
 
 

 
 

OpenAIR@RGU 
 

The Open Access Institutional Repository 
at Robert Gordon University 

 
http://openair.rgu.ac.uk 

 
This is an author produced version of a paper published in  
 

Rehabilitation Psychology (ISSN 0090-5550, eISSN 1939-1544) 
 
This version may not include final proof corrections and does not include 
published layout or pagination. 
 
 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

QUINN, F., JOHNSTON, M., DIXON, D., JOHNSTON, D. W., 
POLLARD, B. and ROWLEY, D. I., 2012. Testing the integration of 
ICF and behavioral models of disability in orthopedic patients: 
replication and extension. Available from OpenAIR@RGU. [online]. 
Available from: http://openair.rgu.ac.uk 

 
 

Citation for the publisher’s version: 
 

QUINN, F., JOHNSTON, M., DIXON, D., JOHNSTON, D. W., 
POLLARD, B. and ROWLEY, D. I., 2012. Testing the integration of 
ICF and behavioral models of disability in orthopedic patients: 
replication and extension. Rehabilitation Psychology, 57 (2), pp. 
167-177. 

 
 

 
Copyright 

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 
details. The item will be removed from the repository while the claim is investigated. 

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk


file:///S|/Library/OpenAIR/Authors/francis%20quinn/Quinn%20APA%20set%20statement.txt[04/08/2015 10:40:04]

'This article may not exactly replicate the final version published in the APA journal. It is not the copy of record.'

© 2015 American Psychological Association
 



Running Head: TESTING AN INTEGRATED MODEL OF DISABILITY 1 

 

Testing the Integration of ICF and Behavioral Models of Disability in Orthopedic Patients: 

Replication and Extension 

 

Francis Quinn and Marie Johnston 

University of Aberdeen 

 

Diane Dixon 

University of Strathclyde 

 

Derek W. Johnston and Beth Pollard 

University of Aberdeen 

 

David I. Rowley 

University of Dundee 

 

 

 

Author note 

Francis Quinn and Derek W. Johnston, School of Psychology, University of 

Aberdeen; Marie Johnston and Beth Pollard, Aberdeen Health Psychology Group, School of 

Medicine and Dentistry, University of Aberdeen; Diane Dixon, School of Psychological 

Sciences and Health, University of Strathclyde, Glasgow; David I. Rowley, Department of 

Orthopaedic and Trauma Surgery, University of Dundee.  

Francis Quinn is now at School of Applied Social Studies, The Robert Gordon 

University, Aberdeen.  

This work was supported by the UK Medical Research Council–Health Service 

Research Collaboration’s MOBILE program and doctoral studentship to Francis Quinn. This 

article is based on part of his doctoral dissertation. 

Correspondence concerning this article should be addressed to Francis Quinn, School 

of Applied Social Studies, The Robert Gordon University, Garthdee Road, Aberdeen, AB10 

7QG, Scotland, United Kingdom. E-mail: francis.quinn@rgu.ac.uk

mailto:francis.quinn@rgu.ac.uk


Running Head: TESTING AN INTEGRATED MODEL OF DISABILITY 2 

Abstract 

Objective. Disability from chronic illness is a major problem for society, yet the study 

of its determinants lacks an overall theoretical paradigm. Johnston (1996) has proposed 

conceptualizing disability as behavior and integrating biomedical and behavioral predictors. 

Dixon, Johnston, Rowley and Pollard (2008) tested a model including constructs from the 

International Classification of Functioning, Disability and Health (ICF) and the theory of 

planned behavior (TPB) using structural equation modeling; it fitted better and explained 

more variance than the ICF or TPB alone. We replicated their study with a new sample from 

the same population (orthopedic patients awaiting joint replacement), and also tested the 

model after the patients had surgery. Research Method. Two weeks before surgery, 342 

orthopedic patients who had joint pain (most with arthritis) completed a questionnaire, with 

228 completing it again one year after surgery. We tested Dixon et al.’s best-fit models cross-

sectionally (before and after surgery) and assessed the goodness-of-fit of these imposed 

models to our data using structural equation modeling. Results. Findings strongly supported 

those of Dixon et al. Before surgery, results were very similar to Dixon et al. with all models 

accounting for significant variance and fitting well, but the integrated model fitted better and 

accounted for more variance. One year after surgery, Dixon et al.’s models showed even 

stronger fit to the data. Conclusions. While behavioral and biomedical (ICF) models were 

supported, the integrated model provided a better explanation of disability in this population 

than either of these models alone, and suggests biopsychosocial interventions to reduce 

disability. 

Keywords: disability, ICF, theory of planned behavior, osteoarthritis, behavior. 
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Impact 

 

• This work replicates and expands upon previous research (published in Rehabilitation 

Psychology), confirming that an integrated biomedical and behavioral model explains 

walking limitation in orthopedic patients better than either model alone. Previous 

supportive results are unlikely to have been due to chance.   

• In considering factors that might predict patients’ activity limitations, practitioners might 

consider patients’ cognitions such as perceived control as well as their pain. 

• Psychological factors (especially perceived control) should be considered to design 

biopsychosocial interventions and care plans for orthopedic patients to minimize activity 

limitations after joint replacement. 

 

 

For people who are chronically ill or recovering, mobility limitations can be a major 

form of disability. Difficulty walking can cause difficulty with almost every aspect of life, 

from going to the mailbox and shopping for groceries, to maintaining a social life and 

accessing services such as healthcare.  

Much scientific research on the determinants of disability originates in the medical 

literature, often emphasizing physiological disorder as the main determinant. This 

“biomedical approach” is exemplified in the 1980 World Health Organization (WHO) model 

of disability, the International Classification of Impairments, Disabilities and Handicaps, or 

ICIDH (WHO, 1980). Impairment (loss or abnormality of psychological or physiological 

structure or function) was proposed to cause disability (restriction of ability to perform an 

activity in the manner or range considered normal for a human being), which in turn caused 

handicap depending on the context (inability to fulfill a social role considered normal in that 

environment, considering age, sex, social circumstances, etc.). For example, in a person with 

osteoarthritis, disability would be expected to be directly proportional to pain and underlying 
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joint damage (impairment). However, the sufficiency of this model is challenged by research 

and clinical experience.  

