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ABSTRACT
Problem structure, or linkage, refers to the interaction be-
tween variables in a black-box fitness function. Discovering
structure is a feature of a range of algorithms, including esti-
mation of distribution algorithms (EDAs) and perturbation
methods (PMs). The complexity of structure has tradition-
ally been used as a broad measure of problem difficulty, as
the computational complexity relates directly to the com-
plexity of structure. The EDA literature describes necessary
and unnecessary interactions in terms of the relationship be-
tween problem structure and the structure of probabilistic
graphical models discovered by the EDA. In this paper we
introduce a classification of problems based on monotonicity
invariance. We observe that the minimal problem structures
for these classes often reveal that significant proportions of
detected structures are unnecessary. We perform a complete
classification of all functions on 3 bits. We consider non-
monotonicity linkage discovery using perturbation methods
and derive a concept of directed ordinal linkage associated
to optimization schedules. The resulting refined classifica-
tion factored out by relabeling, shows a hierarchy of nine
directed ordinal linkage classes for all 3-bit functions. We
show that this classification allows precise analysis of compu-
tational complexity and parallelizability and conclude with
a number of suggestions for future work.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms; Design; Performance; Theory
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1. INTRODUCTION
There has been a long standing interest in understanding

the role of structure in black-box function optimization such
as estimation of distribution algorithms (EDAs). Structure,
or linkage, refers to the interactions between variables in
a function. Traditionally this was thought of as building
blocks, which are potentially disrupted by mutation and re-
combination operators [7]. There are several approaches to
overcoming the problem of disruption of structure [3]:

1. Evolving representations/operators

2. Probabilistic modeling (EDAs)

3. Perturbation methods (PMs)

In this paper, we consider the latter two approaches, due
to their explicit models for variable linkage. Any analy-
sis of problem structure runs across the issue that there
are infinitely-many functions for even a fixed number of
variables. Under many ordinal-selection–based algorithms,
many functions are equivalent as they rank solutions equiv-
alently. Negligible differences in value may be considered
irrelevant to optimization.

EDAs build a probability distribution of high-quality so-
lutions from a population and sample that distribution to
find other high-quality solutions. Many EDAs use ordinal
selection, such as tournament selection, which uses compar-
ison between fitness values as opposed to selection based on
absolute fitness values. Such approaches are invariant un-
der monotone transformations of the fitness functions, even
though the model-building stages of the EDA may not be.
Perturbation methods (PMs) make small changes to candi-
date solutions in a controlled way and calculate the effect
of changes to multiple variables to directly infer which vari-
ables interact. PMs partition the variables into typically
non-overlapping subsets of mutually-interacting variables.
Many PMs use non-monotonicity detection, that is detect-
ing whether the setting of one variable affects the optimal
setting of another, as opposed to whether the effect of both
variables is a linear sum of the effect of each.

We define equivalence classes of monotonicity invariant
functions as sets of all functions that rank solutions identi-
cally. To fully explore a subset of all possible functions, the
functions used in this paper are restricted to length 3 bit
strings, that is functions of the form f : {0, 1}3 → R. In
this domain, we can explore the different classes of functions
possible to gain theoretical insight into approaches which
may be extended to higher-dimensional function spaces.



2. BACKGROUND

2.1 Estimation of Distribution Algorithms
Estimation of distribution algorithms (EDAs) are an off-

shoot of genetic algorithms. EDAs construct a population
of candidate solutions and model the distribution to sam-
ple more high quality solutions. They are able to overcome
the problem of building-block disruption faced by genetic
algorithms, by explicitly modeling the interactions between
variables. Early EDAs use a univariate model, examples
include PBIL [1] and UMDA [10]. In bivariate and multi-
variate EDAs the model is often a probabilistic graphical
model (PGM). The underlying PGM aims to estimate the
linkage between variables.
EDAs can be classified as univariate, bivariate, or mul-

tivariate, according to the complexity of the probabilistic
model built [14]. In addition, the same terms are also used
to classify the complexity of the functions based on the com-
plexity of interactions between the variables. Hence, it is
desirable that the model built by an EDA mirrors the un-
derlying structure of the function. Probabilistic graphical
models have been used to create EDAs with directed struc-
ture (e.g. Bayesian networks [12]) or undirected structure
(e.g. Markov random fields [16]).

