

AUTHOR:

TITLE:

YEAR:

OpenAIR citation:

OpenAIR takedown statement:

 This work is made freely
available under open
access.

This ǘƘŜǎƛǎ is distributed under a CC ____________ license.

__

Section 6 of the “Repository policy for OpenAIR @ RGU” (available from http://www.rgu.ac.uk/staff-and-current-
students/library/library-policies/repository-policies) provides guidance on the criteria under which RGU will
consider withdrawing material from OpenAIR. If you believe that this item is subject to any of these criteria, or for
any other reason should not be held on OpenAIR, then please contact openair-help@rgu.ac.uk with the details of
the item and the nature of your complaint.

This work was submitted to- and approved by Robert Gordon University in partial fulfilment of the following degree:

The Role of Walsh Structure and Ordinal

Linkage in the Optimisation of Pseudo-Boolean

Functions under Monotonicity Invariance

Lee A. Christie

A thesis submitted in partial fulfilment of the requirements of

Robert Gordon University
for the degree of

Doctor of Philosophy
February, 2016

i

Declaration

I hereby declare that this thesis is a record of work undertaken by myself. That it has not

been the subject of any previous application for a degree and that all sources of information

have been duly acknowledged.

Lee A. Christie

February, 2016

|

ii

Acknowledgements

Firstly, I would like to acknowledge the invaluable support of my supervisory team:

Professor John McCall and Dr David Lonie, for their feedback, guidance, and words of wisdom

which kept me on track during this four-year–long PhD journey. In addition, I would also like to

thank my examiners: Professor Jose Lozano and Dr Andrei Petrovski, for their insightful

comments and suggestions.

I thank my mum, dad, and brothers for their support and encouragement throughout my

life, my education, and endeavours without which I would not have achieved half of what I

have. I thank my friends and fellow students I’ve known throughout my time as a PhD student,

for their encouragement, inspiration, and distraction.

Finally, I would like to thank the IDEAS Research Institute for their support and funding of

this project; and Robert Gordon University, for being a second home to me throughout the last

ten years of undergraduate, postgraduate, and doctoral studies.

|

iii

Abstract

Optimisation heuristics rely on implicit or explicit assumptions about the structure of the

black-box fitness function they optimise. A review of the literature shows that understanding of

structure and linkage is helpful to the design and analysis of heuristics. The aim of this thesis

is to investigate the role that problem structure plays in heuristic optimisation.

Many heuristics use ordinal operators; which are those that are invariant under monotonic

transformations of the fitness function. In this thesis we develop a classification of pseudo-

Boolean functions based on rank-invariance. This approach classifies functions which are

monotonic transformations of one another as equivalent, and so partitions an infinite set of

functions into a finite set of classes. Reasoning about heuristics composed of ordinal operators

is, by construction, invariant over these classes.

We perform a complete analysis of 2-bit and 3-bit pseudo-Boolean functions. We use

Walsh analysis to define concepts of necessary, unnecessary, and conditionally necessary

interactions, and of Walsh families. This helps to make precise some existing ideas in the

literature such as benign interactions.

Many algorithms are invariant under the classes we define, which allows us to examine

the difficulty of pseudo-Boolean functions in terms of function classes. We analyse a range of

ordinal selection operators for an EDA. Using a concept of directed ordinal linkage, we define

precedence networks and precedence profiles to represent key algorithmic steps and their

interdependency in terms of problem structure. The precedence profiles provide a measure of

problem difficulty. This corresponds to problem difficulty and algorithmic steps for optimisation.

This work develops insight into the relationship between function structure and problem

difficulty for optimisation, which may be used to direct the development of novel algorithms.

Concepts of structure are also used to construct easy and hard problems for a hill-climber.

|

iv

Publications

Some parts of the work presented in this thesis have appeared in following publications:

[1] L. A. Christie, D. P. Lonie and J. A. W. McCall, “Partial structure learning by subset

Walsh transform,” in UK Workshop on Computational Intelligence (UKCI), pp. 128-

135, 2013.

[2] L. A. Christie, J. A. W. McCall and D. P. Lonie, “Minimal Walsh structure and

ordinal linkage of monotonicity-invariant function classes on bit strings,” in Genetic

and Evolutionary Computation Conference (GECCO), pp. 333-340, 2014.

[3] A. E. I. Brownlee, J. A. W. McCall and L. A. Christie, “Structural coherence of

problem and algorithm: an analysis for EDAs on all 2-bit and 3-bit problems,” in IEEE

Congress on Evolutionary Computation (CEC), pp. 2066-2073, 2015.

[4] J. A. W. McCall, L. A. Christie and A. E. I. Brownlee, “Generating Easy and Hard

Problems using the Proximate Optimality Principle,” in Genetic and Evolutionary

Computation Conference (GECCO), pp. 767-768, 2015.

|

v

Glossary

The following is a list of many of the common symbols used throughout this thesis with a

reference to where they are defined.

ℓ The size of a problem. (p. 32) 𝑓𝑓 A fitness function. (p. 3)

Ω or 𝑋𝑋 The search space. (p. 3) 𝑋𝑋𝑖𝑖 Random variable 𝑖𝑖 of X. (p. 33)

𝐱𝐱 A candidate solution. (p. 33) 𝑥𝑥𝑖𝑖 Element 𝑖𝑖 of candidate 𝐱𝐱. (p. 32)

𝛂𝛂 A column vector of Walsh

coefficients. (p. 36)

 𝑓𝑓𝐱𝐱 The fitness of 𝐱𝐱 in fitness function

𝑓𝑓. (p. 32)

𝛄𝛄 Vector of values in 𝐱𝐱 of variables

in subset 𝛾𝛾. (p. 15)

 Δ𝑓𝑓𝑖𝑖 Perturbation on 𝑋𝑋𝑖𝑖. (p. 43)

𝛾𝛾 A clique (a subset) of variables in

𝑋𝑋. (p. 17)

 𝑅𝑅𝑓𝑓(𝐱𝐱) The rank of 𝐱𝐱 in function 𝑓𝑓. (p. 49)

𝛼𝛼𝛾𝛾 Walsh coefficient of the clique 𝛾𝛾.

(p. 17)

 𝐂𝐂𝑓𝑓 The equivalence class of which 𝑓𝑓

is a member. (p. 50)

Γ Linkage partition. (p. 15) 𝑓𝑓~𝑔𝑔 Functions 𝑓𝑓 and 𝑔𝑔 are rank

equivalent. (p. 50)

𝐟𝐟 A column vector of fitness values.

(p. 37)

 �̅�𝑥 For Boolean value, 1 − 𝑥𝑥. (p. 40)

𝛿𝛿𝑖𝑖 A difference between two fitness

levels in a function. (p. 80)

 𝐻𝐻ℓ 2ℓ × 2ℓ Hadamard matrix. (p. 37)

Δ A matrix of delta values. (p. 98) sgn(𝑥𝑥) The sign of 𝑥𝑥, i.e. −1, 0, or 1.

(p. 51)

|

vi

Contents

1 Introduction ... 1

1.1 Overview .. 1

1.2 Research Questions ... 1

1.3 Summary of Thesis .. 2

2 Literature Review .. 3

2.1 Search Heuristics ... 3

2.1.1 Black-Box Optimisation ... 3

2.1.2 Neighbourhood and Local Optima ... 4

2.1.3 Local Search and Hill-Climbers ... 6

2.1.4 Population-Based Metaheuristics .. 7

2.1.5 Competent Genetic Algorithms .. 9

2.1.6 Estimation of Distribution Algorithms ... 10

2.1.7 Distribution Estimation Using Markov Random Fields 11

2.1.8 Perturbation Methods .. 13

2.2 Structure of Optimisation Problems .. 15

2.2.1 Linkage Structure .. 15

2.2.2 Pseudo-Boolean Functions ... 16

2.2.3 Walsh Decomposition of Pseudo-Boolean Functions 17

2.3 Algorithms and Problem Difficulty ... 18

2.3.1 No Free Lunch Theorem ... 18

2.3.2 Proximate Optimality ... 18

2.3.3 Measures of Problem Difficulty .. 20

2.3.4 Bad Linkage and Spurious Correlations .. 22

2.3.5 Unnecessary Benign Interactions .. 24

2.3.6 Deception and Malign Interactions .. 25

2.4 Research Questions ... 27

3 Background ... 29

|

vii

3.1 Terminology and Notation ... 29

3.1.1 Vectors and Vector Spaces .. 29

3.1.2 Functions on Bit Strings and Bit Vectors .. 32

3.1.3 The Space of Pseudo-Boolean Functions .. 34

3.1.4 Linear Transformation and Matrices ... 35

3.1.5 Walsh Coefficients as Basis Vectors .. 36

3.1.6 Walsh-Hadamard Transform .. 37

3.1.7 Function Transformations... 40

3.2 Linkage Identification by Perturbation .. 43

3.2.1 Linkage Partition and Perturbations ... 43

3.2.2 Non-Linearity / Non-Monotonicity Detection ... 44

3.2.3 Heckendorn and Wright’s Detect-Linkage Algorithm 45

3.2.4 Streeter’s Optimisation Algorithm ... 47

4 Functions and Rank Equivalence ... 49

4.1 Rank Equivalence ... 49

4.2 Directed Ordinal Linkage ... 51

4.3 Pseudo-Boolean Benchmarks Functions ... 54

4.3.1 Definitions and Identities .. 54

4.3.2 Constant Functions .. 55

4.3.3 Needle-in-a-Haystack Functions .. 56

4.3.4 Ones Function .. 57

4.3.5 Zeros Function ... 59

4.3.6 Binary Value Function .. 60

4.3.7 1-Dimensional Checkerboard Function .. 62

4.3.8 Leading-Ones Function .. 64

4.3.9 Order-k Trap Function .. 66

4.3.10 Goldberg’s Fully-Deceptive Order-3 Function ... 69

4.3.11 2-Bit and 3-Bit Function Values and Walsh Coefficients 70

4.4 1-Bit Pseudo-Boolean Functions ... 76

4.5 Counting Function Classes ... 77

|

viii

4.6 Summary .. 78

5 2-Bit Pseudo-Boolean Functions ... 79

5.1 Counting 2-Bit Classes ... 79

5.2 Walsh Families and Delta Conditions ... 80

5.3 Automated Calculation of Walsh Families .. 88

5.4 Directed Ordinal Linkage and Epistasis .. 90

5.5 Precedence Networks and Precedence Profiles ... 92

5.6 Delta Linkage Detection ... 98

5.7 Structural Coherence ... 100

5.8 Summary .. 105

6 3-Bit Pseudo-Boolean Functions ... 107

6.1 Counting 3-Bit Classes ... 107

6.2 Walsh Families and Delta Conditions ... 108

6.3 Automated Calculation of Walsh Families .. 110

6.4 Conditionally-Necessary Interactions ... 112

6.5 Precedence Networks and Precedence Profiles ... 117

6.6 Equivalent Average Costs Network Sets .. 123

6.7 Precedence Networks Hierarchy .. 126

6.8 Parallelisation of Precedence Networks ... 128

6.9 Delta Linkage Detection ... 130

6.10 Structural Coherence ... 133

6.11 Summary .. 134

7 Higher-Dimensional Pseudo-Boolean Functions ... 135

7.1 Combining 3-Bit Classes .. 135

7.1.1 Concatenation of Non-Overlapping Functions 135

7.1.2 Stitching of Overlapping Functions .. 136

7.2 Precedence Networks .. 139

7.2.1 Limited Connectivity Precedence Network Algorithm 140

7.2.2 Sampling ... 145

7.3 Subset Walsh Transform .. 147

|

ix

7.3.1 Description of Algorithm ... 147

7.3.2 Results ... 150

7.3.3 Theoretical Analysis ... 156

7.4 Proximate Optimality on Hill-Climbing Algorithms .. 159

7.4.1 Concept ... 160

7.4.2 Problem Generation and Evaluation ... 161

7.4.3 Results ... 163

7.4.4 Conclusions ... 164

7.5 Summary .. 165

8 Conclusions and Further Work ... 167

8.1 Conclusions .. 167

8.2 Further Work ... 168

8.2.1 Refinement of 3-Bit Structural Coherence .. 168

8.2.2 Further Development of Precedence Network Learning 169

8.2.3 Construction of Benchmark Functions .. 170

8.2.4 Subset Walsh Transform Sweep .. 171

8.2.5 Necessary Structure for Optimisation ... 172

8.2.6 Non Pseudo-Boolean Functions ... 173

Appendix A – List of 3-Bit Classes (Python 3) .. 175

Appendix B – Calculating 3-Bit Families (ANSI C) ... 177

Appendix C – Compiling and Running Sources ... 183

Bibliography .. 185

|

 1 of 195

1 Introduction

1.1 Overview

Optimisation is the task of locating the input associated with the global maximum or

minimum value of some function. Optimisation has many real-world applications.

For an arbitrary black-box function the only way to guarantee that the optimum is found is

by exhaustive search, which is usually computationally intractable. Heuristics may be applied

to optimise a function, but these rely on assumptions about the function, for example, that small

changes in input generally correspond to small changes in output; that output is constructed

from the sum of smaller functions on the input variables; or that adjacent variables in input

representation are more related than distant ones. These assumptions all refer to various

aspects of the structure of the function.

Some heuristics build explicit representations of their estimate of the function’s structure

based on statistical modelling and independence testing. Others are understood to implicitly

learn the structure by the convergence of a population of solutions maintained by the algorithm.

It is clear that theoretical understanding of function structure will aid the development and

analysis of optimisation heuristics. This is the issue that this thesis attempts to address.

1.2 Research Questions

The aim of this thesis is an investigation into concepts of structure and linkage. This aim

can be broken down into the following research questions:

1. What is the relationship between problem structure and problem difficulty?

2. How can we use structure to usefully classify problems?

3. Can we use structure to bound the number of algorithmic steps?

4. Can structure analysis motivate the development of novel algorithms?

|

 2 of 195

1.3 Summary of Thesis

Chapter 2 presents an examination of the relevant literature on black-box optimisation

metaheuristics, problem structure, and variable linkage, to support the formulation of relevant

research questions.

Chapter 3 lays out the foundational concepts required by the main body of the thesis. This

includes terminology and notation, definitions of Walsh structure and structure in terms of

linkage partition, and methods of computing the above.

Chapter 4 defines ranks and function classes we construct to classify problems into a finite

number of classes for a given problem length; this is in a way invariant under a range of

operators applied by many common heuristics. We define ordinal linkage partition and directed

ordinal linkage; which we use with monotonicity-invariant classes of functions.

Chapter 5 gives a detailed analysis of the structure of all classes of length-2 pseudo-

Boolean functions. Here we describe the necessary Walsh structures to maintain the ranks,

and connect this concept to ordinal linkage. We define the algorithmic steps sufficient to reach

a global optimum in each case.

Chapter 6 summarises the result of applying the same detailed analysis to the structure

of all classes of length-3 pseudo-Boolean functions, and shows that non-unique sets of

necessary Walsh structure arise with the introduction of 3 variables.

Chapter 7 describes the extent of applicability and implications of the low-dimensional

analysis of structure to higher-dimensional function spaces, with suggestions for guiding the

development of novel algorithms.

Chapter 8 concludes the thesis, reflects on the relevant contributions and gives

suggestions for future work.

|

 3 of 195

2 Literature Review

In this chapter, we examine the relevant literature. This discussion is grouped into three

sections. First we discuss the application of search heuristics to the optimisation of functions;

then we discuss the structure of functions on which they operate; and then of the coherence

between the two. Lastly, we form relevant research questions which are motivated by the

relationship between search heuristics and objective functions.

2.1 Search Heuristics

In this section we give a brief introduction to a variety of search heuristics applied to

optimisation problems. The emphasis is on their relationship with implicit or explicit structure

learning. The concept of structure is then expanded upon in later sections.

2.1.1 Black-Box Optimisation

Optimisation is the search for the global optimum of a function 𝑓𝑓. This is sometimes called

the objective function. A single-objective black-box optimisation function maps each element

of a given domain Ω to the codomain 𝑌𝑌, such that 𝑌𝑌 admits a total ordering, formally given by

(1). The domain of the function Ω is often called the search space.

𝑓𝑓 ∶ Ω → 𝑌𝑌 (1)

A member 𝑥𝑥 of the search space Ω is called a candidate. For a given function, there may

be more than one global optimum. The problem objective specifies whether we define the

global optimum to be the argument for the maximum, argmax𝑥𝑥 𝑓𝑓(𝑥𝑥), or argument for the

minimum, argmin𝑥𝑥 𝑓𝑓(𝑥𝑥).

The literature classifies problems as continuous optimisation (where the search space is

continuous, e.g. the real numbers) or discrete optimisation (where the search space is discrete,

e.g. the integers). In practice, all metaheuristic search operates on discrete finite domains, as

a limitation of the precision of the digital representation [5]. There is a subset of discrete

optimisation: combinatorial optimisation, where the search space is finite. The search space

of a combinatorial optimisation problem can take forms such as sets, vectors, combinations,

or permutations with/without repetition and be of any finite discrete alphabet [6].

|

 4 of 195

2.1.2 Neighbourhood and Local Optima

The domain may be a nominal set of candidates with no defined relationship between the

candidates. An example of such a function is shown in Table 1.

𝑥𝑥 Apple Cherry Orange Peach Pear

𝑓𝑓(𝑥𝑥) 1.98 0.03 0.88 2.0 1.58

Table 1 – Example of a function containing no obvious neighbourhood. The domain of 𝑓𝑓 is

{𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴, 𝐶𝐶ℎ𝐴𝐴𝑒𝑒𝑒𝑒𝑒𝑒, 𝑂𝑂𝑒𝑒𝑂𝑂𝑂𝑂𝑔𝑔𝐴𝐴, 𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃ℎ, 𝑃𝑃𝐴𝐴𝑂𝑂𝑒𝑒} and the codomain is ℝ. For a maximisation objective,

the global optimum is 𝑃𝑃𝐴𝐴𝑂𝑂𝑃𝑃ℎ.

For a function such as the above, the global optimum can be reached in time linear with

respect to the size of the search space by exhaustively evaluating each candidate. However,

for optimisation problems in general, this runtime is undesirable. For a combinatorial

optimisation problem of ℓ variables, each of an alphabet of cardinality 𝑘𝑘, the search space size

𝑘𝑘ℓ, for example 2ℓ for a pseudo-Boolean function, hence the runtime of an exhaustive search

is exponential in the length of the input. Worse still, for an unbounded discrete optimisation or

a continuous optimisation problem the runtime of an exhaustive search is infinite.

A neighbourhood structure may be defined on the set. For example, if the domain is

ordinal, two candidates may be considered neighbours if they are adjacent in the associated

order. With a neighbourhood structure, the notion of local optima emerges. A local optimum is

a candidate solution which has no neighbouring candidates which are better. Under this

definition, we consider global optima also to be local optima. Informally, we can describe

candidate 𝑥𝑥 as better than candidate 𝑒𝑒 if we are maximizing and 𝑓𝑓(𝑥𝑥) > 𝑓𝑓(𝑒𝑒) or we are

minimising and 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥).

𝑥𝑥 0 1 2 3 4

𝑓𝑓(𝑥𝑥) 1.98 0.03 0.88 2.0 1.58

Table 2 – An example of a function for which an obvious neighbourhood structure exists on

the domain – based on adjacent integers, i.e. 𝑥𝑥 and 𝑒𝑒 are neighbours if |𝑒𝑒 − 𝑥𝑥| = 1. The

domain of 𝑓𝑓 is {0, 1, 2, 3, 4}. For a maximisation objective the local optima are {0, 3}, of which

3 is also a global optimum.

|

 5 of 195

Given a neighbourhood structure, a local optimum may be found by a series of moves

from neighbour to neighbour. The area around any optimum where a given search heuristic

leads to that optimum is called a basin of attraction [6]. The basin of attraction may be different

for different search heuristics since it depends on how the search explores the search space

and how the search terminates. An example of a basin of attraction for a hill-climber search is

shown in Figure 1. If the search begins in the basin of attraction belonging to a global optimum,

then the search strategy will lead to the global optimum without the need for exhaustive

evaluation.

Figure 1 – Conceptual illustration of optima in an arbitrary function containing three local

optima, one of which is the global optimum. The basins of attraction illustrated are those of a

steepest ascent hill-climber.

Formally, a metric is any function 𝑑𝑑 which defines the distance between two elements in

a set, where 𝑑𝑑 has the following four properties for all 𝑥𝑥,𝑒𝑒, 𝑧𝑧 ∈ Ω [7]:

1. 𝑑𝑑(𝑥𝑥,𝑒𝑒) ≥ 0

2. 𝑑𝑑(𝑥𝑥,𝑒𝑒) = 0 if and only if 𝑥𝑥 = 𝑒𝑒

3. 𝑑𝑑(𝑥𝑥,𝑒𝑒) = 𝑑𝑑(𝑒𝑒, 𝑥𝑥)

4. 𝑑𝑑(𝑥𝑥, 𝑧𝑧) ≤ 𝑑𝑑(𝑥𝑥,𝑒𝑒) + 𝑑𝑑(𝑒𝑒, 𝑧𝑧)

An example of a metric on a multi-dimensional search space is the Hamming metric [8]

(also called Hamming distance), which for a search space of Ω = {0, 1}ℓ is the number of

variables which differ. A neighbourhood on such a search space may be defined such that two

candidates are neighbours if they have a Hamming distance of 1.

|

 6 of 195

For more complicated search spaces such as a permutation, it may be non-trivial to define

the notion of neighbourhood structure. However, definitions for neighbourhood under

permutations exist, such as two permutations differing by one switching of two elements [9].

2.1.3 Local Search and Hill-Climbers

The class of optimisation algorithms referred to as local search makes use of the

neighbourhood structure of a search space, moving from one candidate at a time to a

neighbouring candidate. Hill-climber search is a subset of local search. A simple hill-climber

moves from one candidate in the search space to a neighbouring candidate of higher fitness.

For multi-dimensional optimisation, a local search strategy may find an improvement in

more than one dimension to move. The search can follow the direction which gives the best

improvement in fitness. This can be formalised as a fitness gradient where there exists a metric

on both the domain and codomain, the gradient can be defined as Δ𝑓𝑓(𝑥𝑥)
Δ𝑥𝑥� . Following the

largest local gradient is called steepest ascent [10] (as cited by [11]).

Most heuristics assume that neighbouring candidates correspond to similar function

values. For a hill-climber to guarantee on a single run that it will reach the optimum, there is a

smooth fitness gradient which may be followed from a randomly-chosen start point to the global

optimum. A simple hill-climber search may be prevented from reaching the global optimum by

encountering a local optimum. A local optimum is a point in the search space, whose

neighbours correspond to less-optimal fitness, and hence is the optimum of the local region.

More advanced variations on hill-climber algorithms may avoid becoming trapped in a

local optima. Examples are random restarts, tabu search [12] [13] [14], and simulated

annealing [15] [16].

|

 7 of 195

2.1.4 Population-Based Metaheuristics

One important branch of metaheuristics is population-based metaheuristics, the most

common of which is the genetic algorithm (GA) as first introduced by Holland [17]. Variants on

GAs include parallelisation schemes such as island models (Belding [18] as cited by Whitley

et al. [19]).

Genetic algorithms are a form of evolutionary computing which uses selection, crossover,

and mutation operators inspired by Darwinian natural selection. The canonical genetic

algorithm (CGA) [17] is designed to search on pseudo-Boolean functions, however, genetic

algorithms have been generalised to a wide variety of encodings.

In a population-based metaheuristic, a population consists of a collection of candidate

solutions. The workflow consists of moving from population to population until stopping criteria

are met. The means of generating a population from the previous varies between

metaheuristics.

Figure 2 – The workflow of a population-based metaheuristic.

Different population-based metaheuristics have different means of updating the

population. The cycle of a GA consists of applying selection to the current population, then

generating the next population by the crossover-mutation procedure. This inner process which

is iterated is summarised by (2).

𝒫𝒫𝑡𝑡 selectı̇on������������������⃗ 𝒫𝒫𝑆𝑆𝑡𝑡 crossover��������������������⃗ 𝒫𝒫𝑆𝑆∗𝑡𝑡 mutatı̇on�������������������⃗ 𝒫𝒫𝑡𝑡+1 (2)

|

 8 of 195

Crossover is the recombination of two or more parent solutions, and mutation is the

random modification of solutions to vary the population.

There are many selection methods, which can be classified as either ordinal or

proportional. An ordinal selection operator bases its choice of individuals on ordinal (greater-

than, less-than, equal-to) comparisons of fitness between candidate solutions in the current

population. A proportional selection operator bases its choice of individuals in some way

proportional to the numerical value of the fitness.

Ordinal Selection

Truncation Select the 𝑁𝑁 individuals with the highest fitness values from 𝒫𝒫𝑡𝑡.

Tournament Uniformly at random choose 𝑀𝑀 individuals from 𝒫𝒫𝑡𝑡.

Select the 𝑘𝑘 individuals from this choice with the highest fitness.

Repeat until 𝑁𝑁 individuals have been selected.

Proportional Selection

Roulette-Wheel Iteratively select 1 individual with probability

𝐴𝐴(𝐱𝐱) =
𝑓𝑓(𝐱𝐱)

∑ 𝑓𝑓(𝐲𝐲)𝐲𝐲∈𝒫𝒫

Repeat until 𝑁𝑁 individuals have been selected.

Boltzmann Iteratively select 1 individual with probability

𝐴𝐴(𝐱𝐱) =
𝐴𝐴𝑓𝑓(𝐱𝐱)/𝑇𝑇

∑ 𝐴𝐴𝑓𝑓(𝐲𝐲)/𝑇𝑇
𝐲𝐲∈𝒫𝒫

where 𝑇𝑇 is a temperature parameter.

Repeat until 𝑁𝑁 individuals have been selected.

Table 3 – Examples of genetic selection operators. Adapted from Goldberg [20], Mitchell et

al. [21], Davis [22], de la Maza & Tidor [23] as cited by Shakya [24, pp. 8-9].

|

 9 of 195

Selection in a GA is the operator which uses information about the fitness of the

candidates, therefore, any implicit learning of structure is done by selection. This makes the

selection operator of particular interest to structure learning.

It is worthy of noting that ordinal selection operators are unaffected by any structure which

may be produced by monotonic transformation of the objective function (that is, any

transformation of the function which preserves equality and inequality relationships between

candidate fitnesses). It is of interest to explore this further, and will be returned to in chapter 3.

2.1.5 Competent Genetic Algorithms

The linkage in genetic algorithms motivates schema theory. Schema theory considers that

genetic algorithms work by processing schema, which are arrangements of variable values

which correspond to higher fitnesses [17] [20]. However, schema which consist of more

variables or of variables which are more spread out throughout the representation are more

likely to be disrupted by crossover and mutation, making it difficult to maintain these schema

in the population. Also, genetic algorithms are prone to hitchhiking [21], which is where

arrangements of variables which do not contribute to high fitness are carried around in the

population as they coincide in individuals in the population with high fitness schema.

Competent genetic algorithms were developed as a means of solving some of these

issues in a genetic algorithm caused by mutation and re-combination operators [25]. The

literature on competent genetic algorithms and perturbation [26] commonly classifies

competent genetic algorithms into one of three categories:

1. Evolving representations/operators [25] [27] [28]

2. Probabilistic modelling (EDAs)

3. Perturbation methods (PMs)

Efforts to implement evolving representations/operators faced difficulty in relation to the

algorithm’s inability to respond quickly enough to selection [26]. Probabilistic modelling and

perturbation methods are of more direct interest as they relate to explicit structure learning.

We will next discuss EDAs, then PMs.

|

 10 of 195

2.1.6 Estimation of Distribution Algorithms

Estimation of distribution algorithms (EDAs) are sometimes referred to as probabilistic

model-building genetic algorithms. These algorithms build a probabilistic model of a selected

sample population or a model weighted by fitness, and then sample that statistical model to

generate new candidate solutions which have a high probability of having high fitness.

EDAs which use selection can use the same selection operators as genetic algorithms.

The model-building/sampling step takes the place of the traditional GA crossover/mutation

step.

The workflow of an EDA is given by (3) [29].

Since these steps are iterated, the operation of an EDA can alternatively be viewed as a

progression from model to model as given by (4), rather than a progression from population

to population.

EDAs are commonly classified based on the interaction of the variables: as univariate,

bivariate, or multivariate [30] [31]. A univariate EDA considers each variable separately; a

bivariate EDA such as BMDA [32] considers joint probability between pairs of variables, and a

multivariate EDA consider joint probabilities or more than two variables. Early examples of

EDAs: PBIL [33] and UMDA [34] were univariate. Multivariate EDAs use models such a

Bayesian networks [35] and Markov networks [24].

𝒫𝒫𝑡𝑡 selectı̇on������������������⃗ 𝒫𝒫𝑆𝑆𝑡𝑡 estı̇matı̇on����������������������⃗ 𝐴𝐴(𝑥𝑥;𝜃𝜃𝑡𝑡) samplı̇ng�������������������⃗ 𝒫𝒫𝑡𝑡+1 (3)

𝐴𝐴(𝑥𝑥; 𝜃𝜃𝑡𝑡) samplı̇ng�������������������⃗ 𝒫𝒫𝑡𝑡 selectı̇on������������������⃗ 𝒫𝒫𝑆𝑆𝑡𝑡 estı̇matı̇on �����������������������⃗ 𝐴𝐴(𝑥𝑥;𝜃𝜃𝑡𝑡+1) (4)

|

 11 of 195

2.1.7 Distribution Estimation Using Markov Random Fields

Distribution estimation using Markov random fields (DEUM) is a graphical EDA using a

Markov random field (MRF) model, sometimes referred to as a Markov network [24]. The

motivation for considering the DEUM EDA is that the Markov random field model is related to

the Walsh coefficients of a function.

The univariate DEUM (DEUM𝑑𝑑) and bivariate DEUM (Is-DEUM) were introduced to

demonstrate the use of Gibbs sampling, with DEUM𝑑𝑑 assuming no interactions between the

variables and Is-DEUM using a bivariate model [36].

DEUM has been used on real-world applications such as chemotherapy optimisation [37]

[38], mushroom farming [39], and dynamic pricing [40].

Is-DEUM uses the known bivariate structure of the Ising spin glass problem. MRF models

were introduced to model the Ising spin glass problem [41]. Structurally, a MRF is a graphical

model using a hypergraph or simplicial set with weighted hyper edges. This is a collection of

points, line segments, triangles, tetrahedra, and higher-dimensional simplices. Each simplex

represents a clique, a set of zero or more of the variables.

The Hammersley-Clifford Theorem [42] [43] states that the joint probability distribution of

a Markov random field can be factorised as a Gibbs distribution. The energy function 𝑈𝑈(𝐱𝐱) is

used to compute the probability distribution of the model as given by (5) [44].

Note that this probability corresponds to the Boltzmann selection operator (Table 3, p. 8) used

by other evolutionary algorithms such as Boltzmann GA [45] [46].

𝐴𝐴(𝐱𝐱) =
𝐴𝐴−𝑈𝑈(𝐱𝐱)

∑ 𝐴𝐴−𝑈𝑈(𝐲𝐲)
𝑦𝑦

where 𝐴𝐴−𝑈𝑈(𝐱𝐱) = 𝑓𝑓(𝐱𝐱)

(5)

|

 12 of 195

DEUM uses (6) and estimates the Walsh-Hadamard transform of this function [24] [47].

Additionally, this is an estimate based on a population using singular value decomposition

(SDV) rather than an exhaustive sample [48].

A version of DEUM (Is-DEUM𝑚𝑚) was developed for the Ising problem. Is-DEUM𝑚𝑚 uses

bitwise zero-temperature metropolis (BTZM) method. Maximum likelihood estimation (MLE)

[49] and stochastic gradient descent [50] have also been used to estimate the structure in

DEUM. There are also other EDAs which use Markov random field models, such as MEDA [51],

MOA [52], and MARLEDA [53].

As with the genetic algorithm, EDAs can use ordinal selection or proportional selection.

However, it is worth noting that the estimation step may use proportional information about the

candidates, even if the selection is ordinal. Additionally, it is worth noting that DEUM may be

used without selection if the estimation procedure carries information about fitness [54].

− ln�𝑓𝑓(𝐱𝐱)� = 𝑈𝑈(𝐱𝐱) (6)

|

 13 of 195

2.1.8 Perturbation Methods

Perturbation methods are algorithms which determine linkage in the underling fitness

function. The concept of linkage is loosely defined in the area of optimisation. Within genetics,

linkage is defined by Winter et al. [55] as “the tendency for alleles of different genes to be

passed together from one generation to the next”. Munetomo and Goldberg [56] [57] observe

that this definition is not useful in optimisation as we wish to identify linkage in the underlying

fitness function and that this is encoding-dependant. Linkage is sometimes regarded by the

EDA community as the structure of the probabilistic model [58]. However, within this thesis we

will take linkage to mean the dependence between variables in terms of additive separation as

defined in section 2.2.1 as this is how linkage is typically regarded by perturbation methods.

Perturbation methods identify linkage by determining groups of interdependent variables.

De Jong et al. [59] define interdependence as follows: “two variables in a problem are

interdependent if the fitness contribution or optimal setting for one variable depends on the

setting of the other variable”. Hence, and conversely, if variables are independent, the optimal

setting of each variable and magnitude of effect on fitness for each possible value, may be

determined without the context of knowledge of the setting of the other. We will look at the

definition of linkage groups in the following section 2.2.1 on structure.

The first example of a perturbation method approach is linkage identification by

nonlinearity check (LINC) [56]. LINC optimises pseudo-Boolean functions (functions on the

domain Ω = {0, 1}ℓ) and runs in 𝒪𝒪�ℓ22𝑘𝑘� time where 𝑘𝑘 is the size of the largest group of

interdependent variables [56]. This is the runtime of most early perturbation methods as in

general, all combinations of two variables must be tested [60], however Streeter showed that

the upper bound on complexity is 𝒪𝒪(ℓ log(ℓ) 2𝑘𝑘) [61].

LINC considered variables interdependent if the fitness contribution of one variable

depends on the setting of the other. The existence of such separate groups of variables is an

aspect of structure which may be used to optimise is less time than the otherwise general

upper bound of 𝒪𝒪�2ℓ�.

A variant of LINC is linkage identification by non-monotonicity detection (LIMD) [56], which

ignores allowable non-linearity. This means variables are considered interdependent if the

optimal setting of one depends on the other, but exact fitness contribution is irrelevant. Since

the goal is to locate a global optimum, the non-linearity condition is recognised as capturing

unnecessary interactions – in the sense that such interactions do not affect the location of

global optima. LIMD will not distinguish between two functions 𝑓𝑓 and 𝑔𝑔 where one is a

monotonic transformation of the other.

|

 14 of 195

Perturbation methods work by making small changes to a candidate 𝐱𝐱 and observing the

effect on the fitness 𝑓𝑓(𝐱𝐱), referred to as fitness difference. Perturbation has also been used to

detect linkage by estimating Walsh coefficients [62]. Other perturbation methods include

dependency detection for distribution derived from 𝑑𝑑𝑓𝑓 (D5) [63] [60] and linkage identification

with epistasis measures (LIEM) [64]. Additionally, it has been shown that hierarchical traps, a

type of trap function with higher-order interactions between traps, can be solved in polynomial

time with respect to the length of the problem input [59]. Another branch of perturbation

methods is numerical optimisation [65] such as line search, trust-region methods, conjugate

gradient methods, and quasi-Newton methods, which are usually applied to continuous

optimisation problems and outside of the scope of this thesis.

|

 15 of 195

2.2 Structure of Optimisation Problems

In section 2.1.2 we discuss neighbourhood structure on an optimisation function with

regard to local optima and local search. In this section we discuss other relevant aspects of

structure in optimisation problems: linkage structure as seen by perturbation methods, pseudo-

Boolean functions and Walsh transforms.

2.2.1 Linkage Structure

A function of a subset 𝛄𝛄𝑖𝑖 ⊆ {𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1} of the variables is called a sub-function 𝑓𝑓𝑖𝑖. An

additive decomposition of a function is a sum of 𝑂𝑂 sub-functions {𝛄𝛄0, … ,𝛄𝛄𝑛𝑛−1} which is

equivalent to the original function i.e. such that (7) holds.

𝑓𝑓(𝐱𝐱) = 𝑓𝑓0(𝛄𝛄0) + 𝑓𝑓1(𝛄𝛄1) +⋯+ 𝑓𝑓𝑛𝑛−1(𝛄𝛄𝑛𝑛−1)

where (∀𝑖𝑖)(𝛄𝛄𝑖𝑖 ⊆ 𝐱𝐱)
(7)

A function is an additively separable function (ASF) [56] if and only if there exists an

additive decomposition into two or more sub-functions where no variable appears in more than

one sub-function. The resulting subsets of variables forms a linkage partition as in (8) where

each 𝛄𝛄𝑖𝑖 is a linkage group.

Γ = {𝛄𝛄0,𝛄𝛄1, … ,𝛄𝛄𝑛𝑛−1}

where (∀𝑖𝑖 ≠ 𝑗𝑗)�𝛄𝛄𝑖𝑖 ∩ 𝛄𝛄𝑗𝑗 = ∅�
(8)

The linkage partition Γ is a set of linkage groups 𝛄𝛄 (disjoint subsets of the variables 𝑋𝑋).

The general runtime for exhaustive search on a function of alphabet of size 𝑂𝑂 is 𝒪𝒪�𝑂𝑂ℓ�. If

the linkage partition of additive separation is known, the function may be optimised by

optimising each linkage group separately for a runtime of 𝒪𝒪�𝑂𝑂 𝑂𝑂𝑘𝑘� where 𝑘𝑘 is the size of the

largest linkage group, while still guaranteeing that the global optimum will be found [61].

|

 16 of 195

2.2.2 Pseudo-Boolean Functions

Many evolutionary algorithms, including the canonical genetic algorithm (CGA), EDAs such

as DEUM, and perturbation methods such as LINC operate on pseudo-Boolean functions.

Pseudo-Boolean optimisation is a subset of combinatorial optimisation. A pseudo-Boolean

function maps a string of ℓ binary digits to a codomain of real numbers ℝ, as given by (9).

𝑓𝑓 ∶ {0, 1}ℓ → ℝ (9)

A number of standard benchmark functions have been devised on the space of pseudo-

Boolean functions. The usual purpose of standard benchmark problems is to compare

performance of search heuristics [58]. Here we introduce benchmarks which will be used later

in discussions of structure and variable interaction.

Of particular interest to our work are benchmarks which can be examined over a very

small problem length. These include the constant function (CONST), needle-in-haystack function

(NEEDLE), ones function (ONEMAX) [66] [67], binary value function (BINVAL) [67], leading-ones

function (LEADING) [67], a simplified chain variant of the checkerboard function (CHECK1D) [68]

[47, pp. 32-32], the order-k trap function (TRAP𝑘𝑘) [69] [70], and Goldberg’s fully-deceptive order-

3 function (GOLDBERG) [71] [72] [25]. Full discussion of chosen benchmark functions and their

relevant properties is given in section 4.3.

Although pseudo-Boolean functions are a subset of the problems tackled by search

heuristics, pseudo-Boolean optimisation has many practical applications including computer

vision [73]. Additionally, real-world problems which in one form may be framed with non-binary

variables, have been encoded using binary representations, and tackled as pseudo-Boolean

optimisation problems [39] [37]. Many 𝒩𝒩𝒫𝒫 problems are directly instances of pseudo-Boolean

functions, including the maximum satisfiability [74], the Ising spin glass [41] problem, and the

0/1 knapsack [75] problem. Further, other 𝒩𝒩𝒫𝒫 pseudo-Boolean functions can be reformulated

in terms of an instance of the three-dimensional Ising spin glass problem [76] or other 𝒩𝒩𝒫𝒫-

complete problems using 𝒩𝒩𝒫𝒫 reductions.

|

 17 of 195

2.2.3 Walsh Decomposition of Pseudo-Boolean Functions

The Walsh decomposition is an additive decomposition with sub-functions 𝛼𝛼𝛾𝛾𝑊𝑊𝛾𝛾(𝐱𝐱) of a

pseudo-Boolean function [71]. Any pseudo-Boolean function can be uniquely specified by a

set of Walsh coefficients 𝛼𝛼𝑘𝑘 where 𝑘𝑘 is a subset of variable indices 0 to ℓ − 1. A subset of the

indices means this coefficient relates to that specified subset of variables 𝑋𝑋0 to 𝑋𝑋ℓ−1.

The coefficients multiply Walsh functions W𝛾𝛾(𝐱𝐱). The Walsh functions W𝛾𝛾(𝐱𝐱) are defined

as given by (10).

