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Abstract The Artificial Reaction Network (ARN) is an Artificial Chemistry inspired by Cell 

Signalling Networks (CSNs). Its purpose is to represent chemical circuitry and to explore the 

computational properties responsible for generating emergent high-level behaviour. In previous 

work, the ARN was applied to the simulation of the chemotaxis pathway of E. coli and to the 

control of quadrupedal robotic gaits. In this paper, the design and application of ARN-based 

cell-like agents termed Cytobots are explored. Such agents provide a facility to explore the 

dynamics and emergent properties of multicellular systems. The Cytobot ARN is constructed 

by combining functional motifs found in real biochemical networks. By instantiating this ARN, 

multiple Cytobots are created, each of which is capable of recognizing environmental patterns, 

stigmergic communication with others and controlling its own trajectory. Applications in 

biological simulation and robotics are investigated by first applying the agents to model the 

life-cycle phases of the cellular slime mould D. discoideum and then to simulate an oil-spill 

clean-up operation. The results demonstrate that an ARN based approach provides a powerful 

tool for modelling multi-agent biological systems and also has application in swarm robotics. 



 

1 Introduction 
In recent years, researchers have become increasingly interested in the complex behaviours 

displayed by individual cells (Ford 2009; West et al. 2007). For example, the cellular slime 

mould D. discoideum (Dd), starts life as a collection of solitary amoebae which actively hunt 

bacterial prey. But on starvation these cells secrete a cAMP (cyclic adenosine monophosphate) 

signal resulting in a complex aggregation response and the formation of a travelling 

multicellular “slug”. Dd also has a symbiotic relationship with its bacterial prey using a 

primitive form of “farming” to ensure sufficient food availability within a new environment 

(Brock, 2011).  

In order to generate this emergent high-level behaviour, a cell must be able to store and process 

information. This is accomplished by Cell Signalling Networks (CSNs) which function as the 

cell’s internal processing machinery. They do this by manipulating chemical data within 

elaborate networked hierarchical control structures which connect chemical species together in 

productive or inhibitory unions. In this way, cells are able to respond to changes within their 

environment, communicate with other cells, and perform internal self-maintenance operations 

(Bray 1995). Several researchers have highlighted the processing capabilities of these networks 

(Bray 1995; Arkin and Ross 1994; Bhalla 2003) and their similarities to Artificial Neural 

Networks (ANNs) (Bray 1995; Bhalla 2003). As discussed later, some have identified structural 

motifs common to many CSNs which form basic computational processing units. 

The Artificial Reaction Network (ARN) is an Artificial Chemistry technique inspired by 

biological CSNs. The design, computational properties, mathematical formalism (Gerrard et al. 

2013) and validation (Gerrard et. al 2011) of the ARN have already been discussed in detail. 

The ARN was previously used to simulate the chemotaxis pathway of E. coli (Gerrard et al, 

2011), in pattern recognition and to generate complex temporal waveforms to control limbed 

robots (Gerrard et al. 2012a, b; 2013). Previous work focused on exploring the properties and 

mechanisms which lead to high-level behaviour in individual cells. The focus of this work is to 

explore those which result from groups of interacting cells using a new technique termed the 

“Cytobot”. Cytobots are cell-like agents which, under direction of their internal ARN, 

autonomously move within and respond to their environment. Like other Artificial Chemistry 

approaches (Joanchimczak et al. 2013; Shen et al. 2004; Guo et al. 2009 ), a Cytobot system is 

composed of multiple cell-like components which communicate with each other and control 

their local actions via artificial chemicals. The specific objectives of the results presented here 

are as follows: Firstly, to explore the mechanisms and computational properties that lead to 

emergent high-level behaviour within and between groups of interacting cells. Secondly, to 

investigate applications of the ARN technique in biological simulation, and finally as a 

distributed robotic control system.  



 

The following novel work is presented: 1) A complete overview of the design of Cytobots 

including their biological background and computational properties; and 2) a Cytobot based 

simulation of the life phases of Dd; and 3) a simulated oil-spill clean-up operation using a 

Cytobot swarm.  

The paper is structured as follows: Section 2 briefly summarises the ARN representation. 

Section 3 discusses the biological background and behaviour of the Cytobots. Section 4 

presents a complete overview of the Cytobot ARN design and discusses the biological 

functional motifs of which the network is composed. The experiments in section 5 explore the 

applications and properties of Cytobot systems. The first experiment (section 5.1) applies the 

Cytobots to the simulation of the Foraging and Aggregation phases of Dd. The phase times and 

emergent behaviours are compared with the literature. The results show that Cytobots are able 

to accurately model the behaviour of individual unicellular organisms, and that arising from 

interactions among such groups. They also demonstrate a high-level of flexibility where, for 

example, the pathway within an individual cell may be modified and its effects on high-level 

behaviour of the entire cell group viewed over time. In a further experiment (section 5.2), 

robotic swarm applications are investigated and a Cytobot swarm is applied to a simulated oil-

spill clean-up operation. The results compare well with other related methods and show that 

Cytobots may have practical applications within the real-world as a physical robotic swarm.  

2 The Artificial Reaction Network 
A brief summary of the ARN is provided here; a full account can be found in our previous 

paper published in this journal (Gerrard et. al, 2013).  

The ARN focuses on the inherent networked properties of CSNs and is specifically designed to 

represent “biological circuitry”; it consists of linked processing units connected together via 

weighted connections and for this reason may be described as “connectionist”. It is a networked 

representation similar to other ACC models (Zeigler and Banzaf 2000; Eikelder et al. 2009). As 

shown in Fig. 1, the ARN comprises a set of networked reaction nodes (circles), pools 

(squares), and inputs (triangles) and is depicted as a directed weighted graph. Each pool stores 

the current available amount of a particular chemical species (avail); thus, the complete set of 

pool concentrations at time t, corresponds to the current state of the system. While many ACs 

assume a well-stirred reactor, the use of pools approximates a chemical compartment, allowing 

a representation of the spatial compartmentalisation which occurs within cells. This also 

provides a means to represent flow structures such as membrane channels and transport 

processes. Inputs are a special type of pool which are of fixed value and thus can be used to 

represent the continuous flow of environmental inputs or enzymes. Data is processed by 

reaction units which transform incoming pool values to connected outgoing pool values. 



