

class dataset with the classes ’Damages Injury’ and ’No Damages Injury’. The dataset contains

200 documents partitioned equally between the two classes. In Table 7.6, we compare the results

of a baseline BOW representation, semantic indexing using RWSI and S3 and also CombRUBEE .

Skybrary
BOW 64.0
RWSI 64.5
S3 65.5
CombRUBEE 68.5

Table 7.6: Comparison of CombRUBEE with term-based semantic indexing on the Skybrary
dataset.

As can be observed, the combined event and terms based index (CombRUBEE) out performs

all the other representation approaches on the Skybrary dataset as well. This indicates the util-

ity of our events-based representation approach, regardless of domain. This also indicates the

effectiveness of RUBEE on domains other the one it was originally developed on.

7.4 Chapter Summary

In this chapter we have demonstrated the utility of event information for concept-based indexing

of incident reports. Indexing of incident reports using events allows for comparing and classifying

incident documents based on incident cause, type of injury and type damages reported. Achieving

this requires that the indexing vocabulary includes semantic features to capture relevant events and

their attributes. Accordingly, we presented an unsupervised heuristic approach for the extraction

of atomic events called RUle-Based Event Extractor (RUBEE). RUBEE uses linguistic analysis and

a lexical database, WordNet, to identify events and their attributes directly from textual content.

We also presented a general framework for the indexing of text using both lexical and event

information. Our framework uses a weighting parameter to control the strength of the contribution

from the lexical and event parts of the document representation to the global similarity between

documents. We also demonstrated how event polarity (whether or not the occurrence of an event

is negated) can be included in the document index to distinguish between asserted and negated

occurrences of the same event.

Our evaluation compared text classification performance on document representations pro-
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duced using event-only, term-only and combined (events and terms) indexing vocabularies. Re-

sults show the events only representation to significantly out-perform a term-only representation,

while the combined representation significantly out-performed both term-only and event-only rep-

resentations. The high accuracy of the combined approach is because, while events are useful

for capturing semantic information, terms are useful for capturing additional context. Thus, the

combined representation is able to leverage both semantic information and important contextual

information for improved classification accuracy. Results also show the inclusion of event polarity

to lead to significant improvement in classification performance.

Our evaluation also compares event representation using RUBEE and a benchmark event ex-

traction algorithm, EVITA, as well as a baseline event extraction approach that uses only verbs.

Results show event information extracted using RUBEE to out perform the two others in text clas-

sification accuracy. Also, our evaluation shows the use of polarity information to significantly

improve the performance of the event-based representation.



Chapter 8

Conclusion

In this thesis we addressed the problem of document indexing in the Vector Space Model (VSM)

for text classification. We identified three main problems with the standard VSM that limits its

performance for text classification. The first problem is the term independence which makes

the VSM susceptible to variation in indexing vocabulary. The second problem of the VSM for

text classification is the lack of supervision, where class knowledge is ignored in the process of

generating document vectors. Thirdly, the standard VSM utilises a term-only indexing vocabulary

for document representation. However, for certain tasks, terms are not sufficient to model the

semantics needed for accurate document classification. Accordingly, we presented comprehensive

analyses that provide insight into the limitations of the current state-of-the-art, and also introduced

frameworks and algorithms that address these limitations. This chapter summarises our main

contributions and highlights future directions.

8.1 Contributions

In the following subsections, we revisit our objectives and examine the extent to which these have

been achieved.

8.1.1 Analysis of the Performance of Semantic Indexing for Text Classification

In chapter 3, we presented a detailed evaluation of semantic indexing with semantic relatedness

knowledge extracted using both knowledge-resource-based, and distributional approaches. Four

knowledge-resource-based approaches were considered, Wu & Palmer, Lin, Leacock & Chodorow

135
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and Jiang & Conrath. All four approaches use WordNet for computing semantic relatedness be-

tween vocabulary terms and the resulting values were used for semantic indexing. The result

of text classification on 25 datasets showed very little improvement from using any of the four

knowledge-resource-based approaches. Note that while these WordNet based metrics have been

widely evaluated on linguistic tasks such as synonymy detection and word pair association, to the

best of our knowledge, this is the first time such a comprehensive evaluation has been reported

using these metrics on text classification.

