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Abstract—The paper proposes a generic approach to building 

inferential measurement systems.  The large amount of data 

needed to be acquired and processed by such systems necessitates 

the use of machine learning techniques.  In this study, an 

inferential measurement system aimed at enhancing situation 

awareness has been developed and tested on simulated traffic 

surveillance data.  The performance of several Computational 

Intelligence techniques within this system has been examined and 

compared on the data containing anomalous driving patterns. 
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I.  Introduction 
Due to the fast pace of computing technology 

advancements in terms of both memory capacity and 
processing speed, more and more data is becoming available 
in real time. With the vast amounts of data, traditional data 
acquisition and data processing methods have become 
inefficient or sometimes inappropriate, especially in a real 
time environment. The term ‘big data’ has several definitions, 
but generally it refers to data that is in excess of existing 
managing capability of the organisation and/or the processing 
capability of the applications used to manipulate it. Big data 
can be high in volume, rate of acquisition and/or diversity, 
which makes it difficult to work with using conventional 
database management systems, statistics and visualisation 
packages.  

It becomes more important than ever therefore to be able 
to effectively distil the large amount of data into meaningful 
information by using computational modelling, analysis and 
representation. Smart approaches to data processing are 
needed in order to enable gaining insight into the essence of a 
process represented by the data, to control/optimise this 
process, or to provide effective decision support to the 
operator.  

The complexity in managing large amount of data 
increases exponentially when real or near-real time data 
mining and information delivery is of a concern. In many 
cases, the processed information is only useful until a 
particular point in time and excessive latency would render the 
information useless e.g. information regarding an engine 
failure is most useful before the failure takes place, but once it 
has happened this information becomes completely useless in 

the prevention or damage limitation sense [5]. Therefore, the 
significant issue of timely information rises. 

Integration across heterogeneous data sources also adds 
complexity in the form of analytical challenges, especially 
when there exist time and/or cost differences in processing 
data from different sources. Selecting suitable data acquisition 
sources, from which the data that can be processed quickly in 
order to obtain representative samples, can help in time critical 
situations. Additional data acquisition sources that involve 
longer data processing but are more accurate or detailed, can 
be applied later to add a deeper focus on objects of interest 
identified in the representative samples. This process can 
include logistical challenges such as controlling additional 
equipment to intensify data capture of a particular identified 
object of interest, e.g. an unmanned aerial vehicle can be sent 
to track a particular object of interest, and its camera on-board 
can be used to zoom in for more detailed images of this object; 
various on-board sensors can also be applied to obtain other 
relevant information so that inferences about the object of 
interest can be made and utilised.   

Therefore, an Unmanned Aerial Vehicle (UAV) can be 
considered as an autonomous sensor system that is used to 
acquire large amount of data about complex and dynamic 
environments, to perform interpretation and fusion of the data, 
and to present the information gathered or inferred in a 
synthetic and compact form highlighting the features of 
interest in the environment explored.  The ultimate goal of this 
data gathering and processing activity is to enhance the 
situation awareness to support real time decision making for 
the human operator on the ground. 

The rest of the paper is organized as follows.  Section II 
proposes a generic methodology of building inferential 
measurement systems that uses a multi-tier framework of data-
driven modelling.  The proposed framework utilises several 
Computational Intelligence (CI) techniques that help in 
developing an anomaly detection tool described in Sections III 
and IV.  In Section V the performance of several classification 
methods, including the CI-based ones, are compared on the 
simulated data obtained from the traffic simulation packages. 
Section VI summarizes the developed methodology and 
identifies directions for further research. 

 



II. Inferential Measurement 
Framework  

Inferential measurement systems (IMS) aim to model the 
relationship between primary characteristics that are difficult 
to measure directly and secondary variables that can be more 
easily monitored.  Although   inferential   measurements   are   
widely   used   in industry, only a few techniques for 
inferential model development have been examined in detail.  
In general,   three different types of approaches  to  building  
inferential  models have been suggested:  mechanistic 
modelling  (based on first principles),  statistical  regression  
and artificial  intelligence  modelling [11].   

Mechanistic modelling methods are based on the laws of 
physics and take the form of differential or algebraic 
equations. These methods perform well on the basis of a clear 
and good understanding of the mechanisms of the process, 
which is rarely attainable in practice.  

