
 
 

 

 

OpenAIR@RGU 

 

The Open Access Institutional Repository 

at Robert Gordon University 
 

http://openair.rgu.ac.uk 
 

This is an author produced version of a paper published in  
 

Proceedings of the 2013 UK Workshop on Computational Intelligence 
(UKCI), 2013. (ISBN 9781479915668) 

 

This version may not include final proof corrections and does not include 
published layout or pagination. 
 

 

Citation Details 
 

Citation for the version of the work held in ‘OpenAIR@RGU’: 
 

CHRISTIE, L. A., LONIE, D. P., and McCALL, J. A. W., 2013. Partial 
structure learning by subset Walsh transform. Available from 

OpenAIR@RGU. [online]. Available from: http://openair.rgu.ac.uk 

 

 
Citation for the publisher’s version: 

 

CHRISTIE, L. A., LONIE, D. P., and McCALL, J. A. W., 2013. Partial 

structure learning by subset Walsh transform. In: Proceedings of 
the 2013 UK Workshop on Computational Intelligence (UKCI), 
2013.  IEEE Press, pp. 128-135. 

 
 

 
Copyright 

Items in ‘OpenAIR@RGU’, Robert Gordon University Open Access Institutional Repository, 
are protected by copyright and intellectual property law. If you believe that any material 

held in ‘OpenAIR@RGU’ infringes copyright, please contact openair-help@rgu.ac.uk with 
details. The item will be removed from the repository while the claim is investigated. 

http://openair.rgu.ac.uk/
mailto:openair%1ehelp@rgu.ac.uk


(c) 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising 

or promotional purposes, creating new collective works for resale or redistribution to 
servers or lists, or reuse of any copyrighted components of this work in other works. 



Partial Structure Learning by Subset Walsh
Transform

Lee A. Christie
IDEAS Research Institute
Robert Gordon University

Aberdeen, United Kingdom
l.a.christie4@rgu.ac.uk

David P. Lonie
School of Computing Science and Digital Media

Robert Gordon University
Aberdeen, United Kingdom

d.p.lonie@rgu.ac.uk

John A. W. McCall
IDEAS Research Institute
Robert Gordon University

Aberdeen, United Kingdom
j.mccall@rgu.ac.uk

Abstract—Estimation of distribution algorithms (EDAs) use
structure learning to build a statistical model of good solutions
discovered so far, in an effort to discover better solutions.
The non-zero coefficients of the Walsh transform produce a
hypergraph representation of structure of a binary fitness func-
tion; however, computation of all Walsh coefficients requires
exhaustive evaluation of the search space. In this paper, we
propose a stochastic method of determining Walsh coefficients for
hyperedges contained within the selected subset of the variables
(complete local structure). This method also detects parts of
hyperedges which cut the boundary of the selected variable set
(partial structure), which may be used to incrementally build an
approximation of the problem hypergraph.

I. INTRODUCTION

The relationship between random variables in function
optimisation algorithms is fundamentally relevant to the per-
formance of an algorithm. Genetic algorithms are said to
implicitly learn the structure, or linkage, of a problem by
exploration of the search space. However, recombination op-
erators which are blind to structure may cause the GA to
converge more slowly or fail to converge on optimal solutions.
This is caused when important linkage between variables is
disrupted by the recombination. Estimation of distribution
algorithms (EDAs) make learning explicit by building a model,
which may be sampled to produce higher fitness solutions with
higher probability than it produces lower fitness solutions.

The representation of problem structure is a vital consid-
eration in structure learning. Early EDAs such as PBIL [1]
and UMDA [2] use a univariate model i.e. representing only
the marginal probabilities of variables in the solution. The
field of EDAs developed to multivariate models, modelling the
joint probabilities, such as Bayesian networks [3] and Markov
random field models [4].

Closely-related to the concept of a Markov random field
model, the Walsh coefficients of a binary fitness function
define a hypergraph representation of the structure of a binary
function. There is a fast method of computing the Walsh
coefficients given known fitness values for every solution in
the search space [5] however, this requirement of 2ℓ function
evaluations for an ℓ-bit problem means that any method
of optimisation which requires completely determining the
structure of a problem can perform no better than exhaustive
search.

