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ABSTRACT 

Silica-alumina composite membranes for hydrogen separation and high temperature 

chemical reactions were prepared using both conventional and modified dip-coating 

techniques. These were deposited on commercially available a.-alumina macroporous 

support of 10 millimetre (mm) outer diameter, 7 mm inner diameter and average pore 

size of 6000 nanometre (nm) wash coated with Titania. The reactants of the coating 

technique were silicone elastomer and isopentane promoted by a catalyst. The 

catalyst (silicone curing agent) was added as a templating agent to control the 

eventual adhesion and densification of the elastomer sol. 

In particular, the microporous membranes were prepared by creating suction in the 

bore side of the membrane and involved continuous stirring of the coating mixture 

during the process, and their pore characteristics were analysed. Then, the effects of 

thermal treatment on the gas transport and micro pore structure of the resulting 

membranes were investigated. 

The pore size of the silica membrane prepared by conventional technique was in the 

range of approximately 8 to 11 nm while that prepared by modified dip-coating was 

in the range of about 3 to 4 nm. In addition, the membranes were segmented into five 

categories; silica membrane for hydrogen reaction, silica membrane for separation, 

silica membrane for purification, palladium (Pd)-impregnated membrane and silica 

on gamma - alumina (y-alumina). 

The hydrogen permeation of the silica membrane prepared for hydrogen reaction was 

of the order of 10-7 mol/m2.s.pa, while the nitrogen permeance was of the order of 10-

8 mollm2.s.pa. at pressure differential of 0.5-2.0 bar and temperature range of 323-

473 Kelvin (K). The maximum hydrogen I nitrogen (H2 I N2) selectivity, determined 

from single-component permeances to H2 and N2 was approximately 3.58. These 

permeances were decreased for the silica membrane prepared for hydrogen 

separation when the dip coating, drying and calcination was applied 7 times instead 

of 3 times as in the case of the hydrogen reaction membrane. 
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The silica membrane for H2 separation provides permeances of about 5.8 x 10-9 

mole.meter-2.second-l .pascarl (mol!m2.s.pa) for H2 and 9.4 x 10-10 mol/m2.s.pa for 

N2, with higher H21N2 selectivity of about 8. 

Higher mixed gas separation factors of H2:N2 > 400 and H2 permeance of 4.1 x 10-9 

mol!m2.s.pa were achieved with silica membrane for H2 purification prepared with 

the modified dip-coating using suction technique with silicone elastomer as 

precursor. This technique was especially effective in plugging the macroporous 

support which possessed a wide pore size distribution. The membrane permeated 

gases except propane (C3Hg) by the activated diffusion mechanism at permeation 

temperature range of 298 - 573 K, and the activation energies are in the order of 10.6 

- 13 kilojoules I mole (kJ/mol) and 26.1-28.7 kJ/mol for H2 and N2 respectively. The 

tests have demonstrated that this composite membrane has the capability to separate 

hydrogen from gas mixtures with almost complete H2 selectivity and to produce high 

purity H2 (up to 99.0 %) from a 50 I 50 % H21N2 mixture stream. 

A theoretical model for a propane dehydrogenation reaction scheme in tubular and 

annular membrane reactors is developed. This model is applied to three different 

membranes namely: a silica-alumina membrane, a silica-y-alumina membrane and a 

Pd impregnated membrane. Results indicate that the Pd impregnated membrane 

provided very high theoretical conversions (82 % at 600°C) compared with the other 

two composite membranes. 
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CHAPTER I INTRODUCTION 

Chapter 1: 

INTRODUCTION 

1.1. General Background 

Membranes can be used to separate different components (gas or liquid) based on its 

properties by allowing or preventing the passage of one or more components under 

the action of a driving force (Armor, 1989). For gas separation, the driving force for 

the diffusion of gas through the membrane is usually the pressure differential applied 

across the membrane (Hsieh, 1991). In recent years, interest in membranes made of 

unusual inorganic materials has increased. Inorganics membrane support tubes such 

as alumina and Vycor were first produced in the early seventies (Yoldas, 1975) and 

have now become commercially available with excellent pore size uniformity and 

good thermal and mechanical properties. These tubes have been used as a membrane 

in different applications in the food, pharmaceutical and electronic industries, for 

waste water treatment and in bioreactor applications (Hakuta, 1988). High 

temperature ceramic membranes are also finding applications in catalytic and 

reaction engineering (Armor, 1989). 

Nowadays the majority of porous ceramic membrane supports available in the 

market are of the multilayer type consisting of a bottom macroporous layer, an 

intermediate layer and a top layer. Usually, the bottom layer is a few millimetres 

thick and possesses a macroporous structure with pore diameters between 1 and 10 

micrometer (J..lm). The intermediate layer is usually about 10 - 100 J..lm thick with 

pore diameter ranging between 0.05 to 0.5 J..lm (Burggraff and Cot, 1996). The top 

layer actually serves the purpose of selective gas permeation with a thickness varying 

between 1 and 10 J..lm and pore diameters varying from 0.004 to 0.05 J..lm. The 

multilayer composite membranes possess excellent pore size uniformity and good 

thermal and mechanical properties (Burggraff and Cot, 1996). 

The preparation of composite inorganic membranes is usually carried out by the 

deposition ofa thin layer (to increase the permeance of the membrane) with a narrow 
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range of pore sizes on a porous support. The top layer has superior separation 

properties compared to the porous support which provides mechanical stability for 

the system in operation. Therefore, the permeability and selectivity of a membrane is 

strongly affected by the pore size and its distribution of the support, shrinkage of the 

thin layer and interaction between the support and the thin layer (Nair et aI., 1997). 

With respect to the pore size, Moaddeb and Koros (1995) studied the effects of the 

support pore size and its distribution on the final permeation behaviour of polymer 

thin layers. Based on their experimental observations, they have inferred that the use 

of large pore size supports could produce consistency problems. They have also 

concluded that the relative size of the precursors (used for deposition) and the pore 

size of the support are key factors in determining defect free deposition. According 

to authors, defect-free deposition is achievable when the pore size of the precursor is 

larger than or equal to the pore size of the support. 

Referring to IUP AC classification of the pore size, there are three categories as given 

below (Rouquerol et aI., 1994). 

• Micropores, which have diameters less than 2 nm 

• Mesopores, which have diameters between 2 nm and 50 nm 

• Macropores, which have diameters greater than 50 nm 

This classification is associated with the gas transport mechanisms in the pores of the 

membranes. For instance, if the membrane contains pores large enough to allow 

viscous flow, separation will not occur. However, when the membrane pores size is 

reduced such that it becomes smaller than the mean free path of the gas molecules 

(Le. the average distance travelled between collisions for gas molecules), Knudsen 

diffusion mechanism becomes predominant. In this case low molecular weight 

gases are able to diffuse more rapidly than heavier ones, and separation occurs. 

Therefore, when pure Knudsen diffusion occurs, the ideal separation factor U12 of 

the light gas 1 and heavy gas 2 will be ..JM2 / ..JMt, where MJ and M2 correspond to 

the molecular weights of gases 1 and 2 respectively (Sturchio et aI., 1966). 

2 



CHAPTER I INTRODUCTION 

Based on their pore structures, inorganic membranes can be classified into two 

categories: porous inorganic membranes and dense membranes. Porous membranes 

such as alumina and glass provide high hydrogen permeance, but relatively low 

selectivity. These combinations of high permeance and low selectivity are governed 

mainly by the Knudsen diffusion mechanism (Wu et aI., 1994). Separation factors 

achieved by this mechanism are too low and are not satisfactory for membrane 

reactor industrial applications. On the other hand, dense membranes such as 

palladium and its alloys have hydrogen permeance values that are low compared 

with porous membranes, but excellent selectivity of hydrogen with respect to other 

components. Thus, it is always necessary to compromise between permeance and 

selectivity according to the desired applications. 

1.2. Motivation 

Many industrial processes such as crude oil processing and other chemical process 

performed using hydrogen as a raw material (Internet reference 1). The hydrogen 

mostly participates in reactions for chemical transformation or as a reducing agent. 

Hydrogen is also considered as the most promising fuels as future energy sources, 

(Uemiya et aI., 1991). Therefore, it has been predicted that the future demand for 

hydrogen will be significantly higher than that currently supplied (Internet reference 

2). Unfortunately, the production of pure hydrogen at a low process cost has been a 

particular challenge as it is generally observed that it is costly to produce or separate 

hydrogen from gas mixtures. 

These upcoming technologies and transition to a hydrogen economy can significantly 

influence the total hydrogen demand for which newer methods of hydrogen 

purification and production need to be investigated and assessed. Hence, industrial 

gas processing using membranes can develop relatively cheaper technologies that 

can allow the production of relatively pure hydrogen. Motivation for the present 

work comes from the increasing demand for hydrogen due to the substantial increase 

in industrial processing especially petroleum refining and petrochemical production 

based on world economy growth. 

3 
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1.3. Separation Technology 

Industrial separation technologies for hydrogen removal from hydrogen rich streams 

constitute of cryogenic distillation, pressure swing adsorption (PSA), and membrane 

separation. Of these technologies, cryogenic distillation is considered as expensive 

due to very high heat demands for separation carried out at lower temperatures. Both 

pressure swing adsorption and membrane technology are presented as competent 

technologies to produce hydrogen (Internet reference 3). The basic disadvantage of 

PSA system is its inability to be cost effective for small scale operation. However, in 

this regard membrane technology offers the advantages of compactness and less 

maintenance cost (Internet reference 4). 

PSA is based on the adsorption of gases onto special materials known as adsorbents. 

These adsorbents remove all non-hydrogen components such as carbon monoxide 

(CO), carbon dioxide (C02), methane (CH4) and N2 from an impure H2 stream to 

produce pure H2 (Garside, 1988). Once the adsorbents are near saturation, the 

impurities are purged, so regenerating their adsorbents for the next PSA cycle. 

Membrane technology relates the separation of hydrogen based on its specific 

interaction with the membrane surface as opposed to other elements and by the 

application of a pressure differential across the membrane to drive the hydrogen to 

the enriched product stream (Baker, 2000). Both pressure swing adsorption and 

membrane technology offer ample opportunity for possible breakthrough in existing 

limitations. The separation behaviour of both of these technologies is significantly 

influenced by the specific interaction of hydrogen with respect to the surface of the 

adsorbent/membrane. Hence, advances in materials research can provide new 

horizons for both these technologies and extend their applications considerably. For 

industrial application using membrane technology, membrane stability at higher 

temperature (> 100°C) coupled with higher hydrogen flux and selectivity are aspiring 

properties for different applications. In this regard, inorganic membranes offer the 

basic advantage of thermal and chemical stability, which is attractive for hydrogen 

reaction, separation, and purification applications. 

4 



CHAPTER I INTRODUCTION 

1.4. Membrane Reactors and Hydrogen Reaction 

A membrane reactor is an apparatus that constitutes a chemical reaction process 

supported with a membrane that can provide different functionality such as 

separation (Bernstein and Lund, 1993). In a membrane reactor, one of the 

components (usually H2) is preferentially removed by membranes from the reactor 

chamber to shift the equilibrium to the product side. 

Due to the limitations offered by the existing commercial process with conventional 

reactor in equilibrium conversion, different reactions such as hydrogenation (ltoh, 

1987; Farris and Armor, 1993) and dehydrogenation (Zhao et aI., 1990 and 

Champagnie et aI., 1992) and H2 recovery from process streams (Cicero and Jarr, 

1985) has attracted a considerable research interest. 

The driving forces behind the interest are the availability of high H2 perm-selectivity 

membranes and capability of operating at high temperature for driving the 

equilibrium limited reaction towards higher conversion. Furthermore, it is reported 

that membranes could be used for the preparation of unsaturated hydrocarbon from 

low cost saturated hydrocarbons (Gorriz et aI., 1992). 

Many review publication (Soria, 1993; Armor, 1998 and Saracco, et aI., 1999) 

addressing the development of the membrane reactor for catalytic reactions taking 

place at high temperature. Of these reactions, propane dehydrogenation to produce 

propylene is of commercial significance with the fact that propylene is the second 

largest petrochemical commodity available. Propylene is used in the production of 

poly-propylene which has applications and huge demand for the production of 

packaging materials and outdoor clothing (Munro, 1964). 

Table 1.1 presents different reaction schemes experimentally studied using silica 

composite membranes. All these reactions involve H2 participation in the reaction 

either for hydrogenation or dehydrogenation purposes. 
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Authors Reaction system H2 Permeance Selectivity Reaction 
temperature 

Giessler et aI., Water gas shift 1.5 x 10-0 H21N2 280°C 
(2003) mol/m2.s.pa 18 

Weyten et. aI., Propane 1.4 x 10-1 H2/C3Hg 500°C 
(2000) dehydrogenation moll m2.s.Pa 70 

Prabhu et aI., Dry methane 1.8 x 10-lS H2/CHt 600°C 
(1999) reforming moll m2.s.Pa 23000-27000 

Yildirim et aI., Propane 0.52 H21N2 450°C 
(1997) dehydrogenation cm3 Icm2 .s.bar 6 

Ioannides and Isobutane OJ H2/Hydrocarbon 350°C 
Gavalas, dehydrogenation cm3/cm2.min.atm 80 - 300 
(1993) 

Table 1.1: Summary of silica composite membranes for various reaction schemes. 
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1.5. H2 Separation and Purification 

The successful application of membranes for H2 separation and purification depends 

critically on the ability to produce relatively cheap H2 perm-selective membranes 

with high selectivity. There are many membranes that have been proposed for H2 

separation and purification (Connor, 1962 and Philpott, 1985). When considering H2 

separation and purification, the most frequently used membranes are palladium and 

its alloys, and silica membranes, which offer promising capability for H2 separation 

and purification (Morooka et aI., 1996). 

1.5.1. Dense palladium membranes 

Since dense palladium membranes are basically selective only to H2, there is no 

problem with the selectivity when defect-free membranes can be successfully 

prepared. On the other hand, the cost is directly proportional to the membrane 

thickness and 'since palladium is very expensive the most important issue is to 

fabricate very thin membranes without defects. Since 1980's, research interests 

have been focused on dense membrane fabrication deploying palladium and its alloys 

for fabricating defect-free thin composite membranes. 

By coating tubes with a thin film up to 10 J.lm of palladium alloy, composite 

membranes have been developed in order to reduce the metal thickness, cost and to 

increase the permeation fluxes (Meunier and Manaud, 1992). Such membranes were 

used for H2 separation and purification (Gryaznov et aI., 1993 and Kikuchi, 1995) as 

well as membrane reactor applications (Uemiya et aI., 1988). 

Nevertheless, theses composite membranes that were investigated and proposed for 

some industrial applications have limitations such as good durability (Collins and 

Way, 1993) and lack of complete selectivity to H2 due to surface micro-defects. 

Hence these membranes could be difficult for industrial and commercial utilization 

for schemes such as production of pure H2 from hydrocarbon reforming, purification 

of H2 streams from CO in fuel cells (Mordkovich et aI., 1992) (Ye et aI., 1991). 
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1.5.2. Silica membranes 

To date, almost all silica composite membranes have been prepared by the acid 

catalysed hydrolysis of tetraethoxysilane (TEOS) (Yan, 1994) using different 

preparation techniques such as sol-gel (Brinker et aI., 1993) and chemical vapor 

deposition (CVD) of silica precursors (Tsapatsis and Gavalas, 1994). CVD is a 

time consuming and tedious procedure requiring expensive and complex system and 

the commercial production of membranes by this method is hindered (Jayaraman, 

1995). Sol-gel modification of mesoporous membranes with polymeric silica has 

proven to be a very successful process for the preparation of microporous 

membranes (Kitao, 1990; Uhlhorn, 1992 and De Lange, 1995) and is usually 

recommended than any other process due to its simplicity. 

The silica membranes usually prepared by deposition of top thin layer on the surface 

of intermediate layer(s) such as y -alumina using different porous supports such as 

a-alumina (Morooka, et aI., 1995) or Vycor glass (Lee and Oyama, 2002). The 

membrane thin layer can provide high penneance but the possibility of fonning 

defects that decrease the membrane selectivity is high. Consequently, high quality 

support with narrow pore size distribution and homogeneous surface characteristics 

(such as wettability) is'required to produce a thin layer and defect-free membranes 

(Tsai et aI., 2000). 

Table 1.2 summarises different silica composite membranes prepared by different 

experimental groups and proposed for H2 separation and purification applications. 
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Author(s) Support(s) Intennediate Prep. H2 Selectivity Temp. 
layer(s) method penneance 

Lee et. stainless Si0 2 CVD 10-8 H2/N2 250 ac 
al. (2003) steel 500 & 150 mol/m2.s.P 112.22 

500nm nm a 
Hwang a.-Ab0 3 ,,(-AI20 3 CVD 10-7 _ 10-H HiN2 300 - 600 
et. al. 1000 nm 10 nm mol/m2.s.P 4-64 aC 
(2003) a 
Lee and Vycor - CVD 10-8 H2/CHt 600 aC 
Oyama glass mol/m2.s.P 104 

(2002) 4nm a 
Dinizda a.-Ah0 3 - Sol-gel 2 - 3 X 10-9 H2/C02 500 - 600 
Costa et. 500- mollm2.s.P 69 - 319 ac 

al. (2002) 1000 a 
Asaeda a.-Ab03 a.-Ab03 Sol-gel 1.3 x 10-0 H2/C3HS 35 - 300 
(2001) 1000nm 190nm mol/m2.s.P 6300 CO 

a 
Richard a.-Ah0 3 ,,(-Ah0 3 Sol-gel 2 x 10-6 H2/N2 20 -200 
et. al. 140 nm 3 nm mol/m2.s.P < ac 

(2001) a Knudsen 
Schafer a.-Ah0 3 1st a.-Ah0 3 Dip 20 H2/C3Hg 450 - 500 
et. al. 6000 nm 2000 nm coating m3/m2.h.ba 30 - 75 ac 

(2001) 2nd a.-Ab0 3 r 
400nm 

3rd a.-Ab03 
120nm 

4th y-Ah0 3 

12 nm 
Nakao et. Vycor - CVD 10-7 

- 10-8 H2/N2 50 - 30°C 
al. (2000) glass moll 100 - 900 

4nm m2.s.Pa 
Prabhu Vycor - CVD 1.8 x 10-8 HiCHt 200 - 700 

and glass moll 23000- ac 

Oyama 4nm m2.s.Pa 27000 
(2000) 
Hwang a.-Ah0 3 1st a.-Ah0 3 CVD 6 x 10-9 H2/N2 600 ac 
et. al. 1000 nm 80 nm moll 160 
(1999) 2nd y-Ah0 3 m2.s.Pa 

10 nm 
DeVos a.-A 120 3 y-Ah0 3 Dip 2 x 10-0 H2/C3Hg 300 aC 
et. al. 160nm 5nm coating moll 250 
(1999) m2.s.Pa 

Kusakab a.-Ah0 3 y-Ah0 3 Sol-gel I x 10.7 H2/N2 200 ac 
e et. al. 110 - 180 5 - 10 nm moll 100 
( 1999) nm m2.s.Pa 

Sea et. al. a.-Ah0 3 - CVD 5 x 10- H21H2O 400°C 
(1998) 110 - 180 moI/ 2.s.Pa 3-5 

nm 

Nijmeijer a.-Ah0 3 "(-Ab0 3 CVD 4 x 10:r H2/N2 250 aC 
et. al. 80nm 2.5 nm moll 40 
(1998) m2.s.Pa 
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Author(s) Support(s) Intennediate Prep. H2 Selectivity Temp. 
layer(s) method penneance 

DeVos a-Ah0 3 y-Ah0 3 Sol-gel 2 x 10'6 HiN2 200°C 
et. al. 160 nm 2.5 nm moll 10 
(1998) m2.s.Pa 

So et. al. a-Ab0 3 - Sol-gel 2.5 x 10'5 H/N2 400°C 
(1998) 80nm +CVD moll 10 

m2.s.Pa 
y-Ab0 3 

3 x 10'7 Sea et. al. a-Ah0 3 6nm CVD H21N2 600 DC 
(1996) 110 - 180 moll 100 -

nm m2.s.Pa 1000 
Morooka a-Ab0 3 - CVD 1O'l! H21N2 600 DC 

et. al. 150 nm moll 600 
(1996) m2.s.Pa 

De Lange a-Ab0 3 y-Ab0 3 Sol-gel 10..() moll H2/CH4 200°C 
et. al. 160 nm 2-2.5 nm m2.s.Pa 50 -200 
(1995) 

Table 1.2: Summary of silica composite membranes for separation and 

purification applications. 
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1.6. Modelling and Simulation 

In order to compare the performance of various membrane reactor configurations 

such as tubular membrane reactor, (TMR: where catalyst is placed inside the 

membrane tube) and annular membrane reactor (AMR: where catalyst is placed in 

the annular space between the shell and membrane tube), modelling is an attractive 

tool for comparative purposes. 

Experimental research for propane dehydrogenation using membrane reactor has 

been carried out by a number of authors (Ziaka et ai., 1993; Sheintuch and Dessau, 

1996; Weyten et ai., 1997; Yildirim et aI., 1997 and Weyten et aI., 2000). The 

authors performed membrane reactor experimental by placing the catalyst inside the 

membrane tube (TMR) and coating the support from the outside. Such a design 

works out very well to build a membrane reactor in a research laboratory, as it is easy 

to place catalyst in a tube and operate the membrane reactor. 

However, most of the reaction engineering technology uses jacketed heat source that 

coiled around the stainless steel tube of the reactor. For the case of a tubular 

membrane reactor the heat reaches the tube crossing over various resistance such as 

the steel tube, gas film resistance in the shell side, resistance in the composite 

support and gas film resistance on the tube side. Since the gas film resistance in the 

shell is significant, it could seriously restrict the overall heat transfer from the jacket 

to the reaction zone thereby demanding the necessity for operating of the membrane 

reactor at higher oven temperatures to provide heat for the endothermic reaction that 

takes place in the membrane tube. 

On the other hand, placing the catalyst on the shell side would offer both lower 

thermal resistance for the heat transfer and more catalyst weight per unit flow rate of 

the feed. In conclusion, a membrane reactor packed with catalyst in the shell side is 

characterised by a higher reactor volume and higher heat flux (Marigliano et aI, 

2001). Henceforth, operation of endothermic reactions by placing catalyst in the 

shell side makes the behaviour of the membrane reactor close to isothermal path 

(Marigliano et ai, 2001). 
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The impact of various heats demanding sinks on conversion have not been studied 

till date for propane dehydrogenation in a membrane reactor. These sinks can be 

regarded as heat transfer coefficient of the shell, heat transfer coefficient of the tube, 

heat of reaction and enthalpy due to flux. Since the gas phase heat transfer 

coefficient in the tube is significantly low 2 - 5 watt I m2.K (W/m2.K), equilibrium 

conversion with a tubular membrane reactor can be lower than the corresponding 

annular membrane reactor operated at the same conditions. Hence, profit margins 

evaluated using tubular membrane reactor configurations cannot be treated as 

acceptable values for the actual industrial implementation of membrane reactors. 

1. 7. Scope of the Research 

The scope of this research incorporates the use non-conventional types of silica sols, 

yet commercially available, relatively cheap and effective in providing the desired 

membrane characteristics for producing high purity H2 from a wide variety of gas 

mixtures. In this regard, silicone elastomer can be regarded as one of the competent 

materials that have not been widely studied for the preparation of silica composite 

membranes. Keeping in mind the motivation behind this project, the objectives and 

advantages of fabricating silica composite membranes for H2 reaction, separation and 

purification may be summarized as follow. 

1. Preparation and characterisation of different silica composite membranes 

using inexpensive alumina porous tubes as a support with wide range of pore 

size as an alternative to the multi-layer asymmetric supports. This will 

reduce the cost by eliminating the need for an extra intermediate layer( s) 

deposition which requires a highly complex, tedious and time consuming 

process. 

2. Easy scale up of the sol-gel I dip-coating process using silicone elastomer 

precursor instead of CVD and TEOS due to elimination of complex 

equipment needed. 
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3. Silica composites have to be investigated and their performance has to be 

tested for high temperatures (> 100°C) as required for H2 separation and 

purification applications. 

4. Investigate the possibility of increasing membrane separation properties by 

impregnating the membrane with H2 selective metals such as palladium. 

5. To develop a mathematical model for the assessment of tubular and annular 

membrane reactor configurations for propane dehydrogenation by performing 

comparative analysis. 

1.8. Thesis Outline 

This thesis has been organized in the following chapters: 

In the next chapter, a general overview of literature available for composite inorganic 

membranes and membrane reactors aimed for H2 reaction, separation and 

purification applications is presented. The review can be classified into six sections 

namely: Preparation methods and materials, membrane reactor applications, catalysis 

and membrane reactor studies for propane dehydrogenation as model H2 reaction 

scheme, silica membranes for H2 separation and purification and simulation models 

for membrane reactors. 

Chapter 3 presents the theory and experimental studies conducted for silica 

composite membranes. It assesses characteristics for H2 reaction, separation and 

purification. Theory presented in this chapter relates the evaluation of membrane 

characteristics (permeance and selectivity) coupled with transport phenomena for 

single and binary gaseous systems 

Chapter 4 presents experimental apparatus and procedure for the preparation, surface 

and flux characterisation of silica composites and noble metal impregnated 

composites for H2 reaction, separation and purification. This chapter also summarises 

various equipment used for membrane preparation, and the chemicals that have been 

used for the preparation of the membrane composites. 
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Chapter 5 presents the results obtained from surface and flux characterization 

studies. Detailed surface characteristics of the silica composite membrane are 

presented for silica composite membranes prepared for hydrogen reaction 

applications. This chapter include also details of the hydrogen purification membrane 

tested for different single gases and equimolar mixture of hydrogen and nitrogen. 

Finally, section 6.4 presents results and discussion for the silica composites prepared 

for hydrogen purification applications (with high separation factor). This is followed 

by results and discussion for the silica composite membrane prepared for reaction 

applications in section 6.5. The results obtained for palladium impregnated y­

alumina membrane and silica y-alumina membrane are presented in sections 6.6 and 

6.7. Finally conclusions are summarised in section 6.8. 

Chapter 6 presents a comparative mathematical simulation study for propane 

dehydrogenation in different operational schemes based on modelling and simulation 

for laboratory scale configurations. Operational perfonnance of different 

configurations namely tubular reactor, annular reactor, tubular membrane reactor and 

annular membrane reactor are investigated in this chapter. 

Chapter 7 presents the conclusions that have been drawn from the experimental and 

theoretical research conducted in this work. Opportunities for possible future 

research are summarised in section 7.4. 
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Chapter 2: 

LITERATURE REVIEW 

2.1. Introduction 

This chapter highlights the features in the preparation methods that can be explored 

for further research and presents a general overview of the literature covering 

composite inorganic membranes and membrane reactor catalysis. These membranes 

aimed at hydrogen reaction, separation and purification employing different types of 

supports and various fabrication methods with certain modifications. Some 

modifications are suggested to offer higher hydrogen permeance and selectivity in 

various applications. 

2.2. Preparation Methods and Materials 

Inorganic composite membranes can be prepared by a variety of methods, the choice 

of which depends on such factors as the facilities available on site, required 

thickness, shape, etc. The most important criteria for the selection of these methods 

are low cost and/or short preparation time and good membrane performance with the 

desired properties (permeability, selectivity and stability). 

By far the most commonly used methods for preparation of silica membranes are sol­

gel, dip-coating and CVD. For metal membranes such as palladium / palladium alloy 

composite membranes, popular methods used are electroless plating and chemical 

vapor deposition. The magnetron sputtering method has also been used. 

2.2.1. Sol-gel method 

The sol-gel method has been widely used to obtain silica polymeric sols which allow 

the preparation of silica membranes with superior quality (Kitao et aI., 1990; 
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Uhlhorn et aI., 1992). Other research groups working with the sol-gel process have 

prepared silica composite membranes with narrow pore sizes and high performance 

in terms of permeance and selectivity. By use of polymeric sols, De Lange et aI., 

(1995b
) deposited a silica layer upon mesoporous y-alumina intermediate layer with 

5nm pore size. Such top layer (pore size <1 nm) enabled molecular sieve-like 

separation factors in order of 50-200 for H2/CH4, well above the Knudsen value of 

2.8. The authors concluded that extreme care is demanded by the process in order to 

control the pore size of the sol effectively. 

Other molecular sieving silica membranes were prepared by Raman and Brinker 

(1995) using hybrid organic - inorganic polymers. The membranes material 

prepared by polymerization of TEaS and methyltriethoxysilane (MTES) which 

deposited on alumina support (support details not provided). This approach for the 

synthesis of molecular sieving silica membranes was tested for C02/CH4 separation 

with CO2 permeability value of 2.5 x 10-7 mollm2.s.pa and separation factor higher 

than 70 was reported. 

A modified novel sol-gel dip coating derived silica membranes were obtained by 

Tsai et aI., (2000). The authors prepared dual layer asymmetric silica membranes 

with improved membrane performance by deposited surface template silica 

intermediate layer on an asymmetric membrane whose skin layer is y-alumina with 5 

nm pore size. This procedure had resulted in an asymmetric membrane that provided 

a gradual change in pore diameter from 5 nm (y-alumina support layer) to 1-1.2 nm 

and then to 0.3 - OAnm silica top layer whose thickness is about 30 nm. The 

membrane provided a separation factor of about 200 - 600 for C02/C~. In order to 

obtain a thin top layer as a selective membrane, Tsai et aI., (2000) showed that the 

quality of the support determines to a high degree, the performance of the membrane 

top layer. Large pore support surface would cause defects and cracking of the 

membranes due to stress development on unequal film coating. 

Other good results in the area of sol-gel derived silica membranes were obtained by 

Verweii and coworkers. In these investigations, deposition of 30 nm thickness silica 

membranes was accomplished via a sol prepared from hydrolysis of TEaS upon a 

flat support made of a-alumina disk covered with two y-alumina layer of about 3-
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51-lm thickness (De Vos and Verweij, 1998). Due to low silica film thickness, high H2 

permeance 2 x 10-6 mol/m2.s.pa and a H2/CH4 separation factor of 500 at 300°C was 

reported. The authors conclude that the sol-gel modification provides good 

selectivity and permeability as opposed to CVD method where there is an attendant 

loss of permeability, though the selectivity is enhanced. They found that most of the 

membrane defects arising in the sol-gel derived membranes originated from dust 

particles present in the environment in which the membranes are produced. 

Nair et aI., (1996) prepared polymeric sols by hydrolysis and condensation of TEaS 

in ethanol with HN03 as catalyst. The membrane was prepared by dip coating of a y­

alumina intermediate layer in silica sol for four second (4s) using a-alumina support. 

For the membrane, y-Ah03 was used as the selective sorption layer in order to 

separate propylene and propane whose kinetic diameters are very close. A maximum 

separation factor of about 1.8 was obtained for propane/propylene mixture at 325°C 

for the composite membrane. At higher temperatures, therefore the separation factor 

was decreased to 1.2. 

Although, the sol-gel method has some advantages such as simplicity, low cost and 

pore size control flexibility (Brinker et aI., 1993), it suffers from lack of 

reproducibility (Prabhu and Oyama, 2000). However, the size of the micropores can 

be more successfully controlled by sol-gel compared with the chemical vapor 

deposition (Sea et aI., 1997). 

2.2.2. Dip-coating process 

The technology of dip coating inorganic sols to make stable films was pioneered in 

Germany and became widely known after World War II (Schroeder, 1969). 

In general, the repeated coating procedure assists in the reduction of the membrane 

defects resulting in an increase the membrane selectivity, but at the expense of 

permeation. As the number of coating steps increases, the membrane flux decrease 

because of the increase in the layer thickness. According to Larbot et aI., (1987), 

high flux needs membrane thickness from 1 to 10 microns and high selectivity needs 

narrow pore size distribution. In the case where the membrane thickness is 
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increased, the possibility of membrane cracks arising after thermal treatment could 

increases. To avoid this problem and to keep the membrane as durable as possible, 

the thickness of the membrane layer should be optimised. The important parameters 

that control the membrane thickness are sol concentration, coating time and the 

number of coating steps as well as the pore size of the support (Burggraaf and Cot, 

1996). 

Using dip-coating technique (Lee et aI., 2003) prepared silica composite membrane 

on porous stainless steel support having a pore size of 500nm and 1 mm wall 

thickness by hydrolysis of TEOS. In this process, the macroporous stainless steel 

substrate pores are reduced by different colloidal silica sols. A sub-micron nickel 

powder is used in order to reduce pore size and surface roughness of the support as a 

first stage, then the support was modified again by introducing intermediate layers of 

150 nm and 50 nm silica sol. By repeating dipping - drying - calcinations process 

for four times the selective top layer was produced from the silica sol. This 

membrane exhibited an H2 permeance of 1.0 x 10-8 mollm2.s.Pa and an H21N2 

selectivity of 112.22 at 250°C. 

Da Costa et aI., (2002) reported the use of a two - step catalysed hydrolysis approach 

for the preparation of molecular sieve silica membranes with TEOS. The a-alumina 

support with an average pore size of 500 - 1000 nm was coated first by dip coating 

in diluted sols before a series of silica layers deposit to produce the final top layer. 

The composite membrane offered a hydrogen permeance of 2 - 3 X 10-9 mol/m2.s.Pa 

and Helium (He)/C02 selectivity of about 69 - 319 at 500 - 600°C. 

