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Abstract 

Optimisation heuristics rely on implicit or explicit assumptions about the structure of the 

black-box fitness function they optimise. A review of the literature shows that understanding of 

structure and linkage is helpful to the design and analysis of heuristics. The aim of this thesis 

is to investigate the role that problem structure plays in heuristic optimisation. 

Many heuristics use ordinal operators; which are those that are invariant under monotonic 

transformations of the fitness function. In this thesis we develop a classification of pseudo-

Boolean functions based on rank-invariance. This approach classifies functions which are 

monotonic transformations of one another as equivalent, and so partitions an infinite set of 

functions into a finite set of classes. Reasoning about heuristics composed of ordinal operators 

is, by construction, invariant over these classes. 

We perform a complete analysis of 2-bit and 3-bit pseudo-Boolean functions. We use 

Walsh analysis to define concepts of necessary, unnecessary, and conditionally necessary 

interactions, and of Walsh families. This helps to make precise some existing ideas in the 

literature such as benign interactions. 

Many algorithms are invariant under the classes we define, which allows us to examine 

the difficulty of pseudo-Boolean functions in terms of function classes. We analyse a range of 

ordinal selection operators for an EDA. Using a concept of directed ordinal linkage, we define 

precedence networks and precedence profiles to represent key algorithmic steps and their 

interdependency in terms of problem structure. The precedence profiles provide a measure of 

problem difficulty. This corresponds to problem difficulty and algorithmic steps for optimisation. 

This work develops insight into the relationship between function structure and problem 

difficulty for optimisation, which may be used to direct the development of novel algorithms. 

Concepts of structure are also used to construct easy and hard problems for a hill-climber. 
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Glossary 

 

The following is a list of many of the common symbols used throughout this thesis with a 

reference to where they are defined. 

ℓ The size of a problem. (p. 32)  𝑓𝑓 A fitness function. (p. 3) 

Ω or 𝑋𝑋 The search space. (p. 3)  𝑋𝑋𝑖𝑖 Random variable 𝑖𝑖 of X. (p. 33) 

𝐱𝐱 A candidate solution. (p. 33)  𝑥𝑥𝑖𝑖 Element 𝑖𝑖 of candidate 𝐱𝐱. (p. 32)  

𝛂𝛂 A column vector of Walsh 

coefficients. (p. 36) 

 𝑓𝑓𝐱𝐱 The fitness of 𝐱𝐱 in fitness function 

𝑓𝑓. (p. 32) 

𝛄𝛄 Vector of values in 𝐱𝐱 of variables 

in subset 𝛾𝛾. (p. 15) 

 Δ𝑓𝑓𝑖𝑖 Perturbation on 𝑋𝑋𝑖𝑖. (p. 43) 

𝛾𝛾 A clique (a subset) of variables in 

𝑋𝑋. (p. 17) 

 𝑅𝑅𝑓𝑓(𝐱𝐱) The rank of 𝐱𝐱 in function 𝑓𝑓. (p. 49) 

𝛼𝛼𝛾𝛾 Walsh coefficient of the clique 𝛾𝛾. 

(p. 17) 

 𝐂𝐂𝑓𝑓 The equivalence class of which 𝑓𝑓 

is a member. (p. 50) 

Γ Linkage partition. (p. 15)  𝑓𝑓~𝑔𝑔 Functions 𝑓𝑓 and 𝑔𝑔 are rank 

equivalent. (p. 50) 

𝐟𝐟 A column vector of fitness values. 

(p. 37) 

 �̅�𝑥 For Boolean value, 1 − 𝑥𝑥. (p. 40) 

𝛿𝛿𝑖𝑖 A difference between two fitness 

levels in a function. (p. 80) 

 𝐻𝐻ℓ 2ℓ × 2ℓ Hadamard matrix. (p. 37) 

Δ A matrix of delta values. (p. 98)  sgn(𝑥𝑥) The sign of 𝑥𝑥, i.e. −1, 0, or 1.  

(p. 51) 
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1 Introduction 

 

1.1 Overview 

Optimisation is the task of locating the input associated with the global maximum or 

minimum value of some function. Optimisation has many real-world applications. 

For an arbitrary black-box function the only way to guarantee that the optimum is found is 

by exhaustive search, which is usually computationally intractable. Heuristics may be applied 

to optimise a function, but these rely on assumptions about the function, for example, that small 

changes in input generally correspond to small changes in output; that output is constructed 

from the sum of smaller functions on the input variables; or that adjacent variables in input 

representation are more related than distant ones. These assumptions all refer to various 

aspects of the structure of the function. 

Some heuristics build explicit representations of their estimate of the function’s structure 

based on statistical modelling and independence testing. Others are understood to implicitly 

learn the structure by the convergence of a population of solutions maintained by the algorithm. 

It is clear that theoretical understanding of function structure will aid the development and 

analysis of optimisation heuristics. This is the issue that this thesis attempts to address. 

1.2 Research Questions 

The aim of this thesis is an investigation into concepts of structure and linkage. This aim 

can be broken down into the following research questions: 

1. What is the relationship between problem structure and problem difficulty? 

2. How can we use structure to usefully classify problems? 

3. Can we use structure to bound the number of algorithmic steps? 

4. Can structure analysis motivate the development of novel algorithms? 
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1.3 Summary of Thesis 

Chapter 2 presents an examination of the relevant literature on black-box optimisation 

metaheuristics, problem structure, and variable linkage, to support the formulation of relevant 

research questions. 

Chapter 3 lays out the foundational concepts required by the main body of the thesis. This 

includes terminology and notation, definitions of Walsh structure and structure in terms of 

linkage partition, and methods of computing the above. 

Chapter 4 defines ranks and function classes we construct to classify problems into a finite 

number of classes for a given problem length; this is in a way invariant under a range of 

operators applied by many common heuristics. We define ordinal linkage partition and directed 

ordinal linkage; which we use with monotonicity-invariant classes of functions. 

Chapter 5 gives a detailed analysis of the structure of all classes of length-2 pseudo-

Boolean functions. Here we describe the necessary Walsh structures to maintain the ranks, 

and connect this concept to ordinal linkage. We define the algorithmic steps sufficient to reach 

a global optimum in each case. 

Chapter 6 summarises the result of applying the same detailed analysis to the structure 

of all classes of length-3 pseudo-Boolean functions, and shows that non-unique sets of 

necessary Walsh structure arise with the introduction of 3 variables. 

Chapter 7 describes the extent of applicability and implications of the low-dimensional 

analysis of structure to higher-dimensional function spaces, with suggestions for guiding the 

development of novel algorithms. 

Chapter 8 concludes the thesis, reflects on the relevant contributions and gives 

suggestions for future work.  
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2 Literature Review 

 

In this chapter, we examine the relevant literature. This discussion is grouped into three 

sections. First we discuss the application of search heuristics to the optimisation of functions; 

then we discuss the structure of functions on which they operate; and then of the coherence 

between the two. Lastly, we form relevant research questions which are motivated by the 

relationship between search heuristics and objective functions. 

2.1 Search Heuristics 

In this section we give a brief introduction to a variety of search heuristics applied to 

optimisation problems. The emphasis is on their relationship with implicit or explicit structure 

learning. The concept of structure is then expanded upon in later sections. 

2.1.1 Black-Box Optimisation 

Optimisation is the search for the global optimum of a function 𝑓𝑓. This is sometimes called 

the objective function. A single-objective black-box optimisation function maps each element 

of a given domain Ω to the codomain 𝑌𝑌, such that 𝑌𝑌 admits a total ordering, formally given by 

( 1 ). The domain of the function Ω is often called the search space. 

𝑓𝑓 ∶  Ω → 𝑌𝑌 ( 1 ) 

A member 𝑥𝑥 of the search space Ω is called a candidate. For a given function, there may 

be more than one global optimum. The problem objective specifies whether we define the 

global optimum to be the argument for the maximum, argmax𝑥𝑥 𝑓𝑓(𝑥𝑥), or argument for the 

minimum, argmin𝑥𝑥  𝑓𝑓(𝑥𝑥). 

The literature classifies problems as continuous optimisation (where the search space is 

continuous, e.g. the real numbers) or discrete optimisation (where the search space is discrete, 

e.g. the integers). In practice, all metaheuristic search operates on discrete finite domains, as 

a limitation of the precision of the digital representation [5]. There is a subset of discrete 

optimisation: combinatorial optimisation, where the search space is finite. The search space 

of a combinatorial optimisation problem can take forms such as sets, vectors, combinations, 

or permutations with/without repetition and be of any finite discrete alphabet [6].  
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2.1.2 Neighbourhood and Local Optima 

The domain may be a nominal set of candidates with no defined relationship between the 

candidates. An example of such a function is shown in Table 1. 

𝑥𝑥 Apple Cherry Orange Peach Pear 

𝑓𝑓(𝑥𝑥) 1.98 0.03 0.88 2.0 1.58 

Table 1 – Example of a function containing no obvious neighbourhood. The domain of 𝑓𝑓 is 

{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶ℎ𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, 𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂𝑔𝑔𝐴𝐴, 𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃ℎ, 𝑃𝑃𝐴𝐴𝑂𝑂𝑒𝑒} and the codomain is ℝ. For a maximisation objective, 

the global optimum is 𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃ℎ. 

For a function such as the above, the global optimum can be reached in time linear with 

respect to the size of the search space by exhaustively evaluating each candidate. However, 

for optimisation problems in general, this runtime is undesirable. For a combinatorial 

optimisation problem of ℓ variables, each of an alphabet of cardinality 𝑘𝑘, the search space size 

𝑘𝑘ℓ, for example 2ℓ for a pseudo-Boolean function, hence the runtime of an exhaustive search 

is exponential in the length of the input. Worse still, for an unbounded discrete optimisation or 

a continuous optimisation problem the runtime of an exhaustive search is infinite. 

A neighbourhood structure may be defined on the set. For example, if the domain is 

ordinal, two candidates may be considered neighbours if they are adjacent in the associated 

order. With a neighbourhood structure, the notion of local optima emerges. A local optimum is 

a candidate solution which has no neighbouring candidates which are better. Under this 

definition, we consider global optima also to be local optima. Informally, we can describe 

candidate 𝑥𝑥 as better than candidate 𝑒𝑒 if we are maximizing and 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑒𝑒) or we are 

minimising and 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥). 

𝑥𝑥 0 1 2 3 4 

𝑓𝑓(𝑥𝑥) 1.98 0.03 0.88 2.0 1.58 

Table 2 – An example of a function for which an obvious neighbourhood structure exists on 

the domain – based on adjacent integers, i.e. 𝑥𝑥 and 𝑒𝑒 are neighbours if |𝑒𝑒 − 𝑥𝑥| = 1. The 

domain of 𝑓𝑓 is {0, 1, 2, 3, 4}. For a maximisation objective the local optima are {0, 3}, of which 

3 is also a global optimum. 
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Given a neighbourhood structure, a local optimum may be found by a series of moves 

from neighbour to neighbour. The area around any optimum where a given search heuristic 

leads to that optimum is called a basin of attraction [6]. The basin of attraction may be different 

for different search heuristics since it depends on how the search explores the search space 

and how the search terminates. An example of a basin of attraction for a hill-climber search is 

shown in Figure 1. If the search begins in the basin of attraction belonging to a global optimum, 

then the search strategy will lead to the global optimum without the need for exhaustive 

evaluation. 

 

Figure 1 – Conceptual illustration of optima in an arbitrary function containing three local 

optima, one of which is the global optimum. The basins of attraction illustrated are those of a 

steepest ascent hill-climber. 

Formally, a metric is any function 𝑑𝑑 which defines the distance between two elements in 

a set, where 𝑑𝑑 has the following four properties for all 𝑥𝑥,𝑒𝑒, 𝑧𝑧 ∈ Ω [7]: 

1. 𝑑𝑑(𝑥𝑥,𝑒𝑒) ≥ 0 

2. 𝑑𝑑(𝑥𝑥,𝑒𝑒) = 0 if and only if 𝑥𝑥 = 𝑒𝑒 

3. 𝑑𝑑(𝑥𝑥,𝑒𝑒) = 𝑑𝑑(𝑒𝑒, 𝑥𝑥) 

4. 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ≤ 𝑑𝑑(𝑥𝑥,𝑒𝑒) + 𝑑𝑑(𝑒𝑒, 𝑧𝑧) 

An example of a metric on a multi-dimensional search space is the Hamming metric [8] 

(also called Hamming distance), which for a search space of Ω = {0, 1}ℓ is the number of 

variables which differ. A neighbourhood on such a search space may be defined such that two 

candidates are neighbours if they have a Hamming distance of 1. 
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For more complicated search spaces such as a permutation, it may be non-trivial to define 

the notion of neighbourhood structure. However, definitions for neighbourhood under 

permutations exist, such as two permutations differing by one switching of two elements [9]. 

2.1.3 Local Search and Hill-Climbers 

The class of optimisation algorithms referred to as local search makes use of the 

neighbourhood structure of a search space, moving from one candidate at a time to a 

neighbouring candidate. Hill-climber search is a subset of local search. A simple hill-climber 

moves from one candidate in the search space to a neighbouring candidate of higher fitness. 

For multi-dimensional optimisation, a local search strategy may find an improvement in 

more than one dimension to move. The search can follow the direction which gives the best 

improvement in fitness. This can be formalised as a fitness gradient where there exists a metric 

on both the domain and codomain, the gradient can be defined as Δ𝑓𝑓(𝑥𝑥)
Δ𝑥𝑥� . Following the 

largest local gradient is called steepest ascent [10] (as cited by [11]). 

Most heuristics assume that neighbouring candidates correspond to similar function 

values. For a hill-climber to guarantee on a single run that it will reach the optimum, there is a 

smooth fitness gradient which may be followed from a randomly-chosen start point to the global 

optimum. A simple hill-climber search may be prevented from reaching the global optimum by 

encountering a local optimum. A local optimum is a point in the search space, whose 

neighbours correspond to less-optimal fitness, and hence is the optimum of the local region. 

More advanced variations on hill-climber algorithms may avoid becoming trapped in a 

local optima. Examples are random restarts, tabu search [12] [13] [14], and simulated 

annealing [15] [16].  
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2.1.4 Population-Based Metaheuristics 

One important branch of metaheuristics is population-based metaheuristics, the most 

common of which is the genetic algorithm (GA) as first introduced by Holland [17]. Variants on 

GAs include parallelisation schemes such as island models (Belding [18] as cited by Whitley 

et al. [19]). 

Genetic algorithms are a form of evolutionary computing which uses selection, crossover, 

and mutation operators inspired by Darwinian natural selection. The canonical genetic 

algorithm (CGA) [17] is designed to search on pseudo-Boolean functions, however, genetic 

algorithms have been generalised to a wide variety of encodings. 

In a population-based metaheuristic, a population consists of a collection of candidate 

solutions. The workflow consists of moving from population to population until stopping criteria 

are met. The means of generating a population from the previous varies between 

metaheuristics. 

 

Figure 2 – The workflow of a population-based metaheuristic. 

Different population-based metaheuristics have different means of updating the 

population. The cycle of a GA consists of applying selection to the current population, then 

generating the next population by the crossover-mutation procedure. This inner process which 

is iterated is summarised by ( 2 ). 

 

  

𝒫𝒫𝑡𝑡  selectı̇on������������������⃗  𝒫𝒫𝑆𝑆𝑡𝑡 crossover��������������������⃗  𝒫𝒫𝑆𝑆∗𝑡𝑡  mutatı̇on�������������������⃗  𝒫𝒫𝑡𝑡+1 ( 2 ) 
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Crossover is the recombination of two or more parent solutions, and mutation is the 

random modification of solutions to vary the population. 

There are many selection methods, which can be classified as either ordinal or 

proportional. An ordinal selection operator bases its choice of individuals on ordinal (greater-

than, less-than, equal-to) comparisons of fitness between candidate solutions in the current 

population. A proportional selection operator bases its choice of individuals in some way 

proportional to the numerical value of the fitness. 

Ordinal Selection 

Truncation Select the 𝑁𝑁 individuals with the highest fitness values from 𝒫𝒫𝑡𝑡. 

Tournament Uniformly at random choose 𝑀𝑀 individuals from 𝒫𝒫𝑡𝑡. 

Select the 𝑘𝑘 individuals from this choice with the highest fitness. 

Repeat until 𝑁𝑁 individuals have been selected. 

Proportional Selection 

Roulette-Wheel Iteratively select 1 individual with probability 

𝐴𝐴(𝐱𝐱) =
𝑓𝑓(𝐱𝐱)

∑ 𝑓𝑓(𝐲𝐲)𝐲𝐲∈𝒫𝒫
 

Repeat until 𝑁𝑁 individuals have been selected. 

Boltzmann Iteratively select 1 individual with probability 

𝐴𝐴(𝐱𝐱) =
𝐴𝐴𝑓𝑓(𝐱𝐱)/𝑇𝑇

∑ 𝐴𝐴𝑓𝑓(𝐲𝐲)/𝑇𝑇
𝐲𝐲∈𝒫𝒫

 

where 𝑇𝑇 is a temperature parameter. 

Repeat until 𝑁𝑁 individuals have been selected. 

Table 3 – Examples of genetic selection operators. Adapted from Goldberg [20], Mitchell et 

al. [21], Davis [22], de la Maza & Tidor [23] as cited by Shakya [24, pp. 8-9]. 
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Selection in a GA is the operator which uses information about the fitness of the 

candidates, therefore, any implicit learning of structure is done by selection. This makes the 

selection operator of particular interest to structure learning. 

It is worthy of noting that ordinal selection operators are unaffected by any structure which 

may be produced by monotonic transformation of the objective function (that is, any 

transformation of the function which preserves equality and inequality relationships between 

candidate fitnesses). It is of interest to explore this further, and will be returned to in chapter 3. 

2.1.5 Competent Genetic Algorithms 

The linkage in genetic algorithms motivates schema theory. Schema theory considers that 

genetic algorithms work by processing schema, which are arrangements of variable values 

which correspond to higher fitnesses [17] [20]. However, schema which consist of more 

variables or of variables which are more spread out throughout the representation are more 

likely to be disrupted by crossover and mutation, making it difficult to maintain these schema 

in the population. Also, genetic algorithms are prone to hitchhiking [21], which is where 

arrangements of variables which do not contribute to high fitness are carried around in the 

population as they coincide in individuals in the population with high fitness schema. 

Competent genetic algorithms were developed as a means of solving some of these 

issues in a genetic algorithm caused by mutation and re-combination operators [25]. The 

literature on competent genetic algorithms and perturbation [26] commonly classifies 

competent genetic algorithms into one of three categories: 

1. Evolving representations/operators [25] [27]  [28] 

2. Probabilistic modelling (EDAs) 

3. Perturbation methods (PMs) 

Efforts to implement evolving representations/operators faced difficulty in relation to the 

algorithm’s inability to respond quickly enough to selection [26]. Probabilistic modelling and 

perturbation methods are of more direct interest as they relate to explicit structure learning. 

We will next discuss EDAs, then PMs.  
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2.1.6 Estimation of Distribution Algorithms 

Estimation of distribution algorithms (EDAs) are sometimes referred to as probabilistic 

model-building genetic algorithms. These algorithms build a probabilistic model of a selected 

sample population or a model weighted by fitness, and then sample that statistical model to 

generate new candidate solutions which have a high probability of having high fitness. 

EDAs which use selection can use the same selection operators as genetic algorithms. 

The model-building/sampling step takes the place of the traditional GA crossover/mutation 

step. 

The workflow of an EDA is given by ( 3 ) [29]. 

Since these steps are iterated, the operation of an EDA can alternatively be viewed as a 

progression from model to model as given by ( 4 ), rather than a progression from population 

to population. 

EDAs are commonly classified based on the interaction of the variables: as univariate, 

bivariate, or multivariate [30] [31]. A univariate EDA considers each variable separately; a 

bivariate EDA such as BMDA [32] considers joint probability between pairs of variables, and a 

multivariate EDA consider joint probabilities or more than two variables. Early examples of 

EDAs: PBIL [33] and UMDA [34] were univariate. Multivariate EDAs use models such a 

Bayesian networks [35] and Markov networks [24].  

𝒫𝒫𝑡𝑡 selectı̇on������������������⃗  𝒫𝒫𝑆𝑆𝑡𝑡 estı̇matı̇on����������������������⃗  𝐴𝐴(𝑥𝑥;𝜃𝜃𝑡𝑡) samplı̇ng�������������������⃗  𝒫𝒫𝑡𝑡+1 ( 3 ) 

𝐴𝐴(𝑥𝑥; 𝜃𝜃𝑡𝑡) samplı̇ng�������������������⃗  𝒫𝒫𝑡𝑡 selectı̇on������������������⃗  𝒫𝒫𝑆𝑆𝑡𝑡 estı̇matı̇on �����������������������⃗  𝐴𝐴(𝑥𝑥;𝜃𝜃𝑡𝑡+1) ( 4 ) 
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2.1.7 Distribution Estimation Using Markov Random Fields 

Distribution estimation using Markov random fields (DEUM) is a graphical EDA using a 

Markov random field (MRF) model, sometimes referred to as a Markov network [24]. The 

motivation for considering the DEUM EDA is that the Markov random field model is related to 

the Walsh coefficients of a function.  

The univariate DEUM (DEUM𝑑𝑑) and bivariate DEUM (Is-DEUM) were introduced to 

demonstrate the use of Gibbs sampling, with DEUM𝑑𝑑 assuming no interactions between the 

variables and Is-DEUM using a bivariate model [36]. 

DEUM has been used on real-world applications such as chemotherapy optimisation [37] 

[38], mushroom farming [39], and dynamic pricing [40]. 

Is-DEUM uses the known bivariate structure of the Ising spin glass problem. MRF models 

were introduced to model the Ising spin glass problem [41]. Structurally, a MRF is a graphical 

model using a hypergraph or simplicial set with weighted hyper edges. This is a collection of 

points, line segments, triangles, tetrahedra, and higher-dimensional simplices. Each simplex 

represents a clique, a set of zero or more of the variables. 

The Hammersley-Clifford Theorem [42] [43] states that the joint probability distribution of 

a Markov random field can be factorised as a Gibbs distribution. The energy function 𝑈𝑈(𝐱𝐱) is 

used to compute the probability distribution of the model as given by (5) [44]. 

Note that this probability corresponds to the Boltzmann selection operator (Table 3, p. 8) used 

by other evolutionary algorithms such as Boltzmann GA [45] [46].  

𝐴𝐴(𝐱𝐱) =
𝐴𝐴−𝑈𝑈(𝐱𝐱)

∑ 𝐴𝐴−𝑈𝑈(𝐲𝐲)
𝑦𝑦

 

where 𝐴𝐴−𝑈𝑈(𝐱𝐱) = 𝑓𝑓(𝐱𝐱) 

( 5 ) 
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DEUM uses ( 6 ) and estimates the Walsh-Hadamard transform of this function [24] [47]. 

Additionally, this is an estimate based on a population using singular value decomposition 

(SDV) rather than an exhaustive sample [48]. 

A version of DEUM (Is-DEUM𝑚𝑚) was developed for the Ising problem. Is-DEUM𝑚𝑚 uses 

bitwise zero-temperature metropolis (BTZM) method. Maximum likelihood estimation (MLE) 

[49] and stochastic gradient descent [50] have also been used to estimate the structure in 

DEUM. There are also other EDAs which use Markov random field models, such as MEDA [51], 

MOA [52], and MARLEDA [53]. 

As with the genetic algorithm, EDAs can use ordinal selection or proportional selection. 

However, it is worth noting that the estimation step may use proportional information about the 

candidates, even if the selection is ordinal. Additionally, it is worth noting that DEUM may be 

used without selection if the estimation procedure carries information about fitness [54].  

− ln�𝑓𝑓(𝐱𝐱)� = 𝑈𝑈(𝐱𝐱) ( 6 ) 
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2.1.8 Perturbation Methods 

Perturbation methods are algorithms which determine linkage in the underling fitness 

function. The concept of linkage is loosely defined in the area of optimisation. Within genetics, 

linkage is defined by Winter et al. [55] as “the tendency for alleles of different genes to be 

passed together from one generation to the next”. Munetomo and Goldberg [56] [57] observe 

that this definition is not useful in optimisation as we wish to identify linkage in the underlying 

fitness function and that this is encoding-dependant. Linkage is sometimes regarded by the 

EDA community as the structure of the probabilistic model [58]. However, within this thesis we 

will take linkage to mean the dependence between variables in terms of additive separation as 

defined in section 2.2.1 as this is how linkage is typically regarded by perturbation methods. 

Perturbation methods identify linkage by determining groups of interdependent variables.  

De Jong et al. [59] define interdependence as follows: “two variables in a problem are 

interdependent if the fitness contribution or optimal setting for one variable depends on the 

setting of the other variable”. Hence, and conversely, if variables are independent, the optimal 

setting of each variable and magnitude of effect on fitness for each possible value, may be 

determined without the context of knowledge of the setting of the other. We will look at the 

definition of linkage groups in the following section 2.2.1 on structure. 

The first example of a perturbation method approach is linkage identification by 

nonlinearity check (LINC) [56]. LINC optimises pseudo-Boolean functions (functions on the 

domain Ω = {0, 1}ℓ) and runs in 𝒪𝒪�ℓ22𝑘𝑘� time where 𝑘𝑘 is the size of the largest group of 

interdependent variables [56]. This is the runtime of most early perturbation methods as in 

general, all combinations of two variables must be tested [60], however Streeter showed that 

the upper bound on complexity is 𝒪𝒪(ℓ log(ℓ) 2𝑘𝑘) [61]. 

LINC considered variables interdependent if the fitness contribution of one variable 

depends on the setting of the other. The existence of such separate groups of variables is an 

aspect of structure which may be used to optimise is less time than the otherwise general 

upper bound of 𝒪𝒪�2ℓ�.  

A variant of LINC is linkage identification by non-monotonicity detection (LIMD) [56], which 

ignores allowable non-linearity. This means variables are considered interdependent if the 

optimal setting of one depends on the other, but exact fitness contribution is irrelevant. Since 

the goal is to locate a global optimum, the non-linearity condition is recognised as capturing 

unnecessary interactions – in the sense that such interactions do not affect the location of 

global optima. LIMD will not distinguish between two functions 𝑓𝑓 and 𝑔𝑔 where one is a 

monotonic transformation of the other. 
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Perturbation methods work by making small changes to a candidate 𝐱𝐱 and observing the 

effect on the fitness 𝑓𝑓(𝐱𝐱), referred to as fitness difference. Perturbation has also been used to 

detect linkage by estimating Walsh coefficients [62]. Other perturbation methods include 

dependency detection for distribution derived from 𝑑𝑑𝑓𝑓 (D5) [63] [60] and linkage identification 

with epistasis measures (LIEM) [64]. Additionally, it has been shown that hierarchical traps, a 

type of trap function with higher-order interactions between traps, can be solved in polynomial 

time with respect to the length of the problem input [59]. Another branch of perturbation 

methods is numerical optimisation [65] such as line search, trust-region methods, conjugate 

gradient methods, and quasi-Newton methods, which are usually applied to continuous 

optimisation problems and outside of the scope of this thesis.  
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2.2 Structure of Optimisation Problems 

In section 2.1.2 we discuss neighbourhood structure on an optimisation function with 

regard to local optima and local search. In this section we discuss other relevant aspects of 

structure in optimisation problems: linkage structure as seen by perturbation methods, pseudo-

Boolean functions and Walsh transforms. 

2.2.1 Linkage Structure 

A function of a subset 𝛄𝛄𝑖𝑖 ⊆ {𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1} of the variables is called a sub-function 𝑓𝑓𝑖𝑖. An 

additive decomposition of a function is a sum of 𝑂𝑂 sub-functions {𝛄𝛄0, … ,𝛄𝛄𝑛𝑛−1} which is 

equivalent to the original function i.e. such that ( 7 ) holds. 

𝑓𝑓(𝐱𝐱) = 𝑓𝑓0(𝛄𝛄0) + 𝑓𝑓1(𝛄𝛄1) +⋯+ 𝑓𝑓𝑛𝑛−1(𝛄𝛄𝑛𝑛−1) 

where (∀𝑖𝑖)(𝛄𝛄𝑖𝑖 ⊆ 𝐱𝐱) 
( 7 ) 

A function is an additively separable function (ASF) [56] if and only if there exists an 

additive decomposition into two or more sub-functions where no variable appears in more than 

one sub-function. The resulting subsets of variables forms a linkage partition as in ( 8 ) where 

each 𝛄𝛄𝑖𝑖 is a linkage group. 

Γ = {𝛄𝛄0,𝛄𝛄1, … ,𝛄𝛄𝑛𝑛−1} 

where (∀𝑖𝑖 ≠ 𝑗𝑗)�𝛄𝛄𝑖𝑖 ∩ 𝛄𝛄𝑗𝑗 = ∅� 
( 8 ) 

The linkage partition Γ is a set of linkage groups 𝛄𝛄 (disjoint subsets of the variables 𝑋𝑋). 

The general runtime for exhaustive search on a function of alphabet of size 𝑂𝑂 is 𝒪𝒪�𝑂𝑂ℓ�. If 

the linkage partition of additive separation is known, the function may be optimised by 

optimising each linkage group separately for a runtime of 𝒪𝒪�𝑂𝑂 𝑂𝑂𝑘𝑘� where 𝑘𝑘 is the size of the 

largest linkage group, while still guaranteeing that the global optimum will be found [61].  
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2.2.2 Pseudo-Boolean Functions 

Many evolutionary algorithms, including the canonical genetic algorithm (CGA), EDAs such 

as DEUM, and perturbation methods such as LINC operate on pseudo-Boolean functions. 

Pseudo-Boolean optimisation is a subset of combinatorial optimisation. A pseudo-Boolean 

function maps a string of ℓ binary digits to a codomain of real numbers ℝ, as given by ( 9 ). 

𝑓𝑓 ∶  {0, 1}ℓ → ℝ ( 9 ) 

A number of standard benchmark functions have been devised on the space of pseudo-

Boolean functions. The usual purpose of standard benchmark problems is to compare 

performance of search heuristics [58]. Here we introduce benchmarks which will be used later 

in discussions of structure and variable interaction. 

Of particular interest to our work are benchmarks which can be examined over a very 

small problem length. These include the constant function (CONST), needle-in-haystack function 

(NEEDLE), ones function (ONEMAX) [66] [67], binary value function (BINVAL) [67], leading-ones 

function (LEADING) [67], a simplified chain variant of the checkerboard function (CHECK1D) [68] 

[47, pp. 32-32], the order-k trap function (TRAP𝑘𝑘) [69] [70], and Goldberg’s fully-deceptive order-

3 function (GOLDBERG) [71] [72] [25]. Full discussion of chosen benchmark functions and their 

relevant properties is given in section 4.3. 

Although pseudo-Boolean functions are a subset of the problems tackled by search 

heuristics, pseudo-Boolean optimisation has many practical applications including computer 

vision [73]. Additionally, real-world problems which in one form may be framed with non-binary 

variables, have been encoded using binary representations, and tackled as pseudo-Boolean 

optimisation problems [39] [37]. Many 𝒩𝒩𝒫𝒫 problems are directly instances of pseudo-Boolean 

functions, including the maximum satisfiability [74], the Ising spin glass [41] problem, and the 

0/1 knapsack [75] problem. Further, other 𝒩𝒩𝒫𝒫 pseudo-Boolean functions can be reformulated 

in terms of an instance of the three-dimensional Ising spin glass problem [76] or other 𝒩𝒩𝒫𝒫-

complete problems using 𝒩𝒩𝒫𝒫 reductions. 
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2.2.3 Walsh Decomposition of Pseudo-Boolean Functions 

The Walsh decomposition is an additive decomposition with sub-functions 𝛼𝛼𝛾𝛾𝑊𝑊𝛾𝛾(𝐱𝐱) of a 

pseudo-Boolean function [71]. Any pseudo-Boolean function can be uniquely specified by a 

set of Walsh coefficients 𝛼𝛼𝑘𝑘 where 𝑘𝑘 is a subset of variable indices 0 to ℓ − 1. A subset of the 

indices means this coefficient relates to that specified subset of variables 𝑋𝑋0 to 𝑋𝑋ℓ−1. 

The coefficients multiply Walsh functions W𝛾𝛾(𝐱𝐱). The Walsh functions W𝛾𝛾(𝐱𝐱) are defined 

as given by ( 10 ). 

W𝛾𝛾(𝐱𝐱) = �� 1, 𝑥𝑥𝑖𝑖 = 1
−1, 𝑥𝑥𝑖𝑖 = 0

𝑖𝑖∈𝛾𝛾

 ( 10 ) 

Note that this product is empty over the range ∏ …∅ = 1 hence, W∅(𝐱𝐱) = 1 for all 𝐱𝐱. 

It should be noted that an alternative convention used within the literature [71] [72] maps 

1 to 0 and −1 to 1 (the opposite order of our chosen convention above). This only affects the 

sign of some coefficients, and does not alter any further analysis relevant to this work. 

Any pseudo-Boolean function may be rewritten in the following form given by ( 11 ). 

As note above, W∅(𝐱𝐱) = 1 for all 𝐱𝐱, hence the term 𝛼𝛼∅𝑊𝑊∅(𝐱𝐱) simplifies to 𝛼𝛼∅ ∙ 1 = 𝛼𝛼∅. We refer 

to the 𝛼𝛼∅ term as the constant term since it is independent of 𝐱𝐱 whereas all other terms in the 

Walsh expansion are non-constant functions of 𝐱𝐱. 

The non-zero Walsh coefficients indicates parts of the structure which are present [71]. A 

non-zero Walsh coefficient, on a clique of more than one variables, represents an interaction 

between the variables in the function. For example, the term 𝛼𝛼{3,8} represents the bivariate 

interaction between variables 𝑋𝑋3 and 𝑋𝑋8. If there is no bivariate interaction between these 

variables, the coefficient is zero.  

𝑓𝑓(𝐱𝐱) = �𝛼𝛼𝛾𝛾 W𝛾𝛾(𝐱𝐱)
𝛾𝛾∈𝐾𝐾

 

𝐾𝐾 ⊆ {0,1, … , ℓ − 1} 

( 11 ) 
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2.3 Algorithms and Problem Difficulty 

Having discussed search heuristics and structure of optimisation problems, we wish to tie 

the two concepts together. Here we examine concepts in the literature of coherence between 

heuristics and problems. This will help motivate relevant research questions. 

2.3.1 No Free Lunch Theorem 

The no free lunch theorem (NFL) [5] [77] states that any two (non-revisiting) black-box 

optimisation algorithms are equal when their performance is averaged over all possible 

problems. An improvement in performance in one problem or class of problems is balanced by 

loss of performance in another. 

Wolpert and Macready [5] describe how NFL can be interpreted from a geometrical 

measure of the match between problem and algorithms, by the inner product between the two 

in the population simplex. 

Since there are differences between the performance of different algorithms on different 

problem, it is of interest to examine how well particular problems and algorithms match up [78]. 

In particular, some problems are more interesting than others. 

2.3.2 Proximate Optimality 

Glover’s proximate optimality principle [79] states that high fitness candidates have similar 

structures. This is a property of problems and representation, and of operators which operate 

on the representation space. Shown in Figure 3 are two candidates with similar high fitness for 

a travelling salesman problem (TSP) instance; these have many common elements of structure 

present. Figure 4 shows two similar-fitness low quality solutions with few common structures 

and two similar-fitness high quality solutions with many common structures. Assuming 

proximate optimality holds, EDAs should be able to find good candidates by sampling near 

other good candidates, and a GA nearing convergence should find good solutions at another 

fitness level.  
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Candidate 𝐴𝐴  Candidate 𝐵𝐵  Common Structures 𝐴𝐴 ∩ 𝐵𝐵 

Figure 3 – Two similarly high-fitness solutions to a TSP instance, with many common 

structures in the intersection of the two solutions. 

 

 

 

 

 
Candidate 𝐴𝐴  Candidate 𝐵𝐵  Common Structures 𝐴𝐴 ∩ 𝐵𝐵 

Figure 4 – Two similarly low-fitness solutions to a TSP instance, with few common structures 

in the intersection of the two solutions. 

There is a related informal idea of the “big-valley hypothesis” which asserts that many 

search landscapes have a “big valley” structure. This means that local optima appear close to 

one another and close to global optima [80] [81]. 
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2.3.3 Measures of Problem Difficulty 

The no free lunch theorem does not prevent the analysis of problem difficulty. Analysis 

may be done on the basis of considering the set of specific real-world or benchmark problem, 

or by considering only functions with the same global optima [82]. 