In clinical practice, a “disability paradox” is often noticeable, as two individuals may 

have the same severity of abnormality of body structure or function (impairment) but 

different levels of disability. These clinical observations suggest that underlying pathology is 

not the sole determinant of disability, and in a test of the ICIDH in patients recovering from 

stroke, weak and inconsistent correlations were found between impairment and disability 

(Johnston & Pollard, 2001). Furthermore, changes in impairment are not necessarily related 

to changes in disability. Flor, Fydrich and Turk (1992) reviewed treatment outcomes at 

multidisciplinary pain centers, and found that reduced pain was unrelated to changes in 

activity level or return-to-work. Interventions based on the biomedical approach typically 

target underlying pathology with drugs or surgery; however, for many chronic conditions no 

such treatment is currently available or only partial relief is possible, leaving no theoretical 

avenue to minimize disability.  

Psychologists have also researched behavioral determinants of disability. Among 

these, control cognitions (beliefs about to what extent one’s actions can control the 

environment or personal consequences) have been consistently supported. For example, 

following stroke, perceived control over recovery predicted change in disability when 

controlling for impairment and other clinical variables (Johnston, Morrison, MacWalter & 

Partridge, 1999; Partridge & Johnston, 1989), and predicted recovery after three years 

(Johnston, Pollard, Morrison & MacWalter, 2004). Self-efficacy and perceived behavioral 

control (PBC) predicted disability and recovery from stroke six months after discharge 

(Bonetti & Johnston, 2008), and in orthopedic patients self-efficacy to perform activities of 

daily living predicted disability after joint replacement (Orbell, Johnston, Rowley, Davey & 

Espley, 2001).  
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There is also experimental support for control cognitions as causal: Fisher and 

Johnston (1996a) increased or decreased disability on a lifting task in patients with chronic 

pain by manipulating perceived control at clinical interview. Emotions such as anxiety are 

also relevant. Manipulating anxiety has been shown to alter level of disability in chronic pain 

(Fisher & Johnston, 1996b) and in-vivo exposure as suggested by the fear-avoidance model 

(Lethem, Slade, Troup & Bentley, 1983; Vlaeyen, Kole-Snijders, Rotteveel, Ruesink & 

Heuts, 1995) has been found to reduce disability without necessarily reducing pain or 

underlying pathology (for a review see Leeuw et al., 2007). However, optimal interventions 

for disability are likely to be complex, targeting biomedical, psychological and contextual 

variables. Development of such interventions has been slowed by the lack of an inter-

disciplinary theoretical framework (Dixon et al., 2008), but several developments have 

brought this goal closer to realization.  

Johnston’s Integrated Model: Disability-as-Behavior 

Johnston (1996) argued that disability could be seen as behavior (or absence of 

behavior), such that individuals perform or do not perform tasks or activities. Fordyce had 

experienced success with increasing activity levels in patients with chronic pain (among other 

pain behaviors) by treating inactivity as behavior and using positive reinforcement for 

activity and elimination of environmental reinforcement for inactivity (e.g., Fordyce, Fowler 

& Delateur, 1968). Furthermore, across diagnoses, patterns of disability were found to be 

similar, with an element of selectivity in which activities were retained. The most critical 

tasks (rather than easiest) tended to be those spared (e.g., feeding, toileting), irrespective of 

how much energy they required—as if directing limited resources only to the most valued 

tasks (Williams, Johnston, Willis & Bennett, 1976). Conceptualizing disability as behavior 

makes disability easier to define and measure, connects its study to extensive scientific 

knowledge of the determinants of behavior, and suggests theory-based interventions. 
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Johnston (1996) proposed to integrate constructs from the theory of planned behavior (TPB; 

Ajzen, 1985, 1991) or social cognitive theory (SCT; Bandura, 1986) as mediators between 

the constructs of impairment and disability from ICIDH (while maintaining the direct link); 

TPB and SCT possessed good evidence bases and well-developed measures. This article 

focuses on constructs from the TPB.  

The TPB developed from research into the effect of attitudes on behavior. It proposes 

that behavior is determined by intention to perform it and perceived behavioral control (PBC) 

over it (PBC is related to and overlaps with self-efficacy; Ajzen, 1991). Intention is 

determined by attitudes toward the behavior, PBC, and subjective norm (essentially the 

attitudes of others toward the behavior and how much store one sets by others’ attitudes). The 

TPB’s ability to predict many forms of health behavior has been supported by several reviews 

and meta-analyses (e.g., Armitage & Conner, 2000, 2001; Godin & Kok, 1996). From 

Johnston’s (1996) perspective, someone who does not perform a behavior may be unable or 

believe that performing the behavior would have negative consequences (attitudes) and/or 

that they cannot do so successfully (PBC).  

The International Classification of Functioning, Disability and Health (ICF) 

Following the development of Johnston’s integrated model, a second conceptual 

development was the publication by the WHO (2001) of the International Classification of 

Functioning, Disability and Health (ICF). Designed to address criticisms of and replace the 

ICIDH (Peterson, 2005), the ICF is a taxonomy that describes health in terms of functioning, 

and a conceptual framework for understanding functioning. It includes the relationship 

between impairment (abnormality of body structure and function) and activity limitation, 

which replaced the ICIDH construct of disability. The third health component, participation 

restriction (involvement in life situations), replaced but differs from handicap. The 

framework and potential relationships are shown in Figure 1. Rather than a formal model like 
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the ICIDH, the ICF is more of a conceptual framework including reciprocal relationships, for 

researchers to use as a scaffold on which to build causal models. The framework is informed 

by a biopsychosocial model of disability and permits non-biomedical variables to affect all 

constructs, as the domains of environmental factors and personal factors connect throughout, 

although the latter have not been specified in detail and further development is needed (Geyh 

et al., 2011).  

(Insert Figure 1 about here) 

While criticized as vague and underdeveloped (Imrie, 2004), the ICF represents an 

advance on ICIDH (Peterson, 2005) and invites investigation of how non-physiological 

variables may contribute to activity limitation and participation restrictions, in the form of 

personal and environmental factors. There is potential for research to evaluate the validity of 

theoretical models based on this framework (Bruyère, Van Looy & Peterson, 2005), which 

could integrate biomedical and behavioral approaches to form the basis of a cumulative 

science of disability.  