For the distributional semantic relatedness approaches, first order document co-occurrence,

pointwise mutual information and latent semantic indexing were used. The performance of the dis-

tributional semantic relatedness approaches was much better than the knowledge-resource-based

approaches. Nonetheless, the performance of the distributional approaches also revealed that se-

mantic indexing does not always improve text classification performance and may sometimes even

be harmful. Our results suggest that datasets with documents written in a more professional and

consistent style benefit more from semantic indexing. We also observed that datasets with fewer

and shorter documents benefited less from semantic indexing.

Considering that extracting semantic relatedness is a computationally expensive process, we

set out to determine when and when not to apply semantic relatedness using meta-learning. Ac-

cordingly we presented a case-based approach for predicting when to use semantic indexing. Re-

sults show that our case-based approach is able to correctly predict the performance of semantic

indexing on a range of datasets with over 80% accuracy. Note again that, to the best of our knowl-

edge, this is the first time any attempt has been made to predict when to apply semantic indexing.

An important consideration when building a case-based system is the choice of attributes for

case representation. The attributes we used were obtained from several statistical metrics that

capture various important characteristics of text datasets. These range from statistics of document

frequencies of terms to measures of clustering of document neighbourhood. The high accuracy

achieved in predicting when to use semantic indexing indicates that the attributes used for meta-

case representation capture characteristics of text datasets that are predictive of the performance

of semantic representation. We further used a genetic algorithm to learn the relative importance of

our attributes. The high weight assigned to the Nearest Neighbour Similarity attribute indicates the

importance of the structure of a dataset is in determining the performance of semantic indexing.

Our findings suggest that that better semantic relatedness can be extracted from datasets that have
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less variable vocabulary indicated by a higher Nearest Neighbour Similarity.

8.1.2 Propose a new semantic indexing framework

In Chapter 4, we demonstrated the need to capture the relevance of terms during semantic in-

dexing. Our analysis revealed how term relevance is not captured by standard semantic indexing

frameworks and how this adversely affects text classification performance. Thus, an important

contribution of this work is providing empirical evidence for how the performance of semantic

indexing is adversely affected by the inability to capture global term relevance, which is largely

responsible for the inconsistent improvements reported.

Based on our findings, we presented the (Relevance Weighted Semantic Indexing) RWSI

framework which introduces relevance weighting into semantic indexing. Our evaluation of the

RWSI framework using both binary and tf-idf document vectors shows RWSI based representa-

tions to perform significantly better than both a baseline Bag-Of-Words (BOW) representation

with no semantic indexing, as well as semantic indexing using the GVSM and LSI frameworks.

The inconsistent improvements realised using both the GVSM and LSI frameworks which do not

use term relevance information further supports our hypothesis that term relevance weighting is

not only useful, but necessary for effective semantic indexing

A key advantage of the RWSI framework is that it is flexible enough to be used with any

semantic relatedness metric and also any supervised term weighting approach, without restric-

tions. We demonstrated how term relevance weights can be learned directly from the document

collection using standard feature selection algorithms. Given that feature selection is a standard

pre-processing step of text classification, the weights computed at the feature selection stage can

always be supplied to the RWSI framework without the need to compute a separate set of term

relevance weights. Furthermore, individual components of the framework e.g. semantic related-

ness or term weighting, can be switched on or off, providing much flexibility and control over the

document indexing process.

We also demonstrated how the RWSI framework can be used exclusively for supervised docu-

ment indexing using the Relevance Weighted Indexing (RWI) approach. A comparative evaluation

of text classification performance on document vectors produced using unsupervised tf-idf index-

ing versus supervised term weighting using both our RWSI framework and the popular tf-δ(t)

approach was presented. While tf-δ(t) replaces idf with a supervised weighting component, our
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RWI approach combines the supervised weighting with standard tf-idf. The superior performance

achieved by our approach indicates that, contrary to the tf-δ(t) assumption, idf and supervised

weighting are both important and complementary for document indexing. This also indicates that

our RWI approach is able to successfully leverage the best of idf and supervised weighting for

improved text classification performance.

8.1.3 Develop a Supervised Semantic indexing Framework

In Chapter 5, we introduced a novel technique called Supervised Sub-Spacing (S3) for introduc-

ing supervision into semantic indexing. The key idea of S3 is to create separate sub-spaces for

each class within which semantic indexing transformations are applied exclusively to documents

that belong to that class. In this way, S3 is able to modify document representations such that

documents that belong to the same class are made more similar to one another while, at the same

time, reducing their similarity to documents of other classes.

