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ABSTRACT 

Significant improvements are achievable in the accuracy of cost estimates if 

cost models adequately incorporate issues of flexibility and uncertainty. This study 

evaluates the relational efficiencies of the fuzzy composition operators – the max-min 

and max-product, in establishing the final cost of water infrastructure projects. Cost 

and project data was collected on 1600 water infrastructure projects completed in 

Scotland between 2000 and 2011. Neural network is first used to develop relative 

weightings of relevant cost predictors. These were then standardized into fuzzy sets to 

establish a consistent effect of each variable on the overall target cost.  The strength 

and degree of relationship of the normalized cost predictor weightings and the 

fuzzified project attributes were combined using the max-min and max-product 

composition operators to obtain project cost predictions. The predictions from the two 

composition operators are compared with the actual cost figures.  Results show 

comparable performance in the efficiency of the composition operators. Based on 

statistical correlations, the max-product composition operator achieved on average a 

deviation of 1.71% while the max-min composition had an average deviation of 

1.86%. Improvements in the relational efficiency of neuro-fuzzy hybrid cost models 

could assist in developing a robust framework for realistic cost targets on 

construction projects. 
 

INTRODUCTION 

One of the major challenges of forecasting is dealing with uncertainty 

(Hüllermeier 1997) - the broad range of variability of likely outcomes of any event. 

One approach to uncertainty analysis that allows for some degree of flexibility is the 

fuzzy sets framework.  To a reasonable extent, fuzzy sets basically imply the 

inclusion of degree of belonging in evaluating variables (Zadeh, 2008). They help to 

capture irreducible uncertainty as well as model vagueness in human reasoning 

abilities. Fuzzy relations are special cases of fuzzy sets.  Fuzzy relations can be 

defined as a vague relationship between some fixed numbers of variables (Chan et al., 

2009; Zimmerman, 2001). Relations in this case are normative structures that help to 

interpret the attributes of fuzzy systems. The composition operation is however one 

class of similarity relation that seeks to establish the relationship between similar 
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elements in different universe of discourse (Zimmermann, 2001). Two common 

forms of composition operations are the max–product and max–min compositions. 

Zimmerman (2001) opines that the max – min composition is the most frequently 

used and that the operations of fuzzy relations can be well defined using the 

Extension principle. This paper provides an evaluation of the max-min and max-

product composition operator in neuro-fuzzy hybrid cost models. The paper briefly 

discusses construction cost estimation and neuro-fuzzy modelling before detailing the 

mapping strategies in neuro-fuzzy hybrid cost models. The paper then proceeds to 

evaluate the relational efficiencies of two composition operators in a neuro-fuzzy 

hybrid cost estimation model and concluding with results achieved and their 

implications for research using the two mapping strategies.  

 

COST ESTIMATION 

Effective cost estimation relates the design of constructed facilities to their 

cost, so that while taking full account of quality, risks, likely scope changes, utility 

and appearance, the cost of a project is planned to be within the economic limit of 

expenditure (Kirkham and Brandon 2007). This stage in a project life-cycle is 

particularly crucial as decisions made during the early stages of  the development 

process carry more far-reaching economic consequences than the relatively limited 

decisions which can be made later in the process. As noted by Hegazy (2002), in spite 

of the importance of cost estimation, it is undeniably neither simple nor 

straightforward because of the lack of information in the early stages of the project. 

Cost estimation is so vital; it can seal a project’s financial fate (Nicholas 2004). 

Rightly, or wrongly, cost estimates produced at the beginning of a project are used by 

the client to build their budget which often becomes ‘the baseline’ on which actual 

project performance may be measured and compared.  

Cost estimation techniques range from model-based methods to model-free 

methods. In between these spectra, lies a variety of techniques available to estimate 

the cost of a project including traditional bills of quantity, activity schedule and 

detailed estimation. Model-based techniques consist of static sets of relationships 

which systematically handle inputs and methodologically translate them into output 

(Smit 2012).  In situations where such relationships are analytical, they mimic some 

form of mathematical function (Ross 2009). Model-free techniques are more dynamic 

and adaptive and include fuzzy systems and neural networks (Lee & Lin, 1992). 
 

