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Abstract

Many real-life problems such as distributed meeting scheduling, mobile frequency allocation
and resource allocation can be solved using multi-agent paradigms. Distributed constraint sat-
isfaction problems (DisCSPs) is a framework for describing such problems in terms of related
subproblems, called a complex local problem (CLP), which are dispersed over a number of loca-
tions, each with its own constraints on the values their variables can take. An agent knows the
variables in its CLP plus the variables (and their current value) which are directly related to one
of its own variables and the constraints relating them. It knows little about the rest of the problem.
Thus, each CLP is solved by an agent which cooperates with other agents to solve the overall
problem.

Algorithms for solving DisCSPs can be classified as either systematic or local search with
the former being complete and the latter incomplete. The algorithms generally assume that each
agent has only one variable as they can solve DisCSP with CLPs using “virtual” agents. However,
in large DisCSPs where it is appropriate to trade completeness off against timeliness, systematic
search algorithms can be expensive when compared to local search algorithms which generally
converge quicker to a solution (if a solution is found) when compared to systematic algorithms. A
major drawback of local search algorithms is getting stuck at local optima. Significant researches
have focused on heuristics which can be used in an attempt to either escape or avoid local optima.

This thesis makes significant contributions to local search algorithms for DisCSPs. Firstly, we
present a novel combination of heuristics in DynAPP (Dynamic Agent Prioritisation with Penal-
ties), which is a distributed synchronous local search algorithm for solving DisCSPs having one
variable per agent. DynAPP combines penalties on values and dynamic agent prioritisation heuris-
tics to escape local optima. Secondly, we develop a divide and conquer approach that handles
DisCSP with CLPs by exploiting the structure of the problem. The divide and conquer approach
prioritises the finding of variable instantiations which satisfy the constraints between agents which
are often more expensive to satisfy when compared to constraints within an agent. The approach
also exploits concurrency and combines the following search strategies: (i) both systematic and
local searches; (ii) both centralised and distributed searches; and (iii) a modified compilation strat-
egy. We also present an algorithm that implements the divide and conquer approach in Multi-DCA
(Divide and Conquer Algorithm for Agents with CLPs).

DynAPP and Multi-DCA were evaluated on several benchmark problems and compared to the
leading algorithms for DisCSPs and DisCSPs with CLPs respectively. The results show that at the
region of difficult problems, combining search heuristics and exploiting problem structure in dis-
tributed constraint satisfaction achieve significant benefits (i.e. generally used less computational
time and communication costs) over existing competing methods.

Keywords: Distributed constraint satisfaction, Distributed problem solving, local search, al-
gorithms, local optima, heuristics.
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Chapter 1

Introduction

Distributed Constraint Satisfaction Problem (DisCSP) is a framework which extends constraint satis-

faction in order to address problem distribution. Informally, a Constraint Satisfaction Problem (CSP) is

a paradigm for representing a problem to consist of decision variables, the domain of each variable and

constraints between variables that must be satisfied. However, some CSPs are naturally distributed, i.e. the

problem is not centralised, but divided into a number of subproblems which are dispersed over a number

of locations. In solving such problems, a centralised problem solving approach may not be possible due to

cost and privacy restrictions. Thus, the centralised constraint satisfaction framework becomes insufficient

and these problems lend themselves to solutions using distributed constraint satisfaction.

Simplistically, a DisCSP is a CSP which can be divided into inter-related subproblems (smaller CSPs)

each of which is assigned to an agent which is responsible for solving it. Thus, each agent has its own

variables, domains and constraints (CSP) as well as sharing some constraints with agents whose CSP its

variables are related to. Agents are responsible for finding suitable instantiations for the variables they

represent. Within each agent, the variables together with their domains and constraints form a cluster known

as a Complex Local Problem (CLP). Each agent knows about its own complex local problem but knows

little about the rest of the problem (other agents’ complex local problems) - it only knows the variables

(and current values) which are directly related to one of its own variables together with the constraints

relating them. The objective of a DisCSP algorithm is to assign values to all variables that satisfy all the

constraints associated with the problem. To satisfy all constraints, each agent has to solve its own CLP and

also needs to negotiate with other agents to ensure that the solution to the CLPs can be aggregated into a

1
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satisfactory solution to the overall problem. For example, in a distributed meeting scheduling scenario, each

department (agent) may have several meetings (variables) to schedule by assigning it a timeslot (domain).

Some meetings may involve only participants within a department (i.e. within its complex local problem)

while others involve participants from other departments (i.e. CLPs in other agents). To find a solution to

the overall meeting scheduling problem, each agent must schedule the meetings in its CLP and negotiate

with other agents to schedule meetings involving participants in other agents.

DisCSPs algorithms generally assume a single variable per agent and that this can be easily extended

to solve DisCSP with CLPs using “virtual” agents. The algorithms can be broadly classified as either

systematic or local search. In large DisCSPs where it is appropriate to trade completeness off against

timeliness, local search algorithms are more effective and perform favourably by converging quicker to a

solution (if a solution is found) when compared to systematic search algorithms. Local search algorithms

however have a major drawback of getting stuck at local optima and several heuristics have been used

to deal with local optima. A challenge in implementing local search algorithms for DisCSP remains in

designing algorithms that improve search by escaping local optima more effectively.

1.1 Research Objective

This thesis aims to make significant contributions in local search algorithms for solving DisCSPs by propos-

ing a novel approach to problem solving which combines existing heuristics while exploiting the structure

of DisCSPs. Our main research question is “Are there any benefits in combining existing strategies for

distributed local search?”. This question has resulted in the following research objectives:

1. Investigate the effect of combining existing search heuristics to escape local optima in local search

algorithms for distributed constraint satisfaction problems.

2. Exploit the structure of distributed constraint satisfaction problems with complex local problems to

develop a more efficient approach to solving them.

1.2 Key Contributions of the Thesis

This thesis contributes to the development of algorithms for DisCSPs. We combined several heuristics in

distributed local search and also exploited the structure of DisCSPs with complex local problems to propose
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new solving strategies. The primary contributions of this thesis are summarised next.

First: The first contribution of this thesis is DynAPP - Dynamic Agent Prioritisation with Penalties.

DynAPP is an algorithm for one variable per agent that combines two heuristics: (i) dynamic agent prioriti-

sation; and (ii) penalties on variable values. Penalties on values is a fine-grained heuristic that avoids values

which are often found at local optima, while dynamic agent prioritisation changes the priority of finding a

consistent value for the agent’s variable.

Second: The second contribution is the Divide and Conquer Approach for the resolution of distributed

constraint satisfaction problems with complex local problems. The approach prioritises the satisfaction of

the distributed part of the problem (i.e. the inter-agent part) which is more expensive to satisfy compared

to an agent’s CLP. The divide and conquer approach concurrently uses: (i) several systematic searches and

a local search; (ii) several centralised searches and a distributed search; and (iii) a modified compilation

reformulation strategy. In solving a DisCSP with CLPs, not all variables are considered in the first instance.

The CLP of each agent is considered to identify smaller clusters that may exist to form compound groups.

The divided problem is then solved concurrently with three different types of searches as follows: (i) each

agent carries out a centralised systematic search for each of its compound groups; (ii) a single distributed

local search algorithm combines the solutions to the compound groups to satisfy the distributed constraints

(relating the CLPs); and (iii) each agent performs one systematic search locally to extend its selected com-

pound group solutions to a complete solution. Hence, the divide and conquer approach interleaves several

searches, thus, exploits concurrency. We also implemented Multi-DCA - an overall local search algorithm

that implements the divide and conquer approach for solving DisCSP with CLPs.

1.3 Scope of Study

The main focus of this thesis is on Distributed Constraint Satisfaction Problems (DisCSPs). The scope of

this study is established by the following decisions and assumptions.

1. Satisfaction: the first set of assignments that satisfies all the constraints in the DisCSP is returned

although several solutions may exist.

2. Constraints: We consider binary constraints (i.e. between two variables); this is an assumption
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which is often made (Yokoo & Hirayama 2000) as a CSP with constraints that are non-binary can be

converted to have only binary constraints (Bacchus & Run 1995). Although not normally counted

by researchers, these transformations can be costly (Bessière 1999).

3. Communication: Communication is between neighbour agents i.e. agents whose CLPs are related

by one or more constraints.

4. The underlying communication network is reliable: Thus, there is a finite message delay with mes-

sages between two agents. Messages arrive in the order in which they are sent (Yokoo, Durfee, Ishida

& Kuwabara 1998).

1.4 Thesis Structure

This thesis is divided into seven chapters and three appendices. It is organized as follows:

Chapter 2 Distributed Constraint Problems: We define and explain the Constraint Satisfaction Prob-

lem (CSP) and Distributed Constraint Satisfaction Problem (DisCSP). We also describe Constraint Op-

timisation Problem (COP) and Distributed Constraint Optimisation Problem (DCOP), a specialization of

DisCSP concerned with valued constraints. Privacy in distributed constraint problems and some terminolo-

gies used in the thesis are also presented.

Chapter 3 Benchmark Problems: we discuss four DisCSP classes used to empirically evaluate our al-

gorithms which are: distributed graph colouring problems, random distributed constraint satisfaction prob-

lems, distributed meeting scheduling problems and distributed sensor networks problems. For each problem

class, we explain how they are formulated as a distributed constraint satisfaction problem. The performance

metrics used for the empirical evaluation of our algorithms are also discussed.

Chapter 4 Algorithms for solving Distributed Constraint Problems: Existing distributed constraint

problem solving algorithm use search methods that are generally categorized as: (i) synchronous or asyn-

chronous; and (ii) local search or systematic search methods. We present a literature review of existing

algorithms for distributed constraint satisfaction problems for single variable per agent and those where an

agent represents several variables. We also review and critically analyse algorithms for distributed con-

straint optimisation problems which are a specialisation of distributed constraint satisfaction problems.
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Chapter 5 Combination Heuristics in Local Search for DisCSPs with One Variable/Agent: The

concept of combining heuristics in distributed local search is investigated in this chapter by combining con-

straint weights, value penalties and dynamic agent prioritisation. Several algorithms for solving DisCSPs

with a single variable per agent were implemented with the combination heuristics. DynAPP (Dynamic

Agent Prioritisation with Penalties) is an algorithm that combines dynamic agent prioritisation and value

penalties. DynAPP was found to perform best overall and is discussed in details in this chapter. Other

combinations of heuristics are constraint weights and value penalties which is presented in Appendix A;

and multi-context search in, Appendix B.

Chapter 6 Exploiting Structure in DisCSPs with Complex Local Problems: In this chapter, the

structure of DisCSPs with CLPs is exploited. We present a novel divide and conquer approach for handling

complex local problems in DisCSPs that takes into account the problem structure. The divide and conquer

approach divides and solve a DisCSP by combining the following search strategies: (i) systematic and local

searches; (ii) centralised and distributed searches; and (iii) a modified compilation reformulation strategy.

The divide and conquer approach is implemented in Multi-DCA, an overall local search algorithm for

solving DisCSPs with CLPs. Multi-DCA is discussed and empirically evaluated.

Chapter 7 Future Work and Conclusion: Finally, we conclude with a summary of the contributions of

the thesis and we propose some future work.



Chapter 2

Distributed Constraint Problems

2.1 Introduction

Distributed Constraint Satisfaction Problem (DisCSP) is a formalism for modelling many distributed

problems. The objective (solution) of a DisCSP is to find a complete assignment that satisfies all constraints

in the problem. Distributed Constraint Optimization Problem (DCOP) extends DisCSP for finding the best

approximation to a solution (a solution may not exist) that optimises a given objective function. In this

chapter, we define DisCSPs, DisCSPs with CLPs and DCOPs. We also discuss privacy in distributed

problems and explain some related terms.

This chapter is organized as follows. In Section 2.2 we present the formalism of a DisCSP. This is

followed by the formalism of a DCOP in Section 2.3. Privacy in distributed problems is discussed in

Section 2.4 and some related terminologies are described in Section 2.5. Finally, the chapter is summarised

in Section 2.6.

2.2 Distributed Constraint Satisfaction

2.2.1 Background: Constraint Satisfaction Problem (CSP)

A CSP (Dechter 2003) is a problem defined as a tuple comprising of {X, D, C} such that: X = {x1, ..., xn}

represents a finite set of variables; D = {Dx1 , ..., Dxn} represents a set of discrete, finite domains, one per

variable xi, i ∈ {1, ..., n}; and C = {c1, ..., ck} represents a finite set of constraints between variables. A

6
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solution to a CSP is a complete assignment of variables with values from their domains which satisfies all

constraints.

2.2.2 Distributed Constraint Satisfaction Problem (DisCSP)

A DisCSP (Yokoo et al. 1998) is a CSP which is dispersed over a number of agents in different locations.

Thus, agents have to cooperate to solve the overall problem. Each agent in a DisCSP is responsible for

the assignment of values to its own variable(s) and must communicate with other agents that it shares a

constraint with, about its current assignments. Thus, the main objective (solution) of a DisCSP is to assign

values to variables that satisfy all the constraints. Formally, a DisCSP comprises of four components which

are represented as a tuple {A, X, D, C} where:

• A = {a1, ..., am} represents a set of agents;

• X = {x1, ..., xn} represents a finite set of variables, where each variable is assigned to a single

agent;

• D = {Dx1 , ..., Dxn} represents a set of finite, discrete domains, one per variable xi, i ∈ {1, ..., n};

and

• C = {c1, ..., ck} represents a finite set of constraints between variables.

A constraint graph is used to illustrate a DisCSP where nodes are variables and links represent the

constraints. Figure 2.1 is a simple example of a DisCSP with an agent representing a single variable. The

problem involves the allocation of timeslots for 5 student presentations. Modelling this as a DisCSP, the

students are the variables X = {a, b, c, d, e} and are represented by a letter inside a circle. Agent A, Agent

B, Agent C, Agent D and Agent E each represents a single variable a, b, c, d, e respectively. Dxi where

xi ∈ {a, b, c, d, e} represents the domain (timeslots) that can be assigned to each student. The domain for

each variable is Da = {1, 2}, Db = {1, 2}, Dc = {1, 3}, Dd = {1, 3, 4}, De = {2, 3}. Constraints between

the variables are illustrated with a line between variables. The number of constraint violations is depicted

by Violxi and determined for each value in a domain of a variable while keeping the current value of its

neighbours. Constraints in red are violated. The constraints are: (i) (a = b), i.e. a and b must be assigned

the same slot; (ii) (b ̸= c), i.e. b and c cannot be assigned the same slot; (iii) (b = e), i.e. b and e must be

assigned the same slot; (iv) (c ̸= d), i.e. c cannot be assigned the same slot as d; and (v) (c > e), i.e. c must

be assigned a time slot after e.
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Figure 2.1: An example of a DisCSP with one variable/agent

A general assumption in algorithms for distributed constraint satisfaction is that an agent represents a

single variable and the algorithms can be extended using “virtual” agents to handle DisCSP with multiple

local variables per agent (Yokoo & Hirayama 2000). However, multiple local variables form a Complex

Local Problem (CLP), thus, a variable has constraints with variables in its CLP and may also share a

constraints with variables in other CLPs. CLPs introduce additional opportunities to speed-up resolution as

each agent knows more about the problem. Next we discuss DisCSP with CLPs.

2.2.3 DisCSP with Complex Local Problems

Also known as coarse grained DisCSP, a DisCSP with Complex Local Problems (CLPs) is a DisCSP frame-

work where an agent may represent two or more variables (Yokoo 1995a). Thus, two types of constraints

are considered. Constraints between variables represented by the same agent which are referred to as

intra-agent constraints and constraints between variables that are represented by different agents called

inter-agent constraints. Each agent holds information on its own complex local problem (current val-

ues, variables, domain values and intra-agent constraints). An agent also knows the inter-agent constraints

its variables have with other variables belonging to other agents (together with their current assignments).

Consequently, agents are faced with finding solutions that satisfy both intra-agent constraints as well as the

inter-agent constraints their variables are involved in.

For example, Figure 2.2 describes 4 agents (departments) (Agent A, Agent B, Agent C, Agent D) in

a meeting scheduling problem (discussed in Chapter 3, Section 3.4) involving 55 variables (meetings).

Each agent has several variables to instantiate. Each variable is represented by a number inside a circle,

the black lines between variables represent inter-agent constraints and the green lines represent intra-agent
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Figure 2.2: An example of a DisCSP with CLPs

constraints. Next, with this example, we explain some related terms.

Number of variables per agent: This defines the number of variables that an agent represents i.e the

number of variables in each CLP. Each agent may have a different number of variables. For example, in

Figure 2.2, Agent A has 15 variables { a1, ..., a15}.

Intra-agent constraints: These are the constraints between variables belonging to the same agent. In

Figure 2.2, these are represented by the green lines connecting variables. For example, Agent A has 16

intra-agent constraints between variables {(a1, a6), (a2, a5), (a2, a6), (a3, a6), (a4, a5), (a4, a8), (a4, a10),

(a5, a9), (a7, a10), (a8, a13), (a9, a14), (a10, a12), (a11, a12), (a11, a15), (a13, a14), (a14, a15)}.

Inter-agent constraints: These are the constraints a variable has with other variables that belong to differ-

ent agents. In Figure 2.2, these are represented by the black lines connecting variables. For example, Agent

A has 3 inter-agent constraint between variables {(a2, b1), (a6, b3), (a11, b5)}.

External variables: These are the variables which are involved in at least one inter-agent constraint. Exter-

nal variables are also involved in intra-agent constraints. In Figure 2.2, these are enclosed in a grey circle.

For example, Agent A has 3 external variables {a2, a6, a11}.

Internal variables: These are the variables that are involved in only intra-agent constraints. In Figure 2.2,

these are enclosed in a white circle. For example, Agent A has 12 internal variables {a1, a3, a4 ,a5, a7, a8,

a9, a10, a12, a13, a14, a15}.

Proportion of internal (external) variables: This is the ratio of the internal to external variables from the
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total number of variables in the problem. From the example in Figure 2.2, Agent A has 15 variables from

which 12 are internal variables which represents 80% to give an 80(20) internal(external) variables.

Proportion of intra (inter) constraints: This is the ratio of the intra (inter) constraints from the total

number of constraints in the problem. From the example in Figure 2.2, variables in Agent A have a total

of 19 constraints, from which 16 are intra-agent constraints which represents 84% to give an 84(16) intra

(inter) constraints.

Reformulation Strategies for DisCSP with CLPs

Compilation and decomposition reformulation strategies have been proposed (Yokoo & Hirayama 2000) in

order to deal with DisCSPs with CLPs and implemented in several algorithms (Yokoo 1995a, Armstrong &

Durfee 1997, Hirayama & Yokoo 2002, Maestre & Bessière 2004, Mueller & Havens 2005, Burke 2008).

In compilation, agents take advantage of the centralized nature of the CLP by finding complete solutions

to each agent’s CLP and these solutions are combined with solutions from other agents to form a complete

solution. Using this reformulation on DisCSPs with a large number of variables and constraints in each CLP,

can be expensive and can result in wasteful search of areas that do not belong in the distributed solution.

For example, to reformulate the problem in Figure 2.2 using compilation (see Figure 2.3), Agent A

finds local solutions to its variables {a1, ..., a15}, Agent B finds local solutions to its variables {b1, ..., b13},

Agent C finds local solutions to its variables {c1, ..., c12}, Agent D finds local solutions to its variables {d1,

..., d14} that satisfy intra-agent constraints (illustrated by green lines). Thus, the problem is reformulated

to a DisCSP with 4 external variables {Avars, Bvars, Cvars, Dvars}, each having a domain of compound

values. For example, if each variable in Agent A has a domain {0, ..., 7}, the possible domain of Agent A

would be {(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), (0,0,0,0,0,0,0,0,0,0,0,0,0,0,1), ..., (7,7,7,7,7,7,7,7,7,7,7,7,7,7,7)},

a solution to agent A’s CLP if it satisfies all the intra-agent constraints. The domain of Avars is the set

of value combinations which satisfy all the intra-agent constraints for agent As CLP. The values in the

domain of each agents compound variable are then combined to form a solution that satisfies the inter-agent

constraints.

However, with decomposition, virtual agents are created for each individual variable, thus simplifying

the problem to one of a single variable per agent. Consequently, intra-agent constraints are treated as inter-

agent constraints. An agent does not take advantage of the centralized problem within a CLP but rather
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Figure 2.3: Compilation of a DisCSP with CLPs

Figure 2.4: Decomposition of a DisCSP with CLPs

solves the whole problem distributively.

With reference to the example in Figure 2.2, the problem is reformulated to a DisCSP with 55 external

variables and 87 inter-agent constraints. Each of the variables (a1, ..., a15, b1, ..., b13, c1, ..., c12, d1, ..., d14)

is represented by a virtual agent, thus, it is treated as an external variable (see Figure 2.4). A comprehensive

comparative analysis and trade-off of both approaches is found in (Burke & Brown 2006a).

2.3 Distributed Constraint Optimization

Constraint Optimisation Problem (COP) A COP (Schiex, Fargier & Verfaillie 1995) is an extension

of a CSP to address optimization problems. More formally, a COP is a tuple (X, D, R) such that:
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X = {x1, ..., xn} represents a set of variables; D = {Dx1
, ..., Dxn

} represents a set of discrete,

finite variable domains; and C = {c1, ..., ck} represents a set of constraints between variables where each

constraint is a function that maps every possible variable assignment to a cost. Thus, the solution (objective)

to a COP is to find an assignment for all variables that optimizes a given objective function (i.e. minimise

the aggregated sum of constraint costs for the given assignment of variables).

Distributed Constraint Optimization Problem (DCOP) A natural extension to DisCSPs are Dis-

tributed Constraints Optimization Problems (DCOPs), (Hirayama & Yokoo 1997), (Mailler & Lesser 2004),

(Modi, Shen, Tambe & Yokoo 2005), (Petcu & Faltings 2005). A DCOP consists of:

• A = {a1, ..., am} represents a set of agents;

• X = {x1, ..., xn} represents a set of variables, where each variable is assigned to a single agent;

• D = {Dx1 , ..., Dxn} represents a set of finite, discrete variables domains; and

• C = {c1, ..., ck} represents a set of constraints i.e. cost functions defined over variables.

The objective (solution) to a DCOP is for an agent to find an assignment for all its variables that

minimise the sum of the cost functions for a given assignment of variables.

Max-DisCSP (Modi et al. 2005), Multiply-Constrained DCOP (MC-DCOP) (Bowring & Tambe 2006),

Multi-Variable Multiply-Constrained DCOP (MV-MC-DCOP) (Portway & Durfee 2010) and Asymmetric

DCOP (ADCOP) (Grinshpoun, Grubshtein, Zivan, Netzer & Meisels 2013) are extensions of DCOP that

address some specified problem features.

2.4 Privacy in Distributed Constraint Problems

While in a centralised constraint problem, the information about all the variables, domain values and con-

straints is known centrally, in a distributed constraint problem, full information is not available at any

location, i.e. each agent (location) only knows its complex local problem together with the “current” value

assignments for variables connected to its own variables via constraints. Hence, the additional challenge

of solving a distributed constraint problem is the limited availability of information for each agent (Yokoo

et al. 1998). The following are privacy characteristics of a distributed constraint problem (Ismel 2007),

(Faltings, Leaute & Petcu 2008).
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• Agent Privacy: An agent does not know other agents it does not have a constraint with. From the

example in Figure 2.1, Agent A does not know of the existence of Agent C, Agent D or Agent E.

Agent B knows of Agent A, Agent C and Agent E but not Agent D. Agent C knows of Agent B,

Agent D and Agent E but not Agent A. Agent D knows of Agent C but not Agent A, Agent B or

Agent E. Agent E knows of Agent B and Agent C but not Agent A or Agent D.

• Variable Privacy: A variable is only known to the agent that represents it. An agent also knows its

variables neighbours, i.e other variables they share constraints with. From the example in Figure

2.1, Agent A knows its variable a together with variable b in Agent B which has a constraint with

variable a. Agent B knows its variable b together with variable a in Agent A, variable c in Agent C

and variable e in Agent E. Agent C knows its variable c together with variable b in Agent B, variable

d in Agent D and variable e in Agent E. Agent D will only knows its variable d together with variable

c in Agent C.

• Constraint Privacy: An agent knows only the constraints of the variables it represents. In Figure 2.1,

Agent A knows the constraint (a = b). Agent B knows 3 constraints (a = b), (b ̸= c), (b = e). Agent C

knows 4 constraints (b ̸= c), (b = e), (c ̸= d), (c > e). Agent D knows the constraint (c ̸= d). Agent

E knows 2 constraints (b = e), (c > e).

• Domain Privacy: A variable’s domain values are known only to the agent that represents it. An agent

who owns variables with inter-agent constraints knows only the current assignment of other variables

involved in these constraints. For example, in Figure 2.1, Agent A knows variables a’s domain Da =

{1, 2} and the current assignment of variable b = 1 but not the rest of variable b’s domain values or

the domain of variables c, d, e belonging to Agents C, Agent D and Agent E respectively.

2.5 Terminology

1. Assignment: An assignment is a pair < x = val >, where x is a variable of some agent and val is

a value from x′s domain that is assigned to it.