W𝛾𝛾(𝐱𝐱) = �� 1, 𝑥𝑥𝑖𝑖 = 1
−1, 𝑥𝑥𝑖𝑖 = 0

𝑖𝑖∈𝛾𝛾

 (10)

Note that this product is empty over the range ∏ …∅ = 1 hence, W∅(𝐱𝐱) = 1 for all 𝐱𝐱.

It should be noted that an alternative convention used within the literature [71] [72] maps

1 to 0 and −1 to 1 (the opposite order of our chosen convention above). This only affects the

sign of some coefficients, and does not alter any further analysis relevant to this work.

Any pseudo-Boolean function may be rewritten in the following form given by (11).

As note above, W∅(𝐱𝐱) = 1 for all 𝐱𝐱, hence the term 𝛼𝛼∅𝑊𝑊∅(𝐱𝐱) simplifies to 𝛼𝛼∅ ∙ 1 = 𝛼𝛼∅. We refer

to the 𝛼𝛼∅ term as the constant term since it is independent of 𝐱𝐱 whereas all other terms in the

Walsh expansion are non-constant functions of 𝐱𝐱.

The non-zero Walsh coefficients indicates parts of the structure which are present [71]. A

non-zero Walsh coefficient, on a clique of more than one variables, represents an interaction

between the variables in the function. For example, the term 𝛼𝛼{3,8} represents the bivariate

interaction between variables 𝑋𝑋3 and 𝑋𝑋8. If there is no bivariate interaction between these

variables, the coefficient is zero.

𝑓𝑓(𝐱𝐱) = �𝛼𝛼𝛾𝛾 W𝛾𝛾(𝐱𝐱)
𝛾𝛾∈𝐾𝐾

𝐾𝐾 ⊆ {0,1, … , ℓ − 1}

(11)

|

 18 of 195

2.3 Algorithms and Problem Difficulty

Having discussed search heuristics and structure of optimisation problems, we wish to tie

the two concepts together. Here we examine concepts in the literature of coherence between

heuristics and problems. This will help motivate relevant research questions.

2.3.1 No Free Lunch Theorem

The no free lunch theorem (NFL) [5] [77] states that any two (non-revisiting) black-box

optimisation algorithms are equal when their performance is averaged over all possible

problems. An improvement in performance in one problem or class of problems is balanced by

loss of performance in another.

Wolpert and Macready [5] describe how NFL can be interpreted from a geometrical

measure of the match between problem and algorithms, by the inner product between the two

in the population simplex.

Since there are differences between the performance of different algorithms on different

problem, it is of interest to examine how well particular problems and algorithms match up [78].

In particular, some problems are more interesting than others.

2.3.2 Proximate Optimality

Glover’s proximate optimality principle [79] states that high fitness candidates have similar

structures. This is a property of problems and representation, and of operators which operate

on the representation space. Shown in Figure 3 are two candidates with similar high fitness for

a travelling salesman problem (TSP) instance; these have many common elements of structure

present. Figure 4 shows two similar-fitness low quality solutions with few common structures

and two similar-fitness high quality solutions with many common structures. Assuming

proximate optimality holds, EDAs should be able to find good candidates by sampling near

other good candidates, and a GA nearing convergence should find good solutions at another

fitness level.

|

 19 of 195

Candidate 𝐴𝐴 Candidate 𝐵𝐵 Common Structures 𝐴𝐴 ∩ 𝐵𝐵

Figure 3 – Two similarly high-fitness solutions to a TSP instance, with many common

structures in the intersection of the two solutions.

Candidate 𝐴𝐴 Candidate 𝐵𝐵 Common Structures 𝐴𝐴 ∩ 𝐵𝐵

Figure 4 – Two similarly low-fitness solutions to a TSP instance, with few common structures

in the intersection of the two solutions.

There is a related informal idea of the “big-valley hypothesis” which asserts that many

search landscapes have a “big valley” structure. This means that local optima appear close to

one another and close to global optima [80] [81].

|

 20 of 195

2.3.3 Measures of Problem Difficulty

The no free lunch theorem does not prevent the analysis of problem difficulty. Analysis

may be done on the basis of considering the set of specific real-world or benchmark problem,

or by considering only functions with the same global optima [82].

Many measures of problem difficulty have been proposed. One method of discussing the

complexity of an optimisation problem is to classify the function as univariate, bivariate, or

multivariate [30]. From the perspective of the Walsh expansion we can define univariate

functions as those which consist of at most univariate Walsh coefficients with all higher-order

coefficients equal to zero. Similarly, bivariate functions consist of at most bivariate coefficients

(including univariates), and lastly, multivariate functions are functions containing at least one

term of order 3 or higher. Similarly, other models, such as Bayesian networks have related

definitions for describing the complexity of a function. Although EDAs are often classified as

univariate, bivariate, or multivariate, as mentioned in section 2.1.6, based on the order 𝑘𝑘 of

variables interactions modelled, it is often observed in practice that a univariate EDA may

perform well on a high-order multivariate problem.

One common way to measure problem difficulty for search heuristics is to give an

asymptotic analysis of the runtime of a particular search heuristic when the problem length ℓ

can be scaled [83]. This is directly analogous to the classical complexity theory analyses of the

runtime of algorithms. For example, Droste’s analysis [84] shows that the general lower-bound

on performance for the algorithm CGA [85] on the ONEMAX problems is 𝒪𝒪�𝐴𝐴√ℓ�, where 𝐴𝐴 is the

population size, however, another univariate problem, the BINVAL problem has 𝒪𝒪(𝐴𝐴ℓ) runtime.

The difference in runtime is attributed to the fact that the BINVAL problem (in contrast to the

ONEMAX problem) is classed as an exponential problem meaning that the influence of

difference variables vary in exponential degree, and the performance of CGA is highly affected

by this factor.

Other measures of problem difficulty include consideration of their modality : the number

of non-global local optima and size of basins of attraction to these optima [86]. In principle,

problems with more local optima and larger basins of attraction stand more chance of trapping

an algorithm on a non-global local optimum and are therefore more difficult to optimise. By

contrast, problems with more global optima with larger basins of attraction to these optima are

easier to optimise than those with many non-global local optima.

|

 21 of 195

When measuring the computational complexity of optimisation, the dominant operation in

the computation is typically assumed to be the number of function evaluations even when

complex model building or other processing is involved in the intermediate steps. This may be

different for real-world optimisations but is generally held to in theory [83].

Problems can also be classified as to whether their structure is known, partially known, or

black-box [87]. However, the majority of related literature on the topic of search heuristics treat

functions as black-box, so we will be focused mainly on the objective function as a black-box

function. It is worth noting that use of known or partially-known structure is an important

consideration of real-world applications, and in practice there is usually some known structure

to problems. Additionally, it is useful to consider the known structure of a benchmark function

when evaluating the performance of an EDA or perturbation method in learning structure.

|

 22 of 195

2.3.4 Bad Linkage and Spurious Correlations

In discussing the types of structure present in a function, it is important to distinguish

between structure present and non-existent structure treated as structure by some artefact of

the design of the algorithm or imperfect knowledge about the function – as is inevitable with

black-box optimisation. Bad linkage and spurious correlations are two examples of such non-

existent structure.

Representations of linkage in evolutionary algorithms can be classified as physical or

virtual linkage [88] [89]. Physical linkage refers to linkage based on proximity in the encoding.

The canonical genetic algorithm (CGA) [17] encodes linkage in this way. Virtual linkage refers

to the explicit tracking of linkage using a statistical model in an EDA such as Bayesian joint

probabilities or Markov random field cliques. Chen et al. [88] note that physical linkage is

inspired by biological evolution and hence has biological plausibility, but that virtual linkage

can achieve better performance.

The terms bad linkage [88] or false linkage [90] [91] refer to unhelpful juxtaposition of

variables in a system of physical linkage such as a genetic algorithm. Bad linkage derives from

the biological notion of linkage, in which genes are linked if they appear on the same

chromosome. In a genetic algorithm this refers to variables which appear close in the

representation and are likely to be preserved together in the same offspring by crossover.

Schema theory implies that variables which are adjacent in the allele string are less likely to

be disrupted than those which are distant if the GA uses a k-point crossover operator. Hence,

those closer are more tightly linked in a typical GA. The development of competent genetic

algorithms, and EDAs in particular was motivated by the problem of bad linkage and the

disruption of building blocks in genetic algorithms.

EDAs use virtual linkage and do not suffer from the same problem of bad linkage as a GA.

However, with EDAs, spurious correlations [87] or spurious dependencies [92], arise when the

sampled population of an EDA by chance indicates the existence of a correlation which is

merely an artefact of the sampled population, and not representative of a real correlation in the

population. For example, if by random chance 𝑥𝑥5 = 𝑥𝑥17 for all highly-fit solutions in a sampled

population, the EDA may model this as an interaction between variables 𝑋𝑋5 and 𝑋𝑋17. Spurious

correlations are affected by factors such as selection size and population size [87] since this

increases the sample size and hence the likelihood that the sampling is representative of the

real structure of the function.

|

 23 of 195

When the structure of an optimisation problem is known a priori, the accuracy of a model

built by an EDA can be measured in terms of precision, recall, and f-measure (terms borrowed

from the domain of data mining). In relation to EDAs, we can define precision, recall, and f-

measure as given by (12-14) (Witten and Frank [93] as cited by Brownlee et al. [58]).

Here, a true interaction is an interaction between variables in the function’s structure; an

interaction found is an interaction between variables in the EDA’s model; and a true interaction

found is an interaction present in both.

The value for f-measure ranges from 0 to 1, with the optimal value for f-measure, in the

case of perfect model structure, that all and only true interactions are found being 1 [58].

Hence, f-measure can be used to rate the quality of the statistical model built by a run of an

EDA, assuming the structure of the problem is known. An example of applying f-measure is

calculating the f-measure between learned Markov network coefficients in DEUM [58] against

the known non-zero Walsh coefficients of the fitness function. It is also used in evaluating the

accuracy of Bayesian network-based EDAs.

precision (𝐴𝐴) =
true interactions found

interactions found
 (12)

recall (𝑒𝑒) =
true interactions found

true interactions
 (13)

f-measure (𝐹𝐹) =
2𝐴𝐴𝑒𝑒
𝐴𝐴 + 𝑒𝑒

 (14)

|

 24 of 195

2.3.5 Unnecessary Benign Interactions

When an interaction reinforces the cumulative effect of its parts, this interaction is

considered benign. It should be emphasised that the absence of a benign interaction may be

preferable to its presence. It has been observed that not all interactions are necessary to solve

an optimisation problem [94] [95] [96] [97]. For example, a univariate EDA performs better than

naively expected on many problems which are bivariate or multivariate.

Figure 5 – Conceptual Illustration of a function containing unnecessary interactions. There

is a change in gradient, however, the basin of attraction at both gradients leads to the same

global optimum. The basins of attraction illustrated are those of a steepest ascent hill-climber.

It should be noted that if a monotonic transformation is applied to a function, this may

produce a function with new interactions not present in the original function. Such interactions

will always be unnecessary interactions since monotonic transformation preserves the

invariants 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥) and 𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑥𝑥). Hence, any selection operator which is monotonically

invariant will be unaffected by the presence of unnecessary interactions.

In an EDA with ordinal selection, the model will not be affected by unnecessary

interactions unless the model-building step uses information about the fitnesses, such as in a

Markov network EDA, hence, algorithms such as DEUM may model unnecessary interactions

even with ordinal selection.

|

 25 of 195

A genetic algorithm with ordinal selection will also be blind to benign interactions and

therefore the presence of those interactions will not cause the GA to implicitly model them.

However, the effect of hitchhiking, as discussed in section 2.1.5, may mean that these

interactions are still modelled. Likewise, an EDA which only uses fitness information through

an ordinal selection operator will not be lead to model unnecessary interactions except as

spurious correlations as discussed in section 2.3.4. Additionally, an EDA such as DEUM which

uses fitness information to build the model may directly model unnecessary interactions, even

when the selection operator used is ordinal, or when no selection is used.

2.3.6 Deception and Malign Interactions

A deceptive function is one which leads optimisation away from the global optima by

discovering deceptive interactions either explicitly or implicitly. Figure 6 illustrates the idea of

what is called a trap function, this is one which has two unequal local optima, with the largest

basin of attraction leading the optimisation towards the non-global local optimum and away

from the global optimum.

Figure 6 – Conceptual Illustration of a deceptive function containing two local optima, one of

which is the global optimum. The global optimum has a considerably smaller basin of

attraction than the other local optimum. The basins of attraction illustrated are those of a

steepest ascent hill-climber.

Such functions may be contrasted with an isolated or needle in a haystack (NIAH) function

[11], which are those where the solutions which are not the global optimum or adjacent to, are

surrounded by equally-fit solutions, hence they do not lead the search in any direction.

|

 26 of 195

Naively it may be assumed that the complete absence of information such as in the case

of needle in haystack is the worst case, however it is known that deceptive interactions can be

worse than isolated optima [86]. Misleading information in functions such as the k-trap directs

the search away from global optima, which is not the case for isolated function such as needle

in haystack. Some theoretical analysis has been done into the computational difficulty of

escaping a sub-optimal basin [98].

In contrast to benign interactions, malign interaction reverses the combined effect of its

parts [87]. Malign interactions [86] [99] are considered by the GA community to be synonymous

with the concept of deception, which is when there are interactions which tend to lead a search

heuristic away from the global optimum [86].

|

 27 of 195

2.4 Research Questions

In section 2.2.1 we discussed the concept of linkage structure, and remark that for

additively separable functions, a global optimum may be identified by separately optimising

each linkage group, with time complexity 𝒪𝒪�𝑂𝑂𝑘𝑘� where 𝑘𝑘 is the number of variable in the linkage

group and 𝑂𝑂 is the size of the alphabet. We also mentioned in section 2.1.8 that the upper

bound on optimising an additively separable pseudo-Boolean function is 𝒪𝒪(ℓ log(ℓ) 2𝑘𝑘). In

section 2.3.3 we discussed several measures of problem difficulty, including the univariate,

bivariate, and multivariate classifications based on complexity of structure. These ideas

motivate exploring the relationship between structure and problem difficulty.

In section 2.1.8 we discussed perturbation methods and noted that a function may be

optimised while ignoring allowable non-linearity as is the case for non-monotonicity detecting

perturbation methods. In section 2.1.4 we discuss population-based metaheuristics and their

selection operators, including ordinal selection, which is a commonly-used class of selection,

operators under which functions which are monotonic transformations of one another are

indistinguishable. Further, we discussed in section 2.3.5 how benign interactions, which may

be produced by monotonic transformation, are a relevant consideration for EDAs, and that

ordinal selection can helpfully hide these unnecessary interactions from being modelled. It

seems clear that there is a sense in which functions which are monotonic transformations of

one another may be considered equivalent. This motivates using monotonicity-invariance as

the basis for a formal definition of equivalence classes of functions.

In section 2.1 we discussed several different approaches to optimisation and in section

2.3 discussed the coherence between search heuristics and problems. This motivates

exploring the algorithmic steps which may be used to solve different classes of problem, and

how we can use knowledge of structure to direct the development of novel algorithms.

The research questions outlined are as follows:

1. What is the relationship between problem structure and problem difficulty?

2. How can we use structure to usefully classify problems?

3. Can we use structure to bound the number of algorithmic steps?

4. Can structure analysis motivate the development of novel algorithms?

|

 28 of 195

|

 29 of 195

3 Background

Having examined the relevant literature and identified research questions in chapter 2, we

now introduce any further background concepts necessary to explore the research questions

fully. This includes terminology and notation of vector spaces, linear transformation, Walsh-

Hadamard transform, variable linkage partition, and methods of computing these descriptions

of functions.

3.1 Terminology and Notation

3.1.1 Vectors and Vector Spaces

Functions of more than one variable can have structure between variables; a vector is one

common way of representing multiple variables. A vector 𝐱𝐱 is a mathematical object which we

will represent using the conventional notation of an ordered list of numbers, as in (15).

𝐱𝐱 = [𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥ℓ−1] (15)

A vector space is a set of vectors, where the operations of either adding together two

vectors in the space or multiplying a vector in the space by a scalar (a number) produces

another vector in the space [100]. An example of vector space is a real space of 3-dimensions

as in (16).

𝐱𝐱 ∈ ℝ3 (16)

An example of two vectors 𝐯𝐯 and 𝐰𝐰 in the space ℝ3 are given by (17).

𝐯𝐯 = [1.0 0.0 1.5]

𝐰𝐰 = [5.5 2.5 1.0]
(17)

An example of vector addition 𝐯𝐯 + 𝐰𝐰 is given by (18). Note that, as a requirement of vector

spaces, the resulting vector is also an element of ℝ3.

𝐯𝐯+ 𝐰𝐰 = [6.5 2.5 2.5] (18)

|

 30 of 195

An example of multiplication by a scalar 5𝐯𝐯 is given by (19). Note that, as a requirement of

vector spaces, the resulting vector is also an element of ℝ3.

5𝐯𝐯 = [5.0 0.0 7.5] (19)

Here we list the axioms of a vectors space in (20), let 𝐮𝐮, 𝐯𝐯, and 𝐰𝐰 be vectors in a vector

space and 𝑂𝑂, 𝑏𝑏 be scalars. These axioms are necessary for a set of vectors to be considered

a vector space [100].

(∀𝐮𝐮)(∀𝐯𝐯)(∀𝐰𝐰)(𝐮𝐮+ (𝐯𝐯 + 𝐰𝐰) = (𝐮𝐮 + 𝐯𝐯) + 𝐰𝐰)

(∀𝐮𝐮)(∀𝐯𝐯)(𝐮𝐮+ 𝐯𝐯 = 𝐯𝐯 + 𝐮𝐮)

(∃𝟎𝟎)(∀𝐯𝐯)(𝐯𝐯+ 𝟎𝟎 = 𝐯𝐯)

(∀𝐯𝐯)�∃(−𝐯𝐯)�(𝐯𝐯+ (−𝐯𝐯) = 𝟎𝟎)

(∀𝑂𝑂)(∀𝑏𝑏)(∀𝐯𝐯)(𝑂𝑂(𝑏𝑏𝐯𝐯) = (𝑂𝑂𝑏𝑏)𝐯𝐯)

(∀𝐯𝐯)(1𝐯𝐯 = 𝐯𝐯)

(∀𝑂𝑂)(∀𝐮𝐮)(∀𝐯𝐯)(𝑂𝑂(𝐮𝐮 + 𝐯𝐯) = 𝑂𝑂𝐮𝐮 + 𝑂𝑂𝐯𝐯)

(∀𝑂𝑂)(∀𝑏𝑏)(∀𝐯𝐯)�(𝑂𝑂 + 𝑏𝑏)𝐯𝐯 = 𝑂𝑂𝐯𝐯 + 𝑏𝑏𝐯𝐯�

(20)

Under these axioms, vector spaces may also be defined on finite fields. An example is the

finite field GF(2) with elements {0, 1}. The addition and multiplication operators are defined in

Table 4.

+ 0 1 × 0 1

0 0 1 0 0 0

1 1 0 1 0 1

Table 4 – The addition and multiplication operators for the field GF(2).

GF(2) has two elements; this can be extended to a vector space with 2ℓ elements – each of

which is in the set {0, 1}ℓ – by performing bitwise operations, i.e. to add any two vectors 𝐮𝐮 and

𝐯𝐯, corresponding terms in the vectors are added as in (21).

(𝑤𝑤 = 𝑢𝑢 + 𝑣𝑣) ⇒ (∀𝑖𝑖)(𝑤𝑤𝑖𝑖 = 𝑢𝑢𝑖𝑖 + 𝑣𝑣𝑖𝑖) (21)

|

 31 of 195

Vectors are linearly independent if it is not possible to construct one of the vectors from a

linear sum of the others. Vectors span the space if it is possible to construct any vector in the

space from a linear sum of those vectors. Basis vectors of a space are any linearly independent

set of vectors which span that space.

The standard basis vectors of an ℓ-dimensional space are the vectors consisting of a 1 in

one element and 0 for every remaining element, for example the space ℝ3 is spanned by the

basis vectors 𝐱𝐱�, 𝐲𝐲�, and 𝐳𝐳� as defined by (22).

𝐱𝐱� = [1 0 0]

𝐲𝐲� = [0 1 0]

𝒛𝒛� = [0 0 1]

(22)

As basis vectors of ℝ3, a linear sum of 𝐱𝐱�, 𝐲𝐲�, and 𝐳𝐳� can construct any vectors in the space

ℝ3, for example, the vector [25 5 10] = 25 𝐱𝐱� + 5 𝐲𝐲� + 10 𝐳𝐳�.

|

 32 of 195

3.1.2 Functions on Bit Strings and Bit Vectors

Having identified pseudo-Boolean functions as of interest, we now outline the terminology

and notation which will be used. Recall that pseudo-Boolean functions are by definition on the

domain {0, 1}ℓ. An element of this domain can be written as a bit string, which is a

concatenation of ℓ bits (variables on the domain {0, 1}) as given by (23).

𝑥𝑥0𝑥𝑥1 … 𝑥𝑥ℓ−1

where 𝑥𝑥𝑖𝑖 ∈ {0, 1}
(23)

An example of a bit string of length 6 is given by (24).

010101 (24)

These conventions chosen will be used consistently throughout this thesis. It should be noted

that variations of this notation are used in the literature, for example, indexing from 1 (i.e.

𝑥𝑥1𝑥𝑥2 … 𝑥𝑥ℓ) or presenting bit strings from right-to-left (i.e. 𝑥𝑥ℓ−1𝑥𝑥ℓ−2 … 𝑥𝑥0).

Fitness value of a pseudo-Boolean function 𝑓𝑓(𝐱𝐱) for a given bit string 𝐱𝐱 may be abbreviated

using a bit string notation in subscript as given by definition (25).

𝑓𝑓𝑥𝑥0𝑥𝑥1…𝑥𝑥ℓ−1 = 𝑓𝑓(𝑥𝑥0𝑥𝑥1 … 𝑥𝑥ℓ−1)

where 𝑥𝑥𝑖𝑖 ∈ {0, 1}
(25)

An example of this notation is given by (26).

𝑓𝑓010101 = 𝑓𝑓(010101) (26)

|

 33 of 195

There is a one-to-one correspondence between bit strings of length ℓ and vector spaces

with ℓ elements in the field GF(2) extended bitwise to 2ℓ elements. Hence, it is useful to

consider pseudo-Boolean functions from this perspective. A bit vector 𝐱𝐱 is a vector of ℓ bits as

given by (27).

𝐱𝐱 = [𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥ℓ−1]

where 𝑥𝑥𝑖𝑖 ∈ {0, 1}

(27)

The underlying set of this vector space is given by (28).

𝐱𝐱 ∈ {0, 1}ℓ (28)

As shown, as with bit strings, by convention we will present all vectors left-to-right and all

indexes from 0. Hence, the 𝑥𝑥0 represents the first element and it written on the left; 𝑥𝑥ℓ−1

represents the last element and is written on the right. This convention is used throughout.

It will be useful to consider the search space 𝑋𝑋 as a vector space, or as a multivariate

random variable as given by (29). This allows us to decompose the function in terms of special

basis function such as Walsh functions, and to construct probabilistic models based on

variables.

X = X0 × X1 × ⋯× Xℓ−1

where 𝑋𝑋𝑖𝑖 = {0, 1}
(29)

A bit string 𝐱𝐱 can be considered as a sample of 𝑋𝑋, and 𝑥𝑥𝑖𝑖 as a sample of 𝑋𝑋𝑖𝑖. This

multivariate random variable interpretation is used by algorithms which build a probabilistic

model (EDAs).

|

 34 of 195

3.1.3 The Space of Pseudo-Boolean Functions

The set of all pseudo-Boolean functions of length ℓ is itself a real-valued vector space of

length 2ℓ, i.e. ℝ2ℓ. A pseudo-Boolean function can be represented as a vector 𝐟𝐟𝓵𝓵 by listing the

fitnesses of the candidates as in (30).

𝐟𝐟ℓ =

⎣
⎢
⎢
⎢
⎢
⎡
𝑓𝑓111⋯1
⋮

𝑓𝑓110⋯0
𝑓𝑓010⋯0
𝑓𝑓100⋯0
𝑓𝑓000⋯0⎦

⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎬

⎪
⎫

2ℓ (30)

For example, the function 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1 can be represented as in (31).

𝐟𝐟 = �

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

3 + 1 − 2 ∙ 1
3 + 0 − 2 ∙ 1
3 + 1 − 2 ∙ 0
3 + 0 − 2 ∙ 0

� = �

2
1
4
3

� (31)

Here, the basis vectors of this space are the vectors where for all 𝐱𝐱 ∈ Ω the basis 𝐴𝐴𝐱𝐱 is the

vector with 1 in the position corresponding to 𝑓𝑓𝐱𝐱 and 0 in all other positions. An example in the

case of pseudo-Boolean function is given in (32).

𝐴𝐴11 = �

1
0
0
0

� , 𝐴𝐴01 = �

0
1
0
0

� , 𝐴𝐴10 = �

0
0
1
0

� , 𝐴𝐴00 = �

0
0
0
1

� (32)

Hence in the above example, 𝐟𝐟 = 2 𝐴𝐴11 + 1 𝐴𝐴01 + 4 𝐴𝐴10 + 3 𝐴𝐴00.

These delta functions also comprise all ℓ-bit pseudo-Boolean functions with a single fully-

isolated global maximum with a value of 1, and all other candidates with a value of 0. As basis

vectors, any pseudo-Boolean functions can be constructed from a linear sum of such functions.

|

 35 of 195

3.1.4 Linear Transformation and Matrices

A linear transformation (or linear map) is a function 𝑡𝑡 from a vector space to a vector space,

which may be the same vector space. A linear transformation preserves sums and scalar

multiplication, i.e. 𝑡𝑡(𝐯𝐯 + 𝐰𝐰) = 𝑡𝑡(𝐯𝐯) + 𝑡𝑡(𝐰𝐰) and 𝑡𝑡(𝑂𝑂 𝐯𝐯) = 𝑂𝑂 𝑡𝑡(𝐯𝐯) for all 𝐯𝐯, 𝐰𝐰 in the space, and

scalar 𝑂𝑂.

An isomorphism is a linear transformation 𝑡𝑡 for which there is an inverse linear

transformation which is a function 𝑡𝑡−1 which operates to undo the transformation, i.e.

𝑡𝑡−1�𝑡𝑡(𝐯𝐯)� = 𝐯𝐯 for all 𝐯𝐯.

An 𝑚𝑚-by-𝑂𝑂 matrix is a rectangular array 𝑚𝑚 rows and 𝑂𝑂 columns. An example of a 3-by-5

matrix is given by (33).

�
5 5 10 6 1
1 8 2 7 1
3 5 0 6 0

� (33)

Matrices are of interest in this context since matrix-vector multiplication can be used to

apply a linear transformation to a vector. The result of multiplying an 𝑚𝑚-by-𝑂𝑂 matrix with a

length 𝑂𝑂 column vector is a length 𝑚𝑚 column vector, where for all 𝑖𝑖, element 𝑖𝑖 is the row 𝑖𝑖 of

the matrix multiplied element-wise with the column vector as in (34).

�
𝑂𝑂 𝑏𝑏
𝑃𝑃 𝑑𝑑
𝐴𝐴 𝑓𝑓

� �
𝑥𝑥
𝑒𝑒� = �

𝑂𝑂𝑥𝑥 + 𝑏𝑏𝑒𝑒
𝑃𝑃𝑥𝑥 + 𝑓𝑓𝑒𝑒
𝐴𝐴𝑥𝑥 + 𝑓𝑓𝑒𝑒

� (34)

An example is given by (35), which is the application of a matrix multiplication to the column

vector consisting of the elements 3 and 5.

�2 0
0 2� �

3
5� = � 6

10� (35)

This example linear transformation is an isomorphism. The inverse of this transformation is

given by (36).

�0.5 0
0 0.5� �

6
10� = �35� (36)

|

 36 of 195

3.1.5 Walsh Coefficients as Basis Vectors

Recall that the Walsh decomposition of a function is an additive decomposition applicable

to any pseudo-Boolean function. The Walsh functions are also a set of basis vectors which

span the space ℝ2ℓ. A set of Walsh coefficients can be written as a length 2ℓ column vector as

in (37).

𝛂𝛂ℓ =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
𝛼𝛼∅|ℓ
𝛼𝛼{0}|ℓ
𝛼𝛼{1}|ℓ
𝛼𝛼{0,1}|ℓ
𝛼𝛼{2}|ℓ
𝛼𝛼{0,2}|ℓ
𝛼𝛼{1,2}|ℓ
𝛼𝛼{0,1,2}|ℓ
⋮
𝛼𝛼{0,1,2,⋯,ℓ−1}|ℓ⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎪
⎫

2ℓ (37)

The Walsh functions W𝛾𝛾(𝐱𝐱) are basis vectors in this space. For our earlier example

 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1, we can write the Walsh decomposition as in (38).

𝛂𝛂ℓ =

⎣
⎢
⎢
⎢
⎡
𝛼𝛼∅|ℓ
𝛼𝛼{0}|ℓ
𝛼𝛼{1}|ℓ
𝛼𝛼{0,1}|ℓ⎦

⎥
⎥
⎥
⎤

= �

2.5
0.5

−1.0
0.0

� (38)

Hence, the function can be written as 𝛂𝛂 = 2.5 W∅(𝐱𝐱) + 0.5 W{0}(𝐱𝐱) − W{1}(𝐱𝐱). Note that the

coefficient of W{0,1}(𝐱𝐱) in this function is zero, revealing something about the structure of the

function – that 𝑋𝑋0 and 𝑋𝑋1 are independent. In contrast to the delta function basis, where zero

terms do not immediately reveal information about the structure.

The Walsh coefficients may be computed by the Walsh-Hadamard transform, as

described next, in section 3.1.6.

|

 37 of 195

3.1.6 Walsh-Hadamard Transform

The Walsh-Hadamard transform is a method of calculating Walsh coefficients by using the

Hadamard matrix [71]. The definition of the 𝑂𝑂 × 𝑂𝑂 Hadamard matrix [101] is given by (39).

The Walsh-Hadamard transform uses the Hadamard matrix of dimensions 2ℓ × 2ℓ to calculate

the Walsh coefficients of a function on bit string s of length ℓ. We use the notation 𝐻𝐻ℓ to refer

to this matrix.

Hadamard matrices of powers-of-2 dimensions can be constructed by Sylvester’s

construction [101] as given by (40).

It is necessary to have all fitness values to determine the Walsh coefficients exactly, thus

exhaustive evaluation of the function is required. The Walsh coefficients specify a particular

function, and therefore if even one fitness value is different between two functions, their Walsh

decomposition must be different in at least one Walsh coefficient.

As a consequence of the Walsh decomposition, a fitness vector may be determined from

the system of linear equations represented in matrix-vector format as given by (41) [71].

𝐟𝐟ℓ ≡ 𝐻𝐻ℓ𝛂𝛂ℓ (41)

We can derive the inverse of the Hadamard matrix as given by (42),

𝐻𝐻 ∙ 𝐻𝐻T ≡ 𝑂𝑂 𝐼𝐼

𝐻𝐻 ∙ 𝐻𝐻 ≡ 2ℓ 𝐼𝐼

𝐻𝐻 ∙
1
2ℓ
𝐻𝐻 ≡ 𝐼𝐼

𝐻𝐻−1 ≡
1
2ℓ
𝐻𝐻

(42)

𝐻𝐻 ∙ 𝐻𝐻T = 𝑂𝑂 𝐼𝐼 (39)

𝐻𝐻ℓ = �𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

�

where 𝐻𝐻1 = �1 1
1 −1�

and 𝐻𝐻0 = [1]

(40)

|

 38 of 195

Using the inverse of the Hadamard matrix, we can compute the Walsh decomposition

transform as given by (43).

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ (43)

The subscript ℓ on 𝐟𝐟, 𝛂𝛂, and 𝐻𝐻, will from now on usually be omitted in cases where the

dimension of the vector or matrix is unambiguous.

Taking again our example 𝑓𝑓(𝐱𝐱) = 3 + 𝑥𝑥0 − 2𝑥𝑥1; to determine the Walsh decomposition,

we first determine the fitness vector 𝐟𝐟ℓ; this is shown in (44).

𝐟𝐟ℓ = �

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

3 + 1 − 2
3 + 0 − 2
3 + 1 − 0
3 + 0 − 0

� = �

2
1
4
3

� (44)

Then we compute the Walsh-Hadamard transform; this is shown in (47).

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ =

1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

2
1
4
3

� =
1
4 �

10
2

−4
0

� = �

2.5
0.5
−1

0

� (45)

Thus, the Walsh decomposition is 𝛂𝛂 = 2.5 W∅(𝐱𝐱) + 0.5 W{0}(𝐱𝐱) − W{1}(𝐱𝐱). Note that the

coefficient of the term in W{0,1}(𝐱𝐱) is zero since the last term in the 𝛂𝛂ℓ vector is zero. This is

expected since there is no interaction between the two variables.

The fast Walsh-Hadamard transform [102] is a more computationally efficient method of

performing the Walsh-Hadamard transform. This calculates the Walsh coefficients in 𝒪𝒪(𝑂𝑂 log𝑂𝑂)

addition/subtraction operations instead of 𝒪𝒪(𝑂𝑂2) as with the naive matrix multiplication method.

Though exhaustive evaluation of the function is still required, which is likely the dominant

operation.

To compute the fast Walsh-Hadamard transform, at each stage of the recursion, the first

half of the output vector is commuted by adding the corresponding input term and the input

term from 𝑂𝑂/2 places along. The second half of the output vector is the same as the first but

with subtraction instead of addition. Then the output vector is split in half and recursed on. The

flow of data for a length 4 input vector is diagrammed in Figure 7.

|

 39 of 195

𝑓𝑓11 𝐴𝐴 = 𝑓𝑓11 + 𝑓𝑓10 𝛼𝛼∅ = 𝐴𝐴 + 𝐵𝐵 = 𝑓𝑓11 + 𝑓𝑓01 + 𝑓𝑓10 + 𝑓𝑓00

𝑓𝑓01 𝐵𝐵 = 𝑓𝑓01 + 𝑓𝑓00 𝛼𝛼{0} = 𝐴𝐴 − 𝐵𝐵 = 𝑓𝑓11 − 𝑓𝑓01 + 𝑓𝑓10 − 𝑓𝑓00

𝑓𝑓10 𝐶𝐶 = 𝑓𝑓11 − 𝑓𝑓10 𝛼𝛼{1} = 𝐶𝐶 + 𝐷𝐷 = 𝑓𝑓11 + 𝑓𝑓01 − 𝑓𝑓10 − 𝑓𝑓00

𝑓𝑓00 𝐷𝐷 = 𝑓𝑓01 − 𝑓𝑓00 𝛼𝛼{0,1} = 𝐶𝐶 − 𝐷𝐷 = 𝑓𝑓11 − 𝑓𝑓01 − 𝑓𝑓10 + 𝑓𝑓00

Figure 7 – Steps of the fast Walsh-Hadamard transform (FWHT) showing the divide-and-

conquer procedure on four fitness values. Solid black lines indicates that the value is added;

dashed red lines indicates that the value is subtracted. The intermediate steps have been

assigned the labels 𝐴𝐴, 𝐵𝐵, 𝐶𝐶, and 𝐷𝐷 to illustrate how these are added or subtracted in the next

step.

|

 40 of 195

3.1.7 Function Transformations

There are many operations which may be applied to produce variations on functions. Here

we will discuss some commonly-used transformations and their relationship to structure.

Permutation of a function is a function such that the effect of 2 or more variables has been

rearranged. For example in (46), 𝑔𝑔𝐴𝐴 is a permutation of 𝑓𝑓𝐴𝐴 where the variables 𝑥𝑥2 takes the

place of 𝑥𝑥0, the variable 𝑥𝑥0 takes the place of 𝑥𝑥1, and the variable 𝑥𝑥1 takes the place of 𝑥𝑥2.

𝑓𝑓𝐴𝐴(𝐱𝐱) = 2𝑥𝑥0 + 𝑥𝑥1 ⋅ �𝑥𝑥2; 𝐱𝐱 ∈ ℝ3

𝑔𝑔𝐴𝐴(𝐱𝐱) = 2𝑥𝑥2 + 𝑥𝑥0 ⋅ �𝑥𝑥1; 𝐱𝐱 ∈ ℝ3
(46)

A permutation of the variables may produce a function in which variables are moved

between linkage groups, however, the total number of linkage groups and the size of each

linkage group is preserved. In the case of pseudo-Boolean functions, a permutation may

produce a function which the Walsh coefficients are permuted from the original function. For

example 𝛼𝛼{1,2} and 𝛼𝛼{0,1} may be swapped.

Relabelling of a function is a function such that the effect of 2 or more labels for 1 or more

variables has been rearranged. For example, in (47), 𝑔𝑔𝐵𝐵 is a relabelling of 𝑓𝑓𝐵𝐵 such that the

effect of labels 0 and 1 has been swapped for variable 𝑥𝑥1.

𝑓𝑓𝐵𝐵(𝐱𝐱) = 𝑥𝑥0 + 𝑥𝑥1 ⨁ 𝑥𝑥2; 𝐱𝐱 ∈ {0, 1}3

𝑔𝑔𝐵𝐵(𝐱𝐱) = 𝑥𝑥0 + 𝑥𝑥1��� ⨁ 𝑥𝑥2; 𝐱𝐱 ∈ {0, 1}3

where 𝑥𝑥𝚤𝚤� = (1 − 𝑥𝑥𝑖𝑖)

(47)

For simplicity, in the above example, the variables have an alphabet of only two values

each, but the multiple labels could be permuted in other ways. A relabelling does not change

the linkage groups. In the case of pseudo-Boolean functions, for each single variable which is

relabelled, all Walsh coefficients of cliques (sets of zero or more of the variables) including that

variable will be negated. For example, 𝛼𝛼{1} and 𝛼𝛼{1,2} in the new function take on the old values

of −𝛼𝛼{1} and −𝛼𝛼{1,2} respectively.

A variation of relabelling may be applied where there are different numbers of labels for

the two functions. For example the ONEMAX function – the function on {0, 1}ℓ whose output is

the sum of the number of 1s in the input becomes an instance of attempting to break the code

|

 41 of 195

in the game Mastermind using only black pegs, where for each peg, one label (the secret

colour) has the effect of 1, and every other label has the effect of 0 [103].

A concatenation of functions is when a function of 𝑂𝑂 variables and a function of 𝑚𝑚 variables

are added together with permutation such that no variable appears in both functions. This

defines a function of 𝑂𝑂 + 𝑚𝑚 variables. For example in (48), ℎ𝐶𝐶 is a concatenation of 𝑓𝑓𝐶𝐶 and 𝑔𝑔𝐶𝐶.

Note that the variables of 𝑔𝑔𝐶𝐶 (variables 𝑥𝑥0, 𝑥𝑥1, and 𝑥𝑥2) have been permuted into variables 𝑥𝑥2,

𝑥𝑥3, and 𝑥𝑥3.

𝑓𝑓𝐶𝐶(𝐱𝐱) = (3𝑥𝑥0 − 5𝑥𝑥1); 𝐱𝐱 ∈ ℝ2

𝑔𝑔𝐶𝐶(𝐱𝐱) = (𝑥𝑥0 + 𝑥𝑥1 ⋅ 𝑥𝑥2); 𝐱𝐱 ∈ ℝ3

ℎ𝐶𝐶(𝐱𝐱) = (3𝑥𝑥0 − 5𝑥𝑥1) + (𝑥𝑥2 + 𝑥𝑥3 ⋅ 𝑥𝑥4); 𝐱𝐱 ∈ ℝ5

(48)

Concatenation is often done with ‘trap’ functions [69] [70], which are functions of a small

number 𝑘𝑘 of variables, concatenated into much longer problems of length ℓ, this is also done

in conjunction with further randomly-chosen permutation of the variables, so that related

variables are shuffled around the function and not clustered together. Concatenated functions

will have the linkage groups of the two old functions (after relabelling), and for pseudo-Boolean

functions, the Walsh decomposition will be the sum of the Walsh decompositions of the two

original functions (after relabelling).

A monotonic transformation of a function is a function produced by composing a function

𝑡𝑡 with another function 𝑓𝑓, where 𝑡𝑡 is monotonic increasing when its variable is in the codomain

of 𝑓𝑓. For example in (49), 𝑔𝑔𝐷𝐷 is a monotonic transformation where the transformation function

𝑡𝑡(𝑒𝑒) = 3 ⋅ ln(𝑒𝑒) − 6, note that 𝑡𝑡(𝑒𝑒) is monotonic increasing whenever 𝑒𝑒 is in the codomain of

𝑓𝑓𝐷𝐷.

