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DEALING WITH CONSTRUCTION COST OVERRUNS 

USING DATA MINING 

One of the main aims of any construction client is to procure a project within the limits of a 

predefined budget. However, most construction projects routinely to overrun their cost 

estimates. Existing theories on construction cost overrun suggest a number of causes ranging 

from technical difficulties, optimism bias, managerial incompetence and strategic 

misrepresentation. However, much of the budgetary decision making process in the early 

stages of a project is carried out in an environment of high uncertainty with little available 

information for accurate estimation. Using nonparametric bootstrapping and ensemble 

modelling in artificial neural networks, final project cost forecasting models were developed 

with 1600 completed projects in this experimental research. This helped to extract information 

embedded in data on completed construction projects, in an attempt to address the problem of 

dearth of information in the early stages of a project.  92% of the 100 validation predictions 

were within ±10% of the actual final cost of the project whiles 77% were within ±5% of 

actual final cost. This indicates the model's ability to generalise satisfactorily when validated 

with new data. The models are being deployed within the operations of the industry partner 

involved in this research to help increase the reliability and accuracy of initial cost estimates.  

Keywords: artificial neural networks, bootstrapping, cost overrun, data mining, ensemble 

modelling. 

INTRODUCTION 

The main concern of a construction client is to procure a facility that is able to meet its 

functional requirements, of the required quality, and delivered within an acceptable budget 

and timeframe. The cost aspect of these key performance indicators would seem to rank 

highest most times, especially in difficult financial periods such as the present. The estimates 



prepared at the initial stages of the project can play several roles - they can form the basis of 

cost benefit analysis, for selection of potential delivery partners, to support a to-build-or-not-

to-build decision, and very often as a benchmark for future performance measure. As 

suggested by Kirkham and Brandon (2007) therefore, effective cost estimation must relate the 

design of the constructed facilities to their cost, so that while taking full account of quality, 

risks, likely scope changes, utility and appearance, the cost of a project is planned to be within 

the economic limits of expenditure. This stage in a project life-cycle is particularly crucial as 

decisions made during the early stages of  the development process carry far more reaching 

economic consequences than the relatively limited decisions which can be made later in the 

process. Effective cost estimation is therefore so vital, it can seal a project’s financial fate, 

Nicolas (2004) notes.  

However, in spite of the importance of cost estimation, it is undeniably neither simple nor 

straightforward because of the lack of information in the early stages of the project, Hegazy 

(2002) observes. Many projects consistently fail to meet initially set cost limits due to a 

number of causes ranging from the inability to accurately identify and quantify risk (Akintoye 

2000), error in estimation (Jennings 2012), design changes and scope creep (Odeck 2004, 

Love et al. 2011) and even suspicions of foul-play and corruption (Wachs 1990, Flyvbjerg et 

al. 2002).  

Developments in the business landscape however suggest a growing recognition of 

information as a key competitive tool. A vast amount of data is continuously generated by 

construction business transactions. As per due diligence or contractual requirements, most 

construction firms maintain copious information on each project undertaken. The amount of 

data generated by these firms presents both a challenge and opportunity - a challenge to 

traditional methods of data analysis since the data are often complex, and of course, 

voluminous. On the other hand, construction firms stand a chance of gaining competitive edge 



and performance improvement by making their data work for them using detailed data 

mining. Fayyad et al. (1996) noted that the real value of storing data lies in the ability to 

exploit useful trends and patterns in the data to meet business or operational goals as well as 

for decision support and policy making. Advances in the fields of data warehousing, artificial 

intelligence, statistics, visualisation techniques and machine learning now make it possible for 

data to be transformed into valuable asset by automating laborious but rewarding knowledge 

discovery in databases. 

Data mining, simply described here as the analytical process of knowledge discovery in large 

databases, has found extensively application in industries such as business (Cf. Apte et al. 

2002) and medicine (Cf. Koh and Tan 2011). However, discussions with a number of 

construction companies during this research suggest that very few take advantage of the data 

available to them to develop business decision support tools. At best, their analysis is usually 

limited to basic sample statistics of averages or standard deviations. Against this backdrop, 

we collaborated with a major UK water infrastructure provider to investigate the use of data 

mining techniques to develop cost models that can be applied during the early estimation 

stages for more reliable cost forecasting. As already pointed out, a lack of information for 

reliable estimation has been identified as one of the main causes of cost growth in 

construction. It is hoped that data mining might help to convert historical data on projects into 

decision support systems, to partly address the problem of insufficient information for reliable 

estimation at early stages of a project. The problem of cost growth and its causes are 

examined in the next section of the paper, followed by an overview of data mining and its 

applications. The data mining methodology was then applied to the problem of cost 

estimation in the construction industry using Artificial Neural Networks (ANN). Some 

practical implications of the research have been identified in the conclusions along with some 

possible barriers to effective data mining within the construction industry. 



