

OpenAIR@RGU

The Open Access Institutional Repository

at Robert Gordon University

http://openair.rgu.ac.uk

Citation Details

Citation for the version of the work held in ‘OpenAIR@RGU’:

GOLI, M., 2015. Autonomic behavioural framework for structural
parallelism over heterogeneous multi-core systems. Available
from OpenAIR@RGU. [online]. Available from:
http://openair.rgu.ac.uk

Copyright

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository,
are protected by copyright and intellectual property law. If you believe that any material
held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with
details. The item will be removed from the repository while the claim is investigated.

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk

Autonomic Behavioural Framework for Structural

Parallelism over Heterogeneous Multi-Core Systems

Mehdi Goli

A thesis submitted in partial fulfilment of the

requirements of the

Robert Gordon University

for the degree of Doctor of Philosophy

May 2015

Abstract

With the continuous advancement in hardware technologies, significant research has been de-

voted to design and develop high-level parallel programming models that allow programmers

to exploit the latest developments in heterogeneous multi-core/many-core architectures.

Structural programming paradigms propose a viable solution for efficiently programming

modern heterogeneous multi-core architectures equipped with one or more programmable Graph-

ics Processing Units (GPUs). Applying structured programming paradigms, it is possible to

subdivide a system into building blocks (modules, skids or components) that can be indepen-

dently created and then used in different systems to derive multiple functionalities.

Exploiting such systematic divisions, it is possible to address extra-functional features such

as application performance, portability and resource utilisations from the component level in

heterogeneous multi-core architecture. While the computing function of a building block can

vary for different applications, the behaviour (semantic) of the block remains intact. There-

fore, by understanding the behaviour of building blocks and their structural compositions in

parallel patterns, the process of constructing and coordinating a structured application can be

automated.

In this thesis we have proposed Structural Composition and Interaction Protocol (SKIP)

as a systematic methodology to exploit the structural programming paradigm (Building block

approach in this case) for constructing a structured application and extracting/injecting infor-

mation from/to the structured application. Using SKIP methodology, we have designed and

developed Performance Enhancement Infrastructure (PEI) as a SKIP compliant autonomic be-

havioural framework to automatically coordinate structured parallel applications based on the

extracted extra-functional properties related to the parallel computation patterns.

We have used 15 different PEI-based applications (from large scale applications with heavy

input workload that take hours to execute to small-scale applications which take seconds to ex-

ecute) to evaluate PEI in terms of overhead and performance improvements. The experiments

have been carried out on 3 different Heterogeneous (CPU/GPU) multi-core architectures (in-

cluding one cluster machine with 4 symmetric nodes with one GPU per node and 2 single

machines with one GPU per machine). Our results demonstrate that with less than 3% over-

head, we can achieve up to one order of magnitude speed-up when using PEI for enhancing

application performance.

iii

To my beloved, friend and guide,

Chariji

iv

Acknowledgements

First and foremost, I would like to thank my father who was my main motivator in perusing

my education to the highest degree.

I would like to thank my wife who has been with me through all difficult periods that I went

through during these years and her advice for handling those difficult situations.

I would like to thank my family as well who patiently tolerated the hard situation of mini-

mum contact and support from me through these years.

I would like to thank my supervisory team for their efficient advice and support, both

morally and technically, without which it would not have been possible for me to complete the

PhD.

v

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my own

except where explicitly stated otherwise in the text, and that this work has not been submitted

for any other degree or professional qualification except as specified.

(Mehdi Goli)

vi

Nomenclature

ACG Abstract Computation Graph

AMD Advanced Micro Devices

API Application Program Interface

APUs Accelerated Processing Units

CPU Central Processing Unit

CUDA Compute Unified Device Architecture

DSL Domain Specific Language

DSRI Dynamic Skeleton Runtime Interface

DSP Digital signal processing

FF FastFLow

FIFO First-in First-out

FP Functional Programming

FPGA Field-Programmable Gate Array

GPGPU General Purpose Graphics Processing Unit

GPU Graphics Processing Unit

GS Group Size

HAL High-Level Abstraction Layer

HFastFlow Heterogeneous FastFLow

Intel TBB Intel Threading Building Block

LDS Local Data Share

MCTS Monte Carlo Tree Search

MD Molecular Dynamic

MISD Multiple Instruction Single Data

MPI Message Passing Interface

ODVL OpenCL Device Virtualisation Layer

OpenCL Open Computing Language

OpenMP Open Multi-Processing

PE Processing Element

PEI Performance Enhancement Infrastructure

PETs Performance Enhancement Tools

POSIX Portable Operating System Interface

RISC-Pb2l Reduced Instruction Set Computing based Parallel Building Block Library

RPC Remote Procedure Call

SIMD Single Instruction Multiple Data

SKIP Structural Composition and Interaction Protocol

SMs Streaming Multi-Processors

vii

SMTWTP Single Machine Total Weighted Tardiness Problem

UCT Upper Confidence bounds applied to Trees

UML Unified Modelling Language

URNG Uniform Random Number Generator

ZMQ Zero Message passing Queue

viii

Table of Contents

1 Introduction 1

1.1 Contributions . 5

1.2 List of Publications and Authorship . 9

1.3 Research Method . 11

1.4 Thesis Architecture . 12

2 Review of Literature 15

2.1 Preliminaries . 15

2.1.1 Control Systems . 16

2.1.2 OpenCL . 16

2.2 Abstraction Mechanism . 18

2.2.1 Traditional Low-level Library Model 18

2.2.2 Structured High-level Parallel Programming Model 18

2.3 Parallel Applications Optimisation . 25

2.3.1 Scheduling System Over Heterogeneous Multi-core Architecture 25

2.3.2 Auto-Tuning Parallel Applications’ Performance 27

2.4 Research Gap . 29

3 SKIP Methodology for Coordinating Structural Parallel Programming 33

3.1 Controlling Parameters . 33

3.2 Extending RISC-pb2l Over Heterogeneous Architectures 34

3.3 Structural Composition and Interaction Protocol (SKIP) 38

3.4 SKIP Compliant Autonomic Behavioural Framework 45

3.5 Summary . 47

4 Performance Enhancement Infrastructure 49

4.1 FastFlow Expansions . 50

4.1.1 OpenCL Back-end . 50

4.1.2 Adaptive Load-balancer . 53

4.1.3 Memory Management . 54

ix

4.1.4 Efficient Idling . 55

4.2 HFastFlow Instrumentation . 56

4.2.1 Controlling Parameters . 56

4.2.2 Performance Metrics . 56

4.2.3 Structural Meta-data . 56

4.3 High-Level Abstraction Layer (HAL) . 56

4.3.1 SKIP Adaptor . 60

4.3.2 Dynamic Structural Runtime Interface 61

4.3.3 ODVL: OpenCL Device Virtualisation Layer 66

4.4 Performance Enhancement Tools (PETs) . 69

4.4.1 Sensor Analyser . 70

4.4.2 Adaptive Workload Distribution . 70

4.4.3 OpenCL Scheduler . 72

4.4.4 Static Structural Configuration . 77

4.5 Summary . 81

5 Evaluation of OpenCL Based Applications 85

5.1 Application Suite . 85

5.1.1 Sobel Filter . 88

5.1.2 Bilateral Denoise . 88

5.1.3 Gaussian Noise . 89

5.1.4 Uniform Random Noise Generator (URNG) 90

5.1.5 Recursive Gaussian . 91

5.1.6 Separable Convolution . 92

5.2 Evaluation . 94

5.2.1 Performance Overhead of PEI . 95

5.2.2 OpenCL Back-end . 97

5.2.3 Workload Distribution . 101

5.2.4 Phase Changing Prediction . 105

5.2.5 Multi-tenant Application . 110

5.3 Summary . 116

6 Evaluation of Generic Applications 119

6.1 Homogeneous Application . 120

6.1.1 N-body Simulation . 121

6.1.2 Mandelbrot . 123

6.1.3 Quick Sort . 124

6.1.4 Fibonacci . 125

x

6.1.5 Stencil . 126

6.1.6 N-queens . 127

6.2 Heterogeneous Applications . 130

6.2.1 Custom Implementation of Eispack Routines 130

6.2.2 SMTWTP . 133

6.2.3 Molecular Dynamics . 134

6.3 Application Evaluation . 136

6.3.1 Performance Overhead . 136

6.3.2 Efficient Idling . 144

6.3.3 Memory Management . 146

6.3.4 Static Structural Configuration . 147

6.4 Summary . 152

7 Conclusion & Future Work 155

7.1 Consolidation of Research . 155

7.2 Research Impact . 160

7.3 Ongoing Research and Future Work . 163

A Validation of RISC-pb2l Grammar 167

A.1 Skeleton-based Parallel Patterns . 167

A.1.1 Embarrassingly Parallel Patterns . 167

A.1.2 Reduction . 168

A.1.3 Pipe . 168

A.1.4 Divide & Conquer . 169

A.1.5 Stencil . 170

A.2 General Purpose Computing Models . 171

A.2.1 BSP . 171

A.2.2 Map-Reduce . 172

A.2.3 MDF . 173

A.3 Domain Specific pattern . 174

A.3.1 GSP . 174

A.3.2 OB . 175

A.3.3 NPP . 176

B The Structural Representation of Application Suite 177

B.1 Uniform Random Noise Generator . 177

B.1.1 Demonstration of URNG with RISC-pb2l Grammar 177

B.1.2 SKIP-compliant Object Representing the URNG Application 177

xi

B.2 Recursive Gaussian . 178

B.2.1 Demonstration of Recursive Gaussian with RISC-pb2l Grammar 178

B.2.2 SKIP-compliant Object Representing the Recursive Gaussian Applica-

tion . 179

B.3 Separable Convolution . 180

B.3.1 Demonstration of Separable Convolution with RISC-pb2l Grammar . . 180

B.3.2 SKIP-compliant Object Representing the Separable Convolution Ap-

plication . 181

B.4 Bilateral Denoise . 182

B.4.1 Demonstration of Bilateral Denoise with RISC-pb2l Grammar 182

B.4.2 SKIP-compliant Object Representing the Bilateral Denoise Application 182

B.5 Sobel Filter . 184

B.5.1 Demonstration of Soble Filter with RISC-pb2l Grammar 184

B.5.2 SKIP-compliant Object Representing the Soble Filter Application . . . 184

B.6 Gaussian Noise . 185

B.6.1 Demonstration of Gaussian Noise with RISC-pb2l Grammar 185

B.6.2 SKIP-compliant Object Representing the Gaussian Noise Application . 185

C The SKIP Compliant Objects 187

C.1 Sensor Files . 187

C.1.1 Bilateral-Denoise . 187

C.1.2 Recursive Gaussian . 190

C.1.3 Gausian-Noise . 193

C.1.4 Sobel Filter . 195

C.1.5 separable-Convolution . 196

C.1.6 URNG . 198

C.2 Actuator Files . 200

C.2.1 Bilateral-Denoise . 200

C.2.2 Gaussian-Noise . 201

C.2.3 Recursive-Gaussian . 202

C.2.4 Sobel-Filter . 204

C.2.5 Separable-Convolution . 204

C.2.6 URNG . 205

C.3 Constraint . 206

D The Structural Representation of Existing Applications 207

D.1 N-body Simulation . 207

D.2 Mandelbrot . 208

xii

D.3 Quick sort . 209

D.4 Fibonacci . 209

D.5 Stencil . 210

D.6 N-queen . 210

D.7 Eispack Routine . 211

D.8 getSolution component for SMTWTP . 211

D.9 MD . 212

E Implementation of N-body Simulation under Three Frameworks 215

E.1 N-body Simulation . 215

Bibliography 219

xiii

List of Figures

2.1 Feedback control system . 16

3.1 Schematic view of construction and execution of a structured program using

SKIP compliant autonomic behavioural system 45

4.1 A UML class diagram for instrumented FastFlow 51

4.2 A class diagram representing the DSRI client 64

4.3 SKIP-compliant information exchange between DSRI and a sample HFastFlow

application. 65

4.4 A class diagram representing the DSRI Server 67

4.5 An architectural view of the Proposed OpenCL Scheduler 73

4.6 A component diagram representing the physical view of the autonomous be-

havioural framework . 82

5.1 The structural composition of components for sobel filter 88

5.2 The structural composition of components for Bilateral Denoise 89

5.3 The structural composition of components for Gaussian Noise 90

5.4 The structural composition of components for URNG 91

5.5 The structural composition of components for Recursive Gaussian 92

5.6 The structural composition of components for Simple Convolution 93

5.7 The upper-bound overhead of performance metrics tracing for image process-

ing applications . 96

5.8 Execution of Bilateral denoise using OpenCL back-end 99

5.9 Execution of Gaussian noise using OpenCL back-end 100

5.10 Execution of Bilateral denoise using different group-size (GS) for CPU-allocated

OpenCL workers . 102

5.11 The variation of workload distribution for CPU/GPU workers for different in-

put stream sizes using the ad-hoc policy . 104

5.12 The variation of workload distribution for CPU/GPU workers for different in-

put stream sizes using the average policy . 105

xv

5.13 The execution time of the bilateral denoise application for different load-balancers,

different queue sizes and different input image stream sizes 106

5.14 The execution time of the recursive Gaussian application for different alloca-

tion policies . 108

5.15 The static structural configuration approach for recursive Gaussian 109

5.16 The concurrent execution of the URNG and Bilateral denoise applications . . . 112

5.17 The concurrent execution of the sobel filter and convolution applications 113

5.18 The visual demonstration of the concurrent execution intervals for the sobel

filter and convolution applications . 115

6.1 The structural composition of components for the N-body simulation 122

6.2 The structural composition of components for Mandelbrot 123

6.3 The structural composition of components for quick sort 124

6.4 The structural composition of components for Fibonacci 126

6.5 The structural composition of components for stencil 128

6.6 The structural composition of components for N-queen 129

6.7 The structural composition of components for Eispack 132

6.8 The structural composition of components for SMTWTP 134

6.9 The structural composition of components for MD 135

6.10 Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 1024 bodies) . 138

6.11 Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 8192 bodies) . 140

6.12 Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 65536 bodies) . 141

6.13 The upper-bound overhead of performance metrics tracing for FastFlow bench-

mark applications . 143

6.14 The applications’ runtime with and without using efficient idling technique . . 145

6.15 The overall cluster CPU usage percentage over one hour of execution for the

Eispack application . 146

6.16 Overall memory usage over one hour of execution the Eispack application . . . 147

6.17 The static structural configuration results for SMTWTP application 148

6.18 Speed-up graph for SMTWTP configurations 149

6.19 The static structural configuration results for MD application 150

6.20 Speed-up graph for the molecular dynamics configurations 151

7.1 Deployment diagram for distributed PEI . 165

xvi

E.1 The visual representation of the intermediate grid for calculating the gravita-

tional computation of the N-body algorithm 216

xvii

List of Tables

2.1 An example set of well-known patterns . 20

2.2 Base building blocks for parallel instruction 21

2.3 Correspondence between the RISC-pb2l building block and FastFlow components 23

3.1 Control-required Conditions . 35

3.2 Structural meta-data . 39

3.3 Control parameters . 40

3.4 Performance metrics . 41

3.5 Constraint configurations . 42

4.1 Control parameters . 57

4.2 Performance metrics . 58

4.3 Structural meta-data . 59

4.4 SKIP adaptor functions to generate the HFastFlow structured application 62

4.5 Constraint configurations . 68

5.1 Summary of Applications Characteristics . 86

5.2 The correspondence between structural tree notations and HFastFlow components 87

5.3 Hardware Specification Table for the Titanic machine and the Xookik cluster . 94

5.4 Input stream specification for image processing applications 97

5.5 The execution times and GPU utilisation for the Sobel Filter application 98

5.6 Workload fraction in proportion with the computing power for each OpenCL

component of the Bilateral Denoise . 103

5.7 The bilateral application execution and different runtime for each component . 104

5.8 The runtime for concurrent execution of the Sobel Filter application and URNG

on a node of the Xookik cluster . 111

5.9 The runtime for concurrent execution of the Sobel Filter application and URNG

on the Titanic machine . 111

6.1 Summary of Homogeneous Applications Characteristics 120

xix

6.2 Summary of Heterogeneous Applications Characteristics 131

6.3 Intel Westmere E5620 quad core processor for one of the worker node in Eddie 136

6.4 List of the software used to evaluate the framework overhead on the Scalability

of applications . 137

6.5 The detailed execution times of the FastFlow farm for calculating the gravita-

tional force . 139

6.6 The detailed execution times of each function for calculating the SKePU grav-

itational force . 140

6.7 Software Specification FastFlow benchmark applications 144

6.8 Active execution times on individual GPUs and total programme runtime for

the Eispack application . 146

xx

Listings

3.1 A grammar for automatically generating RISC-pb2l based structured program-

ming . 36

3.2 SKIP definition for building block grammar 42

xxi

Chapter 1

Introduction

Before 1990, there were very few parallel computers, which were only used for the most crit-

ical problems. However, the availability of parallel computers has changed dramatically since

the mid 1990s. With the appearance of multiple processor cores and multi threading sup-

port, parallel computers are becoming ubiquitous. Now, almost all university computer science

departments have at least one parallel computer. Virtually all oil companies, auto mobile man-

ufacturers, drug development companies and special effects studios use parallel computing.

Although computing in less time is beneficial, and may enable problems to be solved that

cannot be otherwise, it comes at a cost. Writing software to run on parallel computers can be

difficult. Only a small minority of programmers have experience with parallel programming. If

all these computers that are designed to exploit parallelism are going to achieve their potential,

more programmers need to learn how to write parallel programmes. They need to deal with

more complexities such as synchronising multiple processes/threads, handling communication

between processes/threads, preventing deadlocks, and, even more, after all of these, program-

mers need to think about optimisation in order to achieve the best performance. Otherwise, the

result might be even worse than running a programme in sequential mode.

Recent revolutions in underlying hardware have also had an important effect on parallel

programming algorithms. With the appearance of the general purpose graphical processing

unit (GPGPU), a new parallel programming environment is required to support the execution

of the programme in a hybrid (multi-core CPU/GPGPU) environment. Several environments

such as CUDA C and OpenCL are available, allowing the programmer to develop applications

which can take advantage of both CPUs and GPUs.

One the one hand, GPUs have been shown to have orders of magnitude faster than CPUs

for different application domains. In [1] there is an order of magnitude speed-up for a compu-

tationally intensive portion of the Weather Research and Forecast (WRF) model on a variety

of NVIDIA Graphics Processing Units (GPU). In [2] with the use of a GPU accelerator the

k nearest neighbor search (KNN) algorithm has been speed-up for two orders of magnitude.

1

Chapter 1. Introduction

In [3], one order of magnitude speed-up has been achieved for the GPU-based implementation

of the video feature tracking and matching technique.

In [4], an image correlation as a fundamental component of many real-time imaging and

tracking systems has been implemented on a graphics processing unit (GPU) with one order of

magnitude speed-up over the CPU version.

On the other hand, GPUs make the complexities of parallel programming even harder than

before. A programmer needs to take care of the following:

• Using different parallelisation techniques such as tiling to achieve maximum reasonable

speed-up and resource utilisation.

• Managing the usage of shared memories registers, global memories, constant memories

and providing coalesce memory access to hide the memory latency, while in multi-core

systems such optimisations are automatically handled by compilers.

• Minimising the data transfer cost between GPU memory and CPU memory to minimise

the I/O time and reduce the processing elements’ idle time.

Things can be even more complex if we have more than one GPU-device due to the need

for extra efforts such as the coordination of tasks and distribution of data among GPUs based on

their memory limitations, the speed of processing elements, and I/O bus speed between GPUs

and CPUs.

One of the major problems in parallel programming is the lack of abstraction. The CUDA

and OpenCL environments supporting hybrid (CPU and GPU) executions are low-level and

they do not provide a high-level abstraction for the programmer to hide the above-mentioned

complexities. Several high-level approaches are offered to tackle the abstraction issues by pro-

viding high-level techniques such as compiler based directive languages [5, 6, 7] or structured

parallel programming [8, 9, 10, 11].

Although compiler based directive languages are providing an abstraction mechanism, they

are highly inflexible, both in terms of not allowing dynamic adaptation in their execution envi-

ronment, and in terms of making it difficult to introduce the high-level changes to programme

structure.

As a well-known example of structured programming, algorithmic skeletons have long

been considered a viable way of introducing high-level abstraction into parallel programming

that hides the complexity of recurring patterns of coordination and communication logic behind

a generic reusable application interface [12, 13].

Moreover, the building block based approach is another example of structured program-

ming that supports the modelling and implementation of high-level structured parallel pro-

gramming frameworks. It has been demonstrated that such approach can not only support

2

skeleton based structured programming, but also general purpose programming models and

domain specific patterns [14, 15].

Beside synchronisations and communications, another coordination problem can be opti-

mising the scheduling mechanism in hybrid environments. Several researchers have demon-

strated that operating systems provide a robust scheduling mechanism to support multi-threading

and separate the coordination of allocating different threads to different resources from the

programmer [16, 17, 18, 19, 20]. However, executing applications over heterogeneous multi-

core/many-core resources requires an explicit scheduling system in order to optimise perfor-

mance and resource utilisation.

In [21] an extension of the OpenMP approach has been provided that spreads the compiler

provided parallel computation across the heterogeneous cores to optimize performance and

power consumption. In [22] a uniform interface is designed for task schedulers, offering low

level scheduling mechanisms such as work stealing. Depending on the application, a user can

select the most appropriate strategy at runtime, as all strategies implement the same interface.

In [23, 24] a scheduling approach has been designed which allocates incoming streams to

a set of available CPUs and GPUs with a determined order to guarantee that no deadlines will

be missed. In [25, 26] two different scheduling algorithms have been provided to extend the

execution of an OpenCL programme written on a single device on both CPU and GPU in order

to fully utilise all available OpenCL-enabled devices in a system. In [27] automatic adaptive

mapping has been developed to dynamically map computation units on processing elements

executing on both CPU and GPU.

Such a scheduling system can be considered as glue between the device scheduler and

the operating system scheduler to optimise the allocation patterns of heterogeneous applica-

tions. Several approaches have emerged to tackle the problem of scheduling over heteroge-

neous multi-core architectures such as heuristic approaches, source-to-source compiler based

optimisation and historical information generated from previous executions [28, 29, 30, 31].

Moreover, autonomic management can be considered as a viable solution to overcome the

rapidly growing complexity of computing systems management and to reduce the barrier that

complexity poses to further growth. Autonomic management refers to the self-managing

characteristics of computing resources and adapting to unpredictable changes while hiding

intrinsic complexity to operators and users[32].

By applying autonomic management in the parallel computing area, the self-managing

characteristics can be considered as extra-functional and non-functional features such as per-

formance, portability, security, fault-tolerance and power-management. In this case, applying

autonomic management on a skeleton based framework to control a set of extra-functional

and non-functional features has been called behavioural skeletons. Therefore, a behavioural

skeleton is a skeleton with an associated autonomic manager taking care of extra-functional

3

Chapter 1. Introduction

and non-functional properties related to skeleton implementation. It can be constructed as a

combination of parallel patterns and rule-based control systems. Such a system delivers the

implementation of an autonomic mechanism while managing one or more extra-functional or

non-functional properties related to the parallel computation patterns [33].

In [34, 35, 36, 37] different behavioural modelling frameworks have been introduced on

grid systems for autonomic management where the quality of a service goal can be defined for

throughput under varying conditions of resource availability.

In [38], an investigation into key technologies has been performed to provide a new paradigm

for developing autonomic grid applications. The proposed paradigm can be used to develop ap-

plications that are context aware and capable of self-configuring, self-composing, self-optimising

and self-adapting.

In [39], an extension of the Fractal component model has been proposed to allow the mod-

ular development of adaptation policies and their dynamic weaving into running applications.

These policies detect the evolutions of the execution context and adapt the base programme by

reconfiguring it.

In principle, considering the abstraction and autonomic coordination over a set of extra-

functional features as two of the major challenges in the parallel computing area, it is expected

that an efficient parallel programming model:

• Should provide a reasonable level of abstraction to hide the difficulty of communication

and synchronisation over heterogeneous multi-core environments; and

• Must provide an autonomic management to optimise execution of parallel applications

on a set of available heterogeneous resources over a set of predefined extra-functional

features.

The challenge is, therefore, to produce and support such a programming paradigm that

satisfies the above two conditions.

Although different behavioural skeletons automate the coordination of heterogeneous par-

allelism, they typically support non-functional properties, such as quality of service in grid

computing systems. To the best of our knowledge, the autonomic management approach has

not been applied to heterogeneous multi-core architecture for both extra-functional and non-

functional properties.

Moreover, the existing autonomic management approaches for parallel programming have

mainly been applied to algorithmic skeleton and have not considered other structured program-

ming models. In [14, 15] it has been demonstrated that the intrinsic characteristics of structured

parallelism through the building block approach place this paradigm in a preponderant posi-

tion to support a reasonable level of abstraction by implicitly providing the communication and

synchronisation for a parallel application. Also, it has been demonstrated that this approach

4

1.1. Contributions

supports not only common patterns in algorithmic skeletons, but also other approaches such as

the Google Map-Reduce model and domain specific parallel programming models. Therefore,

our behavioural framework uses RISC-Pb2l building block approach presented in [14, 15] as a

structured parallel programming approach to support abstraction.

Thus, in this thesis we develop a behavioural RISC-Pb2l framework that supports auto-

nomic management over heterogeneous multi-core architecture for both extra-functional and

non-functional properties.

To develop the autonomic behavioural framework over heterogeneous multi-core architec-

ture, this thesis presents SKIP as a generic strategy that targets the autonomic coordination on

structural parallelism over heterogeneous multi-core architectures. Applying the SKIP method-

ology, it would be possible to turn an existing structural parallel framework into a SKIP com-

pliant autonomic behavioural framework with minimum modifications. Therefore, it would be

possible for such a framework to interact with a set of SKIP compliant coordination engines to

support autonomic coordination over heterogeneous multi-core architectures.

SKIP (Structural Composition and Interaction Protocol) is a generic methodology
to instrument the structural programming for further autonomic coordination over
one or more aspects of extra-functional properties related to parallel computation
patterns on heterogeneous multi-core architectures.

Exploiting the SKIP interaction mechanism, a SKIP-compliant behavioural framework can

automatically detect any variation regarding the selected extra-functional or non-functional

properties and enhance it. Such variation can be a change in data input size, application priority

or termination of a component in an application. Once such variation is detected, the automatic

coordination is applied through a set of SKIP-compliant coordination engines to optimise the

performance.

1.1 Contributions

In this thesis we have designed and implemented an autonomic behavioural framework called

performance enhancement infrastructure (PEI) supporting automatic coordination management

for structured parallel applications over heterogeneous multi-core architectures.

The framework is composed of the following three main parts:

1. Structured Parallel Programming Model: Separates coordination from computation

and hides the synchronisation and communications between application components

from end-users.

2. High-Level Abstraction Layer (HAL) supports autonomic management for structured

applications over heterogeneous multi-core architectures;

5

Chapter 1. Introduction

3. Performance Enhancement Tools (PETs) which are a set of coordination engines that

support scheduling, load balancing and static configuration of an application structure

for a specific heterogeneous multi-core architecture. We have designed and developed

these coordination engines as part of the key optimisation objectives for ParaPhrase

project [40].

Structured Parallel Programming Model: We have selected the existing RISC-Pb2l build-

ing block approach as the structured parallel programming model. We have:

• extended the RISC-Pb2l by adding a new heterogeneous block that enables the

coordination of application over heterogeneous multi-core architecture;

• designed a grammar for the extended RISC-Pb2l that detects the set of parallel

programming patterns supportable by RISC-Pb2l building block library for hetero-

geneous multi-core architecture. The grammar checks the correction and validation

of the application structure generated by RISC-Pb2l library;

• used FastFlow [41] as an existing RISC-Pb2l framework for homogeneous multi-

core system; and,

• expanded FastFlow by implementing a GPU back-end that supports application

execution over heterogeneous multi-core architectures. This expansion is the im-

plementation of the new heterogeneous building block called HFastFlow.

High-Level Abstraction Layer (HAL): Engulfing a structured parallel programming frame-

work, this layer delivers three interfaces:

1. User-level interface: Determines a set of extra-functional and non-functional prop-

erties that allows the end-user to descriptively define the structural composition of

its application. It also allows the end-user to descriptively determine the constraint

configuration of the application and the underlying architecture.

2. System level interface: Determines a set of extra-functional and non-functional

properties that are i) monitored on the structured parallel framework; ii) monitored

on the underlying resources; iii) addressed by coordination engines.

3. Autonomic manager interface: Is a bridge between the end-user, the structured

framework, the coordination engines, and the underlying hardware. It can automat-

ically apply the specific coordination decisions to adapt to the changes happening

on both the application status or the underlying hardware status.

In order to develop HAL, we have:

6

1.1. Contributions

• determined a set of controlling parameters that can affect application coordination.

This has been provided by investigating a set of existing structured parallelism

framework that support coordination over heterogeneous architectures;

• designed SKIP as a generic methodology that enables autonomic management for

structured parallel programming model over heterogeneous multi-core architec-

tures. SKIP determines both user-level and system level interfaces required to

provide an autonomic management over a structured parallel application;

• fused SKIP with the RISC-Pb2l grammar to generate the high-level abstraction

layer for RISC-Pb2l building block approach;

• instrumented HFastFlow by adding a set of actuators and sensors to exchange the

extra-functional and non-functional properties determined in SKIP. This instrumen-

tation represents the implementation of the SKIP fusion on RISC-Pb2l;

• designed and implemented a SKIP adaptor that auto-generates a RISC-Pb2l ap-

plication from a descriptive structural composition file provided by the end-user;

and,

• designed and implemented a dynamic skeleton runtime interface (DSRI) to provide

the autonomic management on HFastFlow for heterogeneous multi-core architec-

ture.

Performance Enhancement Tools (PETs): We have designed and implemented a set of co-

ordination engines in order to verify the suitability of HAL for orchestrating structured

parallel applications over heterogeneous architecture. These engines interact with HFast-

Flow through the autonomic manager (DSRI) to optimise performance of the application

and its resource utilisation over heterogeneous architectures. The coordination engines

we have designed and implemented in this thesis are as follows.

• A scheduling mechanism to allocate/reallocate different components of applica-

tions on the underlying heterogeneous devices. It can dynamically remap heteroge-

neous software components to the available CPU/GPU devices based on the follow-

ing information provided by the high-level abstraction layer: i) the extra-functional

properties of the software components; ii) the hardware performance characteris-

tics; and iii) information that is obtained from monitoring the dynamic system load.

The provided system is capable of dealing with components from multiple appli-

cations and remapping them to the best available hardware, thus ensuring optimal

use of the available hardware resources.

• A load-balancing technique that auto-tunes the workload fraction over different het-

erogeneous components with regards to their computational power. The technique

7

Chapter 1. Introduction

will also respond to sudden changes on the input workload size and if required,

automatically tunes the workload fraction for application components.

• A static structural configuration technique to tune an application structure for a

specific heterogeneous architecture. As an external coordination method, the static

structural configuration tries to automatically tune a structured application and to

map its components to the available resources for a given architecture in order to

maximise the application throughput.

• An efficient idling technique to enhance utilisation of the resources for any CPU

slot allocated to a component. The efficient utilisation of a resource depends on the

availability of a task in a component queue for the allocated slot for the component.

• A memory management technique that dynamically controls the memory usage for

heavy workload applications in order to prevent queue overflows for application

components in HFastFlow.

PEI Evaluation: In order to verify the efficiency of PEI, we have used 15 high-level structured

applications classified into two categories.

The first category consists of 6 different image processing applications using the OpenCL

back-end that we have designed and implemented in PEI. These applications are pre-

sented in Chapter 5, section 5.1. Each application in this category receives a stream of

6144 images as the input to process. This category has been designed to verify the effi-

ciency of coordination engines regarding the structural extension to the FastFlow frame-

work for targeting heterogeneous multi-core architectures. These applications have been

executed on 2 different heterogeneous multi-core architectures, operating on different

workload varieties from small-scale data to relatively large-scale data.The result are:

• less than 3% performance overhead for using PEI to enhance the performance of

image processing applications;

• up to one order of magnitude speed-up over serial CPU version when OpenCL

back-end is applied;

• up to 1.68 times speed-up over serial GPU version when OpenCL back-end is ap-

plied;

• up to 38% increase in GPU utilisation;

• up to 9 times speed-up when using the adaptive load-balancer instead of the Fast-

Flow round-robin load-balancer;

• up to one order of magnitude speed-up when applying our dynamic scheduling over

the FastFlow round robin technique;

• up to 5 times speed up when applying the static structural configuration; and

8

1.2. List of Publications and Authorship

• no drop in performance when executing multiple applications concurrently.

The second category consists of 9 existing FastFLow applications that do not use the

extended OpenCL back-end. This category has been designed to attest the efficiency of

the proposed approach over a set of existing applications in the FastFlow framework.

This category includes an N-body simulation, 5 standard FastFlow benchmarks the Eispack

routine, a Molecular Dynamic (MD), and SMPWTP application. All applications are

comprehensively described in Chapter 6. The results are:

• less than 3% performance overhead when using PEI to enhance the performance of

FastFlow benchmark applications;

• up to 2 times speed-up more than Thrust and SkePU for the N-body simulation on

large input data sizes;

• up to 2 times speed-up when using our efficient idling technique for FastFlow

benchmark applications;

• up to 20 times speed-up when applying static structural configuration for molecular

dynamic on Titanic machine;

• up to 5 times speed-up when applying static structural configuration for SMTWTP

application on Titanic machine; and,

• Efficiently controlling the memory usage for Eispack a known large-scale applica-

tion with a heavy input workload.

1.2 List of Publications and Authorship

This research has been supported by the European Commission under the 7th Framework Pro-

gramme through the Specific Targeted Research Project ’ParaPhrase’: Parallel Patterns for

Adaptive Heterogeneous Multicore Systems” http://paraphrase-ict.eu/, contract no.:

288570. The ParaPhrase project has produced a new structured design and implementation

process for heterogeneous parallel architectures, where developers exploit a variety of parallel

patterns to develop component based applications that can be mapped to the available hardware

resources and, if required, dynamically re-mapped to meet application needs and hardware

availability.

Some of the results of this research have been consistently published in high-impact outlets.

For each publication below, we briefly explain the main contribution of the paper and the

relationship to this thesis.

[1] Mehdi Goli, Horacio Gonzalez-Velez: N-body computations using skeletal frameworks

on multicore CPU/graphics processing unit architectures: an empirical performance

9

http://paraphrase-ict.eu/

Chapter 1. Introduction

evaluation. Concurrency and Computation: Practice and Experience 26(4): 972-986,

2014.

In this paper we have developed N-body-simulation applications on three different struc-

tured frameworks, namely, FastFlow, Thrust, SKePU. We have compared the perfor-

mance overhead and speed-up of N-body-simulation for 1024, 8192 and 65535 bodies

on these three frameworks. The results have been added to chapter 6.

[2] Mehdi Goli, Michael T. Garba, Horacio Gonzalez-Velez: Streaming Dynamic Coarse-

Grained CPU/GPU Workloads with Heterogeneous Pipelines in FastFlow. HPCC-ICESS.

445-452, 2012.

In this paper we have investigated the generality and scalability of FastFlow to parallelise

an existing application called EI-routine. Moreover, we have efficiently controlled the

memory usage for the Eispack application as a large-scale application with a heavy input

workload. The result for the memory management technique has been added to chapter 6.

We have also determined the necessity of GPU-back-end support in FastFlow to further

coordinate an application over heterogeneous architecture.

[3] Mehdi Goli, Horacio Gonzalez-Velez: Heterogeneous Algorithmic Skeletons for Fast

Flow with Seamless Coordination over Hybrid Architectures. PDP 148-156, 2013.

In this paper we have expanded FastFlow by implementing an OpenCL-based GPU back-

end that supports application execution over heterogeneous multi-core architecture. This

expansion has been added to chapter 4, while the implementation of the new heteroge-

neous building block is presented in chapter 3.

[4] Mehdi Goli, John McCall, Horacio Gonzalez-Velez, and Marco Aldinucci. Performance

Enhancement Infrastructure for Skeleton-based Parallel Programming Frameworks In

CSRD Springer, submitted, 2014.

In this paper we have implemented the PEI framework and evaluated its overhead and ef-

ficiency to coordinate a set of FastFlow benchmark application. The PEI implementation

has been added in chapter 4 and its evaluation has been added to chapter 6.

[5] Mehdi Goli, John McCall, Christopher Brown, Vladimir Janjic, Kevin Hammond: Map-

ping parallel programmes to heterogeneous CPU/GPU architectures using a Monte Carlo

Tree Search. IEEE Congress on Evolutionary Computation 2013: 2932-2939.

Our contribution to this paper was to develop a static-structural configuration technique

to tune an application structure for a specific heterogeneous architecture. Furthermore,

for the specified architecture, the algorithm statically maps application components to

the available CPUs/GPUs. The static structural configuration technique is a Monte-Carlo

Tree Search (MCTS)-based algorithm which has been added to chapter 4

10

1.3. Research Method

[6] Christopher Brown, Vladimir Janjic, Kevin Hammond, Kamran Idrees, Colin Glass,

Amer Wafai, Mehdi Goli, and John McCall. Bridgind the divide: a new methodol-

ogy for semi-automatic programming of heterogeneous parallel machines. In CSRD

Springer, submitted, 2014.

In this paper we have integrated our MCTS-algorithm with the refactoring technique

provided by other Paraphrase partners to automate the process of static skeleton trim-

ming and component mapping for an application generated by the refactoring tool. We

have evaluated our MCTS-approach over two parallel applications (namely molecular

dynamic and SMTWTP) generated by the refactoring tool. The evaluation results have

been added to chapter 6.

1.3 Research Method

The discipline of computer science has roots in three other disciplines: mathematics, natural

science and engineering. Theory, abstraction and design are three paradigms proposed by

The ACM Task Force on the core of computer science [42] to characterise research work in

computer science.

Theory originates from mathematics where the objects of study are identified, and their

relationships are hypothesised, proved and later interpreted. Abstraction is ingrained in exper-

imental scientific methods where a hypothesis is formed, models are built to predict and in the

end, experiments are carried out to evaluate built models. Finally, the results are analysed. De-

sign has its essence in engineering where requirements are specified, and a solution is designed,

built and tested to ensure that it satisfies the given requirements.

As pointed out in [42], all three paradigm are equally important and are often intertwined

together in computer science. Moreover, all three paradigms model a process which can be

repeated and iterated multiple times until the desired outcome is achieved. The research pre-

sented in this thesis mainly follows the abstraction and design paradigms.

The proposed autonomic behavioural model represents an abstract paradigms that instru-

ments structural parallel applications for further autonomic coordination over one or more as-

pects of more extra-functional properties of parallel computation patterns on heterogeneous

multi-core architectures. The design and development of the behavioural model followed by

different evaluations regarding the feasibility and efficiency of the framework that represents

the design paradigm.

11

Chapter 1. Introduction

1.4 Thesis Architecture

This thesis has been organised into seven chapters and four appendices. In the following section

we provide a brief description of each chapter.

1. The Introduction presents an overall description of our approach by introducing struc-

tured parallelism as a way to employ autonomic interaction with structured applications

and states the hypothesis, followed by the enumeration of the objectives and structure of

the thesis.

2. The Review of Literature presents an outline of the structured parallelism paradigm

and its related approaches, with strong emphasis on heterogeneous systems in order to

put the contribution of this thesis into context. This chapter ends with the identification

of the specific research gap addressed by this work.

3. The SKIP Methodology This chapter presents the SKIP Methodology for designing

a behavioural system that supports autonomic management (including monitoring and

coordination processes of instrumented components) on RISC-Pb2l-applications during

their lifecycles. Through this chapter we have:

(a) expanded the RISC-Pb2l building block approach to support heterogeneous archi-

tecture;

(b) presented a grammar for RISC-Pb2l building block approach on heterogeneous ar-

chitecture;

(c) introduced SKIP to enable autonomic management for structured parallel program-

ming model over heterogeneous multi- core architectures;

(d) fused SKIP with the provided RISC-Pb2l grammar to instrument the building block

approach for structural constructing and interacting with RISC-Pb2l-applications.

(e) designed a SKIP compliant behavioural system to support autonomic coordination

for RISC-Pb2l-applications on heterogeneous multi-core architectures.

4. The Implementation of the SKIP-Compliant Behavioural Framework In this chapter

we have proposed PEI as the implementation of SKIP-compliant behavioural system that

is proposed by the SKIP methodology. This chapter is composed of four different parts,

namely:

i FastFlow expansion (GPU back-end) to support heterogeneous architecture;

ii FastFlow instrumentation with actuators and sensors;

iii Implementation of HAL which support autonomic management over HFastFlow

framework; and,

12

1.4. Thesis Architecture

iv Implementation of coordination engines that deliver autonomic adjustment related

to the determined extra-functional properties.

5. The Evaluation of OpenCL Based Applications represents the evaluation of the SKIP-

compliant behavioural framework on a set of applications using our structural expansion

on FastFlow over heterogeneous systems. It contains the application definition, assess-

ment and discussion about the applicability of different coordination methods targeting

different extra-functional properties.

6. The Evaluation of Generic Applications represents the evaluation of the SKIP-compliant

behavioural framework on a set of existing FastFlow applications which does not use our

structural expansion for FastFlow over heterogeneous systems. It contains the applica-

tion definition, assessment and discussion about the applicability of some coordination

methods that are suitable for those applications.

7. Conclusion & Future Work The conclusion furnishes a description of the research area

covered by the thesis. It explains the ongoing related research studies regarding our

investigation. It concludes by discussing possible avenues for future work.

8. Appendix: Validation of RISC-pb2l Grammar This appendix chapter explains the val-

idation of the provided RISC-pb2l grammar for the set of supported patterns presented.

9. Appendix: The Structural Representation of the Application Suite This appendix

chapter demonstrates the structural representation of designed applications through the

RISC-pb2l grammar and SKIP methodology.

10. Appendix: The SKIP Compliant Objects This appendix chapter indicates a snapshot

of the interaction mechanism provided by the SKIP methodology for the different evalu-

ated applications.

11. Appendix: The Structural Representation of Existing Applications Using the pro-

vided RISC-pb2l grammar, this appendix chapter demonstrates the structural representa-

tion of existing applications used for evaluation.

12. Appendix: Implementation of N-body Simulation Under Three Frameworks This

appendix chapter indicates the implementation of the N-body simulation for three differ-

ent frameworks: FastFlow, Thrust and SKePU.

13

Chapter 2

Review of Literature

This thesis presents an empirical study of the autonomic coordination of parallel applications

over heterogeneous multi-core architectures based on the use of structured parallelism fore-

knowledge.

In this chapter first, we explain some expressions and concepts used in this research. Then,

we provide an outline of relevant concepts followed by a review of the current literature related

to this subject and set the concept of high level abstraction and optimisation in structured par-

allel programming applications with a strong emphasis on heterogeneous systems. The wide

range of research in the parallel programming domain is dedicated to the two following sub-

jects:

Providing an abstraction layer that hides the complexity of communication, coordination,

synchronisations and allocation on different architectures; and,

Providing an optimisation mechanism to (auto-)tune the performance of parallel applications.

Analysing the scant research regarding the two subjects, the former has been reviewed in

section 2.2, while the latter has been reviewed in section 2.3 Finally, section 2.4 indicates the

specific research gap addressed by this thesis.

2.1 Preliminaries

In this section we explain some expressions and concepts used in this research.

The following terms are employed here which may have been used differently in other

literatures.

• Node: Refers to an independent unit of a programme that can be executed on a device.

• Processing element (PE): Refers to the processing element on which each node is exe-

cuted. For heterogeneous computations, the granularity of a processing element is CPU

15

Chapter 2. Review of Literature

Figure 2.1: Feedback control system

or GPU. Although each of these is composed of different smaller elements such as cores

in CPUs and streaming multi-processors(SM) in GPUs, the decision about the further

assignment of nodes to the core of a CPU or SMs in a GPU is handled by the scheduling

system of each PE. For CPUs this is handled by an operating system scheduler and for

GPUs the device scheduler is responsible for further allocations.

• Task: Is the unit of data executed by each node in each iteration.

2.1.1 Control Systems

Control Systems can be defined as a set of interconnected components operating with each

other to maintain an actual system performance that is close to a desired set of performance

specifications. Such interconnections form system configurations that provide a desired system

response as time progresses [43].

Figure2.1 demonstrates a feedback control system. It senses the changes through sensors or

measurement units in the output due to the process changes via comparison units and attempts

to correct the output through actuators or controller units. The sensitivity of a control system

to parameter variations is an important factor that is controlled by damping ratios.

2.1.2 OpenCL

OpenCL (Open Computing Language) is an open, royalty-free and low-level standard provided

by the Khronos group [44, 45]. It offers a unified computing platform for modern heteroge-

neous systems. Different vendors such as NVIDIA, AMD, Apple and Intel have released the

realisation of the OpenCL, mainly targeting their own computing architectures. All OpenCL

vendors provide a C-like programming language where developers can develop their compute

16

2.1. Preliminaries

kernels. An OpenCL code is compiled dynamically by calling the OpenCL API functions.

The dynamic compilation provides an optimum utilization of the latest software for underly-

ing devices and hardware features such as SIMD computing capability. The OpenCL code is

automatically uploaded to the OpenCL device memory at the fist invocation.

In the OpenCL terminology, a programme executes on an OpenCL-capable device (CPU,

GPU, FPGA, etc.) which contains compute units (one or more cores) and may include one

or more single instruction multiple data (SIMD) processing elements. The OpenCL not only

hides the threads, but also abstracts hardware architectures and provides a common parallel

programming interface. It provides a programming environment composed of a host CPU and

connected OpenCL capable devices which may or may not share memory with the host and

might have different machine instruction sets.

In OpenCL, a work-item is a single element of a problem domain. Grouping a set of

work-items together will form a work-group. OpenCL represents four types of memories in-

cluding [46]:

Global memory: All work-items in all work-groups have read/write access to the global

memory. However, using the global memory has high access latency and therefore access

to the global memory should be minimal.

Constant memory: Being part of the global memory, constant memory retains its constant

values throughout the kernel execution.

Local memory: Provides shared variable spaces for all work-items of a work-group with

read/write access.

Private memory: Provides private spaces that are visible to each individual work-item for

read/write data access.

The OpenCL local and private memories on GPU devices are in an on-chip local data

share (LDS) and private memory bank with each computing unit respectively. CPU devices

implement the private memory as a register/L1 cache, local memory as a L2/L3 cache, global

as a main memory, and constant OpenCL memory as a main memory/cache. However, their

exact implementations are architecture dependent. The execution starts on the host programme,

which manages one or more OpenCL devices by enqueuing the kernel-execution and memory-

transfer commands to the devices’ command queues.

In principle, OpenCL programmes should be portable (executable) on all OpenCL plat-

forms (e.g., x86 CPUs, DSPs, AMD and NVIDIA GPUs). However, in reality, certain mod-

ifications may be required for switching between different OpenCL implementations [47].

Moreover, device-specific optimisations applied to an OpenCL application may have a neg-

ative performance impact when porting the application from one type of OpenCL device to

another [47, 48].

17

Chapter 2. Review of Literature

2.2 Abstraction Mechanism

One of the major problems in parallel programming is the lack of abstraction. Several ap-

proaches are used to tackle the abstraction problem for developing parallel applications which

can be mainly divided into two categories:

• Traditional low-level library model

• Structured high-level parallel programming model

2.2.1 Traditional Low-level Library Model

The traditional approach was to provide compiler based directive language low-level libraries,

such as OpenMP, MPI or POSIX threads to introduce parallelism on multi-core CPUs. Such

approaches are widely used in non-numerical applications.

With the emergence of heterogeneous GPGPUs in multi-core environments, several OpenMP

directive approaches have been provided to hide the difficulties from users. An example of

these approaches is PGI [5], HMPP [6] and OpenACC [7]. In all cases the programmer uses

compiler directives to mark regions of code that need to be executed on the GPU. Then, the

compiler uses these directives and generates the executable code targeting the GPU. It also

allocates the required memory on the GPU and transfers the data from the host to the GPU and

vice versa. The programmer needs to explicitly specify these operations by using appropriate

compiler directives.

However, such approaches are highly inflexible, both in terms of not allowing dynamic

adaptation to their execution environment, and in terms of making it hard to introduce the

high-level changes to a programme structure that may be necessary to support new multi-

core computer architectures, or to refactor an existing application to support a new parallel

application.

2.2.2 Structured High-level Parallel Programming Model

Structured parallel programming is defined as the composition of nestable parallel patterns

that avoide additional dependencies for both data and control flows [49]. There are several

approaches to providing a high-level structured parallel application which can be defined as

follows.

Algorithmic skeletons

As introduced by Cole [12], algorithmic skeletons abstract commonly-used patterns of parallel

computation, communication and interaction. Skeletons demonstrate a top-down structured

18

2.2. Abstraction Mechanism

approach, where parallel programmes are formed from the parametrisation of nested skeletons,

which is also known as structured parallelism [13].

Deployed through skeleton frameworks, structured parallelism yields a clear and consistent

structure across platforms by distinctly decoupling computations from the structure in a parallel

programme. It is independent from specific hardware and it benefits entirely from any perfor-

mance improvements in the system infrastructure. Demonstrated as either new languages or

libraries, algorithmic skeleton frameworks can benefit from a variety of techniques including

macro-data flow, templates, aspect-oriented programming and rewriting techniques to target

distributed architectures (e.g. grids) and, more recently, multi-core architectures [50].

Although, algorithmic skeletons (and indeed parallel patterns in general) are not univer-

sally applicable to the production of parallel and distributed programmes, there are a signifi-

cant number of applications that contemplate them as a relevant research. As they are derived

and inherited from algorithmic skeletons, the well-known Google MapReduce is an example

of a recent and highly successful “programming model”. Furthermore, capturing the structure

of the programme, skeletal methodologies inherently possess a predictable communication and

computation structure. They provide, through construction, a foundation for performance mod-

elling and an estimation of parallel applications [50, 51].

Parallel Patterns

Parallel patterns are high-level parallel programming models for parallel and distributed com-

puting. As proposed in [52, 53] parallel design patterns can be considered as a potential ap-

proach to inducing a radical change in simplifying parallel programming. Abstracting the

communication/computation mechanism, parallel design patterns can be useful for educating a

new generation of parallel programmers to manage the new parallel architectures provided by

hardware vendors [54]. Table 2.1 indicates examples of well-known patterns [55].

Building Block Based Approach

The building block based approach attempts to decompose parallel patterns and skeletons into

a set of essential building blocks where each block can execute independently from the other

blocks. Depending on its defined semantic, each building block wraps a unit of computing

function, where the valid assembly of these building blocks forms a high-level structural paral-

lel programming model. Therefore, instead of constructing a highly specialised but monolithic

implementation of each skeleton/pattern that is optimised for a given target architecture, a

building block based approach tries to construct high-level skeletons/patterns as a combination

of a small set of simpler, efficient and re-usable building blocks.