Many measures of problem difficulty have been proposed. One method of discussing the 

complexity of an optimisation problem is to classify the function as univariate, bivariate, or 

multivariate [30]. From the perspective of the Walsh expansion we can define univariate 

functions as those which consist of at most univariate Walsh coefficients with all higher-order 

coefficients equal to zero. Similarly, bivariate functions consist of at most bivariate coefficients 

(including univariates), and lastly, multivariate functions are functions containing at least one 

term of order 3 or higher. Similarly, other models, such as Bayesian networks have related 

definitions for describing the complexity of a function. Although EDAs are often classified as 

univariate, bivariate, or multivariate, as mentioned in section 2.1.6, based on the order 𝑘𝑘 of 

variables interactions modelled, it is often observed in practice that a univariate EDA may 

perform well on a high-order multivariate problem. 

One common way to measure problem difficulty for search heuristics is to give an 

asymptotic analysis of the runtime of a particular search heuristic when the problem length ℓ 

can be scaled [83]. This is directly analogous to the classical complexity theory analyses of the 

runtime of algorithms. For example, Droste’s analysis [84] shows that the general lower-bound 

on performance for the algorithm CGA [85] on the ONEMAX problems is 𝒪𝒪�𝐴𝐴√ℓ�, where 𝐴𝐴 is the 

population size, however, another univariate problem, the BINVAL problem has 𝒪𝒪(𝐴𝐴ℓ) runtime. 

The difference in runtime is attributed to the fact that the BINVAL problem (in contrast to the 

ONEMAX problem) is classed as an exponential problem meaning that the influence of 

difference variables vary in exponential degree, and the performance of CGA is highly affected 

by this factor. 

Other measures of problem difficulty include consideration of their modality : the number 

of non-global local optima and size of basins of attraction to these optima [86]. In principle, 

problems with more local optima and larger basins of attraction stand more chance of trapping 

an algorithm on a non-global local optimum and are therefore more difficult to optimise. By 

contrast, problems with more global optima with larger basins of attraction to these optima are 

easier to optimise than those with many non-global local optima. 
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When measuring the computational complexity of optimisation, the dominant operation in 

the computation is typically assumed to be the number of function evaluations even when 

complex model building or other processing is involved in the intermediate steps. This may be 

different for real-world optimisations but is generally held to in theory [83]. 

Problems can also be classified as to whether their structure is known, partially known, or 

black-box [87]. However, the majority of related literature on the topic of search heuristics treat 

functions as black-box, so we will be focused mainly on the objective function as a black-box 

function. It is worth noting that use of known or partially-known structure is an important 

consideration of real-world applications, and in practice there is usually some known structure 

to problems. Additionally, it is useful to consider the known structure of a benchmark function 

when evaluating the performance of an EDA or perturbation method in learning structure.  
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2.3.4 Bad Linkage and Spurious Correlations 

In discussing the types of structure present in a function, it is important to distinguish 

between structure present and non-existent structure treated as structure by some artefact of 

the design of the algorithm or imperfect knowledge about the function – as is inevitable with 

black-box optimisation. Bad linkage and spurious correlations are two examples of such non-

existent structure. 

Representations of linkage in evolutionary algorithms can be classified as physical or 

virtual linkage [88] [89]. Physical linkage refers to linkage based on proximity in the encoding. 

The canonical genetic algorithm (CGA) [17] encodes linkage in this way. Virtual linkage refers 

to the explicit tracking of linkage using a statistical model in an EDA such as Bayesian joint 

probabilities or Markov random field cliques. Chen et al. [88] note that physical linkage is 

inspired by biological evolution and hence has biological plausibility, but that virtual linkage 

can achieve better performance. 

The terms bad linkage [88] or false linkage [90] [91] refer to unhelpful juxtaposition of 

variables in a system of physical linkage such as a genetic algorithm. Bad linkage derives from 

the biological notion of linkage, in which genes are linked if they appear on the same 

chromosome. In a genetic algorithm this refers to variables which appear close in the 

representation and are likely to be preserved together in the same offspring by crossover. 

Schema theory implies that variables which are adjacent in the allele string are less likely to 

be disrupted than those which are distant if the GA uses a k-point crossover operator. Hence, 

those closer are more tightly linked in a typical GA. The development of competent genetic 

algorithms, and EDAs in particular was motivated by the problem of bad linkage and the 

disruption of building blocks in genetic algorithms. 

EDAs use virtual linkage and do not suffer from the same problem of bad linkage as a GA. 

However, with EDAs, spurious correlations [87] or spurious dependencies [92], arise when the 

sampled population of an EDA by chance indicates the existence of a correlation which is 

merely an artefact of the sampled population, and not representative of a real correlation in the 

population. For example, if by random chance 𝑥𝑥5 = 𝑥𝑥17 for all highly-fit solutions in a sampled 

population, the EDA may model this as an interaction between variables 𝑋𝑋5 and 𝑋𝑋17. Spurious 

correlations are affected by factors such as selection size and population size [87] since this 

increases the sample size and hence the likelihood that the sampling is representative of the 

real structure of the function. 
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When the structure of an optimisation problem is known a priori, the accuracy of a model 

built by an EDA can be measured in terms of precision, recall, and f-measure (terms borrowed 

from the domain of data mining). In relation to EDAs, we can define precision, recall, and f-

measure as given by ( 12-14 ) (Witten and Frank [93] as cited by Brownlee et al. [58]). 

Here, a true interaction is an interaction between variables in the function’s structure; an 

interaction found is an interaction between variables in the EDA’s model; and a true interaction 

found is an interaction present in both. 

The value for f-measure ranges from 0 to 1, with the optimal value for f-measure, in the 

case of perfect model structure, that all and only true interactions are found being 1 [58]. 

Hence, f-measure can be used to rate the quality of the statistical model built by a run of an 

EDA, assuming the structure of the problem is known. An example of applying f-measure is 

calculating the f-measure between learned Markov network coefficients in DEUM [58] against 

the known non-zero Walsh coefficients of the fitness function. It is also used in evaluating the 

accuracy of Bayesian network-based EDAs.  

precision (𝐴𝐴) =
true interactions found

interactions found
 ( 12 ) 

recall (𝑒𝑒) =
true interactions found

true interactions
  ( 13 ) 

f-measure (𝐹𝐹) =
2𝐴𝐴𝑒𝑒
𝐴𝐴 + 𝑒𝑒

 ( 14 ) 
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2.3.5 Unnecessary Benign Interactions 

When an interaction reinforces the cumulative effect of its parts, this interaction is 

considered benign. It should be emphasised that the absence of a benign interaction may be 

preferable to its presence. It has been observed that not all interactions are necessary to solve 

an optimisation problem [94] [95] [96] [97]. For example, a univariate EDA performs better than 

naively expected on many problems which are bivariate or multivariate. 

 

Figure 5 – Conceptual Illustration of a function containing unnecessary interactions. There 

is a change in gradient, however, the basin of attraction at both gradients leads to the same 

global optimum. The basins of attraction illustrated are those of a steepest ascent hill-climber. 

It should be noted that if a monotonic transformation is applied to a function, this may 

produce a function with new interactions not present in the original function. Such interactions 

will always be unnecessary interactions since monotonic transformation preserves the 

invariants 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑥𝑥). Hence, any selection operator which is monotonically 

invariant will be unaffected by the presence of unnecessary interactions. 

In an EDA with ordinal selection, the model will not be affected by unnecessary 

interactions unless the model-building step uses information about the fitnesses, such as in a 

Markov network EDA, hence, algorithms such as DEUM may model unnecessary interactions 

even with ordinal selection. 
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A genetic algorithm with ordinal selection will also be blind to benign interactions and 

therefore the presence of those interactions will not cause the GA to implicitly model them. 

However, the effect of hitchhiking, as discussed in section 2.1.5, may mean that these 

interactions are still modelled. Likewise, an EDA which only uses fitness information through 

an ordinal selection operator will not be lead to model unnecessary interactions except as 

spurious correlations as discussed in section 2.3.4. Additionally, an EDA such as DEUM which 

uses fitness information to build the model may directly model unnecessary interactions, even 

when the selection operator used is ordinal, or when no selection is used. 

2.3.6 Deception and Malign Interactions 

A deceptive function is one which leads optimisation away from the global optima by 

discovering deceptive interactions either explicitly or implicitly. Figure 6 illustrates the idea of 

what is called a trap function, this is one which has two unequal local optima, with the largest 

basin of attraction leading the optimisation towards the non-global local optimum and away 

from the global optimum. 

 

Figure 6 – Conceptual Illustration of a deceptive function containing two local optima, one of 

which is the global optimum. The global optimum has a considerably smaller basin of 

attraction than the other local optimum. The basins of attraction illustrated are those of a 

steepest ascent hill-climber. 

Such functions may be contrasted with an isolated or needle in a haystack (NIAH) function 

[11], which are those where the solutions which are not the global optimum or adjacent to, are 

surrounded by equally-fit solutions, hence they do not lead the search in any direction. 
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Naively it may be assumed that the complete absence of information such as in the case 

of needle in haystack is the worst case, however it is known that deceptive interactions can be 

worse than isolated optima [86]. Misleading information in functions such as the k-trap directs 

the search away from global optima, which is not the case for isolated function such as needle 

in haystack. Some theoretical analysis has been done into the computational difficulty of 

escaping a sub-optimal basin [98].  

In contrast to benign interactions, malign interaction reverses the combined effect of its 

parts [87]. Malign interactions [86] [99] are considered by the GA community to be synonymous 

with the concept of deception, which is when there are interactions which tend to lead a search 

heuristic away from the global optimum [86].  
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2.4 Research Questions 

In section 2.2.1 we discussed the concept of linkage structure, and remark that for 

additively separable functions, a global optimum may be identified by separately optimising 

each linkage group, with time complexity 𝒪𝒪�𝑂𝑂𝑘𝑘� where 𝑘𝑘 is the number of variable in the linkage 

group and 𝑂𝑂 is the size of the alphabet. We also mentioned in section 2.1.8 that the upper 

bound on optimising an additively separable pseudo-Boolean function is 𝒪𝒪(ℓ log(ℓ) 2𝑘𝑘). In 

section 2.3.3 we discussed several measures of problem difficulty, including the univariate, 

bivariate, and multivariate classifications based on complexity of structure. These ideas 

motivate exploring the relationship between structure and problem difficulty. 

In section 2.1.8 we discussed perturbation methods and noted that a function may be 

optimised while ignoring allowable non-linearity as is the case for non-monotonicity detecting 

perturbation methods. In section 2.1.4 we discuss population-based metaheuristics and their 

selection operators, including ordinal selection, which is a commonly-used class of selection, 

operators under which functions which are monotonic transformations of one another are 

indistinguishable. Further, we discussed in section 2.3.5 how benign interactions, which may 

be produced by monotonic transformation, are a relevant consideration for EDAs, and that 

ordinal selection can helpfully hide these unnecessary interactions from being modelled. It 

seems clear that there is a sense in which functions which are monotonic transformations of 

one another may be considered equivalent. This motivates using monotonicity-invariance as 

the basis for a formal definition of equivalence classes of functions. 

In section 2.1 we discussed several different approaches to optimisation and in section 

2.3 discussed the coherence between search heuristics and problems. This motivates 

exploring the algorithmic steps which may be used to solve different classes of problem, and 

how we can use knowledge of structure to direct the development of novel algorithms. 

The research questions outlined are as follows: 

1. What is the relationship between problem structure and problem difficulty? 

2. How can we use structure to usefully classify problems? 

3. Can we use structure to bound the number of algorithmic steps? 

4. Can structure analysis motivate the development of novel algorithms? 
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3 Background 

 

Having examined the relevant literature and identified research questions in chapter 2, we 

now introduce any further background concepts necessary to explore the research questions 

fully. This includes terminology and notation of vector spaces, linear transformation, Walsh-

Hadamard transform, variable linkage partition, and methods of computing these descriptions 

of functions. 

3.1 Terminology and Notation 

3.1.1 Vectors and Vector Spaces 

Functions of more than one variable can have structure between variables; a vector is one 

common way of representing multiple variables. A vector 𝐱𝐱 is a mathematical object which we 

will represent using the conventional notation of an ordered list of numbers, as in ( 15 ). 

𝐱𝐱 = [𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥ℓ−1] ( 15 ) 

A vector space is a set of vectors, where the operations of either adding together two 

vectors in the space or multiplying a vector in the space by a scalar (a number) produces 

another vector in the space [100]. An example of vector space is a real space of 3-dimensions 

as in ( 16 ). 

𝐱𝐱 ∈ ℝ3 ( 16 ) 

An example of two vectors 𝐯𝐯 and 𝐰𝐰 in the space ℝ3 are given by ( 17 ). 

𝐯𝐯 = [1.0 0.0 1.5] 

𝐰𝐰 = [5.5 2.5 1.0] 
( 17 ) 

An example of vector addition 𝐯𝐯 + 𝐰𝐰 is given by ( 18 ). Note that, as a requirement of vector 

spaces, the resulting vector is also an element of ℝ3. 

𝐯𝐯+ 𝐰𝐰 = [6.5 2.5 2.5] ( 18 ) 
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An example of multiplication by a scalar 5𝐯𝐯 is given by ( 19 ). Note that, as a requirement of 

vector spaces, the resulting vector is also an element of ℝ3. 

5𝐯𝐯 = [5.0 0.0 7.5] ( 19 ) 

Here we list the axioms of a vectors space in ( 20 ), let 𝐮𝐮, 𝐯𝐯, and 𝐰𝐰 be vectors in a vector 

space and 𝑂𝑂, 𝑏𝑏 be scalars. These axioms are necessary for a set of vectors to be considered 

a vector space [100]. 

(∀𝐮𝐮)(∀𝐯𝐯)(∀𝐰𝐰)(𝐮𝐮+ (𝐯𝐯 + 𝐰𝐰) = (𝐮𝐮 + 𝐯𝐯) + 𝐰𝐰) 

(∀𝐮𝐮)(∀𝐯𝐯)(𝐮𝐮+ 𝐯𝐯 = 𝐯𝐯 + 𝐮𝐮) 

(∃𝟎𝟎)(∀𝐯𝐯)(𝐯𝐯+ 𝟎𝟎 = 𝐯𝐯) 

(∀𝐯𝐯)�∃(−𝐯𝐯)�(𝐯𝐯+ (−𝐯𝐯) = 𝟎𝟎) 

(∀𝑂𝑂)(∀𝑏𝑏)(∀𝐯𝐯)(𝑂𝑂(𝑏𝑏𝐯𝐯) = (𝑂𝑂𝑏𝑏)𝐯𝐯) 

(∀𝐯𝐯)(1𝐯𝐯 = 𝐯𝐯) 

(∀𝑂𝑂)(∀𝐮𝐮)(∀𝐯𝐯)(𝑂𝑂(𝐮𝐮 + 𝐯𝐯) = 𝑂𝑂𝐮𝐮 + 𝑂𝑂𝐯𝐯) 

(∀𝑂𝑂)(∀𝑏𝑏)(∀𝐯𝐯)�(𝑂𝑂 + 𝑏𝑏)𝐯𝐯 = 𝑂𝑂𝐯𝐯 + 𝑏𝑏𝐯𝐯� 

( 20 ) 

Under these axioms, vector spaces may also be defined on finite fields. An example is the 

finite field GF(2) with elements {0, 1}. The addition and multiplication operators are defined in 

Table 4. 

+ 0 1  × 0 1 

0 0 1  0 0 0 

1 1 0  1 0 1 

Table 4 – The addition and multiplication operators for the field GF(2). 

GF(2) has two elements; this can be extended to a vector space with 2ℓ elements – each of 

which is in the set {0, 1}ℓ – by performing bitwise operations, i.e. to add any two vectors 𝐮𝐮 and 

𝐯𝐯, corresponding terms in the vectors are added as in ( 21 ). 

(𝑤𝑤 = 𝑢𝑢 + 𝑣𝑣) ⇒ (∀𝑖𝑖)(𝑤𝑤𝑖𝑖 = 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖) ( 21 ) 
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Vectors are linearly independent if it is not possible to construct one of the vectors from a 

linear sum of the others. Vectors span the space if it is possible to construct any vector in the 

space from a linear sum of those vectors. Basis vectors of a space are any linearly independent 

set of vectors which span that space. 

The standard basis vectors of an ℓ-dimensional space are the vectors consisting of a 1 in 

one element and 0 for every remaining element, for example the space ℝ3 is spanned by the 

basis vectors 𝐱𝐱�, 𝐲𝐲�, and 𝐳𝐳� as defined by ( 22 ). 

𝐱𝐱� = [1 0 0] 

𝐲𝐲� = [0 1 0] 

𝒛𝒛� = [0 0 1] 

( 22 ) 

As basis vectors of ℝ3, a linear sum of 𝐱𝐱�, 𝐲𝐲�, and 𝐳𝐳�  can construct any vectors in the space 

ℝ3, for example, the vector [25 5 10] = 25 𝐱𝐱� + 5 𝐲𝐲� + 10 𝐳𝐳�. 
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3.1.2 Functions on Bit Strings and Bit Vectors 

Having identified pseudo-Boolean functions as of interest, we now outline the terminology 

and notation which will be used. Recall that pseudo-Boolean functions are by definition on the 

domain {0, 1}ℓ. An element of this domain can be written as a bit string, which is a 

concatenation of ℓ bits (variables on the domain {0, 1}) as given by ( 23 ). 

𝑥𝑥0𝑥𝑥1 … 𝑥𝑥ℓ−1 

where 𝑥𝑥𝑖𝑖 ∈ {0, 1} 
( 23 ) 

An example of a bit string of length 6 is given by ( 24 ). 

010101 ( 24 ) 

These conventions chosen will be used consistently throughout this thesis. It should be noted 

that variations of this notation are used in the literature, for example, indexing from 1 (i.e. 

𝑥𝑥1𝑥𝑥2 … 𝑥𝑥ℓ) or presenting bit strings from right-to-left (i.e. 𝑥𝑥ℓ−1𝑥𝑥ℓ−2 … 𝑥𝑥0). 

Fitness value of a pseudo-Boolean function 𝑓𝑓(𝐱𝐱) for a given bit string 𝐱𝐱 may be abbreviated 

using a bit string notation in subscript as given by definition ( 25 ). 

𝑓𝑓𝑥𝑥0𝑥𝑥1…𝑥𝑥ℓ−1 = 𝑓𝑓(𝑥𝑥0𝑥𝑥1 … 𝑥𝑥ℓ−1) 

where 𝑥𝑥𝑖𝑖 ∈ {0, 1} 
( 25 ) 

An example of this notation is given by ( 26 ). 

𝑓𝑓010101 = 𝑓𝑓(010101) ( 26 ) 

 

  



|   

 
 33 of 195  

There is a one-to-one correspondence between bit strings of length ℓ and vector spaces 

with ℓ elements in the field GF(2) extended bitwise to 2ℓ elements. Hence, it is useful to 

consider pseudo-Boolean functions from this perspective. A bit vector 𝐱𝐱 is a vector of ℓ bits as 

given by ( 27 ). 

𝐱𝐱 = [𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥ℓ−1] 

where 𝑥𝑥𝑖𝑖 ∈ {0, 1} 

 
( 27 ) 

The underlying set of this vector space is given by ( 28 ). 

𝐱𝐱 ∈ {0, 1}ℓ ( 28 ) 

As shown, as with bit strings, by convention we will present all vectors left-to-right and all 

indexes from 0. Hence, the 𝑥𝑥0 represents the first element and it written on the left; 𝑥𝑥ℓ−1 

represents the last element and is written on the right. This convention is used throughout. 

It will be useful to consider the search space 𝑋𝑋 as a vector space, or as a multivariate 

random variable as given by ( 29 ). This allows us to decompose the function in terms of special 

basis function such as Walsh functions, and to construct probabilistic models based on 

variables. 

X = X0 × X1 × ⋯× Xℓ−1 

where 𝑋𝑋𝑖𝑖 = {0, 1} 
( 29 ) 

A bit string 𝐱𝐱 can be considered as a sample of 𝑋𝑋, and 𝑥𝑥𝑖𝑖 as a sample of 𝑋𝑋𝑖𝑖. This 

multivariate random variable interpretation is used by algorithms which build a probabilistic 

model (EDAs).  
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3.1.3 The Space of Pseudo-Boolean Functions 

The set of all pseudo-Boolean functions of length ℓ is itself a real-valued vector space of 

length 2ℓ, i.e. ℝ2ℓ. A pseudo-Boolean function can be represented as a vector 𝐟𝐟𝓵𝓵 by listing the 

fitnesses of the candidates as in ( 30 ). 

𝐟𝐟ℓ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑓𝑓111⋯1
⋮

𝑓𝑓110⋯0
𝑓𝑓010⋯0
𝑓𝑓100⋯0
𝑓𝑓000⋯0⎦

⎥
⎥
⎥
⎥
⎤

 

⎭
⎪
⎬

⎪
⎫

2ℓ ( 30 ) 

For example, the function 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1 can be represented as in ( 31 ). 

𝐟𝐟 = �

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

3 + 1 − 2 ∙ 1
3 + 0 − 2 ∙ 1
3 + 1 − 2 ∙ 0
3 + 0 − 2 ∙ 0

� = �

2
1
4
3

� ( 31 ) 

Here, the basis vectors of this space are the vectors where for all 𝐱𝐱 ∈ Ω the basis 𝐴𝐴𝐱𝐱 is the 

vector with 1 in the position corresponding to 𝑓𝑓𝐱𝐱 and 0 in all other positions. An example in the 

case of pseudo-Boolean function is given in ( 32 ). 

𝐴𝐴11 = �

1
0
0
0

� , 𝐴𝐴01 = �

0
1
0
0

� , 𝐴𝐴10 = �

0
0
1
0

� , 𝐴𝐴00 = �

0
0
0
1

�  ( 32 ) 

Hence in the above example, 𝐟𝐟 = 2 𝐴𝐴11 + 1 𝐴𝐴01 + 4 𝐴𝐴10 + 3 𝐴𝐴00. 

These delta functions also comprise all ℓ-bit pseudo-Boolean functions with a single fully-

isolated global maximum with a value of 1, and all other candidates with a value of 0. As basis 

vectors, any pseudo-Boolean functions can be constructed from a linear sum of such functions.  
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3.1.4 Linear Transformation and Matrices 

A linear transformation (or linear map) is a function 𝑡𝑡 from a vector space to a vector space, 

which may be the same vector space. A linear transformation preserves sums and scalar 

multiplication, i.e. 𝑡𝑡(𝐯𝐯 + 𝐰𝐰) = 𝑡𝑡(𝐯𝐯) + 𝑡𝑡(𝐰𝐰) and 𝑡𝑡(𝑂𝑂 𝐯𝐯) = 𝑂𝑂 𝑡𝑡(𝐯𝐯) for all 𝐯𝐯, 𝐰𝐰 in the space, and 

scalar 𝑂𝑂. 

An isomorphism is a linear transformation 𝑡𝑡 for which there is an inverse linear 

transformation which is a function 𝑡𝑡−1 which operates to undo the transformation, i.e. 

𝑡𝑡−1�𝑡𝑡(𝐯𝐯)� = 𝐯𝐯 for all 𝐯𝐯. 

An 𝑚𝑚-by-𝑂𝑂 matrix is a rectangular array 𝑚𝑚 rows and 𝑂𝑂 columns. An example of a 3-by-5 

matrix is given by ( 33 ). 

�
5 5 10 6 1
1 8 2 7 1
3 5 0 6 0

� ( 33 ) 

Matrices are of interest in this context since matrix-vector multiplication can be used to 

apply a linear transformation to a vector. The result of multiplying an 𝑚𝑚-by-𝑂𝑂 matrix with a 

length 𝑂𝑂 column vector is a length 𝑚𝑚 column vector, where for all 𝑖𝑖, element 𝑖𝑖 is the row 𝑖𝑖 of 

the matrix multiplied element-wise with the column vector as in ( 34 ). 

�
𝑂𝑂 𝑏𝑏
𝑃𝑃 𝑑𝑑
𝐴𝐴 𝑓𝑓

� �
𝑥𝑥
𝑒𝑒� = �

𝑂𝑂𝑥𝑥 + 𝑏𝑏𝑒𝑒
𝑃𝑃𝑥𝑥 + 𝑓𝑓𝑒𝑒
𝐴𝐴𝑥𝑥 + 𝑓𝑓𝑒𝑒

� ( 34 ) 

An example is given by ( 35 ), which is the application of a matrix multiplication to the column 

vector consisting of the elements 3 and 5. 

�2 0
0 2� �

3
5� = � 6

10� ( 35 ) 

This example linear transformation is an isomorphism. The inverse of this transformation is 

given by ( 36 ). 

�0.5 0
0 0.5� �

6
10� = �35� ( 36 ) 
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3.1.5 Walsh Coefficients as Basis Vectors 

Recall that the Walsh decomposition of a function is an additive decomposition applicable 

to any pseudo-Boolean function. The Walsh functions are also a set of basis vectors which 

span the space ℝ2ℓ. A set of Walsh coefficients can be written as a length 2ℓ column vector as 

in ( 37 ). 

𝛂𝛂ℓ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼𝛼∅|ℓ 
𝛼𝛼{0}|ℓ
𝛼𝛼{1}|ℓ
𝛼𝛼{0,1}|ℓ
𝛼𝛼{2}|ℓ
𝛼𝛼{0,2}|ℓ
𝛼𝛼{1,2}|ℓ
𝛼𝛼{0,1,2}|ℓ
⋮
𝛼𝛼{0,1,2,⋯,ℓ−1}|ℓ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

2ℓ ( 37 ) 

The Walsh functions W𝛾𝛾(𝐱𝐱) are basis vectors in this space. For our earlier example 

 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1, we can write the Walsh decomposition as in ( 38 ). 

𝛂𝛂ℓ =

⎣
⎢
⎢
⎢
⎡
𝛼𝛼∅|ℓ 
𝛼𝛼{0}|ℓ
𝛼𝛼{1}|ℓ
𝛼𝛼{0,1}|ℓ⎦

⎥
⎥
⎥
⎤

= �

2.5
0.5

−1.0
0.0

� ( 38 ) 

Hence, the function can be written as 𝛂𝛂 = 2.5 W∅(𝐱𝐱) + 0.5 W{0}(𝐱𝐱) − W{1}(𝐱𝐱). Note that the 

coefficient of W{0,1}(𝐱𝐱) in this function is zero, revealing something about the structure of the 

function – that 𝑋𝑋0 and 𝑋𝑋1 are independent. In contrast to the delta function basis, where zero 

terms do not immediately reveal information about the structure. 

The Walsh coefficients may be computed by the Walsh-Hadamard transform, as 

described next, in section 3.1.6.  
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3.1.6 Walsh-Hadamard Transform 

The Walsh-Hadamard transform is a method of calculating Walsh coefficients by using the 

Hadamard matrix [71]. The definition of the 𝑂𝑂 × 𝑂𝑂 Hadamard matrix [101] is given by ( 39 ). 

The Walsh-Hadamard transform uses the Hadamard matrix of dimensions 2ℓ × 2ℓ to calculate 

the Walsh coefficients of a function on bit string s of length ℓ. We use the notation 𝐻𝐻ℓ to refer 

to this matrix. 

Hadamard matrices of powers-of-2 dimensions can be constructed by Sylvester’s 

construction [101] as given by ( 40 ). 

It is necessary to have all fitness values to determine the Walsh coefficients exactly, thus 

exhaustive evaluation of the function is required. The Walsh coefficients specify a particular 

function, and therefore if even one fitness value is different between two functions, their Walsh 

decomposition must be different in at least one Walsh coefficient. 

As a consequence of the Walsh decomposition, a fitness vector may be determined from 

the system of linear equations represented in matrix-vector format as given by ( 41 ) [71]. 

𝐟𝐟ℓ ≡ 𝐻𝐻ℓ𝛂𝛂ℓ ( 41 ) 

We can derive the inverse of the Hadamard matrix as given by ( 42 ), 

𝐻𝐻 ∙ 𝐻𝐻T ≡ 𝑂𝑂 𝐼𝐼 

𝐻𝐻 ∙ 𝐻𝐻 ≡ 2ℓ 𝐼𝐼 

𝐻𝐻 ∙
1
2ℓ
𝐻𝐻 ≡ 𝐼𝐼 

𝐻𝐻−1 ≡
1
2ℓ
𝐻𝐻 

( 42 ) 

𝐻𝐻 ∙ 𝐻𝐻T = 𝑂𝑂 𝐼𝐼 ( 39 ) 

𝐻𝐻ℓ = �𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� 

where 𝐻𝐻1 = �1 1
1 −1� 

and 𝐻𝐻0 = [1] 

( 40 ) 
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Using the inverse of the Hadamard matrix, we can compute the Walsh decomposition 

transform as given by ( 43 ). 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ ( 43 ) 

The subscript ℓ on 𝐟𝐟, 𝛂𝛂, and 𝐻𝐻, will from now on usually be omitted in cases where the 

dimension of the vector or matrix is unambiguous. 

Taking again our example 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1; to determine the Walsh decomposition, 

we first determine the fitness vector 𝐟𝐟ℓ; this is shown in ( 44 ). 

𝐟𝐟ℓ = �

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

3 + 1 − 2
3 + 0 − 2
3 + 1 − 0
3 + 0 − 0

� = �

2
1
4
3

� ( 44 ) 

Then we compute the Walsh-Hadamard transform; this is shown in ( 47 ). 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ =

1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

2
1
4
3

� =
1
4 �

10
2

−4
0

� = �

2.5
0.5
−1

0

� ( 45 ) 

Thus, the Walsh decomposition is 𝛂𝛂 = 2.5 W∅(𝐱𝐱) + 0.5 W{0}(𝐱𝐱) − W{1}(𝐱𝐱). Note that the 

coefficient of the term in W{0,1}(𝐱𝐱) is zero since the last term in the 𝛂𝛂ℓ vector is zero. This is 

expected since there is no interaction between the two variables. 

The fast Walsh-Hadamard transform [102] is a more computationally efficient method of 

performing the Walsh-Hadamard transform. This calculates the Walsh coefficients in 𝒪𝒪(𝑂𝑂 log𝑂𝑂) 

addition/subtraction operations instead of 𝒪𝒪(𝑂𝑂2) as with the naive matrix multiplication method. 

Though exhaustive evaluation of the function is still required, which is likely the dominant 

operation. 

To compute the fast Walsh-Hadamard transform, at each stage of the recursion, the first 

half of the output vector is commuted by adding the corresponding input term and the input 

term from 𝑂𝑂/2 places along. The second half of the output vector is the same as the first but 

with subtraction instead of addition. Then the output vector is split in half and recursed on. The 

flow of data for a length 4 input vector is diagrammed in Figure 7. 
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𝑓𝑓11  𝐴𝐴 = 𝑓𝑓11 + 𝑓𝑓10  𝛼𝛼∅ = 𝐴𝐴 + 𝐵𝐵 = 𝑓𝑓11 + 𝑓𝑓01 + 𝑓𝑓10 + 𝑓𝑓00  

𝑓𝑓01  𝐵𝐵 = 𝑓𝑓01 + 𝑓𝑓00  𝛼𝛼{0} = 𝐴𝐴 − 𝐵𝐵 = 𝑓𝑓11 − 𝑓𝑓01 + 𝑓𝑓10 − 𝑓𝑓00  

𝑓𝑓10  𝐶𝐶 = 𝑓𝑓11 − 𝑓𝑓10  𝛼𝛼{1} = 𝐶𝐶 + 𝐷𝐷 = 𝑓𝑓11 + 𝑓𝑓01 − 𝑓𝑓10 − 𝑓𝑓00  

𝑓𝑓00  𝐷𝐷 = 𝑓𝑓01 − 𝑓𝑓00  𝛼𝛼{0,1} = 𝐶𝐶 − 𝐷𝐷 = 𝑓𝑓11 − 𝑓𝑓01 − 𝑓𝑓10 + 𝑓𝑓00  

Figure 7 – Steps of the fast Walsh-Hadamard transform (FWHT) showing the divide-and-

conquer procedure on four fitness values. Solid black lines indicates that the value is added; 

dashed red lines indicates that the value is subtracted. The intermediate steps have been 

assigned the labels 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 to illustrate how these are added or subtracted in the next 

step.  
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3.1.7 Function Transformations 

There are many operations which may be applied to produce variations on functions. Here 

we will discuss some commonly-used transformations and their relationship to structure. 

Permutation of a function is a function such that the effect of 2 or more variables has been 

rearranged. For example in ( 46 ), 𝑔𝑔𝐴𝐴 is a permutation of 𝑓𝑓𝐴𝐴 where the variables 𝑥𝑥2 takes the 

place of 𝑥𝑥0, the variable 𝑥𝑥0 takes the place of 𝑥𝑥1, and the variable 𝑥𝑥1 takes the place of 𝑥𝑥2. 

𝑓𝑓𝐴𝐴(𝐱𝐱) = 2𝑥𝑥0 + 𝑥𝑥1 ⋅ �𝑥𝑥2;     𝐱𝐱 ∈ ℝ3 

𝑔𝑔𝐴𝐴(𝐱𝐱) = 2𝑥𝑥2 + 𝑥𝑥0 ⋅ �𝑥𝑥1;     𝐱𝐱 ∈ ℝ3 
( 46 ) 

A permutation of the variables may produce a function in which variables are moved 

between linkage groups, however, the total number of linkage groups and the size of each 

linkage group is preserved. In the case of pseudo-Boolean functions, a permutation may 

produce a function which the Walsh coefficients are permuted from the original function. For 

example 𝛼𝛼{1,2} and 𝛼𝛼{0,1} may be swapped. 

Relabelling of a function is a function such that the effect of 2 or more labels for 1 or more 

variables has been rearranged. For example, in ( 47 ), 𝑔𝑔𝐵𝐵 is a relabelling of 𝑓𝑓𝐵𝐵 such that the 

effect of labels 0 and 1 has been swapped for variable 𝑥𝑥1. 

𝑓𝑓𝐵𝐵(𝐱𝐱) = 𝑥𝑥0 + 𝑥𝑥1 ⨁ 𝑥𝑥2;     𝐱𝐱 ∈ {0, 1}3 

𝑔𝑔𝐵𝐵(𝐱𝐱) = 𝑥𝑥0 + 𝑥𝑥1��� ⨁ 𝑥𝑥2;    𝐱𝐱 ∈ {0, 1}3 

where 𝑥𝑥𝚤𝚤� = (1 − 𝑥𝑥𝑖𝑖) 

( 47 ) 

For simplicity, in the above example, the variables have an alphabet of only two values 

each, but the multiple labels could be permuted in other ways. A relabelling does not change 

the linkage groups. In the case of pseudo-Boolean functions, for each single variable which is 

relabelled, all Walsh coefficients of cliques (sets of zero or more of the variables) including that 

variable will be negated. For example, 𝛼𝛼{1} and 𝛼𝛼{1,2} in the new function take on the old values 

of −𝛼𝛼{1} and −𝛼𝛼{1,2} respectively. 

A variation of relabelling may be applied where there are different numbers of labels for 

the two functions. For example the ONEMAX function – the function on {0, 1}ℓ whose output is 

the sum of the number of 1s in the input becomes an instance of attempting to break the code 



|   

 
 41 of 195  

in the game Mastermind using only black pegs, where for each peg, one label (the secret 

colour) has the effect of 1, and every other label has the effect of 0 [103]. 

A concatenation of functions is when a function of 𝑂𝑂 variables and a function of 𝑚𝑚 variables 

are added together with permutation such that no variable appears in both functions. This 

defines a function of 𝑂𝑂 + 𝑚𝑚 variables. For example in ( 48 ), ℎ𝐶𝐶 is a concatenation of 𝑓𝑓𝐶𝐶 and 𝑔𝑔𝐶𝐶. 

Note that the variables of 𝑔𝑔𝐶𝐶 (variables 𝑥𝑥0, 𝑥𝑥1, and 𝑥𝑥2) have been permuted into variables 𝑥𝑥2, 

𝑥𝑥3, and 𝑥𝑥3. 

𝑓𝑓𝐶𝐶(𝐱𝐱) = (3𝑥𝑥0 − 5𝑥𝑥1);                                        𝐱𝐱 ∈ ℝ2 

𝑔𝑔𝐶𝐶(𝐱𝐱) = (𝑥𝑥0 + 𝑥𝑥1 ⋅ 𝑥𝑥2);                                     𝐱𝐱 ∈ ℝ3 

ℎ𝐶𝐶(𝐱𝐱) = (3𝑥𝑥0 − 5𝑥𝑥1) + (𝑥𝑥2 + 𝑥𝑥3 ⋅ 𝑥𝑥4);        𝐱𝐱 ∈ ℝ5 

( 48 ) 

Concatenation is often done with ‘trap’ functions [69] [70], which are functions of a small 

number 𝑘𝑘 of variables, concatenated into much longer problems of length ℓ, this is also done 

in conjunction with further randomly-chosen permutation of the variables, so that related 

variables are shuffled around the function and not clustered together. Concatenated functions 

will have the linkage groups of the two old functions (after relabelling), and for pseudo-Boolean 

functions, the Walsh decomposition will be the sum of the Walsh decompositions of the two 

original functions (after relabelling). 