COST OVERRUNS  

Chan and Chan (2004) conducted a critical analysis on existing literature on construction 

benchmarking and proposed a framework of both qualitative and quantitative descriptors to 

evaluate the success of a construction project. They validated their framework using three 

hospital projects and noted that  cost performance on a construction project remains one of the 

main measures of success even though there were other emerging qualitative measures like 

health and safety and environmental performance. We have previously investigated cost 

overruns on construction projects as part of a wider research into the potential use of artificial 

neural networks for construction cost estimation (A and B 2012). We attempted to model final 

cost using non-traditional cost factors such as project location, access to site and procurement 

method. It became obvious that estimating the final cost of projects can be extremely difficult 

due to the complex web of cost influencing factors that need to be considered. For a thorough 

and reliable estimate of final cost, the estimator has to be able to take into consideration 

factors such as the type of project, likely design and scope changes, risk and uncertainty, 

effect of policy and regulatory conditions, duration of project, type of client, ground 

conditions or tendering method. Trying to work out the influence of most of these variables at 

the inception stage of a project when cost targets are set, can be an exhaustive task, if not at 

all futile. Ignoring most of these factors altogether creates a recipe for eventual cost growth, 

disputes, law suits and even project termination in some cases. Jennings (2012) employed a 

longitudinal 'process tracking' approach to examine the dynamics between risk, optimism and 

uncertainty in construction and how these interact with the phenomenon of cost overruns 

using a case study of the 2012 London Olympic games. Jennings found that  a high level of 

uncertainty surrounds the cost estimation exercise especially in the  initial stages of the 

project, thus making it difficult to produce reliable cost estimates. What is then resorted to, in 



most cases, is the use of some arbitrary percentages, the so-called contingency funds, which 

unfortunately has mostly failed to keep construction projects within budget.  

The on-going Edinburgh Trams project in Scotland for example has already far exceeded its 

initial budget leading to significant scope reduction to curtail the ever-growing cost (Miller 

2011, Railnews 2012). The 2012 London Olympics bid was awarded at circa £2.4 billion in 

2005. This was adjusted to about £9.3 billion in 2007 after significant scope changes. The 

project was eventually completed at £8.9 billion in 2010 (Cf. National Audit Office 2012). 

The UK Government commissioned report in 1998 on construction industry performance 

indicated that over 50% of projects overspent their budget (Egan 1998). A similar report 

around the same time in the US suggested that about 77% of projects exceed their budget, 

sometimes to the tune of over 200% (General Accounting Office 1997). In more recent years, 

Flyvbjerg et al. (2002) sampled 258 infrastructure projects worth US$90 billion from 20 

different countries and found that 90% of the projects experienced budget escalation and that 

infrastructure projects in particular have an 86% likelihood of exceeding their initial 

estimates. Alex et al. (2010) report up to 60% discrepancy between actual and estimated costs 

of over the 800 water and sewer projects examined in their research. Flyvbjerg et al. (2004) 

thus concluded that little learning seemed to be taking place within the industry over time. 

Cost growth in the construction industry has been attributed to a number of sources including 

technical error in design or estimation, managerial incompetence, risk and uncertainty, 

suspicions of foul play, deception and delusion, and even corruption.  Akintoye and MacLeod 

(1997) conducted a questionnaire survey of general contractors and project managers in the 

UK construction industry to ascertain their perception of risk and uncertainty as well as their 

use of various risk management techniques. They concluded that risk management practice 

was largely experience and judgement based and that formal risk management techniques 

such as Monte Carlo simulation or stochastic dominance were seldom used due to doubts on 



their suitability and lack of knowledge and understanding of these methods. Hitherto, the 

industry still seems to struggle to deal with identifying and quantifying the impact of risk 

events. This may probably be due to the nature of the industry- it is fragmented, complex, 

each project spans several years, is constructed in an environment open to the weather 

inclement and has many different parties with varying business interests. Flanagan and 

Norman (1993) suggest that the task of risk management in most cases is so poorly 

performed, that far too much risk is passively retained, an assertion supported by Jennings' 

(2012) recent case study of the possible sources of cost growth on the 2012 London Olympic 

project.  

Flyvbjerg et al. (2002, 2005), as well as Wach (1989, 1990) point to optimism bias and 

strategic misrepresentation, or delusion and deception in other words, as possible causes of 

cost growth particularly on large publicly funded projects. Flyvbjerg et al (2002) conducted a 

desk study analysis of the cost performance of 258 transportation projects worth US$90 

billion and categorised the sources of cost overruns on construction projects into four groups: 

technical (error), psychological, economical and political. They concluded that cost escalation 

could not be adequately explained by estimation error, but more likely by strategic 

misrepresentation- an intentional attempt to mislead. They observed that 9 out 10 of the 

projects experienced significant cost escalation over their construction period and that there 

was evidence of a systematic bias in the cost estimates as the overruns experienced did not 

appear to be randomly distributed. Flyvbjerg et al controversially concluded that the cost 

estimates used to decide whether projects should be given the go-ahead were 'highly and 

systematically misleading', strongly suggesting foul play by project promoters.  