Inspired by Backus’ functional programming language [56], in [14, 15] a set of building

blocks (RISC-pb2l) have been proposed to support the modelling and implementation of high-

19

Chapter 2. Review of Literature

Table 2.1: An example set of well-known patterns [55]

Pattern Name Definition

Task-Farm Also known as master-slave, this represents the execution of a set of data items (the input tasks)

processed by a same function f to generate a set of data items (the results).

Map Represents split, execute and merge computation. A task is divided into sub-tasks, sub-tasks

are executed in parallel according to a given skeleton, and finally the sub-tasks’ results are

merged to produce the original task’s result.

Reduce Combines every element in a collection into a single element using an associative combiner

function.

Pipe Represents staged computation in which different tasks can be computed simultaneously in

different pipe stages. A pipe can have a variable number of stages, and each stage can

possibly represent a nested pattern.

D&C Represents divide and conquer parallelism. A task is recursively sub-divided until a

condition is met, then the sub-task is executed and results are merged while the recursion

is unwound.

For Represents a fixed iteration where a task is executed a fixed number of times. In some

implementations the executions may take place in parallel.

While Represents conditional iteration, where a given skeleton is executed until a condition is met.

If Represents conditional branching, where the execution choice between two skeleton patterns

is decided by a condition.

Seq Does not represent parallelism, but it is often a convenient tool for wrapping a block of

code as a terminal node in a parallel pattern.

20

2.2. Abstraction Mechanism

Table 2.2: Base building blocks for parallel instruction provided by [15]

Building Block Name Syntax Definition

Seq Wrapper «code» Wraps a sequential block of code into a RISC-pb2l "function".

Par Wrapper ‹|code|› Wraps any parallel block(s) of code into a RISC-pb2l "function".

Parallel [∗]x Computes in parallel x identical programmes on x input items. No implicit synchronisation

is applied among programmes at the end of computation.

MISD [∗1, ...,∗x] Computes in parallel a set of x different programmes on x input items and produces

x output items. No implicit synchronisation is applied among programmes at the end of computation.

Pipe 41 � ... � 4x Uses x different programmes as stages to process the

input items and to obtain output data items. Programme i receives input from programme

i − 1 and delivers results to programme i + 1.

Reduce (gxB1) Computes a single output item from x input items using a l (l ≥ 1) level k−array tree.

Each node in the tree computes (possibly commutative and associative) a

k−array function g.

Spread (f1Cx) Computes x output items from an input by using a l (l ≥ 1) level k−array tree. Each node

in the tree uses the function f to compute k item out of the input data item.

1-to-N f1Cx Sends data received on the input channel to one or more of the x output channels

according to policy f where f ∈ [unicastp,broadcast, scatter] and

p ∈ [auto,roundrubin].

N-to-1 gxB1 Collects data from x input channels and delivers the collected data into a single

output channel according to policy g where g ∈ [gather,gatherall,reduce]. gatherall

waits for input from all input channels and delivers a vector of items, de facto

implementing a barrier.

Feedback Routes output data y relative to input data z (y = 4(z)) back to
←−−−−−−−
4conds(z) the input channel or drives them to the output channel according to the results of the

evaluation of conds(z). Also, it may be used to route back x output to x input channel.

level structured parallel programming frameworks. Following a RISC approach, the RISC-

pb2l set is architecturally independent. However, the implementation of the different blocks

may be specialised to make the best use of the target architecture’s peculiarities. Applying

the RISC-pb2l set, it is possible to model both general purpose parallel programming abstrac-

tions not usually listed in classical skeleton sets, and more specialised domain specific parallel

patterns [15]. Table 2.2 represents the set of provided building blocks introduced in [15].

The difference between the algorithmic skeleton and parallel design pattern concepts is in

the way the structured parallel programming abstraction is proposed. The former abstracts the

parallel programming as parametric language constructs or library functions/objects. A skele-

ton based application can be constructed and customised through parameters by instantiating

those "ready to use" library functions/objects. The latter introduces the abstraction through

software engineering "recipes". Following such "recipes", it is possible to incorporate a given

parallel pattern to construct a structured parallel application. From a programmer’s point of

view, the parallel design pattern approach requires more programming effort than the algorith-

mic skeleton approach.

21

Chapter 2. Review of Literature

Taking its origins from both algorithmic skeletons and parallel design patterns, the RISC-

Pb2l approach develops efficient, maintainable and portable parallel applications at a lower

level in the software stack. Not only does it ease the application level programming by taking

advantage of the skeleton/pattern approach, but it also eases the developing patterns to construct

a structural parallel framework by generalising and distinguishing the semantic behaviour of

each building block to construct specific skeletons/patterns.

Nonetheless, all approaches simplify the process of developing a parallel programming

application by raising a certain level of abstraction from underlying hardware architectures.

Providing such an abstraction layer, these approaches distinguish "structured parallel pro-

gramming" models, relieving the application programmer from the tasks associated with par-

allel pattern implementation and tuning. However, in the traditional, low level approaches

such as MPI, OpenCL and OpenMP, the process of developing the parallel features within the

application remains entirely the responsibility of the application programmer.

Moreover, such "structured parallel programming" models exploit parallel patterns as reusable

components to implement complex applications by composing certified abstractions rather than

designing ad hoc solutions. However, in the traditional, low level approaches a generated solu-

tion for implementing a parallel application is generally an ad-hoc solution and is not readily

reusable when attempting to parallelise another application.

One of the objectives of such "structured parallel programming" models is to provide both

functional and performance portability across different target architectures through abstraction

from underlying architectures. However, generally, an ad-hoc solution provided by the tra-

ditional, low level approaches does not provide functional or performance portability when

moving the application to different target architectures.

Examples of the Structured Parallel Programming Framework

Structural parallel programming models through algorithmic skeletons have long been con-

sidered a viable approach to introduce high-level abstraction to parallel programming. Al-

gorithmic skeleton frameworks for CPUs are thoroughly analysed in [13]. As a recent algo-

rithmic skeleton based framework, Intel Threading Building Blocks (TBB) [57] is defined as

application-level libraries that target multi-core homogeneous architectures. TBB provides a

high-level C++ template library for easy development of concurrent programmes. It exposes

simple skeletons and parallel data structures to define computation tasks.

Realising the RISC-pb2l approach, FastFlow is an open source C++ based structural par-

allel programming framework built on top of POSIX threads. It has a set of pre-defined algo-

rithmic skeletons that modell the main stream-based parallel patterns [14, 15, 58], namely:

• Farm skeleton applying in parallel the function modelled by an inner skeleton composi-

tion (the farm workers) to all the items appearing in an input stream and delivering the

22

2.2. Abstraction Mechanism

Table 2.3: Correspondence between the RISC-pb2l building block and FastFlow compo-

nents

Building Block Definition

«code» ff_node.

‹|code|› ff_node with encapsulated parallel code through

svc function embedded in ff_node (e.g. offloading code

to GPUs or using some OpenMP directives).

[∗]x ff_farm with the same identical workers.

[∗1, ...,∗x] ff_farm with different workers.

41 � ... � 4x ff_pipeline

(gxB1) ff_gatherer encapsulating ff_node implementing g function.

(f1Cx) ff_loadbalancer encapsulating ff_node implementing f function.

f1Cx ff_loadbalancer implementing the specified channel policy.

gxB1 ff_gatherer implementing the specified channel policy.
←−−−−−−−
4conds(z) wrap_around_method for farms and pipelines.

results to its output stream.

• Pipeline skeleton applying in sequence the functions implemented by its inner skeleton

compositions (the pipeline stages) to the items appearing in an input stream and deliver-

ing the results to its output stream.

When used at the topmost level in the skeleton composition, both pipeline and farm skele-

tons support a wrap_around method representing feedback from the output stream directly to

the input stream.

FastFlow provides ff_node as an abstraction of parallel concurrent activity to process

items delivered in an input stream and to convey the results to an output stream.

It provides ff_loadbalancer as a building block that schedules tasks from an input

stream to a set of concurrent activities. Also, ff_gatherer has been provided as a build-

ing block that collects results from a set of concurrent activities in a single stream, either

aggregated in a collection data structure or a sequence of values. These basic building blocks

are used to implement the various high level skeletons provided as primitive classes to the ap-

plication programmer. Table 2.3 demonstrates the realisation of RISC-pb2l in the FastFlow

framework [15].

23

Chapter 2. Review of Literature

With the emergence of GPGPU, recently, implementation techniques supporting the provi-

sion to the application programmer of expandable algorithmic skeleton sets have been demon-

strated to implement algorithmic skeleton frameworks targeting heterogeneous multi-core ar-

chitectures. Recent research on providing such skeleton based approaches includes SkePU [8],

Thrust [9] and SkelCL [10].

The architecture of the above frameworks consists of two parts, namely, the front-end in-

terface and the back-end implementation.

In the front-end interface each of these frameworks provide their own skeletons over the un-

derlying heterogeneous (CPU/GPU) environment for the user. Each skeleton is generic

in terms of both the type of data to be processed and the operations to be applied to the

data. The operations that are applicable to the data can be either in the form of a prede-

fined function provided by each approach or a user function, written by the programmer

in the function template provided by each framework.

For the back-end, there are different implementations of each skeleton. Based on the infor-

mation provided to the compiler command, an appropriate back-end will be selected for

execution. Thrust supports the OpenMP directive for the multi-core CPU back-end and

CUDA C language for the GPU back-end. SkePU supports OpenMP directives for the

multi-core CPU back-end and CUDA C language and OpenCL language for the GPU

back-end. SkelCL supports the OpenMP directive for the multi-core CPU back-end and

OpenCL language for the GPU back-end.

The distribution policy of the input data in all of the above frameworks is as follows:

For the GPU back-end input, the data is divided based on the maximum number of available

threads per block, L.

For the multi-core CPU back-end, the OpenMP parallel for directive is used which simply

divides the input vector into blocks of N
K where K is the maximum number of available

threads and N is the size of the input data.

The underlying device will be selected by the user at compile time. It can either be a multi-

core CPU or GPU but not both of them at the same time. Based on the selected back-end,

the provided macro will expand into a CUDA kernel, C++ function or OpenCL kernel. Using

the skeleton-based approaches, all frameworks provide an abstraction layer by hiding all the

complexities of memory allocations, synchronisations, data distribution policies and execution

plans from the user.

In Thrust there is an interoperability mode with CUDA C which allows the programmer to

access it directly if needed. SKePU and SKelCL support lazy memory copying which transfers

24

2.3. Parallel Applications Optimisation

the data from host to device and device to host upon request, which minimises the data transfer

cost. Moreover, providing OpenCL back-end in SKePU and SKelCL supports the execution of

a programme on any OpenCL-capable device, increasing the portability of applications.

2.3 Parallel Applications Optimisation

Assuming a reasonable level of abstraction is provided to generate an application, another issue

would be:

• How to optimise the parallel execution of the application over available underlying hard-

ware; and

• How much this process can be automated.

The former can be categorised as a scheduling problem and the latter can be categorised as

auto-tuning the performance.

2.3.1 Scheduling System Over Heterogeneous Multi-core Architecture

Depending on the level of detail provided in a scheduling process, each technique will support

one or more of the following parts:

• Load-balancer: Creates a balance by assigning an appropriate load of tasks to each node

based on the throughput of that node.

• Processing element (PE) allocation: Is the process of deciding on which PE a new node

should be executed.

• Node execution policy: Is the mechanism for choosing which node must be executed

next in a given PE.

In the following we describe the scheduling approaches used in hybrid (CPU/GPU) archi-

tectures.

In [28] a predictive user-level scheduling approach has been introduced which dispatches

the application with respect to the different speed-ups observed in the different processing units

during previous executions, regardless of the data input. It uses a function-level granularity for

scheduling, where the functions are provided by users for each CPU or GPU separately.

In another approach, a run-time system called Harmony [59] provides a scheduling phase

which creates a dynamic mapping from kernels to heterogeneous architectures. In Harmony,

the word kernel is analogous to functions or procedure calls in imperative programming lan-

guages. To address the variation of execution time across heterogeneous architectures, online

25

Chapter 2. Review of Literature

monitoring support is used to monitor the execution time of each kernel as well as the values

of some of the input variables.

GPUSs [29] is an extension of the StarSs [60] programming model which allows the user

to use multiple GPUs. To schedule a task, the main programme communicates with the cor-

responding worker thread by using event signalling. When a GPU becomes idle and a new

task is ready for execution, the worker thread receives the necessary information to identify

and invoke each task that is ready and to locate the necessary parameters for the execution of

the task. StartSs and consequently GPUSs are #pragma annotation based languages similar to

the OpenMP directive, which rely on a source-to-source compiler to generate offloadable tasks.

However, each part of StarSs has its own run-time system and there are no integrated run-time

systems for StarSs to allocate the tasks among both CPUs and GPUs.

In [30] a system called Anthill is used to provide a data-flow oriented framework in which

applications are decomposed into a set of event-driven filters. For each event, the run-time

system can use either GPUs or CPUs for its processing. Two modules are created on top of the

filter framework: the device scheduler and the event executor. At run-time, the event executor

creates threads and associates them with different devices. Each thread contacts the device

scheduler, whenever idle, and determines an event to be processed within that thread based on

the provided scheduling policies. Details of this algorithm can be found in [30].

The StarPU [22] provides a runtime system that is capable of scheduling tasks over hetero-

geneous, accelerator-based machines. Here a task refers to an independent unit of a programme

applying certain computations to input data. A tag-based system is used to express the task de-

pendency. The tasks submitted by an application are dispatched to one of the device drivers

by the scheduler and then the driver offloads the proper implementation for the task. Different

task scheduling policies are used here to assign the input data to each task. When a task is

completed, other tasks that depend on it are released and an application call-back for the tasks

is executed.

The StreamIt [61] is a language which provides high-level representations within the stream-

ing domain by using Java syntax. It has a source-to-source compiler which generates a C code

from the user-written code. The provided source-to-source compiler improves the performance

of streaming applications via stream-specific analyses and optimisations. In [31] a software

pipeline framework is introduced which efficiently maps StreamIt applications onto GPUs. It

generates a scheduling formula which maps each instance of a filter (which is an independent

unit of a programme) of the StreamIt onto exactly one SM of the GPU. This allows multiple

threads to execute the filter which creates task parallelism. The optimised code for GPU is

generated by modifying the StreamIt compiler to produce the CUDA code with the required

drivers for each machine.

26

2.3. Parallel Applications Optimisation

In [62] a dynamic OpenCL task scheduling algorithm has been proposed to schedule multi-

ple kernels from multiple programmes on CPU/GPU heterogeneous platforms. The algorithm

is more of a device oriented algorithm, as device utilisation is the main priority for allocating a

device. In case of competition for a device, a kernel that is likely to best utilise the device will

be allocated to the device. The decision to determine device utilisation for each kernel depends

on kernel speed-up on that device which is predicted by a speed-up prediction algorithm. In

this case, the efficiency of this approach depends on the accuracy of the predicting algorithm.

Where all the above approaches optimise an application performance by fine tuning the

scheduling mechanism on heterogeneous applications, they do not consider:

• All the three parts of the scheduling process for an application; or

• Scheduling different components from multiple applications sharing the same resources.

Moreover, although it has a significant effect on application performance, scheduling is only

one aspect of the coordination mechanism for parallel applications. In this case, using a certain

level of abstraction to interact with a structural parallel framework, it might be possible to re-

use the same technique not only for scheduling but also for different coordination aspects such

as refactoring. This may lead to developping an autonomic optimisation of structured parallel

applications.

2.3.2 Auto-Tuning Parallel Applications’ Performance

As the subject of extensive research, several tools are currently available to auto-tune perfor-

mance in parallel programming. Such research includes automatic parallelisation, performance

visualisation, instrumentation and debugging as summarised in [63, 64]. One trend is to gener-

ate language-based tools to auto-tune parallel applications by using a static parsing mechanism

to analyse the programme source code, determine the tunable parameters, such as the number

of threads and identify parameter dependencies using pragma-based approaches [65, 66] or

the generation of entirely new programmes [67, 68]. Typically, these approaches are limited to

a single language or are highly specialised for a certain domain [69, 70].

An alternative problem is improving an application performance by optimising coordina-

tion. This may be approached with solutions based on runtime information regarding monitor-

ing and reconfiguration.

In this thesis, we focus on the coordination problem for improving application performance

related to the extra-functional properties of an application.

In [71] dynamic reconfiguration of grid-aware applications in the ASSIST programming

environment has been proposed to capture and meet the quality of service requirements in Grid

applications.

27

Chapter 2. Review of Literature

A framework for programming self-managing component-based distributed applications

(self-*) is presented in [72]. It is organised as a network of management elements (MEs)

that interact through events. Methods are categorised as sensors and actuators. The sensors

determine environment changes through events generated by the management platform or by

other application specific sensors. The actuators apply architectural changes, add, remove and

reconfigure components and bindings between them via MEs.

The absence of the clean separation of coordination from computation in these approaches

requires the direct involvement of programmers in the performance tools that should exist out-

side their programme. However, it is highly desirable for the optimisation of these coordi-

nation mechanisms, or extra-functional concerns, to be handled transparently from the user

perspective [73]. Skeleton based frameworks provide an opportunity to achieve such a clean

separation.

In [73, 74, 75] a behavioural optimisation technique for grid computing captures extra-

functional concerns in an independent activity or the autonomic manager. These concerns are:

• Parallelism degree;

• Set-up and tuning;

• Dynamic load-balancing; and,

• Adaptation of parallelism patterns to different features of the target architecture.

The limitations of these parameters are specified by user applications in the form of a

contract. Each component of the skeleton is equipped with its own autonomic manager that

executes a control loop in one of two modes:

• Passive mode: Where a manager monitors the status of the current computation and

awaits new contracts from its parents; and

• Active mode: Where contracts are received from the user application or a parent manager

in the hierarchy and the appropriate autonomic actions are taken as required to maintain

the contract.

Semi-formal models based on autonomic management are proposed for component based

parallel and distributed programme development [76]. This programmer-oriented methodology

is based on formal tools that permit reasoning about the programme and refinement.

Adaptive structured parallelism [77] (ASPARA) is a generic methodology to incorpo-

rate structural information at compilation into a parallel programme, which facilitates adap-

tation at runtime. The four phases are: programming during which API calls to ASPARA are

parametrised, compilation when the structured parallel programme is instrumented, calibra-

tion which extrapolates node performance and selects the most appropriate node for the given

28

2.4. Research Gap

application, and execution which is responsible for selection and deployment on the chosen

node.

Whilst these solutions have been developed in the context of CPU environments, they lack

full support for multi-core CPUs and general-purpose computation on graphic processing units

(GPGPU). In fact, higher-level approaches for the performance tuning of heterogeneous multi-

core CPU/GPU applications have become an area of active research in computational science.

A queue monitoring heuristic is introduced in [78] to increase resource utilisation for di-

visible workloads performing numerical linear algebra on CPU and GPU resources that fit

the pipeline parallel architectural pattern. Stochastic allocation of heterogeneous resources to

pipeline components is proposed, which maximises throughput subject to queue stability. Fol-

lowing this work, a heterogeneous streaming pipeline implementation of these numerical lin-

ear algebra kernels over the FastFlow skeletal library [79] introduces adaptive throttling based

on memory usage to coordinate the streaming pipeline and to dynamically allocate CPU and

multi-GPU resources in a distributed memory cluster environment [80].

2.4 Research Gap

As stated in chapter 1, in [1, 2, 3, 4, 81] it has been stated that exploiting heterogeneous multi-

core/many-core processor technologies for developing applications on different domains can

provide up to 2 order of magnitudes speed-up. Therefore, using heterogeneous multi-core

architectures can be considered as an essential requirement for future software developments.

The main challenge here is to find a programming model that provides a suitable level of

abstraction, while still allowing a reasonable level of control over the execution of applications

on the available heterogeneous hardware resources. Such a level of control is composed of a

set of high-level decisions over a set of objectives for deploying parallel applications. These

objectives can be varied, such as performance, cost, energy, fault-tolerance or even a combi-

nation of one or more of them. While some of these metrics are in line with each other, other

combinations can be in conflict with each other.

Moreover, with continuous changes in the hardware technology layers, the priority of such

objectives might change. For example, with the introduction of the cloud computing which

provides affordable resources and software as services, the priority of an application cost and

energy consumption can be more significant than a slight drop in performance. However,

by introducing the heterogeneous multi-core architectures, an application can be capable of

achieving a performance of up to two orders of magnitude. Such an improvement in perfor-

mance can be significant enough to motivate developers to consider performance rather than

cost or energy consumption to be a higher priority.

Such variations in the priority of objectives can have an affect on both the computation and

29

Chapter 2. Review of Literature

coordination units of applications. Moreover, regarding application performance concerns, it

is already very difficult for classically-trained programmers to benefit from the performance

offered by today’s multi-core systems, and only highly-skilled programmers or those seeking

the highest levels of performance are presently exposed to parallel programming techniques.

In this case programmers will find it essentially impossible to exploit the mid-term/long-term

developments that major hardware companies such as Intel and NVIDIA promise to deliver.

The “dilemma” is that a large percentage of mission-critical enterprise applications will not

“automagically” run faster on multi-core servers.

In this thesis we aim to answer the following question:

With the continuous evolutions in heterogeneous multi-core/many-core architec-
tures, how can we determine a mechanism with a suitable level of abstraction to
hide the parallel programming complexity while being able to exploit the current
architectures with the aim of being expandable on future hardware developments?

One hypothesis to achieve the research question would be to provide a high-level parallel

programming model with a reasonable level of:

(i) Modularity to provide the separation of concerns;

(ii) Controllability to provide autonomy in coordination; and, if possible,

(iii) Extensibility to adapt to future changes in the underlying resources.

Such a high-level parallel programming model, would allow programmers to exploit the

latest developments in heterogeneous multi-core/many-core architectures while still making it

feasible to target the coordination over future hardware developments.

Realising such a high-level programming model can be considered as an empirical ap-

proach that targets the validation of the hypothesis.

As demonstrated in [14, 15], the modularity of the RISC-Pb2l approach places it in a pre-

ponderant position to support the separation of concerns by dividing the functionality of each

building block from the computation function that blocks must execute. Therefore, in this the-

sis instead of developing a new specific framework that supports abstraction and coordination

over heterogeneous multi-core architectures, we provide SKIP as a generic strategy to target

the autonomic coordination in building block based structural parallelism over heterogeneous

multi-core architectures.

While the building block based structured programming aims to provide a certain level of

abstraction to handle the synchronisation and communication mechanism in parallel program-

ming, SKIP aims to exploit the building block approach to construct and coordinate structured

parallel applications based on a set of provided extra-functional properties related to the parallel

computation patterns in heterogeneous multi-core architectures.

30

2.4. Research Gap

Through the modularity provided by the building block approach, we aim to expand the

building block approach to support the coordination of structured parallel applications in het-

erogeneous multi-core architectures. The fused SKIP methodology aims to automatically con-

struct and instrument applications for dynamic coordination. We aim to provide a set of SKIP

compliant coordination mechanisms for the behavioural structural parallelism framework to

perform autonomic scheduling of components in heterogeneous devices and application per-

formance related tuning. Through the interaction mechanism provided by the SKIP method-

ology, the behavioural framework aims to apply autonomic coordination optimisation through

the information exchanges between the structured applications and the provided coordination

engines. The applicability and efficiency of our methodology can be verified by a set of parallel

applications implemented in a SKIP compliant building block framework.

Moreover, as RISC-Pb2l approach creates independent blocks with determined function-

alities for each block, by such modularity it abstracts the process of communication and syn-

chronisation from the end user. However, the conceptual complexity of developing a parallel

application is left unattended. In contrast with RISC-Pb2l approach, the general purpose skele-

ton frameworks such as SkePU [8], Thrust [9] and SkelCL [10] not only hide the process of

communication and synchronisation from end users, but also they hide the conceptual and co-

ordination complexities of developing a parallel application via fixing the data structure format

and computation functions. On the one hand, such fixation eliminates the extra designing and

developing effort for thinking in parallel to generate a parallel application. On the other hand,

it can limit the range of application domains that can be supported by such skeletons. As stated

in [81], to generate an application by using such fixation, the desired performance improve-

ment might not be achieved and it might complicate the process of developing an application

due to the limitations in the data structure format and predefined computational functions.

Therefore, by using the RISC-Pb2l approach to generate the autonomic behavioural frame-

work, it would be possible to extend the range of applications that can be developed by struc-

tured parallel programming.

As stated in section 2.3.2, although different exisiting behavioural skeletons automate the

coordination for heterogeneous parallelism, they mainly support non-functional properties,

such as quality of service in grid computing systems.

To the best of our knowledge, the autonomic management approach has not been
applied on heterogeneous multi-core architectures for both extra-functional and
non-functional properties.

Moreover, the existing autonomic management for parallel programming has mainly been

applied over algorithmic skeleton approaches and they do not consider other structured pro-

gramming models. In [14, 15] it has been demonstrated that the intrinsic characteristics of

structured parallelism through the building block approach places this paradigm in a prepon-

31

Chapter 2. Review of Literature

derant position to support a reasonable level of abstraction by implicitly providing the com-

munication and synchronisation for a parallel application. Also, it has been demonstrated that

not only this approach supports common patterns in algorithmic skeletons, but it also supports

other approaches such as the Google Map-Reduce model and domain specific parallel pro-

gramming models. Therefore, PEI uses RISC-Pb2l building block approach that is presented

in [14, 15] as a structured parallel programming approach to support abstraction.

Our autonomic management system introduced via the SKIP-methodology supports coor-

dination over heterogeneous multi-core architecture for both extra-functional and non-functional

properties.

Such manager will arguably support autonomic coordination and optimise scheduling,

load-balancing and structural configuration required in the by ParaPhrase project. Also, through

SKIP methodology it would be possible to integrate other ParaPhrase coordination tools such

as the refactoring one [82].

32

Chapter 3

SKIP Methodology for Coordinating

Structural Parallel Programming

In this chapter we investigate a set of controlling parameters for modifying the coordination

of a structured application affecting the application’s performance and also resource utilisation

in the system. Moreover, we extend the RISC-pb2l approach by introducing a building block

component that is capable of executing a computational function on accelerators in heteroge-

neous multi-core architectures. Combining both, we propose a SKIP (Structural Composition

and Interaction Protocol) as a systematic methodology that is capable of automatically con-

structing and modifying the controlling parameters. Furthermore, we explain the procedure of

autonomic coordination of a structured parallel application incorporated with the SKIP method-

ology. Finally, we end the chapter by summarising the proposed SKIP methodology.

3.1 Controlling Parameters

Separation of concerns and controllability are the key factors for tackling the research gap.

Structured programming is a viable and effective means of providing the separation of

concerns, as it subdivides a system into building blocks (modules, skids or component) that can

be independently created, and then used in different systems to drive multiple functionalities.

Moreover, by subdividing a structured application into a set of building blocks, it is possible

to separate the coordination, communication and synchronisation of an application from the

computational functionalities it provides. In this case, with no deviation from an application

computation, it is viable to tune the application coordination both statically and dynamically.

By defining tunable controlling parameters with a valid configuration range for each parameter,

we can tune the coordination features with no changes in computation functions.

In this thesis, we investigate a set of high-level frameworks including FastFlow, SKePU,

Thrust and Intel TBB that support abstraction mechanisms. We extract the controlling pa-

33

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

rameters where the variation can affect the application performance, along with the resource

utilisations in the system. Table 3.1 represents a set of parameters for modifying the coordina-

tion of a structured application. The chosen parameters in this table will affect the coordination

with no changes in the application computation functions. However, general purpose skeleton

frameworks such as SKePU and Thrust use two other parameters, namely:

• application input data structure (Array(1D, 2D, 3D),...).

• application input data type (Integer, String,...).

to tune the performance and resource utilisation by enhancing data offloading process on GPU

devices As stated in [81], using these parameters requires some modifications in application

computation functions. Therefore, we did not include them in the controlling parameters table.

As stated in Section 2.2 in Chapter 2, in addition to syntax, each RISC-pb2l building block

component has semantic behaviour which determine the expected service that the component

delivers (component definition column). While the computation function of a building block

can be varied for different applications, the semantic behaviour of the building blocks remains

intact. In this case, by understanding the behaviour of the building block components and

their valid compositions, the process of constructing a structured application and coordinating

it regarding these controlling parameters can be automated. As stated in Table 3.1 such pa-

rameters can be determined as environmental conditions, on demand user conditions, resource

conditions and application conditions. These conditions can be determined:

• Statically before application execution to impose specific preparation; or

• Dynamically over time via feedback from applications and resources to determine changes

in a resource or an application status.

Information about how well an application is performing has to be monitored during the

application execution and compared somehow with the input that represents information about

what the system should do. Such a comparison provides the required information to produce an

appropriate controlling signal to be able to adapt to the variations in coordination parameters.

3.2 Extending RISC-pb2l Over Heterogeneous Architectures

To mitigate the research gap, we have applied the RISC-pb2l building block approach and

orchestrated it with our provided coordination mechanisms. In order to efficiently perform

coordination in heterogeneous (CPU/GPU) environments, we have introduced a new building

block called HWrapper.

34

3.2. Extending RISC-pb2l Over Heterogeneous Architectures

Table 3.1: A brief example of possible scenarios for Control-required Conditions.

Control-required Conditions Scenario

Resource Conditions Resource Status (Idle or Busy),

Resource Availability, Resource Capacity,

Resource Constraints, Resource Type (CPU or GPU).

Application Conditions Application Status (suspend or Resume),

Application Priority,

Application Component State (busy,idle),

Application Component Status (ON or OFF).

Environment Conditions Framework Choice (OMP, MPI,CUDA, OPENCL,

or any combinations of these),

Platform Choice (CPU,GPU, Hybrid).

User Conditions Observation Cycle,

Application Execution Order Policy,

Application Priority Policy.

Hwrapper: Encapsulates an accelerator code in a RISC-pb2l "function". It differentiates be-

tween embedded parallel blocks offloading on CPUs only with those offloading on accelerator

devices.

The Hwrapper is a subset of ParWrapper introduced in RISC-pb2l.

ParWrapper will execute the block with no separation of the execution environment type.

Therefore, the coordination for allocating resources, offloading and coordinating on a device

must be provided within the computation functions encapsulated by ParWrapper. The inter-

mixture of embedded function types in a ParWrapper block prevent an application from dy-

namic coordination in a heterogeneous environment. In this case, no information is provided

for a structured application about the encapsulated function it is executing in that specific block.

Hwrapper has the capability to distinguish between the accelerator based components and

CPU-only components. The separation of blocks by type in a heterogeneous (CPU/GPU)

multi-core architecture provides the extra information required to further optimise and tune

the coordination of a structured application.

Borrowing the concept of higher order functions/combinators distinction proposed for se-

quential building blocks in Backus’ functional programming (FP) [56], the RISC-pb2l ap-

proach aims to provide a similar "algebra of programmes" that is suitable for supporting paral-

lel programme refactoring and optimisation [14, 15].

Towards this aim, we propose a new grammar to formalise the valid compositions of RISC-

pb2l building blocks executed in heterogeneous environments. Listing 3.1 represents the valid

35

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

composition rules for the grammar to generate a structured application supported by RISC-pb2l

over heterogeneous architectures.

In Appendix A we have demonstrated the validation of our grammar in detecting patterns

supportable by RISC-pb2l.

� ::= N | _

N ::= 4 | O

O ::= 4 � O | 4 � 4

_ ::= N �_ | ^

4 ::= a1n � `n1 | a1n �Dn� `n1 |
←−−−−−−−−−−
(a1n � `n1)c |

←−−−−−−−−−−−−−
(a1n �Dn� `n1)c |

←−−−
(O)c

| «code» | ‹ | code | › | « ‖ code ‖ »

^ ::= a1n �#n |
←−−−−−−−−−−−−−−−−−
(|=n1

1 �N� a
1n �Dn)c |

←−−−−−−−−−−−−−−−
(|=n1

1 � a
1n �Dn)c

#x ::= Dx | Dx � (`m1)k �#k | Dx � (a1z)x � (`x1)z �#z

| Dx � (a1z �Dz)x � (`x1)z �#z | (�)x

Dx ::= (N)x | (N)x �Dx

a1x ::= a1x
mk | f1Cx | (f1Cx)

a1x
mk ::= (a1m)k | (a1m �Dm)k

`x1 ::= `x1
mk | gxB1 | (gxB1)

`x1
mk ::= (`m1)k� `k1 | (`m1)k �Dk� `k1

(∗)x ::= [∗]x | [∗1, ...,∗x]

Listing 3.1: A grammar for automatically generating RISC-pb2l based structured

programming. Here, x = m × k and |=n1
1 is a `n1 with an extra channel to capture the

data from the input channel.

A � represents a RISC-pb2l application. We represent Parwrapper as ‹|code|›, Hwrapper

«‖code‖» and Seqwrapper as «code» in order to distinguish between them.

Depending on the arity of an input/output channel, the valid compositions are mainly cate-

gorised into two classes: reduction composition (N) and non-reduction composition (_).

In a reduction composition (N) both input and output channel arity is one, while in a non-

reduction composition (_) the input channel arity is one but the output channel arity is greater

than 1. We have separated reduction composition from non-reduction composition as they have

different usage. Any set of reduction compositions can be assembled with each other through

a one-to-one channel (�) to generate a pipe construction. However, non-reduction composition

can only be used as the last stage of a pipe construction. Also, the feedback system for a

non-reduction composition requires an extra N − to − 1 combinator at the beginning of an

application to direct the output data to the application input channel. As for all reduction

compositions the input and output channel arity are one and nested parallel patterns inside

a reduction composition requires a 1 − to − N combinator to distribute the tasks among the

parallel computation units. It also requires a N − to − 1 combinator to collect the task from

the parallel computation units. These two combinators are applied to satisfy the reduction

composition rule. The number of computation units running in parallel, either in the form of

36

3.2. Extending RISC-pb2l Over Heterogeneous Architectures

MISD or parallel should correspond to the input channel arity providing the tasks for those

units and also, when applied, to the output arity channel receiving the tasks from those units.

The parallel augmentation of reduction compositions can be handled by either the combi-

nation of N − to− 1 and 1− to− N combinator (a1n � `n1) or an additional nested parallel com-

putation (a1n �Dn� `n1) when required. Unlike the reduction composition for a non-reduction

composition, there is no need for an N − to− 1 combinator. This will extend the range of struc-

tural pattern based applications that can be supported by the grammar presented in Listing 3.1.

The (∗)x applies the parallel computation in the form of MISD or parallel to augment

the level of parallelism. It can be applied for reduction composition parallelism ((N)x), non-

reduction composition ((_)x) or combinators ((`m1)k and (a1m)k). Augmenting the level of

parallelism for combinators contributes to the arity of the combinators’ channel. In this case,

while the input arity channel of a 1 − to − x/x − to − 1 combinator shrinks from x to m by a

factor of k, at the same time, k instances of a 1 − to −m/m − to − 1 combinator is provided to

reconstruct the 1 − to − x/x − to − 1 combinator. When possible, such a shrinking technique

for a combinator helps to augment the level of parallelism in an application. For example, the

arity of the input channel for the parallelised combinator (a1m)k is equal to k ×m. Therefore, a

1− to−N combinator can break into a k set of 1−m combinators (a1m)k to further augment the

level of parallelism for distributing data for parallel computation. Also, each 1−m combinator

can be equipped with a set of parallel computations to support any prerequisite parallel com-

putations over dispatched data ((a1m �Dm)k). Also, using this technique in the non-reduction

composition, it is possible to shrink the parallel level by applying Dx � (`m1)k �#k where the

parallel level is reduced by a factor of m from x to k.

Although the number of parallel computation units in a non-reduction composition should

correspond to the number of input arity channels of its provided 1 − to − N combinator, hav-

ing no N − to − 1 reduction combinator provides flexibility in non-reduction composition to

support a transient composition. A transient composition can be represented as a composition

of (a1z)x � (`x1)z, changing the arity of the input channel for the next computation unit. Us-

ing transient composition it is possible to change the parallel augmentation level for the next

computation unit. In this case, as stated in the composition rule Dx � (a1z)x � (`x1)z � (#z), the

parallel augmentation level will change from x for Dx to z for #z. It is also possible to ap-

ply a further computation on transient composition by replacing (a1z)x with (a1z �Dz)x in the

transient composition (a1z)x � (`x1)z. The transient composition is useful for detecting patterns

like Google Map-reduce, allowing an arbitrary level of parallel augmentation for the map and

reduce stages.

The concept of (`y1)z is equivalent to (a1z), meaning that z number of `y1 is provided to

direct the output channel of the y computation unit into 1 channel. Therefore, these provided z

output channels can be used as input channels for either another parallel computation unit, or a

37

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

`z1 for further reduction.

Moreover, as the reduction composition has a deterministic one-to-one input/output arity

channel, it is possible to merge to parallel computation with the same level of augmentation

(Dn �Dn). This will optimise the parallelism by removing unnecessary reduction and spread

combinators when the level of augmentation for both parallel computations are the same. Also,

(`k1)m� `m1 (`k1)m �Dm� `m1 can be applied to support the parallel reduction which optimises

the reduction procedure by augmenting the level of parallelisation.

Feedback construction is either possible for an entire pattern or a subset of pipe compo-

sition. Feedback can also be applied for single reduction composition, however, the feedback

for a single terminal construction including secwrapper, parwrapper and hwrapper is not ap-

plicable as feedback, and in these cases can be represented in the form of recursion on their

computational function. When a non-reduction pattern is applied, the reduction combinator

|=n1
1 is required to first collect and redirect the computed data to the specified feedback com-

positions. The building block |=n1
1 represents `n1 with an extra input channel to capture the

input data not redirected by feedback. Therefore, |=n1
1 can be applied at the beginning of a

non-reduction composition to support the feedback composition for it.

3.3 Structural Composition and Interaction Protocol (SKIP)

We have designed and fully implemented a new structural composition and interaction protocol

called SKIP, as a text-based protocol (with content representation in a human-readable format)

to control extra-functional and non-functional features in behavioural skeletons.

Inspired by Javascript Object Notation (JSON) [83], SKIP notations are a set of KEY:VALUE

pairs required to i) define the architecture of a structured parallel programme; ii) detect the extra

functional features; and iii) adjust the predefined controlling conditions.

Each building block in RISC-pb2l, regardless of the computational function it delivers,

has a predetermined semantic behaviour. Therefore, through SKIP notations, it is possible

to provide a descriptive representation of a building block regarding the predefined semantic

behaviour of that building block.

SKIP Compliant Building Block Format A SKIP compliant building block is composed of

a set of KEY:VALUE pairs that describe the semantic behaviour of the block. The combination

of KEY:VALUE pairs for describing a building block depends on the semantic behaviour of the

building block. The information that is determined by a KEY:VALUE pair can be classified as

follows.

Structural Meta-data: Determines the required information for capturing the structural fea-

tures of each building block in a structured programme. Table 3.2 explains the KEY:VALUE

38

3.3. Structural Composition and Interaction Protocol (SKIP)

Table 3.2: Structural meta-data

KEY VALUE

APPLICATION_NAME Is a string value determining the name of the application.

COMPONENT_NAME Is a string value determining the name of a specific building block.

STRUCTURE_TYPE Is a string value determining the type of specific building block according to

the provided types in RISC-pb2l. It can be one of the types provided in Table 2.2.

NODE_ADDRESS Is a string value determining a URL address of a node in the directed graph of a

structured application.

FUNCTION_NAME Is a string value representing the name of the computational functions executed by the

building block.

CH_POLICY Is a string value representing one of the policies provided for combinators.

It is only applicable to combinators.

CH_MULTIPLICITY Is an integer value (>= 1) representing the multiplicity of a combinator.

It is only applicable to combinators.

FEEDBACK Is a boolean value that represents whether or not the component should reroute the

output data relative to input data.

PAR_LEVEL Is an integer value that determines the number of identical components to be executed

in parallel.

SETUP_FUNCTION_NAME Is a string value representing the set up function name required to prepare the

device building block in the host site.

KERNEL_PATH Is a string value representing the URL in the location of the kernel file executed

on the device.

pairs for structural meta-data in detail.

Control Parameters: Is a set of tunable parameters that represent the coordination modifica-

tion options for each building block. Table 3.3 explains the KEY:VALUE pairs for control

parameters in detail.

Performance Metrics: Determines the extra functional requirements for each building block.

This information is extracted during an application execution. Table 3.4 explains the

KEY:VALUE pairs for performance metrics in detail.

SKIP Compliant Constraints SKIP not only determines a descriptive representation of the

building block semantic, but also adds the concept of constraint to RISC-pb2l programming.

A constraint object determines a certain configuration or policy of a structured application or

a specific device. If an application or device is not determined, the provided policy applies to

all available devices or applications. Table 3.5 demonstrates the detailed explanation of each

39

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

Table 3.3: Control parameters

KEY VALUE

WORKLOAD Is a list of floating point values that determine a workload distribution for each

n-output channel. It is applicable to 1toN combinators.

APPLICATION_STATUS Is a string value that determines the status of a structured application.

It can be either SUSPEND, meaning that an application is suspended

or RESUME, meaning that an application is running.

PRIORITY Setting per application, PRIORITY represents an integer value

that determines the application priority in the system. The smaller the number

the higher the application priority.

CH_BOUND Is an integer value that determines the maximum number of tasks a building block

can buffer in an input/output channel. The default value of CHANNEL_BOUND

for each building block is unlimited.

PROCESSOR_NUMBER Is an integer number that determines the processor number for a building block.

DEVICE_NUMBER Is an integer number that represents the device number for a device building block.

DEVICE_TYPE Is a string value that determines the device type for a device building block.

COMPONENT_STATUS Determines the status of a component in the system. It can be either ON

or OFF. The former means that the component is active, while the latter

represents that the component has been suspended.

MASKING Is a list of boolean representing which building block is eligible to receive

a task from a 1 − to − N combinator. It is only applicable for 1 − to − N combinators.

PROFILE_AND_TUNE Is a list of boolean representing whether or not the coordination mechanism

should be applied.

40

3.3. Structural Composition and Interaction Protocol (SKIP)

Table 3.4: Performance metrics.

KEY VALUE

PROCESSED_TASKS Is a long integer value that determines the total number of tasks processed so far

by this component.

Queue_INPUT Is a long integer value that determines the number of tasks inside the input

channel yet to be processed.

Queue_OUTPUT Is a long integer value that determines the number of tasks inside the output

channel processed by a component.

Queue_LIMIT Is a list of integer values that represent the maximum task limitation that can

be buffered to be processed by a component.

COMPONENT_LAST_PROCESSING_TIME Is a floating point value that represents the service

time of the last execution.

COMPONENT_DISTRIBUTION_TIME Is a floating point value that represents a list of service time frequency

distributions during the building block execution.

TOTAL_COMPONENT_ACTIVE_TIME Is a floating point value that represents the total service

time of a component on which the component was executing a task.

ELAPSED_TIME Is a floating point value that represents the total execution

time of a component since the beginning of the application execution.

ASSIGNED_DEVICE_NUMBER Is an integer number that represents the device number

that is assigned to a building block.

END_RECEIVED Is a boolean value that represents whether or not a component has exhausted

all its allocated tasks.

CH_IN Is an integer number that represents the number of tasks inserted to a 1toN

combinator. It is only applicable for 1toN combinators.

CH_OUT Is an integer number that represent the number of tasks sent by a 1toN

combinator. It is only applicable for 1toN combinators.

POP_DELAY_TIME Is a floating point value that represents the total waiting time

of a building block for an empty input channel.

PUSH_DELAY_TIME Is a floating point value that represents the total waiting time

of a building block for a full output channel.

POP_DELAY_COUNT Is a long integer value that represents the total number of times

a building block waits for an empty input channel.

PUSH_DELAY_COUNT Is a floating point value representing the total number of times

a building block waits for a full output channel.

41

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

Table 3.5: Constraint configurations

KEY VALUE

PRIORITY_POLICY Is a string value that provides the type of priority used for an application.

It can be either a FIXD, meaning that the application priority will not

change over time; or VARIABLE, meaning that the application will

age over time based on the provided ageing algorithm.

MAXIMUM_BB_PER_DEVICE Is an integer value that provides the maximum number of building blocks that can be

allocated on a device without any drop in performance or causing the the system to crash.

DAMPING_RATIO: Is a floating point value that determines the level of sensitivity. The higher

the value, the less sensitive the system. However, selecting a number that

is too small will overshoot the desired output.

SAMPLING_MODE Is a string value that controlles the level of information monitoring for service

time, push delay and pop delay frequency distribution. It can be either

AGGRESSIVE where comprehensive information is gathered on every

individual task completed by a component; or SPARSE where

statistical sampling is performed at a specified sampling rate for only a

certain fraction of the completed tasks. This is intended to be the default mode.

KEY:VALUE pair for constraint configuration.

SKIP Compliant RISC-pb2l Structured Programming As indicated in Listing 3.2 we

have infused the SKIP methodology with the building block grammar presented in Listing 3.1,

to introduce a descriptive representation of SKIP compliant RISC-pb2l structured programming

where each building block is defined by a set of SKIP compliant KEY:VALUE pairs.

SKIP ::= ’{’ � ’,’ APPLICATION_NAME:STRING ’,’ PRIORITY:INT ’,’

PROFILE_AND_TUNE: (’true’ | ’false’) ’,’ SAMPLING_MODE:STRING | CON ’}’

� ::= N | _

N ::= 4 | H

H ::= ’ReductionPipeComposition’’:’ ’{’ SEQ ’,’ O ’}’

O ::= 4 � O | 4 � 4

9 ::= ’ReductionComposition’ ’:’ ’{’ SEQ ’,’ a1n ’,’ `n1 ’}’

| ’ReductionComposition’ ’:’ ’{’ SEQ ’,’ a1n ’,’ Dn ’,’ `n1 ’}’

4 ::= 9 | ’Feedback’ ’:’ ’{’ (H | 9) ’}’

| ’Sequential’ ’:’ ’{’ SEQ ’}’

| ’Hsequential’ ’:’ ’{’ HSEQ ’}’

_ ::= ’NonReductionPipeComposition’ ’:’ ’{’ SEQ ’,’ � ’}’ | ^

� ::= O �� | 4 �^

^ ::= ’NonReductionComposition’ ’:’ ’{’ SEQ ’,’ a1n ’,’ #n ’}’

| ’Feedback’ ’:’ ’{’ ’Composition’ ’:’ ’{’ SEQ ’,’

((|=n1
1 ’,’ (4 | O) ’,’ a1n ’,’ Dn) | (|=n1

1 ’,’ a1n ’,’ Dn)) ’}’ ’}’

42

3.3. Structural Composition and Interaction Protocol (SKIP)

#x ::= Dx | (�)x | ’TransientComposition’ ’:’ ’{’ SEQ ’,’ Dx ’,’

(

(`m1)k ’,’ #k

| (a1z)x ’,’ (`x1)z ’,’ #z

| (’Composition’ ’:’ ’{’ SEQ ’,’ a1z ’,’ Dz ’}’)x ’,’ (`x1)z ’,’ #z

)

’}’

a1x ::= a1x
mk | ’1ToNCom’ ’:’ ’{’ SSEQ ’}’

| ’1ToNCom’ ’:’ ’{’ SSEQ ’,’ ’Filter’ ’:’ ’{’ SEQ ’}’ ’}’

a1x
mk ::= (a1m)k | (’SpreadComposition’ ’:’ ’{’ SEQ ’,’ a1m ’,’ Dm ’}’)k

`x1 ::= `x1
mk | ’NTo1Com’ ’:’ ’{’ RSEQ ’}’

| ’Nto1Com’ ’:’ ’{’ RSEQ ’,’ ’Filter’ ’:’ ’{’ SEQ ’}’ ’}’

`x1
mk ::= ’ReduceComposition’ ’:’ ’{’ SEQ ’,’ (`m1)k ’,’ `k1

| (`m1)k ’,’ Dk ’,’ `k1 ’}’

Dx ::= (N)x | (N)x ’,’ Dx

(∗)x ::= ’Parallel’ ’:’ ’[’ ’{’ ’parLevel’ ’:’ ’x’ ’,’ ∗ ’}’ ’]’

| ’Parallel’ ’:’ ’[’ ’{’ ∗, ... ,∗ ’}’︸ ︷︷ ︸
x times same ∗

’]’

| ’MISD’ ’:’ ’[’ ’{’ ∗1 ’,’ ... ’,’ ∗x ’}’ ’]’

SEQ ::= (KEY ’:’ VALUE) | SEQ ’,’ SEQ

HSEQ ::= (HKEY ’:’ VALUE) | HSEQ ’,’ HSEQ

SSEQ ::= (SKEY ’:’ VALUE) | SSEQ ’,’ SSEQ

RSEQ ::= (RKEY ’:’ VALUE) | RSEQ ’,’ RSEQ

CON ::= (’Device’ | ’Application ’) ’:’ ’{’CNT’}’

| (CONST ’:’ VALUE) | CON ’,’ CON

CNT ::= (’NAME’ ’:’ VALUE), (CONST ’:’ VALUE)

| (’NAME’ ’:’ VALUE), (CONST ’:’ VALUE) , CNT

KEY ::= ’APPLICATION_NAME ’ | COMPONENT_NAME |’COMPONENT_TYPE ’

| ’NODE_ADDRESS ’ | ’FUNCTION_NAME ’

|’PROCESSOR_NUMBER ’ | ’COMPONENT_STATUS ’ | ’CH_BOUND’

| ’APPLICATION_STATUS ’ | ’PROCESSED_TASKS ’ | QUEUE_LIMIT

| ’PUSH_DELAY_TIME ’ | ’COMPONENT_LAST_PROCESSING_TIME ’

|’POP_DELAY_TIME ’ | ’TOTAL_COMPONENT_PROCESSING_TIME ’

| ’COMPONENT_TIME_DISTRIBUTION ’ | ’ASSIGNED_DEVICE_NUMBER ’

| ’END_RECEIVED ’ | ELAPSED_TIME | ’PUSH_DELAY_COUNT ’

| ’POP_DELAY_COUNT ’ |’QUEUE_INPUT ’ | ’QUEUE_OUTPUT ’

HKEY ::= KEY | ’SETUP_FUNCTION_NAME ’ | ’KERNEL_PATH ’

| ’DEVICE_NUMBER ’ | ’DEVICE_TYPE ’

RKEY ::= KEY |’CH_POLICY ’ | ’CH_MULTIPLICITY ’

SKEY := RKEY | ’WORKLOAD ’ | ’CH_IN’ | ’CH_OUT’

CONST ::= ’PRIORITY_POLICY ’ | ’MAXIMUM_BB_PER_DEVICE ’

| ’DAMPING_RATIO ’| ’SAMPLING_MODE ’

VALUE ::= ATOMIC | ’[’ VALS ’]’

VALS ::= ATOMIC | ATOMIC ’,’ VALS

ATOMIC ::= STRING | NUMBER | ’true’ | ’false’ | ’null’

STRING ::= ’ " ’ CHARS ’ " ’

43

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

CHARS ::= CHAR | CHAR CHARS

CHAR ::= ’any Unicode character except " or \ or control character ’

| ’\"’ | ’\\’| ’\/’ | ’\b’ | ’\f’ | ’\n’ | ’\r’ | ’\t’

| ’\u four hexadecimal digits’

NUMBER ::= INT | INT FRAC | INT EXP | INT FRAC EXP

INT ::= DIGIT | D1-9 DIGITS | ’-’ DIGIT | ’-’ D1-9 DIGITS

FRAC ::=’.’ DIGITS

EXP ::= EVAL DIGITS

DIGITS ::= DIGIT | DIGIT DIGITS

DIGIT ::= ’0’ | D1-9

D1-9 ::= ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Listing 3.2: SKIP definition for building block grammar provided in Listing 3.1. Here,

x = m × k and |=n1
1 is a `n1 with an extra channel to capture the data from the input

Taking advantage of structured pattern based parallelism through the RISC-pb2l approach,

SKIP represents the structural demonstration of an application. In this case, while control

or data flow demonstrations of an application with different component instantiations can be

represented in a directed cyclic/acyclic graph, the structure of the application generated by a

SKIP object is represented in a tree format.