 

Connections symbolise the flow of chemical into and out of reaction units and their weight (w) 

corresponds to reaction order. Connections provide a means to create complex control 

structures by combining inhibitory or excitatory unions. 

 
 

         

 

 

 

 

 
 
 

 

 

 
 

 

 

Fig. 1 Schematic diagram of a simplified Artificial Reaction Network (ARN). Reactant chemicals A and B react at 
unit 1. The rate of the reaction at unit 1 at time t is given by Eq. (1). The current concentration in pool C is updated 
using Eq. (2). 

Figure 1 shows the reaction between species A and B to produce species C. The result of 

applying Euler’s method to the differential rate equation is given by Eq. (1) and this is used to 

calculate each reaction unit’s temporal flux value over the time interval ∆t. 
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This result is then used to update the current concentration of each reaction’s connecting pools. 

As mentioned previously, conserved mass values are used throughout the experiments detailed 

in this work and thus each pool is updated at each time interval for example at pool C. 
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Non-conserved values may also be modelled and the mathematics for this is given in our 

previous work (Gerrard et. al 2013).  
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3 Cytobot Behaviour 
A Cytobot has 2 behavioural modes which are based on the chemotaxis behaviour of D. 

discoideum amoebae. These modes and their biological basis are described below. 

3.1 Biological Basis of Cytobot Behaviour: Chemotaxis of D. discoideum Amoebae 

The Dd life cycle has 4 stages: Vegetation, Aggregation, Culmination and Migration, a detailed 

description of the biology is given by Devreotes (1989). During its Vegetative stage the 

organism consists of a collection of amoebae which navigate toward food by moving up 

gradients of folic acid secreted by their bacterial prey. The trajectory of these cells is a pattern 

of motion similar to a random biased walk. Dd cells extend pseudopods in a random direction; 

those extended toward sources of chemoattractants, such as food, are maintained; while those 

extended toward less favourable conditions and retracted. The overall result is movement up the 

gradient of attractant (Andrew and Insall 2007).  

When the food resource has been depleted, the amoebae begin to stave and enter the 

Aggregation phase. Starving cells secrete cAMP (cyclic adenosine monophosphate), which 

serves as a signal to attract surrounding amoebae towards each other, resulting in a densely 

populated aggregate (Devreotes 1989) commonly referred to as a “mound”. Aggregating cells 

are polarized, thus one side becomes the leading edge, which always faces in the direction of 

travel (McCann et al. 2010). Depending on parameters such as environmental conditions and 

the cell population density, migrating cells can form transient emergent patterns such as streams 

and spirals (McCann et al. 2010; Dallon and Othmer 1997). Streaming describes a pattern of 

motion where cells line up in close-order files, with the head of one following the rear of 

another (McCann et al. 2010) and the spiral pattern describes streams of concentric cells 

spiralling toward the centre of the aggregate. 

3.2 Cytobot Foraging Mode 

In Foraging mode, a Cytobot performs a pattern of motion based on the previously described 

chemotaxis of Dd cells during their Vegetative phase. The Cytobots approximate this behaviour 

as a random biased walk by performing alternate periods of forward motion termed “runs” and 

random redirections called “tumbles”. The bias is provided by reducing the tumble frequency 

when moving toward more favourable conditions (for example up food gradient), thus 

increasing the length of the run. Like aggregating Dd cells, each Cytobot is polarised, and will 

always face toward the direction of travel. At each new position P, an agent redirects itself to 

face a new random angle between 0 and 360 degrees (a tumble). The agent then moves forward 

in a straight line for a number of time-steps, based on the level of detected food at P (a run). 

The Cytobot consumes all the food (if present) at each location it passes through. 

 



 

3.3 Cytobot Starvation Mode 

The Cytobot Starvation mode is based on the pattern of motion displayed by starving cells of 

Dd. The Cytobot enters Starvation mode if it has not consumed food within a fixed time period. 

During this phase, the Cytobots respond to detected levels of environmental cAMP. Depending 

on the particular experiment, this chemical may already be present within the environment or it 

may be released by the starving Cytobots. In this mode, both run and tumble behaviours differ 

from that in the Foraging phase. Rather than turning in a random direction, a new direction is 

calculated by weighting the turn toward the highest concentration of artificial cAMP within the 

surrounding area. The run period, instead of being variable, is a fixed length, which is set 

according to the particular experiment.  

4 Cytobots: Design and Implementation 
 
In previous work it was shown that the ARN can be used to model the reactions of specific 

proteins involved in signalling pathways (Gerrard et al. 2011). To enable the Cytobot ARN to 

produce the behaviour of chemotaxing Dd amoeba, rather than simulating specific protein 

interactions, a more abstract method was employed. There are a number of reasons for this 

approach. For instance, there are significant gaps in our current knowledge of the chemical 

interactions involved within this pathway (Manahan et al. 2004), and thus it is not possible to 

create an accurate representation. When modelling such a network researchers often adopt a 

modular approach- where related signalling events are grouped into functional units (Manahan 

et al. 2004). In this way, the Cytobot ARN was designed by dividing functions into modular 

units. The functional modules are constructed by combining “structural motifs” from real 

biochemical networks. Such motifs, each of which perform distinct computational functions, 

have been identified by a number of researchers (Tyson and Novak 2010; Bray 1995; 

kholodenko 2006). There are a number of advantages in this approach. Firstly, these motifs are 

universally found in other pathways, and thus show that the ARN is capable of potentially 

modelling any pathway. Furthermore, by creating entire systems composed of these motifs 

illustrates how biologically plausible motifs can be combined and cooperate together to produce 

functionally distinct pathways and how such pathways cooperate (a feature of crosstalk) to 

produce overall cellular behaviour. These functional motifs and the manner in which they are 

combined within the Cytobot ARN control system is discussed below. 