Testing an Integrated Model 

A few studies have tested Johnston’s (1996) model explicitly, but replacing the 

ICIDH components with those from ICF. The integrated model has usually explained more 

variance in activity limitation (e.g., walking) than impairment alone. Schröder et al. (2007) 

tested intention, PBC and emotional distress as mediators between impairment and activity 

limitation in walking in patients with a neurological disorder. PBC predicted (and mediated) 

activity limitation, but intention was not predictive. Dixon et al. (2008) used structural 

equation modeling (SEM) to test three models: an integrated model based on Johnston’s 

(1996) propositions, a simple impairment–activity limitation model and a TPB model. Their 

integrated model is shown in Figure 2.  

(Insert Figure 2 about here) 
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Participants were orthopedic patients scheduled for joint replacement surgery; most 

had osteoarthritis and all experienced joint pain. Dixon et al. operationalized impairment as 

pain and activity limitation as walking, as Pollard, Johnston and Dieppe (2006) had found 

measures of pain to have discriminant content validity as a measure of impairment, and 

because walking is an important form of activity limitation in this population and appears in 

the ICF core set for osteoarthritis. Participants completed questionnaires measuring pain 

(impairment), TPB constructs related to walking, self-reported ability to walk a certain 

distance (activity limitation), as well as other items. Using SEM, Dixon et al. examined 

whether the integrated model was a better fit to the data and explained more variance than 

ICF or TPB models alone. This was found to be the case. However, as Schröder et al. (2007) 

found, only PBC mediated significantly between impairment and activity limitation, with 

intention not predictive.  

While these results support Johnston’s (1996) model, SEM is a correlational 

technique that can capitalize on chance findings and requires replication. Furthermore, 

relatively few studies have tested the integrated model explicitly. It seemed desirable to 

replicate Dixon et al.’s (2008) study with a new sample from the same population. 

Accordingly, in the study presented here, we used SEM to test the same three models of 

activity limitation as Dixon et al. We did not test the full TPB model but investigated only the 

constructs of intention and PBC as the theory proposes these are the direct predictors of 

behavior.  

Rather than investigating the best fitting statistical models, we imposed the 

measurement models and structural models found to fit the data in Dixon et al.’s study and 

tested the fit of these models to the new data. If Johnston’s propositions are supported, the 

integrated model should show better goodness-of-fit and explain greater variance in activity 

limitation than the others. Then, we extended Dixon et al.’s study by testing the models in the 
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same participants one year after joint replacement surgery, i.e. after a change in body 

structure and function.  

Method 

Design 

Participants completed a questionnaire at two time points: approximately two weeks 

before hospital admission for joint replacement surgery and one year after the operation; this 

time period was selected to allow maximum recovery from surgery (Ghomrani, Kane, Eberly, 

Bershadsky & Saleh, 2009; Nilsdotter & Lohmander, 2002). Theoretical models were tested 

cross-sectionally at both time points using structural equation modeling, imposing Dixon et 

al.’s best-fit measurement and structural models. Participants were a new sample recruited 

from the same population using the same methods as in Dixon et al.’s study but at a later 

date; they completed the same measures. These methods are described fully in Dixon et al. 

(2008). 

Participants 

All participants were orthopedic patients scheduled for joint replacement surgery of 

the knee or hip in the next two weeks.   

Time 1 (Pre-surgery). Participating were 342 patients (51% women) aged 37 to 95 

years (M = 70). Most were married (65%) or widowed (23%). All except one reported their 

ethnicity as white, with the remaining participant Asian. Most had a high school education 

(71%) or a further education diploma (15%); some held a college degree (8%). Most did not 

work (85%), primarily being retired (75%). Diagnoses included osteoarthritis (93%), 

rheumatoid arthritis (2.5%) or another form of arthritis, or avascular necrosis (1%). Self-

reported pain over the previous month on a 10cm visual analogue scale (VAS) was a mean of 

7.10 (SD = 1.99, range = 0 to 10). Joints to be replaced were left knee (25%), right knee 

(22%), left hip (25%) and right hip (27%).  
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Time 2 (Post-surgery). One year after surgery, 228 patients (67%) returned the 

follow-up questionnaire 12 to 14 months after their operation date; the others did not reply (n 

= 99) or returned the questionnaire earlier or later or left the questionnaire undated (n = 15). 

Ages were 46 to 90 years (M = 70). Other demographics were the same as Time 1 (T1). 

Diagnoses were similar to T1, primarily osteoarthritis (93%), rheumatoid arthritis (3%), 

avascular necrosis (1%), and the remainder other forms of arthritis. Mean pain during the 

previous four weeks on the 10cm VAS was 1.3 (SD = 1.93, range = 0 to 10).   

Measures 

Full details of item development and validation of measures is reported in Dixon et al. 

(2008). Measures were identical at both time-points, except that in the pre-surgery (T1) 

questionnaire, TPB measures related to walking 100 yards and in the post-surgery (T2) 

questionnaire to walking half a mile; this was based on Dixon et al.’s pilot work which 

indicated that after joint replacement most participants would find walking 100 yards 

relatively easy, leading to a ceiling effect. Measures reproduced here are those used by Dixon 

et al. in their final measurement models. As in Dixon et al., the ICF model was limited to the 

constructs of impairment and activity limitation and in the TPB model only the proximal 

predictors of intention and PBC were included. Items were reverse-scored where necessary so 

that greater scores indicated greater levels of the construct, and all items are referred to by the 

same labels as in Dixon et al.  

Impairment (ICF). This was operationalized as arthritis/joint pain and measured by 

four items identified from health status questionnaires by Pollard et al. (2006) as pure 

measures of impairment, uncontaminated by activity limitation: “How would you describe 

the pain you usually have in your joint?” (I1); “How often have you had severe pain from 

your arthritis?” (I2); “Does remaining standing for 30 minutes increase your pain?” (I3); and 

“Have you had any sudden, severe pain – ‘shooting’, ‘stabbing’ or spasms from the affected 
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joint?” (I4). Items were rated on 5-point Likert scales scored from 1 to 5. I1 was anchored 

from none (1) to extreme (5), and I2, I3 and I4 from never (1) to all of the time (5).  