Each SKIP compliant object is represented in a tree structure format where each non-

terminal nodes represents one of the proposed compositions in Listing 3.2 and the termi-

nal nodes (leaves) are one of the terminal building blocks. The terminal building blocks

are Sequential, HSequential, Spread, Reduce, g-pol and d-pol. The intermediate

nodes can represent a nested composition.

As SKIP notations are specific for different types of terminal node, in Listing 3.2, the

Sequential, HSequential, Spread(or d-pol) and Reduce(or g-pol) are assigned

to the SEQ, HSEQ, SSEQ and RSEQ parameters with different key sets KEY, HKEY, SKEY

and RKEY respectively to distinguish the valid SKIP notations for each node type. Moreover,

CON is used to build a constraint object that represents a set of KEY:VALUE, where the valid

constraint keys are represented by a CONST parameter. Also, the CNT parameter is applied to

define a constraint object for a specific application or device. Similar to JSON, the definition

of VALUE and ATOMIC parameters including STRING, NUMBER, true, false and null are

very much like C or Java, except that the octal and hexadecimal formats are not used.

Parwrapper is not considered as a separate terminal building block. The coordination

mechanism for the Parwrapper is the same as Seqwrapper, as there is no awareness about

the type of computation function it encapsulates. Therefore, in a SKIP compliant object, a

Parwrapper component is demonstrated by a Sequential building block for which the com-

putation function has encapsulated any nested parallelism.

44

3.4. SKIP Compliant Autonomic Behavioural Framework

Figure 3.1: Schematic view of construction and execution of a structured program using

SKIP compliant autonomic behavioural system

3.4 SKIP Compliant Autonomic Behavioural Framework

We design an autonomic behavioural framework that incorporates the SKIP methodology with

RISC-pb2l based programming model to coordinate structural applications by applying a set

of predefined coordination mechanisms to optimise the coordination conditions provided in

Table 3.1.

Figure 3.1 represents the construction and execution cycles of a structured programme

developed through a SKIP compliant autonomic behavioural framework. The descriptive con-

struction and autonomic coordination require interaction with the RISC-Pb2l library. We de-

sign such interaction by fusing the SKIP methodology inthe RISC-Pb2l library as stated in

listing 3.2.

An Adaptor is an interface method which can generate a structured application by having:

• A SKIP compliant object representing the application description according to the de-

scriptive representation of the RISC-Pb2l grammar provided in Listing 3.2. The pro-

gramme description contains structural meta-data features represented in table 3.2 to

demonstrate the structural composition of an application. Also, it can contain controlling

parameters represented in table 3.3 to statically set coordination features for an applica-

tion. Appendix B represents examples of SKIP-compliant objects for applications that

have been introduced in Chapter 5.

• A SKIP compliant object representing the environmental configuration in the form of

45

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

constraints. This is an optional file containing features represented in table 3.5. Ap-

pendix C, section C.3 represents examples of SKIP-compliant objects for constraint con-

figurations for applications that are presented in Chapter 5.

• The instrumented RISC-pb2l library presented in Listing 3.2.

• A set of computation functions executed by building blocks in RISC-Pb2l library. Gen-

erated by end-users, these functions represent the actual computations that should be

applied by different building blocks on input data. The computation function signature

depends on the implementation of RISC-Pb2l library.

Once an Adaptor constructs a structured application, the ‘Measurement unit monitors the

application and tunes the controlling parameters automatically and periodically during the ap-

plication life cycle. The measurement unit extracts performance metrics periodically, analyses

the extracted performance metrics, proposes new configurations for controlling parameters and

then imposes these configurations on the constructed structured applications.

The Measurement unit contains a set of coordination engines for analysing and proposing

new configurations for controlling parameters based on the extracted performance metrics.

The extracted performance metrics and the proposed configurations are in the form of SKIP-

compliant object files and are called sensor information and actuating list, respectively. These

files are generated according to the e building block grammar presented in Listing 3.2.

For each building block, an actuating list file contains a structural meta-data information

presented in table 3.2 and controlling parameters presented in table 3.3 according to the rules

presented in Listing 3.2. The controlling parameters represent the new configuration proposed

to tune the coordination. The structural meta-data information is used to identify component

location in the structured application that the new configuration must be imposed on. Ap-

pendix C, sectionC.2 represents examples of SKIP-compliant sensor files for application de-

scriptions that have been introduced in Chapter 5.

For each building block, a sensors information file contains a structural meta-data infor-

mation presented in table 3.2 and performance metrics presented in table 3.3 according to the

rules presented in Listing 3.2. The performance metrics represent the required extra features

for tuning the coordination. The structural meta-data information is used to identify component

location in a structured application for which this information is extracted. Appendix C, sec-

tionC.1 represents examples of SKIP-compliant sensor files for applications descriptions that

have been introduced in Chapter 5.

The coordination engines in the Measurement unit will receive thesensor information file.

This file identifies each component based on the structural meta-data and analyses each building

block component based on the extracted performance metrics to generate a new configuration

for controlling parameters. Once a new configuration is generated, it constructs an actuating

46

3.5. Summary

list by applying the same structural meta-data as the sensor file to propose the new controlling

parameters configurations to the application. The new configuration file can be used to modify

the controlling parameters values of the instrumented RISC-Pb2l building block presented in

Listing 3.2.

3.5 Summary

Separating the computational functions from semantic behaviour for each building block, SKIP

instruments each component with extra functional requirements and represents its semantic

behaviour, regardless of the computational function it delivers. Such a separation provides

the ability to interact with each building block in a structured programme and to change the

component coordination without altering its computation.

Being a text-based protocol makes SKIP a language independent protocol and grants the

flexibility of using a different language for generating an application from the same SKIP com-

pliant structural object in different languages. With the assistance of SKIP adaptor, a SKIP

compliant descriptive object for a structured application can be used as a front end language

and translated to different parallel frameworks (which support the building block concept) as a

back-end parallel language.

Moreover, communication through SKIP objects provides the generalised abstraction be-

tween the application logic and coordination functions. This will allow cross-language porta-

bility where the application written in different languages communicates with the coordination

methods in different languages.

The extensibility of structural parallel programming through RISC-pb2l over heteroge-

neous multi-core architectures demonstrates the applicability of a building block based ap-

proach for targeting the advancement in hardware technologies.

The separation of concern provided by distinguishing the computation from coordination

represents implicit and automatic communication and synchronisation through providing the

compositions represented in Listing 3.1. Such an abstraction provided through a set of pre-

defined compositions assists programmers to exploit the latest developments in heterogeneous

multi-core/many-core architectures with the main focus on computational parts rather than the

coordination.

Introducing the ability to interact between a set of coordination engines and RISC-pb2l

based structural applications through the SKIP methodology provides the applicability of au-

tonomic coordination, both statically and dynamically.

In the next chapter we implement the proposed SKIP-compliant autonomic behavioural

framework to demonstrate the applicability of our SKIP methodology for generating and auto-

nomic coordinating RISC-pb2l structured applications without interfering with and interrupting

47

Chapter 3. SKIP Methodology for Coordinating Structural Parallel Programming

the computation functions of the building blocks.

Moreover, our evaluations of the proposed SKIP-compliant autonomic behavioural frame-

work in Chapter 5 and Chapter 6 state that by using SKIP compliant RISC-pb2l structured

programming, we can generate structured programmes and interact with its components to

modify the coordination on a building block level without interfering with and interrupting the

computation functions of the building blocks.

48

Chapter 4

Performance Enhancement

Infrastructure

In this chapter we have developed In this chapter we develop the SKIP compliant autonomic be-

havioural framework—called Performance Enhancement Infrastructure (PEI)— first presented

in Chapter 3, section 3.4. We have embedded FastFlow, a parallel computing framework, that

implements the RISC-pb2l building blocks to generate a structured parallel programming. We

have extended FastFlow with the extra building block introduced in the SKIP methodology

to support autonomic coordination optimisation over heterogeneous architectures. We call it

HFastFlow. Moreover, we have instrumented the HFastFlow framework with a set of control-

lable parameters for the coordination of applications over heterogeneous multi-core architec-

tures. Furthermore, we have provided an adaptor, which automatically generates a structured

programme by translating a SKIP compliant object to a HFastFlow application. To demonstrate

the interaction ability of SKIP, we have incorporated coordination engines that are capable of

autonomously controlling and optimising the coordination conditions presented in Chapter 3,

section 3.1, Figure 3.1. The architectural view of a SKIP compliant autonomic behavioural

system is composed of the four following parts as demonstrated in Chapter 3, section 3.4,

Figure 3.1:

• A set of instrumented SKIP compliant building block libraries.

• A SKIP adaptor to construct the application regarding the provided computational func-

tion and supported building block compositions.

• A set of SKIP compliant coordination engines to deliver the coordination decision.

• A SKIP compliant communication mechanism as an interaction bridge between applica-

tions and coordination engines.

Where a section is dedicated to explain each part in detail.

49

Chapter 4. Performance Enhancement Infrastructure

A complete product of this research, PEI, is an open source Framework freely download-

able from: https://github.com/mehdi-goli/MC-FastFlow-PEI.

PEI is currently used by a number of paraphrase partners and other external organisations.

In chapter 6 we will present 3 applications (Eispack, MD, and SMTWTP) generated by

paraphrase partners that use PEI for performance tuning. Moreover, in chapter 7, section7.2, we

will demonstrate the impact of our research illustrated by the adoption of PEI and HFastFlow by

different paraphrase partners. Moreover, the proposed GPU back-end presented in section 4.1.1

has been officially accepted as FastFlow GPU back-end [84].

4.1 FastFlow Expansions

Implementing a RISC-pb2l building block library through skeleton patterns, FastFlow provides

a set of parallel patterns that is supported by Listing 3.1. We have employed FastFlow to con-

struct and generate the RISC-pb2l based structural parallel programming. Different features

have been added to the FastFlow framework, enabling it to execute and automatically tune an

application over heterogeneous architecture. Using object oriented concepts, the implemen-

tation of the extension has no effect on the existing application. These extensions are in the

form of classes that add extra functionality to the FastFlow. Figure 4.1 demonstrates the class

diagram that represents extra features added to the FastFlow. As stated in the figure, the classes

represented in white are those added to the existing classes (grey) to deliver extra features on

FastFlow. The UML notation has been applied to represent the types of class and the relation-

ship between them. In this section we explain the new extended features we added the FastFlow

building block framework.

4.1.1 OpenCL Back-end

We have introduced «‖code‖» by adding an OpenCL back-end to FastFlow [85] to support the

HWrapper in OpenCl-enabled devices. The FastFlow framework with OpenCL back-end is

called HFastFlow. The proposed back-end extends FastFlow’s existing parallel patterns (farm

and pipeline) in hybrid GPU/CPU multi-core environments. The OpenCL back-end is com-

posed of three components:

• OpenCLSetUp: Specifies the required OpenCLObject for a given OpenCL device;

• OpenCLNode: Encapsulates the OpenCL kernel execution commands inside the Fast-

Flow framework; and,

• DeviceController: Provides an instance of OpenCL node for the specified device.

An OpenCLObject is composed of the following parameters:

50

https://github.com/mehdi-goli/MC-FastFlow-PEI

4.1. FastFlow Expansions

Figure 4.1: A UML class diagram for instrumented FastFlow. Existing classes in FastFlow

have been marked in grey

• deviceId: Is a unique ID allocated to each OpenCL device. For each OpenCL device,

its deviceId is extracted by the DeviceController and sent as an input parameter to

the set_oclParameter method.

51

Chapter 4. Performance Enhancement Infrastructure

• context: Is used by the OpenCL runtime for managing objects such as command-

queues, memory, programme and kernel objects and for executing kernels on one or

more devices specified in the context.

• oclProg: Represents an OpenCL programme executable from the programme source or

binary code.

• Cmq: Represents an openCL command queue. It provides a queueing mechanism for

executing a kernel on the specified device. It can run the kernels in order or out of order

depending on the provided queue specification.

OPenCLSetUp Is an interface class containing the set_oclParameter method which must

be implemented to set the encapsulated OpenCLObject.

The user implemented version of the OPenCLSetUp class is substituted at runtime. With

the substitution, it is possible to arbitrarily customise the OpenCLObject.

For each application, there is only one instance of OPenCLSetUp per device, despite the

number of available OpenCL components.

The method set_oclParameter is invoked by the DeviceController for all available

OpenCL devices.

OpenCLNode Is an abstract class, called ff_oclNode, derived from ff_node. The svc func-

tion contains the executing process of the OpenCL kernel and it provides access to the deter-

mined OpenCLObject via the get_oclParameter method.

Invoking get_oclParameter for an instance of OpenCLNode returns the specified in-

stance of an OpenCLObject according to the allocated deviceId for the instance of OpenCLNode.

Each OpenCLNode has an attribute called dev_num which is an integer value that provides the

device number assigned to this OpenCL node. The value of the dev_num is modifiable. Mod-

ifying dev_num automatically triggers the updateDeviceId method to update deviceId to

its new value. Therefore, the OpenCL back-end can dynamically migrate from one device to

another on demand.

Any class derived from ff_oclNode may be incorporated as either a generic pipeline stage

or a worker in a farm encapsulating the OpenCL kernel execution command.

DeviceController Is a single-tone class responsible for creating and maintaining an in-

stance of OpenCL object per available OpenCL device for an application. It returns the OpenCL

object for the defined device through dev_num.

OpenCL Component Tuning Depending on the type of OpenCL capable device, tuning

the number of threads that execute a kernel over the device is required in order to optimise the

52

4.1. FastFlow Expansions

application throughput.

When an OpenCL component is allocated to a GPU device, a large number of threads are

required to properly utilise all the stream cores of the GPU device. This is the winning point

of a GPU device over a CPU device for an OpenCL component. Usually, a CPU device runs

on a much higher clock frequency than the a GPU device. Also, it has large caches which

reduce the global access latency. However, a GPU device has a large number of cores which

can execute instruction together and wave front scheduling [86] is used to cover up the global

access latencies as caches are not very effective in many cases. So the more threads that are

created, the greater the level of parallelism and the better the performance will be [44].

When an OpenCL component is allocated on a multi-core CPU device each work-group is

more like a task in a thread pool API (like TBB [57] thread pool API). When the size of the

work-group is greater than the available number of cores, a CPU thread pool with one thread

per core will be created. Those threads will pull work-groups from the task queue appropriately.

Therefore, the operating system creates threads that process a large number of work-groups.

Each CPU core processes one work-group at a time. Therefore, the group-size has a significant

effect on resource utilisation and performance optimisation [44].

However, the case would be slightly different for a building block based structured appli-

cation with different CPU based and OpenCL based components executing on a heterogeneous

multi-core architecture. In this case, if the work-group size is bigger than the number of CPU-

cores in the system, all cores will be consumed and other CPU based components of the ap-

plication will starve as a result of lack of resources. In this case, for an OpenCL component

performing on a multi-core CPU device, the work-group size must be controlled manually and

adjusted to a value smaller than the number of CPU cores in the system. Therefore, although

the same OpenCL kernel can be executed by different workers of a farm, the work-group size

for each worker should vary depending on the type of allocated device.

To control the work-group size OpenCL provides two parameters: global_thread and

local_thread [44]. By modifying these two parameters, it is possible to tune the work-group

size to optimise the application performance on different OpenCL capable devices.

4.1.2 Adaptive Load-balancer

Moreover, depending on the type of allocated device, an OpenCL farm worker can be either a

CPU worker or a GPU worker. Therefore, a farm pattern can be composed of a combination of

CPU and GPU workers. When there is a combination of CPU and GPU workers, the service

time of a farm worker executing a task can be different.

Here, although the computation performed by each worker is the same, the heterogeneity

of the devices creates a significant difference in the service time of CPU and GPU workers.

Therefore, the workload distribution of the input stream to each worker should be in proportion

53

Chapter 4. Performance Enhancement Infrastructure

with their service time.

To deal with this issue, we provide a weight-based load-balancer called an adaptive_-

loadbalancer. The adaptive_loadbalancer subclasses the Round-Robin ff_loadbalancer

in HFastFlow farms.

The adaptive_loadbalancer biases the workload distribution with regards to the pro-

vided workload fraction for farm workers.

4.1.3 Memory Management

The queue system in the HFastFlow framework can be bound or unbound. A bound queue has

a fixed size that limits the maximum number of tasks they can buffer simultaneously, while an

unbound queue can accommodate an unlimited number of tasks as long as the system memory

allows this. the bound queue is very simple, elegant and performs very well on multi-cores

when the producer and the consumer work on different cache lines [87].

In HFastFlow the queue is internal, which meanes that each component reads/writes from/to

its private queue with no interference from other components. Therefore, for patterns like farm,

it is the responsibility of a load-balancer to distribute the data among worker components [87].

In this case, for a farm with OpenCL workers that are capable of being executed on different

devices, a bound queue can prevent the slow workers in a farm from being overloaded.

However, unbound queues are more general than bound queues. They are mostly preferred

to avoid deadlock issues without introducing heavy communication protocols in the case of

complex streaming networks, i.e. a graph with multiple nested cycles. It may not be easy

to determine the correct queuesize for the bound queue and unless a learning mechanism is

involved, it needs to be set up for the worst case [87].

Despite the benefit of unbound queues, there are situation where it is necessary to bind

the queues, especially when high-throughput, coarse-grained and resource intensive workload

application with significant memory demand is available. It is also critical to control the mem-

ory usage in a system especially for applications with large-scale input data and heterogeneous

components with different computing powers in order to avoid a system crash.

In HFastFlow, we can only bind the input queues of computing components statically.

However, exhausting all queue slots for computing components can vary dynamically depend-

ing on the computing power of each component, as the computing power of a component can

change depending on the type of the allocated device. By adaptively controlling the memory

usage of components, we can use the unbound queue and throttle the feeder of computing com-

ponent to avoid a system crash. The feeder of a computing component for a Farm pattern is the

load-balancer and for the pipeline pattern the feeder for stage i is stage i − 1. Having adaptive

memory usage controller is particularly significant in streaming applications where processing

occurs outside HFastFlow and it is necessary to provide sufficient memory for other processes.

54

4.1. FastFlow Expansions

With minimal modifications to the underlying framework, we have introduced adaptive

throttling to regulate the memory footprint of the application and maintain usage within con-

figurable bounds. A computing component is starved of input when the available free memory

falls below the STOP_THRESHOLD as a percentage of total memory. Processing on the

other stages proceeds until memory usage rises above the START_THRESHOLD, at this point,

the feeder thread is awakened and new input is injected into the component. The conceptual

simplicity and effectiveness of this approach makes it an attractive solution to the memory

management problem. Processing continues as other parallel pipeline stages make use of the

available hardware, regardless of the actual location of the bottleneck stage.

4.1.4 Efficient Idling

The key challenge here is to obtain maximum utilisation of the resources for any CPU slot al-

located to a component. The optimised usage of the allocated slot for each component depends

on the availability of a task in the component queue. If the task is not available, the component

must wait. This waiting can be either due to a busy waiting loop or a thread sleeping until

the data becomes available. In the former especially when the number of the threads running

the application is less than or equal to the number of available cores, the performance of the

application does not drop. However, when the number of threads running the application is

greater than the number of cores, by using the sleeping mechanism this time slot can be ded-

icated to those threads that have received their tasks but are waiting for resources to execute

them. Moreover, the energy consumption of the former case is higher and less optimised than

the latter, which is also against the optimal resource utilisation.

Therefore, we provide an extra information layer on top of the operating system sched-

uler by putting a thread which is executing a component to sleep whenever the component

input/output queue is empty/full.

Applying such a strategy in frameworks that support busy waiting mechanisms can be made

on demand and is useful when the number of threads is greater than the number of available

cores and also energy saving and optimal utilisation are of high priority.

Therefore, a tunable parameter Idling_Status has been considered for selecting between

the two strategies. The actuating state of the Idling_Status parameter can be set via an

actuator that receives a constraint configuration to demonstrate the actuating state.

We provide a boolean flag FF_SAVER as a constraint parameter to determine the applicabil-

ity of the efficient idling policy. By default the flag is set to false, meaning the efficient idling

policy is not applied.

55

Chapter 4. Performance Enhancement Infrastructure

4.2 HFastFlow Instrumentation

HFastFlow is an implementation of extended RISC-Pb2l building block library that is presented

in Chapter 2, Table 2.3. We instrument HFastFlow building blocks by adding controlling pa-

rameters (presented in Chapter 3, Table 3.3), performance metrics (presented in Chapter 3,

Table 3.4), and structural meta-data (presented in Chapter 3, Table 3.2) These instrumentations

are used to generate SKIP-compliant building block components.

4.2.1 Controlling Parameters

Table 4.1 represents a set of controlling parameters added to HFastFlow components (pre-

sented in Figure 4.1) to generate SKIP-compliant HFastFlow components. The first column

represents the controlling parameters; the second column represents a list of HFastFlow com-

ponents containing these parameters; and the third column represents the parameter definition

in HFastFlow. These controlling parameters are also called actuators.

4.2.2 Performance Metrics

Table 4.2 represents a set of performance metrics added to the HFastFlow components (pre-

sented in Figure 4.1) in order to generate SKIP-compliant HFastFlow components. The first

column represents the performance metrics; the second column represents a list of HFastFlow

components containing these metrics; and the third column represents the definition of each

metric. These performance metrics are also called sensors and are extracted at runtime. Each

node in HFastFlow periodically updates its parameters. The updating interval is determined by

the sampling mode factor.

4.2.3 Structural Meta-data

Table 4.3 represents a set of structural meta-data added to the HFastFlow components (pre-

sented in Figure 4.1) in order to generate SKIP-compliant HFastFlow components. The first

column represents the structural meta-data; the second column represents a list of HFastFlow

components containing these parameters; and the third column represents the definition of each

parameter.

4.3 High-Level Abstraction Layer (HAL)

HAL is composed of i) a user-level abstraction layer—called SKIP Adaptor— that constructs

a structural application by receiving a SKIP-compliant descriptive definition of the application

from a user; ii) a system-level abstraction layer—called OpenCL Device Virtualisation Layer

(ODVL)— that unify OpenCL-enabled devices on a Heterogeneous multi-core systems; and iii)

56

4.3. High-Level Abstraction Layer (HAL)

Table 4.1: Control parameters

Controlling parameter HFastFlow Instrumented Definition

Components

WORKLOAD ff_loadbalancer and Is a vector of floating point values that determines the workload

adaptive_loadbalancer fraction for each worker of a farm pattern. It is possible to

readjust the workload distribution with a new workload

value both statically and dynamically.

APPLICATION_STATUS ff_loadbalancer,ff_gatherer, Is a string variable that determines the status of a structured application.

adaptive_loadbalancer, Its value can either be SUSPEND, meaning that an application is suspended

ff_node, oclNode, or RESUME, meaning that an application is running. Once this is set for

ff_farm and ff_pipeline an application, its value is propagated to all components.

PRIORITY ff_loadbalancer, ff_gatherer, Is an integer variable that determines the

adaptive_loadbalancer, application priority in the system. Once this is set for

ff_node, oclNode an application, its value is propagated to all

ff_farm and ff_pipeline components.

CH_BOUND ff_loadbalancer,ff_gatherer, Is an integer variable that determines the maximum number

adaptive_loadbalancer, of tasks a component can buffer in an input/output queue.

ff_node, oclNode, There is no limit on the default queue size for each component.

PROCESSOR_NUMBER ff_loadbalancer,ff_gatherer, Is an integer variable to determine the

adaptive_loadbalancer, processor number for a component.

ff_node, oclNode

DEVICE_NUMBER oclNode Is an integer variable to represent the device number for an

OpenCL component.

DEVICE_TYPE oclNode Is a string variable to determine the device type for an

OpenCL component.

COMPONENT_STATUS ff_loadbalancer,ff_gatherer, Is a boolean to determine the status of a component in the system which can be either

adaptive_loadbalancer, ON or OFF. The former means that the component is active, while

ff_node, oclNode, the latter represents that the component has been suspended.

MASKING ff_node, oclNode, Is a vector of boolean values that represents whether or not a worker

of a Farm pattern is active to receive a task from a load-balancer.

PROFILE_AND_TUNE ff_farm and ff_pipeline Is a boolean variable representing whether or not the coordination

mechanism should be imposed on an application.

57

Chapter 4. Performance Enhancement Infrastructure

Table 4.2: Performance metrics.

Performance Metrics HFastFlow Instrumented Definition

Components

PROCESSED_TASKS ff_loadbalancer, ff_gatherer, Is a long integer variable that determines the

adaptive_loadbalancer, total number of tasks processed so far

ff_node, and oclNode by this component.

Queue_INPUT ff_loadbalancer, ff_gatherer, Is a long integer variable that

adaptive_loadbalancer, determines the number of tasks inside the input

ff_node, and oclNode queue of a component yet to be processed.

Queue_OUTPUT ff_loadbalancer, ff_gatherer, Is a long integer variable that determines the

adaptive_loadbalancer, number of tasks inside the output queue

ff_node, and oclNode of a component processed by the component.

Queue_LIMIT ff_loadbalancer, ff_gatherer, Is an integer variable that

adaptive_loadbalancer, represents the maximum number of tasks for a

ff_node, and oclNode component that can be buffered for processing.

COMPONENT_LAST_PROCESSING_TIME ff_loadbalancer, ff_gatherer, Is a floating point variable that

adaptive_loadbalancer, represents the service time of the last

ff_node, oclNode execution.

COMPONENT_DISTRIBUTION_TIME ff_node and oclNode Is a vector of floating point value that represents

a list of service time frequency distributions during

component execution.

TOTAL_COMPONENT_ACTIVE_TIME ff_loadbalancer, ff_gatherer, Is a floating point variable that represents the total

adaptive_loadbalancer, service time of a component on which the

ff_node, and oclNode component was executing a task.

ELAPSED_TIME ff_loadbalancer, ff_gatherer, Is a floating point variable that

adaptive_loadbalancer, represents the total executiontime of a component

ff_node, oclNode since the beginning of the execution

ff_farm, and ff_pipeline of an application.

ASSIGNED_DEVICE_NUMBER oclNode Is an integer variable to represent the device

number that is assigned to an OpenCL component.

END_RECEIVED ff_loadbalancer, ff_gatherer, Is a boolean variable that

adaptive_loadbalancer, represents whether or not a component has

ff_node, oclNode exhausted all its allocated tasks.

CH_IN ff_loadbalancer and Is an integer variable that represents the

adaptive_loadbalancer number of tasks inserted to a load-balancer.

CH_OUT ff_loadbalancer and Is an integer variable to represent the

adaptive_loadbalancer number of tasks sent by a load-balancer.

POP_DELAY_TIME ff_loadbalancer, ff_gatherer, Is a floating point variable that

adaptive_loadbalancer, represents the total waiting time of a component

ff_node, and oclNode for an empty input queue.

PUSH_DELAY_TIME ff_loadbalancer, ff_gatherer, Is a floating point variable that

adaptive_loadbalancer, represents the total waiting time of a component

ff_node, and oclNode for a full output queue.

POP_DELAY_COUNT ff_loadbalancer, ff_gatherer, Is a long integer variable that

adaptive_loadbalancer, represents the total number of times a component

ff_node, and oclNode waits for an empty input queue.

PUSH_DELAY_COUNT ff_loadbalancer, ff_gatherer, Is a floating point variable that

adaptive_loadbalancer, represents the total number of times a component

ff_node, and oclNode has to wait for a full output queue.

58

4.3. High-Level Abstraction Layer (HAL)

Table 4.3: Structural meta-data

Structural Meta-data HFastFlow Instrumented Definition

Components

APPLICATION_NAME ff_farm and ff_pipeline Is a string variable that determines the name of the application.

COMPONENT_NAME ff_loadbalancer, ff_gatherer, Is a string variable that determines the name of a component.

adaptive_loadbalancer,

ff_node, oclNode

ff_farm, and ff_pipeline

STRUCTURE_TYPE ff_loadbalancer, ff_gatherer, Is a string variable that determines the type of a component.

adaptive_loadbalancer,

ff_node, oclNode

ff_farm, and ff_pipeline

NODE_ADDRESS ff_loadbalancer, ff_gatherer, Is a string variable that determines a URL address

adaptive_loadbalancer, of a node in the directed graph of a structured application.

ff_node, oclNode

ff_farm, and ff_pipeline

FUNCTION_NAME ff_loadbalancer, ff_gatherer, Is a string variable that represents the name of the

adaptive_loadbalancer, computational function executed by a component.

and ff_node

CH_POLICY ff_loadbalancer, ff_gatherer, Is a string variable that represents the

and adaptive_loadbalancer policies provided for a load-balancer or gatherer.

CH_MULTIPLICITY ff_loadbalancer, ff_gatherer, Is an integer variable that represents the

and adaptive_loadbalancer multiplicity of a load-balancer or gatherer.

FEEDBACK ff_farm and ff_pipeline Is a boolean variable that represents whether or not the

component should reroute the output data relative to

input data.

PAR_LEVEL ff_farm Is an integer variable to determine the number of identical

components to be executed in parallel.

SETUP_FUNCTION_NAME oclNode Is a string variable that represents the set up function name

required to prepare the device building block in the host site.

KERNEL_PATH oclNode Is a string variable that represents the URL in the location

of the kernel file executed on the device.

59

Chapter 4. Performance Enhancement Infrastructure

an autonomic manager—called Dynamic Skeleton Runtime interface (DSRI)— that coordinate

structural applications over heterogeneous multi-core architecture.

4.3.1 SKIP Adaptor

Using SKIP compliant structured programming, the SKIP adaptor provides a clean separation

between the coordination and computation functions as stated in Chapter 3, Section 3.4.

The adaptor receives a descriptive SKIP object to determine the building blocks compo-

sitions of an application demonstrated by a set of structural meta-data instructions. It also

receives a library address that contains the predefined computational functions executed by

different building blocks By receiving these two files, SKIP adaptor automatically constructs

a structural application as defined in the SKIP methodology represented in Chapter 3, List-

ing 3.2.

Each building block based framework must provide its own SKIP adaptor to translate the

SKIP compliant object into a structured application executing on that framework.

In the following we explain the different parts of the SKIP adaptor implemented for the

HFastFlow framework. Although the composition rules proposed in the SKIP methodology

is capable of generating and instrumenting all parallel patterns that is supported by RISC-

pb2l as stated in Appendix A, the operability of these patterns depends on their implementation

through the HFastFlow framework. Currently HFastFlow only implements the RISC-pb2l com-

positions that is required for farm and pipeline patterns. Therefore, full operability of all the

compositional features of RISC-pb2l libraries will be available when these compositions are

implemented by the HFastFlow framework. Here, the SKIP adaptor for HFastFlow is confined

to generating applications that are only designed by the RISC-pb2l compositions for farm and

pipeline patterns.

4.3.1.1 Computational Function Type

The SKIP adaptor will operate on a different pre-defined computational function. Each Frame-

work has its own computation function signatures as stated in Chapter 3, Section 3.4.

In HFastFlow, any computational function generated for the building blocks must have one

of the following signatures:

• void* func(void*) for any ff_node function.

• oclParameter* setPar(cl_device_id id) for setting the OpenCL parameter for

an OpenCL node.

• void* oclfunc(void*,oclParameter*) for any OpenCL execution function.

60

4.3. High-Level Abstraction Layer (HAL)

4.3.1.2 Structural Factory

A SKIP compliant object represents a structural tree for an application which satisfies the

composition rules presented in Chapter 3, Section 3.3, Listing 3.2.

structuralFactory will receive the SKIP-compliant object representing the structural

composition of a HFastFlow application. Appendix B represents the structural composition

of HFastFlow applications used in this thesis for PEI evaluation. The structuralFactory

method recursively parses the structural meta-data to construct the application from the SKIP

structured tree object. It uses different functions to construct different HFastFlow components.

Table 4.4 represents the functions used by structuralFactory to construct the HFast-

Flow component. The first Column in the table represents the function name; the second

column in the table states the RISC-pb2l building block that is generated by that function; and

The Third column in the table represents the HFastFlow component that is instantiated by that

function to build SKIP-compliant HFastFlow application.

structuralFactory parses the SKIP-compliant object received as an input, for each

RISC-Pb2l building block in the SKIP-compliant object file. It then invokes its correspond-

ing function represented in the first column of the Table 4.4 and constructs the corresponding

HFastFlow component for that building block represented in the third column of the Table 4.4.

Once a component is constructed, it will be assembled in the appropriate location in the appli-

cation structural tree corresponding to the given SKIP structural meta-data.

Each building block has a unique address given by structuralFactory according to

their url position in the structural tree. This address is available via node_name. Therefore,

each component is not only accessible via processing the structured tree but also reachable by

direct access through its global node_name. This will eliminate the overhead of accessing an

individual component.

4.3.2 Dynamic Structural Runtime Interface

The dynamic structural runtime interface (DSRI) is used as a bridge for communicating be-

tween the coordination engines and a structural framework like HFastFlow. The DSRI ar-

chitecture is composed of a DSRI client and a DSRI server connected by an asynchronous

messaging queue.

The DSRI client and server provide both intra-process and inter-process communication

between the HFastFlow framework and coordination engines. Depending on the location of

the coordination methods, either communication method could be selected.

• Inter Process Communication: It is used when the two methods calling each other are in

two separate processes. The communication can be provided via a remote procedure call

(RPC) [88].

61

Chapter 4. Performance Enhancement Infrastructure

Table 4.4: SKIP adaptor functions to generate the HFastFlow structured application from

structural meta-data instruction

Function name Function Definition HFastFlow Instantiated

Component

buildFarm This function is responsible for mapping the ff_farm

’parallel’ ’:’ ’[’ ’ { ’ ’parLevel’ ’:’ ’ x’ ’ , ’ ∗ ’ } ’ ’]’

or

’MISD’ ’:’ ’[’ ’ { ’ ∗1 ’,’ ... ’,’ ∗x ’ } ’ ’]’

into the farm pattern provided by HFastFlow.

buildEmitter This function maps the ff_node

’spread’ ’:’ ’ { ’ ’CH_POLICY’ ’:’ ’STRING’ ’,’ ’CH_MULTIPLICITY’ ’:’ INT ’,’

’WORKLOAD’ ’:’ ’[’ ’VALS’ ’]’ ’,’ SEQ ’ } ’

into its corresponding emitter component provided by HFastFlow.

buildLoadbalancer This function maps the ff_loadbalancer

’d-pol’ ’:’ ’ { ’ ’CH_POLICY’ ’:’ ’STRING’ ’,’ ’CH_MULTIPLICITY’ ’:’ INT ’,’ SEQ ’ } ’ or

into its corresponding ff_loadbalancer component provided by HFastFlow. adaptive_loadbalancer

buildCollector This function maps the ff_node

’reduce’ ’:’ ’ { ’ ’CH_POLICY’ ’:’ ’STRING’ ’,’ ’CH_MULTIPLICITY’ ’:’ INT ’,’ SEQ ’ } ’

into its corresponding collector component provided by HFastFlow.

buildGatherer This function maps the ff_gatherer

’g-pol’ ’:’ ’ { ’ ’CH_POLICY’ ’:’ ’STRING’ ’,’ ’CH_MULTIPLICITY’ ’:’ INT ’,’ SEQ ’ } ’

into its corresponding ff_gatherer component provided by HFastFlow.

buildHSEQ Generates an ff_oclnode component encapsulating the provided ff_oclNode

OpenCL based computation function in its svc body.

buidSEQ Generates an ff_node component encapsulating the provided ff_node

sequential computation function in its svc body.

setupFunction Replaces the provided setupfunction UserOpenCLSetup

with the OpenCLSetUp interface function to specify the required

OpenCLobject for a given OpenCL device on the host site.

buildPipe Maps a set of SKIP objects separated by ’,’ in to the ff_pipeline

HFastFlow pipeline pattern when the specified structure type for their parents

is set to pipeline.

addFeedback Applies the HFastFlow wrap_around() method provided for the farm ff_farm and ff_pipeline

and pipeline to implement the feedback for the SKIP object. with wrap_around() method

• Intra Process Communication: It is used when the coordination methods are a function

within the application method. This communication can be provided by a direct function

call.

The information flowing in both inter and intra process communications are in the form of

SKIP compliant objects.

In our case, inter process communication is processed by ZeroMq as an asynchronous

queueing system to transfer the SKIP Object. ZeroMq is a very lightweight messaging sys-

tem specially designed for high throughput/low latency scenarios. It supports many advanced

messaging scenarios by combining and implementing various pieces of the framework (e.g.,

sockets and devices). This will make ZeroMq a very flexible queueing system [89].

62

4.3. High-Level Abstraction Layer (HAL)

4.3.2.1 DSRI Client

The DSRI client is an independent node embedded inside the HFastFlow framework. It is ex-

ecuted in a separate thread. It uses a single mutual exclusion technique during the information

exchange to minimise the performance overhead of the system.

Using SKIP, the DSRI client is a trader between the DSRI server and an executing ap-

plication. It provides access to retrieve the sensors from the instrumented components of an

application and sends them to the DSRI server and also forwards the instructions from the

DSRI server to the application components.

Figure 4.2 demonstrates the class diagram that represents the DSRI client and its relation-

ship with the SKIP adaptor and HFastFlow application.

Client Manager The client manager is the coordinator of the DSRI client. The main respon-

sibility of the client manager is to extract the sensor information and to deliver the dynamic co-

ordination decisions to the actuators. Towards this aim, client Manager provides two interfaces

getter and setter, that each instrumented framework such as HFastFlow must implement.

In the following we explain the implementation of these two interfaces in HFastFlow.

As an application structure has a tree format all SKIP compliant actuator and sensor objects

also have a tree format. The root node is always a point of interaction between DSRI client

and a HFastFlow application. Using the two methods, the client manager will recursively

retrieve/modify the sensors/actuators from the root to any terminal node in the tree structure of

a SKIP compliant object provided for an application.

Implementation of getter and setter Interfaces In the instrumented version of HFast-

Flow, all terminal nodes(i.e. ff_node, ff_oclNode, ff_loadbalancer, ff_gatherer and

adaptive_loadbalancer) and non-terminal nodes (i.e ff_farm and ff_pipeline) imple-

ment the two interfaces getter and setter to interact with DSRI client. For each HFastFlow

node used in an application structure, the getter retrieves its sensor information encodes it

into a SKIP compliant object. The generated SKIP compliant object for each node is a collec-

tion of performance metrics entangled with the structural meta-data related to that node. The

structural meta-data information provides a unique reference to the structured application’s

(sub)-tree nodes.

The non-terminal nodes also recursively retrieve the SKIP compliant object from their chil-

dren and encapsulate them with their SKIP compliant object to form the composition they are

representing. Therefore, the root node in an application contains a SKIP compliant object for

the whole application.

Similar to the getter function each setter delivers the coordination decisions to the

provided actuators for its node. It receives a SKIP compliant object, decodes it and adjusts the

63

Chapter 4. Performance Enhancement Infrastructure

Figure 4.2: A class diagram representing the DSRI client and its relationship with client

side objects

64

4.3. High-Level Abstraction Layer (HAL)

Figure 4.3: SKIP-compliant information exchange between DSRI and a sample HFastFlow

application.

actuator states for its related pattern.

Similar to all SKIP compliant objects, the actuator file also has a tree structure format.

Therefore, the root of the tree contains all actuators’ information provided for all nodes of an

application. The non-terminal nodes also recursively dispatch the SKIP compliant object to

their children.

Figure 4.3 represents the information exchange between an application in a instrumented

HFastFlow and DSRI client. DSRI client extract the sensor information via getter interface

(green arrows) and to deliver the dynamic coordination decisions via setter interface (red ar-

rows) to the actuators.

Structural Application Executor A structural application executor is the port for executing

an application. It instantiates the client manager, which generates an instance of DSRI client for

the given application. The client manager invokes the SKIP adaptor to generate the application

from the given SKIP object in the instrumented HFastFlow framework. The run method in

the structural application executor executes the application. Once executed, the provided client

manager registers the application to the DSRI server for further profiling and dynamic tuning.

4.3.2.2 DSRI Server

Figure 4.4 shows the class digram for the DSRI server and its relationship to the provided

coordination engines. The DSRI server, is responsible for exchanging the SKIP compliant

objects between the DSRI client and the coordination engines. It executes in a different process

from applications.

65

Chapter 4. Performance Enhancement Infrastructure

The DSRI server incorporates some coordination methods or act as a proxy for SKIP com-

pliant external methods that provide coordination. Unlike the DSRI client there is only one

DSRI server per machine node.

Server Manager For each application, the server manager receives a SKIP compliant sensor

object, in each time interval, from the DSRI client of an application. It dispatches the received

object to the coordination methods and retrieves the appropriate SKIP compliant actuator ob-

jects from the coordination methods. It then sends the SKIP compliant actuator objects to the

DSRI client, as a corresponding response to the SKIP compliant sensor object of the requested

DSRI client.

Also, it normally receives environmental constraints in order to configure the environment

for executing applications.

For each application the server manager stores the last SKIP compliant sensor object in a

historical database when the application execution has finished. The stored information will

provide pre-run knowledge about that application for future execution.

Registering a new application and de-registering an application are performed by the server

manager. Once a new application is registered according to (i) the submitted SKIP object;

(ii) availability of any historical data for that application; and (iii) the available coordinating

methods; new actuating states for the application are constructed.

The process of updating the actuating states for each application is performed dynamically

until the application terminates. Depending on an application’s nature, the frequency of ex-

changing information between DSRI and the application can be specified as a constraint object

for the application.

DSRI Server Instrumentation DSRI Server has been instrumented with SKIP-compliant

constraint configuration that is presented in Chapter 2, section 2.2.2, Table 2.3 for determining

environmental changes in the system. Table 4.5 represents a set of constraint configuration

added to the DSRI Server. The first column represents the constrain parameter and the second

column represents the definition of each parameter. The constraint configuration can be set

statically in order to impose certain limitations on both applications and executing environ-

ments.

4.3.3 ODVL: OpenCL Device Virtualisation Layer

ODVL provides a virtual representation of all available OpenCL capable devices for the un-

derlying heterogeneous multi-core system. Taking advantage of a dynamic compilation, most

OpenCL components, if designed with parametrisable global and local threads and also parametris-

able group-size, can be migrateable among OpenCL resources. Therefore, there is no need to

66

4.3. High-Level Abstraction Layer (HAL)

Figure 4.4: A class diagram representing the DSRI Server and its relationship with the

embedded coordination engines.

67

Chapter 4. Performance Enhancement Infrastructure

Table 4.5: Constraint configurations added to DSRI Server

Parameter name Parameter Definition

PRIORITY_POLICY Is a string variable to define the type of priority used for an application.

It can be either a FIXD, meaning that the application priority will not

change over time; or VARIABLE, meaning that the application will

age over time based on the determined ageing algorithm.

MAXIMUM_BB_PER_DEVICE Is an integer variable to set the maximum number of components that can be

allocated on a device without any drop in performance or causing the the system to crash.

DAMPING_RATIO: Is a floating point variable that determines the level of sensitivity. The higher

the value, the less sensitive the system. However, selecting a number that

is too small will overshoot the desired output.

SAMPLING_MODE Is a string variable to control the level of information monitoring for service

time, push delay and pop delay frequency distribution. It can be either

AGGRESSIVE where comprehensive information is gathered on every

individual task completed by a component; or SPARSE where

statistical sampling is performed at a specified sampling rate for only a

certain fraction of the completed tasks. This is intended to be the default mode.

provide alternative components that are executed on different devices. This will save a lot of

programming effort.

The ODVL contains a set of devices called deviceSet. Each deviceSet entry contains

the required information about its representing device. Such information is the device num-

ber, the device type, the number of running applications on the device, the maximum number

of computing units and the maximum size of memory for that device. Also, each device is

equipped with a devCAP parameter that represents the maximum number of applications ex-

ecuted at the same time on a device without any performance drop in allocated applications.

The devCAP parameter can be set as an environmental constraint. The ODVL is responsible

for allocating, reallocating and deallocating the provided resources for components.

Resource Allocation: Is responsible for allocating the selected resources to a component.

Each device represented in a deviceSet is equipped with a set called appSet. Each entry of

the appSet presents the information about the allocated application to the device. Such infor-

mation is the application name and a set called CompSet, which contains a list of component

names of the application allocated to this device.

Resource Deallocation: Is invoked when an application terminates. Once invoked, it up-

dates the status of all the resources used by the application. The application entry is removed

from all used devices in the deviceSet. Once cleared, invoking the components destructor

68

4.4. Performance Enhancement Tools (PETs)

frees the actual devices.

Resource Reallocation: Attempts to reallocate the component to a newly selected device.

If successful, it returns true and modifies the old device entry and the newly selected device

entry in the deviceSet. Such modifications are the number of running applications and the

list of allocated applications. If not successful, it returns false and the component is switched

back to the previously selected device.

Although the OpenCL component is removed from the device entry, the component itself is

deactivated rather than destroyed. This is due to the process of building an OpenCL programme

at runtime being expensive [90]. As reallocation of the same component to the same device

can be repeated several times in the system, the rebuild process can have a significant effect on

the application’s performance. Hence, once an OpenCL component is created for a device it

will not be destroyed until the application terminates.

4.4 Performance Enhancement Tools (PETs)

PEI has a list of coordination engines in order to modify the the controlling parameters added

to HFastFlow.

The connecting bridge between the coordination engines and instrumented applications is

the DSRI server.

Controlling decisions generated by the provided coordination engines are transferred by

the DSRI server as a SKIP compliant actuator files to the instrumented application through

ZeroMq connections.

Embedded coordination methods are entangled with the DSRI server in the same process.

The DSRI server invokes these methods through a function call.

The external coordination method provided here is a static structural configuration that uses

the DSRI server as a proxy to exchange the information with structured applications. In this

section unless it is explicitly mentioned, the coordination methods are embedded.

Our coordination engines include: i) Sensor Analyser; i)) Adaptive workload distribution;

iii) OpenCL scheduler; and iv) Static Structural Configuration. Other coordination engines

can be considered such as engines optimising memory allocation for offloading input data

to GPU devices in an application; or engines restructuring components compositions in an

application that is known as refactoring. In this thesis, we have designed and developed the

following coordination engines as they have been considered as key optimisation objectives for

ParaPhrase project [40].

69

Chapter 4. Performance Enhancement Infrastructure

4.4.1 Sensor Analyser

When invoked, our provided sensorAnalyser explores a received sensor file and calculates

the following performance metrics for each component of it.

• Queue Throughput:

T Qi =
queueoutput
queueinput

(4.1)

where the queuinput is the number of input tasks inserted to the queue Qi; and the

queueoutput is the number of output tasks consumed from the queue Qi. This will be

useful when an external queueing system is provided.

• Component Utilisation:

CU =
cActiveT ime

totalT ime
(4.2)

where the cActiveT ime represents the amount of time that a component actively has to

process tasks; and totalT ime shows the amount of time elapsed so far.

• Component Efficiency Rate:

CER =
T QCi + (1 −CUi)

2
(4.3)

where the T QCi is the throughput of the input queue (T Q) connected to component Ci;

and CUi is the utilisation of component Ci. The greater the component utilisation is and

the less the component throughput is, the less the component efficiency is. Dividing it

by 2, CER is normalised within [0,1].

Also, the sensorAnalyser extracts the Application bottleneck node and bottleneck path

for every received sensor object from an application.

The application bottleneck path determines a path in an application tree structure from the

root component to the bottleneck component. An application bottleneck node is the component

with the minimum CER in a structured application tree.

4.4.2 Adaptive Workload Distribution

In a farm pattern with different OpenCL workers allocated to heterogeneous devices, although

the results of all workers are the same, there would be a significant difference in workers’

throughput.

A key challenge is to distribute the input streams among the farm workers in proportion

with their throughputs. In this case, all workers in a farm terminate simultaneously.

Based on the divisible load theory [91], our adaptive workload distribution calculates the

workload distribution that is relevant to the workers’ service time.

70

4.4. Performance Enhancement Tools (PETs)

We define

Twi = αwi × S wi (4.4)

where Twi is the total computation time of the assigned tasks to the worker i. αwi is a number

between [0,1] representing the fraction of the workload allocated to the worker i. S wi is the

service time of a worker to execute a unit of task i.

In order to have all the workers of a farm pattern finish at the same time, in a farm with N

workers we would have:

Tw0 = Tw1 = ... = TwN (4.5)

with the following condition:

αw0 + αw1 + ... + αwN = 1 (4.6)

To simplify the workload equation for each worker, with no loss of generality, we limit the

number of workers to 2. Combining equations 4.4, 4.5 and 4.6 for a Farm with 2 workers, the

fraction of the workload for w0 is:

αw0 =
S w0

S w0 × (1 +
S w0
S w1

)
(4.7)

and the fraction of the workload for w1 is:

αw1 =
S w0

S w1 × (1 +
S w0
S w1

)
(4.8)

Considering 1 = S w0
S w0

, by extending the equation for N workers, the fraction of the workload

for wi is:

αwi =
S w0

S wi(
∑i=N

i=0
S w0
S wi

)
(4.9)

The workload calculator method receives a sensor object containing the application tree

structure. The method recursively calls itself for each component in the sensor object. It

generates a SKIP compliant actuator object where

• For a farm component, it contains a workload distribution vector of αi representing the

fraction workload for worker wi; and

• For other components, the workload distribution value would be null.

71

Chapter 4. Performance Enhancement Infrastructure

4.4.3 OpenCL Scheduler

A scheduler has been implemented to allocate different OpenCL components to available

OpenCL devices. Operating on top of the ODVL, our OpenCL scheduler supports multi-tenant

application executions, where different applications can be executed simultaneously. If enough

resources are provided the applications run in parallel. Otherwise, the applications run concur-

rently according to the user determined priority policy.

