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Abstract. The induction of classification rules from previously unseen
examples is one of the most important data mining tasks in science as
well as commercial applications. In order to reduce the influence of noise
in the data, ensemble learners are often applied. However, most ensemble
learners are based on decision tree classifiers which are affected by noise.
The Random Prism classifier has recently been proposed as an alterna-
tive to the popular Random Forests classifier, which is based on decision
trees. Random Prism is based on the Prism family of algorithms, which
is more robust to noise. However, like most ensemble classification ap-
proaches, Random Prism also does not scale well on large training data.
This paper presents a thorough discussion of Random Prism and a re-
cently proposed parallel version of it called Parallel Random Prism. Par-
allel Random Prism is based on the MapReduce programming paradigm.
The paper provides, for the first time, novel theoretical analysis of the
proposed technique and in-depth experimental study that show that Par-
allel Random Prism scales well on a large number of training examples,
a large number of data features and a large number of processors. Ex-
pressiveness of decision rules that our technique produces makes it a
natural choice for Big Data applications where informed decision mak-
ing increases the user’s trust in the system.

1 Introduction

Big Data technologies have opened the door wide for researchers to re-engineer
their data science products, allowing for unprecedented scalability. Scalability
is key to the success of cloud computing hosted applications. An enabler ap-
proach providing scalability to a wide range of applications is the MapReduce
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framework [10]. Motivated by the recent developments in this area, we scale up
ensemble classification adopting rule-based classifiers, using MapReduce frame-
work. Ensemble classification is the training of individual and diverse base classi-
fiers and the integration of their predictive models into a combined classification
model. The aim of ensemble classifiers is to increase the predictive accuracy com-
pared with that of a single classifier. One of the best known ensemble learners is
Breiman’s Random Forests (RF) [7], which is based on Ho’s Random Decision
Forests (RDF) [14] ensemble classifier and Breiman’s Bootstrap aggregating
(Bagging) approach [6]. Bagging is used in RF to increase the ensemble classi-
fier’s stability and accuracy. In unstable classifiers small variations in the training
data cause major variations in the classification. The aforementioned ensemble
classifiers are based on decision trees. However, alternatives exist, such as Chan
and Stolfos Meta-Learning [9] which combines heterogeneous classifiers using a
Meta-Learning that makes use of different classifier combining strategies such as
voting, arbitration and combining.

Most rule based classifiers are either based on the ‘divide and conquer’ or
the ‘separate and conquer’ rule induction approaches [24]. ‘Divide and conquer’
based classifiers produce a decision tree, such as Quinlan’s C4.5 decision tree
induction algorithm [18]; ‘separate and conquer’ based classifiers produce a set
of IF...THEN classification rules, such as the Prism family of algorithms [8, 4,
5]. As pointed out in [20], most ensemble classifiers are based on the ‘divide and
conquer’ approach even though Prism classifiers have shown to be less vulnerable
to overfitting compared with decision tree based classifiers [4]. This is especially
the case when confronted with noise and missing values in the data [4]. A recently
developed ensemble classifier named Random Prism [20], which is inspired by
RF and RDF, makes use of the Prism family of algorithms as base classifiers. An
empirical evaluation of the Random Prism classifier shows that it outperforms
its standalone base classifier in terms of a better classification accuracy [20].
Further empirical experiments [20] show that Random Prism also has a higher
tolerance to noise compared with its base classifier.

However, also pointed out in [20] Random Prism’s CPU time consumption
is also considerably higher compared with that of a standalone Prism classifier.
This is because Random Prism builds for each base classifier a bag of size N
of the original training data [22], if N is the number of data instances in the
original training data. C22 Thus even modest sized training data impose
a considerabel computational challgenge to ensemble learners using
bagging, such as Random Prism. A bag is a collection of data instances
in which each data instance may occur more than once. In order to tackle this
problem of scalability to larger data a parallel version of the Random Prism clas-
sifier, called Parallel Random Prism, has been developed [22]. Parallel Random
Prism is based on data parallelisation and makes use of Google’s MapReduce pro-
gramming paradigm [10]. In particular, Parallel Random Prism uses the Hadoop
implementation of MapReduce in order to distribute the induction of each indi-
vidual base classifier on its own bag to different machines in a computer cluster
[1]. Thus the base classifiers are induced concurrently. In this paper we use the
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expression parallel and distributed in the context of algorithms interchangeably,
both referring to the concurrent exection of base classifiers through distribution
of the training data to multiple computer cluster nodes.

