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Abstract

Sentiment analysis concerns the computational study of opinions expressed in text. So-

cial media domains provide a wealth of opinionated data, thus, creating a greater need

for sentiment analysis. Typically, sentiment lexicons that capture term-sentiment asso-

ciation knowledge are commonly used to develop sentiment analysis systems. However,

the nature of social media content calls for analysis methods and knowledge sources that

are better able to adapt to changing vocabulary. Invariably existing sentiment lexicon

knowledge cannot usefully handle social media vocabulary which is typically informal

and changeable yet rich in sentiment. This, in turn, has implications on the analyser’s

ability to effectively capture the context therein and to interpret the sentiment polarity

from the lexicons.

In this thesis we use SentiWordNet, a popular sentiment-rich lexicon with a substantial

vocabulary coverage and explore how to adapt it for social media sentiment analysis.

Firstly, the thesis identifies a set of strategies to incorporate the effect of modifiers

on sentiment-bearing terms (local context). These modifiers include: contextual valence

shifters, non-lexical sentiment modifiers typical in social media and discourse structures.

Secondly, the thesis introduces an approach in which a domain-specific lexicon is gener-

ated using a distant supervision method and integrated with a general-purpose lexicon,

using a weighted strategy, to form a hybrid (domain-adapted) lexicon. This has the dual

purpose of enriching term coverage of the general purpose lexicon with non-standard

but sentiment-rich terms as well as adjusting sentiment semantics of terms. Here, we

identified two term-sentiment association metrics based on Term Frequency and Inverse

Document Frequency that are able to outperform the state-of-the-art Point-wise Mutual

Information on social media data. As distant supervision may not be readily applicable

on some social media domains, we explore the cross-domain transferability of a hybrid

lexicon. Thirdly, we introduce an approach for improving distant-supervised sentiment

classification with knowledge from local context analysis, domain-adapted (hybrid) and

emotion lexicons. Finally, we conduct a comprehensive evaluation of all identified ap-

proaches using six sentiment-rich social media datasets.

Keywords: Sentiment Analysis, SentiWordNet, Contextual analysis, Domain Adapta-

tion, Hybrid Sentiment Lexicon, Distant Supervision, Emotion Features.
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Chapter 1

Introduction

Information on the Web has risen exponentially over the last decade due to the rapid

increase in human activities enabled by the Web 2.0 technologies such as the social media

platforms. It is now estimated that, in just 60 seconds, over 400,000 Twitter posts are

shared, about 300,000 Facebook statuses updated, about 25,000 items purchased from

Amazon, over 5 million Youtube videos viewed and about 2.7 million Google searches

are made among many other things (see Figure 1.1). Opinions, being central to all

human activities and key influencers of our behaviour, constitute a substantial amount

of information posted or searched for, on the Web. This is evident from the fact that,

in addition to opinion sites such as Epinions.com, rottentomatoes.com, and cnet.com

which focus on collecting both professional and amateur reviews for numerous products

and services; social media platforms such as Twitter, Facebook and Discussion forums

enable virtually anyone to publish opinions on the Web.

Sentiment analysis or opinion mining concerns the study of opinions and related con-

cepts such as evaluations, attitudes and affects (Liu, 2012). More specifically, the main

tasks of sentiment analysis comprise the extraction of the five components of an opinion:

the opinion polarity (positive or negative), the object and the specific aspects of the tar-

get to which the opinion refers to, the holder of the opinion and the time at which the

opinion was expressed (Liu, 2010). Although the terms “sentiment analysis” and “opin-

ion mining” are often used interchangeably especially in academia, sentiment analysis

is the preferred term for industry practitioners (Liu, 2012). The two terms essentially

1
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Figure 1.1: Human activities on the Web in 60 seconds1

represent the same field of study, although there exists a subtle difference between them

(Liu, 2012). This difference is associated with the idea that sentiment is always polarised

as ‘positive’ or ‘negative’ while an opinion may be unpolarised, for example, in “I think

he will go to Canada next year” (Liu, 2015). In this thesis, we adopt the term sentiment

analysis.

1

2a

4 5

1

3

1: polarity (document-level)
2a, 2b, 2c, 2d: objects
3: Aspect of 2a
4: Opinion holder
5: Time

4 2a2b 4

2c

2d 4

: negative segments
: positive segments

Figure 1.2: An Amazon Customer Review

Figures 1.2 and 1.3 show sentiments expressed in a review and a Twitter post (tweet)

respectively. Both “documents” contain some components of an opinion that sentiment

analysis aims to extract, such as polarities, objects, opinion holders and the times the

1source: http://blog.qmee.com/online-in-60-seconds-infographic-a-year-later/
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2 3

1a
1b 1c 1d

1a, 1b, 1c, 1d: objects
2: Opinion holder
3: Time

: positive segments

Figure 1.3: A Tweet

opinions were expressed. All the five components of an opinion are essential for a richer

sentiment analysis (Liu, 2015), however, not all may be present in an opinion. For

instance, whereas the review in Figure 1.2 contains an opinion on an aspect of the object

being reviewed (“holds charge”), the opinions in the tweet (Figure 1.3) were expressed

directly on objects. Furthermore, although the five-component definition in (Liu, 2012)

introduced additional components over earlier definitions (such as in Wiebe (1994)) and

covers most opinion expressions, it does not cover some complex opinion expressions.

For instance, it does not cover the situation in “The view finder and the lens are too

close” (i.e. opinion on the distance between two parts) (Liu, 2012). The two Figures

also highlight some of the challenges of sentiment analysis. For instance, “holds charge”

is an implicit mention of the aspect “battery life” of the tablet being reviewed and this

needs to be resolved by a sentiment analysis system. The use of pronouns for entities

also needs to be resolved.

The task of opinion polarity extraction, often referred to as sentiment classification,

involves identifying the sentiment class (positive or negative) of an opinion. Such a

sentiment class may be identified for the whole document (document-level). For in-

stance, the sentiment class of both the review (Figure 1.2) and the tweet (Figure 1.3) is

positive. However, as can observed in the review, polarity may change from one text seg-

ment to another with different objects/aspects being mentioned. This motivates a more

fine-grained sentiment classification for individual sentences (sentence-level) and for in-

dividual object/aspect mentions (aspect-level). Nonetheless, document-level sentiment

classification can reasonably support a variety of social media applications, working on
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the assumption that there is an overall opinion, particularly for short texts (e.g in Figure

1.3). In this thesis, we concentrate on sentiment classification at the document-level.

1.1 Applications of Sentiment Analysis

The need to know other people’s sentiment about objects has always been part of the hu-

man information needs. Traditionally, when an individual needs sentiment information,

they ask friends and family; while organisations, companies and governments conduct

surveys and opinion polls (Liu, 2015). These traditional channels of acquiring sentiment

data tend to produce very limited and structured data that is manually manageable.

The abundance of opinionated information about objects on the Web, too large to be

managed manually, creates a suitable ground for automated sentiment analysis applica-

tions. For instance, a sentiment analysis system can be developed to determine consumer

attitude on products/services from review data (e.g. Amazon customer reviews, Figure

1.2). Such a system is useful from the manufacturer’s (or service provider’s) perspective,

to assess consumer perceptions, and from the consumer’s perspective, to gain insights

from other consumer opinions when making purchase decisions. This has been the tar-

get application of many sentiment analysis research works leading to the development

of systems such as Opinion Observer (Liu et al., 2005), OpinionMiner (Jin et al., 2009)

and OpinionFinder (Wilson et al., 2005).

Sentiment analysis is also abundantly employed in non-retail applications. Now, there

is a proliferation of tools to quantify sentiment from platforms such as Twitter and

Facebook. In some of these tools, typically objects are identified in social media and

sentiment is extracted about these objects (e.g. sentiment140.com) while some assess

general sentiment as an influencer of real-life activities such as stock market prediction

(e.g. marketpsych.com). For instance, sentiment analysis was shown to complement and

inform public opinion polling when several surveys on consumer confidence and political

opinion over the 2008 to 2009 period were found to correlate with sentiment word fre-

quencies in Twitter messages over the same period (O’Connor et al., 2010). Similarly,

there is evidence that the moods of the nation, as measured by tweets, correlate with
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changes in stock prices (Bollen et al., 2011). Also, sentiment analysis has been applied

on tweets to forecast box-office revenue for movies (Asur and Huberman, 2010).

Industry Applications of Sentiment Analysis. Outside academic research, appli-

cations of sentiment analysis have spread to many different sectors and industries such as

healthcare, tourism, hospitality, financial services, social events and political elections.

In the healthcare industry, for example, a sentiment analysis system can be developed

from patient satisfaction surveys or comments. Such responses can then be classified

as positive, negative or neutral toward healthcare delivery topics and stakeholders such

as a treatment received while in the care of Nurses and Doctors. Such an analysis can

provide insights for hospitals to identify what is working and where there is a need for

improvement. In tourism and hospitality, sentiment analysis plays an important role by

providing summarised user sentiments about various stakeholders and their services, as

users go on-line to book their travels, accommodations and tourism sites to visit.

