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ABSTRACT 

The present work investigates methods for optimising cancer chemotherapy within the bounds 

of clinical acceptability and making this optimisation easily accessible to oncologists. Clinical 

oncologists wish to be able to improve existing treatment regimens in a systematic, effective 

and reliable way. In order to satisfy these requirements a novel approach to chemotherapy 

optimisation has been developed, which utilises Genetic Algorithms in an intelligent search 

process for good chemotherapy treatments. 

The following chapters consequently address various issues related to this approach. Chapter 1 

gives some biomedical background to the problem of cancer and its treatment. The complexity 

of the cancer phenomenon, as well as the multi-variable and multi-constrained nature of 

chemotherapy treatment, strongly support the use of mathematical modelling for predicting and 

controlling the development of cancer. Some existing mathematical models, which describe 

the proliferation process of cancerous cells and the effect of anti-cancer drugs on this process, 

are presented in Chapter 2. Having mentioned the control of cancer development, the 

relevance of optimisation and optimal control theory becomes evident for achieving the optimal 

treatment outcome subject to the constraints of cancer chemotherapy. A survey of traditional 

optimisation methods applicable to the problem under investigation is given in Chapter 3 with 

the conclusion that the constraints imposed on cancer chemotherapy and general non-linearity 

of the optimisation functionals associated with the objectives of cancer treatment often make 

these methods of optimisation ineffective. Contrariwise, Genetic Algorithms (GAs), featuring the 

methods of evolutionary search and optimisation, have recently demonstrated in many practical 

situations an ability to quickly discover useful solutions to highly-constrained, irregular and 

discontinuous problems that have been difficult to solve by traditional optimisation methods. 

Chapter 4 presents the essence of Genetic Algorithms, as well as their salient features and 

properties, and prepares the ground for the utilisation of Genetic Algorithms for optimiSing 

cancer chemotherapy treatment. 

The particulars of chemotherapy optimisation using Genetic Algorithms are given in Chapter 5 

and Chapter 6, which present the original work of this thesis. In Chapter 5 the optimisation 

problem of single-drug chemotherapy is formulated as a search task and solved by several 

numerical methods. The results obtained from different optimisation methods are used to 

assess the quality of the GA solution and the effectiveness of Genetic Algorithms as a whole. 

Also, in Chapter 5 a new approach to tuning GA factors is developed, whereby the optimisation 

performance of Genetic Algorithms can be significantly improved. This approach is based on 

statistical inference about the significance of GA factors and on regreSSion analysis of the GA 

performance. Being less computationally intensive compared to the existing methods of GA 

factor adjusting, the newly developed approach often gives better tuning results. 
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Chapter 6 deals with the optimisation of multi-drug chemotherapy, which is a more practical and 

challenging problem. Its practicality can be explained by oncologists' preferences to administer 

anti-cancer drugs in various combinations in order to better cope with the occurrence of drug 

resistant cells. However, the imposition of strict toxicity constraints on combining various anti­

cancer drugs together, makes the optimisation problem of multi-drug chemotherapy very difficult 

to solve, especially when complex treatment objectives are considered. Nevertheless, the 

experimental results of Chapter 6 demonstrate that this problem is tractable to Genetic 

Algorithms, which are capable of finding good chemotherapeutic regimens in different treatment 

situations. On the basis of these results a decision has been made to encapsulate Genetic 

Algorithms into an independent optimisation module and to embed this module into a more 

general and user-oriented environment - the Oncology Workbench. The particulars of this 

encapsulation and embedding are also given in Chapter 6. 

Finally, Chapter 7 concludes the present work by summarising the contributions made to the 

knowledge of the subject treated and by outlining the directions for further investigations. The 

main contributions are: (1) a novel application of the Genetic Algorithm technique in the field of 

cancer chemotherapy optimisation, (2) the development of a statistical method for tuning the 

values of GA factors, and (3) the development of a robust and versatile optimisation utility for a 

clinically usable decision support system. The latter contribution of this thesis creates an 

opportunity to widen the application domain of Genetic Algorithms within the field of drug 

treatments and to allow more clinicians to benefit from utilising the GA optimisation. 
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CHAPTER 0 

INTRODUCTION 

The thrust of the present work is to find a robust, effective and practically usable method for 

optimising cancer chemotherapy treatment within the bounds of clinical acceptability. These 

characteristics of the optimisation method are pivotal for allowing oncologists to improve 

existing treatment regimens in a systematic and reliable way. A few words need to be said 

about what they actually mean in the context of cancer chemotherapy. 

Firstly, robustness of an optimisation method provides the means to tackle multiple constraints 

of cancer chemotherapy and the paucity of information on exact values of tumour 

characteristics. The latter factor is particularly important since it is known that amongst cancer 

patients there is a large variation of tumour growth parameters and of tumour response to anti­

cancer drugs. Secondly, if the method of chemotherapy optimisation is effective, it expedites 

the finding of better chemotherapy schedules in different treatment scenarios. The sort of 

information provided by the optimisation method should assist oncologists in either developing 

novel chemotherapy schedules ab initio or in modifying some of the existing ones, behind which 

there is a considerable clinical experience. The final requirement to the method of optimiSing 

chemotherapy treatments is its practical usability. Nowadays oncologists tend to develop 

chemotherapeutic regimens which consist of more than one anti-cancer agent. Therefore, the 

optimisation method must be able to deal with multi-drug therapies and to communicate with 

oncologists in a user-friendly fashion, i.e. without delving into details of mathematical modelling 

and optimisation. 

The present thesis is devoted to the development of such a method for optimising cancer 

chemotherapy treatment. The author hopes that the context and the order of the chapters 

comprising the thesis will help the reader to see and to follow this development. The issues 

addressed in each chapter are briefly described below so that the aims of the thesis can be 

appreciated and the main contributions can be identified. 



1. Biology and Medicine 

Chapter 1 gives some biomedical background to the problem of cancer and its treatment. The 

following questions are addressed: 

• what cancer is; 

• what the objectives of cancer treatment are; 

• what constraints are imposed on cancer treatment; 

and finally 

• why chemotherapy has been chosen in this thesis as a cancer treatment modality. 

2. Mathematical Models of Tumour Kinetics 

The complexity of the cancer phenomenon as well as the multi-variable and multi-constrained 

nature of chemotherapy treatment strongly support the use of mathematical modelling for 

predicting and controlling the development of cancer. In Chapter 2 a range of existing 

mathematical models are discussed which deal with such processes as tumour growth and 

pharmacodynamic effects of anti-cancer drugs. The purpose of this discussion is to select the 

most general mathematical model, which provides the base for further investigations. The 

generality of the selected model allows a better fit with a wide range of tumour sizes and 

therefore makes the model applicable to a larger number of cancer patients. Moreover, a 

general model has fewer uncertain parameters and this can make the following optimisation 

easier and more reliable. 

3. Mathematical Optimisation of Chemotherapy 

Having specified the model of tumour growth and its response to chemotherapy, the objectives 

of cancer treatment can be formulated mathematically and various methods of mathematical 

optimisation become applicable. Chapter 3 first gives a survey of mathematical optimisation 

methods and then shows how some of these methods are applied in the context of cancer 

chemotherapy. However, traditional optimisation methods have a number of limitations, which 

are identified in the conclusion of this chapter, and elaborated in Chapter 5. 

4. Genetic Algorithms as a Method of Evolutionary Search and Optimisation 

To overcome the limitations of mathematical optimisation, an evolutionary approach to 

developing and improving chemotherapy regimens is proposed in this thesis. This approach is 

featured by the method of Genetic Algorithms, which has recently demonstrated an ability to 

quickly discover useful solutions to highly-constrained, irregular and discontinuous problems in 

many practical situations. In Chapter 4 the evolutionary concept, the rationale and the salient 

features of Genetic Algorithms are described in order to prepare the ground for applying this 

method to the problem of chemotherapy optimisation. An application of Genetic Algorithms 

constitutes the essence and the main innovative aspect of the present work and is thoroughly 

explored in Chapters 5 and 6. 
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5. Single-Drug Chemotherapy Optimisation using Genetic Algorithms 

The proposal of a novel optimisation method capable of dealing with a certain problem is not 

enough for justifying the utilisation of this method in practical situations. Firstly the new method 

has to be tested and compared with the existing optimisation techniques and that is what this 

chapter is devoted to. The test-bed based on the Linear Programming formulation of the 

problem of single-drug chemotherapy optimisation is used in the present work to assess the 

quality of the GA solution and the efficiency of Genetic Algorithms as a whole. In order to 

improve the efficiency of Genetic Algorithms in finding better chemotherapeutic regimens, a new 

approach to tuning the factors affecting GA performance is developed and analysed in this 

chapter and subsequently used in Chapter 6. 

6. Multi-Drug Chemotherapy Optimisation using Genetic Algorithms 

Chapter 6 applies Genetic Algorithms to the problem of multi-drug chemotherapy optimisation, 

which does not have a known solution. The experimental results of this chapter demonstrate 

that the latter problem is tractable to Genetic Algorithms which are capable of finding viable 

treatment regimens for different optimisation objectives. On the basis of these results a decision 

has been made to encapsulate Genetic Algorithms into an independent optimisation module 

and to embed this module into a more general and user-oriented environment - the Oncology 

Workbench. The aim of this encapsulation and embedding is to enhance the practical usability 

of Genetic Algorithms. 

7. Conclusions 

The final chapter concludes the present work by summarising the contributions made to the 

knowledge of the subject treated and by outlining the directions for further investigations. The 

main achievement of this thesis is the development of a robust, effective and practically usable 

method for optimising cancer chemotherapy. This method is based on the idea of evolving 

various treatment regimens to produce better chemotherapeutic schedules. The evolution is 

implemented by Genetic Algorithms, the medical application domain of which is not restricted to 

chemotherapy alone but is open to many other therapeutic treatments. 
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CHAPTER 1 

BIOLOGY AND MEDICINE 

Before a practical problem can be mathematically analysed or an attempt made to find its 

analytical or numerical solution it is necessary to gain an understanding of the actual problem. 

In order to do this for optimisation of cancer chemotherapy treatment a number of preliminary 

issues need to be addressed. Firstly, an understanding is required of the complexity of cancer 

in terms of why, despite many years of intensive research, treatment of the disease still retains 

a number of uncertain features. It is for this reason that novel approaches to the improvement 

of cancer treatment still need to be investigated and developed. Section 1.1 sheds some light 

on this matter by presenting a discussion on salient characteristics of cancerous diseases and 

on existing treatment modalities used in clinical practice. 

Secondly, the knowledge of treatment goals, and of hurdles on the way to attain these goals, is 

vital for gaining insight into what can be achieved (and what cannot) by utilisation of existing 

modes of treatment - chemotherapy in particular. Hence, Section 1.2 concentrates on the 

discussion of cancer treatment objectives, whereas practical constraints of cancer 

chemotherapy will be given in Section 1.3. The details of these constraints outline the 

difficulties of drug schedule composition as well as disclose a need for a systematic approach to 

this process. In the discussion section, Section 1.4, it will be explained why this thesis focuses 

exclusively on chemotherapy as a cancer treatment modality to be mathematically modelled 

and optimised. 

1.1. Complexity of the Cancer Phenomenon 

Cancer belongs to the category of neoplastic diseases, in which inappropriate cell proliferation 

leads to an excess of cells (referred to as a tumour) causing disruption of normal tissue 

architecture (Wheldon, 1988). There is a distinction between benign and malignant tumours. 

Benign tumours are characterised by self-limiting growth and staying at a particular location. In 
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contrast, malignant tumours, viewed as common examples of cancer, have the potential to grow 

beyond a life-sustainable level, and malignant cells are prone to spread or metastasise to other 

organs and tissues. Depending on the tissue of origin, cancer is divided into three main 

categories: carcinoma, sarcoma and leukaemia. Although very different in their physical 

manifestations and properties, instances of these categories have something in common - all of 

them display failure of control by the body's Homeostatic Control Mechanism (HCM). 

The HCM is responsible for maintaining a balanced number of cells by regulating the cell 

proliferation process. This process consists of four active phases: Gi , RNA and protein 

synthesis; S, DNA synthesis; G2, synthesis of remaining RNA and protein; M, mitosis or cell 

division, and a resting phase Go (Widnell and Pfenninger, 1990). Under normal circumstances 

the proliferation process is carefully controlled to ensure that there is no excess of cells. If 

however the control breaks down then the organism's well being is at risk. 

There are many possible reasons for the cell starting to act in contravention to the HCM. The 

mutation theory (Varmus and Weinberg, 1993) suggests that the process of the HCM 

infringement usually starts during the division phase in the cell proliferation cycle. This process 

results in partial loss or alteration of the DNA code of the new-formed cell, which could stop 

'being programmed' to obey the HCM. The DNA alteration may occur due to a viral intrusion or 

due to a transformation inside the cell caused by a phYSical, chemical or biological process. 

Because of these reasons the cellular de-differentiation may commence which means that the 

mutant cell loses its organ- or tissue-specific traits and does not function in accordance with its 

intent. Instead, the mutant cell utilises all consumed nutrition for self-reproduction (Varmus and 

Weinberg, 1993). 

The cellular de-differentiation may result in two perilous outcomes. Firstly, the excessive self­

reproduction of de-differentiated cells (some of which eventually become cancerous, i.e. 

disobeying the body's HCM) precipitates more rapid growth of these cells and facilitates their 

domination in the surrounding neighbourhood. Secondly, it has been found (Varmus and 

Weinberg, 1993) that the cell de-differentiation often causes a profound shift in the relationship 

between the cells' nuclei and cytoplasm with the result that the mutant cells contain increased 

amounts of DNA The excess in DNA quantity allows the mutant cells to acquire unusual nuclei 

composition after undergoing mitosis (i.e. to become cancerous cells) or unusual properties 

(genetiC instability for example), which may subsequently lead to resistance to drugs being 

applied for cancer treatment. 

These abnormalities, i.e. genetic instability, an increased amount of DNA, the loss of tissue­

specific traits, and the ability to continuously proliferate, allow cancerous cells to increase in 

number, leading first to illness and then to death of the individual. In several studies attempts 

have been made to quantify the risk of these abnormalities occurring. Wheldon (1988), for 

example, gives an estimate, obtained from monitoring familial retinoblastomas, that 
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-1.9 X 10-7 mutations/gene occur every year. Varmus and Weinberg (1993) give a statistic 

that - 7.3% of people acquire some type of cancer due to these mutations. To complicate the 

matter, the majority of them happen at the cellular level, which makes it extremely difficult to 

control the development of the disease. This is because at present a cell body containing less 

than 109 cells is undetectable by medical equipment (Martin and Teo, 1994). Yet modification of 

the process of cell proliferation can occur, and therefore the course of some neoplastic diseases 

may be amended. Ideally, such modifications result in restoration of the cellular HeM and often 

they are accomplished by cancer treatment. 

The three main modes of cancer treatment are surgery, radiotherapy and chemotherapy. The 

surgical removal of tumours is a common mode of treatment, applied in most cases of benign 

tumours as well as in some cases of malignant cancers, where it is thought that metastasis has 

not occurred. If metastasis has occurred the success of this approach depends on how far the 

tumour cells have spread beyond the primary site (Wheldon, 1988). Bearing in mind that the 

majority of tumours are diagnosed at a late stage, the spread of cancerous cells is often too 

extensive for surgical procedures alone to suffice. Two other approaches are the use of 

ionising radiation for cancer treatment (radiotherapy) and the use of anti-cancer drugs 

(chemotherapy). At sufficiently high doses radiotherapy can eliminate cancer cells on a small 

scale by sterilising them completely. Unfortunately, high radiotherapeutic doses prohibit 

application on larger scales since they irreparably damage the surrounding normal tissues as 

well. Hence surgery and radiotherapy are best used against localised tumours. The advantage 

of chemotherapy, on the other hand, is its efficacy against tumour cells which have spread far 

beyond the original site. However, the rules of selecting a treatment modality in accordance 

with tumour cell dispersion are becoming more flexible. In modern cancer treatment, these 

modalities (surgery, radio- and chemotherapy) are often used together in various combinations 

(Wheldon, 1988). The goal of cancer treatment is to achieve the objectives (described in the 

next section), which are exemplified for the case of chemotherapy. 

1.2. Treatment Objectives 

Oncologists commonly use two measurements to summarise how successful the administered 

treatment has been - tumour reduction and patient survival time (Henderson, 1997). Therefore, 

the objectives of chemotherapeutic treatment will be either to reduce the size of the tumour as 

much as possible (ideally to eradicate the tumour entirely) or to maximise the patients' survival 

time (PST). These objectives are achieved by utilising rather different strategies. On the one 

hand, tumour eradication involves the use of high-intensity chemotherapy. For small tumour 

masses containing no drug resistant cells this kind of treatment is able to destroy the tumour 

(Martin at aI, 1992). On the other hand, when the number of cancerous cells exceeds a certain 

limit, the probability that drug resistant cells are already present in the tumour becomes too 

large and makes the eradication of the disease unlikely or impossible (Birkhead and Gregory, 

1984). In the latter case a palliative treatment is preferable based on low-intensity 

chemotherapy, which maintains the tumour burden at the highest level the patient can sustain, 
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thereby slowing down the proliferation of drug resistant cells and ultimately prolonging the PST. 

Besides, in designing chemotherapeutic strategies one of the major concerns is to limit the 

damage to normal cells while trying to reduce the cancer cell population. 

Figure 1.1 graphically illustrates a typical pattern of tumour development before, during and 

after treatment as well as the main treatment objectives. The variable N(t) on the y-axis 

denotes the number of cells in the tumour and therefore represents the tumour size at time t. 

To and Tfinal specify the treatment interval on the time scale (x-axis). N max is the critical 

tumour size, exceeding which results in the individual's death. Ncure is a hypothetical tumour 

size which has to be attained in order to prevent the tumour from regrowing. In practice Ncure 

is often substituted by the minimum detectable level. It is assumed that if the tumour cannot be 

detected then it has been cured. More realistic assumption, however, is that if the number of 

cancerous cells in the tumour is small enough « 1,000), then these cells may disappear due to 

natural processes (e.g. cell necrosis or apoptosis), leading to a complete tumour elimination. 

Otherwise, if this does not happen, the cancerous cells that survived after treatment will start 

proliferating again until the tumour attains its lethal size (the broken line on the Figure 1.1 

represents this scenario). 
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Figure 1.1. A gross pattern of tumour behaviour during its lifetime 

The treatment goal of tumour size reduction may be implemented in two different ways. A 

simple way is to concentrate only on minimisation of the final tumour size N(Tfinal ) after a fixed 

period of treatment (first objective). By implementing this strategy one can hope to drive the 

tumour down to Ncure thereby successfully accomplishing the cancer treatment. The second 

approach to tumour reduction is concerned not only with minimisation of N(TfinaJ) but aims at 

minimising the overall tumour burden throughout the whole treatment (second objective). This 

7 

t 



strategy attempts to keep the tumour burden to an absolute minimum at all times during the 

treatment interval and therefore aggressively seeks to destroy the tumour. Oncologists use this 

approach to treatment of cancer patients very often. The last objective is to prolong the PST. 

As we said, the purpose of the graph presenting the tumour development pattern is to 

graphically illustrate the most common treatment objectives; more thorough mathematical 

formulation of these objectives will be given later. However, even without scrutinising the 

mathematical formulae, an observant look at Figure 1.1 may raise the question - what prevents 

oncologists from administering such an amount of anti-cancer drugs that will kill as many 

cancerous cells as required to reduce the tumour to a desirable size? To answer this question 

a number of constraints imposed on cancer treatment need to be introduced, a discussion of 

which is now provided. 

1.3. Constraints of Cancer Chemotherapy 

Chemotherapy is a systemic treatment; drug is delivered via the bloodstream and therefore 

affects all body tissues. This has advantages and disadvantages. If a tumour is sufficiently 

advanced it may release cancerous cells into surrounding tissue or the bloodstream 

(metastasis) giving rise to secondary tumours elsewhere in the body. Therefore chemotherapy 

has a chance of reaching secondary (possibly undetected) tumours as well as the intended 

primary target. However chemotherapeutic drugs are by their nature highly toxic and it is not 

surprising that different tissues may be dose-limiting for different drugs or drug combinations. A 

prime example of this is bone marrow, which can be significantly depleted during 

chemotherapy. Other organs may also be affected. High-dose treatment with Adriamycin, for 

instance, may damage the heart; Cyclophosphomide affects the bladder, and Cisplatinum 

causes kidney and peripheral nerve damage and injury to hearing. Many of these drugs also 

cause nausea and vomiting as well as detriment to the gastrointestinal tract (Wheldon, 1988). 

Therefore the amount of drug which can be delivered is limited. The dosage restrictions are 

established experimentally and usually take the form of a maximum dosage Dmax which can be 

delivered to a patient at anyone time along with a cumulative dosage Dcum which should not 

be exceeded over the course of the whole treatment. However, the drug administered by 

injection or infusion has to circulate through the bloodstream from the point of entry to the 

tumour site. Along the way many processes occur, the net effect of which is not well 

understood. Thus, an alternative approach to drug dosage limitation is often used (Martin et al. 

1990) whereby similar constraints are imposed on the concentration e(l) of anti-cancer drug in 

the blood plasma. In the present work the latter approach will be adopted as more practical and 

independent from the drug delivery mode (McCall and Petrovski, 1996). In terms of the drug 

concentration e(l) the first two constraints (Le. tOXicity constraints) of cancer chemotherapy 

may be formulated as follows. 
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1. Maximum Instantaneous Concentration 

There is a maximum permissible concentration, C max' that must not be 

exceeded at any pOint during treatment. 

2. Maximum Cumulative Concentration 

There is a maximum permissible cumulative concentration, C
cum

' that must not 

be exceeded over the treatment period, [To, Tfinal ] . 

The next constraint is concerned with the phenomenon of drug resistance which is a frequent 

cause of chemotherapeutic failure in human cancers (Martin et aI, 1994). It has been shown 

(Goldie and Coldman, 1979) that the probability of having drug resistant cells in the tumour, as 

well as their proportion to non-resistant cells, increases with increasing tumour size. In order to 

prevent the appearance of atypical cancer cells inherently resistant to the effects of anti-cancer 

drugs, it is often necessary to limit the tumour size N(t) during treatment. Besides, an 

excessive tumour burden increases the likelihood of patient death due to inability of vital organs 

to function properly. Therefore there is a strong motivation for preventing the tumour from 

becoming too large, which is expressed in the form of the tumour size constraint. 

3. Maximum Tumour Size 

There is a maximum permissible tumour size, N max' that must not be 

exceeded at any point during treatment. 

The last type of constraint is related to multiple drug chemotherapy and is meant to reduce the 

damage inflicted by administration of various drug combinations. Much of the art of successful 

chemotherapy depends on the full knowledge and anticipation of serious side effects caused by 

different anti-cancer agents or their combinations. Although it is extremely difficult to obtain 

quantitative measures of side effects, some empirical results are available in the form of organ­

and drug-specific risk factors (Dearnaley at aI, 1995), an example of which for the most 

commonly-used drugs is now provided: 

TABLE 1.1. Side effects of chemotherapeutic agents 

Side-effects 

Antl-cancer drugs Bone Nausea, Periph. 
Kidney Heart 

marrow vomiting nerves 

Adriamycin +++ - ++ ++ -

Epirubicin +++ - ++ + -

Cisplatinum ++ +++ +++ +++ -
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The entries in Table 1.1 qualitatively indicate the likelihood that a given drug will cause a 

particular side effect seriously threatening the health of the patient. For instance, a minus 

means that a given drug does not have any serious effect, one plus represents a small chance 

of damaging a particular organ, two pluses - moderate chance, and three pluses symbolise that 

this drug has a sizeable chance of causing serious damage. Moreover, the number of pluses 

increases when two or more drugs are administered simultaneously. 

It is rather difficult however to predict the exact side effects of multi-drug chemotherapy 

treatment. Many processes occur on the cellular level leading to various consequences of drug­

drug interaction. For example, the inhibition of metabolising enzymes due to the effect of one 

drug in a multi-drug cocktail may cause a drastic change of toxic properties of other drugs in the 

cocktail. However, for the drugs that will be used throughout this thesis, interactions are known 

to be minor. This means that the risk factors in Table 1.1 are additive, i.e. the total number of 

pluses inflicted on a particular organ by a multi-drug chemotherapy schedule is equal to the sum 

of pluses produced by all constituent drugs. 

Therefore, in order not to cause almost certain impairment of vital organs and in order to sustain 

reasonable living conditions for the cancer patient, a certain constraint ought to be introduced 

which will regulate how multi-drug chemotherapy schedules should be composed. For 

example, the combination of Adriamycin and Cisplatinum is preferable to the combination of 

Adriamycin and Epirubicin because the former never results in more than five pluses of risk for 

any side effect, whereas the latter accumulates six pluses on bone marrow. The introduction of 

a regulative constraint on composition of multi-drug chemotherapy schedules has been advised 

by the collaborating oncologists and is meant to prevent an extensive usage of anti-cancer 

agent combinations similar to the grouping of Adriamycin and Epirubicin. This constraint can be 

formulated in the form: 

4. Risk reduction of toxic side effects produced by multi-drug chemotherapy 
regimens 

The ingredients of multi-agent chemotherapy should distribute the total 

damaging effect across several organs rather than stressing any particular 

organ to its limit. 

In conclusion, it needs to be pOinted out that although the four constraints formulated in this 

section do not seem to be very restrictive, the concurrent satisfaction of these constraints 

accomplished by achieving a specific treatment objective is a complex and demanding task. It 

is known, for example, that in order to minimise the final tumour burden N(Tftnal ) (see Figure 

1.1) a late treatment schedule should be applied which delivers all of the drug to the tumour 

near the end of the treatment period (Martin et aI, 1990). This implies that no drug is given 

during the first half of the treatment period, and the tumour could grow unacceptably large. 

thereby violating the maximum tumour size constraint. This is not the only conflict between 
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treatment objectives and practical constraints - there are others, the resolution of which 

necessitates a deeper understanding of tumour growth and its response to chemotherapy. One 

way to acquire this understanding is to utilise the tool of mathematical modelling in order to 

predict and to control the course of the cancer disease when a chemotherapeutic treatment is 

used. The next chapter gives a survey of mathematical models related to cancer. 

1.4. Discussion 

Chemotherapy is the treatment modality which will be the focus of attention in this thesis. The 

reason for this is twofold. First of all, chemotherapy is often chosen as the first-line treatment 

(before any other modality is tried); sometimes chemotherapy is utilised for 'setting the scene', 

causing for example a tumour to decrease in size and thereby facilitating the later use of 

surgery or radiotherapy (Wheldon, 1988). This brings chemotherapy to the forefront of cancer 

treatment, making this modality frequently employed and thus necessitating its analysis and 

optimisation. 

Secondly, chemotherapy, being a systemic treatment affecting the tumour indirectly by drug 

administration via the bloodstream, provides scope for mathematical modelling and 

optimisation. There are several mathematical models describing the development of tumours, 

the effect of anti-cancer drugs on this development and on other tissues and organs. The 

purpose of mathematical modelling therefore is to choose the most appropriate model and 

subsequently couple it with a suitable optimisation technique in order to improve the outcome of 

chemotherapeutic treatment. 

However this course of actions is likely to face a number of difficulties. Due to the existence of 

a vast variety of anti-cancer drugs with different biochemical structure, molecular mode of 

action, pharmacology and toxic side effects, it is difficult to specify a general mathematical 

model which precisely describes the effect of each drug. This difficulty is caused by the fact 

that such models often need numerical values for a large number of parameters (Martin and 

Teo, 1994), accurate estimates of which are rarely available. Moreover, since compound 

regimens are often found to be more effective (Wheldon, 1988), it is usual nowadays to use 

cocktails of anti-cancer drugs and this makes the modelling of chemotherapy even more 

sophisticated. 

Therefore, in order to make chemotherapy optimisation based on mathematical modelling 

practically useful it is necessary to meet two requirements. The first requirement is that the 

model has to be specified which fits as wide a range of tumour sizes as possible. This allows 

the model to be used in various clinical circumstances. Secondly, this model needs to be 

combined with a robust and efficient optimisation technique which does not heavily rely on the 

model's parameters, allows a certain degree of imprecision for these parameters, and is 

capable of working in the presence of nonlinear constraints of chemotherapeutic treatment. The 

goal of this thesis is to find such a combination of mathematical model and optimisation 

technique. 
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CHAPTER 2 

MATHEMATICAL MODELS OF TUMOUR KINETICS 

In the context of cancer treatment, mathematical modelling can be considered as a tool which if 

utilised effectively should provide us with an understanding of complex biological mechanisms 

and consequently be of value for oncologists. A good mathematical model is useful for a 

number of reasons. Firstly, it is often easier and cheaper to formulate a model and to use it in 

computer simulations than to carry out a laboratory experiment or a clinical trial. Secondly, far 

from all experiments can be performed on human beings for ethical and practical reasons. 

Finally, even when advanced state of a cancer does allow a particular clinical trial to proceed, 

the group of patients who satisfy the ethical criteria are not representative of typical cancer 

patients. This is because the standard approach is to test new drugs only when existing drugs 

have failed and perhaps modified the organism's responsiveness to other anti-cancer agents. 

Mathematical models, on the other hand, may provide us with a deeper insight into the current 

state of knowledge of tumour behaviour, not being concerned very much with ethical regulations 

and time consumed undertaking laboratory experiments or clinical trials. 

The biological mechanisms involved in tumour growth and its response to treatment are 

exceedingly complex. Nevertheless, attempts have been made to model some of the more 

fundamental processes which are known to influence the treatment effectiveness. In this 

chapter the models will be discussed which deal with two such processes: tumour growth 

(Section 2.1 and 2.2) and tumour cell loss due to the administration of a chemotherapeutic 

agent (Section 2.3). In the last section (Section 2.4) other biological mechanisms will be 

mentioned for which some mathematical models have been developed. 
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2.1. Taxonomy of Mathematical Models of Tumour Growth 

A variety of mathematical models have been utilised in an attempt to model tumour growth. 

Wheldon (1988) describes a mathematical model as a very exact form of a scientific theory 

which concentrates on the quantitative (rather than on philosophical) content of the theoretical 

assumptions made. However, if the assumptions are rather loosely expressed in the original 

theory - which is the case in the context of tumour growth (Wheldon, 1988) - then more than 

one mathematical model may be compatible with the theory. 

In spite of the broad spectrum of growth patterns found, it is evident that some modes of growth 

occur more commonly than others. Typically a tumour will grow very rapidly in its initial stages 

with a growth rate proportional to the tumour size. However, as tumours become very large 

(beyond the point where they have developed their own vascular system and have become 

observable to the unaided eye) the growth rate is observed to decrease as tumour size 

increases. As may be seen from the description of the typical tumour growth pattern, the 

assumptions concerning the growth of tumours are defined rather loosely. It is not surprising 

therefore that various mathematical models have been proposed which mimic the observed 

behaviour. Marusic et al (1994) has classified them into three categories: empirical, functional 

and structural. 

Empirical models are based on clinical observations confirming that growth results from two 

opposing processes - the increase in tumour volume and growth retardation. Due to a 

relatively simple form, empirical models often substantially facilitate numerical/computational 

solution of problems related to effective chemotherapy treatment. This is a big advantage as far 

as the current work is concerned, and therefore empirical models will be the main type of 

models which will be looked at. 

Functional models stem from cell kinetics and are characterised by the cellular doubling time, 

the fraction of actively dividing cells (growth fraction), and the cell loss. The abnormal division 

rate of cancerous cells is often explained in functional terms by the process of gene 

amplification whereby a subsection of genetiC material is duplicated. Harnevo and Agur (1992, 

1993) have developed a mathematical model which describes the dynamics of gene 

amplification known to be a contributive factor for the defiance of HeM and for the occurrence of 

drug resistance. Speaking generally, however, the unifying aspect of all functional models is 

that they express an increase in the number of tumour cells as the difference between the cell 

gain (which is equal to the product of the proliferation rate and the growth fraction) and the 

random loss of cells. Also, functional models often allow for compartmental representation of 

tumours aimed at taking into account heterogeneity of the tumour cell population (Wheldon, 

1988). 

Structural models have been developed for description of tumour growth in structural terms. All 

such models assume that the tumour is a perfect sphere, the structure of which is composed of 
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a 'necrotic mantle' surrounded by a shell (crust) of proliferating cells (Conger and Ziskin, 1983). 

Supposing that such processes as proliferation, necrosis, diffusion, shedding, inhibition etc. 

obey spherical symmetry, the growth of a tumour can be conveniently described by its radius 

and that is precisely what structural models do (Landry et ai, 1982; Wheldon, 1988). 

The utilisation of mathematical models of tumour growth has a potential of being able to 

improve cancer chemotherapy (Swan, 1990). Each mathematical model involves a differential 

equation of some particular type and describes the dynamic course of development of the 

cancer cell population. Using this description, Webb (1992) proved that in certain cases of 

periodic chemotherapy treatment there is an advantage in choosing periods of shorter duration. 

Similarly, Panetta and Adam (1995) applied mathematical modelling of tumour growth to 

estimate the optimal parameter settings of acceptable dose and period of cycle-specific 

chemotherapy. On the other hand, by modelling and analysing the development of the normal 

cell population (especially bone marrow) it is possible to reduce the toxic effects of anti-cancer 

drugs (Agur et aI, 1988). 

Therefore, mathematical models describing the development of cell populations can play a 

pivotal role in optimising cancer treatment. Although all models are useful for gaining an 

understanding of, and further insights into, the biological mechanisms influencing cancer 

development, some of them are difficult to utilise in practical situations. For example, the 

functional and structural models require a large number of characteristics to be known or make 

biological assumptions that are not generally valid. These undermine their applicability in the 

first place and secondly complicate the procedure of coupling a mathematical model of these 

categories with any optimisation technique. Therefore, functional and structural models will be 

excluded from further consideration in this thesis and we will concentrate solely on empirical 

models. 

2.2. Empirical Models of Tumour Growth 

There is a large variance in tumour kinetics for different types of cancer cells. Yet, a particular 

tumour containing a large number of cells develops more predictably and hence is suitable for 

mathematical modelling (Martin and Teo, 1994). The use of empirical models provides a tool 

for determining general tumour growth patterns (Henderson, 1997). Steel (1977), Wheldon 

(1988) and Marusic et al (1994) review many mathematical models, all of which can be seen 

however as only an approximation of the extremely protean way in which tumours grow in vivo. 

The purpose of this section is to briefly discuss the empirical models that are most commonly 

used in cancer research. 