This paper provides a detailed and exhaustive description of Random Prism
and Parallel Random Prism approaches. Additionally, it also provides, for the
first time, a formal theoretical scalability analysis of Random Prism and Parallel
Random Prism, which examines the scalability to much larger computer clusters.
This contribution provides a theoretical underpinning that can be used for scal-
ability of the MapReduce framework. It also presents a thorough experimental
study of Parallel Random Prism’s scalability. In particular we look into its scal-
ability with respect to the number of training examples and number of features.
It is worth noting that we use the terms ‘feature’ and ‘attribute’ interchangeably
in this paper.

This paper’s structure is as follows: Section 2 presents the Random Prism
ensemble learner. The parallel version of Random Prism is outlined in Section 3.
Section 4 provides a theoretical scalability analysis of a standalone Prism classi-
fier, the Random Prism ensemble learner and then the Parallel Random Prism
approach. This formal scalability analysis is then supported by an empirical
evaluation in Section 5. Finally, Section 6 closes the paper with some concluding
remarks.

2 Random Prism

As aforementioned Random Prism is inspired by RDF and RF. Ho’s RDF ap-
proach induces multiple trees, each induced on a random subset of the feature
space [14]. This is done in order to make the individual trees generalise better on
the training data, which Ho evaluated empirically. RF similarly to RDF induces
the trees on feature subsets. However, differently from RDF, RF uses a new ran-
dom subset of the feature space for evaluating the possible splits of each node in
the decision tree [7]. In addition, RF also uses ‘Bagging’ [6] in order to further
increase the predictive accuracy of the ensemble classifier. This is according to
[12] because the composite classifier model reduces the variance of the individual
classifiers. However, the authors of [11] suggest that bagging not necessarily al-
ways reduces variance, but also equalises the influence of training examples and
thus stabilises the classifier. Bagging builds for each base classifier a bootstrap
sample Di of a training dataset D using sampling with replacement [6]. Most
commonly Di is of size N where N is the number of training instances in D.

In this paper, we adopt PrismTCS which is a computationally efficient mem-
ber of the Prism family, and also maintains a similar predictive accuracy com-
pared with the original Prism classifier [5]. A good computational efficiency is
needed as ensemble learners generally do not scale well to large datasets. C22
Due to bagging even modest sized training data present a consid-
erable computational challgenge to ensemble learners. In addition, the
implemented base classifier makes use of J-pruning as it not only generalises
the induced classifier further, but also lowers its runtime [19]. This is because J-
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pruning will reduce the number of rule terms induced and thus lower the number
of iterations of the base classifier [19]. The random feature subset selection of a
random size is also implemented inside the base classifier. This takes place for
each rule and for each term expansion of that rule. The resulting base classifier
has been termed ‘R-PrismTCS’, where the ‘R’ stands for the ‘Random’ compo-
nents in the base classifier (random feature subset selection for each rule term
and bagging).

Algorithm 1 shows the steps of R-PrismTCS with the exception of J-pruning.
F denotes the total number of features, D is the original training data and
rule set is an initially empty set of classification rules. The operation rule.addTerm(Ax)
adds attribute value pairAx as a rule term to rule and the operation rule set.add(rule)
adds rule to rule set. In step 2 for each Ax the conditional probability p(class =
i|Ax) is calculated, which is the probability with which Ax covers the target class
i.

Algorithm 1: R-PrismTCS Algorithm

D′ = build random sample with replacement from D;
D′′ = D′;
Step 1: find class i that has the fewest instances in D′′;
rule = new empty rule for target class i;

Step 2: generate a feature subset f of size m, where (F > m > 0);
calculate for each Ax in f p(class = i|Ax);

Step 3: select the Ax with the maximum p(class = i|Ax);
rule.addTerm(Ax);
delete all instances in D′′ that do not cover rule;

Step 4: repeat 2 to 3 for D′′ until D′′ only contains instances of target class i;

Step 5: rule set.add(rule);
create a new D′′ that comprises all instances of D′ except those that are
covered by all rules induced so far;

Step 6: IF (number of instances D′′ >1){ repeat steps 1 to 6 };

Figure 1 shows the conceptual architecture of Random Prism. Each R-PrismTCS
base classifier is induced on a training sample of size N from the training data,
where N is also the size of the training data. This sample is drawn using ran-
dom sampling with replacement. This statistically results in samples that contain
63.2% of the original instances, some of them drawn multiple times. The remain-
ing 36.8% of the instances that have not been drawn are used as validation data
to estimate the individual R-PrismTCS classifier’s predictive accuracy ranging
from 0 to 1. We call this accuracy the classifier’s weight. The individual classi-
fier’s weights are then used to perform weighted majority voting on unlabelled
data instances. The weights can also be used to filter base classifiers, i.e., retain
the classifiers with high predictive accuracy and eliminate those with a poor one
according to a user’s predefined threshold.
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Fig. 1. The architecture of the Random Prism ensemble classifier.