The problem of computing the Walsh coefficients without

exhaustive evaluation of the search space is impossible to solve
without loss of generality. This is because every solution in
the search space affects the values of the Walsh coefficients.
Algorithms have been developed based on the limited probing
method of [6] based on the assumption that the solution is
additively decomposable and some genetic algorithms have
been developed which take account of structure learning in
their recombination operators. [7] [8] [9]

In this paper, we introduce a stochastic procedure, the
subset Walsh transform. The subset Walsh transform of a
chosen subset of variables of k, sampled n times, using n2k

function evaluations will give exact Walsh coefficients for
any combinations which are complete parts of the problem
structure and reveals indications as to which combinations
provide partial structure, which may be completed by including
variables not sampled in this instance. Hence, interactions of
order > k are indicated by the subset Walsh transform, which
may be used to direct a search process towards discovering
these larger interactions.

In remainder of this paper: section II describes the Walsh
transform; section III gives a description of how the Walsh
transform describes problem structure and introduces the
benchmark functions we will use; section IV demonstrates
the calculation of Walsh coefficients; section V gives a de-
scription of the subset Walsh transform; section VI analyses
the theory behind the subset Walsh transform with respect
to the benchmark functions chosen; section VII shows the
result of applying the subset Walsh transform to the identified
benchmark functions; and section VIII concludes the paper.

II. WALSH TRANSFORM OF BINARY FUNCTIONS

A problem is said to be univariate if there are no in-
teractions between the variables. Given the univariate Walsh
function:

Wi (x) =

{
1 if xi = 1
−1 if xi = 0

(1)

Univariate binary functions may always be rewritten in the
form:

f (x) = α∅ + α0W0 (x) + . . .+ αℓ−1Wℓ−1 (x) (2)

In this form (the Walsh expansion), it can be shown that the
independent constant term (α∅) is equal to the arithmetic mean
fitness of all candidates in the search space.



For a multivariate function, the Walsh function on a clique
(mutually-connected subset of variables) υ is defined as the
product of the univariate Walsh functions of the elements,
and hence, the domain of the multivariate Walsh function is
{−1, 1}. The multivariate Walsh function is defined as:

WK (x) =
∏
i∈K

Wi (x) (3)

Any binary function may be rewritten in the form:

f (x) =
∑
K⊆L

αKWK (x) (4)

where L = {0, · · · , ℓ− 1}

The first term in this expansion is α∅W∅ (x), and as W∅ (x) is
equal to 1, this term reduces to α∅, the arithmetic mean of all
candidates in the search space. This constant term is not a part
of the intrinsic structure of the problem, as it simply specifies
an offset which shifts the fitness landscape up the fitness axis,
and does not affect the relationship between candidates in the
search space. Without this term, the total or mean fitness of
all candidates would be zero.

This univariate Walsh transform is the basis for the uni-
variate variant of the Distribution Estimation Using Markov
random fields with direct sampling algorithm (DEUMd [10],
which estimates the univariate Walsh coefficients of a popula-
tion of candidates using least-squares estimation on a system of
linear equations constructed from the population. The DEUM
family of EDAs has been expanded to include a multivariate
form [4] and several approaches have been applied to structure
learning for a multivariate DEUM.

III. WALSH EXPANSION AND PROBLEM STRUCTURE

In this section we show the connection between the Walsh
expansion of a binary function and its structure. We give
4 examples of binary fitness functions: the Ones function
(univariate structure), the 1D-Checkerboard function (bivari-
ate neighbor structure), the OddZeros (simple multivariate
structure), and the 4-Trap (highly-interconnected multivariate
structure). These four functions will be used again later in
the paper in section VII when the Subset Walsh Transform is
applied to these examples.

When expressed in the form of a Walsh expansion, the
structure of the problem is revealed by the non-zero coeffi-
cients. For instance, a univariate problem will contain some
or all non-zero coefficients of order ≤ 1, a bivariate problem
will contain some or all non-zero coefficients of order ≤ 2.
The non-zero coefficients may be regarded as edge weights
on a hypergraph. This hypergraph is a representation of the
problem structure.