S3 requires a different set of semantic relatedness values and term weights to be extracted

for each sub-space. Accordingly, we presented the Class Relevance Weighting (CRW) function

for learning class-specific term weights. CRW uses Bayesian probabilities to estimate the class

relevance of a term as the probability that a document belonging to that class contains the term.

We presented a comparative analysis of the CRW function with other alternatives e.g. class-specific

probabilities and mutual information. We showed both visually and with the aid of an example,

how CRW provides a better model of term relevance compared to the other two alternatives which

both tend to under-represent the importance of terms. Furthermore, we presented visualisations

of a typical term-document space before and after S3 transformation in order to demonstrate the

effect of S3 on document representations.

We presented a detailed evaluation of the S3 approach on 38 datasets from a variety of dif-

ferent domains including news stories, medical abstracts and online reviews. We investigated

applying S3 with two semantic relatedness metrics: document co-occurrence (DOCCOOC) and

Normalised Point-wise Mutual Information (NPMI). Results show S3 leads to improvements in

the performance of these two metrics on over 80% of the datasets. We also compared two S3-

based approaches (S3COOC and S3NPMI) with SVM, a supervised version of Latent Semantic

Indexing (SPLSI) that uses a technique called Sprinkling, and a supervised LDA (sLDA). Results

show that our S3-based approaches outperform SVM, SPLSI and sLDA on over 70% of datasets.



8.1. Contributions 139

Our S3 technique has a number of additional advantages compared to the other supervised

semantic indexing approaches. Firstly, unlike sLDA and SPLSI, S3 is not tied to any specific

semantic relatedness approach (i.e. LDA with SLDA, and LSI with SPLSI). We demonstrated this

by using S3 with both DOCCOOC and NPMI semantic relatedness approaches. Secondly, unlike

sprinkling, S3 does not require higher order term relations. This means S3 does not apply restric-

tions to the type of semantic relatedness metric that can be used. A third advantage is that S3 does

not require any parameter tuning whereas sprinkling requires a predetermined number k of artifi-

cial terms to be injected into the vocabulary while sLDA requires the optimum number of topics

to be determined. In both cases, it is unlikely that globally optimum parameter settings exists and

thus, the optimum number of sprinkled terms as well as the optimum number of topics will have

to be determined individually for each dataset which further contributes to the complexity of these

approaches. Finally, S3 requires less computer memory to execute as the term-document space

of each individual class gets processed separately which also makes it convenient for distributed

and parallel processing. Thus, S3 is better suited for real-word commercial applications where the

processing cost of LSI and LDA has been a barrier to adoption.

8.1.4 Investigate the Application of our Semantic Indexing Frameworks to Sentiment Clas-

sification

In Chapter 6, we presented a case study of applying our S3 approach to the task of sentiment

classification. S3 is able to produce document representations that are more effective for senti-

ment classification by learning semantic relatedness and term weights exclusively from the set of

documents belonging to the same sentiment class. Doing so allows S3 to emphasise the semantic

associations of terms belonging to same sentiment category in document representations.

Sentiment lexicons have proved very useful for providing the sentiment scores of terms with

respect each sentiment category. Thus, sentiment lexicons provide an opportunity to utilise senti-

ment scores for semantic indexing. Accordingly, we presented an extension of the S3 framework

for sentiment classification that utilises scores from a sentiment lexicon (SentiWordNet) as further

evidence for the relevance of sentiment terms to a sentiment class, by combining these scores with

the class relevance weights extracted from the corpus. Results from our evaluation show that se-

mantic indexing using S3 leads to statistically significant improvement in sentiment classification

performance compared to a baseline Bag Of Words (BOW) representation. Furthermore, aug-
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menting S3 with sentiment scores from SentiWordNet produces significant improvements in text

classification performance compared to standard S3.

An important advantage of providing sentiment scores from a lexicon to S3 is that sentiment

lexicons provide a more general judgement of sentiment strength that is likely to help avoid over

fitting the training corpus. Our approach uses a simple, yet effective linear interpolation of class

relevance term weights and class-specific sentiment scores. This provides flexibility for controlling

the contribution from the sentiment lexicon to the final document representation using a weighting

parameter which is useful for mitigating against noise from the lexicon.

8.1.5 Explore the Use of Semantic Concepts e.g. Events for Document Indexing

In Chapter 7 we demonstrated the utility of event information for semantic indexing. Indexing of

incident reports using event information allows for comparing incidents based on incident cause,

the type of incident or the type of injury. To address this requirement it is necessary to ensure that

the indexing vocabulary includes semantic features to capture relevant events and their attributes.