Let us start with the introduction of two fundamental quantitative measures associated with the 

tumour and its growth. The most biologically meaningful measure of the tumour is the number 

of cells N(t) it contains at time t. This number may be calculated from tumour volume 
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measurements since, according to (Sullivan and Salmon, 1972), there is an approximately 

linear relationship between tumour volume and the cell number. 

Tumour growth, on the other hand, is most conveniently defined in terms of the doubling time , 

of the tumour cell population. The tumour doubling time can be measured directly when the 

tumour exceeds the observable size of -109 cells (about 1mm in diameter). This makes , 

particularly suitable for empirical use. On the basis of the doubling time the following taxonomy 

of growth models can be employed: 

• one-phase models: the variation of the doubling time is consistent throughout the 

growth of the tumour (Le. , is either constant or increases 

with tumour enlargement, but not both); 

• two-phase models: the doubling time , remains constant during the initial period 

of tumour growth but starts increasing after a certain point is 

reached. 

In order to obtain mathematical expressions for the doubling time we first require appropriate 

equations governing the different types of tumour growth. For the present, attention will be 

restricted to continuous deterministic models described by a differential equation with general 

assumptions made about the way in which the tumour is growing. These assumptions are used 

to formulate the growth function F(N): a positive-valued, continuous and monotonically 

increasing function that describes the increase per unit time in the tumour cell population. This 

leads to the following model of tumour growth: 

N(t) = F(N) 

N(O) = No 

where F(N) > 0 and dF(N) ~ o. 
dt 

(2.1) 

The growth function F(N) can be mathematically expressed in a number of ways. The two­

rate representation of the growth function in terms of the growth and the degradation rates has 

been suggested by von Bertalanffy (1957) and takes the form: 

F(N) = 17NM - f.iN" (2.2) 

As special cases, the growth function (2.2) yields the following well known growth equations 

(Marusic et aI, 1994): 

1) the exponential growth 

m = 1, n = 0, p, = 0 : 
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2) the von Bertalanffy growth 

2 
m=-, n=l: 

3 

3) the Verhulst (logistic) growth 

m = 1, n = 2 : N(t) = 'IN _ pN2 

4) the Gompertz growth 

m ~ 1, (n - m) ~ 0: N(t) = 'IN - pNlnN 

Another set of nested empirical models was proposed by Turner et a/ (1976) based on the 

assumption that the time derivative N(t) is proportional to the product of one function 

increasing with size and the other function decreasing with size NCt). The corresponding 

genetic growth function reads as 

F(N) = ~NI-np(kn _Nn)l+p (2.3) 

Special cases 1) - 4) can also be derived from the equation (2.3) subject to a proper choice of 

the parameter values. 

Finally, Usher (1980) introduced the following Generalised growth function while investigating 

the radiotherapy treatment of cancer tumours: 

(2.4) 

where a, A, e are growth characteristics of the tumour under investigation. 

Again, appropriate limiting forms of (2.4) will yield the exponential, logistic and Gompertz growth 

models. 

The variety of forms the growth function F(N) can take brings forth the question - which of 

them is preferable? Unfortunately, there is no straightforward answer to this question - different 

models provide a better fit for different clinical data. However, general observations concerning 

the suitability of various mathematical models are available in the literature. For example, Steel 

(1977) reports that when the experimental data cover a narrow range of size N(t) any of the 

equations described above will usually fit well. When however the data cover a wider range of 

sizes the Gompertz equation usually gives a better fit than any of the exponential, the logistic or 

the Bertalanffy equations. Wheldon (1988) also confirms that the Gompertz model is the most 

accepted amongst a plethora of empirical models of tumour growth. However, a disadvantage 

of the Gompertzian is that it does not allow for an exponential growth during the initial stage of 

tumour development; the Gompertz model displays retardation throughout. This makes it 

difficult to find an early-stage Gompertzian approximation of tumour growth which does not have 

an implausibly short initial doubling time. 
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To overcome this difficulty two-phase growth models have been proposed which combine the 

latent and macroscopic phases of tumour growth. One of the most commonly used two-phase 

models is the 'Gomp-Ex' model, described by Wheldon (1988). The 'Gomp-Ex' model suggests 

that tumours initially follow an exponential growth pattern which is replaced by a Gompertzian 

pattern after some critical cell number N c has been reached: 

{
moo N~~ 

F(N)= [A-Pl{~~))lN(t) N?!Nc (2.5) 

where N c is the tumour size at which the transition between growth modes occurs 

(possibly - 109 cells in the case of human tumours). 

Having applied the Generalised growth function (2.4) to the 'Gomp-Ex' model, Usher (1994) 

suggested the following 'Generalised-Ex' model: 

met) 

F(N) = [,1+ ~ (1-( ~~)nlN(t) (2.6) 

which extends the two-phase approach to tumour growth modelling and therefore results in a 

more general description of tumour growth kinetics. 

Although more accurate, two-phase models involve extra computation for numerical 

optimisation as well as requiring a number of additional parameters to be known. Given the fact 

that most tumours are diagnosed and treated at the macroscopic stage (which is far beyond 

N c ), little can be gained from utilising two-phase models. Thus, the Gompertz growth function 

will be used hereafter to model the way in which untreated tumours develop and to estimate the 

characteristics of this development (including the doubling time of the tumour cell population). 

However, we have not addressed so far the most important problem from the practical paint of 

view, i.e. how chemotherapeutic treatment will perturb the uncontrolled growth of tumours. The 

simplest approach to model this perturbation is to incorporate a cell-loss function L(t) into the 

differential equation (2.1) governing the process of tumour development. The following section 

gives details on general forms of the function L(t) , on the meaning of its components as well 

as on the issue of how the numerical values of these components can be estimated. 

2.3. Empirical Models of Cell Loss 

The exposure of a tumour cell population to an anti-cancer drug results in retardation of the 

tumour growth rate and ideally leads to reduction of the number of cells the tumour contains. 

Mathematically the effect of anti-cancer drugs can be expressed in the form of a cell-loss 

function L(t) which modifies the differential equation of tumour growth in the following way: 
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N(t) = F(N(t» - L(t) 

N(O) = No 

where F(N(t» and L(t) represent the general forms of a tumour growth 

and a cell loss function respectively. 

(2.7) 

The rate of cell loss L(t) is proportional to the cell number N(t) as well as to the drug 

concentration vet) at the tumour site {Martin and Teo, 1994}. Hence, the cell-loss function may 

be represented as the following product 

L(t) = L(v)N(t) 

where the coefficient L(v) denotes the proportion of cells killed by the anti-cancer drug at the 

concentration level v. The two most common forms of this coefficient are (Murray, 1990) 

• linear: 

L(v) = k·v (2.8) 

where k is a quantity representing the effectiveness of a given anti - cancer agent 

• saturated: 

L(v) = k] ·v 
k2 +v 

where k] and k2 are parameters to be estimated. 

(2.9) 

The saturated model of the cell-kill rate appears to suit better those situations where increasing 

drug resistance can be expected to decrease the cell loss caused by the anti-cancer drug 

{Swan, 1990}. However, the current work focuses solely on treating tumours consisting of drug­

sensitive cells only. Thus, the hypothesis of a linear relationship between the rate of cell loss 

and the drug concentration vet) is expected to be valid. This allows us to use hereafter the 

linear model of the cell-loss function. 

The problem with using the equation {2.8} is that information on the magnitude of vet) is rarely 

available. As has been pointed out in Chapter 1, the process of drug circulation through the 

bloodstream from the point of entry to the tumour site is not well understood and therefore 

difficult to model. Thus it is conventional {in the absence of a better approximation} to assume 

that the concentration vet) is equivalent to the concentration of anti-cancer drug in the plasma, 

e(/). In other words, the tumour will be subject to the action of whatever concentration of drug 

is present in the blood at a given time. 

There are two advantages to this approach. Firstly, it is easier to model the concentration e(/) 

in the blood in terms of the drug delivery function D(t). Having assumed that the bloodstream 
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is a single compartment with some volume V, the concentration e(t) can be described by the 

following differential equation (Collins and Dedrick, 1982) 

e(t) = D(t) - 8· e(t) 
V 

where 8 is a drug elimination constant 

(2.10) 

Secondly, by focusing on the actual concentration of anti-cancer drugs in the bloodstream we 

are modelling chemotherapy in terms of what the tumour actually experiences irrespective of 

the delivery mode by which the treatment regimen is administered. The concentration level 

e(t) of anti-cancer drugs in the plasma provides a target regimen for clinicians to aim at 

regardless of the mode of drug delivery. 

The function e(/) over the treatment interval [To, TfinaJ ] will be hereafter referred to as a 

treatment regimen. A regimen may take the form of a closed-form expression for e in terms of 

lor, more realistically, can be speCified as the following vector 

Without loss of generality we may assume that the time instants I; are equally spaced by an 

amount M - otherwise one can introduce surplus time instants with appropriate drug doses: 

t; = i . /!:,.t for i = 0, nand e(l) is constant on the interval [t;, t;+I) 

Since concentration levels are difficult to measure in vivo and there is a limit to the amount of 

measurements which can be tolerated, little can be gained from using a continuous function 

e(/). In practice it will be approximated by a sequence of values C;. Therefore throughout this 

thesis a discrete form e(l) = (C;) of anti-cancer drug concentration in the blood will represent 

a particular treatment regimen. 

Together with an appropriate tumour growth function F(N(I», a discrete representation of a 

linear cell-loss function L(t) yields the following differential equation governing the response of 

the tumour to chemotherapy treatment. 

N(I)=F(N(/»-J :tC;{H(/-ti-t)-H(/-li)})N(I), N(O)=No (2.11) I\.l,zl 
where K is the efficacy of the anti - cancer drug and 

H(/) is the Heaviside step function 

Consequently, the problem of achieving the treatment objectives of cancer chemotherapy 

specified in Chapter 1 is equivalent to finding the drug dosage regimen e(/) which controls the 

tumour kinetics described by the equation (2.11) in the optimal way. By optimal it is meant the 

way that allows achieving the best treatment results subject to satisfaction of multiple 

constraints imposed on cancer chemotherapy. Problems of this sort are dealt with in special 

branches of mathematics - Mathematical Programming and particularly in Optimal Control 
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theory, application of which in the context of cancer chemotherapy comprise the topic of the 

next chapter. 

2.4. Discussion 

In this chapter a mathematical description has been given of two fundamental processes 

defining the tumour kinetics during chemotherapeutic treatment, viz. tumour growth and tumour 

response to chemotherapy. Empirical models of these processes have been presented. Also, it 

has been shown that one way to improve the results of chemotherapeutic treatment is to utilise 

these empirical models in order to determine the optimal regimen of drug administration. The 

next chapter will give the particulars on how such a regimen can be found; however, a few 

things remain to be said here on mathematical modelling of tumour kinetics. 

First of all, the mathematical models discussed above assume uniformity of the tumour cell 

population, i.e. all cancer cells are viewed as having the same properties. In reality, however, 

tumours are by and large heterogeneous with respect to almost every measurable biological 

property (Wheldon, 1988). This cellular heterogeneity may include the effect of clonal 

resistance, which is caused by an appearance of clones of atypical cancer cells inherently 

resistant to the effects of a given anti-cancer agent. The phenomenon of drug resistance often 

leads to treatment failure - therefore, it is desirable in practice to undertake precautions in order 

to minimise the risk of drug resistance occurrence. Mathematical models developed by Goldie 

and Cold man (1979, 1982), Birkhead and Gregory (1984), Usher and Henderson (1997), Agur 

et al (1988), Panetta and Adam (1995) and Webb (1992) may assist in this task. Furthermore, 

there have been attempts made to incorporate the theory of non-linear mechanics for modelling 

cellular properties. The understanding of the mechanical properties of cells is important 

because these properties determine the pattern of cell distribution and establishment of distant 

metastases (Chaplain and Sleeman, 1993). Also, mechanical pressure within solid tumours can 

be viewed as a drug-repelling mechanism, which is responsible for stopping the anti-cancer 

agent from reaching the cells inside tumours and therefore leads to the occurrence of drug 

resistance. 

Secondly, even without clonal or 'mechanical' resistance of the tumour cells, the effect of the 

anti-cancer drug varies during the treatment period. This variation is known as the 

phenomenon of kinetic resistance, which simply means that in order to maintain tumour cell 

depopulation the drug concentration has to become larger as the tumour shrinks (Wheldon, 

1988). To defy kinetic resistance Norton and Simon (1986) suggested a chemotherapy 

regimen, known as a late-intensity schedule, based on mathematical models of tumour kinetics. 

This was another area where mathematical results have had a real impact on clinical therapy. 

Finally, the success of chemotherapy to a great degree depends on drug dosimetry or 

pharmacokinetics. In contrast to radiotherapy where the dose delivered to a particular region 

can usually be calculated reasonably accurately, there is no corresponding unambiguous 
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meaning of the chemotherapeutic dose. Determining the drug concentration as a function of 

time for each tissue (not only for the tumour) is the subject of pharmacokinetics wherein 

mathematical models often playa useful role. Pharmacokinetic (PK) models describe the 

transition of drug through the body and are based on kinetic parameters which govern this 

process. However, the PK parameters are often found to significantly differ from one patient to 

another, which undermines the applicability of pharmacokinetic models for treating real cancer 

patients (Wheldon, 1988; Panetta and Adam, 1995). 

In general, the usefulness of mathematical modelling in the cancer related domain strongly 

depends on both biological realism of the assumptions made to formulate the models and on 

knowledge of the models' parameters. The latter factor particularly makes it difficult to obtain 

authentic models of the tumour kinetics during treatment, especially in cases when some kind of 

resistance is present or personalised pharmacokinetic properties need to be taken into account. 

Although the issues concerning drug resistance and pharmacokinetics lie beyond the scope of 

this thesis and therefore will not be pursued further, they ought to be mentioned in the present 

context. The reason for this is that these issues impose serious limitations on reliability of 

mathematical modelling in cancer treatment, and these limitations must be borne in mind. 
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CHAPTER 3 

MATHEMATICAL OPTIMISATION OF CHEMOTHERAPY 

It is a difficult task to determine an effective treatment regimen which optimises the beneficial 

effects of chemotherapy while limiting the adverse effects of anti-cancer drugs on the well being 

of the cancer patient. This difficulty is mainly caused by the fact that successful chemotherapy 

to a great degree depends on the type of chemotherapeutic drugs chosen, on the dosages and 

the timing of drug administration, and on the mode of administration. With so many variables, 

the amount of experimentation involved in determining the best chemotherapeutic regimen from 

a purely empirical approach is prohibitive in both cost and time. It is desirable therefore to make 

use of the techniques of mathematical optimisation in order to help clinicians to determine 

optimal treatment regimens. 

In general, optimisation is the act of obtaining the best results under given circumstances. A 

huge variety of problems fall into the optimisation category, which makes it infeasible to find a 

universal method for solving all optimisation problems efficiently. Hence a plethora of optimum 

seeking methods, also known as mathematical programming techniques, have been developed 

for solving different types of optimisation problems. 

Mathematically, a general optimisation problem can be stated as follows: Optimise the objective 

functional 

J(c) over the vector C = (c\(t),c2 (t), ... ,cn (t)) TERn 

subject to the constraints 

{

g) (C) = 0 

g/C) ~ 0 

j = 1,2, .. . ,E 

j = E + 1, ... ,8 
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where C is an n -dimensional vector of decision variables cj (t), i = 1, n; E and S are the 

number of equality constraints and the total number of constraints respectively. The decision 

variables, often referred to as control factors, represent the quantities which can be controlled 

within the limits specified by (3.2) to attain the minimum or the maximum value of J (c) . 

The objective functional J(c) represents a criterion for comparing different control vectors of 

decision variables and for selecting the best one. The choice of the objective functional is 

governed by the nature of the optimisation problem given. In some situations, there may be 

more than one criterion to be satisfied simultaneously. With multiple objectives there often 

arises a possibility of conflict, which is usually handled either by using the concept of Pareto 

optimality or by constructing a composite objective functional as a linear combination of the 

conflicting objectives. Pareto optimality of a particular solution means that the solution satisfies 

the condition - any solution different from the optimum results either in no change to each 

optimisation objective, or it causes at least one objective to deteriorate in value. Multi-criteria 

optimisation problems will be discussed in more detail later in this chapter. 

The general frame of an optimisation (or a mathematical programming) problem expressed in 

(3.1}-(3.2) can be used to formulate the problem of finding the best chemotherapeutic regimen: 

Given a performance criterion (any quantitative measure of the cancer treatment objectives), 

find the drugs, dosages and times of drug administration which will achieve the optimal value of 

the performance criterion without violating the treatment constraints. These constraints include 

limitations on drug dosages, on the tumour size and on toxic side effects produced by multiple 

drug administration. 

Thus, the task formulated above belongs to a broad spectrum of optimisation problems. In this 

chapter a description of conventional mathematical methods applicable to chemotherapy 

optimisation will be provided, which are based on Mathematical Programming and on Optimal 

Control theory in particular. Before giving this description, a general classification of 

optimisation problems and an overview of optimisation techniques to tackle them will be given in 

Section 3.1. Also, it will be shown how optimal control problems fit into the introduced 

classification and why problems of the optimal control category are so important as far as 

cancer chemotherapy optimisation is concerned. In Section 3.2 we will give the particulars on 

how the optimal control approach has been utilised to help oncologists to improve 

chemotherapeutic treatment. Section 3.3 focuses on applications of other mathematical 

programming methods to cancer chemotherapy. And finally, in Section 3.4 a short overview of 

all conventional methods of optimisation will be given with an explanation of why their usage in 

the cancer chemotherapy context has not become widespread. 
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3.1. Classification of Optimisation Problems 

Optimisation problems can be categorised in several ways (Rao, 1978) as described below. 

i. Classification based on the presence of constraints. There are constrained and 

unconstrained optimisation problems. 

ii. Classification based on the nature of decision (control) variables. The control variables 

may be static (C; I i = 1, n) or may be continuous functions of some parameter 

(c;(t)li=l,n). 

iii. Classification based on the physical structure of the problem. Depending on the physical 

structure, optimisation problems are grouped into optimal control and nonoptimal control 

categories. An optimal control problem is usually characterised by two types of variables, 

viz. the control C and the state x vectors. The control vector governs the evolution of 

the system from one stage to the next, and the state vector specifies the system state at 

any stage. Explicitly, the optimal control problem is a mathematical programming problem 

involving a number of stages (specified by the state vector), where each stage evolves 

from the previous stage in a predescribed (by the control vector) manner. 

The state vector can be discrete (when the number of stages is finite) or continuous. An optimal 

control problem with a continuous state vector may be formulated as follows: Optimise an 

objective functional of the form 

T 

J(c) = ¢o(x(T I c)) + fLo (I,X(I I c),c)dl 
o 

subject to: 

X(I) = I(t,x,c) 

x(O) = xo(c(O)) 

where X = [x, (1),X2 (1), ... ,xm(t)] TERm is the state vector 

described by the vector - valued function I = [t; , 12, ... , 1m ] T E R m ; 

C = [C, (I), C2 (I), ... ,Cn (1)] TERn is the control vector; 

¢o is a scalar - valued function of the terminal condition. 

and the set of equality and inequality constraints: 

r l 

g;(C) = ~;(x(r; I c) + fL;(I,X(1 I c),c)dt = 0 for i = 1,2, ... , E 
o 
r l 

(3.3) 

(3.4) 

(3.5) 

g;(c) = ~;(x(r; I c) + fL;(t,X(t I c),c)dt ~ 0 for i = E + 1, .. . ,S (3.6) 
o 
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The differential equation (3.4) is defined on the interval [0, T]. For some problems the terminal 

time T is fixed, for others T is itself a variable parameter of the optimal control problem. The 

state vector X(/) uniquely specifies the state of the system, i.e. a set of quantities that can be 

measured but not directly altered. In cancer chemotherapy, for example, the state is usually 

related to the tumour volume. Combined together all state vectors form the solution (or state) 

space. Although directly uncontrollable, the state vector submits to indirect control through (3.4) 

by the control vector C(/). Usually control vectors are restricted to lie in some subset of R", 

and the elements of this subset are called admissible (or feasible) control vectors. 

The solution of the equation (3.4) corresponding to a particular control C(t) is called a trajectory 

x( -I C). The control C(/) is used to prevent, or at least to postpone, trajectories of the 

dynamical system from ending up in an undesirable region of the solution space. The efficiency 

of a control in implementing this task is usually measured by the objective functional J (C). The 

equality and inequality constraints expressed in their canonical forms (3.5) and (3.6) are 

dependent upon the state and control vectors evaluated at single pOints in time ';' which are 

called characteristic times. In standard optimal control theory, there is at most one such time 

associated with each constraint. However, Martin and Teo (1994) developed an approach to 

deal with multiple characteristic time constraints. 

iv. Classification based on the nature of equations involved. This classification is based upon 

the nature of expressions for the objective functional (3.1) and the constraints (3.2). 

Depending on these expressions, optimisation problems are sorted into linear, nonlinear, 

geometric, and quadratic programming categories. This classification is extremely useful 

from the computational point of view since there exist specific methods developed solely 

for efficient solution of a particular category of problems. The category of the optimisation 

problem will, in many cases, dictate the type of solution procedures to be adopted in 

solving the problem. 

If the objective functional and all constraints in Equations (3.1 )-(3.2) are linear functions of the 

control variables (C; Ii = 1,n), then the mathematical programming problem is called a linear 

programming (LP) problem and often is stated in the following standard form. 

n 

Find C = (Cp C2 , ••• ,Cn ) T which optimises J(c) = Lq;C; (3.7) 
;=1 

subject to the constraints: 

{

gj(C) =bj - Iaj;C; = 0 
;~I 

gj(c)=Cj ~O 

j = 1, .. . ,E 
(3.8) 

j = E+l, ... ,E+n 

where q;, a j; and b j are constants. 
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If any of the expressions representing the objective of optimisation (3.1) or the optimisation 

constraints (3.2) are nonlinear, the problem is referred to as a nonlinear programming (NLP) 

problem. The NLP category is the most general and includes as special cases geometric and 

quadratic programming problems. A geometric programming problem is the one in which the 

objective functional and the constraints are expressed as the sums of the form: 

t,a{U Cf' J. Cj > 0 for all j = I,n 

where Q; is a constant, Q; > 0; 

N denotes the number of terms in the objective functional J ( e ) 
or in the jth constraint g) (e). 

A quadratic programming problem is an NLP problem with a quadratic objective functional 

n n n 

J(e) = qo + Iq;C; + IIQijC;C) 
;=\ ;c\ )=\ 

and linear constraints 

n 

IQj;C; =bj 
;=\ 

j = 1,2, . .. ,S - n 

i = 1, . .. ,n 

where Q j; and b j are constants. 

v. Classification based on permissible values of the control vector. If some or all of the 

control variables c;(t), i = I,n of an optimisation problem are restricted to only integer 

(or discrete) values, then the problem is called an integer programming problem. 

vi. Classification based on deterministic nature of variables involved. This is the last criterion 

according to which optimisation problems are classified either as deterministic or as 

stochastic programming problems. A distinctive feature of stochastic optimisation 

problems is that some of the problems' parameters are probabilistic (known with a certain 

probability or characterised by a probability distribution). 

Various techniques are available for the solution of optimisation problems classified in this 

section. For example, to find unconstrained minima or maxima of a differentiable objective 

functional, the classical methods of differential calculus can be used, which are based on 

. . 't f th d' t aJ (e) 0 . -1 Wh th b' , f . , determining zero POIn s 0 e gra len s -- = , I = , n . en e 0 jectlve unction IS 
Bc;(t) 

expressed as an integral, the methods of calculus of variations can be utilised (Burghes and 

Graham, 1980). If an optimisation problem deals with controlling a dynamic system, which is 

described by the state equation (3.4), then the methods of Optimal Control are well suited to 

solve the problem. 
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The techniques of linear, nonlinear, geometric, integer or stochastic programming can be used 

to solve the particular class of problems indicated by the name of the technique. These are all 

numerical methods whereby an approximate solution is sought by proceeding in an iterative 

manner from a starting solution. In addition, for optimisation of multi-stage decision problems 

the technique of dynamic programming may be adopted. When applicable, the dynamic 

programming technique represents or decomposes a multi-stage decision problem as a 

sequence of single stage decisions, each of which is easier to solve than the original problem. 

Unsurprisingly, the rich arsenal of mathematical programming techniques provides a number of 

optimisation tools for solution of the cancer chemotherapy optimisation problem. The next two 

sections will particularise the application of Optimal Control theory, LP and NLP methods to 

optimisation of cancer chemotherapy. We will start with the Optimal Control techniques. 

3.2. Optimal Control of Cancer Chemotherapy 

As we said in the previous section, the aim of an optimal control problem is to find a control 

vector (c; (I) I i = 1, n) that optimises the objective functional (3.3) subject to the state equation 

(3.4), which governs the evolution of the system to be optimised, and the constraints (3.5}-(3.6), 

which limit the values of some or all variables involved. A theoretical approach to finding such a 

control vector is based on the method of calculus of variations and on the Pontryagin Maximum 

principle, which necessitate the following definitions to be made. 

Definition 3.1. The augmented objective functional J. is an objective of an optimal control 

problem which incorporates (via Lagrange multipliers pT = [(PPP2'''''PS)] T) 

the status of the system, viz. 
T 

J. = rPo(x(T I c» + J{Lo(t,X(t I c),c) + [p(t)] T[r(t,X(t),C(t» - x(t)]}dl (3.9) 
o 

Definition 3.2. The Hamiltonian is the function of the form 

H(t,x,c,p) = Lo(t,x,c) - [p(t)r . f(/,x,c) (3.1 0) 

Applying Euler equations (Burghes and Graham, 1980) to the augmented objective functional 

J., we obtain the system of differential equations for finding the optimal control and the 

trajectory corresponding to it: 

1 
[p(/)] T = - :. 

(3.11) 
oH =0 
Be 

with boundary conditions [p(T)] T = orPo . aX 
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8H 
If the control vector which solves the equation - = 0 is not an admissible control (as often is 

Be 

the case in the theory of bounded control), then the solution to the optimal control problem (3.3)­

(3.6) is specified by the following proposition. 

Proposition 3.1. (Pontryagin's Maximum Principle) The control e(t) that satisfies the 

constraints (3.5) and (3.6), optimising at the same time the value of the 

Hamiltonian function (3.10), will be the solution to the optimal control problem 

(3.3) - (3.6). 

Let us now discuss how the theory of Optimal Control has been used in the context of cancer 

chemotherapy optimisation. As was stated in Section 2.3, the most general form of the tumour 

kinetics may be represented as follows: 

N(t) = F(N)-L(t,N,e), N(O) = No (3.12) 

where F(N) and L(t, N, c) are the tumour growth and the cell loss function respectively. 

The differential equation (3.12) plays the role of the state equation. It governs tumour 

development during chemotherapeutic treatment and defines the solution space of treatment 

outcomes. Each trajectory N(t I e(t» of the solution space represents how the tumour reacts 

to the treatment regimen expressed as a control vector e(t). 

The effect of the control vector e{t) is measured by a performance index associated in one 

way or another with the objective of optimisation. It is known that anti-cancer drugs affect not 

only cancerous but normal cells as well. In order to restrain the toxic side effects of anti-cancer 

drugs two types of optimal control models have been used. The first type directly incorporates a 

measure of how the normal-cell population is affected by drugs into the objective functional and 

therefore does not explicitly involve the toxicity constraints. The second type of models 

constrains normal-cell toxicity by imposing constraints on drug schedules that can be used. We 

will examine these model types in tum. 

3.2.1. Unconstrained Optimal Control of Cancer Chemotherapy 

Swan and Vincent (1977) pioneered this approach to optimisation of cancer chemotherapy by 

attempting to minimise the cumulative drug toxicity while guiding the tumour size to a specified 

level at the end of the treatment period. They used the following performance index 

T 

J(e) = Jc(t)dt (3.13) 
o 
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which needed to be minimised. One obvious limitation of this model is that it is not clear how 

the tumour burden at the end of the therapy can be specified ahead of time. 

An alternative to Swan and Vincent's model is to simultaneously minimise the size of the tumour 

and the amount of drug administered. Hence, Swan (1990) proposed to modify the 

performance index (3.13) as follows: 

T 

J(C) = J[(N(t) - Nd Y + p. C 2 (t)] dt (3.14) 
o 

where N d is the smallest detectable tumour size. 

Since clinicians cannot measure the tumour size below N d' they believe that one should treat 

the tumour only to the level of N d . (NOTE. There is a significant difference between the 

smallest detectable tumour size Nd and the tumour size N cure which has to be attained to 

prevent the tumour from regrowing. If the former has the order of magnitude _109 cells, the 

latter is usually S 103 cells.) Since it is impossible to observe what is happening to the tumour 

smaller than Nd, the size Ncure is often substituted by Nd and the objective of practical 

optimisation of cancer treatment is to make the difference (N(t) - N d) as small as possible. 

The second term in (3.14) weighs the cost of control and represents a penalty for using too 

much drug. By increasing the positive constant p, this penalty can be made arbitrarily large. 

Then, the problem of cancer chemotherapy optimisation can be stated as follows: Given the 

state equation (3.12) find the optimal control Copt (t) which minimises the objective (3.14). 

This problem has been solved for the logistic model of tumour kinetics with the result that the 

optimal control Copt (t) must be an increasing function whose rate of increase slows down 

rapidly as time progresses (Swan, 1990). Furthermore, it has been found that for the case of 

two identical tumours of different initial sizes at diagnosis, the optimal control does not require 

an increase in initial drug dosage in order to deal with the larger tumour. This finding is in 

accordance with clinical experience. 

A totally different approach to incorporating the normal-cell toxicity into the optimisation 

objective was developed by Zietz and Nicolini (1979). Their idea was based upon the concept 

of multiple criteria optimisation. The authors used a multi-criteria objective functional to 

maximise the normal-cell population Nt (T) and to minimise the tumour cell population N 2 (T) 

by the end of the treatment period [O,T]. In order to describe the kinetics of these populations 

the Gompertz model was adopted, which resulted in the following performance indexes: 
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(3.15) 

(3.16) 

The control variable in (3.15) and (3.16) is the drug concentration c(t) , whose mission was to 

maximise the two-objective functional J(c) = J) (c) - J 2 (c). Although Zietz and Nicolini 

(1979) numerically solved this optimal control problem, all of the controls they found were of the 

open-loop type and consisted either of no therapy, continuous therapy, or continuous therapy 

followed by rest. The disadvantage of the latter approach is that it is often difficult to establish 

the cells of which body organ or compartment mostly contribute to the normal-cell population. 

Therefore, another type of optimal control model has been developed which does not explicitly 

incorporate the measure of the normal-cell population into the objective functional. Instead, the 

optimisation models of the second type impose certain constraints on the state and the control 

vectors, thereby limiting the number of feasible solutions to the optimisation problem under 

investigation. 

3.2.2. Constrained Optimal Control of Cancer Chemotherapy 

This approach has been favoured by a number of researchers, particularly by Murray (1990a,b) 

and Martin et al (1990, 1992). Although Murray (1990a,b) still considers the normal-cell 

population N) (t) as one of the toxicity limits, his objective functional has the form: 
T 

Minimise J(C) = Jf(t,N2(t»dt (3.17) 
o 

where !(t,N2 (t» is a positive valued weighting function of the tumour cell 

population N2 (t), and [O,T] is a fixed treatment interval. 

The fu nction ! (t, N 2 (t» can be used to penalise undesirable values of the state variable 

N 2 (t) by increasing their contribution to the objective functional. The optimisation objective 

(3.17) in Murray's studies had to be minimised subject to the following state equations: 

N, (I) = N, (t{ -~ <In( N~~I) ) - K, < c(l) J. N, (0) = N,' 

N,(I) = N,(I{ -A-, <l{ N~:t) )-K' <C(I)} N,(O) = N: 

(3.18) 

and the toxicity constraints: 
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c(/) E [O,Cmax ] 
T 

jC(/) dl ~ Ccum (3.19) 
o 

N) (I) ~ N)min for all I E [0, T] 

where Cmax and Ccum are the maximum and the cumulative drug concentration limits 

introduced in Section 1.3; K) and K2 are the cell-kill rates for the normal and the tumour cells 

respectively. 

The optimisation problem (3.17)-(3.19) has been solved in Murray (1990b) for a number of test 

cases. The optimal control essentially turned out to be one of using the bolus application of 

drug to drive the tumour cell population down and then using continuous infusion. However, for 

a certain time before, during or after drug administration nothing should be done, i.e. zero 

control is used. 

The timing of the nonzero portion is determined by the integrand of the objective functional 

(3.17). If !(/,N2(/» = N2 (/) , that is if the aim of treatment is to minimise the tumour cell 

population at the final time, then one should leave the nonzero portion of control as late as 

possible. If the integrand is In[ N 2 (I)] then the reverse is true; drug administration should 

commence immediately from the start of the treatment period. And in the last test case, when 

!(/,N2 (/» = eP"ln[N2 (1)], where p is a scaling factor, one gets the range of placement of 

the nonzero portion of control between the above two extremes: 

0, ° ~ I < I) 

Cmax' I) ~1<t2 

Copt (t) = 0, t2 ~t<t3 

Cs , t3~/<t4 

0, t4 ~ t ~ T 

where C is a control that holds the normal population at the predescribed level. 
s 

(3.20) 

The estimations of t) ,t 2' t 3' t 4 and their dependence on the type of the objective functional 

(3.17) are given in Murray (1990b). 

Thus, the flexible structure of the optimal control Copt (t), which holds essentially regardless of 

the type of cell-loss and tumour growth functions, makes allowance for various clinical 

situations. When the main concern is to minimise the final number of tumour cells, the drug 

administration schedule is biased towards the end of treatment, i.e. it delays the time t). 

Conversely, in practical cases when oncologists try to avoid the development of new 

subpopulations (some of which might tum out to be drug reSistant), treatment is commenced as 
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soon as possible. This brings t) closer to 0 and adjusts the other switching times t2 ,t3 ,(4 

accordingly. 