Commercial alumina tubes of asymmetric structure were used by Schafer et aI., 

(2001) for the deposition of silica using the sol-gel I dip coating technique. For this 

purpose, the commercial membrane used is an ultra filtration membrane with the skin 

layer being y-alumina (pore size = 6 nm). The silica layer is deposited on the 

y-alumina layer of the ceramic support using a silica polymer sol. The composite 

provided a hydrogen permeance of about 2 - 3 x 10-6 mol/m2.s.Pa with H2/C3H8 

selectivity in the range of20 - 55 over the temperature range of 150 - 550°C. 

Identical selectivity results (20 - 50) for H2 and He with respect to propane and 

isobutane were obtained by De Vos et aI., (1999). The authors prepared silica 
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membranes by repeated dip coating of an asymmetric support with TEOS. The 

asymmetric support consisted of a y-alumina top layer with 5 nm pore size on the top 

of a-alumina discs with pore size of 160nm. These membranes offered high gas 

permeance (1 x 10-5 mol/m2.s.Pa) for small molecules like H2 and He. 

Nair et aI., (1997) prepared a polymeric sol by acid catalyzed hydrolysis and 

condensation of TEOS and deposited on a flat supports of 150 nm a-alumina to 

produce silica membranes. These membranes were produced after dipping the 

support into a boehmite sol for lOs to create y-alumina with 4nm as intermediate 

layer and then dipped in silica sol for lOs as well. Hydrogen permeance of the 

composite indicated activated diffusion with hydrogen permeance of 10-7 

mollm2.s.Pa and activation energy of 17 kJ/mol at 303 - 460 K. At 303 K, the 

membrane propane permeance was about 2 times higher than N2 and Ar. Further, 

HeIN2 selectivity of about 1000 and helium permeance with the same value of the 

hydrogen permeance of 10-7 mol/m2.s.Pa were measured in the temperature range of 

303 - 460 K using the composite membrane. 

2.2.3. Chemical vapour deposition 

CVD method was used extensively for deposition of thin films of silica membranes 

and in the case of palladium deposition. In this method, a chemical reaction 

involving a metal complex in the gas phase is initiated at a controlled temperature 

and the metal produced by this reaction deposits as a thin layer onto the desired 

support. Such reactants as organometallic compounds are commonly used due to 

their high volatility. The deposition of the thin layer usually takes place at high 

temperature which can be reached using different sources such as resistive heating. 

Using CVD, Gavalas et aI., (1989) and Tsapatsis et aI., (1991) produced a highly 

hydrogen selective silica membrane with activated diffusion mechanism. The authors 

were able to deposit silica inside the surface of a vycor glass support. A palladium 

membrane was prepared by Xomeritakis and lin (1996) through pore size reduction 

of y-alumina layer (pore size = 4nm) with the CVD method. This membrane 

inferred hydrogen permeance higher than 10-7 mollm2 spa. 
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CVD using different silica sources such as TEOS has been followed by Sea et al., 

(1997). The hydrogen permeance of the membrane was measured to be in the order 

of 10-7 moVm2.s.Pa at 600°C and was not significantly dependent on type of silica 

source. For these membranes, H21N2 selectivity evaluated from the permeation of 

single gas was approximately 100. The component permeances were also observed to 

be similar when a 50/50 mixture of H2 and N2 was fed to the system. The authors 

concluded that the CVD method in general is much easier and simpler than sol-gel. 

In the mean time, they found that silica membranes produced by CVD are not useful 

for the separation of large molecules than hydrogen. 

A micro porous silica membrane on porous vycor glass tube (with 4 nm pore size) 

was prepared by Nakao et al., (2000) using CVD. The composite membrane obtained 

was categorized as molecular sieve membranes with HeIN2 permselectivity of 950 at 

40°C. The helium permeance was found to be limited because of the Vycor glass 

pore size that offer flow resistance. Kusakabe et al., (1999) and Prabhu and Oyama, 

(2000) concluded that the CVD method is suitable for controlling both pore size and 

surface modification, but require high capital investment and suffer from difficulties 

in uniformity of deposits on complex shapes. In addition, this technique needs the 

development of a complex experimental setup consisting of heating element and 

control system to regulate the vapour generation and condensation process 

(Jayaraman et al., 1995). In other words, there is requirement to develop procedures 

that can present silica composite membranes prepared by simple and cost effective 

process. 

2.2.4. Electroless plating method 

Several studies have focused on the development of palladium based membranes 

using this method (ltoh et al., 1987; Shu et al., 1991; Govind and Atnoor, 1991; 

Yeung and Varama, 1995). Electroless plating is performed by controlled 

autocatalysed reduction of metal stable metallic salt complexes on a suitable support. 

In the case of palladium, complexes such as palladium salt solution may be used to 

deposite thin film in the presence of a reducing agent, typically hydrazine (Uemiya et 

al., 1988). 
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A composite palladium ceramic membrane was prepared by Uemiya et aI., (1990) 

for the study of aromatization of propane in a membrane reactor. In their work, the 

authors deposited an 8.6 f.lm thick palladium film on the outer surface of a porous 

alumina tube. One year later, Uemiya and co-workers used electroless plating to 

deposite palladium films ranging from 13-20 f.lm on the outside surface of porous 

glass tubes with 0.3 f.lm pores (Uemiya et aI., 1991 a,b). They report an infinite 

hydrogen selectivity, which means defect free deposition was carried out. These 

membranes were tested in a membrane reactor for steam reforming of methane and 

water gas shift reactions. 

Electroless plating technique to prepare a Pd composite membrane was also 

developed by Kikuchi et aI., (1991). Compared to commercially available palladium 

membranes with thickness of 150 f.lm, their membrane exhibited a higher permeance 

to hydrogen and had a high H2 selectivity. Shu, et aI., (1991) deployed stainless steel 

support to prepare palladium-silver (Pd-Ag) composite membrane applying 

electroless plating. However, no permeation results were given. It has been 

demonstrated that this method can produce a uniform metallic deposition on complex 

shaped support with simple equipment. Collins et aI., (1996) deposited thin 

palladium films on the inner surface of a tubular porous ceramic support using 

electroless plating. The thickness of the deposited palladium film was about 12 f.lm 

on a porous support of 200 nm pore size. 

It can be concluded from different research groups (Govind and Atnoor, 1991; Shu et 

aI., 1993 and Li et ai, 1996) that electro less plating technique offers some advantages 

such as simplicity, low cost and capability for providing uniform dense coating on 

different kind of supports (i.e. vycor glass and stainless steel) with uniform and non­

uniform shapes. The main drawback of this method is that sequential deposition is 

required for preparing Pd alloy film. Furthermore, Xomeritakis and lin, (1996) 

reported that it is difficult to control film thickness above 3 microns that has uniform 

and high film quality and good adhesion property. 
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2.2.5. Magnetron sputtering method 

This is another method that can be used to prepare metal membranes. By this 

method, thin film metal membranes can be produced on almost any type of supports. 

During magnetron sputtering, metal particles like palladium are sputtered to the clean 

support in a vacuum chamber at low pressure (10-7 Torr) using electric field. To vary 

the thickness of the deposited films different coating times can be applied. The 

distance between the target and the support should be maintained constant during 

deposition in order to produce uniform membranes. The deposition temperature can 

be controlled with a resistance substrate heater. The advantages of this method are 

flexibility to synthesize alloys, easily controllable process parameters and ultra and 

uniform thickness. The disadvantages of the method are high cost and its low 

efficiency. According to Hara et aI., (2000) it is not easy to prepare defects-free thin 

membranes on supports, using sputtering method. 

Athayde et aI., (1994) prepared ultrathin Pd / Ag alloy films with about 50 run 

thickness on polymeric supports by the sputter deposition in order to increase the 

selectivity of polymer membrane without reducing the permeability. Since these 

polymer / metal composites are not stable at high temperature due to the thermal 

stability limitation of the support, Jayaraman, (1995) used a ceramic support and 

prepared a palladium films «500run) after applying a y-alumina thin layer on disc (l­

alumina porous tube. A pure palladium (99.9 %) target of 100 mm thickness was 

used as the sputtering source. The prepared membrane was tested for hydrogen / 

nitrogen separation and different parameters such as support type, sputtering 

temperature and film thickness also investigated. Itoh et aI., (2000) combined 

sputtering and electroplating technique for palladium composite membrane 

preparation for hydrogen separation. The sputtering process was used in order to 

provide an electro-conductivity on the top of the outer surface of the alumina layer 

using radio frequency sputtering equipment. They found that it is possible to fill the 

support pores to an extent even in the sputtering process. The membrane exhibited a 

separation factor of hydrogen to nitrogen of about 1640 at 350°C. 
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2.3. Membrane Reactor Applications 

There has been an intense, worldwide effort on the concept of membrane reactors 

(combining reaction and separation in one unit operation) for the last several decades 

as presented in many review articles (Hsieh, 1991; Shu et al., 1991; Saracco and 

Specchia, 1994). This is because of many advantages such as compact process 

equipment; lower energy requirement and reduced production of undesired 

compounds. One of the most important objectives of membrane reactor research has 

been to achieve a conversion enhancement over the thermodynamic equilibrium. By 

selectively removing of one or more of the reaction products through the membrane 

tube, it is possible to shift the equilibrium towards the product side, and overcome 

the thermodynamic limitations of the reaction. Thus, higher conversion can be 

attained at lower temperatures thereby avoiding intense catalyst deactivation and 

undesired side reaction. 

Several membrane reactor configurations have been proposed and studied (Zaman 

1994) and some of these configurations can be classified as shown in Table 2.1 and 

schematically presented in Figure 2.1 (Dittmeyer et aI., 2001). 

Catalytic Membrane Reactor Selective removal of products from the reaction 
lone. (one product permeate through the 

(CMR) membrane) 

Catalytic Non-permselective Membrane Non selective removal of products from the reaction 
Reactor lone. (all components permeate through the 

(CNMR) 
membrane at comparable rates) 

Packed Bed Catalytic Reactor The membrane is inert and acts as a diffusing 

IMCR(PBCR) 
element and reaction takes place on a catalyst bed. 

Packed Bed Catalytic Membrane The membrane acts as a catalyst and a diffusing 
Reactor element. In addition to the catalytic membrane, a 

CMR. (PBCMR) 
packed bed catalyst is used to increase the reaction 
rates 

Table 2.1: Classification of membrane reactors. 
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Figure 2.1: Classification of membrane reactor (Dittmeyer et ai, 2001). 

24 



CHAPTER 2 LITERATURE REVIEW 

2.3.1. Hydrogen reaction membranes 

Palladium is remarkable for its well known affinity for hydrogen and possesses both 

the ability to separate hydrogen exclusively from other gases due to high mobility in 

the palladium lattice. Hydrogen selective membranes in hydrogen related reactions 

such as hydrocarbon dehydrogenation, steam refonning of methane, water gas shift 

or hydrogenation have been studied by different researchers. Giessler et aI., (2003) 

fabricated hydrophobic and hydrophilic molecular sieve membranes on alumina 

supports whose skin layer average pore size varied from 500 - 1000 nm. These 

membranes were prepared from sol-gel method using TEOS and the composite 

membranes offered a hydrogen penneance of 15 x 10-7 mol/m2.s.Pa and 7 x 10-9 

mol/m2.s.Pa for hydrophobic and hydrophilic membranes respectively. The 

corresponding H21N2 penneance at 100°C was reported to be 8 and 18 respectively. 

These membranes were later subjected to investigations in membrane reactor 

catalysis for water gas shift reaction. 

Sotowa et aI., (2002) investigated CO oxidation usmg H2 selective membranes 

impregnated with metal. The authors initially deposited y-Ah03 layer on the outer 

surface of a porous a.-Ah03 support tube using boehmite sol. The outer layer was 

then impregnated with rhodium (Rb) using an aqueous solution of rhodium chlorine 

(RhCh) and was finally subjected to silica film deposition using silica sols. This 

composite membrane was observed to provide a H2/CO separation factor of 100. 

Prabhu et aI., (2000) experimentally investigated dry refonning of methane in a 

membrane reactor with 1 % rhodium-alumina (RbI Ah03) / Silica-Vycor glass 

(Nanosil) membrane reactor. The membrane observed to exhibit 100 % selectivity of 

hydrogen with respect to other components in the reaction scheme. 

Lee et aI., (1995) prepared Pd impregnated membranes using an asymmetric porous 

support whose skin layer pore size is 80 nm. The support was first deposited with Pd 

impregnated on y-alumina employing sol-gel technique. Subsequently, palladium 

acetate solution was used to soak the material further. The composite was then dried 

at 293 K and 373 K respectively for 3 hours. Finally, CVD method with deposition at 

453 K under vacuum application was carried out which yielded the composite 

membrane that had about 0.52 wt % Pd on its surface. The gas separation 
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characteristics of the palladium membrane before and after modification were 

summarised as follows. The sol-gel prepared y-alumina membrane exhibited H21N2 

separation factor of about 3.6 at 400°C. Therefore, the reduction of the pore size due 

to the deposition of y-alumina is confirmed. However, the palladium supported y­

alumina membrane exhibited a H21N2 separation factor of about 5 - 6 at the same 

temperature which is higher than that achieved using Knudsen diffusion (3.74). 

Yildirim et aI., (1997) prepared Pd impregnated composite porous membranes for 

membrane reactor studies directed towards the propane dehydrogenation reaction 

scheme. The membrane used for Pd impregnation was either y-alumina or silica 

(both with an average pore size of about 4 nm). Therefore, two palladium 

impregnated membranes were fabricated using palladium chloride (PdCh) solutions 

employing impregnated method. The amount of Pd deposited in both the cases was 

estimated to about 0.45 wt % using weight gain method. The Pd impregnated 

composite membranes exhibited good performance during membrane studies. At 517 

°c for example, propane conversion was evaluated to be 47 % which is higher than 

the corresponding equilibrium value (40 %). 

Vitulli et. aI., (1995) prepared platinum (Pt) impregnated silica composite 

membranes for the hydrogenation of toluene. The silica sol used was a commercial 

sol (LUDOX) consisting of 40 % silica. Slip-casting was used as the method for the 

fabrication of the silica membrane on an alumina support. The membrane permeance 

and selectivity were agreed with Knudsen values. 

It can be concluded that, the desirable properties of the membrane would be high 

permeance and acceptable values of H21N2 selectivity (higher than Knudsen value). 

This is due to the fact that lower hydrogen permeance cannot increase conversions 

significantly using membrane reactor because if the permeance is low, the membrane 

will not be able to remove sufficient hydrogen from the reaction zone at high 

reaction rate. Further enhancement of separation potential without lowering H2 

permeance value is also of concern in literature. This is targeted to be achieved by 

noble metals impregnation (Pd) membranes. There has been lack of literature for the 

utilisation of other types of silica polymer sols that can be as effective as TEOS in 

providing required characteristics for hydrogen reaction applications. 
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2.3.2. Propane Dehydrogenation and Catalysts 

Dehydrogenation of propane is a thermodynamic limited reaction and highly 

endothermic, therefore heat supply is required through the reaction. The reaction is 

usually carried out in the reaction conditions of high temperature (873 K) and 

atmospheric pressure (Stitt et aI., 2001) in order to obtain conversion of commercial 

significance. In membrane reactor idea, as the reaction proceeds, the continuous 

removal of the product (usually hydrogen) from the reversible reaction system can 

allow the conversion to exceed thermodynamic limitations Bitter (1988). Based on 

this idea, much attention has been paid to the application of membrane reactors in 

dehydrogenation reactions (Zaspalis et aI., 1991 and Gobina et aI., 1995a
• b). Propane 

dehydrogenation via selective removal of hydrogen is one of the typical applications 

of a membrane reactor. A number of researchers have studied this reaction using 

various types of membrane materials and catalysts. 

Schafer et. aI., (2003) dehydrogenated propane in a low flux silica membrane (H2 

permeance of2.6 m3/m2.h.bar with a selectivity of 13 for H2/N2 and 25 for H2/C3HS) 

and a high flux silica membrane (H2 permeance of 10.0 m3/m2 h.bar) with a 

selectivity of 12 for H21N2 and 17 for H2/C3Hs). They investigated the performance 

of two different types of catalysts, chromia I alumina (Cr203 / Ah03) and platinum­

tin / alumina (Pt-Sn I Ah03) at temperatures ranging between 500 to 535°C. The 

authors found that the propane conversion in the membrane reactor is 12% higher 

than in the conventional fixed bed. 

Chang et aI., (2002) studied propane dehydrogenation with Pt-K-Sn I y-Ah03 

catalyst coupled to an electroless plated Pd-alumina composite membrane. In their 

study, propane conversion was reported to be above the equilibrium value between 

the temperatures of 350 to 500°C. At 500 °C, propane conversion was evaluated to 

be about 52 % (equilibrium value of about 18 % at this temperature). Furthermore, 

the selectivity of propane dehydrogenation reaction was evaluated to be more than 90 

% at 550°C. 

Propane dehydrogenation was also studied by Quicker et. al. (2000) using 

commercial Pt-Sn I alumina catalyst and electroless plated Pd-steel and Pd-alumina 

membranes. Both membrane reactor systems were reported to provide higher 
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conversions than conventional packed bed catalytic reactor systems. Propylene yield 

is observed to be 26.1 % using Pd-alumina membrane and was evaluated to be about 

4 % higher than that achieved using a packed bed reactor system at 500°C. The 

hydrogen yield is observed to be 34 % for Pd-alumina membrane reactor and 39 % 

for Pd-steel membrane reactor. For both membrane reactors, propylene selectivity 

was observed to be slightly low due to the fonnation of by products. 

Weyten et aI., (2000) studied membrane catalysis for propane dehydrogenation using 

palladium - silver and silica-alumina composite membranes. Higher propylene 

yield was evaluated for Pd-Ag membrane compared to the silica composite 

membrane. The yield was observed to decrease with an increase in weight hour 

space velocity (WHSV) and feed flow rate. For both membranes reactor systems 

(Pd-Ag & silica), selectivity achieved for the membrane reactor was evaluated to be 

higher than that of the conventional packed bed reactor under the same conditions. 

The catalyst used by the authors is the chromia / alumina (Cr203 / y-Ah03) catalyst 

with surface area of about 80 - 90 m2/g. At 500°C, the deactivation of the catalyst 

was relatively slow and propane conversion gradually decreases after 7 hours. After 

30 hours, propane conversion decreased to about half the original value. This was 

attributed to coke fonnation on the catalyst surface. Catalyst regeneration of the 

deactivated catalyst was perfonned by passing 96 % N2 and 4 % O2 at 500°C for 

about 12 hours, followed by passage of pure H2 for 1 hour for reactivation. 

Yildirim et. aI., (1997) studied propane dehydrogenation reaction using different 

membrane types, dense Pd-Ag membrane, silica modified metal impregnated 

membrane and metal sputtered porous membranes. They employed two types of 

commercial catalysts (0.5 wt % Pd - alumina and 0.5 wt % Pt - alumina cylindrical 

pellets with 3.4 mm diameter and 3.6 mm long) for their membrane reactor studies. 

The catalyst pellets were packed into a membrane tube and the surface area obtained 

was about 24.7 cm2/g of catalyst. The authors concluded that the Pd-Ag membrane 

provided best values of propane conversion and was observed to be 4 times higher 

than the equilibrium conversion at 400°C. 

Weyten et. aI., (1997) investigated propane dehydrogenation using silica composite 

alumina membrane with hydrogen penneance of 15 - 135 x 10-9 mol/m2.s.Pa. at 

temperatures above 500°C. The membrane was loaded with chromia-alumina 
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catalyst and nitrogen was used as sweep gas. Pure propane is fed to the tube side of 

the membrane reactor. The propane conversion was evaluated to be about 23.8 % at 

WHSV of 0.16/h at 500°C, which is higher than the corresponding equilibrium 

conversion. The selectivity of propane dehydrogenation reaction scheme was 

evaluated to be about 89 %. However, propylene yield decreased from a value of 50 

to 20 at higher values of WHSV (0.75/h). Three different commercial catalysts 

namely chromia I alumina (Cr203 I AI203), (Cr203 I Ah03) containing a potassium 

(K) promoter and (Cr203 I Ah03) containing cesium (Cs) and zirconium (Zr) have 

been used and tested for this reaction and the support material for all these catalysts 

is y-Ah03. At 600°C, coke formation is significant and it caused serious catalyst 

deactivation. At WHSV of 0.25/h (mass [g) of feed gas per hour per gram of 

catalyst), the equilibrium conversion at 500 °c was about 18 % using membrane 

reactor, which is identical with the value of equilibrium conversion at the same 

temperature using conventional reactor. 

Sheintuch and Dessau (1996) studied propane dehydrogenation using commercial 

palladium-silver (25 % Ag) membrane tubes and palladium-ruthenium (2 % Ru) 

membranes tubes loaded with 0.52 wt % platinum catalyst. During their 

investigation, the shell side was swept by nitrogen or nitrogen-hydrogen gas mixture. 

Propylene yields of about 70 % at 550°C (23 % at equilibrium) were reported using 

the membrane reactor system. However, propylene yield was observed to decrease 

with time for experimental runs taken using Pd-Ag membrane at 525°C. This was 

attributed to both membrane deactivation and catalyst deactivation. 

Collins et aI., (1996) investigated the membrane reactor performance at space 

velocities similar to those used in conventional reactor using silica composite 

membranes prepared from polymeric silica sols. The silica layer was deposited on 

the inner surface of the ceramic support tube by dip-coating process. The composite 

membrane was then dried and calcined at 873 K. The composite membrane was 

observed to have H2 permeance of 5 - 10 X 10-7 mol/m2.s.Pa for a corresponding 

H21N2 selectivity of about 10 - 19 at 773 K. This combination of permeability and 

selectivity was evaluated to be lower than that available for palladium composite 

membrane. The authors concluded that the selectivity of the silica based membrane 
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needs to be improved without reducing the hydrogen permeance and the problem of 

the Pd based membrane stability is a serious limitation. 

Ziaka et. aI., (1993) studied membrane reactor for propane dehydrogenation using 5 

% Pt - y Ah03 catalyst loaded in commercial multilayered composite porous alumina 

tubes. These tubes consisted of three layers with nominal pore diameters of 40 

angstrom (A), 2000 A and 8000A, supported on a macroporous layer with pore 

diameter of 15 Ilm. Permeances of hydrogen, propane, propylene and argon of the 

commercial composite membrane were found to be constant over a wide range of 

transmembrane pressure. Therefore, the flow mechanism was confirmed to be 

dominated by Knudsen mechanism. The feed reaction mixture contained hydrogen in 

order to reduce coking effect. During the experiments, the tube pressure was 

maintained at 2-3 pound square inch (psi) while the shell pressure was varied 

between 0-1 psi for a gas residence time of about 2 seconds. For a feed mixture of 

propane to hydrogen with 4: 1 molar ratio, the propylene yield was observed to be 26 

% (with 90 % selectivity) at 560°C. 

Table 2.2 summarises experimental membrane reactor and catalysis studies 

performed for propane dehydrogenation. 

Membrane Catalyst Temp.oC Reference Performance 
Ah0 3 5 % Pt-y Ah03 560 Ziaka et. ai. 26% 

(1993) Conversion 
Pd - Ag tube 0.52 % Pt 530 Sheintuch and 70% 

Dessau conversion 
(19961 

Dense Pd - Ag 0.5 wt % Pt / Ah03 400 Yildirim et. Four fold 
Silica porous 0.5 wt. % Pd / Ah03 ai. (1997) increase in 
Sputtered Pd - conversIOn 

porous with Pd-A..s. 
Si02/ Ah0 3 Cr203/ Ah0 3 450 Weyten et. ai. 34 % higher 

Cr203 - K / Ah03 (1997). conversIOn 
Cr203 - Cs-Zr / Ah03 from reactor 

Pd - Stainless steel Pt - Ah03 400 Quicker et. al. Propylene 
Pd - Ah03 (2000) yield 26.1 
Pd - Ah03 Pt - Sn - K / Ah03 500 Chang et. al. 52% 

(20022 conversion 

Table 2.2: Summary of membrane reactor studied for propane dehydrogenation. 
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2.4. Hydrogen Separation and Purification membranes 

Preparation of membranes for hydrogen separation and purification purposes is one 

of the key techniques for efficient hydrogen production. Different membranes such 

as silica and palladium and its alloy composites have been prepared and extensively 

studied. Hwang et aI., (2003) used two different alumina tubes to fabricate silica 

composites. One was made of a-alumina with an average pore size of 100 nm where 

as the other was a three layer composite with a y-alumina final layer of 10 nm 

average pore size. The chemical vapour deposition method was applied to prepare 

the silica composite membrane with tetraethoxysilane as silica source. The 

membrane prepared using y-alumina exhibited a H21N2 selectivity of about 7.5 - 63.7 

at 600°C and 3.8 for the membrane deposited on a-alumina support. Both 

membranes were studied for hydrogen separation from H2 - H20 - HI gaseous 

mixture. After one day exposure to the H2 - H20 - HI mixture, it was shown that the 

H2 permeance remained the same. 

An a-alumina support tube with 200 nm pore size was used by Rouessac et aI., 

(2003) to fabricated silica composite membrane with deposition on the inner surface 

using plasma enhanced CVD. The membrane was reported to provide good thermal 

stability at up to 500°C under inert atmosphere. While surface characterization is 

performed, the researchers did not perform flux characterisation studies. Silica 

membrane prepared with TEOS using a support of a-alumina with pore size of 1000 

nm, high H2 permeance of about 1.3 x 10-6 mol/m2.s.Pa at 300°C was reported by 

Asaeda and Yamasaki (2001). The membrane was prepared by deposition a silica 

layer using of hot coating technique by the sol-gel method. The thickness of the 

separation layer is about 1 Jlm. The composite provided permeance ratios of 150 for 

H2/CH4, 1100 for H2/C2H6 and 6300 for H2/C3H8 at the same temperature. 

Porous Vycor glass support was used by Prabhu and Oyama (2000) to modify the 

support surface using high temperature CVD with TEOS. These membranes termed 

as nanosil provided hydrogen permeance of 1.5 x 10-8 mol/m2.s.Pa and high 

hydrogen selectivities (100%) with respect to CH4, CO, C02 and H20 at 600°C. 

Another silica membrane referred as nanosil with high hydrogen selectivity was 

prepared by Lee and Oyama (2002) on a porous vycor galss support (4 nm pore size) 
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using CVD as the preparation method. The membrane was fabricated by deposition 

of thin silica layer from TEOS at 873K in an argon stream. The composite membrane 

exhibited a permeance of 10-8 mollm2.s.Pa for the small gas molecules such as 

hydrogen at 873 K with a corresponding H2/CH4 selectivity of 10000. However, the 

hydrogen permeance of this membrane was limited due to the low gas permeance of 

the Vycor support itself at high temperatures. 

Hwang et aI., (1999) prepared silica membranes using two supports of different size 

(100 nm and 10 nm). The hydrogen permeance is evaluated to be 6 x 10-9 

mollm2.s.Pa and H21N2 selectivity of about 160 for the 10 nm composite membrane 

at 600°C. Kusakabe et aI., (1999) prepared porous silica membranes using sol-gel 

technique on a tube whose skin layer is y-alumina using sols prepared from TEOS. 

The composite membrane exhibited a hydrogen permeance of 10-7 mollm2.s.Pa and 

H21N2 selectivity of about 100. 

Silica layer deposited from silicon tetra-acetate as precursor on the top of 

mesoporous y-alumina layer was carried out by Nijmeijer et aI., (1998) using low -

temperature chemical vapor infiltration. For this composite membrane, H21N2 

membrane selectivity higher than 40 and a hydrogen permeance of about 4 x 10-7 

mol/m2.s.Pa at 250°C were reported. At higher temperature (400°C), the similar 

hydrogen permeance (4 x 10-7 mol/m2.s.Pa) was reported by Sea et aI., (1998). The 

authors prepared their membrane using ex-alumina porous tubular support with pore 

size of 110 - 180 nm following CVD method. The silica composite membrane 

prepared exhibited hydrogen I nitrogen separation factor close to Knudsen diffusion 

mechanism (3.74). 

Morooka et aI., (1996) produced silica composite membranes for hydrogen 

separation at high temperature by plugging 150 nm sized pores of the ex-alumina 

support using TEOS as silica source following CVD process. The membrane 

separation characteristics were studied over a temperature of about 600°C and good 

H2iN2 selectivities (100 - 600) and hydrogen permeance (about 10-8 mollm2.s.Pa) 

were reported. However, hydrogen permeance is reported to have decreased after 

operation for one day. 
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Sea et aI., (1996) used TEOS for hydrogen selective silica composite membrane 

preparation for the application of hydrogen recovery at elevated temperature from a 

gaseous mixture containing steam. The composite membrane is prepared by 

depositing silica in two different pore size tubes using CVD method. These include 

macroporous a-alumina support (110-180 nm) and a mesoporous y-alumina 

intermediate layer coated on the a-alumina tube (pore size = 160 nm). The silica 

membrane that produced in y-alumina intermediate layer which coated on the a­

alumina support resulted in hydrogen permeance of 3 x 10-7 mol/m2.s.Pa at 600°C. 

The membrane that was produced directly on a-alumina support offered a hydrogen 

permeance of 3 x 10-8 mol/m2.s.Pa which is one order of magnitude lower than that 

of a membrane produced on the porous support with y-alumina surface. For these 

membranes, very high selectivity for hydrogen with respect to nitrogen (H21N2 100-

1000) was reported and the activation energy of hydrogen permeation was evaluated 

to be 11 - 14 kJ/mot. 

Jiang et aI., (1995) prepared a silica modified membrane with H2 permeance (4 x 10-8 

mol/m2.s.Pa) with H21N2 selectivity at 600°C as high as 1000. Prior to the silica 

deposition, the authors initially introduced temporary carbon barriers onto the porous 

structure of a vycor glass support (160nm pore size). Later, silica was deposited 

using CVD with SiCl4 and H20 and finally the carbon barriers are removed by 

oxidation. 

De Lange et. aI., (1995a
,b,C) prepared mlcroporous silica membranes usmg sol­

gel/dip-coating method. The authors initially deposited 7 - 10 Ilm thick y-Ah03 layer 

on an a-alumina porous support (pore size of 160 nm) using bohemite sol. Later, 

silica is deposited by the acid catalysed hydrolysis of TEOS in ethanol. The 

permeation mechanism of H2 and C02 was reported to be activated with activation 

energy of 13-15 and 5-6 kJlmol for H2 and C02 respectively. Since the deposited 

silica layer was of low thickness (due to y-Ah03 layer deposited initially), good 

perrneance were reported (in order of 10-7 mol/m2.s.Pa) and separation factors for 

H2/CH4 was evaluated to be 40 at 200°C. 

Chemical vapor deposition was carried out by Wu et. aI., (1994) for preparing silica 

composite membranes on 4 nm pore size y-alumina tubular supports. The H2 
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penneance reported was 2 x 10-6 mollm2.s.Pa for a corresponding H21N2 selectivity 

of 12.6 - 72 at 600°C. Membranes with high H21N2 selectivity of about 500 - 1000 

were reported by Gavalas et. al. (1989, 1991, 1992, and 1993). The authors narrowed 

surface pores of a vycor glass tube with amorphous silica by CVD method. 

Hydrogen penneance was reported for the membrane to be 10-8 mol/m2.s.Pa at 600 

°C. They reported that the composite membranes exhibited good mechanical stability 

when silica was deposited inside the pores of the support skin layer. However, when 

silica was deposited on the outer surface of a porous skin layer, thennal stresses led 

to the fonnation of cracks. 
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2.5. Modelling and Simulation 

Modelling and simulation can be considered as an important tool for various 

parametric studies allowing flexibility to determine values suited for specific 

applications. Many simulation models have been developed for the analysis of 

membrane reactor configurations. Most of theses models are concerned with 

equilibrium-limited reactions since these systems have been mostly studied 

experimentally and confirmed that membrane reactor is effective to provide higher 

conversion than the conventional packed bed reactor. 

A design guide has been developed and presented for the study of catalytic 

membrane reactor (Moon and Park, 2000). For dehydrogenation reactions, the most 

commonly used model is one dimensional axial model that accounts for the variation 

of system variables (flow rates, pressure etc) with respect to the length of the 

membrane reactor (Gokhale et. al., 1995). However, many simplistic assumptions 

have been considered. Such conditions include isothermal and isobaric assumptions. 

Whilst radial dispersion effects can be neglected for a combination of porous 

membranes and catalysts with higher dimensions, negating the effects of heat 

balances would have a serious limitation in the calculation procedures, thus 

overestimating the conversion. 

To date, several publications have considered the development of models for gaseous 

hydrocarbon hydrogenation, dehydrogenation and decomposition reactions using 

membrane reactors. Barbieri et. al., (2002) developed a non-isothermal one 

dimensional mathematical model for microporous membrane reactors for C02 

hydrogenation to produce methanol using zeolite membranes. The model considers 

assumptions such as plug flow, isobaric conditions on both sides (reaction and 

permeation) and the gas flux assumed as a linear function of the gases partial 

pressure. Their model involved also the enthalpy variation due to the mixing gases in 

the permeation side as well as the conductive heat transfer. The effect of temperature 

range between 150 to 300°C at different operating pressure (1 - 100 bar) and gas 

permeation on the conversion, selectivity and yield were analyzed for traditional 

reactor and membrane reactor. The authors found that, the conversion difference 

between the traditional reactor and membrane reactor is higher at low temperature. 
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This was attributed to the higher methanol partial pressure on the reaction side. 

They also showed that the membrane reactor performance depends on many factors 

such as membrane properties, kinetics, flow conditions and heat exchange. 