2. Cost (utility): This is used to determine the value (reward) of selecting an assignment.

3. Consistent assignment: This refers to the assignment of a value to a variable that satisfies all the

constraints the variable is involved in. An assignment is inconsistent otherwise.
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4. Empty assignment: This is a state where none of the variables in a problem have been assigned a

value.

5. Partial assignment: This is a state where not all the variables in a problem have been assigned a

value.

6. Complete assignment: A complete assignment is found when all the variables in a problem have

been assigned a value from their domain. It may not necessarily be a solution, i.e. the assignment

may not satisfy all constraints.

7. Connected variables: Two variables are connected if they share a constraint.

8. Variable’s neighbour: A variable’s neighbour is a variable that is connected (shares a constraint)

with it. If the neighbour belongs to the same agent as the variable, it is an internal neighbour while

if it belongs to another agent, it is an external neighbour.

9. Agent’s neighbour: Agent A’s neighbour is an Agent B who owns a variable which is related to one

of Agent A’s variables via an inter-agent constraint.

10. AgentView: An AgentView is an agent’s knowledge of the current assignments of other agents’

variables related to its own variables. Note that an AgentView is not necessarily up to date.

11. Improvement: An improvement to the current assignment of a variable is an assignment of another

value from its domain that lowers the number of constraints it violates.

12. Tie: This refers to a situation where there are two or more options which appear best.
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2.6 Chapter Summary

In this chapter, we discussed the Distributed Constraint Satisfaction Problem (DisCSP) framework. DisC-

SPs extends Constraint Satisfaction Problems (CSPs) for addressing problem distribution. DisCSPs are

hard problems and the goal of a search algorithm is to return a solution that satisfies all constraints (i.e.

the aggregated constraint cost is zero). We also discussed DisCSP with CLPs and Distributed Constraint

Optimisation Problems (DCOPs) which are natural extensions of DisCSPs. While in DisCSPS, constraints

are valued as {0, 1} (where 1 refers to a constraint violation and 0 otherwise), DCOPs may have a different

value for each constraint and a solution minimises the aggregated constraint costs (a solution may contain

some constraint violation). The focus of this thesis is on algorithms for DisCSPs. We also discussed pri-

vacy in distributed problems and some terminologies used in this thesis. In the next chapter, we discuss the

benchmark problems we use to evaluate the algorithms implemented in this thesis.



Chapter 3

Benchmark Problems

3.1 Introduction

In this chapter, we describe four benchmark problems used to empirically evaluate our algorithms which

are: distributed graph colouring problems, random distributed constraint satisfaction problems, distributed

meeting scheduling problems and distributed sensor networks problems.

Distributed constraint satisfaction problems that represent several variables per agent have a natural

clustering of variables which leads to the problem being seen as a collection of inter-related subproblems

or clusters. Each of these clusters forms a Complex Local Problem (CLP) within an agent which has some

links to other variables belonging to other clusters (i.e. other agents CLPs). For each problem class, we

describe the parameters required. However, when generating naturally DisCSP with CLPs, we modify the

DisCSP by making the proportion of internal variables higher than the proportion of external variables and

ensure there is a higher number of constraints between variables in the same agent with fewer constraints

between variables belonging to different agents. Once the DisCSP has been generated, privacy restrictions

are imposed as follows: an agent has knowledge of its own variables, domains and constraints plus the

variables (and current values) its CLP is related to via inter-agent constraints. Thus, knowledge about

internal variables, their domains and intra-agent constraints is private and is only known to the agent who

owns the CLP. In addition, the domains of external variables are also private, although related agents may

know some of the values contained in these domains. Privacy in DisCSP is described in Chapter 2, Section

2.4.

16
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This chapter is organized as follows: The distributed graph colouring problem is discussed in Section

3.2. In Section 3.3, we describe random distributed constraint satisfaction problems and distributed meeting

scheduling problems are explained in Section 3.4. This is followed by the description of distributed sensor

network problems in Section 3.5. The metrics for empirical evaluation is discussed in Section 3.6. Finally,

we summarise the chapter in Section 3.7.

3.2 Distributed Graph Colouring Problems

Graph colouring problems have a huge number of applications such as timetabling, sudoku, map colouring

and mobile frequency allocation. We generate graph colouring problems as described in (Fitzpatrick &

Meertens 2001). In these problems, the concept is to colour the nodes of a graph with a given number of

colours ensuring that no two adjacent connected nodes are coloured using the same colour. The colours are

the possible values a variable can take. The constraints are not equal constraints between two connected

variables (nodes) i.e no two adjacent variables should be assigned the same colour. These types of problems

are represented by the tuple <A, n, k, deg> where:

• A represents the given number of agents;

• n represents the number of nodes (variables) distributed among the agents;

• k represents the number of colours (domain size); and

• deg represents the connectivity (constraints) of the graph.

The degree deg determines the number of edges i.e. the number of constraints in the graph. The con-

straints are randomly selected and assigned to variables. For example, the parameter setting <5, 50, 3, 5>

generates a 3-colour graph colouring problem with 50 nodes distributed among 5 agent and a degree of 5

which means to randomly select and assign 5 constraints to each node i.e. 125 constraints in total. For DisC-

SPs with CLPs, we use the partitioning method described in (Hirayama, Yokoo & Sycaraw 2004) ensuring

that the generated graphs have a higher proportion of intra-agent to inter-agent constraints. Additionally,

we ensure a higher proportion of internal to external variables to create naturally distributed problems. Both

the intra-agent constraints and inter-agent constraints are not equal constraints. Finally, privacy restrictions

are then considered ensuring that each agent has complete control of its CLP.
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3.3 Random Distributed Constraint Satisfaction Problems

Random problems are used to generate problems with varying characteristics. Random problems (Palmer

1985) are represented by the tuple <A, n, d, p1, p2 > where:

• A represents the given number of agents;

• n represents the number of variables distributed among the agents;

• d represents the number of values per variable (domain size); and

• p1 and p2 are numbers between 0 and 1 which represents the constraint density and constraint tight-

ness respectively.

The constraint density p1 is used to determine the number of constraints and the constraint tightness p2

defines the proportion of excluded value pairs by each constraint. The constraints between variables and the

excluded value pairs are both chosen at random. For example, a random problem with <5, 75, 8, 0.4, 0.3>

implies, a problem with 5 agents, 75 variables each with a domain size of 8 which is typically a value from

{0, ..., 7}. The 75 variables are distributed between the 5 agents. The number of variables (n) determines

the maximum possible number of constraints as shown in Equation 3.1.

maximumConstraints = n ∗ (n− 1)/2 (3.1)

The constraint density of 0.4 translates to 40% of the maximum possible number of constraints used to

generate the problem (see Equation 3.2),

noOfConstraints = maximumConstraints ∗ 0.4 (3.2)

A constraint tightness of 0.3 implies 30% of the total possible combination of values are randomly

excluded and forbidden (for each pair of variables involved in a constraint).
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For DisCSPs with CLPs, we ensure a higher proportion of internal variables compared to external

variables. We also ensure that there is an imbalance between the number of intra-agent constraints (within

an agent) and inter-agent constraints (those between agents) to create naturally distributed problems.

3.4 Distributed Meeting Scheduling Problems

Distributed meeting scheduling is the problem of determining when meetings between several people pos-

sibly from different departments in an organisation will be held (Ismel 2007). Thus, each department has

several meetings to schedule. While some meetings involve people within a single department, others in-

volve people in other departments (i.e inter-departmental). Attendees (people) are not part of the problem

formulation but the constraints they are involved in are considered.

The constraints in a meeting scheduling problem are: (i) precedence constraints to ensure the order in

which meetings take place is appropriate; (ii) no two meetings with at least 1 attendee in common are held

at the same time (difference constraints); and (iii) Each attendee must have sufficient time to travel to where

a meeting will be held (travel time). The travel time between two locations is randomly determined between

0 and the maximum travel time. For two meetings within a department, either a precedence constraint or

a difference constraint is randomly selected and added. A travel time is also added between two meetings

which are in different departments. Note that meeting timeslots are set to an hour. When considering

meetings that should occur at the same time, the difference constraint would be set to zero. Note that

overlapping meetings are not allowed as all meetings have a duration of 1.

To generating a meeting scheduling problem instance, we use the tuple <A, m, d, p, md> where:

• A represents the set of departments (agents) each containing meeting(s) to schedule;

• m represents the set of meetings (variables);

• d represents a set of timeslots (domains) that indicate when meetings can take place;

• p represents the constraint density; and

• md represents the maximum travel time between meeting locations.
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The constraint density is used to determine the number of constraints. For example, to generate a

meeting scheduling problem having the parameter setting <5, 60, 7, 0.18, 3> this, translates to 60 meetings

distributed among 5 departments with 7 timeslots. 0.18 is the constraint density (i.e. 18% of possible

number of constraints) and a maximum travel time of 3.

For DisCSPs with CLPs, we use (i) a higher proportion of intra-agent to inter-agent constraints; and

(ii) a higher proportion of internal to external variables to create naturally distributed problems. The prece-

dence, difference and travel time constraints also apply to the external variables but only precedence and

difference constraints apply to the internal variables.

3.5 Distributed Sensor Network Problems

Sensor DisCSPs are used in applications such as industrial monitoring, detection, tracking and data col-

lection. When generating sensor network problem instances, we use grid-based Sensor DisCSP (Zhang,

Wang, Xing & Wittenburg 2005). The objective is to assign a three distinct sensors to the three variables

used to track a target while satisfying the visibility and compatibility constraints. The visibility of targets to

a sensor are the assigned set of sensors that can detect it while the compatibility refers to the positioning of

these sensors in relation to the targets. Two sensors are compatible if they have a constraint (edge) between

them while a set of three sensors are compatible if they are pair-wise compatible and form a triangle. A

sensor network problem is formulated as a DisCSP to comprise of <A, s, pv, pc > where:

• A represents a set of targets (agents)

• Each agent has 3 variables, one for each sensor that is required to track the corresponding target;

• The domain of each variable is the set of sensors s within its visibility.

• pv and pc represents the parameter controlling density of visibility and compatibility constraints.

The intra-agent constraints are the three sensors assigned to the target must be distinct, they must form

a triangle and they must be pair-wise compatible. The inter-agent constraints ensures that a given sensor

can only be selected by one agent.
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For example, to generate a Sensor DisCSPs with <5, 6, 0.8, 0.6> implies, a 6 grid sensor network (i.e.

36 sensors) to track 5 targets that have a visibility of 0.8 (80%) i.e 80% of the total number of sensors can

possibly detect each target and a compatibility of 0.6 (60%) i.e 60% of the total number of sensors that

can detect each target. The fixed (3) number of variables per agent in distributed sensor networks limits

the number of possible intra-agent constraints and thus, results in a higher ratio of inter-agent constraints

to intra-agent constraints. This inherent feature differentiates them from naturally distributed problems,

however, we would use sensor network problems for additional evaluation.

3.6 Performance Metrics

We measure the performance of our algorithms along these three evaluation metrics:

• Number of messages: In solving a DisCSP, each agent exchanges messages with neighbouring agents

to check the consistency of its current proposed assignments to variables involved in external con-

straints. Thus, the total number of messages exchanged between agents is used to measure the

communication costs of finding a given solution.

• Number of non-concurrent constraint checks (NCCCs): An approach similar to Lamports logical

clocks (Lamport 1978) is used. To determine a measure of concurrent search efforts, each agent

keeps a counter of its constraint checks. On receiving a message, an agent then compares and updates

its counter with the largest counter among its neighbours (Meisels, Kaplansky, Razgon & Zivan

2002). The NCCCs represents computational time of finding a given solution.

• Percentage of problems solved: The thesis focuses on distributed local search algorithms which by

default are incomplete. Thus, we consider the percentage of problems solved as a metric to measure

the percentage of problems solved within a specified time (i.e. the maximum number of iterations).

The importance of these metrics depends on the type of problem to be solved and the resources avail-

able. With an unreliable system or when the number of agents is high, the number of messages exchanged

will be of more concern. However, with fewer agents, the problem becomes more complex and NCCCs

would be of concern. In general, a good distributed algorithm will minimise the number of messages and

NCCCs as well as solve the highest number of problems.
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3.7 Chapter Summary

In this chapter, we described the problems used in evaluating the algorithms in this thesis which are dis-

tributed graph colouring problems, random DisCSPs, distributed meeting scheduling problems and dis-

tributed sensor network problems. These are benchmark problems that are general abstractions for many

real-life problems and are used for evaluating distributed constraint satisfaction algorithms. Distributed

graph colouring problems are used to model problems such as timetabling, map colouring and mobile

frequency allocation. Random DisCSPs are used to generate random problems while distributed meeting

scheduling problem models the distributed scheduling of meetings between the employees of a company.

Sensor DisCSPs are used in industrial monitoring and data collection. Unlike distributed graph colouring

problems, random DisCSPs and distributed meeting scheduling problems, sensor network problem are not

naturally distributed problems because the number of variables per agent is fixed at 3 and this restricts the

number of possible intra-agent constraints. However, we use sensor network problems for additional eval-

uation to determine the performance of our algorithms on such settings. We also listed the metrics used

for empirical evaluation. In the next chapter, we discuss search strategies and algorithms for distributed

constraint problems.



Chapter 4

Algorithms for solving Distributed

Constraint Problems

4.1 Introduction

Research in distributed constraint problems has proposed several problem solving algorithms. Based on

the mode of execution of these algorithms, they are categorized as either synchronous or asynchronous

algorithms. Algorithms for solving distributed constraint problems can also be categorized into two groups,

namely local search and systematic search. Hybrid algorithms aim to combine the advantages of the

search techniques. In this chapter, we describe these categories and review existing DisCSP and DCOP

algorithms.

This chapter is organized as follows. We discuss the search methods in Section 4.2. In Section 4.3,

we present a review of distributed constraint satisfaction algorithms. This is followed by a discussion of

distributed constraint optimisation algorithms in Section 4.4. Finally, we summarise the chapter in Section

4.6.

4.2 Search Methods

In this section, we differentiate between synchronous and asynchronous algorithms. We also describe

systematic and local search algorithms. Some heuristics for improving search in algorithm for solving

23
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distributed problems are also discussed.

4.2.1 Synchronous and Asynchronous Algorithms

Algorithms for DisCSPs can also be categorized as either synchronous or asynchronous based on their

execution model (Yokoo et al. 1998), (Zivan & Meisels 2003). Synchronous algorithms have a low degree

of parallelism between different agents execution and are based on privilege where each agent performs

actions in a predefined order. A token is passed among agents with the active agent being the agent in

possession of the token. When the active agent completes its processing, the token is then passed to the next

agent. The current active agent receives the updated information from the previous agents before proceeding

with the search. On the other hand, asynchronous algorithms have a higher degree of parallelism with every

agent possibly active at any time.

4.2.2 Systematic Search

Systematic search algorithms (also known as backtracking or complete search) are complete methods, i.e.

return the solution for solvable problems and also determine unsolvable problems (Rossi, Beek & Walsh

2006). Systematic search algorithms use an exhaustive search and incrementally attempt to extend a partial

assignment (that specifies consistent values for some of the variables) by repeatedly choosing a value for the

next variable which is consistent with the values in the current partial assignment. If a consistent assignment

does not exists, the search backtracks to a previous variable.

More concretely, systematic search algorithms start with an empty partial assignment (known as Current

Partial Assignment (CPA)), proceed to select one unassigned variable at a time and assign a consistent value

to the variable to form an extended CPA (illustrated in Figure 4.1). The process of selecting an unassigned

variable and assigning it a value is referred to as the forward phase. A current partial assignment is made

up of consistent instantiations of the selected variables. If the next variable is selected but a consistent

assignment cannot be found, the search goes to the backward phase. In the backward phase, the search

backtracks to the previous most recent variable and then proceeds by removing the variable’s assignment

from the CPA and then trying to extend the CPA with an alternative domain value. If the domain values

of the variable are exhausted and no consistent assignment exists for the variable, the search backtracks

further. The backtrack stops when a variable with an alternative consistent assignment is found or the first

variable is reached with no alternative consistent assignment, thus, the problem has no solution. However,
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Figure 4.1: Systematic search

if a consistent assignment is found during the backtrack phase, the variable assignment is populated to the

CPA and the forward phase commences.

In summary, when a variable assignment is consistent, it is added to the partial assignment otherwise

the search backtracks. Backtracking may be done several times. The main weakness of systematic search

algorithms is the exponential amount of time they may require which makes them expensive for solving
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large DisCSPs.

4.2.3 Local Search

Local search (also known as iterative improvement search) is a type of search that iteratively improves an

initial, normally inconsistent complete assignment by changing the value of one or more variable(s) at a

time. The initial assignments are usually randomly or heuristically generated and in successive iterations,

the values assigned to variables are changed so that the number of constraint violations is reduced until a

termination condition is met. Local search algorithms are incomplete algorithms thus, they may not find

a solution for problems where a solution exists. In a local search algorithm, the “best” available value

(leading to the least constraint violations) for a variable is selected, thus, this makes them liable to getting

trapped in local optima (see below).

Local Optima (Deadlock): Local-optima also known as (deadlock) is a state where variables in some

agents are violating some constraints and neither the agent nor any other agent in the DisCSP can make

local changes that can result in a lower number of constraint violations. A weaker form of local optima

in local search is referred to as Quasi-Local Optima (QLO). A QLO is a local optima detected by local

communications between an agent and its neighbours (Zhang, Wang & Wittenburg 2002). In a QLO, an

agent or its neighbours cannot make local changes that can result in a lower number of constraint viola-

tions. However, another agent (not the neighbour of the agent that encountered the QLO) may change its

assignment to a value which improves the overall state (reduces the overall number of constraint violations).

Thus, when a QLO is detected, it does not necessarily result in local optima but local optima imply that a

QLO has also been encountered. Local search algorithms generally differ on the heuristic/strategy used to

escape local (quasi-local) optima.

For example, refer to the simplistic problem (in Chapter2, Figure 2.1) of allocating timeslots for 5

student presentations again in Figure 4.2. Each agent (A, B, C, D, E) represents a single variable X = {a, b,

c, d, e} respectively. Dxi
where xi ∈ {a, b, c, d, e} represents the domain (timeslots) that can be assigned

to each student, which are Da = {1, 2}, Db = {1, 2}, Dc = {1, 3}, Dd = {1, 3, 4}, De = {2, 3}. Constraints

between the variables are illustrated with a line between variables. The number of constraint violations for

a student’s variable value are depicted by Violxi .

To illustrate a quasi-local optima, if the current assignment of the variables is <a = 1, b = 1, c = 1, d =
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Figure 4.2: A simple illustration of local optima

3, e = 3 > as illustrated in Figure 4.2, Agent C cannot find a value which improves variable c. Variable c’s

neighbours are variables {b, d, e}. Variable b in Agent B has the same number of constraint violations of 2

for both its domain values, variable d in Agent D is already consistent and variable e in Agent E also has the

same number of constraint violations for both the domain values 2 and 3. Thus, Agent C detects a quasi-

local optima because it cannot improve the current assignment of variable c and variable c’s neighbours

have not changed values.

4.2.4 Heuristics for Improving Search

To improve the efficiency of search algorithms, many heuristics have been proposed which can either be

used alone or in combination. These include heuristics for escaping local optima and heuristics for ordering

values, variables and agents.

• Strategies for Escaping Local (or Quasi-Local) Optima: Distributed local search solving tech-

niques use several strategies to escape from local optima. In this section, we discuss strategies for

escaping local optima and describe the algorithms that implement some of these strategies in Section

4.3.1.
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1. Tabu Search

Tabu search (Glover 1990) is a heuristic used to learn bad combinations of values. It is used

to ensure previously visited non-solutions are not revisited by learning and storing the set of

assignments found in a deadlock in a tabu store. At local optima, the tabu store is updated with

the most recent bad combinations in order to avoid revisiting those values. The larger the size

of the store, the better the heuristic becomes but consequently, the size of the store and the time

to check the store can become exponential.

2. Random Restart

The simplest local search (Dechter 2003) starts with a random instantiation of variables with

values and iteratively improves this initial instantiation using local repairs until a deadlock is

reached. When a deadlock is encountered, the search is restarted by random re-initialization of

value assignments to variables to enable the search to proceed. This process is repeated until

a solution is found or the specified number of iterations is reached. A drawback of random

restart is that the effort made by the search before the random restart is wasted (not reused) and

therefore, the restart is made with no knowledge learnt from the previous search.

3. Weights on Constraints

The weights on constraints approach for escaping quasi-local optima (Hirayama & Yokoo

2005, Duong, Pham, Sattar & Newton 2013) attaches a weight to each constraint (initially 1).

It increases weights attached to constraints violated at local optima to make the satisfaction

of those constraints more important. The summation of the weighted number of constraint

violations is used to determine the cost function.

4. Penalties on Values

The Penalty driven heuristic (Basharu, Arana & Ahriz 2005) attaches a penalty to each vari-

able’s domain value (initially 0). If quasi-local optima are encountered, current domain values

leading to constraint violations are penalised, hence, marking those values as bad choices and

encouraging the search to find another value within that variable’s domain. Penalties are re-

set under certain conditions. The summation of the violated constraints together with value

penalties is used to determine the cost function.

5. Probability



4.2. Search Methods 29

At local optima, the search uses some probability to (i) maintain its current assignment or; (ii)

select another value with the same number of constraint violations; or (iii) select a value with

more constraint violations in order to enable other parts of the solution space to be explored.

The determination of the optimal probability can be expensive, it is also problem dependent

and can generally determine the performance of the algorithm (Zhang et al. 2002, Zhang et al.

2005).

Simulated annealing - SA (Kirkpatrick, Gelatt & Vecchi 1983) is a probabilistic approach used

to find approximate solutions to optimisation problems. SA initially allows some bad moves

that are gradually decreased. Thus, the algorithm randomly explores the solution space starting

with a large, general search space and gradually, the algorithm concentrates on promising parts

of the search space by selecting values “closer” to the solution (i.e. values with less number

of constraint violations). This unique form of probabilistic selection enables the avoidance of

local optima.

6. Coalition

Coalition was proposed by (Hirayama & Toyoda 1995) for breaking deadlocks. A coalition is a

contract between agents (with one agent voted as manager) that are involved in a local optima

with the purpose of satisfying individual or collective constraints. The manager gathers all

variables, domains and constraints in a coalition and solves the local problem using either

selfish or altruistic strategies. In the selfish approach, values that satisfy violated constraints

are selected without any regard to the effect on other previously satisfied constraint that may

become unsatisfied while all constraints are considered in the altruistic strategy. A form of

coalition is used where agents take turns being mediator (i.e. they centralize small, relevant

portions of the problem) in (Mailler & Lesser 2006). Coalition improves search at the expense

of privacy.

• Ordering Heuristics: Ordering heuristics determine which agents and variables have precedence in

the search and which values an agent chooses for its variables first. Thus, it encourages the algorithm

to focus the search in more promising or difficult parts of the problem.

Ordering can be static or dynamic. A static ordering is determined at the start, before the search

process commences while dynamic (flexible) ordering occurs during search and the most recent
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search conditions can be used to control and determine how each agent makes subsequent decisions.

1. Value Ordering

Some criteria used to order domain values include; (a) Ordering the values by prioritising on

the value that removes the smallest number of values from the domains of variables not yet

considered; (b) the use of the most recently assigned value in order to capitalize on previous

consistent partial assignments; and (c) Min-Conflict (Steven, Mark, Andrew & Philip 1992)

selects the value with the least number of constraint violations.

2. Variable Ordering

In Brelaz’s heuristic (Brélaz 1979), variables are ordered by the number of constraints with

already ordered variables. Ties are broken initially by the number of constraints with currently

unordered variables and then lexicographically. Other variable ordering strategies include; (a)

The domain size of variables as proposed (Haralick & Elliott 1979) in which preference is given

to variables with smaller domains; and (b) maximum degree is another heuristic (Freuder 1982)

that selects the variable involved with the largest number of constraints with other variables not

yet considered.

3. Agent Ordering

The task of ordering agents considers the structure of neighbouring agents together with con-

straints and domains. Deciding an agent ordering is similar to assigning a priority to the agent.

Dynamically changing the priority order of an agent to a higher priority enables the agent to

revisit bad decisions early in the search. When the search cannot find a value for a variable

that is consistent with the variable values of its higher priority neighbours, the priority of the

agent representing the variable is changed so that it has the highest priority among its neigh-

bours (Yokoo & Hirayama 2000). Other heuristics for agent ordering include a measure of the

constraint violations for each agent, such that the agent with the highest constraint violations

has the highest priority (Zhou, Thornton & Sattar 2003).
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4.3 DisCSP Algorithms

4.3.1 Local Search DisCSP Algorithms for Single Variable/Agent

The Stochastic Distributed Penalty Driven Search Algorithm (Stoch-DisPeL) (Basharu, Arana & Ahriz

2006) is a synchronous iterative improvement algorithm for solving DisCSPs that escapes local optima

with the penalty on value approach. At quasi-local optima, an agent stochastically implements either a

temporary penalty or an incremental penalty. A temporary penalty is a fixed value penalty of 3 assigned to

perturb the solution to encourage agents to exploit other values in their domain. Temporary penalties are

reset immediately an agent selects another value. The incremental penalty is a fixed value of 1 imposed

on the assignment of inconsistent variables at quasi-local optima. Incremental penalties are reset when

an agent (i) finds consistent assignments for its variables; or (ii) when the search space is distorted by

penalties during the search (Basharu et al. 2006). An agent sends messages to its lower priority neighbours

(lower priority neighbours that violates a constraint with it), informing them to also impose an incremental

penalty (temporary penalty) on their assignments. The cost function for Stoch-DisPeL is determined by the

summation of the number of constraint violations together with the penalties imposed.