A monotonic transformation of a function is a function produced by composing a function 

𝑡𝑡 with another function 𝑓𝑓, where 𝑡𝑡 is monotonic increasing when its variable is in the codomain 

of 𝑓𝑓. For example in ( 49 ), 𝑔𝑔𝐷𝐷 is a monotonic transformation where the transformation function 

𝑡𝑡(𝑒𝑒) = 3 ⋅ ln(𝑒𝑒) − 6, note that 𝑡𝑡(𝑒𝑒) is monotonic increasing whenever 𝑒𝑒 is in the codomain of 

𝑓𝑓𝐷𝐷. 

𝑓𝑓𝐷𝐷(𝐱𝐱) = 10 + 20 𝑥𝑥02 + 30 𝑥𝑥14;     𝐱𝐱 ∈ ℝ2 

𝑔𝑔𝐷𝐷(𝐱𝐱) = 3 ⋅ ln�𝑓𝑓𝐷𝐷(𝐱𝐱)� − 6;          𝐱𝐱 ∈ ℝ2 
( 49 ) 

It is a property of monotonic transformations that 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥) implies 𝑡𝑡 ∘ 𝑓𝑓(𝑒𝑒) > 𝑡𝑡 ∘ 𝑓𝑓(𝑥𝑥) and 

𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑥𝑥) implies 𝑡𝑡 ∘ 𝑓𝑓(𝑒𝑒) = 𝑡𝑡 ∘ 𝑓𝑓(𝑥𝑥). Hence, applying a monotonic transformation will not 

affect the behaviour of an algorithm if all operators (and model-building) are ordinal-based, i.e. 

that they operate only on less than, equal to, greater than comparison. This is not true of 

proportional operators since direct fitness value comparisons such as 𝑓𝑓(𝑒𝑒) − 𝑓𝑓(𝑥𝑥) and 

𝑓𝑓(𝑒𝑒)/𝑓𝑓(𝑥𝑥) are not invariants under monotonic transformation. A monotonic transformation 

could introduce new non-zero Walsh coefficients and new linkages between variables which 
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were previously not linked. This is discussed further in section 2.3.5 with regard to unnecessary 

interactions. 

Multiple transformations of functions may be combined. Relabelling and permutations are 

commonly used in conjunction to produce variations of benchmark functions if the benchmark 

functions all have a common, predictable global optimum, or to create non-local structure in 

functions based on benchmarks where related variables are adjacent in the original function. 

Hence a set of benchmark functions which all have the same optima can be made less trivial.  
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3.2 Linkage Identification by Perturbation 

Many linkage identification algorithms, or perturbation methods, have been proposed, in 

addition to EDAs which build an explicit model of variable interactions. In this section, we 

describe the algorithms which are most relevant to the work in the identified aims, although 

this is not an exhaustive list of perturbation methods. 

3.2.1 Linkage Partition and Perturbations 

Linkage detection as done by perturbation methods (PMs) uses small changes in the 

objective function’s input and calculates the effect on the function’s output. This is called fitness 

difference. The fitness difference for one-bit perturbation Δ𝑓𝑓𝑖𝑖(𝐱𝐱), is given in ( 50 ) and two-bit 

perturbation Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) in ( 51 ), where 𝑥𝑥�̇�𝚤� = (1 − 𝑥𝑥𝑖𝑖) for pseudo-Boolean functions. 

Δ𝑓𝑓𝑖𝑖(𝐱𝐱) = 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥�̇�𝚤� ⋯ 𝑥𝑥ℓ−1])− 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥𝑖𝑖 ⋯ 𝑥𝑥ℓ−1]) ( 50 ) 

Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) = 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥�̇�𝚤� ⋯ 𝑥𝑥𝚥𝚥� ⋯ 𝑥𝑥ℓ−1]) − 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥𝑖𝑖 ⋯ 𝑥𝑥𝑗𝑗 ⋯ 𝑥𝑥ℓ−1]) ( 51 ) 

Some conventions define perturbations using the negation of the definitions given above, 

however, the effect of using the other convention would only result in a global change of sign, 

which would not affect the detection of linkage, since changing the sign on all fitness 

differences does not change whether variables are additively separable or not since 

−(𝑂𝑂 + 𝑏𝑏) ≡ (−𝑂𝑂) + (−𝑏𝑏). 

The fitness difference by one-bit perturbation corresponds to the fitness gradient local to 

the point 𝐱𝐱 in one direction. The fitness difference by two-bit perturbation means moving in two 

dimensions, and the change in fitness will be the sum of the two corresponding one-bit fitness 

differences if the two variables are independent. This is formalised by the LINC algorithm as 

described next in section 3.2.2.  
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3.2.2 Non-Linearity / Non-Monotonicity Detection 

Recall that linkage can be defined in terms of an additive separation of the variables into 

sub-functions (as discussed in 2.2.1). Linkage identification by non-linearity check (LINC) [56] 

detects linkage by making two one-bit perturbations Δ𝑓𝑓𝑖𝑖(𝐱𝐱), and Δ𝑓𝑓𝑗𝑗(𝐱𝐱), and checking that the 

effect of both perturbations at both loci together ∆𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) is not a sum of the effect of each. In 

other words, we can define the condition 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) for linearity as given by ( 52 ) [56]. 

ℒLINC(𝑖𝑖, 𝑗𝑗) ⇔ (∃𝐱𝐱)�¬𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱)� 

where 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �∆𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) = Δ𝑓𝑓𝑖𝑖(𝐱𝐱) + Δ𝑓𝑓𝑗𝑗(𝐱𝐱)� 
( 52 ) 

If this condition 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) is false for at least one string 𝐱𝐱, then 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are linked. If this 

relation is true for all strings, then they are unlinked [57]. Note that this linearity relation can 

hold for some strings even when non-linearity is present, for example in the trap function, the 

deceptive nature of the function means that most of the configurations of the trap sub-function 

are linear, leading away from the optimum. Only when one-bit from the optimum configuration 

is non-linearity detected. Thus, unless all strings are tested, the linkage detection is an 

estimate. 

A variant on LINC is linkage identification by non-monotonicity detection (LIMD). LIMD 

uses a definition of linkage which disregards what is called allowable non-linearity. This has 

further been developed in the development of LIMD to consider only non-monotonic 

interactions [56]. These monotonic non-linearities are unnecessary or benign interactions. The 

condition for LIMD is given as defined by ( 53 ) [56].  

ℒLIMD(𝑖𝑖, 𝑗𝑗) ⇔ (∀𝐱𝐱)�𝑃𝑃𝑖𝑖𝑗𝑗(𝐱𝐱) ⇒ 𝑀𝑀𝑖𝑖𝑗𝑗(𝐱𝐱)� 

where 𝑃𝑃𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �Δ𝑓𝑓𝑖𝑖(𝐱𝐱) > 0 and Δ𝑓𝑓𝑗𝑗(𝐱𝐱) > 0� 

and 𝑀𝑀𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) > Δ𝑓𝑓𝑖𝑖(𝐱𝐱) and Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) > Δ𝑓𝑓𝑖𝑖(𝐱𝐱)� 

( 53 ) 
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3.2.3 Heckendorn and Wright’s Detect-Linkage Algorithm 

Heckendorn and Wright’s DETECT-LINKAGE algorithm [62] defines a procedure for 

determining Walsh linkage by estimating Walsh coefficients using probes. A probe is defined 

by ( 54 ). 

𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) =
1

2ONEMAX(𝑚𝑚) � (−1)ONEMAX(𝑖𝑖) ∙ 𝑓𝑓(𝑖𝑖 ⨁ 𝑃𝑃)
𝑖𝑖∈ℬ𝑚𝑚

 ( 54 ) 

Here, ℬ𝑚𝑚 is defined as the set of submasks of the bitmask 𝑚𝑚, as defined by the ( 55 ). 

ℬ𝑚𝑚 = �𝑖𝑖 ∈ {0, 1}ℓ ∶ 𝑖𝑖 ⊆ 𝑚𝑚� ( 55 ) 

e.g. subsets of the mask [1 0 0 1] are { [1 0 0 1], [0 0 0 1], [1 0 0 0], [0 0 0 0]}. 

The background value 𝑃𝑃, this is a random assignment of all variables not included in the 

mask. For example, if the mask  [1 0 0 1] an example of a value for 𝑃𝑃 might assign 𝑥𝑥1 = 1  

and 𝑥𝑥2 = 0, i.e. [∗ 1 0 ∗], then 𝑃𝑃 = [0 1 0 0]. 

This will be combined using the subsets of the mask using a bitwise OR to produce 
{ [1 1 0 1], [0 1 0 1], [1 1 0 0], [0 1 0 0]}. Note that all arrangements of 𝑋𝑋0 and 𝑋𝑋3 are 

tried against one fixed arrangement of 𝑋𝑋1 and 𝑋𝑋2. In this example, the terms in the sum are 

given by ( 56 ). 

   (−1)2 ∙ 𝑓𝑓([1 1 0 1]) + (−1)1 ∙ 𝑓𝑓([0 1 0 1]) 

+(−1)1 ∙ 𝑓𝑓([1 1 0 0]) + (−1)0 ∙ 𝑓𝑓([0 1 0 0]) 

= 𝑓𝑓([1 1 0 1]) − 𝑓𝑓([0 1 0 1]) − 𝑓𝑓([1 1 0 0]) + 𝑓𝑓([0 1 0 0]) 

( 56 ) 

This, multiplied by the factor 1/22 outside the sum corresponds an estimate of the Walsh 

coefficient 𝛼𝛼{0,3}, which should be non-zero if the linkage is evident at the location defined by 

the background value 𝑃𝑃. 
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The algorithm returns the linkage in the form of a set of cliques corresponding to non-zero 

Walsh coefficients. The procedure is given by Algorithm 1. The linkage detection algorithm 

calculates linkage in 𝒪𝒪�2𝑘𝑘ℓ𝑗𝑗 log ℓ�, where 𝑗𝑗 is a parameter specifying the size of probes, 𝑘𝑘 is 

the size of the largest linkage group, and ℓ is the problem size. This is an improvement over 

the runtime of deterministic approaches to finding linkage, which run in 𝒪𝒪�ℓ𝑘𝑘� time [104]. 

1) initialise E to ∅ 

2) for each mask 𝑚𝑚 with ONEMAX(𝑚𝑚) = 𝑗𝑗 

a) if 𝑚𝑚 ∉ 𝐸𝐸 

i) for 𝑖𝑖 ← 1 to 𝑁𝑁 

(1) 𝑃𝑃 ← random string in ℬ𝑚𝑚�  

(a) if 𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) ≠ 0 

(i) 𝐸𝐸 ← 𝐸𝐸 ∪ {𝑚𝑚} 
(ii) break 

b) return 𝐸𝐸 

Algorithm 1 – Heckendorn and Wright’s DETECT-LINKAGE Algorithm [62] (notation modified). 

The parameter 𝑗𝑗 defines the size of the bitmasks which will be used, i.e. the number of 1s 

in the bitmask. Each mask of this size is tried, and 𝑁𝑁 probes are done with each probe being 

on a new randomly-generated background value 𝑃𝑃. When the probe 𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) returns a non-

zero value, the clique is added to the set of known non-zero cliques 𝐸𝐸. 
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3.2.4 Streeter’s Optimisation Algorithm 

Streeter’s ASFOPTIMISE algorithm [61] demonstrates that the linkage of an additively-

separable function can be learned in 𝒪𝒪�2𝑘𝑘ℓ log ℓ� function evaluations, which is an 

improvement on  𝒪𝒪�2𝑘𝑘ℓ2� or 𝒪𝒪�2𝑘𝑘ℓ𝑗𝑗 log ℓ� for all 𝑗𝑗 > 1 function evaluations used by earlier 

approaches. A high level overview of ASFOPTIMISE is given in Algorithm 2. 

1) initialise x to random string 

2) define Γ as �{0}, {1}, … , {ℓ − 1}� 

3) local search to make x optimal with respect to 1-bit perturbations 
4) do 𝑡𝑡 times 

a) for 𝑖𝑖 ← 0 to ℓ − 1 

i) perform randomised test on position 𝑖𝑖 
ii) if test succeeds: 

(1) binary search to find 𝑗𝑗 such that ℒ(𝑖𝑖, 𝑗𝑗) 

(2) update Γ 

(3) local search to make x optimal with respect to newly discovered linkage 

5) return x 

Algorithm 2 – Overview of Streeter’s ASFOPTIMISE algorithm [61] (notation modified). 

The procedure uses a randomised test by generating two random assignments of the 

variables not currently known to be linked with variable 𝑥𝑥𝑖𝑖. To test for linkage on position 𝑖𝑖, two 

random strings are chosen 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵, then a 1-bit perturbation is performed on each: Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐴𝐴) 

and Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐁𝐁). If the two fitness differences are not the same, then some variable which is 

different in 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵 is epistatically linked with 𝑋𝑋𝑖𝑖. 

The process of binary search to find 𝑗𝑗 such that ℒ(𝑖𝑖, 𝑗𝑗), begins by determining the set 𝛿𝛿 of 

variables (other than 𝑋𝑋𝑖𝑖) which differ between 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵. Then binary search is performed on 

this set to determine one 𝑋𝑋𝑗𝑗 which is linked with 𝑋𝑋𝑖𝑖. 
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An example is given by ( 57 ) where 𝑖𝑖 = 3. 

𝐬𝐬𝐴𝐴 = [0 1 1 ∗ 0 0 1 1] 

𝐬𝐬𝐵𝐵 = [1 1 1 ∗ 1 1 0 1] 

𝛿𝛿 = {𝑋𝑋0,𝑋𝑋4,𝑋𝑋5,𝑋𝑋6} 

( 57 ) 

The first level of the binary search will use 𝐬𝐬𝐴𝐴 with {𝑋𝑋0,𝑋𝑋4} changed on the left-hand-side 

of the binary search and use 𝐬𝐬𝐴𝐴 with {𝑋𝑋5,𝑋𝑋6} changed on the right-hand-side of the binary 

search, i.e. the left hand side of the binary search will compare the fitness differences by 

perturbation at 𝑋𝑋3 for [0 1 1 ∗ 0 0 1 1] and [1 1 1 ∗ 1 0 1 1]. The next level of the binary 

search will compare the fitness differences by perturbation at 𝑋𝑋3 for [0 1 1 ∗ 0 0 1 1] and 

[1 1 1 ∗ 0 0 1 1]. At this level in the binary search the algorithm is comparing the effect of 

changing one bit (𝑋𝑋0) on the fitness difference Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐴𝐴), which corresponds to a 2-bit 

perturbation Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐬𝐬𝐴𝐴), which can detect non-linearity at this point. 
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4 Functions and Rank Equivalence 

 

In this chapter we define ranks, and rank-equivalence classes, which are used to describe 

a given monotonicity-invariant subspace of the function space. This classification is invariant 

under a variety of commonly-used operators and algorithms, allowing us to usefully reason 

about sets of functions. We also define ordinal linkage partition and directed ordinal linkage as 

a variation on descriptions of linkage structure which exists in the literature. We give a set of 

benchmark functions used as objects of study throughout this thesis to illustrate various points. 

4.1 Rank Equivalence 

We define the rank R𝑓𝑓(𝐱𝐱) of solution 𝐱𝐱 with respect to function 𝑓𝑓 as the number of 

candidates in the finite search space X which correspond to a strictly smaller fitness value. This 

we define as given by ( 58 ), where |𝑆𝑆| represents the cardinality of set 𝑆𝑆. Note that as 

discussed in section 2.1.1, this also applies to digital representations of continuous domains. 

R𝑓𝑓(𝐱𝐱) = |{𝐲𝐲:𝐲𝐲 ∈ X ∧ 𝑓𝑓(𝐲𝐲) < 𝑓𝑓(𝐱𝐱)}| ( 58 ) 

This definition of rank chosen is independent of whether the objective is maximisation or 

minimisation. Thus, for a maximisation objective, a higher rank is desired, and for a 

minimisation objective, a lower rank is desired.  

We define two functions 𝑓𝑓 and 𝑔𝑔 as equivalent if they have the same search space and 

the rank of each solution is the same for each solution in the search space, formally as given 

by ( 59 ). 

(𝑓𝑓~𝑔𝑔) ⇔ (∀𝐱𝐱 ∈ 𝑋𝑋)�R𝑓𝑓(𝐱𝐱) = R𝑔𝑔(𝐱𝐱)� ( 59 ) 

By choosing some ordering on the search space 𝑋𝑋 = {𝐬𝐬0, 𝐬𝐬1, … , 𝐬𝐬𝑛𝑛−1}, we can write a 

vector of ranks as in ( 60 ). 

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓
𝐬𝐬0 𝑅𝑅𝑓𝑓

𝐬𝐬1 … 𝑅𝑅𝑓𝑓
𝐬𝐬𝑛𝑛−1� ( 60 ) 
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This allows us to write the condition for rank-equivalence 𝑓𝑓~𝑔𝑔 as given by ( 61 ). 

(𝑓𝑓~𝑔𝑔) ⇔ �𝑪𝑪𝑓𝑓 = 𝑪𝑪𝑔𝑔� ( 61 ) 

As the term 𝑪𝑪𝑓𝑓 = 𝑪𝑪𝑔𝑔 is an equality, the equivalence 𝑓𝑓~𝑔𝑔 by construction satisfies the properties 

of reflexivity, symmetry, and transitivity necessary for an equivalence class. 

As we will be focused on pseudo-Boolean function classes, we define a pseudo-Boolean 

class 𝐂𝐂𝑓𝑓 as given by the ordering specified in ( 62 ). 

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓111⋯1 𝑅𝑅𝑓𝑓011⋯1 𝑅𝑅𝑓𝑓101⋯1 𝑅𝑅𝑓𝑓001⋯1 … 𝑅𝑅𝑓𝑓000⋯0� ( 62 ) 

We choose this ordering to be consistent with the order of fitnesses used in the form of the 

Walsh-Hadamard transform described in section 3.1.3. This vector 𝐂𝐂𝑓𝑓 can be used as a specific 

instance of the function, which is the representative of the class 𝐂𝐂𝑓𝑓.  
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4.2 Directed Ordinal Linkage 

We generalise the definition of non-monotonicity linkage by restricting the detection of 

linkage to be invariant under rank-equivalent functions by construction. Linkage is one view of 

structure in a function. Recall that linkage, including non-monotonicity detection, is typically 

defined as a symmetric relation, such that ℒ(𝑖𝑖, 𝑗𝑗) ⇔ ℒ(𝑗𝑗, 𝑖𝑖), specifying a partitioning Γ of the 

variables 𝑋𝑋. 

We use a definition of linkage, ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) which is based on a difference in sign of rank 

difference, given by ( 63 ). This is an equivalent formulation to directed ordinal linkage based 

on sign of fitness difference that we presented in [2]. 

ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) ⇔ ∃ 𝑥𝑥 ∶  sgn�∆𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋𝑖𝑖 → 1])� ≠ sgn�∆𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋𝑖𝑖 → 0])� 

where Δ𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱) = 𝑅𝑅𝑓𝑓�𝐱𝐱�𝑋𝑋𝑗𝑗 → 1�� − 𝑅𝑅𝑓𝑓�𝐱𝐱�𝑋𝑋𝑗𝑗 → 0�� 

and 𝐱𝐱[𝑋𝑋𝑖𝑖 → 𝑣𝑣] = [𝑋𝑋0 𝑋𝑋1 … 𝑋𝑋𝑖𝑖−1 𝑣𝑣 𝑋𝑋𝑖𝑖+1 …] 

and sgn(𝑥𝑥) = �
−1, 𝑥𝑥 < 0

0, 𝑥𝑥 = 0
1, 𝑥𝑥 ≥ 0

 

( 63 ) 

The relationship ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) does not necessarily imply ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖), for example, in the function 

shown in Table 5, ℒ𝑂𝑂(0,1) is true, since for 𝐱𝐱 = [0 0], sgn�∆1𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋0 → 1])� = 1 and 

sgn�∆1𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋0 → 0])� = 0. However ℒ𝑂𝑂(1, 0) is false, since for all 𝐱𝐱, sgn�∆0𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋1 → 1])� = 1 

and sgn�∆0𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋1 → 0])� = 1. 

𝐱𝐱 [0 0] [1 0] [0 1] [1 1] 

𝑅𝑅𝑓𝑓(𝐱𝐱) 0 2 0 3 

Table 5 – The ranks of one class of functions with asymmetric ordinal linkage. 
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Linkage between variables 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 present as either ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) or ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) will be considered 

present under the definition of non-monotonicity detection described earlier. However, some 

linkage will only be one way. Next we define the terminology we will use for this linkage. 

We define the relationship between variables 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 as interdependence, which we 

represent algebraically as 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. Variables are interdependent if the ordinal linkage condition 

holds bi-directionally, as given by ( 64 ). 

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 ⇔ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀  ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) ( 64 ) 

In contrast to non-linearity–based linkage detection, ordinal linkage may exist as an 

asymmetric relation. In the case of asymmetry we define the relationship as dependence, 

which we represent algebraically as 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 as given by ( 65 ). 

𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 ⇔ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀ ¬ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) ( 65 ) 

We define the relationship as independence, which we represent algebraically as 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗. 

Variables are independent if the ordinal linkage condition holds in neither direction, as given 

by ( 66 ). 

𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗 ⇔ ¬ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀ ¬ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) ( 66 ) 

We use this notation concatenated into expressions for larger numbers of variables, using 

the order of operator precedence first 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗, then 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗, and lastly 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗, using left-to-right 

associativity. 

For example, the expression 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2 ( 67 ) means that 𝑋𝑋0 and 𝑋𝑋1 are interdependent on 

one another, and 𝑋𝑋2 is independent of both of the former. 

(𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2) ⇔ (𝑋𝑋0𝑋𝑋1) ∧ (𝑋𝑋0 + 𝑋𝑋2) ∧ (𝑋𝑋1 + 𝑋𝑋2) ( 67 ) 

In another example, the expression (𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2 ( 68 ) means that 𝑋𝑋0 and 𝑋𝑋1 are 

independent from one another, and 𝑋𝑋2 is dependent on both of the former. 

�(𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2� ⇔ (𝑋𝑋0 + 𝑋𝑋1) ∧ (𝑋𝑋0 → 𝑋𝑋2) ∧ (𝑋𝑋1 → 𝑋𝑋2) ( 68 ) 

All possible linkage between 3 variables can be written in this way as we will see in later 

chapters. 
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This notation cannot express all combinations of linkage, however. For example, the 

linkage between 4 variables described in ( 69 ) cannot be written linearly using this notation 

without repeating a variable. 

(𝑋𝑋0 → 𝑋𝑋1) ∧ (𝑋𝑋0 → 𝑋𝑋3) ∧ (𝑋𝑋2 → 𝑋𝑋3)  

∧ (𝑋𝑋1 + 𝑋𝑋2) ∧ (𝑋𝑋0 + 𝑋𝑋2) ∧ (𝑋𝑋1 + 𝑋𝑋3) 
( 69 ) 
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4.3 Pseudo-Boolean Benchmarks Functions 

In this section we give the complete definitions of the pseudo-Boolean benchmark 

functions referred to throughout the remainder of this thesis. We also state each benchmark’s 

function values and Walsh coefficients for 2-bit and 3-bit instances as these are used in the 

following chapters. 

4.3.1 Definitions and Identities 

We make use of the following definitions and identities in this section. Let 𝟎𝟎ℓ denote a 

length 2ℓ column vector populated by 0s, as given by ( 70 ). 

𝟎𝟎ℓ = �
0
⋮
0
� � 2ℓ ( 70 ) 

Let 𝟏𝟏ℓ denote a length 2ℓ column vector populated by 1s, as given by ( 71 ). 

𝟏𝟏ℓ = �
1
⋮
1
� � 2ℓ ( 71 ) 

Let 𝛅𝛅ℓ denote a length 2ℓ column vector with 1 in the first position and the remainder 

populated by 0s, as given by ( 72 ). 

𝛅𝛅ℓ = �

1
0
⋮
0

� �2ℓ ( 72 ) 

Multiplying 𝐻𝐻ℓ by the 𝟏𝟏ℓ vector sums each column element for each row in the Hadamard 

matrix, since all but the first row contains an equal number of +1 as −1, all but the first is zero, 

with the first being 1 times the number of columns (2ℓ) hence ( 73 ). 

𝐻𝐻ℓ𝟏𝟏ℓ ≡ 2ℓ𝛅𝛅ℓ ( 73 ) 

The delta vector selects the first element from each row of the Hadamard matrix ( 74 ). 

𝐻𝐻ℓ𝛅𝛅ℓ ≡ 𝟏𝟏ℓ ( 74 ) 
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4.3.2 Constant Functions 

The simplest example of a pseudo-Boolean function is one of the family of constant 

functions (CONSTℓ). The constant function is defined as given by ( 75 ). 

This function has an image consisting of a single element. Hence, every value is the global 

optimum with value 𝑃𝑃. An example is given by ( 76 ). 

The constant function is defined without using any variables, the linkage partition is given 

by ( 77 ). 

The Walsh coefficients of the constant function are all 0, except the constant term, which 

is 𝛼𝛼∅ = 𝑃𝑃. Proof is given by the ( 78 ). 

  

CONST𝑐𝑐
ℓ(𝐱𝐱) = 𝑃𝑃 ( 75 ) 

CONST42
9 ([1 1 1 1 0 1 1 0 0]) = 42 ( 76 ) 

ΓCONST𝑐𝑐
ℓ = ∅ ( 77 ) 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

= c
1
2ℓ
𝐻𝐻ℓ𝟏𝟏ℓ 

= c
1
2ℓ

2ℓ𝛅𝛅ℓ    (from 𝐻𝐻ℓ𝟏𝟏ℓ ≡ 2ℓ𝛅𝛅ℓ) 

= c 𝛅𝛅ℓ 

( 78 ) 
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4.3.3 Needle-in-a-Haystack Functions 

In contrast to the constant function, the needle-in-haystack function (NEEDLEℓ) has only a 

single element of the domain being mapped to the global optimum. Thus, the image consists 

of two elements. The needle-in-haystack function is defined as given by ( 79 ). 

This function maps the vector of all ones to the value 1, with every other input mapped to 0. 

Hence, for maximisation objective, the function’s optimum is a vector of all ones, [1 1 … 1]. 

An example is given by ( 80 ). 

The needle-in-haystack function is fully connected, it is not an ASF as there is no additive 

separation of the variables, the linkage partition is given by ( 81 ). 

Every Walsh coefficient of the needle in haystack function is equal to 1 2ℓ� . Thus, this is 

an example of a function with complete structure. Proof is given by ( 82 ). 

Note that 𝟏𝟏ℓ is the first column of 𝐻𝐻ℓ. 

If a relabelling and/or permutation is applied to the function, the effect will be to map the 

global optimum to a different value in the search space. The vector of Walsh coefficients will 

then be a different column of 𝐻𝐻ℓ, thus half of the coefficients will be equal to 1 and the other 

half will be equal to −1.  

NEEDLEℓ(𝐱𝐱) = �𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 ( 79 ) 

NEEDLE9([1 1 1 1 0 1 1 0 0]) = 0 ( 80 ) 

ΓNEEDLEℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� ( 81 ) 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

=
1
2ℓ
𝐻𝐻ℓ𝛅𝛅ℓ 

=
1
2ℓ
𝟏𝟏ℓ    (from 𝐻𝐻ℓ𝛅𝛅ℓ ≡ 𝟏𝟏ℓ) 

( 82 ) 



|   

 
 57 of 195  

4.3.4 Ones Function 

The ones function (ONEMAXℓ) [66] [67] returns a sum of the input variables, equivalent to 

the count of the number of ones in the input. The definition is given by ( 83 ). 

For maximisation objective, the function’s optimum is a vector of all ones, [1 1 … 1]. An 

example is given by ( 84 ). 

Since the ones function consists of only univariate terms, it is fully separable, the linkage 

partition of the ones function is given by ( 85 ). 

The only non-zero Walsh coefficients in the ones function are the constant term 𝛼𝛼∅ = ℓ
2�  

and all univariate terms 𝛼𝛼{𝑖𝑖} = 1
2�  (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given on the 

following page. 

  

ONEMAXℓ(𝐱𝐱) = �𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 ( 83 ) 

ONEMAX8([1 1 1 1 0 1 1 0]) = 6 ( 84 ) 

ΓONEMAXℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� ( 85 ) 
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Lemma 4.3.4: In ONEMAXℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = ℓ
2
�, the univariate 

coefficients (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 1}) �𝛼𝛼{i} |ℓ = 1
2
�, and any other coefficient is 0. 

Proof: by induction. 

For ℓ = 1, 𝛂𝛂1 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2� thus 𝛼𝛼∅ |1 = 1
2

= ℓ
2
, and 𝛼𝛼{0} |1 = 1

2
, and no 

other coefficients exist. 

Assume true for {1, 2, … , ℓ − 1}, consider ℓ: 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 𝟏𝟏ℓ−1
𝐟𝐟ℓ−1

�     
(append "1" to 𝐱𝐱, fitness inc. by 1)
(append "0" to 𝐱𝐱)  

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 𝐻𝐻ℓ−1𝟏𝟏ℓ−1

𝐻𝐻ℓ−1𝟏𝟏ℓ−1
� 

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�𝐻𝐻ℓ−𝟏𝟏ℓ−1𝐻𝐻ℓ−𝟏𝟏ℓ−1

� 

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

�+
1
2ℓ
�2

ℓ−1𝛅𝛅ℓ−1
2ℓ−1𝛅𝛅ℓ−1

�    ( 73 ) 

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� + �0.5 𝛅𝛅ℓ−1

0.5 𝛅𝛅ℓ−1
�     

←  increments 𝛼𝛼∅ by 1 2�

←  sets the new univariate term 𝛼𝛼{ℓ−1} = 1
2�   

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = ℓ−1
2

, we derive 𝛼𝛼∅ |ℓ = ℓ−1
2

+ 1
2

= ℓ
2
, thus by the 

principal of induction, (∀ℓ ∈ {0,1, … }) �𝛼𝛼∅ |ℓ = ℓ
2
�. 

The new univariate term 𝛼𝛼{ℓ−1} is set to 1
2
, and no other non-zero coefficients are added, 

and by the induction hypothesis all previous univariate terms are 1
2
 and no other previous 

coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction 

 (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, 1, … , ℓ − 1}) �𝛼𝛼{i} |ℓ = 1
2
� and no other Walsh coefficients (except 𝛼𝛼∅) 

are non-zero. ∎  
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4.3.5 Zeros Function 

The zeros function (ZEROMAXℓ ) returns the count of the number of zeros in the input. This 

is a relabelling of the ONEMAXℓ function. The definition is given by ( 86 ). 

For maximisation objective, the function’s optimum is a vector of all zeros, [0 0 … 0]. An 

example is given by ( 87 ). 

As a relabelling of the ONEMAXℓ, it has the same linkage partition as given by ( 88 ). 

The only non-zero Walsh coefficients in the ones function are the constant term 𝛼𝛼∅ = ℓ
2�  

and all univariate terms 𝛼𝛼{𝑖𝑖} = −1
2�  (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given in ( 89 ). 

  

ZEROMAXℓ(𝐱𝐱) = �(1 − 𝑥𝑥𝑖𝑖)
ℓ−1

𝑖𝑖=0

 ( 86 ) 

ZEROMAX8([1 1 1 1 0 1 1 0]) = 2 ( 87 ) 

ΓZEROMAXℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� ( 88 ) 

OneMaxℓ(𝐱𝐱) = 𝛼𝛼∅ + �𝛼𝛼{𝑖𝑖}𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

=
ℓ
2

+
1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

 

ZEROMAXℓ(𝐱𝐱) = ℓ − OneMaxℓ(𝐱𝐱) 

= ℓ − �
ℓ
2

+
1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

� 

=
ℓ
2
−

1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

         ∎ 

( 89 ) 



|   

 
 60 of 195  

4.3.6 Binary Value Function 

The binary value function (BINVALℓ) [67] is a univariate function which weights each 

variable exponentially, such that variable 𝑋𝑋𝑖𝑖 has a weighting of 2𝑖𝑖. The binary value function is 

defined as given by ( 90 ). 

As with the ones function, for maximisation objective, the function’s optimum is a vector 

of all ones, [1 1 … 1]. The optimum value is 2ℓ − 1, with variables of larger indices 

contributing a larger portion to this optimum value. An example is given by ( 91 ). 

Since the binary value function consists of only univariate terms, it is fully separable, the 

linkage partition of the binary value function is given by ( 92 ). 

The only non-zero Walsh coefficients in the binary value function are the constant term 

𝛼𝛼∅ = 2ℓ−1
2

 and all univariate terms 𝛼𝛼{𝑖𝑖} = 2𝑖𝑖−1 (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given 

on the following page. 

  

BINVALℓ(𝐱𝐱) = �2𝑖𝑖𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 ( 90 ) 

BINVAL8([1 1 1 1 0 1 1 0]) = 111 ( 91 ) 

ΓBINVALℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� ( 92 ) 
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Lemma 4.3.6: In BINVALℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2
�, the univariate 

coefficients (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 1})�𝛼𝛼{i} |ℓ = 2𝑖𝑖−1�, and any other coefficient is 0. 

Proof, by induction: 

For ℓ = 1, 𝛂𝛂1 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2� thus 𝛼𝛼∅ |1 = 1
2

= 21−1
2

= 2ℓ−1
2

, and 

 𝛼𝛼{0} |1 = 1
2

= 20−1 = 2𝑖𝑖−1 and no other coefficients exist. 

Assume true for {1, 2, … , ℓ − 1}, consider ℓ: 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 2ℓ−1𝟏𝟏ℓ−1
𝐟𝐟ℓ−1

�     �append "1" to 𝐱𝐱, fitness inc. by 2ℓ−1�
(append "0" to 𝐱𝐱)

 

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 2ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1

2ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1
� 

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
2ℓ−1

2ℓ
�𝐻𝐻ℓ−1𝟏𝟏ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1

� 

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

�+
1
2
�2

ℓ−1𝛅𝛅ℓ−1
2ℓ−1𝛅𝛅ℓ−1

�     ( 73 ) 

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� + �2

ℓ−2𝛅𝛅ℓ−1
2ℓ−2𝛅𝛅ℓ−1

�     
←  increments 𝛼𝛼∅ by 2ℓ−2

←  sets the new univariate term 𝛼𝛼{𝑖𝑖} = 2𝑖𝑖−2, where 𝑖𝑖 = ℓ − 1 
 

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = 2ℓ−1−1
2

, we derive 𝛼𝛼∅ |ℓ = 2ℓ−1−1
2

+ 2ℓ−2 = 2ℓ−1
2

, thus 

by the principal of induction, (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2

 �. 

The new univariate term 𝛼𝛼{ℓ−1}|ℓ is set to 2ℓ−2 = 2(ℓ−1)−1, and no other non-zero 

coefficients are added, and by the induction hypothesis, all previous univariate terms are 2𝑖𝑖−1 

and no other previous coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction 

(∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, 1, … , ℓ − 1})(𝛼𝛼{𝑖𝑖}|ℓ = 2𝑖𝑖−1) and no other Walsh coefficients (except 𝛼𝛼∅) 

are non-zero. ∎ 
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4.3.7 1-Dimensional Checkerboard Function 

The 1-dimensional checkerboard function (CHECK1D
ℓ ) [68] [47, pp. 32-32] counts the number 

of adjacent variables 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1  such that 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖+1. The 1-dimensional checkerboard function is 

defined as given by ( 93 ). 

For a maximization objective, this function has two global optima: [1 0 1 0 …  ] and 

[0 1 0 1 …  ] with an optimum value of ℓ − 1. An example is given by ( 94 ). 

Since each variable in the 1-dimensional checkerboard function is connected to its 

adjacent neighbours in a chain, the function is not an ASF as there is no additive separation 

of the variables, the linkage partition is given by ( 95 ). 

The only non-zero Walsh coefficients in the 1-dimensional checkerboard function are the 

constant term 𝛼𝛼∅ = ℓ−1
2

 and all adjacent bivariate terms 𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −1
2

 (∀𝑖𝑖 ∈ {0, … , ℓ − 2}). Proof 

of coefficients is given on the following page. 