2.2 Walsh-Hadamard Transform
EDAs such as the DEUM algorithm [16] use a Markov ran-

dom field (MRF) model based on Walsh coefficients. This is
an appropriate representation because any fitness function
on bit strings may be rewritten using the Walsh-Hadamard
transform, and the non-zero Walsh coefficients are indicative
of the structure of the function [6]. Under this transform,
the function is expressed as a sum of Walsh coefficients (αk)
multiplied by Walsh functions (Wk (x)) as given by Eqn. 1,
2. Here, k iterates over all possible subsets of L.

f (x) =
∑
k⊆L

αkWk (x) (1)

where

L = {0, · · · , �− 1}
W∅ (x) = 1

Wk (x) =
∏
i∈k

{
1 if xi = 1

−1 if xi = 0
(2)

A column vector of Walsh coefficients (�α) may be com-
puted using the Hadamard matrix as given by Eqn. 3. A
faster method for Walsh-Hadamard transform is given by
Fino and Algazi [5], however, the simple method was suffi-
cient for the experiments within this paper.

�α =
1

2�
H�

�f (3)

where H� is the Hadamard matrix of order-�:

H0 =
[
1

]
(4)

H1 =

[
1 1
1 −1

]

H� =

[
H�−1 H�−1

H�−1 −H�−1

]
= H1 ⊗H�−1

and �f is a reverse binary-ordered column vector of fitnesses:

�f =

⎡
⎢⎢⎢⎣

f (111 . . . 1)
...

f (100 . . . 0)
f (000 . . . 0)

⎤
⎥⎥⎥⎦ (5)

The Walsh-Hadamard transform produces a column vec-
tor of Walsh coefficients �α i.e.

�α =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α∅
α{0}
α{ 1}
α{0,1}
α{ 2}
α{0, 2}
α{ 1,2}
α{0,1,2}
...
α{0,1,...,�−1}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

To maintain the ordering of function values, the constant
term α∅ is never necessary, as it is an offset added to ev-
ery output. Setting this term to zero does not affect the
ranking or the separation between function values. This can
be achieved by calculating the mean fitness and subtracting
the mean from each output. We refer to this process as nor-
malization. There are 2� − 1 possible elements of structure
for an �-bit function, e.g. 7 coefficients for a 3-bit problem.
These are represented by Figure 1. Each structure element
has been labelled with a power of two (shown below Figure
1 in hexadecimal) allowing all possible combinations to be
uniquely enumerated as shown in Figure 2.

Figure 1: The parts of Walsh structure of a 3-bit
function.

If we are interested in whether each coefficient is zero (not
present in the structure) or non-zero (present in the struc-

ture), there are 2(2
�−1) possible structures (or 128 for a 3-bit

function).

Figure 2: All 128 possible 3-bit Walsh structures
after normalization.



2.3 Perturbation Methods
Like EDAs, perturbation methods (PMs) are a type of

evolutionary algorithm which is able to overcome the prob-
lem of building-block disruption faced by genetic algorithms.
In contrast to EDAs, PMs work by evaluating similar candi-
dates with small changes (perturbations) and observe fitness
difference Δfi (x) :

Δfi (x) = f (x [i → 1])− f (x [i → 0]) (7)

x [i → b] = [x0, . . . , xi−1, b, xi+1, . . . , x�−1]

The fitness difference is the change in fitness caused by
changing the value of a variable – to detect whether two
variables are independent or interdependent.
The standard criterion for detecting interdependent vari-

ables is a non-linearity check [11]. This is a Boolean ex-
pression denoted by L (i, j) (Eqn. 8), and is a symmetric
relation (Eqn. 9).

L (i, j) ⇔ (Δfj (x [i → 1]) (8)

�= Δfj (x [i → 0]))

L (j, i) ⇔L (i, j) (9)

A definition of variable linkage is non-linearity and non-
monotonicity detection [11] given by Eqn. 10.