Further developments of the strategic misrepresentation perspective by Flyvbjerg led to 

theories based on optimism bias, after Weinstein (1980). Optimism bias can be explained as 

the  cognitive disposition to evaluate possible negative future events in a fairer light than 



suggested by inference from the base rates. Flyvbjerg (2007) draws on this concept and 

suggested that decision making in policy and infrastructure planning is flawed by the planning 

fallacy that we know, or at least are in control of all possible chain of events from project 

inception to completion, thereby leading to unjustifiable confidence in the prospects of the 

project and unrealistic estimates. While strategic misrepresentation is often intentional, 

according to Flyvbjerg et al, optimism bias is not. They make this distinction between the two 

concepts with the terms 'deception' and 'delusion' respectively (Flyvbjerg 2007). It might be 

easy to reckon how strategic misrepresentation and optimism bias work in tandem with 

business competition embedded in the lowest-bidder culture to often create an unrealistic low 

cost target of projects at the pre-construction phase of projects. 

Another school of thought on cost overruns, referred to here as the Evolution Theorists, 

include Love et al (2011) as well as Gil and Ludrigan (2012). They argue that projects 

essentially evolve significantly between conception and completion so that it might be 

misleading in most cases to make a direct comparison between the costs at start and end of the 

project. Their thesis statement is straightforward- projects change, and when they do, they 

often come with increasing costs. Love et al. (2011) provide a rebuttal to Flyvbjerg's 

perspective on cost overruns, instead suggesting that the industry 'move beyond  strategic 

misrepresentation and optimism bias' to embrace a more holistic understanding of the 

phenomenon that includes some level of the process and the social construct. They introduce 

the concept of 'pathogens' for example,  the many events and actions that could not be 

accounted for at the initial stages of the project that eventually add-on to expected cost as the 

main drivers of cost growth. They further argue that Flyvbjerg's analyses are maybe too 

simplistic and not generalisable to all projects undertaken within the industry. Their argument 

would seem sustainable, especially on small, privately funded projects that do not have strong 

political or public interest. Besides, it is difficult to draw valid distinctions, along a continuum 



of motivation, from reasonable and justifiable optimism, through over-confidence and 

delusion, culpable error, to deliberate deceit using just statistical analysis, the method adopted 

in Flyvbjerg’s works. Ahiaga-Dagbui and Smith (2014) provide a more detailed discussion on 

other possible causes of overruns including technical and managerial difficulties and poor 

estimation, as well as the dynamics between cost growth and cognitive dispositions such as 

Prospect Theory (Kahneman and Tversky 1979) and Kruger-Dunning effects (Kruger and 

Dunning 1999).  

It is important to note here though that much of the current literature and media furore on cost 

growth seem to over simplify the rather complex causes of overruns on construction projects. 

As already noted, most construction projects, especially publicly funded capital intensive 

projects tend to go through a long gestation period after project conception during which 

many changes to scope and accompanying costs occur- sometimes the initial scheme bears 

little resemblance to the constructed asset. The estimated cost at project inception often fails 

to take into consideration a lot of details and information, largely because much of these are 

not yet available or uncertain. It seems erroneous therefore to make a direct comparison 

between the initial ‘estimate’ A (£40million on the Scottish Parliament, for example) and its 

final completion cost B (circa £414million) - the two schemes were very different (Cf. Audit 

Scotland 2004, Fraser 2004). More robust explanations of growth perhaps need to factor-in 

process and product, as well as sources of changes to scope. Flyvbjerg's works make a direct 

comparison between costs A and B, and wherever B>A, overruns are reported. It might be 

simplistic though, as pointed out by Love et al., but probably justifiable as estimate A is 

usually the estimate used to get project approval when publicly funded projects are being 

appraised. It is important to bear in mind that it often practically difficult to discontinue a 

project once considerable amount of money has already been spent to get it started. This is 

referred to as the sunk cost effect by Arkes and Blumer (1985) or the phenomenon of 



escalation of commitment by Staw (1981). It may therefore be crucial for the industry to find 

more effective ways of project approval that better deals with underestimation of true cost and 

the setting of unrealistic cost targets.  