  

CHECK1D
ℓ (𝐱𝐱) = ��1, 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖+1

0, 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+1

ℓ−2

𝑖𝑖=0

 ( 93 ) 

CHECK1D
ℓ ([1 1 1 1 0 1 1 0]) = 3 ( 94 ) 

ΓCHECK1D
ℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� ( 95 ) 
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Lemma 4.3.7: In CHECK1D
ℓ  the constant term (∀ℓ ∈ {2, 3, … }) �𝛼𝛼∅ |ℓ = ℓ−1

2
�, the adjacent 

bivariate coefficients (∀ℓ ∈ {2,3, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 2}) �𝛼𝛼{i,i+1} |ℓ = −1
2
�, and any other 

coefficient is 0. 

Proof, by induction: 

For ℓ = 1, 2, by direct calculation: 

𝛂𝛂1 = �
𝛼𝛼∅
𝛼𝛼{0}

� =
1
21 �

1 1
1 −1� �

0
0� = �00� 

𝛂𝛂2 = �

𝛼𝛼∅
𝛼𝛼{0}
𝛼𝛼{1}
𝛼𝛼{0,1}

� =
1

22 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

0
1
1
0

� = �

1/2
0
0

−1/2

� 

Assume true for {2, 3, … , ℓ − 1}, consider ℓ: 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

=
1
2ℓ
�

𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2

� �
𝐟𝐟ℓ−1 + �𝟎𝟎ℓ−2𝟏𝟏ℓ−2

�

𝐟𝐟ℓ−1 + �𝟏𝟏ℓ−2𝟎𝟎ℓ−2
�
�

    (𝐱𝐱 ends [… , 1, 1])
    (𝐱𝐱 ends [… , 0, 1], fitness + 1)
    (𝐱𝐱 ends [… , 1, 0], fitness + 1)
    (𝐱𝐱 ends [… , 0, 0])

 

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�

𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2

� �

𝟎𝟎ℓ−2
𝟏𝟏ℓ−2
𝟏𝟏ℓ−2
𝟎𝟎ℓ−2

� 

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

� +
1
2ℓ
⎣
⎢
⎢
⎡ 2 × 2ℓ−2𝛅𝛅ℓ−2

𝟎𝟎ℓ−2
𝟎𝟎ℓ−2

−2 × 2ℓ−2𝛅𝛅ℓ−2⎦
⎥
⎥
⎤
 

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� +

1
2 �

𝛅𝛅ℓ−2
𝟎𝟎ℓ−2
𝟎𝟎ℓ−2
−𝛅𝛅ℓ−2

�     

←  increments 𝛼𝛼∅ by 0.5
 
 
←  sets the new bivariate term 𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −0.5, where 𝑖𝑖 = ℓ − 2

  

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = (ℓ−1)−1
2

, we derive 𝛼𝛼∅ |ℓ = (ℓ−1)−1
2

+ 1
2

= ℓ−1
2

, thus by 

the principal of induction (∀ℓ ∈ [2,3, … ]) �𝛼𝛼∅ |ℓ = ℓ−1
2

 �. 

The new bivariate term is set to −0.5, and no other non-zero coefficients are added, and 

by the induction hypothesis, all previous bivariate terms are −0.5 and no other previous 

coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction (∀𝑖𝑖 ∈ [0, ℓ −

2])(𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −0.5) in all ℓ ≥ 2 and no other coefficients (except 𝛼𝛼∅) are non-zero. ∎  
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4.3.8 Leading-Ones Function 

The leading-ones function (LEADINGℓ) [67] is the total number of ones in the function until the 

first instance of a zero. In other words, the index of the lowest-indexed zero, or ℓ if there are 

no zeros. The leading ones function is defined as given by ( 96 ). 

As with the ones function, for maximisation objective, the function’s optimum is a vector 

of all ones, [1 1 … 1]. The optimum value is ℓ. An example is given by ( 97 ). 

The leading-ones function is fully connected, it is not an ASF as there is no additive 

separation of the variables, the linkage partition is given by ( 98 ). 

The constant term 𝛼𝛼∅ = 2ℓ−1
2ℓ

, all other coefficients are non-zero, 𝛼𝛼𝑘𝑘 = 2ℓ−1
2ℓ

− 2𝑚𝑚−1
2𝑚𝑚

 where 

𝑚𝑚 is the highest index in clique 𝑘𝑘. Note that if 𝑚𝑚 = ℓ − 1 (the bottom half of 𝛂𝛂), the above 

equation simplifies to 𝛼𝛼𝑘𝑘 = 1
2ℓ

. Proof of coefficients is given on the following page. 

  

LEADINGℓ(𝐱𝐱) = ��𝑥𝑥𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

ℓ−1

𝑖𝑖=0

 ( 96 ) 

LEADING8([1 1 1 1 0 1 1 0]) = 4 ( 97 ) 

ΓLEADINGℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� ( 98 ) 



|   

 
 65 of 195  

Lemma 4.3.8: In LEADINGℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2ℓ
�, and all other 

coefficients are (∀ℓ ∈ {1,2, … })(∀𝑘𝑘 ⊆ {0, … , ℓ − 1}) �𝛼𝛼𝑘𝑘|ℓ = 2ℓ−1
2ℓ

− 2𝑚𝑚−1
2𝑚𝑚

�, where 𝑚𝑚 is the 

highest index in the clique 𝑘𝑘, 

Proof, by induction: 

For ℓ = 1, 𝛂𝛂0 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2�, thus 𝛼𝛼∅ |1 = 2−1
2

= 21−1
21

= 2ℓ−1
2ℓ

 and 

 𝛼𝛼{0} |1 = 1
2

= 1
2
− 0

2
= 2−1

2
− 1−1

1
= 21−1

21
− 20−1

20
= 2ℓ−1

2ℓ
− 2𝑚𝑚−1

2𝑚𝑚
. 

Assume true for {1, 2, … , ℓ − 1}, consider ℓ: 

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ 

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 𝛅𝛅ℓ−1
𝐟𝐟ℓ−1

�     (append "1" to 𝐱𝐱, fitness + 1 if 𝐱𝐱 = [1 … 1])
(append "0" to 𝐱𝐱)  

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 𝐻𝐻ℓ−1𝛅𝛅ℓ−1

𝐻𝐻ℓ−1𝛅𝛅ℓ−1
� 

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�𝐻𝐻ℓ−1𝛅𝛅ℓ−1𝐻𝐻ℓ−1𝛅𝛅ℓ−1

� 

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

� +
1
2ℓ
�𝟏𝟏ℓ−1𝟏𝟏ℓ−1

� 

= �
𝛼𝛼ℓ−1
𝟎𝟎ℓ−1� +

1
2ℓ
�𝟏𝟏ℓ−1𝟏𝟏ℓ−1

�     ← adds 
1
2ℓ

 to every coefficient 

Adding 1
2ℓ

 to every coefficient, we can derive an expression for 𝛼𝛼∅ |ℓ and 𝛼𝛼𝑘𝑘|ℓ: 

𝛼𝛼∅ |ℓ = 𝛼𝛼∅|ℓ−1 +
1
2ℓ

=
2ℓ−1 − 1

2ℓ−1
+

1
2ℓ

=
2(2ℓ−1 − 1)

2 × 2ℓ−1
+

1
2ℓ

=
2ℓ − 2

2ℓ
+

1
2ℓ

=
2ℓ − 1

2ℓ
 

𝛼𝛼𝑘𝑘|ℓ = 𝛼𝛼𝑘𝑘|ℓ−1 +
1
2ℓ

=
2ℓ−1 − 1

2ℓ−1
−

2𝑚𝑚 − 1
2𝑚𝑚

+
1
2ℓ

=
2ℓ − 2

2ℓ
−

2𝑚𝑚 − 1
2𝑚𝑚

+
1
2ℓ

=
2ℓ − 1

2ℓ
−

2𝑚𝑚 − 1
2𝑚𝑚

 

Thus by the principal of induction the expressions hold for all ℓ ∈ {1,2, … }. ∎  
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4.3.9 Order-k Trap Function 

The order-k trap function (TRAP𝑘𝑘) is designed to be deceptive [71] [72]. Deceptive functions 

lead an optimisation algorithm away from the optimum. An example is given by ( 99 ) for a trap 

size of 𝑘𝑘 = 4, and length ℓ = 8 (two concatenated traps). 

The trap function is typically of a small order 𝑘𝑘, such that 𝑘𝑘 divides ℓ, and concatenated, 

i.e. the first 𝑘𝑘 bits form the first trap, the next 𝑘𝑘 bits form the next trap as given by ( 100 ). 

We define the trap sub function as given by ( 101 ), adapted from Deb et. al. [69] (as cited 

by Cantú-Paz et. al. [105]) 

Alternatively, functions can be defined by concatenating trap functions of different orders 𝑘𝑘. 

As shown by the Walsh decomposition, where there are low-order cliques with non-

overlapping sets of the variables, such as in the concatenated trap, this is an ASF. Thus, the 

concatenated 𝑘𝑘-trap function is an example of an additively separable function. The function 

is split in to ℓ
𝑘𝑘
 functions of length 𝑘𝑘. The linkage partition for the 𝑘𝑘-trap is given by ( 102 ). 

ΓTRAP𝑘𝑘ℓ = �𝛾𝛾0,𝛾𝛾1, … , 𝛾𝛾ℓ/𝑘𝑘 −1� 

where 𝛾𝛾𝑖𝑖 = �𝑋𝑋𝑘𝑘𝑖𝑖, , … ,𝑋𝑋𝑘𝑘(𝑖𝑖+1)−1� 
( 102 ) 

TRAP4
8([1 1 1 1 0 1 1 0]) = 𝑔𝑔4(4) + 𝑔𝑔4(2) 

= 4 + 1 

= 5 

( 99 ) 

TRAP𝑘𝑘
ℓ(𝐱𝐱) = �𝑔𝑔𝑘𝑘 ��𝑥𝑥𝑖𝑖𝑘𝑘+𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

�
ℓ/𝑘𝑘 

𝑖𝑖=0

 ( 100 ) 

𝑔𝑔𝑘𝑘(𝑢𝑢) = �𝑘𝑘 − 𝑢𝑢 − 1, 𝑢𝑢 < 𝑘𝑘
𝑘𝑘, 𝑢𝑢 = 𝑘𝑘 ( 101 ) 
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We state the Walsh coefficients for the order-2, order-3, and order-4 traps in Table 6, 

Table 7, and Table 8 respectively. These show the coefficients for trap number 𝑖𝑖. The constant 

term of the overall function is the sum of constant terms from individual traps. 

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1} 

3
4
 

1
4
 

1
4
 

3
4
 

Table 6 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-2 trap function. 

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1} 

1 0 0 
1
2
 

𝛼𝛼{𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 

0 
1
2
 

1
2
 

1
2
 

Table 7 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-3 trap function. 

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1} 

21
16

 −
3

16
 −

3
16

 
5

16
 

𝛼𝛼{𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 

−
3

16
 

5
16

 
5

16
 

5
16

 

𝛼𝛼{𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+3} 

−
3

16
 

5
16

 
5

16
 

5
16

 

𝛼𝛼{𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 

5
16

 
5

16
 

5
16

 
5

16
 

Table 8 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-4 trap function.  
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In the case of the TRAP𝑘𝑘 function, we only use the order-2 and order-3 traps in the remainder 

of this work, so will simply state the derivations of the order-2 and ordre-3 traps here. The 

coefficients for order-4 and above are derived similarly. 

The Walsh coefficients TRAP2
2 are derived as shown by ( 103 ). 

𝛂𝛂 =
1

22
𝐻𝐻𝐟𝐟 =

1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

2
0
0
1

� =
1
4 �

3
1
1
3

� =

⎣
⎢
⎢
⎢
⎢
⎡
3

4�
1

4�
1

4�
3

4� ⎦
⎥
⎥
⎥
⎥
⎤

 ( 103 ) 

The Walsh coefficients TRAP3
3 are derived as shown by ( 104 ). 

𝛂𝛂 =
1

23
𝐻𝐻𝐟𝐟 =

1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3
0
0
1
0
1
1
2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
8
0
0
4
0
4
4
4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
0
0

1
2�
0

1
2�

1
2�

1
2� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 ( 104 ) 

It should be noted that in practice in the literature, order-4 and order-5 instances of the 

TRAP𝑘𝑘 function are usually used concatenated into a longer problem as additively separate sub-

functions, and are not used as arbitrarily-long order traps.  
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4.3.10 Goldberg’s Fully-Deceptive Order-3 Function 

Goldberg’s fully-deceptive order-3 function (GOLDBERG) [71] [72] [25] is a 3-bit function with 

the following values given by Table 9, and the Walsh coefficients given by Table 10. 

𝑓𝑓111 𝑓𝑓011 𝑓𝑓101 𝑓𝑓001 𝑓𝑓110 𝑓𝑓010 𝑓𝑓100 𝑓𝑓000 

30 0 0 14 0 22 26 28 

Table 9 – Function values for Goldberg’s fully-deceptive order-3 function. 

𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 𝛼𝛼{2} 𝛼𝛼{0,2} 𝛼𝛼{1,2} 𝛼𝛼{0,1,2} 

15 −1 −2 3 −4 5 6 8 

Table 10 – Walsh coefficients for Goldberg’s fully-deceptive order-3 function. 

It should be noted that using Goldberg’s convention for the Walsh functions, the 

coefficients would all be of the same magnitude as above, although all positive except  

𝛼𝛼{0,1,2} = −8. The coefficients specified are adapted for our convention. 

The function GOLDBERG is defined over 3 bits. We present proof of coefficients by directly 

calculating from the Walsh-Hadamard transform as given by ( 105 ). 

𝛂𝛂 =
1

23
𝐻𝐻𝐟𝐟 

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
30

0
0

14
0

22
26
28⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

120
−8
−16

24
−32

40
48
64⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

15
−1
−2

3
−4

5
6
8⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

( 105 ) 
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4.3.11 2-Bit and 3-Bit Function Values and Walsh Coefficients 

As 2-bit and 3-bit functions will be used heavily in this thesis, we present the function 

values for the selected benchmark functions in the case of ℓ = 2 and ℓ = 3. 

Function 𝑓𝑓11 𝑓𝑓01 𝑓𝑓10 𝑓𝑓00 

CONST𝑐𝑐
2 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 

ONEMAX2 2 1 1 0 

ZEROMAX2 0 1 1 2 

BINVAL2 3 2 1 0 

CHECK1D
2  0 1 1 0 

NEEDLE2 1 0 0 0 

LEADING2 2 0 1 0 

TRAP2
2 2 0 0 1 

Table 11 – Function values for benchmark instances in 2-bits. 
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Function 𝑅𝑅𝑓𝑓11 𝑅𝑅𝑓𝑓01 𝑅𝑅𝑓𝑓10 𝑅𝑅𝑓𝑓00 

CONST𝑐𝑐
2 0 0 0 0 

ONEMAX2 3 1 1 0 

ZEROMAX2 0 1 1 3 

BINVAL2 3 2 1 0 

CHECK1D
2  0 2 2 0 

NEEDLE2 3 0 0 0 

LEADING2 3 0 2 0 

TRAP2
2 3 0 0 2 

Table 12 – Ranks for benchmark instances in 2-bits. 
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Here we group the functions by conventional description of complexity and present the 

Walsh coefficients. In a later section we will return to view the complexity of these benchmarks 

based on perturbation and ordinal linkage. 

Function 𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 

Zero-Dimensional 

CONST𝑐𝑐
2 𝑃𝑃 0 0 0 

Univariate 

ONEMAX2 2 
1
2
 

1
2
 0 

ZEROMAX2  2 −
1
2
 −

1
2
 0 

BINVAL2 1
1
2
 

1
2
 1 0 

Bivariate/Multivariate 

CHECK1D
2  

1
2
 0 0 −

1
2
 

NEEDLE2 
1
4
 

1
4
 

1
4
 

1
4
 

LEADING2 
3
4
 

3
4
 

1
4
 

1
4
 

TRAP2
2 

3
4
 

1
4
 

1
4
 

3
4
 

Table 13 – Walsh coefficients of benchmark instances in 2-bits. 
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Function 𝑓𝑓111 𝑓𝑓011 𝑓𝑓101 𝑓𝑓001 𝑓𝑓110 𝑓𝑓010 𝑓𝑓100 𝑓𝑓000 

CONST𝑐𝑐
3 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 

ONEMAX3 3 2 2 1 2 1 1 0 

ZEROMAX3 0 1 1 2 1 2 2 3 

BINVAL3 7 6 5 4 3 2 1 0 

CHECK1D
3  0 1 2 1 1 2 1 0 

NEEDLE3 1 0 0 0 0 0 0 0 

LEADING3 3 0 1 0 2 0 1 0 

TRAP3
3 3 0 0 1 0 1 1 2 

GOLDBERG 30 0 0 14 0 22 26 28 

Table 14 – Function values for benchmark instances in 3-bits. 
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Function 𝑅𝑅𝑓𝑓111 𝑅𝑅𝑓𝑓011 𝑅𝑅𝑓𝑓101 𝑅𝑅𝑓𝑓001 𝑅𝑅𝑓𝑓110 𝑅𝑅𝑓𝑓010 𝑅𝑅𝑓𝑓100 𝑅𝑅𝑓𝑓000 

CONST𝑐𝑐
3 0 0 0 0 0 0 0 0 

ONEMAX3 7 4 4 1 4 1 1 0 

ZEROMAX3 0 1 1 4 1 4 4 7 

BINVAL3 7 6 5 4 3 2 1 0 

CHECK1D
3  0 2 6 2 2 6 2 0 

NEEDLE3 7 0 0 0 0 0 0 0 

LEADING3 7 0 4 0 6 0 4 0 

TRAP3
3 7 0 0 3 0 3 3 6 

GOLDBERG 7 0 0 3 0 4 5 6 

Table 15 – Ranks for benchmark instances in 3-bits. 
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Again, we group the functions by conventional description of complexity and present the 

Walsh coefficients. 

Function 𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 𝛼𝛼{2} 𝛼𝛼{0,2} 𝛼𝛼{1,2} 𝛼𝛼{0,1,2} 

Zero-Dimensional 

CONST𝑐𝑐
3 𝑃𝑃 0 0 0 0 0 0 0 

Univariate 

ONEMAX3 
3
2
 

1
2
 

1
2
 0 

1
2
 0 0 0 

ZEROMAX3 
3
2
 −

1
2
 −

1
2
 0 −

1
2
 0 0 0 

BINVAL3 
7
2
 

1
2
 1 0 2 0 0 0 

Bivariate 

CHECK1D
3  1 0 0 −

1
2
 0 0 −

1
2
 0 

Multivariate 

NEEDLE3 
1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

LEADING3 
7
8
 

7
8
 

3
8
 

3
8
 

1
8
 

1
8
 

1
8
 

1
8
 

TRAP3
3 1 0 0 

1
2
 0 

1
2
 

1
2
 

1
2
 

GOLDBERG  15 −1 −2 3 −4 5 6 8 

Table 16 – Walsh coefficients of benchmark instances in 3-bits. 
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4.4 1-Bit Pseudo-Boolean Functions 

For 1-bit, every function is a member of one of three classes. The classes are listed in 

Table 17. 

We compute the Walsh coefficients of a 1-bit function as shown in ( 106 ) 

𝛂𝛂 =
1

20
𝐻𝐻0𝐟𝐟 

�
𝛼𝛼∅
𝛼𝛼{0}

� =
1
2 �

1 1
1 −1�   �

𝑓𝑓1
𝑓𝑓0
� 

�
𝛼𝛼∅
𝛼𝛼{0}

� = �

1
2

(𝑓𝑓1 + 𝑓𝑓0)

1
2

(𝑓𝑓1 − 𝑓𝑓0)
� 

( 106 ) 

As in the general case – the constant term 𝛼𝛼∅ is the mean value of the function. The other 

coefficient 𝛼𝛼{0} is half of the difference between the function values. This is zero in the case of 

a constant function, positive if 𝑓𝑓0 < 𝑓𝑓1, and negative if 𝑓𝑓0 > 𝑓𝑓1. 

If 𝑓𝑓0 = 𝑓𝑓1, the linkage partition class is Γ = ∅, otherwise it is Γ = {{𝑋𝑋0}}. 

The three classes for 1-bit functions are summarised in Table 17. 

Class Condition 𝛼𝛼{0} Linkage Example 

[0 0]  𝑓𝑓0 = 𝑓𝑓1  zero ∅  CONST2  

[1 0]  𝑓𝑓0 < 𝑓𝑓1  positive {{𝑋𝑋0}}  ONEMAX2  

[0 1]  𝑓𝑓0 > 𝑓𝑓1  negative {{𝑋𝑋0}}  ZEROMAX2  

Table 17 – The number of function classes in 1-bit for a given number of distinct fitness 

levels (number of ranks). There are 3 distinct classes for 1-bit functions. 
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4.5 Counting Function Classes 

In this section, we discuss counting the number of classes for a given problem length. This 

motivates our focus on 2-bit and 3-bit problems for the following survey. 

An injective function is one which has a one-to-one mapping of elements of the domain to 

elements of the image, i.e. no two bit strings have the same fitness. The number of injective 

function classes is given by the factorial 2ℓ!. To calculate the total number of classes including 

non-injective functions we define a function 𝑡𝑡(ℓ), for a given bit string length ℓ, this gives the 

total number of function classes for a given length. The function 𝑡𝑡(ℓ) is derived by summing 

over the number of classes for a given number of ranks, 𝑂𝑂, which we will express as a function, 

𝑃𝑃(𝑂𝑂, ℓ). 

For bit string length ℓ, a class 𝐶𝐶 is a vector of 2ℓ elements. For 𝑂𝑂 ranks, each element is 

an integer from 0 to 𝑂𝑂 − 1 inclusive. The number of possibilities is bounded above by 𝑂𝑂2ℓ. At 

each value for 𝑂𝑂 we must consider that some vector permutations will contain fewer than 𝑂𝑂 

distinct ranks, e.g. for 𝑂𝑂 = 2, the vector [1 1 … 1] does not represent a valid class as it does 

not contain exactly 2 distinct ranks. The class for the constant function is the class [0 0 … 0]. 

To avoid counting invalid vectors, we iteratively subtract for each 𝑘𝑘 < 𝑂𝑂 the number of classes 

at this number of ranks: 𝑃𝑃(𝑘𝑘, ℓ) multiplied by the number of ways in which they can be arrange 

in 𝑂𝑂 ranks, which is the binomial coefficient, or the number of ways to choose 𝑘𝑘 elements from 

𝑂𝑂, written 𝐶𝐶𝑘𝑘𝑛𝑛. The number of classes for 𝑂𝑂 ranks for problem length ℓ is given by ( 107 ). 

𝑃𝑃(𝑂𝑂, ℓ) = 𝑂𝑂2ℓ −� 𝑃𝑃(𝑘𝑘, ℓ)𝐶𝐶𝑘𝑘𝑛𝑛
𝑛𝑛−1

𝑘𝑘=1

 

where 𝐶𝐶𝑘𝑘𝑛𝑛 =
𝑂𝑂!

𝑘𝑘! (𝑂𝑂 − 𝑘𝑘)!
 

( 107 ) 

Note that the base case of this recursive definition is implicit, since when 𝑂𝑂 = 1, the sum is 

empty over the range ∑ …∅ = 0 hence, 𝑃𝑃(1, ℓ) = 12ℓ + 0 = 1. 

The number of distinct ranks 𝑂𝑂 can vary from 1 to 2ℓ. Summing the value of 𝑃𝑃(𝑂𝑂, ℓ) for the 

cases 1 ≤ 𝑂𝑂 ≤ 2ℓ ( 108, p. 78 ) gives the total number of classes 𝑡𝑡(ℓ) for a specified problem 

length ℓ, by summing over 𝑃𝑃(𝑂𝑂, ℓ) for values 1 ≤ 𝑂𝑂 ≤ 2ℓ. 
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𝑡𝑡(ℓ) = �𝑃𝑃(𝑂𝑂, ℓ)
2ℓ

𝑛𝑛=1

 ( 108 ) 

For comparison, values for 𝑡𝑡(ℓ) have been given in Table 18 for 0 ≤ ℓ ≤ 8. 

Length, ℓ Solution Space, 2ℓ Injective Classes, 2ℓ! All Classes, 𝑡𝑡(ℓ) 

0  1  1  1  

1  2  2  3  

2  4  24  75  

3  8  40 320  545 835  

4  16  20 922 789 888 000  5 315 654 681 981 355  

5  32  ~ 2.631 × 1035  ~ 2.355 × 1040  

6  64  ~ 1.269 × 1089  ~ 1.408 × 1099  

7  128  ~ 3.856 × 10215  ~ 6.586 × 10235  

8  256  ~ 8.578 × 10506  ~ 3.469 × 10547  

Table 18 – Number of injective function classes and total number of function classes for a 

given length of pseudo-Boolean functions. 

As the number of classes grows superexponentially with the length of the problem (see 

Table 18), the survey of function classes looks at 3-bits as this is the largest set which remains 

amenable to exhaustive survey. We will first discuss 2-bit classes, and then apply the same 

methods to 3-bit classes. The approach is computationally intractable as ℓ increases, however, 

we will be able to draw conclusions from the survey of 2-bit and 3-bit classes which are general 

for ℓ-dimensions. 

4.6 Summary 

In this chapter we have given our definitions for rank equivalence and directed ordinal 

linkage, based on function classes invariant under monotonic operators. We also defined the 

benchmark functions we will use throughout the thesis, and summarised the small space of 
{0, 1} → ℝ functions (1-bit pseudo-Boolean functions). In the following chapters we will analyse 

2-bit and 3-bit spaces similarly.  
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5 2-Bit Pseudo-Boolean Functions 

 

In this chapter we explore the infinite set of pseudo-Boolean functions in 2-dimensions by 

using a finite set of equivalence classes. This chapter provides a detailed description of the 

aforementioned space of classes which we refer to as 2 bit classes. We completely determine 

the possible and minimal Walsh structures of these classes and the precedence profiles and 

connect the Walsh structures with ordinal linkage, then we discuss algorithmic steps to solve 

function classes. Following chapters will extend the work into higher dimensions. 

5.1 Counting 2-Bit Classes 

A 2-bit equivalence class is completely determined by specifying ranks for the 4 possible 

values of 𝐱𝐱. Previously stated is the general definition of a class vector ( 62, p. 50 ). For 

convenience we restate the specific case for 2-bit pseudo-Boolean functions as ( 109 ). 

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓11 𝑅𝑅𝑓𝑓01 𝑅𝑅𝑓𝑓10 𝑅𝑅𝑓𝑓00� 

where 𝑅𝑅𝑓𝑓
𝑥𝑥0𝑥𝑥1 = R𝑓𝑓([𝑥𝑥0 𝑥𝑥1]) 

and R𝑓𝑓(𝐱𝐱) = |{𝐲𝐲:𝐲𝐲 ∈ {0, 1}2 ∧ 𝑓𝑓(𝐲𝐲) < 𝑓𝑓(𝐱𝐱)}| 

( 109 ) 

Table 19 shows the number of 2-bit function classes with a breakdown of number of 

classes for each valid number of ranks. The number of classes for 4 ranks (24) is the number 

of injective function classes. 

Num. Ranks, 𝑂𝑂 Num. Classes, 𝑃𝑃(𝑂𝑂, 2) 

1  1  

2  14  

3  36  

4  24  

Total 75  

Table 19 – The number of function classes in 2-bits for a given number of distinct fitness 

levels (number of ranks). There are 75 distinct classes for 2-bit functions.  
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5.2 Walsh Families and Delta Conditions 

As an example, take the class [3 1 0 1]. This class corresponds to the infinite set of 

functions whose values are laid out on the real number line as shown in Figure 8. 

 

Figure 8 – Mapping fitness levels of the general instance of class [3 1 0 1] to the real 

number line ℝ. 

The values of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, 𝛿𝛿0, and 𝛿𝛿1 specify an instance of the class. For example, the function 

𝐟𝐟 = [9.0 −0.7 −6.1 −0.7]T is an instance defined by 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = −6.1, 𝛿𝛿0 = 5.4, and 𝛿𝛿1 = 9.7. It 

should be noted that while any function values, including 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 may be negative or zero, the 

values for 𝛿𝛿𝑖𝑖 are always strictly positive. 

By stating the fitness values in the fitness vector 𝐟𝐟 in terms of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, 𝛿𝛿0, and 𝛿𝛿1we get this 

class’ delta expansion as given by ( 110 ). 

�

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0

� ( 110 ) 

Recall the expression for the Walsh-Hadamard transform is 𝛂𝛂 = 1
2ℓ
𝐻𝐻𝐟𝐟 ( 43, p. 38 ). Here 

we substitute the values of the fitness vector with the delta expansion for this class as given 

by ( 111 ). 

�

𝛼𝛼∅
𝛼𝛼{0}
𝛼𝛼{1}
𝛼𝛼{0,1}

� =
1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0

� =
1
4
⎣
⎢
⎢
⎡ 4𝑓𝑓̅
𝛿𝛿1 − 𝛿𝛿0
𝛿𝛿1 + 𝛿𝛿0
𝛿𝛿1 + 𝛿𝛿0⎦

⎥
⎥
⎤
 ( 111 ) 

The first coefficient, 𝛼𝛼∅ is the arithmetic mean of the four values. We do not consider this 

constant term to be part of the structure, since 𝛼𝛼∅ ≠ 0 is never a necessary condition for 

preserving the ranks, it simply translates all function values along the real number line. 
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The second coefficient, 𝛼𝛼{0} is given by the fitness vector times one quarter the second 

row of the Hadamard matrix. By substituting the delta expansion of the finesses as in ( 112 ) 

below. 

𝛼𝛼{0} = 1
4
(𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝛿𝛿0 + 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝛿𝛿0) 

= 1
4
(𝛿𝛿1 − 𝛿𝛿0) 

( 112 ) 

Here we show that 𝛼𝛼{0} = 1
4
(𝛿𝛿1 − 𝛿𝛿0). Hence, 𝛼𝛼{0} is zero if and only if 𝛿𝛿0 = 𝛿𝛿1. This element 

of the structure may be present but is unnecessary, since there exists an instance of the class 

where it is zero. We refer to the expression 𝛿𝛿0 = 𝛿𝛿1 as this coefficient’s delta condition. 

There is no valid (positive) assignment of values to 𝛿𝛿0 and 𝛿𝛿1 which makes 14(𝛿𝛿0 + 𝛿𝛿1) zero, 

hence we say that it is necessary, since it is non-zero in all instances of the class. No delta 

condition exists for 𝛼𝛼{1} or 𝛼𝛼{0,1} in this example class. 

Returning to the general case; ignoring the constant term, there are 3 coefficients in the 

Walsh expansion. Considering each to be either zero or non-zero, there are 8 combinations. 

We enumerate these possibilities using the IDs 0 to 7 as given by Table 21 (p. 82). 

We give an ID (which is a power of two) and pictorial representation to each of the possible 

non-zero Walsh coefficients. The ID of a structure is the sum of the IDs of the individual non-

zero Walsh coefficients. The symbols and IDs are given in Table 20. 

Symbol and ID 
   

Non-Zero Coefficients 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 

Table 20 – Symbols and IDs for possible non-zero Walsh coefficients for 2-bit. 
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ID Symbol Non-Zero Coefficients Description 

0 
 

{ }  All coefficients zero. 

1 
 
�𝛼𝛼{0}�  Only univariate coefficient 0 non-zero. 

2 
 
�𝛼𝛼{1}�  Only univariate coefficient 1 non-zero. 

3 
 
�𝛼𝛼{0},𝛼𝛼{1}�  Bivariate coefficient zero. 

4 
 
�𝛼𝛼{0,1}�  Only bivariate coefficient non-zero 

5 
 
�𝛼𝛼{0},𝛼𝛼{0,1}�  Univariate coefficient 0 zero. 

6 
 
�𝛼𝛼{1},𝛼𝛼{0,1}�  Univariate coefficient 1 zero. 

7 
 
�𝛼𝛼{0},𝛼𝛼{1},𝛼𝛼{0,1}�  All three coefficients non-zero. 

Table 21 – Possible combinations of zero and non-zero coefficients for 2-bits. 

We define the Walsh family of a class as the set of IDs for each instance of the class. For 

example if the non-zero Walsh coefficients may be either �𝛼𝛼{1},𝛼𝛼{0,1}� (structure 6) or 

�𝛼𝛼{0},𝛼𝛼{1},𝛼𝛼{0,1}� (structure 7), the Walsh family is {6, 7}. 

 

Figure 9 – An example Walsh family: {6, 7}. This is the Walsh family of 12 distinct classes. 

The structure which is a subset of all possible structures for the family we refer to as the 

minimal structure. In this example of the family {6, 7}, the structure without the unnecessary 

coefficient – structure 6 – is the minimal structure of this class. 

By taking the Walsh-Hadamard transform of the delta expansion of all 75 equivalence 

classes, we obtain Table 22 (p. 83), which shows the Walsh family for each class. The result 

is summarised in Table 23 (p. 84). 
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Class Family  Class Family  Class Family 

[0 0 0 0] † {0}   [3 0 1 2] † {5, 7}   [2 0 1 3] † {6, 7}  

[1 1 1 0] † {7}   [0 1 1 1] † {7}   [0 2 2 1] † {7}  

[1 1 0 1] † {7}   [0 2 2 0] † {4}   [0 2 1 2] † {7}  

[2 2 0 0] † {2}   [1 2 2 0] † {7}   [0 3 1 1] † {5, 7}  

[2 2 1 0] † {7}   [0 2 0 2] † {1}   [0 3 2 0] † {7}  

[2 2 0 1] † {7}   [0 3 0 0] † {7}   [1 3 2 0] † {6, 7}  

[1 0 1 1] † {7}   [1 3 1 0] † {6, 7}   [0 3 0 2] † {7}  

[2 0 2 0] † {1}   [1 2 0 2] † {7}   [1 3 0 2] † {3, 7}  

[2 1 2 0] † {7}   [1 3 0 1] † {3, 7}   [0 1 2 2] † {7}  

[2 0 0 2] † {4}   [2 3 0 0] † {7}   [0 1 3 1] † {6, 7}  

[3 0 0 0] † {7}   [2 3 1 0] † {6, 7}   [0 2 3 0] † {7}  

[3 1 1 0] † {3, 7}   [2 3 0 1] † {3, 7}   [1 2 3 0] † {5, 7}  

[2 1 0 2] † {7}   [0 0 2 2] † {2}   [0 1 1 3] † {3, 7}  

[3 1 0 1] † {6, 7}   [0 0 3 0] † {7}   [0 2 0 3] † {7}  

[3 2 0 0] † {7}   [1 1 3 0] † {5, 7}   [1 2 0 3] † {5, 7}  

[3 2 1 0] † {3, 7}   [0 0 0 3] † {7}   [0 0 3 2] † {7}  

[3 2 0 1] † {6, 7}   [1 1 0 3] † {5, 7}   [0 0 2 3] † {7}  

[2 0 2 1] † {7}   [1 0 2 2] † {7}   [1 0 3 2] † {3, 7}  

[2 0 1 2] † {7}   [1 0 3 1] † {3, 7}   [1 0 2 3] † {6, 7}  

[3 0 1 1] † {5, 7}   [2 0 3 0] † {7}   [0 3 2 1] † {5, 7}  

[3 0 2 0] † {7}   [2 1 3 0] † {5, 7}   [0 3 1 2] † {5, 7}  

[3 1 2 0] † {3, 7}   [1 0 1 3] † {6, 7}   [0 2 3 1] † {6, 7}  

[3 0 0 2] † {7}   [2 0 0 3] † {7}   [0 2 1 3] † {3, 7}  

[3 1 0 2] † {6, 7}   [2 1 0 3] † {5, 7}   [0 1 3 2] † {6, 7}  

[3 0 2 1] † {5, 7}   [2 0 3 1] † {3, 7}   [0 1 2 3] † {3, 7}  

Table 22 – Walsh families of all 2-bit equivalence classes. Result first published in [3]. 

(† denotes one of the 24 classes of injective functions)  
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Family Symbol Deltas Classes Example 

{0} 
 

0 1 [0 0 0 0] – CONST2 

{1} 
 

1 2 [2 0 2 0]  

{2} 
 

1 2 [2 2 0 0]  

{3, 7} 
 

2 4 
[3 1 1 0] – ONEMAX2 

[0 1 1 3] – ZEROMAX2 

3 8 [3 2 1 0] – BINVAL2 

{4} 
 

1 2 [0 2 2 0] – CHECK1D
2  

{5, 7} 
 

2 4 [3 0 1 1]  

3 8 [3 0 2 1]  

{6, 7} 
 

2 4 [3 1 0 1]  

3 8 [3 2 0 1]  

{7} 
 

1 8 [3 0 0 0] – NEEDLE2 

2 24 
[3 0 2 0] – LEADING2 

[3 0 0 2] – TRAP2
2 

Table 23 – Summary of Walsh families of 2-bit classes. 

