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Abstract. Case-Base Maintenance (CBM) has two important goals. On
the one hand, it aims to reduce the size of the case-base. On the other
hand, it has to improve the accuracy of the CBR system. CBM can be
represented as a multi-objective optimization problem to achieve both
goals. Multi-Objective Evolutionary Algorithms (MOEAs) have been
recognised as appropriate techniques for multi-objective optimisation be-
cause they perform a search for multiple solutions in parallel. In the
present paper we introduce a fitness function based on the Complexity
Profiling model to perform CBM with MOEA, and we compare its results
against other known CBM approaches. From the experimental results,
CBM with MOEA shows regularly good results in many case-bases, de-
spite the amount of redundant and noisy cases, and with a significant
potential for improvement.

1 Introduction

Case-Base Maintenance (CBM) has as its main goals control of the number of
cases within the case-base and maintaining the accuracy of the CBR system
to resolve problems [14]. Redundant cases have a negative impact on the per-
formance of the system, and noisy cases adversely affect the accuracy of the
proposed solutions. Therefore, CBM algorithms usually try to remove both re-
dundant cases and noisy cases.

There is a wealth of approaches to perform CBM in the literature [1,7,16,18—
22]. The CNN algorithm only deletes redundant cases, focusing on retrieval effi-
ciency [8]. The RNN algorithm extends CNN to consider noise cases as well [7].
The ENN algorithm only removes noisy cases, and RENN consists of multiple
iterations of ENN, taking the output of one repetition as an input for the fol-
lowing iteration [21]. The family of algorithms DROP1, DROP2 and DROP3
were introduced to reduce redundancy and noisy cases [22]. The DROP family
introduces the concept of associate, in an attempt to classify cases as redundant
or noisy. COV-FP algorithms [20] and ICF [1] exploit the concepts coverage and
reachability in order to reduce both the redundancy and noise levels [19].



The main disadvantage of the aforementioned algorithms, with the exception
of the COV-FP series, is their sensitivity to the order in which cases are exam-
ined. That is, given the same case-base, these CBM algorithms could provide
different outcomes depending on the order of the cases in the case-base. Ad-
ditionally, another commonplace feature of all these algorithms is their greedy
approach to CBM goals, and the use of a lazy learning approach, such as k-
nearest neighbour [3]. Furthermore, since each algorithm has a fixed deletion
policy, the suitability of the algorithm to perform CBM is directly related to
the redundancy and noise levels. For instance, those algorithms focused on case
reduction underperform in cases-bases with few representative cases.

Consequently, CBM may be understood as a multi-objective optimization
problem, minimising the case-base size and error rate at the same time. However,
other objectives must be taken into consideration. In particular, it would be
useful to estimate the optimum number of cases to resolve the entire problem
domain [13], and to select a set of cases from the original case-base that maintains
or improves accuracy.

In the last decades, Multi-Objective Evolutionary Algorithms (MOEAs) have
been applied successfully in multi-objective optimization problems [2]. Therefore,
CBM could be approached as a MOEA. To this end, considering that CBM
algorithms should generate a case-base without redundant cases or noisy cases,
and that is as small as possible to resolve the entire problem domain, three
objectives based on Complexity Profiling [15] can be considered. Hence, MOEAs
should get a good well-maintained case-base irrespective of the redundancy and
noise levels of the original case-base.

In this work we propose to represent CBM as a 3-objective optimization
problem, and we present a CBM algorithm based on MOEA using a novel fitness
function.

The remainder of this work is as follows: in the next section we review the
background of Complexity Profiling and the basic principles of MOEA. In sec-
tion 3 we propose a fitness function for MOEA to perform CBM. In section 4,
we evaluate the MOEA with different case-bases, and other CBM algorithms.
Finally, in section 5 we present our conclusions and future work.

2 Background

2.1 Complexity Profiling

Massie et al. [16] introduced Complexity Profiling to estimate the proportion of
redundant and noisy cases, as well as the existing error rate in the case-base.
The foundation of this approach is a local complexity, which is an approximation
to find the proportion of cases with the same solution in the nearest neighbour
set of the case. Expression 1 describes the complexity function for a case:

k
1
complexity(c, k) =1 — % E p(c,i), 1)
i=1



where k is the number of nearest neighbours to consider and p(c,4) is the
proportion of cases within the case’s i-nearest neighbours that belong to the
same solution as ¢. The codomain for complexity function is [0, 1]. The more the
complexity of a case is, the more likely the case would be noisy.