A. Ones Function

A classic example of a univariate problem is the Ones
function; this is simply a sum of all the bits in the bit string.
The Ones function is given by:

fones (x) =

ℓ−1∑
i=0

xi (5)

There are no interactions between the variables in this
problem. The Walsh expansion for the Ones function has non-
zero Walsh coefficients for only the univariate cliques. The
Walsh expansion of the 1D Checkerboard function is given
by:

fones (x) = ℓ
2 + 1

2W0 (x) + . . .+ 1
2Wℓ−1 (x) (6)

The structure of a univariate problem such as the Ones
function is represented by assigning a point in the hypergraph
to each non-zero Walsh coefficient. The resulting structure is
a disconnected set of points shown in figure 1:

Fig. 1. Structure of the Ones function as a hypergraph.

B. 1D-Checkerboard Function

The 1D-Checkerboard function is a sum of unmatched
neighboring pairs. A global optimum is reached if the bit string
is an alternating sequence of 0s and 1s. The two optima are the
inverses of one another as there is no preference for whether
the sequence begins with a 0 or a 1. The 1D-Checkerboard
function is given by:

f check
1 (x) =

ℓ−2∑
i=0

g (xi, xi+1) (7)

where g (y, z) =

{
0 if y = z
1 if y ̸= z

As only the comparison of neighboring bits is significant, and
there is no preference for the independent value of any bit, only
bivariate cliques of neighboring variables have non-zero Walsh
coefficients. The Walsh expansion of the 1D Checkerboard
function is given by:

f check
1 (x) = ℓ−1

2 −
1
2W{0,1} (x) (8)

− 1
2W{1,2} (x)

· · ·
− 1

2W{ℓ−2,ℓ−1} (x)

The structure of a univariate problem such as the 1D-
Checkerboard function is represented by assigning a line in the
hypergraph to each non-zero Walsh coefficient. The resulting
structure is a chain of neighboring interactions shown in figure
2 (the univariate terms are not present, this is indicated by
unfilled circles on the diagram):

Fig. 2. Structure of the 1D-Checkerboard function as a hypergraph.



C. Odd-Zeros Function

Before examining the structure of a highly-interconnected
problem, we introduce the Odd-Zeros problem. For a given
instance (a set of cliques), the Odd-Zeros problem assigns a
score of +1 for each of these cliques which contain an odd
number of zeros in the bitstring, and a score of −1 otherwise.
We have defined this problem as such so that it is defined
naturally by its Walsh expansion. The definition and Walsh
expansion of the Odd-Zero function is given by:

foddzeros
I (x) = −

∑
K∈I

WK (x) (9)

To show the structure of the Odd-Zeros problem we must
define an instance. The instance we will use is given by:

I = {{0, 4, 5} , {5, 6, 7} (10)
{0, 1, 8, 9, 10} , {2, 10, 11}
{12, 13, 14, 15, 16} , {17, 18} , {19}}

The instance above has been selected to be asymmetric with
heterogeneous clique sizes, as this will serve to illustrate the
behaviour of the subset Walsh tranform on such an irregular
structure. The specific Walsh expansion of this instance is:

foddzeros
I (x) =−W{0,4,5} (x) (11)

−W{5,6,7} (x)

−W{0,1,8,9,10} (x)

−W{2,10,11} (x)

−W{12,13,14,15,16} (x)

−W{17,18} (x)

−W19 (x)

The structure of this problem only contains one part per
clique in the instance I . The size of the clique is the dimen-
sionality of the part. Each n-dimensional clique contributes
one (n− 1)-dimensional edge to the problem hypergraph. The
structure of this instance is shown in figure 3:

Fig. 3. Structure of an instance of Odd-Zeros function as a hypergraph.

D. 4-Trap Function

The 4-Trap is a instance of the k-trap function which was
designed to be deceptive [11]. The function has an optimum

at x = {1, 1, . . . , 1}, however, the gradient of the fitness
landscape leads search towards x = {0, 0, . . . , 0}.

f trap
4 (x) =

(ℓ/4)−1∑
j=0

g (x4i + x4i+1 + x4i+2 + x4i+3) (12)

where g (u) =

{
3− u if u < 4

4 if u = 4

The Walsh decomposition of the 4-Trap is:

f trap
4 (x) =

(ℓ/4)−1∑
j=0

g (x, 4j) (13)

where g (x, i) = 21
16 −

3
16W{i} (x)− 3

16W{i+1} (x)