L (i, j) ⇔ ∀x (¬Pij (x) ∨ Mij (x)) (10)

Pij (x) = {Δ fi (x) > 0 ∧Δ fj (x) > 0}
Mij (x) = {Δ fij (x) > Δ fi (x)

∧ Δ fij (x) > Δ fj (x)}
The motivation behind non-monotonicity detection is that

learning interactions, that only affect the magnitude of a
variable’s effect (and not the optimal setting), is not nec-
essary when the objective is to locate a function optimum.
This is therefore another way to define which structure is
necessary.
Non-monotonicity detection checks that when a change in

either variable increases fitness, the result of changing both
also increases fitness. When using non-monotonicity detec-
tion there can be higher-order interactions, i.e. hierarchical
interactions between groups [19].

2.4 Linkage Partition
Two variables, i and j, are considered to be in the same

linkage group if they are interdependent, or transitively de-
pendent through a chain of interdependent variables. In
this sense, the linkage groups are connected components of
an undirected graph formed by pairs of interdependent vari-
ables. A linkage group is a set of linked variables, with the
kth linkage group is represented by γk = {Xi, Xj , . . .}.
The linkage partition is the set of linkage groups in a prob-

lem, which are each non-overlapping: Γ = {γ0, γ1, . . . .γn−1}.
The variables in γk are arranged into a substring (sk). A
function is considered to be an additively separable function
(ASF) [13] if the linkage partition consists of more than one
linkage group and therefore may be rewritten as a sum of
subfunctions on substrings as in Eqn. 11.

f (x) = g0 (s0) + g1 (s1) + . . .+ gn−1 (sn−1) (11)

Because the effect on fitness of the change of one variable
is only affected by the values of the variables in the same
linkage group, each linkage group may be optimized with-
out regard to the other linkage groups. The global optimum
may be therefore be found by exhaustive evaluation of each
linkage group in O

(
2k

)
time where k is the maximum size of

any one linkage group. This is because all 2k combinations
of variables in the same linkage group must be tried to con-
clusively identify the optimum value for any. An ASF with
small linkage group can be optimized relatively efficiently if
the linkage can be discovered efficiently. It has been shown
by Streeter [17] that learning the linkage of an ASF adds
only an � ln (�) term, meaning an ASF can be optimized
efficiently in O

(
� ln (�) 2k

)
time.

3. BINARY BENCHMARK FUNCTIONS
In this section we consider well-known benchmark func-

tions of bit strings, and discuss the structure of the 3-bit
instances.

3.1 Ones and BinVal
TheOnes (or MaxOnes/OneMax) function is a commonly-

cited univariate benchmark function which is the sum of the
bits in the bit string. (Eqn. 12)

Ones (x) =

�−1∑
i=0

xi (12)

The BinVal function [4] is an exponential univariate func-
tion which sums the bits in the bit string, weighted according
to their position in the string. (Eqn. 13)

BinVal (x) =

�−1∑
i=0

2ixi (13)

The Walsh coefficients of the 3-bit Ones and BinVal func-
tions are given by Table 1. The BinVal function has increas-
ing Walsh coefficients because it is an exponential function,
whereas the Ones function has constant Walsh coefficients,
though, both are univariate functions.

Ones BinVal
α∅ 1.5 3.5
α{0} 0.5 0.5
α{1} 0.5 1.0
α{2} 0.5 2.0

Table 1: Walsh coefficients of the 3-bit Ones and
BinVal functions.

Both the Ones function and BinVal function are univari-
ate, hence have no interactions between the variables, thus
the linkage partition is Γ = {{0} , {1} , {2}}.

3.2 Checkerboard (1-D)
The Checkerboard (1-D) function (Eqn. 14) is a 1-dimensional

variation on a checkerboard function, which rewards for as-
signing opposite values to adjacent alleles [2] [9].



Checkerboard (x) =

�−2∑
i=0

g (xi, xi+1) (14)

where g (y, z) =

{
0 if y = z
1 if y �= z

The Walsh coefficients of the 3-bit Checkerboard (1-D)
function are given by Table 2.

Checkerboard
α∅ 1.0
α{0,1} -0.5
α{1,2} -0.5

Table 2: Walsh coefficients of the 3-bit Checker-
board (1-D) function.

Despite the relative simplicity of the Checkerboard (1-D)
function, there is a linear chain of each variable connecting
to the next. Thus, this is not additively separable. The
linkage partition is Γ = {{0, 1, 2}}.