Complexity Profiling is a global measure of the case-base, and it is composed
by three different indicators:

1. the error rate is the average of all the local complexities measures;

2. the noise is the proportion of all the complexity measures with values greater
than €; and

3. the redundancy is the proportion of all the complexity measures with values
equal to p.

The error, noise and redundancy are defined formally as follow:

1
error(M, k) = — Z complexity(c, k). (2)
|M| ceM
M lexit k) >
noise(M, k) = {c € M|complexity(c, k) > e}\ 3)
| M|
redundancy(M, k) = lee M|comp|l;;c|zty(c, b= p}\’ (4)

where M is a case-base, ¢ € M is a case within M, and k is the number of
neighbours of c¢. Experiments with ¢ = 0.5 and p = 0 confirm that Complexity
Profiling is a good predictor of accuracy and noise [16].

2.2 Multi-Objective Evolutionary Algorithms

Evolutionary Algorithms (EAs) are inspired in biological evolution [9], since they
simulate biological processes to search for a solution to an optimization problem.
EAs represent the problem with a string of binary values. The string is known as
an individual, and each of its binary values as genes. For each individual the EA
applies a function known as the fitness function, which indicates the suitability
of the individual to resolve the optimization problem. The search for the best
individual is an iterative process. Starting with a set of individuals known as the
population, an EA uses three operations on it to create the next generation of
individuals: reproduction, crossover and mutation. The reproduction operation
aims to select the better individuals according to their fitness values. Crossover is
applied only to selected individuals to create new individuals, usually exchanging
their genes. Mutation flips randomly the genes of the individual to increase the
diversity of individuals. At the end of the iteration process, the individuals within
the final population are potential solutions to the optimization problem. Hence,
a strategy is needed to choose the final solution as well.

Multi-Objective Evolutionary Algorithm (MOEA) is an EA that searches for
a solution to a problem according to two or more optimization objectives. Unlike



EA, MOEA fitness function returns a value per each objective [23]. Expression
5 defines formally the optimization problem to minimize n objectives:

minimize(P(x)) = minimize(p1(x), p2(), . .., dn(z)), (5)

where z is an individual, @ is the fitness function, and each ¢,, is the fitness
function associated to an objective. Given the fitness values of two individuals,
it is possible to define a relation of dominance between them [5]. This dominance
determines which individual is closer to the optimization objectives. Expression
6 defines formally the relation:

T<Yy <= (6)
Voi(x), di(y) € D(x) : di(x) < di(y)N
i (), 9i(y) € D(x) : ¢j(7) < ¢;(y),

where  and y are the individuals, < y expresses that x dominates y, and n
is the number of objectives. MOEA generates generations of individuals, where
non dominated individuals have higher odds of survival.

3 Multi-objective Optimization Fitness Function for
Case-Base Maintenance

So to perform CBM with a MOEA, we need to set up the representation of the
problem. On the one hand, we need to represent a case-base as an individual
of the population. On the other hand, we need to define a fitness function to
evaluate the suitability of the individual.

3.1 Case-base Representation

The case-base is a string of binary values that creates an individual. The length
of the string is the cardinality of the case-base. That is, each gene (binary value)
of the individual (string) represents the presence of the case in the case-base.

Let M be the original case-base, denoted by M = {¢1,cq,...,cn}, where ¢;
the i-th case of M (|M|] = n). The space of all possible individuals of M is
denoted by X. An individual x € X is formally defined as z = 122 ... 2h_12p,
where z; is the i-th gene of the individual with values of x; € {true, false}.

In order to map the cases from the original case-base (M) to the elements of
the individual, we introduce the following function:

M X — (M)
M(z) =7 ={¢; € M|z; = true}. (7)
For example, given the individual « with all elements set to true, M(z) = M,

otherwise if all elements are set to false then M(z) = (. For the sake of clarity,
we use the notation T as the case-base equivalent to the individual x.



3.2 Fitness Function to Perform CBM

We propose a fitness function based on Complexity Profiling to solve an opti-
mization problem with three objectives:

1. to minimize the difference between the current number of cases in the solu-
tion and the estimated number of non redundant cases;

2. to minimize the number of redundant cases; and

3. to minimize the error rate level.