− 3
16W{i+2} (x)− 3

16W{i+3} (x)

+ 5
16W{i,i+1} (x) +

5
16W{i,i+2} (x)

+ 5
16W{i+1,i+2} (x) +

5
16W{i,i+3} (x)

+ 5
16W{i+1,i+3} (x) +

5
16W{i+2,i+3} (x)

+ 5
16W{i,i+1,i+2} (x) +

5
16W{i,i+1,i+3} (x)

+ 5
16W{i,i+2,i+3} (x) +

5
16W{i+1,i+2,i+3} (x)

+ 5
16W{i,i+1,i+2,i+3} (x)

The structure of the 4-Trap function is split up in indi-
viduals traps, each represented by four points, six lines, four
triangles, and one tetrahedron to the hypergraph representing
all of the possible combinations of the variables in this trap.
There are no connection between variables in one trap with
another. This is shown in figure 4.

Fig. 4. Structure of 4-Trap function as a hypergraph.

IV. THE HADAMARD MATRIX AND CALCULATION OF
WALSH COEFFICIENTS

On construction of an exhaustive list of fitness evaluations
f⃗ given in Equation 14

f⃗ =



f (1, 1, 1, . . . , 1)
f (0, 1, 1, . . . , 1)
f (1, 0, 1, . . . , 1)
f (0, 0, 1, . . . , 1)

...
f (0, 0, 0, . . . , 0)

 (14)

it can be shown that the resulting system of linear equations
for the complete multivariate Walsh transform (equation 4)
of fitness function of length ℓ exhibits a pattern which is best
described by the Hℓ, the Hadamard matrix, which will be used
in this section to determine the exact Walsh coefficients given
a complete evaluation of a search space.



Sylvester’s construction [12] of the Hadamard matrix is a
recursive construction. The subscripts we have chosen such
that Hℓ is a 2ℓ-by-2ℓ matrix as Hℓ is the instance used to
perform the Walsh expansion on a length ℓ function.

H0 = [ 1 ] (15)

H1 =

[
1 1
1 −1

]
(16)

Hℓ =

[
Hℓ−1 Hℓ−1

Hℓ−1 −Hℓ−1

]
= H1 ⊗Hℓ−1 (17)

For Walsh coefficients in the order

α⃗ =



α∅
α{0}
α{1}
α{0,1}
α{2}
α{0,2}
α{1,2}
α{0,1,2}
...
α{0,··· ,ℓ−1}


(18)

The matrix form of the system of linear equations given
by the Walsh transform is

Hℓα⃗ = f⃗ (19)

As the Hadamard matrix is symmetric, H⊤
ℓ = Hℓ, and a

general property for the Hadamard matrix is that HℓH
⊤
ℓ =

2ℓI2ℓ where I2ℓ is the identity matrix of size 2ℓ × 2ℓ hence,
the inverse H−1

ℓ = 1
2ℓ
Hℓ

The calculation of the Walsh coefficients may therefore be
rewritten to be solved by simple matrix multiplication:

α⃗ =
1

2ℓ
Hℓf⃗ (20)

The above method is the one used in this paper, there also
exists other methods of computing the Walsh coefficients, such
as the fast Walsh transform [5] which are faster, however, the
same number of fitness evaluations must be made, which is
considered to be the limiting factor, rather than the computa-
tional complexity of the coefficient calculation.

V. SUBSET WALSH TRANSFORM

Obtaining the complete Walsh transform of a fitness
function requires evaluation of every valid candidate and is
therefore of complexity O

(
2ℓ
)
. In this section we introduce

a method of using the Walsh transform to obtain the alpha
parameters involving a selected subset of parameters k. We
shall also use k in some contexts to represent the size of the set
k. The complexity of the subset Walsh transform is O

(
n2k

)
.

We call this method subset Walsh transform.

The subset Walsh transform performs n samplings of the
vector α⃗ (the Walsh coefficients).

In the complete Walsh transform, all 2ℓ possible ℓ-bit
strings are evaluated by the fitness function. In one sampling

of the subset Walsh transform we use all 2k possible k-bit
strings (in the order defined by the rows of B in Eqn. 21)
to populate the elements of the ℓ-bit string specified by the
indices in the set k. The remaining (ℓ− k) bits are taken from
a randomly generated (ℓ− k)-bit string, which is reused for
all 2k evaluations in this sample.