There now exists hundreds of companies , start-ups and established corporations, that

have built sentiment analysis capabilities either for themselves or for their clients. These

companies include Google, Microsoft, Hewlett-Packard, Amazon, SAS, Oracle, Adobe,

Bloomberg and Facebook (Liu, 2015). Other smaller, start-up, companies include Lex-

alytics, Semantria, Synapsify, ThriveMetrics, Etuma and MeshLabs. For example, the

Facebook’s Gross National Happiness interface provides estimated happiness of people

on Facebook, by countries, by analysing the use of positive and negative words in the

people’s status updates (Cohen, 2009). Another company, Sentex.com, tracks sentiment

in relation to specific politicians and political topics and provides sentiment analysis,

positive negative and neutral, and the reasons for the sentiment. Other companies in-

clude VivoText.com which aims to develop a realistic text-to-speech tool that enables

the portrayal of emotion and crimsonhexagon.com which developed a sentiment analysis

tool studying biases in media coverage.

Despite the prolific systems already in existence, sentiment analysis still remains an

open research field owing to its ever-expanding application domains, linguistic nuances,
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differing contexts and even cultural factors making it challenging to automatically assess

a piece of text for sentiment.

1.2 Related Research Fields

Sentiment analysis research has over the years been influenced by advances in Nat-

ural Language Processing (NLP), Information Retrieval (IR) and Text Classification.

Generally, knowledge-rich representation and extraction strategies are drawn from NLP

whilst knowledge-light and prediction strategies draw from IR and text classification

respectively.

Natural Language Processing. NLP is the field of computer science concerned with

the interaction between computers and human languages. Therefore, it is clearly relevant

in sentiment analysis since sentiment is typically expressed in the form of unstructured

free text. Sentiment analysis is closely related to some of the techniques developed in

NLP such as the method of splitting text into individual words (tokenization), mapping

words to their root forms (lemmatization) and the process of marking-up words cor-

responding to particular part-of-speech (PoS tagging). These techniques are typically

available from standard NLP suites such as the GATE2 and StanfordCoreNLP3, but

they need an extension to address peculiar challenges of sentiment analysis particularly

applied to the informal/non-standard social media content. It can be noted, however,

that such extensions are already underway in addition to new NLP tools developed

specifically for social media platforms (e.g. TweetNLP4). Also, NLP draws from com-

putational linguistics and statistics to develop rules to handle human language. Such

rules are also essential for sentiment analysis, for instance, in lexicon generation and

contextual analysis. However, existing NLP rules are often agnostic of social media

requirements. This is an area we explore in this thesis.

2https://gate.ac.uk/
3http://nlp.stanford.edu/software/corenlp.shtml
4http://www.cs.cmu.edu/ark/TweetNLP/index.html
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Information Retrieval. IR research (van Rijsbergen., 1979) has also had a significant

impact on sentiment analysis research. It is concerned with the problem of identifying a

set of documents, from amongst a larger collection, which are most relevant to a given

query. IR has had its greatest impact on the web in the form of search engines such

as Google or Bing. The basic text representation methods for IR are based on the

vector space model employing feature weighting schemes such as the Term Frequency

and Inverse Document Frequency. These schemes have been directly used for sentiment

analysis. They also influence the development of other weighting schemes targeted at

sentiment analysis. Likewise, sentiment analysis has influenced advances in IR in recent

years.

Given the volume of opinionated content on the Web, it is not surprising that sentiment

analysis feeds into IR in the indexing and retrieval of sentiment-rich information usually

from social media platforms and review portals. The term sentiment retrieval has been

introduced to signify document retrieval based on topic relevance as well as sentiment

polarity criteria. In sentiment retrieval, the assumption is that the user’s aim is to

find relevant documents that contain opinions, for example, about a query such as what

do people think about the new iphone?. Despite the advancement in IR technology,

sentiment retrieval is still very challenging partly because IR systems are designed with

the main objective of finding relevant documents to user’s query typically based on

the “bag-of-words” model rather than linguistic structures that can capture textual

context. However, a drawback to using these structures is their dependence on language

constructs which are problematic for multilingual systems. In the recent past, the IR

community decided to take a number of measures to bridge the IR-to-sentiment analysis

gap. These include the initiation of the opinion retrieval task as part of the Blog Track

of the Text Retrieval Conference (TREC).

Text Classification. Text classification involves the task of automatically classifying

a set of documents into a set of predefined classes. This is mostly done using supervised

machine learning techniques (Mitchell, 1997). In the context of sentiment analysis, a su-

pervised learning algorithm is trained on a set of sentiment labelled training documents.
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Such documents are typically represented as vectors that lie within a space whose dimen-

sions correspond to a sub-set of selected features5 from the original training documents.

Once training is complete, the algorithm would then be expected to correctly predict

the class of a previously unseen test document that follows the same document-to-label

distribution as the training set. A drawback in the applicability of supervised text clas-

sification is the need for labelled training data. Several solutions to this problem have

been proposed for sentiment analysis, for instance, transfer learning and distant super-

vision. These solutions may also be useful in the context of lexicon-based sentiment

analysis. This thesis explores their utility in lexicon-based methods.

1.3 Research Motivation

The task of sentiment classification involves labelling of text with a sentiment class.

Several methods have been employed drawing from supervised/unsupervised machine

learning and lexicon-based unsupervised strategies. Inspired by the field of text clas-

sification, supervised methods make use of machine learning algorithms trained with

sentiment-labelled data to predict the sentiment class of unlabelled test documents.

This approach becomes problematic when reliable and sufficient training data is diffi-

cult to obtain - a characteristic of non-review-based social media where content is not

associated with ratings that could be exploited as “noisy” labels. Similarly, sentiment

classifiers tend to be highly domain/genre specific performing well on the domain/genre

of training but poorly on a different domain/genre. However, social media text is diverse

in domains and genre ranging from political to lifestyle discussions with short messages

(e.g. tweets) and lengthy posts (e.g blogs). Therefore, a system for analysing social

media text needs to maintain consistent performance across domains/genres. This is a

characteristic of the lexicon-based methods to sentiment classification.

The lexicon-based methods involve aggregation of sentiment polarity scores from a senti-

ment lexicon to classify opinionated text into sentiment classes. Many sentiment lexicons

suffer from low term coverage and poor granularity of sentiment information. For ex-

ample, General Inquirer (Stone et al., 1966) and Bing Liu (Hu and Liu, 2004) lexicons

5typically words contained in documents
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contain only 4,216 and 6,789 unique sentiment-bearing terms respectively. Both lexicons

do not distinguish for polarity strength and Bing Liu’s lexicon does not distinguish be-

tween different parts of speech of the same term. In contrast, SentiWordNet (Baccianella

et al., 2010) presents high term coverage of 28,431 unique sentiment-bearing terms dis-

tinguished by part-of-speech and contextual meaning (i.e. word sense). Furthermore,

scores in this lexicon indicate sentiment strength in the range between 0 and 1. This

allows for deeper linguistic analysis and score aggregation for sentiment prediction.

Despite the existence of high-coverage lexicons such as SentiWordNet, the performance

accuracy of lexicon-based sentiment prediction remains lower when compared to the

accuracies from machine learning methods Kolchyna et al. (2015). This is because the

polarity with which a sentiment-bearing term appears in a piece of text (i.e. contextual

polarity) can be different from its prior polarity offered by a lexicon. Two forms of

semantic difference seem to contribute to this semantic gap. First, a difference in local

context arising from the interaction of a term with sentiment modifiers. For example,

the prior polarity of ‘good’ is positive, however, such polarity is changed in ‘not good’.

Second, the difference in domain semantics arising from the difference in the typical

sentiment polarity of a term captured by a lexicon and the term’s domain- or genre-

specific polarity. For example, in the text ‘the movie sucks’, although the term ’sucks’

seems to be rich in sentiment, this may not be reflected by a general purpose sentiment

lexicon. Also, as sentiment lexicons are static resources, they need to be equipped with

a strategy to adapt to changing vocabulary and sentiment over time, a characteristic of

social media.

In addition to sentiment lexicons, there exists emotion lexicons that associate terms with

emotion polarities such as love, joy, surprise, sadness, anger and fear. These resources

are useful for sentiment analysis since most of the emotion polarities can be mapped

onto positive and negative sentiment classes (Gonçalves et al., 2013). However, emotion

knowledge may not be completely mapped to sentiment knowledge through emotion-

to-sentiment lexicon mapping. For instance, the emotion class, surprise, is ambiguous

as it could correspond to positive or negative sentiment. Also, although emotion and

sentiment are inter-related, they are known to be theoretically different (Munezero et al.,



Chapter 1. Introduction 10

2014). Therefore, emotion knowledge should not be reduced to sentiment knowledge but

when used carefully may help with sentiment analysis.

In order to address issues discussed above in relation to lexicon-based sentiment analysis,

this thesis explores the following research questions:

1. Does the accuracy of lexicon-based sentiment analysis benefit from the integration

of local context knowledge?