Another optimal control model of the constraint-based type has been developed by Martin et al 

(1990). These authors entirely deviate from considering the normal-cell population and focus 

solely on the tumour expressed by the function N(t) representing the number of cancerous 

cells. Furthermore, the authors investigate the situation where drug is administered according 

to a discrete dosage program in which there are n doses each of size C j , i = I, n, given at 

times t l ,t2 , ••• ,tn · 

Having adopted the Gompertz model of tumour growth and having assumed a linear 

relationship between drug concentration and cell loss, Martin et al (1990) formulated the 

following optimal control problem: 

Minimise J(e) = N(T) over the control vector e = (C; I i = I,n) 

where T is a fixed length of the treatment interval. 

subject to the state equations: -

N(t) = N(t{ Aln( N~t))-k(V(t) -vfu)H(v(t) -vo )} N(O) = No 

n 

vet) = L Cj exp[ -oct - tj )]H (t - tJ 
;=) 

where H(t) is the Heaviside step function-

{
o t < t; 

H(t-t.)= 
, 1 t ~ tj 

and three inequality constraints in their canonical form (3.6): 

gl(e) = Vmax -vet) ~ ° 
T 

g2(e) = Vcum - fv(t)dt ~ 0 
o 

g3 (e) = N max - N(t) ~ ° 

for all t E [0, T] 

for all t E [0, T] 

(3.21) 

(3.22) 

(3.23) 

As may be seen from the equation (3.22), an exponential decay of drug concentration has been 

taken into account and characterised by the parameter o. Moreover, it has been assumed that 

no tumour cells are killed if the drug concentration falls below a therapeutic drug threshold vth . 

The inequalities (3.23) formulate the first three constraints of cancer chemotherapy introduced 

in Section 1.3, viz. maximum instantaneous concentration, maximum cumulative concentration 

and maximum tumour size. Since Martin at a/ (1990) deal only with single-drug treatments, the 

last constraint of risk reduction of toxic side effects induced by multiple drug administration has 

not been considered. 
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In the present work we will employ the Martin at a/ model as a basis for further investigations. 

The reason for choosing this particular model is threefold. Firstly, Martin et a/ (1990) adopt a 

discrete dosage program of drug administration, which makes it easier to apply the results of 

their optimisation in practice. Secondly, by concentrating exclusively on tumour cells, it is 

possible to substantially reduce the number of uncertain parameters characterising the normal 

cell population. The redundant parameters include such quantities as the minimum level and 

the asymptotic limit of the normal cell population, the growth rate of normal cells, and the kill 

rate of normal cells by anti-cancer drugs. Also, the model (3.21)-(3.23) is not concerned with 

the problem of what particular normal tissue is the most sensitive to application of a given drug 

and how to mathematically represent this sensitivity. It is apparent, however, that most of the 

above mentioned characteristics are implicitly included in the toxicity limits v max ' vcum and 

N max ' which specify the constraints (3.23). Nevertheless, the estimations of these limits are 

available from experimental studies, which spare us from the necessity to determine them 

analytically. 

The last reason that supports the choice of the problem (3.21)-(3.23) as a basis for our optimal 

control model of cancer chemotherapy is that Martin at al (1990) developed a systematic 

approach to the solution of the optimal control problems of this type. Their approach is based 

on the production of certain gradients of the objective functional (3.21) and the constraints 

(3.23), and yields numerical solutions to a range of optimisation problems of cancer 

chemotherapy. These problems may have different objective functionals, utilise various models 

of tumour cell kinetics, and may even incorporate drug resistance (Martin and Teo, 1994). 

An important practical implication of the optimal control found for the problem (3.21 )-(3.23) is 

that the conventional method for treating cancer is not necessarily the best. Conventional 

therapy is defined as a treatment that attempts to keep the tumour burden to an absolute 

minimum at all times. The optimal regimen constructed by the model (3.21)-(3.23), on the other 

hand. differs from the conventional regimen in the respect that. though chemotherapy 

commences immediately, the bulk of the treatment is delayed as long as possible. This result 

coincides with the results of the Murray's studies (3.20) and is true regardless of the 

effectiveness of drugs used, provided that intermediate tumour size can be controlled. 

However, two possible limitations of the Martin's et a/ model should be kept in mind. The first 

involves drug resistance, which may severely undermine the optimality of the late-stage 

chemotherapy. It has been shown by Goldie and Coldman {1979} that the probability of having 

drug resistant cell populations increases with increasing tumour size. Thus, under the optimal 

control regimen developed by Martin et a/ the tumour is more likely to acquire drug resistance 

compared with the conventional therapy. Secondly. since the optimal control problem was 

solved numerically using a fixed set of parameters. there is the risk that the conclusions about 

the optimal regimen are parameter dependent. However, detailed information on such 

parameters as the precise kill rates of drugs, the tumour growth rate, or the probability of drug 
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resistance occurrence is not always available. Information paucity becomes especially 

apparent when one attempts to optimise multi-drug chemotherapy regimens wherein the 

complexity of drug-drug interaction and highly variable patient tolerance leaves little chance for 

quantitatively characterising toxicity boundaries. Let us now examine what other methods of 

Mathematical Programming may offer to counterbala'nce the latter difficulty. 

3.3. Mathematical Programming of Cancer Chemotherapy 

As has already been pointed out, a distinctive feature of optimal control problems is that they 

deal with the processes governed and controlled by the state equation. Since 

chemotherapeutic treatment of cancer involves controlling the tumour, which is governed by the 

equation describing tumour cell kinetics, it is not surprising that the methods of optimal control 

are very suited for optimisation of cancer chemotherapy. 

However optimal control methods are not the only techniques of Mathematical Programming 

capable of dealing with this problem. Under certain assumptions, it is possible to generalise the 

basis model of cancer chemotherapy optimisation (3.21 )-(3.23) and present it as a conventional 

optimisation problem (3.1)-(3.2). In order to do this we need to incorporate the state equation 

(3.22) into one of the constraints (3.23). Then, other mathematical programming methods may 

become pertinent, and even more appropriate. In this section we will show how the approaches 

based on Linear and Nonlinear Programming can be applied to determine optimal regimens of 

anti-cancer drug administration. 

3.3.1. Linear Programming 

Without loss of generality we may assume that for single-agent chemotherapy the control vector 

c(t) representing the concentration of drug in the blood stream is a step function over n equal 

time intervals (as was suggested in Section 2.3) 

e(t) = (C;,i = 1,n), C; are the constant drug concentration levels on the intervals ~i-I'li)' 

where To = to < t\ < ... < tn = Tfinal • 

By means of this approach for modelling drug concentration we ignore drug delivery and 

concentration decay mechanisms. Although it is apparent that drug concentration decay does 

occur due to drug absorption, metabolism and elimination, the length of the time intervals 

[t;_pt;) can be made arbitrary small. Then, the change in the drug concentration level during 

each time interval becomes negligible and can be well approximated by a constant value Cj . 

Consider now the optimisation problem with the objective to minimise the final tumour size by 

the end of treatment subject to the constraints (3.23) and under the assumption of the 
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Gompertzian model of tumour growth. The Gompertzian model provides the following tumour 

kinetics 

Having assumed that e(t) is a step function 

n 

e(t) = I C; {H(t - ti-)) - H(t - t;)} 
;=1 

where H(t) is the Heaviside step function, 

and using the substitution yet) = In(~), we can simplify the equation (3.24) as 
N(t) 

yet) + ly(t) = Ar(t) 

to yield the analytical solution 

y(tp) = e-J.Jp{yo + Ie (e Ml -1)Ic;eJ.J;-I} 
l ;=1 

where p = 0,1,2, ... , n. 

Making the following changes in notation: 

K Ie -A../p (HJ l) =-e e -
p l 

-A.-/ 

_ yet p ) - e p. Yo _ .f.. C . A.·/;_I _ .f.. . C d 
zp - - L ; e - Lq; ;' an 

Kp ;-1 ;=1 

-A../ 

b = z(~) = Ymin - e p. Yo 
p mIn K 

p 

(3.24) 

(3.25) 

(3.26) 

we are now in the position to formulate the LP problem in a similar fashion to the standard 

formulation (3.7)-(3.8): 

n 

maximise J(C) = Zn = Iq; . C; subject to 
c=(C,) ;=1 

0:5 C; :5 Cmax i = 1,n 
n 

IC; ::;Ccum 
;=1 

p 

'" C A.·/I_I > b Zp = ~ ;·e _ p 

;=1 

p = l,n. 

(3.27) 

Note that the third constraint only ensures that the tumour remains below maximum allowable 

size at the interval endpoints, whereas to satisfy the maximum tumour size constraints we need 

yet) ~ Y min Vt E [0, T]. The following lemma proves the equivalence of these conditions. 
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Lemma 3.1. Given y(t) = In(~) and a treatment regimen e(t) in the form (3.25), let t p 
N(t) 

and t p+1 be such that 

y(1 p) ~ Ymin and yV p+J~ Ymin' 

Then, y(s)~Ymin for 'v'se[tp,lp+I]' 

Proof: The Gompertz tumour growth model, with the given substitute y(t) = In(~) yields 
-- N(t) 

the following analytical expression for the tumour under chemotherapeutic treatment c(t). 

1 

yet) = yoe-.t·, + K Je.t·(T-/)e(r)dr 
To 

Since the control function c(t) is a step-function on the interval [To, TfinaI ] , we may write 

y(s)·e.t·s - Yo = JKfe.t·TC; . {H(r-1i-I)-H(r-I;)}dr 
To i=1 

~ p s p 

= JK~:e.t-TCi .{H(r-ti-l)-H(r-li)}dr+ JKLe.t·TC; .{H(r-1i-I)-H(r-t;)}dr 
10 i=1 Ip ;=1 

where s e [I p , t p+1 ]. After simplification the last expression becomes 

y(s)eM _ Yo = K (e AAl -l)fCie .t·',-1 + Cp+IK (e..l.!· _e Mp ) 

A- i=1 A-

yes) = e-M[yo + K (e AAl -1) t C/eAli-l] + C p+I
K 

(1- e -.t(.H p ) ) 

A- i=1 A-

_ -.t(S-lp ) (I) Cp+IK (1 -.t(S-lp ») -e y +---e 
p A-

Hence, we obtain 

yes) = y(1 ) - p+l. e -.t(S-lp ) + p+1 
( 

K'C J K'C 
p A- A-

Therefore, the function yes) is continuous on the interval [t p,t p+d and differentiable on the 

interval (1 p' t p+1 ). It has no turning pOints because 

This means that minima occur at the endpoints and 

y(s)~ymin <=> N(s)~Nmax for'v'se[tp,lp+ll 

• 
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The LP approach to solving the optimisation problem of cancer chemotherapy has both 

advantages and disadvantages. A very strong advantage of Linear Programming is that this 

technique will always find a global optimum, where one exists, i.e. when the feasibility region is 

nonempty and convex. This is done by exhaustive exploration of the vertices of the feasibility 

region, one of which will be, according to the theory of Linear Programming, the global optimum. 

Under the assumptions made, the optimal treatment strategy for the LP problem (3.27) will have 

the following form; 

Copt (t) = {~hOld (t) 
C max 

0< t < 1"1 

1"1~t<1"2 

1"2 ~ t ~ T 

(3.28) 

where Choid (t) is the level of drug concentration which maintains the tumour at the maximum 

permissible size N max; 1"1 and 1"2 are characteristic times of the problem. 1"1 is the time when 

an untreated tumour with the initial size No attains the size N max' 1"2 is the starting time of the 

highly intensive therapy which delivers the drug at the maximum permissible rate C max and 

lasts until the end of treatment. An analytical expression for 1"1 can be obtained using the 

equation (3.24) and reads as 

" = - ~ m[IOg:. (N:J] 
Also, if the function Cho1d (t) can be approximated by a constant Chold ' then the time 1"2 has an 

explicit form: 

CmaxTfinai - C hold 1"1 - Ccum 
1"2 = Cmax -Chold 

The feasibility region of the LP problem (3.27) is nonempty iff the following is true 

{

ChOld (t) ~ Cmax 'v't e [rp 1"21 

TfIooI 

SChOld (t)dt ~ Ccum 

T\ 

(3.29) 

Therefore, if an optimisation problem can be formulated as an LP problem and if the problem's 

constraints allow for feasible solutions, then the technique of Linear Programming will unfailingly 

find a global optimum. However, far from all optimisation problems can be formulated in this 

way. For example, if we change the optimisation objective, modify the model of tumour kinetics 

or add additional nonlinear constraints (real life scenarios often necessitate at least some of 

these), then the optimisation problem of cancer chemotherapy becomes intractable by the linear 

programming method. An alternative to the LP optimisation technique is Nonlinear 

Programming, a discussion on which is now provided. 
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3.3.2. Nonlinear Programming 

In many optimisation problems the objective of optimisation and/or the constraints cannot be 

written explicitly in terms of the control variables. In such cases, one has to resort to the 

nonlinear programming methods of optimisation for numerical solution of the problem. 

The basic philosophy of these methods is to produce a sequence of improved approximations to 

the optimum according to the following scheme. 

i. Start with an initial trial point C1 • 

ii. Find a suitable direction 51 (i = 1 to start with) which pOints towards the optimum. 

iii. Find an appropriate step length ~I· for movement along the direction 5 I . 

iv. Obtain the new approximation CI+1 as 

CI+1 = C; + ~t5; (3.30) 

v. Test whether C;+I is optimum. If C;+1 is optimum stop the procedure. Otherwise, set 

i = i + 1 and repeat step ii onwards. 

The iterative procedure (3.30) is valid for both constrained and unconstrained optimisation 

problems, and the efficiency of this procedure depends on the appropriate choices of ~;. and 

5;. In order to find an optimal step length ~j. one-dimensional optimisation methods may be 

utilised. This is because the problem of finding ~t boils down to finding the value ~; = ~;. , 
which optimises J(C;+I) = J(C1 +~;5;) = J(~;) for fixed values of Cj and 5 j . A thorough 

classification and description of one-dimensional methods is given in (Rao, 1978). Here, we will 

focus on the other aspect of the iteration procedure (3.30) concerned with finding the right 

direction 5 I ' along which to seek the optimum. 

Two categories of nonlinear programming methods are available for the solution of constrained 

optimisation problems, viz. direct methods and indirect methods. In the direct methods the 

constraints are handled in an explicit manner, whereas the indirect methods incorporate the 

constraints into the optimisation objective and proceed afterwards with solving an unconstrained 

problem. Figure 3.1 gives a classification of constrained optimisation techniques. 
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Methods using 
transformations of the 
constrained variables 

Nonlinear Programming Methods of Constrained Optimisation 

I 
I l 

Indirect Direct I 
Methods using 

filtering algorithms 

Penalty functions (PF) 
methods: 

1. Interior PF; 
2. Exterior PF. 

applied to 

Unconstrained NLP techniaues 

r --- -- - -
Descent methods 

(require the derivatives of the 
functions involved): 

1. Steepest descent method; 
2. Conjugate gradient 

method; 
3. Newton's method; 
4. Variable metric method. 

I 

Heuristic Search methods 

Random Search 
methods: 

1. Random jumping; 
2. Random walk; 
3. Random walk with 

direction exploration. 

- - I -- -- - -- -- 1 

Univariate Pattern Search methods: 
method 

1. Hooke and Jeeves 
method; 

2. Powell's method; 
3. Rosenbrook's method of 

rotating coordinates; 
4. Simplex method. 

1. Complex method; 

2. Constraint Approximation 
methods; 

3. Methods of Feasible 
Directions. 

Figure 3.1. Taxonomy of the methods of constrained NLP optimisation 



In the present work two well-established NLP techniques, viz. the Hooke and Jeeves method 

(HJ) and the Complex method (CM), have been selected and applied to cancer chemotherapy 

optimisation. The particulars of these methods will be provided shortly, but before that we need 

to justify the choice which has been made. 

CM has been chosen to represent the category of direct methods since it is more versatile in 

comparison with the methods of constraint approximations and feasible directions. In the 

constraint approximation methods, the nonlinear objective functional and the constraints are 

linearised about some point and the problem is solved as a sequence of approximating LP 

problems. But in many inherently nonlinear situations, suitable approximations are often not 

available. The methods of feasible directions, on the other hand, produce an improving 

succession of feasible directions 5;, along which at least a small step can be taken without 

leaving the feasibility domain. Therefore, the latter methods are confined to the feasible region, 

which makes them unsuitable in situations when the knowledge of the location of the feasible 

region is unavailable. 

Amongst the category of indirect methods we will have to discard the methods that rely on 

supplementary operations with the objective functional or the constraints. By supplementary 

operations we mean either variable transformation or differentiation of the functions defining the 

optimisation objective/constraints. The reason for this is that firstly, for the optimisation problem 

of cancer chemotherapy, it is extremely difficult to find such a transformation of the control 

variables that will implicitly incorporate all problem constraints. Secondly, the gradient 

approaches based on differentiation of the objective functional J(c) and the constraints 

g j (c ), j = 1, S make the results of optimisation dependent on the parameters of J (c) and 

g j (c). Parameter dependence was the main disadvantage of the optimal control approach 

discussed in Section 3.2 and the original intent of mathematical programming techniques was to 

circumvent this disadvantage. Hence, we will exclude the methods of variable transformation 

and the descent methods altogether from the class of candidate NLP techniques suitable for 

cancer chemotherapy optimisation. 

The category of indirect NLP methods will be represented by the method of penalty functions 

applied to heuristic search methods. Although the filtering algorithms developed by Fletcher 

and Leyffer (1998) also provide a robust approach (which is readily implemented and exhibits 

rapid convergence in practice), they do require the second derivatives of J(c) and 

g j (c), j = 1, S to be available. Amongst the heuristic methods of unconstrained optimisation 

only the pattern search methods will be considered. The random search methods, although 

very robust against discontinuity and multimodality of the objective functional, seriously lack 
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efficiency, which is indispensable for finding solutions in vast search spaces. The same is true 

for the univariate method, which permits changing only one control variable at a time. 

Within the class of pattern search methods, our choice of an appropriate technique for 

optimisation of cancer chemotherapy will be narrowed down to the Hooke and Jeeves method. 

This can be explained by the relative simplicity of the method complemented by its versatility. 

Other pattern search methods have been discarded due to various reasons. The Powell's 

method is best suited for optimisation of quadratic objective functionals; the Rosenbrock's 

method of rotating coordinates is simply a further development of HJ, and finally, the Simplex 

method is an unconstrained version of the Complex method, which will be covered anyway. 

This finalises our justification of why the Complex method and the penalty function approach to 

unconstrained NLP optimisation represented by the Hooke and Jeeves method, have been 

selected in the current work to investigate the capability of Nonlinear Programming in the 

context of cancer chemotherapy optimisation. Now the particulars of the chosen methods will 

be provided, starting with the Complex method. 

3.3.2. 1. Complex Method 

The Complex method has been designed to solve constrained optimisation problems of the 

type: Optimise the objective functional 

J(C) = J(C"C2 , ••• ,Cn ) 

subject to the explicit constraints 

I; ~ C; ~ u; i = 1,2, ... ,n 

and also the implicit constrains 

j = 1,2, .. . ,m. 

The I; and u; are lower and upper bounds for the control variables. The optimisation is 

implemented by operating with a simplex, a definition of which follows. 

Definition 3.3. A simplex is a geometric figure formed by a set of k + 1 points in k -

dimensional space. 

The basic idea of CM is to compare the values of the objective functional at the k + 1 vertices of 

a simplex and move this simplex gradually towards the optimum point according to the following 

iterative process. 

i. Initiate a feasible simplex (all vertices are feasible solutions). 

ii. Find the vertex C 11/ with the worst value of the objective functional and form the centroid 

Co of the other k vertices. 
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iii. Try to move away from C", (this is how the search direction Sj is determined (see 3.30)) 

and so form a new solution point C h by using one of three operations known as 

reflection, expansion and contraction. 

iv. Test if C h is feasible. If not apply the feasibility repair procedures (Sunday and Garside, 

1987) until a feasible point is obtained. 

v. If J(C h ) is better than the value of the objective functional at any of the remaining k 

vertices of the initial simplex, then replace the worst vertex by Chand repeat the step ii 

onwards. 
vi. Test whether method has converged. 

A detailed description of CM, including Pascal code for its implementation, can be found in 

Sunday and Garside (1987). The Complex method has been utilised in the present work to 

solve the optimisation problem of minimising the tumour size by the end of chemotherapeutic 

treatment. We will postpone the discussion of the results of this optimisation until Chapter 5, 

where a systematic comparison will be made of CM with alternative optimisation techniques. 

Now let us examine how the method of Hooke and Jeeves differs from CM. Sut before that the 

method of penalty functions needs to be introduced, which allows the use of unconstrained 

optimisation in the context of constrained Nonlinear Programming. 

3.3.2.2. Penalty Functions as a Constraint Handling Technique 

For decades penalty functions have been a crucial part of constrained optimisation. There exist 

two basic types of penalty functions (PFs): exterior PFs, which penalise infeasible solutions, and 

interior PFs penalising feasible solutions (Smith and Co it, 1997). Interior penalty functions are 

applied to ensure that a given constraint is active (i.e. tight) in order to find an optimal solution 

lying on the boundary between feasibility and unfeasibility. Although potentially interesting, the 

idea of interior PF application is rarely used for multiple constraint problems. 

Exterior PFs, on the other hand, will be extenSively used throughout this thesis. These penalty 

functions allow three degrees of severity (Smith and Coit, 1997): 

• barrier PFs in which no infeasible solution is considered; 

• partial PFs in which a penalty is applied near the feasibility boundary; 

• global PFs that are applied throughout the infeasible region. 

It can be difficult to find a penalty function which immaculately converts an unconstrained 

optimisation problem into the constrained one. Many of the solutions with structure similar to 

that of the optimum solution will be infeasible. Therefore, restricting the search to only feasible 

solutions or imposing very severe penalties make it difficult to find promising directions towards 

the optimum. Conversely, if the penalty is not severe enough, then much of the search time will 

be used to explore territories far from the feasible region. 
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There are two approaches to penalise infeasible solutions. The simplest method takes into 

consideration only whether the constraints are satisfied or not. It is inferior to the second 

approach based on some distance metric d) from the feasible region corresponding to the 

constraint g) (e) ~ 0 (Smith and Co it, 1997). In the presence of only inequality constraints 

g/e) ~ O,j = I,m, distance-based PFs modify the objective of unconstrained optimisation 

J (e) as follows: 
m 

J(e) = J(e) - 'LP)(t)dJ (3.31 ) 
)=1 

where p) are penalty multipliers; 

if constraint j is violated 

if constraint j is satisfied. 

As can be seen from the equation (3.31), the distance measure d) may be raised to the power 

k in order to either amplify or to reduce the penalising effect. Moreover, the penalty multipliers 

p) (t) define the PF type, which can be one of the follows: 

• Static PFs: all penalty multipliers are constants; 

• Dynamic PFs: some or all penalty multipliers are predefined functions of time; 

• Adaptive PFs: some or all multipliers p) undergo changes in accordance with the 

success (or lack of it) of the search implemented by a given 

constrained NLP technique. 

In the present work static PFs will be used to express the maximum and cumulative dose 

limitations of the anti-cancer drug. The following distance measures correspond to these 

constraints: 

n 

d l = 'Lmax 2
{C; -Cmax'O} (3.32) 

1-1 

d2 = ma:x{tc; -Ccum,O} 
/=1 

(3.33) 

associated with constant penalty multipliers p. and P2 • The maximum tumour size constraint, 

on the other hand, will be incorporated into the optimisation objective by means of a dynamic 

PF. Since in many practical cases the entire eradication of the tumour is unachievable, one 

must give preference to those treatment regimens under which the tumour size constraint is 

violated later in the course of treatment. This may be achieved by variation of a penalty 

multiplier P3 (t) over time, gradually decreasing the magnitude of penalty as the treatment 

period progresses. One possible method of penalty depreCiation is to introduce a dynamic 
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exponential factor e-P'/ into a distance-based PF P3 (I) = P3e-P·/. The distance from the 

feasible region related to satisfaction of the tumour size constraint is measured as follows: 

d 3 = max{N(t) - Nmax,O} (3.34) 

Having specified how the constraints of chemotherapeutic treatment can be included into the 

objective functional J(e) , we can now proceed with the unconstrained NLP optimisation of 

J(e). Two concluding remarks however need to be made. Firstly, all penalty functions require 

to some degree the values of user-specified constants Pj , j = 1, m defining the explOitation 

characteristics of the search. A systematic determination of the values for these constants is a 

problematic issue, which is currently under investigation. Secondly, throughout the present 

work we will adhere to the assumption that multiple constraints can be linearly combined to yield 

an appropriate penalty function. Intuitively, this seems to be a simplification of a general case 

since in many practical situations there is an interaction between constraints. Thus a real 

penalty is likely to increase more than linearly with the number of constraints violated. However 

the results of the current work will show that it is reasonable to assume in the present context 

that constraint violation incurs independent penalties on the objective functional. Now we are in 

the position to discuss the particulars of the Hooke and Jeeves method. 

3.3.2.3. Hooke and Jeeves method 

The pattern search method of Hooke and Jeeves is a sequential technique each step of which 

consists of two kinds of moves, viz. the exploratory and the pattern moves. The first kind is 

included to explore the local behaviour of the objective functional and the second is aimed at 

taking advantage of the pattern direction. The general procedure is described below. 

i. Start with an arbitrarily chosen solution point C, = (e,' ,e ~ "C ~ ) ERn, called the starting 

base point, and prescribe lengths t;; in each of coordinate directions e;, i = 1, n . 

ii. Compute J(C k ) ( k = 1 to start with). 

iii. Each control variable eik is now changed in turn by adding the step length t;;. Thus first 

we evaluate J (C k + t;, e, ) . If this improves the value of J (e), then replace C k by 

(C k +t;,8,). If not, evaluate J(C k -t;,e,) and replace Ck by Ck -t;,e, if 

improvement is achieved. If neither step gives an improvement, leave C k unchanged 

and consider changes in the direction of e 2' i.e. find J (C k + t; 2 e 2)' When all control 

variables are examined we will have a new base point C k+' . 

iv. If C h' = C k ' the exploration is repeated about the same base point C k but with reduced 

step lengths t;;. 
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v. If C k+1 ;t:. C k we make a pattern move in the direction 5 k = C k+1 - C k ' 

Le. C k+2 = C k + 2(C k+1 - C k) since that move has already led to an improvement 

ofJ(C) . 

vi. If J (C k+2) is better than J (C k+l) then a new base point C k+2 has been reached. In 

this case repeat step v. 

viL Otherwise abandon the pattern move from C k+1 and continue with exploration about 

C k+1 until the convergence criterion is met. 

The Pascal code implementing this iterative procedure can be found in Bunday and Garside 

(1987). Similar to CM, the Hooke and Jeeves method has been applied to the problem of 

tumour size minimisation in the presence of the toxicity and the tumour size constraints. A 

comparative study of the results of this application needs to wait until we introduce an 

optimisation technique using Genetic Algorithms, utilisation of which for the optimisation of 

chemotherapeutic treatment constitutes the essence of the present work. One fact of that study 

however has to be mentioned here. It has been found that, although very efficient in optimising 

a unimodal objective functional subject to a priori knowledge of the feasible region location, the 

NLP optimisation methods become brittle when there is no feasible solution to start with. The 

situation worsens in cases when the optimisation objective is multimodal, i.e. there are a 

number of local optima surrounding the global one. In such cases the NLP methods tend to 

either converge to one of the local optima or fail to find any feasible solution at all. This severely 

undermines their usage for optimising cancer chemotherapy treatment. 

3.4. Discussion 

In this chapter the main mathematical approaches to optimisation of cancer chemotherapy have 

been discussed. These approaches utilise the theory of Optimal Control (based on the calculus 

of variations and on the Pontryagin Maximum Principle) and various methods of Mathematical 

Programming. Factors which determine what method is the most appropriate include the 

number of control and state variables necessary to describe the process, the linearity or 

nonlinearity of the objective functional, and the number and the form of the constraints. 

The major deterrent to using the optimal control approach is the difficulty of solving the 

nonlinear differential equations resulting from the Euler equations and the Pontryagin's 

necessary conditions for optimality. Although a number of numerical solutions have been 

obtained based on the optimal control approach, these results are often parameter dependent 

and model specific. 

Mathematical programming methods are more flexible in that respect. They can: (1) readily 

accommodate a large number of control variables; (2) avoid, in contrast to the optimal control 

methods, the problem of solving a large system of nonlinear differential equations, and (3) can 

be already implemented as standardised software packages. Besides, different methods of 
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Mathematical Programming have additional specific advantages. Linear Programming, for 

example, guarantees that the global optimum will always be found. Nonlinear programming 

methods provide an effective tool for optimisation of complex objective functionals subject to 

nonlinear constraints. Dynamic Programming is well suited to situations where the optimisation 

problem can be divided into a number of stages and a recursion relation between adjacent 

stages can be found. (Such situations might occur when discrete dose chemotherapy is used 

and the time interval of administration of each dose can be considered as one stage of a 

multistage process suitable for dynamic programming optimisation). Stochastic Programming 

deals with optimisation of problems which contain variables defined by probability distributions. 

(One possible application of Stochastic Programming is the optimisation of chemotherapeutic 

treatment when drug resistance might occur with a given probability.) 

However, although potentially promising, the methods of Mathematical Programming have not 

found a widespread usage in the area of cancer chemotherapy optimisation. There have been 

no attempts reported in the literature to apply the dynamic and stochastic programming methods 

to optimise cancer chemotherapy treatment. Linear Programming can be used only in a small 

number of cases and under certain assumptions which are often unrealistic. Nonlinear 

programming methods perform well only when they are given a relatively simple optimisation 

objective and a good initial approximation of the problem's solution. In cases, however, when 

the optimal solution lies somewhere on the boundary between the feasible and infeasible 

regions and the location of the feasible region itself is unknown, the performance of NLP 

optimisation methods was unsatisfactory. According to Martin et al (1990, 1992), Murray 

(1990a,b) and Costa et a/ (1992), the best chemotherapeutic treatment strategies will always be 

at the brink of feasibility where one of the constraints is just about to be violated. Inability of the 

NLP methods to handle such cases means that they are deficient in precisely those situations 

when they are most needed. 

Therefore, to provide clinical oncologists with a systematic, effective and reliable way to 

optimise cancer chemotherapy treatment, some novel approach has to be developed which is 

different from those of Optimal Control and Mathematical Programming. One possibility of such 

an approach emerges from the field of Evolutionary Computation (EC). This field encompasses 

different methods, often referred to as evolutionary algorithms, which draw inspiration from 

natural evolving systems to build problem solving algorithms. Evolutionary algorithms have 

demonstrated in recent years an ability to quickly discover useful solutions to problems that 

have been difficult to solve using classical optimisation methods (Fogel, 1997). In particular, 

Genetic Algorithms (GAs) have proved for a number of optimisation problems to be an effective 

alternative to methods of conventional optimisation. The next chapter provides an overview of 

Genetic Algorithms with the emphasis on how this method of evolutionary computation can be 

used to effectively search through large solution spaces. 
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CHAPTER 4 

GENETIC ALGORITHMS AS A METHOD OF EVOLUTIONARY 
SEARCH AND OPTIMISATION 

The original goal of Genetic Algorithms was to import into computer systems the mechanism of 

natural adaptation (Holland, 1975), where adaptation was envisaged as a 'process whereby a 

structure is progressively modified to give better performance in its environment'. We may 

assume that by structure he means a potential solution to a given optimisation problem and by 

environment he means the entire solution space. Then, the process of adaptation can be 

interpreted as a search for better solutions during which an optimisation of the search objective 

takes place. 

The distinctive attributes that make Genetic Algorithms potentially suitable for dealing with 

problems intractable to mathematical methods of optimisation described in Chapter 3 may be 

summarised as follows: 

• GAs implement multidirectional search by sustaining a population of candidate solutions; 

• GAs explore the search space using stochastic processes rather than deterministic rules; 

• GAs exploit the valuable information obtained so far by being biased towards the 

selection of "good" solutions and by utilisation of implicit parallelism; 

• GAs require very little from the objective functional - the objective functional must 

unambiguously define the payoff of each solution, but may be multimodal, discontinuous 

and may allow a certain degree of imprecision. 

Multidirectional search has two advantages. Firstly, it obviously increases the efficiency of the 

search by looking for the optimum in many directions simultaneously. Secondly, if the search in 

one direction gets stuck at a local optimum, there is still a chance to find the absolute optimum 

by approaching it from another direction. In addition to that, 'stochastic wandering' through the 

search space unburdens Genetic Algorithms from strong dependence on additional properties 

of the objective functional such as the gradient. Implicit parallelism, the concept of which will be 
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introduced later in this chapter, enables the algorithm to process much larger amounts of 

information than would have been possible using enumerative or purely random schemes and 

therefore also contributes to the increase of search efficiency. 

The last advantage, i.e. the robustness of GAs with respect to the type of the objective 

functional, raises Genetic Algorithms to the position of a very versatile method, which can be 

applied to a large number of real life optimisation tasks. This versatility can be explained by the 

fact that GAs are not concerned with finding the optimal solution per se. Instead, their main 

goal is to find better solutions than those that are already known. 

To achieve this goal Genetic Algorithms employ the evolutionary concept described in Section 

4.1. The utilisation of such concept makes the finding of better solutions possible due to the 

rationale specified in Section 4.2. Section 4.3 focuses on implementation features of Genetic 

Algorithms. The efficiency of the GA method in performing its task can be improved by various 

enhancement techniques classified in Section 4.4. However, despite their remarkable 

robustness and versatility, Genetic Algorithms, similar to all other optimisation methods, have 

some limitations and drawbacks. These will be discussed in the last section (Section 4.5) of this 

chapter with the conclusion in favour of GA utilisation in the current work. 

4.1. Evolutionary Concept of Genetic Algorithms 

Genetic Algorithms, being a class of evolutionary algorithms, simulate a natural evolution 

process. A large number of GA implementations have been developed recently with a unifying 

aspect that all of them involve two main components: a population of strings encoding candidate 

solutions for the target problem and heuristics that manipulate these strings in search of an 

optimal solution (Lucasius and Kateman, 1993). A general form of the genetiC algorithm 

structure can be presented as follows (Schwefel, 1995): 

Step 0: Initialisation 

An initial population P(O) (usually randomly generated) contains A individuals and 

each of them is characterised by its genotype consisting of m genes. These genes 

determine an individual's fitness, i.e. adaptation capacity of an individual in the target 

problem environment. Each individual's genotype, or the encoded form of a potential 

solution, is represented by a digital string (referred to as a Chromosome). Also, during 

this step a fitness function is specified, which assigns a numerical value to all 

individuals comprising the population. (The definitions of genes, chromosomes and 

fitness function will be given in the next section). 
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Step 1: Selection 

Two parents from the population P are chosen for mating and copied to the mating 

buffer, ME, with probabilities proportional to their fitnesses, measured either by their 

contribution to the mean value of the fitness function in the current population 

(proportional selection) or by their ranks (e.g. linear ranking selection). The linear 

ranking scheme arranges all individuals in increasing order, assigns a predefined 

fitness maximum to the best individual and calculates the fitness of each subsequent 

individual in the population by subtraction of a certain value from the fitness of its 

predecessor. (The benefits of this scheme will be explained in detail later in Section 

4.3). Thus, better individuals in the population are given more chances to get into the 

mating buffer ME and, therefore, more opportunities to produce offspring 

(reproduction with emphasis). 