The catalytic decomposition of hydrogen iodide (HI) using silica membrane 

exhibited a selectivity of 650 for hydrogen was investigated theoretically by Hwang 

and Onuki (2001) in a membrane reactor for the hydrogen production. For this case, 

the authors chose isothermal operation, constant pressure, constant perm selectivity 

and no reaction in the permeation zone assumptions. They evaluate the effect of the 

H2IHI selectivity on membrane reactor performance and conversion. Chan et. aI., 

(2000) theoretically studied the H2S decomposition in a membrane reactor. A 

mathematical model assuming plug flow and non-isothermal was developed. H2S in 

the feed side was diluted with an inert gas and a sweep gas was introduced to the 

permeate side. In their approach, the conversion of the reactant was quantified in 

terms of Reynolds numbers in the tube and shell. 

Prabhu et aI., (2000) developed a one dimensional mathematical model to simulate 

methane reforming reaction for the study of three reactor systems including fixed bed 

reactor, partially selective (Vycor glass membrane) membrane reactor and a totally 

selective (Nanosil) membrane reactor. The authors have used annular membrane 

reactor configuration (the catalyst bed held in the shell side) for their analysis. 

Results from simulation analysis have indicated that there was a good agreement 

between the model and experimental results for ~ll three reactor systems. 

Koukou et aI., (1997) developed a mathematical model for a non-isothermal packed 

bed membrane reactor consisting of a set of partial differential equations coupled 

with the appropriate initial and boundary conditions. The chosen reaction scheme 

was cyclohexane dehydrogenation that was assumed to have been carried out in a 

packed bed reactor enclosed with a microporous composite membrane that is 

selective towards hydrogen. Results from simulation analysis were concluded by 

noting that that the assumption of isothermal conditions or the absent of certain 

thermal phenomena that take place in the membrane reactor system would involve 

significant overestimation of temperature predicted and hence membrane conversion. 
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Hermann et aI., (1997) developed a one dimensional simulation model for 

ethylbenzene dehydrogenation reaction using palladium membrane reactor. The 

authors have considered different mass transport mechanisms in different layers of 

the composite membrane. The results obtained indicate that the benefits of the 

membrane with respect to ethylbenzene conversion and styrene selectivity depend on 

the catalyst activity. At 620°C the model predicted about 30% increase of 

ethyl benzene conversion can be achieved under isothermal conditions and high 

retentate pressure. They also observed that the increase of conversion in the 

membrane reactor is not accompanied by a significant loss of styrene selectivity. 

Dehydrogenation of methyle-cyclohexane to toluene was simulated by 

Assabumrungrat and White (1996) using alumina composite membrane and pt / 

Ah03 catalyst. The maximum conversion that the membrane reactor can achieved 

using various membrane diameters was studied. They conclude that the smaller the 

reactor diameter, the less catalyst is required for a given conversion. In the mean 

time, total conversion can be enhanced using larger diameter reactors. 

Gobina et aI., (1995) developed a two dimensional model accounting for radial and 

axial gradients in a catalytic membrane reactor. The reaction scheme investigated 

was ethane dehydrogenation. The two dimensional model consisting of partial 

differential equations was solved using orthogonal collocation method to obtain 

concentration profiles as a function of system variables namely contact time, reactor 

length and radius. The simulation analysis provided good insight in to the modelling 

approach. Radial concentration profiles have indicated that radial dispersion IS 

insignificant and an axial model consisting of ordinary differential equations IS 

sufficient enough to analyze the performance of the membrane reactor for a 

dehydrogenation reaction. 

Gokhale et aI., (1995) studied the effect of reactant permeation rate, membrane 

selectivity for hydrogen, feed composition and reactant space times on the 

conversion. The model consisting of mass balance was performed for an isothermal 

dehydrogenation of isobutane in a co-current flow using tubular membrane reactor. 

A one dimensional model was used for their simulation analysis. The authors have 

quantified their simulation results with respect to two dimensionless numbers namely 

Damkohler number (the ratio of maximum reaction rate to inlet reactant flow rate) 
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and permeation number (the ratio of maximum reactant permeation rate to inlet 

reactant flow rate). Becker et al., (1993) formulated a two dimensional model for 

ethylbenzene dehydrogenation in a catalytic membrane reactor. The mathematical 

model was used to simulate a tubular membrane reactor in which the catalyst was 

placed in the tube. The simulation study has presented an analysis of coupled mass 

transfer with chemical reaction in the membrane reactor. 

Hoh, (1990) used palladium membrane to study the concept of bifunctional 

membrane reactor by coupling dehydrogenation and oxidation reactions under 

isothermal and adiabatic conditions. The reaction occurs on the two sides of the 

palladium membrane separately but simultaneously. Under an isothermal condition, 

the dehydrogenation reaction taking place in a catalyst packed bed was enhanced 

owing to continuous removal of the hydrogen that was produced in the reaction zone 

and permeated through the membrane. It was concluded that the amount of hydrogen 

removable was remarkably increased by the subsequent oxidation of hydrogen on the 

palladium surface of the permeation side. In addition to such effects, it was shown 

by the adiabatic model that transfer of heat by oxidation to the dehydrogenation side 

across the membrane can lead to further enhancement of dehydrogenation. 

The dehydrogenation of cyclohexane in a porous Vycor glass tube using Pd-Ah03 

and Pt-Ah03 was simulated by Itoh et al., (1985). They investigated the effects of 

different parameters such as pore size, pore volume and membrane thickness on the 

conversion. They found that the rate of gas permeation through porous Vycor glass 

depends mainly on thickness of the membrane and pore size. The authors have found 

that there is an optimum relationship between the rates of reaction and permeation 

and to the selectivity for which the conversion is at a maximum. In the theoretical 

study, higher conversion (58%) than that achieved for equilibrium conditions (28%) 

was obtained at temperature of 483K. Itoh et al., (1984) reported simulation results 

of membrane that exhibit Knudsen diffusion transport mechanism for hydrogen 

iodide (HI) decomposition using membrane reactor. They concluded that the 

hydrogen yield can be increased twice compared to the equilibrium yield. They 

found that under the given permeation and reaction rates, there is a maximum 

conversion due to the permeation of both products and reactant. 
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2.6. Conclusions 

A number of experimental investigations have been made for the preparation and 

characterisation of porous silica membranes for hydrogen reaction, separation and 

purification. In these publications, sol-gel and chemical vapor deposition are the 

main methods that have been employed to prepare composites. Mainly TEDS had 

been used as the source of the silica membrane material and the hydrogen permeance 

varied from 10-6 to 10-9 mol/m2.s.Pa for a corresponding H21N2 selectivity varying 

from 10 to 1000. 

The most striking advantage of the chemical vapour deposition method is that it can 

provide a membrane with a deposition carried out only once opposed to the sol-gel 

process (number of deposition). However, it should also be noted that the investment 

for CVD is very high when compared to sol-gel method. This is due to the fact that 

for CVD much equipment is desired and complex process is involved to carry out the 

deposition process. 

Almost all the researchers mentioned above have used expensive membrane supports 

of asymmetric nature (several layers) and present a skin layer with lower pore size 

such as y-alumina as intermediate layer for silica film deposition. Even though these 

supports may provide good membrane properties, the cost of the asymmetric 

membrane with lower pore size (3-10 nm) of the skin layer would be higher than a 

support of higher pore size and symmetric nature. 

The propane dehydrogenation reaction usually demands operation at high 

temperature and low pressure which enhance equilibrium conversion. However, both 

these conditions cause catalyst deactivation and coking problem and hence 

regeneration of catalytic bed is inevitable. In this regard, catalyst regeneration is 

reported to be not economic (Schafer et aI., 2003). Therefore, a number of alternative 

procedures have been suggested of which membrane assisted reactor system is 

promising. In such a system, selective removal of hydrogen from the reaction zone 

via the hydrogen selective membrane would enable enhancing conversions above 

equilibrium. Therefore, if a membrane reactor system is employed, lower 

temperature can still provide good equilibrium conversion and reduce coking 

problem. 
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Membrane reactor for propane dehydrogenation involved the utilisation of different 

types of catalysts (such as Pt - alumina, Pd - alumina and chromia - alumina) and 

membranes (Pd-Ag dense membrane, Pd-Ruthenium dense membrane and silica 

composite membranes). The operation of membrane reactor system for experimental 

runs was conducted within the temperature range of 450 - 600°C. 

Improvements in catalyst performance (stability and activity for prolonged catalysis) 

coupled with improvements in membrane technology (thermal, chemical stability as 

well as consistent performance of inorganic composites at higher temperatures) are 

required to stabilize membrane reactor technology for industrial propylene 

production processes. Such improvements have significant impact on the cost 

reduction of propylene produced per unit propane fed to the industrial process 

system. 

Modelling of membrane reactors with different reaction schemes has achieved good 

attention and provided design rules for catalytic membrane reactors. In general, these 

models represent one-dimensional model involving the variation of flow rates and 

pressure with respect to the membrane reactor length for isothermal and isobaric 

conditions. In addition, the development of a mathematical model for the simulation 

of catalytic membrane reactor with simultaneous heat and mass balances was also 

reported and various operating conditions such as adiabatic and non-adiabatic were 

studied. 

The conversion attainable with a tubular membrane reactor (the catalyst backed in 

the membrane tube) can be lower than the corresponding annular membrane reactor 

(the catalyst backed in the shell space) operated at the same conditions. This is 

attributed to the lower value of the gas film heat transfer coefficient (2 - 5 W 1m2 .K) 

that would involve significant gas film resistance in the case of a tubular membrane 

reactor. 
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Chapter 3: 

APPLICABLE THEORY 

3.1. Introduction 

This chapter presents relevant theory applicable to the experimental investigations 

performed in this work for the development of silica composite membranes towards 

hydrogen reaction, separation and purification. The theory in general relates to the 

properties, preparation and characterization of membranes coupled with transport 

phenomena for pure and binary mixture gaseous systems. 

3.2. General Background 

3.2.1. Porosity and permeability 

There are two essential properties for the flow of fluids through any porous media 

such as membranes. The first is porosity (q», which is defined as the ratio of the pore 

volume (V p) to the bulk volume (V b) and is commonly expressed as a percentage 

fraction. 

v 
rf> = ...LxI 00 

Vb 
Eq.(3.1) 

The value of porosity is usually distinguished as being either absolute (total) or 

effective. The absolute porosity can be defined as the ratio of total of pore volume to 

bulk volume regardless of whether or not all of the pores are interconnected. The 

effective porosity is the ratio of the interconnected pore volume to the total bulk 

volume. It is commonly less than the absolute porosity (Collins, 1961). 

Secondly, the membrane must have continuity of pore spaces to permit fluids to 

flow. This is called permeability, which can be defined as a property of the porous 
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media which measures the ability to pass a fluid through its interconnected pore 

network (De Wiest, 1969). 

The penneability can be obtained by measurmg the gas flow rate through a 

membrane under a total gas pressure gradient using the following equation: 

Perm 
ql 

= 
AllP 

Eq. (3.2) 

Where: Perm = penneability of the porous medium, (mol.m Im2.s. pa) 

q = molar flow rate, (molls) 

I = thickness, m 

A = area of porous medium, m2 

LlP = pressure gradient across the membrane, pas 

Penneance is another common tenn used in membrane technology which can be 

calculated according to the following equation: 

q 
Per = - Eq. (3.3) 

AM 

where: Per is penneance (mollm2.s.pa) 

3.2.2. Wettability 

Wettability (sometimes called energy of adhesion) is a measure of the capacity of a 

fluid to coat a solid surface for a wetting fluid; the contact angle is less than 90°. If 

the fluid spreads over the solid surface and preferentially wets the solid, then the 

fluid is tenned as wetting phase and the contact angle approaches zero. In the case of 

non-wetting phase there is little or no affinity for the solid and the contact angle 

exceeds 90°. The rise or depression of liquids in fine bore tubes is a result of surface 

tension and wetting preference and is called capillary rise (or capillary depression). 
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3.3. Sol-Gel/Dip Coating Processes 

Basically sol-gel is a process that involves the conversion of a colloidal or polymeric 

solution, called a sol to a gel. Usually, sols can be obtained by controlled acid 

hydrolysis of metal alkoxides or metal salts to form particulate or polymer sols. The 

gelation of these sols occurs by condensation reactions (Brinker and Scherer, 1990). 

These condensation reactions produce molecules with large molecular weight, which 

form a gel when they combine together. The morphology of the gel formed during 

the condensation of the sol has a direct relationship on the final properties of the gel 

(Sperling, 1992). Depending on the reaction conditions of the sol, the sol-gel process 

can be divided into two routes namely, the colloidal suspension route and the gel 

route as shown in Figure 3.1. In the colloidal suspension route a faster hydrolysis rate 

is obtained by adding excess water to the precursor. However, in the polymeric gel 

route, the hydrolysis rate is kept low by adding successively small amounts of water. 

As far as silica precursor is concerned, both colloidal and polymeric gel routes can be 

realized due to their versatile controllability. 

In dip coating, the support is dipped into the solution containing the material that 

needs to be deposited for a considerable amount of time. The dip coating process 

comprises five different steps in sequence (Scriven, 1988), namely immersion, start­

up, deposition, drainage and evaporation. The initial stages of dip coating occurs due 

to the capillary pressure on the support surface which causes the fluid consisting of 

the silica polymeric sols to be drawn into the porous support. However, during the 

final stages of the dip coating (when the support is withdrawn from the sol), further 

deposition occurs by the evaporation of the sol entrained in the support pores. This 

would lead to gelation. Finally, in drying step, the gel network would collapse by the 

prevalent capillary forces. The thickness of the coating is achieved using dip coating 

process is a function of withdrawal speed and the sol viscosity. Typical coating 

thickness can be varied from few nm up to 60 f.lm using dip coating technique 

(Hsieh, 1996). Figure 3.2 illustrates the dip coating process. 

43 



CHAPTER 3 APPLICABLE THEORY 

Metal Salt or Metal Organic 

Colloidal Gel Route 
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• "I 
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Colloidal Gel 

(Drying & Sintering) 

Powder, Fiber, Coating, Membrane 

Figure 3.1 Scheme of sol-gel routes: Colloidal sol-gel route and polymeric gel route (Bhave, 1991) 
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Figure 3.2 Scheme of dip-coating deposition stages 

3.4. Modified dip-coating procedure 
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4) Drainage -1 5) Evaporation I 

Moaddeb and Koros (1995) studied the effects of the support pore SIze and its 

distribution on the final permeation behaviour of thin layers coated on them. Based 

on their experimental observations, they have inferred that the use of large pore size 

supports could produce consistency problems. They have also concluded that the 

relative size of the precursors (used for deposition) and the pore size of the support 

are key factors in determining defect free deposition. According to them, defect free 

deposition is achievable when the pore size of the precursor is larger or of the same 

magnitude as the diameter of the pores of the support. 

Under conventional dip coating technique in atmospheric condition, the preparation 

of silica composite membranes with high separation factor using support having 

large pores can not be achieved. In the dip coating process a capillary pressure drop 
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between the support pores and the liquid (silica solution in this case) control the 

flowing of this silica into the pore space of the support (Hsieh, 1996). The 

differences in capillary pressure that exist naturally due to variation of pore size and 

the air bubbles get immobilized inside the pores are also affecting the deposition 

process. When liquid flows through the support, silica particles are deposited on the 

support surface to create membrane layer with thickness that increase as the coating 

time increase. By increasing coating time or coating-drying cycles to obtain 

membrane with high selectivity using support with large pore size was not possible. 

It was observed that the membrane layer cracked after calcinations process. 

To produce a membrane with high selectivity and to avoid fracture and cracking of 

the membrane, a modified method has been developed. This method provides a quick 

and efficient procedure to prepare a composite membrane that can overcome the 

limitation of the conventional dip coating in obtaining a membrane with selectivity 

needed for hydrogen purification. In the modified method, vacuum pump was used in 

order to provide better process conditions for the coating process. The pressure force 

in the form of suction allow the solution to penetrate through the pores leaving 

behind the silica particles that fill the pores and cover the support surface thereby 

overcoming capillary forces and removing immobilized air bubbles in the porous 

texture of the support. With this procedure, the coating time, the number of coating­

drying-calination steps needed for conventional dip coating and the preparation time 

were reduced. Furthermore, the membranes prepared provide high selectivity and 

produce pure hydrogen from a wide variety of gaseous mixtures containing 

hydrogen. The details with respect to the fabrication of the composite membrane 

with high separation factors for H21N2 are presented below. 
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Figure 3.3 (A), (B): Capillary tubes of various diameters (Shouxiang, et aI., 1991) 
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3.5. Pore Size and Pore Size Distribution 

The pore size and pore size distribution has a major influence on the separation 

property and the behaviour of the membrane. To characterize the support and the 

silica membranes with wide range of pore sizes using one method alone is usually 

not sufficient to obtain a complete picture with respect to pore size and its 

distribution. Therefore, more than one method is needed to measure these pore sizes 

due to the limitations of any method. The most common methods used in the pore 

size measurement and characterization of the membranes are nitrogen gas adsorption 

and mercury injection techniques. 

3.5.1. Gas adsorption 

When the surface of a solid has affinity towards gas molecules, the phenomenon is 

known as gas adsorption. This phenomenon basically involves the determination of 

the gas quantity necessary for forming a monomolecular layer on the solid surface 

where the measurement is desired. Conceptually, there are two mechanisms by which 

the gas holds to the surface. These are physical and chemical adsorption (Osipow, 

1962). 

3.5.1.1. Physical adsorption: 

In physical adsorption, the forces responsible for holding the molecules to the solid 

surface are weak van der Waals' forces of interaction that exist between the solid 

surface and the gas molecule. Usually physical adsorption is a rapid process and the 

quantity of physically adsorbed gas increases with increasing pressure and 

decreasing temperature. 

3.5.1.2. Chemical adsorption: 

During chemical adsorption or chemisorption, the adsorbed molecules get attached to 

the solid surface by fairly strong interaction between the gas molecule and solid 
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surface than that prevalent in physical adsorption. During chemical adsorption, the 

gas quantity adsorbed decreases as the temperature is decreased. Consequently the 

most adsorption measurements are carried out at low temperatures to ensure least 

chances exist for chemisorption to take place (Young and Crowell, 1962). 

3.5.1.3. Nitrogen gas adsorption 

The working principle behind nitrogen adsorption method is that the deviation in the 

atomic forces on the surface of a clean, evacuated solid attracts gas molecules. 

When these molecules collide with the surface, they either bounce off or adsorb to it. 

The time taken by the gas to adsorb on the surface depends on the molecular surface 

interaction during collision, physical and chemical nature of the sample, gas and 

temperature of the sample (Ruthven, 1984). 

When molecules leave the bulk of the gas to adsorb onto the sample surface, the 

average number of gas molecules decrease and therefore the pressure decreases 

which is measured by a pressure transducer in the instrument. Therefore, based on 

the adsorption isotherm the Accelerated Surface Area and Porosimetry (ASAP) 

analysis instrument can provide pore size distribution ranging from 1.7 to 300 

nanometer. In addition to the pore size, the equipment automatically calculates and 

provides Brunauer, Emmett and Teller (BET) surface area (Hsieh, 1996). 

3.5.1.4. Surface area 

The BET theory which is widely used for determining the surface area of solids is 

based on the determination of the amount of the adsorptive gas required to cover the 

external and the accessible internal pore surfaces of a solid with a complete 

monolayer of adsorbate. This monolayer capacity can be calculated from the 

adsorption isotherm by means of BET equation shown below (Everett and Ottewill, 

1969): 
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Eq. (3.4) 

Where: 

C == dimensional constant related to the heat of adsorption. 

Ps == saturation pressure of the gas. 

V m == volume of gas required to form a monolayer. 

v == volume of gas adsorbed at pressure p. 

From the plot of data for (p ) versus P 1> ' the values of V m and C may be 
V p., -p / i .. 

obtained from the intercept and slop of which are _1_ and C -1 respectively. 
VmC VmC 

The gases used as adsorptives have to be only physically adsorbed by weak bounds 

at the surface of the solid (Van der-Waals forces) and can be desorbed by a decrease 

of pressure at the same temperature. The most common gas is nitrogen at its boiling 

temperature (77.3 K). When very small surface area (below Im2/g need to be 

measured krypton at 77.3 K is recommended instead of nitrogen (Everett and 

Ottewill, 1969). 

3.5.2. Mercury porosimetry 

Compared to nitrogen gas adsorption, mercury porosimetry is based on simpler 

principle, is much faster and can produce a full pore size distribution data in less 

time. The other advantage of this method is that it can cover a very wide range of 

pore diameters, up to 360 f.lm, depending on the pressure used (Dullien, 1992). 

Since very high pressures are needed for pores in the nanometer range, Micromeritics 

Autopore II 9220 porosimeter which capable of intruding mercury with intrusion 
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pressures (by increasing pressure) up to about 414 Mega Pascal has been used for 

quantifying the pore size and pore size distributions. 

Mercury porosimetry uses the capillary law governing liquid penetration into small 

pores. This law, in the case of a non-wetting phase is expressed by the Washburn 

equation (Eq. 3.5) (Dullien, 1992): 

p = 2acos() 
r 

Eq. (3.5) 

Where r is the pore radius in microns, a the surface tension of mercury and e is the 

contact angle of mercury in the membrane. 

The volume of mercury penetrating the pores is measured directly as a function of 

applied pressure. This pressure-volume data serves as a unique characterization of 

pore structure. Due to the practical limitations on the maximum pressure than can be 

applied, the minimum pore size that can be measured using mercury porosimetry is 

in the range of 5 nm (Ruthven, 1984). 
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3.6. Separation of Gases and Transport Mechanisms 

The concept of separating gases using membranes had been researched for more than 

160 years. The first publication related to gas separation membrane is attributed to 

Mitchell and Graham (Osada and Nakagawa, 1992). Mitchell observed that natural 

rubber balloons filled with hydrogen gas descended after some time delay. He 

attributed this feature to the phenomenon of gas diffusion through the balloon wall. 

Later, Graham repeated Mitchell's experiments with films of natural rubber and 

made the first quantitative measurement of gas permeation rate. 

3.6.1. Graham's law of diffusion 

Thomas Graham in 1829 investigated the relative rates of diffusion of gases and 

discovered the quantitative law describing the permeation rates. He later postulated a 

statement termed as Graham's Law of diffusion: "the rate of diffusion of a gas is 

inversely proportional to the square root of the molecular weight or density of the 

gases. "(Sturchio et aI, 1966) 

When gases are kept in a porous container, they have a tendency to diffuse out of the 

container due to diffusion phenomena. The kinetic energy of a molecule undergoing 

diffusion is proportional to the mass of the molecule and square of the velocity of the 

molecule. Therefore, if two different molecules have the same kinetic energy but 

different mass, the lighter molecule will move faster than the heavier molecule. Due 

to this reason, lighter molecules will diffuse more rapidly than heavier ones. In this 

regard, the controlled pore size and surface properties of the material primarily 

achieve diffusion. The same principle occurs in porous inorganic membranes. 

3.6.2. Gas flow mechanisms in inorganic membranes 

The transport of gases through porous membrane materials can occur by different 

mechanisms. These are viscous diffusion, Knudsen diffusion, surface diffusion, 

capillary condensation and molecular sieving (Hsieh, 1996). Figure 3.4 presents a 

schematic of the main different separation mechanisms. 
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Figure 3.4: Mechanisms of transport through porous inorganic membranes (Hsieh, 1996) 
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3.6.2.1. Viscous diffusion 

When the mean free path of the gas molecule is much smaller than the pore diameter, 

gaseous transport occurs via viscous diffusion. In this condition, the permeating 

species collide more with themselves than among the pore walls. In other words, 

when the pore size decreases or the mean free path of molecules increases (pressure 

decreases) the contribution of viscous flow decreases. Gaseous transport occurring 

due to viscous diffusion is presented according to the following expression (Beuscher 

and Gooding, 1998): 

Eq. (3.6) 

where: 

Jv = viscous gas flux, (mol/m
2
.s), 

rp= pore radius of the membrane, (m), 

~P= pressure difference, (Pas), 

Pavg= Avarage pressure of the membrane, (Pa), 

8 = Thickness of the membrane, (m), 

J..I. = Viscosity of the gas, (kg/m.s), 

R= Gas constant, (Joule/mol.K) and 

T= temperature (K). 

In other words, viscous flux is directly proportional to the square of the average pore 

radius (rp) of the membrane and is inversely proportional to the viscosity of the 

permeating gas. Therefore, transport due to viscous diffusion can be identified by 

the calculation of the ratio of membrane flux for different gases expressed as (Hsieh, 

1996). 

J, f.L I 
-=-
J} f.L, 

Eq. (3.7) 
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3.6.2.2. Knudsen diffusion 

Knudsen flow occurs in the membrane pores when the mean free path of the gas 

molecule is large compared with the pore diameter. In this condition the gas 

molecule collision with the walls of the pores dominates the gas transport 

mechanism. In order to achieve pure Knudsen diffusion, the gas temperature must be 

high enough to avoid surface flow mechanism (>300 °C) and the pressure of the gas 

should be low enough (Mulder, 1996). 

Gaseous flux that exists due to Knudsen diffusion is presented according to the 

following expression (Pandey and Chauhan, 2001): 

°Eq.(3.8) 

Where: 

h = Knudsen gas flux through the membrane, (mol/m2.s), 

M= Molecular weight of the gas, (kg/mol), 

Knudsen diffusive flux is directly proportional to the average pore radius of the 

membrane rp and inversely proportional to the square root of the molar mass M of the 

permeating gas. Therefore, transport due to Knudsen diffusion can be identified by 

evaluating the ratio of membrane flux for different gases related as: 

Eq. (3.9) 

Ji= flux permeating component i through the membrane, (mollm2.s) 

Jj= flux permeating componentj through the membrane, (mollm2.s) 

Mi = Molecular weight of component i, (kg/mol) 

Mj = Molecular weight of component j, (kg/mol) 
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Coupled Knudsen and viscous diffus ion 

Gas transport in porous membranes follows different mechanisms which can share 

the flow. In practical scenarios, two or more mechanisms can exist in one membrane 

and the contribution of each mechanism will be controlled by pore size and pore size 

distribution, gas molecular weight and the operated conditions (Beuscher and 

Gooding, 1998). For instance, viscous flow is a characteristic of materials with 

relatively large pores (Le. > 50 nm), but for mesoporous range (2 - 50 nm), Knudsen 

flow is predominating. In the case where the flow follows a combination of both 

viscous and Knudsen diffusion mechanisms, the total flux is obtained by coupling 

equations 3.6 and 3.8 expressed as: 

Eq. (3. 10) 

The above equation can be expressed in terms of total permeability (perm) as: 

J 8 
Perm = -1!!!....- = K + VPavg 

M 
Eq. (3. 11) 

Where K and V represent Knudsen and Viscous permeability constant expressed as: 

8rp 
K = -3.J-r'2=1{.==M,=R=T 

2 
rp 

V=--
8j.lRT 

Eq. (3. 12) 

Eq. (3.13) 

By plotting the permeability versus average pressure (Pavg) should result in straight 

line, the intercept and slop of which are (K) and (V) respectively. Based on these 

values, the approximate pore size of the membrane can be estimated using both the 

mechanisms applying the following equations (Burggraff and Cot, 1996): 

3.J21!MRT 
r = 

p 8K 
Eq. (3. 14) 

Eq.(3.15) 
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3.6.2.3. Surface diffusion 

During surface diffusion, molecules interact, adsorb and diffuse in the membrane 

surface. A difference in surface occupation will occur if there is a pressure gradient. 

The transport gradient driving the surface flow is termed as the surface concentration 

gradient. The quantity (and hence concentration) of the species adsorbed on the 

membrane surface is dependent on the pressure, temperature and nature of the 

surface (Gilliland et aI., 1974). The flux due to surface flow of permeating species is 

presented using the following expression (Bhave, 1991): 

Eq. (3.16) 

Where A is the surface area, Papp is the apparent density (kg/mol), Ds is the surface 

diffusion coefficient (m2/s), J.ls is the reciprocal tortuosity and the term dq/dl referred 

to the surface concentration gradient (mol/kg.m). It can be noted from the above 

equation that surface flux is directly proportional to the term dq/dl.. When surface 

diffusion occurs, it is assumed generally that strongly adsorbed molecules are less 

mobile than weakly adsorbed molecules. 

Surface diffusion can be easily identified with different gaseous species such as C02 

by the deviation of the gaseous flux from Knudsen and viscous diffusion 

mechanisms. When surface diffusion prevails, a gas with a higher molecular weight 

(i.e C02 = 44) can have a higher flux than a lighter one (i.e. N2 = 28). Furthermore, it 

is very common that surface flux decreases with increasing temperature. The reason 

for this is due to the decrease in surface concentration at higher temperature due to 

lower adsorption capability of the membrane. 

3.6.2.4. Capillary condensation 

Capillary condensation usually occurs at low temperatures and high pressures. 

Under these conditions, certain permeating species strongly adhere at the pores of the 

membrane surface and pore blocking takes place. This is due to the condensation of 

one of the components due to strong capillary forces. The pore blocking with 
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permeating species is termed as capillary condensation. The transport of different 

species would then be controlled by the altered pore size of the membrane and 

surface concentration of the permeating species. Very high separation factors can be 

achieved with capillary condensation (Uhlhorn, et al. 1992). 

3.6.2.5. Molecular sieving and Activated diffusion 

Molecular sieving mechanism occur when the pore diameter of the membrane 

exactly allows a smaller molecule to pass through and a bigger molecule to be 

retained. Molecular sieving occurs with very small pore sizes (rp < 1 nm). The 

membrane surface would work as a sieve to perform the separation and achieve 

higher separation factors in addition to that achieved with Knudsen and surface 

diffusion mechanism (Diniz da Costa et aI., 2002). 

The membrane flux is derived from fick's first law as (Bennett and Myers, 1962): 

de 
J=-D­

dx 
Eq. (3.17) 

Where D is the gas diffusion coefficient, c is the concentration of molecules and x 

the coordinate along the permeate direction. 

When the membrane flux increase with temperature the transport of the gas through 

the membrane named activated (de Lange et aI, 1995b
). The temperature dependence 

of diffusivity is expressed as: 

D = D exp(Em) 
o RT 

Eq. (3.18) 

Where Do is the diffusion constant and Em is the positive mobility energy and 

corresponds to the energy barrier between two adjacent sorption sites. 

The concentrations of molecules on both sides of the membrane surface can be 

derived from equilibrium gas-membrane adsorption data. Such data is usually 

defined using Henry's law for lower concentrations. 
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c= KP Eq. (3.19) 

Where K is proportionality constant dependent on temperature expressed as (Diniz 

da Costa et aI, 2000): 

K = K exp(Q,,) 
o RT 

Eq. (3.20) 

Where Qst is the heat of adsorption (J/mol), Ko is a temperature independent 

proportionality. The final flux equation for membrane flux due to activated / 

adsorption diffusion presented by coupling the above set of equations to give the 

following expression: 

Q -E l1P 
J = - D K exp(.<1 m )-

o 0 RT 0 
Eq. (3.21) 

In the above equation, a new temperature independent proportionality constant is 

defined as 10 = DoKo and effective activation energy for permeance: 

Eq. (3.22) 

Ea is termed as effective activation energy. Therefore, positive values of Ea would 

exist when mobility energy Em is higher than Qst and negative values of Ea would 

exist for the opposite case. When the measured membrane flux corresponds to 

positive Ea then the process is termed as activated diffusion. On the other hand, if Ea 

is negative, then the process is called as adsorptive diffusion. 

however, when the length of mean free path of gas molecules is still low, the 

membrane pore size becomes similar to the size to the diffusing molecule. Under 

these conditions, gas transport will follow activated diffusion mechanism. on the 

other hand, transport due to surface diffusion becomes predominant at pore radius 

values lower than 3nm, if the material exhibits a high surface area and if the gas 

molecules have specific adsorptive tendency on the membrane surface. Flux arising 

due to activated diffusion of permeated species can be expressed by the following 

equation: 

Eq. (3.23) 
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The above equation is simplified to obtain the membrane permeability equation due 

to activated diffusion: 

-E 
Perm = Permo exp(--Q ) 

RT 
Eq. (3.24) 

This equation is used to obtain the activation energy of different permeating species 

across the composite membrane. A plot of natural logarithm of membrane 

permeability obtained from experimental study against 1 IT yields the exponential of 

the y-intercept would provide pre-exponential factor Po. Similarly, the slope of the 

plot would provide the value of -EJR. Based on the sign of Ea the process is either 

termed activated diffusion (+ve) or absorptive diffusion (-ve). 

3.6.3. Pure gas separation factor 

The ratio of membrane permeance at same permeation pressure for different pure 

gases is termed as the pure gas separation factor. The pure gas separation factor 

achieved for inorganic composite membranes with the dominance of one of the 

above mechanisms is explained as follows. Dominance of Knudsen diffusion 

mechanism in the gaseous transport would allow the separation of lighter gases from 

heavier gases based on the difference in the molecular weight of the gases. 