Distributed Breakout Algorithm (DBA) (Yokoo & Hirayama 1996) is a hill climbing algorithm which

extends the breakout algorithm (BA) (Morris 1993) to distributed problem solving. In DBA (later renamed

Single Distributed Breakout (SingleDB) (Hirayama & Yokoo 2005)), a weight is associated with each

constraint and is initially set to 0. The cost function is determined by the number of the weighted constraint

violations. In this thesis, we refer to the algorithm as SingleDB. An agent sends its initial assignments

to its neighbours via OK messages. Agents then carry out a distributed steepest search by exchanging

possible improvements to a candidate solution. An agent sends its initial assignment to its neighbours via

OK messages and waits for all of the OK messages issued by its neighbours before selecting an assignment

for its variable that would reduce the number of constraint violations (also called an “improve”). This

is then sent in a Send Improve message to its neighbours. On receiving these messages, an agent then

compares its improve with the improve of neighbours and the agent with the best proposed improvement is

given the right to change its value. To break a tie, i.e. when more than one related agents have the same

best improvement, the agent with the highest ID is selected. When an agent encounters quasi-local optima,

the weights attached to constraints violated are increased by 1. Two stochastic variations; SingleDB weak

probability (DBA-wp) and SingleDB strong probability (DBA-sp) that differ in the approach at tie breaking
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were later proposed (Zhang & Wittenburg 2002). In DBA-wp, ties are broken such that both agents may

implement the change or not, or just one agent implements the change while in DBA-sp, an agent implement

the change if it has the best improvement among its neighbours but when it can improve (not the best

improvement among its neighbours), it will implement the change based on a probability. Later, SingleDB

was improved with a weight decay mechanism in SingleDB-wd (Lee 2010). At each iteration in SingleDB-

wd, before computing possible improvements, agents update their constraint weights as follows: (i) Weights

on violated constraints at time t are computed as Wi,t = (dr ∗Wi,t−1) + lr; and (ii) Weights on satisfied

constraints at time t are decayed as Wi,t = {max(dr ∗Wi,t−1), 1} where: dr is the decay rate (dr < 1) and

lr is the learning rate (lr > 0).

The Distributed Stochastic Algorithm (DSA) (Zhang et al. 2002) is a synchronous hill climbing algo-

rithm that implements a probabilistic strategy where agents use a probability to change their value when

making that change will improve their solution. The choice of the probability in DSA can be problem spe-

cific and difficult to determine. The summation of the number of constraint violations is used to determine

the cost function in DSA. Also, message sending between agents is minimised because messages are sent

only when an agent changes its variable’s value. Several variations of DSA exist that differ in the strategies

for value change (Zhang et al. 2002) used to escape quasi-local optima. Some particularly dominant strate-

gies are seen in DSA-A and DSA-B. In DSA-A, with probability p, an agent may change to the value that

gives the most reduction in the number of violated constraints or keep the current value unchanged with

probability (1 −p). DSA-B is similar to DSA-A but with the same probability (p), an agent may also take

another equally good value without making the solution better or worse. Distributed Probabilistic Protocol

(DPP) (Smith & Mailler 2010) is a hybrid of the DSA and SingleDB protocols that dynamically implement

randomness and direct control which is based on the structure and current state of the problem.

4.3.2 Local Search DisCSP Algorithms for Multiple Variables/Agent

Distributed Penalty Search for Agents with Multiple Local Variables (Multi-DisPeL) (Basharu, Arana &

Ahriz 2007b) is an algorithm (that extends Stoch-DisPeL) for solving problems with complex local prob-

lems that implements the penalty on value approach. Multi-DisPeL uses a steepest descent search for the

local problem and Stoch-DisPeL is used for combining each agents solutions into a complete solution for

the problems (i.e. satisfy inter-agent constraints).

SingleDB is also extended to handle complex local problems in Distributed Breakout Algorithm for
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Agents with Multiple Local Variables (Multi-DB) (Hirayama & Yokoo 2002), (Hirayama & Yokoo 2005).

Initially, Multi-DB was modified to the Distributed BreakOut (DisBO) (Eisenberg 2003), increasing con-

straint weights only at local optima where no agent can change to result in an improved state. Later,

(Basharu et al. 2007b) proposed Distributed BreakOut weight decay (DisBO-wd) which uses a weight

decay mechanism. At each step in DisBO-wd, an agent decreases the weights on all the constraints its

variables are involved in and additionally, increases the weights of violated constraints (as described in

SingleDB-wd above).

4.3.3 Systematic Search DisCSP Algorithms for Single Variable/Agent

A well-known complete method proposed for solving DisCSPs is synchronous backtracking (SBT) (Yokoo

et al. 1998) which uses a fixed ordering of variables and agents take turns to select a value. A Current

Partial Assignment (CPA) containing variables with their current consistent assignment is sent to the next

agent. A backtrack is done when an agent cannot find a consistent value for a variable from its domain.

Later, an asynchronous backtracking algorithm (ABT) (Yokoo & Hirayama 2000) that allows agents to

search in parallel for a solution was proposed. Agents have a fixed priority which is determined by the

order of the agent’s identifier (ID) and an agent with a higher ID implies the agent has a higher priority.

Agents asynchronously assign a consistent value to their variable, sending OK messages with their value to

neighbour agents to update their Agentview and then evaluate their assignments (by computing the number

of constraints violated). For a given agent with an inconsistent value and no consistent value in its domain,

the agent records the conflict in its no-good store and backtracks to the lowest priority agent with a higher

priority than itself (informing it that its assignment does not extend to a solution). If the conflict involves

other unrelated (via contraints) agent(s), the agent creates a new link (a not equal constraint between the

variables and their assignments in the CPA) and then sends a new link request (nogood message) to the

unrelated agent(s) asking them to also create the new constraint. The addition of new constraints in ABT

was eliminated to increase privacy and this elimination sometimes results in a trade-off on performance

(Bessière, Brito, Maestre & Meseguer 2005). Distributed Intelligent Backtracking (DIBT) (Hamadi 1998,

Hamadi 2002) is a distributed asynchronous graph based algorithm that also avoids no-good recording.

DIBT proposes an intelligent backtrack technique using parallel exploration of search trees and constraint

propagation. Knowledge of the conflict of previous searches is also saved to enable a conflict directed

backtracking.
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The authors of ABT presented Asynchronous Weak-Commitment Search (AWCS) (Yokoo 1995a).

AWCS is a complete asynchronous backtracking algorithm that dynamically prioritises agents favouring

backtracking agents. In AWCS, each agent concurrently assigns a value to its variable, and sends the value

to other neighbouring agents. After that, agents wait for and respond to incoming messages. Similar to

ABT, agents in AWCS are assigned a priority but unlike ABT where priority is fixed, an agents priority

is changed dynamically. Initially, priorities are set to 0 and a higher priority value implies the agent has

a higher priority. An agent in AWCS determines values from its domain that satisfy all constraints its

variable has with their higher priority neighbours, and from these values it selects a value for its variable

that minimises constraint violations with their lower priority neighbours. When an agent does not find a

consistent assignment, the agent sends no-good messages to notify its neighbours and then increases its

priority by 1. The priority increases the importance of satisfaction of the variable represented by an agent.

A complete algorithm that uses partial centralization (a form of coalition) is Asynchronous Partial Over-

lay (APO) (Mailler & Lesser 2003), (Mailler & Lesser 2006). Agents in APO take turns being mediators to

solve the relevant parts of the problem using cooperative mediation. In mediation, agents centralize some

part of their problem and use explicit constraint and domain sharing whenever requested. This approach

results in some privacy loss.

Distributed Knowledge-Based Hybrid Approach (DisHyb) is a two phase approach that combines dis-

tributed local and distributed systematic search (Lee, Arana, Ahriz & Hui 2009a). In the first phase of

the algorithm, a distributed local search algorithm is run to gather knowledge about difficult variables and

values. The agents are then reordered according to the knowledge about difficult variables and values. In

the second phase, a distributed systematic search algorithm is run with the agents reordered. Penalty-Based

Distributed Hybrid Algorithm (PenDHyb) and Weight-Based Distributed Hybrid Algorithm (DBHyb) are

two implementations of the approach that differ on the local search used. Stoch-DisPeL is used in PenDHyb

while SingleDB-wd is used in DBHyb.

4.3.4 Systematic Search DisCSP Algorithms for Multiple Variables/Agent

Asynchronous Weak-Commitment Search for Agents with Multiple Local Variables (Multi-AWCS) (Yokoo

1995a) and Asynchronous Backtracking for Agents with Multiple Local Variables (Multi-ABT) (Hirayama

et al. 2004) are complete algorithms that extend their single variable per agent version. Both Multi-AWCS

and Multi-ABT use a local AWCS (ABT) solver to satisfy the intra-agent constraints and a global AWCS
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(ABT) solver to satisfy the inter-agent constraints.

A version of Multi-ABT with an alternative no good learning and value selection techniques was also

produced (Maestre & Bessière 2004).

Multi-Hyb (Lee et al. 2009a) and Multi-HDCS (Lee, Arana, Ahriz & Hui 2009b) use a hybrid of com-

plete and local search for solving DisCSPs with CLPs. Multi-Hyb extends the idea in DisHyb for DisCSPs

with CLPs. A centralised systematic search was used to solve the CLPs while a distributed local search

and a distributed systematic search concentrate on the global problem. Similar to DisHyb, a two phase

approach is used. In the first phase, a distributed local search algorithm is run to gather knowledge about

difficult variables and values in the global problem. Then in the second phase, a distributed systematic

search is run to solve the global problem using agents that have been reordered according to the variables

and values learnt by distributed local search. However, Multi-HDCS differs from Multi-Hyb by running

the distributed local search and distributed systematic search concurrently. Thus, the approach uses a sin-

gle phase and the distributed systematic search runs at the same time as the distributed local search and

centralised systematic searches. Two implementations of each framework are presented that differ on the

local search algorithm used (Lee 2010). Penalty-Based Hybrid Algorithm for Agents with Multiple Local

Variables (Multi-Hyb-Pen) and Weight-Based Hybrid Algorithm for Agents with Multiple Local Variables

(Multi-Hyb-DB) are two implementations of Multi-Hyb that use Stoch-DisPeL and SindleDB-wd respec-

tively. While Penalty-Based Hybrid Distributed Concurrent Search Framework for Agents with Multiple

Local Variables (Multi-HDCS-Pen) and Weight-Based Hybrid Distributed Concurrent Search Framework

for Agents with Multiple Local Variables (Multi-HDCS-DB) are two implementations of Multi-HDCS that

use Stoch-DisPeL and SindleDB-wd respectively.

4.4 DCOP Algorithms

4.4.1 Local Search DCOP Algorithms for Single Variable/Agent

In coordination algorithms (Maheswaran, Pearce & Tambe 2004), a small group of agents coordinate their

action based on their local constraints. The quality of the solution is measured by the cost of coordination

between agents against the quality of the solution reached. Hence, theoretical guarantees on the quality

of solution (that defines the optimality of the solution) can be provided (Pearce & Tambe 2007), (Vinyals,

Shieh, Cerquides, Rodriguez-Aguilar, Yin, Tambe, & Bowring 2011). In surveying the literature on local
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search DCOP algorithms, we differentiate algorithms with and without guarantee on the quality of solution.

Algorithms Without Guarantee: A very different approach towards local search is implemented in

Max-Sum (Farinelli, Rogers, Petcu & Jennings 2008). Max-Sum is a synchronous, incomplete DCOP algo-

rithm that uses message-passing and belongs to the class of algorithms referred to as generalized distributive

law (Aji & McEliece 2000). Max-Sum operates on a factor graph, i.e. a bipartite graph where the node

represents a variable function and a constraint function. A variable-node is connected to all function-nodes

that represent constraints with which it is involved in. A function-node is connected to all variable-nodes

involved in the constraints it represents. The variable-nodes accumulate the costs received from function

neighbours and send messages to the function-nodes about the cost received from all its neighbours, ex-

cluding that of the receiving function. The function-node on the other hand selects the best combination

assignment and also selects a proposed value for that variable. At the end of an iteration, each variable-

node selects the value assignment with the best cost based on the messages received from all neighbouring

function-nodes.

Anytime Local Search for DCOP (ALS) (Zivan 2008) is a framework proposed to enhance any DCOP

local search algorithm with the anytime property (i.e. at any given time, the best solution is returned). In

ALS, a Breadth-First Search (BFS) is used with one agent designated as the root agent. The root agent is

used to determine the global solution by calculating the best state for each agent and if found, propagate

the new best step. More specifically, an agent (i) receives messages from its neighbours which are lower

in the ordering about the quality (cost) of the solution found; (ii) the agent then includes its own state; (iii)

calculates the cost with respect to the objective function; and (iv) sends messages to its parents and root

agent.

Algorithms With Guarantee: SingleDB (Single Distributed Breakout) and DSA (Distributed Stochas-

tic Algorithm) for DisCSPs were initially extended to 1-Optimal algorithms for DCOPs by (Zhang et al.

2002) in MGM-1 and DSA-1 respectively. MGM-1 (Maximum Gain Message), an asynchronous algo-

rithm unlike SingleDB, removes the breakout technique for escaping local optima and the search focuses

only on improve (gain) message passing. Similar to SingleDB, on receiving the assignments of all its

neighbours, an agent in MGM-1 computes its local improvement (i.e. a reduction in cost) and sends this

proposal to its neighbours. After collecting the proposed reductions from its neighbours, an agent changes

its assignment only if it has the best proposed reduction compared to its neighbours. Later, DSA-1 and
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MGM-1 were further extended to 2-Optimal algorithms MGM-2 and SCA-2 (Stochastic Coordination

Algorithm)(Maheswaran et al. 2004) in which optimization was done by agents acting in pairs in order

to maximise their combined cost.

The authors further generalised these algorithms to k-Optimal algorithms (MGM-k and SCA-k) in

which a group of k agents can coordinate value updates in order to maximize their combined cost (Maheswaran

et al. 2004). K-Optimal algorithms avoid local optima to which a smaller group would have converged.

Thus, the solution found cannot be improved by k or fewer agents changing their values, k being the num-

ber of agents.

Another form of optimality, t-Distance defines optimality based on a group of surrounding variables

within a fixed distance t of a central variable. T-Distance algorithms return t-optimal solutions that cannot

be improved by the variables within t. Distributed Asynchronous Local Optimization (DALO) (Kiekintveld,

Yin, Kumar & Tambe 2010) is an algorithm that can compute either k-Size or t-Distance solutions for any

settings of k or t. Each group is assigned a leader that computes a new optimal assignment for the group

and implements the new assignment if it is an improvement.

Later, c-Region (Vinyals et al. 2011) optimality was introduced to provide quality guarantees beyond

size and distance. This provides an alternative trade-off to size and distance, with agents being more aware

of the complexity of the regions they generate. Similarly, c-optimal solutions cannot be improved by any

other assignment inside region c. DALO was extended for region optimality by modifying how agents

create their groups in C-DALO (Vinyals et al. 2011).

Theoretical guarantees to the quality of solutions for Max-Sum (see above) were later provided in

bounded Max-Sum (Rogers, Farinelli, Stranders & Jennings 2011). In Bounded Max-Sum, the problem is

made less complex by removing constraints which have the least impact on the solution quality, producing a

new problem. Max-Sum is simultaneously used to solve the new problem and to compute the approximation

ratio i.e. how close the solution found is to the actual solution. Later, an improved bounded Max-Sum was

proposed which uses a tighter approximation ratio (Rollon & Larrosa 2012).

Divide-and-Coordinate Sub-gradient Algorithm (DaCSA) (Vinyals, Pujol, Rodriguez-Aguilar & Cerquides

2010), Divide-and-Coordinate by Egalitarian Utilities (EU-DaC) (Vinyals, Rodrı́guez-Aguilar & Cerquides

2010) and Decomposition with Quadratic Encoding to Decentralize (DeQED) (Hatano & Hirayama 2013)

are algorithms based on the divide and coordinate framework. In the divide stage, each agent creates a copy

of the problem based on its Agent’s view, updates its own sub-problem with information received from its
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neighbours and solves this updated sub-problem. In the coordinate stage, each agent sends some informa-

tion to its neighbours. The algorithms differ in the encoding method implemented in the divide stage and in

the type of messages exchanged between agents.

4.4.2 Local Search DCOP Algorithms for Multiple Variables/Agent

Dynamic Complex Distributed Constraint Optimization Problem - DCDCOP (Khanna, Sattar, Hansen &

Stantic 2009) is a local search algorithm for solving dynamic DCOPs that handles complex sub-problems by

finding local optimal solutions through a branch and bound whilst determining the global optimal solution

through the combined calculated best found cost of the agents (including their inter-agent constraint). Multi

Variable Multiply Constrained MGM (MV-MC-MGM) (Portway & Durfee 2010) is an extension of MGM-

1 for MV-MC-DCOPs. MV-MC-MGM implements a decomposition approach for dealing with multiple

variables per agent. Each agent calculates the best move for its agents given the values of their neighbours

while ensuring that local limiting cost functions are not exceeded.

4.4.3 Systematic Search DCOP Algorithms for Single Variable/Agent

ABT is extended for solving Max-CSPs where a solution minimises the number of constraint violations

(Hirayama & Yokoo 2000). Synchronous Branch and Bound (SynchBB) (Hirayama & Yokoo 1997) is

the distributed version of the branch and bound method (Freuder & Wallace 1992) for solving Max-CSPs.

In branch and bound, the search algorithm explores branches of its tree by checking its accumulated cost

against an upper and lower estimated bounds on the optimal solution. Partial assignments are represented

by a Current Partial Assignment (CPA). For a proposed assignment, if the lower bound is less than the

upper bound, the value is accepted and the search commences. Otherwise, another value is checked. If all

the values are not accepted, the search backtracks. SynchBB was later extended to address ADCOPs in

SynchABB (Grinshpoun et al. 2013).

OptAPO (Mailler & Lesser 2004) is an extension of APO for optimisation problems. In OptAPO,

agents share the knowledge of their problems to improve their local solutions.

Asynchronous Forward-Bounding (AFB) (Gershman, Meisels & Zivan 2006) is also based on branch

and bound, where agents asynchronously propagate CPAs. Taking turns, an agent adds its assignment in the

CPA and sends a Forward Bounding-CPA message (FB-CPA message) to agents without an assignment in

the CPA. On receiving a FB-CPA message, an agent calculates the lower bound and returns it to the sender



4.4. DCOP Algorithms 39

agent via a Forward Bounding Estimate message (FB-ESTIMATE message). For a proposed assignment, if

the lower bound is less than the upper bound, the value is accepted and the search commences. Otherwise,

another value is checked. If all the values are not accepted, the search backtracks. Asymmetric Two Way

Bounding (ATWB) (Grinshpoun et al. 2013) is a version of AFB proposed to deal with ADCOPs.

Asynchronous Distributed Constraint Optimization with quality guarantees (ADOPT) (Modi et al.

2005) is the first complete DCOP algorithm that allows asynchronous concurrent execution and is guaran-

teed to terminate with the globally optimal solution. Agents in ADOPT are initially ordered in a Best-First

Search (BFS) tree structure called a pseudo-tree. Each agent has a context (equivalent to an AgentView)

consisting of the set of <variable=value> assignments of other preceding agents. A parent-child relation-

ship exists among agents that are directly connected via a constraint. An agent higher in the ordering is a

parent and child otherwise. When an agent receives a message, it does the following; processes it, sends

value messages and sends cost messages. Value messages are sent to its children and pseudo-children when

an agent changes its value. This enables them to make informed decisions in their selection. Cost messages

consisting of the context, lower bound and upper bound are sent from children to parent. Additionally,

threshold messages are sent from parents to children i.e a message containing the lower bound of the cost

that the children have from the previous search. ADOPT was extended in BnB-ADOPT (Yeoh, Felner &

Koenig 2014). The main difference with ADOPT is that the BFS in ADOPT is substituted with a DFS

(Depth First Search) branch and bound approach. Thus, while an agent in ADOPT assumes a value that

minimizes its lower bound, an agent in BnB-ADOPT assumes a value when it is able to ascertain that the

optimal solution for that agent is probably no better than the cost of the best solution found. Secondly,

while an agent in ADOPT uses thresholds to store previously computed lower bound for its current context,

thresholds are used to store the cost of the best solution found and also as a means to efficiently make change

in BnB-ADOPT. ADOPT-ng (Silaghi & Yokoo 2006) unifies ADOPT with asynchronous backtracking to

improve the communication model with a valued no-good protocol. Messages sent in BnB-ADOPT and

ADOPT-ng are small in size but can be exponential in number compared to messages sent in ADOPT.

Dynamic Programming Optimization Protocol (DPOP) (Petcu & Faltings 2005) is a DFS synchronous,

inference DCOP algorithm that exchanges cost functions. A DFS tree is constructed similar to ADOPT.

Utility (cost) messages are sent bottom up (i.e from child to parent) while value messages are sent top down

(i.e from parent to child). In the utility phase, an agent combines the costs received from its children and

parents to project its cost which is then passed to its parents. While in the value phase, the root finds a
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value that minimises the costs received and informs the children. Although both utility and messages sent

in DPOP are linear in number, utility messages can be exponentially large both in memory and size.

4.4.4 Systematic Search DCOP Algorithms for Multiple Variables/Agent

ADOPT (Modi et al. 2005) was extended to address CLPs using aggregation, interchangeable local assign-

ments and relaxation techniques in (Burke & Brown 2006b), (Burke & Brown 2007). ADOPT for Multiple

Variables per Agent (AdoptMVA) was also proposed (Davin & Modi 2006) as an extension of ADOPT

designed to specifically handle multiple variables per agent. Agents are ordered and centralized search

procedures are used to solve each agents’ sub problem with distributed ADOPT for the overall problem.

4.5 Discussion

In this thesis, we are concerned with solving large naturally DisCSPs with local search algorithms (for

easy problems other existing approaches may be best). Naturally distributed problems expect more internal

constraints than external constraints with the problems distributed in clusters. Although local search algo-

rithms are incomplete, they are popular on large DisCSPs, converging quicker to a solution when compared

to systematic algorithms (Rossi et al. 2006). A major drawback of local search algorithms is it propensity of

getting stuck at local optima i.e. a non-improving state (or deadlock). Significant researches have focused

on heuristics which attempt to either escape or avoid local optima. The heuristics are discussed in 4.2.4

and the local search algorithms for DisCSP having single variable per agent that implement the heuristics

in 4.3.1.

We identified three of these heuristics; weights on constraints implemented in SingleDB-wd (Hirayama

& Yokoo 2005), penalties on values implemented in Stoch-DisPeL (Basharu et al. 2005) and dynamic agent

prioritisation implemented in AWCS (Yokoo 1995a). SingleDB-wd, Stoch-DisPeL are distributed local

search algorithms while AWCS is a distributed systematic algorithm for single variable per agent. Each

of these heuristics focuses on a different part of the DisCSP (<Agent, variables, domain, constraints>).

Weights on constraints makes the satisfaction of the constraints more important. Penalties on domain values

is finer grained and allows for more drastic contortion in the cost landscape moving the search to part of

solution space where a solution may be found. Dynamic agent prioritisation increases the importance of an

agent over its neighbours.
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Constraint weight escapes local optima and enables the search to proceed but the empirical evaluation

reported by the authors 1 of penalty-based approach, showed that the number of agents changing value

and becoming more consistent were found to be more with the penalty-based approach when compared to

constraint weights (Basharu, Arana & Ahriz 2007a). AWCS outperforms the gold standard in systematic

DisCSP algorithms (ABT (Yokoo et al. 1998)). While agent priorities are static in ABT, AWCS introduces

dynamic prioritisation of agent which changes the authority of decision making and increase the chances of

finding quicker solutions (Yokoo 1995b).

Although these heuristics escape local optima, a challenge in designing local search algorithms remains

in strategies for escaping local optima. In order to encourage collaboration and knowledge sharing, a combi-

nation of heuristics that identify difficult constraints, bad values and dynamically prioritises the satisfaction

of variables an agent represent may be more effective.

4.6 Chapter Summary

In this chapter, we discussed systematic and local search techniques for solving distributed constraint prob-

lems. These algorithms can execute in either a synchronous or asynchronous mode. On large problems,

local search algorithms are faster compared to systematic search algorithms. However, the major drawback

of local search is its propensity of getting trapped at a quasi-local optima. To address this drawback, local

search algorithms use heuristics such as constraint weight, value penalties and dynamic agent prioritisation

to escape from local optima. A literature review of DisCSP and DCOP algorithms for single variable per

agent and multiple variables per agent were also presented.

In the next chapter, we investigate combination heuristics in DisCSPs where an agent represents one

variable.

1we replicated some of the experiments and found results that confirm the claims



Chapter 5

Combination Heuristics in Local Search

for DisCSPs with One Variable/Agent

5.1 Introduction

Local search algorithms for DisCSPs generally differ on the heuristic used to escape from local optima.