Step 2: Recombination 

Next the individuals in the mating buffer ME undergo the genetic (structural) operators 

producing offspring ME'. These genetic operators are: 

Crossover 

Two offspring are produced by recombination (with a given probability Pc) of two 

parental genotypes by means of crossover. The application of the crossover operator 

involves dividing the parental genotypes into several pieces and systematic 

interchanging of these pieces between the parents to produce offspring genotypes. 

Mutation 

The genotypes of offspring produced from the 'crossover mill', undergo further 

modification via mutation, applied with a given probability Pm' to individual genes, 

either reversing them or randomly assigning a particular value to them. 

After the new offspring have been created via the genetic operators, the two populations P and 

ME' must be merged to create a new population P'. Since most GAs maintain a fixed-sized 

population consisting of A. individuals, a total of A. candidates need to be selected from the 

parent and child populations. There are many strategies for accomplishing this task while 

imposing a selection bias towards "better" individuals either on the mating, or on the population, 

reassembling stages (Deb, 1997a). 

This sequence of computations enables the population of candidate solutions to find "beUer" 

solutions in the search space by exploiting the advantages of the evolution process, which has 

two essential components: selection and reproduction. Selection can be viewed as a filter that 

determines, by competition, which individuals within a population survive to reproduce. 

Reproduction, which includes crossover and mutation, introduces an innovative aspect into the 
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evolution process through the genotype alteration of candidate solutions and, thus, provides a 

route for creation of increasingly successful individuals in the population. Finally, if we take into 

account the limitation of living resources, then only the fittest individuals, i.e. those most 

adapted to the target problem environment, will survive over time. 

Therefore, the mechanism of evolution seems well suited to some of the most pressing 

computational problems, which require searching through a huge number of possibilities. Such 

search problems can often benefit from the effective use of parallelism, whereby many different 

possibilities can be explored simultaneously in an efficient way (Mitchell, 1996). This parallelism 

deserves more attention and is discussed in detail in the next section. 

4.2. The Rationale for Genetic Algorithms 

Although the description and implementation of Genetic Algorithms are fairly straightforward, 

their functioning is far from obvious. There still exist many open questions concerning how GAs 

work and what particular class of problems they are best suited for (Mitchell, 1996). Some work 

has been done on the theoretical foundation of GAs (Holland, 1975; Goldberg, 1989; Rawlings, 

1991; Whitley, 1993; Whitley and Vose, 1995); yet controversy, even on basic issues, still 

remains (Beyer, 1997). However, to claim that results of a particular work are scientifically valid, 

one needs to back assertions by a rationale, justifying the data obtained. The results of the 

current work are consistent with the theory of schemas and building blocks, developed by John 

Holland (1975) and David Goldberg (1989); so, this theory is used as the explanatory rationale. 

In order to proceed a number of definitions need to be made. 

Definition 4.1. A search space S is a set of objects over which search is to be conducted. 

Let AI' A2 , ... , Am be arbitrary finite sets, and let I = AI X A2 X ••• x Am . 

Definition 4.2. The set I is called a representation space of candidate solutions defined on a 

Cartesian product of m finite sets Ai' i = 1, m referred to as alphabets or 

allele sets. The elements of I are called chromosomes (or genotypes), 

whereas the elements of AI are called genes. 

Originally, the alphabets AI were represented by the binary set {O,l}, which is still used in 

many GA implementations. In such cases chromosomes are referred to as bitstrings. 

Definition 4.3. A function g: I -+ S which matches vectors in I to the solution space S is 

called an encoding function. Combined together, g and I form a 

representation of S . 
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Definition 4.4. (Schema) Let I = Al X A2 x ... x Am be a representation space. For each 

allele set Ai' define the extended allele set A;+ = A; U { .} where • 

symbolises any element of A j • Then a schema is any member of the set: 

- A+ A+ A+ ~= I X 2 x ... x m' 

In other words, a schema is a chromosome in which any subset of the alleles may be replaced 

with the symbol"'. Employing Goldberg's notation (Goldberg, 1989), the letter H is used to 

denote schemas because they can be regarded as hyperplanes in the representation space I . 

Thus, a schema H = ala2a3 • •• am describes a set of chromosomes which have the same 

alleles as H at all the positions i where a j :t ., i.e. 

H = {x E II 'Vi E {1,2, ... ,m}: (a j = Xj or a j = .)} 

Definition 4.5. The positions at which a j is not. are called the defining positions of a schema. 

Definition 4.6. The order, o(H) , of a schema H is the number of defining positions it 

contains. The defining length, 8(H) , of a schema H is the distance between 

its first and last defining positions. 

The members of a schema are usually referred to as instances. If the representation space I 

is composed of only binary allele sets, then any chromosome of length m is an instance of 2 m 

schemas. Thus any GA population of A. chromosomes contains instances of between 2"' (if 

all bitstrings are identical) and 2 m • A. (if all bitstrings are distinct) schemas. The importance of 

this fact closely relates to the concept of implicit parallelism of Genetic Algorithms. Implicit 

parallelism means that while explicitly evaluating A. chromosomes in the population, GAs in fact 

implicitly estimate the average fitness of a much larger number of all schemas, instances of 

which are present in the population. Having mentioned the schema fitness concept, we need to 

define it more rigorously. To do so we will need the following: 

Definition 4.7. (Fitness function) Let S be a search space, J: S ~ R be an optimisation 

objective functional and let g: I ~ S be a representation of S. Then any 

function f: I ~ R with the property that I (x) attains its maximum for the 

values of x which optimise J(g(x» , will be called a fitness function. 

It is apparent that not all instances of any given schema H are evaluated during the evolution 

search implemented by Genetic Algorithms. The reason for this is that at any generation t, 

GAs operate with a finite population P(t) , which in general contains only a small portion of all 

instances of H. Thus, to estimate the fitness of H, the observed fitness of the schema is 

defined by 

A 1 ~ 
IH(t) = £..JI(x) 

N H (t) xeHr.P(t) 
(4.1) 
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where N H (t) is the number of occurrences of the schema H in the current population P(t). 

Although the average fitnesses of schemas are not explicitly calculated and stored in memory, 

Genetic Algorithms operate in such a way that all the averages are taken into account in terms 

of the increase or decrease in the number of instances of given schemas in the population 

(Mitchell, 1996). The number of instances N H (I) of a given schema H in the GA population 

at generation t is regulated by the following fundamental theorem of the Genetic Algorithm 

theory. 

Theorem 4.1. (Schema Theorem) Let H be any schema over a representation space I 

being searched by a traditional genetic algorithm. Then 
A 

(N H(t + 1)1 N H(t)) ~ N H(t) J~(t) [1- Dc(H)][I- Dm(H)] 
J(t) 

where (A 1 B) is the conditional expectation of A given B; 
A 

JH(t) is the observed fitness defined (4.1); 

J(t) is the average fitness of the entire population at generation t; 

Dc (H) and Dm (H) are the upper bounds on the disruptive effects on 

(4.2) 

schema membership of the chosen crossover and mutation operators respectively. 

A traditional genetic algorithm is one which uses fitness-proportional selection, crossover and 

mutation as generic operators, and generational update (i.e. replacement of the entire GA 

population with newly formed offspring at every evolution cycle). All these concepts will be 

explained in detail in the next section. The proof of the Theorem 4.1 is given in (Radcliffe, 1997). 

In most cases it is difficult to determine Dc (H) and Dm (H) analytically. However, for a 

simple genetic algOrithm, in which one-point crossover and bitwise mutation are used and 

applied with the probabilities Pc and Pm respectively, the upper bounds have been found as 

follows 

D (H) = t5(H) 
c Pc 1 m-

Dm (H) = Pmo(H) 

where t5(H) and o(H) are the defining length and the order of the schema H, m is the 

number of genes. One-point crossover means that parental genotypes are divided only into two 

pieces; bitwise mutation alters each gene's value with independent probability Pm. 

The Theorem 4.1 is often pointed to as evidence of the implicit schema proceSSing implemented 

by Genetic Algorithms. This is due to the fact that the theorem (potentially) gives a description 

of the dynamics of each schema instantiated in the population (RadCliffe, 1997). Also, the 

Schema Theorem advocates the idea that GAs achieve success through juxtaposition of short, 

52 



low-order, high-performance schemas, referred to as building blocks. The last statement is 

often formulated as the Building Block Hypothesis (Goldberg, 1989). 

Proposition 4.1. (Building Block Hypothesis) Short, low-order and highly fit schemas are 

sampled, recombined and resampled to form chromosomes of potentially 

higher fitness. 

The concept of a schema provides a way of decomposing a complex search problem into a 

hierarchy of progressively simpler problems. At first, GAs address the simpler problems and 

obtain a number of building blocks, which can be thought of as solutions to one of several 

noncompeting subproblems comprising the problem under investigation. (The subproblems are 

noncompeting in the sense that a single candidate solution may combine two or more building 

blocks.) Then, Genetic Algorithms combine the building blocks into more complex solutions 

until eventually the complete problem is solved. 

In mathematical terms the decomposability of a problem into subproblems is referred to as 

linear separability, and models satisfying this condition are known as additive (Radcliffe, 1997). 

In the context of Genetic Algorithms, the biological term epistasis is used to describe a range of 

nonadditive phenomena (Holland, 1975). EpistaSiS means interaction between individual genes 

or groups of genes in chromosomes and determines the potential for crossover to succeed in 

assembling chromosomes representing good solutions through recombining useful building 

blocks. If the level of epistasis is too high, then the building blocks become long enough to 

prevent Genetic Algorithms from succeeding in finding better solutions. Therefore, the GA 

rationale can be summarised as follows: Given an acceptable level of epistasis, Genetic 

Algorithms implement efficient search through the solution space and find better solutions due 

to implicit parallelism of the search and the ability to bring together short and highly fit schemas 

(building blocks). In the next section we will consider the special features of Genetic Algorithms 

allowing such an efficient search to be implemented. 

4.3. The Features of Genetic Algorithms 

In addition to the theoretical aspects described in the previous section, each genetiC algorithm 

application needs its own practical aspects. This section is dedicated to these aspects. We 

start with the most problem specific property - the fitness function. 

4.3.1. Fitness function specification 

From the Definition 4.7 it can be seen that the fitness function f: I ~ R returns a numerical 

value for each chromosome in the representation space I. This value is related to the quality 

of the solution represented by a given chromosome and is calculated using the objective 

functional J, on the basis of which the solution quality is judged. 
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The general rule in constructing a fitness function is that it should represent the actual 

"goodness" of a potential solution, i.e. good solutions should have better fitness values. 

However, "goodness" is not always a useful measure for guiding a genetic search. For 

example, in many optimisation problems with constraints most pOints in the search space are 

infeasible, i.e. represent invalid solutions to the target problem. Therefore, their "goodness" has 

zero value. For a GA to be effective in this case, we must invent a fitness function where the 

fitness of each individual solution reflects its ability to guide a genetic search towards the 

feasible and, ultimately, the optimal region in the solution space. But in order to do this we need 

to know a priori the location of the feasible region, giving good fitness values to nearby solutions 

and poor values to those far away. In reality, however, this information is rarely available. 

There are several methods whereby it is possible to overcome this problem. Cramer (1985), for 

example, suggests that better results can be obtained if a few meaningful subgoals are invented 

and the solutions that achieve them rewarded. Another approach, also used in the present 

work, is to apply penalty functions that represent how poor a candidate solution is or how 

violently it breaks the constraints of the target problem. Richardson et al (1989) suggest the 

construction of a penalty function from the 'expected completion cost' point of view, i.e. how 

much will it cost to turn a particular infeasible solution into a valid one. Other methods for 

fitness function construction exist, leaving at the same time considerable scope for further work 

in this area. 

After the fitness function has been constructed, the fitness values of all chromosomes in the 

population can be calculated. Since the initial population has a random composition, there is a 

wide spread of individual fitnesses. However, after a while particular strings begin to 

predominate and the range of fitness values reduces. This variation in fitness range throughout 

a GA run often leads to problems of premature convergence and slow finishing (Beasley et aI, 

1993). Premature convergence occurs when comparatively highly fit (but not optimal) 

individuals rapidly dominate the population. This causes elimination of the crossover effect 

since swapping the parts of identical strings cannot produce anything new. Only mutation 

performs exploration of the search space and this is carried out in a slow and random fashion. 

The opposite problem to premature convergence is slow finishing, which means that after many 

generations the population will largely converge but may still not have precisely located the 

global optimum. The difference in fitness values of the best and average individuals in the 

population will not be large enough to lead GAs towards the optimum. 

In order to combat these two problems several methods can be employed to expand the 

effective fitness range. The first method is fitness scaling, where the maximum number of 

chances to be selected for reproduction allocated to a particular string is set to a certain value. 

This is achieved by subtracting a suitable value from the raw fitness score, then dividing it by 

the average of the adjusted fitness values (Beasley et aI, 1993). The second method is fitness 

windowing, used by Grefenstette (1986). It is very similar to fitness scaling, except that the 

amount to be subtracted is the minimum value of solution fitness encountered in the last w 

populations. The windowing size w varies depending on the target problem. The last method, 
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essentially different from the previous methods, is fitness ranking. The ranking scheme 

overcomes the reliance on extreme individuals because all strings are sorted in order of non­

scaled fitness and then reproductive fitness values are assigned according to either linear or 

exponential rank, allowing intermediate strings to be regularly spread out. Several experiments 

have shown that fitness ranking is superior to fitness scaling (Baker 1985; Davis 1989). This 

conclusion is also supported by the present work. 

4.3.2. Selection Techniques 

Selection is one of the main operators used in evolutionary algorithms. The primary objective of 

selection is to emphasise better solutions in a population (Deb, 1997a). Good and bad solutions 

in a population are distinguished on the basis of fitness and the essential idea of evolutionary 

selection is that a solution with a better fitness must have a higher probability to be chosen for 

reproduction. 

There are two major factors that determine the effectiveness and efficiency of the evolution 

process during a genetiC search: population diversity and selective pressure. High selection 

pressure often leads to insufficient population diversity and, as a result of that, to premature 

convergence of Genetic Algorithms. To strike the balance between these two factors an 

appropriate selection operator needs to be chosen. 

There is a wide spectrum of selection operators, which can be divided into two groups (Beasley 

et aI, 1993) - deterministic and stochastic operators. The former operators sort the population 

according to fitness and deterministically choose the best few solutions. Stochastic operators, 

on the other hand, assign a probability of selection to each solution according to its fitness and 

operate using this probability distribution. Since in a finite initial population the best few 

individuals may represent a suboptimal region, the deterministic selection operators by 

consistently emphasising these seemingly good solutions may finally converge to a wrong 

solution. In similar situations stochastic operators maintain diversity in the population, therefore 

widening the search, via occasional choices of not-50-good solutions. For this reason we will 

consider stochastic selection methods only, since the problem of cancer treatment optimisation, 

which is the essence of the current work, is prone (as will be shown later) to having many 

suboptimal solutions militating against the use of deterministic methods. 

The most prominent stochastic selection operator - the proportionate operator - assigns the 

expected number of copies to a particular solution in proportion to its fitness. The simplest form 

of the proportionate selection scheme is known as roulette-wheel selection, a short description 

of which is now provided. 
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Suppose a population contains A chromosomes, xl' X 2 , .•• , X A' with fitnesses 1;,12 , ... , fA 

respectively. We may assume that all fitnesses fall in the interval (0, Fmax]. We then select A' 

times with replacement from the population according to the following scheme: 

" 1. Calculate the total fitness 1 = L J; . 
isl 

J; 
2. Calculate the proportion Pi = -' of total fitness for each chromosome Xi' 

1 

3. Divide the unit interval [0,1] into Asubintervals [to,tl ],(tl't2 ], ... ,(t,,_ptA ]where 

to = 0 and 
i 

t; = L Pk ' 1:S; i :S; A 
k=1 

4. (Repeat A' times) Calculate a random number, r, in [0,1]; r will lie in a subinterval 

containing precisely one t i . Select chromosome X; for reproduction. 

Note that [t ;_1 ,t i ] has length P; , 1 :S; i :S; A, so that [0,1] is partitioned proportionately 

according to the relative fitness of the A chromosomes in the population. This process results 

in composition of a mating buffer, MB, which is a subset of the original population and consists 

of the A'(:S; A) chromosomes selected for reproduction. Since the solutions are marked 

proportionally to their fitness, a solution with a higher fitness is likely to receive more copies than 

an inferior solution. 

The limitations of the proportional selection scheme, however, is that negative values for a 

solution's fitness are not allowed and minimisation problems cannot be handled directly (they 

must at first be transformed to equivalent maximisation problems). Also if a population contains 

a solution whose fitness substantially exceeds those of the rest of the solutions, this 

'supersolution' very soon will dominate the population, which will inevitably lose its diversity and 

converge prematurely. Another difficulty may arise when most of the population members have 

more or less the same fitness and the proportional selection operator cannot make a distinction 

between different solutions and thus results in almost a random selection. However, the last 

two problems can be avoided by using a fitness ranking scheme, where every solution is linearly 

mapped between a lower and an upper bound before making a roulette wheel. 

Another approach to stochastic selection is the use of a tournament selection operator, which 

has no restriction on negative fitness values and is very suitable for a parallel implementation 

(Deb, 1997a). There are several variants. In the simplest of them, binary tournament selection, 

a pair of strings is picked at random from the population, and whichever has better fitness is 

copied into the mating buffer for the next generation. This process is repeated until the mating 

buffer is full. In some applications larger tournaments are used where the best from n (n > 2) 

randomly chosen strings is copied into the mating buffer. Also, additional complexity may be 
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included into tournament selection by choosing the best string only with a certain probability p 

(obviously p should satisfy 0.5 < p < 1.0); using lower values of p would result in a decrease 

in selection pressure. 

The proportional and the tournament selection keep the selection pressure more or less 

constant during a GA run. But often different amounts of selection pressure are needed at 

different times in a run. For example, early on it might be good to allow less fit chromosomes to 

be selected at the rate close to that of fitter chromosomes, thereby maintaining a lot of variation 

in the population. Later, however, an increase in selection pressure might be useful to strongly 

emphasise highly fit chromosomes and to speed up the convergence to the optimal solution. 

One approach to regulate the selection pressure is to use the Boltzmann selection operator 

(similar to simulated annealing), in which a continuously varying "temperature" controls the rate 

of selection according to a pre-set schedule (Mitchell, 1996). 

The last aspect of GA selection worth mentioning here is generation overlapping. Most GAs 

replace the entire population with newly formed offspring. Some of these offspring will be 

identical to their parents, but there is no direct path (avoiding the selection procedure) from one 

population to another. There exist population formation schemes, however, which use elitism to 

a certain degree, that is a portion of the previous generation is retained in the new one. This 

inherited portion is usually called a generation gap, and this gap allows Genetic Algorithms to 

preserve the best solutions found so far. The population replacing schemes are usually 

characterised by a low value of a generation gap. In steady-state selection, on the other hand, 

only a few individuals are replaced in each generation and therefore a generation gap has a 

larger magnitude. In the present work it has been decided to utilise the elitist strategy that fixes 

a potential source of loss (due to a randomised search) by copying the single best member of 

each generation into the succeeding generation. 

4.3.3. Genetic operators 

Two essential procedures comprise every efficient search: exploration and exploitation of the 

search space. Biased selection, however achieved, may be regarded as the exploitative part, 

which is necessary but not sufficient for efficient search. Without the explorative part no 

variation is imposed on the population and this causes depletion of population diversity. In 

order to counterbalance this depletion some exploration heuristics are required, which lead to 

better performing members but do not waste too much useful information already collected in 

the population (Lucasius and Kateman, 1993). To allow GAs to carry out such exploration the 

following principle must hold. 
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Proposition 4.2. (Principle of Maximal Preservation) Given the amount of variation to be 

imposed on the population, this should be done in such a way that there is a 

maximal preservation of information which has accumulated in the 

population during past generations and which is important for the purposes 

of the search task. 

The two most commonly used genetic operators implementing exploration in accordance with 

the PrinCiple of Maximal Preservation are mutation and crossover. Let us discuss them in turn. 

4.3.3.1. Mutation 

Looking at the Principle of Maximal Preservation, we can make a proposition that if we change a 

tiny amount of genes in chromosomes leaving all others alone, then a small variation will be 

imposed on the population with very little disruption of assembled information. The best known 

mechanism for producing variations is mutation, where one allele of a chromosome is randomly 

replaced by another (Eshelman, 1997). If a binary representation is used, then mutation is 

achieved by 'flipping' bits at random. 

Mutation is traditionally viewed as an operator responsible for reintroduCing irreversibly lost 

genes. This means that if the population consists of chromosomes all having the same value of 

a particular gene then it is impossible, using selection and crossover only, to explore the region 

in the representation space wherein the value of this gene is different. It is generally believed 

that mutation by itself cannot solve a complex optimisation problem (Beasley et aI, 1993). 

However, in combination with the crossover operator, mutation is able to tackle very complex 

tasks and is one of the main sources (together with a random start) of raw ideas for evolutionary 

exploration. 

4.3.3.2. Crossover 

The intuitive idea behind crossover is easy to state: given two individuals who are highly fit, but 

for different reasons, ideally what one would like to do is to create a new individual that 

combines the best features from each (the Building Block Hypothesis). Since we do not know a 

priori which features account for the good performance, the best we can do is to recombine 

features at random using a different number of cross pOints. 

The number of cross pOints varies from one (Holland's classical recombination, denoted 1X) to 

m - 1 , where m is the length of a solution string (uniform crossover). There are, of course, 

intermediate options, with a special name of multi-point crossover MX. One often-used version 

of it is 2-point crossover. According to Spears and DeJong (1991), it achieves a compromise 

between striving for minimal Holland's schema disruption and the theoretical argument that no 

disruption occurs for an even number of breakpoints, falling down into gaps between each of 
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the defining positions of schemas (Lucasius and Kateman, 1993). Figure 4.1 illustrates the 2-

point crossover operation: 

t1""Sx~ paren : i 

parent 21 I 

break 1 break 2 

child 1 

~ 

child 2 

Figure 4.1. Two-point crossover 

The success or failure of a particular crossover operator depends in complicated ways on the 

fitness function, encoding and other details of Genetic Algorithms. There are many aspects of 

the crossover operator (positional bias, disruption potential, crossover probability) as well as of 

other GA features (fitness function, selection scheme and mutation), which can be used to 

improve the efficiency of the GA search. The next section gives a survey of different techniques 

used for GA performance enhancement. 

4.4. Enhancement of Genetic Algorithms 

In order to achieve a better performance of Genetic Algorithms a number of decisions need to 

be made, viz. what types of GA operators and which control factor settings are likely to produce 

the desired effect in a short computation time. Control factors quantitatively characterise 

various GA features and generally include the probabilities of crossover and mutation, 

characteristics of the selection scheme, various parameters of the fitness function and some 

other aspects of genetic operators. The following subsections discuss the techniques which 

help to make the decisions on how to choose the GA operator types and control factor settings 

easier. These techniques can be classified into three groups which will be addressed in turn. 

4.4.1. Enhancement of GAs via parameterisation 

This subsection focuses on the issue of selecting numerical values for GA control factors. 

Since GAs have many factors, it is often very difficult to select appropriate values in order to 

draw out a maximum capability of the GA method. In recent years a number of new techniques 

have been proposed which optimise in one way or another the values of GA factors. Lucasius 

and Kateman (1993) and Hatta et a/ (1997) give short surveys of these techniques. The 

following lines of approach are most commonly used in practice. 
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4.4. 1. 1. Ad hoc and skillful optimisation 

In this approach GA practitioners either choose GA factors according to the guidelines 

suggested in the literature or make guesses about rough estimates of the optimal factor setting, 

i.e. 'guestimates', prompted by their own experience. According to Michalewicz (1994), 'it 

seems that finding good values for the GA factors is still more an art than a science'. This 

observation highlights the fact that very often in practice, skillful hand optimisation is the fastest 

and most reliable way for obtaining high performing GA factor configurations because various 

shortcomings generally prevent other approaches from widespread usage (Lucasius and 

Kateman, 1993). However, ad hoc and skillful GA factor optimisation does not have any 

underlying rationale, which facilitates a straightforward transition from one problem of GA factor 

adjustment to another. This means that if, for example, the objective function or encoding 

scheme have been changed for a particular task, then the routine of GA factors tuning has to be 

repeated all over again requiring the same amount of the practitioner's effort. 

4.4.1.2. Meta-optimisation 

If one wants to introduce an automated approach to the optimisation of GA factors- why not use 

Genetic Algorithms themselves; after all, they are designed for optimisation purposes? 

Grefenstette (1986) pioneered this approach, having introduced the concept of "meta-level 

GAs", which operate on a population of GA factor sets. Base-level GAs in Grefenstette's 

approach perform an optimisation of a test suite of objective functions introduced by DeJong 

(1975). Each individual in the meta-GA population encoded six GA factors: population size, 

mutation and crossover rates, generation gap, windowing size and the type of selection. The 

six-dimensional GA factor space was discretised, and only a small number of different values 

was permitted for each factor. Grefenstette managed to obtain factor settings that slightly 

outperform those that DeJong had found by skillful optimisation. Another attempt was made by 

Bramlette (1991) to use Genetic Algorithms for meta-optimisation of "subject" GAs with non­

binary representation schemes. 

Pham (1994) repeated Grefenstette's approach as a preliminary step towards so-called 

competitive evolution. In his method, several populations, each with different GA operator 

variants and factor settings, evolve simultaneously. At regular intervals, the populations' 

performances are compared, and only the population with the highest improvement rate in the 

recent past is allowed to evolve for a few more steps until another comparison is made. The 

competitive evolution approach is similar to a parallel (island) population model, which is a 

method of optimising the GA configuration. 

Concluding the description of meta-evolutionary approaches, we can say that the usage of 

Genetic Algorithms for GA factor adjustment is less computationally intensive in comparison 

with an exhaustive search. Nonetheless, the meta-optimisation procedure permits only a limited 

number of GA factors to be taken into account in order to complete its task within reasonable 
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time constraints. Also, it concentrates only on the point estimation of GA factors, not giving the 

overall picture of the influence of different factors on the GA performance. 

4.4.1.3. Optimisation by systematic search 

An example of systematic search is a full factorial design (or grid search) in the set of GA 

factors. The main merit of this strategy is its guaranteed success, i.e. the best set of GA factors 

will ultimately be found. Moreover, the full grid search facilitates the identification of the GA 

response surface, which defines the performance of Genetic Algorithms as a continuous 

function of GA factors. It is obvious that for continuous GA factors a search grid of any 

resolution will leave some settings of GA factors unevaluated. The response surface, on the 

other hand, provides global information on the quality of all factor settings subject to a certain 

level of statistical confidence. 

One obvious disadvantage of full factorial experimentation, however, is that the computability of 

this task reduces very rapidly with the number of control factors. For example, Schaffer et a/ 

(1989) spent more than one CPU year, using a fairly fast computer, to carry out a full factorial 

search for a relatively small set of GA factors. Therefore, in order to utilise the merits of 

systematic search and also to be able to accomplish the factor optimisation task in reasonable 

time, a compromise to an exhaustive grid search ought to be found. A fractional factorial design 

can be a good alternative here. 

In fractional factorial designs a substantial reduction in the number of experiments is achieved 

by assuming that GA factors are either independent of each other or not significantly interacting 

in a statistical sense. In general, such assumptions are not always justified because some GA 

factors do interact. However in some cases the effect of this may be negligible. On the basis of 

the fractional factorial approach to designing statistical experiments with the GA control factors 

a novel method of GA enhancement will be developed in Chapter 5. Also, it will be shown that 

this novel method is often more advantageous in comparison with other techniques of GA factor 

optimisation. 

4.4. 1.4. Dynamic optimisation 

The last approach to enhancement of Genetic Algorithms via parameterisation is dynamic 

adaptation. Adaptive tuning is the method which determines the values of GA factors 

dynamically during the execution of a program. It has been noticed (Mitchell, 1996), that the 

optimum population size, crossover and mutation rates as well as selection pressure are likely 

to undergo some changes during a GA run. To monitor these changes the adaptation of factor 

values to the ongoing search in real time has been suggested. It can be achieved either by a 

pre-programmed schedule or by self-adaptation. 
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The idea behind a pre-programmed adjusting strategy is to mimic a cooling schedule of 

simulated annealing (Lucasius and Kateman, 1993). Davis (1989) and Syswerda (1991) found 

that linear variations in crossover and mutation rates could be advantageous when crossover 

decreases during a GA run accompanied by an increase in mutation. However, such fixed 

schedules do not monitor closely enough the state of the GA population. These schedules keep 

changing some factors when there may be no need to do so. Booker (1987) adopted the 

scheme in which the crossover rate alters depending on the spread of fitness - for a more or 

less converged population the rate of crossover reduces, automatically increasing the rate of 

mutation and offering the latter more chances to explore the solution space. A serious 

drawback of pre-programmed schedules is that they replace the GA factor set by a large, and 

probably more complex, space of candidate adjustment strategies. 

Self-adaptation, on the other hand, appears to be more flexible. It was most noticeably 

pioneered by Davis (1989). He monitors the fitness of each heuristic operator on the basis of 

the operator's success in producing good offspring. Each operator starts with the same initial 

fitness. Every time an operator is chosen to create a new candidate solution, which replaces a 

low-fitness member of the population, this operator increases its significance weight, 

consequently altering the probability to be applied next time. A weighting figure is allocated to 

.each heuristic operator based on its performance over the past 50 matings. Therefore, during a 

course of a GA run operator probabilities vary in an adaptive, problem-specific way (Beasley et 

ai, 1993). 

There are other approaches to self-adaptation. Tuson and Ross (1996), for example, have 

investigated the c06volutionary approach. In this approach the factors that control the 

evolutionary search process are encoded into GA chromosomes. That is, the representation 

space I is given by 

where I x denotes the set of object variables (i.e. representation of solutions) and Is denotes 

the set of GA factors; thus, the control factors of Genetic Algorithms are allowed to evolve as 

part of the solution process. The general observation however is that, due to a large variation in 

GA performance, dynamic optimisation leads to reliable results only when a limited number of 

control factors are taken into account (Lucasius and Kateman, 1993). Furthermore, experience 

confirms that the approaches, which separate the factor adaptation mechanism from the main 

genetic algorithm, show a better performance (Tuson and Ross, 1996). 

4.4.2. Enhancement of GAs via configuration 

A general form of the GA structure was presented in Section 4.1 and included three component 

procedures: initialisation, selection, and recombination. The particularization of these 

procedures is referred to as a GA configuration. In other words, a GA configuration defines a 

specific implementation within the family of Genetic Algorithms. Having only briefly discussed 
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the vast variety of initialisation and selection techniques and taking into account the fact that the 

number of their combinations is even larger, it becomes evident that the family of Genetic 

Algorithms is excessive. Due to this configuration flexibility, the GA methodology has a versatile 

ability to adapt to very divergent problems (Lucasius and Kateman, 1993). 

However, configurational flexibility can be used not only for adaptation of Genetic Algorithms to 

a given search or optimisation task, but for enhancement of the GA performance as well. A rich 

arsenal of tools that can significantly enhance the efficiency of Genetic Algorithms include but 

are not limited to: 

1. Different representation schemes such as: 

• the method of diploidy and dominance (Goldberg, 1989); 

• niche exploration strategies (Beasley et aI, 1993); 

• sharing and crowding schemes. 

2. Various genetiC operators, for example: 

• inversion; 

• duplication and deletion (Holland, 1992); 

• segregation and translocation. 

3. Novel evolutionary methods such as: 

• messy GAs (Goldberg at aI, 1991), 

• migration and mating restrictions. 

A comprehensive account of all the aforementioned routines may be found in the literature; here 

we will briefly discuss only one configurational technique which will be utilised in the current 

work and involves a restarting facility. 

Using Markov chain analysis, Ghannadian st al (1996) analytically derived an expression for the 

expected time required by GAs to reach an optimal solution. The results obtained can be used 

to safely restart Genetic Algorithms whenever they have been working longer than the expected 

time. By systematically applying the restart procedure we may reach an optimal solution faster 

than if we waited for the results of long, unsuccessful GA runs. Needless to say however, the 

method of random restart has its own limitations. One of the most obvious is the apparent 

difficulty in precise estimation of the expected time for real-life problems. 

In conclusion of this subsection it needs to be pOinted out that despite structural simplicity of 

Genetic Algorithms, the overall evolution process is mechanically very complex due to mutual 

effects of operators, procedures, and GA parameters on each other. Having realised that, it is 

not difficult to understand why the search for an adequate GA configuration still remains an 

innovative and creative endeavour, rarely amenable to analytical approach. The best 

configuration strategies actually appear to be those based on intuitive insights obtained from 

empirical experience (Lucasius and Kateman, 1993). 
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4.4.3. Enhancement of GAs via hybridisation 

In their canonical form Genetic Algorithms implement a blind search by randomised 

recombination of encoded solutions and by exploiting the fitness function value in order to 

determine preferable trials in the next generation (Goldberg, 1989). On the one hand, this 

makes the GA search robust; but, on the other hand, the fact that Genetic Algorithms do not 

utilise the domain-specific knowledge very often puts them at a disadvantage. If knowledge­

augmented operator and/or hybrid techniques are used, the efficiency of GAs is likely to 

improve (Deb, 1997b). 

Therefore, whenever problem specific information exists, it is natural to consider a hybridisation 

of Genetic Algorithms with existing optimisation methods. These methods range from exact 

algorithms discussed in Chapter 3 to meta-heuristic algorithms, for instance simulated annealing 

and tabu search (Ibaraki, 1997). The resultant hybrid algorithm is likely to do better than just a 

simple GA since it incorporates a good deal of domain-specific knowledge. At the same time, it 

almost certainly outperforms the domain-based heuristic on its own, because the good features 

of this heuristic will be exploited in the hybrid system together with all merits of evolutionary 

search (Davis, 1991). In short, hybridisation enhances the GA performance by achieving a 

substantial reduction in computational time and results in more accurate or precise end­

solutions (Lucasius and Kateman, 1993). Figure 4.2 presents different approaches to the 

hybridisation procedure, explanation of which follows. 