Alex et al (2010) reviewed the cost performance on more than 800 construction projects of 

the Canada's Drainage and Maintenance Department and observed a discrepancy of up to 60% 

between estimated and actual final cost of projects completed between 1999 and 2004. They 

partly attributed this problem to the fact that the Department's estimation process was heavily 

experienced based, relying largely on professional judgement, just as observed by Akintoye 

and MacLeod (1997). A potential downside of experienced-based estimation is the difficulty 

in thoroughly evaluating the complex relationships between the many cost influencing 

variables already identified in this paper, or its inability to quickly generate different cost 

alternatives in a sort of what-if analysis. Furthermore, as noted by Okmen and Öztas (2010) in 

their research on cost analysis within an environment of uncertainty, traditional cost 

estimation i.e. the estimation of the cost of labour and materials and making allowance for 

profits and overheads for individual construction items, is deterministic by nature. It therefore 

largely neglects and poorly deals with uncertainties and their correlation effects on cost, 

thereby deemed inadequate in reaching a reliable and realistic final cost. As an alternative to 

traditional estimation approaches, data mining, using the learning and generalisation 

algorithms within artificial neural networks in combination with statistical bootstrapping and 

ensemble modelling is used to develop final cost models in this paper. The aim here is an 

attempt at circumventing the problems posed by uncertainty and lack of information in 

estimation in the early stages of a project.  



DATA MINING  

Data mining, otherwise referred to as Knowledge Discovery in Databases (KDD), is an 

analytic process for exploring large amounts of data in search of consistent patterns, 

correlations and/or systematic relationships between variables, and to then validate the 

findings by applying the detected patterns to new subsets of data (StatSoft Inc 2008). Data 

mining attempts to scour databases to discover hidden patterns and relationships in order to 

find predictive information for business improvement. Questions that traditionally required 

extensive hands-on analysis, experts and time, can potentially be quickly answered from a 

firm’s existing data.  

Goldberg and Senator (1998) report the use of pattern discovery techniques by the Financial 

Crimes Enforcement Network (FinCEN) of the United States Department of Treasury since 

1993 to detect potential money laundering and fraudulent transactions from the analysis of 

about 200,000 large cash transactions per week. Using input factors such as age, housing, and 

job title and account balance, Huang et al. (2007) developed a support vector machine credit 

scoring model to assess loan applicant's credit worthiness in an attempt to limit a financing 

firm's exposure towards default. Hoffman et al (1997) have also explored the use of data 

visualization and mining techniques for DNA sequencing in the area of cell biology. Ngai et 

al. (2009) provide a comprehensive review of data mining applications in customer 

relationship management area, classifying these applications into four groups of customer 

identification, attraction, retention and development. One-to-one marketing and loyalty 

programs targeted towards customer retention seem to receive the most attention from 

researchers. 

Although data mining is yet to find extensive application in practice within the construction 

industry, construction management researchers have been investigating  its applicability to 

different problem areas. Using some of the concepts of data mining and the theory of 



inventive problem solving, Zhang et al. (2009) developed a value engineering knowledge 

management system (VE-KMS) that collects, retains and re-uses knowledge from previous 

value engineering exercises in an attempt to streamline future exercises, making them more 

systematic, organised and problem-focussed. Cheng et al (2012) also developed EFSIMT, a 

hybrid fuzzy logic, support vector machines and genetic algorithm inference model to predict 

the compressive strength of high performance concrete using input factors such as the 

aggregate ratio, additives and working conditions. This kind of model allows for a more 

reliable prediction of the strength of a particular mix for design and quality control purposes 

as concrete strength is generally affected by a lot of factors. There is generally a higher rate of 

occupational injuries in the construction industry than industries like manufacturing for 

example (Cf. Larsson and Field 2002). This might possibly be because of the dynamic and 

hazardous environment of a typical construction site. Liao and Perng (2008) thus employ the 

use of association rule based data mining to identify the characteristics of occupational 

injuries reported between 1999 and 2004 in the Taiwan construction industry. Wet-weather 

related injuries and fatalities were particularly significant in their study.  

Data Mining Process 

Data mining normally follows a generic process of business and data understanding, data 

preparation, modelling proper, evaluation of models, and deployment. It starts with the 

selection of relevant data from a data warehouse that contains information on organisation 

and business transactions of the firm. The selected data set is then pre-processed before actual 

data mining commences. The pre-processing stage ensures that the data are structured and 

presented to the model in the most suitable way as well as offer the modeller the chance to get 

to know the data thoroughly. Pre-processing typically involves steps such as removing of 

duplicate entries, sub-sampling, clustering, transformation, de-noising, normalisation or 

feature extraction.  