A summary of common structural motifs, their computational function, structure (in the 

previously defined ARN format), and biological examples of each is provided in Table 1. Note 

that these motifs are shown for simplicity as 2 or 3 component forms but there are larger 

versions with the same function; for example, an additional component may be added to motif 9 



 

to create a 4 component oscillator. One important biological example is the universal signalling 

motif of a phosphorylation cycle. Here a signalling protein is interconverted by opposing 

enzymes (a kinase and a phosphatase) between its phosphorylated (Yp) and non-

phosphorylated forms (Ys). In a multisite phosphorylation cycle, feedback from either form can 

cause oscillations between stable states or render the cycle into a bistable switch, where the low 

and high Yp concentrations correspond to “on “and “off” states (kholodenko 2006). A cascade 

of such bistable cycles can produce multiple stable states, allowing the complex interdependent 

control of many cellular functions. For example, the cell’s transition into mitosis is governed by 

the sequential activation or inactivation of such kinases (CDK1/Cdc2) (kholodenko 2006). 

Space prevents a detailed discussion of each motif but an in-depth account including the 

biological mechanism, structure and examples is provided by Tyson and Novak (2010). 

 

  



 

4.1 Functional Motifs in Biochemical Networks 

Table 1 Functional Motifs in Biochemical Networks 

Motif No., Name and 
Description 

Structure (in ARN 
format)  

Biological Example 

1. Excitatory (E)                                    
The presence of X activates Y 

 Elementary motif common throughout most pathways. E.g. 
Ras is a membrane associated protein that is normally 
activated in response to the binding of extracellular signals 
such as growth factors (Tyson and Novak 2010). 

2. Inhibitory (Y)                                   
The presense of X inhibits Y. 
Acts as a NOT gate. 

 Elementary motif common throughout most pathways. E.g. 
E-cadherin (a calcium-dependent cell–cell adhesion 
molecule) suppresses cellular transformation by inhibiting 
β-catenin (Tyson and Novak 2010). 

3. Positive Feedback Loop 
(PFL)       The presence of X 
activates Y and in turn the 
presence of Y activates X 

 The pathway of caspase activation is essential for apoptosis 
induction. A PFL exists between caspase-3 and caspase-9 
(Tyson and Novak 2010). 

4. Negative Feedback Loop 
(NFL)     The presence of X 
activates Y and in turn the 
presence of Y inhibits X 

 The proteins Mdm2 and p53 (p53 is a tumour suppressor 
protein) are involved in a NFL which functions to keep the 
level of p53 low in the absence of p53-stabilizing signals 
(Tyson and Novak 2010). 

5. Double-negative Feedback 
(DNF)  The presence of X 
inhibits Y and the presence of 
Y inhibits X 

 BAX is protein which promotes apoptosis by competing 
with BCL. A DNF is formed between the proteins BAX and 
BCL (Tyson and Novak 2010). 

6. Branch (B)                                        
The presence of X activates Y 
and Z  
 

 The transcription factors such as E2F or P53 frequently 
modulate the expression of more than one gene. 
Enzymes often modify more than one substrate e.g. CycB-
dependant kinase (Tyson and Novak, 2010). 

7. Logic Gate (LG1)                            
AND gate: 2 excitatory 
connections from X and Y 
when both X and Y are present 
they activate Z. NOR gate: two 
inhibitory connections from X 
and Y. Both X and Y must be 
absent for Z to be activated.  
SWITCH: Excitatory 
connection from X and 
inhibitory connection from Y. 
The presence of X but not Y 
activates Z 

 AND: The protein gCam 2 kinase becomes active when 
both calcium ions (Ca2+) and Calmodulin (CaM) are present 
(Bray, 1995).NOR: The activity of transcription factor E2F 
is a NOR function of RB and CycB where E2F is active 
when both RB and CycB are inactive (Tyson and Novak, 
2010).SWITCH: The enzyme aspartate transcarbamylase 
has multiple catalytic sites. It is activated by binding of its 
substrates (aspartate and carbamoyl phosphate) and 
inactivated by cytidine triphosphate causing its substrates to 
dissociate (Bray 1995). 

8. Logic Gate (LG2)                             
OR Gate: : 2 excitatory 
connections from X and Y 
when either X or Y are present 
they activate Z 

 For instance, Ras is a membrane associated protein that is 
activated by a number of different signals. E.g. in response 
to the binding of extracellular signals such as a number of 
growth factors (Tyson and Novak 2010). 

9. Oscillator (OSC)                               
The presence of X activates Y. 
In turn the presence of Y 
activates Z but inhibits X. The 
presence of Z inhibits Y and 
activates X. 
 

 The cyanobacteria clock protein KaiC has a closed cycle of 
phosphorylation and dephosphorylation states (composed of 
KaiA, KaiB and KaiC). In the structure shown left, all 3 
chemicals oscillate and each inhibits the reaction clockwise 
left. Oscillators may have less inhibitory connections, the 
number of which is dependent on the mobility of the 
reaction species. However, the presence of all inhibitors 
increases stability in the presence of fluctuating 
environmental parameters e.g. temperature.  

Key:                            Either inhibitory or excitatory.                                 X/Y/Z:  Chemical species  
 
 
 

* Motifs may combine arbitrary numbers of components. 
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4.2 The Cytobot ARN 

Fig. 2 The Cytobot ARN network. Each Cytobot is controlled by an instance of this network and thus has an 

independent state at time t. The network is composed of 6 subnetworks. * Note that in these experiments pools are 

considered empty when the value of its component chemical is ≤ 1x10-3.  

Each Cytobot maintains its own copy of an ARN which enables it to operate asynchronously 

with respect to the other agents. In turn, this allows each Cytobot to react independently to 

situated environmental patterns, communicate with others and contribute to higher-level 

collective function. The Cytobots are placed within a simulated environment containing a 

distribution of chemicals. These chemicals represent the attractants of either food or cAMP. 