Escaping local optima enables the search to proceed. The heuristics possibly direct the search to a good

solution space thus, leading to quicker solutions. In Chapter 4, Section 4.2.3 we discuss local optima and

heuristics for escaping local optima. Against this background, the main focus of this chapter is to investigate

the effect of combining existing heuristics for solving DisCSPs with a single variable per agent in an attempt

to answer the research question: “Can a combination of existing heuristics be more effective in escaping

local optima?”.

This chapter is organized as follows. In Section 5.2, we briefly discuss the most effective existing

heuristics considered and the proposed combination strategies. Section 5.3 describes Dynamic Agent Pri-

oritisation with Penalties (DynAPP), an algorithm which implements the combination of penalties on value

and dynamic agent prioritisation heuristics and was found to perform best overall. Experimental results on

instances of several problem classes are presented in Section 5.4. Finally, we summarise in Section 5.5.

42
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5.2 DisCSP Combination Heuristics

To investigate the benefits of combining heuristics in local search for DisCSPs with single variable per

agent, we use heuristics which take into account difficult constraints, bad values combinations and dynamic

agent prioritisation. Next we discuss constraint weights, penalties on value and dynamic agent prioritisation

heuristics implemented in DisCSP and then introduce our combination heuristics.

Constraint weight is used to escape quasi-local optima by increasing the weights on violated constraints

by 1. Initially implemented in SingleDB (Hirayama & Yokoo 2005) and later SingleDB-wd (Lee 2010),

which is an improved variation of SingleDB where a weight decay mechanism is used to decrease constraint

weights at every iteration thus “forgetting” weights over time.

Penalty on value (Basharu et al. 2006). At a quasi-local optima, the current assignment of violating

variable are penalised. This aims to identify and avoid bad values that resulted in the quasi-local optima

and possibly leads to the selection of another “better” value.

Dynamic agent prioritisation (Yokoo 1995a) increases the importance of an agent over its neighbours

(i.e. the satisfaction of constraints that variable is involved in is more important that the satisfaction of

constraints involving only lower priority neighbours.) when the agents variables are involved in a quasi-

local optima.

The reader is referred to Section 4.3.1 for a discussions on SingleDB-wd and Stoch-DisPeL and Section

4.3.3 for a discussion on AWCS.

Constraint weight and penalty on value are heuristics implemented in distributed local search algo-

rithms while dynamic agent prioritisation has been implemented in a distributed systematic search. Used

individually, these heuristics have been found to be effective in escaping/avoiding local optima in DisCSP

algorithms. The heuristics tend to modify the search space to allow for a better exploration of other parts

of the search space. Our hypothesis is that in combining these heuristics we would further improve how

local optima are handled thus improving the efficiency of distributed local search algorithms. The proposed

combination strategies are discussed next.

5.2.1 Proposed Combination Strategies

We combine the following heuristics: (i) constraint weights and value penalties; (ii) perform a multi-context

search with constraint weights and value penalties; and (iii) combine dynamic agent prioritisation and value
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penalties. Preliminary results of combining dynamic agent prioritisation with constraint weights gave no

benefit and thus are not presented.

1. Combination of Constraint Weights and Value Penalties: In these combinations, both constraint

weights and value penalties heuristics are implemented in a distributed local search. We add the

weighted constraint violations and the value penalties to determine the cost of selecting a given

value. Additionally, either of the two heuristics is used to break a tie.

2. Multi-Context Search: In the multi-context search, two local search algorithms; SingleDB-wd and

Stoch-DisPeL are ran concurrently in a master-slave architecture with restart. Both algorithms solve

the problem by randomly initialising from different parts of the search space. The master solver is

responsible for solving the problem and terminating the search i.e. returning a solution if found or

returning no solution found otherwise. However, the purpose of the slave is to provide the master

with its best found assignments. After a number of iterations, the master algorithm checks with the

slave algorithm if a “solution” with a lower number of constraint violations exists and re-initialises

its variables with the value assignments received from the slave. This approach aims to improve the

overall search performed by the master solver.

3. Combination of Dynamic Agent Prioritisation with Penalties on Values: This is an approach

which combines dynamic agent prioritisation and penalties on variables values. The penalties on

values are used to escape quasi-local optima while the dynamic agent priority is used to dynami-

cally change the priority of satisfying the variable represented by the agent and its neighbours, thus,

favouring “difficult” variables.

4. Dynamic Agent Prioritisation with Constraint Weights: Two heuristics combined are dynamic

agent prioritisation and constraint weights as follows: (i) A priority is attached to each agent; and (ii)

weights are attached to each constraint. At quasi-local optima, the weights on violated constraints

are increased and the priority of the agent is also changed.

5.2.2 Discussion

We use the combination heuristics to implement distributed local search algorithms for DisCSPs where an

agent represents a single variable. Algorithms that combine constraint weights and values penalties and

multi-context search are presented in Appendices.
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• We implement the following algorithms with the constraint weight and value penalties combina-

tion heuristics: Stochastic Distributed Penalty Driven Search with Weight (Sweight), Single Dis-

tributed Breakout with Weight Decay and Penalties (Dpenalties), Normalised Stochastic Distributed

Penalty Driven Search with Weights (normSweight), Stochastic Distributed Penalty Driven Search

with Probabilistic Tie Breaking (StochTBP), Stochastic Distributed Penalty Driven Search with Tie

Breaking (StochTB) and Stochastic Distributed Penalty Driven Search with Weights for tie breaking

cost (costwTB). These algorithms differ on the heuristic used to determine the cost function and the

heuristic used to break a tie.

• We implement Single Distributed Breakout with Weight Decay and periodic restart (SingleDB-

wd+Restart) and Stochastic Distributed Penalty Driven Search with periodic restart (Stoch-DisPeL+Restart)

with the multi-context search,. In StochDisPeL+Restart, Stoch-DisPeL is the master solver and

SingleDB-wd is the slave solver while in SingleDB-wd+Restart, SingleDB-wd is the master solver

and Stoch-DisPeL is the slave solver.

• We implement DynCW, an algorithm that combines dynamic agent prioritisation with constraint

weights.

• We implement DynAPP, an algorithm that combines dynamic agent prioritisation with penalties on

values (DynAPP performed the best and is presented in this chapter).

In an empirical evaluation on several problem classes, we found that the algorithms with the combina-

tion heuristics performed better when compared to the existing algorithms that use only one of the heuristic

i.e local search algorithms, SingleDB-wd and StochDisPeL. Note: Dpenalties and DynCW solved less than

50% for most problem settings while using an exponential number of messages and NCCCs. To highlight

the performance of algorithms that solved more problems, Dpenalties and DynCW were not included in our

illustrations of the results as it would obscure the differences in performance for the other algorithms.

At the phase transition, where the problems are more difficult, DynAPP, StochTB, StochTBP and

costwTB performed better than Stoch-DisPeL and SingleDB-wd on distributed graph colouring problems

for both NCCCs and number of messages. Similarly on random DisCSPs, StochTB, Sweight and DynAPP

performed better than both Stoch-DisPeL and SingleDB-wd. Improvements over both Stoch-DisPeL and

SingleDB-wd were also seen in StochTB, costwTB and DynAPP on distributed meeting problems. How-

ever, overall, we found DynAPP generally performed best.
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Similarly, we found that SingleDB-wd+Restart and Stoch-DisPeL+Restart benefited from the restart

and performed better than SingleDB-wd and Stoch-DisPeL respectively. When compared to SingleDB-

wd+Restart and DynAPP, Stoch-DisPeL+Restart outperformed SingleDB-wd+Restart and performed closely

to DynAPP although less prominent.

Overall, DynAPP, the algorithm that combines dynamic agent prioritisation and value penalties per-

formed best and is presented in detail in this chapter. Algorithms that combine constraint weights and

values penalties is presented in Appendix A while the multi-context search s presented in Appendix B.

5.3 Dynamic Agent Prioritisation with Penalties

Dynamic Agent Prioritisation with Penalties (DynAPP) is a synchronous distributed local search algorithm

for solving DisCSPs where an agent represents a single variable with the objective of finding the first

solution that satisfies all constraints simultaneously. In DynAPP, two heuristics are combined; dynamic

agent prioritisation and value penalty as follows: (i) A priority is attached to each agent; and (ii) penalties

are attached to individual domain values. Next, we describe the operations in DynAPP before providing a

more detailed description of the algorithm.

5.3.1 DynAPP Operations

Initialization

In DynAPP, each agent has a single variable and is identified by an alphabetic number (ID). Each

domain value is associated with a penalty and initially all penalties are set to zero. Each agent has

a priority and initially priorities are determined by the alphabetic ordering of an the agents’ ID. The

lower the ID, the higher the priority. Each agent randomly assigns a value for its variable, and sends

the value and its priority to all its neighbours. On receiving initial messages from all its neighbours,

each agent updates their AgentView (i.e. their knowledge of the current assignment and priority of

all their neighbours).

State Evaluation and Value Selection

An agent determines the cost of each of its domain values and selects the value with the lowest cost.

The cost is determined using the minimum conflict (Minton, Johnston, Philips & Laird 1992) heuris-

tic to minimise the function in Equation 5.1. Therefore, a domain value is selected if it minimises the
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sum of constraint violations and penalties for the chosen value. When two values have the same best

cost (i.e. a tie is encountered), the value ordering is used to break the tie, selecting the first value.

f(dj) = viol(dj) + p(dj) j ∈ {1, ..., |domain|} (5.1)

where dj is the j th value in the domain

viol(dj) is the number of constraints violated if dj is selected

p(dj) is the penalty currently imposed on dj with both viol(dj) and p(dj) having equal weight.

Deadlock Detection and Escape Strategy

A quasi-local optima is encountered when an agent’s AgentView does not change in two consecutive

iterations and there are constraint violations. When a quasi-local optima is detected the following

steps are taken;

1. Penalties on Values: Firstly, a diversification of the search is encouraged by penalising values

which lead to constraint violations. Two types of penalties termed; temporary and incremental

penalties are used (similar to Stoch-DisPeL (Basharu et al. 2006)). Penalties make the value

undesirable and “hopefully” cause the selection of another value. Penalties are initially set to

zero and are increased during the search. The temporary penalty is a fixed value 3 while the

incremental penalty is a value 1 1). At a deadlock, an agent randomly selects either a temporary

or incremental penalty and imposes it on its current assignment. When a temporary penalties

is imposed, an agent attempts to find combinations of values that can resolve the deadlock.

Temporary penalties are reset to zero as soon as they are used and sent to the appropriate

neighbour(s). Incremental penalties have a lesser chance of finding another value compared

to temporary penalties but are allowed to build up to enable agents to learn to avoid selecting

values repeatedly associated with deadlock. Incremental penalties are reset to zero during the

search when all constraints are satisfied or when penalties distort an agents’ cost functions.

Penalty distortion is detected when the current assignment appears best in a variable’s domain

but there is another value in the domain, which has fewer number of constraint violations than

the current assignment. Thus, this can drive the search away from promising regions of the

1These values were found to perform best based on an empirical evaluation (done in (Basharu et al. 2005).
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search space. Resetting of penalties by the originator agent does not affect the penalty requests

sent to neighbours. Prior to selecting a value, the receiving agent imposes these penalties,

searches for another value and resets the penalties based on the reset conditions described

above. An agent sends penalty messages to “relevant” neighbours (which differ depending on

the situation) requesting the imposition of penalties on their current values. Temporary penal-

ties are sent to lower priority neighbours violating constraints with the agent while incremental

penalties are sent to all lower priority neighbours (see 5.3.2 for more on message sending).

2. Dynamic Agent Prioritisation: Secondly, an agent’s priority is also dynamically changed

(similar to AWCS (Yokoo 1995a)). At a quasi-local optima, an agent searches for a neighbour

with the highest priority with whom it has a constraint violation. If such a neighbour exists,

it changes its priority to the priority of the neighbour. Additionally, the agent sends a priority

decrease request to its neighbour whose priority it now assumes to reduce its priority by 1

(discussed in more details in Section 5.3.2). However, if the agent has the highest priority

among its neighbours, the agent maintains its current priority. Priorities do not affect the

ordering of agents but they determine the neighbours of an agent that receive and impose a

penalty request.

Communication

Apart from the messages sent at the beginning about the initial random assignment of an agent’s vari-

able (see Initialization), agents in DynAPP send messages to their neighbours in order to commu-

nicate their current assignments, priorities, penalty request and priority decrease request. Although

the exact content of a message is discussed in Section 5.3.2, Send Message, a typical message may

contain the following;

1. The current value of the variable an agent represents.

2. The current agent priority.

3. A penalty request.

4. A priority decrease request.
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Algorithm 1 DynAPP: procedure main()

1: let ci be the current value of the variable in Ai, i ∈ {1..n}, randomly selected initially
2: let p(ci) be penalty on ci
3: let Ai.neighs be Ai’s neighbours
4: let msgngb be a message from Ai’s neighbour, Angb

5: p = 0.3, TEMPPEN = 3, INCPEN = 1
6: for each agent Ai, i ∈ {1..n} concurrently do
7: p(ci) = 0, Ai.penaltyRequest = null
8: Ai.neighhpvc = null, Ai.priorityDecRequest = FALSE
9: Ai.sendMessages(ci,Ai.priority,Ai.penaltyRequest,Ai.priorityDecRequest,

Ai.neighhpvc)
10: end for
11: while (termination condition not reached) do
12: for each agent Ai, i ∈ {1..n} concurrently do
13: while (∃ neigh ∈ Ai.neigh | ̸ ∃ msg m ∈ Ai.inbox , m sent by neigh) do
14: wait
15: end while
16: for each msgngb ∈ Ai.inbox do
17: Ai.updateAgentView(cngb,Angb.priority,Angb.penaltyRequest,

Angb.priorityDecRequest)
18: Ai.inbox\{msgngb}
19: end for
20: Ai.chooseValue(ci,Ai.priority,Ai.penaltyRequest,Ai.priorityDecRequest,

Ai.neighhpvc,TEMPPEN,INCPEN,p)
21: Ai.sendMessages(ci,Ai.priority,Ai.penaltyRequest,Ai.priorityDecRequest,

Ai.neighhpvc)
22: end for
23: end while

5.3.2 Algorithm Details

DynAPP is depicted in Algorithms 1 - Algorithm 4. The search begins with the initialisation phase where

each agent randomly assigns a value to its variable from its domain and the priority of each agent is deter-

mined by the alphabetic ordering of their ID. Each agent then sends the initial value and initial priority to

its neighbours (see Algorithm 1, line 6-10). In successive iterations, each agent performs the following;

• Collects Messages and Updates Agent: An agent collects messages from its neighbours. When

more than one penalty request is received by an agent, only one penalty request is imposed giving

priority to an incremental penalty over a temporary penalty. Similarly, when an agent receives more

than one priority decrease request, only one request is imposed i.e. the first priority decrease request

received. The values and priorities received (see Algorithm 1, line 16-19) are used to update an
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agent’s AgentView.

• Chooses Value: Next, an agent searches for a value for its variable (see Algorithm 1, line 20) in

chooseValue (as listed in Algorithm 2) with the lowest cost. Prior to this, an agent carries out the

following:

1. Algorithm 2, line 3-5 - Resets incremental penalties if an agent is either consistent or the cost

function is distorted by penalties.

2. Algorithm 2, line 6-8 - If there is a penalty request, impose the penalty - doRequest (listed in

Algorithm 3).

(a) Implement the appropriate penalty if a penalty request has been received (Algorithm 3,

line 1-5).

(b) If a priorityDecRequest has been received, an agent decreases its priority and resets pri-

orityDecRequest to False (Algorithm 3, line 6-9).

An agent then evaluates the cost of selecting each of its domain values and selects a value

with the lowest cost (using the minimum conflict heuristic) in doMinConflict (see Algorithm

2, line 11). The cost function to be minimised by the search for each variable is described in

Equation 5.1 (see State Evaluation and Value Selection above).

3. If an agent did not receive a penalty request and an agent’s previous and current AgentView

are not the same (see Algorithm 2, line 10), an agent evaluates the cost of selecting each of its

domain values and selects another value with the lowest cost - doMinConflict (see Algorithm

2, line 11).

4. If a quasi-local optima is encountered, it is tackled (described in Section 5.3.1, Deadlock Es-

cape Strategy and listed in Algorithm 2, line 13-26) as follows:

(a) Firstly, an agent searches for and changes its priority to the priority of the neighbour with

the highest priority with which it shares a constraint violation (see Algorithm 2, line 13-

16). The neighbour agent with the highest priority is identified (see Algorithm 2, line

15). When two agents have the same highest priority, the first neighbour agent with the

highest priority is selected. Also, if no neighbour with a higher priority (i.e. an agent

has the highest priority amongst its neighbours) is found, an agent does not change its

priority.
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Algorithm 2 DynAPP: procedure chooseValue(c,priority,penaltyRequest,
priorityDecRequest,neighhpvc,TEMPPEN,INCPEN,p)

1: let neighsvc be neighbours violating constraints with self
2: let hp be neighbour with highest priority in neighsvc
3: if (cost function is distorted or consistent) then
4: resetPenalties()
5: end if
6: if (penaltyRequest ! = null) then
7: doRequest(c, priority, penaltyRequest, priorityDecRequest,TEMPPEN,INCPEN)
8: doMinConflict()
9: else

10: if (agentView(t) ! = agentView(t-1)) then
11: doMinConflict()
12: else (quasi-local optima)
13: if (hp ! = null) then
14: priority[self] = priority[hp]
15: neighhpvc = hp
16: end if
17: select random value r ∈ {0..100}
18: if (r < p*100) then
19: penaltyRequest = “IncPen”
20: p(c) = p(c)+ INCPEN
21: else
22: penaltyRequest = “TempPen”
23: p(c) = p(c)+ TEMPPEN
24: end if
25: doMinConflict()
26: end if
27: end if

(b) Secondly, an agent imposes a temporary penalty (with probability p) or an incremental

penalty otherwise (see Algorithm 2, line 17-24).

(c) Finally, an agent selects a new value for its variable - doMinConflict (see Algorithm 2,

line 25).

• Sends Message: Messages are then sent (see Algorithm 1, line 21) to the appropriate neighbours as

listed in Algorithm 4 and described next.

1. If an agent had encountered a quasi-local optima, a penalty was imposed and an agent has

changed its priority, the message sent to the neighbour with the highest priority that was as-

sumed by the agent, the priorityDecRequest is set to True and the message will consists of
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Algorithm 3 DynAPP: procedure doRequest(c,priority,penaltyRequest, priorityDecRequest,
TEMPPEN,INCPEN )

1: if (penaltyRequest = “IncPen” ) then
2: p(c)= p(c) + INCPEN
3: else
4: p(c)= p(c) + TEMPPEN
5: end if
6: if (priorityDecRequest) then
7: priority = priority[self]+1
8: priorityDecRequest = FALSE
9: end if

< value, priority, null, TRUE > (see Algorithm 4, line 7). The message sent to the other

neighbours depends on the type of penalty.

(a) If the penalty imposed by an agent is an incremental penalty, it informs its lower priority

neighbours to also impose an incremental penalty and the message will consists of

< value, priority, PenaltyRequest, FALSE > (see Algorithm 4, line 11).

(b) Otherwise if the penalty is a temporary penalty, the agent informs its lower priority neigh-

bours that it violates a constraints with, to also impose a temporary penalty and the mes-

sage will consists of < value, priority, PenaltyRequest, FALSE > (see Algorithm

4, line 16).

2. If a deadlock was not encountered, an agent sends a message consisting of only its new value

and priority < value, priority, null, FALSE > to all its neighbours (see Algorithm 4, line

21).

These messages are used by the receiving agents to update their AgentView and impose the appropriate

request. This process continues until consistent values are found (with no constraint violations) or the

maximum number of iterations is reached.

5.3.3 Example of DynAPP Execution

Recall the DisCSP example in Chapter 2, Figure 2.1 that represents the simplistic problem of allocating

presentation timeslots to 5 students presented again in Figure 5.1. The students are the variables X = {a,

b, c, d, e}. Agent A, Agent B, Agent C, Agent D and Agent E each represents a single variable a, b, c, d, e

respectively. Dxi , xi ∈ {a, b, c, d, e} represents the domain (timeslots) for each student, which are Da = {1,

2}, Db = {1, 2}, Dc = {1, 3}, Dd = {1, 3, 4}, De = {2, 3}. Constraints between the variables are illustrated
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Algorithm 4 DynAPP: procedure sendMessages(c,priority,penaltyRequest,
priorityDecRequest,neighhpvc )

1: let neighs be an agents neighbours
2: let neighslp be neighbours with lower priority than self
3: let neighslpvc be neighbours in neighslp violating constraints with self
4: for each neigh ∈ neighs do
5: if (penaltyRequest != null) then
6: if (neigh ∈ neighhpvc) then
7: send message(c, priority, null, TRUE) to neigh
8: else
9: if (penaltyRequest = “IncPen”) then

10: if ( neigh ∈ neighslp ) then
11: send message(c, priority, penaltyRequest, FALSE) to neigh
12: end if
13: else
14: penaltyRequest = “TempPen”
15: if ( neigh ∈ neighslpvc ) then
16: send message(c, priority, penaltyRequest, FALSE) to neigh
17: end if
18: end if
19: end if
20: else
21: send message(c, priority, null, FALSE) to neigh
22: end if
23: end for
24: neighhpvc = null
25: resetTempPenalties()

with a line between variables. Constraints in red are violated. The number of constraint violations for

each domain value is depicted by Violxi while Penxi represents penalties imposed on each domain value

respectively. The constraints are (i) (a = b), i.e. a and b must be assigned the same slot; (ii) (b ̸= c), i.e. b

and c cannot be assigned the same slot; (iii) (b = e), i.e. b and e must be assigned the same slot; (iv) (c ̸=

d), i.e. c cannot be assigned the same slot as d; and (v) (c > e), i.e. c must be assigned a time slot after e.

Using this problem to explain DynAPP’s execution, the priority of each agent is determined by the

alphabetic ordering of their ID such that Agent A has priority 1, Agent B has priority 2, Agent C has priority

3, Agent D has priority 4, Agent E has priority 5. Thus, the highest priority 1 is assigned to the first agent

A. Agent A does not have a neighbour with a higher priority and has Agent B as lower priority neighbour;

Agent B has Agent {A} as higher priority neighbour and Agents {C, E} as lower priority neighbours; Agent

C has Agent {B} as higher priority neighbour and Agents {D, E} as lower priority neighbours. Agent D
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Figure 5.1: DynAPP: example of quasi-local optima

has Agent {C} as higher priority neighbour and no lower priority neighbour. Agent E has Agent {B, C} as

higher priority neighbour and no lower priority neighbour.

Agents take turns to respond to messages and send messages to their neighbours. At the assignment

of variables <a = 1, b = 1, c = 1, d = 3, e = 3>, assume that Agent A and Agent B have taken turns

in selecting a value for their variables and it is Agent C’s turn to evaluates its state. Variable c in Agent

C has the same number of constraint violations for both values in Dc = {1, 3}. Its neighbour Agents {D,

E}, variable d in Agent D is consistent and variable e in Agent E also has the same number of constraint

violations for both values in De = {2, 3}. Agent C detects quasi-local optima. Firstly, Agent C checks its

AgentView for a conflict neighbour with a higher priority and finds Agent B. Thus, Agent C changes its

priority to 2 (i.e. that of Agent B which is the conflict neighbour with the highest priority). Secondly, Agent

C imposes a temporary penalty on variable c’s value {1}. The new lower priority neighbours of Agent C

are Agents {B, D, E}. Consequently, Agent C then assigns the value 3 (which currently has the least cost)

to variable c.

Agent C then sends messages to Agent B, Agent D and Agent E. For example, the message sent to

Agent B consists of < value = 3, priority = 2, penalty request = TempPen, priorityDecRequest = True>

because it violates constraint (b̸= c) and to reduce its priority by 1. The message sent to Agent D consists

of < value = 3, priority = 2, penalty request = null, priorityDecRequest = False> because c’s current value

is consistent with d’s current value.

The message sent to Agent E consists of < value = 3, priority = 2, penalty request = TempPen, pri-

orityDecRequest = False> because c’s current value violates the constraint c > e with e’s current value.
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Figure 5.2: DynAPP: example of problem solved

Subsequently Agent D may select 1 or 4 for variable d, Agent E selects 2 for variable e, Agent A selects 2

for variable a and Agent B selects 2 for variable b and the problem is solved (see Figure 5.2).

5.3.4 DynAPP Algorithmic Properties

Termination: The termination detection mechanism in DynAPP is incorporated into the search algorithm.

DynAPP (like Stoch-DisPeL) terminates when (i) all agents are consistent and retain their current

values in two successive iterations; or (ii) when the maximum number of iterations is reached.

Completeness: DynAPP is an incomplete local search algorithm and cannot determine if a problem is

unsolvable. Also, it is not guaranteed to find a solution to a problem even if a solution exists.

Privacy: In DynAPP, each agent only knows its variable (and its domain and constraints) together with its

neighbour variables, the current assignment of the neighbour variables and the constraints relating

them. It does not know other constraints (or other domain values) its neighbour variables are involved

in or other variables (or their constraints and domains) represented by other agents. An agent only

reveals the current assignment of its variable to their neighbours.