Activity Limitation (ICF). This was operationalized as walking limitation and 

measured by three items. Participants were asked, “Does your health now limit you in these 

activities? If so, how much?” followed by the following items: “Walking 100 yards?” (W1); 

“Walking half a mile?” (W2); and “What degree of difficulty do you have walking long 

distances on the flat (more than half a mile)?” (W3). W1 and W2 were scored on a 3-point 

Likert scale anchored from yes, limited a lot (1) to no, not limited at all (3), while W3 was 

scored on a 5-point Likert scale anchored from none (1) to extreme (5). W1 and W2 were 

from the SF-36 (Rand Corporation, 2008): Using discriminant content validation, Pollard et 

al. (2006) had found these items to be pure measures of activity limitation, uncontaminated 

by impairment. Item W3 was created for Dixon et al.’s study.  

Intention (TPB). This was measured by two items: “I intend to do a walk of 100 

yards/half a mile” (INT1); and “It is likely that I will do a walk of 100 yards/half a mile” 

(INT3). Both were scored on a 5-point Likert scale anchored by strongly agree (1) to strongly 

disagree (5).  

Perceived behavioral control (TPB). Four items measured PBC: “I have complete 

control over doing a walk of 100 yards/half a mile” (PBC3); “There are likely to be plenty of 

opportunities for me do a walk of 100 yards/half a mile” (PBC4); “I have complete control 

over doing a walk of 100 yards/half a mile” (PBC5); and “I feel in complete control over 

whether I do a walk of 100 yards/half a mile” (PBC6). All were scored on a 5-point Likert 

scale anchored by strongly agree (1) to strongly disagree (5).  

Procedure 

Full details of recruitment and data collection procedure at Time 1 are published in 

Dixon et al. (2008). Briefly, consecutive patients scheduled for elective joint replacement 
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surgery at a hospital in Dundee, Scotland were invited to participate at pre-surgery screening 

in the hospital, approximately two weeks before surgery. Those who accepted received 

consent materials, a questionnaire and pre-paid envelope, and were asked to complete the 

questionnaire at home (but before surgery) and mail it to the investigators. Median time 

between questionnaire completion and surgery was 15 days (M = 32 days; SD = 77 days). 

Some participants subsequently had their operation delayed and rescheduled; these were 

included in the analysis as their expectation of surgery when completing the questionnaire 

was the same as that of other participants.  

At T2, approximately one year after surgery, another questionnaire was mailed to all 

participants who returned the T1 questionnaire. Participants were requested to fill it out and 

mail it back to the research team using a pre-paid envelope.  

The study was approved by the Medical Research Ethics Committee of NHS Tayside.  

Analysis 

Structural equation modeling (SEM) was performed using EQS 6.1 (Bentler, 2004) to 

assess the degree of fit between hypothesized models and the data, estimate path coefficients, 

and calculate variance explained. All analyses used covariance matrices and Maximum 

Likelihood estimation. No variable had more than 5% missing values, and these were 

imputed in SPSS 17.0 using the expectation maximization (EM) method. While Dixon et al. 

(2008) used mean imputation, this is no longer recommended and EM is one of several 

currently regarded as appropriate (Tabachnick & Fidell, 2007). Data were then exported to 

EQS. 

Rather than transforming non-normal variables, robust fit indices were calculated 

using EQS, as recommended by Bentler (2005) and Ullman (1996); these render unnecessary 

any data transformations due to non-normality (Bentler, 2005). All fit indices reported 

include a correction by the software for robustness.  
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Questionnaire items were used to create latent variables, which were used in the 

structural analyses. First, the final measurement models of Dixon et al. (2008) were applied 

to the data and the adequacy of these models established using confirmatory factor analysis 

(CFA). Factor variances were fixed at one to identify the model and allow all factor loadings 

to be calculated; all factors were allowed to covary. When testing the integrated model, 

because indicators of all latent factors had been tested previously, CFA was omitted.   

Next, goodness-of-fit to the data was examined for each structural model. To scale 

each factor, the path coefficient between the factor and one indicator was fixed at one, 

allowing factor variances to be estimated. We evaluated the significance of mediation effects 

using tests of indirect effects in EQS (Sobel, 1982), which has more power than Baron and 

Kenny’s (1986) approach. The standardized indirect effect coefficient reported represents the 

total strength of all indirect effects of one variable on another. In some cases only one such 

indirect effect may be possible.  

We report the Satorra-Bentler chi-square statistic, which is robust to data non-

normality (Bentler & Djikstra, 1985). The value should be non-significant, but it is sensitive 

to large sample sizes so other fit indices are also reported. A model is generally accepted as 

being a good fit if multiple fit indices indicate this even if chi-square is significant. We also 

report the Non-Normed Fit Index (NNFI; Tucker & Lewis, 1973), Comparative Fit Index 

(CFI; Bentler, 1990) and Root Mean Square Error of Approximation (RMSEA; Nevitt & 

Hancock, 2000). These are frequently used and were reported by Dixon et al. (2008); they 

display low random variation under conditions typically found in SEM (Fan, Thompson & 

Wang, 1999). For the NNFI and CFI, a value of .90 or above represents adequate model fit 

and over .95 indicates good fit (Kline, 2005). For the RMSEA, values between .10 and .08 

represent adequate fit (MacCallum, Browne & Sugawara, 1996), with values of .08 and under 

indicating good fit (Browne & Cudeck, 1993).  
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As a measure of parsimony, Akaike’s Information Criterion (AIC; Akaike, 1987) was 

also calculated for each model. Values are not absolute but are relative to other models tested, 

and values closer to zero (irrespective of sign) indicate greater parsimony. Because the 

purpose of the study was replication, post-hoc model modification statistics such as the 

Lagrange Multiplier (LM) and Wald tests were not calculated. In all diagrams, latent factors 

are enclosed in ellipses. Because EQS 6.1 does not report exact p-values, significance at the 

5% level is indicated in text or by an asterisk (*).  