Heuristics to 
generate initial 

population 
(pre-hybridisation) 

Heuristics to recover 
feasibility or to 
refine solutions' 

quality 
(post-hybridisation) 

---------------------------, 
GAl 

......... -'----t .. ~ Parent 
... population 

I , I 
t ....... Recombination 

\ 
I--t"~ Offspring 

... population 

l 

Selection 

Heuristics to 
improve candidate 

solutions -.; 
self-hybridisation 

Figure 4.2. Genetic Algorithms and their hybridisation 
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4.4.3.1. Pre-hybridisation 

In some practical situations an inaccurate, yet not entirely useless, estimate of the solution to a 

given problem can be obtained from some knowledge source. Thus the initial GA population 

can be constructed in such a way that it contains a few copies of a solution representing the 

initial estimate, which is expected to facilitate convergence speed. Such an approach 

comprises the essence of pre-hybridisation, which may also be involved in the encoding 

procedure or in the amendment of recombination operators. 

4.4.3.2. Post-hybridisation 

The purpose of post-hybridisation is to refine the end-solution found by Genetic Algorithms, 

whenever the precision of the GA search is comparatively poor (Lucasius and Kateman, 1993). 

For precision improvement a local search technique is used; thus, GAs may in this case be 

regarded as a hill-finder and the local search technique subsequently invoked as a hill-climber. 

Traditional optimisation techniques may serve the role of a hill-climber very well. The only 

problem is that they usually require an estimate solution to start with. Given such a starting 

solution many mathematical programming methods can find a better solution in a more efficient 

way. 

In many practical situations, however, a feasible starting solution is unknown and traditional 

optimisation techniques on their own may fail to find one. Fortunately, robustness of the GA 

search often helps in locating the feasible region in the solution space (McCall and Petrovski, 

1996). After that, well-established hill-climbing techniques (such, for example, as the Complex 

method or the method of Hooke and Jeeves), which heavily rely on the structure of a problem 

domain and therefore are capable of accomplishing the search much faster, can be utilised for 

precision improvement. 

4.4.3.3. Self-hybridisation 

Lucasius and Kateman (1993) use the term self-hybridisation in the sense of hybridisation of 

one genetic algorithm with another, differently configured. The result of such iterated 

reconfiguration is a chain of genetic algorithms each of which - apart from the very last one -

passes its results to a successor for further improvement. 

One example of self-hybridisation is a combination of Genetic Algorithms with Delta-Coding, 

introduced by Whitley et a/ {1991}. In Delta-Coding, instead of encoding solutions as GA 

chromosomes, one encodes modifications or 'delta changes' to a given solution. Therefore, 

when the GA population converges, the numeric representation is remapped so that the solution 

ranges are centered around the best value found so far, and the algorithm is restarted. Whitley 

suggested that a conventional GA could be run once and when the best solution is obtained it is 

passed onto the following delta-coding algorithm for further improvement. In the next chapter 
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such self-hybridisation will be used to find optimal modifications of cancer treatment strategies 

obtained either from GAs or supplied by oncologists. 

4.5. Discussion 

In this chapter a survey of salient GA features has been presented. In essence, Genetic 

Algorithms are based on a conceptually simple application of the principle of competition for 

limited resources and adaptation to surrounding environment. Despite structural simplicity of 

Genetic Algorithms, various recombination, selection, and fitness scaling routines provide 

significant versatility and configurational flexibility, which result in the efficient and robust nature 

of the GA search. Moreover, the search effectiveness and accuracy can be substantially 

improved by a wide range of parameterisation, configuration and hybridisation techniques. 

Needless to say however that, similar to all optimisation techniques, Genetic Algorithms have 

their own limitations and disadvantages. The limitations mainly come from improper choice of 

GA factors such as the population size, the probabilities of recombination operators, and 

selection pressure. GAs are not expected to work on arbitrary problems with arbitrary factor 

settings. Thus, to implement an efficacious search with the help of Genetic Algorithms, it is 

often necessary to adjust GA factors in an appropriate manner using either some guidelines 

from the literature or utilising specific GA factor optimisation techniques described in the 

previous section. 

Secondly, Genetic Algorithms belong to the class of randomised techniques. This implies that it 

is always likely that different results will occur after repeating the same experiment. The 

difference in the outcome may be very large and this large intrinsic variation makes it difficult to 

predict, model and analyse the behaviour of Genetic Algorithms. Moreover, the performance of 

most evolutionary algorithms, GAs in particular, largely depends on the quality of the chosen 

random number generator. With a biased random number generator, the randomness of the 

GA operators will be lost and, although it is not a limitation of the GA method per se, the 

performance of Genetic Algorithms may be disappointing. To ensure that the random number 

generator used is adequate, a designated statistical test has been carried out in the course of 

the present work. The results of this test will be mentioned in the next chapter. 

Another prominent weakness of GAs is the problem of deception. Deception occurs when two 

schemas HI and H2 have the property that the average fitness of HI is greater than the 

average fitness of H 2 even though H 2 includes a solution that has a greater fitness than any 

member of HI' In practice it means that the lower-order building blocks lead GAs away from 

the global optimum. Depending on the excess in the fitness average of the deceptive schema 

over that of the proper schema, all deceptive problems are categorised into two types: partial 

and full deceptive. Fully deceptive problems are very difficult to solve using Genetic Algorithms. 
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The difficulties associated with problem's deceptiveness as well as with high epistasis (Le. gene 

interaction) which has been mentioned earlier, may be tackled in two ways (Beasley et a', 
1993). The first approach is based on alteration of the encoding procedure. Vose and Liepins 

(1991) pOinted out that in principle an appropriate encoding procedure can transform a highly 

epistatic (deceptive) problem to a problem of low epistasis (deceptiveness). So, it is always 

possible to reduce the level of epistasis or deception. Unfortunately, for some problems the 

effort involved in developing such an encoding scheme is comparable in difficulty with solving 

the original problem itself. 

The second approach, on the other hand, employs theoretical analysis of GA performance to 

answer the question whether a given problem is solvable by Genetic Algorithms. A number of 

theoretical methods have been developed to analyse the performance of GAs and can be 

divided into two categories, viz. analytical and stochastic. Strictly speaking, however, all 

outcomes of GA runs are probabilistiC in nature. Therefore, in the context of GA performance 

analysis, by "analytical" is meant methods which are aimed at providing an understanding of the 

nature of the search space in term of GA structures, Le. digital representations of candidate 

solutions and Holland's schemas. For example, the method of a dual solution space developed 

by Battle and Vose (1993) suggests a way whereby it is possible to transform some of fully 

deceptive problems into partly deceptive ones and find their solutions. A second analytical 

method of stable fixed pOints in the search space (Vose and Liepins, 1991; Vose and Wright, 

1995) analyses the points of convergence of the evolutionary operator r: s ~ S , which is 

defined on the search space S and represents the process of the GA search. Stability of the 

convergence points determines whether they represent global or local optima and thus whether 

a sufficiently large GA population will find the global optima or not. 

Stochastic methods of GA performance analysis are mainly concerned with GA dynamics, Le. 

how a finite GA population evolves in time in the presence of population sampling errors 

(Mitchell, 1996). This evolution may be analysed, for instance, using Markov chains (Nix and 

Vose, 1991; Vose, 1993) or using the statistical-mechanics approach (Prugel-Bennett and 

Shapiro, 1994). In some cases stochastic methods are capable of making a very accurate 

prediction of how a GA population will transform from one generation to another and therefore, 

together with analytical methods, may help in resolving the difficulties caused by limitations of 

the Genetic Algorithm method. 

This leaves us with an encouraging conclusion that none of the known weaknesses can 

completely obstruct Genetic Algorithms from successful performance -there is always one way 

or another to overcome the difficulties caused by a particular GA deficiency. Given all the 

advantages of evolutionary optimisation, it is reasonable to assume that Genetic Algorithms can 

outperform the methods of conventional optimisation, or at least give similar results subject to 

increased robustness. To verify this assumption we will apply the GA method to the problem of 

chemotherapy treatment optimisation. This task constitutes the essence and the main 

innovative aspect of the present work and will be thoroughly explored in the following two 

chapters. 
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CHAPTER 5 

SINGLE-DRUG CHEMOTHERAPY OPTIMISATION USING 
GENETIC ALGORITHMS 

This chapter starts the discussion on the innovative aspects of the present work and on the 

original contributions to knowledge which have been made. The major objective of this thesis is 

to apply the GA technique to cancer chemotherapy in order to either develop optimal treatment 

regimens ab initio, or to improve those that already exist. In this chapter we will concentrate on 

the optimisation of single-drug treatments. 

The problem of single-drug chemotherapy optimisation can be solved by different methods. In 

Chapter 3 we showed that if the objective of treatment is to minimise the final tumour size, then 

the problem of chemotherapy optimisation becomes tractable to the linear programming 

method. Linear Programming guarantees that the optimal treatment regimen will be found. 

This can then be used for comparison with regimens obtained from Genetic Algorithms and 

those obtained from other competitive optimisation techniques. The latter methods will be 

represented by the Complex method and the Hooke and Jeeves method for reasons specified 

in Section 3.3. 

The intent of this comparison is to assess: (1) how effective the Genetic Algorithm technique is 

in solving the multi-constrained optimisation problem of chemotherapy improvement, (2) 

whether its effectiveness is better than the effectiveness of the conventional optimisation 

methods, and (3) whether the GA effectiveness can be enhanced. The sections of this chapter 

consequently address these issues. Firstly, it will be shown in Section 5.1 how the optimal 

control problem of cancer chemotherapy can be formulated as a search problem suitable for 

Genetic Algorithms. Two approaches to the problem formulation will be considered. In the first 

approach, referred to as a Genetic Algorithm strategy, the goal of the GA search will be to find 

good treatment regimens which achieve a specified treatment objective and satisfy all the 

constraints. The second approach, referred to as a Regime Modification (RM) strategy, will 
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focus on finding the best adjustment schemes for improving already existing regimens. Also, in 

Section 5.1 we will particularise the most essential implementation features of Genetic 

Algorithms. Section 5.2 presents the comparative results of the GA and the NLP optimisation. 

The comparison is performed on the LP test-bed for a number of optimisation scenarios. The 

issue of GA efficiency will be addressed in Section 5.3 where a novel approach to GA factor 

tuning will be developed. The final section of this chapter, Section 5.4, will summarise the 

results achieved and the conclusions which can be drawn from these results. 

5.1. Transforming Cancer Treatment Optimisation into a GA Problem 

As was shown in the previous chapter, in order to convert the problem of cancer chemotherapy 

optimisation into a search task for GAs we need to specify the following components: 

representation of the solution space, the fitness function and the evolutionary GA procedures of 

initialisation, selection and recombination. Firstly we address the representation component. 

5.1.1. Representation of single-drug treatment regimens 

In the present work the approach, which has been adopted for chemotherapy scheduling, 

assumes discrete drug dosage administration over the treatment period. The acceptability of 

this approach has been vindicated earlier (Section 2.3 and Section 3.2); moreover, the 

optimisation of cancer chemotherapy has been confined to the problem of deciding which 

control vector C = (C;), i = 1, n , representing a drug concentration profile, is the most suitable 

and effective. 

Genetic Algorithms can solve this problem by implementing a multi-directional, implicitly parallel 

search through the solution space S of chemotherapeutic regimens. The representation space 

I of these solutions may be expressed as a Cartesian product 

(5.1 ) 

where A;, i = 1, n are the allele sets encoding the concentration levels C;, i = 1, n of a given 

anti-cancer drug in the blood plasma. In the present work two encoding schemes have been 

adopted. The first scheme, referred to as the Genetic Algorithms strategy, uses a 4-bit 

representation for each concentration C,. Thus all allele sets A;, i = 1, n are identical and 

consist of 16 elements 

A; = {OOOO,OOOI,OOlO,00l1, ... ,1 110,1 11 I} 'Vi = l,n 

Such representation allows each concentration C; to take an integer value in the range 0 to 15 

and any treatment regimen C = (C; ), i = I, n can be represented as a 4n -bit chromosome 

x E lGA: 

(5.2) 
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This approach can, if required, be applied in greater generality. Any desired concentration 

range [0, Cmax ] can be encoded in this way to any required degree of precision, &, by dividing 

C C 
the range into 2P -1 subintervals where ~ < &. The quantity /).C = ~ represents 

2P -l 2P -l 

the smallest change in concentration level detectable by the algorithm. /).C is referred to as a 

concentration unit and plays an important role in the context of GA optimisation. Similarly one 

can in principle divide the treatment period into as many treatment intervals as required. As this 

precision increases however the search space becomes exponentially larger. Specifically, with 

n treatment intervals and 2P concentration levels there are 2np possible treatment regimens 

from which to choose. However it is difficult to control drug concentration with high precision 

and also, treatment intervals do not in practice become arbitrarily short. In this chapter we will 

examine how Genetic Algorithms perform the optimisation of a single-drug treatment, which 

consists of 10 treatment intervals and allows the drug concentration during each interval to have 

16 distinct values. This assumption giving 240 possible treatment regimens is not unrealistic. 

In the second encoding scheme, referred to as the Regimen Modification strategy, each 

chromosome x E I RM represents a modification of a given treatment regimen 

Co = (C
i
O ~ i = 1, n. The representation space I RM has the same form as (5.1), but the allele 

sets Ai' i = 1, n are different and consist of three elements 

Ai = {0,1,-1} "i7'i=l,n. 

The elements of the allele sets represent either no change or an alteration of ± /).C to the 

associated level C~. /).C can take different values; in the present work it has been set to 1. 

Thus the Regimen Modification strategy yields the following form of a chromosome x E I RM 

(5.3) . 

Having specified how chemotherapy treatment regimens can be represented, let us now 

proceed to the issue of their evaluation. 

5.1.2. Evaluation of single-drug treatment regimens 

While discussing the major concepts of Genetic Algorithms in the previous chapter, the 

importance of the right choice of the GA fitness function repeatedly arose. First of all, this 

function must be strongly related to the objective of optimisation. Secondly, all constraints of 

the target problem have to be taken into account in such a way that solutions that satisfy all 

constraints have greater fitness than those which break any constraints. Moreover, it is also 

desirable if solutions, which only moderately violate the problem's constraints can be 

distinguished by their fitness from those which break constraints to a greater degree. Finally, 

since the fitness function is typically calculated a large number of times it should be as simple 

as possible. 
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As was shown in Section 2.2, the Gompertz growth model, being relatively simple, is the most 

suitable model for the description of tumour kinetics during treatment. The fitness function 

f(x),x e I therefore will be specified on the basis of this model and will express the 

effectiveness of a given treatment regimen, encoded as a chromosome x, in achieving a 

particular treatment objective. In this chapter we will focus on minimising the final tumour size 

N (TfmaJ ) after a fixed-length treatment period [To, TfinaJ ]. This objective of chemotherapeutic 

treatment will allow us to use the LP method to obtain the optimal treatment regimen, on the 

basis of which the quality of the GA optimisation will be assessed. 

Thus, the search task for Genetic Algorithms can now be formulated as an optimal control 

problem similar to the problem (3.21)-(3.23): 

Find a treatment regimen C = (C; I i = 1, n) which minimises N (TfinaJ ) (5.4) 

subject to the state equation 

N(t) = [ltln(~)-K'tC;{H(t -t;_I) -H(t -t;)}]N(t), N(O) = No (5.5) 
N(t) ;=1 

and the inequality constraints 

for all i = 1, n 
n 

g2(C) = Ccum - Le; ~ ° (5.6) 
;=1 

for all i = 1,n 

(N.B. The last constraint utilises the result of Lemma 3.1.) The substitution y(t) = In(~) 
N(t) 

simplifies the state equation (5.5) as: 

n 

y(t) + Ity(t) = K L C; {H(t - t;_I) - H(t - t;)} 
;=1 

and yields its analytical solution 

y(t p) = e -Alp {YO + K (eMt -l)t C;e AlH 
} 

It ;=1 
(5.7) 

where p = 0,1,2, ... , n. 

Remembering that N(TfinaJ ) is minimised when y(TfinaJ ) is maximised, we can now formulate 

the objective functional for the problem (5.4)-(5.6): 
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(T.) e-lTnaol 

M .. J(C) Y final - Yo axmllse = 
K(e,w -I) 
A. 

where Yo ~ l{ :0 ) 

" = LC;el(li-I-Trmal) (5.8) 
;=1 

To obtain a GA fitness function from the optimisation functional (5.8), the constraints (5.6) need 

to be taken into account. The incorporation of the constraints into the fitness function is 

implemented via the distance-based penalty functions of the form: 

Pj(g/c)) = Pj(t)dJ,j = I,m 

where d j is the distance between a given solution C and the feasible region corresponding to 

the constraint g j (c); k is the power to which d j is raised to regulate the penalising effect; 

P
j 
(t) are the penalty multipliers and m is the number of constraints. In Section 3.3 it has 

been decided to use constant penalty multipliers with the toxicity constraints (gl (c) and 

g 2 (c) and an exponentially decreasing penalty multiplier with the tumour size constraint 

g3 (c) (see (5.6)). The distance metrics were also defined there (see (3.32)-(3.34». Thus 

using (5.8), we can now build an augmented objective functional which incorporates the 

constraints (5.6) of single-drug chemotherapy treatment: 

(5.9) 
;zl ;=1 

where Ym. ~ In( N:n). and y(I,) can be determined from the equation (5.7). 

The encoding schemes of the Genetic Algorithm (5.2) and the Regimen Modification (5.3) 

strategies provide the following representations of the concentration levels C;: 

4 

GA: C, = L\CL2
4

-
k 

a4(i-l)+k' i = I,n (5.10) 
k=1 

RM: C; = C i
o + a;L\C, i = I,n (5.11) 

The substitutions of (5.10) and (5.11) into the augmented objective functional (5.9) yield the 

fitness functions fGA (x), x E I GA and f RM (x), x E I RM respectively, the full expressions of 

which are given in Appendix A1. These functions are used for evaluation of candidate 

treatment regimens encoded as chromosomes in the representation spaces I GA and I RM . 
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5.1.3. Evolutionary procedures of GAs for single-drug treatments 

Having encoded different treatment regimens as chromosomes and having specified the fitness 

function to evaluate them, we now need to particularise the evolutionary procedures (population 

initialisation, chromosome selection and recombination) in order to start the GA search. 

Initialisation is usually implemented at random (random start). However, as we mentioned in 

Section 4.4.3 on the hybridisation of Genetic Algorithms, sometimes it is possible to obtain a few 

satisfactory solutions to the problem before the GA search begins. These solutions can be 

seeded into an initial GA population (the technique known as pre-hybridisation) and the GA 

search gets a feasible start. In the next section we will examine how the starting condition 

affects the GA performance. 

The selection procedure adopted in the present work is based on combining roulette-wheel 

selection with linear fitness normalisation (see Section 4.3.2). Fitness normalisation is used to 

protect the method of roulette-wheel selection against misleading guidance of 'super'­

chromosomes, which do not represent optimal solutions but whose fitness is vastly greater than 

those of the rest of the chromosomes in the GA population. The presence of 'super'­

chromosomes often leads to the problem of premature convergence; fitness normalisation 

schemes are used to circumvent this problem by expanding the effective range of fitness in the 

GA population. The effective fitness range is expanded by sorting all chromosomes in order of 

raw fitness and then assigning normalised fitness to each chromosome according to its rank. 

The linear normalisation scheme is characterised by two constants, viz. the normalisation 

maximum, Le. the maximum fitness value assigned to the best chromosome, and the 

normalisation slope, which determines how fast the normalised fitness of a chromosome 

decreases with a decrease in the chromosome's rank. These constants can be varied to 

regulate the selection pressure of Genetic Algorithms. Also, due to a randomised selection of 

chromosomes for recombination, it is possible that the best chromosome might not be chosen. 

To prevent a potential source of loss, an elitist strategy of chromosome selection is used 

whereby the single best chromosome from each generation is copied into the succeeding 

generation. Finally, the procedure of chromosome recombination is composed of two genetiC 

operators - two-point crossover and bit-wise mutation. 

In order to exemplify the search process for better chemotherapy regimens using Genetic 

Algorithms let us assume that we are trying to optimise a 10-dose chemotherapeutic schedule 

of Adriamycin with MTD emax = 75 m~ , maximum cumUlative dose Ccum = 550 mg , and the 
m m2 

effectiveness value K = 5.605 .10-3
. The 4-bit representation scheme (see Section 5.1.1) 

allows each concentration C1 to take an integer value in the range 0 to 15 concentration units, 

which makes the value of one unit equal to I1C = 75 = 5 m~ . Thus the maximum cumulative 
5 m 
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550 
dose for Adriamycin is limited to -- = 110 concentration units. The mapping between a 

5 

randomly generated GA chromosome and the corresponding treatment schedule can be seen 

from the following table: 

TABLE 5.1. Chromosome-treatment correspondence 

GA chromosome 0101 1000 1001 0011 0101 1011 1110 1001 0111 1111 

Concentration units 5 8 9 3 5 11 14 9 7 15 

mg 
Treatment regimen -2 25 40 45 15 25 55 70 45 35 75 

m 

The number of concentration units in Table 5.1 is an integer representation of the binary code of 

the given GA chromosome (divided in ten 4-bit portions for the reader's convenience). 

Knowing the numerical value of one 'concentration unit I1C , it is possible to specify the values 

of the drug doses C;, i = 1,10, which constitute the actual treatment regimen corresponding to 

our GA chromosome. Substituting these doses into the formula (5.9), we obtain a quantitative 

characteristic (fitness value) of the chromosome's quality and as such the quantification of the 

merit of the corresponding treatment regimen. On the basis of their fitness values, all 

chromosomes in the GA population will be assigned the probabilities of being selected for 

reproduction - good chromosomes will get a better chance of being passed into the next 

generation. Then the roulette-wheel selection determines which chromosomes will constitute 

the next generation. Each selected chromosome undergoes with certain probabilities the 

recombination procedures of mutation and crossover. Figure 5.1 illustrates the mutation 

process of a chemotherapy schedule: 

Old chromosome 0101100010010011010110111110100101111111 

Old treatment 25 I 40 I 45 I 15 I 25 r 55 I 70 I 45 I 35 I 75 

• Mutation 

New chromosome 0111 1000 1001 0001 0101 1011 1100 1001 0111 1111 

New treatment 35 ! 40 ! 45 ! 5 1 25 I 55 I 60 I 45 I 35 I 75 

Figure 5.1. Schedule mutation 
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In Figure 5.1 the chromosome alleles which have undergone mutation are shown in bold. The 

resultant changes in dose values are also emphasised. 

To illustrate the effect of crossover we will need two chromosomes, and the 2-point crossover 

operator will be used in order to make the illustration simple and concise at the same time. The 

crossing points are chosen in such a way that the first one falls in between the encoding of two 

constituent doses, whereas the second point splits the encoding of a single dose. Figure 5.2 

illustrates the features of crossover recombination . 

crossing point 1 crossing point 2 

Old chromosome 1 0101 1000 : 1001 0011 0101 1011 1110 i 001 0111 1111 
I I 
I I 

Old treatment 1 25 1 40 i 45 I 15 I 25 I 55 I 70 I ~5 I 35 1 75 

I I 

Old chromosome 2 0110 1011 : 0101 1100 1010 0100 0011 d010 0101 1001 
I I 
I I 

Old treatment 2 30 I 55 I 25 I 60 I 50 I 20 I 15 I :10 I 25 I 45 

2-point crossover 

New chromosome 2 0101 1000 0101 1100 1010 0100 0011 q001 0111 1111 
I 
I 

New treatment 25 T 40 125 I 60 I 50 I 20 I 15 I ! 5 T 35 I 75 

New chromosome 2 0110 1011 : 1001 0011 0101 1011 1110 
I 

~010 0101 1001 
I I 
I I 

New treatment 2 30 I 55 i 45 I 15 I 25 I 55 I 70 I ~O I 25 I 45 

Figure 5.2. Crossover of two chemotherapy schedules 

As may be seen from this figure, the effect of crossover on chemotherapy regimens is twofold . 

Firstly, the main task of the crossover operator in the evolutionary search of Genetic Algorithms 

is to assemble better solutions from promising portions (building blocks) of the current solutions. 

Figure 5.2 depicts this assembling process of new chemotherapy regimens. Secondly, by 

allowing a crossing point to split the representation of a single dose, it is possible to achieve the 

effect of mutation of the dose in question (see the effect of the 2nd crossing point) . Thus both 

genetic operators, i.e. mutation and crossover, are responsible for introducing and exploring 

new values of drug doses which constitute chemotherapy treatment. Moreover, together with 

biased selection, the crossover operator is actively involved in the exploitation of useful 
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information accumulated during the GA search in the form of the portions of chemotherapy 

schedules accountable for the treatment success. By assembling these portions together in one 

treatment regimen the objective of chemotherapy optimisation can be achieved. 

The crossover and mutation operators are applied with the probabilities Pc and Pm 

respectively. For conducting the comparative study, the results of which are presented in the 

next section, these probabilities were assigned the following values Pc = 0.5 and Pm = 0.15. 

These values have been found empirically by the author during his formative experiments with 

Genetic Algorithms. A more rational approach to specification of the crossover and mutation 

probabilities, as well as other GA factors, will be developed later in this chapter (see Section 

5.3). However, what needs to be said here is that by adjusting these probabilities one may 

achieve the equivalence of different GA implementations. For instance, if we introduce a 

constraint on the crossover operator which will allow crossover to only juxtapose different 

portions of various treatment regimens without the ability to modify the values of drug doses, 

then the GA implementation will differ from the previously described. Yet one may argue that by 

tuning the values of the mutation and crossover probabilities, the effects of these operators on 

the performance of Genetic Algorithms can be made essentially the same. One practical 

implication of this conclusion is that different implementations of GA evolutionary procedures 

achieve essentially the same result as long as the right balance between the exploitative and 

explorative features of GA search is maintained. 

Finally, before we embark upon the description of what has been achieved in the course of the 

present work, a few words need to be said about the implementation of Genetic Algorithms. 

The GA programs for optimising single-drug chemotherapy treatments and for comparing 

Genetic Algorithms with other heuristic optimisation techniques were written in Pascal and run 

on both Windows (WlN32 and Windows NT) and Unix (SunOS 4.1.4 and Solaris 2.4) platforms. 

The GA program for optimising multi-drug chemotherapies were written in the C++ language in 

order to ease the process of embedding the GA optimisation component into a more general 

decision support system implemented in JAVA. To develop, edit and debug the GA code the 

author used the Borland C++ (v. 5.02) environment. The latest version of the code is -600 lines 

long and the size of its executable file is 85K. A Kolmogorov-Smirnov test has been carried out 

to ensure the randomness of the numbers produced by the random number generator, which is 

used by the GA program. The results of this test confirm the appropriateness of the random 

number generator (! FOBS (X) - FEXP(x)! max= 0.12 which is significantly less than the rejection 

number FCRIT.a-o.O' = 0.26) and complete the preparation work for commencing the GA 

optimisation of chemotherapy treatments. In the next section the single-drug case of this 

optimisation will be addressed. 
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5.2. GA Optimisation of single-drug treatments 

When the objective of optimisation is to minimise tumour size by the end of treatment, the 

optimisation problem of single-drug chemotherapy is amenable to the solution by the optimal 

control method (Martin at aI, 1990) and the linear programming technique (see Section 3.3.1). 

Martin at a/ (1990) found the optimal single-drug regimens for two case studies, which were 

based on the model (3.22) of tumour kinetics. In the first case, the partly constrained problem 

(where only toxicity constraints on the maximum instantaneous and the cumulative doses were 

present) was addressed. The second case was concerned with the fully constrained problem 

(where the tumour size constraint was also considered). In the present work, the partly 

constrained problem was used as the first test for Genetic Algorithms. The purpose of this test 

was to ascertain how quickly and reliably GAs can find an optimal solution in a relatively simple 

case. The result of the GA optimisation was compared with that of the Martin's et a/ study and 

turned out to be very satisfactory (Petrovski at aI, 1998a). 

The performance of Genetic Algorithms on the fully-constrained problem has been studied on 

the test-bed provided by the linear programming formulation of the single-drug chemotherapy 

optimisation problem. As was shown in Section 3.3.1, if an optimisation problem can be 

formulated as an LP problem with a non-empty feasibility region, then the method of Linear 

Programming will guarantee the finding of the optimal solution to this problem. The global 

optimum obtained from the LP technique is used as a target for other optimisation methods to 

attain. The purpose of the current section is to show how Genetic Algorithms perform this task 

in comparison with the Complex and the Hooke and Jeeves methods, which have been selected 

(see Section 3.3) to represent the traditional methods of non-linear constrained optimisation. 

The comparison will be made for a number of Situations, which, being practically meaningful, 

serve to illustrate the strengths and weaknesses of the methods. We distinguish between 

situations where some initial information is supplied to the implementation algorithms in terms of 

a feasible, but not optimal, solution and the situation where no information is supplied. 

Moreover, in cases where a feasible start is given to the algorithms, differences in performance 

occur when the problem's parameters are altered so that the set of feasible solutions increases 

or decreases. The analysis of this performance will be provided later; now let us describe the 

experimental results obtained from the optimisation algorithms started at random. 

5.2.1. Random start 

The efficiency of numerical optimisation methods is dependent to some degree on the starting 

condition. This dependence varies from one method to another; a general rule applied here is 

that the methods, which are less dependent on the starting condition of optimisation, are 

considered to be more robust. The first experimental trial shall therefore ascertain how different 

optimisation techniques can handle the paucity of a priori knowledge about the location of the 

desirable region. The simplest way to do this is to give the implementation algorithms a random 
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start and to examine how far they can progress towards the optimal solution. In all cases where 

there is a non-deterministic outcome, the implementation algorithms are run several times and 

the best results obtained by each optimisation method are compared. 

The optimal solution will be produced by the LP method applied to the following single-drug 

chemotherapy problem: 

Minimise the size of the tumour after administration of 10 discrete doses, resulting in a 

piece-wise constant concentration profile c = (Cj ), i = 1,10 subject to the restricting 

conditions 

(5.12) 

where 0 ~ Cj ~ C max = 15, 'Vi = 1,10 and Chold is the drug concentration necessary 

to maintain the tumour at the maximum permissible level. N.B. The maximum 

instantaneous concentration Cmax is equal to 15 units due to a 4-bit representation of 

GA chromosomes (see the previous section). 

Since No = N max we are forced to start chemotherapeutic treatment without any delay 

because the tumour is growing and without an immediate drug delivery it will exceed N max . 

The rate of tumour growth A and the effectiveness of the drug K have been chosen in such a 

way that the concentration of 10 units (Cho1d = 10) will be sufficient to hold the tumour at the 

level N = No . Every dose which results in concentration less than 10 units will be max 

insufficient to satisfy the tumour size constraint N(t) ~ N max. The maximum cumulative dose 

C is chosen to permit the administration of only necessary drug doses (plus a couple of 
cum 

extra drug units to allow for the rounding error of the execution program). This means that the 

overall drug allowance Ccum will be slightly more than 100 units, which will have to be tightly 

disseminated among the concentrations Cj , i = 1,10 . 

Such choice of the parameters No and C cum is aimed at allowing the optimisation problem 

under investigation to have only a handful of feasible solutions. The task of the numerical 

optimisation techniques (GAs, eM and HJ) is to find a feasible solution given a random start. 

This means that the initial population of Genetic Algorithms is randomly generated. Similarly the 

initial complex C1,k = 1,11 for CM is randomly generated and a random initial vector C1 is 

generated for HJ. (NOTE. The Regimen Modification strategy was excluded from this series of 

experiments since the rationale behind RM is that it will be used to optimally improve known 

feasible regimens, as opposed to randomly generated ones which may be infeasible). 

Under these conditions in general CM and HJ performed poorly, in all cases generating final 

solutions lying in the infeasible region. Various values of the penalty coefficients P2 and P3 for 
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the Ccum and N max constraints respectively were used in successive runs. (NOTE. The 

penalty coefficient P,. is reserved for the maximum instantaneous dose constraint. The GA 

strategy of single-drug chemotherapy optimisation implicitly takes this constraint into account 

through the encoding procedure. However other algorithms will need an explicit formulation of 

the Cmax constraint and the penalty P,. is reserved for this purpose.) Best results were 

obtained for both CM and HJ when one of the penalty coefficients was set to a very low value 

(10 as opposed to the high value of 106
). This approximates the two simpler one-constraint 

problems, defined by relaxing either the N max or Ccum constraint. In these cases HJ and CM 

arrived at solutions which satisfied the more strictly enforced constraint. However the second 

constraint was violated in all cases. When the values of the penalty coeffiCients were close 

together CM and HJ consistently produced final solutions which failed to satisfy either 

constraint. GAs proved robust in the sense that, under all conditions, a feasible solution was 

produced. Table 5.2 compares the best results obtained by each algorithm under a random 

start against the optimal LP solution on the basis of the ratio of the final and the initial tumour 

sizes: 

TABLE 5.2. Algorithms' performance given a random start 

Algorithm 
N(TfinaJ ) 

C cum constraint N max constraint 
No 

LP 0.88 Satisfied SatiSfied 

GA 0.95 
Constraint satisfied for all Constraint satisfied for all 

values of P2 and P3 values of P2 and P3 

CM 0.96 Constraint violated Constraint satisfied 

P2 =10 P3 =106 

HJ 1.03 Constraint satisfied Constraint violated. 

P2 =106 P3 =10 

5.2.2. Feasible start 

The second situation to consider is the case where the searching algorithms are given initial 

information in the form of a feasible solution. In this situation, irrespective of penalty coefficient 

values, all algorithms end up with feasible solutions. However the relative performance of the 

algorithms depends on the size of the set of feasible solutions. This set, referred to as the 

feasible region in the solution space S, represents a search domain for the algorithms; the 

larger its size the more solutions are present to choose from. One way to vary the size of the 

feasible region is through the alteration of the initial tumour size No subject to the same values 

of the problem parameters and constraint boundaries. Two experimental situations will be 

examined here, the particulars of which are now provided. 
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First we consider the situation when No = N max ' i.e. the problem is identical to that addressed 

in the previous subsection. The number of feasible solutions to this problem is very small due to 

the tightness of the cumulative constraint boundary Ccum ' One feasible solution is C, = Chold 

(equal to 10 units) for Vi = 1,10 . This solution was used as an initial vector C , to start HJ and 

as one of the initial vertices for eM; in the case of GAs, the initial population was seeded with a 

few copies of this solution. Also, the RM optimisation algorithm was used in the experiments 

with feasible starting conditions and was given the solution C i = Chold ' Vi = 1,10 as a starting 

regimen for further improvement. The results obtained from the comparison of LP, GAs, RM, 

eM and HJ on the first experimental problem are presented in Table 5.3 and Figure 5.3. 