𝑓𝑓𝐷𝐷(𝐱𝐱) = 10 + 20 𝑥𝑥02 + 30 𝑥𝑥14; 𝐱𝐱 ∈ ℝ2

𝑔𝑔𝐷𝐷(𝐱𝐱) = 3 ⋅ ln�𝑓𝑓𝐷𝐷(𝐱𝐱)� − 6; 𝐱𝐱 ∈ ℝ2
(49)

It is a property of monotonic transformations that 𝑓𝑓(𝑒𝑒) > 𝑓𝑓(𝑥𝑥) implies 𝑡𝑡 ∘ 𝑓𝑓(𝑒𝑒) > 𝑡𝑡 ∘ 𝑓𝑓(𝑥𝑥) and

𝑓𝑓(𝑒𝑒) = 𝑓𝑓(𝑥𝑥) implies 𝑡𝑡 ∘ 𝑓𝑓(𝑒𝑒) = 𝑡𝑡 ∘ 𝑓𝑓(𝑥𝑥). Hence, applying a monotonic transformation will not

affect the behaviour of an algorithm if all operators (and model-building) are ordinal-based, i.e.

that they operate only on less than, equal to, greater than comparison. This is not true of

proportional operators since direct fitness value comparisons such as 𝑓𝑓(𝑒𝑒) − 𝑓𝑓(𝑥𝑥) and

𝑓𝑓(𝑒𝑒)/𝑓𝑓(𝑥𝑥) are not invariants under monotonic transformation. A monotonic transformation

could introduce new non-zero Walsh coefficients and new linkages between variables which

|

 42 of 195

were previously not linked. This is discussed further in section 2.3.5 with regard to unnecessary

interactions.

Multiple transformations of functions may be combined. Relabelling and permutations are

commonly used in conjunction to produce variations of benchmark functions if the benchmark

functions all have a common, predictable global optimum, or to create non-local structure in

functions based on benchmarks where related variables are adjacent in the original function.

Hence a set of benchmark functions which all have the same optima can be made less trivial.

|

 43 of 195

3.2 Linkage Identification by Perturbation

Many linkage identification algorithms, or perturbation methods, have been proposed, in

addition to EDAs which build an explicit model of variable interactions. In this section, we

describe the algorithms which are most relevant to the work in the identified aims, although

this is not an exhaustive list of perturbation methods.

3.2.1 Linkage Partition and Perturbations

Linkage detection as done by perturbation methods (PMs) uses small changes in the

objective function’s input and calculates the effect on the function’s output. This is called fitness

difference. The fitness difference for one-bit perturbation Δ𝑓𝑓𝑖𝑖(𝐱𝐱), is given in (50) and two-bit

perturbation Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) in (51), where 𝑥𝑥�̇�𝚤� = (1 − 𝑥𝑥𝑖𝑖) for pseudo-Boolean functions.

Δ𝑓𝑓𝑖𝑖(𝐱𝐱) = 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥�̇�𝚤� ⋯ 𝑥𝑥ℓ−1])− 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥𝑖𝑖 ⋯ 𝑥𝑥ℓ−1]) (50)

Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) = 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥�̇�𝚤� ⋯ 𝑥𝑥𝚥𝚥� ⋯ 𝑥𝑥ℓ−1]) − 𝑓𝑓([𝑥𝑥0 𝑥𝑥1 ⋯ 𝑥𝑥𝑖𝑖 ⋯ 𝑥𝑥𝑗𝑗 ⋯ 𝑥𝑥ℓ−1]) (51)

Some conventions define perturbations using the negation of the definitions given above,

however, the effect of using the other convention would only result in a global change of sign,

which would not affect the detection of linkage, since changing the sign on all fitness

differences does not change whether variables are additively separable or not since

−(𝑂𝑂 + 𝑏𝑏) ≡ (−𝑂𝑂) + (−𝑏𝑏).

The fitness difference by one-bit perturbation corresponds to the fitness gradient local to

the point 𝐱𝐱 in one direction. The fitness difference by two-bit perturbation means moving in two

dimensions, and the change in fitness will be the sum of the two corresponding one-bit fitness

differences if the two variables are independent. This is formalised by the LINC algorithm as

described next in section 3.2.2.

|

 44 of 195

3.2.2 Non-Linearity / Non-Monotonicity Detection

Recall that linkage can be defined in terms of an additive separation of the variables into

sub-functions (as discussed in 2.2.1). Linkage identification by non-linearity check (LINC) [56]

detects linkage by making two one-bit perturbations Δ𝑓𝑓𝑖𝑖(𝐱𝐱), and Δ𝑓𝑓𝑗𝑗(𝐱𝐱), and checking that the

effect of both perturbations at both loci together ∆𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) is not a sum of the effect of each. In

other words, we can define the condition 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) for linearity as given by (52) [56].

ℒLINC(𝑖𝑖, 𝑗𝑗) ⇔ (∃𝐱𝐱)�¬𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱)�

where 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �∆𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) = Δ𝑓𝑓𝑖𝑖(𝐱𝐱) + Δ𝑓𝑓𝑗𝑗(𝐱𝐱)�
(52)

If this condition 𝐸𝐸𝑖𝑖𝑗𝑗(𝐱𝐱) is false for at least one string 𝐱𝐱, then 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 are linked. If this

relation is true for all strings, then they are unlinked [57]. Note that this linearity relation can

hold for some strings even when non-linearity is present, for example in the trap function, the

deceptive nature of the function means that most of the configurations of the trap sub-function

are linear, leading away from the optimum. Only when one-bit from the optimum configuration

is non-linearity detected. Thus, unless all strings are tested, the linkage detection is an

estimate.

A variant on LINC is linkage identification by non-monotonicity detection (LIMD). LIMD

uses a definition of linkage which disregards what is called allowable non-linearity. This has

further been developed in the development of LIMD to consider only non-monotonic

interactions [56]. These monotonic non-linearities are unnecessary or benign interactions. The

condition for LIMD is given as defined by (53) [56].

ℒLIMD(𝑖𝑖, 𝑗𝑗) ⇔ (∀𝐱𝐱)�𝑃𝑃𝑖𝑖𝑗𝑗(𝐱𝐱) ⇒ 𝑀𝑀𝑖𝑖𝑗𝑗(𝐱𝐱)�

where 𝑃𝑃𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �Δ𝑓𝑓𝑖𝑖(𝐱𝐱) > 0 and Δ𝑓𝑓𝑗𝑗(𝐱𝐱) > 0�

and 𝑀𝑀𝑖𝑖𝑗𝑗(𝐱𝐱) ⇔ �Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) > Δ𝑓𝑓𝑖𝑖(𝐱𝐱) and Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐱𝐱) > Δ𝑓𝑓𝑖𝑖(𝐱𝐱)�

(53)

|

 45 of 195

3.2.3 Heckendorn and Wright’s Detect-Linkage Algorithm

Heckendorn and Wright’s DETECT-LINKAGE algorithm [62] defines a procedure for

determining Walsh linkage by estimating Walsh coefficients using probes. A probe is defined

by (54).

𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) =
1

2ONEMAX(𝑚𝑚) � (−1)ONEMAX(𝑖𝑖) ∙ 𝑓𝑓(𝑖𝑖 ⨁ 𝑃𝑃)
𝑖𝑖∈ℬ𝑚𝑚

 (54)

Here, ℬ𝑚𝑚 is defined as the set of submasks of the bitmask 𝑚𝑚, as defined by the (55).

ℬ𝑚𝑚 = �𝑖𝑖 ∈ {0, 1}ℓ ∶ 𝑖𝑖 ⊆ 𝑚𝑚� (55)

e.g. subsets of the mask [1 0 0 1] are { [1 0 0 1], [0 0 0 1], [1 0 0 0], [0 0 0 0]}.

The background value 𝑃𝑃, this is a random assignment of all variables not included in the

mask. For example, if the mask [1 0 0 1] an example of a value for 𝑃𝑃 might assign 𝑥𝑥1 = 1

and 𝑥𝑥2 = 0, i.e. [∗ 1 0 ∗], then 𝑃𝑃 = [0 1 0 0].

This will be combined using the subsets of the mask using a bitwise OR to produce
{ [1 1 0 1], [0 1 0 1], [1 1 0 0], [0 1 0 0]}. Note that all arrangements of 𝑋𝑋0 and 𝑋𝑋3 are

tried against one fixed arrangement of 𝑋𝑋1 and 𝑋𝑋2. In this example, the terms in the sum are

given by (56).

 (−1)2 ∙ 𝑓𝑓([1 1 0 1]) + (−1)1 ∙ 𝑓𝑓([0 1 0 1])

+(−1)1 ∙ 𝑓𝑓([1 1 0 0]) + (−1)0 ∙ 𝑓𝑓([0 1 0 0])

= 𝑓𝑓([1 1 0 1]) − 𝑓𝑓([0 1 0 1]) − 𝑓𝑓([1 1 0 0]) + 𝑓𝑓([0 1 0 0])

(56)

This, multiplied by the factor 1/22 outside the sum corresponds an estimate of the Walsh

coefficient 𝛼𝛼{0,3}, which should be non-zero if the linkage is evident at the location defined by

the background value 𝑃𝑃.

|

 46 of 195

The algorithm returns the linkage in the form of a set of cliques corresponding to non-zero

Walsh coefficients. The procedure is given by Algorithm 1. The linkage detection algorithm

calculates linkage in 𝒪𝒪�2𝑘𝑘ℓ𝑗𝑗 log ℓ�, where 𝑗𝑗 is a parameter specifying the size of probes, 𝑘𝑘 is

the size of the largest linkage group, and ℓ is the problem size. This is an improvement over

the runtime of deterministic approaches to finding linkage, which run in 𝒪𝒪�ℓ𝑘𝑘� time [104].

1) initialise E to ∅

2) for each mask 𝑚𝑚 with ONEMAX(𝑚𝑚) = 𝑗𝑗

a) if 𝑚𝑚 ∉ 𝐸𝐸

i) for 𝑖𝑖 ← 1 to 𝑁𝑁

(1) 𝑃𝑃 ← random string in ℬ𝑚𝑚�

(a) if 𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) ≠ 0

(i) 𝐸𝐸 ← 𝐸𝐸 ∪ {𝑚𝑚}
(ii) break

b) return 𝐸𝐸

Algorithm 1 – Heckendorn and Wright’s DETECT-LINKAGE Algorithm [62] (notation modified).

The parameter 𝑗𝑗 defines the size of the bitmasks which will be used, i.e. the number of 1s

in the bitmask. Each mask of this size is tried, and 𝑁𝑁 probes are done with each probe being

on a new randomly-generated background value 𝑃𝑃. When the probe 𝑃𝑃(𝑓𝑓,𝑚𝑚, 𝑃𝑃) returns a non-

zero value, the clique is added to the set of known non-zero cliques 𝐸𝐸.

|

 47 of 195

3.2.4 Streeter’s Optimisation Algorithm

Streeter’s ASFOPTIMISE algorithm [61] demonstrates that the linkage of an additively-

separable function can be learned in 𝒪𝒪�2𝑘𝑘ℓ log ℓ� function evaluations, which is an

improvement on 𝒪𝒪�2𝑘𝑘ℓ2� or 𝒪𝒪�2𝑘𝑘ℓ𝑗𝑗 log ℓ� for all 𝑗𝑗 > 1 function evaluations used by earlier

approaches. A high level overview of ASFOPTIMISE is given in Algorithm 2.

1) initialise x to random string

2) define Γ as �{0}, {1}, … , {ℓ − 1}�

3) local search to make x optimal with respect to 1-bit perturbations
4) do 𝑡𝑡 times

a) for 𝑖𝑖 ← 0 to ℓ − 1

i) perform randomised test on position 𝑖𝑖
ii) if test succeeds:

(1) binary search to find 𝑗𝑗 such that ℒ(𝑖𝑖, 𝑗𝑗)

(2) update Γ

(3) local search to make x optimal with respect to newly discovered linkage

5) return x

Algorithm 2 – Overview of Streeter’s ASFOPTIMISE algorithm [61] (notation modified).

The procedure uses a randomised test by generating two random assignments of the

variables not currently known to be linked with variable 𝑥𝑥𝑖𝑖. To test for linkage on position 𝑖𝑖, two

random strings are chosen 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵, then a 1-bit perturbation is performed on each: Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐴𝐴)

and Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐁𝐁). If the two fitness differences are not the same, then some variable which is

different in 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵 is epistatically linked with 𝑋𝑋𝑖𝑖.

The process of binary search to find 𝑗𝑗 such that ℒ(𝑖𝑖, 𝑗𝑗), begins by determining the set 𝛿𝛿 of

variables (other than 𝑋𝑋𝑖𝑖) which differ between 𝐬𝐬𝐴𝐴 and 𝐬𝐬𝐵𝐵. Then binary search is performed on

this set to determine one 𝑋𝑋𝑗𝑗 which is linked with 𝑋𝑋𝑖𝑖.

|

 48 of 195

An example is given by (57) where 𝑖𝑖 = 3.

𝐬𝐬𝐴𝐴 = [0 1 1 ∗ 0 0 1 1]

𝐬𝐬𝐵𝐵 = [1 1 1 ∗ 1 1 0 1]

𝛿𝛿 = {𝑋𝑋0,𝑋𝑋4,𝑋𝑋5,𝑋𝑋6}

(57)

The first level of the binary search will use 𝐬𝐬𝐴𝐴 with {𝑋𝑋0,𝑋𝑋4} changed on the left-hand-side

of the binary search and use 𝐬𝐬𝐴𝐴 with {𝑋𝑋5,𝑋𝑋6} changed on the right-hand-side of the binary

search, i.e. the left hand side of the binary search will compare the fitness differences by

perturbation at 𝑋𝑋3 for [0 1 1 ∗ 0 0 1 1] and [1 1 1 ∗ 1 0 1 1]. The next level of the binary

search will compare the fitness differences by perturbation at 𝑋𝑋3 for [0 1 1 ∗ 0 0 1 1] and

[1 1 1 ∗ 0 0 1 1]. At this level in the binary search the algorithm is comparing the effect of

changing one bit (𝑋𝑋0) on the fitness difference Δ𝑓𝑓𝑖𝑖(𝐬𝐬𝐴𝐴), which corresponds to a 2-bit

perturbation Δ𝑓𝑓𝑖𝑖𝑗𝑗(𝐬𝐬𝐴𝐴), which can detect non-linearity at this point.

|

 49 of 195

4 Functions and Rank Equivalence

In this chapter we define ranks, and rank-equivalence classes, which are used to describe

a given monotonicity-invariant subspace of the function space. This classification is invariant

under a variety of commonly-used operators and algorithms, allowing us to usefully reason

about sets of functions. We also define ordinal linkage partition and directed ordinal linkage as

a variation on descriptions of linkage structure which exists in the literature. We give a set of

benchmark functions used as objects of study throughout this thesis to illustrate various points.

4.1 Rank Equivalence

We define the rank R𝑓𝑓(𝐱𝐱) of solution 𝐱𝐱 with respect to function 𝑓𝑓 as the number of

candidates in the finite search space X which correspond to a strictly smaller fitness value. This

we define as given by (58), where |𝑆𝑆| represents the cardinality of set 𝑆𝑆. Note that as

discussed in section 2.1.1, this also applies to digital representations of continuous domains.

R𝑓𝑓(𝐱𝐱) = |{𝐲𝐲:𝐲𝐲 ∈ X ∧ 𝑓𝑓(𝐲𝐲) < 𝑓𝑓(𝐱𝐱)}| (58)

This definition of rank chosen is independent of whether the objective is maximisation or

minimisation. Thus, for a maximisation objective, a higher rank is desired, and for a

minimisation objective, a lower rank is desired.

We define two functions 𝑓𝑓 and 𝑔𝑔 as equivalent if they have the same search space and

the rank of each solution is the same for each solution in the search space, formally as given

by (59).

(𝑓𝑓~𝑔𝑔) ⇔ (∀𝐱𝐱 ∈ 𝑋𝑋)�R𝑓𝑓(𝐱𝐱) = R𝑔𝑔(𝐱𝐱)� (59)

By choosing some ordering on the search space 𝑋𝑋 = {𝐬𝐬0, 𝐬𝐬1, … , 𝐬𝐬𝑛𝑛−1}, we can write a

vector of ranks as in (60).

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓
𝐬𝐬0 𝑅𝑅𝑓𝑓

𝐬𝐬1 … 𝑅𝑅𝑓𝑓
𝐬𝐬𝑛𝑛−1� (60)

|

 50 of 195

This allows us to write the condition for rank-equivalence 𝑓𝑓~𝑔𝑔 as given by (61).

(𝑓𝑓~𝑔𝑔) ⇔ �𝑪𝑪𝑓𝑓 = 𝑪𝑪𝑔𝑔� (61)

As the term 𝑪𝑪𝑓𝑓 = 𝑪𝑪𝑔𝑔 is an equality, the equivalence 𝑓𝑓~𝑔𝑔 by construction satisfies the properties

of reflexivity, symmetry, and transitivity necessary for an equivalence class.

As we will be focused on pseudo-Boolean function classes, we define a pseudo-Boolean

class 𝐂𝐂𝑓𝑓 as given by the ordering specified in (62).

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓111⋯1 𝑅𝑅𝑓𝑓011⋯1 𝑅𝑅𝑓𝑓101⋯1 𝑅𝑅𝑓𝑓001⋯1 … 𝑅𝑅𝑓𝑓000⋯0� (62)

We choose this ordering to be consistent with the order of fitnesses used in the form of the

Walsh-Hadamard transform described in section 3.1.3. This vector 𝐂𝐂𝑓𝑓 can be used as a specific

instance of the function, which is the representative of the class 𝐂𝐂𝑓𝑓.

|

 51 of 195

4.2 Directed Ordinal Linkage

We generalise the definition of non-monotonicity linkage by restricting the detection of

linkage to be invariant under rank-equivalent functions by construction. Linkage is one view of

structure in a function. Recall that linkage, including non-monotonicity detection, is typically

defined as a symmetric relation, such that ℒ(𝑖𝑖, 𝑗𝑗) ⇔ ℒ(𝑗𝑗, 𝑖𝑖), specifying a partitioning Γ of the

variables 𝑋𝑋.

We use a definition of linkage, ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) which is based on a difference in sign of rank

difference, given by (63). This is an equivalent formulation to directed ordinal linkage based

on sign of fitness difference that we presented in [2].

ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) ⇔ ∃ 𝑥𝑥 ∶ sgn�∆𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋𝑖𝑖 → 1])� ≠ sgn�∆𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋𝑖𝑖 → 0])�

where Δ𝑗𝑗𝑅𝑅𝑓𝑓(𝐱𝐱) = 𝑅𝑅𝑓𝑓�𝐱𝐱�𝑋𝑋𝑗𝑗 → 1�� − 𝑅𝑅𝑓𝑓�𝐱𝐱�𝑋𝑋𝑗𝑗 → 0��

and 𝐱𝐱[𝑋𝑋𝑖𝑖 → 𝑣𝑣] = [𝑋𝑋0 𝑋𝑋1 … 𝑋𝑋𝑖𝑖−1 𝑣𝑣 𝑋𝑋𝑖𝑖+1 …]

and sgn(𝑥𝑥) = �
−1, 𝑥𝑥 < 0

0, 𝑥𝑥 = 0
1, 𝑥𝑥 ≥ 0

(63)

The relationship ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) does not necessarily imply ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖), for example, in the function

shown in Table 5, ℒ𝑂𝑂(0,1) is true, since for 𝐱𝐱 = [0 0], sgn�∆1𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋0 → 1])� = 1 and

sgn�∆1𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋0 → 0])� = 0. However ℒ𝑂𝑂(1, 0) is false, since for all 𝐱𝐱, sgn�∆0𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋1 → 1])� = 1

and sgn�∆0𝑅𝑅𝑓𝑓(𝐱𝐱[𝑋𝑋1 → 0])� = 1.

𝐱𝐱 [0 0] [1 0] [0 1] [1 1]

𝑅𝑅𝑓𝑓(𝐱𝐱) 0 2 0 3

Table 5 – The ranks of one class of functions with asymmetric ordinal linkage.

|

 52 of 195

Linkage between variables 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 present as either ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗) or ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) will be considered

present under the definition of non-monotonicity detection described earlier. However, some

linkage will only be one way. Next we define the terminology we will use for this linkage.

We define the relationship between variables 𝑋𝑋𝑖𝑖 and 𝑋𝑋𝑗𝑗 as interdependence, which we

represent algebraically as 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. Variables are interdependent if the ordinal linkage condition

holds bi-directionally, as given by (64).

𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 ⇔ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀ ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) (64)

In contrast to non-linearity–based linkage detection, ordinal linkage may exist as an

asymmetric relation. In the case of asymmetry we define the relationship as dependence,

which we represent algebraically as 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 as given by (65).

𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 ⇔ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀ ¬ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) (65)

We define the relationship as independence, which we represent algebraically as 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗.

Variables are independent if the ordinal linkage condition holds in neither direction, as given

by (66).

𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗 ⇔ ¬ ℒ𝑂𝑂(𝑖𝑖, 𝑗𝑗)⋀ ¬ℒ𝑂𝑂(𝑗𝑗, 𝑖𝑖) (66)

We use this notation concatenated into expressions for larger numbers of variables, using

the order of operator precedence first 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗, then 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗, and lastly 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗, using left-to-right

associativity.

For example, the expression 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2 (67) means that 𝑋𝑋0 and 𝑋𝑋1 are interdependent on

one another, and 𝑋𝑋2 is independent of both of the former.

(𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2) ⇔ (𝑋𝑋0𝑋𝑋1) ∧ (𝑋𝑋0 + 𝑋𝑋2) ∧ (𝑋𝑋1 + 𝑋𝑋2) (67)

In another example, the expression (𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2 (68) means that 𝑋𝑋0 and 𝑋𝑋1 are

independent from one another, and 𝑋𝑋2 is dependent on both of the former.

�(𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2� ⇔ (𝑋𝑋0 + 𝑋𝑋1) ∧ (𝑋𝑋0 → 𝑋𝑋2) ∧ (𝑋𝑋1 → 𝑋𝑋2) (68)

All possible linkage between 3 variables can be written in this way as we will see in later

chapters.

|

 53 of 195

This notation cannot express all combinations of linkage, however. For example, the

linkage between 4 variables described in (69) cannot be written linearly using this notation

without repeating a variable.

(𝑋𝑋0 → 𝑋𝑋1) ∧ (𝑋𝑋0 → 𝑋𝑋3) ∧ (𝑋𝑋2 → 𝑋𝑋3)

∧ (𝑋𝑋1 + 𝑋𝑋2) ∧ (𝑋𝑋0 + 𝑋𝑋2) ∧ (𝑋𝑋1 + 𝑋𝑋3)
(69)

|

 54 of 195

4.3 Pseudo-Boolean Benchmarks Functions

In this section we give the complete definitions of the pseudo-Boolean benchmark

functions referred to throughout the remainder of this thesis. We also state each benchmark’s

function values and Walsh coefficients for 2-bit and 3-bit instances as these are used in the

following chapters.

4.3.1 Definitions and Identities

We make use of the following definitions and identities in this section. Let 𝟎𝟎ℓ denote a

length 2ℓ column vector populated by 0s, as given by (70).

𝟎𝟎ℓ = �
0
⋮
0
� � 2ℓ (70)

Let 𝟏𝟏ℓ denote a length 2ℓ column vector populated by 1s, as given by (71).

𝟏𝟏ℓ = �
1
⋮
1
� � 2ℓ (71)

Let 𝛅𝛅ℓ denote a length 2ℓ column vector with 1 in the first position and the remainder

populated by 0s, as given by (72).

𝛅𝛅ℓ = �

1
0
⋮
0

� �2ℓ (72)

Multiplying 𝐻𝐻ℓ by the 𝟏𝟏ℓ vector sums each column element for each row in the Hadamard

matrix, since all but the first row contains an equal number of +1 as −1, all but the first is zero,

with the first being 1 times the number of columns (2ℓ) hence (73).

𝐻𝐻ℓ𝟏𝟏ℓ ≡ 2ℓ𝛅𝛅ℓ (73)

The delta vector selects the first element from each row of the Hadamard matrix (74).

𝐻𝐻ℓ𝛅𝛅ℓ ≡ 𝟏𝟏ℓ (74)

|

 55 of 195

4.3.2 Constant Functions

The simplest example of a pseudo-Boolean function is one of the family of constant

functions (CONSTℓ). The constant function is defined as given by (75).

This function has an image consisting of a single element. Hence, every value is the global

optimum with value 𝑃𝑃. An example is given by (76).

The constant function is defined without using any variables, the linkage partition is given

by (77).

The Walsh coefficients of the constant function are all 0, except the constant term, which

is 𝛼𝛼∅ = 𝑃𝑃. Proof is given by the (78).

CONST𝑐𝑐
ℓ(𝐱𝐱) = 𝑃𝑃 (75)

CONST42
9 ([1 1 1 1 0 1 1 0 0]) = 42 (76)

ΓCONST𝑐𝑐
ℓ = ∅ (77)

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

= c
1
2ℓ
𝐻𝐻ℓ𝟏𝟏ℓ

= c
1
2ℓ

2ℓ𝛅𝛅ℓ (from 𝐻𝐻ℓ𝟏𝟏ℓ ≡ 2ℓ𝛅𝛅ℓ)

= c 𝛅𝛅ℓ

(78)

|

 56 of 195

4.3.3 Needle-in-a-Haystack Functions

In contrast to the constant function, the needle-in-haystack function (NEEDLEℓ) has only a

single element of the domain being mapped to the global optimum. Thus, the image consists

of two elements. The needle-in-haystack function is defined as given by (79).

This function maps the vector of all ones to the value 1, with every other input mapped to 0.

Hence, for maximisation objective, the function’s optimum is a vector of all ones, [1 1 … 1].

An example is given by (80).

The needle-in-haystack function is fully connected, it is not an ASF as there is no additive

separation of the variables, the linkage partition is given by (81).

Every Walsh coefficient of the needle in haystack function is equal to 1 2ℓ� . Thus, this is

an example of a function with complete structure. Proof is given by (82).

Note that 𝟏𝟏ℓ is the first column of 𝐻𝐻ℓ.

If a relabelling and/or permutation is applied to the function, the effect will be to map the

global optimum to a different value in the search space. The vector of Walsh coefficients will

then be a different column of 𝐻𝐻ℓ, thus half of the coefficients will be equal to 1 and the other

half will be equal to −1.

NEEDLEℓ(𝐱𝐱) = �𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 (79)

NEEDLE9([1 1 1 1 0 1 1 0 0]) = 0 (80)

ΓNEEDLEℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� (81)

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

=
1
2ℓ
𝐻𝐻ℓ𝛅𝛅ℓ

=
1
2ℓ
𝟏𝟏ℓ (from 𝐻𝐻ℓ𝛅𝛅ℓ ≡ 𝟏𝟏ℓ)

(82)

|

 57 of 195

4.3.4 Ones Function

The ones function (ONEMAXℓ) [66] [67] returns a sum of the input variables, equivalent to

the count of the number of ones in the input. The definition is given by (83).

For maximisation objective, the function’s optimum is a vector of all ones, [1 1 … 1]. An

example is given by (84).

Since the ones function consists of only univariate terms, it is fully separable, the linkage

partition of the ones function is given by (85).

The only non-zero Walsh coefficients in the ones function are the constant term 𝛼𝛼∅ = ℓ
2�

and all univariate terms 𝛼𝛼{𝑖𝑖} = 1
2� (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given on the

following page.

ONEMAXℓ(𝐱𝐱) = �𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 (83)

ONEMAX8([1 1 1 1 0 1 1 0]) = 6 (84)

ΓONEMAXℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� (85)

|

 58 of 195

Lemma 4.3.4: In ONEMAXℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = ℓ
2
�, the univariate

coefficients (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 1}) �𝛼𝛼{i} |ℓ = 1
2
�, and any other coefficient is 0.

Proof: by induction.

For ℓ = 1, 𝛂𝛂1 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2� thus 𝛼𝛼∅ |1 = 1
2

= ℓ
2
, and 𝛼𝛼{0} |1 = 1

2
, and no

other coefficients exist.

Assume true for {1, 2, … , ℓ − 1}, consider ℓ:

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 𝟏𝟏ℓ−1
𝐟𝐟ℓ−1

�
(append "1" to 𝐱𝐱, fitness inc. by 1)
(append "0" to 𝐱𝐱)

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 𝐻𝐻ℓ−1𝟏𝟏ℓ−1

𝐻𝐻ℓ−1𝟏𝟏ℓ−1
�

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�𝐻𝐻ℓ−𝟏𝟏ℓ−1𝐻𝐻ℓ−𝟏𝟏ℓ−1

�

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

�+
1
2ℓ
�2

ℓ−1𝛅𝛅ℓ−1
2ℓ−1𝛅𝛅ℓ−1

� (73)

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� + �0.5 𝛅𝛅ℓ−1

0.5 𝛅𝛅ℓ−1
�

← increments 𝛼𝛼∅ by 1 2�

← sets the new univariate term 𝛼𝛼{ℓ−1} = 1
2�

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = ℓ−1
2

, we derive 𝛼𝛼∅ |ℓ = ℓ−1
2

+ 1
2

= ℓ
2
, thus by the

principal of induction, (∀ℓ ∈ {0,1, … }) �𝛼𝛼∅ |ℓ = ℓ
2
�.

The new univariate term 𝛼𝛼{ℓ−1} is set to 1
2
, and no other non-zero coefficients are added,

and by the induction hypothesis all previous univariate terms are 1
2
 and no other previous

coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction

 (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, 1, … , ℓ − 1}) �𝛼𝛼{i} |ℓ = 1
2
� and no other Walsh coefficients (except 𝛼𝛼∅)

are non-zero. ∎

|

 59 of 195

4.3.5 Zeros Function

The zeros function (ZEROMAXℓ) returns the count of the number of zeros in the input. This

is a relabelling of the ONEMAXℓ function. The definition is given by (86).

For maximisation objective, the function’s optimum is a vector of all zeros, [0 0 … 0]. An

example is given by (87).

As a relabelling of the ONEMAXℓ, it has the same linkage partition as given by (88).

The only non-zero Walsh coefficients in the ones function are the constant term 𝛼𝛼∅ = ℓ
2�

and all univariate terms 𝛼𝛼{𝑖𝑖} = −1
2� (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given in (89).

ZEROMAXℓ(𝐱𝐱) = �(1 − 𝑥𝑥𝑖𝑖)
ℓ−1

𝑖𝑖=0

 (86)

ZEROMAX8([1 1 1 1 0 1 1 0]) = 2 (87)

ΓZEROMAXℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� (88)

OneMaxℓ(𝐱𝐱) = 𝛼𝛼∅ + �𝛼𝛼{𝑖𝑖}𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

=
ℓ
2

+
1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

ZEROMAXℓ(𝐱𝐱) = ℓ − OneMaxℓ(𝐱𝐱)

= ℓ − �
ℓ
2

+
1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

�

=
ℓ
2
−

1
2
�𝑊𝑊{𝑖𝑖}(𝐱𝐱)
ℓ−1

𝑖𝑖=0

 ∎

(89)

|

 60 of 195

4.3.6 Binary Value Function

The binary value function (BINVALℓ) [67] is a univariate function which weights each

variable exponentially, such that variable 𝑋𝑋𝑖𝑖 has a weighting of 2𝑖𝑖. The binary value function is

defined as given by (90).

As with the ones function, for maximisation objective, the function’s optimum is a vector

of all ones, [1 1 … 1]. The optimum value is 2ℓ − 1, with variables of larger indices

contributing a larger portion to this optimum value. An example is given by (91).

Since the binary value function consists of only univariate terms, it is fully separable, the

linkage partition of the binary value function is given by (92).

The only non-zero Walsh coefficients in the binary value function are the constant term

𝛼𝛼∅ = 2ℓ−1
2

 and all univariate terms 𝛼𝛼{𝑖𝑖} = 2𝑖𝑖−1 (∀𝑖𝑖 ∈ {0, … , ℓ − 1}). Proof of coefficients is given

on the following page.

BINVALℓ(𝐱𝐱) = �2𝑖𝑖𝑥𝑥𝑖𝑖

ℓ−1

𝑖𝑖=0

 (90)

BINVAL8([1 1 1 1 0 1 1 0]) = 111 (91)

ΓBINVALℓ = �{𝑥𝑥0}, {𝑥𝑥1}, … , {𝑥𝑥ℓ−1}� (92)

|

 61 of 195

Lemma 4.3.6: In BINVALℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2
�, the univariate

coefficients (∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 1})�𝛼𝛼{i} |ℓ = 2𝑖𝑖−1�, and any other coefficient is 0.

Proof, by induction:

For ℓ = 1, 𝛂𝛂1 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2� thus 𝛼𝛼∅ |1 = 1
2

= 21−1
2

= 2ℓ−1
2

, and

 𝛼𝛼{0} |1 = 1
2

= 20−1 = 2𝑖𝑖−1 and no other coefficients exist.

Assume true for {1, 2, … , ℓ − 1}, consider ℓ:

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 2ℓ−1𝟏𝟏ℓ−1
𝐟𝐟ℓ−1

� �append "1" to 𝐱𝐱, fitness inc. by 2ℓ−1�
(append "0" to 𝐱𝐱)

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 2ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1

2ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1
�

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
2ℓ−1

2ℓ
�𝐻𝐻ℓ−1𝟏𝟏ℓ−1𝐻𝐻ℓ−1𝟏𝟏ℓ−1

�

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

�+
1
2
�2

ℓ−1𝛅𝛅ℓ−1
2ℓ−1𝛅𝛅ℓ−1

� (73)

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� + �2

ℓ−2𝛅𝛅ℓ−1
2ℓ−2𝛅𝛅ℓ−1

�
← increments 𝛼𝛼∅ by 2ℓ−2

← sets the new univariate term 𝛼𝛼{𝑖𝑖} = 2𝑖𝑖−2, where 𝑖𝑖 = ℓ − 1

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = 2ℓ−1−1
2

, we derive 𝛼𝛼∅ |ℓ = 2ℓ−1−1
2

+ 2ℓ−2 = 2ℓ−1
2

, thus

by the principal of induction, (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2

 �.

The new univariate term 𝛼𝛼{ℓ−1}|ℓ is set to 2ℓ−2 = 2(ℓ−1)−1, and no other non-zero

coefficients are added, and by the induction hypothesis, all previous univariate terms are 2𝑖𝑖−1

and no other previous coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction

(∀ℓ ∈ {1,2, … })(∀𝑖𝑖 ∈ {0, 1, … , ℓ − 1})(𝛼𝛼{𝑖𝑖}|ℓ = 2𝑖𝑖−1) and no other Walsh coefficients (except 𝛼𝛼∅)

are non-zero. ∎

|

 62 of 195

4.3.7 1-Dimensional Checkerboard Function

The 1-dimensional checkerboard function (CHECK1D
ℓ) [68] [47, pp. 32-32] counts the number

of adjacent variables 𝑥𝑥𝑖𝑖, 𝑥𝑥𝑖𝑖+1 such that 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖+1. The 1-dimensional checkerboard function is

defined as given by (93).

For a maximization objective, this function has two global optima: [1 0 1 0 …] and

[0 1 0 1 …] with an optimum value of ℓ − 1. An example is given by (94).

Since each variable in the 1-dimensional checkerboard function is connected to its

adjacent neighbours in a chain, the function is not an ASF as there is no additive separation

of the variables, the linkage partition is given by (95).

The only non-zero Walsh coefficients in the 1-dimensional checkerboard function are the

constant term 𝛼𝛼∅ = ℓ−1
2

 and all adjacent bivariate terms 𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −1
2

 (∀𝑖𝑖 ∈ {0, … , ℓ − 2}). Proof

of coefficients is given on the following page.

CHECK1D
ℓ (𝐱𝐱) = ��1, 𝑥𝑥𝑖𝑖 ≠ 𝑥𝑥𝑖𝑖+1

0, 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖+1

ℓ−2

𝑖𝑖=0

 (93)

CHECK1D
ℓ ([1 1 1 1 0 1 1 0]) = 3 (94)

ΓCHECK1D
ℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� (95)

|

 63 of 195

Lemma 4.3.7: In CHECK1D
ℓ the constant term (∀ℓ ∈ {2, 3, … }) �𝛼𝛼∅ |ℓ = ℓ−1

2
�, the adjacent

bivariate coefficients (∀ℓ ∈ {2,3, … })(∀𝑖𝑖 ∈ {0, … , ℓ − 2}) �𝛼𝛼{i,i+1} |ℓ = −1
2
�, and any other

coefficient is 0.

Proof, by induction:

For ℓ = 1, 2, by direct calculation:

𝛂𝛂1 = �
𝛼𝛼∅
𝛼𝛼{0}

� =
1
21 �

1 1
1 −1� �

0
0� = �00�

𝛂𝛂2 = �

𝛼𝛼∅
𝛼𝛼{0}
𝛼𝛼{1}
𝛼𝛼{0,1}

� =
1

22 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

0
1
1
0

� = �

1/2
0
0

−1/2

�

Assume true for {2, 3, … , ℓ − 1}, consider ℓ:

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

=
1
2ℓ
�

𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2

� �
𝐟𝐟ℓ−1 + �𝟎𝟎ℓ−2𝟏𝟏ℓ−2

�

𝐟𝐟ℓ−1 + �𝟏𝟏ℓ−2𝟎𝟎ℓ−2
�
�

 (𝐱𝐱 ends [… , 1, 1])
 (𝐱𝐱 ends [… , 0, 1], fitness + 1)
 (𝐱𝐱 ends [… , 1, 0], fitness + 1)
 (𝐱𝐱 ends [… , 0, 0])

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�

𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2
𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 −𝐻𝐻ℓ−2 𝐻𝐻ℓ−2

� �

𝟎𝟎ℓ−2
𝟏𝟏ℓ−2
𝟏𝟏ℓ−2
𝟎𝟎ℓ−2

�

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

� +
1
2ℓ
⎣
⎢
⎢
⎡ 2 × 2ℓ−2𝛅𝛅ℓ−2

𝟎𝟎ℓ−2
𝟎𝟎ℓ−2

−2 × 2ℓ−2𝛅𝛅ℓ−2⎦
⎥
⎥
⎤

= �
𝛂𝛂ℓ−1
𝟎𝟎ℓ−1� +

1
2 �

𝛅𝛅ℓ−2
𝟎𝟎ℓ−2
𝟎𝟎ℓ−2
−𝛅𝛅ℓ−2

�

← increments 𝛼𝛼∅ by 0.5

← sets the new bivariate term 𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −0.5, where 𝑖𝑖 = ℓ − 2

By the induction hypothesis, 𝛼𝛼∅ |ℓ−1 = (ℓ−1)−1
2

, we derive 𝛼𝛼∅ |ℓ = (ℓ−1)−1
2

+ 1
2

= ℓ−1
2

, thus by

the principal of induction (∀ℓ ∈ [2,3, …]) �𝛼𝛼∅ |ℓ = ℓ−1
2

 �.

The new bivariate term is set to −0.5, and no other non-zero coefficients are added, and

by the induction hypothesis, all previous bivariate terms are −0.5 and no other previous

coefficients (except 𝛼𝛼∅) are non-zero, thus by the principal of induction (∀𝑖𝑖 ∈ [0, ℓ −

2])(𝛼𝛼{𝑖𝑖,𝑖𝑖+1} = −0.5) in all ℓ ≥ 2 and no other coefficients (except 𝛼𝛼∅) are non-zero. ∎

|

 64 of 195

4.3.8 Leading-Ones Function

The leading-ones function (LEADINGℓ) [67] is the total number of ones in the function until the

first instance of a zero. In other words, the index of the lowest-indexed zero, or ℓ if there are

no zeros. The leading ones function is defined as given by (96).

As with the ones function, for maximisation objective, the function’s optimum is a vector

of all ones, [1 1 … 1]. The optimum value is ℓ. An example is given by (97).

The leading-ones function is fully connected, it is not an ASF as there is no additive

separation of the variables, the linkage partition is given by (98).

The constant term 𝛼𝛼∅ = 2ℓ−1
2ℓ

, all other coefficients are non-zero, 𝛼𝛼𝑘𝑘 = 2ℓ−1
2ℓ

− 2𝑚𝑚−1
2𝑚𝑚

 where

𝑚𝑚 is the highest index in clique 𝑘𝑘. Note that if 𝑚𝑚 = ℓ − 1 (the bottom half of 𝛂𝛂), the above

equation simplifies to 𝛼𝛼𝑘𝑘 = 1
2ℓ

. Proof of coefficients is given on the following page.