From this result, we notice that only the above 8 distinct families are possible in the set of 

2-bit pseudo-Boolean functions, and that each Walsh coefficient is either necessarily zero, 

necessarily non-zero, or optional (conditioned on a relationship between the 𝛿𝛿𝑖𝑖 values, but 

independent of any other coefficient). 
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Further, we observe that the classes corresponding to all benchmark functions listed may 

have only their canonical structures (the structure of the named instance) with the exception 

of the classes of the univariate functions ONEMAX2, ZEROMAX2, and BINVAL2. These, and all 

other fully univariate (with both univariate coefficients necessarily non-zero) classes in 2-bits 

may contain an optionally non-zero bivariate coefficient. 

In the case of ONEMAX2, or the ZEROMAX2, the bivariate coefficient 𝛼𝛼{0,1} = 1
4
(𝛿𝛿1 − 𝛿𝛿0) which 

is zero if and only if 𝛿𝛿0 (the fitness increase from changing either bit in the string [0 0] to 1) is 

equal to 𝛿𝛿1 (the fitness increase from then setting the remaining bit to 1 to reach the string 

[1 1]). If this is not the case, there is non-additive interaction between the two variables, which 

is modelled by a non-zero bivariate coefficient.  

We define a delta condition as an equation in terms of the delta values 𝛿𝛿𝑖𝑖 which, if satisfied, 

will mean that a Walsh coefficient is zero. For example, in the above example, if and only if the 

delta condition 𝛿𝛿0 = 𝛿𝛿1 is satisfied, then 𝛼𝛼{0,1} = 0. We say that a coefficient does not have a 

delta condition in the event that either the coefficient is always zero, or never zero. 

In the case of BINVAL2, the bivariate coefficient 𝛼𝛼{0,1} = 1
4
(𝛿𝛿2 − 𝛿𝛿0) is zero if and only if 𝛿𝛿0 

(the fitness increase from flipping the 𝑥𝑥0 in [0 0] to [1 0]) is equal to 𝛿𝛿2 (the fitness increase 

from flipping the same 𝑥𝑥0 in [0 1] to [1 1]). If this is not the case, then there is a non-additive 

interaction where the second variable affects the first, which is modelled by a non-zero 

bivariate coefficient. 

Similarly, any 2-bit fully univariate classes –  which are those where the univariate terms 

must be non-zero, but the variables are additively separable – will have a delta condition which 

makes the bivariate coefficient non-zero if the function is not additively separable. This is true 

of the class to which the ONEMAX2 belongs, and the class to which the BINVAL2 belongs, and 

all other fully univariate classes in 2-bits contain a function which is a relabelling and/or 

permutations of one of these classes. Relabellings and permutations do not change the set of 

non-zero Walsh coefficients, hence, the Walsh family {3, 7} exists, but {3} alone does not. 

Interestingly, when the two necessary parts of structure are one univariate coefficient and 

the bivariate coefficient, we get the family {5, 7} or {6, 7} but never the family {5} or {6}. The 

explanation for this is not in terms of additively separable functions (since all of these instances 

require the bivariate coefficient and are hence not additively separable). However, it can be 

shown that the rank vectors for each of the 12 classes in one of these families is a permutation 

of the rank vector of one of the 12 fully univariate classes. It follows that the same delta 

condition from 𝛼𝛼{0,1} is permuted to either 𝛼𝛼{0} or 𝛼𝛼{1}, since the delta conditions are derived 
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from the expression in the deltas 𝛿𝛿𝑖𝑖 which equals the value of the coefficient. These 

expressions are permuted by the permutation of the fitness vector. Hence, the same reasoning 

which explains why fully univariate classes have an unnecessary bivariate term, explains why 

classes with a necessary bivariate term and one necessary univariate term also have an 

unnecessary univariate term.  

Examining how the number of deltas relates to the delta conditions – for 2 deltas, there is 

an unnecessary coefficient when there are 2 equal fitnesses in the middle with one below and 

one above (e.g. [3 0 1 1]). If there is an unnecessary coefficient, the delta condition is 𝛿𝛿0 =

𝛿𝛿1 and occurs for whichever row of the matrix multiplication produces the alignment shown in 

( 113 ). We observe from the exhaustive survey that one such alignment always exists. 

4𝛼𝛼𝑘𝑘 = ± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1) 

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0) 

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0) 

± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛) 

( 113 ) 

Similarly we observer that an unnecessary coefficient cannot exist when there are two equal 

solutions at the lowest fitness (e.g. [3 2 0 0] or the highest fitness [1 0 2 2]). 

If there are 3 deltas, an unnecessary coefficient exists with the condition 𝛿𝛿0 = 𝛿𝛿2 for 

whichever row of the matrix multiplication produces the alignment shown in ( 114 ). One such 

alignment always exists. 

4𝛼𝛼𝑘𝑘 = ± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1 + 𝛿𝛿2) 

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1) 

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0) 

± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛) 

( 114 ) 

In general the delta condition for 2-bit classes is always when two delta values are equal. 

Also, note that this means that all 24 injective functions classes in 2-bits contain one 

optional coefficient. This is because any injective function classes in 2-bits are precisely those 

with 3 deltas. It is noteworthy that the three benchmark functions regarded as the hardest in 

our 2-bit set, namely NEEDLE2, LEADING2, and TRAP2
2, are all non-injective functions, and are thus 

able to contain no unnecessary structure, in all of these cases containing complete structure.  
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We show that the number of structures is generally higher for classes with more deltas. 

The small number of classes and small number of structures and deltas makes this trend 

difficult to see. See Table 24. Later we will show the equivalent result for 3-bits.  

Number of 
Structures 

Number of Deltas 

0 1 2 3 

1 1 14 24 0  

2 0  0  12 24 

Table 24 – Number of classes for each number of deltas and number of possible Walsh 

structures for 2-bit classes. 

Grouping the classes by families, we can clearly see that for 2-bits, for all theoretical 

structures 0 − 7 are represented, i.e. there exists a class with that structure. We can show by 

construction this is true since there must be at least one instance of any structure, since the 

structures represent a partitioning of the ℝ4 vector space of Walsh coefficients. 

Additionally, if a class can be represented by a single coefficient, this is the only possible 

structure for this class. If said structure is a univariate term, then the class consists of functions 

of that variable only, meaning that adding another structure element (involving the other 

variable) would not produce a function in the same class since the resulting function would be 

a function of both variables. If said structure is the bivariate term, then the fitness is a function 

of the relationship between the variable (𝑋𝑋0 = 𝑋𝑋1 or 𝑋𝑋0 ≠ 𝑋𝑋1) and there is no fitness contribution 

of the individual variables, hence adding one would not produce a function in the same class. 

We will also see this pattern later for 3-bits, i.e. that all theoretical structures are 

represented, and that when a class can be represented by a single coefficient, then that is the 

only possible structure for that class. 
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5.3 Automated Calculation of Walsh Families 

Earlier, we discussed using the delta expansion of a function to compute delta conditions, 

and using the delta conditions to determine Walsh families. An alternate way to discover the 

Walsh families is to generate an exhaustive collection of functions given certain constraints. 

Recall that reduced structure is caused by equivalent delta values. Hence, it is possible to 

satisfy (or not satisfy) any given delta condition by limiting the co-domain to only integer fitness 

values. There will be some finite range of integers necessary to construct all possible structure. 

We represent this range as 0 up to and including a given bound 𝑈𝑈. The form of these functions 

is given by ( 115 ). 

𝑓𝑓 ∶ {0, 1}2 → {0, 1, … ,𝑈𝑈} ( 115 ) 

Each function is transformed using the Walsh-Hadamard transform and normalised by 

discarding the 𝛼𝛼∅ term. Recall that the structure of the function is defined as the set of non-

zero coefficients, e.g. {𝛼𝛼{0},𝛼𝛼{0,1}} we enumerate as the structure 5. 

For each function transformed, the class and structure are recorded. If this 

(class, structure) tuple has not been seen before for some smaller value of 𝑈𝑈, it is recorded as 

a discovered class-structure pair. 

 Bound (𝑈𝑈) 

0 1 2 3 4 ≥ 5 

N
um

be
r o

f D
el

ta
s 0 1 0 0 0 0 0 … 

1 0 14 0 0 0 0 … 

2 0 0 36 12 0 0 … 

3 0 0 0 24 24 0 … 

Table 25 – Number of discovered valid structures for pseudo-Boolean classes in 2 

dimensions. Table values state the number of structures discovered at the specified bound 

which were not discovered at a smaller bound. 

As we increase the radius 𝑈𝑈, we record the discovered structures. These are shown in 

Table 25. We see that all class-structure pairs are discovered by trying all values of 𝑈𝑈 ≤ 4, and 

no further class-structure pairs are discovered for larger bounds. 
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We can see that delta condition 𝛿𝛿0 = 𝛿𝛿2 can be satisfied with function image {0, 1, 2, 3} (i.e. 

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, 𝛿𝛿0 = 𝛿𝛿1 = 𝛿𝛿2 = 1) and unsatisfied for the function image {0, 1, 2, 4} (i.e. 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, , 

𝛿𝛿0 = 𝛿𝛿1 = 1, 𝛿𝛿2 = 2, or 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, , 𝛿𝛿0 = 𝛿𝛿2 = 1, 𝛿𝛿0 = 2). Thus, a bound of 𝑈𝑈 = 4 can produce 

any structure which can exist for 2-bits where the codomain is the set of real numbers. 

Likewise, for classes with the delta condition 𝛿𝛿0 = 𝛿𝛿1, the bound of 3 is sufficient. 

We see therefore that it is sufficient to set the bound to 𝑈𝑈 = 4 to correctly identify the 

Walsh families for each 2-bit class using exhaustive evaluation. 
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5.4 Directed Ordinal Linkage and Epistasis 

In genetics, epistasis is the study of gene interaction. For 2-bit functions we can compare 

three chosen functions, the ONEMAX2, LEADING2, and CHECK1D
2 . All three functions’ fitness values 

are shown in Table 26. 

 ONEMAX2  LEADING2  CHECK1D
2   

𝑋𝑋0 + 𝑋𝑋1 
𝑥𝑥0 

𝑋𝑋0 → 𝑋𝑋1 
𝑥𝑥0 

𝑋𝑋0𝑋𝑋1   
𝑥𝑥0  

0 1 0 1 0 1  

 

𝑥𝑥1 

0 0 1 

 𝑥𝑥1 

0 0 1 
 

𝑥𝑥1 

0 0 1 
 

1 1 2 1 0 2 1 1 0 

Table 26 – Comparison of fitness values from variable interactions of ONEMAX2, LEADING2, 

CHECK1D
2  functions. 

We see the ones fitness is an additive contribution of the two variables with the linkage 

partitioned into two groups of one variable each, 𝑋𝑋0 + 𝑋𝑋1. For the checkerboard 1D the 

appropriate setting of each variable is dependent on the other, in the case of two bits, the 

fitness is the product of the two variables 𝑋𝑋0𝑋𝑋1, although not true for higher dimensions, we 

still use this notation explained in section 4.2. The Leading ones function is an example of 

directed linkage, for which we use the notation 𝑋𝑋0 → 𝑋𝑋1. The fitness landscapes are plotted in 

Figure 10. 

 ONEMAX2 

 

LEADING2  CHECK1D
2   

   

Figure 10 – Comparison of fitness landscapes of ONEMAX2, LEADING2, CHECK1D
2  functions. 
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Looking at these fitness landscapes we compare the adjacent vertices and assign >, =, 

or < to each edge corresponding to the difference in the sign (𝑠𝑠𝑔𝑔𝑂𝑂) of the fitness difference, 

+1, −, or −1 as in section 4.2 The illustration in Figure 11 shows the comparison of signs on 

parallel edges to detect linkage. 

 ONEMAX2 

 

LEADING2  CHECK1D
2   

   

Figure 11 – Detecting directed ordinal linkage of ONEMAX2, LEADING2, CHECK1D
2  functions. The 

dotted lines represent parallel edges with different signs in the fitness difference of the two 

candidates on that edge of the Hamming space. For instance, with LEADING2, as we move 

from 0 to 1 on variable 𝑋𝑋0, the sign of the fitness difference on 𝑋𝑋1 changes, therefore 𝑋𝑋1 is 

dependant on 𝑋𝑋0 (written as 𝑋𝑋0 → 𝑋𝑋1). 
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5.5 Precedence Networks and Precedence Profiles 

Next we look at the algorithmic steps we can use to solve a problem. A non-revisiting 

algorithm (one which does not evaluate the same candidate twice) will evaluate some or all of 

the 4 candidates in the solution space for a 2-bit function, and terminate. We consider how 

different algorithms may visit the different linkage partitions of a problem. A precedence 

network refers to a directed acyclic graph where vertices represent linkage groups. These 

precedence networks imply algorithms to locate a global optimum. The algorithms defined by 

these networks or the networks themselves may be refer to as precedence networks. 

ID Symbol Linkage Cost Algorithm 

A0 
 

𝑋𝑋0𝑋𝑋1 4 
Exhaustive search – all 4 candidates are 

evaluated in an arbitrary order. 

B0 
 
𝑋𝑋0 → 𝑋𝑋1 3 

Both values for 𝑋𝑋0 tried with an arbitrary setting 

of 𝑋𝑋1, then optimal setting for 𝑋𝑋0 tried with the 

remaining setting of 𝑋𝑋1. 

B1 
 
𝑋𝑋1 → 𝑋𝑋0 3 

Both values for 𝑋𝑋1 tried with an arbitrary setting 

of 𝑋𝑋0, then optimal setting for 𝑋𝑋1 tried with the 

remaining setting of 𝑋𝑋0. 

C0 
 
𝑋𝑋1 + 𝑋𝑋0 3 Use either the algorithm for B0 or B1. (arbitrary) 

Table 27 – Description of all 4 precedence networks for 2-bit functions. The precedence 

networks have been denoted A0, B0, B1 and C0 for reference. A, B, and C name the three 

possible arrangement invariant under relabelling, since the case B has two possible 

relabellings, they are numbered B0 and B0. 
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Since the network C0 does not specify the order in which to visit linkage partitions, we 

consider only the networks {A0, B0, B1} for this analysis. We call these three networks the fully-

specified precedence networks. As specified above, the C0 case can be solved by either B0 or 

B1. To determine the cost of a fully specified network, take the number of arrangements of the 

first linkage group, plus one less the number of arrangements of the remaining groups. This 

cost function is given by ( 119 ) and applies to any dimensionality of precedence network. 

𝑃𝑃𝑐𝑐𝑠𝑠𝑡𝑡(𝛄𝛄) = 2|𝛾𝛾0| + ��2|𝛾𝛾𝑖𝑖| − 1�
𝑛𝑛−1

𝑖𝑖=1

 ( 116 ) 

To determine the cost of network C0, take the arithmetic mean of the cost for B0 and B1 to 

obtain the expected cost. Since in this case the costs for B0 and B1 is the same, it is the same 

for C0. 

Other options for evaluating the network C0 exist, but are not more efficient than 3 function 

evaluations. The implications of including parallel processing on this analysis – including the 

cases for 3-bits – is returned to in chapter 6. 

 

Figure 12 – All 2-bit fully-specified precedence networks represented pictorially. Connecting 

arrows show the relationship of which network will solve every class solvable by another 

class. 

Using the fully-specified 2-bit precedence networks {A0, B0, B1}, we can construct a simple 

hierarchy, wherein A0 solves any function class solvable by either B0 or B1, although it requires 

more function evaluations. 

We now run each algorithm {A0, B0, B1} on each class and return the probability that a 

global optimum will be reached for a given class 𝑃𝑃 as [𝑃𝑃(A0, c) 𝑃𝑃(B0, c) 𝑃𝑃(B1, c)] where 

𝑃𝑃(𝑂𝑂, c) is the probability of algorithm 𝑂𝑂 reaching the optimum of a function in class 𝑃𝑃. This result 

we call the precedence profile of a class. For example, the class [3 1 0 1] has the precedence 
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profile [1 1
2�

3
4� ] since the algorithm 𝐴𝐴1 always reaches the global optimum of this class, the 

algorithm 𝐸𝐸0 reaches the global optimum with 1 2�  probability, and the algorithm 𝐸𝐸1 reaches the 

global optimum with 3 4�  probability. If choosing one of these algorithms at random, the 

probability of reaching the global optimum is the average 3 4� , which we use as a measure of 

problem difficulty. 

Table 28 shows the precedence profiles of all 75 2-bit function classes.  
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Class Profile  Class Profile  Class Profile 

[0 0 0 0] † [1 1 1]  [3 0 1 2] † [1 1
2�

1
2� ]  [2 0 1 3] † [1 1

2�
1
2� ] 

[1 1 1 0] † [1 1 1]  [0 1 1 1] † [1 1 1]  [0 2 2 1] † [1 1 1] 

[1 1 0 1] † [1 1 1]  [0 2 2 0] † [1 1 1]  [0 2 1 2] † [1 1 1] 

[2 2 0 0] † [1 1 1]  [1 2 2 0] † [1 1 1]  [0 3 1 1] † [1 3
4� 1

2� ] 

[2 2 1 0] † [1 1 1]  [0 2 0 2] † [1 1 1]  [0 3 2 0] † [1 1
2�

1
2� ] 

[2 2 0 1] † [1 1 1]  [0 3 0 0] † [1 3 4� 3 4� ]  [1 3 2 0] † [1 1
2�

1
2� ] 

[1 0 1 1] † [1 1 1]  [1 3 1 0] † [1 1
2�

3
4� ]  [0 3 0 2] † [1 1 3 4� ] 

[2 0 2 0] † [1 1 1]  [1 2 0 2] † [1 1 1]  [1 3 0 2] † [1 1 1] 

[2 1 2 0] † [1 1 1]  [1 3 0 1] † [1 1 1]  [0 1 2 2] † [1 1 1] 

[2 0 0 2] † [1 1 1]  [2 3 0 0] † [1 3 4� 1]  [0 1 3 1] † [1 1
2�

3
4� ] 

[3 0 0 0] † [1 3 4� 3 4� ]  [2 3 1 0] † [1 1
2� 1]  [0 2 3 0] † [1 1

2�
1
2� ] 

[3 1 1 0] † [1 1 1]  [2 3 0 1] † [1 1 1]  [1 2 3 0] † [1 1
2�

1
2� ] 

[2 1 0 2] † [1 1 1]  [0 0 2 2] † [1 1 1]  [0 1 1 3] † [1 1 1] 

[3 1 0 1] † [1 1
2�

3
4� ]  [0 0 3 0] † [1 3 4� 3 4� ]  [0 2 0 3] † [1 1 3 4� ] 

[3 2 0 0] † [1 3 4� 1]  [1 1 3 0] † [1 3
4� 1

2� ]  [1 2 0 3] † [1 1 1
2� ] 

[3 2 1 0] † [1 1 1]  [0 0 0 3] † [1 3 4� 3 4� ]  [0 0 3 2] † [1 3 4� 1] 

[3 2 0 1] † [1 1
2� 1]  [1 1 0 3] † [1 3

4� 1
2� ]  [0 0 2 3] † [1 3 4� 1] 

[2 0 2 1] † [1 1 1]  [1 0 2 2] † [1 1 1]  [1 0 3 2] † [1 1 1] 

[2 0 1 2] † [1 1 1]  [1 0 3 1] † [1 1 1]  [1 0 2 3] † [1 1
2� 1] 

[3 0 1 1] † [1 3
4� 1

2� ]  [2 0 3 0] † [1 1 3 4� ]  [0 3 2 1] † [1 1
2�

1
2� ] 

[3 0 2 0] † [1 1 3 4� ]  [2 1 3 0] † [1 1 1
2� ]  [0 3 1 2] † [1 1 1

2� ] 

[3 1 2 0] † [1 1 1]  [1 0 1 3] † [1 1
2�

3
4� ]  [0 2 3 1] † [1 1

2�
1
2� ] 

[3 0 0 2] † [1 1
2�

1
2� ]  [2 0 0 3] † [1 1

2�
1
2� ]  [0 2 1 3] † [1 1 1] 

[3 1 0 2] † [1 1
2�

1
2� ]  [2 1 0 3] † [1 1

2�
1
2� ]  [0 1 3 2] † [1 1

2� 1] 

[3 0 2 1] † [1 1 1
2� ]  [2 0 3 1] † [1 1 1]  [0 1 2 3] † [1 1 1] 

Table 28 – Precedence profiles of all 2-bit equivalence classes. († denotes one of the 24 a 

classes of injective functions)  
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A0 B0 B1 Avg. Deltas Classes Example 

1 1 1 1 

0 1  [0 0 0 0] – CONST2 

1 10 [0 2 2 0] – CHECK1D
2  

2 16 [3 1 1 0] – ONEMAX2 

3 8 [3 2 1 0] – BINVAL2 

1 1 3
4�  11

12�  2 4  [3 0 2 0] – LEADING2 

1 3
4�  1 11

12�  2 4  [3 2 0 0]  

1 1 1
2�  5

6�  3 4  [3 0 2 1]  

1 1
2�  1 5

6�  3 4  [3 2 0 1]  

1 3
4�  3

4�  5
6�  2 4  [3 0 0 0] – NEEDLE2 

1 1
2�  3

4�  3
4�  2 4  [3 1 0 1]  

1 3
4�  1

2�  3
4�  2 4  [3 0 1 1]  

1 1
2�  1

2�  2
3�  

2 4  [3 0 0 2] – TRAP2
2 

3 8 [1 2 3 0]  

Table 29 – Summary of precedence profiles of 2-bit classes. 

With the details of Walsh families and the details of precedence profiles, we are able to 

construct a table stating how many 2-bit classes exist for each pairing of Walsh family and 

precedence profile.  
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A0 B0 B1 {0} {1} {2} {3, 7} {4} {5, 7} {6, 7} {7} 

1 1 1 1 2 2 12 2 0 0 16 

1 1 3
4�  0 0 0 0 0 0 0 4 

1 3
4�  1 0 0 0 0 0 0 0 4 

1 1 1
2�  0 0 0 0 0 4 0 0 

1 1
2�  1 0 0 0 0 0 0 4 0 

1 3
4�  3

4�  0 0 0 0 0 0 0 4 

1 1
2�  3

4�  0 0 0 0 0 0 4 0 

1 3
4�  1

2�  0 0 0 0 0 4 0 0 

1 1
2�  1

2�  0 0 0 0 0 4 4 4 

Table 30 – For 2 bits, the number of classes for each combination of Walsh family and 

precedence profile. 

We observe that classes tend to cluster together in multiples of 4. To explain the 

prevalence of 4s in the table we observe that considering both value relabelling and order 

relabelling (discussed in section 3.1.7, p. 40) each 2-bit function has another 3 equivalent up 

to relabelled functions totalling 4. 

Exceptions exist where there are not 4 classes equivalent up to relabelling. For the {0}, 

{1}, and {2} families; these represent less than 2-bit functions, i.e. they have a linkage partition 

of no variables Γ = ∅, only the first variable Γ = �{𝑋𝑋0}�, or only the second variable Γ = �{𝑋𝑋1}� 

respectively. Additionally the {4} families has a similar symmetry as it is just the bivariate 

coefficient, there are only two possibilities: +𝑣𝑣𝐴𝐴 or –𝑣𝑣𝐴𝐴 bivariate coefficient. 
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5.6 Delta Linkage Detection 

As previously stated in section 5.2, for the case of 2-bits, there can be at most one 

unnecessary piece of structure. Here we consider whether we can use the delta expansion to 

detect whether the variables are linked (a bivariate class) or not (which we shall call a non-

bivariate class). To detect non-bivariate problems in 2-bits we only need to look at the product 

of the fourth row (row 3) of the Hadamard matrix with the delta expansion. In this section we 

describe the formal relationship between using the delta value and ordinal independence 

criteria. This we can show by exhaustive evaluation of the 75 classes, that this holds true for 

all 2-bit classes. 

Instead of writing out the delta expansion in terms of positive 𝛿𝛿 symbols, we can automate 

the process more easily by defining a delta matrix Δ which is populated by 0s and 1s 

representing the coefficients of the 𝛿𝛿 values (since each delta is present or not present). The 

coefficient of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, from the delta expansion is omitted as these coefficients will always cancel 

for any non-empty clique. The construction of the delta matrix is given in ( 117 ). 

Δ =

⎣
⎢
⎢
⎢
⎡𝐷𝐷11

0 𝐷𝐷111 𝐷𝐷112

𝐷𝐷010 𝐷𝐷011 𝐷𝐷012

𝐷𝐷100 𝐷𝐷101 𝐷𝐷102

𝐷𝐷000 𝐷𝐷001 𝐷𝐷002 ⎦
⎥
⎥
⎥
⎤
 

where 𝐷𝐷𝐱𝐱𝑟𝑟 = �1, 𝑅𝑅𝑓𝑓(𝐱𝐱) > 𝑒𝑒
0, 𝑐𝑐𝑡𝑡ℎ𝐴𝐴𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝐴𝐴

 

( 117 ) 

The above construction is not completely matched with the delta expansion in the case of 

less than 2ℓ distinct ranks, however, the difference is only in redundant repeated columns, 

which do not affect the result. 

We define the result of the matrix multiplication as the delta condition vector 𝑉𝑉{0,1} as given 

by ( 118 ). 

𝑉𝑉{0,1} = [𝐻𝐻2]𝑟𝑟𝑟𝑟𝑟𝑟:3 ∙ Δ 

where [𝐻𝐻2]𝑟𝑟𝑟𝑟𝑟𝑟:3 = [1 −1 −1 1] 
( 118 ) 
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If the delta condition vector 𝑉𝑉{0,1} is zero, the class is never bivariate. If the non-zero 

elements of the vector all have the same sign, the class is always bivariate. If the vector 

contains both positive and negative terms, then the bivariate term is unnecessary. 

One way we may express this condition that a vector is not completely zero and all non-

zero elements are of the same sign is the terms given by ( 119 ). 

ℒ𝛿𝛿(𝑉𝑉) ⇔ ��|𝑉𝑉𝑖𝑖|
𝑖𝑖

≠ 0�⋀���𝑉𝑉𝑖𝑖
𝑖𝑖

� = �|𝑉𝑉𝑖𝑖|
𝑖𝑖

� ( 119 ) 

By comparing the result of this condition, with the result of applying the ordinal 

independence criteria 𝑋𝑋0 + 𝑋𝑋1 (equivalence 66, p. 52), we observe that for every class on 2-

bits, the absence of linkage according to this formulation based on Walsh expansion is 

equivalent formulation to the ordinal independence criteria. This is stated by ( 120 ). 

𝑋𝑋0 + 𝑋𝑋1 ⇔ ¬ℒ𝛿𝛿(𝑉𝑉{0,1}) ( 120 ) 

Thus, we see that for 2-bits the delta expansion, which is in terms of Walsh coefficients, can 

be connected with ordinal independence, which is in terms of linkage partition. 
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5.7 Structural Coherence 

In this section we consider the difficulty of learning the linkage of each 2-bit class for an 

EDA and compare the population size and selection size necessary for different categories of 

2-bit classes. The experiments in this section were produced and published in collaboration 

with Dr Alexander Brownlee, University of Stirling in [3]. My contribution to this work was in 

providing the structural data on all 2-bit function classes, and further summary details 

presented in this section in Table 33 and Figure 14. Readers of [3] should be aware that the 

notation has been adapted to be consistent with the conventions used in this thesis. 

EDAs explicitly model structure, therefore there is a relationship between EDA preference 

and the structure of the function. Echegoyen et al. [106] show that the relationship between 

the model and structure affects performance. It is of interest how well EDAs detect essential 

structure. As shown in the previous section (5.6); ordinal linkage for 2-bit pseudo-Boolean 

problems is determined by whether the bivariate term is necessary to maintain the ranking. 

The difficulty is based on the minimum population size required to have a statistically-

significant result for the statistical independence test chi-squared 𝜒𝜒2 detection of the interaction 

between 𝑋𝑋0 and 𝑋𝑋1 (the condition ℒ𝑂𝑂(0, 1)). The chi-squared test is one test an EDA may use 

to detect interactions. This result is applicable to any EDA using this method. 

An algorithm detects the linkage correctly if there exist linkage between the variables and 

the interaction is picked up by the EDA, or if there is no linkage and no linkage is detected by 

the EDA. The algorithm fails to detect linkage correctly if there exists linkage between the 

variables but it is not detected, or if there is no linkage but a spurious correlation is modelled. 

We define 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 as the minimum population size required such that the chi-squared value 

as given by ( 121 ) exceeds the critical value 𝑃𝑃 = 3.84 (probability 0.95 for 1 degree of freedom); 

if no population size is sufficient to correctly detect the linkage then 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 = ∞. 

𝜒𝜒0,1
2 (𝑆𝑆) = �

�𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0𝑋𝑋1)− 𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0) ∙ 𝐴𝐴(𝑋𝑋1)�2

𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0) ∙ 𝐴𝐴(𝑋𝑋1)
𝑋𝑋0𝑋𝑋1∈{0,1}2

≥ 3.84 ( 121 ) 

Here we sum over all 4 possible configurations of 𝑋𝑋0 and 𝑋𝑋1, 𝐴𝐴(𝑋𝑋0) represents the proportion 

of the population which has 𝑋𝑋0 in that configuration, and similarly with 𝐴𝐴(𝑋𝑋0) and 𝐴𝐴(𝑋𝑋0𝑋𝑋1). 𝑆𝑆 

represents that population size. 

We can rearrange this formula by dividing out the 𝑆𝑆 term, to find the minimum value for 

𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛, the minimum population required to detect the linkage with statistical significance as 

given by ( 122, p. 101). 
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𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 = �
�

3.84
𝜒𝜒𝑖𝑖,𝑗𝑗2 /𝑆𝑆

� , 𝜒𝜒𝑖𝑖,𝑗𝑗2 ≠ 0

∞, 𝜒𝜒𝑖𝑖,𝑗𝑗2 = 0
 

where 𝜒𝜒𝑖𝑖,𝑗𝑗2 /𝑆𝑆 = �
�𝐴𝐴�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗� − 𝐴𝐴(𝑋𝑋𝑖𝑖) ∙ 𝐴𝐴�𝑋𝑋𝑗𝑗��

2

𝐴𝐴(𝑋𝑋𝑖𝑖) ∙ 𝐴𝐴(𝑋𝑋2)
𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗∈{0,1}2

 

( 122 ) 

For every 2-bit class, for the two chosen selection methods, we can explicitly calculate this 

value by calculating the probability of selection for each candidate, and hence calculating the 

values for 𝐴𝐴�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗�, 𝐴𝐴(𝑋𝑋𝑖𝑖), and 𝐴𝐴�𝑋𝑋𝑗𝑗�. 

With tournament selection, there are 16 possible tournaments arising for each 

combination of 4 possible candidates. For a given function class, for each tournament, the 

winner of the tournament is determined. If there is no tie, the higher-fitness candidate will be 

selected twice, contributing 1/8 to its total probability of selection. In the case of a tie, the first 

candidate is chosen. Since for every tournament 𝐴𝐴,𝐵𝐵, the tournement 𝐵𝐵,𝐴𝐴 is also run, in the 

case of a tie, from the two tournaments, 𝐴𝐴 will be selected once and 𝐵𝐵 will be selected once 

each contributing 1/16 to their total probability of selection. 

With truncation selection, the top 1 4� , 1 3�  or 1 2�  of the candidates are selected, assuming 

that where there are ties, the corresponding block of the population is comprised of equal parts 

of the equal-rank candidates. An example is given in Figure 13. 

 

Figure 13 – Example of selecting the top 50% for the class of the ONEMAX2 function. The 

candidate [1 1] is selected with 0.5 probability and [1 0] and [0 1] are each selected with 

0.25 probability. 

For this result we group the 2-bit classes into categories by the number of candidates at 

each rank. Each class in a category is represented by a rank vector which is a permutation of 

a rank vector of any other class in the same category. These categories are listed in Table 31.  
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Cat. 
ID Description Num. 

Deltas 
Num. 

Classes 
Global 
Optima 

Example Class 

0 1 distinct. 0 1 4 [0 0 0 0] – CONST2 

1 2 distinct: 
3 maxima, 1 minimum. 1 4 1 [3 0 0 0] – NEEDLE2 

2 2 distinct: 
1 maximum, 3 minima. 1 4 3 [1 1 1 0]  

3 2 distinct: 
2 maxima, 2 minima. 1 6 2 [0 2 2 0] – CHECK1D

2  

4 3 distinct: 
1 maximum, 2 minima. 2 12 1 

[3 0 2 0] – LEADING2 

[3 0 0 2] – TRAP2
2 

5 3 distinct: 
1 maximum, 1 minimum 2 12 1 

[3 1 1 0] – ONEMAX2 

[0 1 1 3] – ZEROMAX2 

6 3 distinct: 
2 maxima, 1 minimum 2 12 2 [2 2 1 0]  

7 4 distinct. 3 24 1 [3 2 1 0] – BINVAL2 

Table 31 – Categories of 2-bit functions based on number of candidates at each rank. 

We observe that the population size and selection size has an effect on the correct 

detection of linkage. We also observe that building a model from negative selection (selecting 

the least fit individuals) can actually improve accuracy of linkage detection for certain classes. 
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Cat. Class Family 𝑋𝑋0𝑋𝑋1 Tournament Truncation Top Truncation Bottom Truncation T+B 
Best Worst 0.25 0.33 0.5 0.25 0.33 0.5 0.25 0.33 0.5 

0 [0 0 0 0] {0} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

1 

[3 0 0 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15 
[0 3 0 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15 
[0 0 3 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15 
[0 0 0 3] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15 

2 

[0 1 1 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15 
[1 0 1 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15 
[1 1 0 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15 
[1 1 1 0] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15 

3 

[2 2 0 0] {2} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 0 2 0] {1} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 2 2 0] {3} Y 15 15 4 4 4 4 4 4 4 4 4 
[2 0 0 2] {3} Y 15 15 4 4 4 4 4 4 4 4 4 
[0 2 0 2] {1} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 0 2 2] {2} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

4 

[3 2 0 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 3 0 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 0 3 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 0 0 3] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4 
[3 0 2 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 3 2 0] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4 
[0 2 3 0] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4 
[0 2 0 3] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 0 0 2] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4 
[0 3 0 2] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 0 3 2] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 0 2 3] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

5 

[3 0 1 1] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[0 3 1 1] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[0 1 3 1] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[0 1 1 3] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ 
[3 1 0 1] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[1 3 0 1] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ 
[1 0 3 1] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ 
[1 0 1 3] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[3 1 1 0] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞ 
[1 3 1 0] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[1 1 3 0] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 
[1 1 0 3] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞ 

6 

[1 0 2 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 1 2 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 2 1 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 2 2 1] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4 
[1 2 0 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 1 0 2] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4 
[2 0 1 2] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4 
[2 0 2 1] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[1 2 2 0] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4 
[2 1 2 0] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 2 1 0] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 2 0 1] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 

7 

[3 2 1 0] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 3 1 0] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 1 2 0] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[1 3 2 0] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[1 2 3 0] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[2 1 3 0] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 2 0 1] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 3 0 1] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 0 2 1] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 3 2 1] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[0 2 3 1] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[2 0 3 1] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 0 1 2] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[0 3 1 2] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[3 1 0 2] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[1 3 0 2] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[1 0 3 2] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 1 3 2] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[0 2 1 3] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 0 1 3] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 
[0 1 2 3] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[1 0 2 3] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[1 2 0 3] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 
[2 1 0 3] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞ 

Table 32 – Minimum population sizes required to detect actual or spurious correlation for all 

2-bit functions with statistically significant 𝜒𝜒0,1
2 > 3.84 – first published in [3].  
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Note that there are symmetries in the result. For example, the category 1 (the NEEDLE2 and 

variable re-ordered variants) and category 2 (functions where only one value is sub-optimal) 

have equivalent results except that the result for positive selection and the result for negative 

selection are swapped. This is because one category is the inverse of the other in terms of 

whether solutions are grouped at the top fitness vs the bottom fitness. 

If we count the number of 2-bit classes for which linkage is correctly detected as a function 

of population size 𝑆𝑆, we see that the across the set of 2-bit classes tournament selection 

selecting the best individual performs equally to selecting the worst, and for each selection 

size, top selection performs equally to bottom selection. We also see that each selection size 

for top-and-bottom selection performs equally to one another. This is detailed in Table 33 for 

each interval and these 5 cumulative distributions are graphed in Figure 14 (p. 105) for 

comparison. 