Accordingly, we presented an unsupervised heuristic approach for the extraction of events called

RUle-Based Event Extractor (RUBEE). RUBEE uses natural language processing together with a

set of rules for extracting events and their attributes from the content of a given text document.

We also presented a general framework for the indexing of documents using both lexical and

event information. This framework represents a document using two vectors, a regular Bag-Of-

Words (BOW) vector consisting of terms and a Bag-Of-Events (BOE) vector comprised of the

events extracted from the document. Thus, the similarity between two documents is a combination

of their BOW and BOE similarities where weighting parameters are used to control the strength

of the contribution from the lexical and event parts of the representation. We further demonstrated

how event polarity (whether or not the occurrence of an event is negated) is included in the BOE

vector index to distinguish between asserted and negated occurrences of the same events.

We demonstrated the effectiveness of using events for document indexing by comparing text

classification performance on document vectors produced using event-only, term-only and com-

bined (events and terms) indexing vocabularies. Results showed that BOE representations signif-

icantly out-perform BOW representations, while the combined (BOW and BOE) representation

significantly out-performed both BOW and BOE representations individually. The high accuracy

of the combined approach indicates that while events are useful for capturing semantic informa-
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tion, terms are also useful for capturing additional context. Results also show the inclusion of

event polarity to lead to significant improvement in classification performance.

We also demonstrated the utility of events extracted by our RUBEE algorithm by comparing

classification performance of BOE document representations indexed with events extracted using

RUBEE; a benchmark event extraction algorithm called EVITA; and a baseline event extraction ap-

proach that uses only verbs. Results show documents indexed with events extracted using RUBEE

to out perform the other two event extraction approaches. We demonstrated the portability of both

RUBEE and and our events representation approach by applying both to a dataset of aviation inci-

dent reports. The superior performance from our events-based representation further supports the

utility of event information for document indexing. This also supports the effectiveness of RUBEE

for event extraction on domains other than one the algorithm was developed on.

8.2 Future Work

In this section we highlight some of the limitations of the work we presented in this thesis and

also point out some desirable future extensions. Firstly, the case-based approach we presented in

Chapter 3 for predicting when to use semantic indexing requires a case base of datasets where

the performance of semantic indexing is known on each dataset. However, acquiring such a case

base is non-trivial. Doing this requires an adequate number of text classification datasets to be

collected and semantic indexing applied on each one which can be quite an expensive undertaking.

In the future, it would be desirable to investigate less expensive alternatives for predicting the

performance of semantic indexing. Our analysis has already provided insight into the importance

of the structure of the neighbourhood of datasets as an attribute to our case-based system. Thus,

further study may reveal insights into additional attributes of datasets that can be used to further

improve the prediction of the performance of semantic indexing.

Social media data e.g tweets, present interesting opportunities for text classification. Unlike

conventional documents, tweets have a high usage of emoticons, metadata tags and URLs. Tweets

are also characterised by high usage of abbreviations and slang. Rather than being regarded as

noise, these unconventional tokens typically contain rich semantics and valuable information. For

example, for sentiment analysis, sentiment labels of tweets have been learned automatically in an

unsupervised fashion from emoticons (Marchetti-Bowick & Chambers 2012). Thus, these types
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of tokens present an important opportunity for learning additional semantic information that can

be further utilised for semantic indexing. Therefore, an important research question is how can

semantic information be learned from emoticons, hashtags and other unconventional tokens in

tweets, order to improve classification of these types of data.

Contextual analysis is very important for accurate sentiment classification and is now a stan-

dard component of many lexicon-based sentiment classification approaches. In deed, our appli-

cation of the supervised sub-spacing (S3) framework to sentiment classification revealed how the

presence of positive terms in negative documents and vice-versa can have an adverse effect on sen-

timent classification accuracy. Recent approaches in sentiment classification have proposed taking

into account contextual valence shifters for improved sentiment classification accuracy (Kennedy

& Inkpen 2006). Three types of valence shifters are usually considered: negations, which reverse

the sentiment polarity of a term; and intensifiers and diminishers which increase and decrease

respectively, the degree of sentiment associated with a term. Thus, an important extension of

our work would be to investigate how such contextual information can best be included in the

representations of documents for use with approaches such as S3.