 

Results 

Sample Size and Statistical Power at T1 and T2 

Sample size requirements for structural equation modeling depend on the number of 

free parameters in the model (Kline, 2005; MacCallum et al., 1996; Schumaker & Lomax, 

2004). A ratio of sample size to free parameters of 5:1 or 10:1 is frequently recommended as 

a rule of thumb (Bentler, 2005; Nunnally, 1978). At T1 the sample size of 342 was adequate 

at these ratios for all models. However, at T2 the sample size of 228 was not adequate at the 

10:1 ratio for the integrated model; as a result power may be limited for this model at T2.  

Analysis of Participant Drop-Out 

Independent-samples t-tests and chi-square calculations indicated that those who did 

not return the T2 questionnaire did not differ significantly from those who did on pre-surgery 

pain, sex, age, educational level or employment status. Ethnic origin did not change. Table 1 

shows means and standard deviations and results of independent-samples t-tests for study 

variables comparing those who dropped out from those who did not. There were no 

significant differences for intention or PBC, but the drop-out group had significantly greater 

activity limitation at T1, and the value of t for impairment approached significance (p = .06). 

However, these effect sizes were small.  
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(Insert Table 1 about here) 

Descriptive statistics and intercorrelations  

Means, standard deviations, intercorrelations and scale reliability (Cronbach’s alpha) 

are presented for the composite observed variables at both time points in Table 2. All showed 

satisfactory reliability (α > .60), with all alphas exceeding .70.  

(Insert Table 2 about here)  

Changes following joint replacement 

Paired-samples t-tests indicated a significant change between T1 and T2 for all 

variables in Table 2. At T2 there were large reductions in impairment, t (227) = 27.43, p < 

.001, 95% C.I. [1.37, 1.58], d = 1.82, and in activity limitation, t (227) = 21.43, p < .001, 95% 

C.I. [.97, 1.17], d = 1.42. There were small increases for intention and PBC, perhaps because 

items used to measure these constructs at T1 and T2 referred to walking different distances. 

For intention, t (227) = -3.99, p < .001, 95% C.I. [-.44, -.15], d = .26, a small effect, and for 

PBC, t (227) = -4.38, p < .001, 95% C.I. [-.24, -.09], d  = .29, a small effect.   

Pain reported (i.e. pain during the past four weeks) between T1 and T2 reduced on 

average by 5.7 points on the 10cm VAS (S.D. = 2.42). A paired-samples t-test indicated that 

mean four-week pain was significantly lower at T2 compared to T1, t (223) = 35.13, p < .001, 

95% C.I. [5.36, 5.99], d  = 2.34, a large effect. However the spread of difference scores 

(range = -10.0 to +1.9) suggested that after surgery, while most participants experienced less 

pain (to a greater or lesser extent) and some became pain-free, eight reported slightly worse 

pain.  

Time 1 (Pre-Surgery)  

ICF Model. 

Measurement Model. All Impairment items (I1, I2, I3 and I4) and all Activity 

Limitation items (W1 through W3) were hypothesized to load onto their respective factors. 
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The model was an adequate fit, Satorra-Bentler χ2 (13) = 55.99, p < .001, NNFI = .91, CFI = 

.94, RMSEA = .10. Standardized residuals were small and normally distributed. Parameter 

estimates of indicators, factor variance explained by each indicator and interfactor 

correlations for all measurement models tested can be found online as supplemental material 

to this article.  

Structural Model. Impairment was hypothesized to directly and positively predict 

Activity Limitation. Adequate support was found for the model from the fit indices, Satorra-

Bentler χ2 (13) = 55.95, p < .001, NNFI = .91, CFI = .94, RMSEA = .10, AIC = 29.95. 

Impairment significantly predicted Activity Limitation (β = .59) and the R2 value indicated 

that 35% of the variance in Activity Limitation was accounted for.  

TPB Model 

Measurement Model. For Intention, PBC and Activity Limitation, all items presented 

earlier acted as indicators of their respective latent variables. The model showed adequate fit, 

Satorra-Bentler χ2 (24) = 89.24, p < .001, NNFI = .95, CFI = .96, RMSEA = .09. 

Standardized residuals were small and normally distributed.  

Structural Model. The structural model and fit indices are presented in Figure 3. The 

NNFI and CFI showed good model fit although the RMSEA indicated adequate fit, just short 

of the good-fit cutoff of .08. Intention and PBC accounted for 48% of the variance in Activity 

Limitation, and PBC accounted for 77% of the variance in Intention. Intention did not 

significantly predict Activity Limitation (β = -.13), but greater PBC was strongly predictive 

of lower Activity Limitation (β = -.57). Greater PBC also significantly predicted greater 

Intention (β = .87).  

(Insert Figure 3 about here) 
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Integrated Model.  

The same observed variables indicated each latent factor as in the ICF and TPB 

models. Therefore, results for the measurement model are omitted. The integrated model is 

shown in Figure 4; model fit was adequate according to the NNFI and RMSEA and good 

according to the CFI. Values of R2 indicated that the model accounted for 59% of the 

variance in Activity Limitation, with 77% of the variance in Intention and 20% of the 

variance in PBC accounted for by their predictors.  

(Insert Figure 4 about here) 

Impairment significantly predicted Activity Limitation (β = .35). PBC predicted reduced 

Activity Limitation (β = -.43) but Intention was not a significant predictor (β = -.12). Greater 

Impairment significantly predicted reduced PBC (β = -.45) but not Intention (β = -.02). 

Intention was strongly predicted by PBC (β = .87). PBC mediated between Impairment and 

Activity Limitation (standardized indirect effect coefficient = .24, p < .05), such that more 

severe Impairment predicted less PBC, which in turn predicted greater Activity Limitation. 

Time 2 (Post-surgery)  

ICF Model. 

Measurement Model. The measurement model was the same as at T1. Standardized 

residuals were small and normally distributed. The model was a good fit, Satorra-Bentler χ2 

(13) = 29.81, p = .005; NNFI = .96, CFI = .98, RMSEA = .075.  