LEADINGℓ(𝐱𝐱) = ��𝑥𝑥𝑗𝑗

𝑖𝑖−1

𝑗𝑗=0

ℓ−1

𝑖𝑖=0

 (96)

LEADING8([1 1 1 1 0 1 1 0]) = 4 (97)

ΓLEADINGℓ = �{𝑥𝑥0,𝑥𝑥1, … , 𝑥𝑥ℓ−1}� (98)

|

 65 of 195

Lemma 4.3.8: In LEADINGℓ the constant term (∀ℓ ∈ {1,2, … }) �𝛼𝛼∅ |ℓ = 2ℓ−1
2ℓ
�, and all other

coefficients are (∀ℓ ∈ {1,2, … })(∀𝑘𝑘 ⊆ {0, … , ℓ − 1}) �𝛼𝛼𝑘𝑘|ℓ = 2ℓ−1
2ℓ

− 2𝑚𝑚−1
2𝑚𝑚

�, where 𝑚𝑚 is the

highest index in the clique 𝑘𝑘,

Proof, by induction:

For ℓ = 1, 𝛂𝛂0 = 1
21
𝐻𝐻1𝐟𝐟1 = 1

2
�1 1
1 −1� �

1
0� = �1/2

1/2�, thus 𝛼𝛼∅ |1 = 2−1
2

= 21−1
21

= 2ℓ−1
2ℓ

 and

 𝛼𝛼{0} |1 = 1
2

= 1
2
− 0

2
= 2−1

2
− 1−1

1
= 21−1

21
− 20−1

20
= 2ℓ−1

2ℓ
− 2𝑚𝑚−1

2𝑚𝑚
.

Assume true for {1, 2, … , ℓ − 1}, consider ℓ:

𝛂𝛂ℓ =
1
2ℓ
𝐻𝐻ℓ𝐟𝐟ℓ

=
1
2ℓ
�𝐻𝐻ℓ−1 𝐻𝐻ℓ−1
𝐻𝐻ℓ−1 −𝐻𝐻ℓ−1

� �𝐟𝐟ℓ−1 + 𝛅𝛅ℓ−1
𝐟𝐟ℓ−1

� (append "1" to 𝐱𝐱, fitness + 1 if 𝐱𝐱 = [1 … 1])
(append "0" to 𝐱𝐱)

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1 + 𝐻𝐻ℓ−1𝛅𝛅ℓ−1

𝐻𝐻ℓ−1𝛅𝛅ℓ−1
�

=
1
2ℓ
�2𝐻𝐻ℓ−1𝐟𝐟ℓ−1𝐻𝐻ℓ−1𝟎𝟎ℓ−1

�+
1
2ℓ
�𝐻𝐻ℓ−1𝛅𝛅ℓ−1𝐻𝐻ℓ−1𝛅𝛅ℓ−1

�

= �
1

2ℓ−1
𝐻𝐻ℓ−1𝐟𝐟ℓ−1
𝟎𝟎ℓ−1

� +
1
2ℓ
�𝟏𝟏ℓ−1𝟏𝟏ℓ−1

�

= �
𝛼𝛼ℓ−1
𝟎𝟎ℓ−1� +

1
2ℓ
�𝟏𝟏ℓ−1𝟏𝟏ℓ−1

� ← adds
1
2ℓ

 to every coefficient

Adding 1
2ℓ

 to every coefficient, we can derive an expression for 𝛼𝛼∅ |ℓ and 𝛼𝛼𝑘𝑘|ℓ:

𝛼𝛼∅ |ℓ = 𝛼𝛼∅|ℓ−1 +
1
2ℓ

=
2ℓ−1 − 1

2ℓ−1
+

1
2ℓ

=
2(2ℓ−1 − 1)

2 × 2ℓ−1
+

1
2ℓ

=
2ℓ − 2

2ℓ
+

1
2ℓ

=
2ℓ − 1

2ℓ

𝛼𝛼𝑘𝑘|ℓ = 𝛼𝛼𝑘𝑘|ℓ−1 +
1
2ℓ

=
2ℓ−1 − 1

2ℓ−1
−

2𝑚𝑚 − 1
2𝑚𝑚

+
1
2ℓ

=
2ℓ − 2

2ℓ
−

2𝑚𝑚 − 1
2𝑚𝑚

+
1
2ℓ

=
2ℓ − 1

2ℓ
−

2𝑚𝑚 − 1
2𝑚𝑚

Thus by the principal of induction the expressions hold for all ℓ ∈ {1,2, … }. ∎

|

 66 of 195

4.3.9 Order-k Trap Function

The order-k trap function (TRAP𝑘𝑘) is designed to be deceptive [71] [72]. Deceptive functions

lead an optimisation algorithm away from the optimum. An example is given by (99) for a trap

size of 𝑘𝑘 = 4, and length ℓ = 8 (two concatenated traps).

The trap function is typically of a small order 𝑘𝑘, such that 𝑘𝑘 divides ℓ, and concatenated,

i.e. the first 𝑘𝑘 bits form the first trap, the next 𝑘𝑘 bits form the next trap as given by (100).

We define the trap sub function as given by (101), adapted from Deb et. al. [69] (as cited

by Cantú-Paz et. al. [105])

Alternatively, functions can be defined by concatenating trap functions of different orders 𝑘𝑘.

As shown by the Walsh decomposition, where there are low-order cliques with non-

overlapping sets of the variables, such as in the concatenated trap, this is an ASF. Thus, the

concatenated 𝑘𝑘-trap function is an example of an additively separable function. The function

is split in to ℓ
𝑘𝑘
 functions of length 𝑘𝑘. The linkage partition for the 𝑘𝑘-trap is given by (102).

ΓTRAP𝑘𝑘ℓ = �𝛾𝛾0,𝛾𝛾1, … , 𝛾𝛾ℓ/𝑘𝑘 −1�

where 𝛾𝛾𝑖𝑖 = �𝑋𝑋𝑘𝑘𝑖𝑖, , … ,𝑋𝑋𝑘𝑘(𝑖𝑖+1)−1�
(102)

TRAP4
8([1 1 1 1 0 1 1 0]) = 𝑔𝑔4(4) + 𝑔𝑔4(2)

= 4 + 1

= 5

(99)

TRAP𝑘𝑘
ℓ(𝐱𝐱) = �𝑔𝑔𝑘𝑘 ��𝑥𝑥𝑖𝑖𝑘𝑘+𝑗𝑗

𝑘𝑘−1

𝑗𝑗=0

�
ℓ/𝑘𝑘

𝑖𝑖=0

 (100)

𝑔𝑔𝑘𝑘(𝑢𝑢) = �𝑘𝑘 − 𝑢𝑢 − 1, 𝑢𝑢 < 𝑘𝑘
𝑘𝑘, 𝑢𝑢 = 𝑘𝑘 (101)

|

 67 of 195

We state the Walsh coefficients for the order-2, order-3, and order-4 traps in Table 6,

Table 7, and Table 8 respectively. These show the coefficients for trap number 𝑖𝑖. The constant

term of the overall function is the sum of constant terms from individual traps.

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1}

3
4

1
4

1
4

3
4

Table 6 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-2 trap function.

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1}

1 0 0
1
2

𝛼𝛼{𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2}

0
1
2

1
2

1
2

Table 7 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-3 trap function.

𝛼𝛼∅ 𝛼𝛼{𝑖𝑖𝑘𝑘} 𝛼𝛼{𝑖𝑖𝑘𝑘+1} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1}

21
16

 −
3

16
 −

3
16

5

16

𝛼𝛼{𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2}

−
3

16

5
16

5

16

5
16

𝛼𝛼{𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+3}

−
3

16

5
16

5

16

5
16

𝛼𝛼{𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3} 𝛼𝛼{𝑖𝑖𝑘𝑘,𝑖𝑖𝑘𝑘+1,𝑖𝑖𝑘𝑘+2,𝑖𝑖𝑘𝑘+3}

5
16

5

16

5
16

5

16

Table 8 – Walsh coefficients for trap 𝑖𝑖 of a concatenated order-4 trap function.

|

 68 of 195

In the case of the TRAP𝑘𝑘 function, we only use the order-2 and order-3 traps in the remainder

of this work, so will simply state the derivations of the order-2 and ordre-3 traps here. The

coefficients for order-4 and above are derived similarly.

The Walsh coefficients TRAP2
2 are derived as shown by (103).

𝛂𝛂 =
1

22
𝐻𝐻𝐟𝐟 =

1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

2
0
0
1

� =
1
4 �

3
1
1
3

� =

⎣
⎢
⎢
⎢
⎢
⎡
3

4�
1

4�
1

4�
3

4� ⎦
⎥
⎥
⎥
⎥
⎤

 (103)

The Walsh coefficients TRAP3
3 are derived as shown by (104).

𝛂𝛂 =
1

23
𝐻𝐻𝐟𝐟 =

1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
3
0
0
1
0
1
1
2⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
8
0
0
4
0
4
4
4⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡

1
0
0

1
2�
0

1
2�

1
2�

1
2� ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 (104)

It should be noted that in practice in the literature, order-4 and order-5 instances of the

TRAP𝑘𝑘 function are usually used concatenated into a longer problem as additively separate sub-

functions, and are not used as arbitrarily-long order traps.

|

 69 of 195

4.3.10 Goldberg’s Fully-Deceptive Order-3 Function

Goldberg’s fully-deceptive order-3 function (GOLDBERG) [71] [72] [25] is a 3-bit function with

the following values given by Table 9, and the Walsh coefficients given by Table 10.

𝑓𝑓111 𝑓𝑓011 𝑓𝑓101 𝑓𝑓001 𝑓𝑓110 𝑓𝑓010 𝑓𝑓100 𝑓𝑓000

30 0 0 14 0 22 26 28

Table 9 – Function values for Goldberg’s fully-deceptive order-3 function.

𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 𝛼𝛼{2} 𝛼𝛼{0,2} 𝛼𝛼{1,2} 𝛼𝛼{0,1,2}

15 −1 −2 3 −4 5 6 8

Table 10 – Walsh coefficients for Goldberg’s fully-deceptive order-3 function.

It should be noted that using Goldberg’s convention for the Walsh functions, the

coefficients would all be of the same magnitude as above, although all positive except

𝛼𝛼{0,1,2} = −8. The coefficients specified are adapted for our convention.

The function GOLDBERG is defined over 3 bits. We present proof of coefficients by directly

calculating from the Walsh-Hadamard transform as given by (105).

𝛂𝛂 =
1

23
𝐻𝐻𝐟𝐟

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 1 1 1 1 1
1 −1 1 −1 1 −1 1 −1
1 1 −1 −1 1 1 −1 −1
1 −1 −1 1 1 −1 −1 1
1 1 1 1 −1 −1 −1 −1
1 −1 1 −1 −1 1 −1 1
1 1 −1 −1 −1 −1 1 1
1 −1 −1 1 −1 1 1 −1⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡
30

0
0

14
0

22
26
28⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=
1
8

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

120
−8
−16

24
−32

40
48
64⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡

15
−1
−2

3
−4

5
6
8⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

(105)

|

 70 of 195

4.3.11 2-Bit and 3-Bit Function Values and Walsh Coefficients

As 2-bit and 3-bit functions will be used heavily in this thesis, we present the function

values for the selected benchmark functions in the case of ℓ = 2 and ℓ = 3.

Function 𝑓𝑓11 𝑓𝑓01 𝑓𝑓10 𝑓𝑓00

CONST𝑐𝑐
2 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃

ONEMAX2 2 1 1 0

ZEROMAX2 0 1 1 2

BINVAL2 3 2 1 0

CHECK1D
2 0 1 1 0

NEEDLE2 1 0 0 0

LEADING2 2 0 1 0

TRAP2
2 2 0 0 1

Table 11 – Function values for benchmark instances in 2-bits.

|

 71 of 195

Function 𝑅𝑅𝑓𝑓11 𝑅𝑅𝑓𝑓01 𝑅𝑅𝑓𝑓10 𝑅𝑅𝑓𝑓00

CONST𝑐𝑐
2 0 0 0 0

ONEMAX2 3 1 1 0

ZEROMAX2 0 1 1 3

BINVAL2 3 2 1 0

CHECK1D
2 0 2 2 0

NEEDLE2 3 0 0 0

LEADING2 3 0 2 0

TRAP2
2 3 0 0 2

Table 12 – Ranks for benchmark instances in 2-bits.

|

 72 of 195

Here we group the functions by conventional description of complexity and present the

Walsh coefficients. In a later section we will return to view the complexity of these benchmarks

based on perturbation and ordinal linkage.

Function 𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1}

Zero-Dimensional

CONST𝑐𝑐
2 𝑃𝑃 0 0 0

Univariate

ONEMAX2 2
1
2

1
2
 0

ZEROMAX2 2 −
1
2
 −

1
2
 0

BINVAL2 1
1
2

1
2
 1 0

Bivariate/Multivariate

CHECK1D
2

1
2
 0 0 −

1
2

NEEDLE2
1
4

1
4

1
4

1
4

LEADING2
3
4

3
4

1
4

1
4

TRAP2
2

3
4

1
4

1
4

3
4

Table 13 – Walsh coefficients of benchmark instances in 2-bits.

|

 73 of 195

Function 𝑓𝑓111 𝑓𝑓011 𝑓𝑓101 𝑓𝑓001 𝑓𝑓110 𝑓𝑓010 𝑓𝑓100 𝑓𝑓000

CONST𝑐𝑐
3 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃 𝑃𝑃

ONEMAX3 3 2 2 1 2 1 1 0

ZEROMAX3 0 1 1 2 1 2 2 3

BINVAL3 7 6 5 4 3 2 1 0

CHECK1D
3 0 1 2 1 1 2 1 0

NEEDLE3 1 0 0 0 0 0 0 0

LEADING3 3 0 1 0 2 0 1 0

TRAP3
3 3 0 0 1 0 1 1 2

GOLDBERG 30 0 0 14 0 22 26 28

Table 14 – Function values for benchmark instances in 3-bits.

|

 74 of 195

Function 𝑅𝑅𝑓𝑓111 𝑅𝑅𝑓𝑓011 𝑅𝑅𝑓𝑓101 𝑅𝑅𝑓𝑓001 𝑅𝑅𝑓𝑓110 𝑅𝑅𝑓𝑓010 𝑅𝑅𝑓𝑓100 𝑅𝑅𝑓𝑓000

CONST𝑐𝑐
3 0 0 0 0 0 0 0 0

ONEMAX3 7 4 4 1 4 1 1 0

ZEROMAX3 0 1 1 4 1 4 4 7

BINVAL3 7 6 5 4 3 2 1 0

CHECK1D
3 0 2 6 2 2 6 2 0

NEEDLE3 7 0 0 0 0 0 0 0

LEADING3 7 0 4 0 6 0 4 0

TRAP3
3 7 0 0 3 0 3 3 6

GOLDBERG 7 0 0 3 0 4 5 6

Table 15 – Ranks for benchmark instances in 3-bits.

|

 75 of 195

Again, we group the functions by conventional description of complexity and present the

Walsh coefficients.

Function 𝛼𝛼∅ 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1} 𝛼𝛼{2} 𝛼𝛼{0,2} 𝛼𝛼{1,2} 𝛼𝛼{0,1,2}

Zero-Dimensional

CONST𝑐𝑐
3 𝑃𝑃 0 0 0 0 0 0 0

Univariate

ONEMAX3
3
2

1
2

1
2
 0

1
2
 0 0 0

ZEROMAX3
3
2
 −

1
2
 −

1
2
 0 −

1
2
 0 0 0

BINVAL3
7
2

1
2
 1 0 2 0 0 0

Bivariate

CHECK1D
3 1 0 0 −

1
2
 0 0 −

1
2
 0

Multivariate

NEEDLE3
1
8

1
8

1
8

1
8

1
8

1
8

1
8

1
8

LEADING3
7
8

7
8

3
8

3
8

1
8

1
8

1
8

1
8

TRAP3
3 1 0 0

1
2
 0

1
2

1
2

1
2

GOLDBERG 15 −1 −2 3 −4 5 6 8

Table 16 – Walsh coefficients of benchmark instances in 3-bits.

|

 76 of 195

4.4 1-Bit Pseudo-Boolean Functions

For 1-bit, every function is a member of one of three classes. The classes are listed in

Table 17.

We compute the Walsh coefficients of a 1-bit function as shown in (106)

𝛂𝛂 =
1

20
𝐻𝐻0𝐟𝐟

�
𝛼𝛼∅
𝛼𝛼{0}

� =
1
2 �

1 1
1 −1� �

𝑓𝑓1
𝑓𝑓0
�

�
𝛼𝛼∅
𝛼𝛼{0}

� = �

1
2

(𝑓𝑓1 + 𝑓𝑓0)

1
2

(𝑓𝑓1 − 𝑓𝑓0)
�

(106)

As in the general case – the constant term 𝛼𝛼∅ is the mean value of the function. The other

coefficient 𝛼𝛼{0} is half of the difference between the function values. This is zero in the case of

a constant function, positive if 𝑓𝑓0 < 𝑓𝑓1, and negative if 𝑓𝑓0 > 𝑓𝑓1.

If 𝑓𝑓0 = 𝑓𝑓1, the linkage partition class is Γ = ∅, otherwise it is Γ = {{𝑋𝑋0}}.

The three classes for 1-bit functions are summarised in Table 17.

Class Condition 𝛼𝛼{0} Linkage Example

[0 0] 𝑓𝑓0 = 𝑓𝑓1 zero ∅ CONST2

[1 0] 𝑓𝑓0 < 𝑓𝑓1 positive {{𝑋𝑋0}} ONEMAX2

[0 1] 𝑓𝑓0 > 𝑓𝑓1 negative {{𝑋𝑋0}} ZEROMAX2

Table 17 – The number of function classes in 1-bit for a given number of distinct fitness

levels (number of ranks). There are 3 distinct classes for 1-bit functions.

|

 77 of 195

4.5 Counting Function Classes

In this section, we discuss counting the number of classes for a given problem length. This

motivates our focus on 2-bit and 3-bit problems for the following survey.

An injective function is one which has a one-to-one mapping of elements of the domain to

elements of the image, i.e. no two bit strings have the same fitness. The number of injective

function classes is given by the factorial 2ℓ!. To calculate the total number of classes including

non-injective functions we define a function 𝑡𝑡(ℓ), for a given bit string length ℓ, this gives the

total number of function classes for a given length. The function 𝑡𝑡(ℓ) is derived by summing

over the number of classes for a given number of ranks, 𝑂𝑂, which we will express as a function,

𝑃𝑃(𝑂𝑂, ℓ).

For bit string length ℓ, a class 𝐶𝐶 is a vector of 2ℓ elements. For 𝑂𝑂 ranks, each element is

an integer from 0 to 𝑂𝑂 − 1 inclusive. The number of possibilities is bounded above by 𝑂𝑂2ℓ. At

each value for 𝑂𝑂 we must consider that some vector permutations will contain fewer than 𝑂𝑂

distinct ranks, e.g. for 𝑂𝑂 = 2, the vector [1 1 … 1] does not represent a valid class as it does

not contain exactly 2 distinct ranks. The class for the constant function is the class [0 0 … 0].

To avoid counting invalid vectors, we iteratively subtract for each 𝑘𝑘 < 𝑂𝑂 the number of classes

at this number of ranks: 𝑃𝑃(𝑘𝑘, ℓ) multiplied by the number of ways in which they can be arrange

in 𝑂𝑂 ranks, which is the binomial coefficient, or the number of ways to choose 𝑘𝑘 elements from

𝑂𝑂, written 𝐶𝐶𝑘𝑘𝑛𝑛. The number of classes for 𝑂𝑂 ranks for problem length ℓ is given by (107).

𝑃𝑃(𝑂𝑂, ℓ) = 𝑂𝑂2ℓ −� 𝑃𝑃(𝑘𝑘, ℓ)𝐶𝐶𝑘𝑘𝑛𝑛
𝑛𝑛−1

𝑘𝑘=1

where 𝐶𝐶𝑘𝑘𝑛𝑛 =
𝑂𝑂!

𝑘𝑘! (𝑂𝑂 − 𝑘𝑘)!

(107)

Note that the base case of this recursive definition is implicit, since when 𝑂𝑂 = 1, the sum is

empty over the range ∑ …∅ = 0 hence, 𝑃𝑃(1, ℓ) = 12ℓ + 0 = 1.

The number of distinct ranks 𝑂𝑂 can vary from 1 to 2ℓ. Summing the value of 𝑃𝑃(𝑂𝑂, ℓ) for the

cases 1 ≤ 𝑂𝑂 ≤ 2ℓ (108, p. 78) gives the total number of classes 𝑡𝑡(ℓ) for a specified problem

length ℓ, by summing over 𝑃𝑃(𝑂𝑂, ℓ) for values 1 ≤ 𝑂𝑂 ≤ 2ℓ.

|

 78 of 195

𝑡𝑡(ℓ) = �𝑃𝑃(𝑂𝑂, ℓ)
2ℓ

𝑛𝑛=1

 (108)

For comparison, values for 𝑡𝑡(ℓ) have been given in Table 18 for 0 ≤ ℓ ≤ 8.

Length, ℓ Solution Space, 2ℓ Injective Classes, 2ℓ! All Classes, 𝑡𝑡(ℓ)

0 1 1 1

1 2 2 3

2 4 24 75

3 8 40 320 545 835

4 16 20 922 789 888 000 5 315 654 681 981 355

5 32 ~ 2.631 × 1035 ~ 2.355 × 1040

6 64 ~ 1.269 × 1089 ~ 1.408 × 1099

7 128 ~ 3.856 × 10215 ~ 6.586 × 10235

8 256 ~ 8.578 × 10506 ~ 3.469 × 10547

Table 18 – Number of injective function classes and total number of function classes for a

given length of pseudo-Boolean functions.

As the number of classes grows superexponentially with the length of the problem (see

Table 18), the survey of function classes looks at 3-bits as this is the largest set which remains

amenable to exhaustive survey. We will first discuss 2-bit classes, and then apply the same

methods to 3-bit classes. The approach is computationally intractable as ℓ increases, however,

we will be able to draw conclusions from the survey of 2-bit and 3-bit classes which are general

for ℓ-dimensions.

4.6 Summary

In this chapter we have given our definitions for rank equivalence and directed ordinal

linkage, based on function classes invariant under monotonic operators. We also defined the

benchmark functions we will use throughout the thesis, and summarised the small space of
{0, 1} → ℝ functions (1-bit pseudo-Boolean functions). In the following chapters we will analyse

2-bit and 3-bit spaces similarly.

|

 79 of 195

5 2-Bit Pseudo-Boolean Functions

In this chapter we explore the infinite set of pseudo-Boolean functions in 2-dimensions by

using a finite set of equivalence classes. This chapter provides a detailed description of the

aforementioned space of classes which we refer to as 2 bit classes. We completely determine

the possible and minimal Walsh structures of these classes and the precedence profiles and

connect the Walsh structures with ordinal linkage, then we discuss algorithmic steps to solve

function classes. Following chapters will extend the work into higher dimensions.

5.1 Counting 2-Bit Classes

A 2-bit equivalence class is completely determined by specifying ranks for the 4 possible

values of 𝐱𝐱. Previously stated is the general definition of a class vector (62, p. 50). For

convenience we restate the specific case for 2-bit pseudo-Boolean functions as (109).

𝐂𝐂𝑓𝑓 = �𝑅𝑅𝑓𝑓11 𝑅𝑅𝑓𝑓01 𝑅𝑅𝑓𝑓10 𝑅𝑅𝑓𝑓00�

where 𝑅𝑅𝑓𝑓
𝑥𝑥0𝑥𝑥1 = R𝑓𝑓([𝑥𝑥0 𝑥𝑥1])

and R𝑓𝑓(𝐱𝐱) = |{𝐲𝐲:𝐲𝐲 ∈ {0, 1}2 ∧ 𝑓𝑓(𝐲𝐲) < 𝑓𝑓(𝐱𝐱)}|

(109)

Table 19 shows the number of 2-bit function classes with a breakdown of number of

classes for each valid number of ranks. The number of classes for 4 ranks (24) is the number

of injective function classes.

Num. Ranks, 𝑂𝑂 Num. Classes, 𝑃𝑃(𝑂𝑂, 2)

1 1

2 14

3 36

4 24

Total 75

Table 19 – The number of function classes in 2-bits for a given number of distinct fitness

levels (number of ranks). There are 75 distinct classes for 2-bit functions.

|

 80 of 195

5.2 Walsh Families and Delta Conditions

As an example, take the class [3 1 0 1]. This class corresponds to the infinite set of

functions whose values are laid out on the real number line as shown in Figure 8.

Figure 8 – Mapping fitness levels of the general instance of class [3 1 0 1] to the real

number line ℝ.

The values of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, 𝛿𝛿0, and 𝛿𝛿1 specify an instance of the class. For example, the function

𝐟𝐟 = [9.0 −0.7 −6.1 −0.7]T is an instance defined by 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = −6.1, 𝛿𝛿0 = 5.4, and 𝛿𝛿1 = 9.7. It

should be noted that while any function values, including 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 may be negative or zero, the

values for 𝛿𝛿𝑖𝑖 are always strictly positive.

By stating the fitness values in the fitness vector 𝐟𝐟 in terms of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, 𝛿𝛿0, and 𝛿𝛿1we get this

class’ delta expansion as given by (110).

�

𝑓𝑓11
𝑓𝑓01
𝑓𝑓10
𝑓𝑓00

� = �

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0

� (110)

Recall the expression for the Walsh-Hadamard transform is 𝛂𝛂 = 1
2ℓ
𝐻𝐻𝐟𝐟 (43, p. 38). Here

we substitute the values of the fitness vector with the delta expansion for this class as given

by (111).

�

𝛼𝛼∅
𝛼𝛼{0}
𝛼𝛼{1}
𝛼𝛼{0,1}

� =
1
4 �

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

� �

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛
𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0

� =
1
4
⎣
⎢
⎢
⎡ 4𝑓𝑓̅
𝛿𝛿1 − 𝛿𝛿0
𝛿𝛿1 + 𝛿𝛿0
𝛿𝛿1 + 𝛿𝛿0⎦

⎥
⎥
⎤
 (111)

The first coefficient, 𝛼𝛼∅ is the arithmetic mean of the four values. We do not consider this

constant term to be part of the structure, since 𝛼𝛼∅ ≠ 0 is never a necessary condition for

preserving the ranks, it simply translates all function values along the real number line.

|

 81 of 195

The second coefficient, 𝛼𝛼{0} is given by the fitness vector times one quarter the second

row of the Hadamard matrix. By substituting the delta expansion of the finesses as in (112)

below.

𝛼𝛼{0} = 1
4
(𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝛿𝛿0 + 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 − 𝛿𝛿0)

= 1
4
(𝛿𝛿1 − 𝛿𝛿0)

(112)

Here we show that 𝛼𝛼{0} = 1
4
(𝛿𝛿1 − 𝛿𝛿0). Hence, 𝛼𝛼{0} is zero if and only if 𝛿𝛿0 = 𝛿𝛿1. This element

of the structure may be present but is unnecessary, since there exists an instance of the class

where it is zero. We refer to the expression 𝛿𝛿0 = 𝛿𝛿1 as this coefficient’s delta condition.

There is no valid (positive) assignment of values to 𝛿𝛿0 and 𝛿𝛿1 which makes 14(𝛿𝛿0 + 𝛿𝛿1) zero,

hence we say that it is necessary, since it is non-zero in all instances of the class. No delta

condition exists for 𝛼𝛼{1} or 𝛼𝛼{0,1} in this example class.

Returning to the general case; ignoring the constant term, there are 3 coefficients in the

Walsh expansion. Considering each to be either zero or non-zero, there are 8 combinations.

We enumerate these possibilities using the IDs 0 to 7 as given by Table 21 (p. 82).

We give an ID (which is a power of two) and pictorial representation to each of the possible

non-zero Walsh coefficients. The ID of a structure is the sum of the IDs of the individual non-

zero Walsh coefficients. The symbols and IDs are given in Table 20.

Symbol and ID

Non-Zero Coefficients 𝛼𝛼{0} 𝛼𝛼{1} 𝛼𝛼{0,1}

Table 20 – Symbols and IDs for possible non-zero Walsh coefficients for 2-bit.

|

 82 of 195

ID Symbol Non-Zero Coefficients Description

0

{ } All coefficients zero.

1

�𝛼𝛼{0}� Only univariate coefficient 0 non-zero.

2

�𝛼𝛼{1}� Only univariate coefficient 1 non-zero.

3

�𝛼𝛼{0},𝛼𝛼{1}� Bivariate coefficient zero.

4

�𝛼𝛼{0,1}� Only bivariate coefficient non-zero

5

�𝛼𝛼{0},𝛼𝛼{0,1}� Univariate coefficient 0 zero.

6

�𝛼𝛼{1},𝛼𝛼{0,1}� Univariate coefficient 1 zero.

7

�𝛼𝛼{0},𝛼𝛼{1},𝛼𝛼{0,1}� All three coefficients non-zero.

Table 21 – Possible combinations of zero and non-zero coefficients for 2-bits.

We define the Walsh family of a class as the set of IDs for each instance of the class. For

example if the non-zero Walsh coefficients may be either �𝛼𝛼{1},𝛼𝛼{0,1}� (structure 6) or

�𝛼𝛼{0},𝛼𝛼{1},𝛼𝛼{0,1}� (structure 7), the Walsh family is {6, 7}.

Figure 9 – An example Walsh family: {6, 7}. This is the Walsh family of 12 distinct classes.

The structure which is a subset of all possible structures for the family we refer to as the

minimal structure. In this example of the family {6, 7}, the structure without the unnecessary

coefficient – structure 6 – is the minimal structure of this class.

By taking the Walsh-Hadamard transform of the delta expansion of all 75 equivalence

classes, we obtain Table 22 (p. 83), which shows the Walsh family for each class. The result

is summarised in Table 23 (p. 84).

|

 83 of 195

Class Family Class Family Class Family

[0 0 0 0] † {0} [3 0 1 2] † {5, 7} [2 0 1 3] † {6, 7}

[1 1 1 0] † {7} [0 1 1 1] † {7} [0 2 2 1] † {7}

[1 1 0 1] † {7} [0 2 2 0] † {4} [0 2 1 2] † {7}

[2 2 0 0] † {2} [1 2 2 0] † {7} [0 3 1 1] † {5, 7}

[2 2 1 0] † {7} [0 2 0 2] † {1} [0 3 2 0] † {7}

[2 2 0 1] † {7} [0 3 0 0] † {7} [1 3 2 0] † {6, 7}

[1 0 1 1] † {7} [1 3 1 0] † {6, 7} [0 3 0 2] † {7}

[2 0 2 0] † {1} [1 2 0 2] † {7} [1 3 0 2] † {3, 7}

[2 1 2 0] † {7} [1 3 0 1] † {3, 7} [0 1 2 2] † {7}

[2 0 0 2] † {4} [2 3 0 0] † {7} [0 1 3 1] † {6, 7}

[3 0 0 0] † {7} [2 3 1 0] † {6, 7} [0 2 3 0] † {7}

[3 1 1 0] † {3, 7} [2 3 0 1] † {3, 7} [1 2 3 0] † {5, 7}

[2 1 0 2] † {7} [0 0 2 2] † {2} [0 1 1 3] † {3, 7}

[3 1 0 1] † {6, 7} [0 0 3 0] † {7} [0 2 0 3] † {7}

[3 2 0 0] † {7} [1 1 3 0] † {5, 7} [1 2 0 3] † {5, 7}

[3 2 1 0] † {3, 7} [0 0 0 3] † {7} [0 0 3 2] † {7}

[3 2 0 1] † {6, 7} [1 1 0 3] † {5, 7} [0 0 2 3] † {7}

[2 0 2 1] † {7} [1 0 2 2] † {7} [1 0 3 2] † {3, 7}

[2 0 1 2] † {7} [1 0 3 1] † {3, 7} [1 0 2 3] † {6, 7}

[3 0 1 1] † {5, 7} [2 0 3 0] † {7} [0 3 2 1] † {5, 7}

[3 0 2 0] † {7} [2 1 3 0] † {5, 7} [0 3 1 2] † {5, 7}

[3 1 2 0] † {3, 7} [1 0 1 3] † {6, 7} [0 2 3 1] † {6, 7}

[3 0 0 2] † {7} [2 0 0 3] † {7} [0 2 1 3] † {3, 7}

[3 1 0 2] † {6, 7} [2 1 0 3] † {5, 7} [0 1 3 2] † {6, 7}

[3 0 2 1] † {5, 7} [2 0 3 1] † {3, 7} [0 1 2 3] † {3, 7}

Table 22 – Walsh families of all 2-bit equivalence classes. Result first published in [3].

(† denotes one of the 24 classes of injective functions)

|

 84 of 195

Family Symbol Deltas Classes Example

{0}

0 1 [0 0 0 0] – CONST2

{1}

1 2 [2 0 2 0]

{2}

1 2 [2 2 0 0]

{3, 7}

2 4
[3 1 1 0] – ONEMAX2

[0 1 1 3] – ZEROMAX2

3 8 [3 2 1 0] – BINVAL2

{4}

1 2 [0 2 2 0] – CHECK1D
2

{5, 7}

2 4 [3 0 1 1]

3 8 [3 0 2 1]

{6, 7}

2 4 [3 1 0 1]

3 8 [3 2 0 1]

{7}

1 8 [3 0 0 0] – NEEDLE2

2 24
[3 0 2 0] – LEADING2

[3 0 0 2] – TRAP2
2

Table 23 – Summary of Walsh families of 2-bit classes.

From this result, we notice that only the above 8 distinct families are possible in the set of

2-bit pseudo-Boolean functions, and that each Walsh coefficient is either necessarily zero,

necessarily non-zero, or optional (conditioned on a relationship between the 𝛿𝛿𝑖𝑖 values, but

independent of any other coefficient).

|

 85 of 195

Further, we observe that the classes corresponding to all benchmark functions listed may

have only their canonical structures (the structure of the named instance) with the exception

of the classes of the univariate functions ONEMAX2, ZEROMAX2, and BINVAL2. These, and all

other fully univariate (with both univariate coefficients necessarily non-zero) classes in 2-bits

may contain an optionally non-zero bivariate coefficient.

In the case of ONEMAX2, or the ZEROMAX2, the bivariate coefficient 𝛼𝛼{0,1} = 1
4
(𝛿𝛿1 − 𝛿𝛿0) which

is zero if and only if 𝛿𝛿0 (the fitness increase from changing either bit in the string [0 0] to 1) is

equal to 𝛿𝛿1 (the fitness increase from then setting the remaining bit to 1 to reach the string

[1 1]). If this is not the case, there is non-additive interaction between the two variables, which

is modelled by a non-zero bivariate coefficient.

We define a delta condition as an equation in terms of the delta values 𝛿𝛿𝑖𝑖 which, if satisfied,

will mean that a Walsh coefficient is zero. For example, in the above example, if and only if the

delta condition 𝛿𝛿0 = 𝛿𝛿1 is satisfied, then 𝛼𝛼{0,1} = 0. We say that a coefficient does not have a

delta condition in the event that either the coefficient is always zero, or never zero.

In the case of BINVAL2, the bivariate coefficient 𝛼𝛼{0,1} = 1
4
(𝛿𝛿2 − 𝛿𝛿0) is zero if and only if 𝛿𝛿0

(the fitness increase from flipping the 𝑥𝑥0 in [0 0] to [1 0]) is equal to 𝛿𝛿2 (the fitness increase

from flipping the same 𝑥𝑥0 in [0 1] to [1 1]). If this is not the case, then there is a non-additive

interaction where the second variable affects the first, which is modelled by a non-zero

bivariate coefficient.

Similarly, any 2-bit fully univariate classes – which are those where the univariate terms

must be non-zero, but the variables are additively separable – will have a delta condition which

makes the bivariate coefficient non-zero if the function is not additively separable. This is true

of the class to which the ONEMAX2 belongs, and the class to which the BINVAL2 belongs, and

all other fully univariate classes in 2-bits contain a function which is a relabelling and/or

permutations of one of these classes. Relabellings and permutations do not change the set of

non-zero Walsh coefficients, hence, the Walsh family {3, 7} exists, but {3} alone does not.

Interestingly, when the two necessary parts of structure are one univariate coefficient and

the bivariate coefficient, we get the family {5, 7} or {6, 7} but never the family {5} or {6}. The

explanation for this is not in terms of additively separable functions (since all of these instances

require the bivariate coefficient and are hence not additively separable). However, it can be

shown that the rank vectors for each of the 12 classes in one of these families is a permutation

of the rank vector of one of the 12 fully univariate classes. It follows that the same delta

condition from 𝛼𝛼{0,1} is permuted to either 𝛼𝛼{0} or 𝛼𝛼{1}, since the delta conditions are derived

|

 86 of 195

from the expression in the deltas 𝛿𝛿𝑖𝑖 which equals the value of the coefficient. These

expressions are permuted by the permutation of the fitness vector. Hence, the same reasoning

which explains why fully univariate classes have an unnecessary bivariate term, explains why

classes with a necessary bivariate term and one necessary univariate term also have an

unnecessary univariate term.

Examining how the number of deltas relates to the delta conditions – for 2 deltas, there is

an unnecessary coefficient when there are 2 equal fitnesses in the middle with one below and

one above (e.g. [3 0 1 1]). If there is an unnecessary coefficient, the delta condition is 𝛿𝛿0 =

𝛿𝛿1 and occurs for whichever row of the matrix multiplication produces the alignment shown in

(113). We observe from the exhaustive survey that one such alignment always exists.

4𝛼𝛼𝑘𝑘 = ± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1)

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0)

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0)

± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛)

(113)

Similarly we observer that an unnecessary coefficient cannot exist when there are two equal

solutions at the lowest fitness (e.g. [3 2 0 0] or the highest fitness [1 0 2 2]).

If there are 3 deltas, an unnecessary coefficient exists with the condition 𝛿𝛿0 = 𝛿𝛿2 for

whichever row of the matrix multiplication produces the alignment shown in (114). One such

alignment always exists.

4𝛼𝛼𝑘𝑘 = ± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1 + 𝛿𝛿2)

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0 + 𝛿𝛿1)

∓ (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 + 𝛿𝛿0)

± (𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛)

(114)

In general the delta condition for 2-bit classes is always when two delta values are equal.

Also, note that this means that all 24 injective functions classes in 2-bits contain one

optional coefficient. This is because any injective function classes in 2-bits are precisely those

with 3 deltas. It is noteworthy that the three benchmark functions regarded as the hardest in

our 2-bit set, namely NEEDLE2, LEADING2, and TRAP2
2, are all non-injective functions, and are thus

able to contain no unnecessary structure, in all of these cases containing complete structure.

|

 87 of 195

We show that the number of structures is generally higher for classes with more deltas.

The small number of classes and small number of structures and deltas makes this trend

difficult to see. See Table 24. Later we will show the equivalent result for 3-bits.

Number of
Structures

Number of Deltas

0 1 2 3

1 1 14 24 0

2 0 0 12 24

Table 24 – Number of classes for each number of deltas and number of possible Walsh

structures for 2-bit classes.

Grouping the classes by families, we can clearly see that for 2-bits, for all theoretical

structures 0 − 7 are represented, i.e. there exists a class with that structure. We can show by

construction this is true since there must be at least one instance of any structure, since the

structures represent a partitioning of the ℝ4 vector space of Walsh coefficients.

Additionally, if a class can be represented by a single coefficient, this is the only possible

structure for this class. If said structure is a univariate term, then the class consists of functions

of that variable only, meaning that adding another structure element (involving the other

variable) would not produce a function in the same class since the resulting function would be

a function of both variables. If said structure is the bivariate term, then the fitness is a function

of the relationship between the variable (𝑋𝑋0 = 𝑋𝑋1 or 𝑋𝑋0 ≠ 𝑋𝑋1) and there is no fitness contribution

of the individual variables, hence adding one would not produce a function in the same class.

We will also see this pattern later for 3-bits, i.e. that all theoretical structures are

represented, and that when a class can be represented by a single coefficient, then that is the

only possible structure for that class.

|

 88 of 195

5.3 Automated Calculation of Walsh Families

Earlier, we discussed using the delta expansion of a function to compute delta conditions,

and using the delta conditions to determine Walsh families. An alternate way to discover the

Walsh families is to generate an exhaustive collection of functions given certain constraints.

Recall that reduced structure is caused by equivalent delta values. Hence, it is possible to

satisfy (or not satisfy) any given delta condition by limiting the co-domain to only integer fitness

values. There will be some finite range of integers necessary to construct all possible structure.

We represent this range as 0 up to and including a given bound 𝑈𝑈. The form of these functions

is given by (115).

𝑓𝑓 ∶ {0, 1}2 → {0, 1, … ,𝑈𝑈} (115)

Each function is transformed using the Walsh-Hadamard transform and normalised by

discarding the 𝛼𝛼∅ term. Recall that the structure of the function is defined as the set of non-

zero coefficients, e.g. {𝛼𝛼{0},𝛼𝛼{0,1}} we enumerate as the structure 5.