Figure 4.5 indicates the architectural view of the proposed OpenCL scheduler. The OpenCL

scheduler is mainly composed of four different types of modules (Priority Manager, Adaptive

Allocator, Component Switcher and Masked Component) that operate on four different types

of queue (Active Application, Suspended Application, Active Component and Masked Com-

ponent). When required, a module interacts with the ODVL and application registry layers in

order to modify a queue. In the following we explain different parts of the OpenCL scheduler

in detail.

4.4.3.1 Priority Based System

Priority Policy: Are determined as fix and variable policies. If the fix policy is applied for

an application, the application priority will not change during the execution.

If the variable policy is applied for an application, the application will age during its exe-

cution.

When the application priority is not fixed, the longer the application execution takes, the

lower priority the application will have to use the resources. When the variable priority policy

is applied, a suspended application does not age. This prevents an application from live-lock.

Contrary to the suspending technique, the masking technique has no effect on application age-

ing as it does not suspend its execution.

The default policy is variable. However, it is possible to set the priority policy as an

environmental constraint.

Application Priority: The priority of an application is the concatenation of two digits. The

left digit represents the user priority and the right one represents the application priority. 10

categories from 0 to 9 have been considered to categorise users in the system. Each user

can have different applications. 10 categories from 0 to 9 have been considered to categorise

applications of a user in a system. Concatenating the two digits forms a number between 0-99

to represent an application priority. The priority of all components of an application is equal to

the priority of the application.

Priority Observer: This method is invoked by the DSRI sever at any priority interval check-

point. It adjusts the priorities of active applications if the variable policy is selected. Once

72

4.4. Performance Enhancement Tools (PETs)

Figure 4.5: An architectural view of the Proposed OpenCL Scheduler and its relationship

with ODVL and application registry. The blue arrows represents the communication mech-

anism. The solid lines connecting a module to a queue represent the type of operation

applied by the module in the specified queue

73

Chapter 4. Performance Enhancement Infrastructure

adjusted, it tries to resume the suspended applications according to their priority. It is also

invoked when an application terminates.

4.4.3.2 Adaptive OpenCL Allocator

When required, our adaptive OpenCL allocator dynamically reschedules a component on a new

device. The new allocated resource will be used to execute the component for the next input

iteration.

Selection Policy: Chooses a device with higher computing power for a component accord-

ing to the priority of its application.

The computing power of device i for component j can be defined as follows:

CPi j =
cActiveT imei j∑N

k=1 cActiveT imek j
(4.10)

where cActiveT imei j is the active service time of component j on OpenCL device i; and N

is the total number of available OpenCL devices. The default value for each device CPi j is

1. A selected device can be either a free device or a fully occupied device. A free device is

a device in which the number of allocated components is less than its determined devCAP. A

fully occupied device is a device where the number of components running on it is equal to

its provided devCAP. When a device is fully occupied, the following competition rule will be

applied.

Competition Rule: Considering its priority, a component can compete for devices taken by

other components with lower priorities.

Device Selection: Applying the selection policy, the device allocator runs a heuristic method

to find an optimum device for a component. The following scenarios are possible when the de-

vice selection method is called.

• A free device is selected for a component. In this case the device will be allocated to the

component and the device entry in the deviceSet will be updated.

• A fully occupied device is selected for a component. Then, a victim selection function is

called to find a component with the lowest priority as a victim component. A FIFO policy

is applied for components with the same priority. The victim component is replaced by

the new component and the device entry in the deviceSet is updated. Then, the device

selection method runs recursively to find another device for the victim component. The

algorithm iterates until either no victim component is left or no device is found for the

74

4.4. Performance Enhancement Tools (PETs)

victim component. When no device is found, the suspension technique is applied to the

application containing the victim component.

Suspension Technique Depending on the structural pattern of an application, the two fol-

lowing techniques can be applied.

Application suspension: We define a suspension method to suspend an application whenever

it has least one component for which no free device slots are available. It supports the

atomicity rule where all resources allocated to the application will be released. This is a

general technique that is applicable to all structural patterns.

Component Masking: Is applicable to the parallel building block ([∗]N). In HFastFlow, the

parallel building block has been implemented as a farm pattern. When possible, our

scheduler applies component masking to prevent an application from unnecessary sus-

pending. Masking refers to temporarily or permanently suspending a farm worker with-

out suspending an entire application. In this case a resource that is allocated to a masked

worker is released without suspending the application. This would be useful if there are

not enough resources available for an application execution. For a farm with N number

of workers representing [∗]N computation, it is possible to mask N − 1 workers simulta-

neously.

4.4.3.3 Component Switcher

The component switcher method is defined to relocate the bottleneck node of an application.

If a new device is detected for the bottleneck node, the ODVL reallocation method is invoked

to reallocate the bottleneck component.

If the bottleneck node is an OpenCL component, the switcher method tries to dynamically

select a device with higher computing power for the component.

When there are two devices with the same computing power the one with the lower occu-

pancy rate will be selected. A device occupancy rate (OR) is calculated as follows:

OR = rnd/mxd (4.11)

Where rnd is the number of kernels currently running on the device and mxd is the maximum

number of kernels that can run per device.

4.4.3.4 Application Phase-Changing Detection

An application state can change during execution. Such changes can be a component termina-

tion or a bottleneck node variation. By detecting such changes during an application execution,

it is possible to improve its performance. By knowing the structure of an application, it is

75

Chapter 4. Performance Enhancement Infrastructure

possible to detect such variations and reschedule the component allocations accordingly. Our

OpenCL scheduler is equipped with two mechanisms called resource stealing and resource

sharing to further refine scheduling decisions.

Resource stealing: Applies to components of a farm pattern for both MIS D and parallel

computation. Inspired by a task stealing mechanism, a bottleneck OpenCL worker steals a

resource with high computing power from the faster OpenCL worker upon its termination

state.

In the task stealing approach, where an external queueing system and lock mechanism

are applied, a faster worker steals the task from a slower worker once it has exhausted all its

allocated tasks. However, the task stealing mechanism is not applicable to HFastFlow due to

an internal queueing system that has a lock-free mechanism. In this case, each component has

its own internal queue and does not have any access to other component queues.

Employing the structural information of an application, the proposed method detects farm

patterns and the termination state of a faster worker. It then masks the worker and reallocates

the bottleneck worker to the stolen device.

Resource sharing: Applies to a pipeline pattern where there is more than one OpenCL

stage.

Monitoring the state of each stage, the proposed method:

• Finds the bottleneck stage and the device allocated to it as an old device;

• Finds a high computing power device for the bottleneck stage as a new device;

• Reallocates the bottleneck stage to the new device;

• Randomly selects one of the allocated stages to the new found device as a victim stage;

and

• Reallocates the victim stage to the old device.

In this case the bottleneck stage in the pipeline will be periodically changed in order to

help the flow of the stream in the pipeline. This process will be repeated periodically until the

application is terminated.

At each monitoring time interval, a stochastic algorithm is applied to decide whether or not

the resource sharing method should be used.

4.4.3.5 Scheduling Example

Figure 4.5 indicates a snapshot of the proposed OpenCL scheduling system that is mapping 4

different registered applications AP1 to AP4 (where the priority of AP1 > AP4 > AP2 > AP3)

76

4.4. Performance Enhancement Tools (PETs)

on two different registered devices D1 and D2 (where devCAPD1 = 2 and devCAPD2 = 1). The

applications AP1 and AP4 are running while the applications AP2 and AP3 are suspended.

Also, application AP4 has two pending components that are yet to be allocated in the masking

queue while all components of AP1 have already been allocated and running. The ODVL layer

represents the mapping patterns of components to different available heterogeneous devices.

4.4.4 Static Structural Configuration

Tuning a structured application for a given architecture might produce an unpredicted result

in another architecture. Therefore, fine tuning the application and mapping its components to

the available resources can vary according to the given execution environment. As an external

coordination method, the static structural configuration tries to automatically tune a structured

application and to map its components to the available resources for a given environment in

order to maximise the application throughput.

When no historical data is provided for an application, our static structural configuration

requires a training period on the application in order to generate the sensor information such as

the service time of the components.

By communicating with the DSRI server, the structural configuration receives an SKIP

compliant structural configuration of the application and sensor information as an input. It

generates an actuator file that contains the optimised SKIP compliant object which represents

the application structural tree for the specific environment.

4.4.4.1 Abstract Computation Graph (ACG)

For an application, in order to optimise the number of instances for each building block com-

ponent, we need to determine the data flow graph for an application. Therefore, depending

on the data flow demand and the service time of a component we can optimise the number of

instances for the component. Using the pattern based structured parallelism, it is possible to

extract the data flow graph from the structural graph.

In this case, for any application constructed by the building block grammar represented

in Listing 3.1, a new abstract computation graph (ACG), representing the data flow of an

application, can be generated by using the the reduction rules provided in equation 4.12.

77

Chapter 4. Performance Enhancement Infrastructure

∧x ::= ∧

∧∧ ::= ∧

(∧C)x ::= ∧Cx

(∧C∧)x ::= ∧Cx∧

[C]x ::= [C]x

[C1, ...Cx] ::= (C1 ∨ ...∨Cx)

(4.12)

where

∧ ::=a1x | � | `x1

represents service components and

C ::= «code» | ‹|code|› | «‖code‖»

represents computing components. ∨ separates the choices in MISD computation.

Using the reduction rules in 4.12, the application structural tree will be converted into

ACG where the computation components are separated from the service components. We refer

to a service component as an abstract queue.

The throughput of an abstract queue is the ratio of the queue input rate to the output rate.

The maximum value for queue throughput is 1, where the rate of the consuming tasks is equal

to that of the producing tasks.

Consuming Set: For an abstract queue, a consuming set refers to a set of computing com-

ponents that consume from it. As the last abstract queue does not have a consuming set, the

last ∧ in ACG is eliminated.

Component Configuration: For an abstract queue containing [Ci]x, component configura-

tion refers to the decision of determining x as the number of instances for member Ci of the

queue consuming set. For an HWRAPPER node («‖code‖»), where the allocation of a com-

ponent on different heterogeneous devices is possible, the decision to select the device is also

considered as part of the configuration.

Structural Configuration: For an application, structural configuration refers to determin-

ing the component configuration of all abstract queues.

The objective is to maximise the throughputs of all abstract queues and to keep the through-

puts of all queues as close to each other as possible considering the resource limitation. In this

case the number of resources allocated to each task queue is a key factor in achieving the

objective.

Therefore, all possible structural configurations that satisfy the resource constraint will

generate the solution space.

78

4.4. Performance Enhancement Tools (PETs)

4.4.4.2 Monte-Carlo Tree Search (MCTS)

The Monte-Carlo Tree Search (MCTS) is a heuristic iterative optimisation algorithm, which is

applied on the solution space to find an optimum solution. At each iteration, the MCTS selects

a solution, simulates the execution of the problem for the selected solution and rewards it by

analysing the simulation result based on our objective. The result of the reward will be back-

propagated based on the applied back-propagation policy [92]. In the following we explain the

proposed MCTS-based approach in more details [93].

Decision Tree: The MCTS approach operates on a decision tree created from the solution

space. In a decision tree each depth corresponds to an abstract queue:

• A root of the tree represents 0 configuration.

• Nodes at depth 1 represent possible configurations for the first abstract queue in ACG.

• Nodes at depth 2 represent possible configurations for the second abstract queue in ACG.

• A path from a root to a leaf represents a candidate structural configuration as a solution

for the specified environment.

For each queue the component configuration range is between 1 and the maximum available

slots on all resources. The lower bound ensures that ACG will not be disjoint. The upper bound

applies the resource limitation.

Each node represents a possible component configuration:

{A(wi,k) | wi ∈ M,k ∈ {0,1, . . . , L}} (4.13)

where A ∈ {ADD,REMOVE}; M is the set of components of the task-queue (that contain

one element if there is only a CPU or a GPU component, or two elements if there is both a

CPU and a GPU component); k is the amount of resources to be allocated to a component, wi;

and, L is the maximum amount of resources that can be allocated to a component.

Each path from the root to a leaf is considered as a viable solution to the problem.

Selection Strategy: The selection strategy applied here is Upper Confidence bounds ap-

plied to Trees (UCT) [94, 95]. The formula for UCT is:

UCT = X j + 2CP

√
2lnn

n j
(4.14)

where n is the number of times the current node has been visited; n j is the number of times

the child, j, has been visited; CP > 0 is a constant value; and, X j is the average reward value

given to child node, j.

79

Chapter 4. Performance Enhancement Infrastructure

Simulation of a selected solution: We have developed a simulator which mimics the be-

haviour of a given application running on the target architecture. The simulator outputs the

metrics (queue level, resource utilisation, task-queue throughput) that we evaluate when tuning

a given application.

The simulator builds a virtual environment via SKIP object environmental information.

For each node in ACG a component with a predefined service time is generated. For each

task-queue in ACG a vector queue will be generated. Each component will be connected to an

input queue and output queue which pops a task from input queue and pushes the result to an

output queue.

There are two sets that represents the available CPUs and available GPUs and two queues

that contain the active and suspended components in the system. Based on the component types

(CPU or GPU), if an appropriate resource is available a component will be dedicated to it for a

predefined time slot and it will move to the active queue. Otherwise the component will be put

in the suspended queue.

To execute each task, a component may need several time slots of a resource. When a

time slot ends, if the suspended queue is not empty, the component releases the resource and is

moved from the active queue to the suspended queue and the resource will be given to another

component in the suspended queue.

Each component receives a task from its input task queue and sends the result to its output

task queue. When the input/output task queue is empty the component will release the resource

and moves to the suspended queue.

The time unit can be scaled up in order to reduce the simulation time.

Reward Function Once a solution has been simulated, a reward for it is calculated. The re-

ward function is based on the throughput of the system, denoted by T . There are two balancing

factors related to the overall utilisation of the system:

1. We define the utilisation factor as S DU , which is the standard deviation from the mean

utilisation of all components in the system:

S DU =

√
Σi(CUi −CUmean)2

N
(4.15)

where N is the total number of components in the system; CUi is the utilisation of the

component, Ci; and, CUmean is the average utilisation of all components in the system.

Using S DU in a reward function keeps the number of instantiations for a component

within a reasonable range. The lesser the effect of an instance of a component on appli-

cation speed-up, the greater the S DU value is. Also, this reduces unnecessarily usage of

the resources.

80

4.5. Summary

2. We define the throughput factor as S DQ. This is the standard deviation of the mean

queue throughput, defined as follows.

S DQ =

√
Σi(TQi − Tmean)2

L
(4.16)

Here, L is the total number of component queues in ACG, TQi is the throughput of

component queue Qi and Tmean is the average value of the throughput of all component

queues in ACG. Adjusting the reward for this factor discourages the allocation of ad-

ditional resources to the components of a component queue when they are no longer

bottlenecks on that component queue.

The reward function for a selected path, v, of the decision tree is calculated as follows:

Q(v) = T − (S DU + S DQ) (4.17)

Back-propagation, Termination Condition and Final Move Selection: We have con-

sidered the average back-propagation policy, where the average reward of all children is prop-

agated to the parent [96].

The MCTS algorithm finishes if no new moves are made for K iterations. The final move

selection is based on the robust-max child policy. To select the final path in each step, the

robust-max child policy tries to select the child with both the highest visit count and the highest

value. If there is no robust-max child at any step, more simulations are run until a robust-max

child is obtained [96].

4.5 Summary

In this chapter we have implemented a SKIP Compliant autonomic behavioural system, called

PEI that is capable of coordinating a structured application both static and dynamically.

The instrumented framework, coordination engines and interaction mechanism are physi-

cally located in different packages where each package can be considered as an independent

process interacting via the SKIP methodology with each other. Applying UML notation, Fig-

ure 4.6 demonstrates a component diagram representing the physical view of PEI system.

AS stated in figure 4.6, each application has its own DSRI client located inside the applica-

tion executing in a separate thread. During application execution, the DSRI client invokes the

application getter method from the root component in an application tree structure. Through

the getter method the SKIP compliant extra-functional information is recursively extracted

from all components of the application in the form of a sensor file. Once extracted, the DSRI

client sends the sensor information to the DSRI server via ZMQ proxy. For each application,

81

Chapter 4. Performance Enhancement Infrastructure

Figure 4.6: A component diagram representing the physical view of the autonomous be-

havioural framework

82

4.5. Summary

the DSRI server, which is located in a separate process, receives the sensor information; dis-

patches it through both internal and external coordination engines via ZMQ proxy; and receives

the coordination modification instructions in the form of actuators. The actuators are sent to the

applications by the DSRI server. Once an actuator file is received, the DSRI client invokes the

application setter method from the root component in an application tree structure. Through

the setter methods, the actuator file is recursively distributed among all the components of the

application from root to leaves and the appropriate coordination modifications are applied to

each component.

Using the HFastFlow framework which implements the skeleton patterns through RISC-

pb2l approach, this provides a certain level of abstraction in communication and synchronisa-

tions over heterogeneous multi-core applications.

Extending the HFastFlow framework by implementing the OpenCL back-end demonstrates

the adaptability and expandability of the RISC-pb2l approach for targeting heterogeneous multi-

core architectures.

We have demonstrated the different actuators provided to enhance the HFastFlow control-

lability. Setting the actuators’ parameters can be autonomic and manual. Typically, actuators

contributing to the application structure such as queue size, OpenCL component tuning, and

efficient idling can be set statically before application execution. Such decisions depend on the

structure of the application and the chosen environment. However, actuators such as compo-

nent allocations and workload distributions can vary during an application execution. Static

configuration of such actuators may not improve an application’s performance due to the non-

deterministic nature of the dynamic changes in resources and the application execution condi-

tions. Decisions about such actuators vary depending on the observed conditions of both the

application and the environment. Each decision can be different from the previous one.

SKIP provides a mechanism for exchanging the information between the skeleton frame-

work and the coordination methods. With a platform independent interaction protocol, SKIP

provides a means of communicating between the coordinating engines and the executing ap-

plications. We use a 2-level hierarchical DSRI system with a certain level of autonomy for the

subordinate. While the client is responsible for executing the application and extracting/inject-

ing the SKIP compliant objects, the server has the responsibility of coordinating the resources

among all running applications.

Using the client-server architecture for DSRI isolates the overhead of the coordination deci-

sion from user applications. By applying the hierarchical technique, each skeleton application

is responsible for controlling its coordination workspace with a certain level of autonomy in

the provided resources, while the allocation of the resources to each application is handled by

the server-side coordination engines.

Also, applying a non-blocking asynchronous message passing technique between the client

83

Chapter 4. Performance Enhancement Infrastructure

and server prevents the client from blocking the coordination decisions while exchanging the

information. Moreover, determining the DSRI client as an independent thread and using a sin-

gle mutual exclusion technique for shared parameters separates the cost of communicating with

coordination decisions from user applications. With global knowledge of all executing applica-

tions, the DSRI provides multi-tenant application execution over the heterogeneous multi-core

system.

The provided OVDL is used to unify the underlying heterogeneous OpenCL devices and to

separate the resource management from the executing application.

Connecting the instrumented HFastFlow framework and providing coordination engines

through DSRI, it is possible to provide an autonomic and semi-autonomic controls over appli-

cations dynamically with the assistance of SKIP to exchange information. While autonomic

controls are provided by coordination engines for actuators that require dynamic decisions,

with the assistance of a user, setting the structural actuators required for static decisions yields

semi-autonomic controls over an application.

As stated in Appendix A, although the composition rules provided in the SKIP methodol-

ogy is capable of generating and instrumenting all parallel patterns that is supported by RISC-

pb2l, the operability of these patterns depends on their implementation through the HFastFlow

framework. Currently HFastFlow only implements the RISC-pb2l compositions that is required

for farm and pipeline patterns. Therefore, full operability of all the compositional features of

RISC-pb2l libraries will be available when these compositions are implemented by the HFast-

Flow framework. In the next two chapters we evaluate the applicability of the SKIP method-

ology for different categories of applications implemented through HFastFlow skeleton-based

parallel patterns through RISC-pb2l libraries using PEI.

84

Chapter 5

Evaluation of OpenCL Based

Applications

In this chapter we evaluate the performance overhead of PEI and coordination optimisation

achieved by PETs for PEI-based applications. All applications in this chapter use the HFast-

Flow implementation of HWrapper, the OpenCL back-end presented in Chapter 4, section 4.1.1.

By using HWrapper, we can differentiate between CPU based and GPU based compo-

nents and extract the specific extra-functional information for GPU components. This infor-

mation can be used for tuning the coordination of a structured application on a heterogeneous

(CPU/GPU) multi-core architecture as stated in Chapter 3, section 3.2.

This chapter is composed of three sections. In section 5.1 we present the application suite

that has been developed to evaluate our SKIP compliant framework. In section 5.2, we thor-

oughly evaluate our approach for the designed test suite over different platforms. Finally, a

summary of this chapter is provided in section 5.3.

5.1 Application Suite

We emphasise that our intention here is to demonstrate the benefit of our HWrapper in further

control and tuning the coordination mechanism. Therefore, we do not intent to develop a new

version of the tuned OpenCL kernel for each application. It this spirit, in order to develop the

following application, we have applied the OpenCL kernel provided by AMD [97] for all the

implemented benchmark applications.

Due to their SIMD parallelism, the performance of GPU implementations greatly depends

on how easy it is to make a parallel adaptation of a given algorithm. Image processing algo-

rithms are often massively parallel by nature, since the parallelisation is naturally provided by

per-pixel (or per-voxel) operations. This simplifies their implementation in a GPU and in gen-

eral make them good candidates for GPU implementations [98]. Therefore, image processing

85

Chapter 5. Evaluation of OpenCL Based Applications

applications have been considered for developing the test suite that executes over heteroge-

neous architectures.

We have designed six different applications to cover the supported parallel patterns by

HFastFlow. The provided applications aim to cover cases with i) different types of parallel

patterns in HFastFlow (Sobel Filter, URNG, and Gaussian Noise); ii) nested composition of

supporting patterns (Bilateral Denoise and Separable Convolution); and, iii) more than one

OpenCL kernel per application (Recursive Gaussian).

Table 5.1 represents the characteristics of each application. The first column of the table

represents the application name and the second column represents the features that the ap-

plication covers. The applications aims to cover different coordination features for different

RISC-Pb2l parallel patterns supported by HFastFlow.

Table 5.1: Summary of Applications Characteristics.

Application Name Application Characteristics

Sobel Filter Represents a heterogeneous Pipeline pattern in HFastFlow with an OpenCL component in the

second stage. Not generated by SKIP adapter, this application demonstrates the

applicability of using coordination engines for existing applications using HWrapper.

URNG Represents a heterogeneous Pipeline pattern in HFastFlow with an OpenCL component in the

second stage. This is an example of Heterogeneous Pipeline pattern that is generated by

SKIP adaptor.

Gaussian Noise Represents a heterogeneous Farm pattern in HFastFlow with OpenCL components as Farm

workers. This is used to demonstrate the coordination of different OpenCL workers in

a Farm pattern.

Bilateral Denoise Represents a nested composition of heterogeneous Farm and Pipeline Patterns in HFastFlow

with OpenCL components as Farm workers. The Farm pattern is the second stage of the

Pipeline and covers the reduction composition in RISC-pb2l (i.e. the Farm

pattern with collector in HFastFlow).

Recursive Gaussian Represents a heterogeneous Pipeline pattern in HFastFlow with more than one OpenCL

components. This is used to demonstrate the coordination of more than one OpenCL

components in a Pipeline pattern.

Simple-Convolution Represents a nested composition of heterogeneous Farm and Pipeline Patterns in HFastFlow

with OpenCL components as Farm workers. The Farm pattern is the last stage of the

Pipeline and covers the non-reduction composition in RISC-pb2l (i.e. the

Farm pattern without collector in HFastFlow).

The SKIP adaptor has been applied to develop the following applications in HFastFlow.

Using the benefit of PEI, (1) the application structure; (2) the applied pattern for each com-

ponent; (3) the number of workers in farms; (4) queue bound; (5) the type of load-balancer,

(6) an application priority; and (7) the load-balancer policy are tunable parameters which can

be changed for each instance of application. Applying our SKIP adaptor also allows the pro-

86

5.1. Application Suite

grammer to have different configurations of the above parameters for an application without

the need to recompile the code.

In order to visualise the structure of an application, we demonstrate the structural compo-

sition of each application in a tree format referred to as its structural tree notation. Therefore,

we have generated a notation for each HFastFlow component. Table 5.2 represents the corre-

spondence between the structural tree notations and the HFastFlow components.

Structural Tree Notation HFastFlow Component

OpenCL wrapper OclNode.

CPU wrapper ff_node and filter function

wrapper encapsulated in ff_loadbalancer

and ff_gatherer.

Pattern container ff_pipeline and ff_-

farm.

Combinators ff_loadbalancer and ff_-

gatherer.

Parallel execution of a set of workers for ff_-

farm.

It represents a non-FastFlow component exe-

cuting unit of computing function.

Representing feedback for a HFastFlow pat-

tern container.

It represents that component A contains com-

ponent B.

Controlling function barrier can be incor-

porated in a HFastFlow component .

Table 5.2: The correspondence between structural tree notations and HFastFlow compo-

nents

87

Chapter 5. Evaluation of OpenCL Based Applications

Figure 5.1: The structural composition of components for the Sobel Filter application in

HFastFlow visualised by structural tree notation

5.1.1 Sobel Filter

The sobel operator [99] creates an image which emphasises edges and transitions. The input

buffer is stored in a 2D image buffer to cache neighbouring pixel reads. Each work-item calcu-

lates the Dx and Dy of a pixel by applying 3x3 filters on nine pixels, including the pixel itself.

The final pixel value is written by calculating the gradient magnitude of the partial derivatives.

The application is composed of three parts: readStage, sobelOperator, and writeStage.

Using RISC-pb2l building block notations we have designed the application as follows:

«readStage » � «‖sobelOperator‖» � «writeStage »

Appendix B.5.1 represents the generation of the sobel filter through the RISC-pb2l building

block presented in Listing 3.1.

Figure 5.1 represents the architectural view of the application in HFastFlow. Using the

SKIP-compliant object represented in Appendix B.5.2, our adaptor for HFastFlow translates it

into a three stage pipeline where the first stage reads the stream of images from different files,

the second stage applies the sobel operator to the image and the third stage stores the image on

the provided output folder.

5.1.2 Bilateral Denoise

A bilateral filter [100] is a non-linear, edge-preserving and noise-reducing smoothing filter for

images. The intensity value at each pixel in an image is replaced by a weighted average of in-

tensity values from nearby pixels. This weight is based on considering both the spatial distance

and the colour distance between its neighbours. This preserves sharp edges by systematically

looping through each pixel and adjusting weights to the adjacent pixels accordingly. The ap-

plication is composed of three parts: readStage, bilateralDenoise and writeStage.

88

5.1. Application Suite

Figure 5.2: The structural composition of components for the Bilateral Denoise application

in HFastFlow visualised by structural tree notation

Using RISC-pb2l building block notations, we have designed the application as follows:

«readStage » �Unicast1Cn � [«‖bilateralDenoise‖»]n � gathernB1 � «writeStage »

Appendix B.4.1 represents the generation of bilateral denoise through the RISC-pb2l build-

ing block presented in Listing 3.1.

Figure 5.2 represents the architectural view of the application in HFastFlow. Using the

SKIP-compliant object represented in Appendix B.4.2, our adaptor for HFastFlow translates it

into a three stage pipeline where the first stage reads the stream of images from different files.

The second stage is translated to a farm pattern that applies the bilateral denoise on the image.

An instance of ff_loadbalancer with a unicast function is used as a filter to unicast images

among the workers. Each OpenCL worker receives a task and executes the bilateral denoise

filter on it. An instance of ff_gatherer with a gather filter is applied. It receives tasks from

all workers and passes them to the third stage. The third stage stores the image on the provided

output folder.

5.1.3 Gaussian Noise

Gaussian noise [101] is a statistical noise that has a probability density function of the normal

distribution. The values that the noise can take on are Gaussian distributed. The application

takes an input image and generates a Gaussian deviation by using the pixel value as a seed.

This deviation is then added to all the components of the pixel.

The application is composed of three parts: readStage, GaussianNoise, and writeStage.

Considering the spread and reduce functions that are capable of fusing custom computing func-

tions with combinators, we design the Gaussian noise application as a single reduction compo-

89

Chapter 5. Evaluation of OpenCL Based Applications

Figure 5.3: The structural composition of components for the Gaussian Noise application

in HFastFlow visualised by structural tree notation

sition.

Using RISC-pb2l building block notations, we have designed the application as follows:

(ReadUnicast1Cn) � [«‖gausianNoise‖»]n � (WritegathernB1)

Appendix B.6.1 represents the generation of Gaussian noise through the RISC-pb2l build-

ing block presented in Listing 3.1.

Figure 5.3 represents the architectural view of the application in HFastFlow. Using the

SKIP-compliant object represented in Appendix B.6.2, our adaptor for HFastFlow translates it

into a farm pattern where the emitter is a custom spread function reading the stream of images

from different files. Also, an instance of ff_loadbalancer with a unicast function is used to

unicast images among the workers.

Each OpenCL worker receives a task and executes the Gaussian noise on it.

The gather function is also a custom function where an instance of ff_gatherer with a

gather filter is applied to receive the tasks from all workers and stores the image in the provided

output folder.

5.1.4 Uniform Random Noise Generator (URNG)

The URNG application generates noise in an image by using a linear congruential generator. It

generates a uniform deviation in the range (0,1) and multiplies by a noise factor to produce the

final noise. It calculates the uniform deviation from the seed, which is generated by averaging

four components of a pixel. It then applies the deviation (multiplied by the noise factor) to

90

5.1. Application Suite

Figure 5.4: The structural composition of components for the URNG application in HFast-

Flow visualised by structural tree notation

all the components of the pixel. Thus, each global thread computes a uniform deviation and

applies it to a pixel.

The application is composed of three parts: readStage, URNG and writeStage.

Using RISC-pb2l building block notations we have designed the application as follows:

«readStage » � «‖urng‖» � «writeStage »

Appendix B.1 represents the generation of URNG through the RISC-pb2l building block

presented in Listing 3.1.

Figure 5.4 represents the architectural view of the application in HFastFlow. Using the

SKIP-compliant object represented in Appendix B.1.1, our adaptor for HFastFlow translates it

into a three stage pipeline pattern where the first stage reads the stream of images from different

files and the second stage applies the URNG function on the image. The third stage stores the

image in the provided output folder.

5.1.5 Recursive Gaussian

Since computational efficiency is often important, low-order recursive filters are often used for

scale-space smoothing. The recursive Gaussian application implements a Gaussian blur using

Deriche’s recursive method [102]. The advantage of this method is that the execution time is

independent from the filter width.

The design application is a pipeline with the seven following steps:

• Read input image.

• All rows of a given bitmap image matrix are processed separately with the method de-

scribed in [102]. This basically consists of a forward run followed by a backward run

through the row.

91

Chapter 5. Evaluation of OpenCL Based Applications

Figure 5.5: The structural composition of components for the Recursive Gaussian applica-

tion in HFastFlow visualised by structural tree notation

• The bitmap image is transposed. Transposing a matrix means the first row becomes the

first column, the second row becomes the second column, and so on.

• The second step is applied over the transposed bitmap image matrix.

• The third step is applied to rotate the bitmap image to its original form.

• Adjust the image direction for storing.

• Store the image.

Using RISC-pb2l building block notations we have designed the application as follows:

«readStage » �«‖gausianFilter‖» �«‖transpose‖» �«‖gausianFilter‖» �«‖transpose‖» �«adjust » �

«writeStage »

Appendix B.2 represents the generation of Recursive Gaussian through the RISC-pb2l

building block presented in Listing 3.1.

Figure 5.5 represents the architectural view of the application in HFastFlow. Using SKIP-

compliant object represented in appendix B.2.2, our adaptor for HFastFlow translates it into

a seven stage pipeline. Stages 2, 3, 4 and 5 are OpenCL stages that use the provided direct

OpenCL back-end.

5.1.6 Separable Convolution

Image convolution is widely used in image processing applications, e.g. for blurring, smooth-

ing and edge detection. Our version of image convolution consists of reading a stream of

images into the memory and applying the convolution function (with a given filter) to each

of these images. Applying the convolution function to an input image consists of calculating,

for each pixel of the input image, a scalar product of the “window” that surrounds that pixel

with the filter weights, and storing the result in the output image in the same position:

out(i, j) =
∑

m

∑
n

in(i − n, j −m) × f ilter(n,m),

92

5.1. Application Suite

Figure 5.6: The structural composition of components for the Simple Convolution applica-

tion in HFastFlow visualised by structural tree notation

where out(i, j) is the pixel of the output image at position (i, j), in(i, j) is the pixel of the input

image at position (i, j), m and n are the dimensions of the filter, and f ilter(i, j) is the pixel of

the filter at position (i, j).

Here, the applied filter is a two dimensional matrix which can be expressed as the outer

product of two vectors. Therefore, the application is called separable 2D-convolution.

The provided application is composed of the two following parts:

• Generation of suitable input matrix input_pixel and filter weights matrix filter_-

weight.

• Convolution to apply the filter_weight on input_pixel.

Using RISC-pb2l building block notations, we have designed the application as follows:

«generation » �Unicast1Cn � [«‖convolutionFilter‖»]n

Appendix B.3.1 represents the generation of the separable convolution through the RISC-

pb2l building block presented in Listing 3.1.

Figure 5.6 represents the architectural view of the application in HFastFlow.

Using the SKIP-compliant object represented in Appendix B.3.2, our adaptor for HFast-

Flow translates it into a three stage pipeline. The first stage generates input_pixel and

93

Chapter 5. Evaluation of OpenCL Based Applications

Table 5.3: Hardware Specification Table for the Titanic machine and the Xookik cluster

Parameter Titanic Xookik

CPU Model AMD OpteronTM IntelrXeonr

Processor 6176

No. of CPUs 2 2

Cores per CPU 12 6

CPU Clock (GHz) 2.3 3.07

physical Memory (GB) 32 50

No. of GPUs 1 1

GPU Model NVIDIA Tesla NVIDIA Tesla

C2050 M2090

GPU Memory (GB) 2.68 6

GPU Cores 448 512

CUDA Version 4.0 4.0

V0.2.1221 V0.2.1221

GPU Driver 290.10 290.10

Version

OpenCL driver AMD-SDK AMD-SDK

version 2.8 version 2.8

filter_weight. It allocates a sequence of number as a unique ID for every input matrix.

The second stage is translated into a farm pattern that applies the convolution function to

the generated matrices.

An instance of ff_loadbalancer with a unicast function is used as a filter to distribute

the generated matrix among the workers.

Each OpenCL worker receives a task and executes the separable convolution on it.

5.2 Evaluation

An evaluation of PEI was carried out on two hardware platforms. Table 5.3 provides the de-

tailed specifications of the applied test machines. The Xookik cluster has 4 symmetric nodes.

Each node has the same specification as that provided in 5.3. The cluster is located at the

Robert Gordon University, Aberdeen. The Titanic machine is located at the University of Pisa,

Italy.

The execution time demonstrated for each application is the average runtime of the appli-

cation over 20 executions.

94

5.2. Evaluation

5.2.1 Performance Overhead of PEI

As mentioned in Chapter 4, the DSRI client and server are in a separate process from each

other. For each application, all interactions such as exchanging information with the DSRI

server and external coordination, are performed through the DSRI client.

Although the DSRI client is in the same process as the skeleton-based application, it will

be executed by a separate thread. This will provide a clean separation between the overhead of

threads executing the application and that running the DSRI client.

Therefore, the overhead of PEI for executing an application is limited to the interaction

between the DSRI client and the application through the getter and the setter methods.

For any intra process race conditions between the DSRI client and the components, such

as reading or modifying the actuator and sensor parameters, a single mutual exclusion is ap-

plied. This means the components always win the competition to access the actuator and sensor

parameters.

As the getter and the setter methods are invoked by the DSRI client, using the single

mutual exclusion pushes the overhead of these interactions on the DSRI client rather than the

application.

However, each application component is responsible for extracting its specified sensor in-

formation. Therefore, the granularity of the extracted information and the monitoring sensitiv-

ity are the two factors that determine the overhead of PEI for executing an application.

The monitoring sensitivity can be determined through a constraint object which can vary

depending on the application nature. To determine the granularity of the collected sensor in-

formation, there are two sampling modes, Sparse and Aggressive.

In order to determine the framework overhead, we have compared the execution time of

applications in the instrumented HFastFlow using sensors for each sampling mode with the

execution time of the same applications in the non-instrumented version of HFastFlow. In

order to avoid biased results, the controllers, coordination engines and dynamic adjustment are

not applied here and all cases are executing in a same coordination configuration. Therefore,

the execution time of the instrumented version is equal to the time spent on running the original

HFastFlow plus the time spent on extracting the sensor data.

Moreover, in order to determine an example of runtime generated sensor files, a single

snapshot of the extracted information for each application is presented in Appendix C.1.

Also, Appendix C.2 demonstrates a single snapshot of the actuator files generated by coor-

dination engines for each application

Moreover, appendix C.3 represents a sample constraint file that is applied to all applications

except recursive Gaussian.

Figure 5.7 demonstrates the performance overhead of the framework for extracting the

extra-functional requirements for the different image processing applications developed here.

95

Chapter 5. Evaluation of OpenCL Based Applications

00:00

02:00

04:00

06:00

08:00

10:00

12:00

14:00

U
R
N
G

SO
BEL

G
AU

SSIAN
-N

oise

R
G
AU

SIAN

C
O
N
VO

LU
TIO

N

BILATER
AL

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Application Name

Original Sparse Aggressive

0
2
:4

3
.8

2
1

0
2
:0

8
.5

7
8

0
1
:1

6
.8

6
3

0
2
:4

0
.7

0
8

1
2
:5

3
.8

6
6

1
2
:3

2
.4

7
7

0
2
:4

4
.1

4
8

0
2
:0

9
.5

3
6

0
1
:1

7
.4

6
4

0
2
:4

1
.0

7
6

1
2
:5

4
.2

6
0

1
2
:3

2
.5

0
9

0
2
:4

4
.1

7
9

0
2
:0

9
.9

7
6

0
1
:1

8
.2

4
3

0
2
:4

4
.5

3
8

1
2
:5

4
.6

1
3

1
2
:3

6
.1

3
9

Figure 5.7: The upper-bound overhead of performance metrics tracing over the HFastFlow

framework on a node of the Xookik cluster for image processing applications.

96

5.2. Evaluation

Table 5.4: Input stream specification for image processing applications

Image Type Image Size Input Stream Number

Bitmap 64*64 1024

Bitmap 128*128 1024

Bitmap 256*256 1024

Bitmap 512*512 1024

Bitmap 1024*1024 1024

Bitmap 2048*2048 1024

Each application receives the streams of 6144 images of 6 different size categories presented

in Table 5.4. The original bar represents the execution time of an application without using the

SKIP methodology; The Sparse bar represents the execution time of an application collecting

sensor information in the sparse mode; and the aggressive bar represents the execution time of

an application when collecting sensor information in the aggressive mode

As observed in Figure 5.7, the maximum overhead is for the aggressive version and is

related to the recursive Gaussian application: 2.5%. For most cases this value is around 1%.

This evaluation also determines a performance lower bound for every coordinating method

applied in the provided applications. Therefore, for PEI, a coordinating optimisation method

that demands an aggressive information collection is acceptable if it optimises an application

throughput of more than 3%.

It is obvious that in sparse mode information collection, which is the default mode for PEI,

a minimum of a 1% performance improvement is required.

5.2.2 OpenCL Back-end

In this section we evaluate the HFastFlow OpenCL back-end, presented in Chapter 4, sec-

tion 4.1.1, that uses the proposed PETs in PEI to tune coordination over heterogeneous multi-

core architectures.

Table 5.5 states the the execution time of the sobel filter application on the Titanic machine.

The application receives the streams of 6144 images of 6 different size categories presented in

Table 5.4.

Parallelising the sobel filter application with HFastFlow, we can increase the GPU utilisa-

tion by 38%. Consequently, up to 1.63 times speed-up has been achieved over the serial version

executing on a GPU device (the AMD version).

97

Chapter 5. Evaluation of OpenCL Based Applications

Application GPU Utilisation total Runtime

Name (hh:mm:ss.milliseconds)

SOBEL-FF 95% 00:02:48.640

SOBEL-AMD 57% 00.04:35.913

Table 5.5: The execution times and GPU utilisation for the Sobel Filter application on the

Titanic machine

Figures 5.8 and 5.9 present the execution of bilateral denoise and Gaussian noise respec-

tively on a node of the Xookik cluster. Both applications receive the streams of 6144 images

of 6 different size categories presented in Table 5.4.

The first column represents the serial execution of the OpenCL kernel on the multi-core

CPU; the second represents the serial execution of the OpenCL kernel on the GPU; and the

third represents the parallel execution of the application on HFastFlow. In both applications

for the HFastFlow version, the second stage is a farm with two workers that use CPU and GPU

devices. Also, an adaptive load-balancer for each worker has been applied to distribute the

tasks among the workers in proportion with the service time of the workers. As stated in both

figures, executing the application on a GPU device can achieve up to 9 times speed-up over that

of a CPU device. Moreover, parallelising an application using a HFastFlow skeleton pattern

represents 1.21 times speed-up over the serial version executing on a GPU (the AMD version).

Although the serial version of applications executing on a GPU device and those developed

in HFastFlow use the same OpenCL kernel, the HFastFlow versions state improvements in both

utilisation and execution time. The potential reasons of such improvement can be described as

follows:

• Using the provided parallel skeleton pattern in HFastFlow, reading input, processing it

and writing the output are considered as independent stages of a pipeline pattern. Apply-

ing the pipeline pattern, all components are executed simultaneously. This will increase

the resource utilisation and reduces the application service time. Also, reading the next

input stream while the OpenCL component is processing the previous one in the GPU

increases the GPU utilisation, as it eliminates the waiting process of the GPU-allocated

component for a task (5.5).

• For the bilateral denoise and Gaussian noise application, the CPU-allocated OpenCL

worker assists the GPU-allocated one. This increases the resource utilisation and im-

proves the service time of the farm component.

98

5.2. Evaluation

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

01:30:00

01:40:00

01:50:00

OCL Serial CPU OCL Serial GPU Heterogenous (CPU and GPU) FF

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Bilateral Denoise Application

Bilateral Denoise
01:44:54.178

00:15:10.202
00:12:32.509

Figure 5.8: Execution of Bilateral denoise using OpenCL back-end

99

Chapter 5. Evaluation of OpenCL Based Applications

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

OCL Serial CPU OCL Serial GPU Heterogenous (CPU and GPU) FF

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Gaussian Noise Application

Gaussian Noise

00:53:20.782

00:06:15.939
00:04:44.557

Figure 5.9: Execution of Gaussian noise using OpenCL back-end

100

5.2. Evaluation

OpenCL Component Tuning: To clarify the parallel scaling of an OpenCL component on a

different device, we have executed the bilateral application with different group size configura-

tions for a CPU-allocated OpenCL worker. The application receives streams of 5120 different

images sizes an inputs ranging from 64*64 to 2048*2048, presented in table 5.4.

The first three columns of the table represent the bilateral application with only one CPU-

allocated worker for the second farm stage. As demonstrated in Figure 5.10, when the only

CPU-allocated worker is applied, exhausting all 12 CPU cores is faster than using 4 or 8 cores.

Columns 4, 6 and 7 represent the execution time of the bilateral application when the GPU-

allocated worker is added to the farm stage. Comparing the three columns, the execution time

of 1 GPU-allocated OpenCL worker and 1 CPU-allocated OpenCL worker using 8 cores is

faster than that using all 12 CPU cores. Moreover, the execution time when using 12 cores is

even slower than using a farm with only one GPU-allocated OpenCL worker.

Monitoring the system during execution reveals that when a GPU device is used for an

application with streams of input data, at least one host thread is required to constantly feed the

GPU worker. Exhausting all cores leads the GPU-allocated host thread to compete to acquire

the CPU-resources. This will interrupt the GPU-allocated components being fed and the GPU

utilisation drops as a result of waiting for an input because the feeding thread is competing for

resources. Therefore, when both the CPU and GPU-allocated OpenCL workers are applied,

exhausting all cores can have a negative effect on application performance.

5.2.3 Workload Distribution

In this section we evaluate the efficiency of HFastFlow adaptive load-balancer presented in

Chapter 4, section 4.1.2 and the adaptive workload distribution technique presented in Chap-

ter 4, section 4.4.2 to a tune the proposed load-balancer.

Table 5.6 shows the workload fraction for the bilateral denoise application for the streams

of 6144 images of 6 different size categories presented in Table 5.4. The application has been

executed on a node of the Xookik cluster. The farm stage in the application has two OpenCL

workers. The second and third columns represent the average workload fraction of the CPU-

allocated and GPU-allocated OpenCL workers for different categories of the images respec-

tively.

Table 5.7 demonstrates the detailed execution time of the bilateral denoise application for

the 1024*1024 category.

When the HFastFlow original load-balancer is applied, limiting the queue size can adjust

the number of tasks executed by each worker that corresponds to the worker service time. The

workload fraction varies depending on the size of the input images.

Using unbounded queues for workers with an original load-balancer demonstrates a signif-

icant drop in application performance. Comparing the last row of the table with the first one

101

Chapter 5. Evaluation of OpenCL Based Applications

00:00:00

00:10:00

00:20:00

00:30:00

00:40:00

00:50:00

01:00:00

01:10:00

01:20:00

C
PU

=1 G
S=4

C
PU

=1 G
S=8

C
PU

=1 G
S=12

G
PU

=1 C
PU

=1 G
S=12

G
PU

=1

C
PU

=1 G
PU

=1 G
S=4

C
PU

=1 G
PU

=1 G
S=8

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Groupsize Configuration

Bilateral Denoise
01:19:49.27

00:40:17.23

00:27:30.55

00:04:28.24 00:03:51.52 00:03:19.17 00:03:04.18

Figure 5.10: Execution of Bilateral denoise using different group-size (GS) for CPU-

allocated OpenCL workers on a node of the Xookik cluster. The number of CPU or GPU

workers used for each execution is demonstrated in the caption of each column.

102

5.2. Evaluation

Table 5.6: Workload fraction in proportion with the computing power for each OpenCL

component of the Bilateral Denoise

Task-Input Size CPU-allocated worker GPU-allocated worker

64*64 0.016497 0.983503

128*128 0.103976 0.896024

256*256 0.082229 0.917771

512*512 0.075479 0.924521

1024*1024 0.074882 0.925118

2048*2048 0.073479 0.926521

determines that when a GPU-allocated worker is only applied, the execution time of the appli-

cation is 9 times faster than the one using both workers with an unbound queue and original

load-balancer.

Moreover, for the original load-balancer the execution time of the application varies de-

pending on the queue size. As stated in the third row of the table, the execution time of the

application using the original load-balancer is slower than the execution time of the application

that only has one GPU-allocated OpenCL worker (the last row).

Considering the execution time of the adaptive load-balancer (the fourth row) demonstrates

that the execution time of the application for the workers with unbounded queues is intact.

Comparing the original load-balancer with the proposed adaptive one states that, for the

original load-balancer, an application performance depends on the queue size, while, our adap-

tive load-balancer application performance depends on the input size.

Adaptive Workload Distribution: Applying divisible workload theory dynamically adjusts

the fraction of the workload when the weight-based policy is applied.

Figure 5.11 demonstrates an ad-hoc switching mode policy where the sudden changes in

the input stream size immediately affect the workload distribution variation. As stated in Fig-

ure 5.11, there are fluctuations in the figure, which we refer to as transient states. Considering

any changes in the size of data as a milestone in the application execution time, these transient

states are the result of an asynchronous meeting of the milestones by each worker. When the

faster worker reaches one milestone while the slower one is still running the input stream of the

previous milestone, the service time based calculated workload fraction will be inaccurate until

the slower one reaches the milestone. The ad-hoc policy is useful when a worker reallocation

is required in the scheduling policy. In this case, a sudden change is required to readjust the

workload distribution according to the new service time of the worker.

103

Chapter 5. Evaluation of OpenCL Based Applications

Table 5.7: The bilateral application execution and different runtime for each component

Load-balancer Total CPU-allocated GPU-allocated Total assigned tasks Total assigned tasks

policy execution time OpenCL worker OpenCL worker to CPU-allocated to CPU-allocated

execution time execution time OpenCL worker OpenCL worker

FF_Loadbalancer- queue 906.855 906.370 72.040 512 512

limitation-unbound

FF_Loadbalancer- 135.770 135.142 133.450 75 949

queue limitation-1

FF_Loadbalancer- 150.168 149.856 132.248 81 943

queue limitation-10

Adaptive_Loadbalancer- 135.183 134.556 133.520 74 950

queue limitation-unbound

Farm with only 144.433 0 143.855 0 1024

one GPU-allocated

OpenCL worker

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 500 1000 1500 2000

o
c
lW

o
rk

e
rs

 W
o
rk

lo
a
d
 F

ra
c
ti
o
n
s

Iteration Intervals

oclWorker0

oclWorker1

Figure 5.11: The variation of workload distribution for CPU/GPU workers for different input

stream sizes on a node of the Xookik cluster using the ad-hoc policy for bilateral denoise

104

5.2. Evaluation

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0 500 1000 1500 2000

o
c
lW

o
rk

e
rs

 W
o
rk

lo
a
d
 F

ra
c
ti
o
n
s

Iteration Intervals

oclWorker0

oclWorker1

Figure 5.12: The variation of workload distribution for CPU/GPU workers for different input

stream sizes on a node of the Xookik cluster using the average policy for bilateral denoise

Figure 5.12 demonstrates the workload distribution using the average policy. In the average

policy, the average service time of a worker since the beginning of an application execution

is considered to calculate the workload fraction. In comparison with Figure 5.11, the average

policy has a smooth movement when the input stream size changes. This would be useful when

resource reallocation is not required. In the absence of resource reallocation, the computational

power of the nodes is predictable and a moderate refinement is required over the workload

distribution according to the new image size.

5.2.4 Phase Changing Prediction

In this section we evaluate the efficiency of the phase changing prediction techniques of the

proposed OpneCL scheduler presented in Chapter 4, section 4.4.3.

We have applied the resource stealing and resource sharing techniques in the bilateral de-

noise and recursive Gaussian applications respectively.

Resource Stealing: As stated in the section 5.2.3, when the original load-balancer in HFast-

Flow is applied, an application performance depends on the queue size, while, when our weight

based load-balancer is applied, an application performance depends on the input size.

105

Chapter 5. Evaluation of OpenCL Based Applications

00:00:00

00:05:00

00:10:00

00:15:00

00:20:00

00:25:00

00:30:00

00:35:00

00:40:00

00:45:00

00:50:00

00:55:00

01:00:00

1 10 20 50 100 500 ub

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Queue Size

ff_load
adaptive

ff_load-Resource-Stealing
adaptive-Resource-Stealing

Figure 5.13: The execution time of the bilateral denoise application for different load-

balancers, different queue sizes and different input image stream sizes on a node of the

Xookik cluster using the average policy.