NEURO-FUZZY COST MODELS 

Artificial Neural Networks (ANN), henceforth referred to as neural networks 

(NN) with artificial implied, is an analogy-based, non-parametric information-

processing system that has performance characteristics similar to a biological neural 

network of the brain (Anderson and McNeill 1992). They retain two features of the 

biological neural network: the ability to learn from experience and make 

generalisations based on this acquired knowledge (Haykin 1994). Neural networks 

are structured to provide the capability to solve problems without the benefits of an 

expert and without recourse to programming (Boussabaine and Elhag 1999) 
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Neural networks are promising tools when used in conjunction with fuzzy sets 

for developing adaptive systems (Kosko and Isaka 1993). Adaptive systems can 

generally identify rule patterns in incoming data. Neural network and fuzzy logic 

systems are both numeric model-free estimators and dynamic systems (Lee and Lin 

1992). Neural networks provide a platform for classifying patterns without having to 

provide explanations on the possible sophistications employed by the classification 

machinery (Eklund 1994). The disadvantage in the neural network technique is that 

they often increase nodes sporadically or swap network structure arbitrarily (Lee and 

Lin 1992); a variability that puts to question its reliability.  Besides, the blackbox-

ness of neural networks, more or less consigns it to the realm of magical arts. Fuzzy 

models, on the other hand deteriorate significantly where data sets used for 

identification are highly heterogeneous (Pedrycz 1996). Moreso, its procedures do not 

seem easily understandable to many cost and construction professionals (Tokede and 

Wamuziri 2012). Synergizing neural network and fuzzy systems therefore provides 

promising potentials for intelligent hybrid systems (Lee and Lin 1992). Lin and Lee 

(1992) pointed out that hybrid learning algorithms perform better than supervised 

learning algorithm alone. In a more recent study by Ahiaga-Dagbui and Smith (2012), 

it was discovered that the best neural network models for 98 water infrastructure 

projects had an average underestimation and overestimation of 1.2% and 4.6% 

respectively. In comparison, the neuro-fuzzy hybrid cost model using the same 

dataset achieved an average performance of 0.6% and 0.8% (Ahiaga-Dagbui et al. 

2013). Neuro-fuzzy techniques are one of the most common hybrid techniques 

employed in cost estimation problems. According to Chan et al (2009), such 

techniques are highly competent in handling pattern recognition and automatic 

learning. Ahiaga-Dagbui et al., (2013) also suggest that fuzzy sets and neural 

networks both provide excellent mapping interphases which when combined could be 

invaluable in pattern recognition. 

Mapping Strategies in Neuro-Fuzzy Cost Models 

Fuzzy sets are useful in mapping non-empty sets to partially ordered sets 

(Sanchez 1976). They can be used to bridge the gap between mathematical models 

and their associated physical reality (Demicco and Klir 2003). This is mainly 

achieved by representing the vagueness associated with the linguistic description.. 

Fuzzy relations are essentially the means of modelling the intensity between elements 

of a fuzzy set.  Fuzzy relations emerge from Cartesian representation of two or more 

sets on a universal scale (Belohlavek and Klir 2011).  

A composition is a common mathematical operation that seeks to establish the 

relationships between similar elements in different universe of discourse 

(Zimmermann 2001). The compositionality assumption is a sort of logical 

generalization presupposing that the degree of membership of a compound fuzzy set 

is a function of the membership degrees of each component. Effectively, this implies 

the whole is summarily a sum and/or product of its parts (Belohlavek and Klir 2011). 

There have been contention on the possibility of a single non-parametric operator to 

appropriately model the meaning of ‘AND’ or ‘OR’ context independently. The 

composition method is commonly used in applications of artificial neural network for 

mapping between parallel layers in a multi-layer network. 
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According to Ross (2009), the fuzzy relation,  of two sets, and  can be defined by 

the set-theoretic and membership function-theoretic, mathematically expressed as:  

= ∘       Eqn. 1 

Where R is a fuzzy relation on the Cartesian space X x Y. S is a fuzzy relation 

on Y x Z, and T is fuzzy relation on X x Z. In this cost estimation problem, R 

represents the set of cost predictors and S refers to the set of standard values of 

tolerance for linguistic descriptors of project attribute 

 

Max-min Composition 

The max-min composition is commonly used when a system requires a 

conservative solution. Loetamonphong and Fang (2001, pp6) explains this approach 

as when the  “goodness of one value cannot compensate the badness of another 

value”.  Figure 1 shows a graphical illustration of the max-min composition. Ross 

(2009) pointed out the max-min composition is analogous to approximate reasoning 

using the IF-THEN rules. 