For each function transformed, the class and structure are recorded. If this

(class, structure) tuple has not been seen before for some smaller value of 𝑈𝑈, it is recorded as

a discovered class-structure pair.

 Bound (𝑈𝑈)

0 1 2 3 4 ≥ 5

N
um

be
r o

f D
el

ta
s 0 1 0 0 0 0 0 …

1 0 14 0 0 0 0 …

2 0 0 36 12 0 0 …

3 0 0 0 24 24 0 …

Table 25 – Number of discovered valid structures for pseudo-Boolean classes in 2

dimensions. Table values state the number of structures discovered at the specified bound

which were not discovered at a smaller bound.

As we increase the radius 𝑈𝑈, we record the discovered structures. These are shown in

Table 25. We see that all class-structure pairs are discovered by trying all values of 𝑈𝑈 ≤ 4, and

no further class-structure pairs are discovered for larger bounds.

|

 89 of 195

We can see that delta condition 𝛿𝛿0 = 𝛿𝛿2 can be satisfied with function image {0, 1, 2, 3} (i.e.

𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, 𝛿𝛿0 = 𝛿𝛿1 = 𝛿𝛿2 = 1) and unsatisfied for the function image {0, 1, 2, 4} (i.e. 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, ,

𝛿𝛿0 = 𝛿𝛿1 = 1, 𝛿𝛿2 = 2, or 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛 = 0, , 𝛿𝛿0 = 𝛿𝛿2 = 1, 𝛿𝛿0 = 2). Thus, a bound of 𝑈𝑈 = 4 can produce

any structure which can exist for 2-bits where the codomain is the set of real numbers.

Likewise, for classes with the delta condition 𝛿𝛿0 = 𝛿𝛿1, the bound of 3 is sufficient.

We see therefore that it is sufficient to set the bound to 𝑈𝑈 = 4 to correctly identify the

Walsh families for each 2-bit class using exhaustive evaluation.

|

 90 of 195

5.4 Directed Ordinal Linkage and Epistasis

In genetics, epistasis is the study of gene interaction. For 2-bit functions we can compare

three chosen functions, the ONEMAX2, LEADING2, and CHECK1D
2 . All three functions’ fitness values

are shown in Table 26.

 ONEMAX2 LEADING2 CHECK1D
2

𝑋𝑋0 + 𝑋𝑋1
𝑥𝑥0

𝑋𝑋0 → 𝑋𝑋1
𝑥𝑥0

𝑋𝑋0𝑋𝑋1
𝑥𝑥0

0 1 0 1 0 1

𝑥𝑥1

0 0 1

 𝑥𝑥1

0 0 1

𝑥𝑥1

0 0 1

1 1 2 1 0 2 1 1 0

Table 26 – Comparison of fitness values from variable interactions of ONEMAX2, LEADING2,

CHECK1D
2 functions.

We see the ones fitness is an additive contribution of the two variables with the linkage

partitioned into two groups of one variable each, 𝑋𝑋0 + 𝑋𝑋1. For the checkerboard 1D the

appropriate setting of each variable is dependent on the other, in the case of two bits, the

fitness is the product of the two variables 𝑋𝑋0𝑋𝑋1, although not true for higher dimensions, we

still use this notation explained in section 4.2. The Leading ones function is an example of

directed linkage, for which we use the notation 𝑋𝑋0 → 𝑋𝑋1. The fitness landscapes are plotted in

Figure 10.

 ONEMAX2

LEADING2 CHECK1D
2

Figure 10 – Comparison of fitness landscapes of ONEMAX2, LEADING2, CHECK1D
2 functions.

|

 91 of 195

Looking at these fitness landscapes we compare the adjacent vertices and assign >, =,

or < to each edge corresponding to the difference in the sign (𝑠𝑠𝑔𝑔𝑂𝑂) of the fitness difference,

+1, −, or −1 as in section 4.2 The illustration in Figure 11 shows the comparison of signs on

parallel edges to detect linkage.

 ONEMAX2

LEADING2 CHECK1D
2

Figure 11 – Detecting directed ordinal linkage of ONEMAX2, LEADING2, CHECK1D
2 functions. The

dotted lines represent parallel edges with different signs in the fitness difference of the two

candidates on that edge of the Hamming space. For instance, with LEADING2, as we move

from 0 to 1 on variable 𝑋𝑋0, the sign of the fitness difference on 𝑋𝑋1 changes, therefore 𝑋𝑋1 is

dependant on 𝑋𝑋0 (written as 𝑋𝑋0 → 𝑋𝑋1).

|

 92 of 195

5.5 Precedence Networks and Precedence Profiles

Next we look at the algorithmic steps we can use to solve a problem. A non-revisiting

algorithm (one which does not evaluate the same candidate twice) will evaluate some or all of

the 4 candidates in the solution space for a 2-bit function, and terminate. We consider how

different algorithms may visit the different linkage partitions of a problem. A precedence

network refers to a directed acyclic graph where vertices represent linkage groups. These

precedence networks imply algorithms to locate a global optimum. The algorithms defined by

these networks or the networks themselves may be refer to as precedence networks.

ID Symbol Linkage Cost Algorithm

A0

𝑋𝑋0𝑋𝑋1 4
Exhaustive search – all 4 candidates are

evaluated in an arbitrary order.

B0

𝑋𝑋0 → 𝑋𝑋1 3

Both values for 𝑋𝑋0 tried with an arbitrary setting

of 𝑋𝑋1, then optimal setting for 𝑋𝑋0 tried with the

remaining setting of 𝑋𝑋1.

B1

𝑋𝑋1 → 𝑋𝑋0 3

Both values for 𝑋𝑋1 tried with an arbitrary setting

of 𝑋𝑋0, then optimal setting for 𝑋𝑋1 tried with the

remaining setting of 𝑋𝑋0.

C0

𝑋𝑋1 + 𝑋𝑋0 3 Use either the algorithm for B0 or B1. (arbitrary)

Table 27 – Description of all 4 precedence networks for 2-bit functions. The precedence

networks have been denoted A0, B0, B1 and C0 for reference. A, B, and C name the three

possible arrangement invariant under relabelling, since the case B has two possible

relabellings, they are numbered B0 and B0.

|

 93 of 195

Since the network C0 does not specify the order in which to visit linkage partitions, we

consider only the networks {A0, B0, B1} for this analysis. We call these three networks the fully-

specified precedence networks. As specified above, the C0 case can be solved by either B0 or

B1. To determine the cost of a fully specified network, take the number of arrangements of the

first linkage group, plus one less the number of arrangements of the remaining groups. This

cost function is given by (119) and applies to any dimensionality of precedence network.

𝑃𝑃𝑐𝑐𝑠𝑠𝑡𝑡(𝛄𝛄) = 2|𝛾𝛾0| + ��2|𝛾𝛾𝑖𝑖| − 1�
𝑛𝑛−1

𝑖𝑖=1

 (116)

To determine the cost of network C0, take the arithmetic mean of the cost for B0 and B1 to

obtain the expected cost. Since in this case the costs for B0 and B1 is the same, it is the same

for C0.

Other options for evaluating the network C0 exist, but are not more efficient than 3 function

evaluations. The implications of including parallel processing on this analysis – including the

cases for 3-bits – is returned to in chapter 6.

Figure 12 – All 2-bit fully-specified precedence networks represented pictorially. Connecting

arrows show the relationship of which network will solve every class solvable by another

class.

Using the fully-specified 2-bit precedence networks {A0, B0, B1}, we can construct a simple

hierarchy, wherein A0 solves any function class solvable by either B0 or B1, although it requires

more function evaluations.

We now run each algorithm {A0, B0, B1} on each class and return the probability that a

global optimum will be reached for a given class 𝑃𝑃 as [𝑃𝑃(A0, c) 𝑃𝑃(B0, c) 𝑃𝑃(B1, c)] where

𝑃𝑃(𝑂𝑂, c) is the probability of algorithm 𝑂𝑂 reaching the optimum of a function in class 𝑃𝑃. This result

we call the precedence profile of a class. For example, the class [3 1 0 1] has the precedence

|

 94 of 195

profile [1 1
2�

3
4�] since the algorithm 𝐴𝐴1 always reaches the global optimum of this class, the

algorithm 𝐸𝐸0 reaches the global optimum with 1 2� probability, and the algorithm 𝐸𝐸1 reaches the

global optimum with 3 4� probability. If choosing one of these algorithms at random, the

probability of reaching the global optimum is the average 3 4� , which we use as a measure of

problem difficulty.

Table 28 shows the precedence profiles of all 75 2-bit function classes.

|

 95 of 195

Class Profile Class Profile Class Profile

[0 0 0 0] † [1 1 1] [3 0 1 2] † [1 1
2�

1
2�] [2 0 1 3] † [1 1

2�
1
2�]

[1 1 1 0] † [1 1 1] [0 1 1 1] † [1 1 1] [0 2 2 1] † [1 1 1]

[1 1 0 1] † [1 1 1] [0 2 2 0] † [1 1 1] [0 2 1 2] † [1 1 1]

[2 2 0 0] † [1 1 1] [1 2 2 0] † [1 1 1] [0 3 1 1] † [1 3
4� 1

2�]

[2 2 1 0] † [1 1 1] [0 2 0 2] † [1 1 1] [0 3 2 0] † [1 1
2�

1
2�]

[2 2 0 1] † [1 1 1] [0 3 0 0] † [1 3 4� 3 4�] [1 3 2 0] † [1 1
2�

1
2�]

[1 0 1 1] † [1 1 1] [1 3 1 0] † [1 1
2�

3
4�] [0 3 0 2] † [1 1 3 4�]

[2 0 2 0] † [1 1 1] [1 2 0 2] † [1 1 1] [1 3 0 2] † [1 1 1]

[2 1 2 0] † [1 1 1] [1 3 0 1] † [1 1 1] [0 1 2 2] † [1 1 1]

[2 0 0 2] † [1 1 1] [2 3 0 0] † [1 3 4� 1] [0 1 3 1] † [1 1
2�

3
4�]

[3 0 0 0] † [1 3 4� 3 4�] [2 3 1 0] † [1 1
2� 1] [0 2 3 0] † [1 1

2�
1
2�]

[3 1 1 0] † [1 1 1] [2 3 0 1] † [1 1 1] [1 2 3 0] † [1 1
2�

1
2�]

[2 1 0 2] † [1 1 1] [0 0 2 2] † [1 1 1] [0 1 1 3] † [1 1 1]

[3 1 0 1] † [1 1
2�

3
4�] [0 0 3 0] † [1 3 4� 3 4�] [0 2 0 3] † [1 1 3 4�]

[3 2 0 0] † [1 3 4� 1] [1 1 3 0] † [1 3
4� 1

2�] [1 2 0 3] † [1 1 1
2�]

[3 2 1 0] † [1 1 1] [0 0 0 3] † [1 3 4� 3 4�] [0 0 3 2] † [1 3 4� 1]

[3 2 0 1] † [1 1
2� 1] [1 1 0 3] † [1 3

4� 1
2�] [0 0 2 3] † [1 3 4� 1]

[2 0 2 1] † [1 1 1] [1 0 2 2] † [1 1 1] [1 0 3 2] † [1 1 1]

[2 0 1 2] † [1 1 1] [1 0 3 1] † [1 1 1] [1 0 2 3] † [1 1
2� 1]

[3 0 1 1] † [1 3
4� 1

2�] [2 0 3 0] † [1 1 3 4�] [0 3 2 1] † [1 1
2�

1
2�]

[3 0 2 0] † [1 1 3 4�] [2 1 3 0] † [1 1 1
2�] [0 3 1 2] † [1 1 1

2�]

[3 1 2 0] † [1 1 1] [1 0 1 3] † [1 1
2�

3
4�] [0 2 3 1] † [1 1

2�
1
2�]

[3 0 0 2] † [1 1
2�

1
2�] [2 0 0 3] † [1 1

2�
1
2�] [0 2 1 3] † [1 1 1]

[3 1 0 2] † [1 1
2�

1
2�] [2 1 0 3] † [1 1

2�
1
2�] [0 1 3 2] † [1 1

2� 1]

[3 0 2 1] † [1 1 1
2�] [2 0 3 1] † [1 1 1] [0 1 2 3] † [1 1 1]

Table 28 – Precedence profiles of all 2-bit equivalence classes. († denotes one of the 24 a

classes of injective functions)

|

 96 of 195

A0 B0 B1 Avg. Deltas Classes Example

1 1 1 1

0 1 [0 0 0 0] – CONST2

1 10 [0 2 2 0] – CHECK1D
2

2 16 [3 1 1 0] – ONEMAX2

3 8 [3 2 1 0] – BINVAL2

1 1 3
4� 11

12� 2 4 [3 0 2 0] – LEADING2

1 3
4� 1 11

12� 2 4 [3 2 0 0]

1 1 1
2� 5

6� 3 4 [3 0 2 1]

1 1
2� 1 5

6� 3 4 [3 2 0 1]

1 3
4� 3

4� 5
6� 2 4 [3 0 0 0] – NEEDLE2

1 1
2� 3

4� 3
4� 2 4 [3 1 0 1]

1 3
4� 1

2� 3
4� 2 4 [3 0 1 1]

1 1
2� 1

2� 2
3�

2 4 [3 0 0 2] – TRAP2
2

3 8 [1 2 3 0]

Table 29 – Summary of precedence profiles of 2-bit classes.

With the details of Walsh families and the details of precedence profiles, we are able to

construct a table stating how many 2-bit classes exist for each pairing of Walsh family and

precedence profile.

|

 97 of 195

A0 B0 B1 {0} {1} {2} {3, 7} {4} {5, 7} {6, 7} {7}

1 1 1 1 2 2 12 2 0 0 16

1 1 3
4� 0 0 0 0 0 0 0 4

1 3
4� 1 0 0 0 0 0 0 0 4

1 1 1
2� 0 0 0 0 0 4 0 0

1 1
2� 1 0 0 0 0 0 0 4 0

1 3
4� 3

4� 0 0 0 0 0 0 0 4

1 1
2� 3

4� 0 0 0 0 0 0 4 0

1 3
4� 1

2� 0 0 0 0 0 4 0 0

1 1
2� 1

2� 0 0 0 0 0 4 4 4

Table 30 – For 2 bits, the number of classes for each combination of Walsh family and

precedence profile.

We observe that classes tend to cluster together in multiples of 4. To explain the

prevalence of 4s in the table we observe that considering both value relabelling and order

relabelling (discussed in section 3.1.7, p. 40) each 2-bit function has another 3 equivalent up

to relabelled functions totalling 4.

Exceptions exist where there are not 4 classes equivalent up to relabelling. For the {0},

{1}, and {2} families; these represent less than 2-bit functions, i.e. they have a linkage partition

of no variables Γ = ∅, only the first variable Γ = �{𝑋𝑋0}�, or only the second variable Γ = �{𝑋𝑋1}�

respectively. Additionally the {4} families has a similar symmetry as it is just the bivariate

coefficient, there are only two possibilities: +𝑣𝑣𝐴𝐴 or –𝑣𝑣𝐴𝐴 bivariate coefficient.

|

 98 of 195

5.6 Delta Linkage Detection

As previously stated in section 5.2, for the case of 2-bits, there can be at most one

unnecessary piece of structure. Here we consider whether we can use the delta expansion to

detect whether the variables are linked (a bivariate class) or not (which we shall call a non-

bivariate class). To detect non-bivariate problems in 2-bits we only need to look at the product

of the fourth row (row 3) of the Hadamard matrix with the delta expansion. In this section we

describe the formal relationship between using the delta value and ordinal independence

criteria. This we can show by exhaustive evaluation of the 75 classes, that this holds true for

all 2-bit classes.

Instead of writing out the delta expansion in terms of positive 𝛿𝛿 symbols, we can automate

the process more easily by defining a delta matrix Δ which is populated by 0s and 1s

representing the coefficients of the 𝛿𝛿 values (since each delta is present or not present). The

coefficient of 𝑓𝑓𝑚𝑚𝑖𝑖𝑛𝑛, from the delta expansion is omitted as these coefficients will always cancel

for any non-empty clique. The construction of the delta matrix is given in (117).

Δ =

⎣
⎢
⎢
⎢
⎡𝐷𝐷11

0 𝐷𝐷111 𝐷𝐷112

𝐷𝐷010 𝐷𝐷011 𝐷𝐷012

𝐷𝐷100 𝐷𝐷101 𝐷𝐷102

𝐷𝐷000 𝐷𝐷001 𝐷𝐷002 ⎦
⎥
⎥
⎥
⎤

where 𝐷𝐷𝐱𝐱𝑟𝑟 = �1, 𝑅𝑅𝑓𝑓(𝐱𝐱) > 𝑒𝑒
0, 𝑐𝑐𝑡𝑡ℎ𝐴𝐴𝑒𝑒𝑤𝑤𝑖𝑖𝑠𝑠𝐴𝐴

(117)

The above construction is not completely matched with the delta expansion in the case of

less than 2ℓ distinct ranks, however, the difference is only in redundant repeated columns,

which do not affect the result.

We define the result of the matrix multiplication as the delta condition vector 𝑉𝑉{0,1} as given

by (118).

𝑉𝑉{0,1} = [𝐻𝐻2]𝑟𝑟𝑟𝑟𝑟𝑟:3 ∙ Δ

where [𝐻𝐻2]𝑟𝑟𝑟𝑟𝑟𝑟:3 = [1 −1 −1 1]
(118)

|

 99 of 195

If the delta condition vector 𝑉𝑉{0,1} is zero, the class is never bivariate. If the non-zero

elements of the vector all have the same sign, the class is always bivariate. If the vector

contains both positive and negative terms, then the bivariate term is unnecessary.

One way we may express this condition that a vector is not completely zero and all non-

zero elements are of the same sign is the terms given by (119).

ℒ𝛿𝛿(𝑉𝑉) ⇔ ��|𝑉𝑉𝑖𝑖|
𝑖𝑖

≠ 0�⋀���𝑉𝑉𝑖𝑖
𝑖𝑖

� = �|𝑉𝑉𝑖𝑖|
𝑖𝑖

� (119)

By comparing the result of this condition, with the result of applying the ordinal

independence criteria 𝑋𝑋0 + 𝑋𝑋1 (equivalence 66, p. 52), we observe that for every class on 2-

bits, the absence of linkage according to this formulation based on Walsh expansion is

equivalent formulation to the ordinal independence criteria. This is stated by (120).

𝑋𝑋0 + 𝑋𝑋1 ⇔ ¬ℒ𝛿𝛿(𝑉𝑉{0,1}) (120)

Thus, we see that for 2-bits the delta expansion, which is in terms of Walsh coefficients, can

be connected with ordinal independence, which is in terms of linkage partition.

|

 100 of 195

5.7 Structural Coherence

In this section we consider the difficulty of learning the linkage of each 2-bit class for an

EDA and compare the population size and selection size necessary for different categories of

2-bit classes. The experiments in this section were produced and published in collaboration

with Dr Alexander Brownlee, University of Stirling in [3]. My contribution to this work was in

providing the structural data on all 2-bit function classes, and further summary details

presented in this section in Table 33 and Figure 14. Readers of [3] should be aware that the

notation has been adapted to be consistent with the conventions used in this thesis.

EDAs explicitly model structure, therefore there is a relationship between EDA preference

and the structure of the function. Echegoyen et al. [106] show that the relationship between

the model and structure affects performance. It is of interest how well EDAs detect essential

structure. As shown in the previous section (5.6); ordinal linkage for 2-bit pseudo-Boolean

problems is determined by whether the bivariate term is necessary to maintain the ranking.

The difficulty is based on the minimum population size required to have a statistically-

significant result for the statistical independence test chi-squared 𝜒𝜒2 detection of the interaction

between 𝑋𝑋0 and 𝑋𝑋1 (the condition ℒ𝑂𝑂(0, 1)). The chi-squared test is one test an EDA may use

to detect interactions. This result is applicable to any EDA using this method.

An algorithm detects the linkage correctly if there exist linkage between the variables and

the interaction is picked up by the EDA, or if there is no linkage and no linkage is detected by

the EDA. The algorithm fails to detect linkage correctly if there exists linkage between the

variables but it is not detected, or if there is no linkage but a spurious correlation is modelled.

We define 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 as the minimum population size required such that the chi-squared value

as given by (121) exceeds the critical value 𝑃𝑃 = 3.84 (probability 0.95 for 1 degree of freedom);

if no population size is sufficient to correctly detect the linkage then 𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 = ∞.

𝜒𝜒0,1
2 (𝑆𝑆) = �

�𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0𝑋𝑋1)− 𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0) ∙ 𝐴𝐴(𝑋𝑋1)�2

𝑆𝑆 ∙ 𝐴𝐴(𝑋𝑋0) ∙ 𝐴𝐴(𝑋𝑋1)
𝑋𝑋0𝑋𝑋1∈{0,1}2

≥ 3.84 (121)

Here we sum over all 4 possible configurations of 𝑋𝑋0 and 𝑋𝑋1, 𝐴𝐴(𝑋𝑋0) represents the proportion

of the population which has 𝑋𝑋0 in that configuration, and similarly with 𝐴𝐴(𝑋𝑋0) and 𝐴𝐴(𝑋𝑋0𝑋𝑋1). 𝑆𝑆

represents that population size.

We can rearrange this formula by dividing out the 𝑆𝑆 term, to find the minimum value for

𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛, the minimum population required to detect the linkage with statistical significance as

given by (122, p. 101).

|

 101 of 195

𝑆𝑆𝑚𝑚𝑖𝑖𝑛𝑛 = �
�

3.84
𝜒𝜒𝑖𝑖,𝑗𝑗2 /𝑆𝑆

� , 𝜒𝜒𝑖𝑖,𝑗𝑗2 ≠ 0

∞, 𝜒𝜒𝑖𝑖,𝑗𝑗2 = 0

where 𝜒𝜒𝑖𝑖,𝑗𝑗2 /𝑆𝑆 = �
�𝐴𝐴�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗� − 𝐴𝐴(𝑋𝑋𝑖𝑖) ∙ 𝐴𝐴�𝑋𝑋𝑗𝑗��

2

𝐴𝐴(𝑋𝑋𝑖𝑖) ∙ 𝐴𝐴(𝑋𝑋2)
𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗∈{0,1}2

(122)

For every 2-bit class, for the two chosen selection methods, we can explicitly calculate this

value by calculating the probability of selection for each candidate, and hence calculating the

values for 𝐴𝐴�𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗�, 𝐴𝐴(𝑋𝑋𝑖𝑖), and 𝐴𝐴�𝑋𝑋𝑗𝑗�.

With tournament selection, there are 16 possible tournaments arising for each

combination of 4 possible candidates. For a given function class, for each tournament, the

winner of the tournament is determined. If there is no tie, the higher-fitness candidate will be

selected twice, contributing 1/8 to its total probability of selection. In the case of a tie, the first

candidate is chosen. Since for every tournament 𝐴𝐴,𝐵𝐵, the tournement 𝐵𝐵,𝐴𝐴 is also run, in the

case of a tie, from the two tournaments, 𝐴𝐴 will be selected once and 𝐵𝐵 will be selected once

each contributing 1/16 to their total probability of selection.

With truncation selection, the top 1 4� , 1 3� or 1 2� of the candidates are selected, assuming

that where there are ties, the corresponding block of the population is comprised of equal parts

of the equal-rank candidates. An example is given in Figure 13.

Figure 13 – Example of selecting the top 50% for the class of the ONEMAX2 function. The

candidate [1 1] is selected with 0.5 probability and [1 0] and [0 1] are each selected with

0.25 probability.

For this result we group the 2-bit classes into categories by the number of candidates at

each rank. Each class in a category is represented by a rank vector which is a permutation of

a rank vector of any other class in the same category. These categories are listed in Table 31.

|

 102 of 195

Cat.
ID Description Num.

Deltas
Num.

Classes
Global
Optima

Example Class

0 1 distinct. 0 1 4 [0 0 0 0] – CONST2

1 2 distinct:
3 maxima, 1 minimum. 1 4 1 [3 0 0 0] – NEEDLE2

2 2 distinct:
1 maximum, 3 minima. 1 4 3 [1 1 1 0]

3 2 distinct:
2 maxima, 2 minima. 1 6 2 [0 2 2 0] – CHECK1D

2

4 3 distinct:
1 maximum, 2 minima. 2 12 1

[3 0 2 0] – LEADING2

[3 0 0 2] – TRAP2
2

5 3 distinct:
1 maximum, 1 minimum 2 12 1

[3 1 1 0] – ONEMAX2

[0 1 1 3] – ZEROMAX2

6 3 distinct:
2 maxima, 1 minimum 2 12 2 [2 2 1 0]

7 4 distinct. 3 24 1 [3 2 1 0] – BINVAL2

Table 31 – Categories of 2-bit functions based on number of candidates at each rank.

We observe that the population size and selection size has an effect on the correct

detection of linkage. We also observe that building a model from negative selection (selecting

the least fit individuals) can actually improve accuracy of linkage detection for certain classes.

|

 103 of 195

Cat. Class Family 𝑋𝑋0𝑋𝑋1 Tournament Truncation Top Truncation Bottom Truncation T+B
Best Worst 0.25 0.33 0.5 0.25 0.33 0.5 0.25 0.33 0.5

0 [0 0 0 0] {0} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

1

[3 0 0 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15
[0 3 0 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15
[0 0 3 0] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15
[0 0 0 3] {7} Y 96 35 ∞ 61 ∞ 15 15 15 15 15 15

2

[0 1 1 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15
[1 0 1 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15
[1 1 0 1] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15
[1 1 1 0] {7} Y 35 96 15 15 15 ∞ 61 ∞ 15 15 15

3

[2 2 0 0] {2} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 0 2 0] {1} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 2 2 0] {3} Y 15 15 4 4 4 4 4 4 4 4 4
[2 0 0 2] {3} Y 15 15 4 4 4 4 4 4 4 4 4
[0 2 0 2] {1} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 0 2 2] {2} N ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

4

[3 2 0 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 3 0 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 0 3 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 0 0 3] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4
[3 0 2 0] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 3 2 0] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4
[0 2 3 0] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4
[0 2 0 3] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 0 0 2] {7} Y 16 14 ∞ 4 4 4 4 4 4 4 4
[0 3 0 2] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 0 3 2] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 0 2 3] {7} Y 726 81 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

5

[3 0 1 1] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[0 3 1 1] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[0 1 3 1] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[0 1 1 3] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞
[3 1 0 1] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[1 3 0 1] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞
[1 0 3 1] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞
[1 0 1 3] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[3 1 1 0] {3, 7} N 143 143 ∞ 61 15 ∞ 61 15 ∞ ∞ ∞
[1 3 1 0] {6, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[1 1 3 0] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞
[1 1 0 3] {5, 7} Y 23 23 ∞ 10 15 ∞ 10 15 ∞ ∞ ∞

6

[1 0 2 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 1 2 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 2 1 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 2 2 1] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4
[1 2 0 2] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 1 0 2] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4
[2 0 1 2] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4
[2 0 2 1] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[1 2 2 0] {7} Y 14 16 4 4 4 ∞ 4 4 4 4 4
[2 1 2 0] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 2 1 0] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 2 0 1] {7} Y 81 726 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

7

[3 2 1 0] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 3 1 0] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 1 2 0] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[1 3 2 0] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[1 2 3 0] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[2 1 3 0] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 2 0 1] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 3 0 1] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 0 2 1] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 3 2 1] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[0 2 3 1] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[2 0 3 1] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 0 1 2] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[0 3 1 2] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[3 1 0 2] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[1 3 0 2] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[1 0 3 2] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 1 3 2] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[0 2 1 3] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 0 1 3] {6, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞
[0 1 2 3] {3, 7} N 173 173 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[1 0 2 3] {6, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[1 2 0 3] {5, 7} Y 46 46 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
[2 1 0 3] {5, 7} Y 14 14 ∞ 4 4 ∞ 4 4 ∞ ∞ ∞

Table 32 – Minimum population sizes required to detect actual or spurious correlation for all

2-bit functions with statistically significant 𝜒𝜒0,1
2 > 3.84 – first published in [3].

|

 104 of 195

Note that there are symmetries in the result. For example, the category 1 (the NEEDLE2 and

variable re-ordered variants) and category 2 (functions where only one value is sub-optimal)

have equivalent results except that the result for positive selection and the result for negative

selection are swapped. This is because one category is the inverse of the other in terms of

whether solutions are grouped at the top fitness vs the bottom fitness.

If we count the number of 2-bit classes for which linkage is correctly detected as a function

of population size 𝑆𝑆, we see that the across the set of 2-bit classes tournament selection

selecting the best individual performs equally to selecting the worst, and for each selection

size, top selection performs equally to bottom selection. We also see that each selection size

for top-and-bottom selection performs equally to one another. This is detailed in Table 33 for

each interval and these 5 cumulative distributions are graphed in Figure 14 (p. 105) for

comparison.

Population
Size

(as half-open
intervals)

Number of Classes for which Linkage is Detected Correctly (of 75 total)

Tournament
(Best)

Top Selection
(0.25)

Top Selection
(0.33)

Top Selection
(0.5)

Top+Bottom
Selection

(0.5)

Top+Bottom
Selection

(0.33)
Tournament

(Worst)

Bottom
Selection

(0.25)

Bottom
Selection

(0.33)

Bottom
Selection

(0.5)
Top+Bottom

Selection
(0.5)

 [1, 4) 17 17 17 17 17
 [4, 10) 17 23 35 35 27
 [10, 14) 17 23 43 35 27
 [14, 15) 29 23 43 35 27
 [15, 16) 31 27 47 43 35
 [16, 23) 35 27 47 43 35
 [23, 35) 43 27 47 43 35
 [35, 46) 47 27 47 43 35
 [46, 61) 55 27 47 43 35
 [61, 81) 55 27 47 43 35
 [81, 96) 63 27 47 43 35
 [96, 143) 67 27 47 43 35
 [143, 173) 63 27 47 43 35
 [173, 726) 55 27 47 43 35
 [726,∞) 63 27 47 43 35

Table 33 – Number of 2-bit classes for which linkage is correctly detected as a function of

population size, comparing different selection types.

|

 105 of 195

Figure 14 – Number of 2-bit classes for which linkage is correctly detected plotted against

population sizes, comparing different selection types. All jump discontinuities depicted are

right-continuous.

5.8 Summary

In this chapter we have examined the space of 2-bit classes. We have defined the

concepts of Walsh families, delta conditions, precedence networks, and precedence profiles.

We have seen that the precedence networks set out algorithmic steps which can be used to

solve a function, and that the precedence profile gives a description of the difficulty of the

problem class. In the following chapter we will describe extending this to 3-bit classes.

|

 106 of 195

|

 107 of 195

6 3-Bit Pseudo-Boolean Functions

In this chapter we explore the set of 3-bit classes. Conclusions drawn from this chapter

will necessarily be more summative than the analysis of 2-bit classes, since the 3-bit classes

are too numerous to list unabridged. The structure of this chapter is set up to compare and

contrast our observations with that of the 2-bit classes. Some of the work in this section was

first published in [2]. There is also some recent literature which looks at the space of 3-bit

classes in [106] [107] on taxonomy of injective 3-bit function classes under equivalence based

on finite and infinite population models.

6.1 Counting 3-Bit Classes

A 3-bit equivalence class consists of ranks for the 8 possible values of 𝐱𝐱. Table 34 shows

the number of 3-bit function classes with a breakdown of number of classes for each valid

number of ranks. The number of classes for 8 ranks (40 320) is the number of injective function

classes. In total, there are 545 835 function classes.

Num. Ranks, 𝑂𝑂 Num. Classes, 𝑃𝑃(𝑂𝑂, 3)

1 1

2 254

3 5 796

4 40 824

5 126 000

6 191 520

7 141 120

8 40 320

Total 545 835

Table 34 – The number of function classes in 3-bits for a given number of distinct fitness

levels (number of ranks). There are 545 835 distinct classes for 3-bit functions.

|

 108 of 195

6.2 Walsh Families and Delta Conditions

When we count the number of distinct delta conditions, we find 395 possible distinct delta

conditions (ignoring coefficients which are always zero or always non-zero). These are only

those equations generated from expressions from the delta expansion which contain both

positive and negative coefficients of delta values. Setting this expression equal to zero we get

an equation, which we present rearranged such that terms with negative coefficients are

moved to the other side of the equation.

From exhaustive evaluation of this set, we observe that the most prolific delta condition,

which occurs 41 496 times in the set of equivalence classes, is the condition 𝛿𝛿0 = 𝛿𝛿2. The least

common conditions are 𝛿𝛿0 = 3𝛿𝛿1 and 𝛿𝛿1 = 3𝛿𝛿0, which each only occur 56 times. There are

shown in Table 35.

Delta Condition Occurrences Example Class and Coefficient

𝛿𝛿0 = 𝛿𝛿2 41 496 [0 1 2 3 3 3 3 3] / 𝛼𝛼{0,1}

…

𝛿𝛿0 = 3𝛿𝛿1 56 [1 1 1 1 0 5 5 5] / 𝛼𝛼{2}

𝛿𝛿1 = 3𝛿𝛿0 56 [3 0 0 3 0 3 3 7] / 𝛼𝛼{0,1,2}

Table 35 – The most and least prolific delta conditions in 3-bit classes.

To get an idea of the possible complexity of delta conditions in this space, we can sum the

absolute values of the coefficients of the terms. The most complex, using this measure, are

the four conditions shown in Table 36.

Delta Condition Occurrences Example Class and Coefficient

𝛿𝛿0 + 2𝛿𝛿1 + 3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿5 4 032 [3 0 1 4 2 5 5 7] / 𝛼𝛼{0,1,2}

𝛿𝛿0 + 2𝛿𝛿1 + 3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿6 8 064 [3 0 1 4 2 5 6 7] / 𝛼𝛼{0,1,2}

𝛿𝛿0 = 𝛿𝛿1 + 2𝛿𝛿2 + 3𝛿𝛿3 + 2𝛿𝛿4 + 𝛿𝛿5 4 032 [1 1 3 4 0 5 6 7] / 𝛼𝛼{2}

𝛿𝛿0 = 𝛿𝛿2 + 2𝛿𝛿3 + 3𝛿𝛿4 + 2𝛿𝛿5 + 𝛿𝛿6 8 064 [1 2 3 4 0 5 6 7] / 𝛼𝛼{2}

Table 36 – All delta conditions in 3-bit classes where the sums of the coefficients is at its

maximum (the sum equals 10).

|

 109 of 195

Number of Deltas

0 1 2 3 4 5 6 7

Bo
un

d
(𝑈𝑈

)

≥
16

…

…

…

…

…

…

…

…

0 0 0 0 0 0 0 0

15
 0

0

0

0

0

0

0

16
 1

28

14
 0

0

0

0

0

0

8
06

4 0

13
 0

0

0

0

0

0

16
 1

28

21
 5

04

12
 0

0

0

0

0

6
72

0

24
 1

92

28
 2

24

11
 0

0

0

0

0

12
 0

96

57
 7

92

65
 8

56

10
 0

0

0

0

1
34

4

28
 2

24

15
1

87
2

41
 6

64

9 0

0

0

0

5
37

6

10
4

83
2

14
2

46
4

83
 3

28

8 0

0

0

0

16
 1

28

17
5

39
2

22
5

79
2

25
 5

36

7 0

0

0

78
4

67
 5

36

19
8

91
2

15
4

56
0

40
 3

20

6 0

0

0

3
92

0

92
 0

64

25
4

01
6

14
1

12
0 0

5 0

0

0

16
 2

40

15
2

54
4

19
1

52
0 0

0

4 0

0

11
2

37
 4

64

12
6

00
0 0

0

0

3 0

0

2
94

0

40
 8

24
 0

0

0

0

2 0

0

5
79

6 0

0

0

0

0

1 0

25
4 0

0

0

0

0

0

0 1 0

0

0

0

0

0

0

Table 37 - Number of discovered valid structures for 3-bit pseudo-Boolean classes. Table

values state the number of structures discovered at the specified bound which were not

discovered at a smaller bound.

|

 110 of 195

6.3 Automated Calculation of Walsh Families

Recall the method of automated discovery of Walsh families of the space of 2-bit function

describe in section 5.3. Again, we are able to use only integer values with a fixed upper bound

𝑈𝑈 to discover the Walsh families of all 545 835 3-bit classes. Table 37 (p. 109) shows the

distribution of valid structure discoveries at each increment of the bound 𝑈𝑈 for 0 and 15. Having

tried a bound of up to 17, we conjecture that no further structures are discovered for higher

values of 𝑈𝑈. Further details in only this section 6.3 depend on this conjecture.

It is worthy of note that for the case of 7 deltas, although there are no additional structures

discovered at radius 14 (which were not already seen for radius 13), there are new structures

found for at radius 15. Thus, no additionally structures being detected at radius 16 and 17 does

not prove that there are none discovered for higher radii.

Recall that the highest sum of absolute values of coefficients has a sum of 9 in the absolute

value of coefficients on one side, and 1 on the other, for example the delta condition 𝛿𝛿0 + 2𝛿𝛿1 +

3𝛿𝛿2 + 2𝛿𝛿3 + 𝛿𝛿4 = 𝛿𝛿5. For integer deltas, the left hand side is at least 9 (when all five deltas on

the LHS are 1), hence 𝛿𝛿5 ≥ 9. Since this does not include the 𝛿𝛿6 term, which is strictly positive,

1 must be added for this term. There, the sum of all deltas is at least 15 (from the first five set

to one, and the last, nine, plus one for the missing term: 5 + 9 + 1). Thus in order to satisfy this

delta condition, a bound of 𝑈𝑈 ≥ 15 is needed. This is suggestive that the conjectured bound of

𝑈𝑈 = 15 is sufficient for all structures.

Below we show the relationship between the increasing number of deltas and the number

of possible structures in a 3-bit function. There are some numbers of structures, 9, 11, 13, 14,

and 15 which are not present in the data, that is, no 3-bit Walsh family contains that number

of members. We see a trend of increasing number of possible structures as the number of

deltas increases.

|

 111 of 195

Num.
Structs.

Number of Deltas

0 1 2 3 4 5 6 7

1 1 254 2 744 6 720 4 032 0 0 0

2 0 0 3 052 16 072 23 856 10 080 0 0

3 0 0 0 11 760 30 240 21 504 8 064 0

4 0 0 0 6 272 41 664 53 760 14 784 2 688

5 0 0 0 0 12 096 41 664 34 944 5 376

6 0 0 0 0 8 064 24 864 24 192 9 408

7 0 0 0 0 5 376 18 816 16 128 2 688

8 0 0 0 0 672 15 456 25 536 8 064

9 0 0 0 0 0 0 0 0

10 0 0 0 0 0 2 688 6 720 5 376

11 0 0 0 0 0 0 0 0

12 0 0 0 0 0 2 688 9 408 4 032

13 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

15 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 1 344 2 688

Table 38 – Number of classes for each number of deltas and number of possible Walsh

structures for 3-bit classes.

|

 112 of 195

6.4 Conditionally-Necessary Interactions

By exploring the result of our automated calculation of Walsh families, we discover types

of structure not present in 2-bit classes. Recall that in 2-bit classes, structure was either

necessarily zero, necessarily non-zero, or optional. We see that this analysis of 3-bit structures

is useful since it highlights an incompleteness in considering elements of Walsh structure to

be simply necessary or unnecessary (spurious).

If we take an instance of the benchmark class 𝐶𝐶BINVAL3 = [7 6 5 4 3 2 1 0] such as the

instance BINVAL3, and increase the bivariate term 𝛼𝛼{0,1} (previously 0) by a small amount, we

see that when 𝑥𝑥0 = 𝑥𝑥1, fitness values (𝑓𝑓000, 𝑓𝑓110, 𝑓𝑓001, and 𝑓𝑓111) are incremented by this amount,

when 𝑥𝑥0 ≠ 𝑥𝑥1, the fitness values (𝑓𝑓100, 𝑓𝑓010, 𝑓𝑓101, and 𝑓𝑓011) are decremented by this amount.

As there exists a finite spacing between each adjacently-ranked candidate, there is such a

change we can make to 𝛼𝛼{0,1} which will not permute the ranks.

Figure 15 – An instance of the class 𝐶𝐶BINVAL3 (above), transformed by adding a small, positive

bivariate term 𝛼𝛼{0,1} > 0 (below). As long as the term is small enough, the relative ranks of

the candidates are undisturbed, and the function is still in the class 𝐶𝐶BINVAL3.