106

5.2. Evaluation

Figure 5.13 demonstrates four different executions of the bilateral denoise application for

both the round robin load-balancer and the adaptive load-balancer with and without resource

stealing.

In order to determine the dependency of the adaptive load-balancer to input size variation

we have applied the streams of 6144 images of 6 different size categories presented in Table 5.4.

Also, the application has been executed for different queue sizes in order to demonstrate the

dependency of the round robin load-balancer on different queue sizes.

Comparing the gradient of the contour line of the original load-balancer with that of the

adaptive one demonstrates that the dependency of the original load-balancer on the worker

queue size precipitates an application performance drop that is greater than the dependency of

the adaptive load-balancers to the input size.

When our resource stealing technique is applied, comparing the results for both load-

balancer policies states that the execution time of the application for different queue sizes and

image sizes is almost the same. Therefore, applying resource stealing makes the workload

distribution policies independent from queue size and task size.

Resource Sharing: Figure 5.14 represents the execution time of the recursive Gaussian

application for different component allocation policies. The application receives the streams

of 6144 images of 6 different size categories presented in Table 5.4 and the average policy is

applied for workload distribution. The recursive Gaussian application is a seven stage pipeline

composed of four OpenCL stages: two RG operators and two transpose stages.

To schedule these four OpenCL nodes 4 different strategies are considered.

Considering the order of the devices for the node of the xookik cluster that is used here,

the first OpenCL resource is the CPU and the second is the GPU. Therefore, by applying the

round robin policy, the first RG stage is allocated to the CPU; the second stage is allocated to

the GPU; the third is allocated to the CPU; and the fourth is allocated to the GPU.

The greedy technique tries to allocate as much as it can to the GPU device. When there is

no slot available on the GPU, it will allocate the device to the CPU. Therefore, applying the

greedy algorithm, the first two OpenCL stages are allocated to the GPU and the second two are

allocated to the CPU device.

The static structural configuration tries to find an optimum solution by recalculating the

component augmentations and allocation. Using the reduction rules provided in equation 4.12,

the abstract computation graph can be generated as follows:

∧«readstage»∧ «‖gausianFilter‖»∧«‖transform‖»∧ «‖gausianFilter‖»∧ «‖transform‖»∧«readstage»∧

«readstage»

Figure 5.15-a represents the visualisation of the abstract computation graph for recursive

Gaussian and Figure 5.15-b demonstrates the MCTS decision tree generated for recursive

107

Chapter 5. Evaluation of OpenCL Based Applications

00:00:00

00:02:00

00:04:00

00:06:00

00:08:00

00:10:00

00:12:00

00:14:00

00:16:00

00:18:00

00:20:00

00:22:00

Static R
ound R

obin Allocation (cpu,gpu,cpu,gpu)

Static G
reedy Allocation (gpu,gpu,cpu,cpu)

Static Structural C
onfiguration (gpu,cpu,gpu,cpu)

D
ynam

ic Allocation (R
esource Sharing)

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Allocation Policy

Recursive Gaussian

00:17:46.254

00:10:40.434

00:02:40.708
00:01:57.282

Figure 5.14: The execution time of the recursive Gaussian application for different alloca-

tion policies on a node of the Xookik cluster

108

5.2. Evaluation

Figure 5.15: a) Abstract computation graph for recursive Gaussian. b) MCTS decision tree

generated for graph a

109

Chapter 5. Evaluation of OpenCL Based Applications

Gaussian. For all OpenCL components in the MCTS decision tree, two separate entries for

CPU and GPU have been considered, as they can be executed on both CPU and GPU. By ap-

plying the capacity constraint on OpenCL devices, none of the OpenCL stages can have more

than one OpenCL component. Therefore, for each OpenCL component, finding the best re-

source to allocate is the challenge. In this case 12 × 2 × 2 × 2 × 2 × 12 × 12 = 27648 possible

solutions are available.

Using the MCTS algorithm, the structural configuration and mapping of the component to

the available resources for the node used in the Xookik cluster is:

{

readBenchmark = 1;

RG1CPU = 0;RG1GPU = 1;

trans1CPU = 1; trans1GPU = 0;

RG2CPU = 0;RG2GPU = 1;

trans2CPU = 1; trans2GPU = 0;

ad just = 1;

writeBenchmark = 1

(5.1)

}

The resource sharing technique is a dynamic approach which reallocates the components

according to a dynamic change in the bottleneck node.

As stated in figure 5.14 by applying the resource sharing technique over recursive Gaussian,

we have achieved almost 1 order of magnitude speed-up over the round robin technique; 5

times speed-up over the greedy algorithm; and a 28% performance improvement over the static

skeleton configuration.

5.2.5 Multi-tenant Application

In this section we evaluate the efficiency of the proposed OpneCL scheduler presented in Chap-

ter 4, section 4.4.3 to support both concurrent and parallel execution of multi-tenant applica-

tions.

Parallel Execution of Multi-tenant Application: Tables 5.9 and 5.8 represent the parallel

execution of a sobel and URNG applications over the Titanic machine and a node of the Xookik

cluster respectively. The capacity constraint for each OpenCL device is set to one.

Each application has one OpenCL stage. The allocation of OpenCL devices to each appli-

cation varies depending on the priority of the application.

The first two rows in each table represent the execution of each application with static

OpenCL resource allocation regarding the applications’ priorities. No dynamic reallocation is

110

5.2. Evaluation

Application Composition SOBEL-EXEC-TIME URNG-EXECTIME TOTAL-EXECTIME

"Sobel-CPU, URNG-GPU" 00:29:06.124 00:02:44.148 00:29:06.124

"Sobel-GPU, URNG-CPU" 00:02:09.536 01:17:46.220 01:17:46.220

"Soble-GPU, URNG-CPU/GPU" 00:02:45.655 00:04:49.260 00:04:49.260

"Sobel-CPU/GPU, URNG-GPU" 00:04:41.727 00:02:44.023 00:04:41.727

Table 5.8: The runtime for concurrent execution of the Sobel Filter application and URNG

on a node of the Xookik cluster

Application Composition SOBEL-EXEC-TIME URNG-EXECTIME TOTAL-EXECTIME

"Sobel-CPU, URNG-GPU" 01:34:08.420 00:03:30.792 01:34:08.420

"Sobel-GPU, URNG-CPU" 00:02:48.640 03:33:13.060 03:33:13.060

"Soble-GPU, URNG-CPU/GPU" 00:02:48.668 00:06:14.493 00:06:14.493

"Sobel-CPU/GPU, URNG-GPU" 00:06:13.457 00:03:30.942 00:06:13.457

Table 5.9: The runtime for concurrent execution of the Sobel Filter application and URNG

on the Titanic machine

involved for the first two rows.

On both the node of the Xookik cluster and the Titanic machines, two different priority

configurations have been considered. The first row in each table represents that the URNG

priority is higher than the sobel filter priority. The second row in each table represents that the

sobel filter has more priority than the URNG application.

The third and fourth rows in each table represent priority based resource allocation by using

the OpenCL scheduler with regards to dynamic reallocation. With the ability to adaptively

respond to the environmental change, the OpenCL scheduler will dynamically reallocate the

lower priority component when the higher priority application terminates. The result of the

adaptive scheduling represents a significant improvement in the total execution time of the

applications.

Considering the difference in computational power of the CPU and GPU for executing the

OpenCL kernel in our cases, executing multi-tenant applications in parallel mode is different

from normal parallel execution where all resources are computationally equivalent.

Considering the two columns in both Tables 5.9 and 5.8 represents that using both CPU and

GPU in parallel when they are not computationally equivalent is slower than executing them

serially on the GPU.

However, applying the phase detection technique (the last two columns in both Tables 5.9

and 5.8) will solve the problem. In this case, the applications use the GPU concurrently while

111

Chapter 5. Evaluation of OpenCL Based Applications

00:00:00

00:02:00

00:04:00

00:06:00

00:08:00

00:10:00

00:12:00

00:14:00

00:16:00

00:18:00

00:20:00

solo-ff-loadbalancer

m
ulti-tenant-ff-loadbalancer

m
ulti-tenant-adaptive-loadbalancer

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Application Execution Mode

Bilatral URNG TOTAL

0
0
:1

1
:5

5
.6

5
3

0
0
:1

4
:3

5
.6

7
1

0
0
:1

4
:2

6
.4

6
9

0
0
:0

2
:4

4
.1

4
8

0
0
:0

5
:1

4
.0

9
4

0
0
:0

2
:4

4
.5

1
5

0
0
:1

4
:3

9
.8

0
1

0
0
:1

4
:3

5
.6

7
1

0
0
:1

4
:2

6
.4

6
9

Figure 5.16: The concurrent execution of the URNG and Bilateral denoise applications

where the priority of the URNG application is higher than the priority of the Bilateral denoise

application

they run in parallel. Therefore, the CPU is used to assist the GPU device, not to replace it.

Concurrent Execution of Multi-tenant Application: Figure 5.16 demonstrates both the

serial and concurrent executions of URNG and Bilateral denoise applications. For the concur-

rent execution, the initial priority of the URNG is higher than initial priority of the bilateral

denoise.

Also, Figure 5.17 represents both the serial and concurrent execution of the convolution

and sobel filter applications. For the concurrent execution, the initial priority of the sobel filter

is higher than the initial priority of the convolution application.

The capacity constraint for each OpenCL device is set to one and the priority policy is

variable. In each figure, the first category represents the serial execution of the applications;

the second category represents the concurrent execution of the applications using the appli-

112

5.2. Evaluation

00:00:00

00:02:00

00:04:00

00:06:00

00:08:00

00:10:00

00:12:00

00:14:00

00:16:00

00:18:00

00:20:00

solo-ff-loadbalancer

m
ulti-tenant-ff-loadbalancer-fix

m
ulti-tenant-adaptive-loadbalancer

E
x
e
c
u
ti
o
n
 T

im
e
 (

h
o
u
rs

:m
in

u
te

:s
e
c
o
n
d
)

Application Execution Mode

Convolution Sobel TOTAL

0
0
:1

2
:5

4
.2

6
0

0
0
:1

5
:0

1
.6

1
9

0
0
:1

4
:4

7
.2

2
4

0
0
:0

2
:0

9
.5

3
6

0
0
:0

2
:0

9
.5

3
6

0
0
:0

2
:1

2
.9

4
1

0
0
:1

5
:0

3
.7

9
6

0
0
:1

5
:0

1
.6

1
9

0
0
:1

4
:4

7
.2

2
4

Figure 5.17: The concurrent execution of the sobel filter and convolution applications where

the priority of sobel filter application is higher than the priority of the convolution application

113

Chapter 5. Evaluation of OpenCL Based Applications

cation suspending technique and the third category represents the concurrent execution of the

application using the component masking technique.

As the masking technique does not affect the application priority, there is no change in the

execution order of the application when the component masking technique is applied. In this

case, the result for both the variable and fix priorities is the same. The variable priority policy

for the suspending technique ensures a fair distribution of resources among the applications.

This claim is proof as the execution time of the URNG and sobel filter application are almost

double and the sums of the execution times of the two mentioned applications have been added

to the bilateral and convolution applications respectively.

Moreover, comparing the concurrent execution time with the serial version demonstrates

that the overhead of switching among applications to share the resource is negligible. Also, the

masking technique states up to 2% improvement on the total execution time.

Execution Demonstration Figure 5.18 demonstrates the procedure of executing the con-

volution application in concurrent with the sobel filter where the adaptive workload distribu-

tion with the ad-hoc policy, the masking technique and the resource stealing technique for the

OpenCL farm in a separable convolution are applied.

The execution procedure is divided into four stages.

The first stage is the solo execution of the convolution application where one worker has

been assigned to the CPU and one worker has been assigned to the GPU (interval 0 to 10).

As stated in Figure 5.18, the GPU-assigned worker is faster than the CPU-assigned one and

receives around 85% of the input workload, while the slower one receives the remaining 15%

of the workload.

The second stage starts from interval 10 to 300, which is the time when the sobel Filter

application is executed. As the sobel filter priority is higher than that of the convolution, it

wins the competition for the GPU resource. Using the masking technique, the GPU-assigned

worker of the bilateral denoise is masked and all the input workload is redirected to the CPU-

assigned one.

The third stage starts from time interval 300 to 1020, when the sobel filter execution ter-

minates. In this stage the GPU-assigned worker is unmasked and the workload distribution is

readjusted for both workers. Using an ad-hoc policy for the workload distribution, the transi-

tion states in the figure represent the asynchronous accessing of different input data sizes.

The fourth stage starts from time interval 1020, where the GPU-assigned worker has ex-

hausted all its assigned tasks. The resource stealing method is invoked by using the phase

changing detection in the OpenCL scheduler and reallocates the CPU-assigned worker to the

GPU.

114

5.2. Evaluation

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000 1100

W
o
rk

lo
a
d
 F

ra
g
m

e
n
ta

ti
o
n

Evaluation Time Interval

OCL-Worker-0
OCL-Worker-1

Figure 5.18: The visual demonstration of the concurrent execution intervals for the sobel

filter and convolution applications where the priority of sobel filter application is higher than

the priority of the convolution application

115

Chapter 5. Evaluation of OpenCL Based Applications

5.3 Summary

In this chapter we have designed and developed structured applications using PEI for tuning co-

ordination over heterogeneous multi-core architectures. In section 5.1, we have demonstrated

the feasibility of using the HFastFlow SKIP adaptor for generating structured applications us-

ing different combinations of HFastFlow patterns.

In section 5.2, following evaluations have been performed to assess the adaptability and

performance improvements of PEI based applications using our OpenCL back-end. The eval-

uation have been carried out on two different heterogeneous multi-core architectures, namely,

RGU Xookik cluster and the university of Pisa Titanic machine specified on Table 5.3.

Performance Overhead: In section 5.2.1, we have demonstrated that the minimum and max-

imum overheads of the PEI framework for the proposed image processing applications

are 1% and 2.5%, respectively. These overheads are related to the cost of extracting

the sensor information dynamically with regards to the applied monitoring policy. Also,

the minimum overhead can be used to determine a lower bound for improvements that

should be achieved by the coordination optimisation methods.

OpenCL back-end: In section 5.2.2, by using the OpenCL back-end with PEI coordination

engines, we have achieved 38% improvement on GPU utilisation for the Sobel filter

application. We have also achieved up to 1.63 times speed-up over the serial version

of Sobel filter executing on a GPU-device. For both bilateral denoise application and

Gaussian noise application, we have achieved up to 9 times speed-up over the serial

version of the application on CPU. We have also achieved up to 1.21 times speed-up for

both applications over theor serial versions executing on a GPU-device.

Workload distribution: In section 5.2.3, by using the adaptive workload distribution on bilat-

eral denoise application, not only we have removed the dependency between the compo-

nent queue-size and application performance that causes up to 9 times drop in application

speed-up for unlimited queue size, but we have also achieved up to 7% performance im-

provement. However, the adaptive load-balancer used for bilateral denoise application

demonstrates dependency to data input size when it is changed dynamically.

OpenCL Scheduler: In section 5.2.4, by using the resource stealing techniques provided by

the OpenCL scheduler, we have removed the dependency between the component queue

size and input data size for both HFastFlow original load-balancer and our adaptive load-

balancer respectively. Moreover, by applying the resource sharing technique to allo-

cate component on OpenCL-enable devices for recursive Gaussian application, we have

achieved up to one order of magnitude speed-up over HFastFlow round-robin technique

and up to 5 times speed up over static structural configuration.

116

5.3. Summary

Multi-tenant application: In section 5.2.5, we have evaluated the efficiency of using our

OpenCL scheduler for executing multiple applications both in parallel and concurrent

mode. We have considered different combinations of application executions, namely:

• Parallel execution of Sobel filter and URNG, where the OpenCL node for one ap-

plication is allocated to CPU and the OpenCL node for the other application is

allocated to GPU.

• Concurrent execution of Sobel filter and URNG where both application share the

CPU and GPU resource based on their priority.

• Concurrent execution of Sobel filter and simple-convolution where both application

share the CPU and GPU resource based on their priority.

• Concurrent execution of URNG and bilateral denoise where both application share

the CPU and GPU resource based on their priority.

Parallel executions of Sobel filter and URNG applications have demonstrated that the

total execution time of applications are slower than executing them serially on GPU.

However, the concurrent executions of applications have demonstrated that the overhead

of switching resources between components is negligible. Moreover, we have achieved

up to 2% improvement on total execution time of application.

Although executing multi-tenant applications in a concurrent mode may not significantly

improve the performance, it provides extra flexibility for the applications’ executions. In

this case, by prioritising applications, small-scale applications can temporarily borrow

resources from the large-scale ones without terminating the execution of the large-scale

applications. Applying the phase detection technique, it is possible to use CPU to assist

the GPU device, however, it is not a replacement for a GPU.

117

Chapter 6

Evaluation of Generic Applications

In this chapter we evaluate PEI for existing FastFlow applications which do not use HWrap-

per to evaluate the generality of the proposed methodology. These applications are mainly the

GPU/CPU based numerical algorithms which are suitable for parallelism. These applications

have already been implemented without using the SKIP adaptor. The evaluation of the existing

applications is provided to demonstrate that with no modification of existing applications, it is

possible to benefit from the provided coordination optimisation by using SKIP-based instru-

mented building blocks instead of the default building blocks.

Two categories of applications have been considered here. The first category executed on

a homogeneous architecture containing a set of benchmark applications provided by the Fast-

Flow developer team. As benchmark applications for FastFlow, these applications are selected

to demonstrate the overhead of the SKIP methodology in a building block based framework

like FastFlow. Also, we demonstrate the efficiency of the SKIP compliant building block based

approach for coordinating homogeneous applications. Moreover, we have implemented the N-

body simulation in three different frameworks to compare the overhead of the building block

based approach in application scalability in comparison with the highly specialised skeleton

based approach.

The second category of applications has been deployed in the hybrid (CPU/GPU) system

using the ParWrapper provided in FastFlow. These applications are composed of a set of

GPU and CPU components. The GPU component for these applications is implemented in the

CUDA environment. As these applications are using ParWrapper instead of HWrapper, not all

coordination engines can be applied in these applications. However, using an instrumented ver-

sion of building blocks in the FastFlow framework, we indicate that our HWrapper-independent

coordination methods can efficiently optimise these applications. The second category of appli-

cations has been chosen carefully to demonstrate i) the stability and adaptability of the SKIP-

compliant building block approach that is embedded as part of a large scale distributed intense

memory usage application using the applicable coordination engines (EI Routine); and, ii) the

119

Chapter 6. Evaluation of Generic Applications

generality of certain coordination engines applicable in heterogeneous applications not using

the HWrapper extension (SMTWTP and MD). We have applied the structural tree notations

presented in Table 5.2 to indicate the architectural view of each application in FastFlow.

6.1 Homogeneous Application

This section contains six different FastFlow existing applications that do not contain any HWrap-

per or ParWrapper components. Therefore, GPU is not used when executing these applications

on heterogeneous multi-core architectures. By applying these applications we demonstrate the

efficiency of PEI for executing applications on Homogeneous (CPU only) multi-core architec-

tures.

Table 6.1 represents the characteristics of each application. The first column of the table

represents the application name and the second column represents the features that the appli-

cation covers.

Table 6.1: Summary of Homogeneous Applications Characteristics.

Application Name Application Characteristics

N-body-Simulation The serial version of N-body simulation is implemented as a benchmark

application by SICSA multi-core challenge [103]. We have implemented

N-body-Simulation on FastFLow, SKePU, and Thrust to evaluate the over-

head of RISC-Pb2l building block based framework with other existing al-

gorithmic skeleton based frameworks. This is an example of embedding

the FastFlow framework in an application in order to parallelise it. The

N-body-simulation application in FastFlow is the concatenation of 3 Farm

patterns with barrier, where each Farm is parallelising an independent block

of codes in N-body-Simulation.

Mandelbrot These applications are implemented by FastFlow development team

Quick Sort as standard benchmark applications. They represent the

Fibonacci usage of FastFlow Farm pattern for parallelising different numerical

Stencil applications on homogeneous (CPU only) multi-core architectures.

N-queens In this thesis, we have used these applications to evaluate the overhead of

PEI framework for extracting/injecting sensor/actuator information. More-

over, the efficient idling coordination technique presented in Chapter 4, sec-

tion 4.1.4 is applied to these applications to evaluate the efficiency of PEI

framework for auto-tuning the dynamic coordination of applications that do

not use any HWrapper or ParWrapper components.

120

6.1. Homogeneous Application

In the following we introduce them in brief.

6.1.1 N-body Simulation

The N-body problem is a classical problem of predicting the individual motions of a group of

celestial objects that interact with each other gravitationally.

The application has the 4 following steps:

• Calculates the initial momentum of the bodies in the system;

• Calculates the energy which is a combination of the kinetic energy between each pair of

bodies and the potential energy when the bodies are far apart.

• Calculates the motions of bodies for S step iterations.

• Recalculates the total energy of the system after the motion to demonstrate that the total

energy is constant.

At the end of each step a synchronisation mechanism is required to make sure each step

is applied for all bodies before applying the next step. However, the operation of each step

in different bodies can be executed independently. In this case the application is composed of

4 separate parallel parts where at the end of each step a barrier is applied to synchronise the

operation.

Using the building block grammar represented in Listing 3.1, each step for the N-body

simulation is generated as follows:

First step: Initial momentum �Momentum presents a composition that calculates the initial

momentum of the bodies in the system.

Using RISC-pb2l building block notations, we have designed the momentum step as

follows:

(fmomentum1Cn) � [«momentom»]n � (gmomentumnB1)

Second step: Total energy before S step motions �Energy shows a composition that calcu-

lates the total energy of the system before and after the movement.

Using RISC-pb2l building block notations, we have designed the energy step as follows:

(fenergy1Cn) � [«energy»]n � (genergynB1)

Third step: S step motions �Advance indicates a composition that calculates the motion of the

bodies towards the initial position after s step iterations. It has been encapsulated inside

a for loop to calculate the motion of all bodies for s steps.

Using RISC-pb2l building block notations, we have designed the motion step as follows:

(fadvance1Cn) � [«advance»]n � (gadvancenB1)

121

Chapter 6. Evaluation of Generic Applications

Figure 6.1: The structural composition of components for the N-body simulation in Fast-

Flow visualised by structural tree notation

Fourth step: Total energy after S step motions The same composition generated for the

second step is applied on the bodies to calculate the total energy after s step motions.

Appendix D.1 represents the generation of each pattern through the RISC-pb2l building

block presented in Listing 3.1. Replacing the serial implementation of each step with its corre-

spondent generated pattern, we have embedded PEI inside the N-body simulation to parallelise

the application. Figure 6.1 represents the architectural view of the N-body simulation that

encapsulates the FastFlow parallel patterns.

In FastFlow for each composition a separate farm pattern has been implemented and em-

bedded inside the applications.

For the farm patterns in Momentum and Energy an instance of ff_loadbalancer with an

emitter filter function has been applied which divides the bodies into chunks of K size where

K = N/nworkers; N is the number of bodies and nworkers represents the number of farm

workers. This will represent a scatter with a custom division of data. Also, an instance of

ff_gatherer with a collector has been used to reduce each property value to a scaler number.

The farm pattern for Advance is also equipped with the ff_farm::wrap_around()method

to implement the feedback. An instance of ff_loadbalancer with an emitter filter function

is used as a load-balancer filter which splits bodies into square blocks and offloads them to

workers’ queues asynchronously by using the round-robin technique. Each worker concur-

rently calculates the force of the received square tiles so that the interactions in each tile are

evaluated in sequential order using the upper triangular technique, thus generating the partial

updated vector. Also, an instance of ff_gatherer with a collector is used to collect the partial

updated vector from workers and this updates the bodies.

For each farm pattern generated in FastFlow, the workers, emitter and collector are added

to a ff_farm container object in the proper sequence. Execution is started by an invocation

of the ff_farm::run_and_freeze() method. The method ff_farm::wait_freezing()

invokes the barrier required for synchronisation at the end of each farm before going on to the

122

6.1. Homogeneous Application

Figure 6.2: The structural composition of components for the Mandelbrot application in

FastFlow visualised by structural tree notation

next step.

6.1.2 Mandelbrot

The Mandelbrot set is the set of values of c in the complex plane for which the orbit of 0 under

the iteration of the complex quadratic polynomial

zn+1 = zn + c (6.1)

remains bounded [104]. When starting with z0 = 0 and applying the iteration repeatedly, a

complex number c is part of the Mandelbrot set if the absolute value of zn remains bounded

however large n gets. The escape time algorithm has been applied to calculate the Mandelbrot

set.

Using RISC-pb2l building block notations, the application has been designed by the Fast-

Flow developer as follows:

scatter1Cn � [«mandeleq»]n � (gatherall&drownB1)

Appendix D.2 represents the generation of the Mandelbrot application through the RISC-

pb2l building block presented in Listing 3.1.

Figure 6.2 represents the architectural view of the application in FastFlow. Implemented

by the FastFlow developer team, a farm pattern represents the Mandelbrot application.

An instance of ff_loadbalancer with a scatter as a filter function is used to divide a

given plot area evenly among workers.

123

Chapter 6. Evaluation of Generic Applications

Figure 6.3: The structural composition of components for the quick sort application in Fast-

Flow visualised by structural tree notation

Each worker applies equation 6.1 to the allocated x, y points in the plot area for a cer-

tain number of iterations to determine if they have reached a critical escape condition. If the

condition is reached, the calculation is stopped, the pixel is drawn, and the next x, y points is

examined. Otherwise, the point is within the Mandelbrot set.

An instance of ff_gatherer with a custom function is used to plot each collected pixel,

and where based on the behaviour of that calculation, a colour is chosen for that pixel.

The workers, emitter and collector are added to a ff_farm container object in the proper

sequence. Execution is started by an invocation of the ff_farm::run_and_wait_end()

method.

6.1.3 Quick Sort

The quick sort algorithm first divides a large array into two smaller sub-arrays: the low ele-

ments and the high elements. Quick sort can then recursively sort the sub-arrays. [105]

Using RISC-pb2l building block notations, the application has been designed by the Fast-

Flow developer as follows:
←−−
((pivotdev1Cn) � [«sort_pivot »]n � (collect&checknB1)termination

Appendix D.3 represents the generation of the quick sort application through the RISC-pb2l

building block presented in Listing 3.1.

Figure 6.3 represents the architectural view of the application in FastFlow. Implemented

124

6.1. Homogeneous Application

by the FastFlow developer, a farm pattern represents the quick sort application.

An instance of ff_loadbalancer with an custom function is used as a filter. It selects an

element, called a pivot, from the array; divides an array into two sub-arrays using the pivot;

and sends it to the workers.

Each worker receives a task containing the sub-array and the pivot value for that array. It

reorders the array so that all elements with values less than the pivot come before the pivot,

while all elements with values greater than the pivot come after it (equal values can go either

way). After this, the pivot is in its final position.

An instance of ff_gatherer with a condition function as a filter is applied. The received

sub-array will be assessed by the function to determine whether or not it satisfies the termina-

tion condition. If unsuccessful, it returns the sub-array to the emitter for further division.

The workers, emitter and collector are added to a ff_farm container object in the proper

sequence. Execution is started by an invocation of the ff_farm::run_and_wait_end()

method. The farm is also equipped with the ff_farm::wrap_around() method to imple-

ment the feedback.

6.1.4 Fibonacci

In mathematical terms, the sequence Fn of Fibonacci numbers is defined by the recurrence

relation

Fn = Fn−1 + Fn−2 (6.2)

where F0 = 1 and F1 = 1 [106].

Using RISC-pb2l building block notations, the application has been designed by the Fast-

Flow developer as follows:

((thresholdBreaker1Cn) � [«recursiveFib »]n � (⊕nB1)

Appendix D.4 represents the generation of the Fibonacci application through the RISC-pb2l

building block presented in Listing 3.1.

Figure 6.4 represents the architectural view of the application in FastFlow. As it is imple-

mented by the FastFlow developer, a farm pattern represents the Fibonacci application. An

instance of ff_loadbalancer with a filter function called thresholdBreaker is applied

to generate the tasks. Based on the provided threshold k, thresholdBreaker divides Fn into

two sub-parts Fn−1, Fn−2. For each sub part Fmi the function is called recursively until mi <= k.

When mi <= k, the Fmi is dispatched to the workers.

Each worker call a recursive function to compute the Fmi recursively.

An instance of ff_gatherer with a filter function called reduction is called to reduce the

received value of Fmi to an scaler number representing the value of Fn.

The workers, emitter and collector are added to a ff_farm container object in the proper

sequence. Execution is started by an invocation of the ff_farm::run_and_wait_end()

125

Chapter 6. Evaluation of Generic Applications

Figure 6.4: The structural composition of components for the Fibonacci application in Fast-

Flow visualised by structural tree notation

method. The farm is also equipped with the ff_farm::wrap_around() method to imple-

ment the feedback.

6.1.5 Stencil

Stencil computation is a class of algorithms at the heart of most calculations that involve struc-

tured (rectangular) grids, including both implicit and explicit partial differential equation (PDE)

solvers [107].

It can be defined as a 5-tuple (I, S, S_0, s, T) with the following meaning:

• I =
∏k

i=1[0, . . . ,ni] is the index set. It defines the topology of the array. S is the (not

necessarily finite) set of states, one of which each cell may take on any given time-step.

• S 0 : Zk→ S defines the initial state of the system at time 0.

• s ∈
∏l

i=1 Zk is the stencil itself and describes the actual shape of the neighbourhood.

There are l elements in the stencil.

• T : S l → S is the transition function which is used to determine a cell’s new state, de-

pending on its neighbours.

Equation 6.3 represents a formal definition of a two dimensional Jacobi iteration [108],

implemented on FastFlow.

126

6.1. Homogeneous Application

In this case we start with an initial solution of 0. The left and right boundaries are fixed at

1, while the upper and lower boundaries are set to 0. The number of iterations and the size of

the input array are defined by the user.

I = [0, . . . , size]2

S = R

S 0 : Z2→R

S 0((x,y)) =


1, x < 0

0, 0 ≤ x < size

1, x ≥ size

s = ((0,0), (0,−1), (−1,0), (1,0), (0,1))

T : R5→R

T ((x0x1, x2, x3, x4)) = 0.2 · (sin(x0) + sin(x1) + sin(x2) + sin(x3) + sin(x4))

(6.3)

Using RISC-pb2l building block notations, the application has been designed by the Fast-

Flow developer as follows:
←−−−
((customscatter1Cn) � [«T»]n � (swap&⊕nB1))iteration

Appendix D.5 represents the generation of the stencil application through the RISC-pb2l

building block presented in Listing 3.1.

Figure 6.5 represents the architectural view of the stencil application in FastFlow. As it is

implemented by the FastFlow developer, a farm pattern represents the stencil application.

An instance of ff_loadbalancer with a custom scatter function as a filter is applied to

distribute the different rows of an input matrix among workers. Each worker applies (i) the

function T in equation 6.3 to each cell of an allocated row; (ii) reduces the row to a scholar

number; and (iii) returns the number.

An instance of ff_gatherer with a filter function has been applied to (i) reduce all re-

ceived values; (ii) replace the input with output matrices; and (iii) return them to the emitter to

apply the next iteration. It also checks the number of iterations for the termination condition.

The workers, emitter and collector are added to a ff_farm container object in the proper

sequence. Execution is started by an invocation of the ff_farm::run_and_wait_end()

method. The farm method is also equipped with ff_farm::wrap_around() to implement

the feedback.

6.1.6 N-queens

The N-queens problem is a generalization of the well-known 8-queens problem. N-queens

have to be placed on an N × N board size chess such that no queen can attack the others. The

127

Chapter 6. Evaluation of Generic Applications

Figure 6.5: The structural composition of components for the stencil application in FastFlow

visualised by structural tree notation

objective is to count all possible solutions [109].

One of the fastest sequential implementations of the N-queens problem is Jeff Somer’s

algorithm [110]. Somer’s N-queens is iterative and written in a heavily optimized C code. It

finds the number of possible solutions for the N-queens problem as long as the board size does

not exceed 21 × 21.

Representing possible solutions as a decision tree:

• The root of the tree represents 0 choice;

• Nodes at depth 1 represent the choices for the first row in the board;

• Nodes at depth 2 represent the choices for the second row in the board;

• A path from the root to a leaf represents a candidate solution for n-queen.

Using RISC-pb2l building block notations, the application has been designed by the Fast-

Flow developer as follows:

(CustomS catter1Cn) � [«SommersNqueen»]n

Appendix D.6 represents the generation of the N-queen application through the RISC-pb2l

building block presented in Listing 3.1.

Figure 6.6 represents the architectural view of the N-queen application in FastFlow. As it

is implemented by the FastFlow developer, a farm pattern represents the N-queens application.

128

6.1. Homogeneous Application

Figure 6.6: The structural composition of components for the N-queen application in Fast-

Flow visualised by structural tree notation

129

Chapter 6. Evaluation of Generic Applications

An instance of ff_loadbalancer with a custom filter function has been applied. The

CustomScatter function adjusts the board until depth K in the tree and then sends it to the

workers to complete it.

Each worker determines all possible solutions for the given sub-tree. K can be determined

by a user.

The workers and emitter are added to a ff_farm container object in the proper sequence.

Execution is started by an invocation of the ff_farm::run_and_wait_end() method.

6.2 Heterogeneous Applications

This section contains three different existing FastFlow applications that use ParWrapper to

encapsulate the existing OpenMP based or GPU based blocks of a programme inside FastFlow.

By applying these applications we demonstrate the efficiency of PEI for executing applications

that use the GPU device but do not use the proposed HWrapper (The OpenCL back-end) on

heterogeneous multi-core architectures.

Table 6.2 represents the characteristics of each application. The first column of the table

represents the application name and the second column represents the features that the appli-

cation covers.

6.2.1 Custom Implementation of Eispack Routines

The validation of the custom implementation of the Eispack routines for solving Hermitian

eigensystems (originally introduced in [111]) has been considered as an existing practical prob-

lem.

The application setting bears an architectural similarity to the final intended deployment

and presents a similar computational demand.

The Eispack application has three parts:

1. Generation of suitable Hermitian test matrices, A.

2. Solution using the test GPU kernels to compute the eigenvectors E and eigenvalues D in

the GPU.

3. Verification of the computed eigenvectors and eigenvalues in the CPU. For a matrix of

eigenvectors E and a corresponding diagonal matrix of eigenvalues D, we expect that

AE = ED. Therefore, a possible error function is the Frobenius norm of the matrix

ε = ‖AE − ED‖F

130

6.2. Heterogeneous Applications

Table 6.2: Summary of Heterogeneous Applications Characteristics.

Application Name Application Characteristics Input Features

Eispack Routines We have used the FastFlow pipeline pattern to augment the palletisation of Eispack

routines presented in [111]. This application is a demonstration of embedding Fast-

Flow PEI inside a distributed application on Xookik cluster. It is distributed by MPI

on 4 symmetric nodes of Xookik cluster and in each node a 3-stage FastFlow pipeline

pattern augments the level of parallelism. The second stage of Pipeline for each node

is an instance of ParWrapper component. The component is implemented in CUDA

and can only run on GPU. However, the first and last stages of the Pipeline pattern

are instances of ParWrapper component that embed OpenMP based code. These two

stages can only run on CPU. As a large-scale heavy workload application, Eispack

routines benefits from dynamic memory management implemented in PEI to prevent

queue overflows for Pipeline components.

No Matrices = 55296

pseudo-random Hermi-

tian matrices of order

1024 and double preci-

sion.

SMTWTP Defined in [112], this application is a reduction composition component (i.e. Farm

with collector in FastFlow) with Feedback that has two workers. The first worker

is a reduction composition component (i.e. Farm with collector in FastFlow) with

n instances of ParWrapper component as workers. Each ParWrapper component

is implemented in CUDA and can only run on GPU. The second worker is a Farm

pattern with m instances of SeqWrapper component as workers. All SeqWrapper

components are implemented in C++ and can only run on CPU. m and n are two

determining factors that can affect the application performance. Determining the op-

timal values of n and m depends on the underlying architectures. The static structural

configuration in PEI is used to tune n and m for Titanic machine.

No of Jobs=100

MD Defined in [112], this application is a non-reduction composition component (i.e.

Farm without collector in FastFlow) with two workers. The first worker is a reduction

composition component (i.e. Farm with collector in FastFlow) with n instances of

ParWrapper component as workers. Each ParWrapper component is implemented in

CUDA and can only run on GPU. The second worker is a non-reduction Farm pattern

(Farm without collector) with m instances of SeqWrapper component as workers. All

SeqWrapper components are implemented in C++ and can only run on CPU. m and n

are two determining factors that can affect the application performance. Determining

the optimal value of n and m depends on the underlying architectures. The static

structural configuration in PEI is used to tune n and m for Titanic machine.

No of Molecules= 1000.

where the Frobenius norm of an m × n matrix M is defined as

‖M‖F =

√√√ m∑
i=1

n∑
j=1

|mi j|
2

.

Using RISC-pb2l building block notations, the FastFlow pattern embedded in the Eispack

application has been designed as follows [93]:

‹|Generation|› �‹|Solution|› �‹|Verification|›

Using the RISC-pb2l building block presented in Listing 3.1, Appendix D.7, represents the

generation of the FastFlow farm pattern encapsulated in the Eispack application.

Figure 6.7 illustrates an architectural view of the Eispack application that encapsulates the

FastFlow pipeline pattern. The FastFlow implementation of the application is provided in [93].

131

Chapter 6. Evaluation of Generic Applications

Figure 6.7: The structural composition of components for the Eispack application encapsu-

lating the FastFlow pipeline patter. It is visualised by structural tree notation. The appli-

cation is composed of a three-level hierarchy of skeletons, consisting of a distributed farm

of MPI workers at the top-level that contains nested pipeline workers with nested OpenMP

farm stages and a GPU stage.

In FastFlow the Eispack application can be demonstrated as a 3-stage pipeline.

The pipeline stages exchange batches of work based on the optimal requirements for the

GPU solution stage where the performance is reliant on the CUDA grid size at kernel launch.

Generation and verification in the first and final stages of the pipeline operate on these

individual batches of independent test problems. This presents another level of parallelism that

is well suited to the farm skeleton. Employing skeletal composition allows a nested parallel

hierarchy.

The Generate_stage, Solve_stage and Verify_stage represent the initial, intermedi-

ate and terminal stages of the pipeline.

The Solve_stage invokes our external GPU-enabled linear algebra libraries. The applica-

tion implementation uses OpenMP inside Generation and Verification function to implement

the farm-worker pattern.

The pipeline stages are added to a ff_pipeline container object in the proper sequence.

Execution is started by an invocation of the ff_pipeline::run_and_wait_end() method.

The application already has an additional level of nesting that uses an MPI farm to handle

distribution over multiple nodes in a cluster. This will also demonstrate that FastFlow can be

embedded as part of an application to boost the throughput.

132

6.2. Heterogeneous Applications

6.2.2 SMTWTP

The Single Machine Total Weighted Tardiness Problem (SMTWTP) is defined as follows [112].

Given n jobs and each job, i, is characterised by its processing time, pi, deadline, di, and

weight, wi, the goal is to schedule the execution of jobs in a way that achieves the minimal

total weighted tardiness. The tardiness of a job is defined by TI = max {0,Ci − di} (with Ci

being the completion time of the job, i) and the total tardiness of the schedule is defined as∑
wiTi.

An ant colony optimisation solution [113] is applied to the SMTWTP problem which con-

sists of a number of iterations, where in each iteration each ant independently computes a

schedule, and is biased by a pheromone trail. The successful routes are determined by stronger

pheromone trails which are defined by a matrix, τ, where τ[i, j] is the preference of assigning

job j to the i-th place in the schedule. After all the ants have computed their solution, the best

solution is chosen as the ‘running best’; the pheromone trail is updated accordingly, and the

next iteration is started. The algorithm is composed of three parts:

• Find Solution: Finds the solutions for all ants.

• Best Solution: Choose the best solution.

• Pheromone Update: By considering the current best solution this updates the pheromone

trail.

An optimal pattern combination for developing this application is provided by a filtering

method that represents the only parallelisable part is the getSolution component [112].

Using RISC-pb2l building block notations, the FastFlow Farm pattern for the getSolution

component embedded in the SMTWTP application has been designed as follows [93]:
←−−
(unicast1C2 � [scatter1Cn � [« f indS olCPU»]n � gatherallnB1 ,

unicast1Cm � [‹ | f indS olGPU | ›]m � gathermB1] � (gAll&gbest&upheromone2B1))iter

Using the RISC-pb2l building block presented in Listing 3.1, Appendix D.8 represents the

generation of the FastFlow farm encapsulated in the Eispack application.

Figure 6.8 illustrates an architectural view of the SMTWTP application encapsulating the

FastFlow farm pattern. The FastFlow implementation of the application is provided in [112].

In FastFlow the SMTWTP application can be demonstrated as a farm pattern with two

nested farms as workers.

An instance of ff_loadbalancer with a unicast filter is applied to distribute different

tasks to different workers to find the solutions.

Each worker operates on its allocated tasks to generate the solution.

For CPUsol, a farm pattern with a scatter is applied to further divide a task among its

workers. An instance of ff_gatherer with a gatherall filter is applied to collect and assemble

the divided tasks of the nested Farm.

133

Chapter 6. Evaluation of Generic Applications

Figure 6.8: The structural composition of components for the SMTWTP application in Fast-

Flow visualised by structural tree notation

For GPUsol, a farm pattern with a unicast is applied to delegate the received tasks to one

of the GPU workers. Also, an instance of ff_gatherer with a simple gather filter is applied

to collect the tasks and pass them to the outer ff_gatherer.

For the outer farm, an instance of ff_gatherer with a custom filter function is applied

which contains a gatherall filter with a barrier to receive all the solutions. Once all the tasks

have been received, it applies the gbest and upheromone methods to find the best solution and

updates the pheromones.

For each farm pattern, the workers, emitter and collector are added to a ff_farm container

object in the proper sequence. Execution is started by an invocation of the ff_farm::run_-

and_wait_end() method.

The outer farm is also equipped with the ff_farm::wrap_around() method to imple-

ment the feedback.

6.2.3 Molecular Dynamics

The molecular dynamics (MD) simulation computes a system of N particles at the atomic

level [114]. Once the system has been initialised, the interactions between the molecules are

evaluated explicitly, allowing for the numerical integration of Newton’s equations of motion.

The molecular trajectories in time yield the thermodynamic properties of the system.

The molecular simulation code used here (CMD) is designed for conducting basic research

into HPC MD. In the BasicN2 variant investigated here, all intermolecular distances are evalu-

134

6.2. Heterogeneous Applications

Figure 6.9: The structural composition of components for the MD application in FastFlow

visualised by structural tree notation

ated in order to identify the interaction partners. However, a special flavour of BasicN2 is used,

where the domain is decomposed into sub-domains of approximately 1000 molecules in order

to counter the prohibitive scaling of the neighbour’s search (otherwise O(N2)).

As inferred from the profiling data, the force calculation routine dominates the simulation

time and is therefore parallelised. The force calculation itself is decomposed into two kernels,

intra-domain and inter-domain (with the use of halos) interactions.

To execute both intra-domain and inter-domain interactions, a filtering method determines

that both intra-domain and inter-domain interactions should be merged with each other into

one unit of computing function and executed sequentially for each sub-domain. However, each

sub-domain can be executed in parallel [112].

Using RISC-pb2l building block notations, the MD application has been designed as fol-

lows [93]:

unicast1C2 � [scatter1Cn � [«mdcpu»]n � gatherallnB1 , unicast1Cm � [‹ | mdgpu | ›]m]

Using the RISC-pb2l building block presented in Listing 3.1, Appendix D.9 represents the

generation of the MD application.

Figure 6.9 illustrates an architectural view of the MD application in FastFlow. The FastFlow

implementation of the application is provided in [112].

In FastFlow, the MD application can be demonstrated as a farm pattern with two nested

farms as workers.

An instance of ff_loadbalancer with a unicast filter is applied to distribute different

tasks to different workers to find the solutions.

Each worker operates on its allocated tasks to generate the solution.

135

Chapter 6. Evaluation of Generic Applications

Device Intel Westmere E5620

Number of Cores 4

Clock Speed 2.4 GHz

Single Precision Floating Point Performance (perCore) 1.51 GFLOPs

Intelr Smart Cache 12 MB

Instruction Set 64-bit

Memory Size 24GB

Max Memory Bandwidth 25.6 GB/s

Table 6.3: Intel Westmere E5620 quad core processor for one of the worker nodes in Eddie.

Eddie is the compute component of Edinburgh Compute and Data Facility (ECDF), which

is located at the advanced computing facility of the University of Edinburgh

For CPUsol, a farm pattern with a scatter is applied to further divide a task among its

workers. An instance of ff_gatherer with a gatherall filter is applied to collect and assemble

the divided tasks of the nested farm.

For GPUsol, a farm pattern with a unicast filter is applied to delegate the received tasks to

one of the GPU workers.

For each farm pattern, the workers and emitter are added to a ff_farm container object

in the proper sequence. Execution is started by an invocation of the ff_farm::run_and_-

wait_end() method.

6.3 Application Evaluation

The evaluation of PEI for the existing applications has been carried out on three platforms. Ta-

bles 5.3 and 6.3 represent the hardware specifications of the applied test machines respectively.

6.3.1 Performance Overhead

Two types of overhead evaluations have been considered. The first type of evaluation indicates

the overhead of the building block based approach on application scalability with highly spe-

cialised skeleton frameworks. FastFlow, SKePU and Thrust have been considered as candidate

frameworks for this evaluation, where Fastflow represents a building block based framework

and SKePU and Thrust represent the highly specialised skeleton frameworks.

The second type of evaluation states the overhead of PEI by determining the extra execution

time of the instrumentations added to FastFlow.

136

6.3. Application Evaluation

Software Version

gcc 4.1.2-50.el5

Red Hat Enterprise Linux Server release 5.4 (Tikanga) 2.6.18-238.1.1.el5

FastFlow 1.1.0

SkePU 0.6

Thrust 1.5.0

Table 6.4: List of the software used to evaluate the framework overhead on the Scalability

of applications

6.3.1.1 Framework Overhead on the Scalability of Applications

We have studied the gravitational force of the N-body simulation for 20 step iterations in Fast-

Flow, Thrust and SKePU. Table 6.4 represents the software specification applied in this exper-

iment. This experiment has been carried out on one of the worker nodes in Eddie which is

represented in Table 6.3.

A detailed implementation of the computation functions for each framework has been re-

ported in Appendix E.

Figure 6.10, represents the execution time of the N-body problem for 1024 bodies imple-

mented in the three different frameworks. The x-Axis represents the number of cores that has

been used for an application execution. The baseline for speed-up is the optimised sequential

version provided by the SICSA multi-core challenge [103].

As stated in the figure, the scaling is not linear. Using the sensor information provided for

the building block approach, Table 6.5 represents the execution times of each component in

FastFlow computing for the gravitational force in the N-body problem. The runtime for com-

puting the gravitational force for each worker is almost reduced by half as the number of cores

is doubled, i.e., exhibits linear scalability. The runtime for the emitter and the collector filter

is almost negligible in comparison to the workers’ runtime. Running the sensor information

provided for FastFlow reveals that for 1024 bodies the overhead of running the farm is 0.0035

seconds.

Therefore, computing the gravitational force for 20 step iterations will generate 0.07 sec-

onds overhead in the system which is unavoidable. This overhead time is not negligible in

comparison to the workers’ runtime and is the reason for the non-linear scaling with 1024

bodies. The overhead time is spent to push/pop the tasks into/from workers and the collector

queue. By increasing the size of the problem, the parallelism overhead becomes negligible.

As shown in Figures 6.11 and 6.12, by increasing the number of cores for 8192 and 65536 the

algorithm runtime is reduced by 50% and the result is one order of magnitude faster than the

137

Chapter 6. Evaluation of Generic Applications

 0

 0.5

 1

 1.5

 2

 2.5

 3

1 2 4 8

S
p
e
e
d
-u

p

Number of Cores

FastFlow
Thrust

SKePU

Figure 6.10: Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 1024 bodies)

138

6.3. Application Evaluation

No. of core Emitter time Worker time Collector time Total

1 0.000023 0.272687 0.001204 0.360081

2 0.000034 0.153967 0.001972 0.240158

4 0.000162 0.099170 0.003533 0.155273

8 0.000234 0.059708 0.007017 0.134568

Table 6.5: The detailed execution times of the FastFlow farm for calculating the gravitational

force on the CPU for 1024 bodies

serial algorithm.

As per our evaluation figures plotted in Figure 6.10, SKePU does not seem to scale well

for 1024 bodies. Furthermore, the gravitational force of the N-body simulation in SKePU is

composed of three macro functions which has been explained in Appendix E. As reported in

Table 6.6, the only macro which scales by increasing the number of cores is the magnitude

function while the other macros have a worse runtime than when running on one core. The

magnitude function is only run once, while the other two run 6 times per each iteration. The

runtime of these two functions together is more than that of the magnitude. Hence, even the

reduction in magnitude runtime caused by increasing the cores is less than the increase in the

others’ runtime and as such it does not scale.

The reason for this is that these two functions only perform one or two basic instructions

over the CPU. When they run over one core, the maximum number of blocks of data is fetched

from the memory to the cache and the instructions executed on them. For small-size prob-

lems, such as 1024 bodies, the overhead of parallelising a function with a single instruction is

considerably large, and even on a par with the serial runtime.

When the size of the problem is small, increasing the number of threads to parallelise the

difference and update_velocity macros which only run one or two basic instructions, increases

the number of memory accesses. The time spent on memory access is therefore more than that

for computing a single instruction. Consequently, the algorithm does not perform efficiently.

For 8192 bodies, the runtime for magnitude is the dominant runtime of the algorithm and

the algorithm scales almost linearly, as shown in Figure 6.11.

When increasing the size of the input to 65536, the whole bodies vector cannot fit in the

cache. Then, the number of memory accesses required to read the data is more than the number

of cores. As the memory accesses are overlapped and pipelined, the scaling becomes linear

since the cores remain busy as shown in Figure 6.12.

It is therefore clear that when the size of the problem is small, typically under 8,192 bodies

for our study, the memory access times dominate the performance figures. As the problem

grows, memory access patterns become less dominant and scalability tends to improve.