TABLE 5.3 . Algorithms' performance with No = N max 

Algorithm 
N(Tr.nal ) 

No 

LP 0.88 

RM 0.88 

eM 0.9 

GA 0.95 

HJ 0.95 

14 

If) 
~ 

12 
c 10 OLP 
::J 
c .RM 
0 8 .. OCM '" ... 6 ... 

OGA c 
G) 

4 0 .HJ c 
0 2 0 

0 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Figure 5.3. Regimens resulting from feasible start with No = N max 

These results indicate that the Regimen Modification strategy is the best performer with respect 

to minimisation of the final tumour size. The concentration profile obtained from RM is very 

close to optimal and differs from LP by only one delta change. Table 5.4 gives an extended 

summary of the comparison between LP, RM and GA based on the results presented in Table 

5.3 and in Figure 5.3: 
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TABLE 5.4. Analysis of optimal solutions for the case No = N max 

Treatment interval C1 C2 C3 C4 Cs C6 C7 Cg C9 CIO 

Concentr. units 10 10 10 10 10 10 10 10 10 13 

LP 
mg 

Drug dose, -2 50 50 50 50 50 50 50 50 50 65 
m 

Final tumour reduction = 12% 

Concentr. units 10 10 10 10 10 10 10 10 11 12 

RM 
mg 

Drug dose, -2 50 50 50 50 50 50 50 50 55 60 
m 

Final tumour reduction = 12% 

Concentr. units 10 13 9 9 12 9 13 10 9 9 

GA 
mg 

Drug dose, -2 50 65 45 45 60 45 65 50 45 45 
m 

Final tumour reduction = 5% 

Analysing the results obtained from the traditional optimisation methods, we can see that CM 

performs creditably, whereas HJ, similarly to GAs, finds a treatment regimen which while 

feasible is far from optimal. It was noticeable that GAs did not appear to be significantly assisted 

by the given solution in terms of the best solution eventually produced. Also, GAs, as well as 

RM, were much slower compared to the other methods. They needed 15-25 minutes to 

complete the search compared to less than a minute of computational time required by LP, CM 

and HJ. Furthermore, the time spent by Genetic Algorithms in search for the best solution 

significantly varied depending on the values of the GA factors such as the probabilities of 

mutation and crossover, the overall number of generations, selection pressure, etc. The 

specification of these factors and the analysis of their effects on the GA performance will be 

discussed in Section 5.3.2. 

In the second experimental situation the initial tumour size was set to a half of the maximum 

limit, i.e. No = O.5N max' Thus the tumour was allowed to double in size and still be within the 

acceptable boundaries. This might be realistic if the tumour is very small or perhaps suspected 

but not observed. Since the drug allowance remains the same as in the previous experimental 

situation, there is a higher number of feasible solutions. When No = O.5N max' it is possible to 

postpone the commencement of treatment, thus allowing delivery of the late treatment doses at 

a higher rate in order to minimise the final tumour size. The results of this minimisation 

performed by the contesting methods are tabulated in Table 5.5 whereas the best treatment 

regimens obtained form each optimisation method are presented in Figure 5.4. 
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TABLE 5.5. Algorithms' performance with No = O.5N max 

Algorithm 
N (Tfinal ) 

No 

LP 0.65 

RM 0.66 

GA 0.7 

CM 0.72 

HJ 0.95 

16 

14 
~ 
c: 12 DlP 
::::J 
c: 10 
0 

. RM 
; 8 DGA 
~ -c: 6 OCM 
CII 
0 . HJ c: 4 0 

~ 
0 

J 2 

0 
C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 

Figure 5.4. Regimens resulting from feasible start with No = O.S N max 

The latter experiment shows that RM is still the best method as far as minimisation of tumor size 

is concerned. The relative performance of GAs and CM change around compared to the 

previous experiment; HJ performs very poorly, only achieving the same tumour size reduction 

as in the fi rst case. Similarly to the previous experiment, we summarise the comparative results 

of LP, RM and GA in Table 5.6 (overleaf). 
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TABLE 5.6.Analysis of optimal solutions for the case No = O.5N max 

Treatment interval C, C2 C3 C4 Cs C6 C7 C8 C9 CIO 

Concentr. units 0 3 8 8 8 13 15 15 15 15 

LP 
mg 

Drug dose, -2 0 15 40 40 40 65 75 75 75 75 
m 

Final tumour reduction = 35% 

Concentr. units 1 3 8 8 13 8 15 15 15 15 

RM 
mg 

Drug dose, -2 5 15 40 40 65 40 75 75 75 75 
m 

Final tumour reduction = 34% 

Concentr. units 3 9 9 5 6 12 13 15 15 15 

GA 
mg 

Drug dose, -2 15 45 45 25 30 60 65 75 75 75 
m 

Final tumour reduction = 30% 

To complete the experimental study of Genetic Algorithms within the framework of single-drug 

chemotherapy optimisation, we will consider an optimisation problem which is not tractable to 

Linear Programming but is solvable by Genetic Algorithms. In the next section one such 

problem is addressed. 

5.2.3. Prolongation of the patient survival time 

In cases when the tumour is deemed incurable the main objective of chemotherapy treatment is 

to maintain a reasonable quality of life for as long as possible. One way to mathematically 

express this objective is to maximise PST: 

maximise T such that N(T) = N max 
C 

subject to the state equation (5.5) and the constraints (5.6). As has been shown in Section 

5.1.2, after the substitution y = In( ~) the state equation (5.5) becomes: 

Since the condition N(T) = N max is equivalent to yeT) = Ymin = In(~J ' we can express 
N max 

T as follows: 
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eA.T = ~ + K (eM! -1)i: C;e)J;-1 
Ymin A. . Ymin ;=1 

Excluding from the last expression all the terms that do not depend on the control variables 

C; , i = 1,10, we obtain the following non-linear objective functional: 

maximise J(e) = In[i: c;e)J/-I] 
1=1 

Thus the problem of PST prolongation is not tractable to the linear programming approach. On 

the other hand, all what is required to apply Genetic Algorithms to it is to change the first term in 

(5.9) from t. Cie>('wT~) to I{ t. C,ehH 
]. Having made this change in the GA program 

used in the experiments with random start (see Section 5.2.1) and having run the program for 

5000 generations, the following solution has been obtained: 

TABLE 5.7. Optimal single-drug treatment with respect to PST prolongation 

Treatment interval C1 C2 C3 C4 Cs C6 C7 Cs C9 CIO 

Concentration units 15 12 8 3 8 6 6 13 6 15 

mg 
Drug dose, -2 75 60 40 15 40 30 30 65 30 75 m 

Patient survival time = 33 treatment intervals 

The treatment regimen presented in Table 5.7 does not break any of the constraints (5.6) and 

achieves the PST value of 33 treatment intervals. Recall that a treatment interval is the period 

during which the concentration of drug in the blood plasma remains the same. In the present 

work we will not specify the duration of treatment intervals in order to make the GA approach to 

chemotherapy optimisation as general as possible. However, to give the reader an idea of how 

long it may be, we can say that practicing oncologists usually use weekly treatment intervals in 

their chemotherapy schedules {Dearnaley et aI, 1995}. 

Therefore, combining all presented experimental cases together, one can see that the methods 

of evolutionary optimisation (GAs and RM) either outperform the conventional numerical 

optimisation methods with respect to robustness and effectiveness, or give comparable results. 

The only drawback of the former methods is that they tend to take more time to perform an 

optimisation task (in the experimental studies presented above, RM and GAs needed 

approximately 10-20 minutes of computational time as opposed to less than a minute for eM 
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and HJ). However, the performance of Genetic Algorithms can be significantly enhanced, 

resulting in noticeable reduction of the computational time required by GAs or RM to find a 

reasonably good solution. The next section presents a novel approach to the enhancement of 

Genetic Algorithms. 

5.3. Enhancement of GA Performance 

Having decided to use Genetic Algorithms for solving a search/optimisation problem, one is 

faced with the task of specifying the setting of GA factors which are likely to produce the best 

results. The experiments presented in Section 5.2 illustrated that the proper choice of these 

factors is crucial to the success of evolutionary optimisation. Moreover, bearing in mind that 

real-life chemotherapy treatment usually utilises more than one drug and therefore makes the 

optimisation problem under investigation more complex, the dependence of the GA efficiency on 

the choice of the factor setting becomes more marked. Thus, before attempting to solve the 

multi-drug chemotherapy optimisation problem using the evolutionary approach, we need to 

examine mechanisms for tuning the values of GA factors. 

These mechanisms may be based on: (1) systematic evaluation of various factor values; (2) 

adopting the factor setting applied in similar application scenarios; (3) theoretical analysis of GA 

factors. The optimal values of GA factors are determined by the properties of the representation 

space I, by the size of the GA population and by the types of the evolutionary procedures 

used. Due to a vast diversity of representation spaces and due to a large number of feasible 

evolutionary procedures, a universally valid method of GA factor tuning does not exist 

(Freisleben, 1997). Also, the large number of possibilities precludes an exhaustive search of 

the space of operators and operator probabilities thereby advocating different approaches to GA 

factor adjustment. Several proposals and empirical studies have been made in the literature to 

establish these approaches. We discussed them in detail in Section 4.3.1, having indicated 

their merits and shortcomings. The outcome of that discussion was that the majority of GA 

factor tuning methods concentrate on selecting a champion from a limited set of factor settings. 

Such selection is incomplete and does not guarantee the global optimality of factor values. 

Therefore, in this section a new technique for GA factor tuning will be introduced, which has a 

potential to gain information about the global behaviour of Genetic Algorithms and thus about 

the optimality of GA factors. This technique is based on regression modelling of GA 

performance in terms of the factors that Significantly affect this performance. The regression 

modelling is implemented using the methods of experimental design and statistical inference, 

application of which in the present context comprises one of the innovative aspects of this 

thesis. The details and the benefits of the statistical approach to GA factor tuning are explained 

in the following subsections. These subsection are aimed at: (1) finding the most appropriate 

measure of GA performance (Subsection 5.3.1); (2) developing a systematic approach based 

on statistical inference for tuning the values of GA factors (Subsection 5.3.2); (3) confirming that 

85 



the new approach is statistically reliable and is superior to the known methods of GA 

factorisation (Subsection 5.3.3). Firstly we will specify the measures of GA performance. 

5.3.1. Measures of GA performance 

In order to analyse the performance of an optimisation method, a certain measure of its 

efficiency needs to be introduced. In the case of Genetic Algorithms, such efficiency will be 

characterised by the number of GA generations, hereafter denoted as \{' , which are required to 

find a feasible solution. A feasible solution will be sought to the LP test-bed problem defined in 

the previous section (see (5.12». 

There are a number of reasons why \{' is the most convenient characteristic of GA efficiency. 

First of all, as the experiments with a random start illustrated (Section 5.2.1), to find the feasible 

region in the solution space is often the most difficult part of the search for optimum. The ability 

to consistently accomplish this task puts Genetic Algorithms in a better position compared to 

eM and HJ; once the feasible region is found, the difference in performance of the selected 

methods becomes less radical. However, another important issue arises here, that is how fast 

GAs can possibly be in finding a feasible solution. The number of generations \{' specifically 

addresses this issue and as such adequately characterises the efficiency of GAs. Secondly, 

from the implementation point of view, it is a very straightforward task to detect the presence of 

a feasible solution in the GA population and count the number of prior generations which led to 

the appearance of this solution. Moreover, once a feasible solution has been found, thereby 

specifying '1', the program running Genetic Algorithms can be stopped. This substantially 

reduces the computational time required to run a large number of statistical experiments. These 

reasons justify the choice of \{' as a characteristic of GA efficiency. 

Due to the fact that Genetic Algorithms implement the search in a randomised fashion, the 

number of generations 'I' is a random variable. Random variables are described by probability 

distributions; each variable has its own distribution. However, it is often possible to approximate 

the distribution of a particular random variable by a known statistical distribution which is chosen 

depending on: (1) the nature of the problem; (2) the underlying assumptions associated with the 

distribution; (3) the shape of the graph obtained from plotting the available data; and (4) the 

convenience and simplicity afforded by the approximating distribution. To find a suitable 

approximation means to be able to adjust the parameters of a known distribution in such a way 

that the distribution curve will fit the experimental data obtained for a given random variable. 

The adjustable parameters for some common distributions are as follows: for the uniform 

distribution - lower and upper endpoints; for the normal distribution - the mean value and the 

standard deviation; for the exponential distribution - the mean; for the Gamma, the Beta and the 

Weibull distributions - the shape a and the scale f3 parameters. If certain parameter values 

of a particular common distribution provide the approximating curve which satisfies an 
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appropriate goodness-of-fit test, then a given random variable is said to have this particular 

distribution and may be characterised by its parameters. 

To obtain a distribution list for the random variable \{' 50 independent runs were performed of 

the GA program, which implements the search for a feasible solution to the problem (5.12). 

These runs produced a positively skewed distribution, for approximation of which many common 

statistical distributions have been tried. The attempt to fit the Weibull distribution produced the 

best result. Figure 5.5 gives a graphical illustration of the quality of this approximation . 
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Figure 5.5. Distribution of the measuring variable \{' 

Quantitatively the approximation of the distribution is characterised by the Kolmogorov-Smimov 

goodness-of-fit test. The maximum difference between the observed value of the cumulative 

distribution fundion for 'P and the expected value is max IFoBs (x) - FEXP (x)1 = 0.0512 , 

which is significantly less than the rejedion number (FCRlT = 0.352). Therefore , the 

Kolmogorov-Smimov test is safely passed and the parameter values of the Weibull distribution 

(the shape parameter a = 0.6623 and the scale parameter f3 = 1496.38) can be used to 

characterise the random variable 'P. The scale parameter f3 is especially suitable for this 

purpose since it is closely related to the mean value of 'P (Devore, 1995), i.e. 

Ji '+' = f3 . r{l + a 1) where r is the Gamma fundion. (For more detailed description of the 

Weibull distribution see Appendix BO.) The mean value Ji't' indicates the average number of 

generations required for a given GA program to find a feasible solution and hence characterises 

the efficiency of Genetic Algorithms. 
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Yet it is not very convenient to use the mean value of '¥ since available statistical packages do 

not directly estimate Ji '¥ ' Instead, they provide the value of fJ , which hereafter will be used as 

the main measure of GA efficiency. 

Although the Weibull distribution fits the experimental data very well, it is not the most 

conven ient distribution to deal with. Some of the facilities of statistical inference are valid only 

under the assumption that the approximating distribution is normal. The logarithmic 

transformation of the random variable '¥, log('¥), makes the normal distribution acceptable to 

approximate the experimental data since the normality test of the later distribution is passed as 

can be seen from Figure 5.6 (all data fall into the 95% confidence interval which is outlined by 

the blue lines). 

99 

95 

90 

80 

.- 70 
C 60 
Q) 

50 U .... 
40 Q) 

a.. 30 

20 

10 

5 

Approximation by lognormal distribution 

" 

2 3 4 

Data 

Mean 

SIDer. 

5 

2.81 042 

0.752705 

Figure 5.6. Distribution of '¥ after the logarithmic transformation 

The mean value Ji lovt,. '¥ ) of the transformed random variable can be used as an alternative 

measure of GA efficiency whenever the normality of distribution is required . 

Having established the performance measure, we can now try to find an expression for this 

measure in terms of GA factors ¢, (such as the probabilities of mutation and crossover, the 

overall number of generations, selection pressure, etc) : 

(5 .13) 

where / is the number of the GA factors which significantly affect the performance. To 

ascertain which factors are significant and to particularise the relation (5.13) a systematiC 

approach will be employed based on statistical analysis and described in detail in the next 

section. 
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5.3.2. Statistical analysis of GA performance 

The ultimate goal of the statistical analysis presented here will be to estimate the optimal factor 

values ¢;orA that minimise the performance measure (5.13) of Genetic Algorithms. (The 

performance measure needs to be minimised since it is directly related to the number of 

generations'll, the lesser values of which are preferable.) This will be done in three steps. 

First of all a screening experiment will be conducted reducing the number I of the GA factors 

which need to be included into the model (5.13). Only significant factors, variation of which 

noticeably (in a statistical sense) affect the performance, will remain in the model. 

On the basis of the significant factors a second-order regression model will be obtained of the 

form: 

I 

P = ao + La;¢; + Lbij¢;¢j (5.14) 
;-1 ISiSjst 

where aO,a;,bij E R for 'Vi,j. The regression model is a result of a central composite 

experiment, which comprises the second step of the statistical analysis. Thirdly, and this will be 

the last step, the standard calculus techniques will be applied to the regression model (5.14) to 

specify the optimal values of significant GA factors. These values are the solutions of the 

following equations: 

ap = 0 'Vi = Ii 
a¢; , (5.15) 

More detailed description of the steps leading towards the optimal setting of GA factors are now 

provided. (NOTE. All experiments involved in the present analysis were designed, 

implemented and interpreted using the MINITAB statistical package, a number of outputs from 

which will be included in the text.) 

5.3.2. 1. Screening experiment 

The number of GA factors which might affect the performance of Genetic Algorithms is quite 

large. In order to ascertain how many of them really affect the performance, and therefore 

should be included in the model (5.13), a preliminary experiment will be carried out which 

utilises a factorial design. Factorial designs, i.e. designs where all factors are crossed, are more 

advantageous and efficient compared to designs in which only one experimental factor is varied 

at a time (Johnson and Bhattacharyya, 1992). Factorial designs allow the study of multiple 

factors in the same experiment and the assessment of the manner in which these factors 

interact. If no interactions are present, then the effect of each factor can be evaluated with the 

same efficiency as if the whole experiment had been devoted entirely to that factor (Wadsworth, 

1998). However, factorial designs with even a moderate number of factors necessitate a large 

number of experimental trials. Therefore, factorial designs are usually restricted to those with all 
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factors at only two or three levels. Such designs are referred to as 2 k and 3 k designs, 

respectively. 

The interpretation of experimental results obtained from factorial designs is based on the 

analysis of variance (AN OVA) , a detailed description of which is given in Johnson and 

Bhattacharyya (1992). ANOVA allows one to test the hypothesis that the variation in the 

performance caused by changing the level of a particular factor is statistically different from the 

variation due to random errors. If this is the case, then the factor causing such variation is 

considered to be significant and will be included into the model (5.13). Otherwise, if the factor's 

effect is comparable with random errors associated with performance measurements, the factor 

will be excluded from further consideration. 

The merit of the factorial design is that it arranges experimental trials in such a way that all main 

factors, as well as their interactions, can be easily estimated. However, by assuming that some 

of the interactions do not exist, it is possible to construct fractional factorial designs requiring 

fewer experimental trials. This may be especially useful when each trial necessitates a large 

amount of replicates as in the case, for example, of obtaining the Weibull scale parameter P 
characterising the GA performance. To validate this parameter, each trial in a factorial 

experiment is repeated 25 times. 

By requiring fewer trials, fractional factorial designs facilitate less tedious statistical 

experimentation. For example, consider the case of four factors ¢I' ¢2' ¢3 and ¢4 each at two 

levels. A complete 24 factorial design would necessitate 16 runs, while using a one-half 

fraction of a 24 design (denoted as 2
4
-

1
), the four factors can be studied in only eight runs. A 

2 4- 1 fractional factorial design is constructed as follows. Starting with a 23 design, one 

assumes that the ¢1¢2¢3 interaction does not exist and uses it to measure the effect of a fourth 

factor ¢4' The effect of ¢4 is said to be confounded with the ¢1¢2¢3 interaction, and what is 

actually being measured by ANOVA in this case is the effect of ¢4 plus the effect of ¢1¢2¢3 . 

The assumption that the interaction ¢1¢2¢3 produces no effect allows us to attribute the result 

obtained from ANOVA to the effect of the fourth factor ¢4' The relation ¢4 = ¢1¢2¢3 is called a 

generator for the fractional factorial design and is used to identify other confounding patterns (or 

alias structure of the design). Thus, a one-half fraction of a 2k design requires only half as 

many experiments as a complete factorial design. Smaller fractions (2 k
-

2
, 2k

-
3 etc.) 

necessitate an even fewer number of experimental trials, but to obtain these fractions more than 

one generator is needed. This means that the measures of high-order interactions will be lost; 

however in many practical situations such sacrifice is quite acceptable (Box, Hunter and Hunter, 

1978). 
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In this section we will use a fractional factorial approach to designing the experiment aimed at 

the evaluation of GA factor significance. Seven factors will be examined: 

• the penalty coefficient for breaking N max ; 

• the penalty coefficient for breaking C cum ; 

• the probability of mutation; 

• the probability of crossover; 

• fitness normalisation maximum; 

• fitness normalisation slope; 

• the number of cross-points for crossover. 

For examining the effects of these factors on GA performance, a screening experiment has 

been carried out utilising a 27
-

2 fractional factorial design. Usually, when factorial designs are 

used in industrial-type experiments, the levels of experimental factors are determined by the 

characteristics of the production process (e.g. the highest and lowest permissible levels of 

temperature, pressure, viscosity etc.). While experimenting with GA factors however such 

guidelines are unavailable and the designer of Genetic Algorithms has no option other than to 

make guesses about the appropriate levels of GA factors. In our screening experiment the 

following high and low levels for the aforementioned GA factors have been used: 

TABLE 5.8. Levels ofGA factors (one drug) 

GA factors Variable Low High 
level level 

Penalty for exceeding N max ;1 100 500 

Penalty for exceeding C cum ;2 15 95 

Probability of mutation ;3 0.05 0.20 

Probability of crossover ;4 0.25 0.50 

Fitness normalisation maximum ;s 100 500 

Fitness normalisation slope ;6 1 10 

Number of cross-points for crossover ;7 2 20 

The design and the results of the screening experiment are listed in Appendix 81.1. (In the 

design matrix 0 represents the low level of a GA factor and 1 represents the high level.) For 

each experimental set of factors, 25 replicate runs of the GA program were carried out. (Recall 

that the experiment is based on the GA optimisation of the problem (5.12).) The results 

obtained for each setting of GA factors are approximated by the Weibull distribution. The scale 

parameter f3 of the approximating distribution characterises the performance of GAs under the 

factor setting which yields such performance. 

91 



The analysis of the screening experiment is presented in Figure 5.7, where the significance of 

each GA factor is shown in the form of a histogram. The length of each column is proportional 

to the significance of the GA factor corresponding to this column. The fact that a column 

stretches over a certain threshold (depicted by the dotted line which corresponds to the critical 

value of the t-statistics and is calculated by MINITAB) indicates the significance of the 

corresponding GA factor with respect to its effect on the performance measure. 
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Figure 5.7. MINITAB analysis of the screening experiment (one drug) 

As can be seen from Figure 5.7, only two GA factors, viz. the probabilities of mutation (~3 ) and 

crossover (~4 )' significantly affect the performance of Genetic Algorithms. In terms of the 

chemotherapy optimisation problem this means that the speed of finding a feasible treatment 

regimen is affected only by the frequencies of modifying the constituent doses and of 

exchanging various portions of different regimens. The magnitude of penalties for breaking the 

constraints or the selection pressure towards better treatment regimens in the current GA 

population do not significantly influence the search speed (as long as these penalties and 

pressure are present) . The effects of 'insignificant' factors are indistinguishable from the effect 

which might be caused by random errors of performance measurements; thus, the other factors 

will be excluded from further analysis. The significant factors ~3 and ~4' on the other hand, will 

be examined more thoroughly in the next section, where a regression model of the form (5.14) 

will be constructed in terms of these factors. 

The last remark of this subsection is that all GA factors ~i' i = 1,7 , which have been examined 

here, belong to the category of controllable factors. This means that the designer of Genetic 

Algorithms has a direct control over them and can choose their values. However there is 

another category of factors, which also affect the performance of GAs but the values of which 

are predefined by the optimisation problem and as such lie beyond the designer's control. For 

example, the rate of tumour growth A. in the objective functional (5.8) may be considered as an 
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uncontrollable factor. The important corollary of this subsection is that the effects of 

uncontrollable factors can also be assessed by the factorial approach to experimental studies. 

(More details on this aspect of the screening experiments are given in Petrovski et al (1998b).) 

5.3.2.2. Central composite experiment 

Often when studying continuous factors, after finding their effects to be significant, one is 

interested in finding conditions (values of the factors) that lead to a particular response, usually 

a maximum or minimum. The responses of an experiment when considered as a function of the 

possible values of the factors are called a response surface, which is usually expressed in the 

form of a regression model. The designs used to study a response surface are referred to as 

response surface designs, amongst which the central composite design is commonly used for 

fitting a second-order regression model of the form (5.13) into the experimental data 

(Wadsworth, 1998). 

The central composite design is based on a 2k factorial design and derived from it by adding 

2k design points, where k is the number of experimental factors. The additional pOints are 

required for obtaining a response surface whose quality is characterised by the coefficient of 

determination R - sq (ideally equal to 100%) and by the lack-of-fit ratio. In MINITAB this ratio 

is measured by the p - value which denotes the probability of getting such differences 

between the observed experimental data and the responses predicted by the regression model. 

If p - value is greater than 0.05 then the regression model is considered to be adequate and 

can be used for making inferences about the experimental factors. 

In the previous section we established that only two GA factors, tP3 and tP4' significantly affect 

the performance of Genetic Algorithms. Now the effects of these factors will be examined more 

closely by carrying out a central composite experiment. The performance measure is again 

obtained by repeating each experimental run 25 times and fitting a Weibull curve into the 

resultant observations. The scale parameter P of the fitted curve is used as the response 

attributed to each setting of experimental factors. The design matrix and the results of the 

central composite experiment are listed in Appendix B1.2. 

The analysis of these results yields the following regression model, which particularises the 

equation (5.14): 

p=1723-5874tP3 -3731tP4 + 7565(J; + 2281(J; + 4683tP3(J4 (5.16) 

The lack-of-fit ratio calculated for this model by MINITAB is expressed as p = 0.207 and 

R - sq = 88.4% . A graphical representation of the regression model is shown in Figure 5.8. 
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Figure 5.S. Response surface of GA performance (one drug) 

As can be seen from this graph, the curvature of the response surface indicates that within the 

experimental ranges of factors ¢3 and ¢4 there is a certain setting of these factors at which the 

performance measure P attains its minimum. Small values of f3 imply that Genetic 

Algorithms require a small number of generations 'I' to find a feasible solution to the problem 

under investigation and hence perform an efficient search. The goal of undertaken regression 

analysis therefore is to find the optimal values of ¢3 and ¢4 which minimise the performance 

measure p of Genetic Algorithms. The last step that needs to be taken to attain this goal is 

the solution of the system of differential equations (5.15), which after particularisation of the 

regression model (5.16) acquire the following form: 

8p = - 5874 + 15130¢3 + 4683¢4 = 0 
8¢3 

(5.17) 

This system yields the optimal values for the significant GA factors which represent the 

probabilities of mutation (¢3) and crossover (¢4): 

{
¢{ = 0.1981 

¢7 = 0.6146 
(5.18) 

To verify that the factor estimates obtained from the statistical analysis really improve the 

efficiency of the GA search, a confirmation experiment has been carried out. In the confirmation 

run of the GA program the mutation and crossover probabilities were set at their optimal levels, 

whereas the values of other GA factors listed in Table 5.8 were chosen arbitrarily from the 
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specified in that table ranges. 25 replicates of the random variable \f were obtained during the 

confirmation experiment and a Wei bull curve was fitted into the resultant data. The estimate of 

the Weibull scale parameter for the confirmation data is P = 27.6893, which is better than any 

result of the screening and the central composite experiments. In order to ascertain whether it 

would have been possible to obtain the same improvement of GA performance had we used 

alternative factor tuning methods, a comparative study has been undertaken, the results of 

which are presented in the next section. 

5.3.3. Statistical approach vs. conventional methods 

In the previous section we have demonstrated that with the help of the statistical analysis of GA 

factors it is possible to improve the efficiency of Genetic Algorithms. However we need to 

substantiate the benefits of employing the statistical approach introduced when compared with 

other methods for adjusting GA factors. A short survey of these latter methods was given in 

Section 4.4.1 where it was indicated that in addition to ad hoc and skilful factor adjustment 

techniques, there exist systematic approaches which can be used for comparison. 

5.3.3. 1. Selection of a contestant method 

In Section 4.4.1 three main groups of systematic approaches to GA factor optimisation were 

presented, viz. meta-optimisation, optimisation by factorial experiments and dynamic 

optimisation. The statistical methodology of GA factor tuning introduced in Section 5.2 is based 

on factorial experimentation and therefore belongs to the second group of approaches. Thus, to 

make an unbiased comparison, a contestant method ought to represent either dynamic 

optimisation approaches or meta-optimisation. 

Dynamic optimisation (adaptation) of GA factors is a group of methods which determine the 

values of GA factors dynamically during the execution of the program implementing Genetic 

AlgOrithms. As was pOinted out in Section 4.4.1.4, these methods tune the values of GA factors 

using either pre-programmed schedules or self-adaptation strategies (e.g. by monitoring the 

effectiveness of each evolutionary operator (Davis, 1989) or by using a co-eVOlutionary strategy 

(Tuson and Ross, 1996)). Although potentially promising, the dynamic optimisation of GA 

factors heavily relies on designer intuition about the best set-up of adaptation procedures. 

According to Beasley et a/ (1993), the methods of dynamic factor tuning replace an optimisation 

task defined on the set of candidate GA factors by the optimisation operating on a larger and 

more complex space of candidate adaptation strategies. The experiments with changing the 

starting condition of the GA search and with modifying the constraints of cancer chemotherapy 

(implemented in Section 5.2) have shown that the dynamics of the problem of chemotherapeutic 

treatment optimisation changes with the set-up of the problem. Since the techniques of 

dynamic GA factor tuning often necessitate rethinking of the adaptation strategy when the 

problem's set-up has been changed, these techniques do not suit very well for the task of GA 

performance enhancement in the context of cancer chemotherapy optimisation. 
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Meta-optimisation, on the other hand, is more directly comparable to the method of statistical 

inference. The statistical approach implements the modelling of the performance of Genetic 

Algorithms in terms of GA factors and then finds the factor values which optimise the 

performance model. The meta-optimisation methods, operating on a population of GA factor 

settings, carries out a heuristic search through the space of all possible settings of GA factors 

and tries to find the best setting in order to enhance the GA performance. Because of this 

conceptual similarity between the meta-GA and the statistical approaches to GA factor tuning, 

the meta-GA method has been chosen as a contestant method for the comparison. 

5.3.3.2. Meta-GA optimisation 

To tune the factors of Genetic Algorithms using Genetic Algorithms themselves has been a 

fascinating idea for quite a long time. Empirical studies in this area were originated by DeJong 

(1975) when he devised a suite of five test functions presenting the scale of optimisation 

difficulty for the gradient techniques. Using DeJong's suite as a test-bed for GA optimisation, 

Grefenstette (1989) suggested a robust approach to determining the good values of GA factors 

whereby the factor settings themselves were encoded as chromosomes and evolved within a 

meta-GA population. Schaffer et a/ {1989} expanded the test function suite in an attempt to 

make the meta-GA approach more versatile and robust. 

To assess the impact of GA factors on the efficiency of Genetic Algorithms two performance 

measures, online and offline indexes, have been proposed (Grefenstette, 1989). The online 

index, attributed to a particular factor setting, is simply the average fitness of all base-level 

chromosomes tested by the genetic algorithm with this factor setting. This measure would be 

appropriate in situations where each test of base-level solutions must be taken into account 

(Schaffer et aI, 1989); the online index penalises GA factor settings that tend to test many poor 

solutions before locating the good ones. Thus, to do well on this performance measure, a 

setting of GA factors must provide the search with the ability to quickly find the region where the 

best solutions are situated. 

The offline index, on the other hand, characterises a given GA factor setting by monitoring only 

the fitness of the best base-level solution found by the genetic algorithm with this factor setting. 

This measure does not penalise genetic algorithms which explore poor regions of the search 

space on the way to better solutions. In this chapter we are concerned with the ability of 

GenetiC Algorithms to locate, as well as with their efficiency in dOing so, any feasible solution to 

the optimisation problem of cancer chemotherapy. The offline index is a more suitable measure 

in this case, since if the best solution in a GA population satisfies the feasibility criteria, then the 

optimisation goal is attained and there is no need to consider the quality of other solutions in the 

population. Therefore, the offline index will hereafter be used to evaluate the quality of a meta­

GA solution. 
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There are a number of forms which the offline index may take. The standard approach to the 

definition of this index is based on comparing the fitness of the best solution found by GAs with 

that of the best solution obtained by a random search (Grefenstette, 1989). Alternatively, the 

number of generations 'P can be used as an offline index of GA performance for the reasons 

discussed in Section 5.3.1. Since the latter approach makes the comparison of meta-GAs with 

the statistical method more straightforward, we will adopt it in the comparative study which is 

now presented. 

5.3.3.3. Comparison between meta-GAs and the statistical method 

Earlier in this chapter we established that the performance of Genetic Algorithms, optimising 

single-drug chemotherapeutic treatments, is affected by two factors, viz. by the probabilities of 

mutation (Pm) and crossover (Pc)' The utilisation of the statistical approach to tuning these 

probabilities yielded the optimal setting (5.18). Let us now examine how meta-GAs perform the 

same task of finding the optimal values for these factors. 