4. RANK-EQUIVALENCE CLASSES
There are an infinite number of �-bit functions, however, if

we consider functions which rank solutions in the same way
to be equivalent, there are a finite number of such equiva-
lence classes of functions for a given �.
We define the rank of a solution x, in the domain of func-

tion f , denoted by Rf (x) as the number of solutions with
a strictly lower fitness value, given by Eqn. 15. Listing the
ranks for a function f gives the class Cf as in Eqn. 16. Two
functions, f and g, are said to be rank-equivalent if Cf = Cg.

Rf (x) = |{y : y ∈ fdomain ∧ f (y) < f (x)}| (15)

Cf = [Rf (1 . . . 1) , . . . , Rf (1 . . . 0) , Rf (0 . . . 0)] (16)

The transpose of Cf gives a canonical example fitness
vector (Eqn. 5) in class Cf . For the 3-bit functions f :
{0, 1}3 → R, there are 545 835 distinct rank-equivalence
classes, considering permutations as distinct. The number
of classes for each number of distinct ranks is given by Table
3. For a given number of distinct ranks n and a given bit
string length �, the number of classes, c (n, �) is:

c (n, �) = n(2
�) −

n−1∑
k=1

c (k, �) · nCk (17)

Here, nCk denotes the binomial coefficient, n choose k.

Num. Ranks (n) Num. Deltas Num. Classes (c)
1 0 1
2 1 254
3 2 5 796
4 3 40 824
5 4 126 000
6 5 191 520
7 6 141 120
8 7 40 320

Total 545 835

Table 3: The number of rank-equivalence classes for
each number of distinct ranks for 3-bit functions.

5. NECESSARY WALSH STRUCTURE
There are existing notions of unnecessary structure. Some

parts of model structure have been called unnecessary if they
are undesirable with the aim of minimizing model complex-
ity [8] and maximizing mixing [18] or if the structure dis-
covered by the probabilistic graphical model is surplus to
accurate modeling of the fitness function [15]. In our work,
we argue that structure is unnecessary when the same or-
dering of solutions could be maintained without it.

Take as an example, the class of the Ones function, COnes =
[7, 4, 4, 1, 4, 1, 1, 0]. An instance of COnes is specified by the
function minimum (fmin) and 3 positive delta values i.e.
δ0, δ1, δ2 > 0 as shown in Table 4 and illustrated in Fig-
ure 3. The specific case of the Ones function is defined by
fmin = 0, δ0 = 1, δ1 = 1, and δ2 = 1.

Figure 3: Illustration of the fitness values for the 3-
bit class COnes = [7, 4, 4, 1, 4, 1, 1, 0] on the real number
line, separated by delta values.

x f (x) Rank Expansion Rf (x)
111 3 fmin + δ0 + δ1 + δ2 7
011 2 fmin + δ0 + δ1 4
101 2 fmin + δ0 + δ1 4
001 1 fmin + δ0 1
110 2 fmin + δ0 + δ1 4
010 1 fmin + δ0 1
100 1 fmin + δ0 1
000 0 fmin 0

Table 4: Fitness values, delta expansion, and ranks
of the 3-bit ones function.

Performing the Walsh-Hadamard transform on the alge-
braic rank expansion (Table 4) with the arithmetic mean
subtracted from each fitness gives a general, normalized set
of Walsh coefficients in terms of delta expansion. In this
class, they are given by Eqn. 18, 19, 20.

α{0} = α{1} = α{2} = 1
8
(δ0 + 2δ1 + δ2) (18)

α{0,1} = α{0,2} = α{1,2} = 1
8
(δ2 − δ0) (19)

α{0,1,2} = 1
8
(δ0 + δ2 − 2δ1) (20)

As all δ are strictly positive, the univariate terms must be
positive (hence, non-zero). The remaining possible struc-
tures are shown in Figure 4.

Figure 4: Minimal Walsh structure (0B) and
all other possible Walsh structures of Cones =
[7, 4, 4, 1, 4, 1, 1, 0].



In the general case, structure 7F will be produced. On
the condition 2δ1 = δ0 + δ2, the trivariate term becomes
zero, producing structure 3F. On the condition δ0 = δ2, the
bivariate terms become zero, producing structure 4B. If both
of the above conditions hold, then δ0 = δ1 = δ2, then the
univariate structure 0B is produced, as is the case with the
canonical Ones function. We conclude that this univariate
structure, OB, is this minimum structure for this class.
The same analysis was repeated for the class CBinVal =

[7, 4, 4, 1, 4, 1, 1, 0]), which due to higher degrees of freedom,
allows for a larger number of structures, 16, which we find to
be the maximum possible for a 3-bit problem. The possible
structures for CBinVal are shown in Figure 5.