The first objective aims to estimate the minimum number of cases, the second
is focused on avoiding case-bases with redundant cases, and the third leads the
search to find a case-base with the minimum error rate. According to these
objectives, the resulting case-base is expected to have smoother frontiers between
the clusters of cases of different solutions, and with few cases within the clusters.

The formal description of the fitness function is shown as follows:

@: X,N—R? (8)
D(x, k) =(fsize(T, k), redundancy(T, k), error(zT, k)).

Note that the domain of the fitness function is an individual , and a natural
number k that sets the number of neighbours to consider in all the functions.
Function fq;,. is defined as follows:

fsize :Xa IN — R (9)
fsize(w, k) = (M| (1 = redundancy(7, k) — length(x))"

where length(z) is the number of elements of x set to true and (|M]|* (1 —
redundancy(M, k)) — length(z) is the distance between the current number of
cases in the solution and the estimated number of non redundant cases that the
case-base should contain. This objective is squared to penalize those individuals
with a greater number of cases.

The values returned by functions redundancy(z, k) and error(Z, k) in the
fitness function (expression 8) oppose each other since a lower error rate means
a higher redundancy and vice versa.

3.3 NSGA-II

In this work we consider the well-known NSGA-II [5], a non-dominated sorting
based MOEA. Given two individuals x and y representing two case-bases, and
the fitness function @(z, k), the dominance relation for NSGA-IT is defined as:

(fsize(®) < fsize(y) A redundancy(x) < redundancy(y) A error(z) < error(y)) A
).
0)

(fsize() < fsize(y) V redundancy(z) < redundancy(y) V error(x) < error(y
1

(



For the sake of clarity we have omitted the parameter k of each function.

The main contributions of NSGA-II are a fast non-dominated sorting function
and two operators to sort the individuals: a density estimation of the individuals
in the population covering the same solution and a crowded comparison operator.

The fast-nondominated-sort algorithm details are shown in Alg.1. This func-
tion given a population P returns a list of the non-dominated fronts F, where
the individuals in front F; dominates those individuals in front F;y;. That is,
the first front contains the non-dominated individuals, the second front has those
individuals dominated only once, the third contains individuals dominated up to
twice, and so on. The individuals in the same front could have similar case-base
representations; to avoid this situation NSGA-II uses the crowded comparison
operator >,,, because individuals with lower density are preferred. To define for-
mally the operator >, let z, y be two individuals, then >, y if (Zrank < Yrank)
or ((trank = Jrank) A (Sdensity > Jdensity), Where Trqnk represents the front where
the individual belongs. The crowding-distance-assignment procedure calculates
the density per each individual (Alg.2).

Parameters are set up at the beginning, such as the number of generations
and number of individuals N for population. Each generation ¢ implies an iter-
ation of the algorithm, where two populations P; and Q; of N individuals are
used. When NSGA-II starts, the initial population Py is generated randomly.
Furthermore, binary tournament selection, recombination, and mutation opera-
tors are used with individuals from Py to create a child population Qg. Once P,
and Qg are initialized, NSGA-II runs its main loop, which we can see in Alg.3.
In each iteration, population P, and @Q); are joined to create the population Ry,
whose number of individuals is 2IN. After that, the individuals in R; are sorted
according to their dominance and crowding distances. The sorted individuals are
added to population P;yi. At the end of each iteration P,y is truncated to NV
individuals, and Q41 is generated using binary tournament selection, recombi-
nation, and mutation operators.

Once NSGA-II finishes, the final population P; will contain as much indi-
viduals as potential solutions, and the non-dominated individuals are mapped
to their corresponding case-bases. The case-base with the minimum error rate
is chosen as the solution of the CBM algorithm. If two or more case-bases have
the same error rate, then the algorithm chooses the first case-base found.

For further details of NSGA-II algorithms see [5].