 

Mathematically, the max-min composition can be represented as: 

  Eqn. 2 
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Figure 1 – Graphical illustration of the max-min composition (Dubois & Prade, 2000) 

Max-Product Composition 

The max-product composition is touted by some researchers as yielding better 

equivalent results (Loetamonphong and Fang 2001; Ross 2009). One possible 
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explanation is that conventional risk calculus is presumed to have a combinatorial 

character. 

Mathematically, the max-product composition can be represented as: 

  Eqn. 3 

 

The max-product composition is a fuzzy calculus that expresses the relationship 

between similar elements. Figure 2 shows a graphical illustration of the max-product 

composition .Ross (2009) illustrated the max-product composition to relate the rain 

gauge prediction of large storms to the actual pond performance during rain events.  

µ

Y

B1

Product

Max

µ

X

A1

µ

Z

C1

µ

µ

Y

B2µ

X

A2 µ

Z

C2

µ

µ

Z

C'

yx

z

C'1

C'2

 
Figure 2 – Graphical illustration of the max-product composition (Dubois & Prade, 

2000) 

Other possible variants of composition include the max-max, min-min, max-average 

and sum-product (Ross 2009).  Essentially, the composition involves employing 

hybrid formulations of min, max, average and product to arrive at some relationship 

formation; thereby specifying a range of mathematical values that could be tolerated 

by a category (Carpenter et al. 1992). Yager and Filev (1994) mentioned that the 

MAX operator ignores reinforcement inherent in the overlapping in the output fuzzy 

sets. Carpenter et al., (1992) also stated that the MIN operator helps highlight features 

that are critically present, whilst the MAX operator flags-off features that are 

critically absent.  

RESEARCH METHODOLOGY 

The findings reported in this experimental paper were achieved using the 

following steps. Approximately 1600 projects completed between 2004 and 2012, 

with cost range of between £4000 to £15 million, comprising newly built, upgrade, 

repair or refurbishment projects were used for the study. One hundred cases were 



6 
 

selected using stratified random sampling to be used for independent testing of the 

final models. The remaining data were then split in an 80:20% ratio for training and 

testing of the neural network model. All cost values were normalized to a 2012 

baseline with base year 2000 using the infrastructure resources cost indices by the 

Building Cost Information Services (BCIS 2012). The nature of the projects ranged 

from construction of water mains, water treatment plants, Combined Sewer 

Overflows (CSOs), installation of manholes or water pumps and upgrades and repairs 

to sewers. 

The data was then pre-processed to structure and present the data to the model in the 

most suitable way. For this research, extreme values and outliers were either re-coded 

or deleted from the sample set and missing values replaced with the mean or mode. 

Input errors were corrected and all cost values were normalized to 2011 with the base 

year 1995 using the infrastructure resources cost indices by the Building Cost 

Information Services (BCIS 2012). Invariant variables, such as procurement option, 

payment method, fluctuation measure and type of client, were removed from the 

variable set as they would only increase the model complexity whiles offering little to 

no useful information for model’s performance. Categorical variables such as type of 

project, need for project, etc. were coded using a binary coding (0, 1) format. Data 

screening using scree test and optimal binning allowed for the selection of five initial 

predictors (primary purpose of project, project scope, project delivery partners,  

estimated target cost and project duration) to be used for the actual ANN modelling. 

Several neural network models were then developed with the 20 best models used to 

estimate the relative contribution to model performance of each factor used. These 

values, as shown in Table 1 were then standardized into fuzzy sets in the next phase 

of the study to establish a consistent effect of each variable on the overall target cost.   

Fuzzy Sets Modelling 

Fuzzy set theory is applied at this stage of the modelling exercise to evaluate the 

subjective measures for each of the cost predictors in order to predict final cost. Using 

Eqn.4 the average weighted ranking for each of the variables from Table 1was 

normalized to unity in order to generate a standardised index for the subsequent fuzzy 

set computations (see Table 2) 

   Eqn. 4 

Where wi is the average relative weighting of the ith predictor 

∑W is the sum of relative weighting of all predictors 

Table 1 - Normalized weighted values of the cost predictors from the neural 

network analysis 

Factors Project 

Scope 

Primary 

Purpose 

Delivery 

Partner 

Duration Target 

Cost 

Normalized 

ranking 
0.22 0.11 0.02 0.02 0.63 
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With mean target cost to predictor plots, all predictors were fuzzified using the range 

set below: 