Figure 5: Minimal Walsh structure (0B) and
all other possible Walsh structures of CBinVal =
[7, 6, 5, 4, 3, 2, 1, 0].

For class CCheckerboard = [0, 2, 6, 2, 2, 6, 2, 0], we find that
the bivariate terms between order-adjacent variables must
be present, with an optional term between the start and
end variables. No other parts of structure (univariate or
trivariate terms) may be present in a function in this class.
The possible structures for CCheckerboard are shown below in
Figure 6.

Figure 6: Minimal Walsh structure (24) and all
other possible Walsh structures of CCheckerboard =
[0, 2, 6, 2, 2, 6, 2, 0].

A complete analysis of all 545 835 classes of 3-bit func-
tions was found by an automated process. By placing some
restrictions on the types of functions considered, the Walsh-
Hadamard transform could be computed of a well-defined
large subset of functions for each class. These restrictions
were to limit the image of the function to y ∈ Z, 0 ≤ y ≤ U
and the deltas to δ ∈ Z.
The value chosen for U was 15. If a value for U < 15 was

chosen, some structures for some classes were not detected.
In the 3-bit case, a function may be constructed for any
given Walsh structure where each αI ∈ {−1, 0, 1}. Using the

expression �f = H3�α, the maximum value for any function
value will be 7, and the minimum value will be −7 (a range
of 15), therefore sampling from a set of U = 15 distinct
integers is sufficient to generate any possible combination
of negative, zero, and positive Walsh coefficients. It was
confirmed experimentally, that for U < 15, some structures
were not detected, and no additional structure were found
for values U > 15 tried.

Table 5 shows the number of structures produced from
each number of deltas. The result reveals that the Ones
class has the maximum number of structures for any 3-delta
class (4 structures) and that the maximum number of Walsh
structures for any 3-bit class is 16. And we also see a positive
correlation between number of deltas and the number of
structures.

Num. Num. Deltas
Structs 0 1 2 3 4 5 6 7

1 1 254 2 744 6 720 4 032 - - -
2 - - 3 052 16 072 23 856 10 080 - -
3 - - - 11 760 30 240 21 504 8 064 -
4 - - - 6 272 41 664 53 760 14 784 2 688
5 - - - - 12 096 41 664 34 944 5 376
6 - - - - 8 064 24 864 24 192 9 408
7 - - - - 5 376 18 816 16 128 2 688
8 - - - - 672 15 456 25 536 8 064
9 - - - - - - - -
10 - - - - - 2 688 6 720 5 376
11 - - - - - - - -
12 - - - - - 2 688 9 408 4 032
13 - - - - - - - -
14 - - - - - - - -
15 - - - - - - - -
16 - - - - - - 1 344 2 688

Table 5: Number of structures produced from each
number of deltas. Number of classes in each case is
listed.

Analysis of the result shows that Walsh coefficients were
not always simply necessary or unnecessary. For exam-
ple, Figure 7 shows a case in which the trivariate structure
α{0,1,2}, or one bivariate structure α{0,2}, or one univari-
ate structure α{0} may be considered unnecessary, but no
more than one of those may be omitted. Another notable
example is shown in Figure 8, where one bivariate structure
α{1,2} or the other two together (both α{0,1} and α{0,2})
are required. This shows that from a rank-based perspec-
tive, some functions have a trade off between the presence
of Walsh coefficients. Additionally, examples such as Cones

show that a symmetry is required to produce certain rank
classes.

Figure 7: Three minimal Walsh structures (3F, 6F,
and 7E) and the maximum structure (7F), the pos-
sible structures of the class [5, 4, 2, 5, 5, 1, 0, 2].