5.4 Empirical Evaluation of DynAPP

We empirically evaluate DynAPP on distributed graph colouring problems, random DisCSPs and dis-

tributed meeting scheduling problems (refer to Chapter 3 for the description of the problems). Because

DynAPP is an algorithm for single variable per agent, we exempt sensor network problems from our eval-
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uation due to its inherent nature of having 3 variables per agent. For each problem setting, we run 100

solvable 2 problem instances from which we record and present (i) the percentage of problems solved

within the maximum number of iterations; (ii) the median number of Non-Concurrent Constraint Checks

(NCCCs) performed; and (iii) the median number of messages sent. Although CPU time is not an estab-

lished measure for DisCSPs (Meisels et al. 2002) and is not reported in this thesis, we measured CPU time

and found the results to be consistent with the other evaluation metrics used.

DynAPP was compared with two other local search algorithms that have a strategy for escaping quasi-

local optima - Stoch-DisPeL and SingleDB-wd and a systematic search - PenDHyb. We excluded DSA

(Zhang et al. 2002) due to fact that it has no explicit mechanism for escaping from quasi-local optima, thus,

does not perform well where the goal is to satisfy all constraints. Once stuck at quasi-local optima, the

sideways moves are usually insufficient to push a search out of locally optimal regions. Each algorithm was

allowed to run for a maximum of (100 * (n)) iterations where n represents the number of variables (nodes,

variables or meetings). Note: when an algorithm did not solve a problem, the messages “wasted” in that

problem are not counted towards the median number of messages, they do however affect the percentage

of problems solved. We further used run length distribution (?) to study how the probability of finding a

solution changes with the number of iteration compared to other local search algorithms. PenDHyb is a

complete search algorithm and is not included for evaluation on iteration bound problems.

5.4.1 Results on Distributed Graph Colouring Problems

We use 3-colour distributed graph colouring problems with different characteristics. We present results for

range of number of nodes are n ∈ (180, ..., 300) in steps of 20 with a degree of 4.9 (which is at the phase

transition representing the region of difficult problems). For each node size, we run 100 problem instances

and the results are presented in Figure 5.3.

2 We use only solvable problem for our evaluation because the algorithms we implement are distributed local search
algorithms and they do not detect unsolvability
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Figure 5.3: < n ∈ {180, ..., 300}, |colours| = 3, deg = 4.9 >

DynAPP substantially outperforms Stoch-DisPeL and SingleDB-wd by solving the most problems.

PenDHyb is a systematic search algorithm and as expected it solved all the problems. For 180 and 200

variables, Stoch-DisPeL and DynAPP performed closely but as the number of nodes increases, DynAPP

performed best, having the least number of messages and NCCCs overall.
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We run the local search algorithm on graph colouring problem with the following parameters; < n =

250, |colours| = 3, deg = 4.9 >. We run 100 instances of the problem and present the results in Figure 5.4.

Figure 5.4: < n = 250, |colours| = 3, deg = 4.9 >

At incremental iterations, DynAPP had the highest probability of finding a solution compared to Stoch-

DisPeL and SingleDB-wd.

5.4.2 Results on Random Distributed Constraint Satisfaction Problems

We use random DisCSPs at the phase transition i.e. the region of hard problems using a constraint tightness

p2 of 0.4, a constraint density p1 of 0.15 and a domain size of 8. We present results where we vary the

number of variables n ∈ (90, ..., 200) in steps of 10. For each problem size, we run 100 problem instances.

The results are presented in Figure 5.5 with DynAPP solving the most problems compared to Stoch-DisPeL

and SingleDB-wd.
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Figure 5.5: < n ∈ {90, ..., 200}, |domain| = 8, p1 = 0.15, p2 = 0.4 >
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PenDHyb is a systematic search algorithm and as expected it solved all the problems. SingleDB-wd

solved less than 40% of the problems from n = 140. To highlight the performance of algorithms that solved

more problems, the SingleDB-wd results for 140 or more variable were not included in our illustrations of

the results as it would obscure the differences in performance for the other algorithms. We observe that,

as the number of variables increases, the number of messages exchanged and the NCCCs for DynAPP,

Stoch-DisPeL and SingleDB-wd increased. DynAPP had the least for both messages and NCCCs.

We run the local search algorithm on graph colouring problem with < n = 200, |domain| = 8, p1 = 0.15,

p2 = 0.4 >. We run 100 instances of the problem and present the results in Figure 5.6.

Figure 5.6: < n = 200, |domain| = 8, p1 = 0.15, p2 = 0.4 >

At incremental iterations, DynAPP had the highest probability of finding a solution compared to Stoch-

DisPeL and SingleDB-wd.

5.4.3 Results on Distributed Meeting Scheduling Problems

To evaluate DynAPP on meeting scheduling problems, we generated problems with varying number of

meetings n ∈ {60, ..., 200} in steps of 20. We use 7 timeslots, a maximum travel time (md) of 3 and a

constraint density of 0.2. For each meeting size, we run 100 problem instances and the results are presented

in Figure 5.7.

On the number of problems solved, DynAPP and Stoch-DisPeL solved the same number of problems

(except for 140 meetings, Stoch-DisPeL solved one problem more than DynAPP) with SingleDB-wd solv-

ing the least problems.
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PenDHyb is a systematic search algorithm and as expected it solved all the problems. For the num-

ber of messages and NCCCs, DynAPP generally had the least compared to Stoch-DisPeL, PenDHyb and

SingleDB-wd. SingleDB-wd had very large number of messages. To highlight the performance of algo-

rithms that solved more problems and used less number of messages, SingleDB-wd was not included in our

illustrations for the number of messages as it would obscure the differences in performance for the other

algorithms.

Figure 5.7: < n ∈ {60, ..., 200}, timeslots = 7, d = 0.2, md = 3 >
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We run the local search algorithm on graph colouring problem with < n = 200, |domain| = 8, p1 = 0.15,

p2 = 0.4 >. We run 100 instances of the problem and present the results in Figure 5.8.

Figure 5.8: < n = 200, |domain| = 8, p1 = 0.15, p2 = 0.4 >

Similar to distributed graph colouring and random DisCSPs, DynAPP had the highest probability of

finding a solution at incremental iterations compared to Stoch-DisPeL and SingleDB-wd. Stoch-DisPeL

and SingleDB-wd overlap initially when iteration was less that 60.

5.5 Chapter Summary

In this chapter, we investigated the combination of three heuristics; constraint weights, penalty values and

dynamic agent prioritisation. We were interested to see whether a combination of the heuristics may be more

beneficial in escaping local optima. In this regard, we carried out the following: (i) we combined constraint

weights and value penalties; (ii) we performed a multi-context search with constraint weights and value

penalties; and (iii) combined dynamic agent prioritisation with penalty on value in local search algorithms

for DisCSPs where an agent represents a single variable. In an empirical evaluation on distributed graph

colouring problems, random DisCSPs and distributed meeting scheduling problems, we found that the

algorithms with the combination heuristics performed better when compared to existing algorithm that use

only one of the heuristic. We focused on DynAPP (an algorithm that combines penalties on values and agent

priority heuristics) in this chapter as it gave the best results and present the other combination heuristics at

the appendices.
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DynAPP solved the most problems while having the least number of messages and NCCCs on a range

of DisCSPs. The following contributions have been made:

1. We have combined several existing heuristics in distributed local search algorithms for single vari-

able/agent which were found to improve search when compared with algorithms that use only one of

the combination heuristics.

2. DynAPP - a distributed local search algorithm that combines dynamic agent prioritisation with penal-

ties in local search algorithms for DisCSPs where an agent represents a single variable.

“Indeed the combination strategies are more effective for escaping quasi-local optima in distributed

local search for single variable per agent settings”. In the next chapter, we explore problem-structure

oriented problem solving for DisCSPs with complex local problems i.e. where an agent represents multiple

variables.



Chapter 6

Exploiting Structure in DisCSPs with

Complex Local Problems

6.1 Introduction

Algorithms for solving DisCSPs generally assume, simplistically, that an agent represents a single variable

and that they can be extended to handle multiple variables using “virtual” agents. In the previous chapter,

we introduced strategies that combine heuristics in DisCSPs with one variable per agent. However, nat-

urally distributed problems normally have multiple variables per agent called Complex Local Problems -

(CLPs) hence, the problem structure could be exploited in solving them. In this chapter, we propose a novel

divide and conquer approach for DisCSPs with CLPs that combines several search strategies. The approach

prioritises the satisfaction of the more expensive (inter-agent constraints) part of the problem thus, solutions

to the distributed part of the problem should be considered early in the search. To solve a problem, the di-

vide and conquer approach combines the following search strategies: (i) systematic and local searches; (ii)

centralised and distributed searches; and (iii) a modified compilation reformulation strategy. We present Di-

vide and Conquer Algorithm for Agents with Complex Local Problems (Multi-DCA), an overall distributed

local search algorithm that implements the divide and conquer approach.

This chapter is organized as follows. The divide and conquer approach for solving DisCSP with CLPs

is discussed in Section 6.2. Divide and Conquer Algorithm for Agents with Complex Local Problems -

Multi-DCA is presented in Section 6.3. In Section 6.4, we present the results of empirical evaluations of

64
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Multi-DCA on benchmark problems. Finally, we discuss our contributions in Section 6.5 and summarise in

Section 6.6 respectively.

6.2 Divide and Conquer Approach

6.2.1 Background

Recall that in a DisCSP with CLPs, variables involved in constraints with variables in another CLP are

external variables whereas those which only have constraints with variables in their same CLP are internal

variables. Constraints between variables in different CLPs are inter-agent constraints and those between

variables in the same CLP are intra-agent constraints. DisCSP algorithms generally assume that each agent

controls only a single variable and that they can be solved using “virtual” agents. To handle complex

local problems, compilation and decomposition are two standard reformulations (Yokoo & Hirayama 2000)

by which a DisCSP with CLPs can be transformed to give exactly one variable per agent. The reader is

referred to Chapter 2, Section 2.2.3 for more discussion on the reformulation strategies. These reformulation

strategies have been found to scale well on different problem settings (Burke & Brown 2006a). Compilation

was modified to consider only externally relevant solutions and was found to be more appropriate as the

size and complexity of each agent’s CLP increases, with an overall small number of inter-agent constraints

and an overall small domain size of the variables. On the other hand, the decomposition approach is better

as the number of inter-agent constraints and the domain size of the variables increase, with an overall small

problem size.

The CLP could be further exploited for additional opportunities to speed-up resolution. For example, in

a meeting scheduling problem where it is more expensive to find solutions to inter-departmental meetings.

Thus, to solve the inter-departmental meetings, consistent intra-departmental solutions to external meetings

is found first and extended to solve the distributed problem. Each department then checks internally to

satisfy constraints involving its local meetings. We propose a divide and conquer approach to solving

DisCSP’s with CLPs that combines the following strategies: (i) both systematic and local searches; (ii) both

centralised and distributed searches; and (iii) a modified compilation reformulation strategy. The approach

exploits concurrency and problem structure for a more effective resolution of DisCSPs. In the next section,

we describe the approach.
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Table 6.1: The divide and conquer approach

Stages External Variables Internal Variables
1 Each agent finds compound

groups amongst its external vari-
ables. It divides them into smaller
compound groups where required.

2 For each compound group, a cen-
tralised systematic search finds its
solutions. If no solution is found
for the compound group, the prob-
lem is unsolvable.

3 A distributed local search finds
combinations of compound group
solutions (found in Stage 2) which
satisfy all inter-agent constraints.

4 For each agent, a centralised sys-
tematic search extends the combi-
nation from the distributed
local search (Stage 3) into a solu-
tion to its CLP. If all agents find an
extension
to the combination which is a so-
lution to their CLP a solution is
declared.

6.2.2 The Approach

In the divide and conquer approach, the structure of the DisCSP is analysed in order to identify groups

of directly-related (via an intra-agent constraint) external variables within each agent. These groups are

referred to as compound groups. A combination of local search and systematic search algorithms are then

run concurrently to solve the divided problem. Firstly, each agent finds all locally consistent solutions to

each compound group, using one systematic search per compound group. Secondly, using a distributed

local search algorithm, the solutions found for each compound group are then combined with solutions to

other agents’ compound groups to form a combination solution such that all inter-agent constraints are

satisfied. Finally, agents check if the compound solutions to its local compound groups participating in the

combination solution extend to satisfy the rest of their intra-agent constraints to become solutions to their

CLP.

The searches in the divide and conquer approach interleave, thus, exploiting concurrency. An overview

of the divide and conquer approach is illustrated in Table 6.1. Next, we present the divide and conquer

approach in Stages 1-4.



6.2. Divide and Conquer Approach 67

Stage 1: For each agent, all compound groups are found in a modified compilation reformulation strategy

on the external variables. Unlike the basic compilation strategy where only one single complex vari-

able is formed, several complex variables could be formed in this approach. The possible number of

compound solution becomes exponential as the number of variables and domain size in a compound

group increases. Thus, the size of the compound groups is restricted so that large compound groups

are divided 1 into smaller compound groups (see Section 6.3.2 on determining group size).

Stage 2: For each compound group, a systematic search finds variable instantiations (solutions) which

satisfy all the (intra-agent) constraints between its variables. Not all the variables within the agent

are considered. The remaining variables are internal variables and are considered in Stage 4. As soon

as one solution is found for each compound group, Stage 3 (see below) will commence. Meanwhile,

Stage 2 will continue until all solutions to all compound groups are found, or the maximum number

of iterations is reached in Stage 3 (see below) or a solution to the intra-agent constraints is found in

Stage 4 (see below).

Stage 3: A distributed local search algorithm finds combinations of compound group solutions which

satisfy all the inter-agent constraints. When a suitable combination solution is found, Stage 4 (see

below) commences, but Stage 3 will continue the process of finding combination solutions until

a maximum number of iterations is reached or a solution is declared in Stage 4. Note that each

compound group forms a complex variable whose domain values are solutions found in Stage 2.

Stage 4: The combination solution found in Stage 3 is extended locally by each agent (i.e each agent

considers the compound solutions to its local compound groups participating in the combination

solutions) as well as the satisfaction of constraints between variables in different compound groups.

Each agent ensures the satisfaction of the variables it represents (those not involved in a compound

group). Each agent uses a systematic search algorithm to instantiate its other internal variables

to satisfy the remaining intra-agent constraints (those not considered in Stage 2) into a complete

solution to its CLP. If each agent can extend the partial solution for its variables from the combination

solution into a CLP solution, a solution to the problem has been found and the search stops.

Table 6.2 summarises how a DisCSP is divided and solved in the divide and conquer approach. Next

we illustrate the approach with an example.

1This does not apply to Multi-DynAPP, an implementation of the divide and conquer approach discussed in Ap-
pendix C
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Figure 6.1: Example: DisCSP with CLPs

Figure 6.2: Example: external variables in a DisCSP with CLPs

6.2.3 Example

In this section, we use the example DisCSP with CLPs in Chapter 2, Section 2.2, presented again in Figure

6.1 to illustrate the concept of the divide and conquer approach. The figure illustrates a meeting scheduling

problem as a DisCSP with 55 variables, 70 intra-agent constraints and 9 inter-agent constraints naturally

distributed over four agents.

The external and internal variables of the example are presented in Figure 6.2 and Figure 6.3 respec-

tively. The inter-agent constraints are represented with dark lines connecting variable belonging to different

agents (see Figure 6.1). For example, the constraints between (a2, b1) and between (a6, b3). The intra-agent

constraint are represented with green lines for example, the constraints between (a2, a6) and between (a4,

a8).

When considering the structure of the DisCSP in Figure 6.1, external variables {a2, a6} in Agent A,

{b1, b2, b3, b4, b5} in Agent B and {c1, c3, c4, c5} in Agent C each have a natural clustering that forms a
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Figure 6.3: Example: internal variables in a DisCSP with CLPs

compound group because within each agent, the external variables share intra-agent constraints. However,

other external variables such as a11 in Agent A, c9 in Agent C and d1, d4, d11 in Agent D each form

a compound group with a single external variable. Solving the distributed problem (i.e the inter-agent

constraints) is more expensive compared to the local problem (i.e the intra-agent constraints) due to the

number of messages sent among agents in negotiating a solution. To solve the DisCSP with the divide and

conquer, solutions to the compound groups are first found which form compound solutions. For example, if

each external variable in Agent A and Agent B has a domain size of 8 i.e ∈ {0, ..., 7}, an example domain

of compound group [a2, a6] in Agent A would be {(1,1), (1,7), ..., (0,1)}, similarly, for compound group

[b1, b23, b3, b4, b5] in Agent B would be {(1,1,1,1,1), (1,7,3,2,3), ..., (0,1,2,3,4)} and so on. Compound

groups with large number of variables and domain size are divided to form smaller compound groups.

Each agent then extends its compound solutions to form a combination solution that satisfies the inter-agent

constraints. Finally each agent checks locally for assignments to the remaining variables in its CLP that

extends the compound solution for a complete satisfaction of the DisCSP. A more detailed example of

the approach is provided in Section 6.3.3. Next, we discuss an implementation of the divide and conquer

approach.

6.3 Multi-DCA

Multi-DCA - Divide and Conquer Algorithm for Agents with Complex Local Problems is an implementa-

tion of the divide and conquer approach for solving DisCSP with CLPs. Multi-DCA uses a basic centralised

systematic search algorithm (as described in 4.2.2) in Stage 2 and Stage 4. An adaptation of DynAPP for
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Table 6.2: Multi-DCA: division of problem solving

Centralised Systematic Search

Variables External

Constraints Intra-agent between external variables

Domain Variable domain values

No. of runs One per compound group in an agent

Distributed Local Search

Variables External

Constraints Inter-agent

Domain Solutions to compound groups

No. of runs One involving all agent

Centralised Systematic Search

Variables Internal

Constraints Intra-agent

Domain Domain values

No. of runs One per agent to check local consistency

compound domains (DynAPP-CD) is used as the distributed local search algorithm in Stage 3. Unlike

DynAPP, DynAPP-CD does the following: (i) considers only inter-agent constraints; (ii) considers com-

plex variables (within each agent, there could be several complex problems); (iii) uses compound values

as domain (which are the solutions found in Stage 2 of the divide and conquer approach); and (iv) penalty

messages are sent to all the neighbours. Algorithms 5 - 7 present the pseudocode for Multi-DCA.

6.3.1 Algorithm Details

In Algorithm 5, we present the Multi-DCA which starts by finding compound groups (see Algorithm 5,

lines 5-7). The divided DisCSP is then solved using several search strategies (see Algorithm 5, lines 10-

31). Next, we explain how the problem is divided then solved.

Finding Compound Groups In each agent, Algorithm 6 is used to identify compound groups. For

each CLP, the maxDegree of each of the external variables is calculated (see Algorithm 6, line 6-8).
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Algorithm 5 Multi-DCA: procedure main()
1: procedure main

2: let maxSteps be the given maximum number of iterations
3: let Ai.Solcomb be the partial solution from Solcomb for variables in Ai, i ∈ {1..n}
4: let Ai.extlV ars be external variables in Ai’s CLP
5: end = FALSE, problemSolved = FALSE

6: for each agent Ai, i ∈ {1..n} concurrently do
7: Ai.CGs = Ai.findCompGroups(Ai.extlV ars)
8: end for
9: CGs =

∪n
i=1Ai.CGs {all compound groups}

10: while not (end) concurrently do
11: for each agent Ai concurrently do
12: for each cgk ∈ Ai.CGs, k ∈{ 1..| Ai.CGs |} concurrently do
13: Stage2(cgk, end);
14: end for
15: end for
16: Stage3(CGs,problemSolved,maxSteps);
17: for each agent Ai concurrently do
18: if (Ai.Solcomb found in Stage3) then
19: Stage4(Ai.Solcomb,problemSolved);
20: end if
21: end for
22: if (∀ Ai, i ∈ {1..n} extension found for Ai.Solcomb) then
23: Solution =

∪n
i=1Ai.Solcomb extension

24: problemSolved = TRUE

25: end = TRUE

26: else
27: if (Stage3 finished) then
28: end = TRUE

29: end if
30: end if
31: end while
32: if (problemSolved) then
33: print Solution
34: else print “Solution not found”
35: end if
36: end procedure

The variable with the largest maxDegree is used as a seed (start variable) to create a compound group

(see Algorithm 6, line 9). Neighbours (i.e. external variables within the agent) of the seed are added

to the compound group (see Algorithm 6, line 13-17) giving priority to neighbours with lower degrees

(see Algorithm 6, line 14) until the maxGroupSize is reached. The variables in the new group are then

removed from the available external variables (see Algorithm 6, line 12,16). If the variable has no available
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neighbours, it is returned as a compound group with one variable. This process is repeated by calculating the

maxDegree of each of the remaining external variables to determine the seed for the next compound group

until no more external variables need grouping. The compound group(s) are then returned (see Algorithm

6, line 21) and used in the search algorithm (see Algorithm 5, line 11-15) and described in Algorithm 7,

Procedure Stage2.

The possible number of compound solutions becomes exponential as the number of variables in a

compound group or as the domain size increases. In an empirical investigations on several group sizes

and problem characteristic we found that a group consisting of 3 variables gave the optima results (refer to

Section 6.3.2). Thus, the maximum size of a compound group, maxGroupSize is set to 3.

Search algorithms Agents in Multi-DCA perform several concurrent searches to solve the overall prob-

lem. The constraints in the DisCSP are classified into the following three types: (i) intra-agent constraints

with variables in the same compound group; (ii) Intra-agent constraints with other variables in the same

CLP, but which do not belong to the same compound group; and (iii) inter-agent constraints with variables

in other agents. In Algorithm 7, the search algorithms at each stage consider some of the constraints (listed

above).

1. In Stage 2 (see Algorithm 7, Procedure Stage2, line 1-6), for each compound group a basic cen-

tralised systematic search (as described in 4.2.2) is used to find all solutions. If one of the compound

groups in any of the agents has no solution, the problem is unsolvable (see Algorithm 7, Procedure

Stage2, line 3-5).

2. In Stage 3 (see Algorithm 7, Procedure Stage3, line 1-12), DynAPP-CD is used to combine solutions

for compound groups into combination solutions which satisfy all inter-agent constraints. In this

adaptation, penalty messages are sent to all neighbours.
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Algorithm 6 Multi-DCA: findCompGroups(extlVars)

1: function findCompGroups(extlVars)
2: let G be the set of compound groups, G = {}
3: let maxGroupSize be the max. no. of var. in a group
4: while (extlV ars ̸= ∅) do
5: for each v ∈ extlV ars do
6: CalculateDegree()
7: end for
8: H = ∅ (create a new empty group)
9: vsel = v ∈ extlV ars with the largest degree

10: let neighsvsel be v’s neighbours
11: H = {vsel} (add variable to new group)
12: neighs = neighsvsel\H
13: while (| H |< maxGroupSize and (neighs ̸= ∅)) do
14: vj = v ∈ neighs with min degree
15: H = H

∪
{vj}

16: neighs = neighs \{vj}
17: end while
18: G = G

∪
{H} (add new group to G)

19: extlV ars = extlV ars\G
20: end while
21: return G

22: end function
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Algorithm 7 Stages 2 to 4

1: procedure Stage2(cgk, end)

2: solscgk = solutions to cgk using exhaustive systematic search
3: if (solscgk = ∅) then
4: end = TRUE
5: end if
6: end procedure

1: procedure Stage3(CGs, problemSolved,maxSteps, end)

2: for each agent Ai, i ∈ {1..n} concurrently do
3: while ∃cgk ∈ Ai.CGs | solscgk = ∅ and not(end) do
4: wait
5: end while
6: end for
7: while (not (problemSolved) and not (maxSteps)) do
8: for each agent Ai , i ∈ {1..n} concurrently do
9: DynAPP-CD(Ai.CGs)

10: end for
11: end while
12: end procedure

1: procedure Stage4(Solcomb, problemSolved, end)

2: Systematically extend Solcomb to satisfy CLP
3: if (no extensionfound) then
4: “Invalid solution”
5: end if
6: end procedure
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MaxSteps is the maximum number of iterations. While the given maxSteps is not reached (see Al-

gorithm 7, Procedure Stage3, line 7-11), variables in compound groups must take values compatible

with the compound solutions found in Stage 2, continuously finding several unique combination so-

lutions until the maxSteps is reached or a solution to the DisCSP has been found. This stage passes

the combination solutions found to Stage 4.

3. In Stage 4 (see Algorithm 7, Procedure Stage4, line 1-6), a basic centralised systematic search (as

described in 4.2.2) per agent is used in order to extend the compound solutions to its local compound

groups participating in the combination solutions to become solutions to its CLP (see Algorithm 7,

Procedure Stage4, line 2). Thus, instantiating its internal variables to satisfy the other intra-agent

constraints not considered in Stage 2. If the solution cannot be extended by at least one agent, the

combination solution is invalid (see Algorithm 7, Procedure Stage4, line 3-5).

If each agent finds a valid extension, an overall solution is found (see Algorithm 5, line 22-25) and it is

returned (see Algorithm 5, line 33) otherwise a solution is not found (see Algorithm 5, line 34).