3.4 Interpreting the MOEA approach

A MOEA using our proposed fitness function tends to search for the minimum
error rate and to delete the maximum number of cases, without exceeding a
threshold of number of non-redundant cases that corresponds to |M| (1 —
redundancy(M, k)) (expression 8). Figure 2 depicts the target cases-bases of
the fitness function for Iris dataset. That is, case-bases with a lower number of
cases and with a similar error rate to the original case-base. To build the figure,
we have created 1000 case-bases selecting from 5 to 70 random cases from Iris.
Therefore, we have 1000 case-bases of 5 cases, 1000 cases-bases of 6 cases, and



Alg.1 fast-nondominated-sort(P)

Require: A population P Require: A set of individuals Z
Ensure: list of the non-dominated fronts Ensure: Each individual within Z with a

Alg.2 crowding-distance-assignment(Z)

F density measure.
1: for p € P do 1: 1+ |Z|
2: for g€ P do 2: for i € [1,N] do
3: if p < g then 3. I[i| <0
4: Sp « SpU{¢} 4: end for
5: else 5: for each objective m do
6: if ¢ < p then 6: I <« sort(Z,m)
T np < np +1 7 I[l]density — 00
g en’(eini(fl' if 8: I[l]density o
9: forie[2,(I—1)] do
10: ?nd fo_r 10: IMdensity A Imdensity +(Zli +
11:  if n, =0 then 1].m — IJi — 1].m)
12: }-1_<_ F1Uip} 11:  end for
13:  end if 12: end for
14: end for
15: i =1
16: while F; # () do
17 H<+0
18: for p € F; do
19: for g € S, do Alg.3 NSGA-II main loop
20: ng < ng — 1 Require: A fitness function @.
21: if ng =0 then Ensure: a population P; of potential solu-
22: H <~ HU{q} tion
23: end if 1: R+ P UQ:
24: end for 2t 0,i+ 1
25:  end for 3: F < fast-nondominated-sort(P)
26: i=1i+1 4: while |Pi41| < N do
27, FieH 5:  crowding-distance-assignment(F;)
28: end while 6: PP UF
29: return F CO Ay Ry |
8: end while
9: sort(Pit1, >n)
10: Pt+1 — Pt+1[0 : N}
11: Q¢4+1 + make-new-pop(Pi+1)
12: t+—t+1

Fig. 1: NSGA-II algorithm and main functions [5]



so on. Finally, a Hold-Out evaluation is used to measure the error rate of each
case-base, using 60% of the cases as the training set and 40% as the test set. For
each set of 1000 cases-bases the error rate given by the Hold-Out evaluation is
averaged. The plot shows for each case-base size the average error rate, and the
maximum and minimum observed values for each case-base size.

Case-bases that fitness function is searching for
1
Redundancy Minimizing
threshold error
0,8 +
% 06 - Minimizing size
- Avg_Error
g 0,4
W \ Case-bases = Min.Error
objectives
0,2 \ A . Max.Error
’ \ N .
o
0 T If',"'F L T T T
5 15 25 35 45 55 65
Minimum Number of cases
observed error

Fig.2: Evolution of the error rate for Iris dataset. A lower number of cases is
correlated with higher error rates. The fitness function goal is to find a case-base
located in between the redundancy threshold and the minimum observed value
for this experimentation.

4 Experimental Evaluation

4.1 Experiments and Results

We have considered two measurements to study the suitability of our fitness
functions to perform CBM: the Reduction Rate, and the Competence Improve-
ment [18]. The reason to use these two measures is because the suitability of
CBM algorithms is strongly related to the number of cases deleted by the CBM
process, and to the accuracy of the CBR system that will use the maintained
case-base. The measurements are defined as follows:

1. The Reduction Rate is the average number of cases removed, that is:

_ M
M|

reduction(M', M) (11)

2. The Competence Improvement, which quantifies the proportional improve-
ment in accuracy of the CBR system. Note that this error is not related to
the Complexity Profiling error measure. This measure is formally defined as
follows:



eval_error(M)

CI(M', M) = ; (12)

eval_error(M')

where M is the initial case-base and M’ is the case-base after the mainte-
nance, with M’ C M, and eval_error(M) is the proportion of times that the
CBR system returns a wrong solution to the input problems using the Hold-Out
approach described below. Values of CI(M’, M) > 1 mean an improvement in
accuracy, values CI(M’, M) < 1 mean an underperformance, and otherwise it
means no improvement at all. The CBR system is evaluated using a Hold-Out
approach executed 10 times, as other authors suggest [4,17,18,20]. In particular,
the Hold-Out is performed considering 30% of the cases as the training set. The
retrieval of similar cases is performed using a k-NN approach. The value k = 3
is set for both the k-NN and the calculation of Complexity Profiling.