The solution space S for the meta-GA method will be S = [0,0.5] x [0,1] , where [0,0.5] and 

[0,1] are the ranges of acceptable values for the probabilities of mutation and crossover 

respectively. The representation space I of meta-GAs is defined as 

where the first seven genes a 1a 2 ••• a 7 encode Pm and the last seven genes 08a9' •• 014 

encode Pc' Since the use of a 7-bit encoding allows these GA factors to have 128 distinct 

values (including 0), the mapping between the representation and the solution spaces of meta­

GAs can be expressed by the following relations: 
7 27-1 

Pm = t;2.127 'a" 

14 214-" 

pc=6127· a" 

(5.19) 

To run the meta-GA program itself the standard GA factor set, suggested by Grefenstette 

(1989), and a standard GA program configuration were used: that is, population size = 50, 

crossover probability = 0.6, mutation probability = 0.001, the meta-GA program uses 

generational replacement, windowing fitness scaling and the elitist selection strategy (see 

Chapter 4). After evaluating 1000 settings of the GA factors under examination, the meta-GA 

program found the following best combination: 

{
p':t = 0.109 

pC; =0.867 
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Having obtained these values, a confirmation experiment was run similar to that carried out for 

the optimal set (5.18) . The results of the confirmation experiments with the optimal factor 

settings (5.18) and (5 .20) are listed together in Appendix B1.3. A general observation, which 

can be made from their comparison, is that the values of GA factors obtained from the statistical 

analysis seem to be better tuned. To statistically prove this fad we need to employ a 

hypothesis test on the inequality of the samples' means. The most commonly used test for this 

purpose is a two-sample one-tailed t-test. However, the t-test assumes the normality of 

samples' distributions. Therefore the logarithmiC transformation of the confirmation data has 

been performed before testing the hypotheSiS that the means of the two confirmation samples 

are not equal. On a logarithmic scale, the distributions of the results of the confirmation 

experiments are normal (see Section 5.3.1) and Figure 5.9 presents the boxplots of the 

experimental data. 
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Figure 5.9. Comparison of the confirmation results 

The application of a one-tailed t-test to these data confirms that at a statistical level of 95% the 

confirmation results obtained from the setting (5.18) are better compared to those yielded by the 

setting (5.20). Quantitatively this can be expressed by the value of the t-statistic for the 

confirmation results on a logarithmiC scale: 1 = 6.78 > (/01% = 3.277). Alternatively, Wilcoxon 

Confidence Intervals for the medians on the original data scale can be used, which are detailed 

in the following table: 

TABLE 5.9. Wilcoxon Signed Rank Confidence Intervals 

Median Confidence Interval 
Confidence 

level 

statistical run 19.0 (14.0,27.0) 95% 

meta-GA run 108.5 (68.5, 162.0) 95% 
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The Mann-Whitney test of the data on the original scale confirms the conclusion drawn from the 

t-test (the value of the corresponding non-parametric statistic is W = 370.0, which shows a 

significant difference (p < 0.0001) between the confirmation runs). Hence, as may be seen 

from all these comparisons, the statistical tuning method, developed in this thesis, performs 

better optimisation of GA factors than the alternative methods of GA factor tuning. 

5.4. Conclusions 

In this chapter we demonstrated how evolutionary optimisation can be applied to the problem of 

single-drug chemotherapy. On the basis of the optimal control approach (Martin et a', 1990) to 

modelling and optimising chemotherapeutic treatment a search problem has been formulated 

suitable for solution by the methods of evolutionary computation. Amongst these methods two 

particular techniques, viz. Genetic Algorithms and Regimen Modification, have been chosen to 

implement the task of finding good chemotherapeutic regimens. (NOTE. There exist other 

methods of evolutionary optimisation such, for instance, as Neural Networks or Simulated 

Annealing. The choice of Genetic Algorithms in the present context can be explained by the 

fact that GAs are better suited for the problems requiring optimal parameterisation and/or 

scheduling (Baeck at a', 1997).) Appropriate solution representations and fitness functions for 

the specified evolutionary strategies have been found which take into account the objectives of 

treatment optimisation and the constraints of cancer chemotherapy. 

To evaluate the quality of evolutionary optimisation, its robustness and efficiency in comparison 

with conventional optimisation techniques (CM and HJ), a test-bed was used based on the 

linear programming transformation of the optimisation problem under investigation. The 

treatment regimens obtained from GAs, RM, CM and HJ were compared on the optimality scale 

provided by lP. This comparison has shown first of all that in cases when the search starts 

from an arbitrary point in the solution space, Genetic Algorithms are able to find a solution which 

satisfies all constraints. Finding such a solution was a problematic issue for the traditional 

optimisation techniques, which consistently ended the search in the infeasible region of the 

solution space when a random start was given. The robustness of Genetic Algorithms with 

respect to the ability to find a feasible treatment regimen regardless of the starting condition of 

the search was the first important experimental result of the present work. This result illustrated 

the usefulness of Genetic Algorithms in the context of chemotherapy optimisation, especially for 

the development of novel treatment strategies ab initio. Secondly, in cases when the 

optimisation starts from a feasible solution, the methods of evolutionary computation (GAs and 

RM) have shown either superiority or, in the worst case, compatibility with traditional 

optimisation techniques. This means that whenever there is a treatment regimen approved by 

clinicians and therefore feasible, the utilisation of Genetic Algorithms or Regimen Modification 

for its improvement also can be more effective compared to the use of non-linear programming 

methods of constrained optimisation. 
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The disadvantage of evolutionary optimisation is that it is a time consuming procedure. 

However, by tuning certain factors which determine the properties of the evolution process it is 

possible to noticeably improve the speed of the GA search. In this chapter a novel approach to 

GA performance enhancement has been developed, based on statistical inference and 

regression analysis. This approach outperforms an alternative method of factor tuning and its 

application yields a substantial improvement in the search speed (the number of required GA 

generations to find a feasible chemotherapy regimen has been reduced from -500 to -20). 

Moreover, statistical modelling of the search speed provides the data, on the basis of which it is 

possible to predict the likely time of search completion. For example, the results of the 

confirmation experiment with the optimal factors found by the statistical approach indicate that 

the 95% confidence interval for the median number of GA generations required to find a feasible 

solution is [14,27]. Therefore, it might be useful for improvement of the search efficiency to 

restart Genetic Algorithms after a certain amount of generations (30 generations in our case) 

rather than to wait for the completion of long runs. The statistical approach to GA factor tuning 

provides the data necessary to determine the safe restarting time in each particular case. 

However, the statistical approach is not a panacea for determining the optimal values of GA 

factors. Consider for instance the situation when due to either a large random variation in 

experimental responses or due to an inappropriate choice of factor domains the factorial 

experiment cannot reliably identify the significant factors; then the consequent regression 

analysis becomes meaningless. What one may attempt to do in that case is to modify the factor 

ranges using an intuitive approach and to repeat a factorial experiment. If this attempt fails, 

meaning that GA factors have no control over the search speed, the process of factor tuning 

should be abandoned. Still, the merit of the statistical approach is that it necessitates the 

evaluation of much fewer factor settings to establish the fact that GA performance is not 

affected by the factors' values. 

As can be seen from all the conclusions made above, the problem of single-drug chemotherapy 

optimisation has provided a fruitful case study for the assessment of how useful and effective 

the method of Genetic Algorithms can be in the context of chemotherapeutic treatment of 

cancer. It has been verified in this chapter that the GA method implements a robust and 

effective search for good solutions to multi-constrained and non-linear optimisation problems. 

The Regimen Modification version of the method, also based on evolutionary search, turned out 

to be the most adequate technique for improving feasible but non-optimal solutions to 

optimisation problems of a similar sort. To evaluate the quality of the GA and RM optimisation, 

the LP test-bed with a known optimal solution was used in this chapter. The results of this 

evaluation have shown that the evolutionary methods can perform the required optimisation task 

very well. Having acquired the confidence in the ability of GAs and RM to handle multi­

constraint non-linear optimisation problems, we now can apply these methods to situations 

where none of the known techniques of mathematical optimisation have been used or have led 

to a conclusive outcome. The next chapter, which is concerned with the optimisation of multi­

drug chemotherapy, presents an example of such a situation. 
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CHAPTER 6 

MULTI-DRUG CHEMOTHERAPY OPTIMISATION USING 
GENETIC ALGORITHMS 

The optimisation of multi-drug chemotherapy is the culminating aspect of the present work. The 

material presented in the previous chapters of this thesis was necessary to prepare the ground 

and to make a number of essential contributions towards the development of a practical method 

whereby the effectiveness of multi-drug chemotherapeutic treatments can be improved. Having 

accomplished aU these, we can now concentrate on the implementation issues of multi-drug 

chemotherapy optimisation. 

In practice oncologists usuaUy utilise multi-drug treatments due to the ability of such treatments 

to better deal with drug resistance (Goldie and Coldman, 1979; Birkhead and Gregory, 1984; 

Wheldon, 1988; Martin and Teo, 1994). This emphasises the importance of a reliable and 

practically usable approach to the optimisation of multi-drug chemotherapy. However, when a 

cocktail of anti-cancer drugs is administered to a cancer patient, the tumour kinetics under such 

treatment and the toxicity constraints become more complex. In particular, the fourth constraint 

of cancer chemotherapy (see Section 1.3), which is concerned with the risk reduction of toxic 

side effects produced by multiple drugs, now has to be taken into account. Finding a 

mathematical expression for this constraint is a non-trivial task which will be addressed in this 

chapter. However what is conceivable even without mathematical formulation is that in the 

presence of the toxicity constraint on multiple drug administration, Linear Programming cannot 

be applied to the problem under investigation without its substantial oversimplification. 

Moreover, if the goal of a multi-drug treatment is to minimise the overall tumour burden or to 

prolong the PST (see Section 1.2), then the objective of optimisation becomes a non-linear 

function of the control variables. As a result of this the LP technique cannot provide the optimal 

multi-drug regimen. Since in the previous chapter we showed that the methods of Genetic 

Algorithms and Regimen Modification show the best performance with respect to the robustness 

and the effectiveness of the search for better treatment regimens, the choice of these methods 

as optimisation tools for multi-drug treatments seems to be natural. 
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The following sections of this chapter are aimed at developing, exploring and utilising such 

optimisation tools. Section 6.1 addresses the particulars of how the optimisation problem of 

multi-drug chemotherapy can be transformed into a search problem suitable for Genetic 

Algorithms and how these particulars differ from those of the single-drug case. Furthermore, in 

Section 6.1.3 the statistical approach to GA factor tuning (discussed in Section 5.3) will be 

applied in the attempt to enhance the speed of the GA search for good multi-drug treatment 

regimens. Section 6.2 presents the resultant treatment regimens which have been found by 

Genetic Algorithms subject to different optimisation objectives of cancer chemotherapy. Having 

developed and explored a workable version of Genetic Algorithms for the optimisation of multi­

drug chemotherapeutic treatment, this version can be encapsulated in an autonomous 

optimisation module and can be used in a more general framework. Section 6.3 specifies the 

framework, into which the GA optimisation module can be incorporated, and gives the details of 

this incorporating process. Finally, in Section 6.4 we will focus on implications of the results 

obtained in this chapter, as well as on the practicality of the optimisation module developed. 

6.1. Multi-Drug Chemotherapy as an Optimisation Problem for GAs 

The transformation of any practical problem into an optimisation problem for Genetic Algorithms 

involves specifying the following: (1) the encoding scheme, (2) the fitness function and (3) the 

evolutionary procedures of initialisation, selection and recombination. Let us start with the 

encoding scheme. 

6.1.1. Representation of multi-drug treatments 

In Section 5.1.1 we described in detail how a single-drug treatment can be encoded as a GA 

chromosome. A discrete dosage approach was adopted to represent treatment regimens and 

two encoding strategies, viz. Genetic Algorithms and Regimen Modification, were suggested 

and implemented. In the case of multi-drug treatments the representation approach and the 

encoding strategies remain the same, subject to slight modifications. 

First of all, the vector of control variables now acquires the form c;:;: (C ij ), i ;:;: 1, n, j ;:;: 1, d , 

where d is the number of drugs used in the treatment and C ij are the constants denoting the 

concentration of the j til drug in the blood plasma during the i til treatment interval. In the 

present work the maximum number of drugs in chemotherapeutic cocktails will be limited to 10 

since, according to the collaborating oncologists, it is uncommon in practice to administer too 

many drugs simultaneously. The number of treatment intervals also will be equal to 10 for the 

sake of simplicity of simulation experiments. (Recall that during each treatment interval the 

concentration levels of all drugs in the blood are assumed to be constant.) However, should a 

practical situation necessitate a larger number of discrete multi-drug doses or anti-cancer drugs, 

the number of control variables eli can be increased. 
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All possible control vectors C = (C ij ), i = 1, n, j = 1, d constitute the solution space S for the 

problem of multi-drug chemotherapy optimisation. The representation space 1 of S can be 

expressed as a Cartesian product similar to that of (5.1) 

(6.1) 

In order to make the encoding procedure of single-drug treatments compatible with the multi­

drug case, the allele sets AI will utilise the same encoding schemes, viz. the 4-bit scheme 

AI = ~la2a3a4 : a k E {O,I} Vk = 1,4} 

and the sign scheme 

AI = {O,I,-I}. 
These schemes allow one to implement the Genetic Algorithm and the Regimen Modification 

encoding strategies for representing multi-drug treatments. The former strategy yields the 

following form of a chromosome x E 1 GA 

X = ~la2a3 ••• a 4nd : a k E {O,I} Vk = 1,4nd} 

whereas the latter strategy represents a chromosome x E 1 RM as 

x = ~la2a3 ••• a nd : a k E {O,I,-I} Vk = I,nd} 

(6.2) 

(6.3) 

The encoding functions, mapping the representation spaces 1 GA and 1 RM onto the solution 

space S, will have the following forms (see (5.10) and (5.11) for comparison): 
4 

GA: Cij = !l.C j L24
-

k 
a4d(i-I)+4(j-I)+k' Vi = I,n,j = I,d (6.4) 

k=1 

RM: Vi = I,n,j = I,d (6.5) 

where C~ are the control variables associated with the treatment regimen which is undergoing 

the improvement process using RM; !l.C j are the concentration units attributed to each drug. 

As may be seen from (6.4), the adopted GA encoding strategy uses the same number of 

gradations for all anti-cancer drugs. Recall that the concentration unit and the length p of a 

binary string representing the concentration level are related as 

!l.C = Cmax - Cth 

2P -1 

where Cmax is the maximum tolerable concentration of a given anti-cancer drug; Cth is the 

concentration level at which the drug ceases to have a therapeutic effect. In the case of single­

drug chemotherapy, !l.C had a unique value. However, when multiple anti-cancer drugs are 

used with different maximum concentration levels, the meaning of the concentration unit 

becomes ambiguous. 
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There are two ways to resolve this ambiguity. One way is to fix the value of the concentration 

unit I!!C and to use bitstrings of variable length to encode concentrations of different drugs in 

accordance with their Cmax level. The alternative way is to use the same length of bitstrings for 

all drugs (Le. to have the same number of gradations regardless of Cmax ) and to adjust the 

value of I!!C for each drug accordingly. (NOTE. This dilemma is important only for the GA 

encoding strategy. This is because the GA strategy incorporates the C max constraint via 

encoding and makes the length p of bitstrings and the concentration unit I!!C dependent on 

each other.) To make the GA implementation of multi-drug chemotherapy optimisation 

compatible with that of the single-drug case, the approach of fixing p will be adopted in the 

present work. Then, the concentration unit for each drug is gauged using the method of 

potency factors whereby a specific factor is assigned to every anti-cancer drug used for 

composition of cancer chemotherapy regimens (Henderson, 1997). A potency factor for each 

drug is calculated by normalising its Maximum Tolerable Dose (MTD) with that of Adriamycin. 

Adriamycin has been chosen as a standard since, according to Perry (1992), it "is perhaps the 

single most important drug in the chemotherapists' arsenal, used in a wide range of 

malignancies". The MTD is used since it is a common chemotherapeutic measure, which 

enables direct comparison between drugs and which has been directly established on human 

patients in Stage 1 trials. 

Consider an example. Suppose we want to calculate a potency factor for Cisplatinum whose 

MTD is equal 120 mg/m2
. The MTD for Adriamycin is 75 mg/m2

, therefore the potency factor for 

Cisplatinum is: 

MTD standard 75 5 
pcisplatinum = = - = - = 0.625 

MTDCisplatinum 120 8 

The potency factor of Adriamycin itself obviously is equal to 1. Since we have decided to use 

Adriamycin as a gauge, the standard concentration unit hence will be 

I:l.C. = 75 mg/m
2 

= 5 mg/m 2 . 

15 

However, a concentration unit for Cisplatinum, for instance, will be different and will be 

calculated as follows: 

/).C· 5 mg/m 2 

I!!C - = = 8 mg/m 2 

cisplalinnum - 0.625 
P cisplatinum 

So if we decide to administer the maximum amount of Cisplatinum, that is 15 concentration 

units in our binary representation, then we deliver the dose ( 15 * 8 mg/m 2 = 120 mg/m 2), which 

is equal to MTD for this particular drug. The potency factors of other anti-cancer agents most 

frequently used in multi-drug cancer chemotherapy are tabulated in Appendix C. 
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Applying the concept of potency factors, we can now revise the representation functions (6.4) 

and (6.5) in order to settle the ambiguity of multiple drug encoding on the same scale: 

GA: C /le· ~24-k \-J. -1 . -1 d 
ij = --L.J a4d(H)+4(J-l)+k' v I = , n, } = , 

Pj k=1 

(6.6) 

o /lC· 
Cij = Cij +ad(H)+j -- Vi = I,n,j = I,d 

Pj 
RM: (6.7) 

The functions (6.6) and (6.7) map chromosomes in I GA and I RM respectively onto the space 

S , the elements of which are potential solutions to the problem of multi-drug chemotherapy 

optimisation. In order to define the fitness function for GAs we need to establish a way to 

evaluate the quality of these potential solutions. The next section addresses this issue. 

6.1.2. Evaluation of multi-drug treatment regimens 

As in assessing the quality of single-drug chemotherapy regimens (see Section 5.1.2), multi­

drug treatments will be evaluated on the basis of the objective functional J (c) which specifies 

a treatment goal. As was pointed out in Section 1.2, a cancer chemotherapy treatment may be 

either curative (the treatment goal is to reduce the tumour to a critical size N cure) or palliative 

(the treatment goal is to prolong PST and maximise the patients' quality of life). In the present 

work we are mainly concerned with finding a curative treatment; therefore the primary objective 

of the multi-drug chemotherapy is to eradicate the tumour. 

The objective of tumour eradication can be mathematically formulated using two approaches. 

The first approach, which has been already actively exploited in the previous chapter, results in 

the following form of the objective functional: 

minimise J 1 (C) = N (Tfinal ) (6.8) 

where [To, Tfinal ] is the fixed - length treatment interval. 

The alternative approach to tumour eradication takes into account the kinetics of tumour 

development and attempts to keep the tumour burden to an absolute minimum at all times 

during the treatment interval. The latter approach enacts the second objective of 

chemotherapeutic treatment and can be formulated as follows: 

Tflnal 

minimise J 2 (C) = J(N(t)-Ncure )2/+1dt 
o 

where I = 0,1,2, ... (6.9) 

Intuitively speaking, the objective functional (6.9) is a gradual transition from tumour size 

minimisation to prolongation of the patients' survival time. Since the integrand in (S.9) is raised 

to an odd power, the minimisation of J 2 (c) is equivalent to reducing the tumour size N (I) 

below a certain limit Ncure and forcing the tumour burden to stay there for as long as possible. 

Thus, the tendency to increase the time duration, when a certain condition is satisfied, comes 
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into play, which is closely related to prolongation of PST. The patient survival time T itself is 

defined as the instance when the tumour reaches its maximum tolerable level N(T) = N max . 

Therefore, the objective of PST prolongation may be formulated as follows (Martin and Teo, 

1994): 
T 

maximise J 3 (C) = JIdt 
o 

(6.10) 

The objective functionals (6.8)-(6.10) are to be optimised subject to the following state equation 

(the multi-drug version of (5.5»: 

N(/) = N(t) '[Aln(~J -IK) "ICij{H(t -ti-I) - H(t -ti)}] (6.11) 
N(t) )=1 i=1 

where Cij the control varibles denoting the concentrations of the anti-cancer drugs used; 

K j the quantities representing the efficacy of the anti-cancer drugs; 

and the extended set of constraints: 

'Vi = I,n,j = I,d 
n 

g2(C) = Ccwn ) - LCij ~ 0 'Vj = I,d 
i=1 

'Vi = l,n 
(6.12) 

d 

g4(C)=Cs-effk - L11~Cij ~O 'Vi=l,n,k=l,O. 
)=1 

The first two constraints (gl (c) and g2 (c» specify the boundaries for the maximum 

instantaneous dose Cmax ) and the maximum cumulative dose Ccum ) of each anti-cancer drug 

used. The third constraints, g 3 (c) , limit the tumour size during treatment. The last constraints, 

g4 (c) , restrain toxic side effects of multi-drug chemotherapy. The factors 11k) represent the 

likelihood of damaging the k th organ or tissue by administering the j'h drug. To qualitatively 

characterise these factors the system of pluses is used, exemplified in Table 1.1 and fully 

covered in Dearnaley at 8/ (1995). After transforming them into a numerical format, the factors 

T/~ can be used to ensure that the administration of multiple drugs does not lead to an excess 

of the maximum tolerable value of side-effect toxicity Cs-eff k attributed to each organ 

k,k = 1,0 (see g4(C». The present study takes into account toxic side effects on five 

(0 = 5 ) vital organ and tissues, viz. on bone marrow, kidney, peripheral nerves, liver and heart. 

For the drugs, most commonly used in breast cancer treatments, the risk factors T/k attributed , 
to these organs and tissues are tabulated in Appendix C. 
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On the basis of whether a given regimen satisfies the constraints (6.12) or not, a distinction will 

be made between feasible and infeasible multi-drug treatment regimens. Feasible regimens will 

be evaluated simply by ascertaining what values of the objective functionals (6.8)-(6.10) they 

yield. The evaluation of infeasible regimens, on the other hand, involves penalising the values 

of the objective functionals by applying the distance-based penalty functions corresponding to 

each constraint gs(C)'s = 1,4. The distance metrics from the feasible regions defined by the 

constraints gl (c) and g2 (c) take the following forms for the multi-drug case: 

(6.13) 

The distance from the feasible region defined by the maximum tumour size constraint g 3 (c) is 

measured in the same way as for single-drug treatments and uses the substitution 

y(t) = In(~J : 
N(t) 

" d3 = Ie-P"I max 2 
{Ymin - Y(t;),o} 

;=1 

where Y min = In(~) 
N max 

(6.14) 

The measure of toxic side effects produced by multi-drug treatments has not been introduced 

previously and needs a more detailed explanation. In discussion with the collaborating 

oncologists it has been deemed reasonable to assume that the risk factors 17k} have an additive 

property and the maximum number of risk pluses, which any organ or tissue can sustain, is 

limited to five. Hence, if a particular multi-drug treatment accumulates more than five risk 

pluses on any vital organ or tissue, then this treatment will be considered infeasible and 

penalised in accordance with a degree of the constraint violation. This degree is measured by 

the following distance from the feasible region of g 4 (C) : 

/I n {d } 
d4 = IImax 2 I 17k}Cij -Cs_efTk'O 

i-I k=1 }=I 

(6.15) 

where Cs_efT k quantifies the maximum tolerable value (i.e. corresponding to five risk factors) of 

side-effect toxicity for the k Ih organ. 

Having defined the distance measures from the feasible regions attributed to the constraints 

g s (c), s = 1,4, we can now augment the objective functionals (6.8)-(6.10). After the 

substitution y(t) = ~ N~t) ) , the state equation (6.11) yields the following analytical solution: 
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(6.16) 

If we omit the terms which do not contain the control variables, the augmented functional (6.8) 

becomes 
J n 4 

J (c) = ~ K·· ~ Coo ·e~·(li-I-1n"'l) - ~ P d 
I L..JJL..Jy L..Jss (6.17) 

j_1 ;=1 s=1 

where d
f 

are the distance measures defined in (6.13)-(6.15); Ps are the corresponding penalty 

coefficients. The augmented objective functional (6.9) of overall tumour minimisation takes the 

following form when I = 0 : 
n J t 4 - () ~~ C ~'(II-I-I) ~Pd J 2 c = L..JL..JKj • ij • e P - L..J s s (6.18) 

;=) s=1 

In order to express the last treatment optimisation objective (6.10) in the augmented form, we 

firstly use (6.16) to determine the time T when yet) becomes equal to Ymin; secondly we form 

on the basis of this time an unconstrained optimisation objective, and finally we apply the 

(6.19) 

Thus, potential multi-drug regimens may be evaluated on the basis of the augmented functional 

(6.17)-(6.19) depending upon which particular treatment objective oncologists have in mind. The 

composition of these functionals with the mappings (6.6) and (6.7) produces the fitness 

functions for GA and RM respectively. The expressions for the fitness functions are listed in 

Appendix A2.. 

The last remark concerning evaluation of potential treatment regimens is related to the 

estimation of efficacy parameters K j' The effectiveness of each anti-cancer drug has to be 

calibrated so that known clinical trial results can be reproduced. The trial results detail the 

percentage of patients who either partially or completely responded to chemotherapy treatment. 

Henderson (1997) has developed a procedure for calibrating drug efficacy by analysing 100 

tumours with normally distributed doubling times. This procedure takes into account the 

difference in patient response to a given anti-cancer drug and as such provides more reliable 

estimates of K j . Appendix C details the specific efficacy values which have been calculated for 

each drug being used in our studies. These values are listed along with maximum toxicity 

doses (Cmuj and Ccumj ) and potency factors Pj' all of which will be used in computational 

implementations of the GA optimisation of multi-drug treatments. The current section is aimed 

at specifying the particulars of these implementations. We have already addressed the 

encoding and the evaluation aspects; now the details on evolutionary procedures of Genetic 

Algorithms will be provided. 
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6.1.3. Evolutionary procedures of GAs for multi-drug treatments 

All evolutionary procedures (i.e. population initialisation, chromosome selection and 

recombination) of Genetic Algorithms for multi-drug treatments are similar to those of the single­

drug case. The GA population consists of 50 chromosomes initialised at random. The selection 

procedure is the combination of the roulette-wheel selection with a linear fitness normalisation 

scheme. The recombination procedure uses the crossover and mutation operators. 

However, chromosomes representing multi-drug treatments are 10 times longer than their 

single-drug counterparts. An increased size of the chromosomes, as well as an additional 

constraint imposed on the optimisation task, might have deformed the search space of 

treatment regimens. If that is the case, then the optimal GA factor values obtained in Section 

5.3.2 need to be readjusted. To do this the statistical approach to GA factor tuning, developed 

in the previous chapter, has been employed. 

Firstly, a screening experiment utilising a 2 8
-

3 fractional factorial design has been carried out 

with the following levels of the design factors: 

TABLE 6.1. Levels of GA factors (multiple drugs) 

Low High 
GA factors Variable 

level level 

Penalty for exceeding N max f/JI 100 500 

Penalty for exceeding Ccum f/J2 15 95 

Penalty for exceeding Cs-eff f/J3 75 750 

Probability of mutation f/J4 0.05 0.20 

Probability of crossover f/Js 0.25 0.50 

Fitness normalisation maximum f/J6 100 500 

Fitness normalisation slope f/J7 1 10 

Number of cross-points for crossover f/J8 2 200 

Apart from the presence of an additional penalty coefficient, there is only one difference 

between the contents of Table 6.1 and Table 5.1. (Table 5.1 contains the levels of GA factors 

for the screening experiment in the case of single-drug chemotherapy optimisation.) This 

difference refers to the high level of the last GA factor, viz. the number of crossing pOints 

pertinent to the crossover operator. In the multi-drug case, where the chromosomes are much 

longer, the number of crossing pOints may be increased in order to examine how it affects the 

GA performance. 
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The results of the multi-drug screening experiment are listed in Appendix B2.1, whereas the 

analysis of these results is presented in Figure 6.1. 

Numb.rof 
cralSinG points 

Mutllton 
problb,loty 

Crollowr 
probability 

Norm.Ns.tion 
maximum 

Norm.Ii,.tlon 
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Pen.ntty 
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o 

Significance of GA factors (multi-drug case) 

Response ,. Weibull sc.le paramet.r . beta: 
L .... I ofl lgnftcance • . 10) 

2 3 4 5 6 7 I-value 

Figure 6.1. MINITAB analysis of the screening experiment (multiple drugs) 

This analysis reveals that in the case of multi-drug treatment optimisation there are also two GA 

factors significantly affecting the performance measure (the scale parameter of the results' 

distribution). However, the set of significant factors is different - the probability of crossover, 

which was significant in the single-drug case, now gives way to the number of crossing points; 

the mutation probability still retains its significance. The significance of the number of crOSSing 

points for the crossover operator implies that in the case of multi-drug chemotherapy 

optimisation it is important to specify the right average length of treatment portions from which 

new treatment regimens are assembled. If this length is inappropriate, then the juxtaposition 

procedure implemented by crossover does not lead to treatment improvement. 

Another feature of multi-drug chemotherapy optimisation is that it is possible to group single­

drug doses within GA chromosomes either by the dose number or by the drug number. In the 

former case all the single-drug doses delivered during the first treatment interval are listed first, 

then all the doses delivered during the second interval and so on. In the latter case, we first list 

all doses of the first drug delivered over the whole treatment period, then all doses of the 

second drug and so on. As was mentioned in Section 5.1 .3, the effect of crossover on 

chemotherapy regimens depends on the allowed positions for crossing points. If crossing points 

can be anywhere along the chromosome length, then crossover may lead to the alteration of 

single-drug doses in addition to rescheduling the administration of drugs. By selecting the 

second grouping strategy and by confining crossing pOints only to the places which separate the 

doses of the same drug, it is possible to eliminate the effects of dose alteration and inter-drug 

exchange. A number of experiments have been carried out to see the benefits of the latter 

implementation of the crossover operator. These experiments have shown that as long as the 

number of crOSSing points is specified appropriately and the trade-off between the exploration of 

the search space and the exploitation of the accumulated information is achieved, the 

implementation differences do not playa significant role. 
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Having completed a screening experiment and having singled out significant GA factors, the 

next step to tuning these factors is to perform a regression analysis using a response surface 

design. For this purpose a central composite experiment has been carried out, the design 

matrix and the results of which are given in Appendix B2.2. The resultant response surface 

obtained from the central composite experiment is illustrated in Figure 6.2. 

Response surface of multi-drug GAs 

R-sq = 79.6%; 
lack-of-fit p = 0.082; 

2000 
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beta 
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rrutation rate 0 .15 

Figure 6.2. Response surface of the GA performance (multiple drugs) 

The analysis of this response surface yields the following best setting of the significant GA 

factors in the specified domain: 

¢': = 0.062, ¢gop\ = 2 (6.20) 

As may be seen from (6.20) the optimal mutation probability, which is a common GA significant 

factor for both the single-drug and the multi-drug optimisation problems, has decreased in value. 

One possible explanation for this is that only a certain number of genes need to undergo 

mutation to allow Genetic Algorithms to perform an efficient search through the solution space. 

Therefore, when the number of genes increases (chromosomes representing multi-drug 

treatments contain 10 times as many genes as their single-drug counterparts), the probability of 

mutation is bound to decrease in order to adhere to the Principle of Maximum Preservation (see 

Section 4.3.3). 

The confirmation experiment testing the quality of the optimal setting (6.20) produces the data 

which can be summarised in the form of a numerical value of the performance measure 

( fJ = 18.77 ) and in the form of the 95% Wilcoxon confidence interval for the median value of 

\}' . [9.2 1.5] . (Recall that the factors, which do not affect the GA performance, are assigned 

arbitrary values from the ranges specified in Table 6.1.) This summary indicates that the 

optimal factor setting for Genetic Algorithms tackling the multi-drug optimisation problem 

prOVides a reasonable level of search efficiency. Thus, the following GA factor set 
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rpl = 300, rp2 = 50, rp3 = 500, rp4 = 0.062, rps = 0.5, rp6 = 500, rp, = 10, rpg = 2 (6.21) 

will be used hereafter to run Genetic Algorithms for optimising multi-drug chemotherapy 

treatments. These factors completely specify the evolutionary procedures and the fitness 

function of Genetic Algorithms under investigation and prepare the ground for the experimental 

studies which comprise the material of the next section. 

6.2. GA optimisation of multi-drug treatments 

The binary representation of the concentration levels C ij' i = 1, n, j = 1, d adopted by the 

Genetic Algorithm encoding strategy {see (6.2)) allows each control variable Cij to have 2P 

distinct values, where p is the length of a binary string encoding C ij' When the number of 

treatment intervals is n and the number of anti-cancer agents used in multi-drug chemotherapy 

is d, the solution space S contains 2 pnd possible treatment regimens. In the present work, a 

4-bit representation has been adopted to encode the concentration levels of all drugs and we 

assume that the treatment period [To, Tfinal ] is divided into ten equal intervals, i.e. n = 10. 

Also, this study focuses around ten drugs (d = 10) commonly used in various treatments of 

breast cancer. These assumptions imply that the optimisation problem of multi-drug 

chemotherapy involves searching through the space of 2400 possible treatment regimens in 

order to find good drug administration regimens. 

In this section the experimental results of GA optimisation are presented, where the optimisation 

is performed with respect to the three treatment objectives of multi-drug chemotherapy 

introduced in Chapter 1 and expressed as (6.8)-{6.10). For each optimisation objective Genetic 

Algorithms, operating a population of 50 chromosomes, run for 5000 generations and produced 

the regimens illustrated in Figures 6.3, 6.4 and 6.5. (NOTE. The program runs for 5000 

generations because the statistical experiments with GA factors have shown that irrespective of 

the problem constraints and the settings of GA factor the improvement in the quality of the final 

GA solution after 5000 generations becomes negligible.) 

Regimens A, Band C are designed to achieve specific treatment goals quantified by the 

objectives 11 (c) , J2 (c) and 13 (c) respectively. Furthermore, a subsequent application of 

the RM strategy to improve these regimens produces a desirable effect as may be seen from 

Table 6.2. which follows the graphs. The Regimen Modification program runs with the same 

setting of the GA factors as in (6.21) for 1000 generations. The modification of the best 

chemotherapy regimen found after 1000 generations does not lead to further significant 

improvement in treatment quality. Although the number of RM generations required to reach 

this saturation pOint can be lowered by readjusting the factor settings (6.21) to the Regimen 

Modification strategy, the effort involved in dOing so was deemed unnecessary. The reason for 

this is that the RM program takes -5-7 minutes to run 1000 generations, which on the GA time 

scale is not very long. 
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Figure 6.3. Treatment minimising tumour size (Regimen A) 
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Figure 6.4. Treatment minimising tumour burden (Regimen B) 
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Figure 6.5. Treatment maximising survival time (Regimen C) 
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TABLE 6.2. Characteristics of optimal treatments 

10 

Optimal 
Stage of the 

JI(e) - N(Tfinal ) INC!;) 
optimisation J 2 (e) J 3 (e) PST 

treatment No 
;=1 

process lONo 

before RM 1.2985 nla nla 40.31% 82.77% 30 
weeks 

Regimen A 
30 after RM 1.3306 nla nla 39.03% 82.48% 

weeks 

before RM nla 6.6432 nla 42.67% 64.32% 28 
weeks 

Regimen B 

after RM nla 7.0683 nla 40.75% 61.84% 29 
weeks 

before RM nla nla 0.3036 38.09% 82.66% 31 
weeks 

Regimen C 
31 after RM nla nla 0.3310 36.68% 79.45% 

weeks 

In Table 6.2 the third last column gives the value of the final tumour size N(TfinaJ ) as a 

percentage of the initial tumour size N (To). The smaller this value the larger reduction of the 

tumour size has been achieved in the course of treatment. The second last column gives a 

more intricate measure of treatment success, expressed as a ratio of two numbers. The first 

number quantifies the shaded area in Figure 1.1. The second number is the area of a rectangle 

which has the height equal to the initial tumour size N(To) and the width equal to the duration 

of the treatment period Tfinal - To. Therefore the ratio of these two numbers gives a measure of 

the overall tumour reduction. The last column shows the patient survival time. 