B =

2k-by-k︷ ︸︸ ︷

1 1 1 . . . 1
0 1 1 . . . 1
1 0 1 . . . 1
0 0 1 . . . 1

...
0 0 0 . . . 0

 (21)

The sampling process may be repeated and once n sam-
plings of the Walsh coefficients have been produced, the mean
)µα) and standard deviation (σα) of each Walsh coefficient is
determined. The order of the elements in the resulting column
matrices µα and σα are interpreted in the order described by
Eqn. 22

for k = {k0, k1, . . . , kk−1} (22)

α⃗ =



α∅
α{k0}
α{k1}
α{k0,k1}
α{k2}
...
αk


The complete subset Walsh transform pseudocode is given

below in Algorithm 1:

1) define A as 2k-by-n matrix
2) define µ as length 2k column
3) define σ as length 2k column
4) for j ← 0 to n− 1

a) define r ← row of (ℓ− k) random bits
b) define f as length 2k column
c) for i← 0 to 2k − 1

i) define s← row i of B
ii) define x as length ℓ bitstring

iii) for indices in k, populate elements of
x with elements of s left-to-right

iv) for indices not in k, populate elements
of x with elements of r left-to-right

v) fi ← evaluate (x)
d) column Aj ← 1

2k
Hkf

5) for i← 0 to 2k − 1
a) µi ← mean of row Ai

b) σi ← stdev of row Ai

6) return columns µ and σ

Algorithm 1. The subset Walsh transform where ℓ = the
problem length, k = the selected subset of variables or the size of
this set, and Hk = the Hadamard matrix of size 2k-by-2k. B is
given in Eqn. 21.



VI. THEORETICAL ANALYSIS OF THE SUBSET WALSH
TRANSFORM

In this section we shall consider the theoretical basis of
the Subset Walsh Transform described in this paper. First
consider a partition of the set of ℓ random variables X =
{X0, X1, . . . , Xℓ−1} into S = {X0, X1, . . . , Xk1} and R ={
Xk, X|k|+1, . . . , Xℓ−1

}
. Samples of these sets of variables

are represented by x, xs, and xr respectively. Note that the
consecutive ordering of the random variables is purely for
convenience and would not restrict the argument. On X let
f(x) be the function we wish to optimise.

The central idea is that the 2k variables in S can be exhaus-
tively sampled using the Hadamard matrix method described
in section IV, whilst variables from R are randomly sampled.
And evaluations of the function f at points sampled in this way
allows estimates to be made of the Walsh coefficients.

Experiments involving the subset Walsh transform proce-
dure show, at least for selected problems, a remarkably clear-
cut set of parameter estimates. To see why this should be,
consider the set of functions which can be decomposed into a
sum as follows:

⃗f (x) = fS (x0, x1, . . . , xk−1) (23)
+ fP (x0, x1, . . . , xℓ−1)

+ fR (xk, xk+1, . . . , xℓ−1)

or more concisely as

f (x) = fS (xs) + fP (xs, xr) + fR (xr) (24)

where

• fS depends only on the variables (x0, x1, . . . , xk−1)
within the subspace whose structure components are
being investigated, with f⃗S resprenting the column
vector as in Eqn. 14 of all fitnesses based on the
selected part of the fitness functin alone;

• fR depends only on the variables
(xk, xk+1, . . . , xℓ−1) within the complementary
subspace to that whose structure components are
being investigated, and which, crucially, within one
sampling will be the same constant value for all
2k evaluations, with f⃗R as the column vector of
fitnesses; and

• fP represents the part of f involving partial in-
teraction between the subspace S and the rest of
the problem space, and which, within one sampling
will be a random value with respect to variables
(x0, x1, . . . , xk−1), with f⃗P as the column vector of
fitnesses

Within one sampling we may therefore write:

f (x) = fS (xs) + fP (xs, xr) + c (25)

where c = fR (r) and the estimate of the structure may be
decomposed as

α⃗ =
1

2k

(
Hkf⃗S +Hkf⃗P +Hk c⃗

)
(26)

= α⃗S + α⃗P + α⃗R

The Hadamard matrix has the property that all rows (except
the first row) have equal numbers of 1s and −1s, and so

α⃗R =
1

2k
Hk


c
c
...
c

 =


α∅
0
...
0

 (27)

meaning that estimates of the sub-structure α parameters
(except α∅) are completely unaffected by any term in the
optimised function that depends only on variables outwith the
selected variables.