2. How can we evolve a static lexicon to dynamically adapt to vocabulary and domain-

specific semantics in social media?

3. How does emotion knowledge captured in an emotion lexicon influence sentiment

analysis?

1.4 Research Objectives

This thesis investigates the role of contextual analysis, domain adaptation and emo-

tion knowledge for sentiment classification in social media employing a lexicon with

rich sentiment information (SentiWordNet). Specifically, we address the following six

objectives:

1. Conduct a comparative analysis of score extraction methods for SentiWordNet

with a focus on using local context for word sense disambiguation.

2. Develop a lexicon-based classifier to integrate local context knowledge with senti-

ment content in SentiWordNet

3. Extend the classifier developed in 2 to address the continuously evolving vocabu-

lary typical in social media streams

4. Investigate the utility of combining the local context analysis (in 2) and vocabulary

adaptation (in 3) in the context of a hybrid sentiment classifier

5. Study the role of emotive concepts by integrating emotion knowledge into the

classifier developed in 4.
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6. Conduct a comprehensive evaluation of all developed classifiers/strategies.

1.5 Contributions

Figure 1.4 highlights the main contributions of this thesis within generic sentiment clas-

sification methods that employ lexicons (lexicon-based and hybrid). The figure focused

on showing those components impacted by this research. In the lexicon-based, first,

scores are extracted from a lexicon. These scores are then adjusted for local context,

adapted to domain semantics and finally aggregated for sentiment prediction. The hy-

brid involves combining lexicon-based strategies with supervised machine learning. In

this thesis, we concentrate on distant-supervised learning as it does not require hand-

labelled data. It begins with unlabelled data on which distant supervision is applied to

obtain labelled data. These labelled data is then represented in a format suitable for

supervised learning and enriched with lexicon-based knowledge. It is expected that a

contribution in any of the aforementioned stages will improve classification accuracy on

test data.

]Distant‐
supervised 
labelling

]Contextual 
analysis

]Sentiment 
prediction 
on test 

documents

]representation

Emotion 
knowledge

Lexicon‐based (SmartSA/DSmartSA)
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documents

Objective 3
(Ch. 5, Hybrid lexicon)

Hybrid (distant‐supervised + lexicons)

Objective 1 
(Ch. 4, WSD)

Objectives 4 & 5
(Ch. 6, Hybrid 
classifier)

Sentiment lexicon
(SentiWordNet)

]Score 
Extraction

Objective 2
(Ch. 4, Local context)

]domain 
adaptation

Objective 6
(Ch. 7, Evaluations)

: Uses
: Stages

Figure 1.4: Objectives/Contributions Within Typical Classification Framework

The first significant contribution of this research is the development of a lexicon-based

sentiment classifier (SmartSA) that integrates contextual analysis strategies to adjust
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prior polarities of terms in order to account for the effect of both standard and social

media oriented sentiment modifiers as well as discourse structures. A key advantage of

SmartSA is that it is an entirely heuristic-based unsupervised classifier that exploits

the rich sentiment information from SentiWordNet. Thus, the system does not require

any training data and, as it is developed using a general-purpose lexicon, its performance

has a tendency to remain consistent across social media domains.

A second significant contribution is the development of an approach to dynamically im-

prove lexical coverage and sentiment semantics of terms given a social media domain

(DSmartSA). An important aspect of DSmartSA is that it combines sentiment knowl-

edge from a general purpose lexicon and a target domain to create a hybrid lexicon. In

doing so, it is able to capture non-standard but sentiment rich terms (i.e. improve cover-

age) and non-standard usage of terms for sentiment expression in social media. Another

novel feature in DSmartSA is the introduction of two new term-sentiment association

metrics inspired by Term Frequency and Inverse Document Frequency (TF, TFIDF).

This is important because the state-of-the-art metrics, based on the Point-wise Mutual

Information (PMI) do not work well on terms that have low frequencies in a collection

(Sani, 2014), a characteristic of evolving terms in social media.

Our third major contribution is the development of a hybrid social media sentiment clas-

sifier that combines distant-supervised learning, contextual analysis, domain semantics

and an emotion lexicon. This classifier benefits from the deeper analysis of supervised

machine learning algorithms, local and domain context analysis without the overhead

of requiring hand-labelled data. It also allows us to measure the extent to which our

lexicon-based strategies and emotion knowledge are applicable in the hybrid sentiment

classification setting.

Other secondary contributions of this research include the introduction of a word sense

disambiguation algorithm for the extraction of sentiment scores from SentiWordNet.

We conducted a detailed evaluation of this approach in comparison with the typical

approaches used for the task. We also exploit transfer learning and assess the trans-

ferability of a hybrid lexicon (used by DSmartSA) on a social media domain different

from the one it was generated from. This is important since distant-supervised data
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(required to generate a hybrid lexicon) may not be available from some social media

genres.

1.6 Thesis Overview

The rest of this thesis is outlined as follows: In Chapter 2 we present a review of literature

related to sentiment analysis. We discuss three approaches to sentiment classification:

machine learning, lexicon-based and hybrid. A more detailed discussion of lexicon-

based methods is presented as these closely relate to the work presented in this thesis. In

particular, we look at the importance of contextual analysis and the need for adaptability

when applying a static lexicon such as SentiWordNet to social media content.

In Chapter 3, we present background details about the main sentiment lexicon and the

baseline classification algorithms used in this research. We also provide details about the

evaluation datasets, text pre-processing operations and performance metrics employed.

Chapter 4 presents SmartSA, a lexicon-based sentiment classification system for social

media. SmartSA uses SentiWordNet as its lexicon. We start with the introduction of

our word sense disambiguation algorithm in relation to existing approaches to sentiment

score extraction from SentiWordNet. We then present the integration of contextual anal-

ysis with SmartSA. This includes lexical/non-lexical modifiers, social media oriented

modifiers and discourse structures. the chapter closes after a presentation of the formal

algorithm of SmartSA.

In Chapter 5, we present our hybrid lexicon approach aimed at dynamically extend-

ing vocabulary and sentiment context of terms in a general purpose lexicon. We begin

this chapter with a discussion of our data labelling approach using distant supervision

followed by the process of generating a domain-specific lexicon including our proposed

term-sentiment association metrics. We then discuss the process of generating the hybrid

lexicon combining the domain-specific lexicon with the general purpose lexicon. There-

after, we present insights from social media data to illustrate that each of the lexicons

(domain-specific and general purpose) can considerably contribute to the vocabulary
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and sentiment context of terms in the hybrid lexicon. Finally, we conclude the chapter

with a general discussion and summary.

The hybrid sentiment classifier is introduced in Chapter 6. It exploits local contextual

analysis (introduced in Chapter 4) and social media adaptation (as captured by the

hybrid lexicon introduced in Chapter 5). We also discuss a novel strategy for utilising

knowledge from an emotion lexicon with focus on sentiment classification.

A comparative study of all relevant sentiment classification strategies discussed in Chap-

ters 4, 5 and 6 together with baselines appear in Chapter 7. These include the evaluation

of: SmartSA and an ablation test to study the contribution of each individual strategy

integrated within the system; hybrid lexicon in comparison to a static- or domain-only

lexicons; the transferability of the hybrid lexicon from one social media platform to an-

other; and the performance of our distant-supervised hybrid classification approach that

employs sentiment and emotion lexicons.

We conclude this thesis in Chapter 8 with a summary of our main contributions and

desirable extensions for future work.



Chapter 2

Literature Review

In this chapter, we present a review of the existing literature related to the task of

sentiment classification. Broadly, three methods have been adopted from supervised

learning to lexicon-based unsupervised strategies and combined hybrid approaches. Re-

search presented in this thesis focuses on the use of lexicon-based methods. We discuss

all the three approaches and justify our preferences. We conclude with a discussion on

the current research gap that this thesis will seek to address in relation to lexicon-based

sentiment analysis for social media.

2.1 Machine Learning Methods

The vast majority of research in sentiment classification concentrates on the use of

machine learning techniques, both supervised and unsupervised.

2.1.1 Supervised

Inspired by the field of topic-based text classification, supervised methods make use of

machine learning algorithms trained with sentiment-labelled data to predict the senti-

ment class of unlabelled test documents. This is depicted in Figure 2.1. First, standard

text pre-processing, feature engineering and vector-space representation are applied to

15
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the training and test documents drawn from a problem domain. Thereafter, at the train-

ing phase, a machine learning algorithm is applied to learn a prediction model which is

then used, at the testing/prediction phase, to classify documents that are previously un-

seen by the model. Of these components, feature engineering is perhaps the most crucial

for classification. It is the process of using knowledge from the target problem domain to

create features that make machine learning effective. This process involves the discovery

of features on which to represent data (feature discovery), the removal of redundant fea-

tures (feature selection) and the proposal of values to use in text representation (feature

weighting).