Events have so far proved useful for document indexing, particularly, for classification tasks

where the class boundary is based on semantic criteria rather than topic. Also, taking into account

event attributes such as negation has shown further improvement in classification accuracy. Thus,

this provides a promising direction for future research into what other semantic concepts can be

included and what other attributes need to taken into account to support even more sophisticated

classification tasks. For example, in the incident reports domain, one may want to classify docu-

ments according to the number of people injured in this incident. This would require being able

to identify the concept “victim” and also being able to identify the relationship between “victim”

and “injury”. Indeed this it the ultimate aim of information extraction, to enable all entities, events

and relationships to be identified in documents, and to be able to use this information to support

sophisticated reasoning. Thus, our work on event extraction provides a useful baseline for the

potential of information extraction in supporting more sophisticated text classification tasks.

An important future consideration is the applicability of the semantic indexing frameworks

developed in this thesis to multimedia data types. Indeed, LSA has shown great promise in hybrid

representations of music using tags and content analysis (Horsburgh, Craw & Massie 2012). This

is an example of an interesting trend in multimedia representation where concepts from text rep-
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resentation are increasingly being adopted with much success. Another example is the use of the

Bag-of-Visual-Words representation for videos (Wang, Song & Elyan 2012) and images (Kaliciak,

Song, Wiratunga & Pan 2012), based on the Bag-Of-Words model for text. Thus, given the success

of the frameworks developed in this thesis on textual data, it would be interesting to investigate

the application of these frameworks to multimedia data.
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Appendix B

Experiments with Different Values of k

In this section, we present text classification experiments with similarity weighted kNN using

different sizes of k (3, 5, 10, 15 and 20). Accordingly, we compare the following algorithms:

• 3NN - kNN with k = 3

• 5NN - kNN with k = 5

• 10NN - kNN with k = 10

• 15NN - kNN with k = 15

• 20NN - kNN with k = 20

We apply stop-words removal and lemmatisation text pre-processing operations. Terms with

document frequency of less than three are also discarded. Finally, χ2 feature selection is used

to retain only the top 300 terms per dataset for indexing. Cosine function is used for computing

similarity.

Results are presented in Table B.1. We report classification accuracy over 5 runs of 10-fold

cross validation. Best results in each row are presented in bold font.
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3NN 5NN 10NN 15NN 20NN
BactV 85.10 84.21 84.93 85.89 85.74
CardR 89.98 89.86 91.21 90.82 91.08
NervI 91.41 89.89 90.19 89.51 89.58
MouthJ 89.86 87.27 88.98 88.31 89.00
NeopE 91.62 91.18 92.19 91.63 91.99
DigNut 87.77 88.12 88.76 87.87 88.23
MuscleS 83.13 83.40 84.55 85.15 84.57
EndoH 91.36 90.48 91.23 91.54 92.02
MaleF 92.33 91.57 91.23 90.87 90.73
ImmunoV 78.68 78.64 79.34 79.37 80.06
NervM 84.48 81.46 82.83 83.45 84.03
RespENT 87.23 86.70 88.22 87.93 88.47
Hardw 89.81 90.89 90.73 90.92 90.90
MedSp 95.87 97.51 97.29 97.12 97.03
CryptE 95.75 96.94 96.70 96.05 95.72
ChrisM 88.88 89.85 89.50 88.63 88.18
MeastM 94.86 97.02 96.99 96.87 96.71
GunsM 93.30 94.94 95.01 94.39 93.64
AutoC 94.21 95.84 95.40 95.67 95.50
StratM 88.56 89.45 89.98 90.15 90.25
EntTour 94.84 94.50 94.73 94.41 94.19
EqtyB 95.77 94.71 94.62 95.04 95.20
FundA 90.33 89.18 89.73 90.31 90.11
InRelD 92.58 92.29 92.85 92.52 92.09
NProdRes 85.84 86.27 87.10 86.44 86.41
ProdNP 87.76 88.08 88.16 87.96 87.54
OilGas 87.19 87.58 87.35 86.56 86.57
ElectG 88.62 88.02 88.21 88.02 88.19
Fire 84.35 83.99 85.09 84.28 83.66
Collision 82.49 83.66 85.58 84.67 85.00
Rollover 80.61 79.76 79.96 79.47 81.51
CollRoll 86.55 88.46 88.83 89.15 90.09
MiscInc 83.46 83.46 85.21 85.58 86.55
ShovFP 88.46 85.71 88.52 88.71 89.63
MovieReviews 71.44 69.12 72.12 71.47 72.96

Table B.1: Comparison of text classification accuracy using kNN with varying values of k.
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Appendix C

Datasets and Constituent Classes

In Table C.1, we present that datasets used in this thesis and the classes that constitute each dataset.