When a Cytobot moves to a new position, the surrounding level of chemical is used to set the 

inputs to its ARN. Consequently this changes the state of the network and updates its trajectory. 

During this process, the agent modifies the state of the environment by consuming food or 

releasing cAMP. 

The Cytobot ARN is composed of 6 subnetworks as shown in Fig. 2. Each subnetwork 

contributes a functional aspect to either (or both) Starvation and Foraging behavioural modes. 

Each of these subnetworks is discussed below in detail. 

4.2.1 The Master Oscillator 

The Master Oscillator (MOnet) functions to synchronize the outputs from all the other 

subnetworks together and is what the individual Cytobot references at each time-step to ascertain 

its overall behavior. It is a 4 component oscillator (Table 1, motif 9), with a token unit of 

chemical cycling around it. It consists of 4 reaction units: M0, M1, M2, and M3 (all with a 

reaction rate of 1), 4 pools MA, MB, MC and MD and generates a pulsed-width-modulated 

waveform. Each pool is associated with 1 of 3 behaviors. At every time-step, if a particular pool 

contains the token unit, then its corresponding behavior is performed. Pool MA activates turn, 



 

MC activates run and MB and MD activates stop. Thus, if pool MC contains a chemical for 10 

time-steps, the agent will move forward for 10 time-steps. The other subnetworks inhibit (Table 

1, motif 2) or excite (Table 1, motif 1) the reaction units of the MOnet, to allow or prevent 

chemical flow.  

Note that this oscillator motif allows the Cytobot ARN to function easily as the control system 

for the motor actuators of a wheeled robot. Here, MC would switch on all wheel motors, while 

MA would switch on left-wheel motors only, thus turning the robot. The remaining pools would 

act as off switches.  

4.2.2 The Food and Run Length Network 

The Food Network (FNet) interfaces with the environment at pool FA, using an excitatory 

connection (Table 1, motif 1) and inhibits the Run Length network (RLnet) in accordance with 

the level of detected food. The forward rate of reaction at node F0 is 1, thus the content of FA is 

transferred to pool FB in a single time-step. The presence of chemical FB inhibits (Table 1, 

motif 2) R0 for a number of time-steps, according to the level of food (by setting forward rate 

of unit F1 to 1 and weight to 0, this can be an exact correlation). The RLnet is a 3 component 

oscillator (Table 1, motif 9). While reaction R0 is inhibited, it prevents pool RC from emptying. 

RC inhibits reaction M2 (Table 1, motif 2) of the MOnet thus preventing pool MC from 

emptying for the same number of time-steps. As discussed previously, the number of time-steps 

which pool MC contains the token unit represents the number of time-steps to move forward. 

4.2.3 The Signalling Network 

The Signalling Network (Snet) functions as a switch between Starvation and Foraging mode. A 

low food level triggers the starvation response and allows the Weighted Direction Network 

(WDnet) to control each new angle. Sufficient food will switch off the WDnet and allows the 

Chaotic Network (Cnet) to control each new angle. It is a 3 component oscillator (Table 1, 

motif 9) with a token unit of chemical flowing around it. Pool CA acts as the switch between 

Foraging and Starvation modes. Here the presence of chemical in CA inhibits the WDnet 

(Table 1, motif 2), while its absence switches on the WDnet; this in turn inhibits the Cnet, as 

shown in Fig. 2. In this oscillatory network, all reaction units have a forward rate of 0.5. This 

produces a continuously oscillating waveform and ensures a minimum number of time-steps for 

each behaviour. A NOR gate (Table 1, motif 7) activates pool CB in the absence of food 

chemical in both pools FB and FC of the Fnet, thus allowing pool CB to empty. An AND gate 

(Table 1, motif 7) will lead pool CA to eventually refill by activating pool CC, only when food 

is present in input FA and pool FC of the Fnet. 



 

4.2.4 The Weighted Direction Network 

The Weighted Direction Network (WDnet) senses cAMP within the agent’s immediate 

environment and calculates a tumble angle which is weighted toward higher levels. This network 

interfaces with the environment via a number of receptor pools (AW, ANW, AN, ANE, AEA) 

which sense the level of food around the Cytobot. These pools represent receptors and are 

positioned at points around the front of its perimeter (as shown in Fig. 3), allowing the agent to 

travel in a similar way to that of a aggregating Dd cell. Each receptor input pool forms one input 

of an AND gate (Table 1, motif 7); the other input is a static pool containing a fixed level of 

chemical in correspondence to its direction. Directions start from AW (west) with a 

corresponding numeric value of 0 (A00) and progress in 45 degree steps through each direction 

to east (thus, the maximum value is 180). As the receptor positions around the agent are fixed, 

directions are always relative to that in which the agent is facing. All connections have a weight 

of 1 with the exception of the connection between pool AD and reaction A12 which has a weight 

of -1. This negative connection weight raises the sum of food detected in AD to -1, which 

multiplied by AB, allows an average angle to be calculated. Detected signals are classed as being 

in one of the following cardinal or ordinal directions: W, NW, N, NE, and E. Thus signals are 

detected from all directions above the horizontal plane. The calculated angle interfaces with the 

remaining subnetworks at pool AE. Pool AE is the output of an OR gate (Table 1, motif 8), and 

its inputs are activated by either the WDnet or the Cnet. AE also forms the inhibitory input of a 

SWITCH (Table 1, motif 7), where the presence of chemical in MA and absence in AE 

activates pool MB of the MOnet In the actual organism, receptors are set around the cell 

perimeter and direct movement appropriately. In this simulation, for simplicity, a count of the 

number of time-steps “n”, that MA contains the token unit is processed to gain the new heading 

“h” relative to the agents’ current heading “c” using Eq. (3): 

  cnh +−≡ )90(  (3) 

Statement 1  
IF (h > 360)THEN h = h – 360 
IF (h < 0)  THEN h = h + 360 
 

Thus, if the number time-steps is 120 and the agent is facing north, then the current heading 

would equal 0 and the new heading would equal 30. 