Further, since α⃗S = 1
2k
Hkf⃗S is independent of xr its

contribution to α⃗ is the same for all iterations. So in cases
where the sub-structure under consideration, on S, fully con-
tains a self-contained part of the entire models structure, the
α parameter estimates will be exact (i.e. have no standard
deviation).

The influence of α⃗P = 1
2k
Hkf⃗P is that where the structure

within selected variables S, contains some but not all of the
variables forming part of the full model, the estimates of
the α parameters will be expected to have non-zero standard
deviation because of the influence of the random sampling of
xR.

In conclusion, provided the function can be expressed in
a form of Eqn. 24, the estimation procedure we describe, will
assign α⃗ parameters to interactions that

1) have non-zero mean with zero standard deviation for
Walsh coefficients which are parts of the structure
completely contained within the selected variables S;

2) have zero mean and zero standard deviation for Walsh
coefficients which are not part of the structure; and

3) have non-zero standard deviation for Walsh coef-
ficients involving parts of the structure which are
contained partly in S and partly in R, with the mean
being an estimation of the particular Walsh coefficient
being considered.

The resulting µ, σ pairs are interpreted by Table I. Zero
standard deviation indicates that the mean value is likely are
correctly determined part of the structure (or non-part if zero).
Where there is a non-zero standard deviation, partial structure
has been detected. The indicates that a part of the structure
involving the variables in these variables, plus additional
variables not in k, but no additional variables in k exists.
Examples of partial structure are given in section VII where
the result of applying the subset Walsh transform is shown.

µ σ In Structure

non-zero 0 Yes
0 0 No

any non-zero Partial

TABLE I. STRUCTURE DETECTION



VII. RESULT OF APPLYING THE SUBSET WALSH
TRANSFORM ON SELECTED VARIABLES

To illustrate the principle of the subset Walsh transform, in
this section we show the result of applying the algorithm to a
benchmark problem with known structure and remark on the
meaning of the results. In each example the first 6 variables
have been selected. Length 20 problems with a sample size of
5 have been chosen. In the final example, the sample size has
been increased to 20 due to the high probability of an incorrect
result for a smaller sample size. This is discussed further in
the 4-Trap subsection.

A. Ones Function

Fig 5 shows the structure of the Ones function with the first
6 variables selected. This selection includes 6 univariate parts
of the structure. All 6 parts of the structure are completely
contained within the selected variables S.

Fig. 5. Illustrating the selected variables k = {0, 1, 2, 3, 4, 5} on the
hypergraph of Ones function for ℓ = 20.

Applying the subset Walsh transform method with the
selected subset, the decomposition of the fitness function as
in Eqn. 24 takes the form:

fS (x) = x0 + · · ·+ x5 (28)
fP (x) = 0

fR (x) = x6 + · · ·+ x19

In this case, the fully sampled subset {0, 1, 2, 3, 4, 5} has no
interaction with the randomly sampled subset {6, 7, · · · , 19}
and fP (x) = 0. Hence the contributions to the structure
estimates derived from the subset Walsh transform method will
be a constant α⃗S , α⃗P = 0 and α⃗R = 0, resulting in constant α.
Hence the structure parameter estimates for the selected subset
are expected to have no standard deviation and should agree
with the theoretical expectations.

We ran the subset Walsh transform on this example, the
result is shown in Fig 6. As all structure is inside or outside of
the selection with no overlap, there is no variance on the result,
hence we expect there the standard deviations vector σ⃗ to be
zero. Repeated sampling in this case is not necessary, however,
5 samples were used to show that the result is consistent.

B. 1D-Checkerboard Function

Fig 7 shows the structure of the 1D-Checkerboard function
with the first 6 variables selected. This selection includes
5 complete parts of the structure and one of two variables
involved in the clique {5, 6}. The variable x5 has been
highlighted as we expect there to be a non-zero variance in
the value of this Walsh coefficient.