A pioneer work employing supervised machine learning and with binary vector repre-

sentation (presence or absence of individual words) has demonstrated that unlike with

traditional text classifier, sentiment classifiers tended to result in lower accuracies (Pang

et al., 2002). This indicates that the difficulty level of sentiment classification is more

than that of topic classification. One of the reasons why there exists this disparity was

that sentiment is expressed in a more subtle manner that the basic representation is

unable to adequately capture. Accordingly, more advanced linguistic features were ex-

plored to enrich the representation, for instance: the addition of two consecutive words

(bigram) features, the use of part-of-speech (PoS) tags to disambiguate between differ-

ent usage of the same term and positional information (Pang et al., 2002). Surprisingly,

these alternatives turned out to be less effective compared to the basic binary-valued

unigram representation. Such findings have driven the need for more sophisticated fea-

ture engineering techniques.

Prominent contributions in feature discovery include the use of syntactic relations in

addition to traditional features (Mullen and Collier, 2004, Xia and Zong, 2010), ap-

praisal groups (e.g. ‘very good’ or ‘not terribly funny’ ) (Whitelaw et al., 2005) and

feature subsumption hierarchies (Riloff et al., 2006). Text representation for supervised

machine learning typically employs the bag-of-words (BOW) model which disregards

interdependencies between terms, some of which are crucial for sentiment classification
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(e.g. negation and intensification). This problem is addressed by introducing appropri-

ate features following contextual analysis (e.g. ‘neg good’ and ‘int good’ for a negated

and intensified ‘good’ respectively) (Kennedy and Inkpen, 2006).
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Figure 2.1: Supervised Machine Learning

The BOW model is unable to cope with variation in natural language vocabulary (e.g.

synonymy and polysemy) which often requires semantic indexing approaches (Tsatsaro-

nis and Panagiotopoulou, 2009). These approaches produce a generalisation of document

representations away from low-level expressions (n-grams) to high-level semantic con-

cepts. Several techniques have been proposed for transforming document representations

from the space of individual terms to that of latent semantic concepts. These include

Latent Semantic Indexing (LSI) which uses singular-value decomposition to exploit co-

occurrence patterns of terms and documents in order to create a semantic concept space

which reflects the major associative patterns in the corpus (Deerwester et al., 1990).

Other simpler approaches use statistical measures of term co-occurrence within docu-

ments to infer semantic similarity (Wiratunga et al., 2004). However, representations

produced using these approaches are not optimal for sentiment classification because

they do not take into account class membership of documents (Chakraborti et al., 2007).

To address this limitation, a technique called Supervised Sub-Spacing (S3) was proposed
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for introducing supervision to term-relatedness extraction (Sani et al., 2013). S3 works

by creating a separate sub-space for each class within which term relations are extracted.

Evaluation results show S3 to outperform state-of-the-art classifiers that employed the

BOW representation.

Feature selection is important in machine learning not only because it reduces feature

space but because it can improve classification accuracy by providing a less redundant

feature subset. Thus, both traditional and sentiment-oriented feature selection tech-

niques have been explored for sentiment classification. A comparison of four traditional

feature selection techniques: Information Gain, Mutual Information, Chi-squared Test

and Document Frequency; shows Information Gain to perform best on sentiment cate-

gorization of Chinese documents (Tan and Zhang, 2008). Similar performance was also

observed on English movie reviews (Sharma and Dey, 2012). Research also shows that

feature selection based on the Fisher‘s discriminant ratio is further able to improve upon

Information Gain (Wang et al., 2011). Notable work on feature selection specifically tar-

geted towards sentiment analysis include the extension of Information Gain to address

the fact that sentiment classes have ordinal relationships (Mukras et al., 2007) as op-

posed to having no obvious relationship as in text classification. Similarly, a genetic

algorithm based feature selection was introduced for sentiment classification in different

languages (Abbasi et al., 2008) and the use of a matrix factorization method to iden-

tify words with strong inter-sentiment distinction and intra-sentiment similarity (Liang

et al., 2015).

Other supervised sentiment classification work concentrates on feature weighting schemes.

The applicability of the existing TFIDF-based schemes from the field of Information Re-

trieval (IR) have been the focus of many studies, where the results show variants of this

scheme to increase sentiment classification accuracy (Paltoglou and Thelwall, 2010).

However, it can be noted that IR metrics such as TFIDF calculate term weights using

statistics from the entire corpus and remain agnostic to class labels. This limitation has

been addressed with Delta-TFIDF in which the calculation of TFIDF is restricted to

documents from the same class (positive and negative) and the overall term weight is

the difference between the two (Martineau and Finin, 2009).
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User reviews form the main domain of choice on which supervised sentiment classification

has been evaluated. This is because in addition to providing reliable opinionated content,

this data typically includes star-rating information that can conveniently be used as

sentiment labels for documents. For instance, a review (document) accompanied with a

1 or 2 star-rating denotes negative sentiment while that which is rated with 4 or 5 stars

is positive. This approach has been extensively used to generate sentiment analysis

datasets although it is not without problems. For instance, it is common for users

to express their sentiment using just the stars without any accompanying text. It is

also possible for the star information of a review to disagree from the review text (e.g.

in sarcasm). Thus, some quality checks are useful to ensure the validity of using star-

rating information in generating a gold-standard, training dataset for sentiment analysis.

Increasingly opinion is also often expressed in non-review social media (such as in twitter

posts, comments on news, and discussion forums). However in these settings access to

labelled training data is a particular challenge for supervised sentiment classification.

Several techniques have been proposed to overcome this challenge. These include the use

of co-training algorithms that start with a few (human) labelled data alongside a large

unlabelled sample from which relationships between the two datasets are explored to

learn labels for the unlabelled data as well as perform classification (Blum and Mitchell,

1998, Li, Huang, Zhou and Lee, 2010, Liu et al., 2013). Transfer learning is also another

alternative. Here, a classifier is trained in a domain where labelled training data is

available or easy to obtain (e.g. product reviews) but adapted and tested in another

domain where training data is difficult to obtain (e.g. discussion posts) (Pan et al., 2010,

Pan and Yang, 2010). More recently, distant supervision has been proposed as a means

to exploit reliable signals (e.g. emoticons and hashtags) within documents (usually

twitter posts) as “noisy” class labels (Davidov et al., 2010, Go et al., 2009, Pak and

Paroubek, 2010, Read, 2005). The class labels are noisy because they are automatically

assigned using heuristics and thus may not be entirely correct. However, evaluation

results from machine learning schemes trained with distant-supervised data but tested

on hand-labelled data show the approach to be effective, attaining up to 83% accuracy

on a combination of unigram and bigram features (Go et al., 2009).

Although the labelling problem is addressed by the afore-mentioned techniques, the



Chapter 2. Literature Review 20

problem partly remains. Co-training still requires some initial labelled data, which,

overall performance tends to improve in direct proportion to its size. Transfer learning,

on the other hand, relies on labelled data from one domain to perform classification

on another and, despite the adaptation overhead it incurs, it tends to produce lower

accuracy compared to when within domain labelled data is employed. As for the distant

supervision, it is applicable only when reliable and sufficient signals are available from

a domain. These challenges make unsupervised sentiment classification, which does not

require any labelled training data, an attractive alternative.

2.1.2 Unsupervised

The typical workflow of unsupervised machine learning sentiment classification is shown

in Figure 2.2. It involves the use of probabilistic topic modelling methods to detect both

topic and sentiment from a collection of unlabelled documents after a text pre-processing

step. Prior knowledge in the form of seed sentiment-bearing terms is required to guide

the process. Thereafter the sentiment class of a test document can be determined based

on the topic/sentiments used to compose the document. Standard topic modelling ap-

proaches assume a three layered hierarchical framework, where topics are associated with

documents, and words are associated with topics. For sentiment detection, this frame-

work is extended with an additional sentiment layer in between documents and topics or

with sentiment classes as additional topic models. In Mei et al. (2007), the probabilistic

latent semantic indexing (pLSI) (Hofmann, 1999) was used to develop Topic-Sentiment

Mixture (TSM) model which reveal latent topics including sentiment classes as additional

topics. Figure 2.3 illustrates TSM whereby sentiment classes (+ and -) are modelled

as topics from which d1 and d3 draw terms. The modelling also involves an additional

filter layer which separates a background model (B) that capture general English words

(e.g. ‘the’, ‘a’, ‘of’) from the more specific topic words. For instance, the probability of

positive label given the document d1 is 0.5 and is higher than the probability of negative

label given the document (i.e 0). Thus, the document will be classified as positive.

The problem with the TSM model is that it was based on the pLSI framework which

is known to suffer from overfitting the training data and thus has a weak inference
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Figure 2.2: Unsupervised Machine Learning
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Figure 2.3: Topic Sentiment Model (TSM)

capability. To overcome this problem, Joint Sentiment/Topic model (JST) was proposed

(Lin and He, 2009). JST is an extension of the topic detection model, the Latent

Dirichlet Allocation (LDA) (Blei et al., 2003), with the capability to detect both topic
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and sentiment simultaneously. LDA is essentially a generative probabilistic model for

topic detection from a collection of documents. It is based on the intuition that when

writing a document, the author typically thinks of a number of topics that are relevant

to the document with different probabilities of relevance. The author then proceeds

to draw terms from these topics in order to compose the document. For instance, the

illustration in Figure 2.4 shows the document d1 to draw terms entirely from the topic θ1

while d2 draws from both θ1 and θ2 with equal probabilities. Thus, given any document

d with observed words w, the relevant topic distribution can be obtained by inferring

the probability distribution of the words w over all topics (Steyvers and Griffiths, 2007).