6.3.2 Determining the size of a group

The parameter needed to be determined in Multi-DCA is the maximum number of variables in a group

for optimal performance. We performed a series of experiments on distributed graph colouring problems,

random DisCSPs and distributed meeting scheduling problems using varying characteristics. For each

problem class, we ran experiments with group size cutoff ∈ {2, 3, 4, 5, 6}. For each cutoff, we ran 100 runs

of 100 solvable 2 problems. We measured the percentage of problem solved, number of non-concurrent

constraint checks (NCCCs) and number of messages used by Multi-DCA. We then took a median of the

100 runs for each problem setting. The group size cut-off where the median number of messages and the

median NCCCs is minimal is selected. This gives a measurement which indicates the optimal group size.

2We use only solvable problem for our evaluation because the algorithms we implement are distributed local search
algorithms and they do not detect unsolvability
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In Appendix C, we presented Multi-DynAPP 3 and found that there is a linear relationship between

the size of the domain and the performance of the algorithm. Thus, to predict the relationship between

the problem features; possible domain size and the optimal group size, we use linear regression to obtain

Equation 6.1

cutoff = ⌈α+ (β ∗ solutionSize)⌉ (6.1)

where solutionSize is Equation 6.2.

solutionSize = (De) (6.2)

where e is the number of external variables and D is the domain size.

For each agent, we use a 70(30) internal(external) variable split. The problem parameters used are in

the difficult region with the following characteristics;

(a) Distributed graph colouring problems with number of nodes n ∈ {100, ..., 200} in steps of 20, colours

∈ {3, 4, 5} and degree ∈ {4.6, ..., 5.2} in steps of 0.1. We use 10 agents i.e., the number of variables

per agent ∈ {10, ..., 20} in steps of 1 with respect to the node size. With the 70(30) internal(external)

variable split i.e external variables ∈ {3, 3, 4, 5, 6} with respect to the number of variables. For

example, for 150 variables and 10 agents, there are 15 variables per agent. From the 15 variables,

30% (i.e. 5 variables) are external variables.

(b) Random DisCSPs with number of variables n ∈ {100, ..., 200} in steps of 10, each with 10 agents

i.e. number of variables per agent ∈ {10, ..., 20} in steps of 1. The domain size d ∈ {7, 8, 9, 10},

constraint density p1 ∈ {0.1, 0.15, 0.2} and constraint tightness p2 of 0.5.

(c) Distributed meeting scheduling problems with number of variables n ∈ {100, ..., 200} in steps of

10, each with 10 agents i.e. number of variables per agent ∈ {10,..., 20}. Time slots ∈ {5, 6, 7},

constraint density p1 ∈ {0.1, 0.12, 0.14, 0.16, 0.18, 0.2} and maximum travel time ∈ {2, 3}.

Note that our evaluation is on problems with the parameters listed above. We perform linear regression

on the results and found values for α and β as presented in Table 6.4. For example, consider the sample

3a local search algorithm for solving DisCSPs with CLPs that implements a divide and conquer approach, unlike
Multi-DCA, large compound groups are not partitioned



6.3. Multi-DCA 77

Graph Colouring Problems
Var Agents DomainSize NCCCs Var/agent Ext. Variables SolSize

NCCCs
100 10 3 20,809 10 3 27
120 10 3 59,334 12 4 81
140 10 3 85,245 14 5 243
160 10 3 95,750 16 5 243

Messages
100 10 3 50 10 3 27
120 10 3 60 12 4 81
140 10 3 50 14 5 243
160 10 3 130 16 5 243

Random DisCSPs
Var Agents DomainSize NCCCs Var/agent Ext. Variables SolSize

NCCCs
100 10 8 15,721 10 3 512
120 10 8 49,076 12 4 4,096
140 10 8 34,477 14 5 32768
160 10 8 96,306 16 5 32,768

Messages
100 10 8 481 10 3 512
120 10 8 570 12 4 4,096
140 10 8 1,055 14 5 32,768
160 10 8 1,326 16 5 32,768

Meeting Problems
Var Agents DomainSize NCCCs Var/agent Ext. Variables SolSize

NCCCs
100 10 6 18,914 10 3 216
120 10 6 36,910 12 4 1,296
140 10 6 41,558 14 5 7,776
160 10 6 53,795 16 5 7,776

Messages
100 10 6 50 10 3 216
120 10 6 65 12 4 1,296
140 10 6 70 14 5 7,776
160 10 6 80 16 5 7,776

Table 6.3: Multi-DCA: maximum group size cut-off: sample results

data in the random DisCSP in Table 6.3, having 120 variables, 10 agents and a domain size of 8. Each

agent has 20 variables in its CLP. A 70(30) internal(external) variable split implies 4 external variables. The

possible solution size is 84 which is 4096 and the cutoff = ⌈(2.4 + (−0.0000041) ∗ 4096)⌉ which equals a

cutoff maximum group size of 3. Similarly, from the experiment conducted on distributed graph colouring

and distributed meeting scheduling we derived the value formula for α and β and a cutoff of approximately

group size of 3 gave the best results.
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Graph problem Random problem Meeting problem
α 2.2 2.4 2.4
β 0.00058 - 0.0000041 0.0000365

Table 6.4: Multi-DCA values for α and β

Figure 6.4: Multi-DCA: dividing compound groups

6.3.3 Example of Multi-DCA Execution

In this section, we use the example DisCSP with CLPs presented in Figure 6.1 to demonstrate the execution

of Multi-DCA.

Finding compound groups Agent A has 3 external variables in 2 groups consisting of [a2, a6], [a11]

which are not further divided. Agent B has 5 external variables [b1, b2, b3, b4, b5] and is further divided

(see Figure 6.4). First, the degree of each variable is calculated and the variable with the largest degree is

used as seed to create a compound group. The degrees of variables are as follows: the degree of variable b1

is 3, variable b2 is 4, variable b3 is 3 variable b4 is 4 and variable b5 is 5.

A compound group is created with variable b5 as seed and its neighbours variables b3 and b4 to form

[b3, b4, b5] (see Figure 6.4). These are removed from the available set of variables to group, leaving

variables b1 and b2. Next, variable b2 has the highest degree so it becomes the seed for a new compound

group. Variable b1 is related to it, so it is selected to go in the same compound group [b1, b2]. Agent C has

5 external variables in 2 groups consisting of [c1, c3, c4, c5] and [c9].

The group [c1, c3, c4, c5] needs to be divided. The degrees of the variables are as follows: the degree

of variable c1 is 3, variable c3 is 3, variable c4 is 4 and variable c5 is 5. A compound group is created with
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Figure 6.5: Multi-DCA: intra-agent constraints in compound Groups

variable c5 as seed and its neighbours variables c1 and c4 to form [c1, c4, c5] and [c3] becomes a single

variable group (see Figure 6.4). Agent D has 3 external variables in 3 groups consisting of [d1], [d4], [d11]

and is not divided.

Search algorithms

1. In Stage 2, for each compound group a basic centralised systematic search (as described in 4.2.2) is

used to find consistent solutions. In our example, to satisfy the constraints shown in red in Figure

6.5, Agent A instantiates variables in the compound group [a2, a6], a11 forms a compound group

consisting of a single variable and thus it maintains its default domain. In Agent B there are two

searches, one to instantiate variables in the compound group [b1, b2] and another to instantiate the

variables in the compound group [b3, b4, b5]. Agent C has one search, to instantiate variables in the

compound group [c1, c4, c5]. The reminder compound group in Agents C and D contain only one

variable and, therefore the compound domains of those are the domains of their variables.

2. In Stage 3, an adaptation of DynAPP (DynAPP-CD) is used to combine solutions for compound

groups into combination solutions which satisfy all inter-agent constraints. In this adaptation, vari-

ables in compound groups must take values compatible with the compound group solutions found in

Stage 2.

Referring back to our example in Figure 6.4, the compound solutions and single group domain

values (i.e. [a2, a6], [a11]) in Agent A, ([b1, b2], [b3, b4, b5]) in Agent B, ([c1], [c1, c4, c5]) Agent

C and ([d1], [d4], [d11] in Agent D are considered by the respective agents to combine the solutions
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with the compound solutions of their neighbour agents to find combination solutions which satisfy

the inter-agent constraints (shown in bold). For example, Agent A participates in a search which

combines compound solutions to [a2, a6], [a11] with compound solutions to ([b1, b2], [b3, b4, b5]).

The combination solutions are used in Stage 4.

3. In Stage 4, a basic systematic search (as described in 4.2.2) per agent is used in order to extend

the partial combination solutions relevant to each agent to be solutions to its CLP. In the example

in Figure 6.4 Each Agent extends their relevant part of the partial consistent combination solutions

by instantiating the rest of its internal variables to solve the remaining intra-agent constraints not

considered in Stage 2 (i.e. the constraints shown in green).

6.3.4 Multi-DCA Algorithmic Properties

Termination: Multi-DCA will terminate in one of the following situations;

• Stage 2: If an agent declares a compound group unsolvable using systematic search (Algorithm

7, Procedure Stage2, lines 4).

• Stage 3: If the distributed incomplete solver reaches the maximum number of iterations and

no solution has been found (Algorithm 7, Procedure Stage3, line 11-13).

• Stage 4: Two ways of terminating. (i) If Stage 2 within an agent has finished and returned some

solutions but none of the solutions could be extended to a complete solution to the agents’ CLP

(Algorithm 7, Procedure Stage4, line 9-12); and (ii) If an overall solution is found (Algorithm

7, Procedure Stage4, line 14-16).

Completeness: Multi-DCA uses a distributed local search algorithm to find consistent compound solu-

tions. Consequently, Multi-DCA is incomplete thus, it cannot prove the unsolvability of a problem

and it may fail to find a solution to a problem when a solution exists. However, in Stage 2, unsolv-

ability can be detected when no solution is found for any of the compound groups (which are solved

with an exhaustive systematic search).

Privacy : In Multi-DCA, agents only exchange partial assignments with their neighbours. The complete

details of a CLP are only know by the agent that represents it. In each stage of Multi-DCA, privacy

is maintained as follows;
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• In Stage 2: Only a subset of the centralized problem is considered.

• In Stage 3: Partial solutions found in Stage 2 above are used to solve the distributed problem.

Each agent only knows variables, the current assignment of the variables represented by its

neighbour agents together with the constraints relating them. It does not know other variables

represented by the neighbours or their other constraints

• In Stage 4: Each agent receives partial consistent assignment of its variables then indepen-

dently extends the partial solution by instantiating its internal variables and checking its other

intra-agent constraints not yet considered to determine complete consistence to its CLP.

6.4 Empirical Evaluation of Multi-DCA

In this section, we discuss the performance of Multi-DCA on a number of solvable 4 problems; distributed

graph colouring problems, random DisCSPs, distributed meeting scheduling problems and distributed sen-

sor network (refer to Chapter 3 for the description of problems). For each problem setting, we run 100

solvable problem instances from which we record and present: (i) the percentage of problems solved within

the given maximum number of iterations; (ii) median of the number of Non-Concurrent Constraint Checks

(NCCCs) performed; and (iii) median of the number of messages sent to measure efficiency. Although

CPU time is not an established measure for DisCSPs (Meisels et al. 2002) and is not reported in this thesis,

we measured CPU time and found the results to be consistent with the other evaluation metrics used. To

generate naturally distributed DisCSPs (except for distributed sensor network problems) with complex local

problems (i.e. with a higher proportion of intra(inter)agent constraints), the problems considered contained

between 70(30) and 80(20) ratio of intra(inter)agent constraints and the exact ratio used in the result pre-

sented is specified in the experiments. The ratio of variables within the CLP are 70(30) internal(external)

variables. Each algorithm was allowed to run for a maximum of (100 * (n)) iterations where n represents

the number of variables (nodes, variables, meetings or sensors).

The results are benchmarked with three other DisCSP algorithms that handle CLPs: Multi-DisPeL,

DisBO-wd and Multi-Hyb-Pen. Multi-DisPeL (value penalty) and DisBO-wd (constraint weights) are

local search algorithms while Multi-Hyb-Pen is a hybrid (complete) search algorithm (refer to Chapter 4,

4 We use only solvable problem for our evaluation because the algorithms we implement are distributed local search
algorithms and do not detect unsolvability
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Section 4.3 for the description of algorithms). We obtained the implementations of Multi-DisPeL, DisBO-

wd and Multi-Hyb-Pen from their authors.

Note: The following algorithms were not considered; (i) DCDCOP (Khanna et al. 2009) was not consid-

ered for evaluation as the pseudocode available is insufficient to implement the algorithm and it is designed

for DCOP; (ii) Burke’s work (Burke & Brown 2006a), (Burke & Brown 2006b) concentrated on efficiency

in handling CLPs and there is no overall algorithm; and (iii) ADOPT (Modi et al. 2005) is also designed

for distributed constraint optimization. In the few cases where not all problems were solved, the effort

“wasted” in that problem are not counted towards the median number of messages and median NCCCs,

they do however affect the percentage of problems solved. Multi-Hyb-Pen is a complete algorithm and

it solved all problems as expected. Because Multi-DCA could be terminated at other stages and not only

Stage 4 (distributed local search), we did not perform a run length distribution.

6.4.1 Results on Distributed Graph Colouring Problems

We use 3-colour distributed graph colouring problems with different characteristics to determine the perfor-

mance of Multi-DCA on several settings. We present results for experiments where we vary the following

problem parameters: (i) degree; (ii) number of nodes; (iii) number of agents; and (iv) domain size.

• Varying Degree: For these experiments, we use a problem with 300 nodes and vary the degree

∈ {4.4, ..., 5.1} in steps of 0.1. The results are presented in Figure 6.6. Multi-DCA solved more

problems compared to both Multi-DisPeL and DisBO-wd.

On NCCCs, Multi-DCA used the least NCCCs around degree deg ∈ {4.8,..., 5.1} (which includes the

region of difficult problems with deg at 4.9). The performance observed for Multi-DCA on number

of messages is similar to the results of NCCCs at degree ∈ {4.9, 5.0}, Multi-DCA exchanged the

least number of messages. But on the other degrees, i.e where the problems are easier, Multi-DCA

did not do well on number of messages exchanged.
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Figure 6.6: < n = 300, |colours| = 3, |agents| = 15, deg ∈ {4.4, ..., 5.1} >
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• Varying the Number of Nodes: For these experiments, we use number of nodes n ∈ {200, ..., 300}

in steps of 20 and fixed the degree at 5.0. We then conduct two sets of experiments by using a (i)

fixed number of nodes; or (ii) varying number of nodes within an agent. This is to determine the

performance of increasing number of nodes on agents, by sharing the problem on a fixed or varying

number of agents.

(i) The number of nodes per agent varies for each problem

The results are presented in Figure 6.7. All algorithms solved all problems except at n ∈ {200,

220, 240} where DisBO-wd solved 90%, 90% 80% respectively. Initially, for n ∈ {200, 220},

Multi-Hyb-Pen had the least NCCCs and as the number of nodes increases, Multi-DCA did better by

having the least NCCCs. On number of messages, Multi-DCA generally exchanged the least number

of messages.

(ii) The number of nodes per agent is fixed for each problem

The number of nodes within an agent is fixed to 10 by increasing the number of agents. Thus, as

the number of nodes in the DisCSP is increased, more agents are used. For example, for 200 nodes,

we use 20 agents, for 220 variables we use 22 agents and so on. The results are presented in Figure

6.8. All the algorithms solved all problems and thus, we exclude % of problems solved from our

illustration. Agents in Multi-DCA consistently used the least number of messages and had the least

NCCCs.

For both fixed and varying number of agents, we observe that, as the number of nodes increases,

from 220 nodes to 300 nodes, Multi-DCA generally gives the overall best results on NCCCs and

number of messages.

• Varying the Number of Agents: In these experiments, we fixed the number of nodes n at 300. We

use a degree of 5.0 with a varying number of agents, thus, results in varying the number of variables

belonging to an agent. We use agents ∈ {10, 15, 20}. The results are presented in Figure 6.9. From

these results, all the algorithms solved the entire problems except DisBO-wd which solved 95% of

the problems when 15 agents were used. On NCCCs and number of messages, Multi-DCA generally

gave the overall best. The number of messages increased for all algorithms at 20 agents. Since each

agent has less knowledge about the problem, more communication is required.

• Varying the Number of Colours: We vary the domain size (number of colours) ∈ {2, 3, 4, 5}
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Figure 6.7: < n ∈ {200, ..., 300}, |colours| = 3, |agents| = 10, deg = 5.0>

in this experiments and fixed the number of nodes at 300, degree at 5.0 and use 10 agents. The

results are presented in Figure 6.10. All the algorithms solved all problems except DisBO-wd which

solved 97% and 98% of the problems when 2 or 3 colours were used respectively. On both NCCCs

and number of messages, Multi-DCA, Multi-DisPeL and DisBO-wd used less than Multi-Hyb-Pen.

Multi-DCA generally performed best on NCCCs and number of messages.
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Figure 6.8: < n ∈ {200, ..., 300}, |colours| = 3, |agents| ∈ {20, ..., 30}, deg = 5.0 >
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Figure 6.9: < n = 300, |colours| = 3, |agents| ∈ {10, 15, 20}, deg = 5.0 >



6.4. Empirical Evaluation of Multi-DCA 88

Figure 6.10: < n = 300, |colours| ∈ {2, 3, 4, 5}, |agents| = 15, deg = 5.0 >
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6.4.2 Results on Random Distributed Constraint Satisfaction Problems

On random DisCSP, we present results for experiments where we vary the following problem parameters:

(i) constraint tightness; (ii) number of variables; (iii) number of agents; and (iv) domain size. We use a ratio

of 70(30) intra (inter) agent constraints.

• Varying Constraint Tightness: We generate 100 instances of a problem with 150 nodes, a domain

size of 8, constraint density p1 of 0.5 and constraint tightness p2 ∈ {0.3, ..., 0.7}. All four algorithms

solved all problems. The results are presented in Figure 6.11. All algorithms solved all the problems

and this is not illustrated. For NCCCs, Multi-DCA outperformed Multi-Hyb-Pen, Multi-DisPeL and

DisBo-wd at p2 = 0.3 and 0.4 i.e at the region of difficult problems for NCCCs. Multi-DCA did not

do well for number of messages exchanged.

Figure 6.11: < n = 150, |domain| = 8, |agents| = 10, p2 ∈ {0.3, ..., 0.7}, p1 = 0.15 >

• Varying the Number of Variables : In these set of experiments, we generate problems of different

sizes i.e. number of variables n ∈ {160, 170, ..., 250} in steps of 10, with a constraint density p1 of

0.2. We use this setting to conduct two sets of experiments by using (i) a fixed number of variables; or

(ii) a varying number of variables within an agent. This is to determine the performance of increasing
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number of variables on agents, by sharing the problem on a fixed or varying number of agents.

Figure 6.12: < n ∈ {160, ..., 250}, |domain| = 8, |agents| = 10, p2 = 0.4, p1 = 0.2 >
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1. The number of variables per agent varies for each problem

We use 10 agents for each problem size thus, as the problem sizes increases, the number of

variables within an agent also increases. For example, for 110 variables there would be 11

variables/agent, for 120 variables, there would be 12 variables/agent and so on. The results are

presented in Figure 6.12. Multi-DisPeL, DisBO-wd, Multi-DCA and Multi-Hyb-Pen generally

solved all the problems except for variables ∈ {160, 170} where DisBO-wd solved 98% of the

problems. Multi-DCA generally performed better than all the algorithms by having the least

NCCCs as the number of variables increased. However on Multi-DCA did not do well for

number of messages exchanged.

2. The number of variables per agent is fixed for each problem

We fixed the number of variables in an agent to 10 by varying the number of agents. The

results are presented in Figure 6.13.

Figure 6.13: < n ∈ {160, ..., 250}, |domain| = 8, |agents| ∈ {16, ..., 25}, p2 = 0.4, p1 = 0.2 >
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Multi-DisPeL, DisBO-wd, Multi-DCA and Multi-Hyb-Pen solved all the problems and this is not

illustrated. For NCCC, Multi-DCA had the least compared to Multi-Hyb-Pen, Multi-DisPeL and

DisBO-wd. Similarly on messages, Multi-DCA generally used the least number of messages com-

pared to all the other algorithms.

• Varying the Number of Agents: In this experiments, we used a fixed number of variables 200 and

a tightness p2 of 0.4. However, we vary the number of agents ∈ {4, 5, 10, 20 }, i.e. the number

of variables within an agent becomes {50, 40, 20, 10 } with respect to the number of agents. The

results are presented in Figure 6.14. We observe that, the performance of Multi-DCA was best as the

number of agents increased i.e. at agent ∈ {10, 20}, using the least number of messages and NCCCs.

All algorithms used the least number of messages when 4 agents where used as each agent has more

knowledge about the problem, less communication between agents is required.

Figure 6.14: < n = 200, |domain| =8, |agents| ∈ {4, 5, 10, 20}, p1 = 0.15, p2 = 0.4 >

• Varying the Domain Size: We use random DisCSPs at the region of hard problems (i.e. phase

transition) with a constraint tightness p2 of 0.5, a variables size of 150 and 10 agents. We vary

the domain d ∈ {3, ..., 10} in steps of 1. All the solvers solved all the problems. The results are
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presented in Figure 6.15. Multi-DCA generally had the least NCCCs as the size of the domain

increases. However, on the number of messages exchanged, Multi-DCA didn’t do well.

Figure 6.15: < n = 150, |domain| ∈ {3, 4, ..., 10}, |agents | = 10, p1 = 0.1, p2 = 0.4 >

6.4.3 Results on Distributed Meeting Scheduling Problems

To evaluate Multi-DCA on meeting scheduling problems, we use problems with several meetings and con-

straint density. We present results for experiments where we vary the following problem parameters: (i)

timeslots; (ii) constraint density; and (iii) number of meetings. We use a ratio of 70(30) intra (inter)agent

constraints.

• Varying the Timeslots: We use 200 meetings with timeslots ∈ {4, ..., 8} in steps of 1. We use 5

agents for each problem size, a constraint density d of 0.2 and a maximum travel time md of 3. The

results are presented in Figure 6.16. Multi-DCA solved atleast as much problems as all the local

search algorithms Multi-DisPeL and DisBO-wd. The NCCCs and number of messages exchanged

generally increased as the number of timeslots increases and Multi-DCA performed closely to Multi-
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HybPen.

Figure 6.16: < n = 200, timeslots ∈ {4, 5, ..., 8}, |agents| = 10, d = 0.2, md = 3 >

• Varying the Constraint Density: We use 200 meetings with 5 agents, a timeslot of 6, a constraint

density d ∈ {0.1, ..., 0.22} in steps of 0.02 and a maximum travel time md of 3.

The results are presented in Figure 6.17.

Multi-DCA solved at least as much as the local search algorithms Multi-DisPeL and DisBO-wd.

For NCCC, at constraint density 0.1 and 0.12, Multi-DCA had the mot NCCCs but for the rest of
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Figure 6.17: < n = 200, timeslots = 6, |agents| = 10, d ∈ {0.1, ..., 0.22}, md = 3 >

the settings, i.e. as the constraint density increases, Multi-DCA used the least number of NCCCs.

However, Multi-DCA did not do well for number of messages exchanged.

• Varying the Number of Meetings: We use meetings ∈ {200, ..., 300} with 10 agents for each

problem size, a timeslot of 6, a constraint density d of 0.2 and a maximum travel time md of 3. The

results are presented in Figure 6.18.
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Figure 6.18: < n ∈ {200, ..., 300}, timeslots = 6, |agents| = 10, d = 0.2, md = 3 >
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We fix the number of agents, thus, the number of variables per agents changed with the problem size.

For example, for 200 meetings it is 20 variables per agent and so on. As the number of meetings increased,

Multi-DCA had the least NCCCs compared to Multi-DisPeL and DisBO-wd and Multi-Hyb-Pen. Multi-

DCA did not do well for number of messages exchanged between agents.

6.4.4 Results on Distributed Sensor Network Problems

For these experiments, we vary the number of targets ∈ {5, 6, 7, 8}. For each target, we use three different

number of sensors n ∈ {36, 49, 64} i.e. in grids of 6, 7, 8 respectively. Note: In a distributed sensor

network problem, each agent is restricted to 3 variables per agent, making the CLP very simple. Thus,

they are not a good representation of naturally distributed problems. However, we use distributed sensor

network problems for additional evaluation of Multi-DCA. The results are presented in Table 6.5. Multi-

DCA, DisBO-wd and Multi-DisPeL solved at least 97% of all the problems in each problem setting with

Multi-DCA solving at least as much as DisBO-wd and Multi-Hyb-Pen. As expected, Multi-DCA used the

most number of NCCCs compared to Multi-DisPeL, DisBO-wd and Multi-Hyb-Pen. However, Multi-DCA

outperformed the other algorithms by having the least number of messages.
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Percentage Solved
No. Targets No. Sensors Multi-DisPeL DisBO-wd Multi-DCA Multi-Hyb-Pen

5 36 100 100 100 100
5 49 100 100 100 100
5 64 100 100 100 100
6 36 100 98 100 100
6 49 100 100 100 100
6 64 100 100 100 100
7 36 99 97 99 100
7 49 100 100 100 100
7 64 100 100 100 100
8 36 99 98 100 100
8 49 100 100 100 100
8 64 100 100 100 100

NCCCs
5 36 37,515 166,720 176,759 3,527
5 49 17,487 117,693 114,839 3,274
5 64 13,270 119,115 102,860 2,888
6 36 41,290 280,246 202,019 4,934
6 49 24,448 237,451 205,091 4,934
6 64 19,893 190,647 115,516 3,523
7 36 72,563 398,974 279,435 7,412
7 49 59,881 370,269 269,837 4,702
7 64 27,962 300,564 233,954 3,712
8 36 160,790 607,504 48 9,666 17,659
8 49 62,313 520,501 487,723 7,235
8 64 50,378 465,444 373,796 4,743

Messages
5 36 38 38 18 212
5 49 36 36 12 39
5 64 30 30 11 22
6 36 82 82 26 327
6 49 60 60 20 235
6 64 45 45 16 100
7 36 153 153 33 384
7 49 147 147 28 302
7 64 66 66 24 256
8 36 413 413 48 607
8 49 136 136 36 337
8 64 140 140 32 260

Table 6.5: < sensors ∈ {36, 49, 64}, targets ∈ {5, 6, 7, 8}, pc = 0.6, pv = 0.9 >



6.5. Discussion 99

6.5 Discussion

Divide and coordinate approach has previously been proposed for DCOPs in (Vinyals, Pujol, Rodriguez-

Aguilar & Cerquides 2010), (Vinyals, Rodrı́guez-Aguilar & Cerquides 2010), (Hatano & Hirayama 2013)

where an agent creates a copy of the problem based on their local knowledge. Each agent then solves its

new sub problem and the solutions are aggregated in the coordinate stage to confirm if the solutions found

by neighbouring agents are mutually the best found.