Prominent example for consideration for silica composite membrane is the separation 

of hydrogen from propane, propylene and nitrogen, which are all heavier than 

hydrogen. Dominance of viscous diffusion mechanism would not offer significant 

values of separation factor due to insignificant differences in the values of gas 

viscosity. Separation factor achieved due to surface diffusion would be dominant at 

low temperatures and at high temperatures would be lowered. The presence of 

separation factors due to capillary condensation is neglected for high temperature 

inorganic membrane reaction and separation applications due to irrelevance in 

process conditions (low pressure and high temperature as opposed to high pressure 

and low temperature). 
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3.6.4. Binary mixture gas permeation 

While pure gas penneation is effective in describing the mechanism of transport of 

gaseous molecules through the composite, it is not effective in providing the actual 

separation factor. Basic draw back in pure gas penneation is the lack of the presence 

of other components penneating through the membrane simultaneously. 

When two or more components are fed to a membrane system, the component flux is 

obtained as a fraction of the total flux as 

J, ==Jy, Eq. (3.25) 

Where Yi refers to the composition of species i in the penneate stream. 

The separation factor q for a binary mixture is expressed as 

aJI == (~JXJ 
YJ x, 

Eq. (3.26) 

It is very common in inorganic membrane literature that the pure gas separation 

factors are not the same as the mixed gas. This is because of different types of 

interactions that exist in a binary mixture and membrane material. Mixed gas 

separation factor higher than the corresponding pure gas separation factor evaluated 

as the ratio of corresponding flux of different gases have been reported (Hassan et aI, 

1995). For such a case, the more strongly interacting gas is supposed to saturate the 

surface and reduce the transport of the weakly interacting gases (Hassan et aI., 1995). 

Gases that have strong adsorptive capability thereby preferentially occupy adsorption 

sites on the membrane surface that would prevent adsorption and surface diffusion of 

weakly adsorbed gas molecules. However in this case, the mixed gas separation 

factor would decrease and approach the pure gas separation factor when the 

temperature of the gas is increased. This is due to the fact that gas adsorption in 

porous media decreases drastically with an increase in the temperature due to the 

reduction in competitive adsorption effect at higher temperature for the strongly 

adsorbed gas. 
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The effect of concentration polarization in gas separation is low or can be neglected 

(Nobel and Stem, 1995). The back diffusion can effect on the actual separation 

factor especially when the flow rate through the membrane is high, which increase 

the penneate pressure due to the presence of large pores. This phenomenon occurs 

also if the penneate gas concentration in permeate side is higher than the feed side. 

The pressure ratio effect on the actual separation factor can be represented by the 

following equation. 

(1 - P, Xa o -1) 
a =1+ 

I+P,(I- yXa O -I) 
Eq. (3.27) 

Where Pr (pressure ratio) is defined as penneates pressure / feed pressure. It is clear 

from the above equation that the ratio pressure (Pr) should be low (Le. ~ 0). 
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Chapter 4: 

EXPERIMENTAL APPARATUS AND PROCEDURE 

4.1. Introduction 

This chapter presents experimental materials, apparatus and procedure for the 

preparation, surface and flux characterisation of different silica composite 

membranes. The different membranes prepared in this work are silica membranes for 

hydrogen reaction, separation and purification and noble metal (Pd) impregnated y­

alumina membranes. The silica composite membranes are prepared using silicone 

elastomer as the silica precursor using dip coating technique with suitable 

modification (suction technique). 

The next section summarises various equipment and materials used for membrane 

preparation. A detailed experimental procedure involved with the membrane 

fabrication followed by experimental rig also presented. 

4.2. Preparation Equipments and Materials 

4.2.1. Equipments 

1. Magnetic stirrers with magnets pellets (Techne, MS I). 

2. Test tube of 1000ml volume and perspects dip coating tank. 

3. Vacuum pump (Edards, ECBI) for fluid circulation in suction technique. 

4. Drier (Carbolite) I - 300 °C, type PF120(201). 

5. Programmable furnace (Carbolite) 5 - 1050 °C, type RWF 11123. 

6. Scale (Sartorius, BL 1500). 

7. Class 100 clean room for membrane preparation. 
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4.2.2. Materials 

1. 2-Methyl butane or Iso pentane (Fisher Scientific). 

2. Silicone elastomer (Farnell). 

3. Silicone curing agent (Farnell). 

4. Acetone (Sigma Aldrich) . 

5. Aluminium monohydrate (Farnell). 

6. PdCh 99.9 % purity (Sigma Aldrich). 

4.2.3. Porous support tubes 

A porous a - alumina tube with a wash coat of titania in order to provide good 

catalytic properties (Figure 4.1) supplied by C.T.!. SA, France is used as the support 

to prepare various silica inorganic composites. The support had an outer diameter of 

10 nun diameter and an inner diameter of 7 mm diameter and is about 368 mm long. 

The ends of the membrane are glazed in order to be leak proof when graphite seals are 

used for membranes test experimentation. The average pore size of the alumina 

support is about 6 ).lm, which does not modified significantly with the titania wash. 

Figure 4.1: Schematic of membrane support tubes. 
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4.3. Preparation Methods and Procedure 

4.3.1. Preparation of silica solution 

The membrane material used in this work was Dow Coming's Sylgard 184 silicon 

elastomer. Sylgard 184 is a combination of silanes (-Si-)n and siloxanes (-Si-O-Si-)n 

with alkyl group substituting some of hydrogen atoms. The preparation of silica 

solution is based on the condensation reaction between silicone elastomer (solute) and 

2-methyl butane (solvent) in the presence of silicone 184 curing agent. The solution 

is prepared by initially mixing 900 ml of 2-methylbutane {CH3CH2CH(CH3h}with 

100 ml of silicone elastomer into a clean test tube of 1000ml volume. The mixture 

was shaken until the silicone was well dispersed into the 2-methyl butane (colourless 

solution obtained) using magnetic stirring. Later, 10 ml of 184 curing agent was 

added to the mixture after obtaining a homogenous solution. The curing agent is 

added to carry out the curing process for obtaining the desired solution for the surface 

modification of the porous ceramic support. 

4.3.2. Silica membrane for hydrogen reaction 

The fabrication of porous silica composite inorganic membrane is performed by 

initially cleaned the support with acetone and dried at 65 °c over night in oven to 

remove any contaminants or dusts. Before dip coating, the porous support is sealed 

at its ends in order to deposit the selective membrane layer on the outer surface. The 

support is then dipped into silica solution for a dipping time of about 5 minutes using 

a class 100 clean room for membrane preparation. Figure 4.2 presents a schematic 

for the dip coating process. After deposition the composite membrane is dried at 65 

°c over night and calcined at about 300 °c for 4 hours in an electric furnace with a 

heating and cooling rate of about I °C/min. The procedure of dip coating, drying and 

calcination is repeated three times in order to repair any defects in the surface that 

would result due to poor deposition. Such defects may arise due to the presence of air 

bubbles in the sol, particle contamination, aggregations, and irregularities in the 

support surface itself. 
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4.3.3. Silica membrane for hydrogen separation 

The silica membrane for hydrogen separation is prepared similar to that described for 

reaction applications. In this case however, the number of dip coating steps has been 

increased to 7 times and the procedure of dip coating, drying and calcination is 

repeated to obtain a defect free composite membrane. With the previous procedure 

methods it is not possible to produce a membrane with high selectivity which can be 

used for hydrogen separation and purification. Therefore other methods are applied 

to improve the membranes selectivity. One of these methods refers to rotation coating 

where in the support is rotated using rota machine for certain time duration while 

deposition takes place. The idea behind the rotation of the support is to decrease the 

amount of the silica penetrated inside the pores for producing a high permeable 

membrane with high selectivity. Due to the wide pore size of the support, this attempt 

was unsuccessful. 

Tube cover 

Test tube 
of lOOOml 
volllme 

Membrane 
support 
tube 

Silica 
solution 

Magnetic -Q­
stirrer 

Figure 4.2: Schematic of dip coating process 
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4.3.4. Silica membrane for hydrogen purification 

Conventional technique applied for the preparation of defect free composite 

membranes involve sol-gel and dip coating process under atmospheric conditions. 

Under these conditions, the formation of a defect free silica composite membranes 

with high separation factor, low membrane thickness and minimum coating-drying 

cycles is not possible. This is duo to the presence of large pores and air bubbles in 

the porous matrix of the support on which silica layer deposition takes place. The 

presence of different capillary forces is also affect the deposition process due to 

natural pressure difference that exist due to mass transport on porous texture of the 

support. Further, air bubbles get immobilized in the porous structure with the 

absence of any forced convection within the support structure that can be typically 

achieved by the application of vacuum. 

On the other hand, application of vacuum or a pressure force of lower order at one end 

of the membrane could provide better process conditions for the coating process. The 

pressure force in the form of a suction or vacuum could allow the dip coating solution 

to penetrate the porous structure thereby overcoming capillary forces and removing 

immobilized air bubbles in the porous texture of the support. 

In this investigation, a modified experimental method has been developed provides a 

quick and efficient procedure to prepare a composite membrane that can overcome the 

limitation of the conventional dip coating in obtaining a membrane with selectivity 

needed for hydrogen purification. The membranes have been tested to produce pure 

hydrogen from a wide variety of gaseous mixtures containing hydrogen. The details 

with respect to the fabrication of the composite membrane with high separation 

factors for H21N2 are presented below. 

The porous cylindrical composite support is initially cleaned and dried at 65°C 

overnight. One of the ends of the composite support is plugged with a seal. The other 

end is connected to a vacuum pump via a solution trap. The solution trap would allow 

the application of vacuum in the membrane tube by not allowing silica sol to block the 

tubing of the pump. In order to apply vacuum, the dip coating tank in which silica sol 

is prepared is kept air tight with the composite support placed in the sol. Once the 

silica sol is ready, vacuum is applied for about 10 - 15 minutes. When the vacuum is 

applied, silica particles would plug the membrane pore space due to plugging of the 
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pores by a cross flow created by the suction pressure. After the application of 

vacuum, the composite membrane is dried at 40°C overnight. The procedure of dip­

coating under vacuum conditions is repeated once again in order to reduce the surface 

defects. Finally the membrane is calcined at 280 °C for 4 hours at a heating and 

cooling rate of I .SoC/min. Figure 4.3 presents a schematic for the deposition 

technique used for the preparation of dense silica membrane. 
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Figure 4.3: Schematic of dip-coating process for the preparation of silica 

composite membranes for hydrogen purification 
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4.3.5. Pd impregnated y-alumina membrane 

The preparation procedure for the Pd impregnated y-alumina membrane is as follows. 

Initially 60 g of boehmite sol (alumina monohydrate) powder is dissolved in 0.7 litre 

water with nitric acid and left stirring for about 2 hours at 70°C. Then 0.20 g of 

PdCh is added to this solution and mixed for 1 hour Figure 4.4. The resulting greyish 

solution is transferred to a low height dip-coating tank and vacuum force is applied 

for 10 minutes to suck the solution into the pores of the support. The membrane is 

then taken out and dried at 120°C overnight. This procedure of vacuum suction and 

drying is subsequently repeated for once again to obtain the membrane modified with 

Pd impregnated y-alumina. Finally, the membrane is subjected to calcination to a 

temperature of 500°C at a heating and cooling rate of 2°C/min. To test the 

membrane for different gases, the ionic palladium impregnated in the porous support 

is converted first to metallic palladium. This is done so by heating the membrane in 

flowing hydrogen at 350 °C for 2 hours followed by flowing nitrogen at 350 °c for 1 

hour. After this, the Pd impregnated y-alumina membrane is subjected to flux 

characterization studies. 

Figure 4.4: photo of dip-coating process for the preparation of Pd 
impregnated y-alumina membrane. 
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4.3.6. Silica on 'Y-alumina modified support 

The preparation procedure for silica on y-alumina membrane is different to that 

presented for Pd impregnated y-alumina membrane. The support is initially cleaned 

and then subjected to the deposition of y-alumina by dissolving 60 g of bohemite 

powder into 0.7litre water with nitric acid and stirring for about 3 hour at 70°C to get 

boehmite sol. The membrane is transferred into the bohemite sol and sucked in the sol 

to modify the pores of the membrane. The membrane is then dried at 120°C 

overnight and calcined at 500 °c with a heating and cooling rate of 2°C/min. The 

procedure for y-alumina deposition consisting of dipping, drying and calcining is 

repeated once again and after the calcination, the membrane is subjected to silica 

deposition one time only by applying dip coating the support into silica solution. The 

membrane is then dried overnight at 40°C and calcined at 400°C with a heating and 

cooling rate of 1°C/min. After calcination, the composite membrane termed as silica 

on y-alumina membrane is subjected to surface and flux characterization studies. 

4.4. Flux Characterisation 

4.4.1. Equipments and materials 

I. Permeation cell and digital flow meter 0 -1000 ml/min (Varian instrument). 

2. Membrane reactor assembly (made in lab) equipped with thermocouples and 

heating tape (HEF-445-090Q, Fisher). 

3. H2 (high purity 99.995%, P=175bar), N2 (pure 99.99%, P=230bar» ,Ar (pure 

99.995%, P=230bar), C3Hs (pure 99.99%, P=7.5bar), CO2 (pure 99.995%, 

P=50bar). (All supplied by BOC Gases). 

4. H21N2 50: 50 gas mixture (P=200bar) and ternary mixture of H2, C02 and CH4. 

5. For GC, pure H2 used as a carrier gas and gas mixture of known compositions of 

CO, C02, 02, N2, C~ used for calibration, was supplied in 10L cylinders by BOC 

with a certificate of analysis. 
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4.4.2. Experimental rig and Feed supply 

Figure 4.5 presents a schematic of the experimental rig for the flow diagram. As 

shown, nitrogen and hydrogen flow rates are adjusted and controlled by using a mass 

flow controller to mix and generate an equimolar mixture. This mixture is directly fed 

to the membrane reactor shell at desired transmembrane pressure differences (0.5 -

2.0 bar). When the membrane reactor shell is filled with the equimolar mixture, the 

retentate valve is opened slightly so as to purge the retentate stream for analysis using 

gas chromatograph (GC Varian model 3800). The mixed gas permeation rate is 

evaluated by measuring the permeate flow rate using a digital flow meter (Varian) for 

the case without sweep. Based on these compositions, the mole fractions of hydrogen 

in the retentate and permeate steam respectively are evaluated for the calculation of 

hydrogen flux and separation factor. Hence, binary gas experimentation generates the 

hydrogen flux and separation factors at different transmembrane pressures (0.5 - 2.0 

bar) and temperatures (25 - 250 °C). 

Figure 4.5 : Schematic of experimental rig for the flow diagram 
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4.4.3. Membrane reactor and permeation cell 

Gas permeation experiments are carried out using a permeation cell and membrane 

reactor assembly. The permeation cell is used to measure gas permeances at room 

temperature for the assessment of possible defects in between various steps of dip­

coating. Once a composite membrane is ready for high temperature experimentation, 

it is inserted into a high temperature membrane reactor assembly. The following 

section presents a description of permeation cell and membrane reactor assembly. 

A schematic of the room temperature permeation cell is presented in Figure 4.6. The 

permeation cell consists of two stainless steel slabs separated by a tube of bigger 

diameter to create an annular space to inject the gas. The composite membrane is 

fixed at either ends of the tube using stainless steel clamps and the outer tube is placed 

in between the stainless steel slabs. Metal bolts are used to seal the permeation cell. 

One end of the central tube connected to the membrane is sealed and the other end of 

the tube is left open in order to connect to a flow meter. The stainless steel slabs has 

got other provisions for gas inlet (for left slab), pressure gauge (right slab) and purge 

tap (right slab). In order to conduct permeation experiments at room temperature, the 

gas inlet is connected to the desired gas after sealing the permeation cell. The 

presence of any leaks in the permeation cell is detected using soap solution. Gas 

permeation experiments are conducted for different single gases by slowly increasing 

the pressure differential in the permeation cell and measuring the corresponding flow 

using different flow meters. For the measurement of high flow rates, a gap meter is . 

used and a digital flow meter is used for the measurement of low flow rates (less than 

lOOOmI/min). 
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Figure 4.6: Schematic of experimental rig for the Permeation cell 

Figure 4.7 presents schematic of membrane reactor assembly developed in the 

laboratory for high temperature permeation measurements. The assembly consists of 

a stainless steel tube (outer diameter 27 mm and inner diameter of 18 mm) in which 

composite membrane (outer diameter 10 mm and inner diameter 7 mm) is placed for 

high temperature permeation experiments. During operation, the membrane reactor 

assembly is sealed by SS O-rings and moulded graphite seals. Of these, one of the 

stainless steel O-ring is welded to the stainless steel reactor assembly where as the 

other is left for removal and placement in order to operate the membrane reactor in 

different configuration (annular and tubular). 

The moulded graphite seals offer compressibility in order to provide a leak proof seal 

when the reactor assembly is tightened using stainless steel screws. The stainless 

steel tube is wound with a heating tape that can heat the membrane reactor to a 

maximum temperature of about 450 - 500 DC. Type K thermocouples inserted on 

strategic locations along the stainless steel tube to provide the temperatures values 

during experimentation. 

The gas permeation measurement at higher temperature is performed as follows. The 

membrane reactor assembly is tightened by placing the composite membrane first. 

The assembly is initially tested for leak proof capability by sending nitrogen gas at 

different pressures in the shell and measuring the corresponding flow rates in the 
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permeate stream. If the permeate flow increased significantly with an increase in 

shell pressure for the composite membrane, a leak is indicated at the seal and stainless 

steel interface. These leaks are eliminated by tightening the stainless steel screws to 

compress the graphite seals significantly. In order to generate high temperature 

permeation data, the composite membrane is slowly heated to desired temperatures 

and the corresponding permeate flow rate is measured using a flow meter. When not 

using a sweep gas, the inlet valve at the sweep is closed; when using sweep gas, the 

inlet valve of the sweep is opened to allow the desired flow rate of the sweep. Thus 

high temperature experimentation would provide the membrane flux at different 

transmembrane pressure differences (0.5 - 2. 0 bar) and different temperatures (25 -

600°C). 

From the measurements, the membrane flux is evaluated as the following function of 

flow rate: 

Eq. (4.1) 

Where q is the flow rate measured in (mllmin) and A is the membrane surface area 

(m2
). 

The membrane permeance is evaluated using the following equation by dividing the 

flux on the transmembrane pressure as: 

J 
Per=-

tV 
Eq. (4.2) 

The composite membrane permeability can also evaluated as a function of the 

thickness of the of the separation layer. 

Perm = perx8 Eq. (4.3) 
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Figure 4.7: Schematic of membrane reactor assembly 
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4.4.4. Gas analysis and chromatograph 

Chromatography is a method for the separation of mixtures of substances into their 

individual components by causing them to pass through a column of a solid or liquid. 

The mixture to be separated must put onto the start (or top) of the column and so an 

injector is needed. The gas mobile phase flows from a gas supply cylinder past the 

injector and carries the injected mixture through the chromatographic column, which 

contains a gas stationary phase. When the separated components emerge from the end 

or bottom of the column, a detector senses the gases and provides an electrical signal, 

directly or indirectly to a read out device or recorder finally allows one to measure the 

signal. A schematic layout of a gas chromatograph is shown in Figure 4.8. 

The analytical system for the evaluation of gaseous compositions was performed on­

line using gas chromatography (Varian 3800) interfaced with a PC based GC star 

Workstation for data analysis. The gas analysis was achieved on a 2m long 

isothermal (50°C) stainless steel column packed with molecular sieve 13x mesh using 

a thermal conductivity detector (TCD). 

The calibration involved injecting pure gases such as H2, C02, CH4 and 02 for 

qualitative analysis, i.e. to obtain the retention times of each of the gases used. The 

gas chromatograph was calibrated before any subsequent samples are run against it 

using certified reference standards. One example of the peaks for the gas product is 

shown in Figure 4.9. 

The carrier gas used in this work is hydrogen and hence, hydrogen is not traced in the 

detector system. However, other gases such as N2, CH4, CO2 are traced using the 

detector and the hydrogen composition is calculated based on the compositions of 

these gases. 

If the mixture contains hydrogen as a major component, strange results can be 

obtained when a helium gas used as a carrier gas (Cowper and DeRose, 1983). This is 

because the hydrogen gives a relatively small response in helium. At low 

concentrations the signal is in the same direction as that for all other components, and 

as the concentration increases, the peak inverts at its maximum, eventually becoming 

strongly negative. Also the many advantages of hydrogen over helium as a carrier 

gas are well understood and include increased speed of analysis, increased separation 

efficiency and increased sensitivity. 
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4.5. Surface Characterisation 

4.5.1. Scanning electron microscope 

This type of characterization refers to the observation of micrograph images generated 

from field emission scanning electron microscope using Leo model S430 (Figure 

4.10) with magnification capabilities exceeding to 100,000 times the original sample. 

The micrographs are used to evaluate number of scenarios such as presence of cracks 

on the surface, thickness of selective layer, presence or absence of diffusion barriers, 

pore size modification etc. The method is based on the concept that the SEM 

generates a finely focused beam of high energy electrons which are scanned over the 

membrane sample under inspection. The beam originates from the heating of 

tungsten wire filament housed in an electron gun at the top of the microscope column. 

The beam electrons are accelerated towards the specimen by means of an applied 

accelerating voltage between the filament assembly and an anode plate. The SEM 

column and sample chamber are maintained under a high vacuum to allow the 

electrons forming the beam an unhindered path from the filament to the sample 

surface (Tough, 2001). 

As the beam travels down the column, it undergoes electron optical demagnification 

as it passes through two electromagnetic condenser lenses. Just above the specimen 

the beam comes under the influence of a set of scan coils which deflect the beam in a 

raster pattern across the sample surface .. This scanning action is synchronised with 

the display monitor where an image is generated thereby providing a high resolution 

map of the selected sample property. 

The SEM employs a compositional analysis using energy dispersive x-ray analysis, 

and provides chemical spectra and elemental line scans and maps that show the spatial 

distribution of specific chemical elements on a submicron scale. 

4.5.2. Energy dispersive x-ray analysis (EDXA) 

This type of surface characterization relates to the evaluation of elemental 

composition of the membrane / support surface using energy dispersive X-ray analysis 

(EDXA). The X-ray detector is connected to S430 SEM microscope to obtain 
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elemental composition from a single sample. The elemental characterization is 

significant to visualize whether the inner surface of the membrane is modified or not 

in the due course of deposition to evaluate the extent of surface modification with 

silica or other materials used for membrane support modification. 

As the scanning electron microscope uses a high energy electron beam to illuminate a 

specimen, one of the by-products is the generation of x-ray as primary beam electrons 

interact with specimen electrons. The production of x-rays occurs in two basic ways. 

As an electron in the primary beam enters the volume of a specimen atom, it can be 

scattered in various ways. 

Primary electrons may slow down by interaction with forces present within the 

volume of an atom resulting in the electron giving up energy. This energy loss can 

be accomplished by the emission of x-ray radiation. This type of radiation is known 

as braking radiation and is observed as a continuous spectrum which is regarded as 

background radiation for EDXA spectrometers. 

Scattering also occurs due to collisions between primary electrons and electrons 

within specimen atoms. The consequent rearrangement of electrons within electron 

shells, as atoms strive to reach their lowest energy states, results in the release of 

energy in the form of x-ray photons. As the energy of these photons is related to the 

energy between electron shells, the x-ray photons are characteristic of the element 

present in the specimen. By collecting and analysing these x-rays, qualitative and 

quantitative information about the component elements of a specimen may be 

obtained (Tough, 2002). 

System resolution calibration is carried out using cobalt (Co) standard for different 

dead times of 10%, 20%, 30%, 40% and 50%. Gain calibration is carried out before 

each analysis session (or every 3 hours). This routine corrects for any gain changes 

in the spectrometer. This ensures that previously recorded standard spectra can still 

be used at later dates without the need to record new data for every analysis session. 
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Figure 4.10: Set up for Scanning Electron Microscope (SEM) and Energy 
Dispersive X-ray Aanalysis (EDXA). 
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4.5.3. Accelerated surface area and porosimetry (ASAP 2010) 

The nitrogen gas adsorption isotherms were measured using a fully automated 

apparatus (Micromeritics Accelerated Surface Area and Porosimetry Analyser, model 

2010). The ASAP2010 shown in Figure 4.11 measures the pore size and surface area 

based on adsorption and desorption of gas on the surface and in the pores of the solid. 

The samples need to be analysed were degassed by heating the sample to certain 

temperature depends on the material type with degassing time of about 15hrs, and the 

sample was held under vacuum until the start of the analysis. After degassing, the 

samples were cooled under vacuum and the tubes were back filled with liquid 

nitrogen before being transferred to the analysis ports. 

Analyses of samples are directed through the Windows operating system by the 

ASAP 2010 interface controller unit, allowing for automatic analysis. The system 

equipped with one vacuum system for sample analysis and another vacuum system for 

sample preparation (degas). The vacuum systems have separate cold traps which 

prevents contaminating vapor from entering either system. The analysis vacuum and 

degas vacuum are separate to allows the analysis and degas to proceeds 

simultaneously. 

The ASAP has been calibrated before any pore size characterisation using silica­

alumina sample (Reference material). The silica alumina sample has a pore size of 

9.8 nm and surface area of 214 cm3/g. As can be seen form figure (4.11) that the 

pore size obtained is in good agreement with the values provided with the reference 

material. 
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Figure 4.11: Micomeritics ASAP 2010 Analyzer and calibration result. 
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4.5.4. Mercury porosimetry (Autopore II 9220) 

Mercury porosimetry is by far the most popular method for the measurements of 

relatively large pores, in particular macropores and is widely accepted as a standard 

measure of total pore volume and pore size dist~ibution (Rouquerol et. aI., 1994). 

After the sample is cleaned, dried, it is placed into the membrane sample chamber 

within the mercury injection apparatus shown in Figure 4.12. The mercury is 

pumped into the sample chamber until the membrane sample is entirely submerged 

into the mercury and the reference mark is reached. The mercury is injected into the 

sample by pumping a measured additional volume into the sample chamber. The 

mercury injection is continued in small increments of known volumes until a 

maximum pressure is reached. 

Since very high pressures are needed for pores in the nanometer range, Autopore II 

9220 capable of intruding mercury with intrusion pressures up to about 420 Mpa. 

Determination of the pore size by mercury penetration is based on the behaviour of 

mercury (non-wetting phase) in capillaries. Mercury can not spontaneously enter a 

small pore which has a contact angle of more than 90 degrees because of the surface 

tension, however this resistance may be overcome by exerting a certain external 

pressure. 
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Figure 4.12: Mercury Porosimetrv Autopore II 9220 
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Chapter 5: 

RESULTS AND DISCUSION 

5.1. Introduction 

This chapter present the results obtained from surface and flux characterisation 

studies performed for the a.-alumina support tube, silica composite membrane and 

palladium impregnated membrane prepared for hydrogen reaction, separation and 

purification. Sections 5.2 and 5.3 present surface and flux characterization of the 

support tube followed by surface and flux characterization of silica membranes 

prepared for hydrogen reaction. Section 5.4 present results and discussion for the 

silica composites prepared for hydrogen separation applications. This is followed 

by results and discussion for the silica composite membrane prepared for hydrogen 

purification. The membrane permeance results for different pure gases and 

equimolar mixture of hydrogen and nitrogen detailed in section 5.5. The results 

obtained for palladium impregnated y-alumina membrane and silica y-alumina 

membrane are presented in sections 5.6 and 5.7. Finally results are summarised in 

section 5.8. 

5.2. Membrane Support Tube 

5.2.1. Surface characterisation 
The average pore size of the a.-alumina support provided by the manufacturer is 

about 6000 nm. It can be seen from Figure 5.1 that the pore size distribution of the 

porous support obtained from the mercury porosimetry analysis (Micromeritics 

Autopore II 9220) shows a dominant peak at about 6 flm which is in good 

agreement with the value provided by the company. Unfortunately, the use of 

mercury porosimetry is limited to the evaluation of pore volumes or pore size 

distributions only (Satterfield, 1991). Therefore, the surface area of the investigated 
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support was evaluated from the nitrogen adsorption method and the results 

presented in Appendix (5). 

Energy Dispersive X-ray Analysis (EDXA) of the support provided the followi ng 

elemental composition: Ti - 91.673 %, Al - 5.010 %, Si - 2.1938, P - 0.76 % and 

Ca - % 0.3632. 
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Figure 5.1:: Pore size distribution of the support (mercury porosimetry). 

Figure 5.2 shows a scanning electron microscopic (SEM) photographs for the 

surface and cross-section of the support. It is clear from Figure 5.2 (A) that some 

pores higher than 6000 nm are present on the surface. Figure 5.2 (8) confirms that 

the support is single layer in nature with no differences in pore texture across the 

thickness of the membrane as shown on inner and the outer surfaces. 
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A 

B 

c 

Figure 5.2: SEM micrographs showing support Outer surface (A), Inner surface (B) 
and Cross section (C). 
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5.2.2. Pure gas permeation tests 

The permeation test through the porous support tube using pure gas (i.e. H2, N2, Ar 

and C3Hg) has been determined experimentally as a function of pressure difference 

(up to 2 bar) by measuring the flow through the membrane support at room 

temperature (22-28 °C). The tubular support was mounted in a gas flow cell where 

the gas flowed into the annulus with the pressure set using a pressure controller. 

The flow rate through the support was measured using a digital flow meter. The 

hydrogen permeance varied from 5 x 10-6 to 8 x 10-6 mol!m2.s.Pa. The permeance 

values for nitrogen, argon and propane obtained were 4.5 - 7 x 10-6,4.6 - 7.3 x 10-6, 

4.17 - 5.65 x 10-6 mol !m2.s.Pa respectively for a transmembrane pressure 

difference of 0.5 - 2 bar. The selectivity was calculated by taking the ratio of the 

permeance of the individual gases. It is apparent from the results that the permeance 

of hydrogen is greater than that of nitrogen and argon which in tum is greater than 

propane. 

Table 5.1 presents the pure gas separation factors evaluated from pure gas 

permeances for the support at room temperature. The separation factor for H21N2 

varied from 1.12 - 1.17, whereas the separation factor for H2! Ar and H2!C3Hg varied 

from 1.09 - 1.15 and 1.2 - 1.5 respectively for a transmembrane pressure difference 

of 0.5 - 2.0 bar. It is apparent that the separation factors for the support are close to 

one which indicates that no separation occurs. It can be concluded that, the 

permeation of pure gases through the alumina support is dominated mainly by the 

viscous mechanism. This is because the permeation of fluids at values of pore size 

greater than 50 nm is governed mainly by viscous diffusion (Tsuru et aI., 2000). 

Average Separation Separation Separation 
Pressure (Pa) factor factor factor 

H21N2 H2!Ar H2!C3Hg 
125000 1.17 1.15 1.50 
150000 1.12 1.10 1.33 
175000 1.10 1.09 1.23 
200000 1.12 1.11 1.22 

Table 5.1: Pure gas separation factors for the support at room temperature. 
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Based on the measurement of the flow rate of a gas through the support and the 

principles presented in section 3.6.2, the approximate average pore size of the 

support can be evaluated. According to Hsieh, 1996, the gas used in this method is 

pure, nonadsorbable and noncondensable. He also stated that, there are some 

indications that this method is influenced by the gas type. For instance, the nitrogen 

yield different pore size compared with helium. 

The average pore diameter of the support is about 5561 nm using hydrogen, 7419 

nm with nitrogen, 8479 nm using argon and finally 7011 nm with propane, all using 

pure gases. The pore sizes obtained using different gases are not similar as expected 

because of the difference in gas properties and gas-surface interactions and 

adsorption effects. It can be noted that these values are in the range of the pore size 

values obtained using the mercury porosimetry. 

5.2.3. Mixed gas permeation 

A permeation test experiment is conducted for mixed gas (H21N2 50/50) in the 

permeation cell for the alumina support. It was found that permeate and feed 

compositions are exactly similar concentration. In other words, the support provided 

no separation for a mixed gas. This can be attributed once again to the fact that 

permeation of mixed gas mixture is also based on viscous diffusion. 

In conclusion, surface and flux characterisations have both positively confirmed that 

the support offered very low resistance (i.e. high flow rates). The flow mechanism 

of pure and mixed gas permeation is governed mainly by viscous diffusion. 
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5.3. Silica Membrane for Hydrogen Reactions 

5.3.1. Pore size and surface characterization 

The detennination of wide range of pore size of the support (6000 nm) and coated 

membrane (few run) is not straightforward. The main reason for this is the 

overwhelmingly small pore volume of the thin, fine pore membrane layer compared 

to those of the support layer of the structure (Hsieh, 1996). The pore size of the 

silica membrane prepared for hydrogen reaction applications obtained from nitrogen 

adsorption are presented in Table 5.2. The results indicate that small pores were 

developed on the support and pores reduction was achieved to the extent that the 

percentage contribution of pores with an average pores varying from 1.86 run -

11.64 nrn is significant compared to higher pore size. Therefore, the support pore 

size distribution varies within the range shown in Figure 5.3. The percentage 

contribution of pore volume by larger pores (77.32 - 127 run) is low. Other results 

obtained from ASAP 2010 are BET surface area which is 229.2 m2;g and total pore 

volume of 0.162 cm3;g. 

pore 8JH desorption % Contribution of 
diameter pore volume pore volume 

nm cm3/g 
127.46 0.003898 1.917656 
77.32 0.003465 1.704638 
44.74 0.00637 3.133778 
30.4 0.006229 3.064412 
21.2 0.009272 4.561443 
17.12 0.004929 2.424866 
13.92 0.009324 4.587025 
11.64 0.016501 8.117814 
10.52 0.00364 1.790731 
8.44 0.01663 8.181277 
6.92 0.009673 4.758719 
5.86 0.013185 6.486479 
4.94 0.013398 6.591266 
4.24 0.013141 6.464832 
3.66 0.013146 6.467292 
3.2 0.012908 6.350206 
2.8 0.012328 6.06487 
2.46 0.011777 5.7938 
2.16 om 1317 5.567499 
1.86 0.012138 5.971398 

.. 
Table 5.2: Pore size dlstnbutlOns of Silica membrane for hydrogen reactIOn 

applications. 
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Figure 5.3: Pore size distribution of the silica membrane for hydrogen reaction 
appl ications. 