Statistical regression methods overcome the need to gain 
full understanding of often non-linear, complex and uncertain 
behaviour of the process under investigation for building a 
usable inferential measurement system.  Multivariate 
statistical methods such as principal component regression 
(PCR) and partial least squares or projection to latent 
structures (PLS) have been successfully used to build good 
inferential models. PCR and PLS are capable of  including  all  
relevant  process  measurements  in  a model  without  the  
problem  of  ‘‘overfitting’’  that  is present in ordinary 
regression methods [11]. In this way all the process 
information can be included in the model leading to more 
accurate predictions. 

Artificial Intelligence (AI) modelling has become a 
versatile tool for enhancing the capabilities and efficiency of 
inferential measurement systems.  This type of modelling 
utilises the computational capabilities of modern computing 
devices (smart sensors, DSP-based microcontroller, and 
microprocessors) to effectively process the acquired input and 
infer the desired information.   The AI-based techniques are 
applicable at various layers of IMS – from the data acquisition 
(sensor) layer, through to the layer of instrument calibration 
and customisation, then to the layer of process modelling, 
control and optimisation, and finally to the knowledge 
acquisition layer.  The wide spectrum of possible applications 
is due to the capabilities of an IMS to gain insight into the 
behaviour of complex dynamic systems by means of data-
driven modelling, a systematic approach to which is described 
next. 

A. Systematic approach to data-driven modelling 

The conceptual framework proposed in this paper for 
implementing data-driven modelling in inferential 
measurement systems was inspired by the multi-tiered scheme 
that was suggested by Moya [7].  In these frameworks, each 
tier or layer is dedicated to certain data processing tasks, 
ranging from low-level data acquisition up to high-level data 
interpretation using either existing or acquired knowledge. 

The four layers of the suggested conceptual model that will 
form the basis of the systematic approach to inferential 
measurement for situation awareness are shown in Fig. 1.   

 

Fig. 1. A framework for building data-driven infential measurement systems 

The layer with the lowest level of abstraction (LAYER 1) 
corresponds to the exploration of the available sensory data, 
including their visual representation, identification of the 
appropriate sampling periods, and data transformation (for 
example, differencing) for further analysis.  The second layer 
(LAYER 2) deals with pre-processing of measured signals 
(e.g. identification of outliers, signal validation, etc.) and with 
detection of their salient features (e.g. the presence of 
anomalies).  The main function of the second layer is to make 
necessary preparations for building data-driven models with 
good generalisation capabilities.  Of particular interest to the 
authors are the models based on computational intelligence 
techniques – artificial neural networks, support vector 
machines, etc., built and tuned with the help of genetic 
algorithms, particle swarm optimization and artificial immune 
systems.  

The remaining layers of the proposed conceptual model 
operate at a higher abstraction level.  The third layer (LAYER 
3) is responsible for building, evaluating, and correcting (if 
necessary) the data-driven models based on empirical data 
supplied by the lower layers.  The final layer (LAYER 4) 
purports to examine the outputs of the models built at the 
previous layer in order to obtain or refine knowledge about the 
principles or rules that govern the dynamics of the processes 
under investigation. 

In Section III we will exemplify the use of lower layers of 
the framework for detecting anomalies in the process of traffic 
surveillance. 

B. Operating modes of an inferential measurement system 

The inferential measurement systems (IMS) are expected 
to work in one of the following modes of operation [1]. For 
processes with high degree of stationarity, an IMS with a fixed 
structure and static parameters of the inferential algorithms 
used is usually appropriate.  For processes exhibiting frequent, 
but non-fundamental, changes, the ways how information is 



inferred needs to continuously adapt to these changes.  
Generally, this is achieved by having a fixed structure of an 
IMS, but the parameters of its inferential algorithms are 
required to be dynamically tuned in response to the changes.  
Finally, for the processes undergoing fundamental changes, 
evolving IMS might be necessary, which are capable of 
changing their structure as well as adapting the algorithms’ 
parameters. 

In the present study, we will focus on building and 
simulating an IMS of the second type, and apply inference 
measurement in the context of anomaly detection in traffic 
surveillance.  

III. Anomalies Detection 
One possible way of selecting representative samples from 

big data is to identify potential anomalies. Anomalies can be 
defined as incidences or occurrences, under a given 
circumstances or a set of assumptions, that are different from 
the expectance. In many cases, anomalies are the indicators of 
possible problems, and thus a valuable information source for 
inferential measurement. By this definition, two main 
difficulties in identifying the possible problems arise - the 
expectance must be known a priori, and the set of assumptions 
must be valid.  

