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Abstract

Techniques for music recommendation are increasingly
relying on hybrid representations to retrieve new and ex-
citing music. A key component of these representations
is musical content, with texture being the most widely
used feature. Current techniques for representing tex-
ture however are inspired by speech, not music, there-
fore music representations are not capturing the cor-
rect nature of musical texture. In this paper we inves-
tigate two parts of the well-established mel-frequency
cepstral coefficients (MFCC) representation: the resolu-
tion of mel-frequencies related to the resolution of mu-
sical notes; and how best to describe the shape of tex-
ture. Through contextualizing these parts, and their re-
lationship to music, a novel music-inspired texture rep-
resentation is developed. We evaluate this new texture
representation by applying it to the task of music rec-
ommendation. We use the representation to build three
recommendation models, based on current state-of-the-
art methods. Our results show that by understanding
two key parts of texture representation, it is possible
to achieve a significant recommendation improvement.
This contribution of a music-inspired texture represen-
tation will not only improve content-based representa-
tion, but will allow hybrid systems to take advantage of
a stronger content component.

Introduction
Over the last decade the way in which people find and en-
joy music has completely changed. Traditionally a listener
would first hear about new music either through their friends
or mass-media, such as radio and magazines. They would
then visit a record store and buy a hard copy of the music.
It is now equally as likely that a listener will have been rec-
ommended new music by an algorithm, and that they will
either stream or buy a soft copy of the music. There are
possibly millions of tracks on a website, with only a limited
number being of interest to the user. This presents an inter-
esting new challenge: how to decide which tracks should be
recommended to a user.

Many current state-of-the-art techniques for providing
music recommendations are based on the idea of similar-
ity. Given one or more songs that the listener likes, rec-
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ommender systems must provide further songs that the lis-
tener will like. One of the most popular ways to do this is
to compare meta-data about the songs. Such meta-data of-
ten includes textual tags, and audio descriptors, which are
combined into a hybrid representation for each song. When
examining these hybrid representations it becomes clear that
tags offer much greater accuracy than audio descriptors. For
this reason a lot of current research is focussing on how such
audio descriptors can be improved, and how these can be
better integrated with tags.

There are two approaches to describing musical audio: in
terms of its structure, such as rhythm, harmony and melody;
or in terms of its feel, such as texture. The choice of which
approach to use can differ depending on the task. However,
in almost all tasks, texture has proven to be very popular
and successful. The most widely used texture descriptor is
the mel-frequency-cepstral-coefficient (MFCC) representa-
tion. Although originally developed for speech recognition,
MFCCs have proven to be robust across many musical tasks,
including recommendation. This foundation in speech pro-
cessing however can make texture difficult to understand in
a musical sense.

We take a novel approach to examining the MFCC rep-
resentation in a musical context, and make two important
observations. The first observation is related to the resolu-
tion used at a key step in the algorithm, and how this cor-
responds to music. The second observation is that in the
case of music, summarising the perceptual spectrum used by
MFCC is undesirable. Based on these observations we de-
velop a novel approach to music-inspired texture represen-
tation, and evaluate its performance using the task of music
recommendation. This evaluation also shows that no sin-
gle fixed-parameter texture representation works best for all
recommendation models.

The paper is structured as follows. We first discuss re-
lated work on the MFCC representation, how it has been
used for music, and some observations others have made
on its suitability to music. We then develop our new tex-
ture representation by examining the MFCC representation,
and discussing key steps. The following section describes
our experimental design, and the three recommendation ap-
proaches with which we evaluate our approach. We then dis-
cuss the results obtained from our experiments, and finally
we draw some conclusions from this work.
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Figure 1: Block diagram of MFCC extraction algorithm

Related Work
One of the most important content-based representations for
music recommendation is MFCC (Celma 2010). First devel-
oped for speech recognition (Mermelstein 1976), the MFCC
representation is based on warping a frequency spectrum to
human perception using the mel scale (Stevens, Volkmann,
and Newman 1937).