Population 
Size 

(as half-open 
intervals) 

Number of Classes for which Linkage is Detected Correctly (of 75 total) 

Tournament 
(Best) 

Top Selection 
(0.25) 

Top Selection 
(0.33) 

Top Selection 
(0.5) 

Top+Bottom 
Selection 

(0.5) 

Top+Bottom 
Selection 

(0.33) 
Tournament 

(Worst) 

Bottom 
Selection 

(0.25) 

Bottom 
Selection 

(0.33) 

Bottom 
Selection 

(0.5) 
Top+Bottom 

Selection 
(0.5) 

   [1, 4)  17  17  17  17  17  
   [4, 10)  17  23  35  35  27  
   [10, 14)  17  23  43  35  27  
   [14, 15)  29  23  43  35  27  
   [15, 16)  31  27  47  43  35  
   [16, 23)  35  27  47  43  35  
   [23, 35)  43   27  47  43  35  
   [35, 46)  47  27  47  43  35  
   [46, 61)  55  27  47  43  35  
   [61, 81)  55  27  47  43  35  
   [81, 96)  63  27  47  43  35  
   [96, 143)  67  27  47  43  35  
   [143, 173)  63  27  47  43  35  
   [173, 726)  55  27  47  43  35  
   [726,∞)  63  27  47  43  35  

Table 33 – Number of 2-bit classes for which linkage is correctly detected as a function of 

population size, comparing different selection types. 
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Figure 14 – Number of 2-bit classes for which linkage is correctly detected plotted against 

population sizes, comparing different selection types. All jump discontinuities depicted are 

right-continuous. 

5.8 Summary 

In this chapter we have examined the space of 2-bit classes. We have defined the 

concepts of Walsh families, delta conditions, precedence networks, and precedence profiles. 

We have seen that the precedence networks set out algorithmic steps which can be used to 

solve a function, and that the precedence profile gives a description of the difficulty of the 

problem class. In the following chapter we will describe extending this to 3-bit classes. 
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6 3-Bit Pseudo-Boolean Functions 

 

In this chapter we explore the set of 3-bit classes. Conclusions drawn from this chapter 

will necessarily be more summative than the analysis of 2-bit classes, since the 3-bit classes 

are too numerous to list unabridged. The structure of this chapter is set up to compare and 

contrast our observations with that of the 2-bit classes. Some of the work in this section was 

first published in [2]. There is also some recent literature which looks at the space of 3-bit 

classes in [106] [107] on taxonomy of injective 3-bit function classes under equivalence based 

on finite and infinite population models. 

6.1 Counting 3-Bit Classes 

A 3-bit equivalence class consists of ranks for the 8 possible values of 𝐱𝐱. Table 34 shows 

the number of 3-bit function classes with a breakdown of number of classes for each valid 

number of ranks. The number of classes for 8 ranks (40 320) is the number of injective function 

classes. In total, there are 545 835 function classes. 

Num. Ranks, 𝑂𝑂 Num. Classes, 𝑃𝑃(𝑂𝑂, 3) 

1  1  

2  254  

3  5 796  

4  40 824  

5  126 000  

6  191 520  

7  141 120  

8  40 320  

Total 545 835  

Table 34 – The number of function classes in 3-bits for a given number of distinct fitness 

levels (number of ranks). There are 545 835 distinct classes for 3-bit functions. 
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6.2 Walsh Families and Delta Conditions 

When we count the number of distinct delta conditions, we find 395 possible distinct delta 

conditions (ignoring coefficients which are always zero or always non-zero). These are only 

those equations generated from expressions from the delta expansion which contain both 

positive and negative coefficients of delta values. Setting this expression equal to zero we get 

an equation, which we present rearranged such that terms with negative coefficients are 

moved to the other side of the equation. 

From exhaustive evaluation of this set, we observe that the most prolific delta condition, 

which occurs 41 496 times in the set of equivalence classes, is the condition 𝛿𝛿0 = 𝛿𝛿2. The least 

common conditions are 𝛿𝛿0 = 3𝛿𝛿1 and 𝛿𝛿1 = 3𝛿𝛿0, which each only occur 56 times. There are 

shown in Table 35. 

Delta Condition Occurrences Example Class and Coefficient 

𝛿𝛿0 = 𝛿𝛿2 41 496  [0 1 2 3 3 3 3 3] / 𝛼𝛼{0,1}  

… 

𝛿𝛿0 = 3𝛿𝛿1 56  [1 1 1 1 0 5 5 5] / 𝛼𝛼{2} 

𝛿𝛿1 = 3𝛿𝛿0 56  [3 0 0 3 0 3 3 7] / 𝛼𝛼{0,1,2} 

Table 35 – The most and least prolific delta conditions in 3-bit classes. 

To get an idea of the possible complexity of delta conditions in this space, we can sum the 

absolute values of the coefficients of the terms. The most complex, using this measure, are 

the four conditions shown in Table 36. 

Delta Condition Occurrences Example Class and Coefficient 

𝛿𝛿0 + 2𝛿𝛿1 + 3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿5 4 032  [3 0 1 4 2 5 5 7] / 𝛼𝛼{0,1,2}  

𝛿𝛿0 + 2𝛿𝛿1 + 3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿6 8 064  [3 0 1 4 2 5 6 7] / 𝛼𝛼{0,1,2} 

𝛿𝛿0 = 𝛿𝛿1 + 2𝛿𝛿2 + 3𝛿𝛿3 + 2𝛿𝛿4 + 𝛿𝛿5 4 032  [1 1 3 4 0 5 6 7] / 𝛼𝛼{2} 

𝛿𝛿0 = 𝛿𝛿2 + 2𝛿𝛿3 + 3𝛿𝛿4 + 2𝛿𝛿5 + 𝛿𝛿6 8 064  [1 2 3 4 0 5 6 7] / 𝛼𝛼{2} 

Table 36 – All delta conditions in 3-bit classes where the sums of the coefficients is at its 

maximum (the sum equals 10).  
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Table 37 - Number of discovered valid structures for 3-bit pseudo-Boolean classes. Table 

values state the number of structures discovered at the specified bound which were not 

discovered at a smaller bound. 
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6.3 Automated Calculation of Walsh Families 

Recall the method of automated discovery of Walsh families of the space of 2-bit function 

describe in section 5.3. Again, we are able to use only integer values with a fixed upper bound 

𝑈𝑈 to discover the Walsh families of all 545 835 3-bit classes. Table 37 (p. 109) shows the 

distribution of valid structure discoveries at each increment of the bound 𝑈𝑈 for 0 and 15. Having 

tried a bound of up to 17, we conjecture that no further structures are discovered for higher 

values of 𝑈𝑈. Further details in only this section 6.3 depend on this conjecture. 

It is worthy of note that for the case of 7 deltas, although there are no additional structures 

discovered at radius 14 (which were not already seen for radius 13), there are new structures 

found for at radius 15. Thus, no additionally structures being detected at radius 16 and 17 does 

not prove that there are none discovered for higher radii. 

Recall that the highest sum of absolute values of coefficients has a sum of 9 in the absolute 

value of coefficients on one side, and 1 on the other, for example the delta condition 𝛿𝛿0 + 2𝛿𝛿1 +

3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿5. For integer deltas, the left hand side is at least 9 (when all five deltas on 

the LHS are 1), hence 𝛿𝛿5 ≥ 9. Since this does not include the 𝛿𝛿6 term, which is strictly positive, 

1 must be added for this term. There, the sum of all deltas is at least 15 (from the first five set 

to one, and the last, nine, plus one for the missing term: 5 + 9 + 1). Thus in order to satisfy this 

delta condition, a bound of 𝑈𝑈 ≥ 15 is needed. This is suggestive that the conjectured bound of 

𝑈𝑈 = 15 is sufficient for all structures. 

Below we show the relationship between the increasing number of deltas and the number 

of possible structures in a 3-bit function. There are some numbers of structures, 9, 11, 13, 14, 

and 15 which are not present in the data, that is, no 3-bit Walsh family contains that number 

of members. We see a trend of increasing number of possible structures as the number of 

deltas increases.  
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Num. 
Structs. 

Number of Deltas 

0 1 2 3 4 5 6 7 

1 1 254 2 744 6 720 4 032 0  0  0  

2 0  0  3 052 16 072 23 856 10 080 0  0  

3 0  0  0  11 760 30 240 21 504 8 064 0  

4 0  0  0  6 272 41 664 53 760 14 784 2 688 

5 0  0  0  0  12 096 41 664 34 944 5 376 

6 0  0  0  0  8 064 24 864 24 192 9 408 

7 0  0  0  0  5 376 18 816 16 128 2 688 

8 0  0  0  0  672 15 456 25 536 8 064 

9 0  0  0  0  0  0  0  0  

10 0  0  0  0  0  2 688 6 720 5 376 

11 0  0  0  0  0  0  0  0  

12 0  0  0  0  0  2 688 9 408 4 032 

13 0  0  0  0  0  0  0  0  

14 0  0  0  0  0  0  0  0  

15 0  0  0  0  0  0  0  0  

16 0  0  0  0  0  0  1 344 2 688 

Table 38 – Number of classes for each number of deltas and number of possible Walsh 

structures for 3-bit classes. 
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6.4 Conditionally-Necessary Interactions 

By exploring the result of our automated calculation of Walsh families, we discover types 

of structure not present in 2-bit classes. Recall that in 2-bit classes, structure was either 

necessarily zero, necessarily non-zero, or optional. We see that this analysis of 3-bit structures 

is useful since it highlights an incompleteness in considering elements of Walsh structure to 

be simply necessary or unnecessary (spurious).  

If we take an instance of the benchmark class 𝐶𝐶BINVAL3 = [7 6 5 4 3 2 1 0] such as the 

instance BINVAL3, and increase the bivariate term 𝛼𝛼{0,1} (previously 0) by a small amount, we 

see that when 𝑥𝑥0 = 𝑥𝑥1, fitness values (𝑓𝑓000, 𝑓𝑓110, 𝑓𝑓001, and 𝑓𝑓111) are incremented by this amount, 

when 𝑥𝑥0 ≠ 𝑥𝑥1, the fitness values (𝑓𝑓100, 𝑓𝑓010, 𝑓𝑓101, and 𝑓𝑓011) are decremented by this amount. 

As there exists a finite spacing between each adjacently-ranked candidate, there is such a 

change we can make to 𝛼𝛼{0,1} which will not permute the ranks. 

 

Figure 15 – An instance of the class 𝐶𝐶BINVAL3 (above), transformed by adding a small, positive 

bivariate term 𝛼𝛼{0,1} > 0 (below). As long as the term is small enough, the relative ranks of 

the candidates are undisturbed, and the function is still in the class 𝐶𝐶BINVAL3. 

In contrast, if we perform the same transformation of adding a small bivariate term to the 

benchmark class 𝐶𝐶ONEMAX3 = [7 4 4 1 4 1 1 0] the same four values are incremented with 

the remaining decremented, however, we are now guaranteed to have generated an instance 

of a different class, not 𝐶𝐶ONEMAX3 since 𝑓𝑓001 has moved away from 𝑓𝑓010 and 𝑓𝑓100, additionally, 

𝑓𝑓110 has moved away from 𝑓𝑓011 and 𝑓𝑓101. This is now an instance of [7 4 4 3 6 1 1 0]. In 

general all cases with zero coefficients will split in this way when the zero coefficient is 

changed.  
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However, if we set all three coefficients to the same value, we get back to the original 

class. Figure 16 shows three transformations applied to 𝐶𝐶ONEMAX3, first adding a small positive, 

value to 𝛼𝛼{0,1}, then 𝛼𝛼{0,2}, then 𝛼𝛼{1,2}, each of the same magnitude. Each transformation moves 

the instance outside of the current class, with the last restoring to the original class. 

 

Figure 16 – An instance of the class 𝐶𝐶ONEMAX3 (top row), through a series of transformations, 

but adding a small, positive value 𝑑𝑑 > 0 to the zero bivariates terms 𝛼𝛼{0,1} = 𝑑𝑑 (second row), 

𝛼𝛼{0,1} = 𝛼𝛼{0,2} = 𝑑𝑑 (third row), then 𝛼𝛼{0,1} = 𝛼𝛼{0,2} = 𝛼𝛼{1,2} = 𝑑𝑑 (fourth row). 
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For the Walsh structures in 3-bits, we have 7 possible structure elements. We adopt the 

enumeration convention described in Table 39. 

Condition Binary Enumeration Hex Enumeration 

𝛼𝛼{0} ≠ 0  0000001 01 

𝛼𝛼{1} ≠ 0  0000010 02 

𝛼𝛼{0,1} ≠ 0  0000100 04 

𝛼𝛼{2} ≠ 0  0001000 08 

𝛼𝛼{0,2} ≠ 0  0010000 10 

𝛼𝛼{1,2} ≠ 0  0100000 20 

𝛼𝛼{0,1,2} ≠ 0  1000000 40 

Table 39 – Enumeration of structure elements for 3-bits. 

These can be combined into 128 possible structures which are enumerated in Figure 17. 

 

Figure 17 – All 128 possible Walsh structures for 3-bits, enumerated 00 to 7F. The ID of a 

given structure is the sum of the row header with the column header. 
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In 2-bit classes, recall that every Walsh coefficient was either necessarily zero, necessarily 

non-zero, or optional (conditioned on a delta condition). When we move from 2-bit classes to 

3-bit classes we see the emergence of another case we will call conditionally-necessary 

structures. 

Recall that in 2-bits, the ONEMAX2 and BINVAL2 functions both belonged to the {3, 7} Walsh 

family, meaning that both univariate terms were necessary and the bivariate term was optional. 

This trend continues with BINVAL3 in 3-bits with every non-univariate term being optional as 

shown in Figure 18. 

 

Figure 18 – All possible Walsh structures for 𝐶𝐶BINVAL3. 

By contrast, however, the ONEMAX3 function despite having the same minimal structure (0B) 

and same maximal structure (7F) than BINVAL3, has only two other possible structures, shown 

in the Figure 19. The key difference is that the bivariate terms are all conditionally-necessary, 

one is non-zero if and only if the others are non-zero. 

 

Figure 19 – All possible Walsh structures for 𝐶𝐶ONEMAX3. 

We note that these conditionally-necessary structures do not preclude the existence of a 

unique minimal structure in this instance, however, we can find instances where there is no 

clear minimal structure.  
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In the case of the class [0 1 2 4 2 4 4 7], we see that the minimal structure is 2𝐵𝐵 (all 

univariates and one bivariate 𝛼𝛼{1,2}), however the bivariate term can be removed and replaced 

with two other supporting bivariate terms 𝛼𝛼{0,1} and 𝛼𝛼{1,2}, in this sense the bivariate term 𝛼𝛼{1,2} 

is not simply necessary or unnecessary, but conditional on the presence of the other two 

bivariates. The possible structures are shown in Figure 20. 

 

Figure 20 – All possible Walsh structures for 𝐶𝐶[0 1 2 4 2 4 4 7]. 

In the case of the class [2 0 1 5 5 2 4 5], at least 6 of the possible 7 structure elements 

must be non-zero. The candidates for allowable zero elements are the trivariate term 𝛼𝛼{0,1,2}, 

the bivariate term 𝛼𝛼{0,2}, or the univariate term 𝛼𝛼{0} however, no two or three of these may be 

zero together. The possible structures are shown in Figure 21. 

 

Figure 21 – All possible Walsh structures for 𝐶𝐶[2 0 1 5 5 2 4 5]. 
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6.5 Precedence Networks and Precedence Profiles 

As with the 2-bit classes, we can construct all possible precedence networks for evaluating 

3-bit functions. First we limit the profiles to fully-specified precedence networks. We explore 

this concept as a measure of complexity of functions. 

A fully-specified precedence network is a precedence network which contains one 

prescribed topological ordering over the linkage groups, these are listed in Table 40. 

Label Network Cost  Label Network Cost 

A0 𝑋𝑋0𝑋𝑋1𝑋𝑋2  8  D0 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2  4 

B0 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2  5  D1 𝑋𝑋0 → 𝑋𝑋2 → 𝑋𝑋1  4 

B1 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2  5  D3 𝑋𝑋1 → 𝑋𝑋2 → 𝑋𝑋0  4 

B2 𝑋𝑋2 → 𝑋𝑋0𝑋𝑋1  5  D4 𝑋𝑋2 → 𝑋𝑋0 → 𝑋𝑋1  4 

C0 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2  5  D2 𝑋𝑋1 → 𝑋𝑋0 → 𝑋𝑋2  4 

C1 𝑋𝑋0𝑋𝑋2 → 𝑋𝑋1  5  D5 𝑋𝑋2 → 𝑋𝑋1 → 𝑋𝑋0  4 

C2 𝑋𝑋1𝑋𝑋2 → 𝑋𝑋0  5     

Table 40 – All 3-bit fully-specified precedence networks. 

For instance, B1 specifies that variable 𝑋𝑋1 should be set by trying both possible 

assignments against an arbitrary setting of the other variables, this takes 2 function 

evaluations, then the variables 𝑋𝑋0𝑋𝑋2 should be set together by evaluating all 4 assignments of 

those variables against the optimal setting for the fixed variable. Since one such assignment 

has been tried already, this takes 3 function evaluations. In total, B1 takes 5 function 

evaluations. We write this precedence network as 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2 and the network set {B0, B1, B2} 

can be expressed in the form ● → ●●. 

Figure 22 shows the fully-specified networks and shows which networks will necessarily 

solve instances of classes solved to another. The required number of function evaluations 

(cost) is shown. The sequence of steps in the network gives an upper bound on cost to be 

guaranteed an optimal solution of the problem using perturbation steps. The costs of 

evaluating a network may be calculated by 2𝑘𝑘 for the first partition (where 𝑘𝑘 is the number of 

variables in the first partition) plus 2𝑘𝑘 − 1 per each successive partition (where 𝑘𝑘 is the number 

of variables in the current partition.) 
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Figure 22 – All 3-bit fully-specified precedence networks represented pictorially. Connecting 

arrows show the relationship of which network will solve every class solvable by another 

network 
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When we test every possible 3-bit class, we see that every instance in which a precedence 

network is predicted to solve a function, it does. However, there are many additional cases in 

which a precedence network solves a function despite not being predicted by the specified 

hierarchy. We may expect that the directed ordinal linkage would specify which precedence 

profiles would be applicable, however, this is not the case. 

A good example is the class of the benchmark function CHECK1D
3 . The directed ordinal 

linkage suggests that the profile 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2 would not solve the classes in all runs, however, 

we can show that it does, in all runs. On evaluating 𝑋𝑋1 there is an even chance of either 0 or 1 

being chosen, however, since this problem has two global optima – one in which 𝑋𝑋1 is set to 

0, and one in which 𝑋𝑋1 is set to 1 – a global optimum is always reached. This is diagrammed 

in Figure 23. 

 

Figure 23 – All possible optimisation paths for CHECK1D
3  problem under the precedence 

network B1 (𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2) showing that the optimum is always reached. 
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Figure 24 – Under the precedence network D0 (𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2), there is a chance of 1/4 

(50% × 50% × 50% + 50% × 50% × 50%) that an optimum is not reached for CHECK1D
3  

problem, hence the probability of reaching the optimum is 3/4 . 

From this we derive the idea of the precedence profile, since a function does not fit exactly 

in one category. The probability of arriving at the global optimum (assuming maximisation 

criteria) for a given function and precedence network can be calculated, and when this is done 

for all possible fully-specified precedence networks, we refer to this as the precedence profile 

of the function for a given length. 
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Table 41 shows the precedence profiles of eight benchmark functions. 

 Function 
Precedence Network 

A0 B0 B1 B2 C0 C1 C2 D0 D1 D4 D2 D3 D5 

CONST𝑐𝑐
3 / ONEMAX3 / 

ZEROMAX3 / BINVAL3 1  1 1 1 1 1 1 1 1 1 1 1 1 

CHECK1D
3  1 1 1 1 1 1 1 

3
4
 

1
2
 

1
2
 1 1 

3
4
 

LEADING3 1 1 
3
4
 

5
8
 1 

3
4
 

5
8
 1 

3
4
 

5
8
 

3
4
 

9
16

 
15
32

 

NEEDLE3 1 
5
8
 

5
8
 

5
8
 

5
8
 

5
8
 

5
8
 

15
32

 
15
32

 
15
32

 
15
32

 
15
32

 
15
32

 

TRAP3
3 1 

1
4
 

1
4
 

1
4
 

1
2
 

1
2
 

1
2
 

1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

1
8
 

Table 41 – 3-bit precedence profiles of common benchmark functions for a maximisation 

objective. Functions are sorted in increasing order of difficulty (based on average of 

probabilities). 

We observe from Table 41 that the order of decreasing average probability tracks with 

order of increasing complexity in the sense that we first have the univariate problems, then the 

bivariate, then the multivariate. Within the multivariate, the isolated function (needle in 

haystack) is harder than the leading ones, and the trap function is harder than the isolated 

function. We can regard this average as one possible measure of complexity for a given 

problem length. 

The simplest set of classes of truly 3-bit functions are the univariate functions - those in 

which each variable is considered separately and the resulting affect additive, i.e. the linkage 

partition completely separates the effect of each variable. 

Here we see that the Needle in Haystack function is classified as easier than the 3-trap 

under our classification. The needle in haystack function may be considered the most difficult 

function to optimise as there is no structure learnable without exhaustive evaluation. This is 

not the case, as the trap function is more difficult to optimise as it contains counter-productive 

structure which is actively misleading to learn. Thus our view of complexity under precedence 

profiles highlights this. This is also observed by Kallel et al. [86].  
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The 3-bit Checkerboard 1D problem does not have a precedence profile as follows from 

the function’s directed ordinal linkage. Although the function is composed of a single linkage 

group, we see that it is solvable by a larger number of networks than just A0. This is because 

the checkerboard problem has two global optima. The existence of two global optima means 

that some of the structure which may have to be learned to accurately capture this complexity 

is unnecessary if the objective is to arbitrary locate one optima or the other. 

By contrast in Figure 24 we see a failure to guarantee an optimal solution. The sub-optimal 

solution exists if the assigned value for 𝑋𝑋0 differs from the random background setting of 𝑋𝑋2 

when assigning 𝑋𝑋1 (this occurs with 1/2 probability) and the value which is the same as 𝑋𝑋1 is 

chosen (this occurs with 1/2 probability), hence, the search fails with 1/4 probability. 

We see that for 3-bit classes, this notion of precedence profiles correlates with expected 

function difficulty classification as described. Hence, it may be reasonable to assume that an 

extension of this idea of a precedence network to higher dimensions may useful. This is 

discussed in more detail under further work.  
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6.6 Equivalent Average Costs Network Sets 

In this section we explore the probability of successfully optimising a function using a given 

fully-specified precedence network, subject to the function being an arbitrary instance of a rank 

equivalence class chosen uniformly at random from the set of 3-bit rank equivalence classes. 

Note that this is distinct from selecting functions uniformly at random, in which case, the class 

would not be uniformly selected. 

Recall that for fully-specified 2-bit networks, the cost can be 3 or 4 and that the two fully-

specified cost 3 networks were a permutation of each other. Hence, on average across the set 

of all 2-bit classes it is trivial that we would expect the same performance from these two 

permutations. 

For fully-specified 3-bit networks, there are two distinct network sets (B and C) which share 

a common cost (5 function evaluations). The costs for each network set is below in Table 42. 

Set Networks Cost 

A A0 (23) = 8 

B B0, B1, B2 (22) + (21 − 1) = 5 

C C0, C1, C2 (21) + (22 − 1) = 5 

D D0, D1, D4, D2, D3, D5 (21) + (21 − 1) + (21 − 1) = 4 

Table 42 – Cost for each fully-specified 3-bit precedence network. 

Each network in the set union B ⋃ C = {B0, B1, B2, C0, C1, C2} has the same cost (5 fitness 

evaluations). We can calculate the number of classes which have each given probability 𝑃𝑃 and 

calculate the expected probability and fully-specified network in the set B or the set C to find 

the optimum on a randomly-selected function class. This is shown in Table 43.   
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Probability (𝑃𝑃) 
B0, B1, B2 C0, C1, C2 

Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁 Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁 
1

4�  34 792 8 698 - - 
3

8�  22 056 8 271 - - 
1

2�  120 996 60 498 288 548 144 274 
5

8�  50 304 31 440 600 375 
2

3�  - - 6 336 4 224 
3

4�  134 788 101 091 38 844 29 133 
5

6�  - - 864 720 
7

8�  28 248 24 717 24 21 

1 154 651 154 651 210 619 210 619 

Sum 545 835 389 366 545 835 389 366 

Weighted 
Average  

389 366
545 835

 
389 366
545 835

 

Table 43 – For 3-bit network sets B = {B0, B1, B2} and C = {C0, C1, C2}, the average 

probability of finding the global optimum is the same (approx. 71.3%) when selecting a class 

uniformly at random. 

We see that although there a large differences in distribution of probability between the 

two network sets, the weighted average is the same (389366/545835). We see from the D 

networks in Table 44 that the same average does not hold for a different cost network, since 

the lower computational effort corresponds to a lower expectation of finding a global optimum.  
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Probability (𝑃𝑃) 
D0, D1, D4, D2, D3, D5 

Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁 
1

8�  15 080 1 885    
3

16�  14 272 2 676    
1

4�  65 464 16 366    
9

32�  2 776 780 3
4
 

5
16�  20 232 6 322 1

2
 

3
8�  69 224 25 959    

7
16�  9 640 4 217 1

2
 

15
32�  4 248 1 991 1

4
 

1
2�  91 196 45 598    

17
32�  200 106 1

4
 

9
16�  10 848 6 102    

19
32�  1 104 655 1

2
 

5
8�  33 640 21 025    

21
32�  3 880 2 546 1

4
 

11
16�  7 272 4 999 1

2
 

23
32�  200 143 3

4
 

3
4�  91 780 68 835    

25
32�  200 156 1

4
 

13
16�  9 576 7 780 1

2
 

27
32�  1 464 1 235 1

4
 

7
8�  28 048 24 542    

29
32�  2 136 1 935 3

4
 

15
16�  4 192 3 930    

31
32�  704 682    

1 58 459 58 459    

Sum 545 835 308 930    

Weighted 
Average 

308 930
545 835

=
   61 786
109 167

 

Table 44 – For 3-bit precedence network set D = {D0, D1, D4, D2, D3, D5}, success 

probability when selecting a class at random. 
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6.7 Precedence Networks Hierarchy 

Having looked at the fully-specified network sets, we wish to introduce analysis which goes 

beyond only the fully-specified precedence networks. We introduce the simplification by 

considering only the sets invariant under permutations. The work in this section was first 

published in [2]. 

As shown in section 6.6, where the fully-specified precedence networks for 3-bits were 

given, we see that network sets can be arranged in a hierarchy. This hierarchy exists because 

any two variables which can be solved given a prescribed ordering 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 can also be solved 

by exhaustive evaluation of those two variables 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. If we include under-specified networks 

(networks which are not fully specified), we also find variables which can be optimised in any 

order 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗, which can be given an order  𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 or exhaustively evaluated 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. 

Allowing under-specified networks, there are 9 network sets. The list of all relationships 

between a 3-bit network set and another 3-bit network set which can be used to solve all 

classes the first can is given in Table 45. Examples of each is given since some relationships 

may not be self-evident without specifying the necessary re-permutation of the variables. The 

hierarchy produced by these relationships is shown in Figure 25. 
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General 
Network Set 

Specified 
Network Set 

General 
Example 

Specific 
Example 

• + • + • •→• + • 𝑋𝑋0 + 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 

•→• + • (• + •) →• 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 (𝑋𝑋0 + 𝑋𝑋2) → 𝑋𝑋1 

•→• + • • + •• 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 

•→• + • •→ (• + •) 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → (𝑋𝑋1 + 𝑋𝑋2) 

(• + •) →• •→•→• (𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 

•→ (• + •) •→•→• 𝑋𝑋0 → (𝑋𝑋1 + 𝑋𝑋2) 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 

• + •• •→•• 𝑋𝑋0 + 𝑋𝑋1𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 

• + •• ••→• 𝑋𝑋0 + 𝑋𝑋1𝑋𝑋2 𝑋𝑋1𝑋𝑋2 → 𝑋𝑋0 

•→•→• •→•• 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 

•→•→• ••→• 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2 

•→•• ••• 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 𝑋𝑋0𝑋𝑋1𝑋𝑋2 

••→• ••• 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0𝑋𝑋1𝑋𝑋2 

Table 45 – All 3-bit network set, with network sets which can be substituted. 

 

Figure 25 – Hierarchy of 3-bit network sets. 
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6.8 Parallelisation of Precedence Networks 

The linkage groups for a precedence network can be processed in parallel. Here we shown 

how this can be done for 3-bit networks. We will see that the minimum number of time steps is 

dictated by the length of the ordering •→•. The work in this section was first published in [2]. 

In the case of the network set • + • + • we can process two values for each variable. This 

means evaluating any single arbitrary assignment (e.g. 𝑓𝑓000) and comparing each of that 

assignment with one variable flipped (i.e. in this case 𝑓𝑓100, 𝑓𝑓010, and 𝑓𝑓001) to find the optimal 

setting for each variable. In this case, 4 evaluations are necessary, and the 4 values of 𝐗𝐗 can 

be chosen in advance and processed in parallel. 

In the case of the network set ••• we must evaluate all 8 possible assignments of the 

variables to determine the correct setting of any. Since we know the 8 values of 𝐗𝐗 which must 

be tried, they may be processed in parallel. 

In the case of a network set involving a directed ordinal linkage (e.g. •→•→•) we do not 

know ahead of time which 4 values must be tried, so we evaluate an arbitrary assignment of 

the variables (e.g. 𝑓𝑓000) and the same with the first variable in the chain flipped (i.e. in this case 

if the first variable is 𝑋𝑋0 we would evaluate 𝑓𝑓100). These 2 evaluations may be done in parallel. 

Then we evaluate the result of flipping the next variable given the optimum of the first (i.e. 𝑓𝑓∗10 

where ∗ is the known optimal setting). Then we evaluate the result of flipping the last variable 

(i.e. 𝑓𝑓∗∗1). Since we are using information about the result of earlier evaluations, at least three 

time steps are required to optimise the function in 4 fitness evaluations. 

This constraint may be changed by using a different precedence network. As shown, a 

more costly network from one of the sets ••→•, •→••, or ••• may be used (requiring 5, 5, or 8 

function evaluations respectively, but being parallelisable in 2, 2, or 1 time steps respectively). 

This represents a trade-off between number of function evaluations required and number of 

time steps required.  
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Figure 26 – All 3-bit networks sets, with the parallelisation steps for the shown example 

network in each case. A column represents all function evaluations which may be done in 

parallel. If there are multiple columns, each column must wait until the columns to its left are 

complete before starting. ∗ represents the known optimal setting from an earlier column.  
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6.9 Delta Linkage Detection 

In this section we look at whether the same approach taken in section 5.6 (p. 98) to relate 

linkage to the delta expansion can be extended to 3-bit classes. We show, by counter-example, 

that the delta matrix cannot be used to predict the linkage for 3-bits. 

For 3-bit functions we can use the delta matrix Δ to represent the delta values in the same 

way as for 2-bits as in ( 53 ). 

Δ =

⎣
⎢
⎢
⎢
⎢
⎡𝐷𝐷111

0 𝐷𝐷1111 𝐷𝐷1112  𝐷𝐷1116

𝐷𝐷0110 𝐷𝐷0111 𝐷𝐷0112 ⋯ 𝐷𝐷0116

𝐷𝐷1010 𝐷𝐷1011 𝐷𝐷1012  𝐷𝐷1016

 ⋮  ⋱  
𝐷𝐷0000 𝐷𝐷0001 𝐷𝐷0002  𝐷𝐷0006 ⎦

⎥
⎥
⎥
⎥
⎤

 

where 𝐷𝐷𝐱𝐱𝑟𝑟 = �1, Rf(𝐱𝐱) > r
0, otherwise 

( 123 ) 

Here we could select the rows of interest to our linkage as specified by ( 124 ). 

𝑉𝑉{0,1} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:3 ∙ Δ 

𝑉𝑉{0,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:5 ∙ Δ 

𝑉𝑉{1,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:6 ∙ Δ 

𝑉𝑉{0,1,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:7 ∙ Δ 

( 124 ) 

We observe that no combination of these four terms can be related directly to the non-

monotonicity-detecting linkage detection. This can be shown by counter-example. 

We examine two classes 𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑏𝑏 which have the Walsh family {3F, 7F}. Structure 7F 

refers to having all terms non-zero, structure 3F refers to having the trivariate term zero with 

all other terms non-zero. Hence this family describes functions which can be instantiated with 

a bivariate function where all bivariate terms are necessarily non-zero. The two classes are 

listed in Table 46 (p. 131). 
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Class ℒ𝑂𝑂(0,1)  ℒ𝑂𝑂(1,0)  ℒ𝑂𝑂(0,2)  ℒ𝑂𝑂(2,0)  ℒ𝑂𝑂(1,2)  ℒ𝑂𝑂(2,1)  Linkage 

𝐶𝐶𝑎𝑎 = [0 1 1 4 1 4 4 4] 𝑌𝑌  𝑌𝑌  𝑌𝑌  𝑌𝑌  𝑌𝑌  𝑌𝑌  𝑋𝑋0𝑋𝑋1𝑋𝑋2  

𝐶𝐶𝑏𝑏 = [2 0 1 2 6 2 2 6] 𝑌𝑌  𝑌𝑌  𝑁𝑁  𝑁𝑁  𝑁𝑁  𝑁𝑁  𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2  

Table 46 – Example classes 𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑏𝑏 with different ordinal linkage ℒ𝑂𝑂, both classes 

belonging to the Walsh family {3F, 7F}. 

In this case the Walsh family indicates that the first two variables are required to be linked 

to the third, whereas the perturbations indicate no linkage. 

Note that if we follow the precedence network 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2 for 𝐶𝐶𝑏𝑏 we arrive at a global 

optimum every time, regardless of whether the linkage ground 𝑋𝑋0𝑋𝑋1 is optimised first or the 

linkage group 𝑋𝑋2 is optimised first. The result with be [0 0 0] or [1 1 0] each with probability 

0.5; these candidates are both global optima for an instance of 𝐶𝐶𝑏𝑏. 

The reason the Walsh structure requires linkage between these two linkage groups is seen 

by the result of perturbing two variables (𝑋𝑋0𝑋𝑋1) simultaneously from [0 1 ∗] to [1 0 ∗]. If done 

when 𝑋𝑋2 = 0 this two-bit perturbation will not change the fitness, if done when 𝑋𝑋2 = 1 this two-

bit perturbation will increase the fitness from the lowest rank to the second-lowest rank.  

None of the candidates involved in this perturbation is a global optimum, hence ignoring 

this linkage should not degrade an algorithm’s ability to optimise the function. From this 

perspective, we can see the Walsh coefficients responsible for maintaining this structure are 

unnecessary for optimisation yet necessary to maintain the rank equivalence class. 
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In Figure 27 the class is illustrated as a cube. Each square side has matching signs on 

parallel edges. To detect linkage, the diagonal signs across two parallel faces must be 

compared. This shows that although this class consists of three variables which are all linked 

to one another (due to the presence of all three bivariate terms), a two-bit perturbation is 

required to detect this. 

 

Figure 27 – The class [2 0 1 2 6 2 2 6] with the detection of linkage via two-bit 

perturbation highlighted. 
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6.10 Structural Coherence 

In this chapter we consider the difficulty of learning the linkage of each 3-bit class for an 

EDA. This section is the presentation of the result on 3-bit classes from the work presented in 

section 5.7 (on 2-bit classes); this result was produced in collaboration with Dr Alexander 

Brownlee, University of Stirling and first published in [3]. 

In sections section 5.7 (p. 100), we show the minimum populations size required to detect 

linkage for all 2-bit classes. Recall that for some classes with no linkage between the variables, 

a spurious correlation is falsely detected (false positive) for larger population sizes. For the set 

of 3-bit classes we present a summary of the success for population sizes 100 and 500. We 

compare tournament (best and worst) and truncation selection (top, bottom, and top+bottom, 

for proportions 0.25, 0.33, and 0.5). 

We use the method of calculating the pairwise linkage given in section 5.7 and compare 

the results for the three possible bivariate linkages. Probabilities for tournament selection were 

explicitly calculated using all 256 possible tournaments. Probabilities for truncation selection 

were explicitly calculated by determining the candidates in the top 1 4� , 1 3�  or 1 2�  of selection. 