The next stage involves the actual modelling, where one or a combination of data mining 

techniques is applied to scour down the dataset to extract useful knowledge. This process can 

sometimes be an elaborate process involving the use of competitive evaluation of different 

models and approaches and deciding on the best model by some sort of bagging system 

(StatSoft Inc. 2011). Table 1 provides a framework for selecting a particular data mining 

technique. The type of modelling technique adopted  depends on a number of factors, 

including the aim of the modelling exercise, the predictive performance required and the type 

of data available. Each modelling technique can also be evaluated in terms of its 

characteristics. For example, regarding 'interpretability', while regression models generate an 

equation whose physical properties can be easily interpreted in terms of the variables used in 

explaining the phenomenon under study (Hair et al. 1998). Neural networks, on the other 

hand, do not produce any equation and have thus been  derided as 'black-boxes' by some 

researchers including Sarle (1994). However their power and ability to model complex non-

linear relationships between predictors make them particularly desirable for hard-to-learn 

problems and where a priori judgements about variable relationships cannot be justified 

(Adeli 2001).  

The results from the data mining stage are then evaluated and presented into some meaningful 

form to aid business decision making. The knowledge generated is then validated by 

deploying the model in a real life situation to test the model’s efficacy.  

 

 

 

 



Table 1- Framework for selecting a data mining technique 

Data mining  

category 

Data mining 

requirement 

Data mining  

technique 

Technique 

characteristics 

 Regression 

 Clustering 

 Classification 

 Visualisation 

 Summarisation 

 Prediction 

 Pattern discovery 

 Surveillance 

 Performance 

 Measurement 

 Business 

 Understanding 

 Regression 

 Support Vector 

Machine (SVM) 

 Self-Organising maps 

 Genetic algorithm, etc 

 Flexibility 

 Accuracy 

(Precision) 

 Power 

 "Interpretability" 

 Ease of 

deployment 

DATA 

The data mining process described in the previous section of this paper is now applied to cost 

estimation within a partnering major water infrastructure client in the UK. The aim here is in 

two folds - to develop decision support systems from existing data to complement the existing 

estimation process within our collaborating organisation and also to investigate ways of 

circumventing the problem of lack of information for reliable estimation at the early stages of 

a project. Many crucial business decisions have to be made at this stage including tender 

evaluations, contract award, project feasibility or securing loans to finance the project. Our 

collaborating organisation typically has three stage of estimation before inviting bids from 

contractors. The third stage estimate, Gate Three, is usually based on about 50-60% 

completed scope design and is used for evaluation of tenders after which detailed design is 

carried out by the selected contractor in a sort of design and build contract framework. The 

estimates produced by the models developed in this paper thus allows the organisation to 

forecast its total likely commitment before tendering and before definitive estimates are 

available. 

The data collection process involved an initial shadowing of the tendering and estimation 

procedure within the organisation. We were thus allowed to be quasi members of the 

tendering team of the company on some of its projects to observe how the estimates were 



produced. It was also an opportunity to gain a first-hand understanding of how the data to be 

used of the modelling was generated and what different variables meant. The initial dataset 

contained over 5000 projects completed between 2000 and 2012. The scope of these projects 

varied from construction of major water treatment plants to minor repairs and upgrade. 

Project values ranged from a mere £1000 to £30 million and durations from 3 months to 5 

years. The initial analysis involved drilling down into the database to find what might be 

useful in modelling final cost. To ensure some level of homogeneity in the data, K-means 

cluster analysis was used to create clusters of project cases based on duration and cost. V-fold 

cross-validation with Mahalanobis distance was used to search for optimum number of 

clusters between 2 and 10 clusters. This distance measure was preferred to the popular square 

Euclidean distance because it helps account for the variance of each variable as well as the 

covariance between cost and duration of the project cases. The cases to be used in the 

modelling also had to be without significant missing data and somewhat representative of the 

entire dataset. One of the clusters containing about 1600 projects completed between 2004 

and 2012 was used for the models reported in this paper. One hundred of these project cases 

were selected using stratified random sampling with cost as the strata variable to be used for 

independent second stage validation of the final models. Stratified random sampling was used 

because this would hopefully allow for the selection of cases that are representative of the 

entire range of possible cases within the dataset. The remaining data was then split in a 

70:15:15% ratio for training, testing and first stage validation respectively. Further details on 

the dataset used for the modelling is found in Table 2. 

 

Table 2- Overview of data used for model development 

Size Types of project Type of 

organisation 

Cost 

range 

Duration 

range 

Year 

span 

c.1600 Water mains, 

manholes, 

combined sewer 

Client £4000     

to 

1 month 

to           

2004 

to 



overflows, repairs, 

upgrades 

£15million 5 years 2012 

 

Data Pre-processing 

The pre-processing stage ensures that the data are structured and presented to the model in the 

most suitable way as well as offer the modeller the chance to get to understand the data 

thoroughly. Cost values were normalised to a 2012 baseline using the infrastructure resources 

cost indices by the Building Cost Information Services with a base year 2000. This allowed 

for cost values to be somewhat comparable across different years. Numerical predictors were 

further standardized to zScores using  

         
    

 
                             Equation 1 

Where:   zScore is the standardized value of a numerical input, xi 

  µ is the mean of the numerical predictor 

  σ is the standard deviation of the numerical predictor 

Since neural networks was to be used for the actual modelling exercise, standardizing either 

input or target variable into a smaller range of variability would potentially aid the effective 

learning of the neural net whiles improving the numerical condition of the optimization 

problem (StatSoft Inc 2008). If one input has a range of 0 to 1, while another  has a range of 0 

to 30 million, as was the case in the data that were used in this analysis, the net will expend 

most of its effort learning the second input to the possible exclusion of the first. All 

categorical variables were coded using a binary coding system.  