In contrast, if we perform the same transformation of adding a small bivariate term to the

benchmark class 𝐶𝐶ONEMAX3 = [7 4 4 1 4 1 1 0] the same four values are incremented with

the remaining decremented, however, we are now guaranteed to have generated an instance

of a different class, not 𝐶𝐶ONEMAX3 since 𝑓𝑓001 has moved away from 𝑓𝑓010 and 𝑓𝑓100, additionally,

𝑓𝑓110 has moved away from 𝑓𝑓011 and 𝑓𝑓101. This is now an instance of [7 4 4 3 6 1 1 0]. In

general all cases with zero coefficients will split in this way when the zero coefficient is

changed.

|

 113 of 195

However, if we set all three coefficients to the same value, we get back to the original

class. Figure 16 shows three transformations applied to 𝐶𝐶ONEMAX3, first adding a small positive,

value to 𝛼𝛼{0,1}, then 𝛼𝛼{0,2}, then 𝛼𝛼{1,2}, each of the same magnitude. Each transformation moves

the instance outside of the current class, with the last restoring to the original class.

Figure 16 – An instance of the class 𝐶𝐶ONEMAX3 (top row), through a series of transformations,

but adding a small, positive value 𝑑𝑑 > 0 to the zero bivariates terms 𝛼𝛼{0,1} = 𝑑𝑑 (second row),

𝛼𝛼{0,1} = 𝛼𝛼{0,2} = 𝑑𝑑 (third row), then 𝛼𝛼{0,1} = 𝛼𝛼{0,2} = 𝛼𝛼{1,2} = 𝑑𝑑 (fourth row).

|

 114 of 195

For the Walsh structures in 3-bits, we have 7 possible structure elements. We adopt the

enumeration convention described in Table 39.

Condition Binary Enumeration Hex Enumeration

𝛼𝛼{0} ≠ 0 0000001 01

𝛼𝛼{1} ≠ 0 0000010 02

𝛼𝛼{0,1} ≠ 0 0000100 04

𝛼𝛼{2} ≠ 0 0001000 08

𝛼𝛼{0,2} ≠ 0 0010000 10

𝛼𝛼{1,2} ≠ 0 0100000 20

𝛼𝛼{0,1,2} ≠ 0 1000000 40

Table 39 – Enumeration of structure elements for 3-bits.

These can be combined into 128 possible structures which are enumerated in Figure 17.

Figure 17 – All 128 possible Walsh structures for 3-bits, enumerated 00 to 7F. The ID of a

given structure is the sum of the row header with the column header.

|

 115 of 195

In 2-bit classes, recall that every Walsh coefficient was either necessarily zero, necessarily

non-zero, or optional (conditioned on a delta condition). When we move from 2-bit classes to

3-bit classes we see the emergence of another case we will call conditionally-necessary

structures.

Recall that in 2-bits, the ONEMAX2 and BINVAL2 functions both belonged to the {3, 7} Walsh

family, meaning that both univariate terms were necessary and the bivariate term was optional.

This trend continues with BINVAL3 in 3-bits with every non-univariate term being optional as

shown in Figure 18.

Figure 18 – All possible Walsh structures for 𝐶𝐶BINVAL3.

By contrast, however, the ONEMAX3 function despite having the same minimal structure (0B)

and same maximal structure (7F) than BINVAL3, has only two other possible structures, shown

in the Figure 19. The key difference is that the bivariate terms are all conditionally-necessary,

one is non-zero if and only if the others are non-zero.

Figure 19 – All possible Walsh structures for 𝐶𝐶ONEMAX3.

We note that these conditionally-necessary structures do not preclude the existence of a

unique minimal structure in this instance, however, we can find instances where there is no

clear minimal structure.

|

 116 of 195

In the case of the class [0 1 2 4 2 4 4 7], we see that the minimal structure is 2𝐵𝐵 (all

univariates and one bivariate 𝛼𝛼{1,2}), however the bivariate term can be removed and replaced

with two other supporting bivariate terms 𝛼𝛼{0,1} and 𝛼𝛼{1,2}, in this sense the bivariate term 𝛼𝛼{1,2}

is not simply necessary or unnecessary, but conditional on the presence of the other two

bivariates. The possible structures are shown in Figure 20.

Figure 20 – All possible Walsh structures for 𝐶𝐶[0 1 2 4 2 4 4 7].

In the case of the class [2 0 1 5 5 2 4 5], at least 6 of the possible 7 structure elements

must be non-zero. The candidates for allowable zero elements are the trivariate term 𝛼𝛼{0,1,2},

the bivariate term 𝛼𝛼{0,2}, or the univariate term 𝛼𝛼{0} however, no two or three of these may be

zero together. The possible structures are shown in Figure 21.

Figure 21 – All possible Walsh structures for 𝐶𝐶[2 0 1 5 5 2 4 5].

|

 117 of 195

6.5 Precedence Networks and Precedence Profiles

As with the 2-bit classes, we can construct all possible precedence networks for evaluating

3-bit functions. First we limit the profiles to fully-specified precedence networks. We explore

this concept as a measure of complexity of functions.

A fully-specified precedence network is a precedence network which contains one

prescribed topological ordering over the linkage groups, these are listed in Table 40.

Label Network Cost Label Network Cost

A0 𝑋𝑋0𝑋𝑋1𝑋𝑋2 8 D0 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 4

B0 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 5 D1 𝑋𝑋0 → 𝑋𝑋2 → 𝑋𝑋1 4

B1 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2 5 D3 𝑋𝑋1 → 𝑋𝑋2 → 𝑋𝑋0 4

B2 𝑋𝑋2 → 𝑋𝑋0𝑋𝑋1 5 D4 𝑋𝑋2 → 𝑋𝑋0 → 𝑋𝑋1 4

C0 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2 5 D2 𝑋𝑋1 → 𝑋𝑋0 → 𝑋𝑋2 4

C1 𝑋𝑋0𝑋𝑋2 → 𝑋𝑋1 5 D5 𝑋𝑋2 → 𝑋𝑋1 → 𝑋𝑋0 4

C2 𝑋𝑋1𝑋𝑋2 → 𝑋𝑋0 5

Table 40 – All 3-bit fully-specified precedence networks.

For instance, B1 specifies that variable 𝑋𝑋1 should be set by trying both possible

assignments against an arbitrary setting of the other variables, this takes 2 function

evaluations, then the variables 𝑋𝑋0𝑋𝑋2 should be set together by evaluating all 4 assignments of

those variables against the optimal setting for the fixed variable. Since one such assignment

has been tried already, this takes 3 function evaluations. In total, B1 takes 5 function

evaluations. We write this precedence network as 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2 and the network set {B0, B1, B2}

can be expressed in the form ● → ●●.

Figure 22 shows the fully-specified networks and shows which networks will necessarily

solve instances of classes solved to another. The required number of function evaluations

(cost) is shown. The sequence of steps in the network gives an upper bound on cost to be

guaranteed an optimal solution of the problem using perturbation steps. The costs of

evaluating a network may be calculated by 2𝑘𝑘 for the first partition (where 𝑘𝑘 is the number of

variables in the first partition) plus 2𝑘𝑘 − 1 per each successive partition (where 𝑘𝑘 is the number

of variables in the current partition.)

|

 118 of 195

Figure 22 – All 3-bit fully-specified precedence networks represented pictorially. Connecting

arrows show the relationship of which network will solve every class solvable by another

network

|

 119 of 195

When we test every possible 3-bit class, we see that every instance in which a precedence

network is predicted to solve a function, it does. However, there are many additional cases in

which a precedence network solves a function despite not being predicted by the specified

hierarchy. We may expect that the directed ordinal linkage would specify which precedence

profiles would be applicable, however, this is not the case.

A good example is the class of the benchmark function CHECK1D
3 . The directed ordinal

linkage suggests that the profile 𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2 would not solve the classes in all runs, however,

we can show that it does, in all runs. On evaluating 𝑋𝑋1 there is an even chance of either 0 or 1

being chosen, however, since this problem has two global optima – one in which 𝑋𝑋1 is set to

0, and one in which 𝑋𝑋1 is set to 1 – a global optimum is always reached. This is diagrammed

in Figure 23.

Figure 23 – All possible optimisation paths for CHECK1D
3 problem under the precedence

network B1 (𝑋𝑋1 → 𝑋𝑋0𝑋𝑋2) showing that the optimum is always reached.

|

 120 of 195

Figure 24 – Under the precedence network D0 (𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2), there is a chance of 1/4

(50% × 50% × 50% + 50% × 50% × 50%) that an optimum is not reached for CHECK1D
3

problem, hence the probability of reaching the optimum is 3/4 .

From this we derive the idea of the precedence profile, since a function does not fit exactly

in one category. The probability of arriving at the global optimum (assuming maximisation

criteria) for a given function and precedence network can be calculated, and when this is done

for all possible fully-specified precedence networks, we refer to this as the precedence profile

of the function for a given length.

|

 121 of 195

Table 41 shows the precedence profiles of eight benchmark functions.

 Function
Precedence Network

A0 B0 B1 B2 C0 C1 C2 D0 D1 D4 D2 D3 D5

CONST𝑐𝑐
3 / ONEMAX3 /

ZEROMAX3 / BINVAL3 1 1 1 1 1 1 1 1 1 1 1 1 1

CHECK1D
3 1 1 1 1 1 1 1

3
4

1
2

1
2
 1 1

3
4

LEADING3 1 1
3
4

5
8
 1

3
4

5
8
 1

3
4

5
8

3
4

9
16

15
32

NEEDLE3 1
5
8

5
8

5
8

5
8

5
8

5
8

15
32

15
32

15
32

15
32

15
32

15
32

TRAP3
3 1

1
4

1
4

1
4

1
2

1
2

1
2

1
8

1
8

1
8

1
8

1
8

1
8

Table 41 – 3-bit precedence profiles of common benchmark functions for a maximisation

objective. Functions are sorted in increasing order of difficulty (based on average of

probabilities).

We observe from Table 41 that the order of decreasing average probability tracks with

order of increasing complexity in the sense that we first have the univariate problems, then the

bivariate, then the multivariate. Within the multivariate, the isolated function (needle in

haystack) is harder than the leading ones, and the trap function is harder than the isolated

function. We can regard this average as one possible measure of complexity for a given

problem length.

The simplest set of classes of truly 3-bit functions are the univariate functions - those in

which each variable is considered separately and the resulting affect additive, i.e. the linkage

partition completely separates the effect of each variable.

Here we see that the Needle in Haystack function is classified as easier than the 3-trap

under our classification. The needle in haystack function may be considered the most difficult

function to optimise as there is no structure learnable without exhaustive evaluation. This is

not the case, as the trap function is more difficult to optimise as it contains counter-productive

structure which is actively misleading to learn. Thus our view of complexity under precedence

profiles highlights this. This is also observed by Kallel et al. [86].

|

 122 of 195

The 3-bit Checkerboard 1D problem does not have a precedence profile as follows from

the function’s directed ordinal linkage. Although the function is composed of a single linkage

group, we see that it is solvable by a larger number of networks than just A0. This is because

the checkerboard problem has two global optima. The existence of two global optima means

that some of the structure which may have to be learned to accurately capture this complexity

is unnecessary if the objective is to arbitrary locate one optima or the other.

By contrast in Figure 24 we see a failure to guarantee an optimal solution. The sub-optimal

solution exists if the assigned value for 𝑋𝑋0 differs from the random background setting of 𝑋𝑋2

when assigning 𝑋𝑋1 (this occurs with 1/2 probability) and the value which is the same as 𝑋𝑋1 is

chosen (this occurs with 1/2 probability), hence, the search fails with 1/4 probability.

We see that for 3-bit classes, this notion of precedence profiles correlates with expected

function difficulty classification as described. Hence, it may be reasonable to assume that an

extension of this idea of a precedence network to higher dimensions may useful. This is

discussed in more detail under further work.

|

 123 of 195

6.6 Equivalent Average Costs Network Sets

In this section we explore the probability of successfully optimising a function using a given

fully-specified precedence network, subject to the function being an arbitrary instance of a rank

equivalence class chosen uniformly at random from the set of 3-bit rank equivalence classes.

Note that this is distinct from selecting functions uniformly at random, in which case, the class

would not be uniformly selected.

Recall that for fully-specified 2-bit networks, the cost can be 3 or 4 and that the two fully-

specified cost 3 networks were a permutation of each other. Hence, on average across the set

of all 2-bit classes it is trivial that we would expect the same performance from these two

permutations.

For fully-specified 3-bit networks, there are two distinct network sets (B and C) which share

a common cost (5 function evaluations). The costs for each network set is below in Table 42.

Set Networks Cost

A A0 (23) = 8

B B0, B1, B2 (22) + (21 − 1) = 5

C C0, C1, C2 (21) + (22 − 1) = 5

D D0, D1, D4, D2, D3, D5 (21) + (21 − 1) + (21 − 1) = 4

Table 42 – Cost for each fully-specified 3-bit precedence network.

Each network in the set union B ⋃ C = {B0, B1, B2, C0, C1, C2} has the same cost (5 fitness

evaluations). We can calculate the number of classes which have each given probability 𝑃𝑃 and

calculate the expected probability and fully-specified network in the set B or the set C to find

the optimum on a randomly-selected function class. This is shown in Table 43.

|

 124 of 195

Probability (𝑃𝑃)
B0, B1, B2 C0, C1, C2

Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁 Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁
1

4� 34 792 8 698 - -
3

8� 22 056 8 271 - -
1

2� 120 996 60 498 288 548 144 274
5

8� 50 304 31 440 600 375
2

3� - - 6 336 4 224
3

4� 134 788 101 091 38 844 29 133
5

6� - - 864 720
7

8� 28 248 24 717 24 21

1 154 651 154 651 210 619 210 619

Sum 545 835 389 366 545 835 389 366

Weighted
Average

389 366
545 835

389 366
545 835

Table 43 – For 3-bit network sets B = {B0, B1, B2} and C = {C0, C1, C2}, the average

probability of finding the global optimum is the same (approx. 71.3%) when selecting a class

uniformly at random.

We see that although there a large differences in distribution of probability between the

two network sets, the weighted average is the same (389366/545835). We see from the D

networks in Table 44 that the same average does not hold for a different cost network, since

the lower computational effort corresponds to a lower expectation of finding a global optimum.

|

 125 of 195

Probability (𝑃𝑃)
D0, D1, D4, D2, D3, D5

Classes (𝑁𝑁) 𝑃𝑃 × 𝑁𝑁
1

8� 15 080 1 885
3

16� 14 272 2 676
1

4� 65 464 16 366
9

32� 2 776 780 3
4

5
16� 20 232 6 322 1

2

3
8� 69 224 25 959

7
16� 9 640 4 217 1

2

15
32� 4 248 1 991 1

4

1
2� 91 196 45 598

17
32� 200 106 1

4

9
16� 10 848 6 102

19
32� 1 104 655 1

2

5
8� 33 640 21 025

21
32� 3 880 2 546 1

4

11
16� 7 272 4 999 1

2

23
32� 200 143 3

4

3
4� 91 780 68 835

25
32� 200 156 1

4

13
16� 9 576 7 780 1

2

27
32� 1 464 1 235 1

4

7
8� 28 048 24 542

29
32� 2 136 1 935 3

4

15
16� 4 192 3 930

31
32� 704 682

1 58 459 58 459

Sum 545 835 308 930

Weighted
Average

308 930
545 835

=
 61 786
109 167

Table 44 – For 3-bit precedence network set D = {D0, D1, D4, D2, D3, D5}, success

probability when selecting a class at random.

|

 126 of 195

6.7 Precedence Networks Hierarchy

Having looked at the fully-specified network sets, we wish to introduce analysis which goes

beyond only the fully-specified precedence networks. We introduce the simplification by

considering only the sets invariant under permutations. The work in this section was first

published in [2].

As shown in section 6.6, where the fully-specified precedence networks for 3-bits were

given, we see that network sets can be arranged in a hierarchy. This hierarchy exists because

any two variables which can be solved given a prescribed ordering 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 can also be solved

by exhaustive evaluation of those two variables 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗. If we include under-specified networks

(networks which are not fully specified), we also find variables which can be optimised in any

order 𝑋𝑋𝑖𝑖 + 𝑋𝑋𝑗𝑗, which can be given an order 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 or exhaustively evaluated 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗.

Allowing under-specified networks, there are 9 network sets. The list of all relationships

between a 3-bit network set and another 3-bit network set which can be used to solve all

classes the first can is given in Table 45. Examples of each is given since some relationships

may not be self-evident without specifying the necessary re-permutation of the variables. The

hierarchy produced by these relationships is shown in Figure 25.

|

 127 of 195

General
Network Set

Specified
Network Set

General
Example

Specific
Example

• + • + • •→• + • 𝑋𝑋0 + 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2

•→• + • (• + •) →• 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 (𝑋𝑋0 + 𝑋𝑋2) → 𝑋𝑋1

•→• + • • + •• 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2

•→• + • •→ (• + •) 𝑋𝑋0 → 𝑋𝑋1 + 𝑋𝑋2 𝑋𝑋0 → (𝑋𝑋1 + 𝑋𝑋2)

(• + •) →• •→•→• (𝑋𝑋0 + 𝑋𝑋1) → 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2

•→ (• + •) •→•→• 𝑋𝑋0 → (𝑋𝑋1 + 𝑋𝑋2) 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2

• + •• •→•• 𝑋𝑋0 + 𝑋𝑋1𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2

• + •• ••→• 𝑋𝑋0 + 𝑋𝑋1𝑋𝑋2 𝑋𝑋1𝑋𝑋2 → 𝑋𝑋0

•→•→• •→•• 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2

•→•→• ••→• 𝑋𝑋0 → 𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2

•→•• ••• 𝑋𝑋0 → 𝑋𝑋1𝑋𝑋2 𝑋𝑋0𝑋𝑋1𝑋𝑋2

••→• ••• 𝑋𝑋0𝑋𝑋1 → 𝑋𝑋2 𝑋𝑋0𝑋𝑋1𝑋𝑋2

Table 45 – All 3-bit network set, with network sets which can be substituted.

Figure 25 – Hierarchy of 3-bit network sets.

|

 128 of 195

6.8 Parallelisation of Precedence Networks

The linkage groups for a precedence network can be processed in parallel. Here we shown

how this can be done for 3-bit networks. We will see that the minimum number of time steps is

dictated by the length of the ordering •→•. The work in this section was first published in [2].

In the case of the network set • + • + • we can process two values for each variable. This

means evaluating any single arbitrary assignment (e.g. 𝑓𝑓000) and comparing each of that

assignment with one variable flipped (i.e. in this case 𝑓𝑓100, 𝑓𝑓010, and 𝑓𝑓001) to find the optimal

setting for each variable. In this case, 4 evaluations are necessary, and the 4 values of 𝐗𝐗 can

be chosen in advance and processed in parallel.

In the case of the network set ••• we must evaluate all 8 possible assignments of the

variables to determine the correct setting of any. Since we know the 8 values of 𝐗𝐗 which must

be tried, they may be processed in parallel.

In the case of a network set involving a directed ordinal linkage (e.g. •→•→•) we do not

know ahead of time which 4 values must be tried, so we evaluate an arbitrary assignment of

the variables (e.g. 𝑓𝑓000) and the same with the first variable in the chain flipped (i.e. in this case

if the first variable is 𝑋𝑋0 we would evaluate 𝑓𝑓100). These 2 evaluations may be done in parallel.

Then we evaluate the result of flipping the next variable given the optimum of the first (i.e. 𝑓𝑓∗10

where ∗ is the known optimal setting). Then we evaluate the result of flipping the last variable

(i.e. 𝑓𝑓∗∗1). Since we are using information about the result of earlier evaluations, at least three

time steps are required to optimise the function in 4 fitness evaluations.

This constraint may be changed by using a different precedence network. As shown, a

more costly network from one of the sets ••→•, •→••, or ••• may be used (requiring 5, 5, or 8

function evaluations respectively, but being parallelisable in 2, 2, or 1 time steps respectively).

This represents a trade-off between number of function evaluations required and number of

time steps required.

|

 129 of 195

Figure 26 – All 3-bit networks sets, with the parallelisation steps for the shown example

network in each case. A column represents all function evaluations which may be done in

parallel. If there are multiple columns, each column must wait until the columns to its left are

complete before starting. ∗ represents the known optimal setting from an earlier column.

|

 130 of 195

6.9 Delta Linkage Detection

In this section we look at whether the same approach taken in section 5.6 (p. 98) to relate

linkage to the delta expansion can be extended to 3-bit classes. We show, by counter-example,

that the delta matrix cannot be used to predict the linkage for 3-bits.

For 3-bit functions we can use the delta matrix Δ to represent the delta values in the same

way as for 2-bits as in (53).

Δ =

⎣
⎢
⎢
⎢
⎢
⎡𝐷𝐷111

0 𝐷𝐷1111 𝐷𝐷1112 𝐷𝐷1116

𝐷𝐷0110 𝐷𝐷0111 𝐷𝐷0112 ⋯ 𝐷𝐷0116

𝐷𝐷1010 𝐷𝐷1011 𝐷𝐷1012 𝐷𝐷1016

 ⋮ ⋱
𝐷𝐷0000 𝐷𝐷0001 𝐷𝐷0002 𝐷𝐷0006 ⎦

⎥
⎥
⎥
⎥
⎤

where 𝐷𝐷𝐱𝐱𝑟𝑟 = �1, Rf(𝐱𝐱) > r
0, otherwise

(123)

Here we could select the rows of interest to our linkage as specified by (124).

𝑉𝑉{0,1} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:3 ∙ Δ

𝑉𝑉{0,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:5 ∙ Δ

𝑉𝑉{1,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:6 ∙ Δ

𝑉𝑉{0,1,2} = [𝐻𝐻3]𝑟𝑟𝑟𝑟𝑟𝑟:7 ∙ Δ

(124)

We observe that no combination of these four terms can be related directly to the non-

monotonicity-detecting linkage detection. This can be shown by counter-example.

We examine two classes 𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑏𝑏 which have the Walsh family {3F, 7F}. Structure 7F

refers to having all terms non-zero, structure 3F refers to having the trivariate term zero with

all other terms non-zero. Hence this family describes functions which can be instantiated with

a bivariate function where all bivariate terms are necessarily non-zero. The two classes are

listed in Table 46 (p. 131).

|

 131 of 195

Class ℒ𝑂𝑂(0,1) ℒ𝑂𝑂(1,0) ℒ𝑂𝑂(0,2) ℒ𝑂𝑂(2,0) ℒ𝑂𝑂(1,2) ℒ𝑂𝑂(2,1) Linkage

𝐶𝐶𝑎𝑎 = [0 1 1 4 1 4 4 4] 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑌𝑌 𝑋𝑋0𝑋𝑋1𝑋𝑋2

𝐶𝐶𝑏𝑏 = [2 0 1 2 6 2 2 6] 𝑌𝑌 𝑌𝑌 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑁𝑁 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2

Table 46 – Example classes 𝐶𝐶𝑎𝑎 and 𝐶𝐶𝑏𝑏 with different ordinal linkage ℒ𝑂𝑂, both classes

belonging to the Walsh family {3F, 7F}.

In this case the Walsh family indicates that the first two variables are required to be linked

to the third, whereas the perturbations indicate no linkage.

Note that if we follow the precedence network 𝑋𝑋0𝑋𝑋1 + 𝑋𝑋2 for 𝐶𝐶𝑏𝑏 we arrive at a global

optimum every time, regardless of whether the linkage ground 𝑋𝑋0𝑋𝑋1 is optimised first or the

linkage group 𝑋𝑋2 is optimised first. The result with be [0 0 0] or [1 1 0] each with probability

0.5; these candidates are both global optima for an instance of 𝐶𝐶𝑏𝑏.

The reason the Walsh structure requires linkage between these two linkage groups is seen

by the result of perturbing two variables (𝑋𝑋0𝑋𝑋1) simultaneously from [0 1 ∗] to [1 0 ∗]. If done

when 𝑋𝑋2 = 0 this two-bit perturbation will not change the fitness, if done when 𝑋𝑋2 = 1 this two-

bit perturbation will increase the fitness from the lowest rank to the second-lowest rank.

None of the candidates involved in this perturbation is a global optimum, hence ignoring

this linkage should not degrade an algorithm’s ability to optimise the function. From this

perspective, we can see the Walsh coefficients responsible for maintaining this structure are

unnecessary for optimisation yet necessary to maintain the rank equivalence class.

|

 132 of 195

In Figure 27 the class is illustrated as a cube. Each square side has matching signs on

parallel edges. To detect linkage, the diagonal signs across two parallel faces must be

compared. This shows that although this class consists of three variables which are all linked

to one another (due to the presence of all three bivariate terms), a two-bit perturbation is

required to detect this.

Figure 27 – The class [2 0 1 2 6 2 2 6] with the detection of linkage via two-bit

perturbation highlighted.

|

 133 of 195

6.10 Structural Coherence

In this chapter we consider the difficulty of learning the linkage of each 3-bit class for an

EDA. This section is the presentation of the result on 3-bit classes from the work presented in

section 5.7 (on 2-bit classes); this result was produced in collaboration with Dr Alexander

Brownlee, University of Stirling and first published in [3].

In sections section 5.7 (p. 100), we show the minimum populations size required to detect

linkage for all 2-bit classes. Recall that for some classes with no linkage between the variables,

a spurious correlation is falsely detected (false positive) for larger population sizes. For the set

of 3-bit classes we present a summary of the success for population sizes 100 and 500. We

compare tournament (best and worst) and truncation selection (top, bottom, and top+bottom,

for proportions 0.25, 0.33, and 0.5).

We use the method of calculating the pairwise linkage given in section 5.7 and compare

the results for the three possible bivariate linkages. Probabilities for tournament selection were

explicitly calculated using all 256 possible tournaments. Probabilities for truncation selection

were explicitly calculated by determining the candidates in the top 1 4� , 1 3� or 1 2� of selection.

We observe that truncation selection (top) performs equally to truncation selection

(bottom) across the set of 3-bit classes, and that tournament selection performs equally to

inverse tournament selection. This matches the result for 2-bit classes. However, we observe

that the selection size affects the success for top-and-bottom truncations for 3-bits whereas it

does not for 2-bit classes. This is because for 3-bit classes, top-and-bottom truncation misses

information carried by middle-ranked candidates.

For this analysis we assume that the minimal structure of each class is the structure with

the lowest ID in the Walsh family. We discuss the limitations of this approach in further work.

|

 134 of 195

Linkage No Linkage Linkage No Linkage
95% 5% 95% 5%

Population Size 100 Population Size 500

True
Pos.

False
Neg.

True
Neg.

False
Pos.

True
Pos.

False
Neg.

True
Neg.

False
Pos.

Tournament
(Best)

ℒ𝑂𝑂(0, 1) 42% 53% 5% 0% 71% 24% 3% 2%
ℒ𝑂𝑂(0, 2) 42% 53% 5% 0% 71% 24% 3% 2%
ℒ𝑂𝑂(1, 2) 42% 52% 5% 0% 71% 24% 4% 2%

Tournament.
(Worst)

ℒ𝑂𝑂(0, 1) 42% 53% 5% 0% 71% 24% 3% 2%
ℒ𝑂𝑂(0, 2) 42% 53% 5% 0% 71% 24% 3% 2%
ℒ𝑂𝑂(1, 2) 42% 52% 5% 0% 71% 24% 4% 2%

Truncation
(Top)

0.25
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1%
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1%
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1%

0.33
ℒ𝑂𝑂(0, 1) 70% 26% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(0, 2) 69% 26% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(1, 2) 69% 25% 2% 3% 72% 23% 2% 3%

0.5
ℒ𝑂𝑂(0, 1) 67% 28% 2% 3% 72% 24% 2% 3%
ℒ𝑂𝑂(0, 2) 67% 28% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(1, 2) 67% 28% 2% 3% 72% 23% 2% 3%

Truncation
(Bottom)

0.25
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1%
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1%
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1%

0.33
ℒ𝑂𝑂(0, 1) 70% 26% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(0, 2) 69% 26% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(1, 2) 69% 25% 2% 3% 72% 23% 2% 3%

0.5
ℒ𝑂𝑂(0, 1) 67% 28% 2% 3% 72% 24% 2% 3%
ℒ𝑂𝑂(0, 2) 67% 28% 2% 3% 72% 23% 2% 3%
ℒ𝑂𝑂(1, 2) 67% 28% 2% 3% 72% 23% 2% 3%

Truncation
(T+B)

0.25
ℒ𝑂𝑂(0, 1) 11% 84% 4% 0% 11% 84% 4% 0%
ℒ𝑂𝑂(0, 2) 11% 84% 5% 0% 11% 84% 5% 0%
ℒ𝑂𝑂(1, 2) 11% 83% 5% 0% 11% 83% 5% 0%

0.33
ℒ𝑂𝑂(0, 1) 36% 60% 4% 1% 40% 56% 3% 1%
ℒ𝑂𝑂(0, 2) 36% 59% 4% 1% 40% 55% 4% 1%
ℒ𝑂𝑂(1, 2) 36% 59% 4% 1% 40% 55% 4% 1%

0.5
ℒ𝑂𝑂(0, 1) 40% 56% 3% 1% 40% 55% 3% 1%
ℒ𝑂𝑂(0, 2) 40% 55% 4% 1% 40% 55% 4% 1%
ℒ𝑂𝑂(1, 2) 39% 55% 4% 1% 40% 54% 4% 1%

Table 47 – Details of success in detecting linkage for different selection methods for

population sizes 100 and 500 over all 3-bit classes – first published in [3].

6.11 Summary

In this chapter we have examined the space of 3-bit classes. We have discovered

conditionally-necessary interactions in the Walsh families. We have shown an equivalent

expected probability of reaching an optimum over the equal-cost 𝐵𝐵 and 𝐶𝐶 network sets,

suggesting that this is a useful classification. We have shown by counter-example that the

delta linkage equivalence does not extend as described to 3-bits. In the following chapter, we

discuss higher-dimensional function spaces.

|

 135 of 195

7 Higher-Dimensional Pseudo-Boolean Functions

In chapters 5 and 6 we presented an exhaustive computation on all 2-bit and 3-bit classes.

As explained in section 4.5 this is computationally intractable for higher dimensional function

spaces. In this section we discuss extending and applying what we learn from these small

cases. We discuss the construction of larger functions with overlapping concatenation of 3-bit

classes, and the applicability of precedence networks to higher dimensions, then we present

an algorithm for estimating the Walsh structure of larger functions, and lastly present a method

of constructing easy or hard instances of a problem we construct to be solved by a hill-climber

algorithm.

7.1 Combining 3-Bit Classes

In this section we discuss the applicability of using 3-bit functions to build larger functions

with known minimal Walsh structure.

7.1.1 Concatenation of Non-Overlapping Functions

The simplest way to construct larger functions from 2-bit functions is to use concatenation.

This is the same technique used to construct deceptive functions from trap functions, e.g. the

TRAP𝑘𝑘
ℓ is an ℓ-bit function constructued by concatenating ℓ 𝑘𝑘� instances of the TRAP𝑘𝑘.

In the same way we can concatenate ℓ 3� non-overlapping functions and apply a random

permutation of the variables so that the linkage groups are not comprised of only adjacent

alleles.

From this we can construct any order-3 additively separable function and know the minimal

Walsh structure, since all such functions have structures composed of these classes. If we

include functions which have some (or all) linkage groups of sizes < 2, then we would have to

include 1-bit and 2-bit function classes for concatenation too if the length of the problem to be

constructed is not a multiple of 3.

|

 136 of 195

7.1.2 Stitching of Overlapping Functions

It is an open question how we usefully decompose non–additively-separable functions into

sums of smaller functions, which has been the subject of research [108]. Here we wish to

construct functions from a sum of sub-functions which are not an additive separation (since

variables will necessarily appear in more than one sub-function), we observe the risk

constructing functions where the interaction of overlapping Walsh coefficients creates

functions for which we do not know the minimal Walsh structure.

In this section we show an example of how stitching together carefully-chosen 3-bit

bivariate functions can work to create two rank-equivalent 5-bit functions with different linkage

partition properties, based on the alternate minimal Walsh structures of the sub-functions. The

structure of the four functions are shown in Figure 28.

𝑓𝑓𝐴𝐴 𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵′ 𝑓𝑓𝐶𝐶

Figure 28 – Walsh structures of example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are rank-

equivalent.

When three functions are added together as 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶 or 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶, the middle sub-

function 𝑓𝑓𝐵𝐵 acts as a hinge which changes the structure between a bivariate chain structure 𝑓𝑓

or an additively separable function 𝑓𝑓′.

𝑓𝑓 = 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶 𝑓𝑓′ = 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶

Figure 29 – Stitched 5-bit functions. 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵 + 𝑓𝑓𝐶𝐶 and 𝑓𝑓𝐴𝐴 + 𝑓𝑓𝐵𝐵′ + 𝑓𝑓𝐶𝐶 are rank-equivalent.

|

 137 of 195

The function 𝑓𝑓′ can be separated into two new sub-functions 𝑓𝑓𝐷𝐷 and 𝑓𝑓𝐸𝐸, whereas function

𝑓𝑓 is not separable.

𝑓𝑓𝐷𝐷 𝑓𝑓𝐸𝐸

Figure 30 – New additive separation 𝑓𝑓𝐷𝐷, 𝑓𝑓𝐸𝐸 of 5-bit function 𝑓𝑓′ = 𝑓𝑓𝐷𝐷 + 𝑓𝑓𝐸𝐸.

To do this construction we need to choose function values. The chosen 3-bit functions are

defined by their Walsh coefficients, listed in Table 48.

 𝑓𝑓𝐴𝐴 𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵′ 𝑓𝑓𝐶𝐶

𝛼𝛼{0} −1

𝛼𝛼{1} 3 30 40

𝛼𝛼{2} 20 70 8

𝛼𝛼{3} 2

𝛼𝛼{4} 2 20 30 6

𝛼𝛼{0,1} −5

𝛼𝛼{1,2} 10

𝛼𝛼{2,3} −2

𝛼𝛼{3,4} −2

𝛼𝛼{2,4} −10

Table 48 – Walsh coefficients for example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are

rank-equivalent.

|

 138 of 195

Functions 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐶𝐶 are instances of the 𝑅𝑅𝑓𝑓𝐴𝐴 and 𝑅𝑅𝑓𝑓𝐶𝐶 with minimal Walsh structure. 𝑓𝑓𝐵𝐵 and

𝑓𝑓𝐵𝐵′ are rank-equivalent classes with alternative possible minimal Walsh structures. Either 𝛼𝛼{1,2}

or 𝛼𝛼{2,3} are necessary coefficients. This can be shown by performing the Walsh-Hadamard

transform of the delta expansion of each function individual as in section 6.2 when the function

variables are permuted as {𝑋𝑋0,𝑋𝑋1,𝑋𝑋2}.

 𝑓𝑓𝐴𝐴 𝑓𝑓𝐵𝐵 𝑓𝑓𝐵𝐵′ 𝑓𝑓𝐶𝐶

𝑓𝑓10∗∗0 11 𝑓𝑓∗00∗0 110 130 𝑓𝑓∗∗010 16

𝑓𝑓10∗∗1 7 𝑓𝑓∗00∗1 70 90 𝑓𝑓∗∗000 12

𝑓𝑓01∗∗0 3 𝑓𝑓∗10∗0 30 50 𝑓𝑓∗∗001 4

𝑓𝑓00∗∗0 −1 𝑓𝑓∗01∗0 −10 10 𝑓𝑓∗∗100 0

𝑓𝑓01∗∗1 −1 𝑓𝑓∗10∗1 −10 10 𝑓𝑓∗∗011 0

𝑓𝑓11∗∗0 −5 𝑓𝑓∗11∗0 −50 −70 𝑓𝑓∗∗110 −4

𝑓𝑓00∗∗1 −5 𝑓𝑓∗01∗1 −50 −70 𝑓𝑓∗∗101 −8

𝑓𝑓11∗∗1 −9 𝑓𝑓∗11∗1 −90 −150 𝑓𝑓∗∗111 −20

Table 49 – Function values for example 3-bit sub-functions for stitching. 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ are rank-

equivalent.

We choose large values for functions 𝑓𝑓𝐵𝐵 and 𝑓𝑓𝐵𝐵′ such that the Walsh coefficients are all

larger in magnitude that the coefficients in 𝑓𝑓𝐴𝐴 and 𝑓𝑓𝐶𝐶. This magnification prevents the structures

interacting in a way which would cancel out the desired construction.

|

 139 of 195

7.2 Precedence Networks

The precedence network uses directed ordinal linkage to extend the idea of a linkage

partition. A precedence network is a directed acyclic graph. Each vertex corresponds to a set

of one or more variables which are interdependent, and each edge corresponds to a directed

dependence relation. Here we present an algorithm to construct a precedence network –

limited connectivity precedence network algorithm (LCPNA).

A topological ordering (or topological sort) is an ordering induced on the vertices of a

directed acyclic graph such that for every edge 𝐴𝐴 → 𝐵𝐵, the vertex 𝐴𝐴 appears before 𝐵𝐵 in the

ordering. For some directed acyclic graphs, there are more than one possible topological

ordering. In some cases, only a single topological ordering is possible. If a network has a single

topological ordering, we refer to this a fully-specified network.

Figure 31 – Conceptual illustration of the exploration path required to locate the global

optima for the variables X𝑖𝑖 and 𝑋𝑋𝑗𝑗 when the dependence relationship is known. In the case of

dependence, the full cross-section 𝑋𝑋𝑖𝑖𝑋𝑋𝑗𝑗 may need to be exhaustively explored

|

 140 of 195

7.2.1 Limited Connectivity Precedence Network Algorithm

We described precedence networks in sections 5.5 (on 2-bit functions) and 6.5 (on 3-bit

functions). In this section we discuss how we can estimate a precedence network for a higher-

dimensional function where the search space is too large to exhaustively evaluate.

Here we propose a precedence network learning algorithm based on the ℓ log(ℓ) 2𝑘𝑘

perturbation algorithm ASFOPTIMISE by Streeter [61]. We call this algorithm limited connectivity

precedence network algorithm (LCPNA). The pseudocode is given in Algorithm 3 below.

1) define 𝐺𝐺 as digraph with ℓ unconnected vertices

2) calculate 𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴 = 𝑂𝑂 ℓ
𝑘𝑘

2𝑘𝑘

3) while 𝐴𝐴𝑣𝑣𝑂𝑂𝐴𝐴𝑠𝑠 + 4 + 𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴 < 𝑏𝑏𝑢𝑢𝑑𝑑𝑔𝑔𝐴𝐴𝑡𝑡

a) 𝑖𝑖 ← random vertex from 𝐺𝐺

b) 𝑠𝑠0 = random string of length ℓ

c) 𝑠𝑠1 = copy of 𝑠𝑠0

d) for each vertex 𝑗𝑗 in 𝐺𝐺 from which 𝑖𝑖 is not reachable

i) 𝑠𝑠1[𝑗𝑗] = random assignment

e) 𝑠𝑠0′ = copy of 𝑠𝑠0

f) 𝑠𝑠1′ = copy of 𝑠𝑠1

g) 𝑠𝑠1′ [𝑖𝑖] = 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑�{0, 1}|𝑖𝑖| − {𝑠𝑠0[𝑖𝑖]}�

h) if sgn�𝑓𝑓(𝑠𝑠1)− 𝑓𝑓(𝑠𝑠0)� ≠ sgn�𝑓𝑓(𝑠𝑠1′)− 𝑓𝑓(𝑠𝑠0′)�

i) binary search to find Γ𝑗𝑗 → Γ𝑖𝑖 or break when 𝐴𝐴𝑣𝑣𝑂𝑂𝐴𝐴𝑠𝑠 ≥ 𝑏𝑏𝑢𝑢𝑑𝑑𝑔𝑔𝐴𝐴𝑡𝑡 – 𝑂𝑂𝑠𝑠𝑠𝑠𝑖𝑖𝑑𝑑𝐴𝐴

ii) add edge Γ𝑗𝑗 → Γ𝑖𝑖 to 𝐺𝐺

iii) if 𝐺𝐺 contains a cycle

(1) if number of variables in cycle > 𝑘𝑘

(a) remove edge Γ𝑗𝑗 → Γ𝑖𝑖 from 𝐺𝐺

(2) else

(a) contract vertices in cycle into single vertex

4) return 𝐺𝐺

Algorithm 3 – Limited connectivity precedence algorithm (LCPNA)

|

 141 of 195

To learn the precedence of variables, not just the linkage partition, we use our definition

of directed ordinal linkage given in section 4.2. We generate random strings 𝑠𝑠0 and 𝑠𝑠1 where

the non-influencers of the target linkage group 𝑖𝑖 are varying, and the influencers of 𝑖𝑖 are held

fixed, then generate random strings 𝑠𝑠0′ and 𝑠𝑠1′ which are copies of 𝑠𝑠0 and 𝑠𝑠1 where one or more

of the variables in the target linkage group is different.