The JST extends LDA by adding a sentiment layer between the document and the topic

layer. This produces a model in which sentiment labels are associated with documents,

under which topics are associated with sentiment labels and words are associated with

both sentiment labels and topics as depicted in Figure 2.5. The dynamic nature of social

media data whereby sentiments and topics constantly change means that sentiment/topic

models also need to be updated over time. This is addressed by the dynamic JST (Li,

Huang and Zhu, 2010) which captures both topic and sentiment dynamics by assuming

that the current sentiment-topic specific word distributions are generated according to

the word distributions in the previous epoch.

Titanic
Love
Deep 
Ocean
Computer
Laptop
Boot
Cd‐rom
Worst
Water
Bad 
…

Vocabulary
Term (w) : P(w|ѳ1)
Titanic 0.20
Love 0.20
Deep  0.18
Ocean 0.12
…

Term (w) : P(w|ѳ2)
computer 0.30
laptop 0.26
boot 0.18
Cd‐rom 0.16
…

I love titanic movie.

I just bought a new laptop. I 
can watch titanic with it

My computer is bad. I need 
to get another one

Topic 1 (ѳ1)

Topic 1 (ѳ2)

document 1 (d1)

Document 2 (d2)

document 3 (d3)
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Figure 2.4: Latent Dirichlet Allocation Model (LDA)

Both TSM and JST are based on the ‘bag of words’ assumption that sentiment words

are independent in a document. This is observed to be a limitation as sentiment orien-

tation of each word is dependent on its local context (Li, Huang, Zhou and Lee, 2010).
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Titanic
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Deep  0.18
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…

Term (w) : P(w|ѳ2,=)
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worst 0.26
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Cd‐rom 0.11
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Topic/sentiment 3 (ѳ3,‐)

0.5

Figure 2.5: Joint Topic/Sentiment Model (JST)

Consequently the Dependency Sentiment-LDA model, which relaxes the sentiment in-

dependent assumption, was introduced (Li, Huang, Zhou and Lee, 2010). In this model

the sentiments of the words in a document are viewed to form a Markov chain, where

the sentiment of a word is dependent on the previous one.

Although topic modelling approaches to sentiment classification do not require labelled

data, they still rely on sentiment lexicons as the source of prior sentiment knowledge.

Like with purely lexicon-based methods, their performance was shown to be dependent

on both the coverage and quality of the lexicons used (Lin and He, 2009). However, the

lexicon-based methods offer greater flexibility to incorporate linguistically derived con-

textual knowledge making for a more transparent and accessible approach to sentiment

classification.

2.2 Lexicon-based Methods

The lexicon-based methods also called linguistic approaches involve the extraction of

terms’ prior polarities from lexical resources and aggregation of such polarities based
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on linguistic and natural language processing (NLP) rules to obtain sentiment conveyed

by a piece of text. Two underlying assumptions underpin the lexicon-based methods to

sentiment classification: terms have sentiment connotation independent of context (prior

polarity) and such prior polarity can be expressed as a numerical value (Osgood et al.,

1957). With these assumptions, general purpose look-up lists which associate terms with

their prior polarities can be generated. Such lists are referred to as sentiment lexicons.

Lexicon-based sentiment analysis begins with the creation of a sentiment lexicon or

the adoption of an existing one, from which sentiment scores of terms are extracted and

aggregated to predict sentiment of a given piece of text. Figure 2.6 illustrates the typical

lexicon-based sentiment classification. The first step is the creation of a sentiment lexicon

from a text collection or a lexical ontology. However because there is already a number of

sentiment lexicons in existence, this step is typically the adoption of an existing lexicon.

Thereafter, a document to be classified is pre-processed and each term in the document

is associated with its prior polarity as given by the sentiment lexicon. Then these prior

polarities are adjusted to reflect contextual polarities (contextual analysis, see Section

2.2.3) and aggregated to predict sentiment class.

Document 
collection

Pr
e‐
pr
oc
es
sin

g

Contextual 
analysis Classification

: Lexicon generation phase : Test/prediction phase

Sentiment 
lexicon

Test 
documents

Lexical ontology

Figure 2.6: Lexicon-based Sentiment Classification
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Lexicon Number of Terms Description

General Inquirer 4216 Manually generated from a corpus. Does
not distinguish for polarity strength. It is
often used as gold standard. Labelling is
at part-of-speech level

Bing Liu’s Opinion Lexicon 6789 Generated from General Inquirer. It in-
cludes mis-spellings, morphological vari-
ants, slang and social media mark-up. It
does not distinguish for polarity strength.
The labelling is at the word level.

MPQA Subjectivity Lexicon 8221 Contains both manually and automati-
cally labelled terms. It does not distin-
guish for polarity strength. Labelling is
at the part-of-speech level

LIWC 615 (Terms under affec-
tive or emotional pro-
cess)

Automatically generated from a corpus. It
does not distinguish for polarity strength.
Labelling is at the word stem level

SentiWordNet 28431 Automatically generated from a dic-
tionary. It distinguishes for polarity
strength. Labelling is at the word-sense
level

Table 2.1: Some widely used sentiment lexicons

Sentiment lexicons are either manually or semi-automatically generated from generic

knowledge sources. Manually generated lexicons are obviously more accurate, however,

they tend to have relatively low term coverage. In contrast, semi-automatically generated

lexicons such as the corpus-based one in Mohammad et al. (2013) and the dictionary-

based SentiWordNet (Baccianella et al., 2010) have high coverage (over 20,000 words).

SentiWordNet is particularly interesting as it offers quantified positive and negative

polarities for different senses of terms and at the deeper level of word sense.

2.2.1 Sentiment Lexicons

Sentiment lexicons are language resources that associate terms with sentiment polar-

ity (positive, negative or neutral) usually by means of numerical scores that indicate

sentiment dimension and strength. Table 2.1 describes some lexicons widely used for

sentiment analysis. Sentiment lexicons can be categorised based on a number of factors.

In this review, we organise the lexicons along three dimensions: method of generation

(manual or automated); sentiment information (polarity, strength or both) and level of

annotation (term, PoS or word sense).
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Method of generation. Broadly, sentiment lexicon generation is manual or auto-

mated. With manually created lexicons such as General Inquirer (GI) (Stone et al.,

1966) and Opinion Lexicon (OL) (Hu and Liu, 2004), sentiment polarity values are as-

signed by humans. Such lexicons tend to be of limited coverage owing to the cost of

the manual effort required to develop them. As for the automatically generated lexi-

cons, there are two semi-supervised approaches commonly adopted: corpus-based and

dictionary-based. Both approaches begin with a small set of seed terms. For example a

positive seed set could contain terms such as ‘good’, ‘nice’ and ‘excellent’ while a negative

seed set could contain the terms such as ‘bad’, ‘awful’ and ‘horrible’. They then lever-

age language resources and exploit relationships between terms to expand the sets. The

two methods differ in that corpus-based uses a collection of documents as the language

resource while the dictionary-based uses machine-readable dictionaries. Accordingly the

relationship they exploit differs. In the corpus-based approach, co-occurrence relations

are used to determine sentiment polarities of terms within a text collection using certain

rules. This is based on the assumption that terms that have similar sentiment polar-

ity tend to co-occur together. For instance, in Hatzivassiloglou and McKeown (1997),

657 and 679 adjectives were manually annotated as positive and negative seed sets re-

spectively. Thereafter, the seed sets were expanded to conjoining adjectives based on

connectives ‘and’ and ‘but’ where ‘and’ indicates that the conjoined adjectives have the

same polarity and ‘but’ indicates a contrast in polarity. Also, a phrasal lexicon was gen-

erated from reviews collection (Turney, 2002). Here, two-word phrases were extracted

based on some part-of-speech collocations and their polarity is inferred based on the

strength of co-occurrence with the seed terms ‘excellent’ and ‘poor’. Point-wise Mutual

Information (PMI) is commonly used as a measure of co-occurrence strength:

Polarity(phrase) = PMI(phrase, ‘excellent’)− PMI(phrase, ‘poor’) (2.1)

Where:

PMI(X,Y ) = log2

P (x, y)

P (x)P (y)
(2.2)

Where P (x, y) is the probability of x co-occurring together with y, P (x) is probability

of x occurring without y and P (y) is the probability of y occurring without x.
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Therefore,

Polarity(phrase) = log2

P (phrase, ‘excellent’)

P (phrase)P (‘excellent’)
− log2

P (phrase, ‘poor’)

P (phrase)P (‘poor’)
(2.3)

These probabilities are typically estimated using Web/Internet search hits (e.g NEAR1)

as follows:

Polarity(phrase) = log2

hits(phraseNEAR ‘excellent’)

hits(phrase)hits(‘excellent’)

− log2

hits(phraseNEAR ‘poor’)

hits(phrase)hits(‘poor’)
(2.4)

= log2

(
hits(phraseNEAR ‘excellent’)hits(‘poor’)

hits(phraseNEAR ‘poor’)hits(‘excellent’)

)
(2.5)

With the corpus-based approach, sentiment polarity of domain-specific and non-standard

words can be determined provided such words have some association with the (expanded)

seed sets. This, however, affects the cross domain portability of such lexicons as some

of the associations between words hold only within the domain from which the corpus

is drawn.