Random Prism’s predictive accuracy has been evaluated empirically on
several datasets of the UCI repository [3, 20]; and it has been found that Random
Prism’s classification accuracy is superior to that of RrismTCS’s. Furthermore
results published recently in [20], show that Random Prism’s potential unfolds
when there is noise in the training as well as in the test data. Here Random
Prism clearly outperforms PrismTCS [20].

However, this paper is more concerned with the scalability of Random Prism
to large datasets. One would expect that the runtime of Random Prism inducing
100 base classifiers is approximately 100 times longer, compared with PrismTCS,
as Random Prism induces base classifiers with a bag of size N for each base
classifier, where N is the total number of training instances. Yet, this is not the
case according to the results published in [20]. The reason for this is the random
component in R-PrismTCS, which only considers a random subset of the total
feature space for the induction of each rule term. Thus the workload of each
R-PrismTCS classifier for evaluating candidate features for rule term generation
is reduced by the number of features not considered for each induced rule term.

3 The Parallel Random Prism Classifier

This section addresses our proposal to scale up Random Prism ensemble learner
by introducing a parallel version of the algorithm. This will help to address the
increased CPU time requirements, and also the increased memory requirements.
The increased memory requirements are due to the fact that there are k data
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samples of size N required if k is the number of R-PrismTCS classifiers and
N the number of total instances in the original training data. If k is 100, then
the required memory would be 100 times larger compared with the memory
requirements of the standalone PrismTCS classifier. The CPU requirements of
Random Prism are high, but not 100 times higher due to the random feature
subset selection. The parallelisation of the algorithm allows harvesting of the
memory and CPU time of multiple workstations for inducing the Random Prism
ensemble classifier.

In data parallelism smaller portions of the data are distributed to different
computing nodes on which data mining tasks are executed concurrently [23].
Ensemble learning lends itself to data parallelism as it is composed of many dif-
ferent data mining tasks, the induction of base classifiers, which can be executed
independently, and thus concurrently. Hence, a data parallel approach has been
chosen for Random Prism. However, there are some limiting factors concerning
scalability, which will be analysed in Section 4.

Section 3.1 highlights the MapReduce paradigm which has been adopted for
the parallelisation of Random Prism, and Section 3.2 highlights the architecture
of Parallel Random Prism.

3.1 Parallelisation Using the MapReduce Paradigm

A programming paradigm for parallel processing introduced by Google is MapRe-
duce [10]. It provides a simple way of developing ‘data’ parallel data mining
techniques and thus lends itself to the parallel development of ensemble learn-
ers [17]. In addition, MapReduce computer cluster implementations, such as
the open source Hadoop implementation [1] provide fault tolerance and auto-
matic workload balancing. Hadoop’s MapReduce implementation is based on
the Hadoop Distributed File System (HDFS), which distributes the data over
the computer cluster and stores it redundantly in order to speed up the data
access and establish fault tolerance.

Figure 2 illustrates a Hadoop computer cluster. MapReduce partitions an
application into smaller parts implemented as Mapper components. Mappers
can be processed by any computing node within a MapReduce cluster. The
aggregation of the results produced by the Mappers is implemented in one or
more Reducer components, which again can be processed by any computing node
within a MapReduce cluster.

MapReduce’s significance in the area of data mining is evident through its
adoption for many data mining tasks and projects in science as well as in busi-
nesses. For example, by 2008 Google made use of MapReduce in over 900 projects
[10], such as clustering of images for identifying duplicates [16]. In 2009 the au-
thors of [17] used MapReduce in order to induce and assemble numerous ensem-
ble trees in parallel.

Random Prism can be broken down into multiple R-PrismTCS classifiers in-
duced on bagged samples of the training data. Loosely speaking, Random Prism
can be parallelised using Hadoop through implementing R-PrismTCS classifiers
as Mappers which can be executed concurrently in a MapReduce cluster. More
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Fig. 2. A typical setup of a Hadoop computing cluster. A physical node in the computer
cluster can execute more than one Mapper and Reducer.

details on the Parallel Random Prism architecture are highlighted next in Sec-
tion 3.2.