One important difference between practical evaluations of
MFCC for speech and music, is that speech can be evalu-
ated in an objective manner (Zheng, Zhang, and Song 2001),
while many music tasks are evaluated subjectively (Ellis et
al. 2002). However, many authors have successfully eval-
uated the use of MFCC subjectively for genre classification
(Lee et al. 2009) and music recommendation (Yoshii et al.
2008).

Logan (2000) investigates the suitability of the mel scale
for musical texture, concluding that the scale is at least not
harmful for speech / music discrimination, but perhaps fur-
ther work is required to examine only music. Logan also
concludes that at a theoretical level DCT is an appropri-
ate transform to decorrelate the mel-frequency spectrum,
but the parameters used require more thorough examination.
We question whether the mel-frequency spectrum should be
decorrelated at all, and evaluate the suitability of DCT for
describing a music-inspired texture.

Several investigations have concluded that resolution is an
important factor affecting MFCCs. It has been shown that
computing MFCCs on MP3 audio is only robust if the au-
dio is encoded at 128kbps or higher (Sigurdsson, Petersen,
and Lehn-Schiler 2006). At lower encoding resolutions, the
MFCCs extracted are not able to describe texture reliably.
Pachet and Aucouturier (2004) investigate several parame-
ters of MFCC and how they relate to music. Their first obser-
vation is closely linked to that of Sigurdsson, Petersen, and
Lehn-Schiler; increasing the input resolution by increasing
the sample rate improves the effectiveness of MFCC. In fur-
ther work Aucouturier, Pachet, and Sandler (2005) examine
the relationship between how many coefficients are retained
after DCT, and the number of components used in a Gaus-
sian Mixture Model. It is found that increasing the number
of coefficients beyond a threshold is harmful for this model.

The MFCC representation involves smoothing the input
data based on the mel scale, introducing a further step where
resolution may be important. Most commonly 40 mel fil-
ters are used for smoothing, often described as 13 linear and
27 logarithmic filters, and 13 coefficients are retained after

DCT. One popular toolbox for extracting MFCCs also uses
these fixed parameters (Slaney 1998).

Yan, Zhou, and Li (2012) investigate the placement of
mel filters for the application of Chinese speech recognition.
When analysing MFCC across various regional accents, they
discovered that the first two formants are most sensitive to
accents. These formants are the lower-frequency section of
the mel-spectrum, and so the authors re-distribute the mel
filters used to provide a higher resolution in these critical
bands.

Li and Chan (2011) also investigate the placement of mel
filters while considering genre classification. The authors
find that the MFCC representation is affected by the musi-
cal key that a track is played in. Rather than modifying the
MFCC representation to resolve this issue, they instead nor-
malise the key of each track before extracting MFCCs. In
this paper we investigate the relationship between the mel
scale and pitch, and develop our music-inspired texture rep-
resentation from this.

Mel-Frequency Texture Representations
The MFCC representation attempts to describe the shape of
a sound, with respect to how humans hear it. In this section
we describe and examine this representation, and develop
several modifications showing how this approach can be tai-
lored to describe texture for music.

Frequency Spectrum
The MFCC representation is generated from a short time-
sample of audio, as illustrated in Figure 1. The input is an
audio frame of fixed sample rate and sample size. To re-
duce the effects of noise introduced by sampling, rather than
having a continuous waveform, the initial step in Figure 1 is
windowing. This windowed time-domain frame is then con-
verted to a frequency-domain spectrum using the discrete-
Fourier transform (DFT).

There are three properties of the frequency spectrum
which are important:

• The size of the spectrum is half the size of the audio
frame, and for computational efficiency is usually size 2n.

• The maximum frequency is half the audio frame sampling
rate.

• The spectrum bin resolution is the maximum frequency
divided by the spectrum size.



For an audio frame with sample rate 44.1kHz and sample
size 210 (23ms), the size of the spectrum is 29, the maximum
frequency is 22.05kHz, and the bin resolution is 43.1Hz.

The windowing and DFT steps are common to many
content-based representations, and so this paper focusses on
the later steps in Figure 1, which are more specific to texture.