Morphology of the modified membrane was obtained through a combined SEM and 

EDXA analysis to examine the location and structure of the silica layer. Since the 

material of the modifier (silica) was differef\t from the support (alumina), the 

combination of SEM and EDXA provided information on the thickness and the 

location of the modified layer. Theoretically, the modification could occur within 

and/or on the top of the existing support pores. The SEM image of the outer surface 

of the modified membrane demonstrated a non uniform layer with pinholes and/or 

cracks as shown in Figure 5.4 (A). It is clear from the inner surface in Figure 5.4 (B) 

that the silica layer deposited on the top surface of the membrane support has only a 

little penetration of the silica inside the pores. Figure 5.4 (C) shows the image of the 

cross section of the modified membrane with layer thickness of about 10 -20f..lm. 

Furthermore, EDX analysis of the top membrane surface showed insignificant silica 

content in addition to the base alumina. A silica content of 50.1 % was detected on 

the surface with 20.5 % AI , and 29.0 % Ti as well as 0.06 % P, 0.34 % Ca. 
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A 

B 

c 

Figure 5.4: SEM micrographs of the membrane for reaction applications A) Outer 
surface B) Inner surface and C) Cross section. 
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5.3.2. Pure gas permeation 

Figure 5.5 presents the hydrogen permeance of silica membrane fabricated for 

hydrogen reaction applications. Permeation measurements for pure gas were made 

with hydrogen, nitrogen, propane, methane and carbon dioxide at different 

temperatures and pressures. As shown, the hydrogen permeance decreases with 

temperature, and the hydrogen permeance values varied from 1 x 10-7 
- 9.79 X 10-8 

mol/m2.s.Pa at a pressure differential range of 0.5 - 2.0 bar and for a temperature 

variation from 323 - 473 K. 

The slight increase in the hydrogen permeance along with the pressure differential 

increase is attributed to presence of defects such as cracks and/or pinholes that 

increase the contribution of viscous flow (Nishiyama et al., 2003). The contribution 

of viscous flow to the total flow becomes significant at a higher pressure CWu et aI, 

1993). 
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Figure 5.5: Hydrogen permeances of silica membrane for hydrogen reactions. 
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With respect to theory, if the hydrogen permeance is assumed to be due to the 

Knudsen mechanism only as a first approximation, the hydrogen permeance will not 

change with pressure (pressure independent), and will decrease with temperature. 

Therefore, it can be concluded from the results that the transport mechanism of this 

membrane is mainly due to Knudsen phenomena with contribution of viscous which 

can be observed from the pressure dependency. However, a separation factor for 

hydrogen with respect to other gases higher to that achieved by Knudsen 

mechanism can not be obtained if the Knudsen mechanism only prevails. So, in this 

case separation factor lower than Knudsen values are expected due to the 

contribution of viscous flow mechanism. 

The permeances result can be compared with silica membrane prepared using 

TEOS. De Lange et. al. (1995b
) reported that the silica composite membranes 

prepared by them have hydrogen permeances in the range of 2 x 10-6 to 6 x 10-7 

mol/m2.s.Pa for a temperature variation of about 25 to 200°C. These membrane 

permeances are independent with pressure differentials up to 5 bar. Similarly, De 

Vos and Verweij (1998) confirmed higher hydrogen permeance of about 2 x 10-6 

mol/m2.s.Pa for their prepared silica composite membrane. It can be concluded that 

the hydrogen permeances reported in the current investigation are two orders lower 

than those mentioned above. The main reason for those lower permeances reported 

can be attributed to one reason. The membranes prepared in the literature refer to a 

composite support whose initial pore size is about 200 nm, but which is later 

modified with y-alumina to offer a surface pore size of 4 nm. In other words, '(­

alumina layer is deposited between silica and composite support layer in the 

membranes fabricated by the authors. This refers to a diffusion barrier between the 

silica layer and the support surface which allows the reduction of fresh silica 

solution that can penetrate inside the pores and also the layer thickness on the 

membrane surface can be lowered. 

Hence, it is concluded that the preparation method of y-alumina membrane affected 

only the small pore size range (i.e. 30-200 nm). Since a diffusion barrier is not 

available, higher amount of silica has to be deposited in order to obtain a membrane 

with acceptable selectivity but the gas flow rate is reduced resulting in lower 

permeances. It is also important to note here that the support utilised in this 
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investigation has a higher pore size (6000 run) as opposed to those used in literature 

(200 run). From an economic point of view, the fabrication of asymmetric 

membranes with lower pore size on the surface would be expensive. This is due to 

the fact that three to four layers of different pore sizes need to be fabricated in order 

to reduce the surface pore size from 6000 run to 500 - 1000 run gradually. On the 

other hand, the utilisation of a symmetric support with 200 nm can be expensive 

when compared to the 6000 nm. This is because alumina support fabrication with 

higher pore size can be carried out at a cheaper cost due to reduced raw materials. 

Therefore, with respect to the obtained results, we can conclude that the lower order 

of hydrogen permeances can be argued with two reasons namely utilisation of cheap 

support and lower experimental costs. The lower experimental costs are due to the 

deposition of silica layer only (as opposed to deposition of silica and y-alumina 

layers for the case of 200 nm). 
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Figure 5.6 presents the nitrogen permeances for silica membrane fabricated for 

hydrogen reaction applications. Once again, a permeance decrease with temperature 

which refers to the behaviour of viscous and/or Knudsen mechanism and pressure 

independency is clearer for nitrogen permeation as opposed to that presented earlier 

for hydrogen permeance especially at higher pressure. It could be due to the effect 

of both molecular weight and/or mean free path of nitrogen. The membrane 

exhibited nitrogen permeance range between 1.3 x 10-8 
- 2.9 X 10-8 mol/m2.s.Pa at 

0.5 - 2 bar pressure differential with temperature variation from 25 - 200 DC. For 

comparison, values presented by De Vos and Verweij (1998) are analyzed. The 

authors provided values, which varied from 1.2 - 2.7 x 10-8 mol/m2.s.Pa over the 

temperature range of 25 - 200 DC. Therefore, the values obtained in this work can 

be analysed to be close with values reported by Verweij. The H21N2 selectivity of 

this membrane will be lower than their selectivity according to the hydrogen 

permeance difference. 
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Figure 5.6: Nitrogen permeances of silica membrane for hydrogen reactions. 
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As represented in Figure 5.7, the dependence on both the temperature and pressure 

for propane permeation has similar behaviour as permeance values decreases with 

increasing temperature. The propane permeances are varying from 1.1 x 10-8 
- 3.1 x 

10-8 moi/m2.s.Pa at 0.5 - 2.0 bar pressure differential for a temperature variation 

from 25 - 200°C. It is accepted that the permeance of gas molecules is affected by 

adsorption of gas molecules on the membrane pore surface. The permeation of 

adsorbing gases such as propane showed higher permeance than nitrogen. Schafer et 

aI., (2001) reported propane permeance of about 1 x 10-8 mol/m2.s.Pa which did not 

vary significantly with temperature. Therefore, the permeance value obtained in this 

work is in the same order of magnitude; however, higher selectivities are reported 

by the authors, which could refer to higher hydrogen permeances. 
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Figure 5.7: Propane permeances of silica membrane for hydrogen reactions. 
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Different gases have been used to test the membrane for additional investigation and 

understanding of the membrane behaviour in relation to gas transport. Figure 5.8 

presents methane permeances for silica membrane fabricated for hydrogen reaction 

applications. As expected, a membrane has higher permeances than nitrogen which 

reflect the molecular weight differences between both gases. The methane 

permeance range obtained was 1.4 x 10-8 
- 4.2 X 10-8 mol/m2.s.Pa at the same 

pressure differential and a temperature variation from 50 - 200°C. These 

permeances are compared with those presented by De Lange et aI., (1995 b). The 

authors reported methane permeance to vary from 2.7 x 10-8 
- 3.6 X 10-8 

mollm2.s.Pa for a temperature variation from 25 - 200°C. 
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Figure 5.8: Methane permeances of silica membrane for hydrogen reactions. 
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The permeances of C02 are in the range of 1.1 x 10-8 to 3.1 x 10-8 mol/m2.s.Pa at 

0.5-2.0 bar pressure differential for a temperature variation from 50 - 200 °C as 

shown in Figure 5.9. As it can be seen, there is a characteristic decrease of 

permeance with increasing molecular weight as expected for Knudsen flow. 

Considering that the molecular weight of CO2 is similar to the molecular weight of 

propane, the permeance of both gases are very close which could also reflect the 

similarity in their adsorption characteristics on silica. These permeances are 

compared with those presented by De Lange et aI., (1995 b). The authors reported 

carbon dioxide permeance to vary from 25 x 10-8 
- 30 X 10-8 mol/m2.s.Pa for a 

temperature variation from 25 - 200°C. These values are in the order of magnitude 

higher than the values obtained in this work. 
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Figure 5.9: C02 permeances of silica membrane for hydrogen reactions. 

99 



CHAPTERS RESULTS AND DlSCUSION 

5.3.3. Mixed gas permeation 

Mixed gas permeation experiments were conducted to obtain more information 

about the gas transport mechanism and to compare the results with those obtained 

using pure gases. Table 5.3 presents mixed and pure gas permeances of both H2 and 

N2 at a transmembrane pressure differential of about 2 bars. When an equimolar 

mixture of H2 and N2 was fed into the feed side, each permeance of both H2 and N2 

became lower than the corresponding pure gas permeance at temperature range of 

323 - 473 K. However, the percent difference between the mixed gas and the pure 

gas permeance values decreased as the temperature increased for both hydrogen and 

nitrogen. 

This is consistent with the results obtained by Tsai et aI., (2000) for the case of 

micropores silica membranes. Hassan (1995) also reported situations were the 

mixed gas permeance is lower than the pure gas permeance. 

This sort of behaviour could be attributed to the gas molecules interact and the gas 

molecule with the pore wall. The pure and mixed gas permeances are similar only 

in the Knudsen region and at high temperature (> 573 K) where this interaction can 

be neglected (Burggraff and Cot, 1996). When pure gas permeation occurs, there is 

no competition permeation and/or adsorption of another component present on the 

membrane surface. However, when another component exists, there would be 

competition for the permeation of the molecules on the membrane surface. 

T(K) 

323 
373 
423 
473 

H2 permeance 
(mol/m2.s.Pa) 

Mixed gas Pure gas 
1.53E-08 1.04e-7 
2.15E-08 8.51e-8 
2.60E-08 6.76e-8 
2.71E-08 4.97e-8 

N2 permeance 
(mol/m2.s.Pa) 

Mixed gas Pure gas 
4.lOE-09 2.91e-8 
5.63E-09 2.40e-8 
5.65E-09 1.92e-8 
5.39E-09 1.48e-8 

T bl 5 3· Pure and mixed H2 and N2 permeances of silica membrane for reaction a e .. 
applications. 
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5.3.4. Separation factor 

The separation factor for pure gas permeation test is the ratio of hydrogen 

permeance to other gases permeance under the same transmembrane pressure and 

temperature. The results are presented in Table 5.4. These results showed that the 

separation factors are slightly lower than the values achievable due to Knudsen 

mechanism. In other words, a separation factor higher than Knudsen is not 

achievable due to the presence of defects that reduces the separation factor and 

increases the contribution of another flow mechanism such as viscous flow through 

the bigger pores. It is clear that all gases have separation factors, which relates to 

the main contribution of separation by the Knudsen mechanism. The possible 

increase in the gas separation factors can be achieved by more dip coating. This can 

be achieved by an increase in the number of coating-drying-calcination cycles. 

Such a membrane will result in lower permeance. 

t\P 

Gases pair T(K) 0.5 I 1.5 2 

323 3.37 3.25 3.46 3.58 
373 3.32 3.13 3.33 3.54 

HiN2 423 3.16 3.18 3.30 3.52 
(3.741") 473 

2.39 2.73 3.14 3.36 

323 3.32 3.28 3.40 3.35 

373 3.21 3.01 3.10 3.11 H2/C3HS 

(4.69") 
423 2.89 3.06 3.11 3.19 

473 2.70 2.85 3.11 3.14 
323 3.09 3.16 3.30 3.36 
373 3.26 3.28 3.30 3.50 

Hz/CO2 423 2.95 3.31 3.33 3.46 
(4.69") 473 2.60 3.16 3.44 3.49 

323 2.16 2.32 2.46 2.48 
373 2.44 2.43 2.46 2.53 

Hz/CH4 423 2.21 2.39 2.42 2.50 
(2.828") 473 2.19 2.35 2.54 2.53 

1 Knudsen separation factor. 

Table 5.4: Pure gas separation factors for different pairs of gases for silica 
membrane applicable for hydrogen reactions. 
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Figure 5.10 presents a comparison between pure gas and mixed gas separation 

factors for the H2 and N2 system. As shown, the pure gas separation factor 

decreased from 3.57 to 3.36 for a temperature variation of 323 - 473 K and 2 bar 

pressure drop. However, for gas mixture, the separation factor increased from 3.73 

to 6.88 at the same condition. This is because the mean free path is longer at a 

higher temperature for a given pressure drop (Wu et al., 1993). In other words, the 

mixed gas separation factor is higher than that of pure gas. It is very common in the 

inorganic membrane literature that the mixed gas separation factors are larger than 

the pure gas values (Rao and Sircar, 1993). 

In summary, higher separation factors are not achieved for this membrane support 

by conventional dip coating due to the high pore size which needs to be reduced 

owing to the fact that higher separation factors lead to lower membrane permeances. 

The combination of higher permeances coupled with higher separation factors is 

hard to implement. The membrane separation factor could be increased by more 

coating steps or plugging the pore with other procedure, but with permeance loss. 

The maximum selectivity of about 3.58 was achieved for hydrogen / nitrogen, . 
which is 95 .7 % of the theoretical Knudsen value (3.74) (Keizer et aI., 1988). 

7 .0 -,---------------- - -----, 
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~ 4.5 

4.0 

3.5 

3.0 -+--,----,--.--,-----,,----.--.--.---.--1 
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Figure 5.10: Pure and Mixed gas separation factors 
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5.3.5. Gas flow mechanism 

According to Knudsen mechanism all gases with lower molecular weight offer 

higher permeances than higher molecular weight and vice versa. In other words, the 

hydrogen gas (M = 2) has permeance higher than the nitrogen (M = 28), and 

nitrogen higher than argon (M = 40). This is only true for non adsorbable gases or 

at low pressure and high temperature (> 300°C) where the surface diffusion can be 

negligible for adsorbable gases. The gas permeance obtained was plotted versus the 

inverse square root of molecular weight of the gases at different temperatures. The 

results shown in Figure 5.11 indicates that gas transport occurred mainly by 

Knudsen mechanism with good linear dependence and R2 in the range between 

0.994 - 0.997. 

The gases permeances data was also plotted versus the inverse square root of the 

temperature and the linear regression fits are presented in Figure 5.12. The results 

again show good fits with R2 ranges of 0.970 to 0.999 following the behaviour 

expected from Knudsen mechanism. 
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Figure 5.11 : Gases permeance vs. molecular weighf "2 
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Figure 5.12: Gaes permeance vs. temperature- 1I2 

The approximate average pore size of the silica membrane prepared for reaction 

applications is calculated and shown in Table 5.5 for hydrogen and nitrogen pure 

gases. The values shown below are evaluated using the theory presented in Chapter 

3 for a combined Knudsen and viscous flow mechanism for the over all permeation 

of gases. The pore size varied between 15.06 - 35.19 nm when evaluated using 

Knudsen permeance equation and 57.68 - 85.74 nm when evaluated using viscous 

permeance equation. It can be seen that these values are in the range of the pore 

size distribution shown in Figure 5.3 which was evaluated using nitrogen 

adsorption. 

Gas T (DC) dp, nm (Knudsen) dp, nm (Viscous) 

H2 50 15.06 85.74 
H2 100 15.81 81.62 
H2 150 16.67 83.74 

H2 200 16.83 80.72 

N2 50 35.19 63.54 

N2 100 34.43 57.68 
N2 150 30.98 59.25 
N2 200 35.06 58.73 

.. 
Table 5.5: Average pore sIze of the sIlIca membrane for reaction applications 

evaluated from gas permeance. 
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5.4. Silica Membrane for Hydrogen Separation 

5.4.1. Pore size and surface characterization 

Table 5.6 and Figure 5.13 present the pore size and the pore size distribution of the 

silica membrane prepared for hydrogen separation applications. The table 

demonstrates that the membrane pore size was modified and reduced to a range 

between about 2 - 64 run. More importantly, the small pores with an average 

diameter range between 1.88 and 8.36 run contribute to approximately % of the total 

pore volume. Therefore, the silica deposition on the support has provided pore size 

reduction and surface modification to present a range of pores that could offer 

separation factors as required for separation applications. The BET surface area of 

the silica composite membrane for hydrogen separation is 265.09 m2/g and the pore 

volume is 0.203 cm3/g. 

pore BJH desorption % 

diameter pore volume Contribution 

(nm) Cm3/g to total pore 
volume 

63.9 0.00307 1.886109 
41.48 0.00509 3.127131 
28.66 0.005707 3.506196 
21.28 0.005959 3.661017 
16.82 0.005776 3.548587 
13.88 0.005861 3.600809 
11.78 0.005862 3.601423 
10.48 0.003909 2.401563 
8.36 0.01478 9.080353 
6.88 0.008558 5.257758 
5.82 0.01196 7.347837 
4.92 0.01165 7.157383 
4.22 0.0117 7.188101 
3.64 0.01148 7.05294 
3.18 0.011212 6.88829 
2.78 0.010708 6.578648 
2.42 0.01184 7.274112 
2.12 0.00833 5.117682 
1.88 0.009317 5.724063 

Table 5.6: Pore size distribution of the silica composite membrane prepared for 
hydrogen separation applications. 
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Figure 5.13: pore size distribution of the silica membrane for hydrogen separation 

applications 

The SEM micrographs in Figure 5.14 shows the outer surface (A), inner surface (B) 

and cross section (C) for the silica composite membrane prepared for hydrogen 

separation. The outer surface of the membrane is deposited with a layer of silica and 

the inner surface of the membrane is modified due to the silica that penetrated 

through the pore spaces. The cross section of the membrane is where the deposition 

of silica layer is visible. The thickness of the silica layer is evaluated to about 30-40 

microns based on the scale presented in the cross section micrograph. EDX analysis 

of the silica membrane for outer ~d inner surface provided different results. The 

EDX analysis of outer surface of the membrane related to 98 % Si, 0.2 % CI and 1.8 

% Ti and the EOX analysis of the inner surface of the membrane relates to 31.5 % 

AI, 29.9 % Si and 38.5 % Ti. This signifies that the inner surface of the composite 

membrane is modified with silica (the silica sol penetrates inside pore space of the 

support). 
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A 

B 

. . 
. " .' . . 
.' . . . . . . .' \' . 

C 

Figure 5.14: SEM micrographs of the separation membrane A) Outer surface B) 
Inner surface and C) Cross section. 

5.4.2. Pure gas permeation 
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Figure 5.15 presents hydrogen permeance as a function of temperature at various 

transmembrane pressure differentials (0.5 to 2.0 bar) . The hydrogen permeance 

varied from 4.2 x 10-10 (at room temperature) to 5.8 x 10-9 mol/m2.s.Pa at the 

highest temperature of permeation (543 K). It is apparent from the figure that the 

hydrogen permeance increases with temperatures. A number of major 

characteristics of the behaviour can be mentioned. Firstly, the permeance profile 

had a sharp increase below 350 K after which the slope of permeance profile curve 

increase slowly until a value of 450 K. Secondly, at temperatures above 450 K, the 

slope of permeance profile curve increased exponentially. Such behaviour is good 

for hydrogen separation applications with the fact that higher hydrogen permeances 

at higher temperatures could provide significant increase in separation factor. 

It can be seen that the hydrogen permeances of silica membrane for hydrogen 
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Figure 5.15 : Hydrogen permeances of silica membrane for hydrogen separation. 
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separation are lower than the permeances obtained with the silica membrane for 

hydrogen reaction and that reported by De Lange et. aI., (l99Sb
) and De Vos and 

Verweij, 1998). However, it has to be noted that both have fabricated thin silica 

films on an asymmetric support. 

De Vos and Verweij, (1998) reported that the thickness of their silica layer is about 

30 nm. Similarly, a thin silica membrane is deposited on a y-alumina membrane. In 

the present case, silica composite membranes are prepared which could increase the 

thickness of silica layer due to the increase coating number and penetration of silica 

sol inside the pores and hence reduce the membrane permeance with the advantage 

of separation factor increase. 

It can be further discussed here that the stability and durability of the separation 

layer at higher temperatures is important as much as the fabrication of thin silica 

membranes. Temperature cycling can have significant effect on the membrane 

durability and properties. Furthermore, the fabrication of a thin layer is convenient 

to express higher hydrogen flux. However, a 30nm layer is easily susceptible for 

defects during operation in an industrial scenario. A simple scratch on the 

membrane surface during installation for example is enough to permanently damage 

the composite membrane for industrial operation. 

Hence, the lower hydrogen permeances obtained for the silica composite prepared 

from symmetric support cannot be comparable to the higher hydrogen permeances 

mentioned above unless comparative impact assessment of durability, mechanical 

stability and cost of the membrane are taken into consideration. 
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Figure 5.16 presents nitrogen permeance obtained at various temperatures and 

pressure differentials. Nitrogen permeance is varied from 5.5 x 10-10 to 9.4 x 10-10 

mol / m2.s.Pa for the range of temperature and pressures differentials studied. For 

comparison, values presented by De Vos and Verweij, (1998) are analyzed. The 

authors provided a values which varied from 0.12 - 0.27 x 10-7 moIlm2.s.Pa for a 

temperature variation of 25 - 200°C. The values obtained in this work are lower 

than those presented due to the fact that silica composite membranes are prepared 

on a symmetric support. The permeation profiles of hydrogen and nitrogen are 

different regarding the impact of temperature on the permeance. While nitrogen 

permeation profiles increased slightly for different temperature, the same is not true 

for hydrogen permeance. Hydrogen permeance profiles increases sharply with 

temperature. 
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Figure 5.16: Nitrogen permeances of silica membrane for hydrogen separation. 
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Figure 5.17 illustrates propane permeance at various temperatures and pressure. 

Unlike hydrogen and nitrogen, propane permeances decreased with increasing 

temperature. Such behaviour for silica membrane has been reported (Munoz­

Aguado and Gregorkiewitz, 1996). This can be explained due to the fact that 

propane permeation could be as a result of surface diffusion where the heat of 

adsorption is higher than the mobility energy as will be explained later. The higher 

permeance of propane indicates that the gas permeation was enhanced by the 

surface diffusion mechanism, which depends on the adsorption capacity on the 

membrane pore. The membrane exhibits propane permeance varied from 4.7 x 10-

10 to 4.14 X 10-9 mol/m2.s.Pa for a temperature variation from 298 to 550 K. These 

values are lower than the values reported by Schafer et aI., (200 I). The authors 

reported propane permeance of about 1 x 10-8 mol/m2.s.Pa which did not vary 

significantly with temperature. These high permeances are not at all desired for a 

reaction like propane dehydrogenation applications with the fact that higher propane 

permeation refers to loss of reactant from the feed system. 
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Figure 5.17: Propane permeances of silica membrane for hydrogen separation. 
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5.4.3. Mixed gas permeation 

Table 5.7 summarises hydrogen permeance during the mixed gas permeation at 

different temperatures and pressure differentials for the silica composite membrane. 

These data are evaluated as the product of hydrogen mole fraction in the product 

(obtained from the gas chromatograph) with the total permeance of the system 

(obtained from the flow rate). For comparative purposes, corresponding hydrogen 

permeance is also presented. It can be seen that the mixed gas hydrogen permeance, 

is lower than the pure gas permeance. In other words, the permeation rate of 

hydrogen is affected by the presence of nitrogen. 

The mixed gas activation energy for hydrogen permeation is evaluated using the 

theory presented (chapter 3) and the values are 10.77, 8.52 and 5.07 kl/mol at L\P = 

0.5, 1.0 and 1.5 bar respectively. Corresponding pure gas activation energy for 

hydrogen is observed to vary from 5.19 - 5.78 kJ/mol. Hence, it can be concluded 

that the mixed gas activation energy as well as the separation factor are higher than 

the pure gas activation energy. 

Per (H2) moVm2.s.Pa 

~P = 0.5 bar ~P - 1.0 bar ~P - 1.5 bar 

Mixed Pure Mixed Pure T Mixed Pure 

gas gas T(K) gas gas (K) gas gas 

\.06E-IO 6.74E-IO 296 7.37E-IO 1.11E-09 419 1.59E-09 3.46E-09 

6.41E-IO 2.56E-09 343 1.28E-09 2.69E-09 444 2.39E-09 3.59E-09 

9.09E-IO 2.77E-09 404 1.84E-09 3. 1 8E-09 464 2.59E-09 3.79E-09 

1.59E-09 3.96E-09 477 2.66E-09 3.72E-09 542 3.0SE-09 5.46E-09 

Table 5.7: Pure and Mixed gas hydrogen permeances of silica composite 
membrane for hydrogen separation. 
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Table 5.8 presents the nitrogen penneance for mixed gas experiment compared with 

pure gas penneation data at different temperature and pressure differentials. It can 

be seen that the mixed gas penneance is lower than the pure gas penneance at all 

the temperatures and pressure differentials tested for the composite membrane. 

Hence, it can be concluded that the presence of hydrogen in the system has the 

effect of decreasing the nitrogen flow rate. 

Having observed the significant influence of hydrogen/nitrogen system for the 

hydrogen separation silica membrane, the activation energies of the composite 

membrane are evaluated for nitrogen penneation. The activation energy of the 

nitrogen varied between is 4.2 - 7.6 kJ/mol at pressure differential range between 

0.5 to 1.5 bar. These values are lower than the corresponding pure gas activation 

energy for nitrogen (2.1 - 1.39 kJ/mol). 

Per (N2) moVmz.s.Pa 

AP = 0.5 bar AP - 1.0 bar AP - 1.5 bar 

Mixed Pure T Mixed T Mixed Pure 

gas gas (K) gas Pure gas (K) Gas gas 

2.12E-ll 5.72E-IO 296 6.88E-ll 6.06E-IO 419 1.03E-IO 8.00E-1O 

5.42E-ll 6.15E-IO 343 8.36E-ll 6.35E-1O 444 1.79E-IO 8.22E-IO 

4.36E-ll 6.35E-IO 477 4.16E-ll 7.42E-IO 464 2.38E-1O 8.34E-IO 

1.27E-11 8.40E-IO 519 5.14E-ll 8.42E-IO 542 3.59E-IO 9.18E-IO 

Table 5.8: Pure and mixed gas nitrogen penneances of silica composite membrane 
for hydrogen separation. 
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5.4.4. Separation Factor 

Table 5.9 summarises pure gas separation factors for nitrogen and propane gases 

with respect to hydrogen. It can be seen that H21N2 selectivity varied from about 4 -

8 which is higher than Knudsen value. The respective Knudsen separation factor for 

this pair of gases is 3.74. It can be observed that both pressure and temperature 

have significant effect on the separation factor. For instance, at lower temperature, 

the selectivity for H2/C3HS gases is lower than Knudsen separation factor, which 

could indicate that the surface diffusion transport mechanism has a contribution as 

C3HS is absorbable gas. In the mean time, when the temperature increases the 

selectivity increased and reached a value higher than Knudsen at higher 

temperature. 

~P 

Gases pair T(K) 0.5 1 1.5 2 

368 7.84 4.49 4.07 3.87 

H21N2 472 7.3 5.15 4.73 4.6 

(3.741 8
) 532 5.22 5.43 5.52 5.5 

368 1.3 1.37 1.26 1.23 

H2/C3HS 472 2.59 2.83 2.73 2.7 

(4.698
) 532 5.16 4.95 4.87 4.82 

8 Knudsen separation factor. 

Table 5.9: Pure gas separation factors for separation membrane at different 
temperatures. 

Figure 5.18 presents the variation of mixed gas separation factor evaluated from the 

composition of permeate and retentate stream. It can be seen from the figure that 

the separation factor increases with an increase in the temperature of the permeation 

at 0.5 and 1.0 bar. At pressure differentials of 1.5 bar, the S.F factor decreased with 

temperature to a lower value of 8.6 which is higher than Knudsen value. 
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Uhlhorn et aI., (1989), reported for a H21N2 mixture a decreased separation factor 

from 9 at pressure of 0.5 bar to separation factor value of 5 at 2.0 bar. 

The reduction of separation factor was attributed to the decrease of surface diffusion 

contribution to the total permeation with increasing pressure due to saturation of the 

adsorption. At high pressure, the possibility of back diffusion phenomena can also 

reduce the separation factor. The separation factors are varied from 5 - 29, 11 - 52 

and 9 - 16 at 0.5, 1.0 and 1.5 bar pressure differentials respectively. Corresponding 

pure gas separation factors are evaluated to vary to a maximum value of 8 at 

pressure of 0.5 bar. It can be concluded that the pure gas separation factor is much 

lower than the separation factor for mixed gas. 
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Figure 5.18: Mixed gas separation factors of silica composite 
membrane for hvdrollen seoaration. 
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5.4.5. Gas flow mechanism 

It is clear from the permeation and the separation factor results obtained that the 

flow mechanism of this membrane is a combination of surface diffusion mechanism 

for C3HS and activated diffusion for other gases. Based on the equations provided in 

chapter 3, the activation energy and pre-exponential factor are evaluated for 

different gases at different pressures. The results of these calculations are 

summarised in Table 5.10. The table also presents the correlation coefficient (r2) 

value which is a measure of the fitness of the straight line. 

The activation energy for hydrogen is observed to vary between 5.19 - 5.78 kJ/mol. 

Corresponding values presented are 7.6 - 8 kJ/mol (De Vos and Verweij, (1998) 

and 13 - 15 kJ/mol (De Lange et aI., (1995b
). Hence, the activation energy values 

measured in this work are lower than those presented in literature. The higher 

activation energies indicate the presence of a dense silica layer in the membrane 

(Hwang et aI., 1999). 

Similarly, the calculated activation energy of nitrogen permeation varied between 

2.39 to 2.8 kJ/mol. The nitrogen activation energy is comparable with that 

previously reported by Kuraoka et aI., (2000). For propane the results are different, 

the activation energy values are negative and ranges from -8.9 to -4.2. This shows 

Gas 
AP 

(bar) 

H2 1.0 
H2 1.5 
H2 2.0 
N2 1.0 
N2 1.5 
N2 2.0 

C3Hs 1.0 

C3HS 1.5 
C3HS 2.0 

Activation 
(+) / heat of 
adsorption (-

) 
kJ/mol 

5.78 
5.08 
5.19 
2.80 
2.68 
2.39 
-4.2 
-7.4 
-8.9 

Pero 

mol.m1(m2.s.Pa) 

1.44E-08 
1.65E-08 
1.74E-08 
1.75E-09 
1.55E-09 
1.44E-09 
1.64E-IO 
1.38E-IO 
1.36E-I0 

0.996 
0.993 
0.996 
0.996 
0.997 
0.997 
0.995 
0.997 
0.979 

Table 5.10: Activation energies and pre-exponential factors for hydrogen separation 
silica membrane. 
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that the activation energy is lower than the heat of adsorption and the apparent 

activation energy calculated is negative for propane. The pressure has impact on the 

activation energy of the gas permeating the membrane, which leads to change in 

separation factor. For instance, when the activation energy increases with pressure 

for hydrogen and decreases for nitrogen this would lead to increase the permeation 

of nitrogen and reduce the hydrogen therefore the S.F will decreases with pressure. 

This is due to the change of the transport mechanism contribution with pressure, 

which is controlled by the gas mean free path. In conclusion, the membrane 

performance depends on the transport mechanism contribution, the gas used and the 

interaction between the gas and the membrane material. 