BactV C01 Bacterial Infections and Mycoses, C02 Virus Diseases

CardR C14 Cardiovascular Diseases, C08 Respiratory Tract Diseases

NervI C10 Nervous System Diseases, C20 Immunologic Diseases

MouthJ C07 Stomatognathic Diseases, C09 Otorhinolaryngologic Diseases

NeopE C04 Neoplasms, C21 Disorders of Environmental Origin

DigNut C06 Digestive System Diseases, C18 Nutritional and Metabolic Diseases

MuscleS C05 Musculoskeletal Diseases, C17 Skin and Connective Tissue Diseases

EndoH C19 Endocrine Diseases, C15 Hemic and Lymphatic Diseases

MaleF C12 Urologic and Male Genital Diseases, C13 Female Genital Diseases

ImmunoV C20 Immunologic Diseases, C02 Virus Diseases

NervM C10 Nervous System Diseases, C05 Musculoskeletal Diseases

RespENT C08 Respiratory Tract Diseases, C09 Otorhinolaryngologic Diseases

Ohsumed01 C04 Neoplasms, C05 Musculoskeletal Diseases, C02 Virus Diseases, C01

Bacterial Infections and Mycoses, C05 Musculoskeletal Diseases

Ohsumed02 C08 Respiratory Tract Diseases, C06 Digestive System Diseases, C09 Otorhi-

nolaryngologic Diseases, C07 Stomatognathic Diseases, C10 Nervous System

Diseases

Ohsumed03 C15 Hemic and Lymphatic Diseases, C11 Eye Diseases, C14 Cardiovascular

Diseases, C12 Urologic and Male Genital Diseases, C13 Female Genital Dis-

eases
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Ohsumed04 C17 Skin and Connective Tissue Diseases, C04 Neoplasms, C21 Disorders

of Environmental Origin, C22 Animal Diseases, C20 Immunologic Diseases,

C19 Endocrine Diseases, C18 Nutritional and Metabolic Diseases

Hardw comp.sys.ibm.pc.hardware, comp.sys.mac.hardware

MedSp sci.med, sci.space

CryptE sci.crypt, sci.electronics

ChrisM soc.religion.christian, talk.religion.misc

MeastM talk.politics.mideast, talk.politics.misc

GunsM talk.politics.guns, talk.politics.misc

AutoC rec.autos, rec.motorcycles

Science sci.crypt, sci.electronics, sci.med, sci.space

StratM C11 Strategy/Plans, C41 Management

EntTour GENT Arts/Culture/Entertainment, GTOUR Travel and Tourism

EqtyB M11 Equity Markets, M12 Bond Markets

FundA C17 Funding/Capital, C181 Mergers/Acquisitions

InRelD GDIP International Relations, GDEF Defence

NProdRes C22 New Products/Services, C23 Research/Development

ProdNP C21 Production/Services, C22 New Products/Services

OilGas I1300002 Crude Oil Exploration, I1300013 Natural Gas Exploration

ElectG I161 Electricity Production, I162 Gas Production

Fire Fire Injury, Fire No Injury

Collision Collision Injury, Collision No Injury

Rollover Rollover Injury, Rollover No Injury

CollRoll Collision, Rollover

MiscInc Misc Incidents Injury, Misc Incidents No Injury

ShovFP Shovel, Fixed Plant

Table C.1: Datasets and their constituent classes.
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Appendix D

Case-Based Prediction Attribute Values

This section provides the values of the attributes used for the case-based prediction framework

presented in Chapter 3. This information is presented in Table D.1. All values are normalised to