Structural Model. The ICF structural model was the same as at T1, and was a good fit 

to the data, Satorra-Bentler χ2 (13) = 29.81, p=.005; NNFI = .96, CFI = .98, RMSEA = .08, 

AIC = 3.81. Impairment strongly predicted Activity Limitation (β = .72) and according to the 

R2 value, accounted for 52% of its variance.  
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TPB Model.  

Measurement Model. The TPB measurement model was the same as at T1 and was an 

excellent fit to the data, Satorra-Bentler χ2 (24) = 42.61, p = .011; NNFI = .98, CFI = .98, 

RMSEA = .06. Standardized residuals were small and normally distributed.  

Structural Model. The TPB structural model was the same as at T1 and is shown in 

Figure 3 with fit indices. The model was an excellent fit to the data, with 69% of the variance 

in Activity Limitation accounted for by Intention and PBC, and 85% of the variance in 

Intention accounted for by PBC. Greater PBC significantly and strongly predicted reduced 

Activity Limitation (β = -.67), but Intention was not significantly predictive (β = -.17). 

However, PBC strongly predicted Intention (β = .92).  

Integrated Model.  

The integrated measurement and structural models were the same as at T1. The 

structural model and fit indices are displayed in Figure 4. The model was a good fit to the 

data according to these indices and accounted for 82% of the variance in Activity Limitation, 

with 85% of the variance in Intention and 24% of the variance in PBC accounted for by their 

predictors. Impairment predicted Activity Limitation (β = .42) and PBC predicted reduced 

Activity Limitation (β = -.42) but Intention was not significantly predictive (β = -.22). 

Impairment predicted reduced PBC (β = -.49) but not Intention (β = .03). However, PBC 

strongly predicted Intention (β = .94). PBC mediated significantly between Impairment and 

Activity Limitation (standardized indirect coefficient = .30, p < .05), such that greater 

Impairment predicted worse PBC, which in turn predicted more severe Activity Limitation.  



Running Head: TESTING AN INTEGRATED MODEL OF DISABILITY 19 

Discussion 

According to Johnston (1996), integrating biomedical constructs from the WHO 

model of disability (such as impairment) and psychological constructs from theories of 

behavior (such as control cognitions) should explain disability better than a biomedical or 

behavioral model alone. Our findings support this. Replicating Dixon et al.’s (2008) study, 

we tested a model integrating TPB proximal determinants of behavior with impairment from 

the ICF, as well as impairment-only (ICF) and TPB models, to explain activity limitation in 

pre-surgery joint replacement patients.  

While all models predicted activity limitation, suggesting that biomedical and 

psychological variables contribute to activity limitations, the integrated model explained 

more variance and fitted better. That the direct relationship between impairment and activity 

limitation was significant even in the integrated model suggests that both biomedical and 

psychological variables need to be considered for a full understanding of the determinants of 

disability. Impairment also predicted PBC, which in turn predicted activity limitation, with a 

significant mediation effect. However, intention was not predicted by impairment and was 

not predictive of activity limitation. These results are very similar to those of Dixon et al. 

(2008), and the replication of positive findings for their models with these new data adds 

support for Johnston’s (1996) arguments. Importantly, similar findings from this replication 

indicate that the support previously found for these relationships is unlikely to be due to 

chance.    

We then extended Dixon et al.’s tests to one year after surgery, when impairment and 

activity limitation were significantly less although not eliminated. Results were similar to 

before surgery, except that all models accounted for more variance in activity limitation and 

the integrated model predicted a very large proportion of the variance (82%) in activity 

limitations. It would appear that these variables give a good account of activity limitations 
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after surgery and may suggest that the psychological constructs are stronger determinants of 

activity limitation after surgery compared to before; the correlations of activity limitations 

with PBC and intention are substantially greater after surgery than before. The models may 

fit better after surgery because other variables may operate before surgery which were not 

hypothesized. Alternatively, the models may predict more efficiently due to better 

measurement; each measurement model shows improved fit indices on the second occasion. 

This improved measurement might be due to a) loss of 99 participants may have improved 

the coherence of the measures, b) increased variance observed in the impairment measure 

strengthening relationships, c) participants responding more coherently due to practice with 

the items or due to intervening experiences associated with their surgical care, or d) greater 

clarity in making judgments about ‘half a mile’ rather than ‘100 yards’, resulting in greater 

coherence of measures. 

 After surgery, activity limitation was still predicted significantly by impairment (ICF 

model) and PBC (TPB model), indicating that these models provide a good base for 

beginning to understand disability. However, the integrated model predicted the most 

variance in activity limitation, suggesting that combining elements of both models may 

provide a fuller understanding of its determinants. Therefore, as well as replicating and 

extending Dixon et al.’s (2008) results, ours are also consistent with the previous findings 

discussed in the introduction.  

Evaluating the integrated model 

The integrated model at both time points explained more variance in activity 

limitations while being less parsimonious than the others. Before surgery, it accounted for 

24% more variance than the ICF model and 11% more than the TPB model, while in Dixon 

et al.’s study it accounted for an extra 29% and 9% respectively. After surgery, the integrated 

model accounted for an extra 30% and 13% respectively. These reliable increments in 
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explanatory power suggest an enhanced theoretical account of activity limitations and 

increased opportunities for therapeutic intervention. For example, it may be possible to 

intervene on PBC to alter activity limitation, even if impairment is currently untreatable.  

Our findings support both a biomedical and behavioral viewpoint of the determinants 

of disability, but suggest that neither provides a full explanation on its own. However, as 

Dixon et al. (2008) found, intention did not predict activity limitation nor was it predicted by 

impairment as PBC was, with Schröder et al. (2007) reporting a similar finding. This may be 

because the measures lack precise correspondence with the measures of behavior or because 

walking limitation is not determined by motivational variables such as intention; Ajzen 

(1991) argues that for each behavior a different pattern of TPB variables may be predictive.  

However, in a recent parallel study testing similar theoretical models with a sample of 

community dwelling adults, Dixon, Johnston, Elliot and Hannaford (in press) found that both 

PBC and intention were significantly predictive of walking behavior. Similar results were 

found for participants with chronic pain. This suggests that while intention does not appear to 

be important in determining activity limitations in those having joint replacement surgery, it 

is relevant for other populations and should be retained in the integrated model.  