 

 

Fig. 3. Location of the Cytobot sensors around its perimeter. 

4.2.5 The Chaotic Network 

The Chaotic Network (Cnet), shown in Fig. 2, is responsible for generating the pseudo-random 

angles which agents use to perform each Foraging mode tumble. It is a networked 

implementation of a Logistic Map, given by Eq. (4), where Xn is a state variable of value 0 < Xn 

< 1 at time-step n and λ is a system parameter of value 1 ≤ λ ≤ 4: 

 )1(1 nnn XXX −=+ λ  (4) 

 Without prior knowledge of the initial conditions, the output of the Logistic Map is not 

predictable; whereas, with prior knowledge it is deterministic. Therefore, the resulting series 

cannot be described as truly random, but as pseudo-random and its output has long been 

proposed as a pseudo-random number generator. Ulam and von Neumann (1947) were the first 

to examine this, and it has been successfully used in that capacity by several researchers (Patidar 

et al. 2009; Phatak and Rao 1995). The probability-density distribution of the Logistic Map, as 

given by Eq. (5) (where P(X) is the probability of X occurring at any time-step), is non-uniform 

(Patidar et al. 2009): 
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XP
−

=
π

 (5) 

When λ=4, the distribution is “U” shaped with a higher probability of values closer to the 

minima and maxima of X and a symmetric distribution around the midpoint.  

To implement the Logistic Map, a number of motifs are combined, including multiple branch 

motifs (Table 1, motif 6- KB activates KD and KE), PFLs (Table 1, motif 3- a multi component 

PFL exists where KA leads to activation of KE, which results in the activation of KA) and 

NFLs (Table 1, motif 4- KA activates KD which in turn inhibits KA). At the start of the 

simulation, pools KA and KB are initialized to the same random value (a unique number for 



 

each Cytobot), between 0 and 1 (to 5 decimal places). This value represents the initial value of 

X of Eq. (4). All the other pools are initialized to 0, with the exception of the static pools KI 

and RK, whose initial values are 360 and 1 respectively. Reaction K2 is responsible for 

generating each new value of X and has a forward and reverse rate of 4 (the Logistic Map 

exhibits chaotic behaviour when λ is 4). The connection between KA and K2 has a weight of 1 

and that between K2 and KB has a weight of 2. The remaining series of reactions function to 

copy the value of X 3 times; where 2 copies serve as the new initial values of KA and KB, and 

one participates in the final output of the network at KH. KI has a fixed value of 360 which 

allows the network to convert the pseudo-random number at KH to an angle value between 0 

and 360 at reaction K0. However, reaction K0 cannot proceed until all 11 pools that inhibit it 

are empty.  

  
a) b) 

Fig. 4 The Frequency distribution for each value of X when X is initialised to 0.9277725 and λ=4 resulting from: a) 
the chaotic network b) Recursive relation given by Eq. (2) run using Matlab.  

These inhibitory connections (Table 1, motif 2) ensure that random angles are not output while 

the agent is in starvation mode, and that pool AE is empty before adding more chemical.  

The ARN implementation of the Logistic Map was verified against the recursive relation shown 

in Eq. (4) using Matlab, where λ=4, initial X = 0.927725, and iterated for 1x105 steps. The 

complete range of state-variables between 0 and 1 were divided into 100 equal subintervals and 

the frequency of occurrence of each subinterval interval was plotted. Similarly, the Cnet was 

run for 1x105 cycles, using the same parameters of X (initial value) and λ. These results were 

processed in the same way and are shown in Fig. 4. The frequency distribution gained from the 

ARN is identical to that obtained using Matlab and by other researchers using the same 

parameters (Patidar et al. 2009). The same comparison was repeated 100 times at different 

values of X, and the ARN consistently produced the same values as Eq. (2). 



 

5 Experiments and Results 
In the following sections the methodology and results for the following experiments are 

presented: 1) A Cytobot based simulation of the Vegetative and Aggregative life-cycle phases 

of Dd including the transition; between them and 2) application of the same Cytobots in a 

simulated oil-spill clean-up operation.  

 

5.1 D. discoideum Simulation 

5.1.1 D. discoideum Simulation Methodology 

The experiments are grouped into two sets: Aggregation (AG1-10 of Table 2) which models the 

Aggregation phase only and Foraging to Aggregation (AGF3 and AGF8 of Table 2) where both 

the Vegetative and Aggregative phases are simulated, including the transition between them. 

Each experiment is performed at varying population densities of Cytobots (p) and different 

distance ranges of detection of cAMP (r). The experiments AGF3 and AGF8 are performed at 

the same p and r as experiments AG3 and AG8 respectively to compare the effect of the 

Foraging phase on the number of mounds formed and length of time to complete the 

Aggregation phase. The emergent patterns, numbers of mounds, and length of time to complete 

phases is examined and compared in both sets of experiments and with the literature. In each 

experiment the Cytobots move within a 2D simulated environment which represents an area of 

5.06 mm2- approximately half the maximum Aggregation territory reported in the literature 

(Dallon and Othmer 1997). A screen output shows the position of the Cytobots in real-time and 

is a grid of 500 × 500 pixels where each is represented by a square of side 4.5 μm. In nature, 

aggregating Dd cell densities are typically 250 to 1000 per mm2 (Dallon and Othmer 1997). 

Due to the computational resources required to manage a population of Cytobots within the 

upper range, a cell density at the lower biological range of 250 agents per mm2 (1250 Cytobots) 

and another at 150 per mm2 (750 Cytobots) were chosen.  