[ H error rate H redundancy [ noise ]
australian 0.277 0.636 0.284
contraceptive 0.716 0.133 0.764
diabetes 0.435 0.44 0.451
flags 0.6 0.289 0.655
glass 0.436 0.444 0.453
ionosphere 0.18 0.772 0.18
iris 0.064 0.913 0.06
liver-bupa 0.586 0.215 0.597
lymph 0.367 0.487 0.392
segment 0.056 0.917 0.058
sonar 0.218 0.716 0.245
vehicle 0.447 0.43 0.468
vowel 0.044 0.9 0.028
wine 0.069 0.899 0.056
Z0O 0.083 0.881 0.089

Table 1: Error rate (exp. 2), redundancy (exp. 4) and noise level (exp. 3) given
by Complexity Profiling with k£ = 3. The values in bold represent the redundant
and noise datasets, respectively.

In order to test the suitability of our proposal, we evaluate NSGA-II with
our fitness function for CBM, using different standard datasets, and we do a
comparative analysis considering some representative CBM algorithms from the
literature. The results of each evaluation are the Reduction Rate and Compe-
tence Improvement measurements. In particular, our experiments consider:

— 15 datasets from the UCI repository [6]: australian, contraceptive, diabetes,
flags, glass, ionosphere, iris, liver-bupa, lymph, segment, sonar, vehicle, vowel,
wine and zoo. Each dataset has no missing values, and the nominal or string
values in the datasets have been replaced by equivalent integer values. Fi-
nally, each record of the dataset is considered as a case, and the last attribute
makes up the solution. Table 1 shows the levels of error rate, redundancy
and noise given by Complexity Profiling using k¥ = 3, ¢ = 0.5 and p = 0 for



expressions 2, 3 and 4. We consider a dataset as noisy where its noise level
is higher than 0.4 and redundant when its redundancy level is higher than
0.5. Thus, there are eight redundant datasets and seven noisy datasets.
— 7 CBM algorithms: CNN, RNN, RENN, DROP1, DROP2, DROP3 and ICF.
— NSGA-IT as MOEA using our fitness function. The number of individuals is
100, the number of generations 250, the mutation probability is 0.05 and the
crossover probability is 0.9.

Figures 3, 4, 5 depict the result of Competence Improvement for each CBM
algorithm and case-base. Each column represents the result CNN, RNN, RENN,
DROP1, DROP2, DROP3 and ICF. NSGA-II returns a final population with
individuals representing case-bases. In this experimentation we only consider
three of them: the minimum as the solution case-base with the maximum error
rate, the mazimum as the case-base with the minimum error rate, and the case
base with the minimum Complexity Profiling error, which is returned by NSGA-
IT. The lines in figures 3, 4, 5 represent the results of the maximum, minimum
and the output case-bases obtained by NSGA-II using our fitness function.

. CNN

s RENN
I RNN
mm DROP1
s DROP2
DROP3

o ICF

Competence Improvement

== NSGAIl
=& Min. NSGAIl

=4 Max.NSGAIl

australian contraceptive  diabetes flags glass
Case-base

Fig. 3: Results for Competence Improvement for australian, contraceptive, dia-
betes, flags and glass case-bases for each CBM algorithm. Higher means better.

Table 2 shows the reduction rate results for each case-base and CBM algo-
rithm. The highest reduction is highlighted in bold. For the sake of clarity, table
2 only shows the reduction given by the output case-base in NSGA-II, because
maximum and minimum are very similar.

Concerning the duration of a CBM execution, we must take into consideration
the size of the case-base, the number of features to describe the problem and
solution, and the complexity to compute the similarity between cases. NSGA-
IT has the longest runtime among all the algorithms because other factors are
implicated, such the crossover and mutation operator, the assigned probability



1,3
1,2
 CNN
= 11
g = RENN
E 1
% = RNN
E- 0.9 . DROP1
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[¥]
0,5 ——=NSGAIl
0,4 —0—Min. NSGAIl
=—0—Max.NSGAII
0,3
ionosphere iris liver-bupa lymph segment
Case-base

Fig.4: Results for Competence Improvement for ionosphere, iris, liver-bupa,
lymph and segment case-bases for each CBM algorithm. Higher means better.