If there is an effect of the variables not yet discovered as being influencers of 𝑖𝑖 then this

will be detected sgn�𝑓𝑓(𝑠𝑠1)− 𝑓𝑓(𝑠𝑠0)� ≠ sgn�𝑓𝑓(𝑠𝑠1′)− 𝑓𝑓(𝑠𝑠0′)�. We then use binary search to find a

linkage group in 𝑁𝑁𝐼𝐼(𝑖𝑖), which is the set of linkage groups which have not been identified as

preceding 𝑖𝑖 and move add an edge from that linkage group to 𝑖𝑖. If a cycle is detected, all

variables from all linkage groups in the cycle are merged into one linkage group.

Figure 32 – An example state of precedence network learning. Linkage group {𝑋𝑋0} is

highlighted. The influencers of {𝑋𝑋0} are the 2 linkage groups I({𝑋𝑋0}) = �{𝑋𝑋3}, {𝑋𝑋6}�, and the

non-influencers of {𝑋𝑋0} are the 4 linkage groups NI({𝑋𝑋0}) = �{𝑋𝑋1}, {𝑋𝑋2}, {𝑋𝑋5}, {𝑋𝑋4,𝑋𝑋7}�.

|

 142 of 195

 𝑠𝑠0 𝑠𝑠1 𝑠𝑠0′ 𝑠𝑠1′

{𝑋𝑋0} 𝑥𝑥 ← rand({0, 1}) 𝑥𝑥 𝑒𝑒 ← 1 − x 𝑒𝑒

The current target 𝑖𝑖 has two random values selected (without replacement).
One value is used for 𝑠𝑠0 and 𝑠𝑠1, the other is used for 𝑠𝑠0′ and 𝑠𝑠1′ .

If |𝑖𝑖| = 1 (as in our example) there are only 2 possible values – both are chosen.

If |𝑖𝑖| > 1, then 2 random (distinct) values of {0, 1}|𝑖𝑖| are chosen.

{𝑋𝑋3} 𝑃𝑃1 ← rand({0, 1}) 𝑃𝑃1 𝑃𝑃1 𝑃𝑃1

{𝑋𝑋6} 𝑃𝑃2 ← rand({0, 1}) 𝑃𝑃2 𝑃𝑃2 𝑃𝑃2

The influencers are held constant at a random value 𝑃𝑃.

{𝑋𝑋1} 𝑂𝑂3 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏3 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂3 𝑏𝑏3

{𝑋𝑋2} 𝑂𝑂4 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏4 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂4 𝑏𝑏4

{𝑋𝑋5} 𝑂𝑂5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑏𝑏5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}) 𝑂𝑂5 𝑏𝑏5

{𝑋𝑋4,𝑋𝑋7} 𝑂𝑂5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}2) 𝑏𝑏5 ← 𝑒𝑒𝑂𝑂𝑂𝑂𝑑𝑑({0, 1}2) 𝑂𝑂6 𝑏𝑏6

The non-influencers have two random values selected (with replacement).

One value is used for 𝑠𝑠0 and 𝑠𝑠0′ , the other is used for 𝑠𝑠1 and 𝑠𝑠1′ .

For any given non-influencer 𝑂𝑂 may equal 𝑏𝑏 or not.

If 𝑂𝑂 = 𝑏𝑏 for all non-influencers, the selection is repeated so at least one varies.

Table 50 – Setting of strings in example state (Figure 32) in order to test of linkage (to find a

linkage group which influences linkage group 𝑖𝑖).

|

 143 of 195

There are four possible changes which may occur at the current step, depending on which

linkage group is found to contain an influencer of 𝑋𝑋0. The four possibilities are illustrated in

Figure 33. If no linkage is detected at this step, the graph is the same for the next iteration

step.

New linkage:

{𝑋𝑋1} → {𝑋𝑋0}
New linkage:

{𝑋𝑋2} → {𝑋𝑋0}
New linkage:

{𝑋𝑋5} → {𝑋𝑋0}
New linkage:

{𝑋𝑋4,𝑋𝑋7} → {𝑋𝑋0}

Figure 33 – Starting from the given example state (Figure 32), all possible next states if a

variable is found to influence {𝑋𝑋0}. Note that if {𝑋𝑋1} or {𝑋𝑋2} is detected as influencing {𝑋𝑋0} a

cycle is created and the variables in the cycle are contracted into one vertex as a new

linkage group. If none of the four variables is detected as an influence in this step, then the

next state will be unchanged from the current state.

One change we make compared with ASFOPTIMISE is that we only optimise at the end of

the procedure. This does not improve the complexity but reduces the number of evaluations.

For this we need to calculate the maximum complexity of the network and set aside function

evaluations from a pre-decided budget of evaluations, and use those set-aside evaluations at

the end to evaluate the network. The procedure of sampling is described in section 7.2.2.

It is possible that a cycle will be created between 𝑂𝑂 linkage partitions such that the total

number of variables exceeds the limit (|𝛾𝛾0| + |𝛾𝛾1| + ⋯ |𝛾𝛾𝑛𝑛−1|) > 𝑘𝑘. This occurs when there is

a chain of such 𝑂𝑂 linkage groups 𝛾𝛾0 → 𝛾𝛾1 → ⋯ → 𝛾𝛾𝑛𝑛−1 and the linkage 𝛾𝛾𝑛𝑛−1 → 𝛾𝛾0 is detected,

creating the cycle. The network can now not be sampled within the pre-determined budget of

evaluations.

|

 144 of 195

To illustrate this point, we ran this linkage-detection procedure on maximum satisfiability

problem (MAXSAT) instance uf20-01 [109]. Figure 34 shows the state of the precedence

network where a large cycle was formed.

Figure 34 – Example run of LCPNA on MAXSAT instance uf20-01 [109] at the iteration

which a cycle with > 𝑘𝑘 variables is created. The newly detected dependence 𝑋𝑋17 → 𝑋𝑋18 is

shown with a dotted line. The other existing edges which create the 8 variable

interdependence are highlighted in bold.

To control the complexity of sampling the network we can disallow the creation of large

cycles. One way to do this is to ignore the newest detected dependence in this event. Another

approach would be to adjust the network. Methods are discussed under further work in section

8.2.

|

 145 of 195

7.2.2 Sampling

Random sampling of a precedence network can be performed in one pass in 𝑂𝑂(2𝑘𝑘) fitness

evaluations where 𝑘𝑘 is the maximum number of variables in a single vertex. The pseudocode

is given in Algorithm 4 below.

1) init 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 ← null

2) init 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴 ← null

3) 𝑇𝑇 ← random topological sort of 𝐺𝐺

4) repeat 𝑂𝑂 times

5) define 𝐴𝐴 as new empty dictionary

a) for 𝑖𝑖 ← 0 to |𝑇𝑇| − 1

i) define 𝑥𝑥 as new length ℓ vector

ii) for 𝑗𝑗 ← 0 to 𝑖𝑖 − 1

(1) 𝑥𝑥[𝑗𝑗] = 𝐴𝐴[𝑗𝑗]

iii) for 𝑗𝑗 ← 𝑖𝑖 + 1 to |𝑇𝑇| − 1

(1) 𝑥𝑥[𝑗𝑗] ← random assignment

iv) 𝐴𝐴[𝑖𝑖] ←exhaustive evaluate to find best assignment for 𝑇𝑇[𝑖𝑖]

b) if 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 = 𝑂𝑂𝑢𝑢𝐴𝐴𝐴𝐴 or 𝑓𝑓(𝐴𝐴) > 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴

i) 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡 ← 𝐴𝐴

ii) 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡_𝑣𝑣𝑂𝑂𝐴𝐴𝑢𝑢𝐴𝐴 ← 𝑣𝑣

6) return 𝑏𝑏𝐴𝐴𝑠𝑠𝑡𝑡

Algorithm 4 – Precedence network sampling

First, a topological sort is chosen, then at each step, the variables in earlier partitions are

assigned their best values, the variables in later partitions are assigned randomly chosen

values (chosen once per step), and every combination of values for variables in the current

partition is tried.

Let 𝐴𝐴 be the variables for which the optimum is known (initialise 𝐴𝐴 = ∅), each linkage group

is sampled separately, in the order in which they appear in the topological sort.

To sample one linkage group 𝛾𝛾 requires 2|𝛾𝛾| function evaluations to exhaustively

determine the optimal setting for the variables in 𝛾𝛾. The variables in 𝐴𝐴 should be assigned to

determined their optimum and the other variables (𝑋𝑋 − 𝐴𝐴 − 𝛾𝛾𝑖𝑖) should be set to one a random

assignment, fixed for the duration of the 2|𝛾𝛾| evaluations. Assuming there are no interactions

|

 146 of 195

such that any variables in 𝑋𝑋 − 𝐴𝐴 − 𝛾𝛾 affect the optimal setting of 𝛾𝛾, this will discover the optimal

setting for 𝛾𝛾. 𝐴𝐴 should be updated to contain 𝛾𝛾.

Sampling can be repeated. If the precedence network represents the exact structure of

the function, one sample will determine a global optimum. Repeated sampling 𝑂𝑂 times should

be applied when the network is an estimate of the linkage.

The overall number of function evaluations 𝑃𝑃(Γ, n) is given by (125).

𝑃𝑃(Γ, n) = 𝑂𝑂�2|𝛾𝛾|

γ∈Γ

 (125)

Since the structure is unknown before construction, we need to use an upper bound on

the complexity for a problem of length ℓ for which we limit linkage groups to a maximum size

of 𝑘𝑘. This upper bound is given by (126). This number of function evaluations should be set

aside before structure learning for chosen parameters 𝑂𝑂 and 𝑘𝑘.

𝑃𝑃(Γ, n) ≤ 𝑂𝑂
𝐴𝐴
𝑘𝑘

2𝑘𝑘

if (∀𝛾𝛾 ∈ Γ)(|𝛾𝛾| ≤ 𝑘𝑘)

(126)

|

 147 of 195

7.3 Subset Walsh Transform

In this section we discuss the result of applying the Walsh-Hadamard transform to selected

subsets of variables and how this may direct novel algorithms. The algorithm, results and

analysis described in this section were first published in [1].

As discussed earlier, finding the exact Walsh structure of a pseudo-Boolean black-box

function requires exhaustive evaluation of the search space. It may be desirable to construct

an estimation of the structure.

7.3.1 Description of Algorithm

The subset Walsh transform performs a Walsh-Hadamard transform of a selected subset

of the variables. For a chosen strict subset of the variables 𝑆𝑆 ⊂ 𝑋𝑋, let 𝑘𝑘 = |𝑆𝑆|, one may evaluate

2𝑘𝑘 instances of the variables 𝑆𝑆 for a given fixed setting of the remaining variables 𝑅𝑅, where

𝑅𝑅 = 𝑋𝑋 − 𝑆𝑆. We call this a sampling. We denote the resulting vector of fitnesses as 𝐟𝐟𝑆𝑆. The

ordering of this vector is given by inheritance from {0, 1}ℓ using the projection onto {0, 1}𝑘𝑘 of

the variables in 𝑆𝑆.

A set of Walsh coefficients may be obtained by applying the Walsh-Hadamard transform

in the usual way, as given by (127). We call this the subset Walsh transform.

𝛂𝛂𝑆𝑆 =
1

2𝑘𝑘
𝐻𝐻𝑘𝑘𝐟𝐟𝑠𝑠 (127)

The obtained set of Walsh coefficients represent those coefficients sufficient to reconstruct

the 𝐟𝐟𝑆𝑆 given the specified setting of the remaining variable 𝑅𝑅.

The question remains, how close 𝛂𝛂𝑆𝑆 is to the true Walsh coefficients 𝛂𝛂. If we assume that

𝑆𝑆 represents an additively-separable partition of the variable 𝑋𝑋 under 𝑓𝑓, then any setting of 𝑅𝑅

will not affect the same subfunction as 𝑆𝑆 does, so the setting of 𝑅𝑅 will only offset the values of

𝐟𝐟𝑆𝑆 by a constant amount independent of 𝑆𝑆. Given that any two functions 𝑔𝑔 and ℎ which differ

only by a constant amount, the Walsh coefficients of 𝑔𝑔 and ℎ will differ only in the constant

term - any two samplings will produce the same Walsh coefficients for 𝑆𝑆 with the exception of

the constant term 𝛼𝛼∅.

|

 148 of 195

We see that this procedure gives correct coefficients for cliques which are subsets of the

selected subset (completely-contained structure) and statistical estimate for cliques which

overlap, but are not subsets of, the selected subset (partially-contained structure).

The matrix 𝐵𝐵, as given by (128), is a 2𝑘𝑘-by-𝑘𝑘 matrix with rows as the values of 𝑋𝑋 in the

same order as in the Walsh-Hadamard transform. This is used to populate the selected 𝑘𝑘

variables in the selected variables 𝑆𝑆.

𝐵𝐵 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡
1 1 1 ⋯ 1
0 1 1 ⋯ 1
1 0 1 ⋯ 1
0 0 1 ⋯ 1
 ⋮
1 1 0 ⋯ 0
0 1 0 ⋯ 0
1 0 0 ⋯ 0
0 0 0 ⋯ 0⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

2𝑘𝑘 (128)

The remaining (ℓ − 𝑘𝑘) bits in the remaining variables 𝑋𝑋 − 𝑆𝑆 are generated randomly once per

sample. The process is repeated 𝑂𝑂 times to obtain 𝑂𝑂 samples of the Walsh coefficients. The

mean 𝜇𝜇 and standard deviation 𝜎𝜎 are calculated for each 2𝑘𝑘 coefficients.

The pseudocode for the Subset Walsh Transform is given by Algorithm 5 (p. 149) for

parameter 𝑂𝑂 representing the number of samples.

|

 149 of 195

1) define 𝐴𝐴 as 2𝑘𝑘-by-𝑂𝑂 matrix

2) define µ as length 2𝑘𝑘 column

3) define 𝜎𝜎 as length 2𝑘𝑘 column

4) for 𝑗𝑗 ← 0 to 𝑂𝑂 − 1

a) define 𝑒𝑒 ← row of (ℓ − 𝑘𝑘) random bits

b) define 𝑓𝑓 as length 2𝑘𝑘 column

c) for 𝑖𝑖 ← 0 to 2𝑘𝑘 − 1

i) define 𝑠𝑠 ← row 𝑖𝑖 of 𝐵𝐵

ii) define 𝑥𝑥 as length ℓ bitstring

iii) for indices in 𝑘𝑘, populate elements of 𝑥𝑥 with elements of 𝑠𝑠 left-to-right

iv) for indices not in 𝑘𝑘, populate elements of 𝑥𝑥 with elements of 𝑒𝑒 left-to-right

v) 𝑓𝑓[𝑖𝑖] ← evaluate(𝑥𝑥)

d) column 𝐴𝐴[𝑗𝑗] ← 1
2𝑘𝑘
𝐻𝐻𝑘𝑘𝑓𝑓

5) for 𝑖𝑖 ← 0 to 2𝑘𝑘 − 1

a) µ[𝑖𝑖] ← mean of row 𝐴𝐴[𝑖𝑖]

b) 𝜎𝜎[𝑖𝑖] ← stdev of row 𝐴𝐴[𝑖𝑖]

6) return columns µ and 𝜎𝜎

Algorithm 5 – Subset Walsh Transform. First published in [1].

|

 150 of 195

7.3.2 Results

Here we show the result of running the subset Walsh transform on the first six variables

of several length-20 functions. These will illustrate the way in which the subset Walsh transform

detects complete and partial structure of a given selected subset.

The functions used are the ONEMAX20, CHECK1D
20 and an arbitrary length-20 function (the

construction of which is given) with chosen non-zero alphas (with overlapping, but without low-

order cliques within high-order cliques). Each was done using a sample size of 5. Finally the

result on TRAP4
20 is given using a sample size of 20.

|

 151 of 195

For the function ONEMAX20, the set of non-zero Walsh coefficients is only the univariate

coefficients. All structure is contained within the selected partition, since for any given selected

subset, there cannot be a non-zero Walsh coefficient crossing the cut of the partition. Hence,

the subset Walsh transform will detect complete structure and no partial structure. The

structure is illustrated in Figure 35.

Figure 35 – The Walsh structure of a length-20 univariate function such as ONEMAX20. The

first six variables are selected. There is no expected non-zero standard deviation from the

subset Walsh transform.

We see in Figure 36 that all six univariate coefficients are identified and there are no

spurious correlations.

Figure 36 – Result for running subset Walsh transform with sample size 5 on the first six

variables on ONEMAX20.

|

 152 of 195

For the function CHECK1D
20 , the set of non-zero Walsh coefficients is only the bivariate terms

formed from pairs of adjacent variables. For any partitioning (non-empty strict subset) of the

variables there will be at least one non-zero Walsh coefficient which crosses the cut. For the

selected subset shown, the subset Walsh transform will detect complete structure for the first

5 bivariate neighbours and partial structure on variable 𝑋𝑋5. The structure is illustrated in

Figure 37.

Figure 37 – The Walsh structure of a length-20 bivariate chain function such as CHECK1D
20 . The

first six variables are selected. Expected non-zero standard deviation from subset Walsh

transform is labelled.

We see that in the result, all bivariate neighbours in the subset are detected correctly, and

all other coefficients are correctly identified as zero, except 𝛼𝛼{5}, which as expected has a

variance. This is because 𝑋𝑋5 is part of the clique {5, 6}, of which the variable 𝑋𝑋6 is not in the

subset, hence this is partial structure. The result is shown in Figure 38.

Figure 38 – Result for running subset Walsh transform with sample size 5 on the first six

variables on CHECK1D
20 .

|

 153 of 195

For the next example, we constructed a function in which the only non-zero Walsh

coefficients are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7}, 𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}. We

choose this structure to illustrate an overlap of structure with the variables

{𝑋𝑋0,𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4,𝑋𝑋5}. All other coefficients including the constant term and their lower-order

sub-cliques are zero. The structure is illustrated in Figure 39.

Figure 39 – The Walsh structure of a function in which the only non-zero Walsh coefficients

are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7}, 𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}. The first six

variables are selected. Expected non-zero standard deviation from subset Walsh transform is

labelled.

Here, the only complete structure in the subset is 𝛼𝛼{0,4,5}, which is correctly detected, and

the included variables in the three partial structure cliques {2}, {5}, and {0, 1} have a variance

indicating partial structure was detected. All other coefficients are zero. The result is shown in

Figure 40.

|

 154 of 195

Figure 40 – Result for running subset Walsh transform with sample size 5 on the first six

variables on a function in which the only non-zero Walsh coefficients are 𝛼𝛼{3}, 𝛼𝛼{0,4,5}, 𝛼𝛼{5,6,7},

𝛼𝛼{0,1,8,9,10}, 𝛼𝛼{2,10,11}, 𝛼𝛼{12,13,14,15,16}, 𝛼𝛼{17,18}, and 𝛼𝛼{19}.

The function TRAP4
20 consists of size order-4 maximal cliques concatenated. The selected

subset includes the complete structure for one of the traps and half of the structure for the

second trap. The structure is shown in Figure 41.

Figure 41 – The Walsh structure of a length-20 function of concatenated order-4 maximal

cliques such as TRAP4
20. The first six variables are selected. Expected non-zero standard

deviation from subset Walsh transform is labelled.

For the function TRAP4
20, the sample size was increased to 20 due to tendency to miss

variance on small sample sizes. Here, the Walsh structure for the complete first trap is correctly

identified, and there are variances on the three cliques involved in the second trap, indicating

that there are higher-order terms involving variables 𝑋𝑋4 and 𝑋𝑋5. Note however, that the mean

values of the sample do correctly identify those alphas in this instance, although the mean

result for partial structure should not be used where a variance exists. The result is shown in

Figure 42.

|

 155 of 195

Figure 42 – Result for running subset Walsh transform with sample size 20 on the first six

variables on TRAP4
20.

|

 156 of 195

7.3.3 Theoretical Analysis

In this section we show that for a given cut of the variables, the subset Walsh transform

will return an estimate of the structure within the partition, uninfluenced by structure wholly

outside the partition, and with non-zero variance precisely on the parts of the structure crossing

the cut. We show this by showing how the Walsh-Hadamard transform affects a partitioning of

the function into sub functions.

In this analysis, without loss of generality, we order the variables such that the selected

subset, 𝑆𝑆 is the first 𝑘𝑘 variables. However, the same analysis holds for reorderings of the

variables. Consider a partitioning Γ of the variables 𝑋𝑋 into two disjoint subsets 𝑆𝑆 of the variables

as given by (129), and 𝑅𝑅 as given by (130).

𝑆𝑆 = {𝑋𝑋0,𝑋𝑋1, … ,𝑋𝑋𝑘𝑘−1} (129)

𝑅𝑅 = {𝑋𝑋𝑘𝑘 ,𝑋𝑋𝑘𝑘+1, … ,𝑋𝑋ℓ−1} (130)

For a sample 𝐱𝐱 of variables 𝑋𝑋, let 𝐬𝐬 represent the sample of variables 𝑆𝑆 and 𝐫𝐫 represent

the sample of variables 𝑅𝑅. Any binary function considered can be rewritten in terms of 𝑓𝑓𝑆𝑆, 𝑓𝑓𝑃𝑃,

and 𝑓𝑓𝑅𝑅, as given by (131).

𝑓𝑓(𝐱𝐱) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑓𝑓𝑅𝑅(𝐫𝐫) (131)

where 𝑓𝑓𝑆𝑆(𝐬𝐬) is the function created from all non-zero Walsh coefficients involving only the

variables in 𝑆𝑆, where 𝑓𝑓𝑅𝑅(𝐫𝐫) is the function created from all non-zero Walsh coefficients involving

only the variables in 𝑅𝑅, and where 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) is the function formed from the remaining non-zero

Walsh coefficients.

|

 157 of 195

The Walsh coefficients for the function can be calculated from applying the Walsh-

Hadamard transform to each part of this expansion in turn as given by (132).

𝛂𝛂 =
1
2ℓ
𝐻𝐻𝐟𝐟

=
1
2ℓ
𝐻𝐻(𝐟𝐟𝑆𝑆 + 𝐟𝐟𝑃𝑃 + 𝐟𝐟𝑅𝑅)

=
1
2ℓ
𝐻𝐻𝐟𝐟𝑆𝑆 +

1
2ℓ
𝐻𝐻𝐟𝐟𝑃𝑃 +

1
2ℓ
𝐻𝐻𝐟𝐟𝑅𝑅

= 𝛂𝛂𝑆𝑆 + 𝛂𝛂𝑃𝑃 + 𝛂𝛂𝑅𝑅

(132)

First we consider the last term, 𝛂𝛂𝑅𝑅. Within one sampling, only the 𝑘𝑘 variables in 𝑆𝑆 vary,

and the value of 𝑓𝑓𝑅𝑅 is only affected by the ℓ − 𝑘𝑘 variables in 𝑅𝑅. Hence, within one sampling,

the value of 𝑓𝑓𝑅𝑅(𝐫𝐫) is fixed at some arbitrary constant 𝑃𝑃, therefore we can rewrite the function

as given by (133).

𝑓𝑓𝑅𝑅(𝐫𝐫) = 𝑃𝑃

𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑓𝑓𝑅𝑅(𝐫𝐫) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑃𝑃

𝑓𝑓(𝐱𝐱) = 𝑓𝑓𝑆𝑆(𝐬𝐬) + 𝑓𝑓𝑃𝑃(𝐬𝐬, 𝐫𝐫) + 𝑃𝑃

(133)

Since each row of the Hadamard matrix has equal numbers of +1 and −1 (with the

exception of the first row), the estimated coefficients from this term are given by (134).

𝛂𝛂𝑅𝑅 =
1
2ℓ
𝐻𝐻𝑘𝑘 �

𝑃𝑃
𝑃𝑃
⋮
𝑃𝑃

� = �

𝛼𝛼∅
0
⋮
0

� (134)

which is non-zero for all coefficients except 𝛼𝛼∅ – which we do not regard as part of the structure.

Hence, the structure estimate is unaffected by 𝑓𝑓𝑅𝑅.

Next we consider the first term, 𝛂𝛂𝑆𝑆. This is 𝑘𝑘-dimensional. Since the contribution 𝛂𝛂𝑆𝑆 from

the subset (135) does not depend on the random background setting, it is constant across

the samples and will reflect the correct coefficients of this part of the structure.

𝛂𝛂𝑆𝑆 =
1
2ℓ
𝐻𝐻𝑘𝑘𝐟𝐟𝑆𝑆 (135)

|

 158 of 195

However, the coefficients for the partial term (136) may change for each sample taken,

therefore there will be a non-zero standard deviation in the result.

𝛂𝛂𝑃𝑃 =
1
2ℓ
𝐻𝐻𝑘𝑘𝐟𝐟𝑃𝑃 (136)

Hence, the non-zero standard deviation indicates that the sample includes partial structure

which crosses the cut specified by the partition.

Stdev (𝜎𝜎) Mean (𝜇𝜇) In Structure?

non-zero any partial

0 non-zero yes

0 0 no

Table 51 – Condition for detection of partial structure in Subset Walsh Transform.

However, if the sample is not adequate, partial structure may not be detected because 𝜎𝜎 = 0.

This is an instance of a false negative.

|

 159 of 195

7.4 Proximate Optimality on Hill-Climbing Algorithms

We have seen that problem difficulty relates to structure. In the literature there are

concepts that try to explain when problems will be amenable to metaheuristics. One such

measure described in the literature is Glover’s proximate optimality principal [79, pp. 138-141].

We look at a more precise definition of POP related to structure, which we call structural

coherence. Following from the work in this thesis, we have explored construction of problem

instances using measures of structural coherence. Recall that proximate optimality principle

assumes that high fitness candidates have similar structures.

We explore creating functions which have coherence from the point of view of a hill-climber

algorithm. That is, we wish to create functions which are easy or hard for a hill-climber. The

technique and experiments described in section 7.4 were first published in [4]. As second

author, my contribution was to run the experiments, produce the diagrams, and contribute to

the theory.

|

 160 of 195

7.4.1 Concept

Recall the definition of a metric and the Hamming metric from section 2.1.2, as a metric

on bit strings. The idea is to use an undirected graph of randomly-selected seed solutions

chosen in the Hamming space, and construct a minimum spanning tree of that graph to create

a fitness gradient which is smooth at most points, with few peaks and plateaus (these we call

coherent), then to construct a maximum spanning tree of that graph to create a fitness gradient

which is less smooth, with more peaks and plateaus (these we call anti-coherent).

As a conceptual illustration, we show a randomly-chosen set of seed points in a 2-

dimensional Euclidean space in Figure 43. The minimum spanning tree (a) and maximum

spanning tree (b) are shown. One seed point at the bottom of the figure was chosen as the

unique global optimum. Each other seed is assigned a discrete fitness value based on path

distance from the global optimum along the tree.

Every other point on the space is assigned an interpolated fitness based on the weighted

average distance to the two nearest points. The result in each case is a number of cells, each

with a fitness gradient. In the case of the minimum spanning tree, the fitness gradient tends to

lead to the global optimum, with the exception of a few small plateaux. In the case of the

maximum spanning tree, there are a number of local optima, including one high fitness local

optimum at the opposite side of the space to the global optimum.

Figure 43 – Minimum spanning tree (a) and maximum spanning tree (b) for a randomly-

chosen set of point in 2-dimensional Euclidian space.

|

 161 of 195

7.4.2 Problem Generation and Evaluation

We generate problems in an ℓ-dimensional Hamming space. First we choose 𝑠𝑠 seed

solutions for some chosen parameter value 𝑠𝑠 ∈ {2, 3, … }. The seed solutions are chosen

uniformly at random without replacement from {0, 1}ℓ. The seed solutions are the vertices of a

graph 𝐺𝐺.

Next, we generate a minimum spanning tree 𝑇𝑇 of 𝐺𝐺 (for coherent instances) using Prim’s

algorithm [110] or maximum spanning tree 𝑇𝑇 of 𝐺𝐺 (for anti-coherent instances) using Prim’s

algorithm with negative costs. If desired, a coherent instance and an anti-coherent instance

may be generated from the same set of seeds.

1) define 𝑓𝑓𝐸𝐸 as new empty dictionary

2) define 𝑓𝑓𝐻𝐻 as new empty dictionary

3) 𝑠𝑠 ← ∅

4) for 𝑖𝑖 ← 0 to 𝑠𝑠 − 1

a) 𝑠𝑠 ← 𝑠𝑠 ∪ random�{0, 1}ℓ − 𝑠𝑠�

5) 𝑇𝑇𝐸𝐸 ← min_span_tree(𝑠𝑠)

6) 𝑇𝑇𝐻𝐻 ← max_span_tree(𝑠𝑠)

7) 𝑠𝑠𝐸𝐸∗ ← random�leaves(𝑇𝑇𝐸𝐸)�

8) 𝑠𝑠𝐻𝐻∗ ← random�leaves(𝑇𝑇𝐻𝐻)�

9) 𝑓𝑓∗ ← max({pathlength(𝑠𝑠∗, 𝑠𝑠𝑖𝑖) ∶ ∀𝑠𝑠𝑖𝑖 ∈ 𝑠𝑠})

10) 𝑓𝑓𝐸𝐸[𝑠𝑠∗] ← 𝑓𝑓𝐸𝐸∗

11) 𝑓𝑓𝐻𝐻[𝑠𝑠∗] ← 𝑓𝑓𝐻𝐻∗

12) for each 𝑠𝑠𝑖𝑖 in 𝑠𝑠 − 𝑠𝑠𝐸𝐸∗

a) 𝑓𝑓𝐸𝐸[𝑠𝑠𝑖𝑖] ← 𝑓𝑓𝐸𝐸∗ − pathlength(𝑠𝑠𝐸𝐸∗ , 𝑠𝑠𝑖𝑖)

13) for each 𝑠𝑠𝑖𝑖 in 𝑠𝑠 − 𝑠𝑠𝐻𝐻∗

a) 𝑓𝑓𝐻𝐻[𝑠𝑠𝑖𝑖] ← 𝑓𝑓𝐻𝐻∗ − pathlength(𝑠𝑠𝐻𝐻∗ , 𝑠𝑠𝑖𝑖)

14) save 𝑓𝑓𝐸𝐸 to easy file

15) save 𝑓𝑓𝐻𝐻 to hard file

Algorithm 6 – Coherence problem instance generation

|

 162 of 195

The fitness of the seed points are chosen. First a fitness of 𝑀𝑀𝐴𝐴𝑋𝑋 is assigned to one

randomly chosen vertex of 𝑇𝑇 with only one neighbour (a leaf), where 𝑀𝑀𝐴𝐴𝑋𝑋 is the maximum

number of hops on 𝑇𝑇 from any vertex to that leaf, this leaf will be the instance global optimum.

Next, each other seed is assigned a fitness of (𝑀𝑀𝐴𝐴𝑋𝑋 − ℎ) where ℎ is the number of hops

to the global optimum. As a result, each seed will be assigned a value in {0, 1, … ,𝑀𝑀𝐴𝐴𝑋𝑋} with at

least one seed at each level, and only one seed assigned the value of 𝑀𝑀𝐴𝐴𝑋𝑋.

For each point in the search space which is not a seed, we define the fitness of a point 𝐱𝐱

in the as the weighted average of the two closest seed points 𝐩𝐩 and 𝐪𝐪, given by (137), based

on 𝐷𝐷𝑟𝑟, the hamming metric; ties are broken arbitrarily (based on the order in which seeds were

randomly generated). As a result, each value in the space, will be assigned a value in [0,𝑀𝑀𝐴𝐴𝑋𝑋]

with only one value assigned the value of 𝑀𝑀𝐴𝐴𝑋𝑋.

𝑓𝑓(𝐱𝐱) = 𝑓𝑓(𝐩𝐩) ∙ (1 − 𝑡𝑡) + 𝑓𝑓(𝐪𝐪) ∙ 𝑡𝑡

where 𝑡𝑡 =
𝐷𝐷𝑟𝑟(𝐱𝐱,𝐩𝐩)

𝐷𝐷𝑟𝑟(𝐱𝐱,𝐩𝐩) + 𝐷𝐷𝑟𝑟(𝐱𝐱,𝐪𝐪)
(137)

Algorithm 7 below shows the process of evaluating a candidate 𝑥𝑥.

1) 𝑓𝑓 ← load from file

2) if 𝑥𝑥 ∈ keys(𝑓𝑓)

a) return 𝑓𝑓[𝑥𝑥]

3) else

a) 𝐴𝐴, 𝑞𝑞 ← two closest points in 𝑓𝑓 to 𝑥𝑥

b) 𝑡𝑡 ← 𝐷𝐷𝑟𝑟(𝑥𝑥,𝐴𝐴)/(𝐷𝐷𝑟𝑟(𝑥𝑥, 𝐴𝐴) + 𝐷𝐷𝑟𝑟(𝑥𝑥, 𝑞𝑞))

c) return 𝑓𝑓[𝐴𝐴] ∙ (1 − 𝑡𝑡) + 𝑓𝑓[𝑞𝑞] ∙ 𝑡𝑡

Algorithm 7 – Coherence problem function evaluation

|

 163 of 195

7.4.3 Results

10 instances for each problem length 6 to 100 were generated using both max-span and

min-span from the same seeds. We ran a multi-restart maximum-ascent hill-climber algorithm

on each instance 100 times and plotted the results in Figure 44. The runtime of the min-span

(coherent) instances is quadratic. The runtime of max-span instances (anti-coherent) was

quadratic in the best case and exponential in the worst case, depending on the instance.

Figure 44 – Result of hill-climb on instances with 50 seed solutions.

|

 164 of 195

7.4.4 Conclusions

The procedure described produces single–global-optima binary functions which can be

easy or hard to optimise with a hill-climber. These are coherent and anti-coherent instances

from the point of view of a hill-climber.

It is worth noting that there are cases in which even the minimum span procedure can

generate instances with a relatively isolated basin of attraction to the global optimum. As an

illustration, we show two seed points to the left of the graph on a one-dimensional Euclidian

search space and one seed point to the right in Figure 45.

Figure 45 – All possible assignments of values to minimum spanning tree (left charts) and

maximum spanning tree (right charts) for three selected seeds on one-dimensional Euclidean

space. Basin of attraction to global optimum highlighted.

Observe that in the illustration, the fitness gradient is linear when interpolated between the two

closest points (𝐴𝐴 < 𝑥𝑥 < 𝑞𝑞), but falls off sharply as 1
𝐷𝐷
 when extrapolating past the two closest

points (𝐴𝐴 < 𝑞𝑞 < 𝑥𝑥). If 𝑓𝑓(𝐴𝐴) > 𝑓𝑓(𝑞𝑞) then this creates a local optimum with a wide basin of

attraction, far from any seed solution.

The example given is an illustration in a Euclidian search space, and chosen pathologically

to illustrate this behaviour. However, we see that difficulty of functions generated may be

affected by other factors than the choice of minimum or maximum spanning tree. This may

help explain the large variance in difficulty of max-span instances.

|

 165 of 195

7.5 Summary

In this chapter we have discussed combining 3-bit classes into larger problem instances,

and algorithms for learning precedence network structure and Walsh structure. We have

outlined a method of generating easy and hard problems for a hill-climber based on proximate

optimality structure. Next, we conclude the thesis and give suggestions for future work.

|

 166 of 195

|

 167 of 195

8 Conclusions and Further Work

8.1 Conclusions

In this thesis we addressed the following four research questions:

1. What is the relationship between problem structure and problem difficulty?

In chapters 5 and 6 we introduced the notion of precedence profiles, and discussed the

relationship between precedence profiles and problem difficulty. We also discussed how the

computational effort affects the probability of finding an optimum, across the set of function

classes. In chapter 7 we constructed easy and hard functions based on ideas of structural

coherence for hill-climbing.

2. How can we use structure to usefully classify problems?

In chapter 4 we defined a classification of pseudo-Boolean functions based on function

classes invariant under monotonic operators. The performance of any evolutionary algorithm

using only monotonic operators on any two functions of the same class is identical and

reasoning about the performance of such an algorithm applies to the whole class. We define

the notion of directed ordinal linkage as an extension of the existing definitions of linkage.

3. Can we use structure to bound the number of algorithmic steps?

In chapters 5 and 6 we analysed the linkage and directed ordinal linkage of the complete

set of 2-bit and 3-bit pseudo-Boolean functions classes, and derived a notion of minimal Walsh

structure. We derived a notion of conditionally-necessary interactions (those interactions which

may be necessary or unnecessary depending on other interactions). We also defined

precedence networks – an ordered evaluation of linkage partitions. We also discussed how

population size, and hence computational cost, is affected by choice of selection operators.

4. Can structure analysis motivate the development of novel algorithms?

In chapter 7 we discussed a means of algorithmically constructing a precedence network

describing the ordinal linkage structure of a problem, and a linkage-learning algorithm which

can be used to optimise a function. We also described an algorithm for leaning the Walsh

structure of a function by sampling subsets of the variables. We discussed the construction of

problem instances from our analysis of 3-bit functions.

|

 168 of 195

8.2 Further Work

8.2.1 Refinement of 3-Bit Structural Coherence

In section 6.10 we discuss the structural coherence of 3-bit function classes and minimum

population sizes required for detection of linkage.

Here we only consider the pairwise linkage. From the point of view of our definitions, as

described in chapter 6 there are higher-order interactions than pairwise. Additionally, other

algorithms in the literature uses higher-order interactions. We can extend this work either by

using the perturbation-based definition of linkage, taking two variables to be linkage if they are

in the same connected component of the linkage graph, taking into account the higher-order

linage.

We also note that our current choice of recognising linkage – by choosing the structure

with the lowest-ID from a class’ Walsh family – puts a bias which introduced an asymmetry on

the bivariate terms. This problem arises because there exists 3-bit function classes where

there is no clear minimal structure (as noted in section 6.4). For the case of the class

[0 1 2 4 2 4 4 7] (see Figure 20, p. 116), we select 1F as the minimal structure and rate the

algorithm’s ability to detect linkages 𝛼𝛼{0,1} and 𝛼𝛼{0,2} while counting 𝛼𝛼{0,2} as a false negative.

From the Walsh family we see that the structure 2B (which contains 𝛼𝛼{0,2} as the only bivariate

term) is an equally-valid structure for this class.

Figure 20 (p. 116) – All possible Walsh structures for [0 1 2 4 2 4 4 7].

One possible way to proceed is to introduce a notion of non-dominated structure, which

would define as the set of structures (in this case {1F, 2B}) for which no strict subset of the

structure elements exist in the family. A measure of a monotonic EDA’s structure learning

should acknowledge the existence of these two equally-value structures. If the EDA learns the

structure 3F, then it has learned at least one unnecessary interaction, however, it is not clear

which bivariate term(s) should be regarded as unnecessary in this case.

|

 169 of 195

8.2.2 Further Development of Precedence Network Learning

The algorithm in section 7.2.1 as described does not easily learn the structure of the

LEADING function, since the interactions involving variables 𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗 for large 𝑗𝑗 are difficult to

detect since it requires correct setting of all variables 𝑋𝑋0 …𝑋𝑋𝑗𝑗−1. A modification could be made

for this case which stores information about known good settings of the variables influencing

the current target allowing the algorithm to be more likely to try those values.

Methods could be investigated to determine the best way to cut a graph when the addition

of new edges causes creation of a vertex which is too large to evaluate. For example, we could

assign weights to vertices based on the result of linkage detection (e.g. using some non-

monotonic information about the magnitude of the fitness differences). Minimum cut or similar

procedure could be used to discard existing linkages of a lower strength.

We could randomly break linkages with some probability based on a cooling schedule

such that all linkages would have an equal chance to be broken at the start of the network

learning, but stronger linkages would have a lower chance to be broken as time passes.

One of the difficulties that occurs when implementing these procedures is that it is difficult

to decide how to break apart structure. If variables are first contracted into linkage group, then

one or more variables are found to be influencers of the group, those dependencies are shared

by the members. This makes it difficult to well-define a procedure which would allow the

interdependency between the variables of the group later. Figure 46 shows the structure

(𝑋𝑋0 + 𝑋𝑋2) → 𝑋𝑋1, the next step linkage 𝑋𝑋1 → 𝑋𝑋2 is added, and in the last step, the linkage is

removed again. From the previous step, it is not clear which variable is dependant on 𝑋𝑋0 unless

a memory of previous steps is kept. For more complex, nested structures, depending on the

order of adding and removing linkage, the correct linkage may not be defined.

Figure 46 – Merge then split of variables 𝑋𝑋1 and 𝑋𝑋2.

A work around could involve a procedure of disallowing the creation of linkage groups of

size > 1 initially, then increasing the limit gradually as the temperature changes, allowing larger

and larger linkage groups to be formed permanently.

|

 170 of 195

8.2.3 Construction of Benchmark Functions

In section 7.1.2 we discuss the construction of functions by stitching together overlapping

sub-functions. Further development of this procedure could construct problem instances with

known Walsh structure. These could be used to evaluate the success of EDAs in structure

learning.