Mel-Frequency Spectrum
The frequency spectrum output by the DFT describes the in-
tensity of discrete frequency ranges. In order to correctly
describe texture, one must warp this output so that it de-
scribes how humans hear frequencies and their intensities.
This is achieved using two operations; frequency warping
and intensity rescaling. Intensity rescaling, applied after the
frequency warping, is achieved by taking the log of all fre-
quency values. In this section we will focus on how the fre-
quency warping is achieved.

Frequency is the physical scale describing sound oscil-
lations, and must be warped into the perceptual mel scale
(Stevens, Volkmann, and Newman 1937), thus mimicking
humans interpret frequency. The following equation de-
scribes the conversion from frequency f to mel φ

φ(f) = 2595 log10

(
f

700
+ 1

)
(1)

and is illustrated by the curve in Figure 2. The horizontal
axis is f , and the left vertical axis is φ(f).

Frequency warping is not achieved as a direct conversion
from f to φ(f), but as a discretization of f based on φ(f).
To avoid confusion, we will refer to frequency ranges de-
fined by the DFT as bins, and to the ranges used for fre-
quency warping as buckets.
M buckets are equally sized and spaced along φ(f), as

illustrated by the triangles in Figure 2. The buckets on the
f axis are equivalent to those on φ(f). The value of each
bucket is a weighted sum of all its frequency bins, where the
weights are defined by the triangular filter.

After discretization, the frequency spectrum has been
warped into M mel-scaled values. After the log of each
value has been taken, this set of values is known as the Mel-
Frequency Spectrum (MFS).
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Figure 2: Frequency - mel curve

Mel-Frequency Filter Resolution
When MFCCs are discussed in the literature it is usually in
terms of the frequency and mel scales. In this section we
first make observations of the MFS in terms frequency and
mel, and then in terms of a musical scale, in an attempt to
examine its suitability for musical texture.

Continuing with our example using Figure 2, when 10
triangular mel-filters are used for frequency warping, each
bucket is 392 mels wide. Converted to f , this means the
smallest bucket is 291Hz, and the largest is 6688Hz. Ex-
amined as a percentage value, each bucket covers 10% of
the mel scale, or between 0.013% and 30% of the frequency
scale. At a first glance the smallest bucket perhaps seems
too small, and the largest is perhaps too large, however, we
must now examine the ranges from a musical point of view.

The most commonly used musical scale is the cents scale,
which describes the distance in cents between two frequen-
cies. The following equation shows how to calculate the
number of cents between frequency f and reference fre-
quency g.

c(f, g) = 1200 log2

(
f

g

)
(2)

Using this scale, 100 cents is equal to one musical semi-
tone, or adjacent piano key. For the scale to make sense g
must correspond to the frequency of a musical note; for our
examples we set g = 16.35, which is the musical note C.
The lowest note on a standard piano is A at 27.5Hz.

If we consider our example of 10 filters again, but this
time examining the size of the buckets in cents, we get a
completely different picture. The smallest filter covers 4986
cents, which is just more than 49 musical notes, and the
largest filter covers 626 cents, which is just more than 6
musical notes. This illustrates something completely differ-
ent to examining discretization of f ; musically the smallest
bucket in f seems much too large in cents, and the largest
bucket in f seems much too small in cents.

Figure 2 illustrates this conflict of resolution between f
and cents. The light grey shading shows the number of musi-
cal notes for each triangular filter along f . The right vertical
axis shows the scale for these bars. It is clear that the small-
est triangular filter on f has the largest number of notes. As
the filters on f become larger, the number of notes quickly
becomes lower and flattens at around 6 notes.

There are 12477 cents between our reference frequency
g and 22050Hz, which is just over 124 musical notes. Re-
examining the discretization as a percentage, the smallest
bucket covers 39.5% of the musical scale, and the largest
bucket covers 0.048%.