3.2 Parallel Random Prism Classifier

Several aspects of the Random Prism algorithm have to be considered for the
parallelisation through data parallelism with the MapReduce paradigm. These
are the bagging procedure, the induction of R-PrismTCS classifiers and the
combination of the individual classifiers into a composite classifier.

Induction of R-PrismTCS Classifiers As mentioned in Section 3.1, Ran-
dom Prism can be broken down into multiple R-PrismTCS classifiers induced
on bagged samples of the training data. These R-PrismTCS classifiers can be
induced independently. The only operation that requires the input of all clas-
sifiers is the aggregation of their individual sets of classification rules and their
weights. Hence, the induction of a R-PrismTCS classifier is implemented directly
in a Mapper. Multiple instances of this Mapper can be executed concurrently in
a Hadoop cluster. If there are more instances of Mappers than computing nodes,
then several Mappers queue to be executed on a node. C16 Thus we keep the
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comupational nodes utilised through pilelining. However, the execution
of p Mappers at the same time is still concurrent, where p is the number of
available computing nodes in the cluster. Once the last mappers are exe-
cuted on the cluster there may be a small synchronisation overhead
as some mappers may finish earlier than others, thus leaving some of
the computational nodes idle, but only in the very last stage of the
algorithm’s execution.

Bagging Procedure The building of a boot strap sample from the training
data, using bagging, needs to be executed for each R-PrismTCS classifier in
order to create as diverse samples as possible (as required by Random Prism).
Thus bagging imposes a considerable computational overhead, which needs to be
addressed as well. In the proposed Parallel Random Prism classifier implementa-
tion, multiple bagging procedures are executed concurrently. This is realised by
integrating the bagging procedure in the Mapper that implements R-PrismTCS.
Thus the execution of p bagging procedures at the same time is concurrent, if p
is the number of available computing nodes in the cluster. The original training
is distributed to each computing node in the Hadoop cluster at the beginning of
Parallel Random Prism’s execution. We have not taken influence on how Hadoop
distributes the data. However, Hadoop typically distributes chunks and redun-
dant copies of the training data across the cluster. This partition and redundancy
reduces the communication overhead as well as provides more robustness in the
case a cluster node fails. This is done in order to keep the communication over-
head low. This way the original training data only needs to be communicated
once, as the local Mappers on a computing node only need the local copy of the
training data in order to build their individual samples.

Building of Composite Classifier The aggregation of the individual R-
PrismTCS classifiers and their associated weights is implemented in a single
Reducer. Once the individual R-PrismTCS Mappers finish the induction of their
rulesets, they send the rulesets and their associated weights to the Reducer. The
Reducer simply holds a collection of classifiers with the weight. If a new unla-
belled data instance is presented, then the Reducer applies a weighted majority
voting of each classifier, or a subset of the best classifiers (according to their
weight), in order to label the new data instance. The data that is transmitted
from the Mapper to the Reducer is relatively small in size comprising all the rules
of the induced R-PrismTCS base classifiers. Nevertheless, we have incorporated
this communication in our analysis in Section 4. However, assuming that the
number of R-PrismTCS classifiers is increasing, one may consider distributing
the computational and communication overhead (associated with the aggrega-
tion of the classifiers) over several Reducers executed on different computational
nodes.
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Parallel Random Prism Architecture Figure 3 shows the principal archi-
tecture of Parallel Random Prism using four Mappers, one Reducer and three
cluster nodes.

Fig. 3. The Parallel Random Prism Architecture on a Hadoop cluster with two com-
putational nodes, four Mappers and one Reducer.

The input data (training data) is sent to each computing node. A computing
node can execute multiple Mappers. Each Mapper implements the R-PrismTCS
base classifier outlined in Algorithm 1, creates a validation and a training set
and then produces a set of rules using the training data and a weight using
the validation data. Then each R-PrismTCS Mapper sends its ruleset and the
associated weight (determined using the validation data) to the Reducer. The
Reducer keeps a collection of the received classifiers and their weights and applies
a weighted majority voting of each, or a subset of the best classifiers, to new
unlabelled data instances. The basic steps of Parallel Random Prism are outlined
in Algorithm 2.