 

 

 

 

 
  



 

Table 2 D. discoideum Simulation Results 

No. Cytobots 
per mm2 (p) 

Range (r) 
in mm 

Mean No. of 
mounds; (σ) 

Aggregation Phase 
Mean time in Hours; (σ);  

AG1 150 5 1 
(0) 

8.98 
(0.09) 

AG2 150 2.5 4 
(0.31) 

9.63 
(0.17) 

AGF3 150 1 5.9 
(1.16) 

9.47 
(0.65) 

AG3 150 1 5.2 
(0.82) 

9.92 
(0.34) 

AG4 150 0.5 8.4 
(1.19) 

10.23 
(0.59) 

AG5 150 0.1 14.2 
(2.36) 

10.6 
(1.82) 

AG6 250 5 1 
(0) 

8.95 
(0.11) 

AG7 250 2.5 1 
(0) 

9.6 
(0.20) 

AGF8 250 1 6.8 
(1.81) 

9.71 
(0.87) 

AG8 250 1 4.3 
(0.37) 

10.05 
(0.58) 

AG9 250 0.5 6.7 
(1.62) 

12.65 
(1.94) 

AG10 250 0.1 - - 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5 The strength of signal for each cardinal or ordinal direction above the horizontal plane of a Cytobot is 
calculated using this pseudocode. The result for each direction is used to set the corresponding direction input pool 
of the ARN WDnet. 

FOR each Cytobot 
      Get current agents’ facing direction CF 
      Assign a value to direction CF using statement 1 
 
           FOR each (index n) detected cAMP signal 
                  Get detected signal incoming direction CA 
                  Assign a value to direction CA using statement 1 
                  IF CA = CF THEN kn = 3 
                     ELSE IF CA = CF-1 OR CA = CF+1 THEN kn=2 
                         ELSE IF CA = CF-2 OR CA = CF +2 THEN kn=1 
                     ELSE kn=0 
                   END IF 
                 Calculate distance dn 
                 Store each CA with kn and dn 
            END FOR 
 
      Calculate WA for current agent using Eq. (7) 
END FOR 
 
Statement 1: East = 1; North East = 2; North = 3; North West =4; 
West = 5  
 
Where: 
WA= total weight of direction A  
N= total number of agents within range of detection 
dn= distance of current agent from agent n 
CA = direction of incoming signal detected by current agent 
CF = the current agents facing direction 
kn = value of cAMP signal from agent n 
 
 



 

In both sets of experiments the Cytobots are initialized at random positions in Foraging mode 

within the simulated environment. In the AGF experiments, the environment is initialized with 

a radial outwardly-decreasing gradient of food (z), as described by Eq. (6), where x and y are 

Cartesian coordinates on the horizontal plane: 

 22 yxz +=  (6) 

 ∑
=

=
N

n n

n
A d

k
W

1
 (7) 

The Cytobots begin the experiment in the previously described Foraging mode and remain in 

this mode until the food resource is depleted and Starvation mode is triggered. In a real 

environment, food is non-uniformly distributed, may be regenerated and can move (in the case 

of bacterial prey). Thus, this setup is highly simplified, but is comparable to other simulations 

(Becker 2010).  

If a Cytobot does not detect food for a period of approximately 5 time steps (the exact number 

depends on the level of food detected in the recent past, because higher levels take longer to 

flow through the network) it will enter Starvation mode. Cytobots in Starvation mode emit a 

cAMP signal at equal strength in all directions around their circumference into the 

environment. Each Cytobot in Starvation mode detects the cAMP signal of all other starving 

agents within a radius r. The total value for each direction is calculated using the pseudocode 

given in Fig. 5 and these totals are used to set the weighted direction network input (receptor) 

pools. A range of r values were explored, including that of real Dd cells: 1, 0.5, and 0.1 mm 

(McCann et al. 2010). The cAMP signal degrades linearly with increasing distance from the 

emitting cell. Each cycle represents 1 minute of time. In this time an aggregating Cytobot 

moves 9μm- a distance which corresponds to that of actual aggregating Dd cells (Rifkin and 

Goldberg 2006). Therefore, after 1 hour of motion a Cytobot travels a distance of 540μm. In 

this simulation, just as in biology, there are always remaining cells that do not aggregate, and 

thus the simulation runs until 95% of agents are at a distance of less than 0.1mm from their 

nearest neighbour. 

5.1.2 D. discoideum Simulation Results and Discussion 

The results for all 12 experiments are given in Table 2. Each experiment was performed 100 

times. In the AG experiments an increase in p by 100 per mm2 resulted in a decrease in the 

number of mounds formed at each value of r, with the exception of experiment AG6. This is 

not surprising, as denser populations have more chance of interacting, and thus form fewer 

clusters, each having a higher number of agents. Similarly, decreasing r results in a general 



 

increase in the number of mounds formed at both values of p. The likely reason for this is that 

as r decreases the Cytobots area of influence becomes increasingly smaller, and thus the 

number of isolated stable clusters with fewer agents increases. In the AGF experiments, agents 

generally focus on consuming food in each of the remaining areas of highest concentration (see 

Fig. 6K-L). Having consumed almost all the food, agents begin switching to starvation mode 

(Fig. 6M). In these experiments the number and location of resulting mounds differs from that 

of the AG experiments at the same values of r and d. For example experiment AG8 results in an 

average of 4.3 mounds within the test space (Fig. 6E) while AGF8 results in an average of 6.8 

mounds and a general shift in mound formation further away from the centre of the 

environment (as shown in Fig. 6O). The likely explanation is that, at the time of switching to 

aggregation, the majority of cells were forced outward toward the next remaining highest 

concentration of food. Emergent behaviours and clustering patterns similar to the biological 

organism were also observed. 

 

Fig. 6 Screenshots of the Dd simulation. Dots represent the Cytobots (black- vegetative and red- aggregative cells), 

and greyscale colour represents the food distribution. A-E: Cytobot aggregation experiment AG8 at A- 1hr, B- 2hr, 

C-5hr, D- 8hr, E- 10hr; Image F- real Dd cells aggregating; G- Lower right hand corner of image C demonstrating 

streaming behaviour; H-J Shows pattern formation; K-O Cytobot experiment AGF8 at K-0hr vegetation, L-4hr 

vegetation, M-transition to aggregation 0hr aggregation, N-5hrs aggregation, O-10hr aggregation.  

Diagram F courtesy of T, Gregor, Laboratory for the Physics of Life, Princeton University, 

2013 Used with permission. 

In experiments AG8-10 and AGF8 the value of r and p are within the ranges for real Dd cells. 