In practice the most common value of M for MFCCs
is 40. At this value the smallest filter covers 23.5 musical
notes, and the largest covers 1 musical note. Intuitively the
smallest filter still seems much too large. Most musical notes
are played at a relatively low frequency; the higher frequen-
cies often describe harmonics of the lower note. Texture
should describe all the elements, which when put together
form a sound. If 23.5 notes are all grouped together, one can



argue these elements are too coarsely discretized, and thus
the best texture description is not used.

We propose thatM should be a more carefully considered
parameter, and should be much larger than is typically used.
There is one final consideration however; increasing M will
decrease the size of the smallest filter. M is bounded by
the point at which the size of the smallest filter becomes
less than the resolution of the frequency spectrum, at which
point duplicate and redundant information will be produced.
The selection of M is therefore a balancing act between the
resolution of the smallest and largest filters. As more filters
are used, the resolution of higher filters will become much
less than 1 musical note.

To denote the number of filters which are being used by
any representation we will append the number in brackets.
For example, when 60 filters are used the representation will
be denoted as MFS(60).

Discrete Cosine Transform
The final step in Figure 1 is the Discrete Cosine Transform
(DCT), which takes the mel-frequency spectrum as an in-
put, and outputs a description of its shape, the mel-frequency
cepstrum. The coefficients of this cepstrum are the MFCC
representation.

The description provided by the DCT is a set of weights,
each correlating to a specific cosine curve. When these
curves are combined as a weighted sum, the mel-frequency
spectrum is approximated. To calculate the mel-frequency
cepstrum, X , the DCT is applied to the mel-frequency spec-
trum x as follows

Xn =

M−1∑
m=0

xm cos

[
π

M

(
m+

1

2

)
n

]
(3)

for n = 0 to N − 1. Typically M is 40, and N is 13.

Discrete Cosine Transform Observations
The idea behind using DCT for texture representations
comes from the speech processing domain. Speech has
two key characteristics: formants are the meaningful fre-
quency components which characterise a sound; and breath
is the general noise throughout all frequency components,
and thus much less meaningful.

For speech, DCT offers strong energy compaction. In
most applications breath is undesirable, and so only the first
few DCT coefficients need to be retained. This is because
these coefficients capture low-frequency changes within the
mel-frequency spectrum. The high frequency detail primar-
ily characterised by noisy breath is not needed. Most com-
monly 13 coefficients are retained when 40 mel filters are
used. Retaining 40 coefficients would give a very close ap-
proximation of the mel-frequency spectrum. Some authors
do not retain the 0th, DC coefficient in their representation.

For music, the concepts of formants and breath do not ap-
ply. It is true that a vocalist is common, meaning formants
and breath are present, however, music is also present. If
only a few coefficients are retained from the DCT, then much

information about percussion and the general feel of the mu-
sic is lost. In music the mel-frequency spectrum is much
more rich, and this detail is important to describing texture.

One could argue then that for music more coefficients
should be retained from the DCT. The primary reason for
using the DCT however still stems from the idea of separat-
ing formants and breath, or information from noise. We pro-
pose that the DCT should not be used for a mel-frequency
based texture representation for music. All of the frequency
information is potentially meaningful, and therefore should
not be summarised. The special case against this argument
is live music, where noise may still be present. However,
for general music retrieval, most music is studio recorded,
where a lot of effort is taken to remove all noise.

When no DCT is used for describing texture we denote
the representation mel-frequency spectrum (MFS). When
the DCT is used we denote the representation MFCC. When
40 mel filters are used we denote the representations as
MFS(40) or MFCC(40).

Experiment Design
We evaluate how MFS performs at the task of music rec-
ommendation. We construct this as a query-by-example
task, where 10 recommendations are provided for any given
query. 10-fold cross validation is used, and our results are
compared to those achieved by MFCC.

Dataset
The dataset we use consists of 3174 tracks by 764 artists,
and are from 12 distinct super-genres. The most common
genres are Alternative (29%) and Pop (25%). Each track in
our collection is sampled at 44.1kHz, and processed using
a non-overlapping samples of size of 213 (186ms). Each
frequency spectrum computed has a maximum frequency of
22.05kHz, and a bin resolution of 5.4Hz. For each sample
we use a Hamming window before computing the DFT, and
then extract each of the texture representations.