Anomalies, by their very nature, are rare. They are 
incidences or occurrences that are first of all unexpected, 
and/or deviate excessively from the norm. Although the word 
anomaly implies some discrete event that is distinct from the 
surrounding background state, in fact anomalies are transitions 
from something that is not anomalous to something that is, 
and thus are far more continuous and involve subtle 
thresholding [3]. To make anomaly detection even more 
challenging, in a dynamic environment where an anomaly 
occurs too frequently, there is an argument for no longer 
classifying it as such. 

Identification of anomalies can be viewed as outlier 
detection, i.e. a process of detecting patterns in a given data 
set that do not conform to an expectance. Promptly alerting 
users of those anomalies is a key requirement of real-time 
analysis of big data. Anomalies can also be used as evidence 
that the given set of assumptions or model might not hold true 
in practice – too many anomalies imply that the model 
adopted fails to accurately represent the process under 
investigation. 

Association of anomalies with meaningful inferences can 
be very useful or even essential for some processes. Inferring 
future states of a process can lead to better understanding of 
potential causality, resulting thereby in a more predictive 
environment. By understanding the cause of anomalies, 
predictions of their future occurrences can be made more 
accurately or viably. 

In dynamic real-time environments, significant changes in 
the values of important process characteristics (often referred 
to as primary variables) can influence process control 
procedures – for example, tracking or zooming in on objects 
of interest. The situation awareness of UAV can be considered 
as such a primary characteristic affected by numerous 

variables ranging from the levels of perception (e.g. visibility 
of objects of interest) to operational conditions (e.g. torque of 
the engine).  This characteristic can be substantially enhanced 
by automatically adapting the control procedures on the basis 
of anomalies identified, as well as the prediction of their future 
occurrences.  

In general, identification of anomalies improve the 
efficiency of working with big data by selectively obtaining 
representative samples that are the indicators of possible 
problems; identified anomalies can then be used to predict 
future occurrences of a certain event. The intelligent 
measurement system can then apply this information and 
optimise the controls of the processes accordingly.  

Fig. 2 provides an example of the intelligent measurement 
system processing the data in three (potentially concurrent) 
steps leading firstly to identification of anomalies, then to their 
classification, and finally to prediction of likely outcomes. 

 

 

Fig. 2. System overview. 

In the figure above, the pre-processed input stream exploits 
both fast and detail-rich data. The data is categorised as fast if 
it can be acquired with little or no delay, and its processing 
does not involve significant latency. The detail-rich data, on 
the other hand, does require greater processing power, and 
consequently more time-consuming or costly to obtain.  The 
three Computational Intelligence (CI) techniques shown in the 
figure, which are responsible for identification, classification 
and prediction of anomalies, are artificial Neural Network 
(NN), Support Vector Machine (SVM) and Bayesian network 
(Bayes) respectively.  

For instance, anomalies can be identified by applying a 
backpropagation-trained ANN operating on a fast data input 
stream [4]. Depending on the characteristics of the identified 
anomalies, either additional fast data may be required or 
detail-rich data may be processed to improve the accuracy of 
classifying the anomaly using an SVM approach. The 
Bayesian network builds a data-driven model that is capable of 
estimating the probabilities of future anomalies. 

       

IV. Computational Intelligence 
And Big Data 

The analysis of surveillance information in general, 
especially related to situation awareness, is a complex process 
that, given the amount and heterogeneous nature of data, is 
prone to data overload.  This results in inability to support 
real-time processing and analysis of surveillance data, 
especially on board of mobile platforms, where datalink and 
bandwidth issues are significant [2, 8]. 



The data used in this research can be categorised as big 
data for two main reasons – due to its volume (in the order of 
250,000 measurements per second) and the requirement of low 
latency. 

In this study, the data to be acquired and processed by an 
inferential measurement system comes from various sensors 
on board of an UAV, such as radar, electro-optical/infra-red, 
GPS and Inertial Navigation Systems (INS).   

Apart from on-board input streams, additional contextual 
input can also be taken into account. The choice of which 
contextual input to apply can be automatically tailored using 
the Computational Intelligence techniques. Fig. 3 illustrates an 
example of possible data sets that can be used during a 
surveillance mission. The complexity of the shown system 
increases with the number of additional dimensions of data. 

 

 

Fig. 3. Multiple data sources fused by an IMS 

Therefore, a multi-tiered IMS that uses computational 
intelligence techniques should be able to enhance situation 
awareness of a UAV, especially in a real-time environment. 
Once anomalies are identified from fast data, additional data 
from both fast and detail-rich data sets can be added to 
improve the system classification and prediction performance.     