We observe that truncation selection (top) performs equally to truncation selection 

(bottom) across the set of 3-bit classes, and that tournament selection performs equally to 

inverse tournament selection. This matches the result for 2-bit classes. However, we observe 

that the selection size affects the success for top-and-bottom truncations for 3-bits whereas it 

does not for 2-bit classes. This is because for 3-bit classes, top-and-bottom truncation misses 

information carried by middle-ranked candidates. 

For this analysis we assume that the minimal structure of each class is the structure with 

the lowest ID in the Walsh family. We discuss the limitations of this approach in further work. 
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Linkage No Linkage Linkage No Linkage 
95% 5% 95% 5% 

Population Size 100 Population Size 500 

True 
Pos. 

False 
Neg. 

True 
Neg. 

False 
Pos. 

True 
Pos. 

False 
Neg. 

True 
Neg. 

False 
Pos. 

Tournament 
(Best) 

ℒ𝑂𝑂(0, 1) 42% 53% 5% 0% 71% 24% 3% 2% 
ℒ𝑂𝑂(0, 2) 42% 53% 5% 0% 71% 24% 3% 2% 
ℒ𝑂𝑂(1, 2) 42% 52% 5% 0% 71% 24% 4% 2% 

Tournament. 
(Worst) 

ℒ𝑂𝑂(0, 1) 42% 53% 5% 0% 71% 24% 3% 2% 
ℒ𝑂𝑂(0, 2) 42% 53% 5% 0% 71% 24% 3% 2% 
ℒ𝑂𝑂(1, 2) 42% 52% 5% 0% 71% 24% 4% 2% 

Truncation 
(Top) 

0.25 
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1% 
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1% 
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1% 

0.33 
ℒ𝑂𝑂(0, 1) 70% 26% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(0, 2) 69% 26% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(1, 2) 69% 25% 2% 3% 72% 23% 2% 3% 

0.5 
ℒ𝑂𝑂(0, 1) 67% 28% 2% 3% 72% 24% 2% 3% 
ℒ𝑂𝑂(0, 2) 67% 28% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(1, 2) 67% 28% 2% 3% 72% 23% 2% 3% 

Truncation 
(Bottom) 

0.25 
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1% 
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1% 
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1% 

0.33 
ℒ𝑂𝑂(0, 1) 70% 26% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(0, 2) 69% 26% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(1, 2) 69% 25% 2% 3% 72% 23% 2% 3% 

0.5 
ℒ𝑂𝑂(0, 1) 67% 28% 2% 3% 72% 24% 2% 3% 
ℒ𝑂𝑂(0, 2) 67% 28% 2% 3% 72% 23% 2% 3% 
ℒ𝑂𝑂(1, 2) 67% 28% 2% 3% 72% 23% 2% 3% 

Truncation 
(T+B) 

0.25 
ℒ𝑂𝑂(0, 1) 11% 84% 4% 0% 11% 84% 4% 0% 
ℒ𝑂𝑂(0, 2) 11% 84% 5% 0% 11% 84% 5% 0% 
ℒ𝑂𝑂(1, 2) 11% 83% 5% 0% 11% 83% 5% 0% 

0.33 
ℒ𝑂𝑂(0, 1) 36% 60% 4% 1% 40% 56% 3% 1% 
ℒ𝑂𝑂(0, 2) 36% 59% 4% 1% 40% 55% 4% 1% 
ℒ𝑂𝑂(1, 2) 36% 59% 4% 1% 40% 55% 4% 1% 

0.5 
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1% 
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1% 
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1% 

Table 47 – Details of success in detecting linkage for different selection methods for 

population sizes 100 and 500 over all 3-bit classes – first published in [3]. 

6.11 Summary 

In this chapter we have examined the space of 3-bit classes. We have discovered 

conditionally-necessary interactions in the Walsh families. We have shown an equivalent 

expected probability of reaching an optimum over the equal-cost 𝐵𝐵 and 𝐶𝐶 network sets, 

suggesting that this is a useful classification. We have shown by counter-example that the 

delta linkage equivalence does not extend as described to 3-bits. In the following chapter, we 

discuss higher-dimensional function spaces.  
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7 Higher-Dimensional Pseudo-Boolean Functions 

 

In chapters 5 and 6 we presented an exhaustive computation on all 2-bit and 3-bit classes. 

As explained in section 4.5 this is computationally intractable for higher dimensional function 

spaces. In this section we discuss extending and applying what we learn from these small 

cases. We discuss the construction of larger functions with overlapping concatenation of 3-bit 

classes, and the applicability of precedence networks to higher dimensions, then we present 

an algorithm for estimating the Walsh structure of larger functions, and lastly present a method 

of constructing easy or hard instances of a problem we construct to be solved by a hill-climber 

algorithm. 

7.1 Combining 3-Bit Classes 

In this section we discuss the applicability of using 3-bit functions to build larger functions 

with known minimal Walsh structure. 

7.1.1 Concatenation of Non-Overlapping Functions 

The simplest way to construct larger functions from 2-bit functions is to use concatenation. 

This is the same technique used to construct deceptive functions from trap functions, e.g. the 

TRAP𝑘𝑘
ℓ is an ℓ-bit function constructued by concatenating ℓ 𝑘𝑘�  instances of the TRAP𝑘𝑘. 

In the same way we can concatenate ℓ 3�  non-overlapping functions and apply a random 

permutation of the variables so that the linkage groups are not comprised of only adjacent 

alleles. 

From this we can construct any order-3 additively separable function and know the minimal 

Walsh structure, since all such functions have structures composed of these classes. If we 

include functions which have some (or all) linkage groups of sizes < 2, then we would have to 

include 1-bit and 2-bit function classes for concatenation too if the length of the problem to be 

constructed is not a multiple of 3. 
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7.1.2 Stitching of Overlapping Functions 

It is an open question how we usefully decompose non–additively-separable functions into 

sums of smaller functions, which has been the subject of research [108]. Here we wish to 

construct functions from a sum of sub-functions which are not an additive separation (since 

variables will necessarily appear in more than one sub-function), we observe the risk 

constructing functions where the interaction of overlapping Walsh coefficients creates 

functions for which we do not know the minimal Walsh structure. 

In this section we show an example of how stitching together carefully-chosen 3-bit 

bivariate functions can work to create two rank-equivalent 5-bit functions with different linkage 

partition properties, based on the alternate minimal Walsh structures of the sub-functions. The 

structure of the four functions are shown in Figure 28. 

       

𝑓𝑓𝐴𝐴  𝑓𝑓𝐵𝐵  𝑓𝑓𝐵𝐵′  𝑓𝑓𝐶𝐶 

Figure 28 – Walsh structures of example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are rank-

equivalent. 

When three functions are added together as 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶 or 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶, the middle sub-

function 𝑓𝑓𝐵𝐵 acts as a hinge which changes the structure between a bivariate chain structure 𝑓𝑓 

or an additively separable function 𝑓𝑓′. 

   

𝑓𝑓 = 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶  𝑓𝑓′ = 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶 

Figure 29 – Stitched 5-bit functions. 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶 and 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶 are rank-equivalent. 
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The function 𝑓𝑓′ can be separated into two new sub-functions 𝑓𝑓𝐷𝐷 and 𝑓𝑓𝐸𝐸, whereas function 

𝑓𝑓 is not separable. 

   

𝑓𝑓𝐷𝐷  𝑓𝑓𝐸𝐸 

Figure 30 – New additive separation 𝑓𝑓𝐷𝐷, 𝑓𝑓𝐸𝐸 of 5-bit function 𝑓𝑓′ = 𝑓𝑓𝐷𝐷 + 𝑓𝑓𝐸𝐸. 

To do this construction we need to choose function values. The chosen 3-bit functions are 

defined by their Walsh coefficients, listed in Table 48. 

 𝑓𝑓𝐴𝐴 𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵′ 𝑓𝑓𝐶𝐶 

𝛼𝛼{0} −1    

𝛼𝛼{1} 3 30 40  

𝛼𝛼{2}  20 70 8 

𝛼𝛼{3}    2 

𝛼𝛼{4} 2 20 30 6 

𝛼𝛼{0,1} −5    

𝛼𝛼{1,2}  10   

𝛼𝛼{2,3}    −2 

𝛼𝛼{3,4}    −2 

𝛼𝛼{2,4}   −10  

Table 48 – Walsh coefficients for example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are 

rank-equivalent. 
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Functions 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐶𝐶 are instances of the 𝑅𝑅𝑓𝑓𝐴𝐴 and 𝑅𝑅𝑓𝑓𝐶𝐶 with minimal Walsh structure. 𝑓𝑓𝐵𝐵 and 

𝑓𝑓𝐵𝐵′ are rank-equivalent classes with alternative possible minimal Walsh structures. Either 𝛼𝛼{1,2} 

or 𝛼𝛼{2,3} are necessary coefficients. This can be shown by performing the Walsh-Hadamard 

transform of the delta expansion of each function individual as in section 6.2 when the function 

variables are permuted as {𝑋𝑋0,𝑋𝑋1,𝑋𝑋2}. 

 𝑓𝑓𝐴𝐴   𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵′   𝑓𝑓𝐶𝐶 

𝑓𝑓10∗∗0 11  𝑓𝑓∗00∗0 110 130  𝑓𝑓∗∗010 16 

𝑓𝑓10∗∗1 7  𝑓𝑓∗00∗1 70 90  𝑓𝑓∗∗000 12 

𝑓𝑓01∗∗0 3  𝑓𝑓∗10∗0 30 50  𝑓𝑓∗∗001 4 

𝑓𝑓00∗∗0 −1  𝑓𝑓∗01∗0 −10 10  𝑓𝑓∗∗100 0 

𝑓𝑓01∗∗1 −1  𝑓𝑓∗10∗1 −10 10  𝑓𝑓∗∗011 0 

𝑓𝑓11∗∗0 −5  𝑓𝑓∗11∗0 −50 −70  𝑓𝑓∗∗110 −4 

𝑓𝑓00∗∗1 −5  𝑓𝑓∗01∗1 −50 −70  𝑓𝑓∗∗101 −8 

𝑓𝑓11∗∗1 −9  𝑓𝑓∗11∗1 −90 −150  𝑓𝑓∗∗111 −20 

Table 49 – Function values for example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are rank-

equivalent. 

We choose large values for functions 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ such that the Walsh coefficients are all 

larger in magnitude that the coefficients in 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐶𝐶. This magnification prevents the structures 

interacting in a way which would cancel out the desired construction.  
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7.2 Precedence Networks 

The precedence network uses directed ordinal linkage to extend the idea of a linkage 

partition. A precedence network is a directed acyclic graph. Each vertex corresponds to a set 

of one or more variables which are interdependent, and each edge corresponds to a directed 

dependence relation. Here we present an algorithm to construct a precedence network – 

limited connectivity precedence network algorithm (LCPNA). 

A topological ordering (or topological sort) is an ordering induced on the vertices of a 

directed acyclic graph such that for every edge 𝐴𝐴 → 𝐵𝐵, the vertex 𝐴𝐴 appears before 𝐵𝐵 in the 

ordering. For some directed acyclic graphs, there are more than one possible topological 

ordering. In some cases, only a single topological ordering is possible. If a network has a single 

topological ordering, we refer to this a fully-specified network. 

 

Figure 31 – Conceptual illustration of the exploration path required to locate the global 

optima for the variables X𝑖𝑖 and 𝑋𝑋𝑗𝑗 when the dependence relationship is known. In the case of 

dependence, the full cross-section 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 may need to be exhaustively explored 
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7.2.1 Limited Connectivity Precedence Network Algorithm 

We described precedence networks in sections 5.5 (on 2-bit functions) and 6.5 (on 3-bit 

functions). In this section we discuss how we can estimate a precedence network for a higher-

dimensional function where the search space is too large to exhaustively evaluate. 

Here we propose a precedence network learning algorithm based on the ℓ log(ℓ) 2𝑘𝑘 

perturbation algorithm ASFOPTIMISE by Streeter [61]. We call this algorithm limited connectivity 

precedence network algorithm (LCPNA). The pseudocode is given in Algorithm 3 below. 

1) define 𝐺𝐺 as digraph with ℓ unconnected vertices 

2) calculate 𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴 = 𝑂𝑂 ℓ
𝑘𝑘

2𝑘𝑘 

3) while 𝐴𝐴𝑣𝑣𝑂𝑂𝐴𝐴𝑠𝑠 + 4 + 𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴 < 𝑏𝑏𝑢𝑢𝑑𝑑𝑔𝑔𝐴𝐴𝑡𝑡 

a) 𝑖𝑖 ← random vertex from 𝐺𝐺 

b) 𝑠𝑠0 = random string of length ℓ 

c) 𝑠𝑠1 = copy of 𝑠𝑠0 

d) for each vertex 𝑗𝑗 in 𝐺𝐺 from which 𝑖𝑖 is not reachable 

i) 𝑠𝑠1[𝑗𝑗] = random assignment 

e) 𝑠𝑠0′ = copy of 𝑠𝑠0 

f) 𝑠𝑠1′ = copy of 𝑠𝑠1 

g) 𝑠𝑠1′ [𝑖𝑖] = 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑�{0, 1}|𝑖𝑖| − {𝑠𝑠0[𝑖𝑖]}� 

h) if sgn�𝑓𝑓(𝑠𝑠1)− 𝑓𝑓(𝑠𝑠0)� ≠ sgn�𝑓𝑓(𝑠𝑠1′)− 𝑓𝑓(𝑠𝑠0′ )� 

i) binary search to find Γ𝑗𝑗 → Γ𝑖𝑖 or break when 𝐴𝐴𝑣𝑣𝑂𝑂𝐴𝐴𝑠𝑠 ≥ 𝑏𝑏𝑢𝑢𝑑𝑑𝑔𝑔𝐴𝐴𝑡𝑡 –  𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴 

ii) add edge Γ𝑗𝑗 → Γ𝑖𝑖 to 𝐺𝐺 

iii) if 𝐺𝐺 contains a cycle 

(1) if number of variables in cycle > 𝑘𝑘 

(a) remove edge Γ𝑗𝑗 → Γ𝑖𝑖 from 𝐺𝐺 

(2) else 

(a) contract vertices in cycle into single vertex 

4) return 𝐺𝐺 

Algorithm 3 – Limited connectivity precedence algorithm (LCPNA) 
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To learn the precedence of variables, not just the linkage partition, we use our definition 

of directed ordinal linkage given in section 4.2. We generate random strings 𝑠𝑠0 and 𝑠𝑠1 where 

the non-influencers of the target linkage group 𝑖𝑖 are varying, and the influencers of 𝑖𝑖 are held 

fixed, then generate random strings 𝑠𝑠0′  and 𝑠𝑠1′  which are copies of 𝑠𝑠0 and 𝑠𝑠1 where one or more 

of the variables in the target linkage group is different. 

If there is an effect of the variables not yet discovered as being influencers of 𝑖𝑖 then this 

will be detected sgn�𝑓𝑓(𝑠𝑠1)− 𝑓𝑓(𝑠𝑠0)� ≠ sgn�𝑓𝑓(𝑠𝑠1′)− 𝑓𝑓(𝑠𝑠0′ )�. We then use binary search to find a 

linkage group in 𝑁𝑁𝐼𝐼(𝑖𝑖), which is the set of linkage groups which have not been identified as 

preceding 𝑖𝑖 and move add an edge from that linkage group to 𝑖𝑖. If a cycle is detected, all 

variables from all linkage groups in the cycle are merged into one linkage group. 

 

Figure 32 – An example state of precedence network learning. Linkage group {𝑋𝑋0} is 

highlighted. The influencers of {𝑋𝑋0} are the 2 linkage groups I({𝑋𝑋0}) = �{𝑋𝑋3}, {𝑋𝑋6}�, and the 

non-influencers of {𝑋𝑋0} are the 4 linkage groups NI({𝑋𝑋0}) = �{𝑋𝑋1}, {𝑋𝑋2}, {𝑋𝑋5}, {𝑋𝑋4,𝑋𝑋7}�. 
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 𝑠𝑠0 𝑠𝑠1 𝑠𝑠0′  𝑠𝑠1′  

{𝑋𝑋0} 𝑥𝑥 ← rand({0, 1}) 𝑥𝑥 𝑒𝑒 ← 1 − x 𝑒𝑒 

The current target 𝑖𝑖 has two random values selected (without replacement).  
One value is used for 𝑠𝑠0 and 𝑠𝑠1, the other is used for 𝑠𝑠0′  and 𝑠𝑠1′ . 

If |𝑖𝑖| = 1 (as in our example) there are only 2 possible values – both are chosen. 

If |𝑖𝑖| > 1, then 2 random (distinct) values of {0, 1}|𝑖𝑖| are chosen. 

{𝑋𝑋3} 𝑃𝑃1 ← rand({0, 1}) 𝑃𝑃1 𝑃𝑃1 𝑃𝑃1 

{𝑋𝑋6} 𝑃𝑃2 ← rand({0, 1}) 𝑃𝑃2 𝑃𝑃2 𝑃𝑃2 

The influencers are held constant at a random value 𝑃𝑃. 

{𝑋𝑋1} 𝑂𝑂3 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏3 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂3 𝑏𝑏3 

{𝑋𝑋2} 𝑂𝑂4 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏4 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂4 𝑏𝑏4 

{𝑋𝑋5} 𝑂𝑂5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂5 𝑏𝑏5 

{𝑋𝑋4,𝑋𝑋7} 𝑂𝑂5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}2) 𝑏𝑏5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}2) 𝑂𝑂6 𝑏𝑏6 

The non-influencers have two random values selected (with replacement). 

One value is used for 𝑠𝑠0 and 𝑠𝑠0′ , the other is used for 𝑠𝑠1 and 𝑠𝑠1′ . 

For any given non-influencer 𝑂𝑂 may equal 𝑏𝑏 or not. 

If 𝑂𝑂 = 𝑏𝑏 for all non-influencers, the selection is repeated so at least one varies. 

Table 50 – Setting of strings in example state (Figure 32) in order to test of linkage (to find a 

linkage group which influences linkage group 𝑖𝑖). 
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There are four possible changes which may occur at the current step, depending on which 

linkage group is found to contain an influencer of 𝑋𝑋0. The four possibilities are illustrated in 

Figure 33. If no linkage is detected at this step, the graph is the same for the next iteration 

step. 

    
    

New linkage: 

{𝑋𝑋1} → {𝑋𝑋0} 
New linkage: 

{𝑋𝑋2} → {𝑋𝑋0} 
New linkage: 

{𝑋𝑋5} → {𝑋𝑋0} 
New linkage: 

{𝑋𝑋4,𝑋𝑋7} → {𝑋𝑋0} 

Figure 33 – Starting from the given example state (Figure 32), all possible next states if a 

variable is found to influence {𝑋𝑋0}. Note that if {𝑋𝑋1} or {𝑋𝑋2} is detected as influencing {𝑋𝑋0} a 

cycle is created and the variables in the cycle are contracted into one vertex as a new 

linkage group. If none of the four variables is detected as an influence in this step, then the 

next state will be unchanged from the current state. 

One change we make compared with ASFOPTIMISE is that we only optimise at the end of 

the procedure. This does not improve the complexity but reduces the number of evaluations. 

For this we need to calculate the maximum complexity of the network and set aside function 

evaluations from a pre-decided budget of evaluations, and use those set-aside evaluations at 

the end to evaluate the network. The procedure of sampling is described in section 7.2.2. 

It is possible that a cycle will be created between 𝑂𝑂 linkage partitions such that the total 

number of variables exceeds the limit (|𝛾𝛾0| + |𝛾𝛾1| + ⋯  |𝛾𝛾𝑛𝑛−1|) > 𝑘𝑘. This occurs when there is 

a chain of such 𝑂𝑂 linkage groups 𝛾𝛾0 → 𝛾𝛾1 → ⋯ → 𝛾𝛾𝑛𝑛−1 and the linkage 𝛾𝛾𝑛𝑛−1 → 𝛾𝛾0 is detected, 

creating the cycle. The network can now not be sampled within the pre-determined budget of 

evaluations. 
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To illustrate this point, we ran this linkage-detection procedure on maximum satisfiability 

problem (MAXSAT) instance uf20-01 [109]. Figure 34 shows the state of the precedence 

network where a large cycle was formed. 

 

Figure 34 – Example run of LCPNA on MAXSAT instance uf20-01 [109] at the iteration 

which a cycle with > 𝑘𝑘 variables is created. The newly detected dependence 𝑋𝑋17 → 𝑋𝑋18 is 

shown with a dotted line. The other existing edges which create the 8 variable 

interdependence are highlighted in bold. 

To control the complexity of sampling the network we can disallow the creation of large 

cycles. One way to do this is to ignore the newest detected dependence in this event. Another 

approach would be to adjust the network. Methods are discussed under further work in section 

8.2. 
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7.2.2 Sampling 

Random sampling of a precedence network can be performed in one pass in 𝑂𝑂(2𝑘𝑘) fitness 

evaluations where 𝑘𝑘 is the maximum number of variables in a single vertex. The pseudocode 

is given in Algorithm 4 below. 

1) init 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 ← null 

2) init 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴 ← null 

3) 𝑇𝑇 ← random topological sort of 𝐺𝐺 

4) repeat 𝑂𝑂 times 

5) define 𝐴𝐴 as new empty dictionary 

a) for 𝑖𝑖 ← 0 to |𝑇𝑇| − 1 

i) define 𝑥𝑥 as new length ℓ vector 

ii) for 𝑗𝑗 ← 0 to 𝑖𝑖 − 1 

(1) 𝑥𝑥[𝑗𝑗] = 𝐴𝐴[𝑗𝑗] 

iii) for 𝑗𝑗 ← 𝑖𝑖 + 1 to |𝑇𝑇| − 1 

(1) 𝑥𝑥[𝑗𝑗] ← random assignment 

iv) 𝐴𝐴[𝑖𝑖] ←exhaustive evaluate to find best assignment for 𝑇𝑇[𝑖𝑖] 

b) if 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 = 𝑂𝑂𝑢𝑢𝐴𝐴𝐴𝐴 or 𝑓𝑓(𝐴𝐴) > 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴 

i) 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 ← 𝐴𝐴 

ii) 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴 ← 𝑣𝑣 

6) return 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 

Algorithm 4 – Precedence network sampling 

First, a topological sort is chosen, then at each step, the variables in earlier partitions are 

assigned their best values, the variables in later partitions are assigned randomly chosen 

values (chosen once per step), and every combination of values for variables in the current 

partition is tried. 

Let 𝐴𝐴 be the variables for which the optimum is known (initialise 𝐴𝐴 = ∅), each linkage group 

is sampled separately, in the order in which they appear in the topological sort. 

To sample one linkage group 𝛾𝛾 requires 2|𝛾𝛾| function evaluations to exhaustively 

determine the optimal setting for the variables in 𝛾𝛾. The variables in 𝐴𝐴 should be assigned to 

determined their optimum and the other variables (𝑋𝑋 − 𝐴𝐴 − 𝛾𝛾𝑖𝑖) should be set to one a random 

assignment, fixed for the duration of the 2|𝛾𝛾| evaluations. Assuming there are no interactions 
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such that any variables in 𝑋𝑋 − 𝐴𝐴 − 𝛾𝛾 affect the optimal setting of 𝛾𝛾, this will discover the optimal 

setting for 𝛾𝛾. 𝐴𝐴 should be updated to contain 𝛾𝛾. 

Sampling can be repeated. If the precedence network represents the exact structure of 

the function, one sample will determine a global optimum. Repeated sampling 𝑂𝑂 times should 

be applied when the network is an estimate of the linkage. 

The overall number of function evaluations 𝑃𝑃(Γ, n) is given by ( 125 ). 

𝑃𝑃(Γ, n) = 𝑂𝑂�2|𝛾𝛾|

γ∈Γ

 ( 125 ) 

Since the structure is unknown before construction, we need to use an upper bound on 

the complexity for a problem of length ℓ for which we limit linkage groups to a maximum size 

of 𝑘𝑘. This upper bound is given by ( 126 ). This number of function evaluations should be set 

aside before structure learning for chosen parameters 𝑂𝑂 and 𝑘𝑘. 

𝑃𝑃(Γ, n) ≤ 𝑂𝑂
𝐴𝐴
𝑘𝑘

2𝑘𝑘 

if (∀𝛾𝛾 ∈ Γ)(|𝛾𝛾| ≤ 𝑘𝑘) 

( 126 ) 
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7.3 Subset Walsh Transform 

In this section we discuss the result of applying the Walsh-Hadamard transform to selected 

subsets of variables and how this may direct novel algorithms. The algorithm, results and 

analysis described in this section were first published in [1]. 

As discussed earlier, finding the exact Walsh structure of a pseudo-Boolean black-box 

function requires exhaustive evaluation of the search space. It may be desirable to construct 

an estimation of the structure. 

7.3.1 Description of Algorithm 

The subset Walsh transform performs a Walsh-Hadamard transform of a selected subset 

of the variables. For a chosen strict subset of the variables 𝑆𝑆 ⊂ 𝑋𝑋, let 𝑘𝑘 = |𝑆𝑆|, one may evaluate 

2𝑘𝑘 instances of the variables 𝑆𝑆 for a given fixed setting of the remaining variables 𝑅𝑅, where 

𝑅𝑅 = 𝑋𝑋 − 𝑆𝑆. We call this a sampling. We denote the resulting vector of fitnesses as 𝐟𝐟𝑆𝑆. The 

ordering of this vector is given by inheritance from {0, 1}ℓ using the projection onto {0, 1}𝑘𝑘 of 

the variables in 𝑆𝑆. 

A set of Walsh coefficients may be obtained by applying the Walsh-Hadamard transform 

in the usual way, as given by ( 127 ). We call this the subset Walsh transform. 

𝛂𝛂𝑆𝑆 =
1

2𝑘𝑘
𝐻𝐻𝑘𝑘𝐟𝐟𝑠𝑠 ( 127 ) 

The obtained set of Walsh coefficients represent those coefficients sufficient to reconstruct 

the 𝐟𝐟𝑆𝑆 given the specified setting of the remaining variable 𝑅𝑅. 

The question remains, how close 𝛂𝛂𝑆𝑆 is to the true Walsh coefficients 𝛂𝛂. If we assume that 

𝑆𝑆 represents an additively-separable partition of the variable 𝑋𝑋 under 𝑓𝑓, then any setting of 𝑅𝑅 

will not affect the same subfunction as 𝑆𝑆 does, so the setting of 𝑅𝑅 will only offset the values of 

𝐟𝐟𝑆𝑆 by a constant amount independent of 𝑆𝑆. Given that any two functions 𝑔𝑔 and ℎ which differ 

only by a constant amount, the Walsh coefficients of 𝑔𝑔 and ℎ will differ only in the constant 

term - any two samplings will produce the same Walsh coefficients for 𝑆𝑆 with the exception of 

the constant term 𝛼𝛼∅. 
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We see that this procedure gives correct coefficients for cliques which are subsets of the 

selected subset (completely-contained structure) and statistical estimate for cliques which 

overlap, but are not subsets of, the selected subset (partially-contained structure). 

The matrix 𝐵𝐵, as given by ( 128 ), is a 2𝑘𝑘-by-𝑘𝑘 matrix with rows as the values of 𝑋𝑋 in the 

same order as in the Walsh-Hadamard transform. This is used to populate the selected 𝑘𝑘 

variables in the selected variables 𝑆𝑆. 

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 ⋯ 1
0 1 1 ⋯ 1
1 0 1 ⋯ 1
0 0 1 ⋯ 1
   ⋮  
1 1 0 ⋯ 0
0 1 0 ⋯ 0
1 0 0 ⋯ 0
0 0 0 ⋯ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

2𝑘𝑘 ( 128 ) 

The remaining (ℓ − 𝑘𝑘) bits in the remaining variables 𝑋𝑋 − 𝑆𝑆 are generated randomly once per 

sample. The process is repeated 𝑂𝑂 times to obtain 𝑂𝑂 samples of the Walsh coefficients. The 

mean 𝜇𝜇 and standard deviation 𝜎𝜎 are calculated for each 2𝑘𝑘 coefficients. 

The pseudocode for the Subset Walsh Transform is given by Algorithm 5 (p. 149) for 

parameter 𝑂𝑂 representing the number of samples. 
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1) define 𝐴𝐴 as 2𝑘𝑘-by-𝑂𝑂 matrix 

2) define µ as length 2𝑘𝑘 column 

3) define 𝜎𝜎 as length 2𝑘𝑘 column 

4) for 𝑗𝑗 ← 0 to 𝑂𝑂 − 1 

a) define 𝑒𝑒 ← row of (ℓ − 𝑘𝑘) random bits 

b) define 𝑓𝑓 as length 2𝑘𝑘 column 

c) for 𝑖𝑖 ← 0 to 2𝑘𝑘 − 1 

i) define 𝑠𝑠 ← row 𝑖𝑖 of 𝐵𝐵 

ii) define 𝑥𝑥 as length ℓ bitstring 

iii) for indices in 𝑘𝑘, populate elements of 𝑥𝑥 with elements of 𝑠𝑠 left-to-right 

iv) for indices not in 𝑘𝑘, populate elements of 𝑥𝑥 with elements of 𝑒𝑒 left-to-right 

v) 𝑓𝑓[𝑖𝑖] ← evaluate(𝑥𝑥) 

d) column 𝐴𝐴[𝑗𝑗] ← 1
2𝑘𝑘
𝐻𝐻𝑘𝑘𝑓𝑓 

5) for 𝑖𝑖 ← 0 to 2𝑘𝑘 − 1 

a) µ[𝑖𝑖] ← mean of row 𝐴𝐴[𝑖𝑖] 

b) 𝜎𝜎[𝑖𝑖] ← stdev of row 𝐴𝐴[𝑖𝑖] 

6) return columns µ and 𝜎𝜎 

Algorithm 5 – Subset Walsh Transform. First published in [1].  
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7.3.2 Results 

Here we show the result of running the subset Walsh transform on the first six variables 

of several length-20 functions. These will illustrate the way in which the subset Walsh transform 

detects complete and partial structure of a given selected subset.  

The functions used are the ONEMAX20, CHECK1D
20  and an arbitrary length-20 function (the 

construction of which is given) with chosen non-zero alphas (with overlapping, but without low-

order cliques within high-order cliques). Each was done using a sample size of 5. Finally the 

result on TRAP4
20 is given using a sample size of 20. 
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For the function ONEMAX20, the set of non-zero Walsh coefficients is only the univariate 

coefficients. All structure is contained within the selected partition, since for any given selected 

subset, there cannot be a non-zero Walsh coefficient crossing the cut of the partition. Hence, 

the subset Walsh transform will detect complete structure and no partial structure. The 

structure is illustrated in Figure 35. 

 

Figure 35 – The Walsh structure of a length-20 univariate function such as ONEMAX20. The 

first six variables are selected. There is no expected non-zero standard deviation from the 

subset Walsh transform. 

We see in Figure 36 that all six univariate coefficients are identified and there are no 

spurious correlations. 

 

Figure 36 – Result for running subset Walsh transform with sample size 5 on the first six 

variables on ONEMAX20. 
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For the function CHECK1D
20 , the set of non-zero Walsh coefficients is only the bivariate terms 

formed from pairs of adjacent variables. For any partitioning (non-empty strict subset) of the 

variables there will be at least one non-zero Walsh coefficient which crosses the cut. For the 

selected subset shown, the subset Walsh transform will detect complete structure for the first 

5 bivariate neighbours and partial structure on variable 𝑋𝑋5. The structure is illustrated in  

Figure 37. 

 

Figure 37 – The Walsh structure of a length-20 bivariate chain function such as CHECK1D
20 . The 

first six variables are selected. Expected non-zero standard deviation from subset Walsh 

transform is labelled. 

We see that in the result, all bivariate neighbours in the subset are detected correctly, and 

all other coefficients are correctly identified as zero, except 𝛼𝛼{5}, which as expected has a 

variance. This is because 𝑋𝑋5 is part of the clique {5, 6}, of which the variable 𝑋𝑋6 is not in the 

subset, hence this is partial structure. The result is shown in Figure 38. 

 

Figure 38 – Result for running subset Walsh transform with sample size 5 on the first six 

variables on CHECK1D
20 . 
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For the next example, we constructed a function in which the only non-zero Walsh 

coefficients are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7}, 𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}. We 

choose this structure to illustrate an overlap of structure with the variables 

{𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5}. All other coefficients including the constant term and their lower-order 

sub-cliques are zero. The structure is illustrated in Figure 39. 

 

Figure 39 – The Walsh structure of a function in which the only non-zero Walsh coefficients 

are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7}, 𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}. The first six 

variables are selected. Expected non-zero standard deviation from subset Walsh transform is 

labelled. 

Here, the only complete structure in the subset is 𝛼𝛼{0,4,5}, which is correctly detected, and 

the included variables in the three partial structure cliques {2}, {5}, and {0, 1} have a variance 

indicating partial structure was detected. All other coefficients are zero. The result is shown in 

Figure 40. 
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Figure 40 – Result for running subset Walsh transform with sample size 5 on the first six 

variables on a function in which the only non-zero Walsh coefficients are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7}, 

𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}. 

The function TRAP4
20 consists of size order-4 maximal cliques concatenated. The selected 

subset includes the complete structure for one of the traps and half of the structure for the 

second trap. The structure is shown in Figure 41. 

 

Figure 41 – The Walsh structure of a length-20 function of concatenated order-4 maximal 

cliques such as TRAP4
20. The first six variables are selected. Expected non-zero standard 

deviation from subset Walsh transform is labelled. 

For the function TRAP4
20, the sample size was increased to 20 due to tendency to miss 

variance on small sample sizes. Here, the Walsh structure for the complete first trap is correctly 

identified, and there are variances on the three cliques involved in the second trap, indicating 

that there are higher-order terms involving variables 𝑋𝑋4 and 𝑋𝑋5. Note however, that the mean 

values of the sample do correctly identify those alphas in this instance, although the mean 

result for partial structure should not be used where a variance exists. The result is shown in 

Figure 42. 
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Figure 42 – Result for running subset Walsh transform with sample size 20 on the first six 

variables on TRAP4
20. 
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7.3.3 Theoretical Analysis 

In this section we show that for a given cut of the variables, the subset Walsh transform 

will return an estimate of the structure within the partition, uninfluenced by structure wholly 

outside the partition, and with non-zero variance precisely on the parts of the structure crossing 

the cut. We show this by showing how the Walsh-Hadamard transform affects a partitioning of 

the function into sub functions. 

In this analysis, without loss of generality, we order the variables such that the selected 

subset, 𝑆𝑆 is the first 𝑘𝑘 variables. However, the same analysis holds for reorderings of the 

variables. Consider a partitioning Γ of the variables 𝑋𝑋 into two disjoint subsets 𝑆𝑆 of the variables 

as given by ( 129 ), and 𝑅𝑅 as given by ( 130 ). 

𝑆𝑆 = {𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑘𝑘−1} ( 129 ) 

𝑅𝑅 = {𝑋𝑋𝑘𝑘 ,𝑋𝑋𝑘𝑘+1, … ,𝑋𝑋ℓ−1} ( 130 ) 

For a sample 𝐱𝐱 of variables 𝑋𝑋, let 𝐬𝐬 represent the sample of variables 𝑆𝑆 and 𝐫𝐫 represent 

the sample of variables 𝑅𝑅. Any binary function considered can be rewritten in terms of 𝑓𝑓𝑆𝑆, 𝑓𝑓𝑃𝑃, 

and 𝑓𝑓𝑅𝑅, as given by ( 131 ). 

𝑓𝑓(𝐱𝐱) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑓𝑓𝑅𝑅(𝐫𝐫) ( 131 ) 

where 𝑓𝑓𝑆𝑆(𝐬𝐬) is the function created from all non-zero Walsh coefficients involving only the 

variables in 𝑆𝑆, where 𝑓𝑓𝑅𝑅(𝐫𝐫) is the function created from all non-zero Walsh coefficients involving 

only the variables in 𝑅𝑅, and where 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) is the function formed from the remaining non-zero 

Walsh coefficients. 
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The Walsh coefficients for the function can be calculated from applying the Walsh-

Hadamard transform to each part of this expansion in turn as given by ( 132 ). 