The next stage involved deciding which predictors to use in the modelling exercise. It was 

easy to remove predictors such as project manager, project ID or year of completion from the 

set of predictors on precursory examination as they were likely not to be good predictors 



when the model is used in practice. Table 3 contains details on the set of initial predictors 

used at the beginning of the modelling.  

Table 3 - Initial list of variables for model development 

    Category 

  Type of data 1 2 3 4 

  Project Information         

1 Tendering Strategy Open competitive Selective competitive Negotiated Serial 

2 Procurement Option Design-bid-build Design and build Management types Partnering 

            

  Site Information         

3 Ground Condition Contaminated Non-contaminated Made-up - 

4 Type of Soil Good Moderate Poor - 

        

  Other Information     

5 Delivery Partner* X Y Z - 

6 Scope of Project  New-build Upgrade Refurbishment Replacement 

7 Purpose of Project Wastewater Water General - 

8 Operating Region North South East West 

1. Other factors include project duration (months) and awarded target cost (£). Model output 

was final cost at completion (£).  

2. *indicated as X, Y and Z for confidentiality reasons



COST MODEL DEVELOPMENT 

Data visualisation using scatter and mean plots in the earlier stages of the modelling 

suggested non-linear relationships between most of the variables and final cost. Also, most of 

the predictors are categorical, rather than the usual numeric type. It was thus decided to use 

Artificial Neural Networks (ANN) for the actual modelling because of their ability to cope 

with non-linear relationships and categorical variables (Cf. Anderson 1995). ANN is an 

abstraction of the human brain with abilities to learn from experience and generalise based on 

acquired knowledge (Moselhi et al. 1991). It is also able to cope with multicollinearity, a 

statistical condition where two or more variables are highly correlated or dependent on each 

thereby resulting in spurious predictions when both of those variables are included in the 

model (Marsh et al. 2004).  Neural networks has previously been applied to forecasting tender 

price (Elhag and Boussabaine 1998, Emsley et al. 2002) and for quantification of risk in 

construction by McKim (1993). See Moselhi et al. (1991) for a review of neural network 

application in construction management research.  

Standard Models 

The cost models were developed using an iterative process of fine-tuning the network 

parameters and inputs until acceptable error levels were achieved or when the model showed 

no further improvement. The model training began with a search for optimal model 

parameters. This was done in a trial and error manner to begin with, training several networks 

and examining them for possible performance improvement using the input factors in Table 3 

and Cost at Completion as model output. Two different network architectures, the Multilayer 

Perceptron (MLP) and the Radial Basis Function (RBF), were experimented at this stage. 

RBF models the relationship between inputs and targets in a 2 phases: it first performs a 

probability distribution of the inputs before the searching for relationships between the input 

and output space in the next stage (StatSoft Inc 2008). MLPs on the other hand model using 



just the second stage of the RBF. The MLP models were superior to the RBF networks and so 

the rest of the modelling was carried out using just MLPs. It was found that the best trial 

results were achieved with MLPs with a single hidden layer having between 3-10 nodes.  

Consequently, using a custom range of 3-10 hidden nodes in 1 hidden layer, a dataset size 

split of 70% for training, 15% for testing and another 15% for first stage validation, 1000 

networks were trained, retaining the best 10 performing networks for further examination. 

These 10 networks were selected based on their overall performance, measured using the 

correlation coefficient between predicted and output values as well as the Mean Sum of 

Squares (MSE) of errors. MSE is defined here as: 

     
 

 
         

  
                                               Equation 2 

Where: Oi is the predicted final cost of the ith data case (Output); Ti is the actual final cost of 

the ith data case (Target) and n is the sample size. 

The higher the MSE value, the poorer the network at generalisation, whereas the higher the 

correlation coefficient, the better the network. The p-values of the correlation coefficients 

were also computed to measure their statistical significance. The higher the p-value, the less 

reliable the observed correlations. The best 10 retained networks were then further validated 

using the 100 independent validation cases that were selected using the stratified sampling at 

the beginning of the modelling exercise.  