 

V. Experimental Setup and 
Results 

The data being used in this paper is simulated using the 
VISSIM [10] and VATIC [9] software packages, which are 
capable of generating simulated traffic and tracking the 
movement of individual vehicles from the simulation 
respectively.  The aim of the experiments conducted was to 
test the design and basic functionality of the multi-tiered 
inferential measurement system in detecting anomalies and in 
exploiting additional input streams to enhance the UAV 
situation awareness. The simulated data is generated based on 
general traffic scenarios - each section on the roads is given a 
speed limit, permitted direction, overtaking permission, check 
points and traffic lights. An example snapshot of the road is 
shown in Fig 4.  

 

Fig. 4. Snapshot of a section of simulated roads and traffic. 

Due to the fact that anomalies are not always discrete 
events, but rather transitions between state types, a single data 
point is often insufficient to identify certain anomalies that 
necessitate making a time series of measurements. The longer 
the time series of data, the easier it is to identify such an 
anomaly. However, during a typical surveillance mission, a 
mobile surveillance platform covers an area with many 
different vehicles (e.g. traffic monitoring over the M1) and 
purports to provide better support the gathering of information 
such as accidents, stranded car, or perhaps drank drivers.  

The amount of data related to each vehicle within the area 
would vary depending on the distance and angle between it 
and the surveillance platform, as well as on the travelling 
direction and speed of the vehicle. It is also possible that the 
visibility of the vehicle may be affected by weather 
conditions, terrain, buildings, etc. To simulate such sporadic 
coverage, the data collected on each vehicle is limited in 
duration to two minutes of coverage. 

Furthermore, vehicles vary in shapes, size, weight, inertia 
and drag. Each vehicle is probabilistically assigned a 
direction, in which to move, and a certain driving trait (e.g. 
overtaking, tailgating, etc.). The speed is also probabilistically 
determined depending on a given maximum, road and traffic 
conditions, as well as on surrounding objects (i.e. traffic lights, 
check point, and the like). Anomalies are specified as erratic 
driving behaviours, such as driving over the speed limit, 
illegal manoeuvre (e.g. driving in the wrong direction), large 
variance in speed, illegal overtaking, and a suspicious 
behaviour (e.g. avoiding check points). 

The acquisition of traffic surveillance data, its processing 
and making inferences, as it could be carried out on board of 
an UAV, is simulated in this study using the abovementioned 
traffic simulation software. Video data collected on each 
vehicle is captured for no longer than two minutes at the rate 
of 10 frames per second. Once the sufficient number of frames 
have been captured, a set of statistics for each vehicle are 
calculated. These statistics are divided into three groups based 
on the complexity and amount of information required to 
calculate them. The first group makes up the largest number of 
attributes; in contrast, only one attribute was used for the other 
two groups. 

In Group 1, the basic statistics for each vehicle are 
determined, including the driving direction, changes in 
direction, magnitude of lateral movements, variance in lateral 
movement, maximum and minimum speed, the mean value 



and variance of the speed. Group 2 characterises the traffic 
congestion for the entire surveillance area.  These types of 
statistics require more advanced aggregation and storage of 
values to calculate metrics for a wider field of view – for 
example, the total number of vehicles in the area and the 
average speed of all vehicles. Group 3 includes statistics on 
local inter-object interaction. These statistics are the most 
processor-intensive, requiring evaluation and comparisons of 
complex data structures that characterise the vicinity of each 
vehicle, and aggregation of several time series. Some 
examples are the objects in close proximity to the front (i.e. in 
terms of travelling direction) of the vehicle of interest, and 
total number of other vehicles in its vicinity. Fig. 5 illustrates 
the graphical representations of the statistics used. 

 

 

 

 

Fig. 5. Graphical representation of the three groups of statistics. Group 1 

(top) – basic statistics. Group 2 (middle) – spatial congestion statistics. Group 
3 (bottom) – local inter-vehicle interaction. 

The task of the CI techniques used in the study was to 
distinguish, on the basis of the processed statistics, between 
two classes of vehicles – with benign and anomalous 
behaviour. The performance of various computational 
intelligence techniques used by the simulated IMS was 
evaluated on three sets of experiments. Firstly, the techniques 
were evaluated just using the vehicles’ basic statistics.  The 
second set of experiments combined these basic statistics with 
the addition of the congestion statistics. In this paper, the total 
number of moving vehicles is used to determine how 
congested the surveillance area is. Finally, the third set of 
experiments combined the statistics used in the first and 
second set of experiments with the addition of local inter-
object interaction data, i.e. the detection of objects in close 
proximity to the front of the vehicle of interest. 