5.4.6. Membrane durability 

For industrial applications of the membranes, not only a thin layer and separation 

properties are important, but also the durability of these membranes under test 

conditions. The hydrogen and nitrogen permeance under 1 bar and room 

temperature are shown in Figure 5.19 for six consecutive tests performed within 23 

days of the initial run. It can be seen that the hydrogen permeance is more varied 

than nitrogen permeance which could be due to many reasons such as hydrogen 

molecular weight, and hydrogen membrane interaction. In general the silica 

membrane for hydrogen separation is fairly durable and stable to the extent of the 

testing period. This is the most important feature that has to be stressed for the 

industrial application of silica membranes. 
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Figure 5.19: Durability for hydrogen separation silica membrane. 
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5.5. Silica membrane for bydrogen purification 

5.5.1. Pore size and surface characterization 

Table 5.11 presents the pore size of silica composite membrane prepared for 

hydrogen purification. The obtained results are in good agreement with the 

prepositions expected for this type of membrane. It is apparent from the table that 

the pores with an average diameter of ~ 11.2 nm contribute insignificantly to the 

total pore volume. The major contributors to the total pore volume are the pores 

with an average diameter of ~ 9.4 nm. This indicates that the membrane underwent 

significant reduction in pore size. Of note is that the small pores with an average 

diameter had the highest contribution to the total pore volume at 16.7 %. Therefore, 

it can be concluded that significant reduction in pore size has occurred in the silica 

membrane prepared for hydrogen purification. In other words, higher separation 

factors can be expected based on this pore size distribution. 

pore BJH desorption % 
diameter pore volume Contribution to 

(nm) cm3/g total pore 
volume 

66.2800 0.003488 1.635348 
42.9400 0.005634 2.641499 
28.4200 0.007983 3.742827 
21.7200 0.006194 2.904055 
17.7000 0.007067 3.31336 
14.8000 0.007553 3.541221 
12.7000 0.007950 3.727355 
11.2200 0.007000 3.281947 
9.4400 0.015113 7.085724 
7.7200 0.017621 8.261599 
6.5200 0.017109 8.021548 
5.6400 0.017870 8.378343 
4.9400 0.018455 8.65262 
4.3800 0.019678 9.226023 
3.9200 0.020034 9.392933 
3.4800 0.034509 16.17953 
1.7000 0.000030 0.014065 

Table 5.11: Pore size distribution of the silica composite membrane prepared for 

hwlropen nllrification. 
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Other results obtained from ASAP analysis are as follows. The BET surface area of 

the composite membrane is about 275.62 m2/g which is higher than the BET surface 

area of both membranes prepared for reaction and separation. Therefore, this result 

confirms that the surface underwent significant pore size modification. The BJH 

desorption total volume is about 0.2132 cm3/g. 
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Figure 5.20: Pore size distribution of the silica membrane for hydrogen purification 

applications. (Nitrogen Adsorption) 

Figure 5.21 presents the SEM micrographs of the purification membrane for outer 

surface (A), inner surface (B) and cross section (C). It can be seen that the outer 

surface underwent surface modification with silica with deposition fully covers the 

porous support and no crack appears in the thick membrane. The thickness of the 

silica film measured from the cross section micrograph is about 40 - 50 microns 

based on the scale presented for the micrograph. 

The EDX analysis of the outer and inner surface provided conclusions similar to 

that observed from micrographs. The EDX analysis of the outer surface provided 

92 .6 % Si, 7.0 % Ti and 0.4 % Cl. The EDX analysis of the inner surface provided 

96 % Ti , 1.0 % Al and 3.0 % Si. 
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Figure 5.21: SEM micrographs of the purification membrane A) Outer surface B) 
Inner surface and C) Cross section. 
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5.5.2. Pure gas permeation 

Figure 5.22 shows the temperature dependence of the pure gas permeance of 

hydrogen at different transmembrane pressure difference for the hydrogen 

purification silica membrane. The hydrogen permeance increases with increasing 

temperature due to an activated diffusion mechanism in the small pores of the silica 

layer. The membrane exhibits a hydrogen permeance varied from 3.86 x 10- 10 (at 

room temperature) to 4.1 x 10-9 mollm2.s.Pa (at 238°C). Sea et aI. , (1996) reported 

a hydrogen permeance of about 1.1 x 10-9 mol/m2.s.Pa for a membrane at 200 °c 
formed with TEOS in a-alumina tube. In other words, it can be concluded that the 

membrane prepared using silicon elastomer by modified dip coating technique to 

plug the membrane macropores provides similar hydrogen permeance performance 
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Figure 5.22: Hydrogen permeances of silica membrane for hydrogen purification. 

as that developed by Sea et aI., (1996) using chemical vapor deposition. 
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The influence of pressure and temperature on nitrogen permeance is shown in 

Figure 5.23 for the hydrogen purification silica membrane. Nitrogen permeance is 

lower than hydrogen permeance and varied from 1.3 x 10-12 (at 25 DC) to 1.6 x 10-10 

mol/m2.s.Pa (at 238 DC). For comparative purpose, again it was shown by Sea et aI. , 

(1996) that nitrogen permeance is about 4 x 10-10 mol/m2.s.Pa for a membrane at 

200 DC. The impact of transmembrane pressure on the performance of nitrogen 

permeance of hydrogen purification silica membrane at different temperature is 

minor. The nitrogen permeance is observed to be increased slightly with pressure as 

the temperature increased. In other words, the impact of temperature is stronger than 

the impact of pressure on nitrogen permeances. 
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Figure 5.23: Nitrogen permeances of silica membrane for hydrogen purification. 
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Figure 5.24 presents methane perrneance as a function of temperature and 

transmembrane pressure difference for the hydrogen purification membrane. The 

perrneance of methane varied from 1.18 x 10-10 (at room temperature) to 5.17 x 10-10 

mollm2.s.Pa (at 238°C). It can be explained from the figure that the permeation of 

methane is influenced with temperature especially at higher temperature. 
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Figure 5.24: Methane perrneances of hydrogen purification silica membrane. 
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Figure 5.25 presents propane permeance as a function of temperature and 

transmembrane pressure difference for the hydrogen purification membrane. It can 

be seen that the permeation of propane has completely different profile compared 

with the other gases (i.e. H2, N2 and CH4). The permeation decreased with 

temperature up to 470 K where the permeation starts to increase. The propane 

permeation obtained is 6.2 x 10-10 mol/m2.s.Pa (at room temperature) and 6.4 x 10-10 

mol/m2.s.Pa (at 238°C). Therefore, the propane permeation reduction at lower 

temperature could be due to the adsorption phenomena, which indicates that the 

contribution of surface diffusion decreases with an increase in temperature (Schafer, 

2001). The overall permeation of propane with temperature could be due to 

combination between the adsorptive diffusion at low temperature (i.e < 470 K) and 

activated diffusion at high temperature (i.e. > 470 K). The impact of pressure is 

clear from the figure on the propane permeance as the permeation profiles matched 

at the temperatures range studied. 
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Figure 5.25 : Propane permeance for hydrogen purification silica membrane. 
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The silica membrane performance for hydrogen purification has been tested using 

other gases such as C02. Figure 5.26 presents CO2 permeance as a function of 

temperature and transmembrane pressure difference. The permeation of CO2 

increased with temperature with values varied from 4.2 x 10-12 mollm2.s.Pa (at room 

temperature) to 6.2 x 10-10 mollm2.s.Pa (at 238°C). At low to moderate temperature, 

the permeation profiles of CO2 increased to higher values at higher permeation 

pressure. Carbon dioxide permeation shows similar behaviour as activated transport 

for membranes characterized by a hydrogen activation energy higher than around 10 

kllmol (De Lange et aI., 1995b
). De Vos et aI. , (1998), reported an opposite 

behaviour for C02 permeance as it decreased with temperature. 
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Figure 5.26: C02 permeance data for hydrogen purification silica membrane. 
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5.5.3. Mixed gas permeation 

Permeance results as a function of temperature are presented in Tables 5.12 and 

5.13. Table 5.12 summarises mixed gas as well as pure gas hydrogen permeances 

for the hydrogen purification membrane. It can be seen from the table that the 

mixed gas hydrogen permeances are lower than the pure gas hydrogen permeances 

at different transmembrane pressure differentials. Hence, it can be explained that the 

permeation rate of hydrogen is affected by the presence of nitrogen as compete gas 

under these conditions. In this regard, this statement (i.e the mixed gas permeance 

is lower than the pure gas permeance) has been reported in literature (Hassan et aI., 

1995). 

Per (H2) mol/ml.s.Pa 

~p = 1.0 bar ~p - 1.5 bar ~p = 2.0 bar 

T Mixed Pure Mixed Pure T Mixed Pure 

(K) gas gas T(K) gas gas (K) gas gas 

422 7.14E-IO 3.26E-09 422 9.90E-IO 3.46E-09 422 1.11 E-09 3.55E-09 

452 8.42E-1O 3.44E-09 463 1.24E-09 3.79E-09 472 1.30E-09 4.05E-09 

533 1.l9E-09 4.94E-09 539 1.89E-09 5.26E-09 547 1.72E-09 5.80E-09 

Table 5.12: Pure and mixed gas hydrogen permeances for the hydrogen purification 
silica membrane. 

Table 5.13 summarises mixed gas and pure gas nitrogen. Again the nitrogen 

permeance in mixed gas is lower than the pure gas nitrogen permeance at different 

transmembrane pressure differentials. Hence, it can be explained that the 

penneation rate of nitrogen is strongly affected by the presence of hydrogen as 

compete gas under these conditions. It can be concluded that the presence of 

hydrogen in the system would decrease the nitrogen flow rate due to the activity of 

hydrogen with temperature. 
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Per (N2) mo\/m2.s.Pa 

~P = 1.0 bar ~p - 1.5 bar ~P = 2.0 bar 

T Mixed Mixed T 

(K) gas Pure gas T(K) gas Pure gas (K) Mixed gas Pure gas 

422 8.92E-I3 6.88E-tO 422 3.12E-12 8.00E-tO 422 3.79E-12 8.5IE-IO 

452 1.8tE-12 7.t5E-IO 463 4.32E-12 8.34E-IO 472 5.07E-12 8.82E-IO 

533 5.63E-12 8.82E-JO 539 8.40E-12 9.29E-IO 547 9.31E-12 9.67E-JO 

Table 5.13: Pure and mixed gas nitrogen permeances for the hydrogen purification 
silica membrane. 

5.5.4. Separation factor 

Table 5.14 summarises the pure gas separation factors for different pairs of gases 

expressed as a function of temperature and pressure. The H21N2 separation factor 

varied from (12.84 - 62.22) for various temperature and pressure effects. For H21N2 

the high temperature separation factor is much above the corresponding Knudsen 

separation factor (3.74). The separation factor at a selected temperature increases as 

the pressure decreases. 

The separation factor for H2/C3Hs can be observed to be below and above a 

Knudsen value (4.69) at this range of temperature (100 - 250°C). This reflects the 

presence of surface diffusion phenomena for propane permeation as presented 

earlier. The maximum separation factor obtained at temperature (200°C) is 7.29 

which is higher than the corresponding Knudsen separation factor (4.69). Similarly 

the H2/C02 separation factor varied from 2.74 to 6.64 for a corresponding Knudsen 

separation factor of 4.69. It can be expected that the separation factor can achieve 

higher values at a higher temperature of 400°C. H2/CH4 separation factor is varied 

from 5.64 to 10.57 which is higher than the corresponding Knudsen separation 

factor (2.83). 
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~p T H2!N2
8 H2/C3Hg8 H2/CH/ H2/ C02

a 

(bar) (K) (3.74) (4.69) (2.83) (4.69) 

403 62.22 4.27 10.57 3.67 

1 466 28.28 7.29 9.21 4.56 

511 23.52 6.48 9.15 6.64 

403 34.30 3.42 6.93 3.02 

1.5 466 19.74 7.28 6.79 4.51 

511 15.10 6.06 6.26 5.36 

403 32.31 3.76 6.22 2.74 

2 466 16.20 6.96 5.75 3.89 

511 12.84 6.67 5.64 4.6\ 

a Knudsen separation factor 

Table 5.14: Pure gas separation factors for the hydrogen purification silica. 

The membrane has been tested using a membrane reactor assembly for their 

separation capability at different temperatures using 50 % H2/ 50 % N2 mixture. 

The mixed gas separation factors observed to vary from 1260 - 757, 1361 - 567 and 

1556 - 436 (product purities of99.92 - 99.86 %,99.92 - 99.82 %, 99.93 - 99.97 %) 

respectively with a temperature variation from 25 - 300°C at 1.0, 1.5 and 2.0 bar 

pressure differentials respectively. Corresponding hydrogen permeances are 

observed to be 7.14 x 10-10 
- 1.19 X 10-9,9.9 X 10-10 

- 1.89 X 10-9, 1.11 X 10-9 
- 1.72 

X 10-9 mol/m2.s.Pa at different pressure differentials 1.0, 1.5 and 2.0 bar 

respectively. Corresponding pure gas separation factors are evaluated to vary from 

12 - 62 at the highest temperature investigated (280°C). It can be concluded that 

the pure gas separation factor is much lower than the observed separation factors for 

mixed gas permeation. Furthermore, it can be observed from these values that the 

separation factor decreased with an increase in the temperature and pressure. 
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5.5.5. Gas flow mechanism 

These results show that the transport of gases through the membrane is activated as 

the permeance increased with the temperature except for propane permeation. The 

activation energy is an important parameter that can be used parallel to the 

permeance and selectivity to evaluate the membrane quality. For instance, the 

activation energy for hydrogen permeance gives a good correlation with the 

separation factor and is used as a measure of quality (Burggraaf, 1996). The 

hydrogen activation energy of high quality membranes is not less than 10 kJ/mol 

(De Lange, 1995). 

Table 5.17 summarises the activation energies for the permeation of different gases 

through silica purification membrane. The activation energy for pure hydrogen 

permeation system has a value of 13 kJ/mol to 10.6 kJ/mol for a variation in trans­

membrane pressure from 1.0 bar to 2.0 bar. Typical results of the activation energy 

for hydrogen permeance for high quality silica membranes were reported by Sea et. 

aI., (1996), Wu et aI., (1994) and De Lange et aI., (19958
) are 11-14, 11 and 15 

kJ/mol respectively. It was thus concluded that the activation energy values 

obtained in this work (10.6 - 13) are close to that reported and categorized as high 

quality membranes. 

The activation energy for nitrogen varied from 26.1 - 28.7 kJ/mol which is higher 

than hydrogen for a same variation in pressure differentials. This means that the 

nitrogen is more affected from the membrane densification than hydrogen due to the 

kinetic diameter difference. Therefore, even small differences in the kinetic 

diameters of the gas molecules result in large divergences in the values of the 

activation energy. Large differences in the activation energy of diffusion provide 

even larger differences in the permeability coefficients as the permeability 

coefficient is an exponential function of the activation energy (Shelekhin et aI., 

1995). 

Activation energies for propane permeation through hydrogen purification 

membrane are observed to be negative. This can be attributed to the adsorption 

energy onto the surface exceeding the energy of diffusion through the pores. This 

130 



CHAPTER 5 RESULTS AND D1SCUSION 

can explain the negative activation energy observed for propane which has a higher 

heat of adsorption than the other gases (De Lange et aI., 1995b
). The activation 

energy of C02 decreased from 4.2 to 2.8 kJ/mol for a pressure differential variation 

from 1.0 to 2.0 bars. 

The mixed gas hydrogen activation energy is evaluated to vary from 6.7S - 12.26 

kllmol as opposed to the pure gas activation energies evaluated to vary from 10.6-

13 kJ/mol. Hence, it can be observed that the activation energy of hydrogen is 

lower with the presence of nitrogen. The dependency of the hydrogen permeation 

of temperature in the case of mixed gas is less strong; this results in a decrease of 

the activation energies for hydrogen permeation from 10.6 to 13 kJ/mol. 

The activation energy for nitrogen (i.e. in H21N2 mixture) is evaluated to vary from 

13.8S - 19.47 kJ/mol as opposed to the pure nitrogen gas activation energy which is 

varied from 26.1 - 28.7 kllmot. 

Table 5.15 also summarises the pre-exponential factors for the permeation of 

different gases at different transmembrane pressure differentials (1.0 to 2.0 bar). It 

can be observed from the table that the pre-exponential factor value decreased for 

all gases as the pressure increases. Similar variation in activation energy IS 

observed to account for the corresponding variations in permeation profiles. 

Gas Eac (kJ/mol) Pero (moIlmz .s.Pa) 

~P = 1.0 bar ~P = 1.5 bar ~P = 2.0 bar Pero Pero Pero 

H2 13.00 12.50 10.6 7.13E-OS 4.73E-OS 3.97E-OS 

N2 2S.7 2S.4 26.1 1.1SE-07 1.12E-07 1.11E-07 

C3HS -IS.S -14.6 -10.7 3.76E-07 3.27E-OS I.ISE-OS 

CH4 IS.6 16.5 16 3.61E-OS 2.47E-OS 2.24E-08 

CO2 4.2 3.1 2.8 1.S4E-09 1.2SE-09 1.19E-09 

Table 5.15: ActivatIOn energIes and pre-exponentIal factor for permeatIOn of different gases 
through hydrogen purification composite membrane 
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5.5.6. Ternary mixture separation 

Since high purity hydrogen (up to 99.9 %) is obtained in this work using mixed gas 

(i.e. H21N2 mixture) permeation, the hydrogen purification membrane is also 

evaluated for its performance for a ternary gas mixture to investigate the ability of 

the membrane to produce high purity hydrogen with different gas compositions. 

The gas mixture consisting of 49 % hydrogen, 20 % methane and 31 % C02 and the 

corresponding ternary separation factors varied from 534 - 1873 at 60 - 300°C 

(hydrogen purity of 99.82 - 99.94 %) at a transmembrane pressure differential of 

about 1.0 bar. 

Table 5.16 illustrates the pure gas and ternary gas mixture hydrogen permeances for 

the hydrogen purification silica membrane. The operation temperature of the 

membrane shall not exceed a value of about 300°C. 

dP = 1.0 bar aP = 1.5 bar 

Ternary T T Ternary 

T(K) mixture (K) Pure gas (K) mixture T (K) Pure gas 

353 6.02E-09 296 2.75E-09 298 1.04E-09 296 1.20E-09 

383 7.59E-09 403 3.07E-09 370 1.60E-09 403 3.3SE-09 

403 l.I5E-08 466 3.18E-09 428 2.44E-09 466 3.79E-09 

453 2.25E-OS 511 3.44E-09 463 6.SSE-09 511 4.72E-09 

Table 5.16: Pure and ternary hydrogen permeances for hydrogen purification membrane. 

Figure 5.27 summarises the separation factors obtained at 1.0 and 1.5 bar pressure 

differentials across the hydrogen purification silica membranes. It can be clearly 

seen that the separation factors are very high (534 - 1873) for a transmembrane 

pressure differential of about 1.0 bar. This result indicates that the modified 

membrane could be effectively employed in the separation of hydrogen from 

different gas mixtures. At pressure of 1 bar the separation factor increases as a 

function of temperature, because the temperature dependency of the hydrogen 

permeance is higher than that of the methane and carbon dioxide permeances. 
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It can be seen also that the influence of an increased feed pressure from 1.0 to 1.5 

bar, results in a decrease of the separation factors from about 21 - 12 at a 

transmembrane pressure differential of about 1.5 bar. This can be .explained by the 

fact that the sorption capacity of methane and carbon dioxide will increase stronger 

as a function of pressure compared to hydrogen under the present experimental 

conditions. 

Concequently, the concentration of hydrogen will decrease stronger in the feed side 

compared to methane and carbon dioxide leading to lower hydrogen selectivity. 

The activation energy of hydrogen is varied from 18 - 11.1 kllmo!. These values are 

high compared with the values obtained from the pure gas permeation data (9 - 14 

kJ/mol). A significant increase in activation energy can be linked with the presence 

of other components in the permeating system. This is similar to the results 

obtained for mixed gas permeation. 
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Figure 5.27: Separation factors for hydrogen purification silica me]11brane using 
ternary gas mixture. 
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5.5.7. Membrane Stability and Durability 

The thermal stability of a membrane is important in terms of practical applications. 

Thus, the stability of the membrane prepared for hydrogen purification application 

was tested using nitrogen gas flowing under 1.5 bar and average temperatures of 

565 K for nine consecutive tests performed within 37 days of the initial run. Figure 

5.28 shows changes in nitrogen permeance between 3.47 x 0-10 to 4.33 X 10-10
. 

Figure 5.29 also shows the durability of the membrane using two different gases (H2 

& N2) at temperature of 296 and SIlK. It is clear from Figure 5.29 that the 

permeance was more affected at high temperature. This indicates that the membrane 

is less durable at high temperature and also depends on the gas used. For instance, 

the membrane is more durable with nitrogen than hydrogen at the same temperature. 
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Figure 5.28: Membrane Stability for the hydrogen purification silica composite. 
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Figure 5.29: membrane durability for the hydrogen purification silica composite. 
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5.5.S. Membrane preparation reproducibility 

Both the reproducibility of the membrane preparation and following gas permeation 

tests have been tested by preparing two membranes using the same experimental 

procedure. Although, inconsistent performance in gas permeances and selectivity 

values was noticed between two membranes (1 & 2) nominally identical 

membranes, the behaviour of these membranes during extended temperature-time 

tests were similar. The permeances and selectivity values differences occurs for 

many reasons. For instance, the sensitivity of these membranes to defects due to 

the manual preparation procedure and gas molecules adsorbing in the micropores of 

the silica layer. 

Table 5.17 presents the results of pure gas permeances and selectivity using 

hydrogen and nitrogen gases. The results seem to show poor reproducibility of 

measurement, which is manifested in a clear difference between two consequently 

taken permeance and selectivity measurements. 

In conclusion, it seems that it is not possible to re-produce membranes using this 

experimental procedure and therefore more developed procedure needs to be 

obtained to improve the reproducibility. 
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Hydrogen perrneance (Membeame 1) 
Temperature K ~p = 0.5 bar ~p = 1.0 bar ~P = 1.5 bar 

403 1.88E-09 1.5E-09 1.41 E-09 

466 2.76E-09 2.54E-09 2.22E-09 

511 4.15E-09 3.23E-09 2.84E-09 

Hydrogen perrneance (Membeame 2) 
Temperature K L\P = 0.5 bar ~P = 1.0 bar ~P = 1.5 bar 
403 3.7SE-09 3.59E-09 1.41 E-09 

466 4.76E-09 4.47E-09 2.22E-09 

511 5.15E-09 4.87E-09 2.84E-09 

Nitrogen perrneance (Membeame 1) 
Temperature K L\P = 0.5 bar ~P = 1.0 bar ~P = 1.5 bar 

403 3.02E-11 4.36E-11 4.37E-11 

466 9.74E-11 1.29E-10 1.37E-10 

511 1.76E-10 2.14E-10 2.21E-10 

Nitrrogen permeance (Membeame 2) 
Temperature K ~p = 0.5 bar ~p = 1.0 bar ~p = 1.5 bar 

403 5.63E-11 6.36E-11 3.99E-11 

466 6.33E-11 9.51 E-11 6.25E-11 

511 1.99E-10 2.69E-10 1.64E-10 

Separattion Factor (Membrane 1) 

Gases pair T(K) 0.5 1 1.5 

H21N2 403 62.25 34.40 32.27 

(3.741 1
) 

466 28.34 19.69 16.20 
511 23.58 15.09 12.85 

Sep arattion Factor (Membrane 2) 

Gases pair T(K) 0.5 1 1.5 

H21N2 403 66.61 56.45 35.34 

(3.741 1
) 

466 57.14 47.00 26.91 
511 25.88 18.10 15.43 

Table 5.17: Reproducibility test of the silica membrane for purification 
applications evaluated from gas permeance. 
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5.6. Palladium Impregnated Silica Membrane 

5.6.1. Pore size and surface characterization 

Table 5.18 and Figure 5.30 present the pore size and pore size distribution in the 

palladium impregnated silica membrane. The obtained results show the pore sizes 

range from 1.88 to 63.90 nm and the pores with an average diameter of 8.36nm 

shows the highest contribution to the total pore volume. It is obvious from the table 

that the pores with relatively larger diameter (dp ~ 10.48 nm) did not contribute to 

the total pore volume significantly. This implies that the membrane underwent a 

noticeable reduction in pore size. For example, the percentage contribution to total 

pore volume of pores with an average diameter of63.9 nm is 1.89 % in comparison 

to the pores with an average diameter of 5.82 nm at 7.35 %. Therefore, it can be 

concluded that significant reduction in pore size has occurred in the palladium 

impregnated silica membrane. 

Other results obtained from ASAP analysis are as follows. The BET surface area of 

the composite sample is about 255.87 m2/g and the pore volume is about 0.19 

cm3/g. 

pore BJH desorption % 
diameter pore volume Contribution to 

(nm) cm3Jg total pore 
volume 

63.9 0.00307 1.886236 
41.48 0.00509 3.127342 
28.66 0.005707 3.506433 
21.28 0.005959 3.661264 
16.82 0.005776 3.548827 
13.88 0.005861 3.601052 
11.78 0.005862 3.601666 
10.48 0.003909 2.401725 
8.36 0.014776 9.078509 
6.88 0.008558 5.258113 
5.82 0.01196 7.348333 
4.92 0.011648 7.156637 
4.22 0.011698 7.187358 
3.64 0.011476 7.050959 
3.18 0.011212 6.888755 
2.78 0.010708 6.579093 
2.42 0.011841 7.275218 
2.12 0.00833 5.118028 
1.88 0.009317 5.72445 

Table 5.18: Pore size distribution of the palladium impregnated membrane. 
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Figure 5.30: Pore size distribution of the palladium impregnated membrane 

Figure 5.31 show the top surface and the cross section of Pd impregnated silica 

membrane obtained by SEM. No crack or cleavage can be seen on the surface of 

the palladium modified alumina membrane, which indicated that the addition of 

palladium did not destroy the uniform membrane. From the cross section of the 

membrane, it can be seen that the modified layer is on the top of the tube and the 

thickness of the membrane is about 2 - 3 !lm. As the average pore size of the 

membrane support is much larger than that of the membrane, intermediate layer like 

is formed between the support and the top layer of the membrane during the 

repeated dipping, drying and calcinations process as observed from cross section. 

The EDXA of the membrane surface provided 93.3 % Si, 2.6% Al and 4.1 % Ti. 
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A 

B 

C 

Figure 5.31: SEM micrographs of the palladium A) Outer surface B) Inner surface 
and C) Cross section. 
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5.6.2. Pure gas permeation 

Figure 5.32 presents the hydrogen permeation through palladium impregnated y­

alumina membrane at different transmembrane pressure differentials (0 .5 - 2.0 bar) 

and at different temperatures (300 - 800 K). The permeance of hydrogen through 

the composite membrane showed a complicated dependence on temperature. 

Below 600 K, the hydrogen permeance decreased as temperature increased whereas 

above 600 K these permeances increased with temperature. The hydrogen 

permeance varied from a value of about 2.6e-6 mol/m2.s.Pa to a value of about 2.2e-6 

mollm2.s.Pa at 300 K with a pressure differential variation from 0.5 to 2.0 bar. 

When the transport rates decrease as function of temperature the gas transport 

mechanisms are Knudsen and surface diffusion (De Lang, I 995b
) . According to this 

statement, the membrane transport mechanism can be explained to be combination 

between surface diffusion below 600 K and activated diffusion above this 

temperature. 
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Figure 5.32: Hydrogen permeances of Pd impregnated membrane. 
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Unlike the distinct permeation profiles showed for hydrogen gas, the permeances of 

nitrogen through the impregnated membrane are not significantly dependent on the 

pressure differentials (0.5 - 2.0 bar) as shown in figure 5.33. In this membrane, 

there is a decrease of permeance with increasing permeation temperature lip to 

about 600K and the permeance was nearly constant with increasing pressure 

difference. It means that contribution of surface diffusion decreased at higher than 

600K and the contribution of activated increases. This variation in the gaseolls 

transport can provide a complex transport mechanism. The nitrogen permeances 

obtained is in the range of about 5e-7 mollm2.s.Pa - 3e-7 mollm2.s.Pa. 
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Figure 5.33: Nitrogen permeances ofPd impregnated membrane. 
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The penneances of argon are observed to follow similar profiles as those obtained 

for nitrogen penneation with values slightly lower than those obtained using 

nitrogen gas. The influence of pressure and temperature on argon permeance is 

shown in Figure 5.34 for the palladium impregnated silica membrane. The impact 

of transmembrane pressure on the perfonnance of argon permeance of this 

membrane at different temperature is minor. The argon permeance is observed to be 

decreased slightly with pressure as the temperature increased. In other words, the 

impact of temperature is stronger than the impact of pressure on argon permeances 

which is varied from 2.2 x to-7 to 5.09 X to-7 mol/m2.s.Pa. 
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Figure 5.34: Argon perrneances ofPd impregnated membrane. 
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Figure 5.35 presents the permeance profile of propane at different transmembrane 

pressure differentials (0.5 - 2.0 bar) and temperatures (300 - 800 K). In contrast to 

the permeation profiles of non-hydrocarbon gases (argon, nitrogen) and hydrogen, 

the permeation profiles of propane are observed to increase with pressure 

differential. Therefore, an increase in pressure differential across the membrane is 

observed to provide an increase in propane permeation. For the case of all other 

gases studied an increase in transmembrane pressure is observed to decrease the 

corresponding permeances. This phenomenon can be explained to the strong impact 

of heat of adsorption and surface diffusion effects for propane gas. It can be further 

noted that the propane gas permeance is distinctively lower at a trnasmembrane 

pressure differential at 0.5 bar and the permeation profiles matched closely at 

transmembrane pressure differentials at 1.0- 2.0 bar. Therefore, the conclusion, 

which can be drawn that distinct separation factors can be achieved at different 

pressure differentials for H2/propane system. The observed values of gas 

permeances varied from 2.7 - 4 x 10-
8 

mollm
2
.s.Pa. 
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Figure 5.35: Propane permeances ofPd impregnated membrane. 
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Figure 5.36 presents the permeance of methane gas at different transmembrane 

pressure differentials and different temperatures. The methane permeance increases 

with pressure differentials and decreases with temperature. The gas permeance has 

Qeen observed to have distinct profile at lower pressure differential (0.5 bar). The 

permeance increased predominantly to higher values at higher pressure differentials 

(1.0 - 2.0 bar) . This confirms the specific interaction of the composite membrane 

towards propane and methane (and probably to other hydrocarbon gases) to offer 

distinct permeation profiles at lower pressure differentials due to lower surface 

diffusion effects. The permeation values are observed to vary from 3 - 7 x 10-7 

mollm2.s.Pa. 
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Figure 5.36: Methane permeances of Pd impregnated membrane. 
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5.6.3. Separation factor 

The separation factor represents the quality of separation of a membrane. The 

variation of the pure gas separation factor obtained using the Pd impregnated 

membrane ofH21N2, H2/Ar, H2/C3HS and H2/C~ with temperature and pressure are 

shown in Table 5.19. It can be seen from the table that the pure gas separation 

factors are higher than the values achieved using Knudsen diffusion mechanism. 

Furthermore, the separation factors for the pair H2/C3Hg were significantly higher at 

high temperatures and lower pressures, which have decreased as the temperature 

decreases. In other words, the permeation of all gases through the composite 

membrane could be dominated with surface flow mechanism at lower temperature, 

but as the temperature increases the contribution of activated mechanism is 

increased. 

These results show that dispersed palladium in the pores increase the selective 

permeation of hydrogen through the membrane, which indicate that the Knudsen 

diffusion is not the dominant diffusion mechanism in this membrane. The surface 

diffusion can be proposed to explain such a higher separation factor. Usually 

surface diffusion occurs when the gas is adsorbed on the membrane surface. It is 

well known that palladium is a kind of hydrogen adsorption material, and a dense 

palladium membrane has absolute selectivity to hydrogen. At temperature of about 

600K the permeation profile starts to change to the feature of activated diffusion. 
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AI» (bar) 

Gases pair T(K) 0.5 1 I.S 2 

295 4.6 5 4.7 5.4 

485 5.6 5.1 4.1 4.9 

545 5.8 4.9 4.2 4.9 
H21N2 634 5.4 4.5 3.9 4.5 

(3.741 8
) 708 7.2 4.9 3.9 4.8 

295 5.1 5.6 5.3 6.3 

485 5.8 5.7 4.6 5.8 

H2/Ar 545 6.2 5.6 4.7 5.5 

(4.58
) 634 5.7 5 4.5 5 

708 7.4 5 4.2 5.3 

295 9.3 6.6 6.6 7.3 

485 14 8.8 6.8 9 

545 21.8 11 7.2 8.7 
H2/C3Hs 634 33.9 10.6 7.6 8.2 

(4.73
) 708 38.7 10.2 4.9 8.2 

295 3.9 3.5 3.8 4.4 

485 10.6 4 3.4 4.4 

545 9.9 4.4 3.3 4.1 
H2/C~ 634 20.4 3.8 3.4 3.7 
(2.88

) 708 6.5 4.2 2.4 4.3 

8 Knudsen separation factor. 

Table 5.19: Pure gas separation factors for different paIrS of gases for Pd 
impregnated membrane. 
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5.7. Silica 'Y-alumina membrane 

5.7.1. Pore size and surface characterization 

Table 5.20 and Figure 5.37 present the pore size distribution In the silica-y 

membrane. Following deposition of silica on the top of support surface, the pore 

size of the support was reduced to a diameter range between 1.96 to 86.48 nm. In 

addition, the distribution of the pore size has changed so that the small pores with an 

average diameter between 1.96 to 8.38 nm contributed to approximately 74 % of the 

total pore volume. The pores with an average diameter of 8.38 nm had the highest 

contribution to the total pore volume at 9.1 %. 

The BET surface area of the composite membrane is about 222.03 m2/g and the 

BJH desorption total volume is about 0.016 cm3jg. 

pore BJH desorption % 
diameter pore volume Contribution to 

(nm) cm3/g total pore 
volume 

86.48 0.00456 2.771194 
44.26 0.006003 3.648131 
28.98 0.005704 3.466424 
21.38 0.005707 3.468247 
16.86 0.005834 3.545427 
13.86 0.005854 3.557581 
11.76 0.005873 3.569128 
10.54 0.003437 2.088727 
8.38 0.015038 9.138864 
6.9 0.008282 5.033121 
5.86 0.011594 7.045883 
4.94 0.011886 7.223336 
4.26 0.010709 6.508052 
3.68 0.012466 7.575813 
3.2 0.011233 6.826497 
2.8 0.01082 6.575509 
2.46 0.010374 6.304467 
2.16 0.009917 6.02674 
1.96 0.009259 5.626861 

Table 5.20: Pore size distribution of silica on y - alumina membrane. 
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Figure 5.37: Pore size distribution of the silica on y-alumina membrane. 