4 Theoretical Analysis of Parallel Random Prism

The complexity of PrismTCS is based on the number of probability calculations
for possible split values. In this paper this is denoted as the number of cutpoints.
In the ideal case, there would be one feature that perfectly separates all the
classes, or simply all data instances would belong to the same class. An average
case is difficult to estimate, as the number of iterations of PrismTCS is dependent
on the number of rules and rule terms induced, which in turn are dependent on
the concept encoded in the training data. However, it is possible to estimate
the worst case, assuming that N is the number of instances and M the number



10 Frederic Stahl et al.

Algorithm 2: Parallel Random Prism Algorithm

Step 1: Distribute a copy of the training data to each node in the cluster using
the Hadoop Distributed File System;

Step 2: Start k Mappers, where k is the number of R-PrismTCS classifiers
desired. Each Mapper comprises, in the following order;
- Build a training and validation set using Bagging;
- Induce a ruleset by applying R-PrismTCS on the training data;
- Calculate the ruleset’s weight using the validation data;
- Send the ruleset and its weight to the Reducer;

Step 3: Optionally the Reducer applies a filter to eliminate the worse and
retrain the strongest rulesets according to their weights;

Step 4: The Reducer returns the final classifier, which is a set of R-PrismTCS
rulesets, which perform weighted majority voting for each new unlabelled data
instance;

of features in the training data. Furthermore a categorical feature will occur at
most in only one term per rule, whereas a continuous feature may occur in two
terms per rule, as two rule terms can describe any value interval in a continuous
feature. Thus in the worst case all features are continuous and all rules have
2Ṁ terms. Also in the worst case each (with the exception of 1) instance is
encoded in a separate rule which will lead to N − 1 rules in total. The −1 is
because if there is only one instance left in step 6 of the PrismTCS pseudocode,
then there is no need to generate a further rule for it. The complexity (number
of cutpoint calculations) of inducing the rth rule is 2M(N − r). The factor
(N − r) is the number of training instances not covered by the rules induced
so far, as mentioned above, in the worst case each rule covers only one training
instance. These uncovered instances are used for the induction of the next rule.
For example, the number of cutpoint calculations for a term of the first rule
(r = 1), where the training data is still of size N , would be 2M(N − 1). The
total number of cutpoint calculations for the whole rule in this case (r−1) would
be 2M(N−1) as there are 2M rule terms. This summed up for the whole number
of rules leads to:

TPrismTCS =

N−1∑
r=1

(2M) · (N − r) = 2M · N · (N − 1)

2

Which is equivalent to a complexity of O(N2 · M). Please note that this
estimate for the worst case is very pessimistic and unlikely to happen. In reality
larger datasets often contain many fewer rules than there are data instances [21].
C9,15 This is because Random Prism is a stable classifier due to the
usage of R-PrimTCS as base classifier and bagging. Also stated before
in Section 2, Random Prism employs J-pruning which further reduces
the number of rule terms per rule [19]. Hence, in this case linearity
can be exhibited as N2 is reduced to R2 where R is the total number
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of rules. An empirical study presented in [21] suggests that the number of rules
and rule terms induced does not increase linearly with the number of instances.
Also results in [19] suggest a more linear scalability of PrismTCS.

Assuming on average a linear complexity O(N ·M) for PrismTCS, the com-
plexity with respect to N and M of Random Prism is a product of four factors.
The factors are PismTCS’s complexity O(N ·M), the average percentage of fea-
tures f considered by R-PrismTCS (this is a diminishing factor ranging between
0 and 1), the number of classifiers b (which is an increasing factor of a whole
number of at least 1 or higher) and a further diminishing factor d which reflects
the decrease of rules caused by having repeated instances in the training data
for each R-PrismTCS classifier. This leads to O(N ·M) · f · b · d. As pointed
out in Section 2, one would intuitively expect the runtime of Random Prism to
be 100 times longer, assuming 100 base classifiers are induced, compared with
the serial PrismTCS classifier. Yet the results in [20] show that the runtimes are
longer but not 100 times longer. In this particular case the increasing factor b
would be 100. However, factors f and d are diminishing and thus have a short-
ening influence on the runtime. In general as none of these factors comprises an
increasing dependence on N or M , this can be approximated to an overall linear
complexity of O(N ·M). Please note that the complexity of building the com-
posite classifier is not dependent on the training data size but on the number of
classifiers. Also building the composite classifier is a computationally relatively
inexpensive operation. The bagging is also of linear complexity O(N) assuming
that the bag is of size N , as in Random Prism.

Stepping away from the complexity, the actual runtime Ttotal, which is needed
to execute the serial version of Random Prism, can be described by:

Ttotal =

b∑
i=1

(Tsam,i + Tcla,i + Tasm,i)

where Ttotal is the total serial runtime, b is the number of base classifiers,
Tsam,i is the time needed for sampling (using bagging) for classifier i; Tcla,i is the
execution time for classifier i and Tasm,i is the time needed to integrate classifier
i′s ruleset into the composite classifier. This description of Ttotal will be used as
a base for describing Parallel Random Prism’s runtime requirements.