Each model is constructed using texture vectors, extracted
from each sample in a given track. We extract texture vectors
for both MFS and MFCC using 40, 60, 80, 100, and 120
filters. For 40 filters the smallest bucket contains just over
25 notes, and the largest contains just over 1 note. For 120
filters the smallest bucket contains 4 notes, and the largest
contains 0.5 notes.

Recommendation Models
We construct three well-known models to avoid drawing
conclusions specific to one type of recommender model.

Latent-Semantic-Indexing of Mean-Vector (LSA) - A
mean texture vector is first computed for each track, where
each dimension corresponds to the mean value across all of
the track’s texture vectors. We then construct a track-feature
matrix using these mean texture vectors. The JAMA pack-
age (Hicklin et al. 2000) is used to generalise this matrix by
LSI, and each query is projected into this generalised search
space. Recommendations are made based on Euclidean dis-
tance as in previous work (Horsburgh et al. 2011).



Vocabulary-Based Model (VOC) - Vocabulary-Based
methods are often found in hybrid recommender systems,
and so we examine this popular model. To generate a vo-
cabulary we use the k-means algorithm to cluster 20000 tex-
ture vectors selected at random from all tracks. For each
track we count the number of samples which are assigned
to each cluster, and construct a cluster-track matrix. A TF-
IDF weighting is applied, and cosine similarity used to make
recommendations.

Gaussian Mixture Model Approach (GMM) - A GMM
models the distribution of a tracks’ texture vectors as a
weighted sum of K more simple Gaussian distributions,
known as components. Each weighted component in the
GMM is described by its mean texture vector and covari-
ance matrix (Aucouturier, Pachet, and Sandler 2005). We
learn a GMM for each track using the Weka implementation
of the EM algorithm (Hall et al. 2009).

If each track were represented by a single Gaussian dis-
tribution, recommendations can be made using Kullback-
Leibler divergence. With GMMs however each track is
represented by K weighted Gaussian distributions, and so
we make recommendations based on an approximation of
Kullback-Leibler divergence (Hershey and Olsen 2007). For
each component in a query track’s GMM, we compute
the minimum Kullback-Leibler divergence to each compo-
nent in a candidate track’s GMM. The estimated Kullback-
Leibler divergence between the query track and the candi-
date recommendation is calculated as the weighted average
of the minimum divergence between all components. Rec-
ommendations are ranked using this estimated Kullback-
Leibler divergence.

Evaluation Method
Our evaluation method uses data collected from over
175, 000 user profiles, extracted from Last.fm using the Au-
dioScrobbler API1 over 2 months. For each user we record
tracks which they have said they like. On average, each user
in our collection likes 5.4 songs. To measure recommenda-
tion quality we use the association score that we developed
in previous work (Horsburgh et al. 2011).

association(ti, tj) =
likes(ti, tj)

listeners(ti, tj)
(4)

where ti and tj are tracks, listeners(ti, tj) is the number of
people who have listened to both ti and tj , and likes(ti, tj)
is the number of listeners who have liked both ti and tj .
The number of listeners is estimated using statistics from
Last.fm, and assumes listens are independent. Using this
evaluation measure allows us to understand the likelihood
that someone who likes track ti will also like tj .

Results
We compare our MFS music-inspired texture with MFCCs
for the task of music recommendation using 40 filters. We
then investigate the effects of increasing the number of filters

1http://www.last.fm/api

used, and compare the best MFS and MFCC representations
for each model.

MFS vs MFCC
Figure 3 shows the results using MFS and MFCC for each
model. The vertical axis shows the association score, and the
horizontal axis shows the number of recommendations eval-
uated. Each value shown is the average association score at
the number of recommendations made. All error bars show
significance at a 95% confidence interval.