A summary of the SEM micrographs obtained at various levels of dip coating is 

presented in Figure 5.38 for the silica y-alumina membrane. Cross sectional SEM 

pictures show that the thickness of the layer is about 5 11m. The composition of the 

elements on the membrane surface is analysed using EDXA. The EDX analysis of 

the outer surface provided 37.18 % Si, 33.11% Al and 29.27 % Ti. The EDX 

analysis of the inner surface provided 91.67 % Ti , 5.01% AI and 2.19 % Si. 
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Figure 5.38: SEM micrographs of silica-y-alumina membrane A) Outer surface B) 
Inner surface and C) Cross section. 
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5.7.2. Pure gas permeation 

Figure 5.39 presents the hydrogen permeances of silica- y-alumina composite 

membrane measured at various transmembrane pressure diffe rentials (0.5 - 2.0 bar) 

and various temperatures (300 - 550 K). Since an increase in temperature 

corresponded to a decrease in membrane permeance. Therefore, the permeation 

behaviour is regarded to be dominated by either Knudsen diffusion and/or surface 

diffusion. In such a scenario, the pure gas separation factor shall correspond closely 

to the value obtained using Knudsen diffusion mechanism expressed as the inverse 

of the square root of the molecular weight of the diffusing gases. It is noted from 

the figure that an increase in transmembrane pressure differential has provided a 

decline in membrane permeance. Therefore, pressure differential is regarded to have 

influence on the hydrogen permeance only, which could be due to its size and the 

molecular weight which can respond easily with any change in conditions. The 

membrane exhibits hydrogen permeances of 5.8 - 13.5 x 10-6 mol/m2.s.Pa for a 

temperature variation from 300 - 550 K. 
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Figure 5.39: Hydrogen permeances of silica - y-alumina composite membrane. 
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Figure 5.40 presents the nitrogen permeance of silica y-alumina membrane. 

Compared to the permeation profiles of hydrogen which are influenced by 

transmembrane pressure differentials, the permeation profiles of nitrogen as can be 

seen from the figure to be tightly packed at different pressure differentials. 

Therefore, the influence of pressure differential is considered to be negligible for 

nitrogen species. With an increase in temperature, the permeance of nitrogen 

through the membrane did not change or decrease a little. This result confirms that 

Knudsen contribution dominates the permeance of nitrogen providing another 

mechanism contribution that can increase gas separation factors higher than those 

achieved by Knudsen diffusion such as surface diffusion. The nitrogen permeance 

values varied from 1.5 - 2.6 x 10-6 mol/m2.s.Pa which is smaller than the hydrogen 

permeance for a temperature variation of 300 - 550 K. 
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Figure 5.40: Nitrogen permeances of silica - y-alumina composite membrane. 
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Figure 5.41 presents the argon perrneance of silica y-alumina membrane. The 

permeation profiles are closely located to one another with variation in 

transmembrane pressure differential, which confirms the lesser impact of pressure 

differentials. The membrane provides insignificant changed permeance with lower 

temperature (below 450 K). The argon perrneances varied froma value of about 2.2 

- 1.4 x 10-6 mollm2.s.Pa. 
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Figure 5.41: Argon perrneances of silica - y-alumina composite membrane. 
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Figure 5.42 presents the propane permeance of silica- y-alumina composite 

membrane. It is clear from the figure that at lower pressure differentials, the 

propane permeance decreased with an increase with temperature. However, at 

higher-pressure differentials (1.0 - 2.0 bar) an increase in temperature initially 

increased the membrane permeance. This can be explained due to the presence of 

surface diffusion mechanism. However, after the intermediate temperature is 

achieved, the permeances followed a decline in their values with an increase in 

temperature, which could refer to mechanism change from surface to Knudsen. The 

variation of the membrane permeance behaviour with transmembrane pressure 

differential is regarded due to the specific interaction of propane species with the 

silica y-alumina membrane surface. The propane permeances varied from 1.0 - 2.2 

X 10-6 mol/m2.s.Pa for a temperature variation of 300 - 550 K. 
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Figure 5.42: Propane permeance of silica - y-alumina composite membrane. 
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5.7.3. Separation factor 

Table 5.21 presents the pure gas separation factors for different gaseous pairs for 

silica- y-alumina composite membrane. It is clear from the table that the separation 

factor for all the gaseous pairs is either lower or higher than that achieved by 

Knudsen diffusion mechanism at various pressure differentials. The lower 

separation factors of hydrogen to other gases may be due to a minute number of 

microcracks in the membrane layer. Small defects and cracks often appear in the 

membrane during the calcinations process. These defects can often be repaired by 

repeating the dipping process. It seems that the membranes in such a situation the 

gases are competitive with each other. In other words, the surface diffusion 

mechanism works to some extent in the permeation of these gases. 

AI» 

Gases pair T(K) 0.5 1 I.S 2 

295 5.37 4.35 4.01 3.82 

H21N2 329 4.77 4.13 3.93 3.84 

(3.741 a) 
429 4.51 4.02 3.67 3.47 
558 4.55 4.11 3.98 3.89 

295 5.93 5.16 4.97 4.87 

H2/Ar 329 5.83 4.81 4.59 4.49 

(4.47a) 
429 7.45 5.23 4.62 4.34 
558 7.97 5.19 4.62 4.33 
295 5.90 6.68 6.91 6.45 

H2/C3HS 329 6.12 4.33 4.48 4.09 

(4.69a) 
429 8.62 4.93 3.89 4.26 
558 9.66 6.40 4.89 4.80 

a Knudsen separation factor. 

Table 5.21: Pure gas separation factors for different pairs of gases for silica y­
alumina membrane. 
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5.S. Summary 

This work has demonstrated the development of five different membranes using dip 

coating technique with silicone elastomer as silica precursor. The silica membrane 

fabricated for hydrogen separation provided a lower permeance than the silica 

membrane for hydrogen reaction coupled with a H21N2 separation factor of about 7 

-70 has been obtained for 50 - 50 H21N2 mixture. 

The membrane fabricated for hydrogen purification applications exhibited excellent 

hydrogen purification capability with a corresponding hydrogen permeance of about 

4.1 x 10-9 mol/m2.s.Pa at 510 K with a high H21N2 selectivity (> 400). It is further 

tested for a ternary mixture of gas consisting of H2, CO2 and CH4 to obtain excellent 

hydrogen purity from the permeate stream. 

The last two types of membranes provide separation factors close to that achieved 

using Knudsen diffusion mechanism with higher membrane permeances. These 

membranes can be therefore used for applications in membrane reactor schemes 

where a selective membrane offers as a separation interface to carry out necessary 

performance for simultaneous reaction-separation. 

For the evaluation of the membrane performance using gas permeation tests, it is 

insufficient to relay on the results from gas permeation with pure gases, although it 

was easier to perform with pure gases experimentally than with gases mixtures. 

Membranes with narrow pore size that have a molecular sieving property such as 

membrane prepared for hydrogen purification could generate an extremely low flow 

rate for the gas it excluded. In this case, a significant error may be introduced for 

the selectivity determined by the ratio of pure gas flows. Instead mole fractions 

determined from feed and permeate with gas chromatograph should be used to 

calculate the separation factor. 
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Chapter 6: 

MODELLING AND SIMULATION 

6.1. Introduction 

This chapter presents a comparative study for propane dehydrogenation in different 

operational schemes based on modelling and simulation for laboratory scale 

configurations. Operational performance of tubular reactor (where a non-selective 

tube holds the catalyst), annular reactor (where catalyst is placed in the annular space 

between the shell and tube in a non-selective membrane reactor) and other membrane 

reactor configurations (tubular membrane reactor and annular membrane reactor) are 

investigated in this work. The objective of this chapter is to simulate the performance 

and effectiveness of these configurations (based on conversion of propane to 

propylene) at different operating conditions (i.e. temperature). Three different types 

of membranes (i.e. silica, Pd-impregnated and silica on y-alumina/membranes) and 

two different catalysts (0.5 % Pt-a1umina and Pt-Sn-K on alumina) are investigated. 

The length of the reactor is taken to be about 370 mm where a catalyst of size 3.4 

mm diameter is hosted that corresponds to the value of Lldp value of 100. Therefore 

the reactor configurations characterize a reactor with high Lldp ratio and a size that 

accounts for the diameter of the reactor close to the dimensions of the catalyst. 

Since the simulation study is confined to configurations that suit membrane reactors 

in experimental, the assumptions with respect to neglecting reactor and pellet radial 

concentration and temperature gradients appear to be justified. Therefore, the 

assumptions provided similar results as obtained for the case of ethane 

dehydrogenation studied by Gobina et. aI., (1995). 

The next section presents a one dimensional axial model developed for propane 

dehydrogenation system for different configurations with the corresponding material 

performance equations (catalysts, silica and palladium impregnated membrane). The 

model considers energy balances in permeation and reaction zones. 
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6.2. Mathematical model 

A one dimensional axial model is developed for the simulation of annular and tubular 

configurations schematically presented in Figure 6.1. The model is considering mass 

and energy balances (Barberi et aI., 2002). The simulation model considers the 

following assumptions: 

1) Steady state conditions: The flow and the properties of the flowing materials, 

such as temperature, pressure, composition, density and velocity at each point are 

constant with time. 

2) Non-isothermal operation: the propane dehydrogenation is highly endothermic 

reaction. 

3) Co-current permeation: the sweep flows in the same direction as the feed gas. 

4) Plug flow pattern in both reaction and permeation zones: no mixing along the 

flow path. 

5) Negligible effect of undesirable reactions such as coking and side reactions on 

conversion. 

6) Negligible effect of radial dispersion on fluid properties. (large LID ratio of the 

membrane reactor). 

Sections 6.2.1 - 6.2.3 present the mathematical model comprising of mass and 

energy balance equations in reaction and permeation zones for tubular and annular 

silica and palladium-impregnated membrane reactor configurations. The model 

considers the presence of nitrogen as an inert in the reaction zone and argon as the 

sweep gas. 
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6.2.1. Mass balances 

Reaction zone: 

dE', :;:: rS R - J S,I/ 

dz' ' 
(6.1) 

where: i :;:: A, B and C for propane, propylene and hydrogen respectively. 

(6.2) 

where: D = nitrogen 

(6.3) 

where: E = argon (i.e. sweep gas) 

Permeation zone: 

dG, :;:: J SM (6.4) 
dz ' 

where: :;:: A, B, C and D for propane, propylene, hydrogen and nitrogen 

respectively. 

dGE --J SM 
--- E 

dz 
(6.5) 

where: E = argon (i.e. sweep gas) 

The derivation of the above mass balance expressions is presented in Appendix 6A. 

Propane dehydrogenation reaction is expressed as: 

(6.6) 

Where: A refer to Propane, B refer to Propylene and C refer to Hydrogen. 

The rate of disappearance of A for propane dehydrogenation is defined as: 
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(6.7) 

Where k refers to reaction rate constant and K refer to equilibrium constant and 

defined as: 

(6.8) 

( -E.~ ) 

K = Ko *exp RT (6.9) 

The reaction rate for non-reacting species is taken as zero. Empirical values of 

different coefficients presented in equations 6.8 and 6.9 have been obtained from 

experimental reactor data for Pt (Yildirim et aI.,1997» and Pt-Sn-K catalysts 

(Assambungrat et at, 2000). The data is summarized in Table 6.1. Appendix 68 

presents details with respect to the empirical values. 

Parameter Values for Pt-Sn-K catalyst Values for Pt catalyst 

ko 127.62 kmoll(m3.bar.s) 1.46e7 kmol/(m3.bar.s) 

Ko 1.73e6 bar 13.66e6 bar 

E 62.7e3 kllmol 134.3e3 kllmol 

Eeq 129 kJ/mol 127.69 kJ/mol 

Table 6.1: Kinetics parameters for Pt-Sn-K catalysts (Assambungrat et aI., 2000) 

and Pt (Yildirim et aI., 1997). 
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The component membrane flux Jj for all the membranes are defined using the 

following equations: 

J; = Per, (6.10) 

With partial pressures being defined as 

(6.11 ) 

(6.12) 

E = Ar (sweep gas) 

The following section presents expressions for membrane permeances for Pd­

impregnated, silica and silica on y-alumina membranes based on the experimental 

investigations performed in this work. These permeance expressions are taken from 

the corresponding single gas permeances. It can be also noted that the silica 

membrane permeances are measured experimentally to a maximum temperature of 

about 300°C and are therefore extrapolated to provide similar permeances at higher 

temperatures where the simulation study is carried out for propane dehydrogenation 

(400 - 600°C). 

For Pd-impregnated membrane, the corresponding component permeances 

(expressed as kmollm2.s.bar) are presented as: 

3.28e3 

Per
A 

= Pern = 9.01E - 06exp8.314T 

2.1ge3 

Perc = 1.09E - 04exp S.314T 

(6.13) 

(6.14) 
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l.2e3 

Per D = 2.79E - 05exp 8314T 

0.97e3 

Per
E 

= 2.72E _05exp8J14T 
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(6.15) 

(6.16) 

For silica membrane, the corresponding component permeances (expressed as 

kmollm2.bar) are presented as: 

6607.5 

Per
A 

= PerB = 2.08£ - 08exp 8.314T 

-5725.94 

Perc = 1.43E - 06exp 8.314T 

-3413.15 

Per
D 

= 1.63E - 07exp 8.314T 

-2754.678 

Per
E 

= 2.55E - 07exp 8.314T 

(6.17) 

(6.18) 

(6.19) 

(6.20) 

For silica y-alumina membrane, the corresponding component permenaces 

(expressed as kmollm2.bar) are presented as: 

10946 

Per
A 

= Per
B 

= 1£ - OSexp 8.314T 

3777 

Perc = 3.52E - 04exp8.314T 

4111 

Per
D 

= 6.65 - 07exp 8.314T 

4169 

Perf: =5.41E-07exp 8314T 

(6.21 ) 

(6.22) 

(6.23) 

(6.24) 

With respect to Pd impregnated and silica y-alumina membrane permeances, it has to 

be inferred here that these membrane permeances decreased with an increase in 

temperature. Further, the obtained separation factors are higher and do not 

correspond to those predictable with Knudsen mechanism. The definable mechanism 

for the membrane is surface flow that could henceforth account for the membrane 
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performance. Since surface flow mechanism does not have any correlation that 

involves temperature terms, the modelling effort is directed to restrict considering 

membrane permeances as functions of temperature defined by suitable correlations. 

For this purpose, exponential fit happened to provide good fitness. The same 

procedure is applicable and valid for silica-,,(-alurnina composite membranes. 

6.2.2. Energy balances 

Annular configuration: 

Reaction zone: 

dT' u's'(r -T')-U/SA/(T' -T')+rASRMf +JHSA/(H~ -H;) 
-dz- = L F, Cps; 

(6.25) 

Permeation zone: 

(6.26) 

In the above expressions, oven and enthalpy of argon are considered as heat sources 

for the shell (reaction zone). The shell and enthalpy of permeating species are 

considered as the heat sources for the tube (permeation zone). Similarly, heat of 

reaction and membrane tube are considered as heat sinks for the shell. 

Tubular configuration: Reaction zone: 

U'SM (T" -T')+ rASRMf +JESM(H; -H~) 
dz = LFiCpti 

dT' (6.27) 

Permeation zone: 

(6.28) 
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In the above expressions, shell and argon enthalpy are considered as the heat sources 

for the tube (reaction zone). Oven and enthalpy of permeating species are considered 

as the heat sources for the shell (permeation zone). Similarly, tube is considered as 

the only heat sink for the shell (permeation zone) and heat of reaction is considered 

as the only sink for the tube (reaction zone). Appendix 6C summarises details with 

respect to the derivation of the expressions 6.12 - 6.15. 

6.3. Outline of the study 

6.3.1. Models 

Six configurations consisting of silica composite and palladium-impregnated annular 

and tubular membrane configUrations, tubular and annular reactor configurations are 

evaluated using the simulation model described in the previous section using two 

types of catalysts. Annular and tubular reactor configurations are hypothetical 

configurations developed for membrane reactor configurations. These configurations 

are developing targeted by equating the membrane flux expressions to zero. For all 

the configurations, similar values of reaction zone volume (SR) and permeation area 

(SM) are used. The objective for comparison is the percent conversion of propane to 

propylene. 

The propane conversion is calculated from the molar flow rate of propane as follows: 

C 3 H 8 conversion 
(nC 3 H 8 IN + nC 3 H 8 OUT ) 

(%) = ' 'xlOO 
nC 3 H 8 IN 

(6.29) 

Simple models considering mass (M) and mass and energy (ME) balances in the 

reaction and permeation zone are also developed from the mass, energy and pressure 

balance expressions by equating the right hand side of different applicable equations 

to zero. The temperature of the reaction zone is presented as the average reaction 

temperature. 
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6.3.2. Solution strategy 

The simulation model comprising of equations 6.1 - 6.28 coupled with other 

physical property correlations analytical expressions are solved as an initial value 

problem using Runge Kutta Fehlberg (RKF 45) method. Initial conditions and other 

parameters used in the study are presented in Table 6.2. The total feed rate to the 

reaction zone is taken about 30 mllmin comprising of equimolar mixture of N2 and 

C3Hs. The total feed rate of argon is taken as 150 mllmin. The dimensions of the 

membrane and shell are chosen in such a way that the reaction zone and permeation 

zone cross sectional area are of similar values for both annular and tubular 

configurations. During simulation, the model has been observed to be non-stiff. A 

maximum central process unit (CPU) time of about 15 s is taken for the model on a 

128 MHz 366 Pentium processor. 

Parameter Value Parameter Value 

FA 1.166e-8 kmolls ro 673 - 873 K 
Fa 0 pR 1.013 bar 
Fe 0 pP 1.013 bar 
FD 1.166e-8 kmolls dit 1.5e-2 m 
GE 1.116e-7 kmolls dot 1.8e-2 m 
r 645 K diS 2.34307e-2 m 
Tt 645K dOS 2.5 e-2 m 

Table 6.2: Parameters set for the comparative study. 

6.3.3. Model comparison 

Table 6.3 presents results obtained from the simulation model for tubular (TR) and 

silica tubular (SiTR) configurations. The experimental data for comparison has been 

taken from Yildirim et aI., (1997) as the authors have only provided sets of data for 

both TR and SiTR configurations. This actual data indicates the membrane reactor 

dimensions (length, reactor diameter, tube inner and outer diameter etc.). For 

membrane reactor configuration, the silica permeances are also taken from Yildirim 

et aI., (1997) and provided to the model with relevant conversion factors for 

adjusting the units. Since TR configuration does not have any sweep gas, it is 

impossible to simulate the model without any flow rate of the sweep gas. 
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Hence, a very low value of sweep gas (0.15 mllmin) is used to simulate the system of 

equations, which were observed to be stiff at that flow rate. The initial temperature 

of the reactants is fixed to a value of 350 K as the authors have provided the 

information that pre-heaters exist to heat the entering gas into the membrane reactor 

assembly. The flow rate ofequimolar mixture of propane and nitrogen is taken as 30 

ml/min and the argon flow rate is taken as 150 mllmin in exact agreement with the 

values taken by Yildirim et aI., (1997). 

Oven TR Silica TMR 

Temperature 
(OC) Experimental Simulated Experimental Simulated 

data data data data 

436 3.80 4.19 6.7 6.89 
452.5 6.25 6.015 9.7 9.53 
463 7.70 7.65 13.30 13.14 

Table 6.3: Results for model comparison. 

In Table 6.3, the summary of results (conversions) obtained from simulation and 

those reported from experimental investigation. The authors have studied at a 

reaction (oven) temperature of about 436 - 463°C for both TR and silica TR 

configurations. It can be observed from the table that the model has been in excellent 

agreement with the experimental data. 
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6.4. Results and discussion 

6.4.1. Catalyst performance 

Table 6.4 presents the performance of various catalysts (Pt-Sn-K) and Pt catalysts for 

different reactor (AR and TR) and membrane reactor (AMR and TMR) 

configurations. The different membranes studied include Pd impregnated y-alumina 

membrane, silica composite membrane and silica on y-alumina membrane. 

Corresponding membrane permeances have been taken from the experimental 

investigations in this work and extrapolated to higher temperatures for silica 

membranes. However, for Pd-impregnated membrane, high temperature 

experimental data has been used as the membrane studied in the temperature of about 

550°C. The following conclusions can be deduced from the table: 

1. For all the configurations, Pt-Sn-K catalyst provided higher conversions than 

corresponding conversion obtained using Pt catalyst. The reason is expressed in 

appropriate literature (Assambungrat et aI., 2000) who has argued that the Pt-Sn-K 

catalyst is capable of handling coking problems effectively and provides higher 

conversion than Pt catalyst. For example, for Pd-impregnated membrane reactor the 

conversion at 600°C is 81.9 % using Pt-Sn-K catalyst opposed to a value of about 

81.1 % using Pt catalyst. It is clear that both are higher than the equilibrium 

conversion, which is about 50 % at 600°C. 

2. The performance of silica on y-alumina membrane has been outstanding when 

compared to those simulated using other types of membranes including silica 

composite and Pd-impregnated membrane. It can be observed that the range of 

conversions using these membranes varied to a maximum conversion value of about 

83.24 % at 600°C where as the maximum conversion value of about 64.5 % using 

silica membrane which deposited directly on 6000 nm support and 81.9 % using Pd­

impregnated membrane in AMR configuration. The difference in conversion is 

attributed to the membrane properties (permeance and selectivity) 

3. In general, the order of conversion variation is presented as Silica on y-alumina 

AMR > Silica on y-alumina TMR > Pd impregnated AMR > Pd impregnated TMR > 

Silica AMR > Silica TMR > AR > TR at higher temperatures of operation. 
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T Conversion Conversion Conversion Conversion 

(Oven) Pt-Sn-K Pt Pt-Sn-K catalyst Pt 
catalyst 

Catalyst Catalyst 

Annular reactor (AR) Tubular reactor (TR) 

400 5.6642 5.5291 5.6642 5.5279 

450 12.3168 11.9541 12.3168 11.9540 

500 23.6222 22.8430 23.6220 22.8427 

550 39.9331 38.6054 39.9321 38.6054 

600 58.8909 57.1849 58.8890 57.1834 

Pd impregnated AMR Pd impregnated TMR 

400 13.0874 5.9320 12.9622 5.4235 

450 26.7102 21.2720 26.1660 19.0519 

500 45.9293 43.0373 44.5022 39.9377 

550 66.3097 64.6500 63.8016 61.3395 

600 81.9113 81.1485 78.6802 77.6843 

Silica AMR Silica TMR 

400 6.898 6.470 6.846 6.399 

450 14.956 14.329 14.749 14.078 

500 28.225 27.226 27.714 26.655 

550 46.263 44.839 45.404 43.912 

600 65.471 63.884 64.518 62.848 

Silica on y-alumina AMR Silica on y-alumina TMR 

400 13.19 5.247 13.17 4.93 

450 26.99 20.913 26.886 19.20 

500 46.566 44.215 46.24 42.296 

550 67.39 65.928 66.888 65.09 

600 83.24 82.196 82.78 81.90 

Table 6.4: Performance of Pt-Sn-K catalyst and Pt catalytic reactor (AR, TR) and 

membrane reactors (AMR, TMR) for different membranes. 
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Despite higher theoretical converSions, Pd-impregnated membrane is chosen for 

subsequent modelling study due to one basic reason i.e. its ability to offer high 

temperature operation (which is required for a model reaction like propane 

dehydrogenation). The same cannot be applicable for silica membrane due to the 

poor stability of silica at an elevated temperature, and the fact that silica 

decomposition is observed in experimental work for temperatures above 350°C. The 

membrane however, offers very high H2 and C3Hg flux with good selectivity. 

6.4.2. Feed flow rate 

Several simulations were performed to understand how the conversion changes with 

the feed flow rate. Figure 6.2 summarises the impact of feed flow rate for different 

configurations. For all these cases, feed flow rate is varied from 30 ml/min to 400 

mllmin, keeping the sweep gas flow rate to be constant at 150 ml/min. 

It is obvious that as the feed rate decrease, i.e., increasing contact time (defined as 

the catalyst weight over the propane feed flow rate) of the feed, the conversion 

increases and the other factor that could be related to the feed flow rate is the reactant 

loss. For both annular membrane reactor (AMR) and tubular membrane reactor 

(TMR), the conversions are decreased as the feed flow rates increases. The 

conversion decrease is more pronounced in the case of tubular membrane reactor. 

This happens because the reactant permeate through the membrane (reactant loss) 

and the heat demand by gas in the tube (for reaction and/or sweep gas flow) and the 

subsequent heat load on heat transfer from the oven to the tube via the shell. It is 

possible to see from this figure that the critical feed flow rate for annular membrane 

reactor and tubular membrane reactor is about 200 mllmin and a critical feed flow 

rate of about 100 ml/min for tubular reactor, above these flow rates the conversions 

fall below those available for annular reactor. 

The conversion of AR configuration remains independent on this feed flow rate 

range (30-400 mllmin). This could be due to the low heat lost by the gases at high 

flow rate which indicates that this feed flow rate range is still acceptable for the 

appropriate reactor dimensions and the heat transfer coefficient in the shell (reaction 
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zone) is very high. Therefore, the critical reactant flow rate for the operation of AR 

in this case can be presented to be 400 ml/min above which the conversions decrease. 

In the case of TR the conversion is start to decrease above 100 ml/min feed flow 

rates. This is attributed to the lower heat transfer coefficient in the tube (reaction 

zone) that reduces reaction zone temperature. Therefore, operation of the membrane 

reactor configurations and TR cannot be recommended at higher feed flow rates due 

to decrease in conversion. This is because usually a membrane reactor is suggested 

for an increase in conversion and achieving lower conversions close to those 

acceptable for annular reactor case is not the objective. 

The impact of temperature on the conversion of annular and tubular Pd-impregnated 

membrane reactor configurations is also presented in the figure. Usually, increasing 

gas feed flow rates reduce the residence time of the gas in the reactor that implies a 

decrease in reactor conversion. As it has been identified that the reaction zone 

temperature are usually higher for the case of annular membrane reactors opposed to 

the low reaction zone temperatures achievable in tubular membrane reactors. 

Coupled to this effect, the analytical expressions corresponding to Pd impregnated 

membrane permeances in equations 6.13 - 6.16 signify that membrane permeances 

decrease with increasing temperature. Therefore, the case for annular membrane 

reactor with Pd- impregnated membranes correspond to the characteristics of higher 

reaction rates and reactor conversion (due to achievement of higher temperature) and 

lower membrane flux for both hydrogen and propane (reactant) due to presence of 

higher temperatures. On the other hand, the case for tubular membrane reactors 

with Pd-impregnated membranes correspond to the characteristics of lower reaction 

rates, and reaction conversion (due to achievement of lower reaction zone 

temperature) and higher membrane flux for both hydrogen and propane (reactant) 

due to the presence of relatively lower temperatures than those present in annular 

membrane reactor. The net effect of these features that characterize imbalances in 

both reaction rate and flux tend to playa stronger role at higher feed flow rate due to 

reduction in residence time. Therefore, significant deviations were observed in 

reactor conversion especially for higher feed flow rates rather than at lower values of 

feed flow rate. 
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Figure 6.2: Impact of feed flow rate on different configurations. 

6.4.3. Feed composition 

Figure 6.3 summarises the impact of feed composition on the performance of 

different configurations. The feed composition is varied from 25 % propane (75 % 

nitrogen) to 100 % propane (0% nitrogen). During these composition variations, the 

total feed flow rate to the system is kept fixed at 30 mllmin. As seen in the graph, 

the conversion of all the configurations decreases as the propane percentage in the 

feed increases. In other words, the 'conversion decreases due to the effect of the 

absence of inert in the reaction zone. This can be analytically explained as follows. 

The presence of inert reduces partial pressure of the reactant and therefore the 

reaction rate decreases. The higher inert composition also reduces the hydrogen 

concentration and hence membrane flux. The net effect of lower partial pressure of 

reactant and membrane flux results in the reduction of conversion despite using a 

membrane reactor. 
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It can be seen from figure 6.3 that the conversion of annular membrane reactor is 

higher than the conversion of tubular membrane reactor and the equilibrium 

conversions of AR and TR match with one another at different reaction temperatures. 

These conversions are observed to match due to very low feed flow rate, which can 

negate the effects of heat transfer coefficient on conversion. Henceforth, it can be 

concluded that higher conversions can be achieved with high dilution of propane in 

the reactor. Even though dilution can provide additional heat in terms of the heated 

dilutant feed (i.e. nitrogen), dilution is not a major advantages in operating the 

reactor. The main reasons are that the higher flow rates of the reactor would demand 

a higher reactor volume to achieve equilibrium conversion. Further, the separation of 

products along with the dilutant is a major limitation for the utilisation of dilutant. 
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Figure 6.3 : Impact of feed composition on the performance of different 
configurations. 
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6.4.4. Sweep gas flow 

The effect of sweep gas flow rate on propane conversion for both tubular and annular 

membrane reactor configurations using palladium impregnated membrane is given in 

figure 6.4. The simulation results indicated an increase in conversion with sweep 

gas flow rate up to a point, followed by constant or possible a decrease. The 

conversion increase is due to the impact of the sweep gas flow on the hydrogen 

fluxes through the membrane. An increase in sweep gas flow removes the product 

faster and thus partial pressure decrease. The resulting partial pressure difference will 

works as a driving force for the separation through the membrane, and increasing 

conversion due to the lower levels of product in the reactor. The possibility of 

increasing conversion due to permeates of sweep gas to the reaction side giving a 

dilution of the reaction zone is present. Faster permeation of unconverted propane 

increases the loss and reduced conversion. These two effects counteract each other. 

Therefore, the increase in conversion is eventually limited by loss of reactant, as 

noted by Mohan and Govind, (1988). 

When the sweep gas rate increases, the annular membrane reactor predicts a steep 

initial conversion increase at low sweep rates, following the initial steep increase, 

conversion increases very slowly after sweep flow rates of about 200-250 ml/min. 

As sweep rate increases to high values, the effect becomes less pronounced. The 

conversion difference between the tubular membrane reactor and annular membrane 

reactor is higher at high temperature as the sweep rate increases. On the contrary, at 

lower flow rates of sweep gas and lower temperatures the conversions differences of 

both annular and tubular membrane reactor configurations are negligible. The 

following explanation can be drawn from the case studies performed. 

1. The conversion increase at 600°C has been observed to be significantly high at 

flow rates 150-300 mllmin for Pd-AMR and the conversions achieved using tubular 

membrane reactor configurations are lower than those achieved using annular 

membrane reactor configurations in particular at high temperatures (above 500°C) 

and high sweep gas flow rates. On the contrary, at lower flow rates of sweep gas and 

lower temperatures (400°C) the conversions of both annular and tubular membrane 

reactor configurations close with each other. 
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2. The conversion achieved with the TMR configuration have decreased after a 

sweep gas flow rate of about 150 mllmin at 600 DC and 300 mllmin at sooDe. The 

conversion differences between tubular membrane reactor and annular membrane 

reactor are high at a higher temperature and a higher sweep gas flow rate. Once again 

the temperature system in the TMR case is regarded to be the reason for the decline 

in conversion at higher sweep flow rate due to back diffusion of argon from 

separation zone to reaction zone. Furthermore, the tube temperatures do not come 

close to the temperature of the oven which offers further reduction in the conversion. 

These two effects therefore offer the conversion of tubular membrane reactor to be 

lower than the corresponding values for annular membrane reactor configurations. 

3. The critical flow rate (a value above which the conversion of the configuration 

decreases) for both annular and tubular configurations can be observed to be strongly 

dependent on reaction temperature and type of configuration. For example, at a 

temperature of about 400 DC, the critical flow rate is above 600 mllmin for both 

annular and tubular configurations where as at 600 °e, the critical flow rate is about 

300 mllmin for annular configuration and 150 mllmin for tubular configuration. 
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Figure 6.4 : Impact of sweep gas flow on propane conversion. 
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6.4.5. Temperature Profiles 

The variation of reaction zone temperature profiles for different configurations is 

presented in Figure 5.7. For all the cases, the initial reactant temperature is about 

645 K and the oven temperature is about 873 K. The following analysis is derived 

from the temperature profiles obtained from the simulation: 

1. The temperature profiles of annular reactor (AR) and Pd impregnated annular 

membrane reactor (Pd AMR) palladium configurations are identical and there has 

been insignificant difference between the final temperature of the gas in the reaction 

zone (872 K) and the oven temperature (873 K). This identification between the 

reaction zone temperature and oven temperature profiles is due to the fact that a very 

low flow rate of feed (30 mllmin) is used. When the feed flow rate is increased to a 

value of about 100 mllmin, these temperature profiles have been observed to be 

varying significantly with one another. 

2. The temperature profile of Pd impregnated tubular membrane reactor is initially 

higher and later become identical with that of tubular reactor configuration. This 

variation is due to the observed heat transfer coefficients of the shell and the tube in 

both configurations. 

For both annular reactor and annular membrane reactor configurations, the reaction 

zone is placed next to the oven and the heat transfer coefficient values varied from 57 

_ 174 W/m2.K. Since the heat transfer coefficients are high and the feed flow rates 

are low, therefore, both the temperature profiles identical. 