These experiments are used to compare the behaviors and aggregation time with the values for 

real Dd in the literature. In experiments AG8-9 and AFG8 mound formation completes within 



 

the range reported for the actual organism of 9-13 hours (Cotter et al. 1992; Becker et al. 2010). 

These results are comparable with other work. For instance, Becker et al. (2010) report an 

aggregation time of 11.6 hours for a simulated population of Dd with a cell density of 200mm2. 

In experiment AG10, the population never satisfied the criteria for completion of mound 

formation where instead the agents appeared to move in a fashion reminiscent of Brownian 

motion. The likely explanation is firstly because the simulation does take into account 

glycoprotein’s which allow aggregating cells to attach together on contact. Furthermore, 

because r is small, fewer agents are detected by each Cytobot. Thus momentarily larger clusters 

with higher attraction strength go undetected and quickly dissipate- an effect that would not 

occur if agents stayed together. As previously discussed, the Cytobots are polarized. 

Implementing the agents in this way allows us to observe whether or not the previously 

described streaming behavior occurs. A close-up of the right-hand corner of screenshot C is 

shown in Fig. 6G showing agents beginning to form a cluster. The protruding head of each 

agent can be seen clearly, and each lines up its head to the rear of another to form a stream. As 

can be seen in Fig. 6F, this is very similar to the streaming behavior in real cells of Dd. Other 

emergent patterns occurred during different experiments including spirals (Fig. 6J), symmetric 

patterns (Fig. 6I), and waves (Fig. 6H). 

These results show that the Cytobots are able to simulate behaviour of individual unicellular 

organisms, and the emergent behaviours arising from their interaction. It highlights a potential 

use, as a means to simulate groups of interacting cells, for example a bacterial colony or tissue 

component within a multicellular organism. Applications include the modelling of the effects of 

disease (e.g. faulty gene expression) and pharmaceuticals on global behaviour. The results 

demonstrate the parallels between ARN agents and their biological counterpart; like amoebae, 

their internal network of spatially distributed dynamic chemical species allows them to 

autonomously coordinate and direct their movement, recognize and respond to patterns in the 

environment, and produce high-level behaviour.  

5.2 Oil-spill Confrontation Simulation 

5.2.1 Oil-spill Simulation Methodology 

To illustrate a practical application of the Cytobot system within robotics they were used to 

tackle a simplified oil-spill clean-up simulation. The Cytobots move within a 2D environment 

containing an oil-spill on water. This oil is analogous to a distribution of food within a nutrient 

landscape. In the following 4 experiments the length of time it takes for a swarm of 3, 5, 8 and 

15 Cytobots to clean up 95% of a simulated oil-spill is recorded. The agents move through the 

environment by switching between the two previously described behavioural modes- Foraging 

and Starvation. In these experiments, each Cytobot is controlled using the same ARN network 



 

as used in the Dd simulation. To enable the Cytobots to behave differently, rather than modify 

the network, the interface between the Cytobots and the environment was altered. To achieve 

this, the concentration of oil surrounding the agents was used to represent both food and cAMP 

attractants. Thus, the amount of oil at each new position was fed into both the receptor pools of 

the WDnet and of the Fnet. At the start of each experiment, the Cytobots are distributed 

randomly within the environment, and the ARN network is initialized as previously described. 

The agents start the simulation in Foraging mode but during the simulation alternate between 

Foraging and Starvation modes. Starvation behaviour is triggered when the last positions 

(minimum of 2) contained zero food. In Starvation mode, instead of turning in a random 

direction, the new direction is weighted toward higher concentrations of food within its 

surrounding area. This behaviour forces exploration of unexplored search space because 

previously visited positions have a food level of 0. Consumption of environmental food 

therefore acts as a stigmergic signal, where agents are inclined to move up the nutrient gradient 

created by their foraging activities. On consuming a sufficient amount of food, the Cytobot 

switches back to Foraging mode, repeating this behaviour until 95% of the oil is consumed. 

Here, we model the spillage of 100 tonnes of Statfjord crude oil at 150C under a wind speed of 

5ms-1 The oil is distributed over a 2D sea surface of 300m by 200m, thus an area of area 

60000m2, where 2 pixels corresponds to 1m, as shown in Fig. 7A. This particular oil type and 

parameter set were chosen in order to compare directly with work by Kakalis and Ventikos 

(2008) who present a robotic swarm concept for oil-spill confrontation. For this reason, we 

account for an initial response time of 14 hours. Based on the mathematical models found in 

Kakalis and Ventikos which account for the main factors of short term changes in oil 

characterization, the volume of oil after 14 hours is reduced to 150m3. Beyond this starting 

state, the volume is only influenced by the Cytobots. The speed of each agent is 0.5ms-1 and is 

based on other robotic agents in oil cleaning scenarios (Kakalis and Ventikos 2008), thus the 

Cytobots move 1 pixel (0.5m) for every time step. The actual cleaning surface is 1m, thus the 

Cytobots clean a 2 pixel wide area in each time step. 

Mathematical modelling of an oil-spill is non-trivial and at best can offer a crude approximation 

of its actual trajectory. Most oil-spills quickly form a comet shape with most of the oil within 

the head, and a trail of sheen (Wang and Stout 2007). To represent a simplified version of the 

comet shaped spread, the area is divided into 100 3m x 200m segments. The first segment 

contains 0.015 tonnes of oil, and each subsequent segment increases by 0.03 tonnes from right 

to left.  