The aim of the second and third sets of experiments is to 
investigate whether anomaly identification can be improved 
by awareness of traffic conditions (e.g. number of other 
vehicles in the area) and of the spatial data (e.g. gap 
distances). Hypothetically, the vehicles that were previously 
categorised as anomalies may be classified differently with the 
additional contextual information. The idea behind partially 
feeding the IMS with data is to minimise the size of initial 
data samples, but when necessary, acquire additional data 
either by analysing an additional input stream or by processing 
detail-rich data resources. 

The reason for carrying out the three sets of experiments is 
to represent a scale of increasing workload on board of an 
UAV. The results of the experiments conducted are shown in 
Table 1 and represent the prediction accuracy of the CI 
techniques adopted by a virtual IMS on an unseen data set 
using a five-fold cross validation. The results shown are 
obtained using the WEKA data mining framework [12]. The 
CI techniques chosen from the WEKA package include 
Artificial Neural Network (ANN), Support Vector Machine 
(SVM), Bayesian network (Bayes); also, the Classification and 
Regression Tree (CART) algorithm was tested to evaluate the 
performance of statistical inference modelling.   

TABLE I.  PREDICTION ACCURACY OF COMPUTATIONAL INTELLIGENCE 

TECHNIQUES ON DIFFERENT DATA SETS 

 ANN SVM Bayes CART 

Basic Stats 71.67% 74.17% 77.5% 79.16% 

Basic Stats + Congestion 70.83% 73.33% 77.5% 79.16% 

Basic Stats + Congestion + Local 
Inter-object Interaction Data 

85.83% 85% 77.5% 83.33% 

 

Using the basic statistics on their own (Group 1), or with 
the congestion data (Groups 1 and 2), yields similar results in 
terms of identification of vehicular classes in the range of 
70.83% to 79.16%. The addition of local interaction data 
(Group 3) increases identification performance up to a 
maximum of 85.83% when attempting to identify vehicular 
objects not used in the training process. This level of accuracy 
would be quite difficult to achieve even for a human using a 
visual processing approach. 



In the present study, the inaccuracies of the inferential 
models are due to either false positives (a vehicle is wrongly 
categorised as anomalous) or false negatives (a failure to 
identify an anomalous vehicle). While false positives may 
mean wasted effort, from the security perspective false 
negatives are usually more important. Fig. 6 illustrates the 
changes in false negatives as more data inputs are used. Again, 
the addition of the congestion statistic does not lead to the 
improvement of the false negative count (it even worsens the 
performance of ANN). Taking into account the local inter-
vehicle interaction metric, on the other hand, significantly 
reduces the rate of false negatives. This is especially true for 
the SVM algorithm, which achieves the false negative value of 
about 11%. 

 

 

Fig. 6. Effect on false negatives of adding congestion and proximity data to 

the model. 

A basic interpretation of these results suggests that the 
congestion data is of little practical value when modelling 
driver behaviour, whereas the local interaction metrics provide 
significant enhancement of situation awareness when added to 
the basic statistics. Given the relative simplicity of the 
simulated processes in comparison with the real ones, these 
results offer encouragement to continue the development of an 
IMS for the automated and real-time classification of traffic 
surveillance data. 

VI. Conclusions 
Situation awareness of an unmanned aerial vehicle 

involves acquiring and analysing large volumes of data from 
various on-board sensors.  Furthermore, the processing and 
exchanging of data often needs to be performed in real time, 
necessitating the use of intelligent approaches to building a 
measurement system for such applications. 

Computational intelligence techniques have been tested in 
this study to identify anomalies on simulated traffic 
surveillance data. The aim was to identify erratic driving 
behaviours, with and without additional contextual 
information, from the environmental data, such as the road and 
traffic conditions. 

According to the results obtained, on a reduced data set the 
best performance in terms of prediction accuracy is achieved 
by a statistical technique of inference modelling – CART.  

Thus, the analysis of fast data within an inferential 
measurement system would be better performed by 
multivariate regression approaches. 

With the addition of contextual information, however, the 
situation changes, and the use of computational intelligence 
becomes justified.  The classification accuracy of traffic 
surveillance anomalies is better when detail-richer data 
streams are analysed.  An artificial neural network appears to 
perform better in the experiments with additional contextual 
information. This conclusion confirms the hypothesis that 
once fitted with surrounding environment information, 
anomalies may no longer be categorised as such.   

In the study, the duration of surveillance for each vehicle 
was limited to two minutes to simulate intermittent coverage.   
This did not obstruct the simulated IMS from making 
inferences regarding anomalous traffic; however, it would be 
interesting to see how the classification accuracy changes 
when the inferential measurement system operates on real 
surveillance data. 
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