The dictionary-based approach exploits structural relationships such as synonyms, antonyms

and gloss from a dictionary to expand the seed sets (Esuli and Sebastiani, 2005, Hu and

Liu, 2004, Kamps et al., 2004, Kim and Hovy, 2004). WordNet (Fellbaum, 1998) is one

such dictionary that has been extensively used for generating dictionary-based sentiment

lexicons such as WordNet Affect (Strapparava and Valitutti, 2004) and SentiWordNet

(Esuli et al., 2010).

Sentiment Information. This refers to the amount of sentiment information the lex-

icons can offer about terms. Accordingly, lexicons can be broadly grouped into three

categories. The first category includes those that can only offer categorical (positive

or negative) polarity information about terms. These lexicons do not distinguish for

polarity strength between terms within the same category. Thus, the terms ‘good’ and

1Turney (2002) used Altavista with the NEAR operator
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‘excellent’ are equal in sentiment from these lexicons as they belong to the same senti-

ment category (positive). Example of such lexicons include GI, OL and MPQA Subjec-

tivity Lexicon (Wiebe and Cardie, 2005). Lexicons in the second category offer polarity

strength of terms usually on a Likert scale (e.g. 1 to 5) in either the positive or negative

dimension. A limitation with these lexicons is that when a term does not attain the

maximum score it becomes ambiguous as to whether the remaining score indicates the

term’s leaning towards the opposite polarity or objectivity. Examples of these include

the lexicon used in SentiStrength and SOCAL (Taboada et al., 2011, Thelwall et al.,

2012). The final category of lexicons offer sentiment information about terms in both

dimensions. These lexicons are rich in sentiment information, however, finding an op-

timal approach to utilising the information remains a challenge. An example of such

lexicons is SentiWordNet.

Level of annotation. This refers to the linguistic properties that influence scores

assignment in lexicons. For instance, a term can have multiple parts-of-speech and

each part-of-speech can have multiple word senses and not necessarily connote the same

polarity score. Accordingly, sentiment lexicons can be viewed at term-level, PoS-level

and word-sense-level. Term-level annotation lexicons are the basic ones in which polarity

is associated with terms. This is insufficient as polarities can change depending on part-

of-speech or word sense. In the PoS-level lexicons the annotation is determined at the

PoS-level while in word-sense-level, it is determined at the word sense level of terms.

SentiWordNet is one of such lexicons where polarity annotation is at the word sense

level. Here, a word such as ‘like’, for example, has three associated PoSs (adjective,

noun and verb) and a total of eleven word senses each having its associated sentiment

score. For instance, ‘like’ as an adjective at word sense number 1 (like#adjective#1)

meaning “resembling or similar” has sentiment score: positive=0, negative=0.25 while

like#verb#2 meaning “to find enjoyable or agreeable” has sentiment score: positive=1,

negative=0.
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2.2.2 Emotion Lexicons

Like with sentiment analysis, the field of emotion detection, concerned with the ex-

traction of emotion-bearing text, has several lexicons developed for the task. Emotion

is a concept that is closely related to sentiment. Scherer (2000) defines emotion as a

“relatively brief episode of response to the evaluation of an external or internal event

as being of major significance”. Unlike sentiment, emotion is more fine-grained and

can be classified into a larger number of different classes proposed in various emotion

theories (Jurafsky and Martin, 2015). In a category of the theories, emotions are viewed

as fixed atomic units, limited in number, and from which other basic emotions are gen-

erated (Plutchik, 1962, Tomkins, 1962). Perhaps the most popular emotion classes in

this category are those proposed by Ekman (1999): surprise, joy, anger, fear, disgust

and sadness. These emotion classes were derived from facial expressions and are likely

to be present in all cultures (Ekman, 1999). A more elaborate set of emotion structure

classes is Parrott (2001)’s grouped into high-level, emotion classes of love, joy, surprise,

sadness, anger and fear.

While semi-supervised approaches are commonly employed in generating sentiment lex-

icons, the most common approach to build emotion lexicons is to have humans label the

words through crowdsourcing: breaking the task into small pieces and distributing them

to a large number of annotators (Jurafsky and Martin, 2015). Emotion lexicons gener-

ated in this manner include Emolex (Mohammad and Turney, 2013), a moderate-sized

emotion lexicon of about 14000 words crowdsourced using the online service: Amazon

Mechanical Turk2. Another manually generated emotion lexicon is the WordNet-Affect

(Strapparava and Valitutti, 2004) which was derived from WordNet’s synsets. Both

Emolex and WordNet-Affect associate terms with the positive and negative sentiment

classes in addition to emotion classes making them play the role of sentiment lexicons.

In a different crowdsourcing approach, an emotion lexicon was developed from a corpus

where each word was assigned a distribution over emotion classes using a maximum

likelihood model (Rao et al., 2014). Recently, in contrast with manual crowdsourcing,

emotion lexicons have been generated automatically from social media corpora. For

2https://www.mturk.com/mturk/welcome
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instance, hashtags on Twitter such #sad, #joy, #surprised have been used to accord-

ingly label tweets as sad, joy or surprise. Thereafter, emotion lexicons were developed

from the labelled tweets using the PMI approach (Mohammad, 2012, Mohammad and

Kiritchenko, 2015). Also, another lexicon which provides a superior classification per-

formance over the PMI-based lexicon was developed using an expectation maximisation

approach (Bandhakavi et al., 2014).

Sometimes, in addition to emotion labels, emotion lexicons also provide sentiment labels

to terms. For instance, both Emolex and WordNet-Affect have positive and negative

labels associated to terms making them readily useful for sentiment analysis. Even

when emotion lexicons do not provide sentiment labels for terms, they are still useful

for sentiment analysis since most of the emotion classes can be mapped onto positive

and negative sentiment classes (Ghazi et al., 2010, Gonçalves et al., 2013, Poria et al.,

2014). However, emotion knowledge may not be completely mapped to sentiment knowl-

edge through emotion-to-sentiment lexicon mapping. For instance, the emotion class,

surprise, is ambiguous as it could correspond to positive or negative sentiment (Alm,

2008) or even neutral (Ortony et al., 1990). For example, ‘surprise’ class was considered

positive in Poria et al. (2014), it was considered negative in Ghazi et al. (2010). Also,

although emotion and sentiment are inter-related, they are known to be theoretically

different (Munezero et al., 2014). Therefore, emotion knowledge should not be reduced

to sentiment knowledge but when used carefully may help with sentiment analysis.

.

2.2.3 Contextual Analysis

Early work in lexicon-based sentiment analysis involved the aggregation of individual

polarities of terms irrespective of grammatical dependencies that may exist between

them. This approach is incomplete and often gives the wrong results when implemented

directly because a term’s prior polarity changes due to the effect of other terms with

which the term co-occurs. For example, the text ”I don’t like the idea of smoking in

general” can be classified as positive because it is dominated by positive terms (‘like’ and

’idea’). However, the problem is that the appearance of the negation (‘don’t’) renders
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the text negative. This can be addressed by contextual analysis using valence shifters

(Polanyi and Zaenen, 2004). Here, polarities of sentiment-bearing terms that are under

the influence of negation (e.g. ‘not’, ‘never’,‘nothing’ ) are inverted and those under the

influence of terms that increase (i.e. intensifiers e.g. ‘very’, ‘highly’ ) and that decrease

polarity strength (i.e. diminishers e.g. ‘slightly’ and ‘a-little-bit’ ) are increased and

decreased respectively. Negation analysis is a particular challenge as the polarity of

negated terms do not always translate to its opposite. For instance, whereas “It is not

good” is more or less the same as “It is bad”, “It is not excellent” is more positive than

“It is horrible”. Consequently, shift approach was proposed as a preferred alternative

to sentiment inversion for negation (Taboada et al., 2011). Here, prior polarity scores

of sentiment terms that are under the influence of negation are reduced by a certain

weight. A recent study suggests that negation terms are not just modifiers of sentiment

but also indicators of sentiment (Potts, 2011a). For instance, it was found that the

distribution of negation across reviews is as skewed towards negatively rated reviews as

the word ‘bad’ is. In SentiWordNet, negation terms are associated with polarity scores.