Fig. 6. Estimated Walsh coefficients in a subset Walsh transform of selected
variables k = {0, 1, 2, 3, 4, 5} of the Ones function for ℓ = 20 using n = 5
samples. (a∅ constant term omitted).

Fig. 7. Illustrating the selected variables k = {0, 1, 2, 3, 4, 5} on the
hypergraph of 1D-Checkerboard function for ℓ = 20.

Applying the subset Walsh transform method with the
selected subset, the decomposition of the fitness function as
in Eqn. 24 takes the form:

fS (x) = g (x0, x1) + g (x1, x2) + · · ·+ g (x4, x5) (29)
fP (x) = g (x5, x6)

fR (x) = g (x6, x7) + g (x7, x8) + · · ·+ g (x18, x19)

where g (y, z) =

{
0 if y = z
1 if y ̸= z

In this case, the fully sampled subset {0, 1, 2, 3, 4, 5} has
interaction with the randomly sampled subset {6, 7, · · · , 19}
through fP = g(x5, x6). Hence the contributions to the
structure estimates derived from the subset Walsh transform
method will be constant α⃗S , α⃗R = 0 in addition to a random
α⃗P that takes one of two values depending on the value of x5.
It can easily be checked that the non-zero parameter estimates
are expected to be constant values α{0,1} = α{1,2} = α{2,3} =
α{3,4} = α{4,5} = −1

2 and α{5} = −1
2 or 1

2 each with
probability p = 0.5. Hence the structure parameter estimates
for the selected subset are expected to be exact except for α{5}
which should, for large enough samples, tend to zero and have
standard deviation 0.5.

We ran the subset Walsh transform on this example, the
result is shown in Fig 8. All complete structure within the
selection has been detected with zero σ as before, however, as
there is now a partial part of the structure, the term α{5} has a
non-zero standard deviation, indicating that there x5 interacts
with part of the structure outwith the selection.



Fig. 8. Estimated Walsh coefficients in a subset Walsh transform of selected
variables k = {0, 1, 2, 3, 4, 5} of the 1D-Checkerboard function for ℓ = 20
using n = 5 samples. (a∅ constant term omitted).

C. Odd-Zeros Function

Fig 9 shows the structure of an instance of the Odd-Zeros
function with the first 6 variables selected. This selection
includes only one complete part of the structure, but includes
single variables from cliques {5, 6, 7} and {2, 10, 11}, and
two variables from clique {0, 1, 8, 9, 10}. In Fig 9, this partial
structure has been highlighted. Note that the univariate terms
{0} and {1} have not been individually highlighted although
they are part of the partial structure, only {0, 1} contains the
most variables possible for the clique {0, 1, 8, 9, 10}

Fig. 9. Illustrating the selected variables k = {0, 1, 2, 3, 4, 5} on the
hypergraph of an instance of the Odd-Zeros function.

Applying the subset Walsh transform method with the
selected subset, the decomposition of the fitness function as
in Eqn. 24 takes the form:

fS (x) =−W{0,4,5} (x) (30)
fP (x) =−W{5,6,7} (x)

−W{0,1,8,9,10} (x)

−W{2,10,11} (x)

fR (x) =−W{12,13,14,15,16} (x)

−W{17,18} (x)

−W19 (x)

In this case, the fully sampled subset {0, 1, 2, 3, 4, 5}
has multiple interaction with the randomly sampled subset
{6, 7, · · · , 19} through fP . Hence the contributions to the

structure estimates derived from the subset Walsh transform
method will be constant α⃗S , and α⃗R = 0 in addition to a
random α⃗P that take many (25 = 32) values depending on the
value of x7, x8, x9, x10 and x11. Hence the structure parameter
estimates involving the selected subset are expected to be
exact for any values involving the subset {0, 4, 5} while those
involving the subsets {0, 1}, {2} and {5} should manifest
themselves through partial interaction and hence have non-zero
standard deviation.

We ran the subset Walsh transform on this example, the
result is shown in Fig 10. The non-zero σ is of the expected
cliques {2}, {5}, and {0, 1} and not {0} or {1}, suggesting
that x0 and x1 only appear when in a clique togethor.