Implications for understanding and managing disability 

Our data indicate that while impairment may have determined the physical limits of 

what participants could do, within those limits PBC determined (even if partially) what they 

actually did. It seems as if the participants, faced with limited resources for walking as a 

result of their impairment, allocated effort to walking based on what they believed was 

possible for them. This supports Johnston’s (1996) integrated model. The TPB (Ajzen, 1991) 

proposes that individuals with low PBC tend not to attempt a behavior because they believe 

that they cannot perform it successfully. In contrast, an individual with higher PBC may 

attempt the behavior, be less likely to give up, and find (perhaps after more than one attempt) 
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that they are successful. The difference between these persons may be in effort expended and 

persistence, as Bandura has argued for self-efficacy (e.g., 1977).  

While care must be exercised in causal interpretations of these results, they suggest 

the possible benefits of reducing impairment or enhancing control cognitions to alleviate 

activity limitations, both approaches in use in clinical practice. Our results suggest processes 

by which existing interventions without a defined theoretical foundation may operate. They 

also suggest why improvements in disability or functioning may occur even when medical 

treatment does not have the expected effect on body structure and function. For example, 

chronic pain patients in Flor et al.’s (1992) review, who had improved functioning in 

everyday tasks despite little change in pain after multidisciplinary treatment, may have 

undergone changes in their perceived control. Interventions to enhance perceived control 

have been shown effective in reducing activity limitations in stroke (e.g., Johnston et al., 

2007), and perceived control (as self-efficacy) has been targeted in the self-management 

groups of Lorig and her colleagues, who found that beneficial effects of attendance at their 

programs were not explained by increased exercise but by greater self-efficacy (Lorig et al., 

1989; Lorig & Holman, 1993).  

The TPB, as one foundation of Johnston’s (1996) model, has been found to predict 

many behaviors in a wide range of populations including those who are ill (e.g., Armitage & 

Conner, 2000, 2001; Godin & Kok, 1996). Therefore, it seems reasonable that our findings 

may generalize to disability behaviors other than walking, and to other populations. 

Currently, control cognitions have been found to predict activity limitations following stroke 

(e.g., Bonetti & Johnston, 2008), heart attack or angina (Allan, Johnston, Johnston & Mant, 

2007) and recovery from acute injuries of various kinds (Molloy, Sniehotta & Johnston, 

2009).  
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Strengths, Limitations and Future Directions 

One strength of this study is that it shows, in a sample of adequate power for most 

models, that the integrated model fits the data and accounts for considerable variance—more 

than that accounted for by simpler models. Furthermore, this finding is reliably replicated. 

However, there are limitations to what can be concluded—for example, other (untested) 

models may also be a good or better fit. In addition, while Johnston’s (1996) model proposes 

causal relationships, because of our correlational data we cannot conclude that the 

relationships are causal. Experimental designs (e.g., Fisher & Johnston, 1996a) and 

randomized controlled trials (e.g., Johnston et al., 2007) are superior tests of causality.  

The limited operationalization of the ICF constructs also restricts our conclusions. 

Other forms of impairment (e.g., joint stiffness) may have contributed to walking limitation, 

and participants may have experienced other forms of activity limitation (e.g., difficulty using 

stairs, bending down, and lifting objects). Future research testing this model may benefit from 

a multi-component approach to these constructs, perhaps using the ICF core sets for each 

diagnosis. Johnston (1996) also proposed integrating biomedical constructs with Bandura’s 

(1986) social cognitive theory. This is more complex than the TPB, but makes similar 

propositions although without the construct of intention. There is scope for future research to 

examine the role of Bandura’s constructs in the model more fully. In addition, a fuller 

understanding of disability may be obtained by examining the ICF concept of participation 

restriction in integrated terms. While this is not currently part of the integrated theory, it is a 

key part of the experience of disability and because, like the other ICF concepts, it is 

connected to environmental and personal factors, may be associated with psychological 

processes. This remains to be explored in future work.  

Finally, cross-sectional data from large samples capture the characteristics of many 

individuals at a single moment. These existing findings primarily relate to individual 
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differences, i.e. that people who have worse impairment and PBC tend to experience greater 

activity limitation. Is it also the case that at those times in a person’s life when impairment 

and perceived control are worse, activity limitation is more severe? To know this is essential 

when designing interventions, and can be examined by collecting regular observations over 

time (Borckardt et al., 2008), for example using single-case designs (Morgan & Morgan, 

2001).  

Conclusion  

Our findings clearly replicate those of Dixon et al. (2008) for orthopedic patients 

before surgery as well as after a surgical change in body structure and function. It is therefore 

unlikely that Dixon et al.’s original findings simply capitalized on chance. They add to a 

growing body of knowledge supporting Johnston’s (1996) integrated model, suggesting that 

disability in chronic illness is not just the product of characteristics of the body, but partly of 

the mind as well. Further research is required to test the causal relationships in the model, to 

investigate applicability within individuals, and to evaluate the model in other populations. 

Our findings suggest there may be hope for easing the burden of locomotor disability by 

targeting control cognitions—because, perhaps with a little help, one can change one’s mind.  
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Table 1  

 

Comparisons between variable scores for those who dropped out (n = 99) and did not drop 

out (n = 243) at T2. 

 

 Dropped 

out 

Did not drop 

out 
   95% C.I. 

 

 M SD M SD t d.f. p Lower Upper d 

Impairment 3.66 0.67 3.52 0.66 1.86 340 .06 -.01 .30 .20 

Activity 

Limitation 
3.04 0.62 2.83 0.69 2.61 340 .01* .05 .37 .28 

Intention 3.63 1.04 3.65 1.07 -0.21 340 .84 -.28 .22 .02 

PBC 3.24 0.77 3.36 0.59 -1.40 147a .16 -.29 .04 .18 

 

Note. Scores range 1 to 5. a Levene’s test for equality of variances returned a significant value 

of F and therefore degrees of freedom were reduced for a more conservative test.  

* p < .05.  
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Table 2.  