In a naturally distributed DisCSP, variables are clustered into the agents they belong to and the number

of intra-agent constraints is normally higher than that of the inter-agent constraints thus, reflecting the

clustering of variables in CLPs. The key idea behind the work presented in this chapter is that, when

dealing with CLPs, solutions to the distributed part of the problem should be considered early in the search.

An agent does not create a copy of the problem. The divide and conquer approach identifies clusters using

the knowledge of the relationships (constraints) between variables. The problem is then solved with several

interleaving searches. The following contributions have been made;

1. A divide and conquer approach for solving DisCSPs with complex local problems that combines

several search strategies.

2. Multi-DCA - a distributed local search algorithm that implements the divide and conquer approach.

3. DynAPP-CD - a distributed local search algorithm that extends DynAPP to consider the following:

(i) consider only inter-agent constraints; (ii) consider complex variables; and (iii) use compound

values as domain (which are the solutions found in Stage 2 of the divide and conquer approach).

4. A formula has been derived that determines the cutoff for dividing a compound group size for dis-

tributed graph colouring problems, random DisCSP, and distributed meeting scheduling problems.



6.6. Chapter Summary 100

6.6 Chapter Summary

This chapter introduced a divide and conquer approach for solving DisCSPs with complex local problems

that combines several search strategies: (i) systematic and local searches; (ii) centralised and distributed

searches; and (iii) a modified compilation reformulation strategy. A DisCSP with CLP is divided and

solved thus: (i) identifying compound groups in each agent; (ii) each agent finds all locally consistent so-

lutions to each compound group, using one systematic search per compound group; (iii) using a distributed

local search algorithm, the solutions found for each compound group are then combined with solutions

to other agents’ compound groups to form a combination solution such that all inter-agent constraints are

satisfied; and (iv) agents check if the compound solutions to its local compound groups participating in the

combination solution extends to satisfy the rest of their intra-agent constraints, to become solutions to their

CLP.

We also presented Multi-DCA - Divide and Conquer Algorithm for Agents with Complex Local Prob-

lems. Multi-DCA is a distributed local search algorithm that implements the divide and conquer approach.

Multi-DCA uses a basic centralised systematic search algorithm (as described in 4.2.2) in Stage 2 and

Stage 4 and an adaptation of DynAPP for compound domains (DynAPP-CD) is used as the distributed local

search algorithm in Stage 3. In an extensive empirical evaluation, Multi-DCA was evaluated on four prob-

lem classes and compared to state-of-the-art distributed local and systematic search DisCSP algorithms that

handle CLPs. On distributed graph colouring problems, random DisCSP, and distributed meeting schedul-

ing problems, the results of the evaluations show that the divide and conquer approach generally improved

search. Multi-DCA solved at least the same number of problems compared to Multi-DisPeL and DisBO and

generally incurred the least costs in the process especially with respect to time (NCCCs). As expected, on

sensor network problems, Multi-DCA performed poorly on NCCCs but overall exchanged the least number

of messages for all problem settings used.



Chapter 7

Conclusion and Future work

In this chapter, we give an overview of the contributions made in this thesis and we also propose some

potential future research areas.

7.1 Contributions

This thesis makes contributions to the development of local search strategies for Distributed Constraint

Satisfaction Problems (DisCSPs) by using combinations of existing heuristics in an improved approach to

solving them. This chapter outlines our contributions and highlights possible future work.

1. DisCSP Combination heuristics in local search for single variable/agent.

We proposed a novel combination heuristics which was found to be more effective in escaping local

optima compared to the state of the art DisCSP algorithms. The approach combines value penalties

and dynamic agent prioritisation heuristics in distributed local search where an agent represents a

single variable. We presented DynAPP - Dynamic Agent Prioritisation with Penalties which is a

synchronous distributed local search algorithm for single variable per agent problems which com-

bines dynamic agent prioritisation with penalties on variable values (see Chapter 5). (i) Penalties

are attached to individual domain values, initially set as zero. At quasi-local optima, the penalty on

the ”current” values is increased, tagging the current values as bad values in order to escape from

the quasi-local optima. (ii) Priorities are attached to agents, initially set to the alphabetic ordering of

the agent identifier and dynamically changed, resulting in a change to the priority of the agent and,

101
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therefore, the priority of finding a consistent value for the agent’s variable. Empirical results on dis-

tributed graph colouring problems, random DisCSPs and distributed meeting scheduling problems

show that DynAPP generally outperformed both the competing local search algorithms (SingleDB-

wd and StochDisPeL) and the complete search algorithm (PenHyb).

2. Problem-Structure oriented problem solving for DisCSPs with CLPs.

We proposed a divide and conquer approach that improves the performance of solving DisCSPs

with Complex Local Problems (CLPs) (see Chapter 6). The approach prioritises the satisfaction of

the more expensive part of the problem (i.e. the inter-agent constraints). In the divide and con-

quer approach, the structure of the DisCSP is analysed in order to identify groups of directly-related

(via an intra-agent constraint) external variables within each agent. These groups are referred to as

compound groups. Large compound groups with a large number of variables and domain size are

partitioned into smaller groups. A combination of systematic and local search algorithms are then run

concurrently to solve the divided problem as follows: (i) each agent finds all locally consistent com-

pound solutions to each of its compound groups using one centralised systematic search algorithm

per compound group; (ii) the compound solutions found for each compound group are then com-

bined with solutions to other agents’ compound groups using a distributed local search algorithm to

form a combination solution such that all inter-agent constraints are satisfied; and (iii) finally, using

a centralised systematic search per agent, each agent checks if the compound solutions to its local

compound groups (participating in the combination solution) extend to satisfy the rest of their intra-

agent constraints to become solutions to its CLP. We have derived a formula to determine the optimal

compound groups size (i.e. the number of variables in a group) and observed that a group of size 3

is generally optimal across the benchmark problems. We presented Multi-DCA, a distributed local

search algorithm that implements the divide and conquer approach for solving DisCSPs with CLPs.

We empirically evaluated Multi-DCA on distributed graph colouring problems, random DisCSPs,

distributed meeting scheduling problems and distributed sensor network problems. The results show

that Multi-DCA generally outperformed (by using the least time to solution) other leading DisC-

SPs algorithms that address complex local problems i.e. local search algorithms (Multi-DisPeL and

DisBO-wd) and a hybrid complete search algorithm (Multi-PenHyb).
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3. Other contributions

We presented a multi-context search for DisCSPs where two local search algorithms (SingleDB-

wd and Stoch-DisPeL) solve a given DisCSPs concurrently to improve the exploration of the search

space. In the approach, each algorithm starts from a different random initialisation in a master-slave

architecture. The master is responsible for finding and returning a solution or terminating if the

maximum number of iterations is reached. The task of the slave is to find and store consistent par-

tial solutions which are sent to the master solver when requested. After some specified number of

iterations, the master algorithm checks with the slave algorithm if a better solution (with a lower

number of constraint violations) exists and the master re-initialises its variables with the received

assignments from the slave. We presented two algorithms (StochDisPeL+Restart and SingleDB-

wd+Restart) that implement the multi-context search for DisCSPs having a single variable/agent.

In StochDisPeL+Restart, Stoch-DisPeL is the master while SingleDB-wd is the slave; while in

SingleDB-wd+Restart SingleDB-wd is the master while StochDisPeL is the slave. Based on an

empirical evaluation on several problem instances, we found that StochDisPeL+Restart generally

performed better than StochDisPeL and close to DynAPP, although less prominent than DynAPP.

On the other hand, SingleDB-wd+Restart performed better than only SingleDB-wd.

7.2 Future Work

In this section, we point out some possible future direction for this work.

7.2.1 Extending the approach of handling DisCSPs with CLPs

Although the divide and conquer approach presented in this thesis was found to be beneficial, alternative

search methods and adaptive problem solving could be investigated.

Using alternative search methods

In our implementation of the divide and conquer approach (Multi-DCA), we used an adaptation of DynAPP

as the distributed local search algorithm. Other distributed local search algorithms such as DisBO-wd could

be used. This will require DisBO-wd to be modified for solving DisCSPs with compound variables having

a domain of compound values.



7.2. Future Work 104

Adaptive problem solving

The problem structure of a DisCSP with CLPs was exploited in a novel divide and conquer approach. The

structure could be further exploited for addressing each complex local problem using a different approach,

such as selecting an approach based on the number of external variables and constraints.

7.2.2 Alternative Approach in the Multi-Context Search

The Multi-Context search algorithms presented performed better in terms of both communication cost and

computational effort when compared to the algorithms without restart. Alternative approaches for restart

could be investigated such as: (i) the master algorithm restarting when there are no improvements; or (ii)

the master algorithm restarting the values for only certain parts of the problem. Non-improvement could be

determined by the master solver using techniques such as the number of local optima detected.

7.2.3 DynAPP and Multi-DCA for Optimisation

DynAPP and Multi-DCA are algorithms for DisCSPs where the first solution that satisfies all constraints is

returned. In a DCOPs, a solution minimises or maximises a given objective function. It would be interesting

to determine the performance of DynAPP and Multi-DCA on optimization problems. Challenges of using

our algorithms to solve DCOPs include the guarantee on solution quality. For example, in MV-MC-DCOPs,

each agent controls two or more variables and an integer constant is used to represent the minimum number

of satisfied internal variables for the assignment returned by the given agent to be considered useful overall.

The divide and conquer approach returns quick solutions to the distributed problem and should scale well

for MV-MC-DCOP.

7.2.4 Dynamic real-time DisCSPs

Dynamic DisCSPs address situations where the problem definition changes during search. New variables,

domain values or constraint could be added or dropped during search. These changes can be captured

as a series of constraint modifications (Verfaillie & Jussien 2005). This imposes challenges on finding

an efficient approach to solving such dynamic modifications without abandoning existing solutions found

from previous searches. Currently, in our divide and conquer approach for DisCSPs with complex local

problems, depending on where the change in the problem specification occurs, the algorithm may reuse
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or restart from scratch. It would be interesting to investigate the performance of our divide and conquer

approach on Dynamic DisCSPs.

7.3 Summary

This thesis has investigated heuristics and strategies in distributed local search. Several novel local search

algorithms and combination heuristics for distributed constraint satisfaction have been presented. The main

aim of this thesis is to investigate if there are any benefits in combining existing strategies for distributed

local search (as stated in Chapter 1, Section 1.1). The research objectives are:

• Investigate the effect of combining existing search heuristics to escape local optima in local search

algorithms for distributed constraint satisfaction problems.

• Exploit the structure of distributed constraint satisfaction problems with complex local problems to

develop a more efficient approach to solving them.

We have investigated several combination strategies for solving DisCSPs and present DynAPP and

Multi-DCA which meet these objectives as follows;

• We have presented a novel algorithm - DynAPP that uses a combination of heuristics to escape local

optima for the resolution of distributed constraint satisfaction problems where each agent represents

a single variable.

• We have also exploited the structure of distributed constraint satisfaction problems with CLPs and

proposed a divide and conquer approach to solving them that combines several search strategies.

Multi-DCA is a successful algorithm with an overall distributed local search algorithm that imple-

ments the approach.

Both algorithms were found to generally reduce the time (in the form of non-concurrent computational

steps or NCCCs) and communication load (in the form of the number of messages exchanged) in solving

distributed constraint satisfaction problems. In conclusion, “We have investigated several existing combina-

tion heuristics and strategies and have shown that there are indeed benefits in combining search strategies

and heuristics in local search for solving DisCSPs”.
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Appendix A

Combination Heuristics Algorithms

A.1 Introduction

In this Appendix, we discuss the combination of constraint weights, value penalty and dynamic agent priori-

tisation in local search algorithms for DisCSPs, where an agent represents a single variable. We describe the

algorithms implemented with this combination heuristics and present results of an empirical evaluation on

several problem classes. As part of the combination of heuristics in local search algorithm, the multi-context

search with constraint weights and value penalties is presented in Appendix B. A complete discussion on the

algorithm that combines dynamic agent prioritisation and value penalties strategy (DynAPP) was presented

in Chapter 5 as this is the algorithm which, overall, gave best results. Next we briefly describe the heuris-

tics used in Section A.2, the implementations are discussed in Section A.3 and the empirical evaluation in

Section A.4. We summarise the appendix in Section A.5.

A.2 Heuristics Considered

In this section, we describe the heuristics we use in our combination strategies. When used individually,

constraint weights, value penalty and dynamic agent priority have been found to be effective in escaping

local optima. Our hypothesis is that in combining these heuristics we would further improve how local

optima is handled thus improve the efficiency of distributed local search algorithms.

Constraint weights is a breakout mechanism used to escape quasi-local optima by increasing the

weights attached to constraints that are violated at a quasi-local optima, hence, making the satisfaction of
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these constraints more important. This strategy was implemented in SingleDB (Hirayama & Yokoo 2005), a

distributed local search algorithm for single variable per agent that escapes quasi-local optima with a weight

decay mechanism that decreases constraint weights at every iteration, thus “forgetting” weights over time.

Refer to Chapter 4, Section 4.3.1 for a discussions on SingleDB-wd.

Penalties on value imposes penalties on the assignments of variables found to be inconsistent at quasi-

local optima. Thus, the heuristic identifies and avoids bad values that led to the local optima. Stoch-DisPeL

(Basharu et al. 2006) is a distributed local search algorithms for single variable per agent that imposes

penalties on values to escape quasi-local optima. Refer to Chapter 4, Section 4.3.1 for a discussions on

Stoch-DisPeL.

Dynamic agent prioritisation heuristic on the other hand increases the importance of an agent over

its neighbours when the agents variables are involved in local optima. Asynchronous Weak Commitment

Search (AWCS)(Yokoo 1995a) is a complete distributed algorithm for single variable per agent that imple-

ments this heuristic. Refer to Chapter 4, Section 4.3.3 for a discussions on AWCS.

A.3 Implementations

We propose a number of combinations heuristics with constraint weights, dynamic agent prioritisation

and value penalties to implement distributed local search algorithms for DisCSPs having single variable per

agent. The algorithms with the combination heuristics differ on what heuristic is used to (i) compute the cost

function; and/or (ii) to break ties. We also investigated the effect of normalisation in some of the heuristics.

The algorithms we implement with the combination heuristics use the search technique in either Stoch-

DisPeL or SingleDB-wd. Stoch-DisPeL (Basharu et al. 2006) and SingleDB-wd (Lee 2010) are distributed

local search algorithms for single variable per agent that impose penalties on values and constraint weights

respectively to escape quasi-local optima. Refer to Chapter 4, Section 4.2.3 for a further discussion on

SingleDB-wd and Stoch-DisPeL. We present a summary of the algorithms with the combination heuristics

in Figure A.1 and describe them next.

1. Constraint Weights and Value Penalty to Cost Function: Sweight, Dpenalties and normSweights

In these algorithms, the combination heuristics are used to evaluate the cost of selecting a value.

(a) (Sweight) - Stochastic Distributed Penalty Driven Search with Weight: The search algorithm

is similar to Stoch-DisPeL and the weights of constraints violated at quasi-local optima are
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Algorithms Search Tie breaking Cost Function Heuristics 

Sweight Stoch-DisPeL agent ID weighted violated 
constraints + value 

penalties 

constraint 
weight, value 

penalties 

Dpenalties SingleDB-wd agent ID weighted violated 
constraints + value 

penalties 

constraint 
weight, value 

penalties 

normSweights Stoch-DisPeL 
 

agent ID normalised weighted 
violated constraints + 

value penalties 

constraint 
weight, value 

penalties 
 

StochTBN Stoch-DisPeL 
 

Probabilistically constraints violations + 
value penalties 

constraint 
weight, value 

penalties 
 

StochTB Stoch-DisPeL 
 

constraint 
weights 

constraints violations +  
value penalties 

constraint 
weight, value 

penalties 

costwTB Stoch-DisPeL 
 

constraint 
weights 

 

weighted violated 
constraints + value 

penalties 
 

constraint 
weight, value 

penalties 

DynAPP Stoch-DisPeL 
 

agent ID 
 

constraints violations + 
value penalties 

dynamic agent 
prioritisation, 

value penalties 
 

DynCW SingleDB-wd 
 

agent ID 
 

weighted violated 
constraints  

dynamic agent 
prioritisation, 

constraint weight 
 

Figure A.1: Algorithms with combination heuristics

increased by 1.

(b) (Dpenalties): Single Distributed Breakout with Weight Decay and Penalties: The search al-

gorithm is similar to SingleDB-wd and additionally, temporary penalties (a fixed value 3) are

also imposed on the values of the variable’s found to be inconsistent at quasi-local optima.

Temporary penalties are reset when an agent selects a new value.

(c) (normSweights): Normalised Stochastic Distributed Penalty Driven Search Weights: This is

a variation of Sweight. The difference is weights are normalised (to remove scale bias) before

adding them to the cost function.

Sweight, Dpenalties and normSweights use the default strategy of their search algorithm by selecting

the agent with the lowest ID for breaking ties.

Cost function The cost of selecting a given domain value is calculated as the weighted number of
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constraint violations and penalties on values (see Equation A.1).

f(dj) =
k∑

i=1

(cwi ∗ viol(ci)) + p(dj) i ∈ {1, ..., k} (A.1)

where ci is the ith constraint

dj is the j th value in the variables domain

cwi is the constraint weight of the ith constraint

viol(ci) is the number of constraints violated

p(dj) is the penalty attached to dj

2. Constraint Weights and Value Penalty for Tie Breaking: StochTB, StochTBP and costwTB

In these combinations, the algorithms search for a solution similar to Stoch-DisPeL with penalties

on values for escaping quasi-local optima. Constraint weights are also implemented at quasi-local

optima, increasing them by 1.

Tie Breaking is done as follows

(a) (StochTB): Stochastic Distributed Penalty Driven Search with Tie Breaking: Ties are broken

with the constraint weights. To break a tie between 2 values (v1,v2), the total weights on the

constraints violated by each value is calculated and the value with the least weighted constraint

violations is selected.

(b) (StochTBP): Stochastic Distributed Penalty Driven Search with Probabilistic Tie Breaking:

Ties are broken based on some probability (p). Based on an empirical evaluation with several

values, we found p = 0.3 generally performed best. To break a tie between 2 values (v1,v2), a

value v1 is selected with probability p or the value v2 is retained otherwise.

Cost function for StochTBP and StochTB is determined by the number of constraint violations

and penalties on values (see Equation A.2). Constraints are not weighted.

f(dj) = viol(dj) + p(dj) j ∈ {1..|domain|} (A.2)

where dj is the j th value in the domain

viol(dj) is the number of constraints violated
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p(dj) is the penalty imposed on dj

(c) (costwTB): Stochastic Distributed Penalty Driven Search with Weights for tie breaking cost:

costwTB uses a combination of (a) tie breaking with weights (see StochTB above); and (b)

normalized weights added to the cost function (see normSweights above).

3. (DynAPP): Dynamic Agent Prioritisation with Penalties: The search algorithm is similar to Stoch-

DisPeL. In DynAPP, the two heuristics combined are dynamic agent prioritisation and value penalty

as follows: (i) A priority is attached to each agent; and (ii) penalties are attached to individual domain

values. At quasi-local optima, the penalty on the current assignment of variables with constraint

violations is increased and the priority of the agent is also changed. Ties are broken by selecting the

agent with the lowest ID. The cost function is determined by the number of constraint violations and

penalties on values (see Equation A.3).

f(dj) = viol(dj) + p(dj) j ∈ {1..|domain|} (A.3)

where dj is the j th value in the domain

viol(dj) is the number of constraints violated

p(dj) is the penalty imposed on dj

4. (DynCW): Dynamic Agent Prioritisation with Constraint Weights: The search algorithm is similar

to SingleDB-wd. In DynCW, the two heuristics combined are dynamic agent prioritisation and

constraint weights as follows: (i) A priority is attached to each agent; and (ii) weights are attached

to each constraint. At quasi-local optima, the weights on violated constraints are increased and the

priority of the agent is also changed. Ties are broken by selecting the agent with the lowest ID. The

cost function is calculated as the weighted number of constraint violations (see Equation A.4).

f(dj) =

k∑
i=1

(cwi ∗ viol(ci)) i ∈ {1, ..., k} (A.4)

where ci is the ith constraint

dj is the j th value in the variables domain

cwi is the constraint weight of the ith constraint
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viol(ci) is the number of constraints violated if dj is selected

A.4 Empirical Evaluation of Combination Heuristics Algorithms

We empirically evaluate Sweight, Dpenalties, normSweights, StochTBP, StochTB and costwTB, DynAPP

and DynCW on distributed graph colouring problems, random DisCSPs and distributed meeting

scheduling problems (refer to Chapter 3 for the description of the problems). Because the algorithms im-

plemented are for solving DisCSP where an agent represents a single variable, we exempt sensor network

problems from our evaluation due to its inherent nature of having 3 variables per agent. For each prob-

lem setting, we run 100 solvable problem instances from which we record and present (i) the percentage

of problems solved within the maximum number of iterations; (ii) the median number of Non-Concurrent

Constraint Checks (NCCCs) performed; and (iii) the median number of messages sent. Although CPU

time is not an established measure for DisCSPs (Meisels et al. 2002) and is not reported in this thesis, we

measured CPU time and found the results to be consistent with the other evaluation metrics used. Dpenal-

ties and DynCW solved less than 50% for most problem settings while using an exponential number of

messages and NCCCs. To highlight the performance of algorithms that solved more problems, Dpenal-

ties and DynCW were not included in our illustrations of the results as it would obscure the differences in

performance for the other algorithms.

The results are benchmarked with two other local search algorithms that have a strategy for escaping

local optima; Stoch-DisPeL and SingleDB-wd. We excluded DSA (Zhang et al. 2002) due to the fact that

it has no explicit mechanism for escaping from local optima, thus, does not perform well where the goal is

to satisfy all constraints. Once stuck at local optima, the sideways moves are usually insufficient to push

a search out of locally optimal regions. Each algorithm was allowed to run for a maximum of (100 * (n))

iterations where n represents the number of variables (nodes, variables or meetings). Note: In the few cases

where not all problems were solved, the effort “wasted” in that problem are not counted towards the median

number of messages and median NCCCs, they do however affect the percentage of problems solved.

Results on Distributed Graph Colouring Problems

We used distributed graph colouring problems with 3 colours, 200 nodes and we vary the degree deg ∈

{4.3, ..., 5.3} in steps of 0.1 to determine the performance on problems with varying difficulty. The re-
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sults exhibited the easy-hard-easy trend with less problems being solved at the phase transition (where the

problems are more difficult) i.e at deg ∈ {4.7, 4.8, 4.9} (see Figure A.2). DynAPP solved at least as many

problems as the other algorithms in all cases. For both number of messages and NCCCs, StochTB, Sweight

and DynAPP performed better than Stoch-DisPeL with DynAPP as the overall best.