1,3
1,2
. CNN
e 1,1
g = RENN
E 1
g = RNN
£ 09
£ mmm DROP1
g 0,8 = DROP2
£ 07 DROP3
(-3
E 06 — CF
Q
0.5 == NSGAIl
0,4 =0—Min. NSGAIl
== Max.NSGAIl
0,3
sonar vehicle vowel wine Z00
Case-base

Fig. 5: Results for Competence Improvement for sonar, vehicle, vowel, wine and
700 case-bases for each CBM algorithm. Higher means better.

to apply, and especially the amount of individuals in the population and the
number of generations.

4.2 Discussion

According to the experiments, the case-base returned by the NSGA-II algorithm
achieves the best improvements in competence (australian, ionosphere, and seg-
ment), or reaches a solution very close to the best observed among the other



Datasets CNN [ RENN | RNN_|[DROPI1|DROP2]|DROP3] ICF [[NSGAII
australian || 0.595 | 0.162 | 0.598 | 0.5 0.5 | 0.581 | 0.415 || 0.616
contraceptive|| 0.246 | 0.552 | 0.266 | 0.5 0.5 | 0.778 | 0.686 0.47
diabetes 0.445 | 0.304 | 0.477 | 0.497 | 0.501 | 0.652 | 0.48 0.59
flags 0.250 | 0.533 | 0.37 | 0.496 | 0.504 | 0.77 | 0.637 || 0.705
glass 0.409 | 0.383 | 0.436 | 0.497 | 0.503 | 0.691 | 0.557 || 0.713
fonosphere || 0.60 | 0.163 | 0.763 | 05 0.5 | 0.5834 | 0.425 || 0.608
iris 0.827 | 0.019 | 0.856 | 0.49 05 0.51 | 0.327 || 0.215
Tiver-bupa || 0.271 | 0.408 | 0.383 | 0.5 0.5 | 0.704 | 0.588 || 0.642
lymph 0.534 | 0.223 | 0.612 | 0.495 | 0.505 | 0.612 | 0.466 || 0.766
segment 0.844 | 0.0564 | 0.881 | 0.499 | 0.5 | 0.527 | 0.413 || 0.479
sonar 0.579 | 0.214 | 0.593 | 0.503 | 0.503 | 0.607 | 0.4 0.651
vehicle 0.413 | 0.325 | 0.455 | 0.499 | 0.501 | 0.663 | 0.498 || 0.588
vowel 0.471 | 0.108 | 0.704 | 0499 | 0.5 | 0.555 | 0.327 || 0.372
wine 0.782 | 0.065 | 0.815 | 0.492 | 0.5 | 0.532 | 0.315 || 0.209
700 0.714 | 0.071 | 0.771 | 0.443 | 0.5 | 0.543 | 0.529 || 0.184

[ average ]| 0.539 | 0.239 | 0.599 | 0.494 | 0.5012 | 0.621 | 0.471 ]| 0.533 |

Table 2: Reduction rate for each dataset and CBM algorithm.

CBM algorithms. When the best case-bases of NSGA-II are considered, this
algorithm achieves the best results in many of the datasets (australian, contra-
ceptive, flags, ionosphere, iris, lymph, segment and vehicle). Additionally, the
case-base with the worst Competence Improvement with NSGA-II only returns
the worst results in liver and sonar datasets among the CBM algorithm con-
sidered. In some datasets with high levels of redundancy, the best competence
improvement results of NSGA-II are beaten by algorithms specialized in remov-
ing redundant cases, such as CNN. Similarity, NSGA-II is beaten in some noisy
datasets by those algorithms specialized in deleting noisy cases, such as ICF in
diabetes. However, overall the average Competence Improvement achieved by
NSGA-II is consistent in all the experiments.

It is also worth mentioning that the worst case-base in the final population of
NSGA-II are often very close to the competence improvement of the rest of the
algorithms. However, our eager approach to choosing the final case-base seems
insufficient for picking the best maintained case-base, suggesting that it is not
enough to consider only the minimum error rate.