6. DIRECTED ORDINAL LINKAGE
Linkage discovered by perturbation methods (PMs) is com-

monly regarded as bi-directional. i.e. L (j, i) ⇔ L (i, j).
We observe that using non-monotonicity detection pertur-
bation, the dependence relationship between variables can
in some cases be uni-directional, as illustrated in Figure 9.
In this case, the optimum setting of X0 can be inferred by
sampling both values for X0 at any point, whereas, identi-
fying the optimal setting of X1 depends on the value of X0.
By any previously-given definition of linkage (non-linearity
or non-monotonicity), these variables are linked. We argue
that this case of linkage places an ordering on the variables.



Figure 8: Two minimal Walsh structures (1F, and
2B) and four other possible structure of the class
[7, 4, 4, 2, 4, 2, 1, 0].
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Figure 9: 2-bit fitness landscape illustrating uni-
directional dependence X0 → X1.

We provide a definition of directed linkage:

LO (i, j) ⇔ ∃ x : sgn (Δfj (x [i → 1])) (21)

�= sgn (Δfj (x [i → 0]))

The notation XiXj refers to interdependence:

XiXj ⇔ LO (i, j) ∧ LO (j, i) (22)

The notation Xi → Xj refers to the unidirectional depen-
dence j depends on i:

Xi → Xj ⇔ LO (i, j) ∧ ¬LO (j, i) (23)

The notation Xi +Xj refers to independent variables:

Xi +Xj ⇔ ¬LO (i, j) ∧ ¬LO (j, i) (24)

When referring to a general case without specifying the la-
belling of variables, the • operand may serve as a placeholder
for variables, e.g. • • → • may substitute for X0X1 → X2

but generalizes to any relabeling of the variables.
With this definition of directed linkage, a digraph with the

same connected components as the undirected graph formed
as a result of the conventional definition of linkage. Ad-
ditionally, under our definition, each connected component
may be regarded as one or more strongly-connected compo-
nent (SCC).
Contracting each SCC to a single vertex produces a new

directed acyclic graph (DAG) over the SCCs of the original
graph. Assuming no higher-order dependencies, traversing
this DAG with a topological ordering will give an order in
which the SCCs of the original graph may be visited in which
each SCC is optimized after its predecessors.
As with the interdependence relationships however, there

can be higher-dimensional dependencies. We found experi-
mentally that in the 3-bit case discussed in this paper, the
higher-dimensional linkage can only exist where there is no
incoming edge to a SCC of two vertices, thus, in these cases,
it was checked whether the optimum setting of the two vari-
ables in the SCC depended on the third variable, and if so,

Figure 10: All 29 possible 3-bit directed linkage
graphs with transitive linkages removed, grouped in
to 9 cases according to relabeling invariance. The
percentages show the proportion of rank-equivalence
classes for different levels of structure complexity.

an incoming edge was added to correct the structure. Here,
some classes in • • → • are actually • • • and some classes
in •+ • • are actually • → • •.

Functions in the same rank-equivalence class as described
in section 4 are indistinguishable by non-monotonicity de-
tection PMs and hence, in contrast to the Walsh coefficients,
each function in that class will have the same structure by
this description.

With the removal of redundant transitive linkages (i.e.
X0 → X2 is redundant in the case that X0 → X1 and
X1 → X2), there are 29 possible directed structures. These
are shown in Figure 10, grouped into 9 cases according to
invariance of relabeling of variables.

7. OPTIMIZATION SCHEDULES
Given the 9 cases of possible directed structures invariant

under relabellings, these can be regarded as optimization
schedules. There is a hierarchy of general to specific sched-
ules. e.g. the most general schedule ••• regards all variables
as interdependent and hence requires that the function be
optimized by exhaustive evaluation, the most specific case
• + • + • regard the variables as independent (univariate
problem) to be optimized separately. If a problem is solv-
able by the more specific case, it is also solvable (though
perhaps less efficiently) by the more general case. The tree
in Figure 11 shows the relationship between the 9 cases, if a
problem may be solved by an instance lower down the tree,
it will also be solvable by all schedules reachable by follow-
ing the edges of the tree. This ordering can be constructed
by observing that to gain generality, an independence rela-



Figure 11: The relationship between the 9 ordinal
linkage cases (see Figure 10). Any case may be
solved processed as a case reachable by the edges
in this graph.