Figure A.2: < n = 200, |colours| = 3, deg ∈ {4.3, ..., 5.3} >
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Results on Random Distributed Constraint Satisfaction Problems

For random DisCSPs, we use 200 variables, domain size of 8, a constraint density p1 of 0.15 and we

vary constraint tightness p2 ∈ {0.1, ..., 0.9} in steps of 0.1. We vary constraint tightness to determine the

performance on random DisCSPs with varying difficulty. As illustrated in Figure A.3, we observe that at the

phase transition i.e. around p2 of 0.4, all the algorithms solved the least number of problems and used the

most number of messages and NCCCs. However, StochTB, Sweight and DynAPP performed better than

Stoch-DisPeL both on NCCCs and number of messages exchanged. Overall, DynAPP generally performed

best.
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Figure A.3: < n = 200, |domain| = 8, p1 = 0.15, p2 ∈ {0.1, .., 0.9} >
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Results on Distributed Meeting Scheduling Problems

For distributed meeting scheduling problems, we used 200 meetings, a density p1 ∈ {0.1, ..., 0.2 } in steps

of 0.01 and a maximum possible distance md of 3. We vary constraint density to determine the performance

on problems with varying difficulty. The results are presented in Figure A.4. Similar to the earlier results,

some of the combination heuristics exhibited improvements compared to Stoch-DisPeL. Although most of

the problems were solved, Sweight, normSweight, StochTBP, StochTB and DynAPP had similar number

of messages and NCCCs. It is observed that, around p1 = 0.14, 0.15, DynAPP had the least messages and

NCCCs.
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Figure A.4: < n = 200, timeslots = 7, d ∈ {0.1, ..., 0.2}, md = 3 >
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A.5 Summary

In this Appendix, we presented heuristics combinations with dynamic agent prioritisation, constraint weights

and value penalties. Priorities, constraint weight and value penalties are integer values imposed on parame-

ters of a problem to change how an algorithm searches its solution space to minimise its time to solution. (i)

Priorities are attached to agents, initially determined by the alphabetic ordering of the agent identifier and

dynamically changed, resulting in a change to the priority of finding a consistent value for the agent’s vari-

able; (ii) Weight on constraints make the satisfaction of those constraints more important; and (iii) Penalties

make the value undesirable and “hopefully” cause the selection of another value.

We implemented Sweight, Dpenalties, normSweights, StochTBP, StochTB and costwTB, DynAPP and

DynCW which are local search algorithms for solving DisCSP having a single variable per agent that differ

on how they use the heuristic to calculate the cost function or to break a tie. Empirical evaluations of

these algorithms on several problem types with varying difficulty levels show that, at the phase transition

where the problems are more difficult, DynAPP, StochTB, StochTBP and costwTB performed better than

Stoch-DisPeL on distributed graph colouring problems for both NCCCs and number of messages. Similarly

on random DisCSPs, StochTB, Sweight and DynAPP performed better than Stoch-DisPeL. Improvements

over Stoch-DisPeL were also seen in StochTB, costwTB and DynAPP on distributed meeting scheduling

problems. However, overall, we found DynAPP generally performed best (had the least NCCCs and number

of messages) for all problem classes. These improvements in the new algorithms show that the combination

strategies are beneficial in distributed local search for single variable per agent settings. In Appendix B we

discuss the multi-context search using constraint weights and value penalties.



Appendix B

Multi-Context Search

B.1 Intoduction

In this Appendix, we present a multi-context search with constraint weights and value penalties in local

search for DisCSPs having a single variable per agent. The multi-context search aims to improve the

exploration of the search space and also to avoid stagnation during search. To solve a given DisCSPs, two

local search algorithms for DisCSP having a single variable per agent; SingleDB-wd and Stoch-DisPeL

concurrently (refer to Chapter 4, Section 4.3.1 for a description of the algorithms). Each algorithm starts

from a different random initialisation in a master-slave architecture. The master algorithm is responsible for

finding and returning a solution or terminate if the maximum number of iterations is reached while the task

of the slave algorithm is to find and store its best “solution” which are sent to the master algorithm when

requested. After some specified number of iterations, the master algorithm sends a message to the slave

algorithm asking if a better “solution” (with a lower number of constraint violations) exists and re-initialises

its variables with the received assignments from the slave algorithm. Next we describe our implementations

in Section B.2 and the empirical evaluation on several problem classes in Section B.3. We summarise the

appendix in Section B.4.
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B.2 Implementations

We implemented two local search algorithms for DisCSPs having a single variable per Agent with the

multi-context search that differ on which algorithm is master or slave.

(a) StochDisPeL+Restart : Stoch-DisPeL is the master algorithm and SingleDB-wd is the slave algo-

rithm.

(b) SingleDB-wd+Restart : SingleDB-wd is the master algorithm and Stoch-DisPeL is the slave

algorithm.

Both algorithms are used to solve a given problem concurrently until a termination condition is reached

i.e. solution is returned by the master algorithm or the maximum number of iterations has been exhausted.

Although both algorithms attempt to solve the problem, only the master algorithm is expected to return a

solution.

When to Restart : To determine when a master algorithm should request for a better solution from a

slave, we empirically tried several values. We found that (a) if a small number of iterations is used, the

algorithm restarts too often without observing the impact of the restart; (b) if a larger number of iterations

is used, the algorithm hardly restarts and when it does restart it yields a worse result; and (c) if a value in

the middle (not too small or large) is used, it restarts before stagnation is encountered and also enables the

master algorithm to improve from the restart assignments received. As a result of the empirical evaluation,

we set a parameter checkIteration that represents the number of iterations before a restart to the total number

of variables in the DisCSP. After every checkIterations number of iterations, the master algorithm sends a

message to the slave algorithm asking if a better (i.e has less number of constraint violations) solution was

found by the slave algorithm. If such a solution exists, the master algorithm would then reinitialise its

variables with the assignments from the slave algorithm. Both algorithms continue the search.
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B.3 Empirical Evaluation of the Multi-Context Search Algorithms

This section discusses the performance of the multi-context search algorithms: StochDisPeL+Restart and

SingleDB-wd+Restart on a number of problems; distributed graph colouring problems, random DisC-

SPs and distributed meeting scheduling problems (refer to Chapter 3 for the description of the problems).

Because StochDisPeL+Restart and SingleDB-wd+Restart are algorithms for DisCSPs where an agent repre-

sents a single variable, we exempt sensor network problems from our evaluation due to its inherent nature of

having 3 variables per agent. For each problem setting, we run 100 solvable problem instances from which

we record and present (i) the percentage of problems solved within the maximum number of iterations; (ii)

median of the number of Non-Concurrent Constraint Checks (NCCCs) performed; and (iii) median of the

number of messages sent as the measure of efficiency. Although CPU time is not an established measure

for DisCSPs (Meisels et al. 2002) and is not reported in this thesis, we measured CPU time and found the

results to be consistent with the other evaluation metrics used.

The results are benchmarked with three other local search algorithms for DisCSPs having single vari-

able per agent: StochDisPeL, SingleDB-wd and DynAPP. We excluded DSA (Zhang et al. 2002) due to

the fact that it has no explicit mechanism for escaping from local optima, thus, does not perform well where

the goal is to satisfy all constraints. Once stuck at local optima, the sideways moves are usually insufficient

to push a search out of locally optimal regions. Each algorithm was allowed to run for a maximum of (100

* (n)) iterations where n represents the number of variables (nodes, variables or meetings). Note: In the

few cases where not all problems were solved, the effort “wasted” in that problem are not counted towards

the median number of messages and median NCCCs, they do however affect the percentage of problems

solved.

Results on Distributed Graph Colouring Problems

We present results for 3-colour distributed graph colouring problems, with the number of nodes n ∈ {100,

..., 200} in steps of 10, 3 colours and a degree deg of 4.9 in steps of 0.1 were used. The results are illustrated

in Figure B.1. For the number of problems solved, DynAPP and StochDisPeL+Restart solved at least as

much as the other algorithms. Similarly on NCCCs and number of messages, DynAPP and StochDisPeL

exchanged the least number of messages and NCCCs compared to SingleDB-wd and SingleDB-wd+Restart

with SingleDB-wd having the worst performance.
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Figure B.1: < n ∈ {100, ..., 200}, |colours| = 3, deg = 4.9 >
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Results on Random Distributed Constraint Satisfaction Problems

We generated random problems with different number of variables, a constraint tightness p2 0.4 i.e. the re-

gion of difficult problems and a domain size of 8. We present results where the number of variables n ∈ {80,

..., 200} with constraint density p1 of 0.2. The results are presented in Figure B.2. SingleDB-wd+Restart

solved less than 40% (within the maximum number of iterations) of the problems from n = 140. To high-

light the performance of algorithms that solved more problems, the SingleDB-wd results for 140 or more

variable were not included in our illustrations of the results as it would obscure the differences in perfor-

mance for the other algorithms. However, DynAPP solved the most problems. The number of messages and

NCCCs increased as the number of variables increases with DynAPP and StochDisPeL+Restart exchanging

the least number of messages compared to StochDisPeL, SingleDB-wd and SingleDB-wd+Restart.
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Figure B.2: < n ∈ {80, ..., 200}, |domain| = 8, p1 = 0.2, p2 = 0.4 >
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Results on Distributed Meeting Scheduling Problems

For distributed meeting scheduling problems, in Figure B.3, we present results for number of meetings m

∈ {100, ..., 200} in steps of 10, 7 timeslots, maximum possible distance (md) of 3 and a constraint density

d of 0.2.

Figure B.3: <n ∈ {100, ..., 200}, timeslots = 7, d = 0.2, md = 3 >
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DynAPP and StochDisPeL+Restart solved all the problems with SingleDB-wd+Restart solving the

least number of problems. Initially, all three algorithms performed equally but as the number of meetings

increased, the NCCCs and number of messages used increased. DynAPP, StochDisPeL and StochDis-

PeL+Restart performed closely with DynAPP as the overall best from 150 meetings.

B.4 Summary

In this Appendix, we presented a multi-context search approach to solving DisCSPs with single variable

per agent. We use two local search algorithms; Stoch-DisPeL (imposes penalty on values at quasi-local op-

tima) and SingleDB-wd (uses a constraint weight decay mechanism at every iteration) that run concurrently

in a master-slave architecture. The master algorithm solves the problem and returns a solution if found.

However, the slave algorithm solves the problem to serve the master algorithm by providing assignments

to variables used to restart variables in the master algorithm. We implemented the multi-context search

in StochDisPeL+Restart and SingleDB-wd+Restart local search algorithms for single variable per agent.

The results of empirical evaluation on several problem instances showed SingleDB-wd+Restart performed

poorly compared to both DynAPP and StochDisPeL+Restart but show improvements over SingleDB-wd.

However, StochDisPeL+Restart compared closely to DynAPP in most problem instances but overall, Dy-

nAPP still performed best.



Appendix C

Multi-DynAPP

C.1 Intoduction

In the divide and conquer approach for solving DisCSP with CLPs, the structure of the DisCSP is analysed

in order to identify groups of directly-related (via an intra-agent constraint) external variables within each

agent. These groups are referred to as compound groups. A combination of local search and systematic

search algorithms are then run concurrently to solve the divided problem (refer to Chapter 6, Section 6.3

for details on the divide and conquer approach). In this Appendix, we present Multi-DynAPP - Dynamic

Agent Prioritisation with Penalties for Agents with CLPs. Multi-DynAPP.

In chapter 6, we discussed Multi-DCA, another algorithm that implements the divide and conquer ap-

proach and revises Multi-DynAPP. The distributed local search in both Multi-DynAPP and Multi-DCA are

an adaptation of Dynamic Agent Prioritisation with Penalties (DynAPP) for compound domains (discussed

in Chapter 5). The principal differences between Multi-DCA and Multi-DynAPP are: (i) For the imple-

mentation of DynAPP used, penalty messages in Multi-DynAPP are sent to only a subset of an agent’s

neighbours while in Multi-DCA, penalty messages are sent to all neighbours; and (ii) in Multi-DCA, large

compound groups with large number of variables and domain sizes are partitioned into smaller groups.

Next, we present preliminary empirical evaluation of Multi-DynAPP on random DisCSPs in Section C.2.

We compare Multi-DynAPP and Multi-DCA in Section C.3 and summarise in Section C.4.
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C.2 Empirical Evaluation of Multi-DynAPP

Our implementation of Multi-DynAPP was evaluated on a wide variety of random DisCSPs (refer to Chap-

ter 3 for the description of random problems) with different characteristics (each characteristic is described

in the appropriate section). For each problem setting, we run 100 solvable problem instances from which

we record and present: (i) the percentage of problems solved within the maximum number of iterations;

(ii) median of the number of Non-Concurrent Constraint Checks (NCCCs) performed; and (iii) median of

the number of messages sent to measure efficiency. Although CPU time is not an established measure for

DisCSPs (Meisels et al. 2002) and is not reported in this thesis, we measured CPU time and found the

results to be consistent with the other evaluation metrics used. To generate naturally distributed DisCSPs

(except for distributed sensor network problems) with complex local problems, the problems considered

contained between 70(30) and 80(20) ratio of intra(inter) agent constraints and the exact ratio used in the

result presented is specified in the experiments. The ratio of variables within the complex local problem

are 70(30) internal (external) variables. Each algorithm was allowed to run for a maximum of (100 * (n))

iterations where n represents the number of variables (nodes, variables, meetings or sensors).

The results are benchmarked with two local search algorithms for DisCSP with CLPs: Multi-DisPeL

and DisBO-wd. Multi-DisPeL (value penalty) and DisBO-wd (constraint weights) are local search algo-

rithms (refer to Chapter 4, Section 4.3 for the description of algorithms). We obtained the implementations

of Multi-DisPeL, DisBO-wd and Multi-Hyb-Pen from their authors.

Note: The following algorithms were not considered; (i) DCDCOP (Khanna et al. 2009) was not consid-

ered for evaluation as the pseudocode available is insufficient to implement the algorithm and it is designed

for DCOP; (ii) Burke’s work (Burke & Brown 2006a), (Burke & Brown 2006b) concentrated on efficiency

in handling CLPs and there is no overall algorithm; and (iii) ADOPT (Modi et al. 2005) is also designed

for distributed constraint optimization. In the few cases where not all problems were solved, the effort

“wasted” in that problem are not counted towards the median number of messages and median NCCCs,

they do however affect the percentage of problems solved. Multi-Hyb-Pen is a complete algorithm and it

solved all problems as expected.

We present results for experiments where we vary the following problem parameters: (i) constraint

tightness; (ii) number of variables; (iii) number of agents; and (iv) domain size.
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Tightness DisBO-wd Multi-DisPeL Multi-DynAPP
Percentage Solved

0.2 100 100 100
0.25 100 100 100
0.3 100 100 100
0.35 100 100 100
0.4 99 100 100
0.45 99 100 99
0.5 95 98 95

NCCCs
0.2 5,676 10,286 19,009
0.25 7,997 12,657 21,913
0.3 10,390 15,067 35,679
0.35 10,280 22,943 36,065
0.4 19,534 32,533 61,504
0.45 31,170 61,217 62,842
0.5 39,209 89,469 67,513

Messages
0.2 50 20 20
0.25 25 20 20
0.3 35 24 30
0.35 45 40 40
0.4 75 60 60
0.45 125 140 104
0.5 140 164 100

Table C.1: < n = 80, |domain| = 8, |agents| = 5, p1 = 0.15, p2 ∈ {0.2, ..., 0.5} >

• Varying the Constraint Tightness : For experiments with varying constraint tightness, 80 variables

were used and constraint tightness p2 ∈ {0.2, ..., 0.5} in steps of 0.05. The experiments used a

domain size of 8, 5 agents and constraint density p1 of 0.15. As seen in Table C.1 all the algorithms

solved at least 90% of the problems and except for p2 = 0.3, agents in Multi-DisPeL and Multi-

DynAPP exchanged the least messages in solving the problems. On the other hand, DisBO-wd used

the least NCCCs.

• Varying the Number of Variables : For these experiments, we conduct two sets of experiments by

using (i) a fixed number of variables; or (ii) a varying number of variables within an agent. This is to

determine the performance of increasing number of variables on agents, by sharing the problem on

a fixed or varying number of agents.

(i) The number of variables per agent varies for each problem

In Table C.2, we present results for problems with 100 to 180 variables in steps of 10, with a domain

size of 7, a constraint density p1 of 0.15, a constraint tightness p2 of 0.5 and 10 agents for each
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problem size. The number of variables per agent varies according to the problem size, i.e. it is 10

for 100 variables, 11 for 110 variables and so on. We present results for two different ratios of intra-

inter constraints. In both cases, Multi-DynAPP and Multi-DisPeL performed closely with the least

number of messages except for 100 variables in the 70(30) intra(inter) constraints. However, Multi-

DynAPP used the least NCCCs. For the percentage of problems solved, Multi-DynAPP solved at

least as much as Multi-DisPeL and DisBO-wd.

(ii) The number of variables per agent is fixed

In Figure (C.1), we present results for problems with 50 to 150 variables in steps of 10, a domain

size of 7, a constraint density p1 of 0.15, a constraint tightness p2 of 0.5, the number of variables

per agent was fixed at 10, thus, the number of agents varies for each problem size, i.e. it is 5 agents

for 50 variables, 6 agents for 60 variables and so on. Agents in Multi-DynAPP generally exchanged

the least number of messages and performed less computational effort (NCCCs) than Multi-DisPeL

and DisBO-wd to solve a problem. For 70 variables, all 3 algorithms exchanged similar number of

messages and for 150 variables the number of messages dropped drastically for the 3 algorithms.

This could be due to the increased number of variables per agent with a fixed constraint density or

constraint tightness possibly making the problems easier. All the algorithms solved all problems

within the given number of iterations.

• Varying the Number of Agents : A number of experiments were conducted where the number of

agents was varied. In these experiments, 80 variables were used and agents ∈ {4, 5, 8, 10} such

that each agent has an equal number of variables i.e. 20, 16, 10 and 8 respectively. As seen in Table

C.3, more problems were solved by Multi-DynAPP, Multi-DisPeL and DisBO-wd as the number of

agents increased. Overall, Multi-DynAPP significantly reduced the number of messages although it

solved less problems when 4 and 5 agents were used.

• Varying the Domain Size : A number of experiments were conducted for this experiment to deter-

mine the performance of Multi-DynAPP on domain size. 80 variables were used and domain size

∈ {3, ..., 10} in steps of 1. 5 agents were used with a constraint density p1 of 0.15 and a constraint

tightness p2 of 0.5. The results in Table C.4 shows the % of problems solved decreased for Multi-

DynAPP, Multi-DisPeL and DisBO-wd as the domain size increased. The algorithms alternated for

the least NCCCs while Multi-DynAPP generally performed worst, solving fewer problems compared
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80:20 intra:inter constraints 70:30 intra:inter constraints
Var DisBO-wd Multi-DisPeL Multi-DynAPP DisBO-wd Multi-DisPeL Multi-DynAPP

Percentage Solved Percentage Solved
100 100 100 100 100 100 100
110 100 100 100 100 100 100
120 100 100 100 100 100 100
130 98 100 99 100 100 100
140 98 100 100 100 100 100
150 97 99 98 100 100 100
160 95 99 99 99 100 100
170 95 98 99 97 99 100
180 95 99 98 97 100 100

NCCCs NCCCs
100 181,531 299,276 68,739 160,288 286,532 67,118
110 181,004 353,207 62,641 226,140 287,687 92,193
120 253,300 348,270 69,807 265,406 357,803 62,438
130 269,511 391,496 52,783 250,393 365,550 81,883
140 307,422 397,081 85,131 303,809 397,297 114,577
150 298,383 456,885 128,673 289,008 472,973 143,193
160 376,914 496,032 492,918 357,885 545,000 413,330
170 422,208 580,438 738,619 473,529 559,210 793,660
180 481,531 649,096 768,047 450,285 650,397 757,168

Messages Messages
100 380 544 220 330 634 270
110 300 477 232 330 351 180
120 274 300 240 320 346 180
130 260 180 180 230 180 177
140 240 211 180 250 180 157
150 210 180 180 220 180 140
160 220 190 180 190 110 109
170 270 110 108 260 110 120
180 250 100 100 260 105 100

Table C.2: < n ∈ {100, ..., 180}, |domain| = 7, |agents| = 10, p1 = 0.15, p2 = 0.5 >

to Multi-DisPeL as the domain size increases from 7 to 10. Note, for a domain size of 10, DisBO-wd

solved only 45% of the problems and this is indicated by an asterix.
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Figure C.1: < n ∈ {50, ..., 150}, |domain| = 7, |agents| ∈ {5, ..., 15}, p1 = 0.15, p2 = 0.5 >

Agents DisBO-wd Multi-DisPeL Multi-DynAPP
Percentage Solved

4 75 98 95
5 75 98 95
8 100 100 100
10 100 100 100

NCCCs
4 138,246 461,399 908,409
5 39,209 89,469 67,513
8 407,364 161,893 105,164
10 56,780 265,642 25,577

Messages
4 159 168 30
5 140 164 100
8 910 440 389
10 328 900 225

Table C.3: < n = 80, |domain| = 8, |agents| ∈ {4, 5, 8, 10}, p1 = 0.15, p2 = 0.5 >
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Domain Size DisBO-wd Multi-DisPeL Multi-DynAPP
Percentage Solved

3 100 100 100
4 100 100 100
5 100 100 100
6 100 100 100
7 88 99 98
8 76 99 95
9 70 100 95
10 45 90 90

NCCCs
3 13,133 28,945 4,076
4 22,428 50,846 12,419
5 54,980 90,314 53,715
6 187,496 76,402 80,532
7 93,407 268,124 230,879
8 120,721 460,910 322,958
9 153,380 659,970 864,296
10 * 791,407 1,191,020

Messages
3 50 50 50
4 60 48 50
5 95 84 80
6 135 132 80
7 160 168 130
8 185 272 100
9 215 386 170
10 * 336 130

Table C.4: < n = 80, |domain| ∈ {3, ..., 10}, |agents| = 5, p1 = 0.15, p2 = 0.5 >
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C.3 Comparing Multi-DynAPP and Multi-DCA

The results of the empirical evaluation of Multi-DynAPP on random DisCSPs shows some general im-

provement mainly in computation costs when compared to DisBO-wd and Multi-DisPeL. However, Multi-

DynAPP did not perform well on problems where variables have large domain sizes. In such a setting, the

combination solutions becomes larger thus, resulting in domain values having several similar assignments

for most of the variables in the compound groups. To address this, we introduce partitioning of compound

groups with large number of variables and large domain sizes in Multi-DCA.

We compared Multi-DCA and Multi-DynAPP in an empirical evaluation on random DisCSP with the

following settings:

• A fixed number of variables and varying domain sizes:

The results presented in Table C.5 are for 150 variables (n), a constraint tightness p2 of 0.5, a con-

straint density p1 of 0.2 and we vary domain size ∈ {3, ..., 10} in steps of 1. Initially, the number

of messages for both Multi-DCA and Multi-DynAPP were the same, but, as the size of the domain

increased, Multi-DCA generally used less. Overall, on the NCCCs and on percentage of problems

solved, Multi-DCA outperformed Multi-DynAPP.

• A fixed domain sizes and varying number of variables

In Table C.6, we present results for number of variables (n) ∈ {100, ..., 170} in steps of 10, a

constraint tightness p2 of 0.5, a constraint density p1 of 0.2 and a domain size of 6. Similar to the

result presented on varying domain sizes, initially, the number of messages for both Multi-DCA and

Multi-DynAPP were the same, but, as the size of the number of variables increases from 120, Multi-

DCA used less. However, overall on the NCCCs and on percentage of problems solved, Multi-DCA

generally outperformed Multi-DynAPP across all problem sizes.
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Domain size Multi-DynAPP Multi-DCA
Percentage Solved

3 100 100
4 100 100
5 97 99
6 95 99
7 95 100
8 96 99
9 97 100
10 95 98

NCCCs
3 7,780 7,926
4 15,616 12,482
5 74,389 46,299
6 174,080 136,299
7 569,021 269,173
8 1,034,137 495,836
9 3,799,998 1,477,760
10 28,461,096 9,773,190

Messages
3 40 40
4 40 40
5 40 40
6 40 40
7 60 60
8 80 60
9 100 80
10 120 80

Table C.5: < n = 150, |domain| ∈ {3, ..., 10}, |agents| = 10, p1 = 0.2, p2 = 0.5 >
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No. of Variables Multi-DynAPP Multi-DCA
Percentage Solved

100 100 100
110 98 100
120 97 100
130 95 99
140 95 98
150 96 99
160 97 99
170 95 98

NCCCs
100 13,770 13,121
110 14,016 14,002
120 24,389 18,200
130 51,087 36,299
140 117,021 80,073
150 284,257 153,801
160 722,900 450,000
170 1,091,004 673,190

Messages
100 80 74
110 102 100
120 120 120
130 144 128
140 161 130
150 180 150
160 200 160
170 220 180

Table C.6: < n ∈ {100, ..., 170}, |domain| = 6, |agents| = 10, p1 = 0.2, p2 = 0.5 >



C.4 Summary

In this Appendix, we presented Multi-DynAPP, a divide and conquer approach for solving DisCSPs with

CLPs. The approach combines the following strategies: (i) both systematic and local searches; (ii) both

centralised and distributed searches; and (iii) a modified compilation reformulation strategy for a more

effective resolution of DisCSPs while also exploiting concurrency and problem structure. A complete

discussion of the divide and conquer approach was presented in Chapter 6, Section 6.2.

We presented results of an empirical evaluation of Multi-DynAPP on a number of random DisCSPs

with different characteristics. From the results, we discovered that Multi-DynAPP performed best when the

number of variables and domain of the variable in a compound group are small. As the number of vari-

ables and domain size increases, the possible number of combination solutions increases. To address large

compound domains, we introduce the partitioning of large compound groups. Multi-DCA (discussed in

Chapter 6),is an implementation of the divide and conquer approach with partitioning. Thus, the main dif-

ference between Multi-DynAPP and Multi-DCA is the partitioning of large compound groups into smaller

groups as a strategy for dealing with potentially large combination solutions. Also, the implementation of

DynAPP used, penalty messages in Multi-DynAPP are sent to only a subset of an agent’s neighbours while

in Multi-DCA, penalty messages are sent to all neighbours.
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