Thus a strategy can be introduced to treat negation both as sentiment-bearing and as

sentiment modifier for other terms

Another contextual analysis with a potential to influence sentiment analysis is based

on discourse analysis. The main idea here is that different discourse segments have

different level of importance thus sentiment scores for terms should reflect such im-

portance. Discourse segments are often signalled by connectives such as ‘but’, ‘and’

and ‘although’ accordingly these were used to apply weights to various segments of

Twitter posts (Mukherjee and Bhattacharyya, 2012). The results show improvement in

sentiment classification. However, the work in (Mukherjee and Bhattacharyya, 2012)

employed only a small number of discourse connectives.

2.2.4 Domain-Specific Vocabulary and Polarities

Sentiment lexicons are typically generated independent of any target application. Thus,

they usually reflect general knowledge making them useful in diverse applications (i.e.
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general purpose). However, the lexicons utility is reduced when a target application

domain or genre deviates from the general sentiment knowledge.

The concept: Domain. Unfortunately, the concept ‘domain’ does not seem to have

unambiguous definitions from the linguistics and sociolinguistics points of view. From

a purely linguistic perspective, a domain has been defined as a genre attribute that

describes the broad subject field that an instantiation of a certain genre deals with (Lee,

2001). A genre is defined as a category assigned to a text based on external, non-

linguistic criteria such as intended audiences, purposes and activity type (Lee, 2001) as

well as textual structure, form of argumentation and level of formality (Crystal, 2011).

Based on this definition, for example, a text from the genre NEWSPAPER ARTICLE

may belong to the domain of SCIENCE. Other domains may include ART, FINANCE,

RELIGION, POLITICS, SPORTS and TECHNOLOGY. However, in sociolinguistics, a

domain is viewed as a social setting that is likely to influence the use of language such as

FAMILY, FRIENDSHIP, RELIGION, EDUCATION and EMPLOYMENT (Fishman,

1972). It can be observed that some categories in this latter definition may correspond

to what can be called genre in the former definition (e.g. FRIENDSHIP and EMPLOY-

MENT). In fact, for socio-psychological analysis, social contexts such as INTIMATE,

INFORMAL, FORMAL, and INTERGROUP are identified as domains (Fishman, 1972).

Both notions of a domain have been used in sentiment analysis. For instance, it is com-

mon to refer to collections of documents grouped per subjects of discussion as domains

(e.g. HOTELS, SPORTS, BOOKS and ELECTRONICS) (Du et al., 2010, Yoshida et al.,

2011). It is also common to refer to the social setting in which documents are generated

as domains (e.g TWITTER as a domain) (Kaur and Kumar, 2015, Kiritchenko and

Mohammad, 2016, Reitan et al., 2015). In this thesis, we use the concept of a domain in

a broader sense that encompasses both definitions. Specifically, we use the concepts to

refer to any collection of documents that share certain characteristics that may influence

the expression of sentiment. For instance, TWITTER with its informal setting, brief

nature of communication and the general public as target audience forms a domain; so

also MYSPACE with its severe informal communication between friends.
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Differing Vocabulary and Polarities. The deviation between a lexicon and a target

genre can be in terms of vocabulary coverage whereby the lexicon supplies insufficient

sentiment-bearing terms for a target genre. This is particularly the case with social

media genres where non-standard vocabulary is widely used to express sentiment. A

potential remedy to the coverage problem is to generate a domain-specific lexicon. How-

ever, existing lexicon generation methods tend to result in lexicons with poor coverage

for social media. For instance, the method in Hatzivassiloglou and McKeown (1997)

has produced a lexicon based on the proximity of terms with adjectives and constrained

by the occurrence of certain conjunctions. This is too restrictive for the informal social

media content. A subsequent work has improved term coverage by relaxing the conjunc-

tion constraints and the use of a relatively larger corpus (the web) to measure terms

co-occurrence (within a text window) with known seed terms (Turney, 2002). Neverthe-

less, coverage is still affected by the fact that the co-occurrence has to be with infrequent

seed terms. Yet, to improve coverage, the concept of double propagation was introduced

(Guang. et al., 2009). Here, co-occurrence with a product/service aspects was used to

identify sentiment-bearing terms and vice-versa. This runs iteratively until no further

sentiment-bearing term or aspect can be found. This method was meant for the do-

mains of products/services reviews where aspects mentions in sentiment expression is

common. Other methods employed supervised strategies whereby a lexicon is generated

from sentiment-labelled data (Mohammad et al., 2013, Pang et al., 2002). The need for

labelled data limits the utility of the supervised strategies. The use of a domain-specific

lexicon alone for sentiment analysis is also problematic because although test instances

are expected to be of similar composition to that of domain text, it is possible for a test

instance to contain terms that never appear in the domain but which may be available

from a general-purpose lexicon.

The deviation of a target domain from a general-purpose lexicon can also be in terms

of sentiment polarities of terms. Sentiment-bearing property of terms is known to be

domain-dependent such that the same term can have different sentiment semantics in

different domains. For example, the adjective ‘unpredictable’ may indicate negative

sentiment in a car review, as in “unpredictable steering” but a positive sentiment in a

movie review, as in “unpredictable plot” (Liu, 2012). Indeed, a comparison of sentiment
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analysis systems across different domains reveals that factors such as datasets size and

domain/genre can significantly affect performance (Andreevskaia and Bergler, 2008).

The difference in polarities between a sentiment lexicon and a target domain has been ad-

dressed with techniques that produce domain-adapted lexicons. Choi and Cardie (2009)

investigated the adaptation of a general-purpose lexicon to a domain specific one. Their

approach adapts term polarities of a general-purpose lexicon by utilizing expression-

level polarities from the domain. The polarity relationship between the terms and the

expressions were modelled as a set of constraints that are solved using integer linear

programming. This work relied on sentiment-labelled data to obtain the expression-

level polarities. It was also limited to term polarity reversal (from one sentiment class

to another) but unable to adjust polarity intensity within the same class. In a similar

work, a domain-specific lexicon was adapted to another domain using the information

bottleneck framework (Du et al., 2010). Here, the algorithm also assumes as input a

set of in-domain sentiment-labelled documents. In another work, an approach was pro-

posed to identify the most effective lexicon, from among several lexicons, for sentiment

analysis in a target domain (Ohana et al., 2012). This approach employs the case-based

reasoning methodology and extracts documents statistics and writing styles as features

on which to represent the documents (cases). The solutions to a case are the lexicons

that provide correct classification of the case document as checked against human judg-

ment. Thus, given a domain containing new cases (documents), sentiment classification

is performed by reusing lexicons from the most similar documents to those in the given

domain. It can be noted that this approach does not attempt to adapt a lexicon to a

target domain.

With social media domains, the idea of distant supervision can be leveraged to gener-

ate domain-specific lexicons that can capture evolving vocabulary. For instance, two

Twitter-specific sentiment lexicons have been generated from tweets that are labelled

based on the occurrence of certain emoticons and hashtags respectively (Kiritchenko

et al., 2014, Mohammad et al., 2013), using the point-wise mutual information (PMI)

approach (Turney, 2002). These lexicons are highly domain-specific and could miss

general sentiment-bearing terms that may not be available in the tweets’ vocabulary, a
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limitation which can be addressed by a lexicon expansion strategy.

A lexicon expansion strategy begins with a standard lexicon whose polarities are prop-

agated to domain-specific terms. This is similar to lexicon generation strategies except

that a lexicon generation strategy begins with a very small set of seed terms known to

have a high and stable sentiment connotation across domains. In Zhou et al. (2014),

a standard lexicon has been expanded with terms from an emoticon-labelled Twitter

dataset. Here, similar to Mohammad et al. (2013) and Kiritchenko et al. (2014), a

Twitter-specific lexicon was generated using the PMI approach (Turney, 2002), however,

unlike in Mohammad et al. (2013) and Kiritchenko et al. (2014), a negated co-occurrence

of a term with a sentiment class was counted as co-occurrence of the term with the oppo-

site sentiment class. For example, “I don’t like their online service :(” would be counted

as a co-occurrence of ‘like’ and ‘:)’. In another lexicon expansion strategy, emoticon-

labelled datasets were used to identify a suitable feature set on which to represent a

set of seed terms, formed from a union of several general-purpose lexicons, for a su-

pervised sentiment classification of unknown terms (Bravo-Marquez et al., 2015). The

datasets were time-sorted and time-series were created for each term from the datasets’

vocabulary. Then, the feature set was extracted from the location-based and dispersion

properties of the time-series. A classifier learned from the representation was then used

to classify every unknown term from the vocabulary as positive, negative or neutral.

Although a lexicon expansion strategy such as in Zhou et al. (2014) and Bravo-Marquez

et al. (2015) is able to capture domain-specific terms, it is unable to adapt polarities

of existing terms from the initial lexicon to domain-specific semantics. With distant

supervision, a domain-specific lexicon can be generated for social media domains, and

combining such a lexicon with a general-purpose lexicon will ensure domain adaptation

as well as the acquisition of additional vocabulary available from the general-purpose

lexicon (Muhammad et al., 2014, 2013b).