 

Scale reliability (Cronbach’s alpha), descriptive statistics and scale intercorrelations 

(Pearson’s r) at T1 and T2. 

 

 α  M  SD 1. 2. 3. 4. 

1. Impairment  .74/.78 3.56/2.04 0.67/0.80 - .60 -.37 -.41 

2. Activity Limitation .83/.86 2.89/1.77 0.68/0.78 .50 - -.74 -.76 

3. Intention .88/.96 3.64/3.91 1.06/1.07 -.37 -.56 - .87 

4. PBC .91/.93 3.35/3.51 0.60/0.57 -.39 -.61 .79 - 

 

Note. First value in each cell (before the slash) refers to T1, while second refers to T2 (i.e. 

T1/T2). Correlations below the diagonal refer to T1, while those above the diagonal refer to 

T2. All scores are on a 1 to 5 scale. All correlations are significant at p < .01.   
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 Figure 1. Schematic representation of the International Classification of Functioning, 

Disability and Health (ICF; World Health Organization, 2001), with disability versions of the 

central constructs in italics. From International Classification of Functioning, Disability and 

Health (p.18) by World Health Organization, 2001, Geneva, Switzerland.  
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Figure 2. Integrated biomedical and behavioral model of activity limitations: the theory of 

planned behavior (TPB) integrated into ICF, as tested by Dixon et al. (2008). Note. PBC = 

perceived behavioral control.  
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Figure 3. Standardized coefficients for TPB model at T1 and T2. First value presented relates 

to T1, while second relates to T2 (i.e. T1/T2). Fit indices at T1: Satorra-Bentler χ2 (24) = 

89.25, p < .001, NNFI = .95, CFI = .96, RMSEA = .09, AIC = 41.24. Fit indices at T2: 

Satorra-Bentler χ2 (24) = 42.59, p = .05, NNFI = .98, CFI = .98, RMSEA = .06, AIC = -5.41. 

Note. * p < .05.  
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Figure 4. Standardized coefficients for integrated model at T1 and T2. First value presented 

relates to T1, while second relates to T2 (i.e. T1/T2). Fit indices at T1: Satorra-Bentler χ2 (59) 

= 185.67, p < .001, NNFI = .93, CFI = .95, RMSEA = .08, AIC = 67.67. Fit indices at T2: 

Satorra-Bentler χ2 (59) = 98.69, p < .001; NNFI = .97, CFI = .98, RMSEA = .05, AIC = -

19.31. Note. * p < .05.  
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This file contains further statistical details of the measurement models referred to in the main 
article. Included for each model tested are indicator parameter estimates, factor variance 
explained by each indicator, indicator error terms, and interfactor correlations.  
 
 
ICF Model (Time 1) 
 
 
Table S1 shows factor loadings and variance explained by the latent construct for each 

indicator in the model.  

 

 Factor R2  
Item Impairment Activity Limitation  
I1 .76  .58 
I2 .81  .65 
I3 .62  .39 
I4 .49  .24 
W1  .80 .64 
W2  .81 .66 
W3  .82 .67 

Table S1. Standardized Solutions by Confirmatory Factor Analysis for the final ICF measurement model at Time 1. 
 
 
The measurement model with factor loadings, error values and inter-factor correlation is 
shown in Figure S1.  
 



 

 
Figure S1. CFA results for ICF model at Time 1 showing standardized coefficients.  

  
TPB Model (Time 1) 
 
Table S2 below shows factor loadings and variance explained for each indicator in the model.   

 
 Factor R2  
Item Intention PBC Activity Limitation  
INT1 .97   .94 
INT3 .81   .65 
PBC3  .81  .66 
PBC4  .89  .79 
PBC5  .92  .84 
PBC6  .77  .60 
W1   .87 .75 
W2   .79 .62 
W3   .77 .59 

 
Table S2. Standardized Solutions by Confirmatory Factor Analysis for the TPB measurement model at Time 1. 

 

The measurement model including interfactor correlations is shown in Figure S2.  
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Figure S2. CFA of TPB measurement model at Time 1 showing standardized coefficients and interfactor correlations. 

 
Integrated model (Time 1) 
 
As indicators, factor loadings and error terms are identical to the non-integrated models, these 
are not shown and can be found above. Interfactor correlations are shown in Figure S3.  
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Figure S3. CFA model for ICF/TPB model at Time 1, with inter-factor correlations shown.  
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ICF Model (Time 2) 
 
Table S4 shows factor loadings and variance explained for each indicator in the model.  

 
 Factor R2  
Item Impairment Activity Limitation  
I1 .64  .41 
I2 .76  .57 
I3 .80  .63 
I4 .59  .35 
W1  .76 .57 
W2  .87 .75 
W3  .94 .88 

Table S4. Standardized Solutions by Confirmatory Factor Analysis for the ICF measurement model at Time 2. 
 

 
The measurement model with factor loadings, error values and inter-factor correlation is 
shown in Figure S4.  
 

 
Figure S4. CFA results for ICF model at Time 2 showing standardized coefficients and interfactor correlation.  
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TPB model (Time 2) 
 
Table S5 shows factor loadings and variance explained for each indicator in the measurement 
model, while Figure S5 shows standardized coefficients, error terms, and interfactor 
correlations.  
 

 Factor R2  
Item Intention PBC Activity Limitation  
INT1 .96   .93 
INT3 .95   .91 
PBC3  .84  .70 
PBC4  .92  .85 
PBC5  .93  .86 
PBC6  .81  .66 
W1   .78 .62 
W2   .88 .77 
W3   .91 .81 

 
Table S5. Standardized Solutions by Confirmatory Factor Analysis for the TPB measurement model at Time 2. 
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Figure S5. CFA of TPB model at Time 2 showing standardized coefficients and interfactor correlations.   

 



 

Integrated model (Time 2) 
 
As indicators, factor loadings and error terms are identical to the non-integrated models, these 
are not shown and can be found above. Interfactor correlations are shown in Figure S6.  
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Figure S6. Measurement model for ICF/TPB model at Time 2, with inter-factor correlations shown. Note. Indicators, factor loadings 

and error terms not shown. These data are identical to the non-integrated models and can be found above.  
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