Fig. 10. Estimated Walsh coefficients in a subset Walsh transform of selected
variables k = {0, 1, 2, 3, 4, 5} of an instance of the the Odd-Zeros function
using n = 5 samples. (a∅ constant term omitted)

D. 4-Trap Function

The case of the 4-Trap function is more complex than the
previous example because the cliques {4}, {5}, and {4, 5}
are complete parts of the structure, however, that are also
partial structure in several other parts of structure. The clique
{4} should indicate partial structure in the cliques {4, 6},
{4, 7}, and {4, 6, 7}. The clique {5} should indicate partial
structure in the cliques {5, 6}, {5, 7}, and {5, 6, 7}. The clique
{4, 5} should indicate partial structure in the cliques {4, 5, 6},
{4, 5, 7}, and {4, 5, 6, 7}. The structure of the 4-Trap with the
first 6 variables selected is shown in Fig. 11.

Fig. 11. Illustrating the selected variables k = {0, 1, 2, 3, 4, 5} on the
hypergraph of an instance of the 4-Trap function.

Applying the subset Walsh transform method with the
selected subset, the decomposition of the fitness function as
in Eqn. 24 takes the form:



fS (x) = g (x0 + x1 + x2 + x3) (31)
fP (x) = g (x4 + x5 + x6 + x7)

fR (x) = g (x8 + x9 + x10 + x11)

+ g (x12 + x13 + x14 + x15)

+ g (x16 + x17 + x18 + x19)

where g (u) =

{
3− u if u < 4

4 if u = 4

For each random sample xR the vector f⃗ has contributions
from the fP that take one of four forms (depending on the
2× 2 = 4 possible combinations of the x6 and x7 values).

Provided the number of samples is high enough, we would
expect the average structure parameter estimates associated
with the sub-clique {4, 5} to approach the true values, and
for the standard deviation of those estimates to be non-zero
(indicating the presence of a sub-clique).

As the structure parameter estimates associated with clique
{0, 1, 2, 3} do not depend on the random sample, it is tempting
to suppose that very small sample sizes might be sufficient to
expose the sub-structure, and indeed this is true for cliques
entirely contained in the subset transform. Further, even with
small sample sizes, the presence of such sub-cliques is usu-
ally shown via the presence of non-zero parameter estimates
with non-zero standard deviation, although the values of the
estimates are not exact.

However, for very small samples there is the possibility
of misleading results. In the 4-trap example this has been
experimentally observed as anomalous estimates of α{4}, α{5}
and α{4,5} with zero standard deviation, arising when the
sample happens to generate only x6 and x7 values that give rise
to the same fP values. To guard against this the sample size
should be large enough to make the probability, of generating
identical fP values, acceptably small.

We ran the subset Walsh transform on the 4-Trap, the result
is shown in Fig 12. The non-zero σ is of the expected cliques
{4}, {5}, and {4, 5}. A sample size of n = 20 has been used
in this case.

Fig. 12. Estimated Walsh coefficients in a subset Walsh transform of selected
variables k = {0, 1, 2, 3, 4, 5} of the 4-Trap function for ℓ = 20 using
n = 20 samples. (a∅ constant term omitted).

VIII. CONCLUSIONS AND FURTHER WORK

This paper has given a account of the connection between
the Walsh expansion of a binary fitness function and the
structure of the problem in terms of variable interactions, and
presented the subset Walsh transform — a novel approach
which uses partitioning of the set of variables and statistical
sampling to calculate Walsh coefficients.

We have argued theoretically that the subset Walsh trans-
form reliably produces the exact Walsh coefficient for parts
of the structure which are a subset or equal to the selected
variables, and for partial structure provides an estimation of the
correct Walsh coefficient, with a statistical variance. Further
work will expore the use of the subset Walsh transform in
EDA-type search algorithms.

REFERENCES

[1] S. Baluja and R. Caruana, “Removing the genetics from the standard
genetic algorithm,” in Machine Learning International Workshop then
Conference, 1995, pp. 38–46.

[2] H. Mühlenbein and G. Paaß, “From recombination of genes to the
estimation of distributions I. Binary parameters,” in Proceedings of the
4th International Con-ference on Parallel Problem Solving from Nature,
Lecture Notes In Computer Science Vol 1141, 1996, pp. 178–187.

[3] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “The Bayesian opti-
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