5.2.2 Oil-Spill Results and Discussion 

In each experiment, a different number of Cytobots was deployed- 3, 5, 8 and 15 and the 

recovery rate achieved by each group were compared. The simulation time was measured from 



 

deployment of the Cytobots at 0 hours (14 hours after oil was spilled) and stopped when the 

Cytobots had collectively removed 95% of the 150m3 of oil. Each experiment was run 100 

times, and the average volume of oil consumed at 6 minute intervals was calculated. Figure 8 

presents the average volume of oil consumed by the group of Cytobots against time. Figure 9 

provides the average length of time taken to clean 95% of the oil (Avg. time) and standard 

deviation (σ) for each experiment. By adding 2 additional agents to the group of 3 the length of 

time is reduced by 3.7 hours, thus 1.85 hour average difference per extra Cytobot. This 

difference decreases 1.12 hours per Cytobot for 8 agents, then to 0.76 per agent for 15. The 

variation can be accounted for by examining the agents’ paths through the oil. Rates are much 

faster at the beginning of the experiments, where Cytobots move toward the oil-rich left side of 

the environment. This can be seen in the series of screenshots of a typical experiment shown in 

Fig. 7, where A shows the starting position at time 0, and B shows that after 2 hours the 

Cytobots have moved toward the left-hand side, focusing mainly on highly concentrated areas 

(consumed oil is shown in white). Initially, the rate of oil removal is high because Cytobots 

focus on the highest concentration areas and cannot go over their path, thus each new location 

results in consumption of oil. However, as time progresses, large patches become cleaned and a 

higher probability exists for the Cytobots to revisit previously cleaned areas. The consumption 

of oil in Fig. 7C-D at 4 and 9.6 hours respectively shows more clearly that Cytobots focus 

cleaning efforts on the area of highest concentration first, and are gradually forced to move 

toward the next highest concentration by the gradient created by their foraging activities. 

Figure 7D shows the state of the oil at the end of the simulation, where only small patches 

remain mainly in areas of low oil concentration. These results can be compared to the 

simulation by Kakalis and Ventikos. Here, varying numbers of simulated EU-MOP robots are 

deployed to tackle 150m3 of Strajford oil over 60000m3 (as before). In this case, the robots have 

a slightly faster speed of 0.54m/s but have the same 1m skimming face. Each EU-MOP robot 

has a storage capacity of 2m3
 and a transit speed of 2.1ms-1. The times taken for 3, 5, 8, and 15 

EU-MOPS are 54, 32, 20 and 10 hours respectively. For comparison, the results of our 

simulation can be adjusted to include unloading of the oil at a servicing vessel. Using the same 

storage capacity and transit speed and assuming the distance to the ship and back is 2 times 

300m and that each Cytobot fills the same amount simultaneously, then the new times are 17.2, 

12.7, 10.3 and 6.5 for 3, 5, 8 and 15 Cytobots respectively. The Kakalis and Ventikos 

simulation has several differences to the one reported here, particularly in the distribution of the 

oil. Also, some key parameters are missing from their paper, for example, the distance to the 

boat. Despite these differences, our results are very similar. For example, the reported 

simulation time for 15 EU-MOPS is 10 hours and in our simulation 5 and 8 Cytobots took 12.7 

and 10.3 hours respectively. Given the differences in the simulation and differences in 

operation of the robots, the resulting clean-up times are comparable, showing that the Cytobots 



 

have potential application as distributed robotic agents in real-world environments. This 

application demands an internal control system which can function without reference to other 

agents within the environment which are operating in parallel. By modifying the environment, 

(which in this case was consumption of food), the agents can stigmergically communicate and 

facilitate emergent behaviour. The Cytobots offer a unique range of abilities. Like cells, their 

internal network of spatially distributed dynamic chemical species allows them to 

autonomously coordinate and direct their movement, recognize and respond to patterns in the 

environment, and produce high-level behaviour.  

Fig. 7 Oil simulation using 8 Cytobots at A- 0 hours, B- 2 hours, C- 4 hours and D- 9.6 hours 

 
Fig. 8 Average volume of oil cleaned against time for each group of Cytobots 

  



 

 

No. of 
Cytobots 

Avg. finish 
times  

Standard 
deviation (σ) 

3 15.2 3.4 
5 11.5 2.7 
8 9.6 2.8 

15 6.1  3.1 

Fig. 9 Average length of time taken to clean 95% of the oil-spill for each group of Cytobots.  

6 Conclusions 
The experiments outlined in this paper show the advantages of considering cell-signalling 

networks as a connectionist paradigm. This approach allows their structure to be easily 

visualised, manipulated and organised into hierarchical modular structures. These in turn 

facilitate the exploration of the limits of their processing capabilities and, from an artificial 

intelligence perspective, allows them to be compared directly with other forms of simulated and 

biological intelligence. It may also prove useful tool in biomedical research as it allows, for 

example, the effect of mutated proteins to be examined simply in isolation or in interconnected 

groups - this is of particular importance in cancer research. 

The results presented above illustrate how common simple motifs, present in all CSNs, can be 

integrated together to form structured networks with sophisticated processing capabilities. This 

indicates that these may form universal building blocks from which higher-level functions can 

be built. The ARN based agents, constructed from these, behave in a very similar way to the 

real organisms; displaying two of their most interesting behaviours (foraging and aggregation), 

and so we may conclude that the ability to evolve this level of behaviour is probably fairly 

universal among such single-celled microbes. 

In the next stage of work, it is hoped to use an ARN to explore how learning might arise in 

protists. In particular the extent to which learning and memory is genetically programmed into 

invariant CSNs, and how much of it is extrinsic to the organism – as a stigmergic system. Or 

whether it has a variable intrinsic aspect – for example, the use of modulating elements within 

the CSNs, which might act as primitive “memories”. In the experiments outlined in this paper, 

the stigmergic aspect of such memory was illustrated. For example, like the cAMP trail-

following behaviour described above, the environment acts as a shared information depository 

in which to both facilitate collective manipulation of data and communicate the current global 

system state.  

There may also be a role for the ARN in other areas which have yet to be explored, particularly 

those which would benefit from its connectionist approach described in the paragraphs above. 

For example, it would appear ideal for modelling the complex but interconnected pathways 

present in environmental science and soil chemistries. 



 

 

Supplementary information and code can be found at the following link: 

https://drive.google.com/folderview?id=0B-xGVfJFH9UmZlJTV1pROFFRb00&usp=sharing 
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