139

Chapter 6. Evaluation of Generic Applications

 0

 1

 2

 3

 4

 5

 6

 7

1 2 4 8

S
p
e
e
d
-u

p

Number of Cores

FastFlow
Thrust

SKePU

Figure 6.11: Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 8192 bodies)

No. of core Difference Magnitude Update velocity Total

1 0.03599 0.27782 0.04632 0.53453

2 0.06226 0.18604 0.07377 0.59862

4 0.06186 0.12588 0.08193 0.56203

8 0.07501 0.11355 0.08801 0.61139

Table 6.6: The detailed execution times of each function for calculating the SKePU gravita-

tional force on the CPU for 1024 bodies

140

6.3. Application Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 4 8

S
p
e
e
d
-u

p

Number of Cores

FastFlow
Thrust

SKePU

Figure 6.12: Speed-up graph for N-body simulation using FastFlow, Thrust and SkePU

(Problem size: 65536 bodies)

141

Chapter 6. Evaluation of Generic Applications

As shown in Figures 6.10, 6.11 and 6.12, Thrust scales linearly with the number of cores

for all problem sizes. Nevertheless, the careful examination of the performance figures for

all algorithms on one core indicates that Thrust has the highest overhead for parallelisation,

even more than that of SKePU. However, because it scales linearly, the overall runtime of the

system is better than that of SKePU. The following reason distinguishes Thrust from SKePU

for scaling well

1. Thrust provides a C++ function object template, called functors, for the user to generate

their own function, which gives flexibility to the computation structure.

2. Thrust provides a patten called make_tuple, which combines all one dimensional vari-

ables, which is similar to an object in C++. This provides more flexibility in memory

management.

For each framework the runtime of N-body executed on one core can be compared to that

of the serial version. Thus, from Figures 6.10, 6.11 and 6.12, it is apparent that FastFlow has

the least overhead among all frameworks.

Also, FastFlow scales better than the two other frameworks when the size of the problem

is increased. The reason for this is that by taking advantage of the building block approach,

FastFlow accepts any arbitrary function with any input data structure format. This will allows

the programmer to further optimise the memory access computation functions, when required,

for different applications. As in this case, the computation functions in FastFlow have em-

ployed the triangular approach with adjustable tiling for the data structure format. This makes

FastFlow twice as fast as Thrust and SKePU.

On the one hand, providing more flexibility in memory management and computation func-

tions requires more effort in designing and developing a parallel application and a programmer

needs to think in parallel.

On the other hand, by supporting any arbitrary data structure executed by any arbitrary

computational function, a wider range of applications can be covered, and specifically even

existing applications can be accelerated with minimum modifications.

6.3.1.2 PEI Overhead

Figure 6.13 compares the execution time of the original FastFlow framework and the instru-

mented version without any dynamic coordination decisions (for both aggressive and sparse

sampling) on a node of the Xookik cluster.

For the quick sort application where the input stream size is of the order of 10 million, the

overhead for the aggressive mode is less than 3%. For most cases, the performance drop is less

than 1%.

142

6.3. Application Evaluation

00

05

10

15

20

25

30

35

40

45

50

Fibonacci N-Qeen Quick Sort Mandelbrot Stencil

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
.m

ili
s
e
c
o
n
d
)

Application Execution Mode

FF-Aggressive Sampling FF-Sparse

0
9
.4

9

3
8
.4

3

1
7
.9

8

4
6
.6

4

2
6
.3

9

0
9
.3

3

3
8
.2

7

1
6
.7

5

4
6
.6

2

2
6
.3

7

0
9
.2

9

3
8
.1

4

1
6
.4

3

4
6
.6

2

2
6
.3

7

Figure 6.13: The upper-bound overhead of performance metrics tracing over the FastFlow

framework on a node of the Xookik cluster for FastFlow benchmark applications. The

number of workers for each farm is 8

143

Chapter 6. Evaluation of Generic Applications

Table 6.7: Software Specification used for FastFlow benchmark applications

Application name Input specification

Mandelbrot canvasSize =1024*1024

iterations=25000

Quick sort arraySize =int[50000000]

Fibonacci n=40

N-queen boardSize =18*18

depth= 4

Stencil inputMatrix=double[16384][16384]

iterations=10

6.3.2 Efficient Idling

Figure 6.14 demonstrates the effect of the efficient idling technique for PEI, offered in Chap-

ter 4, section 4.1.4. The applications’ specifications, selected for this experiment, are provided

in Table 6.7. The experiment has been carried out on a node of the Xookik cluster.

Each application presented in Table 6.7 has been executed with and without using the effi-

cient idling technique. Considering the fact that a node in the Xookik cluster has 12 cores, two

different constructions of farm pattern have been considered for each application. The former

construction has 8 workers for each application and the latter construction has 12 workers for

each. Knowing that each farm has 2 more component namely the emitter and the collector, the

number of components for the first construction is less that the number of available cores and

for the second one is more than the number of available cores.

Figures 6.14 demonstrates that increasing the number of workers from 8 (column 2) to 12

(column 4) for FastFlow without efficient idling shows a very aggressive drop in performance.

This can be up to a 200% drop in speed up when using the busy waiting loop technique.

Moreover, increasing the number of workers from 8 (column 1) to 12 (column 3) for FastFlow

with the efficient idling technique not only prevents a performance drop for the applications

but also, for some cases, it can achieve up to a 27% improvement in application runtime.

144

6.3. Application Evaluation

 0

 10

 20

 30

 40

 50

 60

 70

 80

Fibonacci N-Qeen Quick Sort Mandelbrot Stencil

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
e
c
o
n
d
.m

ili
s
e
c
o
n
d
)

Application Execution Mode

FF-Efficient-Idling-Policy(8)
FF-Default-Policy(8)

FF-Efficient-Idling-Policy(12)
FF-Default-Policy(12)

0
9
.2

7

3
8
.1

4

1
6
.4

1

4
6
.6

1

2
6
.3

6

0
9
.2

9

3
8
.1

4

1
6
.4

3

4
6
.6

2

2
6
.3

7

0
9
.2

2

3
7
.1

6

1
6
.3

9

4
0
.8

4

1
9
.4

1

2
1
.4

4

3
8
.9

6

3
1
.1

6

7
6
.1

5

3
5
.0

4

Figure 6.14: The applications’ runtime with and without using efficient idling technique

145

Chapter 6. Evaluation of Generic Applications

Table 6.8: Active execution times on individual GPUs and total programme runtime for the

Eispack application on all 4 nodes of the Xookik cluster

Resource Runtime (seconds)

GPU1 8995.6

GPU2 8930.1

GPU3 8930.7

GPU4 8995.4

Total Cluster 9227.0

Figure 6.15: The overall cluster CPU usage percentage over one hour of execution for the

Eispack application

6.3.3 Memory Management

An evaluation of the the memory management technique for PEI, offered in Chapter 4, sec-

tion 4.1.3, was carried out on a 4-node multi-GPU Xookik cluster with 4 MPI processes and

12 workers at each nested farm in the pipeline stage. 55296 pseudo-random Hermitian test

matrices of order 1024 and at double precision were streamed through the pipeline to establish

that the computed error is within the acceptable tolerance.

Table 6.8 indicates that while the total application runtime in the cluster was 9227 seconds

(or 2.53 hours), all GPUs in the cluster were computationally active for a minimum of 8930

seconds (or 2.48 hours). The close correspondence between the active GPU computing times

and the total application runtime is an indicator of high GPU utilisation with minimal idling.

146

6.3. Application Evaluation

Figure 6.16: Overall memory usage over one hour of execution the Eispack application on

all four nodes of the Xookik cluster

Therefore, as expected, the GPU stage constitutes the primary bottleneck to the pipeline.

Figure 6.15 indicates that CPU usage varies between 30% and 60% following variations in the

number of active processes. As the GPU stage constitutes the bottleneck, throttling adaptively

imposes a limit on CPU usage, preventing pipeline queue overflows.

Adaptively controlling the memory usage is crucial here to allow FastFlow to scale up to

large problems. These measures are also suited to machines with a constrained main memory,

as was the case with our original development platform.

Figure 6.16 presents memory usage over one hour of execution for the entire cluster. The

proposed adaptive memory usage control throttles the pipeline configuration to further manage

the allocated memory. The following STOP_THRESHOLD and START_THRESHOLD are

respectively used to control the memory between 50% and 40% of the total 200 GB available

physical memory. The distinctive saw-tooth waveform follows form intermittent throttling of

the pipeline.

6.3.4 Static Structural Configuration

An evaluation of the static structural configuration for PEI, offered in Chapter 4, section 4.4.4,

has been carried out on the SMTWP and MD applications over Titanic [112].

SMTWTP Using the reduction rules provided in equation 4.12, the SMTWTP abstract com-

putation graph is:

∧(« f indS olCPU»∨ «| f indS olGPU |»)∧.

147

Chapter 6. Evaluation of Generic Applications

Figure 6.17: a) Abstract computation graph for SMTWTP. b) MCTS decision tree generated

for graph a

148

6.3. Application Evaluation

 0

 1

 2

 3

 4

 5

 6

 7

 8

1 2 3 4 5 6 7 8 9 10 11 12

S
p
e
e
d
-u

p

Number of CPU workers

0GPU-Worker
1GPU-Worker

2GPU-Workers
3GPU-Workers
4GPU-Workers
5GPU-Workers

Figure 6.18: Speed-up graph for SMTWTP configurations.The evaluation of the SMTWTP

application has been performed on the Titanic machine

Figure 6.17-a represents the visualisation of the abstract computation graph for SMTWTP

and Figure 6.17-b demonstrates the MCTS decision tree generated for SMTWTP. The feedback

process only affects the input rate for queue Q1

Applying the static skeleton configuration for the farm pattern getSolution demonstrates

that an optimum configuration is { f indS olCPU = 9; f indS olGPU = 5;}.

In order to further analyse the accuracy of the result, different possible configurations of

the farm pattern are executed exhaustively. Figure 6.18 represents the farm speed-ups over the

serial version for different configurations. Each line shows the speed-ups with a fixed number

of GPU workers and varying the number of CPU workers. From the figure, we can observe

that the best speed-up of 7.04 is obtained with (7,5) CPU and GPU workers. The MCTS

model predicted the best speed-ups for (9,5) CPU and GPU workers, and for this mapping we

obtained the speed-up of 5.95. Therefore, the static skeleton configuration gives the speed-up

that is within 15% of the best obtained skeleton configuration. In the figure, we have omitted the

149

Chapter 6. Evaluation of Generic Applications

Figure 6.19: a) Abstract computation graph for MD. b) MCTS decision tree generated for

graph a

speed-ups when more than 12 getS olutionCPU workers are used (due to the NUMA architecture

and the fact that our version of ACO is very data-intensive), as these speed-ups are smaller than

when fewer CPU workers are used.

MD Using the reduction rules provided in equation 4.12, the MD abstract computation graph

is:

∧(«mdCPU»∨ «| mdGPU |»)∧.

Figure 6.17-a represents the visualisation of the abstract computation graph for MD and

Figure 6.19-b demonstrates the MCTS decision tree generated for MD.

The static skeleton configuration on the molecular dynamic farm pattern demonstrates that

an optimum configuration is {mdCPU = 22;mdGPU = 1;}.

This means that the second farm can be changed to a ParWrapper and therefore the appli-

150

6.3. Application Evaluation

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

S
p
e
e
d
-u

p

Number of CPU workers

1GPU-Worker
2GPU-Workers
3GPU-Workers
4GPU-Workers
5GPU-Workers

10GPU-Workers

Figure 6.20: Speed-up graph for the molecular dynamics configurations.The evaluation of

the MD application has been performed on the Titanic machine

cation can be re-written as:

�MD ::= ^MD

^MD ::= unicast1C2 � [9CPUsol,‹|md_gpu|›]

9CPUsol ::= scatter1C22 � [«md_cpu»]22 � gatherall22B1

To further analyse the accuracy of the result, the different possible configurations of the

farm pattern are executed exhaustively. Figure 6.20 shows the speed-ups for a domain of 1000

molecules for different MD farm configurations. In the figure, the x axis corresponds to the

number of CPU workers, and each line in the graph corresponds to a fixed number of GPU

workers. In the figure, the best obtained speed-up for this configuration is 23.43 for 22 CPU

workers and 4 GPU workers.

From Figure 6.20, we can see that the static skeleton configuration (22,1) gives us a speed-

up of 20.65. The accuracy of the static skeleton configuration prediction for this application is

therefore within 12% of the best possible speed-up obtained.

151

Chapter 6. Evaluation of Generic Applications

In both cases part of the deviation from the optimum results for static skeleton configu-

rations is related to the slight differentiation in the estimated execution time by the MCTS

simulation result and the actual execution time of the applications. However, in both cases, the

acquired results are within the acceptable optimisation ranges.

6.4 Summary

In this chapter we have used PEI to improve the performance coordination of existing FastFlow

applications.

In section 6.1, we have introduced 6 existing FastFlow applications that neither use HWrap-

per, nor ParWrapper components. Table 6.1 states the characteristics of these applications.

These applications run only on multi-core CPU devices and do not use any GPU-devices. In

each application, the FastFlow farm pattern is used to augment the level of parallelism on

multi-core CPU devices.

In section 6.2, we have introduced 3 existing FastFlow applications that do not use HWrap-

per but use ParWrapper components. Table 6.2 states the characteristics of these applications.

These three applications cover the heterogeneous pipeline composition (Pipeline pattern), het-

erogeneous reduction composition (Farm pattern with collector), heterogeneous non-reduction

composition (Farm pattern without collector), feedback operation and nested patterns combina-

tions supported by FastFlow. These application run on heterogeneous (CPU/GPU) multi-core

architectures. However, component allocation for GPU-based components using ParWrapper

must be handled manually as FastFlow sees the ParWrapper as a black box and has no informa-

tion about the types of functions (OpenMP based, OpenCL-based or CUDA-based) embedded

inside the ParWrapper.

In section 6.3, following evaluations have been performed to assess the adaptability and

performance improvements of PEI based applications using ParWrapper. The evaluations

have been carried out on three different heterogeneous multi-core architectures, namely, RGU

Xookik cluster, the University of Pisa Titanic machine specified on Chapter 5, Table 5.3 and

also Eddi located at Edinburgh Compute and Data Facility (specified at Table 6.3).

Performance Overhead: In section 6.3.1, we have considered two following types of over-

head evaluation:

• FastFlow Overhead: In section 6.3.1.1, we have evaluated the overhead of the

building block based approach on application scalability with highly specialised

skeleton frameworks. FastFlow, SKePU and Thrust have been considered as can-

didate frameworks for this evaluation, where Fastflow represents a building block

based framework and SKePU and Thrust represent the highly specialised skeleton

152

6.4. Summary

frameworks. The evaluation has been carried on Eddie machine. We have demon-

strated that the Thrust version of N-body-Simulation for 1024 input data size (Fig-

ures 6.10) achieves linear speed-up (doubling the number of processors doubles

the speed). However, the FastFlow version of N-body-Simulation for 8192 and

65536 applications (Figures 6.11 and 6.12) achieve linear speed-up and therefore

has the least overhead when large-scale input data-size are applied. In this case, we

have achieved up to 2 times more speed-up than Thrust and SkePU Framework for

N-body simulation on large-scale input data size.

• PEI Overhead:In section 6.3.1.2, we have demonstrated that the minimum and

maximum overhead of PEI framework for the proposed image processing applica-

tions are 1% and 3%, respectively (Figure 6.13). The overhead is related to the

cost of extracting the sensor information dynamically with regards to the applied

monitoring policy. Also, the minimum overhead can be used to determine a lower

bound for improvements that should be achieved by the coordination optimisation

methods.

Efficient Idling: In section 6.3.2 the proposed efficient Idling technique, presented in chap-

ter 4, section 4.1.4 has been used to improve the performance of FastFlow benchmark

applications by efficiently utilising the underlying CPU device cores. Not only We have

achieved up to 27% speed-up by using efficient idling technique, but also we have pre-

vented up to 200% drop in application speed-up when the number of components are

more than the number of CPU cores (Figure 6.14).

Memory Management: In section 6.3.3 we have applied our dynamic memory management

technique to adaptively control the memory usage for the custom implementation of

Eispack routines as a large-scale heavy workload application (Figure 6.16). The appli-

cation benefits from the dynamic memory management technique that is implemented

in PEI to prevent queue overflows for pipeline components. This section demonstrates

that our proposed memory management technique is crucial to allow FastFlow to scale

up to large problems, as earlier attempts at using the FastFlow Pipeline pattern without

using memory management technique resulted in a fatal system error due to insufficient

memory space.

Static Structural Configuration: In section 6.3.4, we have applied the static structural con-

figuration proposed in PEI to improve the performance of MD and SMTWTP appli-

cations on Titanic machine. Our evaluation demonstrate that we have achieved up to

20 times speed-up when using the proposed static structural configuration to adjust the

number of workers for molecular dynamic application (figure 6.19) on Titanic machine.

We have also achieved up to 5 times speed-up when using the proposed static structural

153

Chapter 6. Evaluation of Generic Applications

configuration to adjust the number of worker for SMTWTP application (figure 6.17) on

Titanic machine.

154

Chapter 7

Conclusion & Future Work

In this chapter we have reviewed our research objectives, followed by our research impact in

the research landscape. Possible future directions have also been highlighted as a continuation

of this research.

7.1 Consolidation of Research

In this thesis we have empirically demonstrated the validation of our hypothesis by develop-

ing an autonomic behavioural framework, called PEI, that manifests our SKIP methodology

synthesised with RISC-pb2l libraries.

PEI is composed of 3 following main parts:

Structured Parallel Programming Model that separates coordination from computation and

hide the synchronisation and communications between application’s components from

end-users.

We have selected the existing RISC-Pb2l building block approach as a structured par-

allel programming model. In Chapter 3, section 3.2, We have extended the RISC-Pb2l

by adding a new heterogeneous block that enables the coordination of application over

heterogeneous multi-core architecture.

In Chapter 3, section 3.2, we have also designed a grammar for the extended RISC-Pb2l

that detects the set of parallel programming patterns supportable by RISC-Pb2l build-

ing block library for heterogeneous multi-core architecture. The grammar checks the

correction and validation of application’s structure generated by RISC-Pb2l library.

We have employed FastFlow as an existing RISC-Pb2l framework for homogeneous

multi-core system. In Chapter 4, section 4.1.1, we have extended the FastFlow by

implementing a GPU back-end that supports application execution over heterogeneous

multi-core architecture. This expansion is the implementation of the new heterogeneous

155

Chapter 7. Conclusion & Future Work

building block. We call it HFastFlow.

High-level Abstraction Layer (HAL) to support autonomic management for structured ap-

plication over heterogeneous multi-core architecture. Presented in Chapter 4, section 4.3,

HAL includes three interfaces:

1. User-level interface: Determines a set of extra-functional and non-functional prop-

erties that allows end-user to descriptively define the structural composition of its

application. It also allows the end-user to descriptively determine the constrain

configuration of the application and the underlying architecture.

2. System level interface: Determines a set of extra-functional and non-functional

properties that are i) monitored on the structured parallel framework; ii) monitored

on underlying resources; iii) addressed by coordination engines.

3. Autonomic manager interface: Is a bridge between end-user, the structured frame-

work, coordination engines, and underlying hardware. It can automatically apply

the specific coordination decisions regarding to adapt to the changes happens on

both application status or underlying hardware status.

Followings are the steps to design and develop HAL.

In Chapter 3, section 3.1, we have determined a set of controlling parameters that can

affect application coordination. controlling parameters have been extracted from inves-

tigating Thrust, SKePU, FastFlow and Intel TBB frameworks that support coordination

over heterogeneous architectures.

In Chapter 3, section 3.3, we have designed SKIP as a generic methodology that enables

autonomic management for structured parallel programming model over heterogeneous

multi-core architectures. It determines both user-level and system level interfaces re-

quired to provide an autonomic management over a structured parallel application. We

have used SKIP with the RISC-Pb2l grammar to generate the high-level abstraction layer

for RISC-Pb2l building block approach.

In Chapter 4, section 4.2, we have instrumented HFastFlow by adding a set of actuators

and sensors to exchange the extra-functional and non-functional properties determined in

SKIP. This instrumentation represents the implementation of the SKIP fusion on RISC-

Pb2l.

In Chapter 4, section 4.3.1, we have designed and implemented a SKIP adaptor that auto-

generate a RISC-Pb2l application from a descriptive structural composition file provided

by end-user.

In Chapter 4, section 4.3.2, we have designed and implemented a dynamic runtime in-

terface (DSRI) to provide the autonomic management on HFastFlow for heterogeneous

156

7.1. Consolidation of Research

multi-core architecture.

Performance Enhancement Tools (PETs) is a set of coordination engines that supports schedul-

ing, load balancing and static configuration of an application structure for a specific

heterogeneous multi-core architecture. We have designed and developed these coordina-

tion engines as they have been considered as key optimisation objectives for ParaPhrase

project [40].

We have designed and implemented a set of coordination engines in order to verify

the suitability of HAL for orchestrating structured parallel applications over heteroge-

neous architecture. These engines interact with HFastFlow through the autonomic man-

ager (DSRI) to optimise applications performance and resource utilisation over hetero-

geneous architecture. Followings are the coordination engines we have designed and

implemented in this thesis.

In Chapter 4, section 4.4.3 we have designed and developed a scheduling mechanism

to allocate/reallocate different components of applications on underlying heterogeneous

devices. It can dynamically remap heterogeneous software components to the available

CPU/GPU devices based on information provided by the high-level virtualisation inter-

faces about the extra-functional properties of the software components, on the hardware

performance characteristics, and on information that is obtained by monitoring the dy-

namic system load. The provided system is capable of dealing with components from

multiple applications and remapping them to the best available hardware, so ensuring

optimal use of the available hardware resources.

In Chapter 4, section 4.4.2 we have designed and developed a load-balancing technique

that auto-tune the workload fraction over different heterogeneous components with re-

gards to their computational power. It will also respond to the sudden changes on the

input workload size and if required, automatically tune the workload fraction for appli-

cation’s components.

In Chapter 4, section 4.4.4 we have designed and developed a static structural configura-

tion technique to tune an application structure for a specific heterogeneous architecture.

As an external coordination method, the static structural configuration tries to automati-

cally tune a structured application and to map its components to the available resources

for a given architecture in order to maximise the application throughput.

In Chapter 4, section 4.1.4 we have designed and developed an efficient idling technique

to maximum efficient utilisation of the resources for any CPU slot allocated to a com-

ponent. The efficient utilisation of a resource depends on the availability of a task in a

component queue for the allocated slot for the component.

157

Chapter 7. Conclusion & Future Work

In Chapter 4, section 4.1.3 we have designed and developed a memory management

technique to dynamically control the memory usage for heavy workload application in

order to prevent queues overflows for application components in HFastFlow.

The applicability and efficiency of our methodology has been verified through 15 applica-

tions divided into following categories:

Heterogeneous OpenCL Applications: The first category includes 6 new heterogeneous ap-

plications (presented in Chapter 5, section 5.1) that use the proposed HWrapper (OpenCL

back-end in FastFlow) to develop components that run on GPU devices. These applica-

tions cover different RISC-Pb2l building block compositions supported for FastFlow.

Homogeneous Applications: The second category includes 6 different existing homogeneous

applications (presented in Chapter 6, section 6.1) that run on multi-core CPU devices and

do not use GPU devices. These applications neither have HWrapper, nor ParWrapper.

Heterogeneous Generic Applications: The third category includes 3 different existing het-

erogeneous applications (presented in Chapter 6, section 6.2) that use ParWrapper for

developing components that run on GPU devices.

Using PEI, we have achieved the following objectives.

GPU Utilisation: Using the proposed OpenCL back-end for developing GPU components for

FastFLow applications, it is possible to increase the GPU utilisation by 38% (from 57%

to 95%) for Heterogeneous OpenCL applications. We have also demonstrated that by

using the proposed OpenCL back-end we can achieve up to 1 order of magnitude speed-

up over serial CPU version of applications and Up to 1.68 times speed-up over serial

GPU version of applications. The results are presented in Chapter 5, section 5.2.2.

Optimising OpenCL Component Scheduling: We have demonstrated that by using the pro-

posed OpenCL Scheduling policy, it is possible to dynamically allocate/re-allocate the

OpenCL component to OpenCL-enable devices in order to increase the performance.

We have demonstrated that by using the proposed OpenCL scheduler we can achieve up

to 1 order of magnitude speed-up over FastFlow round-robin scheduler. This result is

presented in chapter 5, section 5.2.4.

Optimising Workload Distribution: By using the proposed adaptive load-balancer which is

periodically update by the adaptive workload distribution tool, we can achieve up to 9

times speed-up over FastFlow round-robin load-balancer. The results are presented in

Chapter 5, section 5.2.3.

158

7.1. Consolidation of Research

Multi-Tenant Application Execution: The concurrent executions of Heterogeneous OpenCL

applications have demonstrated that the overhead of switching resources between com-

ponents is negligible. Moreover, we have achieved up to 2% improvement on total exe-

cution time of applications. Although executing multi-tenant applications in a concurrent

mode may not significantly improve the performance, it provides extra flexibility for the

application executions. Therefore, by prioritising the applications, small-scale applica-

tions can temporarily borrow resources from the large-scale ones without terminating the

large-scale application. The results are presented in Chapter 5, section 5.2.5.

Low Performance Overhead: We have demonstrated that PEI overhead is around 3% for

both new and existing applications when the aggressive sensor monitoring is applied.

Moreover, when the sparse sensor monitoring (which is the default sensor monitoring

policy) is applied, the PEI overhead is around 1%. The results are presented in Chap-

ter 5, section 5.2.1 and Chapter 6, section 6.3.1.2. In comparison with the up to one order

of magnitude performance improvement that we have achieved, we can say that the PEI

overhead can be negligible.

Efficient Idling Optimisation: We have demonstrated that although the Homogeneous ap-

plications do not have any GPU components, they can still benefit from some of the

PEI coordination engines such as efficient idling technique presented in Chapter 4, sec-

tion 4.1.4. By using the efficient idling technique, We have demonstrated that it is possi-

ble to achieve up to 2 times speed up for these applications when the number components

are more than the number of available CPU cores on the underlying architecture. The

results are presented in Chapter 6, section 6.3.2.

Controlling Memory Management Dynamically: We have demonstrated that the proposed

dynamic memory management technique can adaptively control the memory usage for

the custom implementation of Eispack routines as a large-scale heavy workload appli-

cation. The application benefits from the dynamic memory management technique that

is implemented in PEI to prevent queue overflows for pipeline components. We have

demonstrated that using the memory management technique is crucial to allow FastFlow

to scale-up for large problems, as earlier attempts at using the FastFlow Pipeline pattern

without using memory management technique resulted in a fatal system error due to

insufficient memory space. The results are presented in Chapter 6, section 6.3.3

Statically Optimising Application Structural Configuration: We have applied the static struc-

tural configuration technique proposed in Chapter 4, section 4.4.4 to improve the perfor-

mance of both existing heterogeneous applications and heterogeneous OpenCL appli-

cations. We have demonstrated that we can achieve up to 5 times speed-up for recur-

sive Gaussian application when using the static structural configuration technique over

159

Chapter 7. Conclusion & Future Work

FastFlow round-robin technique for mapping components. This result is presented in

Chapter 5, section 5.2.4. We have achieved up to 20 times speed-up when using the

proposed static structural configuration to adjust the number of workers for molecular

dynamic application on Titanic machine and map the workers for the CPU/GPU devices

in this machine. We have also achieved up to 5 times speed-up when using the proposed

static structural configuration to adjust the number of worker for SMTWTP application

on Titanic machine and map the workers for the CPU/GPU devices in this machine. The

results are presented in Chapter 6, section 6.3.4

7.2 Research Impact

This thesis was part of the Paraphrase project,. The project has produced a new structured

design and implementation process for heterogeneous parallel architectures, where develop-

ers exploit a variety of parallel patterns to develop component based applications that can be

mapped to the available hardware resources and, if required, dynamically re-mapped to meet

the application needs and hardware availability. As part of ParaPhrase project, this thesis has

successfully delivered the following Paraphrase objectives:

GPU Support for FastFlow: Presented in Chapter 4, section 4.1.1, we have extended Fast-

Flow by implementing an OpenCL back-end that supports application execution over

heterogeneous multi-core architectures. We call this expansion HFastFlow which is the

implementation of the HWrapper building block presented in Chapter 3, section 3.2. Us-

ing the proposed OpenCL back-end for developing GPU components in HFastFLow, it is

possible to increase the GPU utilisation by 38% (from 57% to 95%) for Heterogeneous

OpenCL applications. We have also demonstrated that by using the proposed OpenCL

back-end we can achieve up to one order of magnitude speed-up over serial CPU version

of applications and up to 1.68 times speed-up over the serial GPU version of applications.

The results are presented in Chapter 5, section 5.2.2.

High-Level Virtualisation Layer: We have designed and developed ODVL, presented in Chap-

ter 4, section 4.3.3, as a virtual representation of all available OpenCL capable devices

for the underlying heterogeneous multi-core systems. ODVL represents a unified view

of all available OpenCL-enabled devices independent from device vendors. The pro-

posed OpenCL scheduler presented in Chapter 4, section 4.4.3, uses ODVL for dynamic

mapping/remapping of components to the OpenCL capable devices and switching com-

ponents between these devices.

Static Mapping: Through static structural configuration presented in Chapter 4, section 4.4.4,

we have designed and developed a static mapping for OpenCL components and the avail-

160

7.2. Research Impact

able hardware resources collectively represented by the ODVL. The static structural

configuration heuristically maps application components based on historical and static

extra-functional information that is extracted from the instrumented framework in a SKIP

format for the coordination component interface with regards to the performance charac-

teristics that are exposed to the applications and heterogeneous-multi-core architectures.

The result presented in Chapter 5, section 5.2.4 demonstrates that we have achieved up

to 20 times speed-up when using the proposed approach to generate static mapping for

molecular dynamic application on Titanic machine. Also, the results are presented in

Chapter 6, section 6.3.4 demonstrate that we achieved up to 5 times speed-up when us-

ing the proposed approach to generate static mapping for the SMTWTP application on

Titanic machine.

Dynamic Mapping/Re-Mapping: Using the proposed OpenCL Scheduler presented in Chap-

ter 4, section 4.4.3, it is possible to dynamically remap the application components to the

available resources. The OpenCL scheduler uses the extracted sensor file containing the

application performance metrics and the information obtained by monitoring the dy-

namic system load. In Chapter 5, section 5.2.4, we have demonstrated that by using the

proposed OpenCL scheduler on heterogeneous OpenCL applications, we can achieve up

to one order of magnitude speed-up over HFastFlow round robin scheduler.

Priority-based Multi-Tenant Applications Executions: Presented in Chapter 4, section 4.4.3.1,

we have provided a priority based system type that is capable of classifying and con-

trolling the priority of applications. As part of the proposed OpenCL scheduler, the

priority system will allow some basic quality of service capabilities, where small-scale

applications with high priority can get better throughput by stealing the resources from

large-scale, low priority applications without terminating them. Therefore, by using the

priority system, the OpenCL scheduler is capable of executing multi-tenant applications

where different components from multiple applications map/remap to the best available

hardware, based on the application priority. In Chapter 5, section 5.2.5, we have demon-

strated that by prioritising the heterogeneous OpenCL applications, small-scale appli-

cations can temporarily borrow resources from the large-scale ones with close to 0%

switching overhead and without terminating the large-scale application.

Besides ParaPhrase partners applications: Eispack Routine, MD and SMPWTP applica-

tions (presented in Chapter 6, section 6.2) that use PEI for performance enhancement, other

ParaPhrase partners have also used this research. We will explain some of them in the follow-

ing:

In [115] an extension of HFastFlow over the distributed architecture has been introduced

to support a network of multi-core workstations. The proposed extension provides a structural

161

Chapter 7. Conclusion & Future Work

coordination of a programme in a single workstation while the distribution of the data across

the stations has been delegated to the ZeroMq messaging system, which is encapsulated by a

class called ff_dnode. Sub-classing ff_node, ff_dnode is responsible for connecting the

edge component of the application running in one station, with one or more edge components

of the application running on the same or different workstations. However, the data marshalling

and unmarshalling processes across the workstations are left unattended.

In [116] a systematic methodology has been proposed to exploit the approximated analyt-

ical cost models of applications in HFastFlow. The proposed approach has been incorporated

with an integrated programming framework to target both local and remote resources to support

the offloading of computations from structured parallel applications to heterogeneous cloud re-

sources. Applying such a system, it is possible to map a data intensive application on a com-

bination of local and remote resources to guarantee optimal performances. Also, it is possible

to calculate the optimal proportion of cloud resources to achieve a given target performance

value.

In [117] a deployment tool has been provided for the on-demand distribution of different

instances of HFastFlow applications on the cloud computing system using the Open Virtualisa-

tion Format. Using SKIP compliant extracted structural information and performance metrics,

the provided tool automatically determines an optimum hardware/system software configura-

tion of a new instance of an instrumented HFastFlow framework among the available heteroge-

neous cloud resources. This tool registers itself as a PET for PEI in order to use the extracted

sensor information.

In [118] a simple analytical performance model is developed for HFastFlow that supports

the autonomic offloading of sup-tasks in data parallelism skeleton patterns performing on hy-

brid CPUs and GPUs. By applying the provided model, sub-tasks are divided into two parti-

tions, one to be computed on the GPU and the other on the multi-core CPU. When the per-

centage of sub-tasks determined for a multi-core CPU is less than a predefined threshold, all

subtasks are offloaded to the GPU. Although the model is not entirely accurate, it reasonably

predicts the potential improvement of an application runtime when using the hybrid execution

of CPU and GPU cores.

In [82] a new refactoring tool has been designed to increase the programmability of parallel

systems. The presented refactoring tool provides a set of formal pattern rewriting rules to trans-

late the potential parallelisable blocks of a serial application into Farm and Pipeline patterns in

HFastFlow. The provided tool requires the assistance of a programmer to detect and verify the

parallelisable blocks. The refactoring tool has been integrated with the static structural config-

uration to further tune the application structure and static mapping for a specific heterogeneous

architecture.

162

7.3. Ongoing Research and Future Work

In [119], an implementation of the proposed HWrapper for CUDA library has been im-

plemented for FastFLow. The CUDA back-end allows developer to embed a block of CUDA

code as a component of supported parallel patterns in FastFlow. The CUDA back-end sup-

ports the execution of heterogeneous applications over heterogeneous (CPU/GPU) multi-core

architecture.

7.3 Ongoing Research and Future Work

The SKIP compliant autonomic framework presented here covers the coordination aspect of

parallel programming over heterogeneous multi-core systems.

As stated in Chapter 4, currently HFastFlow only supports the skeleton-based parallel pat-

terns through RISC-pb2l. Therefore, although the SKIP methodology can demonstrate and

construct such patterns (it has been represented in Appendix A), full operability of all the com-

positional features of RISC-pb2l libraries will not be available. In this case, as an ongoing

research we are investigating the applicability of extending this work to implement the remain-

ing RISC-pb2l supported patterns for HFastFlow to enable all the compositional features of

RISC-pb2l and consequently to expand the provided SKIP adaptor to construct and instrument

them.

One possible future extension could address the dynamic refactoring of an application

through SKIP. Considering an application as a composition of building blocks executing on

a set of resources, it is possible to merge or split the components using the optimisation rules

provided in [15]. In this case, any combination or separation of building blocks can change the

structure of an application and resource utilisations. Therefore, an optimisation tool is required

to detect and substitute the equivalent pattern. Incorporating with the SKIP adaptor, such an

optimisation tool could automatically refactor an application in order to improve the perfor-

mance. Knowing the composition of a component can be reversible, by periodically assessing

an application’s performance through sensor information, it would be possible to preserve the

original structure in case of a drop in performance. Therefore, an application can automatically

adapt to different environmental variations. Such an expansion or shrinking of an application

can be useful for multi-tenant application executions especially when there is a high demand

for resource access.

Another direction to expand this research could be to embed different instrumented frame-

works in the system. Applying SKIP and skeleton adaptor concepts, we provide a clean sepa-

ration between the parallel coordination patterns and computation functions executed by these

patterns. Using this technique provides the possibility of having framework independent appli-

cations. Using a SKIP compliant descriptive object as a front-end language, different frame-

works that support the building block approach can be considered as back-end parallel struc-

163

Chapter 7. Conclusion & Future Work

tural frameworks where each back-end provides its own translation of the SKIP compliant

descriptive object by implementing its skeleton adaptor. Having multiple back-ends, a heuris-

tic algorithm can be provided to choose the most appropriate back-end framework for different

criteria. Such criteria can include environmental constraints, resource availability, application

structure, application scale, and resource usage.

Another possible extension would be to provide a fault-tolerant PEI which extends the

extra-functional properties covered in this thesis. To address the client-crash in the system,

one possible action could be the "respond time-out" mechanism. In this case a server can

periodically request an acknowledgement from its registered clients. If no response is received

from a client in the determined time-out period, the server can terminate the client’s application

and release its resources. To address the server crash issue, one possible solution could be to

provide a mirror server. A mirror server will backup the main DSRI server and it continuously

synchronises itself with the main server. In the case of a crash, the main sever can be replaced

by the mirror one.

Another potential future direction for this work is to expand the PEI for distributed sys-

tems, either in the form of a cluster of heterogeneous multi-core systems or in the form of

distributed workstations on the cloud. When the components of an application are scattered

throughout the workstations, having a fault-tolerant PEI is crucial. In this case, in addition to

the fault-tolerant support mentioned above, a mechanism must exist to notify the root work-

station (master-workstation) of the system about the crash in one or more of the stations. One

possible action in this case could be to re-launch the crashed component in a new workstation.

Also, the mirrored technique mentioned above can be used to address the crash in the root

workstation.

One possible direction to expand the PEI for distributed systems can be to provide a hier-

archical DSRI architecture by adding an extra coordinator layer. In this case the workstation

containing the coordinator can be considered as the master workstation that manages all the

DSRI servers on different workstations as its slaves. Figure 7.1 represents the architectural

view of the distributed PEI.

Finally, data transferring latency on the network should be considered in coordination en-

gines. Such a factor must be taken into account in both the workload distribution and allocation

of components to different workstations in a distributed system. The distributed PEI also re-

quires an on-demand launcher for the allocation of components to different workstations. In

this case, while each server has some level of autonomy to control the registered applications

in its own workstation, the DSRI coordinator launches/re-launches components in a new work-

station for an application. Also, the DSRI coordinator would be responsible for re-launching a

DSRI server in each workstation in case of a DSRI server crash.

164

7.3. Ongoing Research and Future Work

Figure 7.1: Deployment diagram for distributed PEI

.

165

Appendix A

Validation of RISC-pb2l Grammar

In the following we explain how the RISC-pb2l grammar represented in Listing 3.1 captures

the supported patterns presented in [14, 15].

A.1 Skeleton-based Parallel Patterns

Here, we demonstrate that the skeleton based patterns supported by RISC-pb2l are detectable

by RISC-pb2l grammar.

A.1.1 Embarrassingly Parallel Patterns

Embarrassing parallel patterns include Task-Farm, Map, and MISD. Although the syntax for

these three patterns are the same, the difference among them is around the applied policy to the

combinator building blocks for spreading or gathering the data.

In Task-Farm pattern usually the unicast policy is used as a data distribution policy for

1toN combinator and gather policy is used as a date collection policy for Nto1 combinator. In

Map pattern usually the scatter policy is used as a data distribution policy for 1toN combinator

and gatherall policy is used as a data collection policy for Nto1 combinator. In MISD pattern

the broadcast policy is used as a data distribution policy for 1toN combinator.

�ep ::= Nep

Nep ::= 4ep

4ep ::=a1n �Dn� `n1

Dn can represent any nested computation required for the embarrassing parallel pattern.

It is also possible to use the non-reduction composition that eliminates the Nto1 combina-

tor. In this case the patterns can be captured by the following.

�ep ::= _ep

_ep ::= ^ep

^ep ::= a1n �#n

167

Appendix A. Validation of RISC-pb2l Grammar

#n ::= Dn

Moreover, the following composition is detectable by the grammar provided in Listing 3.1

to support feedback for embarrassing parallel pattern, where D can be replaced by any valid

compositions.

�ep ::= Nep

Nep ::= 4ep

4ep ::=
←−−−−−−−−−−−−−−−
(a1n �Dep

n� `n1)c

When the non-reduction composition is applied the feedback building block can be detected

as follows.

�ep ::= _ep

_ep ::= ^ep

^ep ::=
←−−−−−−−−−−−−−−
(|=n1

1 � a
1n �Dn)c

In the feedback based embarrassing parallel pattern proposed above, it is possible to im-

plement while and for patterns by replacing the combinator’s distribution policy function with

a custom function for checking the condition.

Furthermore, when MISD computation is applied the if pattern can be detected by imple-

menting a custom function f in (f1Cn).

A.1.2 Reduction

A reduction combines every element in a collection into a single element using an associative

combiner function [49]

The reduction pattern can be detected via the following instructions by the provided gram-

mar:

�⊕ ::= N⊕
N⊕ ::= 4⊕
4⊕ ::= a1n � `n1

a1n ::= scatter1Cn

`n1 ::= `n1
mk

`n1
mk ::= (`m1)

k
� `k1

where `k1 can be determined recursively as (`x1)y� `y1 until the required level of parallelism

for reduction pattern in satisfied.

Moreover, in order to add a custom computation function during reduction process the last

instruction above can be replaced by `n1
mk ::= (`m1)k �Dk� `k1.

A.1.3 Pipe

The pipe pattern can be generated by the following instructions.

�Pipe ::= NPipe

168

A.1. Skeleton-based Parallel Patterns

NPipe ::= OPipe

OPipe ::= 4Pipe � OPipe | 4Pipe � 4Pipe

Replacing the right OPipe in the third line with 4Pipe � OPipe can generate arbitrary number

of stages in pipe pattern. It is important to note that the minimum number of stage in pipe

is 2(4Pipe � 4Pipe). Replacing 4 for each stage with any valid represented composition will

support a nested patterns.

The last stage in a pipe pattern has more flexibility as there is no need to feed data into

the pipe. Therefore, we can generate the pipe pattern where its last stage consists of a nun-

reduction composition, as represented in the following.

�NoRPipe ::= _NoRPipe

_NoRPipe ::= NNoRPipe �_NoRPipe

The following combination of a pipe pattern with feedback is also detectable by the pro-

posed grammar, where the last stage of the pipe pattern is limited to a reduction composition.

�Pipe ::= NPipe

NPipe ::= 4Pipe

4Pipe ::=
←−−−−−−−
(OPipe)c

OPipe ::= 4Pipe � OPipe | 4Pipe � 4Pipe

In order to have a feedback pipe pattern with a non-reduction composition, the following

instruction can be used.

� ::= ^

^ ::=
←−−−−−−−−−−−−−−−−−
(|=n1

1 �N� a
1n �Dn)c

Moreover, it is possible to have a feedback for a set of stages of a pipe pattern by applying

4substages ::=
←−−−−−−−−−−
(Osubstages)c for any specific4 and replacing the Osubstages with Osubstages ::= 4substages �

Osubstages | 4substages � 4substages for the set of determined stages. There is no self-feedback for

a stage in a pipe pattern, as a self feedback stage can be implemented by a recursive function,

which would be faster than using a feedback based queueing system for a self-feedback stage.

A.1.4 Divide & Conquer

The divide & conquer pattern is composed of two steps, namely, divide and conquer. The first

step divides the task into sub-tasks until the base case condition is satisfied. In the next step the

generated sub-tasks are partially conquered according to the unique indexing number allocated

to them. This will continue until the results are reduced to a single one. The spread function

(fcon) directs all tasks with the same indexing number into a single computing unit for the

reduction stage. The following instructions demonstrate the divide & conquer pattern captured

by the proposed grammar.

�div&con ::= Ndiv&con

Ndiv&con ::= Odiv&con

169

Appendix A. Validation of RISC-pb2l Grammar

Odiv&con ::= 4div � 4con

4div ::=
←−−−−−−−−−−−−−−−−
(a1n �Ddiv

n� `n1)c1

Ddiv
n ::= (Ndivcal)

n

Ndivcal ::= 4divcal

4divcal ::= a1p � `p1

a1p ::= (fdiv1Cp)

`p1 ::= gatherpB1

a1n ::= unicast1Cn

`n1 ::= gathernB1

4con ::=
←−−−−−−−−−−
(a1x � `x1)c2

a1x ::= a1x
mk

a1x
mk ::= (a1m)k

`x1 ::= `x1
mk

`x1
mk ::= (`m1)k� `k1

a1m ::= (fcon1Cm)

`m1 ::= (reduceconmB1)

`k1 ::= gatherconkB1

A.1.5 Stencil

In stencil programming pattern, data structure B is derived by processing data structure A where

each element of B is the result of processing a function f on the neighbourhood of the corre-

sponding element in A. The stencil pattern is often iterated up to a certain point until the

condition c1 is verified.

Therefore two steps can be considered for calculating the neighbourhood for each element

B and applying the function f for each element on the specified area.

The composition provided for stencil pattern in [14] is detectable by the proposed grammar

as represented in the following.

�stencil ::= Nstencil

Nstencil ::= 4stencil

4stencil ::=
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(abroadcast1Cn �D

n
stencil� `gatherallnB1)c1

Dn
stencil ::= Dn

nbh �Dn
f

Dn
nbh ::= (Nnbh)n

Nnbh ::= 4nbh

(4nbh)n ::= [4nbh]n

Dn
f ::= (N f)n

N f ::= 4 f

(4 f)n ::= [4 f]n

170

A.2. General Purpose Computing Models

A.2 General Purpose Computing Models

In this section we demonstrate that the BSP, Map-Reduce and MDF patterns supported by

RISC-pb2l building blocks are also detectable by the proposed grammar.

A.2.1 BSP

Bulk Synchronous Parallel Model (BSP) [120] is a parallel computation that runs on a set of

processors in a sequence of super-steps.

The BSP algorithm consists of the following steps:

• Each processor computes its allocated tasks locally by only accessing its local variables

and environment.

• Eventually, processors initiate an asynchronous communication step to exchange data.

• Each processor enters a barrier waiting for the completion of the communication step.

In [15] the BSP pattern is divided into p supper-steps where each super-step is itself divided

into n step. Each step is composed of a two-stage MISD building block to process the allocated

task and reroute the result to the next supper-step. Using the RISC-pb2l building blocks, the

BSP pattern is represented as: BS P = broadcast1Cn � ssp
n... � ssi

n... � ssp
n � gatherallnC1 where

a super-step ssi can be generated as follows.

ssi = [4stpi1
, ...,4stpin

]�

[((routetoDes1Cm)
k � (gather&barrierxB1))i1 , ...,

((routetoDes1Cm)
k � (gather&barrierxB1))in]

We now demonstrate that the BSP pattern can be captured by the proposed grammar.

�BS P ::= NBS P

NBS P ::= 4BS P

4BS P ::= a1n �Dn� `n1

Dn ::= (N)n �Dn

The last line is used to generate the p super-steps. The (N)n in the last line represents the

first super-step. To generate the p − 1 remaining super-steps, first, for p − 2 times the right D

in the last line is replaced with (N)n �Dn recursively. Then, the right D at the right side of the

instruction is replaced with the (N)n to generate the last super-step. We represent a super-step i

with (N)n
i where i ∈ [1, ..., p− 1]. Therefore, a super-step i ((N)n

i) is captured by the proposed

grammar as follows.

(N)n
i ::= (N)n

istp
�Dn

ireroute

Nistp ::= 4istp

(4istp)
n ::= [4istp 1, ...,4istp n]

171

Appendix A. Validation of RISC-pb2l Grammar

Dn
ireroute ::= (Nireroute)

n

Nireroute ::= 4ireroute

(4ireroute)
n ::= [4ireroute 1, ...,4ireroute n]

4ireroute j ::=a1x � `x1

a1x ::= a1x
mk

a1x
mk ::= (a1m)k

a1m ::= (fRouttoDest1Cm)

`x1 ::= (gather&barrierxB1)

(Nn)pstp
::= (4pstp)

n

(4pstp)
n ::= [4pstp 1, ...,4pstp n]

a1n ::= broadcast1Cn

`n1 ::= gatherallnB1

A.2.2 Map-Reduce

The Map-Reduce pattern, introduced by Google, models those applications for which a collec-

tion of input data is processed into the following three steps [121, 122]:

• A Map step: Computes a (key : value) pair for each item in the collection by applying a

function f ;

• An intermediate processig step: Sorts and rearranges data according to their keys where

pairs with the same keys are put into a single collection; and

• A reduce step: "Sums-up" all the value items for a given key using an associative and

communicative reduction pattern 4⊕, represented in A.1.2.

Applying our grammar, the Map-Reduce pattern can be generated as follows.

�mr ::= _mr

_mr ::= ^mr

^mr ::= a1n �#n

#n
mr ::= Dn

map � (a1z)n � (`n1)
z
�#z

reduce

Dnmap ::= (Nmap)
n

Nmap ::= 4map

(4map)
n ::= [4map]n

#z
reduce ::= Dz

reduce

Dz
reduce ::= (N⊕)

z

N⊕ ::= 4⊕
(4⊕)

z ::= [4⊕]z

a1z ::= (k1Cz)

172

A.2. General Purpose Computing Models

`n1 ::= gathernB1

The instruction (a1z)n � (`n1)
z in line four represents the intermediate step. It redistributes

and rearranges the data according to the number of key, where z represents the number of key.

The number of components calculating the reduce step (z), can be refined by replacing (`n1)
z

with `x1
mk ::= (`m1)k� `k1.

A.2.3 MDF

Using the functional dependencies among data, a program execution is a traversal of a graph

whose nodes are macro-dataflow (MDF) instructions. Each MDF node becomes executable as

soon as the input data is available on its input arcs. In [15] this model has been demonstrated

as 3-stage pipeline operating for n iterations (where n represent the number of instructions), as

follows:

• A function b to build the graph (possibly dynamically).

• A function e to determine the executable instruction.

• A function f to execute the MDF instruction in parallel and generate a token required for

determining the next executable instruction.

The MDF graph can be constructed statically or dynamically. Depending on the type of

constructing a MDF graph, two patterns can be considered for MDF [15]. In the following we

explain each pattern.

A.2.3.1 Static MDF

The static MDF pattern is applied when the construction of the instruction graph is static. Using

the RISC-pb2l building blocks, the static MDF pattern can be represented as:

«b » �
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(gathernB1 � «e» � unicast1Cn � [«f »]n)c

We now demonstrate that the above pattern is detectable by our grammar.

�MDFS ::= _b

_b ::= Nb � _e f

Nb ::= 4b

4b ::= «b»

_e f ::= ^e f

^e f ::=
←−−−−−−−−−−−−−−−−−−−
(|=n1

1 �Ne� a
1n �Dn

f)c

Ne ::= 4e

4e ::= «e»

Dn
f ::= (N f)

n

N f := 4 f

173

Appendix A. Validation of RISC-pb2l Grammar

(4 f)
n ::= [4 f]n

4 f ::= «f»

a1n ::= unicast1Cn

|=n1
1 ::= gathernB1

A.2.3.2 Dynamic MDF

The dynamic MDF pattern is applied when the construction of the instruction graph is dynamic.

Using the RISC-pb2l building blocks, the dynamic MDF composition can be represented as:
←−−
(gathernB1 � «b» � «e» � unicast1Cn � [«f»]n)c

We now demonstrate that the above pattern is detectable by the proposed grammar.