As discussed, the basic Random Prism total runtime description Ttotal can
be extended for describing the Parallel Random Prism runtime as shown in the
equation below, where p is the number of computing nodes in the Hadoop cluster:

Ttotal(p) = Tcomdat · p+

b∑
i=1

Tsam,i

p +

b∑
i=1

Tcla,i

p +

b∑
i=1

Tcomres,i

p +

b∑
i=1

Tasm,i

r

C3 Tcomdat · p is a new term that describes the time needed to
communicate the training data to p mappers. p is defined as p = n · δ,
where n is the number of computational nodes int the cluster and δ
is the number of mappers hosted per n. C20,6 Tcomres is also a new
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term that describes the time needed to communicate the R-PrismTCS
rulesets and weights to the Reducer. Tsam,i, Tcla,i and Tasm,i are the same
terms as in the equation for the serial Random Prism algorithm. However, in
the parallel version Tsam,i (sampling using bagging) and Tcla,i (R-PrismTCS
induction) are executed concurrently using multiple Mappers on p processors
and hence their runtime can be divided by p.

C8 Tasm,i (assembling of the composite classifier) is executed on r
Reducers in the Hadoop cluster. Hence the division by r. However,
in the setup used for the experiments in Section 5 only one reducer
has been used, hence r = 1 in the empirical results. The reason for
setting r = 1 is because the computational requirement for Tasm,i is
very low. The only two terms that are not parallelised are Tcomdat · p and
Tasm,i and thus these present a computational bottleneck. However, for term
Tcomdat · p, the data transmitted to each node is a copy of the original data and
it is assumed that the time needed to perform the transmission to each node is
the same. Further assume that a star topology network is used with a switch in
the centre node, which is the actual setup we used for our empirical evaluation in
Section 5. In this case a multicast can be used which transmits the training data
from the original node only once to the switch, which then multiplies the data
and distributes them to each computing node on a separate wire. Hence, in this
case, we can ignore the multiplication of Tcomdat,i with p as in this case p = 1.
Tasm,i remains a computational bottleneck, which increases with the number
of base classifiers. However, its computational requirements are relatively low
even for large numbers of base classifiers and is not expected to have a large
impact on Ttotal(p). Nevertheless, it would be possible to parallelise Tasm,i, at
least to a certain C1 extent, by using multiple Reducers executed on different
cluster nodes. One Reducer per two Mappers could combine the rule sets of these
two mappers. The Reducers’ outputs (again rules sets) could then be combined
similarly using further Reducers executed on different cluster nodes. This may
be beneficial for very large numbers of base classifiers. The speed-up factor is
a standard metric to evaluate the scalability of parallel algorithms with respect
to the number of computing nodes or processors p being used [13, 15]. It shows
how much a parallel version of an algorithm is faster compared with its single
processor version. The generic formula for the speed-up S(p) is:

S(p) = runtime T on 1 processor
runtime T on p processors

For Parallel Random Prism the numerator of S(p) can be substituted by
Ttotal(1) and the denominator of S(p) can be substituted by Ttotal(p). Thus the
speed-up for Parallel Random Prism can be described by:
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S(p) = Ttotal(1)
Ttotal(p)

=

Tcomdat+

b∑
i=1

Tsam,i +

b∑
i=1

Tcla,i +

b∑
i=1

Tcomres,i +

b∑
i=1

Tasm,i

Tcomdat·p+

b∑
i=1

Tsam,i

p +

b∑
i=1

Tcla,i

p +

b∑
i=1

Tcomres,i

p +

b∑
i=1

Tasm,i

r

Again, what can be seen is that the only limiting factors are Tcomdat · p and∑b
i=1 Tasm,i in the denominator of S(p) as they are not parallelised. Yet, the

time needed to execute Tasm,i and Tcomdat · p is neglectably small compared
with the parallelised portions of Parallel Random Prism. Thus we can assume
that the S(p) will be close to the ideal case, which is S(p) = p. For example, if
running Parallel Random Prism consumes 10000ms on one node, then for using
4 nodes we would expect the runtime to be 2500ms (4 times faster assuming the
ideal case), hence S(4) = 10000ms

2500ms = 4.
The formula for S(p) above could also be used to determine the theoretical

maximum speed-up, through building the derivative S′(p), and calculating its x-
axis intercepts and then determining subsequently its global maxima. However,
we refrain from this step.