Figure 3: Comparison of MFS and MFCC using 40 filters

MFS-LSI achieves a significantly better association score
than all other models and representations. MFS-VOC pro-
vides a significant quality increase over MFCC-VOC when
2 or more recommendations are made. MFS out performs
MFCC with LSI and VOC because both models group data
at the collection level; LSI finds associations between di-
mensions in the texture vectors, and VOC groups texture
vectors into clusters. With MFCC, each texture vector is
first summarised by DCT without respect to the collection,
and therefore LSI and VOC are not able to model the data
effectively.

Unlike LSI and VOC, for 40 filters MFCC-GMM is sig-
nificantly better than MFS-GMM. The reason for this is that
GMM behaves differently; each model is constructed for a
single track. We learned each GMM using a diagonal co-
variance matrix, which has the effect of making dimensions
in the texture vector independent. This means associations
between dimensions are not learned.

Effect of Number of Filters
We want to explore the effect of increasing the number of
filters on recommendation, and so examine a more simple
recommendation task. Figure 4 shows the average associ-
ation score of the top 3 recommendations for each model.
The horizontal axis is grouped by the model used, and each
bar corresponds to a given number of filters.



Figure 4: Effect of filters on MFS

Increasing the number of filters significantly increases
the recommendation quality of MFS-GMM, does not sig-
nificantly affect MFS-VOC, and significantly decreases the
quality of MFS-LSI. GMM is improved because more inde-
pendent information is available to the model, and so more
meaningful distributions can be learned. VOC does not
change because a similar vocabulary is formed regardless
of the number of filters. The performance of LSI decreases,
showing that the model can generalise a low number of fil-
ters more effectively. Figure 5 shows the effect changing the
number of filters for MFCC. No correlation appears between
the number of filters used and association score.

Figure 5: Effect of filters on MFCC

Figure 6 is in the same format as Figure 3, and shows MFS
and MFCC when the best performing number of filters are
used for each model. We do not show VOC because neither
representation was improved by using more filters. Adding
more filters improved the MFCC-LSI model, but is still out-
performed by MFS-LSI.

The solid black line in Figure 6 shows MFS(40)-
GMM, and the solid grey line shows MFS(120)-GMM. The
MFS(40)-GMM results are included in the Figure to illus-
trate the improved recommendation quality achieved by in-
creasing the number of filters for MFS-GMM. For the first
5 recommendations, MFS-GMM is now significantly bet-
ter than MFCC-GMM. In comparison, there is only a small
improvement of MFCC-GMM through increasing the filters
used.

Figure 6: Comparison of best MFS and MFCC by model

Conclusion
The entire mel-frequency spectrum is important when de-
scribing the texture of music. When our MFS representa-
tion is used, all of the texture information is available to the
models we use, leading to improved recommendation qual-
ity over MFCC. When MFCC is used, the DCT provides
a summarised description of the mel-frequency spectrum,
which does not allow a recommender model to learn what
is important. Our results show that by not using the DCT,
MFS achieves significantly better recommendation quality
for each of the three models evaluated.

Traditional music texture representations are extracted
with a standard number of filters, and therefore resolution.
Our results have shown however that to extract a more mean-
ingful music-inspired texture representation, one must also
consider how the textures will be modelled. This link be-
tween representation and model is important, and there is no
single MFS resolution which is optimal for the three models
we have evaluated.

In each of the recommender models presented, the be-
haviour for MFS is more predictable than MFCC. With
GMM more filters are best because the GMM is able to de-
scribe the information more meaningfully than DCT. With
VOC there is no significant difference, and for LSI fewer fil-
ters are best. With MFCC, there are no relationships which
emerge between the number of filters used and the recom-
mender model.

The LSI model clearly outperforms both MFS and GMM
for texture-based music recommendation. However, both
VOC and GMM are commonly found in hybrid recom-
mender systems. Future work therefore will explore how our
novel approach to music texture contributes to hybrid rec-
ommender systems. It is hoped that by providing a stronger,
predictable and robust texture component, increased recom-
mendation quality may be achieved using hybrid representa-
tions.
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