Additionally, it may be possible to consider construction of new benchmarks with partially

controlled complexity in terms of number of possible structures. Recall from Table 38 (p. 111)

that the number of fitness levels is positively correlated with the size of the Walsh family, and

hence generally correlated with the complexity of arrangement of optional or conditional Walsh

coefficients.

In section 6.7 we list all possible precedence networks on 3-bit functions. It is clear that

for higher-dimensional function spaces, there continues to be a complex set of possible

precedence networks, and function classes which are most efficiently solved by a given

precedence network.

We note that the LEADING benchmark function contains dependence from each pair of

variables (∀𝑖𝑖 < 𝑗𝑗)�𝑋𝑋𝑖𝑖 → 𝑋𝑋𝑗𝑗�, however, the rest of our set of benchmark functions contains only

independence or interdependence between variables. A further investigation of existing may

reveal other existing benchmark functions or real-world problems with directed ordinal linkage.

However, the existing literature does not address this concept in the construction of benchmark

functions, although they form a large proportion of the space of function classes.

It may be worth constructing benchmark functions with one-way dependencies between

variables since an algorithm which would be able to detect such linkage and construct a

precedence network may be able to optimise such a function more efficiently than one which

constructs an undirected linkage partition. With additional benchmark functions we could see

whether modifications to the precedence network learning algorithm are a generally good

modification in principal.

|

 171 of 195

8.2.4 Subset Walsh Transform Sweep

The subset Walsh transform could be used repeatedly to discover the structure of a

complete function similar to the procedure by Heckendorn and Wright [62] to learn the values

of the Walsh coefficients in a function. This method could be used to learn Walsh coefficients

for analysing or optimising a function.

Such an approach should be possible by sweeping over the problem. For an arbitrary

permutation of the variables, we would start by running SWT({𝑋𝑋0}) and if the procedure finds

non-zero standard deviation indicating partial structure, add 𝑋𝑋0 to a graph of partial structure.

Then we would run SWT({𝑋𝑋0,𝑋𝑋1}) to see if the partial structure involves 𝑋𝑋1, we may find this is

complete structure and add it to the final output, or find the 𝑋𝑋0 and 𝑋𝑋1 are connected but have

partial structure with another variable (in which case we try SWT({𝑋𝑋0,𝑋𝑋1,𝑋𝑋2})), or are

disconnected from one another but both have partial structure with another variable (in which

case we try SWT({𝑋𝑋0,𝑋𝑋2}) and SWT({𝑋𝑋1,𝑋𝑋2})). This algorithm is outlined in Algorithm 8 below.

1) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← ∅

2) 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ← ∅

3) for 𝑖𝑖 ← 0 to ℓ − 1

a) if 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 = ∅

i) run SWT on 𝑋𝑋𝑖𝑖

ii) add complete structure to 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴

iii) add partial structure to 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴

b) else

i) For 𝑑𝑑 ← set of variables in each connected component of 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴

ii) 𝑒𝑒𝑣𝑣 ← SWT(𝑑𝑑 ∪ {𝑋𝑋𝑖𝑖})

iii) for each complete structure 𝛾𝛾 in 𝑒𝑒𝑣𝑣

(1) 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ← 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴 ∪ {𝛾𝛾}

(2) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 − {𝛾𝛾}

iv) for each partial structure 𝛾𝛾 in 𝑒𝑒𝑣𝑣

(1) 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ← 𝐴𝐴𝑂𝑂𝑒𝑒𝑡𝑡𝑖𝑖𝑂𝑂𝐴𝐴 ∪ {𝛾𝛾}

c) return 𝑃𝑃𝑐𝑐𝑚𝑚𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡𝐴𝐴

Algorithm 8 – Subset Walsh transform sweep

|

 172 of 195

Each call to SWT would require a maximum of 2𝑘𝑘 function evaluations where 𝑘𝑘 is the size

of the largest linkage group in the function, making the procedure tractable for small 𝑘𝑘,

however, further study is required to determine the probability of failure for a given sample size

𝑠𝑠 across a large number of calls to the SWT procedure, and hence the sample size required is

a function of ℓ to determine the resulting runtime.

8.2.5 Necessary Structure for Optimisation

We have considered structure as necessary in the case that there exists no instance of

the function’s class which has the structure omitted. There are other ways in which we could

consider whether structure is necessary.

Recall that the space of pseudo-Boolean functions can be represented using a Walsh

function basis. In this sense, function classes are a partioning of this space. These partitions

can also be regarded as adjacent when there are members of two classes separated by any

desired small 𝜖𝜖 > 0. Also, difference classes have different degrees of freedom (defined by the

number of deltas). The more degrees of freedom, the higher-dimensional subspace the

partition represents. A class can be a face of the subspace of another.

For instance, we observe that near functions such as TRAP2
2 function (of the class

[3 0 0 2]), there are other functions which contain unnecessary structure. Adding a small

amount of noise to TRAP2
2 would produce an instance of the injective class 𝐂𝐂𝐴𝐴 = [3 0 1 2] or

𝐂𝐂𝐵𝐵 = [3 1 0 2]. Here, TRAP2
2 is a lower-dimensional face which sits between 𝐂𝐂𝐴𝐴 and 𝐂𝐂𝐵𝐵.

If we regard 𝐂𝐂𝐴𝐴 and 𝐂𝐂𝐵𝐵 as easier to optimise than TRAP2
2, we see that the effort to carefully

model this lower-dimensional sub-face is actually making the function more difficult to model.

This additional structure solely maintains the ranks of sub-optimal solutions (specifically the

middle ranks) and is thus not necessary for locating this function’s global optimum.

This topological view of the space of function classes with injective classes as ℓ-

dimensional subspaces, and non-injective classes as sub-faces, indicates that further analysis

of the space of functions in this topological sense could further inform the development of novel

algorithms.

|

 173 of 195

8.2.6 Non Pseudo-Boolean Functions

Much of the analysis in this thesis extends to higher-order alphabets, since functions on

higher-order alphabets will still be grouped into linkage partitions and have directed ordinal

linkage. However, the analysis from Walsh coefficients does not extend so easily, since the

Walsh decomposition relates specifically to pseudo-Boolean functions. Natural extension

would use a set of functions, such as general Fourier functions, to provide a basis from the

vector space of functions in lieu of Walsh functions.

As these larger function spaces are a superset of the function space we have already

explored, they would necessarily contain the observed phenomena such as conditionally-

necessary interactions would be seen. There may be other factions which arise which require

modification to our description of necessary/unnecessary/conditionally-necessary interactions

which would inform the development of novel algorithms.

An obvious issue is that much of the analysis done in this thesis was on an exhaustive set

of function classes. This becomes computationally intractable for larger alphabets, and so

other methods of analysis would be required.

|

 174 of 195

|

 175 of 195

Appendix A – List of 3-Bit Classes (Python 3)

def rank(f):
 r = [0, 0, 0, 0, 0, 0, 0, 0]
 for x in range(8):
 for y in range(8):
 if y != x:
 if f[y] > f[x]:
 r[x] = r[x] + 1
 return tuple(r)

def output(r):
 print(str(r).replace(",", "").replace("(", "").replace(")", ""))

if __name__ == "__main__":
 seen = set()
 for a in range(8):
 for b in range(8):
 for c in range(8):
 for d in range(8):
 for e in range(8):
 for f in range(8):
 for g in range(8):
 for h in range(8):
 r = rank([h, g, f, e, d, c, b, a])
 if not r in seen:
 seen.add(r)
 output(r)
 print("END")

|

 176 of 195

|

 177 of 195

Appendix B – Calculating 3-Bit Families (ANSI C)

#include <stdio.h>

/* Returns the structure of the given specific function by applying
 the Fast Walsh-Hadamard Transform (FWHT) and converting the
 resulting non-zero structure to a numerical code. */
int find_structure(int* f) {
 int rv = 0;
 int ff[16];
 ff[0] = f[0] + f[4];
 ff[1] = f[1] + f[5];
 ff[2] = f[2] + f[6];
 ff[3] = f[3] + f[7];
 ff[4] = f[0] - f[4];
 ff[5] = f[1] - f[5];
 ff[6] = f[2] - f[6];
 ff[7] = f[3] - f[7];
 ff[8] = ff[0] + ff[2];
 ff[9] = ff[1] + ff[3];
 ff[10] = ff[0] - ff[2];
 ff[11] = ff[1] - ff[3];
 ff[12] = ff[4] + ff[6];
 ff[13] = ff[5] + ff[7];
 ff[14] = ff[4] - ff[6];
 ff[15] = ff[5] - ff[7];
 if (ff[8] - ff[9]) rv += 1;
 if (ff[10] + ff[11]) rv += 2;
 if (ff[10] - ff[11]) rv += 4;
 if (ff[12] + ff[13]) rv += 8;
 if (ff[12] - ff[13]) rv += 16;
 if (ff[14] + ff[15]) rv += 32;
 if (ff[14] - ff[15]) rv += 64;
 return rv;
}

/* Returns the number of distinct values for a specified class. */
int calc_num_ranks(int* clazz) {
 int rv = 0;
 int i, j, is_new;
 for (i = 0; i < 8; i++) {
 is_new = 1;
 for (j = 0; j < i-1; j++) {
 if (clazz[i] == clazz[j]) {
 is_new = 0;
 }
 }
 if (is_new) {
 rv++;
 }
 }
 return rv;
}

/* Finds the class for a specified funtion. */
void function_to_class(int* function, int* clazz) {
 int i, j, num_lower;
 for (i = 0; i < 8; i++) {

|

 178 of 195

 num_lower = 0;
 for (j = 0; j < 8; j++) {
 if (function[j] < function[i]) {
 num_lower++;
 }
 }
 clazz[i] = num_lower;
 }
}

/* Converts a clazz in-place into tokens for replacement. */
void tokenise(int* clazz) {
 int used;
 int rank, i;
 int token = -1;
 for (rank = 0; rank < 8; rank++) {
 used = 0;
 for (i = 0; i < 8; i++) {
 if (clazz[i] == rank) {
 clazz[i] = token;
 used = 1;
 }
 }
 if (used) {
 token--;
 }
 }
}

/* Creates an instance specified tokeneized class as fitnesses
 with the given values. */
void detokenise(int* t_clazz, int* fitnesses, int* vals) {
 int i;
 for (i = 0; i < 8; i++) {
 fitnesses[i] = vals[-t_clazz[i] - 1];
 }
}

/* Computes the Walsh family for the specified tokenised
 class with 3 distinct ranks. */
void find_family_3(int* t_clazz, int* family) {
 int v[3], f[8];
 for (v[0] = 0; v[0] <= 2; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 3; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 4; v[2]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}

/* Computes the Walsh family for the specified tokenised
 class with 4 distinct ranks. */
void find_family_4(int* t_clazz, int* family) {
 int v[4], f[8];
 for (v[0] = 0; v[0] <= 4; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 5; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 6; v[2]++) {
 for (v[3] = v[2] + 1; v[3] <= 7; v[3]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}}

/* Computes the Walsh family for the specified tokenised

|

 179 of 195

 class with 5 distinct ranks. */
void find_family_5(int* t_clazz, int* family) {
 int v[5], f[8];
 for (v[0] = 0; v[0] <= 6; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 7; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 8; v[2]++) {
 for (v[3] = v[2] + 1; v[3] <= 9; v[3]++) {
 for (v[4] = v[3] + 1; v[4] <= 10; v[4]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}}}

/* Computes the Walsh family for the specified tokenised
 class with 6 distinct ranks. */
void find_family_6(int* t_clazz, int* family) {
 int v[6], f[8];
 for (v[0] = 0; v[0] <= 7; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 8; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 9; v[2]++) {
 for (v[3] = v[2] + 1; v[3] <= 10; v[3]++) {
 for (v[4] = v[3] + 1; v[4] <= 11; v[4]++) {
 for (v[5] = v[4] + 1; v[5] <= 12; v[5]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}}}}

/* Computes the Walsh family for the specified tokenised
 class with 7 distinct ranks. */
void find_family_7(int* t_clazz, int* family) {
 int v[7], f[8];
 for (v[0] = 0; v[0] <= 8; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 9; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 10; v[2]++) {
 for (v[3] = v[2] + 1; v[3] <= 11; v[3]++) {
 for (v[4] = v[3] + 1; v[4] <= 12; v[4]++) {
 for (v[5] = v[4] + 1; v[5] <= 13; v[5]++) {
 for (v[6] = v[5] + 1; v[6] <= 14; v[6]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}}}}}

/* Computes the Walsh family for the specified tokenised
 class with 8 distinct ranks. */
void find_family_8(int* t_clazz, int* family) {
 int v[8], f[8];
 for (v[0] = 0; v[0] <= 8; v[0]++) {
 for (v[1] = v[0] + 1; v[1] <= 9; v[1]++) {
 for (v[2] = v[1] + 1; v[2] <= 10; v[2]++) {
 for (v[3] = v[2] + 1; v[3] <= 11; v[3]++) {
 for (v[4] = v[3] + 1; v[4] <= 12; v[4]++) {
 for (v[5] = v[4] + 1; v[5] <= 13; v[5]++) {
 for (v[6] = v[5] + 1; v[6] <= 14; v[6]++) {
 for (v[7] = v[6] + 1; v[7] <= 15; v[7]++) {
 detokenise(t_clazz, f, v);
 family[find_structure(f)] = 1;
}}}}}}}}}

/* Computes the Walsh fmaily for the specified class. */
void find_family(int* clazz, int* family) {
 int i, num_ranks;
 /* Clears the array to store the Walsh family. */
 for (i = 0; i < 128; i++) {

|

 180 of 195

 family[i] = 0;
 }
 num_ranks = calc_num_ranks(clazz);
 if (num_ranks == 1) {
 /* Family is always {00}. */
 family[0] = 1;
 } else if (num_ranks == 2) {
 /* Family contains only one element. */
 family[find_structure(clazz)] = 1;
 } else {
 tokenise(clazz);
 switch (num_ranks) {
 case 3:
 find_family_3(clazz, family);
 break;
 case 4:
 find_family_4(clazz, family);
 break;
 case 5:
 find_family_5(clazz, family);
 break;
 case 6:
 find_family_6(clazz, family);
 break;
 case 7:
 find_family_7(clazz, family);
 break;
 case 8:
 find_family_8(clazz, family);
 break;
 }
 }
}

/* Prints the specified funciton to STDOUT in decimal. */
void print_function(int* function) {
 int i;
 printf("[");
 for (i = 0; i < 8; i++) {
 if (i != 0) {
 printf(", ");
 }
 printf("%d", function[i]);
 }
 printf("]\t");
}

/* Prints the specified Walsh family to STDOUT in hex. */
void print_family(int* family) {
 int i, first = 1;
 printf("{");
 for (i = 0; i < 128; i++) {
 if (family[i]) {
 if (!first) {
 printf(", ");
 }
 printf("%02X", i);
 first = 0;
 }
 }
 printf("}\n");
}

|

 181 of 195

/* Main method. */
int main(void) {
 int done = 0;
 int f[8];
 int clazz[8];
 int family[128];
 while(!done) {
 /* Reads a function. */
 if (scanf("%d %d %d %d %d %d %d %d",
 f, f+1, f+2, f+3, f+4, f+5, f+6, f+7)) {
 /* Gets the class. */
 function_to_class(f, clazz);
 /* Outputs the class. */
 print_function(clazz);
 /* Calculates the Walsh family. */
 find_family(clazz, family);
 /* Outputs the Walsh family */
 print_family(family);
 } else {
 done = 1;
 }
 }
 return 0;
}

|

 182 of 195

|

 183 of 195

Appendix C – Compiling and Running Sources

The list of 3-bit classes (Appendix A) can be run from the command line using the Python

3 interpreter. The classes are printed to standard output and can be redirected to a file. For

example, if the source file is named classes.py, output can be sent to a file as such:

python3 classes.py >classes.txt

The 3-Bit families (Appendix B) can be compiled using GCC or any other standard C compiler.

For examples, if the source file is named families.c:

gcc families.c –o families

The 3-bit families can be calculated by reading in lines of text from standard input representing

ranks separated by spaces. The program will output the Walsh family to standard output of the

input class, then wait for another class. The program will terminate on receiving another line

of text such ad the terminator “END”. The output of the Python script for generating all 3-bit

classes is in this format, and thus can be piped to the families generating program as follows:

families <classes.txt >families.txt

Alternatively, both programs may be run together using a pipe operator:

python3 classes.py | family >families.txt

|

 184 of 195

|

 185 of 195

Bibliography

[1] L. A. Christie, D. P. Lonie and J. A. W. McCall, “Partial structure learning by

subset Walsh transform,” in UK Workshop on Computational Intelligence (UKCI),

pp. 128-135, 2013.

[2] L. A. Christie, J. A. W. McCall and D. P. Lonie, “Minimal Walsh structure and

ordinal linkage of monotonicity-invariant function classes on bit strings,” in Genetic

and Evolutionary Computation Conference (GECCO), pp. 333-340, 2014.

[3] A. E. I. Brownlee, J. A. W. McCall and L. A. Christie, “Structural coherence of

problem and algorithm: an analysis for EDAs on all 2-bit and 3-bit problems,” in

IEEE Congress on Evolutionary Computation (CEC), pp. 2066-2073, 2015.

[4] J. A. W. McCall, L. A. Christie and A. E. I. Brownlee, “Generating Easy and

Hard Problems using the Proximate Optimality Principle,” in Genetic and

Evolutionary Computation Conference (GECCO), pp. 767-768, 2015.

[5] D. H. Wolpert and W. G. Macready, “No Free Lunch Theorems for

Optimization,” IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp.

67-82, 1997.

[6] C. M. Reidys and P. F. Stadler, “Combinatorial Landscapes,” Society for

Industrial and Applied Mathematics Review (SIREV), vol. 44, no. 1, pp. 3-54, 2002.

[7] A. V. Arkhangel'skii, “General Topology I: Basic Concepts and Constructures

Dimension Theory,” L. S. Pontryagin, Ed., Springer, 1990.

[8] R. W. Hamming, “Error detecting an error correcting codes,” Bell Systems

Technical Journal, vol. 29, no. 2, pp. 147-160, 1950.

[9] H. Braun, “On solving travelling salesman problems by genetic algorithms,” in

Parallel Problem Solving from Nature (PPSN), pp. 129-133, 1991.

[10] H. Mühlenbein, “How genetic algorithms really work, I. Fundamentals,” Parallel

Problem Solvings from Nature (PPSN), pp. 15-26, 1992.

|

 186 of 195

[11] J. Horn, D. E. Goldberg and K. Deb, “Long path problems,” Lecture Notes in

Computer Science, vol. 866, pp. 149-158, 1994.

[12] F. Glover, “Future paths for integer programming and links to artificial

intelligence,” in Computers and Operations Research, pp. 533-549, 1986.

[13] F. Glover, “Tabu Search: Part I,” ORSA Journal on Computing, vol. 1, pp. 190-

206, 1989.

[14] F. Glover, “Tabu Search: Part II,” ORSA Journal on Computing, vol. 2, pp. 4-

32, 1990.

[15] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi, “Optimization by simmulated

annealing,” Science, vol. 220, no. 4598, pp. 671-680, 1983.

[16] P. J. M. Van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory and

Applications, Dordrecht, Holland: D. Reidel Publishing Company, 1987.

[17] J. H. Holland, Adaptation in natural and artificial systems: an introductory

analysis with applications to biology, control, and artificial intelligence, Oxford,

England: U Michigan Press, 1975.

[18] T. C. Belding, “The distributed genetic algorithm revisited,” in International

Conference on Genetic Algorithms, pp. 114-121, 1995.

[19] D. Whitley, S. Rana and R. B. Heckendorn, “The island model genetic

algorithm: on separability, population size and convergence,” Computing and

Information Technology, vol. 7, no. 1, pp. 33-47, 1999.

[20] D. E. Goldberg, Genetic algorithms in search, optimization, and machine

learning, Addison-Wesley Professional, 1989.

[21] M. Mitchell, J. H. Holland and S. Forrest, “When will a genetic algorithm

outperform hill-climbing?,” in Advances in neural information processing systems,

vol. 6, J. D. Cowan, G. Tesauro, Alspector and Joshua, Eds., Morgan Kaufmann,

pp. 51-58, 1994.

[22] L. Davis, Handbook of genetic algorithms, New York, NY: Van Nostrand

Reinhold, 1991.

|

 187 of 195

[23] M. de la Maza and B. Tidor, “An analysis of selection procedures with particular

attention paid to proportional and Boltzmann selection,” in Genetic and Evolutionary

Computation Conference (GECCO), pp. 124-131, 1993.

[24] S. K. Shakya, DEUM: A framework for an estimation of distribution algorithm

based on Markov random fields, 2006.

[25] D. E. Goldberg, B. Korb and K. Deb, “Messy Genetic Algorithms: Motivation,

Analysis, and First Results,” Complex Systems, vol. 3, no. 2, pp. 493-530, 1989.

[26] Y. P. Chen, C. Y. Chuang and Y. W. Huang., “Inductive Linkage Identification

on Building Blocks of Different Sizes and Types,” International Journal of Systems

Science, vol. 43, no. 12, pp. 2202-2213, 2012.

[27] N. R. Pal, S. Nandi and M. K. & Kundu, “Self-crossover-a new genetic operator

and its application to feature selection,” International Journal of Systems Science,

vol. 29, no. 2, pp. 207-212, 1998.

[28] H. Kargupta, “SEARCH, Polynomial Complexity, And The Fast Messy Genetic

Algorithm,” University of Illinois, 1995.

[29] E. Corsano, D. Cucci, L. Malagò and M. Matteucci, “Implicit model selection

based on variable transformations in estimation of distribution,” in Learning and

intelligent optimization, Y. Hamadi and M. Schoenauer, Eds., Springer Berlin

Heidelberg, pp. 360-365, 2012.

[30] P. Larrañaga and J. A. Lozano, Estimation of Distribution Algorithms: A New

Tool for Evolutionary Computation, 2002.

[31] M. Pelikan, D. E. Goldberg and F. G. Lobo, “A Survey of Optimization by

Building and Using Probabilistic Models,” Computational Optimization and

Applications, vol. 21, no. 1, pp. 5-20, 2002.

[32] M. Pelikan and H. Mühlenbein, “The bivariate marginal distribution algorithm,”

in Advances in Soft Computing, London, Springer London, pp. 521-535, 1999.

[33] S. Baluja and R. Caruana, “Removing the genetics from the standard genetic

algorithm,” in International Conference Machine Learning, pp. 38-46, 1995.

|

 188 of 195

[34] H. P. G. Mühlenbein, “From recombination of genes to the estimation of

distributions i. binary parameters,” in Parallel Problem Solving from Nature (PPSN),

pp. 178-187, 1996.

[35] M. Pelikan, “BOA: the Bayesian optimization algorithm,” in Hierarchical

Bayesian optimization algorithm, Berlin, Springer Berlin Heidelberg, pp. 31-48,

2005.

[36] S. K. Shakya, J. A. W. McCall and D. F. Brown, “Solving the Ising spin glass

problem using a bivariate EDA based on Markov random fields,” in IEEE Congress

on Evolutionary Computation (CEC). pp. 908-915, 2006.

[37] A. Petrovski, S. Shakya and J. A. W. McCall, “Optimising Cancer

Chemotherapy Using an Estimation of Distribution Algorithm and Genetic

Algorithms,” in Genetic and Evolutionary Computation Conference (GECCO), pp.

413-418, 2006.

[38] A. E. I. Brownlee, M. Pelikan, J. A. W. McCall and A. Petrovski, “An application

of a multivariate estimation of distribution algorithm to cancer chemotherapy,” in

Genetic and Evolutionary Computation Conference (GECCO), pp. 463-464, 2008.

[39] Y. Wu, J. A. W. McCall, P. Godley, A. E. I. Brownlee, D. Cairns and J. Cowie,

“Bio-control in mushroom farming using a Markov network EDA,” in IEEE Congress

on Evolutionary Computation (CEC), pp. 2991-2996, 2008.

[40] S. K. Shakya, F. Oliveira and G. Owusu, “Analysing the effect of demand

uncertainty in dynamic pricing with EAs,” in Research and development in intelligent

systems xxv, M. Bramer, M. Petridis and F. Coenen, Eds., Springer London, pp.

77-90, 2009.

[41] R. Kindermann and J. L. Snell, Markov Random Fields and Their Applications,

American Mathematical Society, 1980.

[42] J. M. Hammersley and P. Clifford, Markov fields on finite graphs and lattices,

1971.

|

 189 of 195

[43] R. Santana, “A Markov network based factorized distribution algorithm for

optimization,” in Machine Learning: ECML, Heidelberg, Springer, pp. 337-348,

2003.

[44] S. K. Shakya, J. A. W. McCall and D. F. Brown, “Updating the probability vector

using MRF technique for a univariate EDA,” in Starting AI Researchers'

Symposium, pp. 15-25, 2004.

[45] A. Prügel-Bennett and J. L. Shapiro, “Analysis of genetic algorithms using

statistical measures,” Physical Review Letters, vol. 27, no. 9, 1994.

[46] A. Rogers and A. Prügal-Bennett, “Modelling the dynamics of a steady-state

genetic algorithm,” Foundations of Genetic Algorithms (FOGA), vol. 5, pp. 57-68,

1999.

[47] A. E. I. Brownlee, Multivariate Markov Networks for Fitness Modelling in a

Estimation of Distribution Algorithm, 2009.

[48] D. F. Brown, A. B. Garmendia-Doval and J. A. W. McCall, “Markov random field

modelling of royal road genetic algorithms,” International Conference on Artificial

Evolution, pp. 65-76, 2001.

[49] L. Malago, M. Matteucci and G. Valentini, “Introducing ℓ1-regularized logistic

regression in Markov network based EDAs,” in IEEE Congress on Evolutionary

Computation (CEC), pp. 1581-1588, 2011.

[50] L. Malago, M. Matteucci and G. Pistone, “Stochastic natural gradient decent by

estimation of empirical covariances,” in IEEE Congress on Evolutionary

Computation (CEC), pp. 949-956, 2011.

[51] H. Karshenas, R. Santana, C. Bielza and P. Larrañaga, “Multi-objective

optimization with joint probabilisitc modeling of objectives and variables,” in

Evolutionary Multi-Criterion Optimization, Springer Brlin Heidelberg, pp. 298-312,

2011.

[52] S. Shakya and R. Santana, “An EDA based on local Markov property and ibbs

sampling, pp. 475-476,” in Genetic and Evolutionary Computation (GECCO), 2008.

|

 190 of 195

[53] M. E. Alden, MARLEDA: Effective distribution estimation through Markov

random fields, ProQuest, 2007.

[54] A. E. I. Brownlee, J. A. W. McCall, Q. Zhang and D. F. Brown, “Approaches to

selection and their effect on fitness modelling in an estimation of distribution

algorithm,” in IEEE Congress on Evolutionary Computation (CEC), pp. 2621-2628,

2008.

[55] P. C. Winter, G. I. Hickey and H. L. Fletcher, Instant Notes in Genetics, New

York, New York: Springer-Verlag, 1998.

[56] M. Munetomo and D. E. Goldberg, “Identifying linkage groups by

nonlinearity/non-monotonicity detection,” in Genetic and Evolutionary Computation

Conference (GECCO), pp. 433-440, 1999.

[57] M. Munetomo and D. E. Goldberg, “Linkage Identification by non-monotonicity

detection for overlapping functions,” Evolutionary Computation, vol. 7, no. 4, pp.

377-398, 1999.

[58] A. E. I. Brownlee, J. A. McCall, S. K. Shakya and Q. Zhang, “Structure learning

and optimisation in a markov network based estimation of distribution algorithm,” in

Exploitation of linkage learning in evolutionary algorithms, vol. 3, Chen and Ying-

ping, Eds., Springer Berlin Heidelberg, pp. 45-69, 2010.

[59] E. D. de Jong, R. A. Watson and D. Thierens, “On the complexity of hierarchical

problem solving,” in Genetic and Evolutionary Computation Conference (GECCO),

pp. 1201-1208, 2005.

[60] M. Tsuji, M. Munetomo and K. Akama, “Linkage identification by fitness

difference clustering,” Evolutionary Computation, vol. 14, no. 4, pp. 383-409, 2006.

[61] M. J. Streeter, “Upper bounds on the time and space complexity of optimizing

additively separable functions,” in Genetic and Evolutionary Computation

Conference (GECCO), pp. 186-197, 2004.

[62] R. B. Heckendorn and A. H. Wright, “Efficient Linkage Discovery by Limited

Probing,” Evolutionary Computation, vol. 12, no. 4, pp. 517-545, 2004.

|

 191 of 195

[63] M. Tsuji, M. Munetomo and K. Akama, “Population sizing of dependency

detection by fitness difference classification,” in Workshop on Foundations of

Genetic Algorithms (FOGA), pp. 282-299, 2005.

[64] M. Munetomo, “Linkage identification based on epistasis measures to realize

efficient genetic algorithms,” in IEEE World Congress on Computational Intelligence

(WCCI). pp. 1332-1337, 2002.

[65] J. Nocedal and S. J. Wright, Numerical Optimisation, Vol. 2, New York:

Springer, 1999.

[66] J. D. Schaffer and L. J. Eshelman, “On Crossover as an Evolutionarily Viable

Strategy,” International Computer Games Association (ICGA), vol. 91, pp. 61-68,

1991.

[67] S. Droste, T. Jansen and I. Wegener, “On the analysis of the (1+1) evolutionary

algorithm,” Theoretical Computer Science, vol. 276, no. 1-2, pp. 51-81, 2002.

[68] S. Baluja and S. Davies, “Using Optimal Dependency-Trees for Combinatorial

Optimization: Learning the Structure of the Search Space,” Carnegie-Mellon

University Deptarment of Computer Science, Pittsburgh, PA, 1997.

[69] K. Deb and D. E. Goldberg, “Analyzing deception in trap functions,” in

Workshop on Foundations of Genetic Algorithms (FOGA), pp. 93-108, 1992.

[70] D. Thierens, “Population-based iterated local search: restricting neighborhood

search by crossover,” in Genetic and Evolutionary Computation Conference

(GECCO), pp. 234-245, 2004.

[71] D. E. Goldberg, “Genetic algorithms and Walsh functions: part i, a gentle

introduction,” Complex Systems, vol. 3, no. 2, pp. 129-152, 1989.

[72] D. E. Goldberg, “Genetic algorithms and Walsh functions: part ii, deception and

its analysis,” Complex Systems, vol. 3, no. 2, pp. 153-171, 1989.

[73] P. Strandmark and F. Kahl, “Pseudo-Boolean Optimization: Theory and

Applications in Vision,” in Swedish Symposium on Image Analysis (SSBA), 2012.

|

 192 of 195

[74] K. Smyth, H. H. Hoos and T. Stützle, “Iterated robust tabu search for MAX-

SAT,” in Advances in Artificial Intelligence. pp. 129-144, 2003.

[75] J. Ryan, “The depth and width of local minima in discrete solution spaces,”

Discrete Applied Mathematics, vol. 56, no. 1, pp. 75-82, 1995.

[76] A. Lucas, “Ising formulations of many NP problems,” Frontiers in Physics, vol.

2, no. 5, 2014.

[77] C. García-Martínez, F. J. Rodriguez and M. Lozano, “Arbitrary function

optimisation with metaheuristics,” Soft Computing, vol. 16, no. 12, pp. 2115-2133,

2012.

[78] C. R. Reeves, “Direct Statistical Estimates of GA Landscape Properties,” in

Workshop on Foundations of Genetic Algorithms (FOGA), pp. 91-107, 2001.

[79] F. Glover and M. Laguna, Tabu Search, Volume 1, Springer Science &

Business Media, 1998.

[80] C. R. Reeves and T. Yamada, “Genetic algorithms, path relinking, and the

flowshop sequencing problem,” Evolutionary Computation, vol. 6, no. 1, pp. 45-60,

1998.

[81] D. R. Hains, D. Whitley and A. E. Howe, “Revisiting the big valley search space

structure in the TSP,” Journal of the Operational Research Society, vol. 62, no. 2,

pp. 305-312, 2011.

[82] J. He, T. Chen and X. Yao, “On the Easiest and Hardest Fitness Functions,”

IEEE Transactions on Evolutionary Computation, vol. PP, no. 99, pp. 1-15, 2014.

[83] S. Droste and T. Jansen, “Upper and lower bounds for randomized search

heuristics in black-box optimization,” Theory of computing systems, vol. 39, no. 4,

pp. 525-544, 2006.

[84] S. Droste, “Not all linear functions are equally difficult for the compact genetic

algorithm,” in Genetic and Evolutionary Computation Conference (GECCO), pp.

679-686, 2005.

|

 193 of 195

[85] G. R. Harik, F. G. Lobo and K. Sastry, “Linkage learning via probabilistic

modeling in the extended compact genetic algorithm (EGCA),” in Scalable

optimization via probabilistic modeling, studies in computational intelligence, vol.

33, M. Pelikan, K. Sastry and E. Cantú-Paz, Eds., Berlin, Springer Berlin

Heidelberg, pp. 39-61, 2006.

[86] L. Kallel, B. Naudts and C. R. Reeves, “Properties of fitness functions and

search landscapes,” in Theoretical aspects of evolutionary computing, pp. 175-206,

2001.

[87] R. Santana, P. Larrañaga and J. A. Lozano, “Challenges and open problems

in discrete EDAs,” Department of Computer Science and Artificial Intelligence,

University of the Basque Country, 2007.

[88] Y. P. Chen, T. L. Yu, K. Sastry and D. E. Goldberg, “A survey of linkage learning

techniques in genetic and evolutionary algorithms,” 2007.

[89] Y. P. Chen, Extending the scalability of linkage learning genetic algorithms:

theory and practice, 2004.

[90] T. L. Yu, K. Sastry and D. E. Goldberg, “Linkage learning, overlapping building

blocks, and systematic strategy for scalable recombination,” in Genetic and

Evolutionary Computation Conference (GECCO). pp. 1217-1224, 2005.

[91] P. Pošík and S. Vanícek, “Parameter-less Local Optimizer with Linkage

Identification for Deterministic Order-k Decomposable Problems,” in Genetic and

Evolutionary Computation Conference (GECCO), pp. 577-584, 2011.

[92] E. Radetic and M. Pelikan, “Spurious dependencies and EDA scalability,” in

Genetic and Evolutionary Computation Conference (GECCO). pp. 303-310, 2010.

[93] I. H. F. E. Witten, Data Mining: Practical Machine Learning Tools and

Techniques, Morgan Kaufmann, 2010.

[94] H. Mühlenbein, T. Mahnig and A. O. Rodriguez, “Schemata, distributions and

graphical models in evolutionary optimization,” Journal of Heuristics, vol. 5, no. 2,

pp. 215-247, 1999.

|

 194 of 195

[95] A. Ochoa, M. R. Soto and R. Santana, “The edge incident model,” in

Symposium on Artificial Intelligence (CIMAF). pp. 352–359, 1999.

[96] R. Santana, P. Larrañaga and J. A. Lozano, “Interactions and dependencies in

estimation of distribution algorithms,” in IEEE Congress on Evolutionary

Computation (CEC). pp. 1418-1425, 2005.

[97] M. R. Soto and A. Ochoa, “A factorized distribution algorithm based on

polytrees,” in IEEE Congress on Evolutionary Computation (CEC). pp. 232–237,

2000.

[98] A. Rogers and A. Prügel-Bennett, “A Solvable Model Of A Hard Optimisation

Problem,” in Theoretical aspects of evolutionary computing, pp. 207-221, 2001.

[99] C. R. Reeves, “Predictive measures for problem difficulty,” in IEEE World

Congress on Computational Intelligence (CEC), 1999.

[100] S. Roman, Advanced Linear Algebra with Applications: Volume 1: Vector

Spaces and Groups, CRC, 1993.

[101] J. J. Sylvester, “Thoughts on inverse orthogonal matrices, simultaneous sign

successions, and tessellated pavements in two or more colours, with applications

to Newton's rule, ornamental tile-work, and the theory of numbers.,” Philosophical

Magazine, vol. 34, pp. 461-475, 1867.

[102] B. J. Fino and V. R. Algazi, “Unified matrix treatment of the fast Walsh-

Hadamard transform,” IEEE Transactions on Computers, Vols. C-25, no. 11, pp.

1142-1146, 1976.

[103] B. Doerr and C. Winzen, “Playing Mastermind with constant-size memory,”

Theory of Computing Systems, vol. 55, no. 4, pp. 658-684, 2011.

[104] H. Kargupta and B. Park, “Gene expression and fast construction of distributed

evolutionary representation,” Evolutionary Computation, vol. 9, no. 1, pp. 43-69,

2001.

|

 195 of 195

[105] E. Cantú-Paz and D. E. Goldberg, “Are multiple runs of genetic algorithms

better than one?,” in Genetic and Evolutionary Computation Conference (GECCO),

pp. 801-812, 2003.

[106] C. Echegoyen, A. Mendiburu, R. Santana and J. A. Lozano, “On the taxonomy

of optimization problems under estimation of distribution algorithms,” Evolutionary

computation, vol. 21, no. 3, pp. 471-495, 2013.

[107] C. Echegoyen, R. Santana, A. Mendiburu and J. A. Lozano, “Comprehensive

characterization of the behaviors of estimation of distribution algorithms,”

Theoretical Computer Science, 2015.

[108] D. L. Whitley, A. M. Sutton and A. E. Howe, “Understanding Elementary

Landscapes,” in Genetic and Evolutionary Computation Conference (GECCO

2008), pp. 585-592, 2008.

[109] H. H. Hoos and T. Stützle, “SAT 2000,” I. P. Gent, H. V. Maaren and T. Walsh,

Eds., SATLIB is available online at www.satlib.org, IOS Press, pp. 283-292, 2000.

[110] R. C. Prim, “Shortest connection networks and some generalizations.,” Bell

Systems Technical Journal, vol. 36, no. 6, pp. 1389-1401, 1957.

	Abstract
	Publications
	Contents
	1 Introduction
	1.1 Overview
	1.2 Research Questions
	1.3 Summary of Thesis

	2 Literature Review
	2.1 Search Heuristics
	2.2 Structure of Optimisation Problems
	2.3 Algorithms and Problem Difficulty
	2.4 Research Questions

	3 Background
	3.1 Terminology and Notation
	3.2 Linkage Identification by Perturbation

	4 Functions and Rank Equivalence
	4.1 Rank Equivalence
	4.2 Directed Ordinal Linkage
	4.3 Pseudo-Boolean Benchmarks Functions
	4.4 1-Bit Pseudo-Boolean Functions
	4.5 Counting Function Classes
	4.6 Summary

	5 2-Bit Pseudo-Boolean Functions
	5.1 Counting 2-Bit Classes
	5.2 Walsh Families and Delta Conditions
	5.3 Automated Calculation of Walsh Families
	5.4 Directed Ordinal Linkage and Epistasis
	5.5 Precedence Networks and Precedence Profiles
	5.6 Delta Linkage Detection
	5.7 Structural Coherence
	5.8 Summary

	6 3-Bit Pseudo-Boolean Functions
	6.1 Counting 3-Bit Classes
	6.2 Walsh Families and Delta Conditions
	6.3 Automated Calculation of Walsh Families
	6.4 Conditionally-Necessary Interactions
	6.5 Precedence Networks and Precedence Profiles
	6.6 Equivalent Average Costs Network Sets
	6.7 Precedence Networks Hierarchy
	6.8 Parallelisation of Precedence Networks
	6.9 Delta Linkage Detection
	6.10 Structural Coherence
	6.11 Summary

	7 Higher-Dimensional Pseudo-Boolean Functions
	7.1 Combining 3-Bit Classes
	7.2 Precedence Networks
	7.3 Subset Walsh Transform
	7.4 Proximate Optimality on Hill-Climbing Algorithms
	7.5 Summary

	8 Conclusions and Further Work
	8.1 Conclusions
	8.2 Further Work

	Appendix A – List of 3-Bit Classes (Python 3)
	Appendix B – Calculating 3-Bit Families (ANSI C)
	Appendix C – Compiling and Running Sources
	Bibliography

	OA Logo:
	AUTHOR: CHRISTIE, L.A.
	TITLE: The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance.
	YEAR: 2016
	OpenAIR citation: CHRISTIE, L.A. 2016. The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance. Robert Gordon University, PhD thesis. Held on OpenAIR [online]. Available from: https://openair.rgu.ac.uk
	Degree: Doctor of Philosophy, Faculty of Design and Technology, School of Computing Science and Digital Media
	License: BY-NC-ND 4.0
	License URL: https://creativecommons.org/licenses/by-nc-nd/4.0
	CC Logo:
		2016-08-16T08:30:14+0100
	OpenAIR at RGU