3. Almost all the configurations have achieved a temperature close to the oven 

temperature with in a maximum dimensionless axial distance value of 0.4. While 

annular configurations achieved the temperature of the oven at a critical value of 

about 0.2, the tubular configurations achieved the same at a value of about 0.4. In 

other words, the critical distances required for heating the configurations is lower 

than the length of the reactor which suggests that the operating conditions for all 

configurations are optimal. This is attributed to lower heat transfer coefficients in 

the reaction zone for tubular configurations opposed to higher heat transfer 

coefficients in the reaction zone for annular configurations. 
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Figure 6.5: Reaction zone temperature profiles. 
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Chapter 7: 

CONCLUSIONS AND FUTURE WORK 

7.1. Introduction 

This chapter initially summarises various conclusions that can be deduced from the 

experimental and theoretical research conducted in this work. Later, opportunities 

for possible research in future are summarised. 

7.2. Silica Membrane for Hydrogen Reactions 

A hydrogen reaction silica composite membrane has been fabricated usmg 

conventional dip-coating method with silicone elastomer as the silica precursor. 

The membrane proposed for reaction applications offer higher permeances for 

hydrogen and lower selectivity with respect to other components. The separation 

factor has been evaluated and is close to the value achieved by ideal Knudsen 

mechanism. 

The developed membrane offered relatively lower permeance for hydrogen and 

other gases than those presented in literature with multilayer support and using 

TEOS as a silica source. The reason for that can be explained by the lack of a 

diffusion barrier between silica and the composite support which can reduce the 

thickness of the silica membrane. While the membrane offers lower hydrogen 

permeances, the cost of the membrane expected to be significantly lower than those 

presented in literature due to the following reasons: 

a) The composite support offers lower resistance and hence shall be cheaper. 

b) The raw materials and the equipment required for the fabrication ar~ much 

cheaper than the raw materials and equipment presented in literature for the 

preparation of silica polymeric sols from TEOS, which involve significant 

investment in the experimental set up. 
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7.3. Silica Membrane for Hydrogen Separation 

The silica membrane prepared for hydrogen separation presented single gas 

separation factors higher than Knudsen separation values for a hydrogen/nitrogen 

pair, but for hydrogen/propane pair the membrane provides a high separation factor 

only at higher temperatures. Lower perm.eances are obtained as compared with those 

available in literature. These lower permeances are due to the fact that the silica 

layer thickness deposited (30-40 J.lm) is higher than those fabricated using different 

support (30 - 100nm), with lower pore size produced by intermediate layer(s) such 

as y-alumina. The higher thick membranes produce a hydrogen permeance value of 

S x 10-9 moIlm2.s.Pa as opposed to 10-6- 10-7 mol/m2.s.Pa for the thin layers. 

The thin silica selective layers are fabricated only with the possibility of depositing a 

thin layer on the composite membrane whose pore size is small (Snm). Generally 

'1_ alumina is used to obtain a layer that is about Snm in order to function as a 

diffusion barrier of silica membrane. However, in this work it has not been possible 

to deposit '1- alumina on the support possess a high pore size of about 6000 nm and 

hence a thin silica layer could not be obtained which can provide higher flux. 

The binary gas separation factor has been observed to be significantly higher than 

the single gas separation factors for hydrogen and nitrogen system. Nitrogen 

penneance is noted to be significantly altered and restricted due to the presence of 

hydrogen. From an experimental point of view, the above results are very 

encouraging. For example, if propane and nitrogen mixture is used as a feed to 

increase propane conversion, hydrogen selectivity with respect to nitrogen is 

particularly advantageous when compared to the value of the separation factor 

which is higher than the Knudsen separation factor. 

With. a moderate combination of hydrogen permeance and H21N2 selectivity (7 - 70) 

at different pressure differentials, the silica composite membrane can be suggested 

to be applicable for hydrogen separation systems where higher product purity is not 

desired coupled with a moderate hydrogen permeance. 
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7.4. Silica Membrane for Hydrogen Purification 

This work has demonstrated the fabrication of hydrogen purification silica 

composite membrane using modified dip-coating (suction process). The advantage 

of suction process over conventional dip coating is that the number of dip coating 

was reduced and the defects during the membrane preparation are eliminated. The 

other advantage is that, the repeating of coating, drying, and calcinations process is 

reduced therefore the period needed to prepare a membrane is less. 

The experimental set up for the modified dip-coating coupled with a vacuum is 

relatively easy compared with the CVD process for the development of silica 

membrane. The vacuum application in the membrane tube has successfully blocked 

the macropores on the membrane surface. The silica is effectively drawn in to the 

macropores by cross flow plugging using the application of vacuum. Furthermore, 

the composite support used in this work is of higher pore size than those described 

in the literature and has no y-aiumina as a diffusion barrier between the silica layer 

and the composite support layer. 

The performance of hydrogen purification silica membrane is identical to that 

presented by Sea et. at. (1996). Single gas hydrogen and nitrogen separation factor 

is observed to be about 62 at lower pressure (Le. I.Obar) which is much higher than 

the single gas separation factor evaluated using Knudsen mechanism (3.74). Binary 

separation factors are observed to be higher than the corresponding single gas 

separation factors for hydrogen and nitrogen. The observed hydrogen purity on the 

gas chromatograph is about 99.6 - 99.9 %. However, moderate flow rates are 

observed even at higher temperatures (7 ml/min at 300°C for hydrogen) for a 

membrane area of 87.36 cm2 and a pressure drop of 2 bars. These flow rates 

however can be overcome by using higher membrane surface area or developing a 

design that suits the use of more membrane tubes packed in a shell and tube 

hardware assembly or can be improved by using different support tubes with lower 

pore size (i.e 1000-2000 nm), which needs more investigations. 

With respect to the durability of the composite membrane, it has been tested for at 

least five to six months. The membrane has been observed to be consistent with 
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respect to single gas permeation data and binary gas separation factor for the time 

the membrane is studied. Furthermore, the tests have demonstrated that this silica 

composite membrane has the capability to separate hydrogen from gas mixtures 

with complete hydrogen selectivity and can be used to produce pure hydrogen for 

applications in energetic fields in membrane reactors (i.e. isotopic hydrogen 

separation, fuel cell, etc.). 

The application of the membrane for hydrogen purification and recovery using 

palladium membrane is recommended above 300°C. This is due to. the hydrogen 

embritterment caused below this temperature which causes transformations in the 

crystal lattice. While palladium membranes are expensive and limiting due to the 

above reason, hydrogen purification silica membrane can be successfully applied for 

hydrogen purification applications in moderate temperatures (up to 300 oC) such as 

ammonia decomposition. With regards to the increase in flow rates, future research 

shall propose the introduction of diffusion barrier in order to decrease the silica 

thickness. Alternatively, different asymmetric supports with lower pore size may 

also drive membrane permeances to acceptable values. 

7.5. Palladium Impregnated Silica Membrane 

The Pd impregnated y-alumina membrane exhibited very high permeances (to the 

order of Ix 10-6 mol/m2.s.Pa) with a range of selectivities (H21N2: 3.9 - 7.2). Further 

the membrane can be operated at high temperatures (>300 DC). Referring to Table 

1.2 presented in chapter 1, the probable applications of this membrane can be 

towards membrane reactor applications where high temperatures are desired. These 

reaction schemes refer to ethane and propane dehydrogenation. It is worth 

mentioning here that the silica composites have been observed to be unable to 

withstand higher temperatures of operation for propane dehydrogenation schemes. 

One of the possible limitations of the application of this type of membrane is the 

higher permeances offered even for other gaseous species such as propane, nitrogen 

etc which can involve loss of these gaseous species towards the permeate stream. 
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However, a careful selection of operating conditions (temperature, pressure etc) can 

allow the manipulation of these losses to a minimal value. Furthermore, if there is 

loss towards the permeate stream, the down stream processing can be engineered to 

handle both permeate and retentate streams if equally important amount of gas is 

produced and enters the permeate stream. Alternatively, new separation schemes 

can be targeted that can allow extraction of these gaseous species from lower 

compositions. Nonetheless, if the loss of the components needs to be kept low, the 

membrane can undergo further pore size modification to obtain a separation layer 

with narrow pores, which can reduce the permeances further with an increase in 

selectivity. 

7.6. Silica 'Y-Alumina Membrane 

The silica y-alumina membrane has also offered good combination of hydrogen 

permeances and selectivities (6 - 13 x 10-6 mol/m2.s.Pa with a separation factor 

higher than to that achievable using Knudsen diffusion mechanism at temperature 

range 325 - 525K). Further, the set of permeances is higher than those obtained 

using Pd impregnated y-alumina membrane. The membrane permeances are 

observed to decrease with an increase in temperature thus signifying surface 

diffusion mechanism. The membrane is operated to a maximum temperature of 300 

°C due to inherent temperature stability problems associated with silica. The 

possible application of this membrane would include situations where higher 

permeances are necessary for reaction schemes at lower temperatures. These 

reaction schemes as summarised in Table 1.2 include water gas shift and toluene 

dehydrogenation where the reaction temperatures vary between 100 - 300°C. Under 

these conditions the performance of silica membrane is stable and does not undergo 

degradation. 
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7.7. General Conclusion 

The silica membranes fabricated for hydrogen separation and purification offered 

acceptable combination of hydrogen permeance and selectivity that can be achieved 

using alumina 6000nm supports. Both silica membranes for hydrogen separation 

and purification offered good and consistent H21N2 separation factors varying from 

70 - 1000. The permeation behaviour of the composite membrane is based on 

activated diffusion that allows higher permeances at higher temperatures. 

Therefore, it can be generally concluded that the membranes fabricated can be 

competent with those available in the literature due to their cost effective features 

such as cheap support, use of silicone elastomer etc. 

The modified procedure of dip-coating deposition coupled with suction process has 

been highly successful to obtain high purities using silica composites whose 

macropores are completely plugged. Very high purities are achieved that reveal the 

separation potential of the membrane fabricated for hydrogen purification. These 

features allow the utilisation of hydrogen purification silica membrane for hydrogen 

extraction to stream temperatures of about 300°C from various types of hydrogen 

rich impure streams. Furthermore, utilisation for the development of a membrane 

reactor for ammonia decomposition and water gas shift reaction is proposed due to 

inherent characteristics of the silica membrane and reaction scheme. 

The hydrogen reaction membrane fabricated using a conventional dip-coating 

provides a good permeance but low selectivity. The impact of Pd impregnated in 

the surface pores of y-alumina is evident from the separation factors observed which 

are higher than those achievable with Knudsen diffusion mechanism. The Pd 

impregnated membrane offers best combination of membrane permeances and 

separation factors to operate at higher temperature and lower pressure. Such a 

combination is suitable for a reaction scheme like propane dehydrogenation that 

requires operation at higher temperatures (>300 °C) and lower pressure (O.S - 1.0 

bar). 
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7.8. Modelling and simulation 

The modelling effort constituted a mass energy and pressure balances model for 

membrane reactor investigation using silica composite membranes. The model has 

been compared using the kinetics and membrane permeances data presented by 

Yildirim et. a1. (1997). The model has been tested for three different membranes 

namely silica membrane for reaction application, Pd impregnated y-alumina 

membrane and silica modified y-alumina membrane all fabricated in this work. Two 

different types of catalyst have been tested that refer to Pt-Sn-K and Pt catalysts. It 

has been observed that the performance of silica modified y-alumina membrane is 

the best providing a theoretical conversion of about 83 % opposed to an equilibrium 

conversion value of about 50 % at 600°C. However, since the silica membrane 

cannot withstand higher temperatures, the Pd impregnated y-alumina membrane is 

chosen for theoretical studies. Pt-Sn-K catalyst has been selected for these studies 

due to providing slightly higher conversion values. 

The performance of annular membrane reactor (AMR) has been observed to be 

strongly dependent on the feed flow rate and temperature of the oven in comparison 

with the tubular membrane reactor (TMR). At lower feed flow rates, AMR provided 

similar performance to TMR signifying both AMR and TMR operation are close to 

isothermal operation. However, as feed flow rate is increased, AMR operation is 

observed to be better than TMR due to inherent mechanisms explained in the 

relevant sections of chapter 6. The following conclusions hold for the performance 

of annular and tubular reactor configurations based on the case study: 

Catalyst: 

The conversion obtained using Pt-Sn-K catalyst has been about 1-2 % higher than 

the conversion obtained using Pt catalyst at high temperatures (600°C). 

Temperature of the oven: 

The temperature of the oven significantly affects the conversion of both tubular and 

annular reactors. This is evident with the variation of conversion with oven 

temperature for various simulations. 

184 



Chapter 7 CONCLUSIONS AND FUTURE WORK 

Feed flow rate: 

An increase in feed flow rate that relates to a decrease in reactant contact time 

usually decreases the conversion. The conversion decreases for all membrane 

reactor configurations and tubular configuration. The reactant flow rate is observed 

to not affect the performance of AR. 

Feed composition: 

For all configurations, an increase in feed composition leads to a decline In 

conversion. 

Sweep gas flow: 

An increase in sweep gas flow provided mixed response in the system. Up to a 

certain value, the sweep gas provided higher conversion at higher temperature. 

However, after a particular critical value, the conversion decreased. This is 

attributed to the heat reduction of H2 mole fraction in the permeation zone due to 

high Argon gas concentration that reduces H2 flux and conversion. Coupled to this 

effect, reactant loss also reduces conversion. 

In conclusion, the annular reactor configurations perform better than tubular reactor 

configurations at lower temperatures and very well at high temperatures. The 

theoretical study in this work related to the operation of membrane reactors (TMR 

and AMR) at different features. These features include feed flow rate sweep gas 

flow rate, membrane permeance. It is very important to conclude that the Pd 

impregnated membranes offer very high conversions (about 82 %) at 600°C with 

operation at 1.013 bars on both retentate and permeate sections. While a lower 

value of about 60 % is obtained using corresponding AR configuration, the very 

high value of membrane reactor conversion coupled with the ability to use a Pd 

impregnated membrane at higher temperature suggests the applicability of these type 

of membranes for industrial operation. 
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7.9. Summary of Conclusions 

In summary, this work has been able to target certain key issues associated with 

silica composite membranes for hydrogen reaction, separation and purification. 

The original contribution of this work is presented as follows: 

• The replacement of conventional fine sized support with commercially 

available porous a-alumina tube with an average pore size of 6000nm. This 

is cheaper and eliminates the need for an extra intermediate layer deposition 

which requires a highly complex, tedious and time consuming process. 

• The utilisation of silicone elastomer which is not widely used in membrane 

technology was selected as the precursor to prepare composite membranes. 

This eliminates the complexity involved to prepare silica polymeric sols 

using other silica sources such as TEOS. 

• A modified dip-coating procedure to prepare composite membrane for 

hydrogen purification has been developed using a vacuum pump to assist 

suction of silicon inside the pores of the support. The membrane produced 

shows high hydrogen selectivity compared to that prepared using 

conventional dip-coating. The modified method resulted in a reduction in the 

number of repeated coating, drying and calcinations cycles and hence an 

overall reduction in the preparation time that is needed in conventional dip­

coating. 

• A theoretical model for the assessment of annular and tubular membrane 

reactor configurations for propane dehydrogenation as the model reaction is 

developed. This model is applied on three different membranes namely: 

silica-alumina membrane, silica-y-alumina membrane and palladium 

impregnated membrane. Results indicated that Pd impregnated membrane 

provided very high theoretical conversions (82 %) at 600°C compared with 

silica composite membrane. 
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7.10. Future work 

The only limitation that can be referred to in this work is the inability of the silica 

composite membrane for hydrogen purification to withstand temperatures higher 

than 300°C coupled with the high selectivity that is required for pure hydrogen 

production. Contemporary research in composite membranes and membrane 

reactors for hydrogen reaction, separation and purification can be successfully 

extended to new areas of research. These areas are confined to the improvement in 

membrane preparation procedures for stable and selective composite membranes 

that are cost effective. 

The following objectives have to be considered for the development of membrane 

reactor technology for industrial implementation: 

• Further research shall look forward to the development of suitable silica 

precursors that can withstand a high temperature (i.e. > 300°C) using sol-gel 

method for the composite preparation. If successful, this area of research 

will drive the materials research to a level where the industrial 

implementation for high temperature reactions will be definitely feasible. 

• In membrane reactor applications at high temperature, the development of 

excellent quality sealing materials and techniques is needed by more 

research conducted towards this area. 

• The performance of silica membranes prepared from silicone elastomer 

needs to be tested experimentally in different reactions and conditions. Since 

the temperature limitation exists, the membrane is recommended for 

utilisation in membrane reactor schemes such as water gas shift, toluene 

dehydrogenation whose temperature of operation is up to 300 °C. 

Further, if the proposed future work is successful, the implementation of silica 

composites for large scale processing in industry is feasible to meet the requirements 

of gas processing in the twenty first century. 
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Appendix 5: Support surface area 

Single point BET BJH adsorption BJH desorption 

99.5406 mZ/g 257.5623 mZ/g 181.0905 m2/g 168.9011 m2/g 

Appendix 6A: Derivation of mole balance expressions 

a) Balances in the reaction zone 

Component mole balances can be presented according to the following equation in 

the membrane reactor 

Feed in = Feed out + Feed lost in reaction + Feed lost in permeation (Eq. 6A.l) 

For component A (propane) the feed into a differential element dl in the plug flow 

membrane reactor can be presented as 

Feed in = (FA t. (Eq.6A.2) 

The total stream leaving out can be presented as 

(Eq.6A.3) 

The amount of reactant feed lost in the reaction is given as the rate of the reaction 

multiplied by the volume of the reaction zone 

Feed lost in reaction = -rA·V (Eq.6AA) 

where rA is the rate of A lost in the reaction and is a positive term. 

The amount of component A lost in the permeation is given according to the 

equation 

Feed lost in permeation = JA·A (Eq.6A.5) 

The volume and area element of the differential element dl for the membrane 

reactor are presented as 

(Eq.6A.6) 
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A =SM.dz (Eq.6A.7) 

where SR and SM are cross sectional area of the reaction zone and circumference of 

the tube (based on outer diameter) respectively. 

Substituting the above expressions in the first equation provides the following 

expression 

(Eq.6A.8) 

Rearranging the tenns in the above expression yields 

CEq.6A.9) 

In other words, a differential equation results from the above and is presented as 

(Eq.6A.IO) 

For components B and C, similar equations can be obtained as 

CEq.6A.ll) 

(Eq.6A.12) 

For component D (nitrogen) which does not participate 10 the reaction, the 

expression would be 

(Eq.6A.13) 

Component E penneates from penneation zone to reaction zone and hence the 

expression would be 

dFE =JE·SM 

dz . 
(Eq.6A.14) 

b) Balances in the permeation zone 
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A mass balance expression in the permeation zone can be presented for component 

Aas 

Feed out = Feed in + Flux. area CEq.6A.15) 

for components A - D C due to permeation from reaction zone to penneation zone) 

and 

Feed out = Feed in - Flux. area CEq.6A.16) 

for component E C due to penneation from penneation zone to reaction zone) i.e., 

CEq.6A.17) 

CEq.6A.18) 

The above expression can be formulated as a differential equation as 

Similar expressions can be also obtained for components B -D as 

dGc = Jc·SM 

dz . 

Appendix 6B: Derivation of kinetic parameters 

a) Pt-Alz03 catalyst 

CEq.6A.19) 

CEq.6A.20) 

CEq.6A.21) 

CEq.6A.22) 

CEq.6A.23) 

Yildirim and Gobina C 1997) provided the following plot in their work on propane 

dehydrogenation using 0.5 wt % Pt on Ah03 catalyst pellets. The authors have 

described that the y-intercept in Figure 5A refers to the initial rate of the reaction. 
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Figure 6A: Catalytic reactor studies by Yildirim and Gobina (1997). 

In other words, the y-intercept of the Pd catalyst plot refers to the forward rate 

constant. Therefore the forward reaction rate constant can be given as 

lanol 
ko = exp(16.5) = 1.46e7 - 3-­

m .atm.s 
(Eq. 68.1) 

The activation energy of the forward reaction rate is given as the slope of the Pt 

based catalyst plot i.e., 16190. 

Therefore activation energy is given as 

E = 16190 * 8.314 = 134.6e3 kllmol (Eq.68.2) 

It is to be noted that the rate constant is given with respect to the volume of the 

catalyst rather than the weight of the catalyst. 

The equilibrium constant values can be calculated by using the following equation: 

E eq 
In K = InK -­

o RT 
(Eq.68.3) 

The constants in the above equation were obtained from the literature (Stull et. al. 

(1960» and the final equilibrium constant expression can be presented as 

In K = 15392.1 + 16.43 
T 

(Eq.68.4) 
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In other words, the constants in the equilibrium constant expression can be given as 

Ko = exp(l6.43) = 13360240.3bar 

E = 15392.1.8314 = 127.969 kllmol eq 

b) Pt-Sn-K on AI:zOJ catalyst 

(Eq.68.5) 

(Eq.68.6) 

Assambungrat et. al. (2000) presented the kinetic expression for propane 

dehydrogenation using Pt-Sn-K/ Ah03 catalyst based on the number of sites 

participating in the reaction. He presented the following equations 

k. = 6.14e - 24* exp(-7545IT) 
slle (Eq.68.7) 

(Eq.68.8) 

The number of sites, Nsite can be calculated using the information given by the 

authors as 

. = 1.ge -7 = 6.63e20 
N .• ,le 2.86e - 28 

(Eq.68.9) 

Therefore the kinetic expression for apparent kinetic constant is given as 

k = 6.14e - 24 * 6.63e20 * exp( -7545 I T) app (Eq.68.10) 

or 

k = 4.07ge - 3 * exp( -7545 I T) app (Eq.68.11) 

The unit ofkapp is given as mollkg.s.Pa. Converting the unit to kmol/(kg.s.bar) one 

would get the expression for kinetic constant as 

k = 4.07ge - 3 * Ie - 3 * 1.013e5 * exp(-7545IT) (Eq.68.12) 

or 

k = 0.41325 * exp( -7545 I T) (Eq.68.13) 

The above expression is for kg of catalyst. In order to determine the density of the 

catalyst bed, data is taken from Yildirim and Gobina (1993). The authors suggest 

that 2.55 g of catalyst is being packed into a tube of about 0.7 cm inner diameter to 

give a membrane area of about 18.5 cm2/gcat. Therefore the length of the 

membrane is estimated as 

L = 18.5 * 2.55 = 21.4 cm 
3.14* 0.7 

(Eq.68.14) 

Therefore the density of the catalyst in the membrane is calculated as 
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= 2.55 = 0 309 _g_ 
Peat 3 14 . 3 

-'-*0.72*21.4 cm 
(Eq.6B.15) 

4 

In other words, the density of the catalyst bed is 309 kg/mJ
• 

Therefore the kinetic expression with respect to the reactor volume is expressed as 

k = 0.41325 * 309 * exp(-7545IT) 

or 

k = 127.876* exp(-7545 IT) 

where 

Iemal 
ko =127.876-3-­

m .shar 

and 

E = 7545 * 8314 = 627.3kJ I Iemal 

The equilibrium constant has been presented by the authors as 

K = 1.76e12 * exp(-1552 liT) 

(Eq.6B.16) 

(Eq.6B.17) 

(Eq.6B.18) 

(Eq.6B.19) 

Thereby, the equilibrium constant and equilibrium activation energy can be given as 

K = l.76e12 = 1737416bar 
l.013e5 

and 

E =15521*8314=129kJlma/ 
eq 

(Eq.6B.20) 

(Eq.6B.21) 

Appendix 6C: Derivation of energy balance expressions 

a) Annular membrane reactor 

i) Reaction zone 

The general energy balance expression for the membrane reactor can be expressed 

as 

Energy input = Energy output + Energy lost in reaction + Energy lost to tube 

(Eq.6C.l) 
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The total energy input is due to three heat sources namely the fluid, oven and the 

enthalpy gain due to permeation of component E from permeation zone to reaction 

zone. 

The energy input through fluid is expressed as a function of the fluid flow, heat 

capacity and temperature of the fluid 

E 

Energy input through fluid = L F, .Cps; .(T" t 
i=A 

Energy input through the oven is given as 

Energy input through oven = U S ,8" .dz.(To - T' ) 

Energy input through the permeation of component E is given as 

Energy input through enthlapy of E = (H r/ - H / )J" .8M .dz 

Therefore total energy input is given as 

(Eq.6C.2) 

(Eq.6C.3) 

CEq.6C.4) 

Total Energy input = t F;.Cps;.(T" t + uS.S'.dz.(To - T')+ (H/i' - H/i" )J/i.SM.dz 
i=A 

CEq.6C.S) 

Total energy output is the energy the fluid would carry while leaving the reactor i.e., 

E 

Energy output = L F, .Cps; .(Ts )ou, (Eq.6C.6) 
i=A 

Total energy lost in the reaction is a function of the rate of reaction multiplied by 

the volume of the reaction zone multiplied by the heat of reaction i.e., 

Energy lost in reaction = -rA.SR .dz.M! (Eq.6C.7) 

The energy lost to the tube is a function of tube heat transfer coefficient and is 

expressed as 

Energy lost to tube = U' SM dzCT' - T') (Eq.6C.8) 

Substituting the above expressions in energy balance equation gives the following 

equation 
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E E 

+ LF,.Cps,.(T' );n = LF,·Cps,.(T' t, -rA ·SR.dz.M1 +V'.SM .(T'· -T').dz 
i=A i=A 

CEq.6C.9) 

Re arranging terms, one would get the following expression 

t F, .Cps,. (T
s 

)0'" - (T'L = vs .S·' (To - T' )-V' .SM .(T' - T') 
,=A dz (Eq.6C.I0) 

+(H/ -H/ )JE.S
M +rA ·S

R
.M1 

I.e, 

dTS 
_ Us SS{To - TS)_ U' SM {Ts - T' kASR MI + J ESM (H~ - H~) 

dz - 'LF;CpSj 

(Eq.6C.I0) 

ii) Permeation zone 

The general energy balance expression for the membrane reactor can be expressed 

as 

Energy input = Energy output 

The total energy input is due to three heat sources namely the fluid, the shell and the 

enthalpy gain due to permeation of components A-D from reaction zone to 

permeation zone. 

The energy input through fluid is expressed as a function of the fluid flow, heat 

capacity and temperature of the fluid 

E 

Energy input through fluid = L G,.Cpt,.(T')m (Eq.6C.ll) 
i=A 

Energy input through the shell is given as 

Energy input through the shell = VI .8M .dz.(T' - T') (Eq.6C.12) 

Energy input through the permeation of components A - D is given as 
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Energy input through enthlapy of components A - D = f (H/ - H/ )J,.SM .dz 
;=A 

(Eq.6C.13) 

Therefore total energy input is given as 

f) ( 
Total Energy input = UI.SM .dz.(rs 

- r')+ L H," - H,' )J,.SM .dz 
,=A 

(Eq.6C.14) 
E 

+ L G,.cpt,.(r' )n 
i=A 

Total energy output is the energy the fluid would carry while leaving the permeation 

zone I.e., 

. E 

Energy output = L G,.Cpt; .(r' )OUI 
i=A 

(Eq.6C.lS) 

Substituting the above expressions in energy balance equation gives the following 

equation 

;=A (Eq.6C.16) 
E E 

+ L G, .Cpt, .(T' );n = L G, .Cpt; .(r' )OUI 
i=A i=A 

Rearranging terms, one would get the following expression 

i.e, 

D 

U'SM(T' -T')+ LJ;SM(H;' -H:) 
dT' i=A 
-d-z ---------~E~~----------

LG;Cpt; 

(Eq.6C.lS) 

,=A 

b) Tubular membrane reactor 
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Similar expressions for energy balances can be obtained for tubular reactors and can 

be expressed as 

dT' U'SM(rs -T')+rASRM/ +JESM(H;'. -H~.) 
-= 
dz LF,Cpt; 

(Eq.6C.19) 

for reaction zone 

and 

D 

u'sS(r - T' )-U'SM (T' - T')+ LJ,SM (H: - H;') 
dT' ;=A - - ----------;;"'=-------'.::..:.!-_----
dz ~G;Cps; 

(Eq.6C.20) 

for permeation zone. 

Appendix 6D: Physical properties of component gases 

Physical properties of various pure gases are either estimated or taken from 

subsequent non-linear correlations developed or available in literature (Perry 

(1997), Mccabe, Smith and Harriott (1993». 

The component enthalpies in the shell and the tube are expressed as: 

Cps A = ~cpa + acpb.Ts + acpc.(T s r + acpd.(T,)3 j4184 (Eq. 60.1) 

CpS8 = [bcpa+bcpb.(T S )+bcpc.(T S )2 +bcpd.(T·,)3 J4184 (Eq.60.2) 

CPSc = [ccpa+ccpb.(T")+ccpc.(T S )2 +ccpd.(T S )3 J4184 

Cps D = [dcpa + dcpb.(TS) + dcpc.(T S )2 + dcpd.(T',)3 J4184 

Cps,,: = [ecpa + ecpb.(TS) + ecpc.(rs)2 + ecpd.(TS )3 J4184 

Cpt A = ~cpa + acpb.T' + acpc.(T' r + acpd.(T' )3 j4184 

Cpt 8 = [bcpa + bcpb.(T') + bcpc.(T')2 + bcpd.(T')3 J4184 

Cpt c = [ccpa + ccpb.(T') + cepe.(T') 2 + ecpd.(T' )3 J4184 

Cpt D = [depa + depb.(T') + dcpe.(T')2 + dcpd.(T')3 J4184 

Cpt E = lecpa + eepb.(T') + ecpc.(T,)2 + eepd.(T')3 J4184 

(Eq.60.3) 

(Eq.60.4) 

(Eq.60.5) 

(Eq.60.6) 

(Eq.60.7) 

(Eq.6D.8) 

(Eq.60.9) 

(Eq.6D.I0) 

The relations for component enthalpies in the shell and the tube are calculated using 

the following expressions: 
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.. [ s tl tl tl] H A = acpa.T + acpb. + acpc. + acpd. .4184 
2 3 4 

(Eq.6D.ll) 

H/ = bcpa.Tv +bcpb.~+bcpc.~+bcpd.~ .4184 
[ 

{T'v V {T" \3 {T' \4] 
2 3 4 

(Eq.6D.12) 

H/ = ccpa.Tv +ccpb. +CCpC. +ccpd.~ .4184 [ 
tl tl (T' \4] 

2 3 4 
(Eq.6D.13) 

.. [ .V tl tl tl] HI) = dcpa.T + dcpb. + dcpc. + dcpd. .4184 
2 3 4 

(Eq.6D.14) 

s [ .V tl tl tl] H L" = ecpa.T + ecpb. + ecpc. + ecpd. .4184 
" 2 3 4 

(Eq.6D.15) 

HA' = acpa.T' +acpb.~+aepc. +acpd. .4184 
[ 

{T'V tl tl] 
2 3 4 

(Eq.6D.16) 

, [ , tl tl tl] H B = bcpa.T + bcpb. + bepc. + bcpd. .4184 
2 3 4 

(Eq.6D.17) 

, [ I tl tl tl] H (" = ccpa.T + ccpb. + cepc. + ccpd. .4184 
2 3 4 

(Eq.6D.18) 

I [ I tl tl tl] HI) = dcpa.T +dcpb. +dcpc. +dcpd. .4184 
234 

(Eq.6D.19) 

I [ I tl tl tl] HE = ecpa.T + ecpb. + ecpc. + ecpd. .4184 
2 3 4 

(Eq.6D.20) 

Similar expressions for viscosities and thermal conductivities can be presented as 

(Eq.6D.21) 
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Heat capacity Viscosity constants Thermal conductivity 
constants constants 

aepa -0.966 VaA 0.0014 LaA 0.03004 
aepb 7.27ge-2 VbA le-7 LbA 0 
aepe -3.755e-5 VeA ge-9 LCA 0 
aepd 75Se-9 
bpea 0.753 VaB 0.0025 LaB 0.03004 
bpcb 5.69Ie-2 VbB 2e-5 LbB 0 
bcpe -2.9Ie-5 VeB 0 LCB 0 
bcpd 5.SSe-9 
eepa 6.952 Vac 0.0078 Lac 0.0502 
eepb 4.576e-4 Vbe 5e-6 Lbe 0.0005 
cepe 9.563e-7 Vee le-S LCe -Se-S 
eepd -0.207ge-9 
depa 6.903 VaD 0.0073 LaD 0.0104 
depb 0.0753e-2 Vbo 4e-5 Lbo 6e-5 
depe 0.193e-5 Veo -6e-9 LCD -Se-9 
depd 0.6S16e-9 
eepa 4.97 VaE -0.0 I 0 1 LaE 0.0082 
eepb 0 VbE ge-5 LbE 4e-5 
eepe 0 VeE -3e-8 LCE -5e-9 
eeed 0 

Table 60: Parameters for heat capacities, thermal conductivities and viscosities. 

P8 = Va8 + Vb8T + Vc AT2 (Eq.60.22) 

Pc = Vac + VbcT + VCCT2 (Eq.60.23) 

Po = Vao + VboT + VCOT2 (Eq.6D.24) 

PE = VaE + VbET + VcET2 (Eq.6D.25) 

AA = LaA + LbAT + Lc AT2 (Eq.6D.26) 

A8 = La8 + Lb8T + Lc8T2 (Eq.6D.27) 

Ac = Lac + LbcT + LCcT2 (Eq.6D.28) 

Ao = Lao + LboT + LCoT2 (Eq.6D.29) 

A£ = LaE + LbET + LcET2 (Eq.60.30) 

Parameters related to the expressions 60 1 - 30 are presented in Table 60. 
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