Five different activation functions, i.e. identity, logistic, tanh, exponential and the sine 

functions were iterated in both hidden and output layers, using gradient descent, conjugate 

descent and Quasi-Newton (BFGS) training algorithms. See Fausett (1994) and Gurney 

(1997) for the fundamentals for neural network architectures, algorithms, or Skapura (1996) 

for a practical guide to developing neural network models. Early stopping, the process of 

halting training when the model error stops decreasing, was used to prevent memorising or 



over-fitting the dataset in order to improve generalization. Over-fitted models perform very 

well on training and testing data, but fail to generalise satisfactorily when new ‘unseen’ cases 

are used to validate their performance.  

Redundant predictors, those that do not add new information to the model because they 

basically contain the same information at another level with other variables, were detected 

using spearman correlations, bi-variate histograms or cross-tabulation. These were tendering 

strategy, procurement option and type of soil. This is likely due to the invariant nature of 

these predictors as most of the project were procured through design and build contracts with 

a mix of open-competitive and negotiated tendering strategies. Type of soil was found to be 

linearly dependent on ground condition, thereby not making any additional contribution to the 

model's output.  

All the best 10 models identified at this stage had 12 input nodes in the input layer, between 3 

and 7 nodes in a single hidden layer with one output, i.e. final cost. They had either a tanh or 

logistic activation function between their input and hidden layers with an identity transfer 

function in the output layer.  

Bootstrapping 

Bootstrapping is a general technique, attributed to Efron (1992), for estimating sampling 

distributions that allow for treating the observed data as though it were the entire (discrete) 

statistical population (StatSoft Inc. 2011). It provides an avenue for using subsamples from a 

sample in a manner that addresses the variability and uncertainty in statistical inferences. 

Traditional approaches to statistical inference are based on the assumption of normality in the 

data distribution. This is reasonable and largely accepted but where this assumption is wrong, 

Efron (1992) warns that the corresponding sampling distribution of the statistic may be 

seriously questionable. In contrast, nonparametric bootstrapping provides a way to estimate a 

statistic of population without explicitly deriving the sample distribution. During the 



development of the models presented so far, the dataset was divided into three subsets for 

training, testing and validation. On a closer examination, this might be regrettable, as not all 

the data gets used for training, testing or validation, and therefore some level of information 

within the entire dataset is lost in the learning process. If bootstrapping is employed, a 

different split of data is used each time for training or testing so as to glean as much 

information as possible from the entire dataset.  

Statisticians disagree though on the number of bootstrap samples (BS) necessary to produce 

reliable results. Most textbooks suggest choosing a sufficiently large enough bootstrap sample 

size without specific guidance on an optimum size. Efron and Tibshirani (1993), as well as 

Pattengale et al. (2009) however suggest that an minimum of 100 or a maximum of 500 BS is 

generally sufficient in most cases. Bootstrapping was thus applied to the dataset in this 

manner - 600 different training, validation, testing BS sample sets were generated by 

perturbing the entire dataset for each model using sampling with replacement over a uniform 

probability distribution. This should ensure that as many data cases as possible get used in the 

training, validation or testing samples sets. With the same inputs, neural network 

architectures, activation functions, hidden layers and nodes used in the case of the standard 

sample models developed in the previous section, 1000 neural network models were then 

trained and tested, retaining the best 10 performing models just as before. The 10 retained 

models were then further validated using the 100 separate validation cases just as was done 

previously.  

Figure 2 shows the performance of the best 10 models from both the standard and 

bootstrapped models validated with the 100 validation cases. It is obvious that bootstrapped 

models far outperform the standard models. Whiles the bootstrapped models overestimated 

actual final cost by about 4% on average, the standard models overestimated by 8.35% on 

average. Furthermore, the bootstrapped models underestimated actual final cost with an 



average error of about -6%, whereas the standard models averaged about -10%. This 

performance improvement is likely due to the fact that by using the 600 bootstrapped sample 

sets, the models were afforded a wider learning space than the standard models. The 

bootstrapped models were then carried forward for further analysis discussed below. 

 
Figure 1 - Validation Results (Standard Models vs Bootstrapping) 

 

Ensemble Network 

All modelling techniques are prone to two main types of error, bias and variance, largely 

because models essentially try to reduce complicated problems into simple forms and then 

attempt to solve the ‘reduced’ problem using an imperfect finite dataset. Bias is the average 

error any particular model will make across different datasets whereas variance reflects the 

sensitivity of the model to a particular choice of dataset (StatSoft Inc. 2011). The use of 

ensembles can improve the results that are produced from individual models by combining 

them in a way that achieves some sort of compromise between variance and bias. Also known 

as Committee Methods (Cf Oza 2006), ensembles attempt to leverage the power of multiple 
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models to achieve better prediction accuracy than any of the individual models could on their 

own. It is perhaps a way of consulting a 'committee of several experts', the 10 different 

bootstrapped models in this case, before reaching a final decision either by averaging, voting 

or by 'winner-takes-all', whichever is most appropriate (see Jordan and Jacobs 1994, Breiman 

1996). The result, at least in theory, is a model (the ensemble) that is more consistent in its 

predictions and on average, at least as good as the individual networks from which it was 

built. A weighted average algorithm was thus applied to combine the 10 best bootstrapped 

models to trade off bias and variance to improve performance.  