�MDFS ::= _be f

_be f ::= ^be f

^e f ::=
←−−−−−−−−−−−−−−−−−−−
(|=n1

1 �Nbe� a
1n �Dn

f)c

Nbe ::= Obe

Obe ::= 4b � 4e

4b ::= «b»

4e ::= «e»

Dn
f ::= (N f)

n

N f := 4 f

(4 f)
n ::= [4 f]n

4 f ::= «f»

a1n ::= unicast1Cn

|=n1
1 ::= gathernB1

A.3 Domain Specific pattern

In this section, we demonstrate that the three domain specific patterns GSP, OB and NPP

generated by RISC-pb2l building block [15], can be captured by our grammar.

A.3.1 GSP

The global single population (GSP) genetic skeleton pattern belongs to the family of so-called

genetic algorithm skeletons [123, 124].

Using the RISC-pb2l building block, the GSP pattern can be captured as follows [15]:
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(scatter1Cn � [«eval»] � (f ilternB1))term

In the following we demonstrate that this pattern is detectable by the proposed grammar.

�gsp ::= Ngsp

Ngsp ::= 4gsp

174

A.3. Domain Specific pattern

4gsp ::=
←−−−−−−−−−−−−−−−−
(a1n �Dn

gsp� `
n1)term

Dn
gsp ::= (Ngsp)

n

Ngsp := 4gsp

(4gsp)
n ::= [4gsp]n

4gsp ::= «eval»

a1n ::= scatter1Cn

`n1 ::= (f ilternB1)

A.3.2 OB

The Orbit Skeleton (OB) [125] belongs to the field of symbolic computation. Starting from an

initial set of "points", it recursively applies a set of generators and adds those generated points

that are not already included in the original set. The process will be repeated until the transitive

closure of the generators on the initial set is eventually computed.

Using the RISC-pb2l building block, the OB pattern can be captured as follows [15]:
←−−
scatter1Cn � [brodcast1Cx � [«g1», ... , «gx»] � (f D)xB1]n � (f D)nB1 � «uS»nia

In the following we demonstrate that our grammar can detect the OB pattern.

�ob ::= No

No ::= 4o

4o ::=
←−−−
(Oo)nia

Oo ::= 4ob � 4uS

4ob ::= a1n �Dn
ob� `

n1

Dn
ob ::= (Nobs)n

Nobs ::= 4obs

(4obs)n ::= [4obs]n

4obs ::= a1x �Dx
obs� `

x1

Dx
obs ::= (Nobg)x

Nobg ::= 4obg

(4obg)x ::= [4obg1 , ...4obgx]

4obgi ::= «gi»

a1n ::= scatter1Cn

`n1 ::= (f DnB1)

a1x ::= broadcast1Cx

`x1 ::= (f DxB1)

4uS ::= «uS »

175

Appendix A. Validation of RISC-pb2l Grammar

A.3.3 NPP

The network packet processing (NPP) can be typically considered as a pipeline of parallel

functional stages. The number of stages in the pipeline depends on the processing application.

Without loss of generality, a two stage NPP pipeline consists of the following stages:

• Parsing stage: To parse packets.

• Processing stage: To provide a protocol management and to process network packet-

s/flows.

Using the RISC-pb2l building blocks, the NPP pattern can be captured as follows [15]:

(f1Cn) � [4pars]n � (f −1
nB1) � (h1Cn) � [4proc]n � gathernB1

In the following we demonstrate that the proposed grammar can capture the NPP pattern.

�npp ::= Nnpp

Nnpp ::= Onpp

Onpp ::= 4pars � 4proc

4pars ::= a1n �Dn
pars� `

n1

Dn
pars ::= (Nparsi)n

Nparsi ::= 4parsi

(4parsi)n ::= [4parsi]n

a1n ::= (f1Cn)

`n1 ::= (f −1
nB1)

4proc ::= a1x �Dx
proci� `

x1

Dx
proci ::= (Nproci)x

Nproci ::= 4proci

(4proci)x ::= [4proci]x

a1x ::= (h1Cx)

`x1 ::= gatherxB1

176

Appendix B

The Structural Representation of

Application Suite

B.1 Uniform Random Noise Generator

The URNG application has been designed as follow:

«readStage » � «‖urng‖» � «writeStage »

B.1.1 Demonstration of URNG with RISC-pb2l Grammar

Using the building block grammar represented in Listing 3.1, the URNG application is gener-

ated as follows:

�URNG ::= NRUW

NRUW ::= ORUW

ORUW ::= 4R � OUW

OUW ::= 4U � 4W

4R ::= «readStage »

4U ::= «‖urng‖»

4W ::= «writeStage »

B.1.2 SKIP-compliant Object Representing the URNG Application

The following is a SKIP object representing the structural meta-data required to generate the

URNG application.

1 {

2 "Application_Name" : "URNG",

3 "Profile_and_Tune" :true,

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

177

Appendix B. The Structural Representation of Application Suite

6 "ReductionPipeComposition":{

7 "Component_Name" : "ff_pipeline",

8 "Component_Type" :"pipeline",

9 "Ch_Bound" : 200,

10 "Sequential" :{

11 "Component_Name" : "ff_node",

12 "Component_Type" : "sequential",

13 "Function_Name" : "read_benchmarck"

14 },

15 "Hsequential" :{

16 "Component_Name" : "oclnode",

17 "Component_Type" : "hsequential",

18 "Host_Preparation_Function": "set_oclParameter_URNG",

19 "kernel_Path": "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/

20 examples/URNG/URNG_Kernels.cl",

21 "Function_Name" : "execute_kernel_URNG"

22 },

23 "Sequential" :{

24 "Component_Name" : "ff_node",

25 "Component_Type" : "sequential",

26 "Function_Name" : "write_benchmarck"

27 }

28 }

29

30 }

B.2 Recursive Gaussian

The recursive Gaussian application has been designed as follow: «readStage » �«‖gausianFilter‖» �

«‖transpose‖» � «‖gausianFilter‖» � «‖transpose‖» � «adjust » � «writeStage »

B.2.1 Demonstration of Recursive Gaussian with RISC-pb2l Grammar

Using the building block grammar represented in Listing 3.1, the recursive Gaussian applica-

tion is generated as follows:

�RG ::= NRG1T1G2T2AW

NRG1T1G2T2AW ::= ORG1T1G2T2AW

ORG1T1G2T2AW ::= 4R � OG1T1G2T2AW

OG1T1G2T2AW ::= 4G1 � OT1G2T2AW

OT1G2T2AW ::= 4T1 � OG2T2AW

OG2T2AW ::= 4G2 � OT2AW

OT2AW ::= 4T2 � OAW

OT2AW ::= 4A � 4W

4R ::= «readStage »

178

B.2. Recursive Gaussian

4G1 ::= «‖gausianFilter‖»

4T1 ::= «‖transpose‖»

4G2 ::= «‖gausianFilter‖»

4T2 ::= «‖transpose‖»

4A ::= «adjust »

4W ::= «writeStage »

B.2.2 SKIP-compliant Object Representing the Recursive Gaussian Appli-

cation

The following is a SKIP object representing the structural meta-data required to generate the

recursive Gaussian application.

1 {

2 "Application_Name" : "recursive-gaussian",

3 "Profile_and_Tune" : true,

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

6 "ReductionPipeComposition":{

7 "Component_Name" :"ff_pipeline",

8 "Component_Type" : "pipeline",

9 "Ch_Bound" : 320,

10 "Sequential" :{

11 "Component_Name" :"ff_node",

12 "Component_Type" : "sequential",

13 "Function_Name" : "read_benchmarck"

14 },

15 "Hsequential" :{

16 "Component_Name" :"oclnode",

17 "Component_Type" : "hsequential",

18 "Host_Preparation_Function" : "set_oclParameter_recursiveGaussian",

19 "Kernel_Path" : "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/examples

20 /RecursiveGaussian/RecursiveGaussian_Kernels.cl",

21 "Function_Name" : "execute_kernel_recursiveGaussian"

22 },

23 "Hsequential" :{

24 "Component_Name" :"oclnode",

25 "Component_Type" : "hsequential",

26 "Host_Preparation_Function": "set_oclParameter_recursiveGaussian",

27 "Kernel_Path" : "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/examples

28 /RecursiveGaussian/RecursiveGaussian_Kernels.cl",

29 "Function_Name" : "execute_kernel_transpose"

30 },

31 "Hsequential" :{

32 "Component_Name" :"oclnode",

33 "Component_Type" : "hsequential",

34 "Host_Preparation_Function" : "set_oclParameter_recursiveGaussian",

179

Appendix B. The Structural Representation of Application Suite

35 "Kernel_Path" : "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/examples

36 /RecursiveGaussian/RecursiveGaussian_Kernels.cl",

37 "Function_Name" : "execute_kernel_recursiveGaussian"

38 },

39 "Hsequential" :{

40 "Component_Name" :"oclnode",

41 "Component_Type" : "hsequential",

42 "Host_Preparation_Function" : "set_oclParameter_recursiveGaussian",

43 "Kernel_Path" : "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/examples

44 /RecursiveGaussian/RecursiveGaussian_Kernels.cl",

45 "Function_Name" : "execute_kernel_transpose"

46 },

47 "Sequential" :{

48 "Component_Name" :"ff_node",

49 "Component_Type" : "sequential",

50 "Function_Name" : "adjust_result"

51 },

52 "Sequential" :{

53 "Component_Name" :"ff_node",

54 "Component_Type" : "sequential",

55 "Function_Name" : "write_benchmarck"

56 }

57 }

58 }

B.3 Separable Convolution

The separable convolution application has been designed as follow:

«generation » �Unicast1Cn � [«‖convolutionFilter‖»]n

B.3.1 Demonstration of Separable Convolution with RISC-pb2l Grammar

Using the building block grammar represented in Listing 3.1, the separable convolution appli-

cation can be demonstrated as:

�CF ::= _GC

_GC ::= NG �_C

NG ::= 4G

4G ::= «generation »

_C ::= ^C

^C ::=a1n �#n
C

a1n::= Unicast1Cn

#n
C ::= Dn

C

Dn
C ::= (NC)n

(NC)n ::= [NC]n

180

B.3. Separable Convolution

NC ::= 4C

4C ::= «‖convolutionFilter‖»

B.3.2 SKIP-compliant Object Representing the Separable Convolution Ap-

plication

The following is a SKIP object representing the structural meta-data required to generate the

separable convolution application.

1 {

2 "Application_Name" : "separable-convolution",

3 "Profile_and_Tune" :true,

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

6 "NonReductionPipeComposition":{

7 "Component_Name" : "ff_pipeline",

8 "Component_Type" : "pipeline",

9 "Ch_Bound" :100,

10 "Sequential" :{

11 "Component_Name" :"ff_node",

12 "Component_Type" : "Sequential",

13 "Function_Name" : "first_stage_worker_function"

14 },

15 "NonReductionComposition":{

16 "Component_Name" :"ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>",

17 "Component_Type" : "farm",

18 "Ch_Bound" :100,

19 "1ToNCom" : {

20 "Component_Name" :"ff_loadbalancer",

21 "Component_Type" : "spread",

22 "Ch_Policy" : "adaptive_loadbalancer",

23 "Workload" : [1,1],

24 "Ch_Multiplicity": 2,

25 "Filter" :{

26 "Component_Name" :"emitter",

27 "Component_Type" : "Sequential",

28 "Function_Name" : "iterative_stage_emitter_function"

29 }

30 },

31 "Parallel" : [

32 {

33 "Par_Level": 2,

34 "Hsequential" : {

35 "Component_Name" :"oclnode",

36 "Component_Type" : "Hsequential",

37 "Host_Preparation_Function": "set_oclParameter",

38 "kernel_path": "/users/mehdi/Thesis/

39 fastflow-2.0.2.13-VIP/examples/simple-convolution/

40 Lib_version/SimpleConvolution_Kernels.cl",

181

Appendix B. The Structural Representation of Application Suite

41 "Function_Name" : "execute_kernel"

42 }

43 }

44]

45 }

46 }

47 }

B.4 Bilateral Denoise

B.4.1 Demonstration of Bilateral Denoise with RISC-pb2l Grammar

The bilateral denoise application has been designed as follow:

«readStage » �Unicast1Cn � [«‖bilateralDenoise‖»]n � gathernB1 � «writeStage »

Using the building block grammar represented in Listing 3.1, the bilateral denoise applica-

tion is generated as follows:

�BD ::= NRBW

NRBW ::= ORBW

ORBW ::= 4R � OBW

OBW ::= 4B � 4W

4R ::= «readStage »

4B ::=a1n �Dn
B `

n1

a1n::= Unicast1Cn

Dn
B ::= (NB)n

(NB)n ::= [NB]n

NB ::= 4B

4B ::= «‖bilateralDenoise‖»

`n1::= gathernB1

4W ::= «writeStage »

B.4.2 SKIP-compliant Object Representing the Bilateral Denoise Applica-

tion

The following is a SKIP compliant object representing the structural meta-data required to

generate the bilateral denoise application.

1 {

2 "Application_Name" : "bilateral-dnoise",

3 "Profile_and_Tune" :true,

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

182

B.4. Bilateral Denoise

6 "ReductionPipeComposition":{

7 "Component_Name" : "ff_pipeline",

8 "Component_Type" : "pipeline",

9 "Ch_Bound" :200,

10 "Sequential" :{

11 "Component_Name" :"ff_node",

12 "Component_Type" : "Sequential",

13 "Function_Name" : "read_benchmarck"

14 },

15 "ReductionComposition":{

16 "Component_Name" :"ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>",

17 "Component_Type" : "farm",

18 "Ch_Bound" :200,

19 "1ToNCom" : {

20 "Component_Name" :"ff_loadbalancer",

21 "Component_Type" : "spread",

22 "Ch_Policy" : "adaptive_loadbalancer",

23 "Workload" : [1,1],

24 "Ch_Multiplicity": 2,

25 "Filter" :{

26 "Component_Name" :"emitter",

27 "Component_Type" : "Sequential",

28 "Function_Name" : "iterative_stage_emitter_function"

29 }

30 },

31 "Parallel" : [

32 {

33 "Par_Level": 2,

34 "Hsequential" : {

35 "Component_Name" :"oclnode",

36 "Component_Type" : "Hsequential",

37 "Host_Preparation_Function": "set_oclParameter_bilateral",

38 "kernel_path": "/users/mehdi/Thesis/

39 fastflow-2.0.2.13-VIP/examples/Bilateral-Denoise/bilateralKernel.cl",

40 "Function_Name" : "execute_kernel_bilateral"

41 }

42 }

43],

44 "NTo1Com" : {

45 "Component_Name" :"collector",

46 "Component_Type" : "Reduce",

47 "Ch_Policy" : "ff::ff_gatherer",

48 "Ch_Multiplicity": 2,

49 "Filter" :{

50 "Component_Type" : "Sequential",

51 "Function_Name" : "iterative_stage_collector_function"

52 }

53 }

54 },

55 "Sequential": {

56 "Component_Name" :"ff_node",

183

Appendix B. The Structural Representation of Application Suite

57 "Component_Type" : "Sequential",

58 "Function_Name" : "write_benchmarck"

59 }

60 }

61 }

B.5 Sobel Filter

The sobel filter application has been designed as follow:

«readStage » � «‖sobelOperator‖» � «writeStage »

B.5.1 Demonstration of Soble Filter with RISC-pb2l Grammar

Using the building block grammar represented in Listing 3.1, the sobel filter application is

generated as follows:

�S F ::= NRS W

NRS W ::= ORS W

ORS W ::= 4R � OS W

OS W ::= 4S � 4W

4R ::= «readStage »

4S ::= «‖sobelOperator‖»

4W ::= «writeStage »

B.5.2 SKIP-compliant Object Representing the Soble Filter Application

The following is a SKIP object representing the structural meta-data required to generate the

sobel filter application.

1 {

2 "Application_Name" : "SobelFilter",

3 "Profile_and_Tune" :true,

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

6 "ReductionPipeComposition":{

7 "Component_Name" : "ff_pipeline",

8 "Component_Type" :"pipeline",

9 "Ch_Bound" : 200,

10 "Sequential" :{

11 "Component_Name" : "ff_node",

12 "Component_Type" : "sequential",

13 "Function_Name" : "read_benchmarck"

14 },

15 "Hsequential" :{

184

B.6. Gaussian Noise

16 "Component_Name" : "oclnode",

17 "Component_Type" : "hsequential",

18 "Host_Preparation_Function": "set_oclParameter_sobel",

19 "kernel_Path": "/users/mehdi/Thesis/fastflow-2.0.2.13-VIP/examples/

20 SobelFilter/SobelFilter_Kernels.cl",

21 "Function_Name" : "execute_kernel_sobel"

22 },

23 "Sequential" :{

24 "Component_Name" : "ff_node",

25 "Component_Type" : "sequential",

26 "Function_Name" : "write_benchmarck"

27 }

28 }

29

30 }

B.6 Gaussian Noise

The Gaussian-Noise application has been designed as follow:

(ReadUnicast1Cn) � [«‖gausianNoise‖»]n � (WritegathernB1)

B.6.1 Demonstration of Gaussian Noise with RISC-pb2l Grammar

Using the building block grammar represented in Listing 3.1, the Gaussian noise application is

generated as follows:

�GN ::= NRGW

NRGW ::= 4RGW

4RGW ::=a1n �Dn
G `

n1

a1n::= (ReadUnicast1Cn)

Dn
G ::= (NG)n

(NG)n ::= [NG]n

NG ::= 4G

4G ::= «‖gausianNoise‖»

`n1::= (WritegathernB1)

B.6.2 SKIP-compliant Object Representing the Gaussian Noise Application

The following is a SKIP object representing the structural meta-data required to generate the

Gaussian noise application.

1 {

2 "Application_Name" : "bilateral-dnoise",

3 "Profile_and_Tune" :true,

185

Appendix B. The Structural Representation of Application Suite

4 "Priority" : 0,

5 "Sampling_Mode":"Sparse",

6

7 "ReductionComposition":{

8 "Component_Name" :"ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>",

9 "Component_Type" : "farm",

10 "Ch_Bound" :200,

11 "1ToNCom" : {

12 "Component_Name" :"ff_loadbalancer",

13 "Component_Type" : "spread",

14 "Ch_Policy" : "adaptive_loadbalancer",

15 "Workload" : [1,1],

16 "Ch_Multiplicity": 2,

17 "Filter" :{

18 "Component_Name" :"emitter",

19 "Component_Type" : "Sequential",

20 "Function_Name" : "read_benchmarck"

21 }

22 },

23 "Parallel" : [

24 {

25 "Par_Level": 2,

26 "Hsequential" : {

27 "Component_Name" :"oclnode",

28 "Component_Type" : "Hsequential",

29 "Host_Preparation_Function": "set_oclParameter_gaussian_transform",

30 "kernel_path": "/users/mehdi/Thesis/

31 fastflow-2.0.2.13-VIP/examples/Gausian-Noise/GaussianNoise_Kernels.cl",

32 "Function_Name" : "execute_kernel_gaussian_transform"

33 }

34 }

35],

36 "NTo1Com" : {

37 "Component_Name" :"collector",

38 "Component_Type" : "Reduce",

39 "Ch_Policy" : "ff::ff_gatherer",

40 "Ch_Multiplicity": 2,

41 "Filter" :{

42 "Component_Type" : "Sequential",

43 "Function_Name" : "write_benchmarck"

44 }

45 }

46 }

47 }

186

Appendix C

The SKIP Compliant Objects

C.1 Sensor Files

In the following we demonstrate a snapshot of the sensor file for each application that uses our

HWrapper building block. Each file has a tree structure. In all cases, the root of the tree has no

name as the C++ JSON library applied here eliminates the name of the root for a JSON object.

C.1.1 Bilateral-Denoise

1 {

2 "Component_Name" : "ff::ff_pipeline",

3 "Component_Type" : "pipeline",

4 "Node_Address" : "\/ff_pipeline\/0",

5 "Sequential" : {

6 "Component_Name" : "component_cls",

7 "Component_Type" : "sequential",

8 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

9 "Elapsed_Time" : 870365.957,

10 "Assigned_Processor" : -1,

11 "Processed_Tasks" : 6145,

12 "Queue_Input" : -1,

13 "Queue_Output" : 0,

14 "Component_Last_Processing_Time" : 0,

15 "Total_Component_Active_Time" : 23231.93,

16 "Sampling_Rate" : 0,

17 "Component_Time_Distribution" : [],

18 "Push_Delay_Count" : 10060213,

19 "Push_Delay_Time" : 10060.213,

20 "Pop_Delay_Count" : 0,

21 "Pop_Delay_Time" : 0,

22 "End_Received" : 0

23 },

24 "ReductionComposition" : {

25 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

187

Appendix C. The SKIP Compliant Objects

26 "Component_Type" : "farm",

27 "Node_Address" : "\/ff_pipeline\/0\

28 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1",

29 "1ToNCom" : {

30 "Component_Name" : "ff::adaptive_loadbalancer",

31 "Ch_Policy" : "adaptive_loadbalancer",

32 "Ch_Out" : 6144,

33 "Ch_In" : 6144,

34 "Elapsed_Time" : 870365.993,

35 "Component_Type" : "spread",

36 "Node_Address" : "\/ff_pipeline\/0\

37 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/ff_loadbalancer\/0",

38 "Assigned_Processor" : -1,

39 "Sampling_Rate" : 0,

40 "Filter" : {

41 "Component_Name" : "emitter_cls",

42 "Component_Type" : "ff_node",

43 "Component_Time_Distribution" : []

44 },

45 "Component_Last_Processing_Time" : 0,

46 "Total_Component_Active_Time" : 0,

47 "Push_Delay_Count" : 12250980,

48 "Push_Delay_Time" : 12250.98,

49 "Pop_Delay_Count" : 586,

50 "Pop_Delay_Time" : 586000

51 },

52 "parallel" : [

53 {

54 "Hsequential" : {

55 "Component_Name" : "ocl_component_cls",

56 "Component_Type" : "hsequential",

57 "Node_Address" : "\/ff_pipeline\/0\

58 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/0",

59 "Elapsed_Time" : 870366.013,

60 "Assigned_Processor" : -1,

61 "Processed_Tasks" : 3709,

62 "Queue_Input" : 0,

63 "Queue_Output" : 0,

64 "Component_Last_Processing_Time" : 0,

65 "Total_Component_Active_Time" : 600604.333,

66 "Sampling_Rate" : 0,

67 "Component_Time_Distribution" : [],

68 "Push_Delay_Count" : 0,

69 "Push_Delay_Time" : 0,

70 "Pop_Delay_Count" : 3013468,

71 "Pop_Delay_Time" : 3013.468,

72 "End_Received" : 0,

73 "Assigned_Device_Number" : 1

74 },

75 "Hsequential" : {

76 "Component_Name" : "ocl_component_cls",

188

C.1. Sensor Files

77 "Component_Type" : "hsequential",

78 "Node_Address" : "\/ff_pipeline\/0\

79 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/1",

80 "Elapsed_Time" : 870366.039,

81 "Assigned_Processor" : -1,

82 "Processed_Tasks" : 183,

83 "Queue_Input" : 2,

84 "Queue_Output" : 0,

85 "Component_Last_Processing_Time" : 553.294,

86 "Total_Component_Active_Time" : 100867.747,

87 "Sampling_Rate" : 0,

88 "Component_Time_Distribution" : [],

89 "Push_Delay_Count" : 0,

90 "Push_Delay_Time" : 0,

91 "Pop_Delay_Count" : 57,

92 "Pop_Delay_Time" : 0.057,

93 "End_Received" : 0,

94 "Assigned_Device_Number" : 1

95 }

96 }

97],

98 "NTo1Com" : {

99 "Component_Name" : "ff::ff_gatherer",

100 "Ch_Policy" : "ff_gatherer",

101 "Processed_Tasks" : 6142,

102 "Elapsed_Time" : 870366.062,

103 "Queue_Output" : 0,

104 "Component_Type" : "reduce",

105 "Node_Address" : "\/ff_pipeline\/0\

106 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/collector\/0",

107 "Assigned_Processor" : -1,

108 "Sampling_Rate" : 0,

109 "Filter" : {

110 "Component_Name" : "collector_cls",

111 "Component_Type" : "ff_node",

112 "Component_Time_Distribution" : []

113 },

114 "Component_Last_Processing_Time" : 0.002,

115 "Total_Component_Active_Time" : 3.426,

116 "Push_Delay_Count" : 0,

117 "Push_Delay_Time" : 0,

118 "Pop_Delay_Count" : 15757570,

119 "Pop_Delay_Time" : 78787.85

120 },

121 "Elapsed_Time" : 870366.075

122 },

123 "Sequential" : {

124 "Component_Name" : "component_cls",

125 "Component_Type" : "sequential",

126 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

127 "Elapsed_Time" : 870366.08,

189

Appendix C. The SKIP Compliant Objects

128 "Assigned_Processor" : -1,

129 "Processed_Tasks" : 6142,

130 "Queue_Input" : 0,

131 "Queue_Output" : -1,

132 "Component_Last_Processing_Time" : 0.01,

133 "Total_Component_Active_Time" : 415.382,

134 "Sampling_Rate" : 0,

135 "Component_Time_Distribution" : [],

136 "Push_Delay_Count" : 0,

137 "Push_Delay_Time" : 0,

138 "Pop_Delay_Count" : 16083078,

139 "Pop_Delay_Time" : 16083.078,

140 "End_Received" : 0

141 },

142 "Elapsed_Time" : 870366.091

143 }

C.1.2 Recursive Gaussian

1 {

2 "Component_Name" : "ff::ff_pipeline",

3 "Component_Type" : "pipeline",

4 "Node_Address" : "\/ff_pipeline\/0",

5 "Sequential" : {

6 "Component_Name" : "component_cls",

7 "Component_Type" : "sequential",

8 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

9 "Elapsed_Time" : 109294.143,

10 "Assigned_Processor" : -1,

11 "Processed_Tasks" : 6145,

12 "Queue_Input" : -1,

13 "Queue_Output" : 0,

14 "Component_Last_Processing_Time" : 0,

15 "Total_Component_Active_Time" : 27679.278,

16 "Sampling_Rate" : 0,

17 "Component_Time_Distribution" : [],

18 "Push_Delay_Count" : 526035,

19 "Push_Delay_Time" : 526.035,

20 "Pop_Delay_Count" : 0,

21 "Pop_Delay_Time" : 0,

22 "End_Received" : 0

23 },

24 "Hsequential" : {

25 "Component_Name" : "ocl_component_cls",

26 "Component_Type" : "hsequential",

27 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

28 "Elapsed_Time" : 109294.176,

29 "Assigned_Processor" : -1,

30 "Processed_Tasks" : 128,

190

C.1. Sensor Files

31 "Queue_Input" : 0,

32 "Queue_Output" : 0,

33 "Component_Last_Processing_Time" : 0,

34 "Total_Component_Active_Time" : 3164.152,

35 "Sampling_Rate" : 0,

36 "Component_Time_Distribution" : [],

37 "Push_Delay_Count" : 118727,

38 "Push_Delay_Time" : 118.727,

39 "Pop_Delay_Count" : 29,

40 "Pop_Delay_Time" : 0.029,

41 "End_Received" : 0,

42 "Assigned_Device_Number" : 1

43 },

44 "Hsequential" : {

45 "Component_Name" : "ocl_component_cls",

46 "Component_Type" : "hsequential",

47 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/2",

48 "Elapsed_Time" : 109294.2,

49 "Assigned_Processor" : -1,

50 "Processed_Tasks" : 5,

51 "Queue_Input" : 0,

52 "Queue_Output" : 0,

53 "Component_Last_Processing_Time" : 0,

54 "Total_Component_Active_Time" : 237.286,

55 "Sampling_Rate" : 0,

56 "Component_Time_Distribution" : [],

57 "Push_Delay_Count" : 416643,

58 "Push_Delay_Time" : 416.643,

59 "Pop_Delay_Count" : 5108,

60 "Pop_Delay_Time" : 5.108,

61 "End_Received" : 0,

62 "Assigned_Device_Number" : 1

63 },

64 "Hsequential" : {

65 "Component_Name" : "ocl_component_cls",

66 "Component_Type" : "hsequential",

67 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/3",

68 "Elapsed_Time" : 109294.225,

69 "Assigned_Processor" : -1,

70 "Processed_Tasks" : 332,

71 "Queue_Input" : 0,

72 "Queue_Output" : 5,

73 "Component_Last_Processing_Time" : 0,

74 "Total_Component_Active_Time" : 12640.781,

75 "Sampling_Rate" : 0,

76 "Component_Time_Distribution" : [],

77 "Push_Delay_Count" : 379220,

78 "Push_Delay_Time" : 379.22,

79 "Pop_Delay_Count" : 15247,

80 "Pop_Delay_Time" : 15.247,

81 "End_Received" : 0,

191

Appendix C. The SKIP Compliant Objects

82 "Assigned_Device_Number" : 1

83 },

84 "Hsequential" : {

85 "Component_Name" : "ocl_component_cls",

86 "Component_Type" : "hsequential",

87 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/4",

88 "Elapsed_Time" : 109294.247,

89 "Assigned_Processor" : -1,

90 "Processed_Tasks" : 511,

91 "Queue_Input" : 5,

92 "Queue_Output" : 0,

93 "Component_Last_Processing_Time" : 20.976,

94 "Total_Component_Active_Time" : 16029.504,

95 "Sampling_Rate" : 0,

96 "Component_Time_Distribution" : [],

97 "Push_Delay_Count" : 0,

98 "Push_Delay_Time" : 0,

99 "Pop_Delay_Count" : 117703,

100 "Pop_Delay_Time" : 117.703,

101 "End_Received" : 0,

102 "Assigned_Device_Number" : 1

103 },

104 "Sequential" : {

105 "Component_Name" : "component_cls",

106 "Component_Type" : "sequential",

107 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/5",

108 "Elapsed_Time" : 109294.265,

109 "Assigned_Processor" : -1,

110 "Processed_Tasks" : 6139,

111 "Queue_Input" : 0,

112 "Queue_Output" : 0,

113 "Component_Last_Processing_Time" : 0.01,

114 "Total_Component_Active_Time" : 28003.384,

115 "Sampling_Rate" : 0,

116 "Component_Time_Distribution" : [],

117 "Push_Delay_Count" : 0,

118 "Push_Delay_Time" : 0,

119 "Pop_Delay_Count" : 1489235,

120 "Pop_Delay_Time" : 1489.235,

121 "End_Received" : 0

122 },

123 "Sequential" : {

124 "Component_Name" : "component_cls",

125 "Component_Type" : "sequential",

126 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/6",

127 "Elapsed_Time" : 109294.282,

128 "Assigned_Processor" : -1,

129 "Processed_Tasks" : 6138,

130 "Queue_Input" : 0,

131 "Queue_Output" : -1,

132 "Component_Last_Processing_Time" : 0.01,

192

C.1. Sensor Files

133 "Total_Component_Active_Time" : 359.431,

134 "Sampling_Rate" : 0,

135 "Component_Time_Distribution" : [],

136 "Push_Delay_Count" : 0,

137 "Push_Delay_Time" : 0,

138 "Pop_Delay_Count" : 1998961,

139 "Pop_Delay_Time" : 1998.961,

140 "End_Received" : 0

141 },

142 "Elapsed_Time" : 109294.294

143 }

C.1.3 Gausian-Noise

1 {

2 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

3 "Component_Type" : "farm",

4 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/0",

5 "1ToNCom" : {

6 "Component_Name" : "ff::adaptive_loadbalancer",

7 "Ch_Policy" : "adaptive_loadbalancer",

8 "Ch_Out" : 6144,

9 "Ch_In" : 6144,

10 "Elapsed_Time" : 68163.683,

11 "Component_Type" : "spread",

12 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

13 \/0\/ff_loadbalancer\/0",

14 "Assigned_Processor" : -1,

15 "Sampling_Rate" : 0,

16 "Filter" : {

17 "Component_Name" : "emitter_cls",

18 "Component_Type" : "ff_node",

19 "Component_Time_Distribution" : []

20 },

21 "Component_Last_Processing_Time" : 0,

22 "Total_Component_Active_Time" : 0,

23 "Push_Delay_Count" : 962364,

24 "Push_Delay_Time" : 962.364,

25 "Pop_Delay_Count" : 229,

26 "Pop_Delay_Time" : 229000

27 },

28 "parallel" : [

29 {

30 "Hsequential" : {

31 "Component_Name" : "ocl_component_cls",

32 "Component_Type" : "hsequential",

33 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

34 \/0\/oclnode\/0",

35 "Elapsed_Time" : 68163.703,

193

Appendix C. The SKIP Compliant Objects

36 "Assigned_Processor" : -1,

37 "Processed_Tasks" : 4467,

38 "Queue_Input" : 0,

39 "Queue_Output" : 0,

40 "Component_Last_Processing_Time" : 0,

41 "Total_Component_Active_Time" : 61034.073,

42 "Sampling_Rate" : 0,

43 "Component_Time_Distribution" : [],

44 "Push_Delay_Count" : 0,

45 "Push_Delay_Time" : 0,

46 "Pop_Delay_Count" : 26,

47 "Pop_Delay_Time" : 0.026,

48 "End_Received" : 0,

49 "Assigned_Device_Number" : 1

50 },

51 "Hsequential" : {

52 "Component_Name" : "ocl_component_cls",

53 "Component_Type" : "hsequential",

54 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

55 \/0\/oclnode\/1",

56 "Elapsed_Time" : 68163.721,

57 "Assigned_Processor" : -1,

58 "Processed_Tasks" : 158,

59 "Queue_Input" : 11,

60 "Queue_Output" : 0,

61 "Component_Last_Processing_Time" : 48.345,

62 "Total_Component_Active_Time" : 6937.662,

63 "Sampling_Rate" : 0,

64 "Component_Time_Distribution" : [],

65 "Push_Delay_Count" : 0,

66 "Push_Delay_Time" : 0,

67 "Pop_Delay_Count" : 26,

68 "Pop_Delay_Time" : 0.026,

69 "End_Received" : 0,

70 "Assigned_Device_Number" : 1

71 }

72 }

73],

74 "NTo1Com" : {

75 "Component_Name" : "ff::ff_gatherer",

76 "Ch_Policy" : "ff_gatherer",

77 "Processed_Tasks" : 6133,

78 "Elapsed_Time" : 68163.739,

79 "Queue_Output" : 0,

80 "Component_Type" : "reduce",

81 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

82 \/0\/collector\/0",

83 "Assigned_Processor" : -1,

84 "Sampling_Rate" : 0,

85 "Filter" : {

86 "Component_Name" : "collector_cls",

194

C.1. Sensor Files

87 "Component_Type" : "ff_node",

88 "Component_Time_Distribution" : []

89 },

90 "Component_Last_Processing_Time" : 0.001,

91 "Total_Component_Active_Time" : 4.986,

92 "Push_Delay_Count" : 0,

93 "Push_Delay_Time" : 0,

94 "Pop_Delay_Count" : 1202015,

95 "Pop_Delay_Time" : 6010.075

96 },

97 "Elapsed_Time" : 68163.754

98 }

C.1.4 Sobel Filter

1 {

2 "Component_Name" : "ff::ff_pipeline",

3 "Component_Type" : "pipeline",

4 "Node_Address" : "\/ff_pipeline\/0",

5 "Sequential" : {

6 "Component_Name" : "component_cls",

7 "Component_Type" : "sequential",

8 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

9 "Elapsed_Time" : 128351.531,

10 "Assigned_Processor" : -1,

11 "Processed_Tasks" : 6145,

12 "Queue_Input" : -1,

13 "Queue_Output" : 0,

14 "Component_Last_Processing_Time" : 0,

15 "Total_Component_Active_Time" : 19646.577,

16 "Sampling_Rate" : 0,

17 "Component_Time_Distribution" : [],

18 "Push_Delay_Count" : 1645559,

19 "Push_Delay_Time" : 1645.559,

20 "Pop_Delay_Count" : 0,

21 "Pop_Delay_Time" : 0,

22 "End_Received" : 0

23 },

24 "Hsequential" : {

25 "Component_Name" : "ocl_component_cls",

26 "Component_Type" : "hsequential",

27 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

28 "Elapsed_Time" : 128351.565,

29 "Assigned_Processor" : -1,

30 "Processed_Tasks" : 6144,

31 "Queue_Input" : 0,

32 "Queue_Output" : 1,

33 "Component_Last_Processing_Time" : 0,

34 "Total_Component_Active_Time" : 128300.18,

195

Appendix C. The SKIP Compliant Objects

35 "Sampling_Rate" : 0,

36 "Component_Time_Distribution" : [],

37 "Push_Delay_Count" : 0,

38 "Push_Delay_Time" : 0,

39 "Pop_Delay_Count" : 33,

40 "Pop_Delay_Time" : 0.033,

41 "End_Received" : 0,

42 "Assigned_Device_Number" : 1

43 },

44 "Sequential" : {

45 "Component_Name" : "component_cls",

46 "Component_Type" : "sequential",

47 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

48 "Elapsed_Time" : 128351.586,

49 "Assigned_Processor" : -1,

50 "Processed_Tasks" : 6144,

51 "Queue_Input" : 1,

52 "Queue_Output" : -1,

53 "Component_Last_Processing_Time" : 0.01,

54 "Total_Component_Active_Time" : 291.969,

55 "Sampling_Rate" : 0,

56 "Component_Time_Distribution" : [],

57 "Push_Delay_Count" : 0,

58 "Push_Delay_Time" : 0,

59 "Pop_Delay_Count" : 2326091,

60 "Pop_Delay_Time" : 2326.091,

61 "End_Received" : 0

62 },

63 "Elapsed_Time" : 128351.599

64 }

C.1.5 separable-Convolution

1 {

2 "Component_Name" : "ff::ff_pipeline",

3 "Component_Type" : "pipeline",

4 "Node_Address" : "\/ff_pipeline\/0",

5 "Sequential" : {

6 "Component_Name" : "component_cls",

7 "Component_Type" : "sequential",

8 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

9 "Elapsed_Time" : 770831.917,

10 "Assigned_Processor" : -1,

11 "Processed_Tasks" : 6145,

12 "Queue_Input" : -1,

13 "Queue_Output" : 0,

14 "Component_Last_Processing_Time" : 0,

15 "Total_Component_Active_Time" : 12063.308,

16 "Sampling_Rate" : 0,

196

C.1. Sensor Files

17 "Component_Time_Distribution" : [],

18 "Push_Delay_Count" : 12984490,

19 "Push_Delay_Time" : 12984.49,

20 "Pop_Delay_Count" : 0,

21 "Pop_Delay_Time" : 0,

22 "End_Received" : 0

23 },

24 "NonReductionComposition" : {

25 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

26 "Component_Type" : "farm",

27 "Node_Address" : "\/ff_pipeline\/0\

28 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1",

29 "1ToNCom" : {

30 "Component_Name" : "ff::adaptive_loadbalancer",

31 "Ch_Policy" : "adaptive_loadbalancer",

32 "Ch_Out" : 6144,

33 "Ch_In" : 6144,

34 "Elapsed_Time" : 770831.935,

35 "Component_Type" : "spread",

36 "Node_Address" : "\/ff_pipeline\/0\

37 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/ff_loadbalancer\/0",

38 "Assigned_Processor" : -1,

39 "Sampling_Rate" : 0,

40 "Filter" : {

41 "Component_Name" : "emitter_cls",

42 "Component_Type" : "ff_node",

43 "Component_Time_Distribution" : []

44 },

45 "Component_Last_Processing_Time" : 0,

46 "Total_Component_Active_Time" : 0,

47 "Push_Delay_Count" : 13230466,

48 "Push_Delay_Time" : 13230.466,

49 "Pop_Delay_Count" : 3479,

50 "Pop_Delay_Time" : 3479000

51 },

52 "parallel" : [

53 {

54 "Hsequential" : {

55 "Component_Name" : "ocl_component_cls",

56 "Component_Type" : "hsequential",

57 "Node_Address" : "\/ff_pipeline\/0\

58 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/0",

59 "Elapsed_Time" : 770831.948,

60 "Assigned_Processor" : -1,

61 "Processed_Tasks" : 5003,

62 "Queue_Input" : 0,

63 "Queue_Output" : 0,

64 "Component_Last_Processing_Time" : 0,

65 "Total_Component_Active_Time" : 749924.713,

66 "Sampling_Rate" : 0,

67 "Component_Time_Distribution" : [],

197

Appendix C. The SKIP Compliant Objects

68 "Push_Delay_Count" : 0,

69 "Push_Delay_Time" : 0,

70 "Pop_Delay_Count" : 112,

71 "Pop_Delay_Time" : 0.112,

72 "End_Received" : 0,

73 "Assigned_Device_Number" : 1

74 },

75 "Hsequential" : {

76 "Component_Name" : "ocl_component_cls",

77 "Component_Type" : "hsequential",

78 "Node_Address" : "\/ff_pipeline\/0\

79 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/1",

80 "Elapsed_Time" : 770831.974,

81 "Assigned_Processor" : -1,

82 "Processed_Tasks" : 76,

83 "Queue_Input" : 3,

84 "Queue_Output" : 0,

85 "Component_Last_Processing_Time" : 259.213,

86 "Total_Component_Active_Time" : 19434.203,

87 "Sampling_Rate" : 0,

88 "Component_Time_Distribution" : [],

89 "Push_Delay_Count" : 0,

90 "Push_Delay_Time" : 0,

91 "Pop_Delay_Count" : 129,

92 "Pop_Delay_Time" : 0.129,

93 "End_Received" : 0,

94 "Assigned_Device_Number" : 1

95 }

96 }

97],

98 "Elapsed_Time" : 770831.998

99 },

100 "Elapsed_Time" : 770832.01

101 }

C.1.6 URNG

1 {

2 "Component_Name" : "ff::ff_pipeline",

3 "Component_Type" : "pipeline",

4 "Node_Address" : "\/ff_pipeline\/0",

5 "Sequential" : {

6 "Component_Name" : "component_cls",

7 "Component_Type" : "sequential",

8 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

9 "Elapsed_Time" : 164249.834,

10 "Assigned_Processor" : -1,

11 "Processed_Tasks" : 6145,

12 "Queue_Input" : -1,

198

C.1. Sensor Files

13 "Queue_Output" : 7,

14 "Component_Last_Processing_Time" : 0,

15 "Total_Component_Active_Time" : 20399.789,

16 "Sampling_Rate" : 0,

17 "Component_Time_Distribution" : [],

18 "Push_Delay_Count" : 2260003,

19 "Push_Delay_Time" : 2260.003,

20 "Pop_Delay_Count" : 0,

21 "Pop_Delay_Time" : 0,

22 "End_Received" : 0

23 },

24 "Hsequential" : {

25 "Component_Name" : "ocl_component_cls",

26 "Component_Type" : "hsequential",

27 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

28 "Elapsed_Time" : 164249.858,

29 "Assigned_Processor" : -1,

30 "Processed_Tasks" : 6138,

31 "Queue_Input" : 7,

32 "Queue_Output" : 0,

33 "Component_Last_Processing_Time" : 112.546,

34 "Total_Component_Active_Time" : 164156.688,

35 "Sampling_Rate" : 0,

36 "Component_Time_Distribution" : [],

37 "Push_Delay_Count" : 0,

38 "Push_Delay_Time" : 0,

39 "Pop_Delay_Count" : 30,

40 "Pop_Delay_Time" : 0.03,

41 "End_Received" : 0,

42 "Assigned_Device_Number" : 1

43 },

44 "Sequential" : {

45 "Component_Name" : "component_cls",

46 "Component_Type" : "sequential",

47 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

48 "Elapsed_Time" : 164249.881,

49 "Assigned_Processor" : -1,

50 "Processed_Tasks" : 6137,

51 "Queue_Input" : 0,

52 "Queue_Output" : -1,

53 "Component_Last_Processing_Time" : 0.01,

54 "Total_Component_Active_Time" : 231.166,

55 "Sampling_Rate" : 0,

56 "Component_Time_Distribution" : [],

57 "Push_Delay_Count" : 0,

58 "Push_Delay_Time" : 0,

59 "Pop_Delay_Count" : 3002733,

60 "Pop_Delay_Time" : 3002.733,

61 "End_Received" : 0

62 },

63 "Elapsed_Time" : 164249.893

199

Appendix C. The SKIP Compliant Objects

64 }

C.2 Actuator Files

In the following we demonstrate a snapshot of the actuator file for each application that uses

our HWrapper building block. Each file has a tree structure. In all cases, the root of the tree

has no name as the C++ JSON library applied here eliminates the name of the root for a JSON

object.