As may be seen from Table 6.2, while attaining the intended effects, Regimens A, Band C 

perform reasonably well the optimisation of unintended treatment objectives. For instance, 

Regimen A, minimising the final tumour size, achieves approximately a 60% tumour reduction 

and at the same time prolongs PST up to 30 weeks. Regimen B brings down the overall tumour 

burden in the most effective way and also results in a reasonable reduction of N (TfinaJ ) . 

Finally, Regimen C gives the best value of the patient survival time. Furthermore, applied to 

Regimen C, the RM optimisation strategy achieves the best improvement results. It reduces the 

final tumour size by an additional 2.22% (from 38.09% before RM to 36.68% after RM) and 

brings down the overall tumour burden by a further 3.4% (from 82.66% before RM to 79.45% 

after RM). 

In order to assess the quality of the regimens found by Genetic Algorithms, we shall compare 

them with a couple of actual, known chemotherapy regimens. CAF (the combination of 

Cyclophosphomide, Adriamycin and 5-fluorouracil) and CMF (the combination of 

Cyclophosphomide, Methotrexate and 5-fluorouracil) are two multi-drug chemotherapy regimens 
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which are very often used for treating breast cancer. The listings of these regimens are given in 

Dearnaley at al (1995). Having evaluated CAF and CMF using the same measures as for 

Regimens A, Band C, we obtained the results presented in Table 6.3, which also shows how 

these results have been improved after applying the RM strategy to the chemotherapy regimens 

in question. 

TABLE 6.3. Characteristics of the known treatments CAF and eMF 

Stage of the Reduction of the 
Treatment 

optimisation overall tumour PST 
Regimen final tumour size process burden 

before RM 76.08% 75.85% 28 weeks 
CAF 

after RM 63.26% 70.15% 28 weeks 

before RM 78.34% 82.18% 26 weeks 
CMF 

after RM 67.81% 79.43% 27 weeks 

Comparing the figures in Table 6.2 and Table 6.3 we can see that the chemotherapy regimens 

found by Genetic Algorithms noticeably outperform CAF and CMF with respect to all treatment 

objectives. Furthermore, the application of RM to the latter regimens yields more substantial 

improvement in treatment quality than that of the regimens found by GAs. For the CAF therapy 

RM has managed to achieve additional 13.18% reduction of the final tumour size and as such 

strongly support the use of the evolutionary approach to improving known chemotherapy 

schedules. 

Although potentially autonomous and self-controlled, the computational program implementing 

GA optimisation does not provide on its own a user-friendly environment for composition, 

evaluation and optimisation of different treatment regimens. However from the oncology 

standpoint, such an environment is highly desirable since it allows communication with the 

computer in a language appropriate to the application domain and to refrain from going into all 

technicalities of mathematical modelling and optimisation. Therefore, to facilitate the usage of 

the results of the present work in clinical optimisation of chemotherapeutic treatments, Genetic 

AlgOrithms need to be embedded into a more user-oriented software system. An example of 

such system is the Oncology Workbench, the prototype of which was developed by Boyle at al 

(1997). The Workbench was designed to be easily extensible, so that new components can be 

added to widen the system's functionality. Since the original version of the Workbench did not 

have an optimisation facility, the development of an optimisation component utilising Genetic 

Algorithms and the incorporation of this component into the system was a reasonable task to 

do. The details of how this task has been accomplished, as well as a brief description of the 

Workbench itself, are given in the following section. 

115 



6.3. Incorporating Genetic Algorithms into the Oncology Workbench 

The Oncology Workbench has been designed to be a decision support system (Boyle et ai, 

1997) assisting the oncologists to efficiently evaluate various chemotherapeutic regimens 

proposed for cancer treatment and to effectively use existing anti-cancer drugs in novel 

combinations for cancer therapy. The requirement for a rational approach to the design of 

chemotherapeutic regimens is well established (Cassidy and McLeod, 1995). The intention of 

the Workbench therefore is to meet this requirement and to provide a convenient 

communication medium that allows the tools of mathematical modelling and optimisation to be 

delivered to the oncologists. The following sections give a more detailed description of how this 

medium is implemented and what role Genetic Algorithms play in it. 

6.3.1. System architecture of the Oncology Workbench 

The designers of the Workbench prototype put much effort in ensuring that the system is 

platform and location independent (Boyle at aI, 1997). To the oncologists it is essential that the 

Workbench is available on a number of platforms and information can be accessed from a 

variety of different sites using a variety of means. Also, they wanted the system to be extensible 

so that other components (for example the GA optimisation module) can be easily fitted within 

the system architecture. Delivery of the Workbench over the WWIN and using the JAVA 

language to build and link different components together enabled the designers to meet these 

requirements. 

With JAVA it is possible to make the Workbench available through several Internet browsers -

Netscape Navigator (v. 4.06) in particular. The common availability of the of web browsing tools 

allows the user to retrieve information about anti-cancer drugs, as well as to access remotely 

located modelling or optimisation modules, using a variety of different mechanisms. This makes 

the Oncology Workbench a convenient medium through which Genetic Algorithms can be 

brought to the forefront of modern cancer treatment. 

6.3.2. Composition and functionality of the Oncology Workbench 

Due to the multi-faceted nature of chemotherapy treatment it is unrealistic to expect that a fixed 

system design will satiSfy every oncologist. A be~er methodology, therefore, is to encapsulate 

the whole functionality of the Oncology Workbench (OW) into smaller software components that 

can be flexibly interconnected in accordance with preferences of a particular professional. Such 

a methodology has been adopted and has resulted in the development of a system prototype 

containing the following components. 
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1) Treatment Editor 

The treatment editor (TE) is an interactive interface allowing oncologists to graphically define a 

treatment regimen using available drugs in any combination and administered by employing 

permissible drug delivery modes. TE keeps track of toxicity information and advises oncologists 

on possible problems. It is achieved by utilising the Cmax and Ccum indicators together with 

side-effect toxicity bars. The toxicity bars visually display on a qualitative colour scale the 

additive side effects induced by multiple drug administration (see Figure 6.6). Each toxicity bar 

corresponds to a particular side effect and gradually turns from white to black as the risk of 

causing this side effect increases. Figure 6.6 depicts the toxiCity bars for such side effects as 

bone marrow depletion, nausea and kidney damage. The scrolling bar on the right side of these 

indicators allows examination of other toxic side effects. Therefore, the purpose of the 

aforementioned elements related to toxicity is to ensure that the user is warned about potential 

toxicity problems that might threaten the wellbeing of the patient. 
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Figure 6.6. Treatment Editor Applet 

When a treatment has been designed, the user faces a choice among three options. First of all , 

it is possible to utilise TE for sending the treatment data to a Results Viewer, which uses the 

outcome of a Simulation Engine to describe the resultant tumour behaviour. This description 

consists of tumour response statistics, a spreadsheet view and a graphical view of tumour 

development. Secondly, the treatment data can be sent to the Optimisation Engine, which will 
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return an optimal treatment for the drug combination used. Alternatively, the treatment profile 

can be stored for future reference, analysis or development. 

2) SImulatIon Engme 

Upon receiving the regimen composed in TE, the simulation engine of the OW retrieves 

appropnate Information regarding the efficacy and toxicity of the anti-cancer drugs used. Then, 

it performs the simulation of the tumour response to this regimen over a normally distributed 

range of tumour growth parameters. To implement this task, the simulation engine uses the 

Gompertz tumour growth model with a linear cell-kill term incorporated (see Equation (5.5)) . 

Also, the system has already been tested on alternative models and shown satisfactory 

performance (Henderson, 1997). After accomplishing the simulation, the results are sent to the 

Results Viewer for display. 

3) Results Viewer 

The Results Viewer (RV) is designed specifically for the representation and analysis of tumour 

response to a specified treatment regimen. The output provides oncologists with the ability to 

observe the resultant tumour size throughout treatment in both tabular and graphical forms. 

This WIll yield valuable information about tumour behaviour under various treatment regimens. 

Also, since the results are given in tabular form, it is straightforward to compute the statistics of 

fractional tumour reductions (Henderson et aI, 1997). Figure 6.7 presents an illustrative 

example of the resultant data consisting of tumour response statistics, a spreadsheet view and 

a graphical view of tumour development. 
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Figure 6.7. Results Viewer Applet 
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Finally, if all calculation procedures are performed in real time, the oncologist will be able to 

dynamically alter various parameters (e.g. dosages, drug effectiveness, growth rates), 

immediately seeing their effect on the treatment outcome. Also, comparative analysis may be 

performed simultaneously for different treatment strategies giving both qualitative and 

quantitative evaluations. Having completed this comparison, the oncologist may store its results 

in the Information Repository or may print them for future reference. 

4) Optimisation Engine 

The optimisation engine (OE) of the Workbench has the ability to suggest novel 

chemotherapeutic regimens which, being within the boundaries of clinical acceptability, are 

likely to produce best treatment outcomes. As a result of this, the oncologists can focus on the 

most promising treatment options, so that the costs, both human and financial, of the clinical 

research can be significantly reduced. However, there are too many combinations of anti­

cancer drugs, as well as dosage values and timings, that have never been explored. Moreover, 

new anti-cancer agents are continually being developed. As the number of possible treatments 

increases exponentially, there is need for methods to intelligently search for those which seem 

promising. This is the area where the method of GA optimisation comes into play since the 

present study has vindicated the appropriateness and suitability of this method for finding good 

treatments in a robust and reliable manner. The development of an optimisation utility on the 

basis of Genetic Algorithms and the incorporation of this utility in the form of an optimisation 

module, comprise the author's contribution to the extension of the Oncology Workbench 

functionality and will be discussed in more detail in the next section. 

5) Information RepOSitory 

The information repository (IR) allows the user to input, review, store and share information 

related to both simulated and real clinical data. This information covers the toxic side effects, 

the dosage limitations, the efficacy and the standard administration profiles of existing anti­

cancer drugs. The role of the Information Repository is to supply necessary data to other 

components of the system. 

Now, having introduced the constituent components, we can proceed with the description of the 

functionality of the Oncology Workbench. Figure 6.8 illustrates how different components of the 

Workbench interact and shows the information flow between them. 
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As may be seen from this diagram, the oncologist operating on the Workbench deals only with 

the Treatment Editor and the Results Viewer, which playa role of interface objects between the 

user and the system. A novel treatment regimen composed by the user with the help of TE is 

sent simultaneously to SE and to OE (optional). Having received treatment data, both engines 

call IR for additional information concerning the effectiveness and toxicity constraints of the anti­

cancer drugs used. After obtaining this information, SE evaluates the newly composed 

treatment regimen and sends the results to RV. Optimisation engine, on the other hand, either 

advises the user via TE what the best possible treatment strategy would be subject to particular 

constraints, or stores this strategy in IR for future references. 

Therefore, having composed a novel treatment regimen on the Workbench, the oncologist gets 

feedback from the system via two parallel channels. The main channel is the Results Viewer, 

which presents all the information related to tumour behaviour. In addition, the Treatment Editor 

itself has the online ability to monitor the levels of toxic side effects and represent them 

dynamically on coloured toxicity bars. Also, TE is used for displaying the optimal treatment 

regimen found by the Optimisation Engine using Genetic Algorithms. The next section gives the 

particulars of how this optimisation process is performed. 
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6.3.3. GA optimisation of chemotherapy treatments 

From a practical standpoint all cancer chemotherapy treatments may be viewed as either 

curative or palliative (McCall and Petrovski, 1998). In a curative treatment, the aim is to drive 

down tumour size to a point where the tumour either disappears or other actions can be taken to 

remove it. The objectives (6.8)-(6.9) of minimising tumour size by the end of treatment and 

minimising the overall tumour burden correspond to this case. Palliative treatment, on the other 

hand, is applied where the tumour is deemed to be incurable. Here the objective is to maintain 

a reasonable quality of life as long as possible. One possible way to mathematically express 

the latter objective is to maximise PST in the form of (6.10). 

The distinction between curative and palliative treatments is made because their objectives are 

understood to be in conflict with each other in the sense that regimens which tend to minimise 

tumour size are highly toxic and therefore have negative effect on the quality of life. Moreover, 

as smaller tumours tend to grow more rapidly, in the presence of drug resistance a severe 

regimen can result in the ultimate shortening of patient life because a drug resistant cell 

population accumulates to a fatal size earlier than it otherwise might have (Martin et aI, 1992). 

The primary objective of the developed optimisation engine inside the Workbench is to help the 

oncologists to find a curative treatment (McCall and Petrovski, 1998). Therefore, the first 

optimisation step is to apply the GA strategy to find treatment regimens which minimise the 

objectives (6.8)-(6.9). If the values of these objectives indicate that the best treatment found by 

GAs can be considered as curative, then the second step will be taken by applying the RM 

strategy to improve this treatment. Otherwise, the GA strategy will be applied again to find a 

good palliative treatment, which will be subsequently enhanced by RM. The optimisation 

process as a whole is illustrated in Figure 6.9. 

Apply GA to find 
curative treatment 

curative treatrnen~ ~ no curative treatment 

Apply GA to likely 

Apply RM to improve find palliative best Apply RM to improve .. 
curative treatment treatment .. palliative treatment 

obtained 

Figure 6.9. GA optimisation of chemotherapeutic treatments 

To conclude this section devoted to the issue of GA usage in clinical practice, a few words 

ought to be said about how the developed OE is integrated with the rest of the Workbench. As 

we mentioned earlier, a request to activate the optimisation procedure is received from the 

Treatment Editor, which also specifies the drugs selected by the oncologist for treatment. 
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Subsequently the optimisation engine queries the Information Repository to obtain the 

characteristics of these drugs (e.g. maximum toxicity dosages, effectiveness and potency 

factors). Then, OE initiates the optimisation process (epitomised by Figure 6.9) using the 

simulation engine to evaluate candidate treatment regimens encountered during the GA search. 

The search is carried out until a predefined stopping condition is met and culminates in the form 

of the best chemotherapeutic treatment found by Genetic Algorithms. This treatment is passed 

back to the Treatment Editor and displayed for analysis or storing. 

6.4. Discussion 

In this chapter it has been shown how Genetic Algorithms can be applied to the optimisation of 

multi-drug chemotherapy. The majority of chemotherapy treatments used in clinical practice 

nowadays utilise multiple anti-cancer agents since drug cocktails tend to be more effective in 

achieving various treatment objectives. These objectives include not only the minimisation of 

tumour size by the end of treatment (thoroughly studied in Chapter 5), but the minimisation of 

the overall tumour burden and the prolongation of PST as well. The additional constraint on 

concurrent administration of multiple drugs and more complex optimisation objectives make the 

problem of multi-drug chemotherapy non-amenable to LP and extremely difficult for 

conventional methods of constrained optimisation. Genetic Algorithms, on the other hand, 

proved to be capable of dealing with this problem. Viable treatment strategies have been found 

by GAs for both curative and palliative treatment scenarios, thereby confirming the suitability 

and effectiveness of Genetic Algorithms for cancer chemotherapy optimisation. 

On the basis of this conclusion, a decision has been made to encapsulate Genetic Algorithms 

into an independent optimisation module and to embed this module into a more general and 

user-oriented environment. The Oncology Workbench - the system aimed at helping the 

oncologists in the decision making activity and developed by Boyle at a/ (1997) - has been 

chosen as the most suitable environment for the embedding of Genetic Algorithms. The 

facilities provided by the Workbench may assist the oncologists in: (1) expediting clinical drug 

trials, (2) guiding more cost effective experimentation, and (3) suggesting optimal treatment 

regimens within the bounds of clinical acceptability. Moreover, the Oncology Workbench is an 

autonomous, versatile and customisable decision support system which can be also used for 

optimising drug treatments unrelated to cancer (e.g. cardiovascular or diabetic therapies). This 

creates an opportunity to widen the application domain of Genetic Algorithms within the field of 

drug treatments and to allow more clinicians to benefit from utilising the GA optimisation. 
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CHAPTER 7 

CONCLUSIONS 

As may be seen from the present treatise, the current work has a multi-faceted nature, i.e. 

several issues have been addressed in this thesis which arise from a number of disciplines such 

as: biology and medicine, non-linear control and mathematical modelling, optimisation and 

search techniques, stochastic analysis and computer science. We started with realiSing the 

complexity of the cancer phenomenon and showed why mathematical modelling of cancer 

development and its treatment can be of a great assistance here. While discussing the 

treatment of cancer, the relevance of optimisation and optimal control theory became evident for 

achieving the most effective usage of available anti-cancer drugs within the boundaries of 

clinical acceptability. However, the multi-constraint nature of cancer chemotherapy and general 

non-linearity of the optimisation functionals attributed to the objectives of cancer treatment often 

make the problem of cancer chemotherapy optimisation analytically intractable. 

Therefore a change in approach to the optimisation of cancer chemotherapy is often necessary 

if a practical solution to the problem is to be found. In the present work a new approach has 

been opted for, whereby the optimisation of chemotherapeutic treatment as a whole has been 

substituted by a search for treatment regimens which are "better" than those already known. To 

implement this search, the GA technique has been chosen as the most robust and versatile 

method and has been embedded into a generic framework - the Oncology Workbench - which 

allows oncologists to interactively define, evaluate and optimise simulated drug treatments. The 

summary of key issues of the application of Genetic Algorithms to cancer chemotherapy 

optimisation and the outline of possible directions for future work are presented in the following 

two sections. Thus, Section 7.1 addresses the issues which, in being resolved, have displayed 

innovative aspects or have led to original contributions to existing knowledge. The final section 

of the thesis, Section 7.2, focuses on future work. 
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7.1. Summary of key issues 

In the research programme for the present study the following aims were formulated as the PhD 

objectives: 

1) to apply the Genetic Algorithm technique to mathematical models of tumour growth in 

order to improve existing chemotherapy treatment regimens; 

2) to apply the GA technique, ab initio, to develop optimal treatment regimens; 

3) to develop an optimisation utility for a clinically usable decision support system. 

Firstly, the GA technique has been successfully applied to both scenarios of chemotherapy 

optimisation, i.e. when the optimal treatment strategy is obtained by improving existing 

treatment regimens and when the optimal regimen is developed from scratch. In the case of 

single-drug chemotherapy, Genetic Algorithms showed a good optimisation performance 

compared with that of traditional methods. More importantly, the GA approach has also yielded 

satisfactory results in the case of multi-drug chemotherapy, where none of the known 

mathematical optimisation methods were effective. 

The second major contribution of the thesis is the development and incorporation of the GA 

optimisation utility into the Oncology Workbench. The aim of the Workbench is to overcome the 

paucity of objective tools for intelligent design and optimisation of chemotherapeutic regimens 

and to simplify for oncologists the decision making activity. It is self-evident that such a system 

needs the presence of a robust and effective utility responsible for executing all optimisation 

procedures, some of which are multi-constrained and intricate. The experimental results of the 

last two chapters unmistakably demonstrate that the evolutionary optimisation featured by 

Genetic Algorithms is suitable for this role, thereby justifying the use of the GA optimisation 

component within the Workbench. 

In addition, a new GA factor tuning method has been developed, tested and analysed which can 

be used for enhancing the optimisation performance of Genetic Algorithms. This method is 

based on fractional factorial experiments with GA factors and on the statistical analysis of how 

these factors affect the performance. The above summarises the contribution made by the 

thesis to the existing knowledge of effective chemotherapy treatment and highlights various 

innovative aspects. 

7.2. Future work 

Although achieving its main objectives, this thesis brings forth a whole series of other issues. 

All the way through this work we maintained the assumptions that the tumour cell population is 

homogeneous and that the representation of the bloodstream as a single compartment allows 

one to express the drug concentration in the blood plasma in terms of the delivery dose without 

delving into pharmacological details. Also it has been assumed that the cell-kill rates of all 

drugs remain constant throughout treatment and that interactions between drugs within 

compound chemotherapeutic doses are negligible. Needless to say however, these 
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assumptions are not always valid. First of all, the cellular heterogeneity may lead to the 

appearance of drug resistant cancerous cells and, subsequently, to treatment failure. To take 

this heterogeneity into account, the Gompertz model of tumour growth needs to be replaced by 

a more accurate alternative (for example, by the Competition model developed by Usher and 

Henderson (1996». This will be one route for future investigations. 

Secondly, for a more precise estimation of the drug concentration in the blood and for a more 

realistic description of drug-drug interactions, one has to use the techniques of PKlPD 

modelling. The utilisation of the PKlPD analysis for optimising cancer chemotherapy treatment 

is another area where further work is required. Ideally, this will lead to the development of a 

PKlPD modelling component for the Oncology Workbench. The presence of such a component 

will enable oncologists to take a closer look at the processes occurring during chemotherapy 

treatment and to gain further insight into drug actions. 

Thirdly, in the present work a number of quantitative measures were introduced to evaluate the 

quality of chemotherapeutic treatments and the goal of chemotherapy optimisation was to find 

such treatment regimens which result in the best values of these measures. Although clinically 

meaningful, the introduced measures are bound to the treatment objectives which assume that 

the treatment period is fixed. Fixing the length of treatment was necessary in the current work 

since all chemotherapeutic regimens were encoded as chromosomes with a predefined number 

of genes. In practical situations however the treatment duration often varies. If, for example, a 

curative treatment is found which reduces the tumour to a critical size at some point during 

treatment and maintains it at or below this value for a certain period, then further use of drugs 

might become unnecessary. This possibility arises due to the existence of other mechanisms 

(e.g. programmed cell death) capable of removing remaining tumour cells if the tumour is 

smaller than -1000 cells. Thus, the ultimate treatment period might be shortened, yielding at 

the same time a more favorable treatment outcome. Alternatively, when the tumour is deemed 

to be incurable, a reasonable approach would be to palliate the suffering by extending the 

duration of treatment, thereby maintaining a tolerable quality of patient life until the tumour 

reaches its lethal size. Therefore, to endow Genetic Algorithms with the ability to dynamically 

adjust the length of chemotherapeutic treatments, the encoding and the recombination 

procedures need to be developed further. The future work directed towards this objective has 

the highest priority as far as the Oncology Workbench is concerned. 

Finally, the techniques and various tools developed during the work on this project are by no 

means restricted to cancer chemotherapy optimisation alone. They can be adapted to other 

drug administration problems such as, for example, the optimisation of cardiovascular therapies 

or diabetic treatments. Therefore, the material of this thesis may be viewed as a foundation 

which other applications of effective and customisable treatment optimisation can be built up. 
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APPENDIX A 

FITNESS FUNCTIONS 

A1. Single-drug chemotherapy 

(See Sections 5.1.1 and 5.1.2) 

Solution space: S = ~ : C = (C; ),i = l,n} 

Representation spaces: 

1. IGA = ~la2a3 ... a4n : ak E {O,l} V'k = 1,4n} 

2. IRM = ~la2a3 ... an : ak E {O,l,-l} V'k = l,n} 

Fitness functions: 
n 

Tumour size optimisation: maximise J(c) = L C;e A
(/i-1-T

nna,) 
c=(C,) ;=1 

n 

- P3Le-P"; max 2 {Ymin - y(f;),O} 
;=1 

{ 

; 4 } -AI 1(),./'J 4-k Alj-l 
wherey(f;)=e I Yo+-(e -1)LL2 a4(;_I)+k e 

A j=1 k=1 

fRM(X E I RM ) = I (C;O + a;~C) -e,t(ti-I-Tfinal
) - ~ I max 2 {(C/o + ai~C) - Cmax ,o} 

;=1 ;=1 

where CO = (C;o) is the treatment regimen which undergoes modification using RM. 
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A2. Multi-drug chemotherapy 

(See Sections 6.1.1 and 6.1.2) 

Solution space: S = ~: C = (Cij 1i = l,n,) = I,d} 

Representation spaces: 

1. IGA = ~)a2a3 ... a4nd : ak E {O,l} V'k = 1,4nd} 

2. IRM = ~la2a3' .. and : ak E {O,l,-l} V'k = l,nd}. 

Fitness functions: 

d n 

1. Tumour size optimisation: m~imise JI(c) = LK) LCijeA(/I-J-Tflnal) 
C-(clj) )=1 i=1 

d n 4 

fGA (x E I GA ) = LK)LL24-k a4d(i_I)+4(J_I)+keA(/I-J-TflnaI) 
)-1 i-I k-I 

-~ f max
2 
{t i: 24

-
k 
a4d(i-I)+4(J-I)+k - Ccum j,O } 

)=1 i=) k-I 

n 

-~Le-P"I max2{Ymin - y(ti),O} 

d n 

fRM(X E I RM ) = LK)L(CZ + ad(i-1)+)~C)eA(II-,-TflnaI) 
)-1 i=1 

- ~tmax2 ~C; + ad(i-1)+j~C) - Cmax),O} 
i=) 

n 

- ~:~:::e-P"I max
2{YmiD - y(ti),O} 

i=) 
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2. 
n d p ) 

Tumour burden optimisation: maximise J2(c) = ~~ K. ~ C .. /(/I-I-I p 

c:(C ) 4.J 4.J } 4.J y 
lj p:\ j=\ ;=1 

n d p ( 
r ( I) ~~ ~24-k A.I,_I-Ip ) 

j GA x E GA = L.J L.J K j L.J 04d(;-\)+4(j_\)+ke 
p=\ j~\ ;a\ 

n 

-~Le-P"I max 2 {YmiD - Y(O,O} 
;=\ 

-~i:max2kc~ +Od(;_\)+)L1C)-CmaxpO} 
;:\ 

n 

- ~Le-P"I max2{YmiD - y(t;),O} 
;=\ 

3. Survival time optimisation: maxim, ise J3 (c) = In(~ K. ~ C .. eA.(IH -Tn .. I)) 
c=(C ) 4.J } 4.J y 

lj )=\ ;=\ 

n 

-~~:e-P"I max 2 {Ymin - y(t;),O} 
;=\ 
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f p.M (x e I p.M) ~ l{ t Kj t. (c: + a J,I-I,. r'~C)e·(,,-,-T_) J 

-~tmax2{<C~ +ad(;_I)+j~Cj)-Cmaxj'O} 
;=1 

n 

-~~:e-P'II max2 {ymin - y(t;),O} 
;=1 
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APPENDIX B 

STATISTICAL EXPERIMENTS 

BO. Wei bull distribution 

(See Section 5.3.1) 

Figure BO.1 presents a general form of the Weibull curve and shows how it depends on the 

distribution's parameters. 

B1. Genetic Algorithms optimising single-drug treatments 

(See Section 5.3.2) 

Table B 1.1 presents the results of the screening experiment aimed at pinpointing 

significant GA factors. The analysis of this experiment is given on page 84 in the form of a 

Pareto chart. 

Table B1.2 presents the results of the central composite experiment aimed at obtaining a 

response surface for significant GA factors. The resultant response surface is illustrated on 

page 86. 

Histogram B1.3 compares the results of the confirmation experiments with the optimal GA 

factor sets obtained from the statistical and the meta-GA factor tuning methods. Statistical 

analysis of these results is given on page 91. 

B2. Genetic Algorithms optimising multi-drug treatments 

(See Section 6.1.3) 

Table B2.1 presents the results of the screening experiment with an extended set of GA 

factors attributed to the multi-drug case. The Pareto analysis of these results was performed on 

page 103. 

Table 82.2 presents the results of the corresponding central composite experiment. These 

results were used to obtain the response surface illustrated on page 104. 
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Weibull distribution 
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Figure BO.1. Properties of the Weibull distribution 

The Weibull distribution is defined by two parameters, viz. the shape a and the scale fJ 
parameters. The probability density function of the Wei bull distribution for the random variable 

'¥ (i.e. the number of GA generations required to find a feasible solution) is defined by 

\}' ~ 0, a ~ 0, fJ ~ 0. 

The shape parameter a affects the form of the Weibull curve (see the difference between the 

green and the blue lines in Figure 80.1). The scale parameter fJ determines the spread of the 

values (when fJ increases the range of possible values of \}' increases too as illustrated by 

the red line). The Wei bull distribution has a mean value 

where r is the Gamma function. 

Therefore, by minimising fJ we minimise J1q> and as such we improve the performance of 

Genetic Algorithms by requiring fewer generations to complete their search. 
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Levels of design factors Scale 

rA ¢2 tP3 ¢4 ¢s tP6 tP7 
parameter P 

0 0 0 0 0 I I 6199.10 
I 0 0 0 0 0 0 3477.44 
0 I 0 0 0 0 0 4141.60 
I I 0 0 0 I I 5574.13 
0 0 I 0 0 0 I 1152.94 
I 0 I 0 0 I 0 54.13 
0 I I 0 0 I 0 1821.27 
I I I 0 0 0 I 57.62 
0 0 0 I 0 0 0 1219.10 
1 0 0 1 0 1 1 70.35 
0 I 0 I 0 1 I 3993.44 
I I 0 I 0 0 0 1110.72 
0 0 I I 0 1 0 1140.62 
I 0 I I 0 0 I 830.09 
0 I I 1 0 0 I 740.64 
I I 1 I 0 1 0 1918.33 
0 0 0 0 1 1 0 4879.21 
1 0 0 0 1 0 I 40.95 
0 1 0 0 1 0 1 3698.61 
I I 0 0 I I 0 3196.18 
0 0 I 0 1 0 0 2729.73 
I 0 I 0 I I I 1175.17 
0 I I 0 I I I 2996.95 
I I I 0 I 0 0 41.58 
0 0 0 I I 0 I 29.40 
I 0 0 I I I 0 43.74 
0 I 0 I I I 0 914.14 
I I 0 I I 0 I 2112.44 
0 0 I I I I I 167.10 
I 0 I I I 0 0 3426.00 
0 I I I I 0 0 1583.48 
I I I I I I I 1950.74 

Table B1.1. Results of the screening experiment (single-drug case) 



Levels of significant factors for the I 

statistic corresponding to the scale Scale 
parameter f3 parameter f3 

lP3 ¢4 

-1 -1 642.895 

1 -1 277.990 

-1 1 33.180 

1 1 136.562 

-a. 0 448.808 

a. 0 211.702 

0 -a. 493.058 

0 a. 59.641 

0 0 1I8.25 I 

0 0 58.865 

0 0 71.049 

0 0 54.524 

0 0 89.991 

Table 81.2. Results of the central composite experiment (a = 1.414) (single-drug case) 
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Levels of design factors Scale 

rA ¢2 ¢3 ¢4 ¢s ¢6 ¢7 ¢s 
parameter P 

0 0 0 I 0 0 I 0 394.22 
I 0 0 0 I I I 0 64.16 
0 0 I I 0 I I I 41.58 
0 I 0 I I I 0 0 56.85 
0 0 I 0 0 I 0 0 557.71 
0 I I 0 0 0 I I 38.10 
0 1 0 I 0 I 0 I 40.44 
I I I 0 0 I 0 I 81.41 
I I I 0 I I 0 0 116.10 
1 I 0 I I 0 I 0 64.34 
I I I I 0 I I 0 87.77 
0 0 0 0 I 0 0 0 41.55 
I 0 I I I 0 0 0 54.12 
0 0 I I I I I 0 34.33 
I I 0 I 0 0 I I 51.00 
I 0 0 I 0 I 0 0 121.15 
0 0 0 0 0 0 0 I 32.62 
I I 0 0 I 0 0 I 375.80 
0 0 I 0 I I 0 I 338.06 
I 0 0 I I I 0 I 70.53 
I 0 I 0 0 0 I 0 50.73 
I 0 I 0 I 0 I I 139.27 
I I 0 0 0 0 0 0 71.04 
0 I I I 0 0 0 0 324.33 
0 I I 0 I 0 I 0 338.06 
0 I I I I 0 0 I 49.47 
0 0 0 I I 0 I I 150.16 
I I I I I I I I 40.30 
0 I 0 0 0 I I 0 245.97 
I 0 0 0 0 I I I 33.13 
0 I 0 0 I I I I 105.62 
I 0 I I 0 0 0 I 244.93 

--_.- -----

Table B2.1. Results of the screening experiment (multi-drug case) 



Levels of significant factors for the 
statistic corresponding to the scale Scale 

parameter P parameter p 
;4 ;8 

-1 -1 1425.26 

1 -1 54.33 

-1 1 1278.99 

1 1 175.39 

-a. 0 2367.8 

a. 0 319.31 

0 -a. 49.65 

0 a. 58.13 

0 0 273.45 

0 0 286.64 

0 0 272.45 

0 0 336.97 

0 0 350.44 

Table 82.2. Results of the central composite experiment (a. = 1.414) (multi-drug case) 



APPENDIX C 

DRUG DETAILS 

Table C.1 contains the characteristics of ten drugs most commonly used in various treatments for 

breast cancer. Risk factors 'It} express in a numerical form the likelihood that a given drug will 

cause a side effect on a particular organ. In the literature (Deamaley at ai, 1995) this likelihood is 

usually denoted by a number of pluses, which can be transformed into numbers as follows: 

Likelihood of 
causing a side Risk factor, 'I 

effect 
- 0 
+ 1 

++ 2 
+++ 3 

Maximum instantaneous and cumulative doses for each drug are measured in mg/m2 and 

obtained from the collaborating oncologists. The algorithm for calculating the potency factors PI 

is explained in Section 6.1.1, the algorithm for estimating the efficacy K j of the drugs is given in 

(Henderson, 1997). 
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Side-effects 17k) Maximum Cumulative Potency Effectiveness, 
instantaneous 

Drugs Bone 
Kidney 

Periph. 
Liver Heart dose, Cmax ) 

dose, Ccum ) factor, Pj K ) (*10-3
) 

marrow nerves 

Adriamycin 3 0 0 0 2 75 550 1 5.605 

Epirubicin 3 0 0 0 1 75 700 1 4.484 

Taxotere 1 Taxol 3 0 2 0 1 100/130 1000/1500 0.75/0.577 7.29 

Cyclophosphamide 2 0 0 0 0 2000 10000 0.0375 3.9235 

5 - fluorouracil 0 0 0 0 0 3000 30000 0.025 2.242 i 

Cisplatinum 1 3 3 0 0 120 600 0.625 4.335 

Methotrexate 1 1 0 1 0 10000 100000 0.0075 1.6815 

Mitomycin - C 2 0 0 1 0 15 40 5 2.242 

Prednisolon 0 0 0 0 0 100 1000 0.75 1.121 

Vincristine 0 0 2 0 0 2 30 200 2.242 

Table c.l. Drug profiles of the utilised anti-cancer agents 
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