Table 4 compares the performance of the ensemble model with the bootstrapped models and 

the standard models. It is obvious that significant improvement has been achieved by applying 

the ensemble technique to the 10 bootstrapped models.  

Table 4- Summary of results (Standard, Bootstrapped & Ensemble Models) 

Model Average percentage error 

 Overestimate Underestimate 

Standard models +8.35% -9.6% 

Bootstrapped models +3.84% -5.81% 

Ensemble model +2.33% -3.83% 

 

In Table 5, details of a sample of 20 results out of the 100 validation cases used to test the 

ensemble model are highlighted. It shows a comparison between the ensemble final cost 

prediction and the actual final cost of the project, with a measure of the actual monetary error 

observed.  

 

 

 

 

 



Table 5- Sample results from ensemble model validation 

Case  Actual final cost 

(£,000) 

 Ensemble prediction 

(£,000) 

Ensemble error 

(£,000) 

Ensemble absolute 

% error (£) 

1             4,846  4,990 (144)             2.97  

2             1,586  1,590 (4)             0.25  

3           24,986  23,760 1,226             4.91  

4           11,143  10,934 209             1.88  

5             5,328  5,765 (437)             8.20  

6             3,787  3,723 64             1.69  

7           17,346  16,967 379             2.18  

8             4,136  4033 103             2.49  

9             3,117  2994 123             3.95  

10             1,000  939 61             6.10  

11             1,773  1674 99             5.58  

12             3,779  3600 179             4.74  

13               209  192 17             8.13  

14             3,960  3810 150             3.79  

15               294  300 (6)             2.04  

16             2,296  2220 76             3.31  

17             2,104  2038 66             3.14  

18               248  247 1             0.40  

19               208  192 16             7.69  

20               201  197 4             1.99  

 

Table 6 shows a summary the performance of the ensemble model for all the 100 validation 

cases. 92% of the 100 validation predictions were within ±10% of the actual final cost of the 

project with 77% within a ±5% of actual final cost. Only 8 out of the 100 validation had 

predictions beyond ±10% of the final cost of the project case. 

Table 6- Summary of validation performance of ensemble model 

Percentage Error Number of cases Percentage of total validation set 

Within ±5% 77 77% 

±5% < x > ±10% 15 15% 

Beyond ± 10% 8 8% 

Total 100 100% 



 

CONCLUSION 

A lot of project and cost information is usually generated on any one particular construction 

project. If this is done in a meaningful and retrieval manner for a number of projects over 

time, a vast database of potentially valuable asset results. This can be converted into valuable 

decision support systems using data mining methodologies. The possibilities are that these 

decision support systems could help construction practitioners in making better informed and 

reliable decisions as well as reduce the time and resources spent in reaching these decisions.   

Cost growth, attributed to a number of causes including the unavailability and uncertainty of 

necessary information for reliable estimation at the early stages of a project, remains one the 

major problems in the construction industry. We make a case for using data mining in modern 

construction management as a key business tool to help transform information embedded in 

construction data into decision support systems that can complement traditional estimation 

methods for more reliable final cost forecasting. Using a combination of nonparametric 

bootstrapping and ensemble modelling in artificial neural networks, cost models were 

developed to estimate the final construction cost of water infrastructure projects. 92% of the 

100 validation predictions were within ±10% of the actual final cost of the project with 77% 

within ±5% of actual final cost. We are now exploring avenues of transforming the models 

into standalone desktop applications for deployment within the operations of the industry 

partner that collaborated in this research. 

The models developed in this paper will be particularly useful at the pre-contract stage of the 

partnering construction firm in this research as it will provide a benchmark for evaluating 

submitted tenders. They could further allow the quick generation of various alternative 

solutions for a construction project using what if analysis for the purposes of comparison. The 

method and approach adopted to develop the models can be extended to even more detailed 



estimation so long as relevant data can be acquired.  It must be pointed out that reliable cost 

planning and estimation forms only one aspect of dealing with cost growth in construction. A 

more holistic approach must include effective project governance and client leadership, 

accountability and measures of cost control. Also, an effective data mining exercise does 

depend heavily on both quantity and quality of data. Companies that want to employ data 

mining techniques thus have to be intentional in how they collect and store their data, making 

sure it contains relevant business and operational data to solve the problem at hand. 
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