lie between 0 and 1.
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Dataset AveTermCount MaxDF AveDF MaxIDF AveIDF NNSim AveNSim MaxNSim MinNSim
BactV 0.03878 0.55567 0.03890 0.74036 0.54000 0.511766 0.36337 0.66004 0.13521
CardR 0.03970 0.65465 0.03974 0.69791 0.52187 0.490338 0.33837 0.64553 0.10905
NervI 0.03027 0.27520 0.03051 0.76645 0.55309 0.496093 0.32501 0.71484 0.08604
MouthJ 0.02531 0.34034 0.02533 0.79885 0.58707 0.469071 0.33009 0.68139 0.07726
NeopE 0.03505 0.60481 0.03516 0.76662 0.53468 0.462901 0.29571 0.59804 0.06974
DigNut 0.04444 0.61800 0.04444 0.71743 0.50879 0.468701 0.31423 0.57992 0.09801
MuscS 0.02832 0.29045 0.02846 0.73970 0.56985 0.496735 0.32944 0.71108 0.06285
EndoH 0.03751 0.67400 0.03751 0.74004 0.53564 0.493771 0.33827 0.64491 0.11213
MaleF 0.03225 0.58500 0.03225 0.79931 0.56702 0.501895 0.34041 0.64082 0.10009
PregN 0.03346 0.24725 0.03349 0.76640 0.54786 0.474282 0.29561 0.62667 0.05736
ImmunoV 0.03307 0.57214 0.03314 0.84062 0.57698 0.533869 0.40639 0.73867 0.16161
NervM 0.02376 0.62903 0.02395 0.84048 0.59681 0.523054 0.38849 0.76575 0.11238
RespENT 0.03354 0.60961 0.03357 0.84094 0.55475 0.492434 0.32927 0.63999 0.09897
HardW 0.03193 0.26687 0.03264 0.79837 0.56618 0.521918 0.32329 0.77404 0.06132
MedSp 0.04304 0.29382 0.04361 0.68043 0.48164 0.566539 0.40747 0.83515 0.17516
CryptE 0.05946 0.59919 0.06018 0.63905 0.44107 0.525958 0.36279 0.79737 0.11681
ChrisM 0.04885 0.72121 0.04934 0.74024 0.51435 0.600038 0.46272 0.80011 0.23195
MeastM 0.05662 0.22571 0.05731 0.65093 0.44231 0.57028 0.41933 0.83851 0.18378
GunsM 0.04501 0.65147 0.04561 0.69796 0.49259 0.572121 0.42087 0.81451 0.17447
AutoC 0.03272 0.64670 0.03321 0.71694 0.54483 0.582893 0.42273 0.82276 0.15667
StratM 0.06356 0.38138 0.06362 0.66531 0.44729 0.487876 0.35025 0.73836 0.14149
EntTour 0.07830 0.53668 0.07870 0.61753 0.40214 0.505332 0.39278 0.84895 0.19236
EqtyB 0.08592 0.68410 0.08812 0.71697 0.42311 0.599387 0.48596 0.86246 0.29282
FundA 0.07105 0.57472 0.07126 0.69811 0.43294 0.500481 0.36960 0.78150 0.16810
InRelD 0.07493 0.47400 0.07493 0.62694 0.42253 0.544525 0.42574 0.79976 0.22176
NProdRes 0.06110 0.38700 0.06110 0.68177 0.45021 0.493444 0.36170 0.75439 0.14788
ProdNP 0.06367 0.46579 0.06405 0.68106 0.43928 0.506856 0.38258 0.76416 0.17178
OilGas 0.04964 0.55946 0.05133 0.73920 0.49180 0.590904 0.46046 0.78558 0.24135
ElectGas 0.04449 0.60063 0.04639 0.67922 0.52281 0.597361 0.47670 0.83336 0.24210
Fire0 0.04705 0.84000 0.04705 0.79075 0.64875 0.43062 0.33178 0.58789 0.14211
Collision 0.05214 0.72500 0.05214 0.79075 0.63710 0.289806 0.26282 0.51077 0.07129
Rollover 0.05659 0.61000 0.05659 0.79075 0.62472 0.42871 0.30442 0.58290 0.09825
CollRoll 0.05189 0.56500 0.05189 0.79075 0.63620 0.394291 0.25973 0.53240 0.06541
MiscInc 0.03168 0.21500 0.03168 0.79075 0.68576 0.299984 0.15155 0.42739 0.01189
CraneFP 0.03684 0.52571 0.04191 0.78618 0.65962 0.319434 0.16504 0.66217 0.01053
ShovFP 0.03567 0.35227 0.04030 0.78531 0.66389 0.327621 0.17659 0.62884 0.00983
MovieRev 0.08029 0.71000 0.08029 0.74004 0.44705 0.44846 0.34567 0.53323 0.19168

Table D.1: Case-based prediction framework attribute values.
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