Next Section 5 will provide an empirical analysis of Parallel Random Prism
supporting the theoretical analysis presented in this section.

5 Empirical Scalability Study

The empirical study comprises size-up and speed-up experiments on several
benchmark datasets. Size-up experiments examine the algorithm’s performance
(runtime) with respect to the size of the training data; and speed-up experiments
examine the algorithm’s performance with respect to the number of computing
nodes used, using speed-up factors as highlighted in the previous section. For the
experiments we used two synthetic datasets from the infobiotics data repository
[2]. We have chosen these datasets as they can still be run on a single computing
node in our cluster, which can be used as a reference point. The datasets are
outlined in Table 1. The Hadoop cluster is hosted on 10 identical off the shelf
workstations, each comprising 1 GB memory, 2.8 GHz CPUs and a XUbuntu
operating system. C11 The Hadoop version installed on the cluster was
0.20.203.0rc1. C20 All experiments highlighted in this section mea-
sure the total runtime from the loading of the data to the cluster, up
to aggregating the results at the Reducer.

C2 #deleted
Again, size-up experiments examine the performance of Parallel Random

Prism on a fixed number of cluster nodes with an increasing workload (training
data size). In general a linear increase in the runtime with respect to the training
data size is desired. We produced larger versions of the two datasets in Table 1
by appending the data to itself in vertical (multiplying instances) and horizontal
directions (multiplying attributes). Please note that this appending of data does
not introduce new concepts and hence does not take influence on the rulesets
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Table 1. Datasets used for evaluation. C11 Attributes hold double values and
class values are represented by a single character.

Test Data Number of Number of Number of
Data Instances Attributes Classes

1 50000 5 5
2 30000 3 2

produced. This is important as altered rule sets may result in different runtimes
of the system, and hence the size-up comparison would not be reliable.

The reasoning for this way of increasing the data size is that it will not
change the concept encoded in the data. Simply taking different sized samples
from the original training data will influence the concept and thus the runtime
needed to find rules describing the concept. Appending the data to itself allows
Parallel Random Prism’s runtime to be examined more precisely. The calcula-
tion of the weight of the individual R-PrismTCS classifiers might be influenced
by this way of building different sized samples as some instances may appear in
both, the training and the test set. However, this is not relevant for these ex-
periments, as this evaluation examines the computational performance and not
the classification accuracy. For all experiments we used 100 R-PrismTCS base
classifiers.

The first set of size-up experiments looks on the algorithm’s performance
with respect to the number of data instances. For each dataset an initial sample
of 10000 instances has been taken. Then this sample has been appended to itself
in a vertical direction as explained above. The runtime for different sizes of data
has been recorded and is plotted in Figure 4 versus the data size. Please note
that an initial sample of 10000 instances may seem small. However, considering
the usage of 100 base classifiers would increase the sample in the memory so
that the Parallel Random Prism system has in fact to deal with 1000000 data
instances for a 10000 instance input sample.

In general we can observe a nice size-up that is close to being linear with
respect to the number of training instances. These results clearly support the
theoretical average linear behaviour.

The second set of size-up experiments looks at the algorithm’s performance
with respect to the number of features. The data has been appended to itself in
a horizontal direction as explained earlier in this section. Again, the number of
training instances is increasing by factor 100 due to the use of 100 base classifiers.
The runtime for different sizes of data has been recorded and is plotted in Figure
5 versus the data size.

Note that for this set of size-up experiments there is no setup with only one
cluster node. The reason for this is that we used the original number of data
features for both datasets, which simply exceeds the computational capabilities
of one cluster node after the bagging procedure for 100 base classifiers.
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Fig. 4. Size up behaviour of Parallel Random Prism with respect to the number of
training instances. Headings Test 1 and Test 2 refer to the test datasets in Table 1.
These datasets have in this case been appended to themselves in order to increase the
number of training instances, while keeping the concept stable.

In general we can observe a nice size-up that is close to being linear with
respect to the number of features. These results clearly support the theoretical
average linear behaviour.