Figure 6 plots one point for each CBM algorithm, and each point corre-
sponds to the Reduction Rates and Competence Improvement resulting from
the average of all the Reduction Rates and Competence Improvement from the
experiments. The figure depicts how difficult it is to achieve both great reduc-
tions and accuracy improvement at the same time, because a larger reduction
results in worsening accuracy. The only exceptions to this tendency are CNN
and the best results given by NSGA-II.

Finally, to identify whether a CBM algorithm deletes noisy or redundant
cases, the Pearson product-moment correlation coefficient is computed between
the error, redundancy and noise measure, which are returned by Complexity
Profiling, and the accuracy and reduction rate given by the evaluation process.
This correlation ranges from —1 to +1. Values in the interval (—1,0) indicates
a negative correlation, values in the interval (0,1) note a positive correlation.
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Fig. 6: Distribution resulting of averaging the datasets results for each CBM
algorithm according to the reduction rate and competence improvement.

That is, values close to —1 means the CBM algorithm does not delete that kind
of cases, and values close to 1 point out that CBM deletes aggressively that type
of case. Table 3 shows the coefficient values for each pair of results.

The NSGA-IT correlation coefficients (table 3) indicate that the number of
deleted cases is correlated with both noisy and redundancy levels. Thus, it seems
that the fitness function aims the search of the maintained case-base deleting re-
dundant cases and smoothing the frontiers between clusters of cases. Noisy cases
are deleted more aggressively than the redundant cases though. In particular,
NSGA-II achieves lower reduction rates in datasets with many redundant cases
and few noise cases such as iris, vowel, wine and zoo. On the contrary, the reduc-
tion rate is greater in noisy datasets, such as contraceptive, diabetes, flags, glass,
liver-bupa, lymph and vehicle. The coefficients also show that RENN, DROP3
and ICF are focused on deleting noisy cases, albeit DROP3 and ICF remove re-
dundant cases as well. Moreover, CNN and RNN delete mainly redundant cases.
DROP1 and DROP2 are focused on deleting cases near the borders. The rest of
the CBM algorithms delete both types of cases equally.

Pearson correlation CNN | RENN | RNN [DROP1|DROP2|DROP3| ICF |NSGAII
Error & accuracy -0,97 -0,91 -0,48 -0,86 -0,83 -0,64 -0,90 -0,85
Redundant & reduct. rate 0,91 -0,96 0,96 -0,33 -0,28 -0,95 -0,86 -0,60
Noise & reduction rate -0,89 0,97 -0,96 0,31 0,30 0,97 0,88 0,59

Table 3: Correlation between Complexity Profiling error and accuracy, Complex-
ity Profiling redundant level and reduction rate, and Complexity Profiling noise
level and reduction rate.



5 Conclusions and Future Work

In this work we propose a multi-objective evolutionary approach to solve some
tasks of Case-Base Maintenance. In particular, we present a novel fitness function
based on Complexity Profiling [15]. We test the suitability of the approach on
different datasets and compare the performance achieved to that of existing CBM
algorithms from the literature.

Previous works are mainly focused on reducing either the number of redun-
dant cases or noisy cases [1,7,8,20-22], or aimed at selecting attributes [10,12]
or to both enhance the accuracy and reduce the size of the case-base [11]. How-
ever, the fitness function proposed in this work measures the redundancy of the
case-base, the number of noisy cases and the error rate of the system. Therefore,
this function aims to maintain the case-base following three objectives. The
experiments show that the fitness function aims the search of the maintained
case-base, to those case-bases with less redundant cases and smoother frontiers
between clusters of cases.

The results obtained in the experiments show that the evolutionary approach
outperforms general CBM approaches in many datasets, obtaining promising
results even in worst cases. However, in our opinion, the most remarkable result
of our proposal is the regularity of the behaviour with most datasets.

The runtime could be a limitation, in particular where CBM can not be
performed off-line and the CBR system is stopped until the CBM process finishes.
For this reason MOEA are not suitable in all scenarios. Nevertheless, using
MOEA could be suitable when the case-base is built for the first time from a
raw set of data, and where time is not the most important restriction. In this
scenario, selection of an individual case-base from the final population could be
done through an evaluation process using Cross-Validation or Hold-Out.

The use of genetic operators is limited in this work. Therefore, the next step
will focus on the definition of specific crossover and mutation operators based
on coverage and reachability.
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