𝛂𝛂 =
1
2ℓ
𝐻𝐻𝐟𝐟 

=
1
2ℓ
𝐻𝐻(𝐟𝐟𝑆𝑆 + 𝐟𝐟𝑃𝑃 + 𝐟𝐟𝑅𝑅) 

=
1
2ℓ
𝐻𝐻𝐟𝐟𝑆𝑆 +

1
2ℓ
𝐻𝐻𝐟𝐟𝑃𝑃 +

1
2ℓ
𝐻𝐻𝐟𝐟𝑅𝑅 

= 𝛂𝛂𝑆𝑆 + 𝛂𝛂𝑃𝑃 + 𝛂𝛂𝑅𝑅 

( 132 ) 

First we consider the last term, 𝛂𝛂𝑅𝑅. Within one sampling, only the 𝑘𝑘 variables in 𝑆𝑆 vary, 

and the value of 𝑓𝑓𝑅𝑅 is only affected by the ℓ − 𝑘𝑘 variables in 𝑅𝑅. Hence, within one sampling, 

the value of 𝑓𝑓𝑅𝑅(𝐫𝐫) is fixed at some arbitrary constant 𝑃𝑃, therefore we can rewrite the function 

as given by ( 133 ). 

𝑓𝑓𝑅𝑅(𝐫𝐫) = 𝑃𝑃 

𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑓𝑓𝑅𝑅(𝐫𝐫) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑃𝑃 

𝑓𝑓(𝐱𝐱) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑃𝑃 

( 133 ) 

Since each row of the Hadamard matrix has equal numbers of +1 and −1 (with the 

exception of the first row), the estimated coefficients from this term are given by ( 134 ). 

𝛂𝛂𝑅𝑅 =
1
2ℓ
𝐻𝐻𝑘𝑘 �

𝑃𝑃
𝑃𝑃
⋮
𝑃𝑃

� = �

𝛼𝛼∅
0
⋮
0

� ( 134 ) 

which is non-zero for all coefficients except 𝛼𝛼∅ – which we do not regard as part of the structure. 

Hence, the structure estimate is unaffected by 𝑓𝑓𝑅𝑅. 

Next we consider the first term, 𝛂𝛂𝑆𝑆. This is 𝑘𝑘-dimensional. Since the contribution 𝛂𝛂𝑆𝑆 from 

the subset ( 135 ) does not depend on the random background setting, it is constant across 

the samples and will reflect the correct coefficients of this part of the structure. 

𝛂𝛂𝑆𝑆 =
1
2ℓ
𝐻𝐻𝑘𝑘𝐟𝐟𝑆𝑆 ( 135 ) 
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However, the coefficients for the partial term ( 136 ) may change for each sample taken, 

therefore there will be a non-zero standard deviation in the result. 

𝛂𝛂𝑃𝑃 =
1
2ℓ
𝐻𝐻𝑘𝑘𝐟𝐟𝑃𝑃 ( 136 ) 

Hence, the non-zero standard deviation indicates that the sample includes partial structure 

which crosses the cut specified by the partition. 

Stdev (𝜎𝜎) Mean (𝜇𝜇) In Structure? 

non-zero any partial 

0 non-zero yes 

0 0 no 

Table 51 – Condition for detection of partial structure in Subset Walsh Transform. 

However, if the sample is not adequate, partial structure may not be detected because 𝜎𝜎 = 0. 

This is an instance of a false negative. 
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7.4 Proximate Optimality on Hill-Climbing Algorithms 

We have seen that problem difficulty relates to structure. In the literature there are 

concepts that try to explain when problems will be amenable to metaheuristics. One such 

measure described in the literature is Glover’s proximate optimality principal [79, pp. 138-141]. 

We look at a more precise definition of POP related to structure, which we call structural 

coherence. Following from the work in this thesis, we have explored construction of problem 

instances using measures of structural coherence. Recall that proximate optimality principle 

assumes that high fitness candidates have similar structures. 

We explore creating functions which have coherence from the point of view of a hill-climber 

algorithm. That is, we wish to create functions which are easy or hard for a hill-climber. The 

technique and experiments described in section 7.4 were first published in [4]. As second 

author, my contribution was to run the experiments, produce the diagrams, and contribute to 

the theory. 
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7.4.1 Concept 

Recall the definition of a metric and the Hamming metric from section 2.1.2, as a metric 

on bit strings. The idea is to use an undirected graph of randomly-selected seed solutions 

chosen in the Hamming space, and construct a minimum spanning tree of that graph to create 

a fitness gradient which is smooth at most points, with few peaks and plateaus (these we call 

coherent), then to construct a maximum spanning tree of that graph to create a fitness gradient 

which is less smooth, with more peaks and plateaus (these we call anti-coherent). 

As a conceptual illustration, we show a randomly-chosen set of seed points in a 2-

dimensional Euclidean space in Figure 43. The minimum spanning tree (a) and maximum 

spanning tree (b) are shown. One seed point at the bottom of the figure was chosen as the 

unique global optimum. Each other seed is assigned a discrete fitness value based on path 

distance from the global optimum along the tree. 

Every other point on the space is assigned an interpolated fitness based on the weighted 

average distance to the two nearest points. The result in each case is a number of cells, each 

with a fitness gradient. In the case of the minimum spanning tree, the fitness gradient tends to 

lead to the global optimum, with the exception of a few small plateaux. In the case of the 

maximum spanning tree, there are a number of local optima, including one high fitness local 

optimum at the opposite side of the space to the global optimum. 

 

Figure 43 – Minimum spanning tree (a) and maximum spanning tree (b) for a randomly-

chosen set of point in 2-dimensional Euclidian space. 
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7.4.2 Problem Generation and Evaluation 

We generate problems in an ℓ-dimensional Hamming space. First we choose 𝑠𝑠 seed 

solutions for some chosen parameter value 𝑠𝑠 ∈ {2, 3, … }. The seed solutions are chosen 

uniformly at random without replacement from {0, 1}ℓ. The seed solutions are the vertices of a 

graph 𝐺𝐺. 

Next, we generate a minimum spanning tree 𝑇𝑇 of 𝐺𝐺 (for coherent instances) using Prim’s 

algorithm [110] or maximum spanning tree 𝑇𝑇 of 𝐺𝐺 (for anti-coherent instances) using Prim’s 

algorithm with negative costs. If desired, a coherent instance and an anti-coherent instance 

may be generated from the same set of seeds. 

1) define 𝑓𝑓𝐸𝐸 as new empty dictionary 

2) define 𝑓𝑓𝐻𝐻 as new empty dictionary 

3) 𝑠𝑠 ← ∅ 

4) for 𝑖𝑖 ← 0 to 𝑠𝑠 − 1 

a) 𝑠𝑠 ← 𝑠𝑠 ∪ random�{0, 1}ℓ − 𝑠𝑠�  

5) 𝑇𝑇𝐸𝐸 ← min_span_tree(𝑠𝑠) 

6) 𝑇𝑇𝐻𝐻 ← max_span_tree(𝑠𝑠) 

7) 𝑠𝑠𝐸𝐸∗ ← random�leaves(𝑇𝑇𝐸𝐸)� 

8) 𝑠𝑠𝐻𝐻∗ ← random�leaves(𝑇𝑇𝐻𝐻)� 

9) 𝑓𝑓∗ ← max({pathlength(𝑠𝑠∗, 𝑠𝑠𝑖𝑖) ∶ ∀𝑠𝑠𝑖𝑖 ∈ 𝑠𝑠})  

10) 𝑓𝑓𝐸𝐸[𝑠𝑠∗] ← 𝑓𝑓𝐸𝐸∗ 

11) 𝑓𝑓𝐻𝐻[𝑠𝑠∗] ← 𝑓𝑓𝐻𝐻∗ 

12) for each 𝑠𝑠𝑖𝑖 in 𝑠𝑠 − 𝑠𝑠𝐸𝐸∗   

a) 𝑓𝑓𝐸𝐸[𝑠𝑠𝑖𝑖] ← 𝑓𝑓𝐸𝐸∗ − pathlength(𝑠𝑠𝐸𝐸∗ , 𝑠𝑠𝑖𝑖) 

13) for each 𝑠𝑠𝑖𝑖 in 𝑠𝑠 − 𝑠𝑠𝐻𝐻∗   

a) 𝑓𝑓𝐻𝐻[𝑠𝑠𝑖𝑖] ← 𝑓𝑓𝐻𝐻∗ − pathlength(𝑠𝑠𝐻𝐻∗ , 𝑠𝑠𝑖𝑖) 

14) save 𝑓𝑓𝐸𝐸 to easy file 

15) save 𝑓𝑓𝐻𝐻 to hard file 

Algorithm 6 – Coherence problem instance generation 

  



|   

 
 162 of 195  

The fitness of the seed points are chosen. First a fitness of 𝑀𝑀𝐴𝐴𝑋𝑋 is assigned to one 

randomly chosen vertex of 𝑇𝑇 with only one neighbour (a leaf), where 𝑀𝑀𝐴𝐴𝑋𝑋 is the maximum 

number of hops on 𝑇𝑇 from any vertex to that leaf, this leaf will be the instance global optimum. 

Next, each other seed is assigned a fitness of (𝑀𝑀𝐴𝐴𝑋𝑋 − ℎ) where ℎ is the number of hops 

to the global optimum. As a result, each seed will be assigned a value in {0, 1, … ,𝑀𝑀𝐴𝐴𝑋𝑋} with at 

least one seed at each level, and only one seed assigned the value of 𝑀𝑀𝐴𝐴𝑋𝑋. 

For each point in the search space which is not a seed, we define the fitness of a point 𝐱𝐱 

in the as the weighted average of the two closest seed points 𝐩𝐩 and 𝐪𝐪, given by ( 137 ), based 

on 𝐷𝐷𝑟𝑟, the hamming metric; ties are broken arbitrarily (based on the order in which seeds were 

randomly generated). As a result, each value in the space, will be assigned a value in [0,𝑀𝑀𝐴𝐴𝑋𝑋] 

with only one value assigned the value of 𝑀𝑀𝐴𝐴𝑋𝑋. 

𝑓𝑓(𝐱𝐱) = 𝑓𝑓(𝐩𝐩) ∙ (1 − 𝑡𝑡) + 𝑓𝑓(𝐪𝐪) ∙ 𝑡𝑡 

where 𝑡𝑡 =
𝐷𝐷𝑟𝑟(𝐱𝐱,𝐩𝐩)

𝐷𝐷𝑟𝑟(𝐱𝐱,𝐩𝐩) + 𝐷𝐷𝑟𝑟(𝐱𝐱,𝐪𝐪) 
( 137 ) 

Algorithm 7 below shows the process of evaluating a candidate 𝑥𝑥. 

1) 𝑓𝑓 ← load from file 

2) if 𝑥𝑥 ∈ keys(𝑓𝑓) 

a) return 𝑓𝑓[𝑥𝑥] 

3) else 

a) 𝐴𝐴, 𝑞𝑞 ← two closest points in 𝑓𝑓 to 𝑥𝑥 

b)  𝑡𝑡 ← 𝐷𝐷𝑟𝑟(𝑥𝑥,𝐴𝐴)/(𝐷𝐷𝑟𝑟(𝑥𝑥, 𝐴𝐴) + 𝐷𝐷𝑟𝑟(𝑥𝑥, 𝑞𝑞))   

c) return 𝑓𝑓[𝐴𝐴] ∙ (1 − 𝑡𝑡) + 𝑓𝑓[𝑞𝑞] ∙ 𝑡𝑡 

Algorithm 7 – Coherence problem function evaluation 
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7.4.3 Results 

10 instances for each problem length 6 to 100 were generated using both max-span and 

min-span from the same seeds. We ran a multi-restart maximum-ascent hill-climber algorithm 

on each instance 100 times and plotted the results in Figure 44. The runtime of the min-span 

(coherent) instances is quadratic. The runtime of max-span instances (anti-coherent) was 

quadratic in the best case and exponential in the worst case, depending on the instance. 

 

Figure 44 – Result of hill-climb on instances with 50 seed solutions. 
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7.4.4 Conclusions 

The procedure described produces single–global-optima binary functions which can be 

easy or hard to optimise with a hill-climber. These are coherent and anti-coherent instances 

from the point of view of a hill-climber. 

It is worth noting that there are cases in which even the minimum span procedure can 

generate instances with a relatively isolated basin of attraction to the global optimum. As an 

illustration, we show two seed points to the left of the graph on a one-dimensional Euclidian 

search space and one seed point to the right in Figure 45. 

 

Figure 45 – All possible assignments of values to minimum spanning tree (left charts) and 

maximum spanning tree (right charts) for three selected seeds on one-dimensional Euclidean 

space. Basin of attraction to global optimum highlighted. 

Observe that in the illustration, the fitness gradient is linear when interpolated between the two 

closest points (𝐴𝐴 < 𝑥𝑥 < 𝑞𝑞), but falls off sharply as 1
𝐷𝐷
 when extrapolating past the two closest 

points (𝐴𝐴 < 𝑞𝑞 < 𝑥𝑥). If 𝑓𝑓(𝐴𝐴) > 𝑓𝑓(𝑞𝑞) then this creates a local optimum with a wide basin of 

attraction, far from any seed solution. 

The example given is an illustration in a Euclidian search space, and chosen pathologically 

to illustrate this behaviour. However, we see that difficulty of functions generated may be 

affected by other factors than the choice of minimum or maximum spanning tree. This may 

help explain the large variance in difficulty of max-span instances. 
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7.5 Summary 

In this chapter we have discussed combining 3-bit classes into larger problem instances, 

and algorithms for learning precedence network structure and Walsh structure. We have 

outlined a method of generating easy and hard problems for a hill-climber based on proximate 

optimality structure. Next, we conclude the thesis and give suggestions for future work. 
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8 Conclusions and Further Work 

 

8.1 Conclusions 

In this thesis we addressed the following four research questions: 

1. What is the relationship between problem structure and problem difficulty? 

In chapters 5 and 6 we introduced the notion of precedence profiles, and discussed the 

relationship between precedence profiles and problem difficulty. We also discussed how the 

computational effort affects the probability of finding an optimum, across the set of function 

classes. In chapter 7 we constructed easy and hard functions based on ideas of structural 

coherence for hill-climbing. 

2. How can we use structure to usefully classify problems? 

In chapter 4 we defined a classification of pseudo-Boolean functions based on function 

classes invariant under monotonic operators. The performance of any evolutionary algorithm 

using only monotonic operators on any two functions of the same class is identical and 

reasoning about the performance of such an algorithm applies to the whole class. We define 

the notion of directed ordinal linkage as an extension of the existing definitions of linkage. 

3. Can we use structure to bound the number of algorithmic steps? 

In chapters 5 and 6 we analysed the linkage and directed ordinal linkage of the complete 

set of 2-bit and 3-bit pseudo-Boolean functions classes, and derived a notion of minimal Walsh 

structure. We derived a notion of conditionally-necessary interactions (those interactions which 

may be necessary or unnecessary depending on other interactions). We also defined 

precedence networks – an ordered evaluation of linkage partitions. We also discussed how 

population size, and hence computational cost, is affected by choice of selection operators. 

4. Can structure analysis motivate the development of novel algorithms? 

In chapter 7 we discussed a means of algorithmically constructing a precedence network 

describing the ordinal linkage structure of a problem, and a linkage-learning algorithm which 

can be used to optimise a function. We also described an algorithm for leaning the Walsh 

structure of a function by sampling subsets of the variables. We discussed the construction of 

problem instances from our analysis of 3-bit functions.  
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8.2 Further Work 

8.2.1 Refinement of 3-Bit Structural Coherence 

In section 6.10 we discuss the structural coherence of 3-bit function classes and minimum 

population sizes required for detection of linkage. 

Here we only consider the pairwise linkage. From the point of view of our definitions, as 

described in chapter 6 there are higher-order interactions than pairwise. Additionally, other 

algorithms in the literature uses higher-order interactions. We can extend this work either by 

using the perturbation-based definition of linkage, taking two variables to be linkage if they are 

in the same connected component of the linkage graph, taking into account the higher-order 

linage. 

We also note that our current choice of recognising linkage – by choosing the structure 

with the lowest-ID from a class’ Walsh family – puts a bias which introduced an asymmetry on 

the bivariate terms. This problem arises because there exists 3-bit function classes where 

there is no clear minimal structure (as noted in section 6.4). For the case of the class 

[0 1 2 4 2 4 4 7] (see Figure 20, p. 116), we select 1F as the minimal structure and rate the 

algorithm’s ability to detect linkages 𝛼𝛼{0,1} and 𝛼𝛼{0,2} while counting 𝛼𝛼{0,2} as a false negative. 

From the Walsh family we see that the structure 2B (which contains 𝛼𝛼{0,2} as the only bivariate 

term) is an equally-valid structure for this class. 

 

Figure 20 (p. 116) – All possible Walsh structures for [0 1 2 4 2 4 4 7]. 

One possible way to proceed is to introduce a notion of non-dominated structure, which 

would define as the set of structures (in this case {1F, 2B}) for which no strict subset of the 

structure elements exist in the family. A measure of a monotonic EDA’s structure learning 

should acknowledge the existence of these two equally-value structures. If the EDA learns the 

structure 3F, then it has learned at least one unnecessary interaction, however, it is not clear 

which bivariate term(s) should be regarded as unnecessary in this case.  



|   

 
 169 of 195  

8.2.2 Further Development of Precedence Network Learning 

The algorithm in section 7.2.1 as described does not easily learn the structure of the 

LEADING function, since the interactions involving variables 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 for large 𝑗𝑗 are difficult to 

detect since it requires correct setting of all variables 𝑋𝑋0 …𝑋𝑋𝑗𝑗−1. A modification could be made 

for this case which stores information about known good settings of the variables influencing 

the current target allowing the algorithm to be more likely to try those values.  

Methods could be investigated to determine the best way to cut a graph when the addition 

of new edges causes creation of a vertex which is too large to evaluate. For example, we could 

assign weights to vertices based on the result of linkage detection (e.g. using some non-

monotonic information about the magnitude of the fitness differences). Minimum cut or similar 

procedure could be used to discard existing linkages of a lower strength. 

We could randomly break linkages with some probability based on a cooling schedule 

such that all linkages would have an equal chance to be broken at the start of the network 

learning, but stronger linkages would have a lower chance to be broken as time passes. 

One of the difficulties that occurs when implementing these procedures is that it is difficult 

to decide how to break apart structure. If variables are first contracted into linkage group, then 

one or more variables are found to be influencers of the group, those dependencies are shared 

by the members. This makes it difficult to well-define a procedure which would allow the 

interdependency between the variables of the group later. Figure 46 shows the structure 

(𝑋𝑋0 + 𝑋𝑋2) → 𝑋𝑋1, the next step linkage 𝑋𝑋1 → 𝑋𝑋2 is added, and in the last step, the linkage is 

removed again. From the previous step, it is not clear which variable is dependant on 𝑋𝑋0 unless 

a memory of previous steps is kept. For more complex, nested structures, depending on the 

order of adding and removing linkage, the correct linkage may not be defined. 

 

Figure 46 – Merge then split of variables 𝑋𝑋1 and 𝑋𝑋2. 

A work around could involve a procedure of disallowing the creation of linkage groups of 

size > 1 initially, then increasing the limit gradually as the temperature changes, allowing larger 

and larger linkage groups to be formed permanently.  
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8.2.3 Construction of Benchmark Functions 

In section 7.1.2 we discuss the construction of functions by stitching together overlapping 

sub-functions. Further development of this procedure could construct problem instances with 

known Walsh structure. These could be used to evaluate the success of EDAs in structure 

learning. 

Additionally, it may be possible to consider construction of new benchmarks with partially 

controlled complexity in terms of number of possible structures. Recall from Table 38 (p. 111) 

that the number of fitness levels is positively correlated with the size of the Walsh family, and 

hence generally correlated with the complexity of arrangement of optional or conditional Walsh 

coefficients. 

In section 6.7 we list all possible precedence networks on 3-bit functions. It is clear that 

for higher-dimensional function spaces, there continues to be a complex set of possible 

precedence networks, and function classes which are most efficiently solved by a given 

precedence network. 

We note that the LEADING benchmark function contains dependence from each pair of 

variables (∀𝑖𝑖 < 𝑗𝑗)�𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗�, however, the rest of our set of benchmark functions contains only 

independence or interdependence between variables. A further investigation of existing may 

reveal other existing benchmark functions or real-world problems with directed ordinal linkage. 

However, the existing literature does not address this concept in the construction of benchmark 

functions, although they form a large proportion of the space of function classes. 

It may be worth constructing benchmark functions with one-way dependencies between 

variables since an algorithm which would be able to detect such linkage and construct a 

precedence network may be able to optimise such a function more efficiently than one which 

constructs an undirected linkage partition. With additional benchmark functions we could see 

whether modifications to the precedence network learning algorithm are a generally good 

modification in principal.  
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8.2.4 Subset Walsh Transform Sweep 

The subset Walsh transform could be used repeatedly to discover the structure of a 

complete function similar to the procedure by Heckendorn and Wright [62] to learn the values 

of the Walsh coefficients in a function. This method could be used to learn Walsh coefficients 

for analysing or optimising a function. 

Such an approach should be possible by sweeping over the problem. For an arbitrary 

permutation of the variables, we would start by running SWT({𝑋𝑋0}) and if the procedure finds 

non-zero standard deviation indicating partial structure, add 𝑋𝑋0 to a graph of partial structure. 

Then we would run SWT({𝑋𝑋0,𝑋𝑋1}) to see if the partial structure involves 𝑋𝑋1, we may find this is 

complete structure and add it to the final output, or find the 𝑋𝑋0 and 𝑋𝑋1 are connected but have 

partial structure with another variable (in which case we try SWT({𝑋𝑋0,𝑋𝑋1,𝑋𝑋2})), or are 

disconnected from one another but both have partial structure with another variable (in which 

case we try SWT({𝑋𝑋0,𝑋𝑋2}) and SWT({𝑋𝑋1,𝑋𝑋2})). This algorithm is outlined in Algorithm 8 below. 

1) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← ∅ 

2) 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ← ∅ 

3) for 𝑖𝑖 ← 0 to ℓ − 1 

a) if 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 = ∅ 

i) run SWT on 𝑋𝑋𝑖𝑖 

ii) add complete structure to 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 

iii) add partial structure to 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 

b) else 

i) For 𝑑𝑑 ← set of variables in each connected component of 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 

ii) 𝑒𝑒𝑣𝑣 ← SWT(𝑑𝑑 ∪ {𝑋𝑋𝑖𝑖}) 

iii) for each complete structure 𝛾𝛾 in 𝑒𝑒𝑣𝑣 

(1) 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ← 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ∪ {𝛾𝛾} 

(2) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 − {𝛾𝛾} 

iv) for each partial structure 𝛾𝛾 in 𝑒𝑒𝑣𝑣 

(1) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ∪ {𝛾𝛾} 

c) return 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 

Algorithm 8 – Subset Walsh transform sweep 
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Each call to SWT would require a maximum of 2𝑘𝑘 function evaluations where 𝑘𝑘 is the size 

of the largest linkage group in the function, making the procedure tractable for small 𝑘𝑘, 

however, further study is required to determine the probability of failure for a given sample size 

𝑠𝑠 across a large number of calls to the SWT procedure, and hence the sample size required is 

a function of ℓ to determine the resulting runtime. 

8.2.5 Necessary Structure for Optimisation 

We have considered structure as necessary in the case that there exists no instance of 

the function’s class which has the structure omitted. There are other ways in which we could 

consider whether structure is necessary. 

Recall that the space of pseudo-Boolean functions can be represented using a Walsh 

function basis. In this sense, function classes are a partioning of this space. These partitions 

can also be regarded as adjacent when there are members of two classes separated by any 

desired small 𝜖𝜖 > 0. Also, difference classes have different degrees of freedom (defined by the 

number of deltas). The more degrees of freedom, the higher-dimensional subspace the 

partition represents. A class can be a face of the subspace of another. 

For instance, we observe that near functions such as TRAP2
2 function (of the class 

[3 0 0 2]), there are other functions which contain unnecessary structure. Adding a small 

amount of noise to TRAP2
2 would produce an instance of the injective class 𝐂𝐂𝐴𝐴 = [3 0 1 2] or 

𝐂𝐂𝐵𝐵 = [3 1 0 2]. Here, TRAP2
2 is a lower-dimensional face which sits between 𝐂𝐂𝐴𝐴 and 𝐂𝐂𝐵𝐵. 

If we regard 𝐂𝐂𝐴𝐴 and 𝐂𝐂𝐵𝐵 as easier to optimise than TRAP2
2, we see that the effort to carefully 

model this lower-dimensional sub-face is actually making the function more difficult to model. 

This additional structure solely maintains the ranks of sub-optimal solutions (specifically the 

middle ranks) and is thus not necessary for locating this function’s global optimum. 

This topological view of the space of function classes with injective classes as ℓ-

dimensional subspaces, and non-injective classes as sub-faces, indicates that further analysis 

of the space of functions in this topological sense could further inform the development of novel 

algorithms.  



|   

 
 173 of 195  

8.2.6 Non Pseudo-Boolean Functions 

Much of the analysis in this thesis extends to higher-order alphabets, since functions on 

higher-order alphabets will still be grouped into linkage partitions and have directed ordinal 

linkage. However, the analysis from Walsh coefficients does not extend so easily, since the 

Walsh decomposition relates specifically to pseudo-Boolean functions. Natural extension 

would use a set of functions, such as general Fourier functions, to provide a basis from the 

vector space of functions in lieu of Walsh functions. 

As these larger function spaces are a superset of the function space we have already 

explored, they would necessarily contain the observed phenomena such as conditionally-

necessary interactions would be seen. There may be other factions which arise which require 

modification to our description of necessary/unnecessary/conditionally-necessary interactions 

which would inform the development of novel algorithms. 

An obvious issue is that much of the analysis done in this thesis was on an exhaustive set 

of function classes. This becomes computationally intractable for larger alphabets, and so 

other methods of analysis would be required. 
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Appendix A – List of 3-Bit Classes (Python 3) 

 

def rank(f): 
    r = [0, 0, 0, 0, 0, 0, 0, 0] 
    for x in range(8): 
        for y in range(8): 
            if y != x: 
                if f[y] > f[x]: 
                    r[x] = r[x] + 1 
    return tuple(r) 
 
def output(r): 
    print(str(r).replace(",", "").replace("(", "").replace(")", "")) 
 
if __name__ == "__main__": 
    seen = set() 
    for a in range(8): 
        for b in range(8): 
            for c in range(8): 
                for d in range(8): 
                    for e in range(8): 
                        for f in range(8): 
                            for g in range(8): 
                                for h in range(8): 
                                    r = rank([h, g, f, e, d, c, b, a]) 
                                    if not r in seen: 
                                        seen.add(r) 
                                        output(r) 
    print("END") 

  



|   

 
 176 of 195  

  



|   

 
 177 of 195  

Appendix B – Calculating 3-Bit Families (ANSI C) 

 

#include <stdio.h> 
 
/* Returns the structure of the given specific function by applying 
   the Fast Walsh-Hadamard Transform (FWHT) and converting the 
   resulting non-zero structure to a numerical code. */ 
int find_structure(int* f) { 
  int rv = 0; 
  int ff[16]; 
  ff[0] = f[0] + f[4]; 
  ff[1] = f[1] + f[5]; 
  ff[2] = f[2] + f[6]; 
  ff[3] = f[3] + f[7]; 
  ff[4] = f[0] - f[4]; 
  ff[5] = f[1] - f[5]; 
  ff[6] = f[2] - f[6]; 
  ff[7] = f[3] - f[7]; 
  ff[8] = ff[0] + ff[2]; 
  ff[9] = ff[1] + ff[3]; 
  ff[10] = ff[0] - ff[2]; 
  ff[11] = ff[1] - ff[3]; 
  ff[12] = ff[4] + ff[6]; 
  ff[13] = ff[5] + ff[7]; 
  ff[14] = ff[4] - ff[6]; 
  ff[15] = ff[5] - ff[7]; 
  if (ff[8] - ff[9]) rv += 1; 
  if (ff[10] + ff[11]) rv += 2; 
  if (ff[10] - ff[11]) rv += 4; 
  if (ff[12] + ff[13]) rv += 8; 
  if (ff[12] - ff[13]) rv += 16; 
  if (ff[14] + ff[15]) rv += 32; 
  if (ff[14] - ff[15]) rv += 64; 
  return rv; 
} 
 
/* Returns the number of distinct values for a specified class. */ 
int calc_num_ranks(int* clazz) { 
  int rv = 0; 
  int i, j, is_new; 
  for (i = 0; i < 8; i++) { 
    is_new = 1; 
    for (j = 0; j < i-1; j++) { 
      if (clazz[i] == clazz[j]) { 
        is_new = 0; 
      } 
    } 
    if (is_new) { 
      rv++; 
    } 
  } 
  return rv; 
} 
 
/* Finds the class for a specified funtion. */ 
void function_to_class(int* function, int* clazz) { 
  int i, j, num_lower; 
  for (i = 0; i < 8; i++) { 
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    num_lower = 0; 
    for (j = 0; j < 8; j++) { 
      if (function[j] < function[i]) { 
        num_lower++; 
      } 
    } 
    clazz[i] = num_lower; 
  } 
} 
 
/* Converts a clazz in-place into tokens for replacement. */ 
void tokenise(int* clazz) { 
  int used; 
  int rank, i; 
  int token = -1; 
  for (rank = 0; rank < 8; rank++) { 
    used = 0; 
    for (i = 0; i < 8; i++) { 
      if (clazz[i] == rank) { 
        clazz[i] = token; 
        used = 1; 
      } 
    } 
    if (used) { 
      token--; 
    } 
  } 
} 
 
/* Creates an instance specified tokeneized class as fitnesses 
   with the given values. */ 
void detokenise(int* t_clazz, int* fitnesses, int* vals) { 
  int i; 
  for (i = 0; i < 8; i++) { 
    fitnesses[i] = vals[-t_clazz[i] - 1]; 
  } 
} 
 
/* Computes the Walsh family for the specified tokenised 
   class with 3 distinct ranks. */ 
void find_family_3(int* t_clazz, int* family) { 
  int v[3], f[8]; 
  for (v[0] = 0; v[0] <= 2; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 3; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 4; v[2]++) { 
        detokenise(t_clazz, f, v); 
        family[find_structure(f)] = 1; 
}}}} 
 
/* Computes the Walsh family for the specified tokenised 
   class with 4 distinct ranks. */ 
void find_family_4(int* t_clazz, int* family) { 
  int v[4], f[8]; 
  for (v[0] = 0; v[0] <= 4; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 5; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 6; v[2]++) { 
        for (v[3] = v[2] + 1; v[3] <= 7; v[3]++) { 
          detokenise(t_clazz, f, v); 
          family[find_structure(f)] = 1; 
}}}}} 
 
/* Computes the Walsh family for the specified tokenised 
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   class with 5 distinct ranks. */ 
void find_family_5(int* t_clazz, int* family) { 
  int v[5], f[8]; 
  for (v[0] = 0; v[0] <= 6; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 7; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 8; v[2]++) { 
        for (v[3] = v[2] + 1; v[3] <= 9; v[3]++) { 
          for (v[4] = v[3] + 1; v[4] <= 10; v[4]++) { 
            detokenise(t_clazz, f, v); 
            family[find_structure(f)] = 1; 
}}}}}} 
 
/* Computes the Walsh family for the specified tokenised 
   class with 6 distinct ranks. */ 
void find_family_6(int* t_clazz, int* family) { 
  int v[6], f[8]; 
  for (v[0] = 0; v[0] <= 7; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 8; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 9; v[2]++) { 
        for (v[3] = v[2] + 1; v[3] <= 10; v[3]++) { 
          for (v[4] = v[3] + 1; v[4] <= 11; v[4]++) { 
            for (v[5] = v[4] + 1; v[5] <= 12; v[5]++) { 
              detokenise(t_clazz, f, v); 
              family[find_structure(f)] = 1; 
}}}}}}} 
 
/* Computes the Walsh family for the specified tokenised 
   class with 7 distinct ranks. */ 
void find_family_7(int* t_clazz, int* family) { 
  int v[7], f[8]; 
  for (v[0] = 0; v[0] <= 8; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 9; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 10; v[2]++) { 
        for (v[3] = v[2] + 1; v[3] <= 11; v[3]++) { 
          for (v[4] = v[3] + 1; v[4] <= 12; v[4]++) { 
            for (v[5] = v[4] + 1; v[5] <= 13; v[5]++) { 
              for (v[6] = v[5] + 1; v[6] <= 14; v[6]++) { 
                detokenise(t_clazz, f, v); 
                family[find_structure(f)] = 1; 
}}}}}}}} 
 
/* Computes the Walsh family for the specified tokenised 
   class with 8 distinct ranks. */ 
void find_family_8(int* t_clazz, int* family) { 
  int v[8], f[8]; 
  for (v[0] = 0; v[0] <= 8; v[0]++) { 
    for (v[1] = v[0] + 1; v[1] <= 9; v[1]++) { 
      for (v[2] = v[1] + 1; v[2] <= 10; v[2]++) { 
        for (v[3] = v[2] + 1; v[3] <= 11; v[3]++) { 
          for (v[4] = v[3] + 1; v[4] <= 12; v[4]++) { 
            for (v[5] = v[4] + 1; v[5] <= 13; v[5]++) { 
              for (v[6] = v[5] + 1; v[6] <= 14; v[6]++) { 
                for (v[7] = v[6] + 1; v[7] <= 15; v[7]++) { 
                  detokenise(t_clazz, f, v); 
                  family[find_structure(f)] = 1; 
}}}}}}}}} 
 
/* Computes the Walsh fmaily for the specified class. */ 
void find_family(int* clazz, int* family) { 
  int i, num_ranks; 
  /* Clears the array to store the Walsh family. */ 
  for (i = 0; i < 128; i++) { 
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    family[i] = 0; 
  } 
  num_ranks = calc_num_ranks(clazz); 
  if (num_ranks == 1) { 
    /* Family is always {00}. */ 
    family[0] = 1; 
  } else if (num_ranks == 2) { 
    /* Family contains only one element. */ 
    family[find_structure(clazz)] = 1; 
  } else { 
    tokenise(clazz); 
    switch (num_ranks) { 
      case 3: 
        find_family_3(clazz, family); 
      break; 
      case 4: 
        find_family_4(clazz, family); 
      break; 
      case 5: 
        find_family_5(clazz, family); 
      break; 
      case 6: 
        find_family_6(clazz, family); 
      break; 
      case 7: 
        find_family_7(clazz, family); 
      break; 
      case 8: 
        find_family_8(clazz, family); 
      break; 
    } 
  } 
} 
 
/* Prints the specified funciton to STDOUT in decimal. */ 
void print_function(int* function) { 
  int i; 
  printf("["); 
  for (i = 0; i < 8; i++) { 
    if (i != 0) { 
      printf(", "); 
    } 
    printf("%d", function[i]); 
  } 
  printf("]\t"); 
} 
 
/* Prints the specified Walsh family to STDOUT in hex. */ 
void print_family(int* family) { 
  int i, first = 1; 
  printf("{"); 
  for (i = 0; i < 128; i++) { 
    if (family[i]) { 
      if (!first) { 
        printf(", "); 
      } 
      printf("%02X", i); 
      first = 0; 
    } 
  } 
  printf("}\n"); 
} 
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/* Main method. */ 
int main(void) { 
  int done = 0; 
  int f[8]; 
  int clazz[8]; 
  int family[128]; 
  while(!done) { 
    /* Reads a function. */ 
    if (scanf("%d %d %d %d %d %d %d %d", 
          f, f+1, f+2, f+3, f+4, f+5, f+6, f+7)) { 
      /* Gets the class. */ 
      function_to_class(f, clazz); 
      /* Outputs the class. */ 
      print_function(clazz); 
      /* Calculates the Walsh family. */ 
      find_family(clazz, family); 
      /* Outputs the Walsh family */ 
      print_family(family); 
    } else { 
      done = 1; 
    } 
  } 
  return 0; 
} 
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Appendix C – Compiling and Running Sources 

 

The list of 3-bit classes (Appendix A) can be run from the command line using the Python 

3 interpreter. The classes are printed to standard output and can be redirected to a file. For 

example, if the source file is named classes.py, output can be sent to a file as such: 

python3 classes.py >classes.txt 

The 3-Bit families (Appendix B) can be compiled using GCC or any other standard C compiler. 

For examples, if the source file is named families.c: 

gcc families.c –o families 

The 3-bit families can be calculated by reading in lines of text from standard input representing 

ranks separated by spaces. The program will output the Walsh family to standard output of the 

input class, then wait for another class. The program will terminate on receiving another line 

of text such ad the terminator “END”. The output of the Python script for generating all 3-bit 

classes is in this format, and thus can be piped to the families generating program as follows: 

families <classes.txt >families.txt 

Alternatively, both programs may be run together using a pipe operator: 

python3 classes.py | family >families.txt 
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