tionship • + • may be replaced by a dependence relation-
ship • → •, and a dependence relationship may be replaced
with an interdependence relationship ••. The effect of these
transformations is to add edges to the graph, allowing the
schedule to be applicable to solve more cases.
The finesses which must be evaluated to determine a global

optimum, given the structure of directed linkage is given
by choosing one of the applicable schedules. The schedules
differ in minimum number of function evaluations, ranging
from 4 in the most specific case to 8 in the most general
case.
Allowing for parallelization of evaluation, the schedules

also differ in the minimum number of time steps required
to achieve this minimum, ranging from 1 to 3, equaling the
number of level sets in the contracted DAG. This is be-
cause the unidirectional linkage requires that the optimum
for some variable(s) be determined before it is known which
function evaluations will determine the optimum for some
other variable(s).
As an example, Figure 12 shows the 4 or 5 required func-

tion evaluations and 2 required time steps in the X0+X1 →
X2 case. In the ∗ ∗ 1 function evaluation, the asterisks rep-
resent the optimum of the first two variables. The 5th func-
tions evaluation, 110 is only required if the optimum setting
of the first two variables is 11, otherwise the optimum of
the third variable may be determined by comparing ∗ ∗ 1 to
one of the first three evaluations. This is the only one of
the 9 cases to have an evaluation which may or may not be
required. Note that the function evaluations with asterisks
are a result of uni-directional dependence enforcing an or-
dering of evaluation. After the first time step, an optimum
of the first two variables may be substituted in the pattern
to become 001, 101, 011, or 111, and only in the latter case,
the optional 110 must be added on.
The necessary function evaluations are given in Figure 13

for one example labeling of each of the 9 cases. From this
we see that the choice to move to another schedule may in
some cases represent a trade-off between number of function
evaluations and minimum number of time steps. This min-
imum depends on the number of evaluations which can be
done in parallel.

Figure 12: The 4 or 5 required function evaluations
and 2 required time steps in the (X0 +X1) → X2 case.
In the first time step, the optimum setting of X0

and X1 is determined, in the second time step, the
optimum for the remaining variables is determined.
This only requires evaluation of f (1, 1, 0) if the op-
timum setting of the first two variables is both 1.
The asterisks represent whatever optimum was de-
termined in the previous time step.

Figure 13: One example per ordinal linkage case (see
Figure 10) with a linkage schedule (see Figure 12)
which will locate a global optimum for the shown
case. This figure is set out in the same arrangement
as Figure 11



8. CONCLUSIONS
Many EDAs use linkage learning to determine which vari-

ables should be optimized together, but often construct mod-
els which use more information about linkage than is nec-
essary. This leads to overly-complex models, which do not
give an advantage over a simpler EDAs. This paper gives
some theoretical insight in to the type of linkage which is
strictly necessary from the point of view of a Markov network
EDA or non-monotonicity-detection perturbation methods.
Further, as the probability distribution modelled by any
EDA could be represented as a Markov network, this view
of unnecessary interactions may have implications for other
EDAs.
In this paper we have given a method of classifying func-

tions as being rank-equivalent, and given the number of in-
stances in the 3-bit case for each of the possible number of
different fitness levels. We have shown the minimal Walsh
structure of the classes which the benchmark functions Ones,
BinVal, and Checkerboard (1-D) belong to, and highlighted
examples of equivalence classes which have a trade-off in
necessary structure; and shown a positive correlation be-
tween number of deltas and the number of structures with
the maximum at 16 for the 3-bit case. We have described
how variables in non-monotonicity–detection perturbation
methods can have uni-directional interactions, and enumer-
ated all possible digraphs which may be formed in the 3-bit
case. We have shown how these graphs dictate the mini-
mum optimization schedules necessary to discover a global
optimum for a given function and structure, and how the
different possible optimization schedules are hierarchically
related.
There are several directions for future work in this area.

Modeling methods in EDAs may be adapted to look for min-
imal structures to avoid unnecessary computation. In bit
string spaces, minimal Walsh structure may be estimated
and the argument may be extended to other variable encod-
ing. The adoption of perturbation methods for linkage de-
tection allows consideration of choice of optimization sched-
ule. The hierarchical classification on an unseen problem
allows trade-offs to be made between computational effort
/ parallelizability and likelihood of optimality, which can
be conditioned incrementally on evidence as the search pro-
gresses. Finally, the structure classification may be used to
generate more representative benchmark problem sets.
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