 ,    Influence is Rather High 

   Influence is High 

   Influence is Medium 

 ,        Influence is Low 

The next stage of the fuzzy modelling involved developing membership functions. In 

developing these, the tolerance index is particularly relevant in evaluating and 

constraining the range of possibilities subject to a complex set of influencing 

variables, quantitatively and/or qualitatively defined. The tolerance index is vital in 

order to model the uncertainty in the cost values within a realistic continuum as 

opposed to a single figure-of-merit. For this study, the tolerances, β, were adapted to 

follow those indicated by Ayyub (1997) and reported in theTable 2 

Table 2: Values of tolerance. Adapted from Ayyub (1997) 

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Poor/Low 1.0 0.9 0.7 0.4 0 0 0 0 0 0 0 

Median 0 0 0.4 0.7 0.9 1.0 0.9 0.7 0.4 0 0 

High 0 0 0 0 0 0 0 0.4 0.7 0.9 0 

Rather 

High 
0 0 0 0 0 0.4 0.7 0.9 1.0 0.9 0.7 

 

Each of the project variables in the validation set was converted into fuzzy set 

variables using Table 2 

 

ANALYSIS AND DISCUSSION 

Table 3 reports the performance of the NF hybrid models in predicting the final cost 

for 5 of the 99 different projects used in the validation set. The tolerance of each of 

the cost values in the validation set was computed using Eqn.4 and defuzzified to 

obtain a 3-point estimate representing the fuzzy mean, fuzzy upper and fuzzy lower 

values as illustrated in Table 4. These three values provided a range of likely final 

cost rather than the customary single value estimate..  The overall results for the 

performance of the validation cases have been represented in Figure 3.  

Table 3: Logarithmic Cost values for both composition operators 

Project Validation 

cases 

Max-Product 

Mean value 

Max-min  

Mean Value 

Actual Out-

turn Cost value 

  Project Case 9 6.685 6.672 6.691 

Project Case 204  5.592 5.572 5.670 

Project Case 901 5.262 5.279 5.385 

Project Case 505 5.877 5.934 5.980 

Project Case 824 5.575 5.633 5.674 

Based on statistical correlations, the max-product composition operator achieved on 

average a deviation of 1.71%; while the max-mean composition had an average 
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deviation of 1.86%. The Max-Product composition performed consistently better in 

both the fuzzy mean and fuzzy lower values but did not show any significant 

advantage in the fuzzy upper cost values. This might indicate that the benefit of the 

max-product operator is situated within the fuzzy mean and lower cost target 

predictions.   
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 Figure 3 – Graphical plot of the project validation cases and the relational 

efficiency of composition operators 

The corresponding percentage differences in the cost target were also estimated for 

all the 99 project validation cases. Table 4 provides a summary of the overall result 

obtained for all the validation cases. 

 

Table 4: Summary of Results from Neuro-fuzzy Model Validation 

Cost Category Fuzzy Upper 

Value 

Fuzzy Mean 

Value 

Fuzzy Lower 

Value 

Max-Min Operator 2.59% 2.07% 0.94% 

Max-Product Operator  2.59% 1.74% 0.78% 

 

The volatility measures considered for the range of values for the composition 

operators were fairly consistent. The standard deviation of the cost values of the 

max-product was £161,715, while that of the max-min was £188,506. This implies 

that the range of fluctuation in the max-min composition measure was higher than 

those obtained from the max-product composition predictions. 
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CONCLUSION 

The research reported in this paper combines the learning and generalization 

capabilities of artificial neural networks with fuzzy logic’s ability to formalise human 

reasoning and decision making within an environment of uncertainty and incomplete 

information. This paper develop a neuro-fuzzy hybrid cost model for predicting the 

final cost of small water infrastructure project and then evaluates the efficiency of the 

max-product and max-min composition operators in predicting the final target cost. 

Based on 99 project validation cases, it was found that the max-product composition 

operator achieved an average a deviation of 1.71% while the max-mean composition 

had an average deviation of 1.86%.  

It is however noteworthy that this two composition operators are not an 

exhaustive treatment of the relational capabilities of fuzzy sets. However, they 

currently represent the most popular calculi employed in fuzzy set evaluations. There 

might be need to improve on the framework of the existing mathematical 

formulations of fuzzy sets in order to fully realize the potentials of fuzzy sets in 

modelling the vagueness in human reasoning and capturing irreducible uncertainties 

in water infrastructure projects. Improvements in the relational efficiency of neuro-

fuzzy hybrid cost models will in no little way assist in developing a robust framework 

for realistic cost targets in water infrastructure projects. 
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