The speed-up factors recorded for Parallel Random Prism, on both test
datasets and for different numbers of cluster nodes (up to the 10 available)
are displayed in Figure 6. The theoretical ideal speed-up factors are plotted as
a dashed line. C10 It can be seen that the speed-up factors achieved
are very close to the ideal linear case. This almost ideal speed-up has
been veryfied by linear regression equations also depicted in Figure
6. There is a small discrepancy between the ideal case and the actual speed-up
factors, the more cluster nodes are used. However, this discrepancy is expected
and can be explained by the non parallel part of Parallel Random Prism as
mentioned in the previous section, which is the term

∑b
i=1 Tasm,i and the com-

munication overhead, which is Tcomdat · p in the equation for the speed-up of
Parallel Random Prism. It is expected that there will be an upper limit of the
number of cluster nodes that are beneficial to reducing the runtime. However,
considering the low discrepancy after using 10 cluster nodes suggests that the
impact of

∑b
i=1 Tasm,i and Tcomdat · p is not very high and thus the experiments

are far from using the maximum number of cluster nodes that are still beneficial
to lowering the runtime. This is consistent with the theoretical speed-up analysis
in the previous section. C7 Please note that the theoretical and empirical
analysis presented in this paper focuses on the algorithm rather than
the version of MapReduce being used. If the sample constructed con-
structed for the R-PrismTCS classifier is bigger than the HDFS block
size additional communication overhead will be incurred and the less
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Fig. 5. Size up behaviour of Parallel Random Prism with respect to the number of
features. Headings Test 1 and Test 2 refer to the test datasets in Table 1. These
datasets have in this case been appended to themselves in order to increase the number
of attributes, while keeping the concept stable.

speedup can be achieved. The samples constructed in the experiments
outlined in this paper were not bigger than the HDFS block size.

Loosely speaking, Parallel Random Prism indeed exhibits an linear scalability
with respect to the number of training instances and the number of features.
Furthermore, the algorithm also shows a near linear speed-up factor.

C4,14 The current implementation of Parallel Random Prism is
bound in its maximum parallelism by the number of R-PrismTCS clas-
sifiers utilised. However, R-PrismTCS classifiers could also be paral-
lelised. The Parallel Modular Classification Rule Induction (PMCRI)
framework [19] for parallelising, amongst others, the PrismTCS [5]
classifier, can be used for parallelising the R-PrismTCS classifier also.
This is due to the similarity of the R-PrismTCS and PrismTCS clas-
sifiers. However, this is outside the scope of this paper.

6 Conclusions

This paper presented work on a novel, well-scaling ensemble classifier called Par-
allel Random Prism. Ensemble classifiers exhibit a very high predictive accuracy
compared with standalone classifiers, especially in noisy domains. However, this
increase in performance is at the expense of computational efficiency due to
data replication and the induction of multiple classifiers. Thus ensemble classi-
fiers applied on modest size training data already challenge the computational
hardware. Section 2 highlighted alternative base classifiers to decision trees (on
which most ensemble classifiers are based), in particular the Prism approach.
The PrismTCS standalone classifier often outperforms decision trees when ap-
plied to noisy data, and hence is a good candidate base classifier for ensemble
classifiers. Section 2 proposed the Random Prism ensemble learner with the
PrismTCS based R-PrismTCS base classifier. It summarised results concern-
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Fig. 6. C10 The Speed-up factors for of Parallel Random Prism. The dashed
line represents the theoretical ideal speedup. Linear regression equations
and R2 are displayed for the two test cases.

ing classification accuracy and gave an initial empirical estimate of Random
Prism’s runtime requirements. Section 3 also highlighted a parallel version of
Random Prism using the Hadoop implementation of the MapReduce program-
ming paradigm. Essentially multiple R-PrismTCS base classifiers are executed
concurrently on p computing nodes in a Hadoop cluster. The only aspects of Ran-
dom Prism that are not parallelised are the inexpensive combining procedure of
the individual classifiers and the distribution of the original training data over
the cluster. Section 4 gave a theoretical complexity analysis of Random Prism
and a theoretical scalability analysis of Parallel Random Prism. The parallel
version of Random Prism was examined in terms of its runtime with respect
to the number of computing nodes used. In general a close to linear scalability
was expected, as the main part of the workload, the base classifier induction
was parallelised. However, the data communication to the cluster nodes at the
beginning and the combining procedures were not parallelised, hence an upper
limit of beneficial computing nodes was expected. Section 5 further supported
the theoretical analysis with empirical results. In these results Parallel Random
Prism’s linear scalability with respect to the number of training instances and
features was confirmed. These results also showed that Parallel Random Prism
exhibits an almost ideal speed-up for up to 10 cluster nodes with a slightly in-
creasing deterioration the more cluster nodes are utilised. The results suggested
that there is an upper limit (due to the non-parallel parts of Parallel Random
Prism). However, the results also suggested that the cluster is far away from its
maximum number of beneficial cluster nodes.
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