C.2.1 Bilateral-Denoise

1 {

2 "sequential" : {

3 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

4 "Component_Name" : "component_cls",

5 "Component_Type" : "sequential",

6 "Assigned_Processor" : 3

7 },

8 "ReductionComposition" : {

9 "Node_Address" : "\/ff_pipeline\/0\

10 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1",

11 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

12 "Component_Type" : "farm",

13 "1ToNCom" : {

14 "Node_Address" : "\/ff_pipeline\/0\

15 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/ff_loadbalancer\/0",

16 "Component_Name" : "ff::adaptive_loadbalancer",

17 "Component_Type" : "spread",

18 "Assigned_Processor" : 3,

19 "Filter" : {

20 "Component_Name" : "emitter_cls"

21 },

22 "Masking_Array" : [

23 1,

24 1

25],

26 "Workload" : [

27 0.79209,

28 0.20791

29]

30 },

31 "Parallel" : [

32 {

33 "Hsequential" : {

34 "Node_Address" : "\/ff_pipeline\/0\

35 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/0",

36 "Component_Name" : "ocl_component_cls",

200

C.2. Actuator Files

37 "Component_Type" : "hsequential",

38 "Assigned_Processor" : 3,

39 "Device_Number" : 1

40 },

41 "Hsequential" : {

42 "Node_Address" : "\/ff_pipeline\/0\

43 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/1",

44 "Component_Name" : "ocl_component_cls",

45 "Component_Type" : "hsequential",

46 "Assigned_Processor" : 3,

47 "Device_Number" : "1"

48 }

49 }

50],

51 "Nto1Com" : {

52 "Node_Address" : "\/ff_pipeline\/0\

53 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/collector\/0",

54 "Component_Name" : "ff::ff_gatherer",

55 "Component_Type" : "reduce",

56 "Processed_Tasks" : 0,

57 "Assigned_Processor" : 3,

58 "Filter" : {

59 "Component_Name" : "collector_cls"

60 }

61 }

62 },

63 "sequential" : {

64 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

65 "Component_Name" : "component_cls",

66 "Component_Type" : "sequential",

67 "Assigned_Processor" : 3

68 },

69 "Component_Name" : "ff::ff_pipeline",

70 "Node_Address" : "\/ff_pipeline\/0",

71 "Component_Type" : "pipeline"

C.2.2 Gaussian-Noise

1 {

2 "1ToNCom" : {

3 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

4 \/0\/ff_loadbalancer\/0",

5 "Component_Name" : "ff::adaptive_loadbalancer",

6 "Component_Type" : "spread",

7 "Assigned_Processor" : 3,

8 "Filter" : {

9 "Component_Name" : "emitter_cls"

10 },

11 "Masking_Array" : [

201

Appendix C. The SKIP Compliant Objects

12 1,

13 1

14],

15 "Workload" : [

16 0.76775,

17 0.23225

18]

19 },

20 "Parallel" : [

21 {

22 "Hsequential" : {

23 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

24 \/0\/oclnode\/0",

25 "Component_Name" : "ocl_component_cls",

26 "Component_Type" : "hsequential",

27 "Assigned_Processor" : 3,

28 "Device_Number" : 1

29 },

30 "Hsequential" : {

31 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

32 \/0\/oclnode\/1",

33 "Component_Name" : "ocl_component_cls",

34 "Component_Type" : "hsequential",

35 "Assigned_Processor" : 3,

36 "Device_Number" : "1"

37 }

38 }

39],

40 "Nto1Com" : {

41 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>

42 \/0\/collector\/0",

43 "Component_Name" : "ff::ff_gatherer",

44 "Component_Type" : "reduce",

45 "Processed_Tasks" : 0,

46 "Assigned_Processor" : 3,

47 "Filter" : {

48 "Component_Name" : "collector_cls"

49 }

50 },

51 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

52 "Node_Address" : "\/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/0",

53 "Component_Type" : "farm",

54 }

C.2.3 Recursive-Gaussian

1 {

2 "sequential" : {

3 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

202

C.2. Actuator Files

4 "Component_Name" : "component_cls",

5 "Component_Type" : "sequential",

6 "Assigned_Processor" : 3

7 },

8 "Hsequential" : {

9 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

10 "Component_Name" : "ocl_component_cls",

11 "Component_Type" : "hsequential",

12 "Assigned_Processor" : 3,

13 "Device_Number" : 1

14 },

15 "Hsequential" : {

16 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/2",

17 "Component_Name" : "ocl_component_cls",

18 "Component_Type" : "hsequential",

19 "Assigned_Processor" : 3,

20 "Device_Number" : 0

21 },

22 "Hsequential" : {

23 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/3",

24 "Component_Name" : "ocl_component_cls",

25 "Component_Type" : "hsequential",

26 "Assigned_Processor" : 3,

27 "Device_Number" : 1

28 },

29 "Hsequential" : {

30 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/4",

31 "Component_Name" : "ocl_component_cls",

32 "Component_Type" : "hsequential",

33 "Assigned_Processor" : 3,

34 "Device_Number" : 0

35 },

36 "sequential" : {

37 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/5",

38 "Component_Name" : "component_cls",

39 "Component_Type" : "sequential",

40 "Assigned_Processor" : 3

41 },

42 "sequential" : {

43 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/6",

44 "Component_Name" : "component_cls",

45 "Component_Type" : "sequential",

46 "Assigned_Processor" : 3

47 },

48 "Component_Name" : "ff::ff_pipeline",

49 "Node_Address" : "\/ff_pipeline\/0",

50 "Component_Type" : "pipeline"

51 }

203

Appendix C. The SKIP Compliant Objects

C.2.4 Sobel-Filter

1 {

2 "sequential" : {

3 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

4 "Component_Name" : "component_cls",

5 "Component_Type" : "sequential",

6 "Assigned_Processor" : 4

7 },

8 "Hsequential" : {

9 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

10 "Component_Name" : "ocl_component_cls",

11 "Component_Type" : "hsequential",

12 "Assigned_Processor" : 4,

13 "Device_Number" : 1

14 },

15 "sequential" : {

16 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

17 "Component_Name" : "component_cls",

18 "Component_Type" : "sequential",

19 "Assigned_Processor" : 4

20 },

21 "Component_Name" : "ff::ff_pipeline",

22 "Node_Address" : "\/ff_pipeline\/0",

23 "Component_Type" : "pipeline"

24 }

C.2.5 Separable-Convolution

1 {

2 "sequential" : {

3 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

4 "Component_Name" : "component_cls",

5 "Component_Type" : "sequential",

6 "Assigned_Processor" : 3

7 },

8 "NonReductionComposition" : {

9 "Node_Address" : "\/ff_pipeline\/0

10 \/ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1",

11 "Component_Name" : "ff::ff_farm<ff::adaptive_loadbalancer, ff::ff_gatherer>",

12 "Component_Type" : "farm",

13 "1ToNCom" : {

14 "Node_Address" : "\/ff_pipeline\/0\

15 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/ff_loadbalancer\/0",

16 "Component_Name" : "ff::adaptive_loadbalancer",

17 "Component_Type" : "spread",

18 "Assigned_Processor" : 3,

19 "Filter" : {

20 "Component_Name" : "emitter_cls"

204

C.2. Actuator Files

21 },

22 "Masking_Array" : [

23 1,

24 1

25],

26 "Workload" : [

27 0.825078,

28 0.174922

29]

30 },

31 "Parallel" : [

32 {

33 "Hsequential" : {

34 "Node_Address" : "\/ff_pipeline\/0\

35 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/0",

36 "Component_Name" : "ocl_component_cls",

37 "Component_Type" : "hsequential",

38 "Assigned_Processor" : 3,

39 "Device_Number" : 1

40 },

41 "Hsequential" : {

42 "Node_Address" : "\/ff_pipeline\/0\

43 /ff::ff_farm<adaptive_loadbalancer, ff::ff_gatherer>\/1\/oclnode\/1",

44 "Component_Name" : "ocl_component_cls",

45 "Component_Type" : "hsequential",

46 "Assigned_Processor" : 3,

47 "Device_Number" : "1"

48 }

49 }

50]

51 },

52

53 "Component_Name" : "ff::ff_pipeline",

54 "Node_Address" : "\/ff_pipeline\/0",

55 "Component_Type" : "pipeline"

56 }

C.2.6 URNG

1 {

2 "sequential" : {

3 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/0",

4 "Component_Name" : "component_cls",

5 "Component_Type" : "sequential",

6 "Assigned_Processor" : 4

7 },

8 "Hsequential" : {

9 "Node_Address" : "\/ff_pipeline\/0\/oclnode\/1",

10 "Component_Name" : "ocl_component_cls",

205

Appendix C. The SKIP Compliant Objects

11 "Component_Type" : "hsequential",

12 "Assigned_Processor" : 4,

13 "Device_Number" : 1

14 },

15 "sequential" : {

16 "Node_Address" : "\/ff_pipeline\/0\/ff_node\/2",

17 "Component_Name" : "component_cls",

18 "Component_Type" : "sequential",

19 "Assigned_Processor" : 4

20 },

21 "Component_Name" : "ff::ff_pipeline",

22 "Node_Address" : "\/ff_pipeline\/0",

23 "Component_Type" : "pipeline"

24 }

C.3 Constraint

1 {

2 "Device" :{

3 "Name": "CPU",

4 "Maximum_BB_Per_Device": 1

5 },

6 "Device" :{

7 "Name": "GPU",

8 "Maximum_BB_Per_Device": 1

9 },

10 "Damping_Ratio":1.0,

11 "Priority_Policy":"variable",

12 "Component_Switch_Mode":"average"

13 }

206

Appendix D

The Structural Representation of

Existing Applications

D.1 N-body Simulation

The N-body Simulation has encapsulated three FastFlow farm patterns:

Momentum �Momentum presents a composition calculating the initial momentum of the bodies

in the system. The pattern has been design as follows:

(fmomentum1Cn) � [«momentom»]n � (gmomentumnB1)

Using the building block grammar represented in listing 3.1, the pattern is generated as

follows:

�Momentum ::= NM

NM ::= 4M

4M ::=a1n �Dn
M `n1

a1n::= (fmomentum1Cn)

Dn
M ::= (NM)n

(NM)n ::= [NM]n

NM ::= 4M

4M ::= «momentom»

`n1::= (gmomentumnB1)

Energy �Energy shows a composition calculating the total energy of the system before and

after movement. The pattern has been design as follows:

(fenergy1Cn) � [«energy»]n � (genergynB1)

207

Appendix D. The Structural Representation of Existing Applications

Using the building block grammar represented in listing 3.1, the pattern is generated as

follows:

�Energy ::= NE

NE ::= 4E

4E ::=a1n �Dn
E `n1

a1n::= (fenergy1Cn)

Dn
E ::= (NE)n

(NE)n ::= [NE]n

NE ::= 4E

4E ::= «energy»

`n1::= (genergynB1)

Advance

�Advance indicates a composition calculating the motion of the bodies towards the initial

position after s step iterations. It has been encapsulated inside a for loop to calculate

the motion of all bodies for s steps. The pattern has been design as follows:

(fadvance1Cn) � [«advance»]n � (gadvancenB1)

Using the building block grammar represented in listing 3.1, the pattern is generated as

follows:

�Advance ::= NA

NA ::= 4A

4A ::=a1n �Dn
A `

n1

a1n::= (fadvance1Cn)

Dn
A ::= (NA)n

(NA)n ::= [NA]n

NA ::= 4A

4A ::= «advance»

`n1::= (gadvancenB1)

D.2 Mandelbrot

The Mandelbrot application has been designed as follow:

scatter1Cn � [«mandeleq»]n � (gatherall&drownB1)

208

D.3. Quick sort

Using the building block grammar represented in listing 3.1, the application is generated as

follows:

�MB ::= NMB

NMB ::= 4MB

4MB ::=a1n �Dn
MB `

n1

a1n::= scatter1Cn

Dn
MB ::= (NMB)n

(NMB)n ::= [NMB]n

NMB ::= 4MB

4MB ::= «mandeleq»

`n1::= (gatherall&drownB1)

D.3 Quick sort

The quick sort application has been designed as follow:
←−−
((pivotdev1Cn) � [«sort_pivot »]n � (collect&checknB1)termination

Using the building block grammar represented in listing 3.1, the application is generated as

follows:

�QS ::= NQS

NQS ::= 4QS

4QS ::=
←−−−−−−−−−−−−−−−−−−−−−
(a1n �Dn

QS `
n1)termination

a1n::= (pivotdev1Cn)

Dn
QS ::= (NQS)n

(NQS)n ::= [NQS]n

NQS ::= 4QS

4QS ::= «sort_pivot»

`n1::= (collect&checknB1)

D.4 Fibonacci

The Fibonacci application has been designed as follow:

((thresholdBreaker1Cn) � [«recursiveFib »]n � (⊕nB1)

Using the building block grammar represented in listing 3.1, the Fibonacci application is

generated as follows:

�F ::= NF

NF ::= 4F

4F ::=a1n �Dn
F `

n1

209

Appendix D. The Structural Representation of Existing Applications

a1n::= ((thresholdBreaker1Cn)

Dn
F ::= (NF)n

(NF)n ::= [NF]n

NF ::= 4F

4F ::= «recursiveFib»

`n1::= (⊕nB1)

D.5 Stencil

The stencil application has been designed as follow:
←−−−
((customscatter1Cn) � [«T»]n � (swap&⊕nB1))iteration

Using the building block grammar represented in listing 3.1, the stencil application is gen-

erated as follows:

�S (T) ::= NS

NS ::= 4S

4S ::=
←−−−−−−−−−−−−−−−−−−
(a1n �Dn

S `
n1)iteration

a1n::= (customscatter1Cn)

Dn
S ::= (NS)n

(NS)n ::= [NS]n

NS ::= 4S

4S ::= «T»

`n1::= (swap&⊕nB1)

D.6 N-queen

The N-queen application has been designed as follow:

(CustomS catter1Cn) � [«SommersNqueen»]n

Using the building block grammar represented in listing 3.1, the stencil application is gen-

erated as follows:

�Nq ::= _Nq

_Nq ::= ^Nq

^Nq ::=a1n �#n
Nq

a1n::= (CustomS catter1Cn)

#n
Nq ::= Dn

Nq

Dn
Nq ::= (NNq)n

(NNq)n ::= [NNq]n

NNq ::= 4Nq

210

D.7. Eispack Routine

4Nq ::= «SommersNqueen»

D.7 Eispack Routine

The Eispack application has been designed as follow:

‹|Generation|› �‹|Solution|› �‹|Verification|›

Using the building block grammar represented in listing 3.1, the Eispack application can be

demonstrated as:

�Eispack ::= NGS V

NGS V ::= OGS V

OGS V ::= 4G � OS V

OS V ::= 4S � 4V

4G ::= ‹|Generation|›

4S ::= ‹|Solution|›

4V ::= ‹|Verification|›

D.8 getSolution component for SMTWTP

The getSolution component embedded in the SMTWTP application has been designed as fol-

low:
←−−
(unicast1C2 � [scatter1Cn � [« f indS olCPU»]n � gatherallnB1 ,

unicast1Cm � [‹ | f indS olGPU | ›]m � gathermB1] � (gAll&gbest&upheromone2B1))iter

Using the building block grammar represented in listing 3.1, the getSolution component is

generated as follows: �GetS ol ::= NCG

NCG ::= 4CG

4CG ::=
←−−−−−−−−−−−−−−−−
(a12 �Dn

CG� `
21)iter

a12::= unicast1C2

D2
CG ::= (NCG)2

(NCG)2 ::= [NC ’,’ NG]

NC ::= 4C

4C ::=`1n �Dn
C� a

n1

a1n::= scatter1Cn

Dn
C ::= (NCs)n

(NCs)n ::= [NCs]n

NCs ::= 4Cs

4Cs ::= « f indS olCPU»

`n1::= gatherallnB1

211

Appendix D. The Structural Representation of Existing Applications

NG ::= 4G

4G ::=a1m �Dm
G� `

m1

a1m::= unicast1Cm

Dm
G ::= (NGs)m

(NGs)m ::= [NGs]m

NGs ::= 4Gs

4Gs ::= ‹ | f indS olGPU | ›

`m1::= gathermB1

D.9 MD

The MD application has been designed as follow:

unicast1C2 � [scatter1Cn � [«mdcpu»]n � gatherallnB1 , unicast1Cm � [‹ | mdgpu | ›]m]

Using the building block grammar represented in listing 3.1, the MD application is gener-

ated as Follows:

�CMD ::= _CG

_CG ::= ^CG

^CG ::=a12 �#n
CG

a12::= unicast1C2

#2
CG ::= (�CG)2

(�CG)2 ::= [�C ’,’ �G]

�C ::= NC

NC ::= 4C

4C ::=`1n �Dn
C� a

n1

a1n::= scatter1Cn

Dn
C ::= (NCs)n

(NCs)n ::= [NCs]n

NCs ::= 4Cs

4Cs ::= «mdcpu»

`n1::= gatherallnB1

�G ::= _G

_G ::= ^G

^G ::=a1m �Dm
G

a1m::= unicast1Cm

Dm
G ::= (NGs)m

(NGs)m ::= [NGs]m

NGs ::= 4Gs

212

D.9. MD

4Gs ::= ‹ | mdgpu | ›

213

Appendix E

Implementation of N-body

Simulation under Three Frameworks

In this section we explain the N-body Simulation algorithm implemented in FastFlow, Thrust

and SKePU.

E.1 N-body Simulation

We use the gravitational potential to illustrate the basic form of computation in an all-pairs

N-body simulation.

Given N bodies with an initial position xi and velocity vi for 1 < i < N, the total force

Fi on body i, due to its interactions with the other N − 1 bodies, is obtained by summing

all interactions fi j on body i caused by its gravitational attraction to body j as expressed in

equation (E.1).

Fi =
n∑

j=0

mi × ri j

(‖ri j‖
2 + ε2)3/2

(E.1)

Note that mi and m j are the masses of bodies i and j respectively; ri j = x j − xi is the vector

from body i to body j; G is the gravitational constant; and ε is a softening factor to preclude

collisions between bodies.

An integrator is used to update the positions and velocities and included in computing the

runtime. However, full details of its implementation is omitted since it has a complexity of

O(N) and its cost becomes insignificant as N grows.

The energy is the combination of kinetic energy between each pairs of bodies and the

potential energy when the bodies are far apart as expressed in equation (E.2).

e =
n∑

i=0

mi ×
‖vi‖

2

2
−

G
2

n∑
i=0

mi

n∑
j=0 j,i

m j

‖ri j‖
(E.2)

215

Appendix E. Implementation of N-body Simulation under Three Frameworks

Figure E.1: the visual representation of the intermediate grid for calculating the gravitational

computation of the N-body algorithm [126]

A similar technique as that of used for force is applied here. In order to avoid repetition, we

only explain the technique used to implement the gravitational force among all-pairs bodies.

Each body has 7 properties including the 3 dimensions of position, the 3 dimensions of speed

and the weight of the body.

The gravitational potential F has been used to illustrate the basic form of computation in an

all-pairs N-body simulation. The gravitational computation of the algorithm can be estimated

by calculating each entry fi j in an N × N grid of all pair-wise forces, called F. Then the total

force Fi on body i is obtained from the sum of all entries in row i. Figure E.1 shows this

computation [126].

We use the notion of a computational tile, a rectangular region of the grid of pair-wise forces

consisting of HSIZE rows and WSIZE columns as introduced in [126]. Only HSIZE+ WSIZE

body descriptions are required to evaluate all HSIZE × WSIZE interactions in the tile (WSIZE of

which can be reused later). The maximum block reuse is achieved for square tiling where the

HSIZE= WSIZE.

Once the two bodies bi and b j are fetched into the processor registers, the forces of bi on b j

and b j on bi can be calculated at the same time. This reduces the number of memory accesses

by half from N2 times to (N×(N+1))
2 times and, consequently, improves runtime performance of

the algorithm. Therefore, we only need to access memory to calculate the upper triangle of the

grid in order to compute all of the forces on all bodies [126].

216

E.1. N-body Simulation

In this case, the grid F is divided into square regions of pair-wise forces consisting of

HSIZE rows and HSIZE columns. Each block contains HSIZE threads. In each iteration, each

thread ti from block pi loads body bi into the shared memory, sh. All threads of the block will

use the sh to calculate the intermediate results of HSIZE2 cells. The access to global memory

for each block is coalesced. This reduces the memory latency and increases the performance

considerably. To achieve optimal reuse of data, the computation of a tile is arranged so that

the interactions in each row are evaluated in sequential order, updating the acceleration vector,

while separate rows are evaluated in parallel. Each thread reads only 2 bodies to calculate the

tile of HSIZE2 and therefore N
HSIZE bodies to calculate the force of all bodies on bi. The total

global memory access is equal to 2 × HSIZE × (N
HSIZE)

2.

In the following, we explain the optimisation techniques used for each framework.

FastFlow In this instance, a farm pattern is used to provide the gravitational force. The farm

is basically composed of an emitter, a number of workers, and a collector. The emitter is used

as a load balancer filter which splits F into square blocks of HSIZE× HSIZE and offloads them

to workers queue asynchronously by using the round-robin technique.

To achieve optimal reuse of data, each worker concurrently calculates the force of received

square tiles, so that the interactions in each tile are evaluated in sequential order by using the

upper triangular technique, generating the partial updated vector. The collector is a filter for

farm gatherer and collects the partial updated vector from workers and updates the bodies.

Thrust In Thrust there is no support for complex vector type. Therefore, 7 different vectors

should be considered for the properties of bodies. However, there is a patten called make_tuple

which combines all variables together, similar to an object in C++. This pattern is used to send

all properties of bodies as a single object B to the force functor.

B is therefore divided into k blocks of size of HSIZE= N
k , by the Thrust distribution policy,

where k is the maximum number of available threads in the system.

To implement the gravitational force, the transform pattern is used which maps the functor

over each block. As there is no support for 2D operations in Thrust, the tiling approach for

calculating F requires that, for each iteration, the same WSIZE block of the B vector is given to

each thread as a read-only constant data. Each of these k threads, in parallel, evaluate the force

of the assigned HSIZE × WSIZE tile in sequential order and then update the velocity of B.

It noted that it is not possible to have the triangular approach as the block of WSIZE is

a constant read-only block. The tile assignment policy to each thread is synchronous. As

HSIZE of the tiles are defined by the Thrust distribution policy, it is not always feasible to have

square tilings. This is because HSIZE can be large, and having the same WSIZE can create an

extremely-large square tile.

217

Appendix E. Implementation of N-body Simulation under Three Frameworks

For the GPU backend, each thread is assigned to a body and the number of accesses to

memory is equal to N2. The first N accesses are from global memory, while the next N accesses

are from constant memory.

SKePU Similar to Thrust, SKePU does not support the complex type for vectors. Hence, 7

vectors are needed to store the bodies properties. A macro function can accept at most 3 input

parameters and 1 constant value. Moreover, unlike Thrust, there is no pattern for combining

the bodies properties together. Hence, there is no way to calculate the gravitational force using

only one macro since each body has 7 parameters.

Furthermore, unlike Thrust, it is not possible to send a block of data as a constant parameter

to a macro. A macro only accepts scalar values as input. So, to calculate F, each entry must be

computed independently. In this case we need a minimum of 3 macros and 7 function calls to

calculate the gravitational force of bi on b j.

For the GPU backend, for each body a thread will be created hence, there are N2 available

parallel processes. However, to calculate each entry of the grid we need to read 2 bodies and

the number of access to memory is equal to 14 × N2. This is highly inefficient as it creates

maximum redundancy of memory access.

Therefore, in terms of the GPU backend, the main difference between Thrust and SKePU

is that in Thrust, N memory accesses are from the constant memory in the GPU. Although the

constant memory is slow, it caches the read block and is optimised for broadcast. However, in

SKePU, all 14 × N2 accesses are from global memory which is also slow and requires sequen-

tial and aligned 16− byte reads and writes to be fast (coalesced read/write). Unfortunately, it is

not feasible to have the coalesced access in SKePU because of the aforementioned limitations.

Ergo, the inefficient memory access here will be more obvious than in multi-core CPU back-

end, as memory access in CPU is optimised and automatically caches a block of data in each

memory access.

218

Bibliography

[1] John Michalakes and Manish Vachharajani. Gpu acceleration of numerical weather pre-

diction. Parallel Processing Letters, 18(04):531–548, 2008.

[2] Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast k nearest neighbor search

using gpu. In Computer Vision and Pattern Recognition Workshops, 2008. CVPRW’08.

IEEE Computer Society Conference on, pages 1–6. IEEE, 2008.

[3] Sudipta N Sinha, Jan-Michael Frahm, Marc Pollefeys, and Yakup Genc. Gpu-based

video feature tracking and matching. In EDGE, Workshop on Edge Computing Using

New Commodity Architectures, volume 278, page 4321, 2006.

[4] Peter J Lu, Hidekazu Oki, Catherine A Frey, Gregory E Chamitoff, Leroy Chiao, Ed-

ward M Fincke, C Michael Foale, Sandra H Magnus, William S McArthur Jr, Daniel M

Tani, et al. Orders-of-magnitude performance increases in gpu-accelerated correlation

of images from the international space station. Journal of Real-Time Image Processing,

5(3):179–193, 2010.

[5] Michael Wolfe. Implementing the pgi accelerator model. In Proceedings of the 3rd

Workshop on General-Purpose Computation on Graphics Processing Units, pages 43–

50. ACM, 2010.

[6] Stéphane Bihan, Georges-Emmanuel Moulard, Romain Dolbeau, Henri Calandra, and

Rached Abdelkhalek. Directive-based heterogeneous programming–a gpu-accelerated

rtm use case. In Proceedings of the 7th international conference on computing, commu-

nications and control technologies, 2009.

[7] Sandra Wienke, Paul Springer, Christian Terboven, and Dieter an Mey. Openacc first

experiences with real-world applications. In Euro-Par 2012 Parallel Processing, pages

859–870. Springer, 2012.

[8] Johan Enmyren and Christoph W Kessler. SkePU: a multi-backend skeleton program-

ming library for multi-GPU systems. In Proceedings of the fourth international work-

shop on High-level parallel programming and applications, pages 5–14. ACM, 2010.

219

Bibliography

[9] Wen-mei W Hwu. GPU Computing Gems Jade Edition. Morgan Kaufmann Publishers

Inc., 2011.

[10] Michel Steuwer, Philipp Kegel, and Sergei Gorlatch. Skelcl-a portable skeleton library

for high-level gpu programming. In Parallel and Distributed Processing Workshops

and Phd Forum (IPDPSW), 2011 IEEE International Symposium on, pages 1176–1182.

IEEE, 2011.

[11] Michael D McCool. Structured parallel programming with deterministic patterns. In

Proceedings of the 2nd USENIX conference on Hot topics in parallelism, pages 5–5.

USENIX Association, 2010.

[12] Murray I Cole. Algorithmic skeletons: structured management of parallel computation.

Pitman London, 1989.

[13] Horacio González-Vélez and Mario Leyton. A survey of algorithmic skeleton frame-

works: high-level structured parallel programming enablers. Software: Practice and

Experience, 40(12):1135–1160, 2010.

[14] Marco Danelutto and Massimo Torquati. A risc building block set for structured parallel

programming. In Parallel, Distributed and Network-Based Processing (PDP), 2013 21st

Euromicro International Conference on, pages 46–50. IEEE, 2013.

[15] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo

Torquati. Design patterns percolating to parallel programming framework implemen-

tation. International Journal of Parallel Programming, pages 1–20, 2013.

[16] Tong Li, Dan Baumberger, David A Koufaty, and Scott Hahn. Efficient operating system

scheduling for performance-asymmetric multi-core architectures. In Proceedings of the

2007 ACM/IEEE conference on Supercomputing, page 53. ACM, 2007.

[17] Shameen Akhter and Jason Roberts. Multi-core programming, volume 33. Intel press

Hillsboro, 2006.

[18] Abraham Silberschatz, Peter B Galvin, Greg Gagne, and A Silberschatz. Operating

system concepts, volume 4. Addison-Wesley Reading, 1998.

[19] Anoop Gupta, Andrew Tucker, and Shigeru Urushibara. The impact of operating sys-

tem scheduling policies and synchronization methods of performance of parallel appli-

cations. In ACM SIGMETRICS Performance Evaluation Review, volume 19(1), pages

120–132. ACM, 1991.

[20] James Lyle Peterson and Abraham Silberschatz. Operating system concepts, volume 2.

Addison-Wesley Reading, MA, 1985.

220

Bibliography

[21] Perry H Wang, Jamison D Collins, Gautham N Chinya, Hong Jiang, Xinmin Tian,

Milind Girkar, Nick Y Yang, Guei-Yuan Lueh, and Hong Wang. Exochi: architecture

and programming environment for a heterogeneous multi-core multithreaded system. In

ACM SIGPLAN Notices, volume 42(6), pages 156–166. ACM, 2007.

[22] Cédric Augonnet, Samuel Thibault, Raymond Namyst, and Pierre-André Wacrenier.

Starpu: a unified platform for task scheduling on heterogeneous multicore architectures.

Concurrency and Computation: Practice and Experience, 23(2):187–198, 2011.

[23] Uri Verner, Assaf Schuster, and Mark Silberstein. Processing data streams with hard

real-time constraints on heterogeneous systems. In Proceedings of the international

conference on Supercomputing, pages 120–129. ACM, 2011.

[24] Uri Verner, Assaf Schuster, Mark Silberstein, and Avi Mendelson. Scheduling process-

ing of real-time data streams on heterogeneous multi-gpu systems. In Proceedings of

the 5th Annual International Systems and Storage Conference, page 8. ACM, 2012.

[25] Prasanna Pandit and R Govindarajan. Fluidic kernels: Cooperative execution of opencl

programs on multiple heterogeneous devices. In Proceedings of Annual IEEE/ACM

International Symposium on Code Generation and Optimization, page 273. ACM, 2014.

[26] Enqiang Sun, Dana Schaa, Richard Bagley, Norman Rubin, and David Kaeli. Enabling

task-level scheduling on heterogeneous platforms. In Proceedings of the 5th Annual

Workshop on General Purpose Processing with Graphics Processing Units, pages 84–

93. ACM, 2012.

[27] Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In Microarchitecture, 2009.

MICRO-42. 42nd Annual IEEE/ACM International Symposium on, pages 45–55. IEEE,

2009.

[28] Víctor J Jiménez, Lluís Vilanova, Isaac Gelado, Marisa Gil, Grigori Fursin, and Nacho

Navarro. Predictive runtime code scheduling for heterogeneous architectures. In High

Performance Embedded Architectures and Compilers, pages 19–33. Springer, 2009.

[29] Eduard Ayguadé, Rosa M Badia, Francisco D Igual, Jesús Labarta, Rafael Mayo, and

Enrique S Quintana-Ortí. An extension of the starss programming model for platforms

with multiple gpus. In Euro-Par 2009 Parallel Processing, pages 851–862. Springer,

2009.

[30] George Teodoro, Rafael Sachetto, Olcay Sertel, Metin N Gurcan, W Meira, Umit

Catalyurek, and Renato Ferreira. Coordinating the use of gpu and cpu for improving

221

Bibliography

performance of compute intensive applications. In Cluster Computing and Workshops,

2009. CLUSTER’09. IEEE International Conference on, pages 1–10. IEEE, 2009.

[31] Abhishek Udupa, R Govindarajan, and Matthew J Thazhuthaveetil. Software pipelined

execution of stream programs on gpus. In Code Generation and Optimization, 2009.

CGO 2009. International Symposium on, pages 200–209. IEEE, 2009.

[32] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer,

36(1):41–50, 2003.

[33] Marco Danelutto and Giorgio Zoppi. Behavioural skeletons meeting services. In Com-

putational Science–ICCS 2008, pages 146–153. Springer, 2008.

[34] Marco Aldinucci, Marco Danelutto, Giorgio Zoppi, and Peter Kilpatrick. Advances in

autonomic components & services. In From Grids to Service and Pervasive Computing,

pages 3–17. Springer, 2008.

[35] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Management in distributed

systems: a semi-formal approach. In Euro-Par 2007 Parallel Processing, pages 651–

661. Springer, 2007.

[36] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Towards hierarchical man-

agement of autonomic components: a case study. In Parallel, Distributed and Network-

based Processing, 2009 17th Euromicro International Conference on, pages 3–10. IEEE,

2009.

[37] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Vamis Xhagjika. Libero: a

lightweight behavioural skeleton framework. Technical report, Technical Report TR-

10-07, Dept. Computer Science, Univ. of Pisa, Italy, 2010.

[38] Manish Agarwal, Viraj Bhat, Hua Liu, Vincent Matossian, V Putty, Cristina Schmidt,

Guangsen Zhang, L Zhen, Manish Parashar, Bithika Khargharia, et al. Automate: En-

abling autonomic applications on the grid. In Autonomic Computing Workshop. 2003.

Proceedings of the, pages 48–57. IEEE, 2003.

[39] Pierre-Charles David and Thomas Ledoux. An aspect-oriented approach for develop-

ing self-adaptive fractal components. In Software Composition, pages 82–97. Springer,

2006.

[40] Paraphrase: Parallel patterns for adaptive heterogeneous multicore systems. Available:

http://goo.gl/DHzGL9.

222

http://goo.gl/DHzGL9

Bibliography

[41] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, and Massimo Torquati. Fastflow:

high-level and efficient streaming on multi-core.(a fastflow short tutorial). Programming

Multi-core and Many-core Computing Systems, Parallel and Distributed Computing,

2011.

[42] Douglas E Comer, David Gries, Michael C Mulder, Allen Tucker, A Joe Turner, Paul R

Young, and Peter J Denning. Computing as a discipline. Communications of the ACM,

32(1):9–23, 1989.

[43] Robert N Bateson. Introduction to control system technology. Prentice Hall PTR, 1989.

[44] Aaftab Munshi, Benedict Gaster, Timothy G Mattson, and Dan Ginsburg. OpenCL

programming guide. Pearson Education, 2011.

[45] Aaftab Munshi et al. The opencl specification. Khronos OpenCL Working Group, 1:l1–

15, 2009.

[46] Kamran Karimi, Neil G Dickson, and Firas Hamze. A performance comparison of cuda

and opencl. arXiv preprint arXiv:1005.2581, 2010.

[47] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack

Dongarra. From cuda to opencl: Towards a performance-portable solution for multi-

platform gpu programming. Parallel Computing, 38(8):391–407, 2012.

[48] Lee Howes, Anton Lokhmotov, Alastair F Donaldson, and Paul HJ Kelly. Towards

metaprogramming for parallel systems on a chip. In Euro-Par 2009–Parallel Processing

Workshops, pages 36–45. Springer, 2010.

[49] Michael McCool, James Reinders, and Arch Robison. Structured parallel programming:

patterns for efficient computation. Elsevier, 2012.

[50] Kevin Hammond, Marco Aldinucci, Christopher Brown, Francesco Cesarini, Marco

Danelutto, Horacio González-Vélez, Peter Kilpatrick, Rainer Keller, Michael Rossbory,

and Gilad Shainer. The paraphrase project: Parallel patterns for adaptive heterogeneous

multicore systems. In Formal Methods for Components and Objects, pages 218–236.

Springer, 2013.

[51] Horacio González-Vélez. An adaptive skeletal task farm for grids. In Euro-Par 2005

Parallel Processing, pages 401–410. Springer, 2005.

[52] Berna L Massingill, Timothy G Mattson, and Beverly A Sanders. Parallel program-

ming with a pattern language*. International Journal on Software Tools for Technology

Transfer, 3(2):217–234, 2001.

223

Bibliography

[53] Timothy G Mattson, Beverly A Sanders, and Berna L Massingill. Patterns for parallel

programming. Pearson Education, 2004.

[54] Krste Asanovic, Ras Bodik, Bryan Christopher Catanzaro, Joseph James Gebis, Parry

Husbands, Kurt Keutzer, David A Patterson, William Lester Plishker, John Shalf,

Samuel Webb Williams, et al. The landscape of parallel computing research: A view

from berkeley. Technical report, Technical Report UCB/EECS-2006-183, EECS De-

partment, University of California, Berkeley, 2006.

[55] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for parallel pro-

gramming. Addison-Wesley Professional, 2004.

[56] John Backus. Can programming be liberated from the von neumann style?: a functional

style and its algebra of programs. Communications of the ACM, 21(8):613–641, 1978.

[57] James Reinders. Intel threading building blocks: outfitting C++ for multi-core processor

parallelism. " O’Reilly Media, Inc.", 2007.

[58] Marco Aldinucci, Massimo Torquati, and Massimiliano Meneghin. Fastflow: Efficient

parallel streaming applications on multi-core. arXiv preprint arXiv:0909.1187, 2009.

[59] Gregory F Diamos and Sudhakar Yalamanchili. Harmony: an execution model and

runtime for heterogeneous many core systems. In Proceedings of the 17th international

symposium on High performance distributed computing, pages 197–200. ACM, 2008.

[60] Eduard Ayguade, Rosa M Badia, Daniel Cabrera, Alejandro Duran, Marc Gonzalez,

Francisco Igual, Daniel Jimenez, Jesus Labarta, Xavier Martorell, Rafael Mayo, et al.

A proposal to extend the openmp tasking model for heterogeneous architectures. In

Evolving OpenMP in an Age of Extreme Parallelism, pages 154–167. Springer, 2009.

[61] William Thies, Michal Karczmarek, and Saman Amarasinghe. Streamit: A language for

streaming applications. In Compiler Construction, pages 179–196. Springer, 2002.

[62] Yuan Wen, Zheng Wang, and Michael O’Boyle. Smart multi-task scheduling for

opencl programs on cpu/gpu heterogeneous platforms. In High Performance Computing

(HiPC), 2014.

[63] Jeffrey Brown, Al Geist, C Pancake, and D Rover. Software tools for developing parallel

applications. part 1: Code development and debugging. Technical report, Oak Ridge

National Lab., Computer Science and Mathematics Div., TN (United States), 1997.

[64] Jeffrey Brown, Al Geist, C Pancake, and D Rover. Software tools for developing par-

allel applications. part 2: Interactive control and performance tuning. Technical report,

224

Bibliography

Oak Ridge National Lab., Computer Science and Mathematics Div., TN (United States),

1997.

[65] Christoph A Schaefer, Victor Pankratius, and Walter F Tichy. Atune-il: An instrumen-

tation language for auto-tuning parallel applications. In EuroPar 2009, volume 5704 of

LNCS, pages 9–20. Springer, 2009.

[66] Sebastien Donadio, James Brodman, Thomas Roeder, Kamen Yotov, Denis Barthou,

Albert Cohen, María Jesús Garzarán, David Padua, and Keshav Pingali. A language for

the compact representation of multiple program versions. In Languages and Compilers

for Parallel Computing, pages 136–151. Springer, 2006.

[67] Matteo Frigo and Steven G Johnson. Fftw: An adaptive software architecture for the

fft. In Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE

International Conference on, volume 3, pages 1381–1384. IEEE, 1998.

[68] R Clint Whaley, Antoine Petitet, and Jack J Dongarra. Automated empirical optimiza-

tions of software and the atlas project. Parallel Computing, 27(1):3–35, 2001.

[69] Markus Puschel, José MF Moura, Jeremy R Johnson, David Padua, Manuela M Veloso,

Bryan W Singer, Jianxin Xiong, Franz Franchetti, Aca Gacic, Yevgen Voronenko, et al.

Spiral: Code generation for dsp transforms. Proceedings of the IEEE, 93(2):232–275,

2005.

[70] Takahiro Katagiri, Kenji Kise, Hiroaki Honda, and Toshitsugu Yuba. Fiber: A gen-

eralized framework for auto-tuning software. In High Performance Computing, pages

146–159. Springer, 2003.

[71] Marco Aldinucci, Alessandro Petrocelli, Edoardo Pistoletti, Massimo Torquati, Marco

Vanneschi, Luca Veraldi, and Corrado Zoccolo. Dynamic reconfiguration of grid-aware

applications in ASSIST. In Euro-Par 2005, volume 3648 of LNCS, pages 771–781.

Springer, 2005.

[72] Ahmad Al-Shishtawy, Joel Höglund, Konstantin Popov, Nikos Parlavantzas, Vladimir

Vlassov, and Per Brand. Enabling self-management of component based distributed ap-

plications. In From Grids to Service and Pervasive Computing, pages 163–174. Springer,

2008.

[73] Marco Aldinucci, Sonia Campa, Marco Danelutto, Patrizio Dazzi, Domenico Laforenza,

Nicola Tonellotto, and Peter Kilpatrick. Behavioural skeletons for component autonomic

management on grids. In Making Grids Work, pages 3–15. Springer, 2008.

225

Bibliography

[74] Marco Aldinucci, Sonia Campa, Marco Danelutto, and Marco Vanneschi. Behavioural

skeletons in gcm: autonomic management of grid components. In Parallel, Distributed

and Network-Based Processing, 2008. PDP 2008. 16th Euromicro Conference on, pages

54–63. IEEE, 2008.

[75] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Autonomic management of

non-functional concerns in distributed & parallel application programming. In Parallel

& Distributed Processing, 2009. IPDPS 2009. IEEE International Symposium on, pages

1–12. IEEE, 2009.

[76] Marco Aldinucci, Marco Danelutto, and Peter Kilpatrick. Semi-formal models to sup-

port program development: Autonomic management within component based parallel

and distributed programming. In Formal Methods for Components and Objects, pages

204–225. Springer, 2009.

[77] Horacio González-Vélez and Murray Cole. Adaptive structured parallelism for dis-

tributed heterogeneous architectures: A methodological approach with pipelines and

farms. Concurrency and Computation: Practice and Experience, 22(15):2073–2094,

2010.

[78] Michael T. Garba and Horacio González-Vélez. Asymptotic peak utilisation in heteroge-

neous parallel CPU/GPU pipelines: A decentralised queue monitoring strategy. Parallel

Processing Letters, 22(2):1240008, 2012.

[79] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Mas-

simo Torquati. Accelerating Code on Multi-cores with FastFlow. In Euro-Par 2011,

volume 6853 of LNCS, pages 170–181, Bordeaux, August 2011. Springer.

[80] Mehdi Goli, Michael T Garba, et al. Streaming dynamic coarse-grained cpu/gpu work-

loads with heterogeneous pipelines in fastflow. In High Performance Computing and

Communication & 2012 IEEE 9th International Conference on Embedded Software and

Systems (HPCC-ICESS), 2012 IEEE 14th International Conference on, pages 445–452.

IEEE, 2012.

[81] Mehdi Goli and Horacio González-Vélez. N-body computations using skeletal frame-

works on multicore cpu/graphics processing unit architectures: an empirical perfor-

mance evaluation. Concurrency and Computation: Practice and Experience, 26(4):972–

986, 2014.

[82] Christopher Brown, Kevin Hammond, Marco Danelutto, Peter Kilpatrick, Holger

Schöner, and Tino Breddin. Paraphrasing: Generating parallel programs using refactor-

ing. In Formal Methods for Components and Objects, pages 237–256. Springer, 2013.

226

Bibliography

[83] Douglas Crockford. Json: The fat-free alternative to xml. In Proc. of XML, volume

2006, 2006.

[84] Fastflow contributors. Available: http://goo.gl/2tWvVK.

[85] Mehdi Goli and Horacio González-Vélez. Heterogeneous Algorithmic Skeletons for

Fast Flow with Seamless Coordination over Hybrid Architectures. In PDP, pages 148–

156. IEEE Computer Society, 2013.

[86] Timothy G Rogers, Mike O’Connor, and Tor M Aamodt. Cache-conscious wavefront

scheduling. In Proceedings of the 2012 45th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, pages 72–83. IEEE Computer Society, 2012.

[87] Marco Aldinucci, Marco Danelutto, Peter Kilpatrick, Massimiliano Meneghin, and Mas-

simo Torquati. An efficient unbounded lock-free queue for multi-core systems. In Euro-

Par 2012 Parallel Processing, pages 662–673. Springer, 2012.

[88] B J Nelson. Remote procedure call. PhD thesis, Pittsburgh Univ., Pittsburgh, PA, 1981.

Presented on May 1981.

[89] Pieter Hintjens. ZeroMQ: Messaging for Many Applications. " O’Reilly Media, Inc.",

2013.

[90] Ryoji Tsuchiyama, Takashi Nakamura, Takuro Iizuka, Akihiro Asahara, Satoshi Miki,

and Satoru Tagawa. The opencl programming book. Fixstars Corporation, 63, 2010.

[91] Veeravalli Bharadwaj, Debasish Ghose, and Thomas G Robertazzi. Divisible load the-

ory: A new paradigm for load scheduling in distributed systems. Cluster Computing,

6(1):7–17, 2003.

[92] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowl-

ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Si-

mon Colton. A survey of monte carlo tree search methods. Computational Intelligence

and AI in Games, IEEE Transactions on, 4(1):1–43, 2012.

[93] Mehdi Goli, John McCall, Christopher Brown, Vladimir Janjic, and Kevin Hammond.

Mapping parallel programs to heterogeneous cpu/gpu architectures using a monte carlo

tree search. In Evolutionary Computation (CEC), 2013 IEEE Congress on, pages 2932–

2939. IEEE, 2013.

[94] Levente Kocsis, Csaba Szepesvári, and Jan Willemson. Improved monte-carlo search.

Univ. Tartu, Estonia, Tech. Rep, 1, 2006.

227

http://goo.gl/2tWvVK

Bibliography

[95] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. Machine

Learning: ECML 2006, pages 282–293, 2006.

[96] Guillaume Chaslot. Monte-carlo tree search. PhD thesis, PhD thesis, Maastricht Univ,

2010.

[97] O. Fialka and M. Cadik. FFT and convolution performance in image filtering on GPU. In

10th Int. Conference on Information Visualization, pages 609–614, London, july 2006.

IEEE.

[98] Anders Eklund, Paul Dufort, Daniel Forsberg, and Stephen M LaConte. Medical image

processing on the gpu–past, present and future. Medical image analysis, 17(8):1073–

1094, 2013.

[99] OR Vincent and O Folorunso. A descriptive algorithm for sobel image edge detection. In

Proceedings of Informing Science & IT Education Conference (InSITE), pages 97–107,

2009.

[100] Carlo Tomasi and Roberto Manduchi. Bilateral filtering for gray and color images. In

Computer Vision, 1998. Sixth International Conference on, pages 839–846. IEEE, 1998.

[101] Ioannis Pitas. Digital image processing algorithms and applications. John Wiley &

Sons, 2000.

[102] Rachid Deriche. Recursively implementating the gaussian and its derivatives. Proc. 2nd

International Conference on Image Processing, Singapore, pages 263–267, 1992.

[103] Hans-Wolfgang Loidl and Jeremy Singer. Sicsa multicore challenge editorial preface.

Concurrency and Computation: Practice and Experience, 26(4):929–934, 2014.

[104] Bodil Branner. The mandelbrot set. In Proc. symp. appl. math, volume 39, pages 75–

105, 1989.

[105] Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, Clifford Stein, et al. Intro-

duction to algorithms, volume 2. MIT press Cambridge, 2001.

[106] Verner E Hoggatt. Fibonacci and Lucas numbers. Houghton Mifflin Boston, 1969.

[107] Kaushik Datta, Mark Murphy, Vasily Volkov, Samuel Williams, Jonathan Carter, Leonid

Oliker, David Patterson, John Shalf, and Katherine Yelick. Stencil computation opti-

mization and auto-tuning on state-of-the-art multicore architectures. In Proceedings of

the 2008 ACM/IEEE conference on Supercomputing, page 4. IEEE Press, 2008.

[108] Marsha J Berger and Joseph Oliger. Adaptive mesh refinement for hyperbolic partial

differential equations. Journal of computational Physics, 53(3):484–512, 1984.

228

Bibliography

[109] Ole-Johan Dahl, Edsger Wybe Dijkstra, and Charles Antony Richard Hoare. Structured

programming. Academic Press Ltd., 1972.

[110] Jeff Somers. The n queens problem-a study in optimization, 2002.

[111] Michael Garba, Horacio González-Vélez, and Daniel Roach. GPU Acceleration for

Hermitian Eigensystems. Transactions on Computational Collective Intelligence, 2012.

In Press.

[112] Christopher Brown, Vladimir Janjic, Kevin Hammond, Kamran Idrees, Colin Glass,

Amer Wafai, Mehdi Goli, and John McCall. Bridgind the divide a new methodology for

semi-automatic programming of heterogeneous parallel machines. In CSRD springer,

submitted, 2014.

[113] Matthijs Den Besten, Thomas Stützle, and Marco Dorigo. An ant colony optimization

application to the single machine total weighted tardiness problem. In Proceedings of

ANTS, pages 39–42, 2000.

[114] Michael P Allen. Introduction to molecular dynamics simulation. Computational Soft

Matter: From Synthetic Polymers to Proteins, 23:1–28, 2004.

[115] Marco Aldinucci, Sonia Campa, Marco Danelutto, Peter Kilpatrick, and Massimo

Torquati. Targeting distributed systems in fastflow. In Euro-Par 2012: Parallel Pro-

cessing Workshops, pages 47–56. Springer, 2013.

[116] Sonia Campa, Marco Danelutto, Mehdi Goli, Horacio González-Vélez, Alina Madalina

Popescu, and Massimo Torquati. Parallel patterns for heterogeneous cpu/gpu archi-

tectures: Structured parallelism from cluster to cloud. Future Generation Computer

Systems, 37:354–366, 2014.

[117] Suresh Boob, Horacio Gonzalez-Velez, and Alina Madalina Popescu. Automated in-

stantiation of heterogeneous fast flow cpu/gpu parallel pattern applications in clouds.

In Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromicro

International Conference on, pages 162–169. IEEE, 2014.

[118] Tudor Serban, Marco Danelutto, and Peter Kilpatrick. Autonomic scheduling of tasks

from data parallel patterns to cpu/gpu core mixes. In High Performance Computing and

Simulation (HPCS), 2013 International Conference on, pages 72–79. IEEE, 2013.

[119] Aldinucci M, Torquati M, Drocco M, Peretti Pezzi G, and Spampinato C. Fastflow:

Combining pattern-level abstraction and efficiency in gpgpus. in GPU Technology Con-

ference,GTC, 2014.

229

Bibliography

[120] Leslie G Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103–111, 1990.

[121] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large

clusters. Communications of the ACM, 51(1):107–113, 2008.

[122] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos

Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In High

Performance Computer Architecture, 2007. HPCA 2007. IEEE 13th International Sym-

posium on, pages 13–24. IEEE, 2007.

[123] Enrique Alba, Gabriel Luque, Jose Garcia-Nieto, and Guillermo Ordonez. Mallba: a

software library to design efficient optimisation algorithms. International Journal of

Innovative Computing and Applications, 1(1):74–85, 2007.

[124] Mariusz Nowostawski and Riccardo Poli. Parallel genetic algorithm taxonomy. In

Knowledge-Based Intelligent Information Engineering Systems, 1999. Third Interna-

tional Conference, pages 88–92. IEEE, 1999.

[125] Kevin Hammond, Abdallah Al Zain, Gene Cooperman, Dana Petcu, and Phil Trinder.

Symgrid: a framework for symbolic computation on the grid. In Euro-Par 2007 Parallel

Processing, pages 457–466. Springer, 2007.

[126] L. Nyland, M.Harris, and J.Prins. Fast N-body simulation with CUDA. GPU Gems 3.

H. Nguyen, 2007.

230

	Goli thesis coversheet
	phd
	1 Introduction
	1.1 Contributions
	1.2 List of Publications and Authorship
	1.3 Research Method
	1.4 Thesis Architecture

	2 Review of Literature
	2.1 Preliminaries
	2.1.1 Control Systems
	2.1.2 OpenCL

	2.2 Abstraction Mechanism
	2.2.1 Traditional Low-level Library Model
	2.2.2 Structured High-level Parallel Programming Model

	2.3 Parallel Applications Optimisation
	2.3.1 Scheduling System Over Heterogeneous Multi-core Architecture
	2.3.2 Auto-Tuning Parallel Applications' Performance

	2.4 Research Gap

	3 SKIP Methodology for Coordinating Structural Parallel Programming
	3.1 Controlling Parameters
	3.2 Extending RISC-pb2l Over Heterogeneous Architectures
	3.3 Structural Composition and Interaction Protocol (SKIP)
	3.4 SKIP Compliant Autonomic Behavioural Framework
	3.5 Summary

	4 Performance Enhancement Infrastructure
	4.1 FastFlow Expansions
	4.1.1 OpenCL Back-end
	4.1.2 Adaptive Load-balancer
	4.1.3 Memory Management
	4.1.4 Efficient Idling

	4.2 HFastFlow Instrumentation
	4.2.1 Controlling Parameters
	4.2.2 Performance Metrics
	4.2.3 Structural Meta-data

	4.3 High-Level Abstraction Layer (HAL)
	4.3.1 SKIP Adaptor
	4.3.2 Dynamic Structural Runtime Interface
	4.3.3 ODVL: OpenCL Device Virtualisation Layer

	4.4 Performance Enhancement Tools (PETs)
	4.4.1 Sensor Analyser
	4.4.2 Adaptive Workload Distribution
	4.4.3 OpenCL Scheduler
	4.4.4 Static Structural Configuration

	4.5 Summary

	5 Evaluation of OpenCL Based Applications
	5.1 Application Suite
	5.1.1 Sobel Filter
	5.1.2 Bilateral Denoise
	5.1.3 Gaussian Noise
	5.1.4 Uniform Random Noise Generator (URNG)
	5.1.5 Recursive Gaussian
	5.1.6 Separable Convolution

	5.2 Evaluation
	5.2.1 Performance Overhead of PEI
	5.2.2 OpenCL Back-end
	5.2.3 Workload Distribution
	5.2.4 Phase Changing Prediction
	5.2.5 Multi-tenant Application

	5.3 Summary

	6 Evaluation of Generic Applications
	6.1 Homogeneous Application
	6.1.1 N-body Simulation
	6.1.2 Mandelbrot
	6.1.3 Quick Sort
	6.1.4 Fibonacci
	6.1.5 Stencil
	6.1.6 N-queens

	6.2 Heterogeneous Applications
	6.2.1 Custom Implementation of Eispack Routines
	6.2.2 SMTWTP
	6.2.3 Molecular Dynamics

	6.3 Application Evaluation
	6.3.1 Performance Overhead
	6.3.2 Efficient Idling
	6.3.3 Memory Management
	6.3.4 Static Structural Configuration

	6.4 Summary

	7 Conclusion & Future Work
	7.1 Consolidation of Research
	7.2 Research Impact
	7.3 Ongoing Research and Future Work

	A Validation of RISC-pb2l Grammar
	A.1 Skeleton-based Parallel Patterns
	A.1.1 Embarrassingly Parallel Patterns
	A.1.2 Reduction
	A.1.3 Pipe
	A.1.4 Divide & Conquer
	A.1.5 Stencil

	A.2 General Purpose Computing Models
	A.2.1 BSP
	A.2.2 Map-Reduce
	A.2.3 MDF

	A.3 Domain Specific pattern
	A.3.1 GSP
	A.3.2 OB
	A.3.3 NPP

	B The Structural Representation of Application Suite
	B.1 Uniform Random Noise Generator
	B.1.1 Demonstration of URNG with RISC-pb2l Grammar
	B.1.2 SKIP-compliant Object Representing the URNG Application

	B.2 Recursive Gaussian
	B.2.1 Demonstration of Recursive Gaussian with RISC-pb2l Grammar
	B.2.2 SKIP-compliant Object Representing the Recursive Gaussian Application

	B.3 Separable Convolution
	B.3.1 Demonstration of Separable Convolution with RISC-pb2l Grammar
	B.3.2 SKIP-compliant Object Representing the Separable Convolution Application

	B.4 Bilateral Denoise
	B.4.1 Demonstration of Bilateral Denoise with RISC-pb2l Grammar
	B.4.2 SKIP-compliant Object Representing the Bilateral Denoise Application

	B.5 Sobel Filter
	B.5.1 Demonstration of Soble Filter with RISC-pb2l Grammar
	B.5.2 SKIP-compliant Object Representing the Soble Filter Application

	B.6 Gaussian Noise
	B.6.1 Demonstration of Gaussian Noise with RISC-pb2l Grammar
	B.6.2 SKIP-compliant Object Representing the Gaussian Noise Application

	C The SKIP Compliant Objects
	C.1 Sensor Files
	C.1.1 Bilateral-Denoise
	C.1.2 Recursive Gaussian
	C.1.3 Gausian-Noise
	C.1.4 Sobel Filter
	C.1.5 separable-Convolution
	C.1.6 URNG

	C.2 Actuator Files
	C.2.1 Bilateral-Denoise
	C.2.2 Gaussian-Noise
	C.2.3 Recursive-Gaussian
	C.2.4 Sobel-Filter
	C.2.5 Separable-Convolution
	C.2.6 URNG

	C.3 Constraint

	D The Structural Representation of Existing Applications
	D.1 N-body Simulation
	D.2 Mandelbrot
	D.3 Quick sort
	D.4 Fibonacci
	D.5 Stencil
	D.6 N-queen
	D.7 Eispack Routine
	D.8 getSolution component for SMTWTP
	D.9 MD

	E Implementation of N-body Simulation under Three Frameworks
	E.1 N-body Simulation

	Bibliography