2.3 Hybrid

Increasingly term polarities from lexicons are used as additional features to train machine

learning classifiers in a hybrid approach (Al-Mannai et al., 2014, Dang et al., 2010, Ikeda



Chapter 2. Literature Review 36

et al., 2008, Mohammad et al., 2013, Ohana and Tierney, 2009). Sentiment classification

was also observed to improve when multiple classifiers, formed from machine learning

and lexicon-based methods, are used to classify a document (Prabowo and Thelwall,

2009).

The hybrid method also helps overcome certain limitations of the combined methods.

For instance, in a system called PSenti lexicon knowledge was used to filter out non

sentiment-bearing words from the feature set subsequently used for machine learning

(Mudinas et al., 2012). Evaluation of PSenti shows the hybrid approach achieved bet-

ter performance compared to pure lexicon-based, and better cross-domain portability

compared to pure machine learning. In another work, a small amount of training data

for machine learning was compensated with lexicon knowledge (Melville et al., 2009).

This approach builds two generative models: one from a labelled corpus and a second

from a sentiment lexicon. The distributions from the two models were then adaptively

pooled to create a composite multinomial Naive Bayes classifier. The pooling approach

employs a linear combination of conditional probabilities from the different generative

models. The combined approach was compared to using Naive Bayes classifier built using

only the labelled corpus with significant improvement in classification accuracy. In some

other work, machine learning was applied to optimise sentiment scores prior to lexicon-

based sentiment classification (Thelwall et al., 2012). This approach has the tendency

to produce domain adapted lexicons which in turn improve sentiment classification.

It is noteworthy, however, that although the hybrid approach can help overcome certain

limitations of either of the combined methods (lexicon-based or machine learning) alone,

it can also combine challenges from both methods. For instance, it often requires both

labelled data, which can be difficult to obtain, as well as a sentiment lexicon.

2.4 Sentiment Analysis using SentiWordNet

SentiWordNet is a general purpose sentiment lexicon generated from the WordNet (Fell-

baum, 1998) dictionary. Each synset from WordNet (i.e. a group of synonymous terms



Chapter 2. Literature Review 37

based on a particular usage or meaning) is associated with two numerical scores indi-

cating the degree of association of the synset with the positive and negative sentiment

polarities. A third score for objectivity or neutrality can be derived by subtracting the

sum of positive and negative scores from 1.

Recently, SentiWordNet has become a popular resource for sentiment analysis given

its high coverage of English terms and fine-grained sentiment information. It is being

used with both pure lexicon-based and hybrid approaches. The baseline lexicon-based

sentiment classification using SentiWordNet sums up respective positive and negative

scores for all terms contained in the given test document. The dimension with the highest

total score becomes the sentiment class for the document (Agrawal and Siddiqui, 2009,

Denecke, 2008, Devitt and Ahmad, 2007, Hamouda and Rohaim, 2011, Heerschop et al.,

2011, Muhammad et al., 2013a, Ohana and Tierney, 2009). Several approaches have

been introduced to improve upon this baseline. For instance, polarity adjustments due to

negation and intensification are introduced for sentiment classification of movie reviews

(Agrawal and Siddiqui, 2009, Thet et al., 2009). However, negation and intensification

terms are already associated with sentiment scores in SentiWordNet and are accounted

for, to some extent, in the baseline approach. Therefore, further analysis is needed to

ascertain the role of such terms and a strategy to appropriately account for them.

In another work, SentiWordNet was used for Sentiment polarity identification in financial

news using a cohesion-based text representation algorithm (Devitt and Ahmad, 2007).

Here, scores from the lexicon are overlaid onto the WordNet structure. Subsequently, a

document to be classified for sentiment is represented as a graph within WordNet via

term adjacency relation. The graph also expands to other nodes reachable via WordNet

relation types (derived-from, see-also, hypernymy). Therefore, an aggregate score for a

document can include not only the scores of terms within the document but also scores

from other related terms. It can be noted, however, that from the manner in which

SentiWordNet is generated, WordNet relations are already taken into account and the

work in Devitt and Ahmad (2007) are likely to introduce some redundancy. Also, the

approach does not allow for integrating sentiment modification from local context (e.g.

negation, intensification).
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SentiWordNet was also applied for multilingual sentiment classification (Denecke, 2008).

Here, documents written in languages other than English are first translated to English

and then classified for sentiment. This work does not attempt to extend the baseline

approach as its focus was on addressing the problem of dealing with multilingual docu-

ments.

In a more recent work, the baseline approach is extended with score modification based

on discourse structure in a system called Pathos (Heerschop et al., 2011). In movie

reviews, it was observed that the conclusion which appears towards the end of the review

tends to be more important than the introduction in the beginning. Thus, in Pathos it

was shown that even simple variation of term weights from the beginning to the end of

a review (in ascending order of importance) can improve a positive/negative sentiment

classification. Further improvements were reported when a more sophisticated weighting

approach based on the Rhetorical Structure Theory (RST) (Mann and Thompson, 1998)

was introduced. However, such an approach, based on the use of standard RST parsers

tends to be too brittle for short and highly informal social media content.

In the hybrid sentiment classification context, SentiWordNet is typically used to derive

feature sets for supervised classification. Improvements in classification accuracy were

shown using just the features derived from the lexicon (Ohana and Tierney, 2009) and

in combination with other feature sets (Dehkharghani et al., 2012). In another work,

the lexicon was used to filter out non sentiment bearing terms from n-gram feature set

(Mudinas et al., 2012). Also, scores from the lexicon have been used as feature values

in combination with frequency-based values (Sani et al., 2013).

Although sentiment scores are associated with word senses in SentiWordNet, this infor-

mation is under-utilised in the existing literature as the afore-mentioned work adopt a

strategy that avoids word sense disambiguation. Such strategies include using the first

sense from WordNet because it is the most naturally occurring sense or some form of

averaging over all senses. Similarly, SentiWordNet has so far largely been used for sen-

timent analysis of reviews. Given the high coverage of the lexicon, it will be interesting

to explore its applicability in sentiment analysis of non-review social media.
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2.5 Challenges of Sentiment Analysis

Sentiment analysis is a very challenging problem as it is highly domain and context

dependent. A piece of text that is positive in one domain can be negative in another.

For instance “go read the book!” is positive in the domain of books but negative in the

domain of movies (Paltoglou, 2014). Sometimes only the context can help uncover senti-

ment expressed without the use of sentiment-bearing words. For example the comment

“After sleeping on the mattress for two days, a valley has formed in the middle” can

be understood to be very negative even though it does not seem to contain any obvious

sentiment-bearing word (Liu, 2010).

Another challenge for sentiment analysis is the thwarted expectation phenomenon. It

is a scenario in which the author sets up a contrasting introduction to the intended

sentiment. This is particularly observed to be common in movie reviews, for example

in “This film should be brilliant. It sounds like a good plot, the actors first grade’,

and the supporting cast is good as well, and Stallone is attempting to deliver a good

performance. However, it can’t hold up” (Pang et al., 2002). The overall sentiment of

this review is negative despite many positive expressions at the beginning of the text.

This challenge can potentially be addressed by the use of discourse structures for term

weighting (Heerschop et al., 2011).

Social media text (e.g. tweets and discussion posts) presents peculiar challenges for

sentiment analysis. Text from these platforms is typically short thus presenting high

ambiguities (Maynard and Hare, 2015). It is also characterised by dynamic and diverse

vocabulary use, although standard off-the-shelf lexicons remain static with fixed vocab-

ulary and associated polarities. Similarly, in social media platforms users often employ

non-standard spelling/grammar and sarcasm to express sentiment. In a recent work,

lexicon-based sentiment analysis was extended to incorporate modification of term prior

polarities based on non-lexical modifiers (Paltoglou and Thelwall, 2012, Thelwall et al.,

2012, 2010). Such non-lexical modifiers include term elongation by repeating letter (e.g.

‘haaappppyy’ instead of ‘happy’), capitalization of terms, and Internet acronyms. Both
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repeated letter and capitalisation are identified and treated as intensification whilst In-

ternet acronyms are expanded to their full meanings (e.g. rotf becomes rolling on the

floor) or manually added into a lexicon. However, it can be observed that when Internet

acronyms are expanded they could lose their sentiment connotations as in the previous

example. Also, the approach needs to be extended to the phenomenon of repeating other

characters not just letters (e.g. in happy!!! ) and the use of emoticons in social media.

Sarcasm is a phenomenon that can have significant impact on sentiment expressions. It

typically means to say the opposite of the true feelings in order to be funny or make a

point3. From this definition, it can be observed that sarcasm is particularly a device for

expressing sentiment and it is difficult to handle, as the literals affected by the use of the

sarcasm have to be detected and be treated as their opposites. Existing research work on

sarcasm detection typically focuses on detecting the presence or absence of sarcasm but

not how to handle it for effective sentiment analysis (Maynard and Greenwood, 2014).

Also, sarcasm has been treated mostly from a machine learning perspective in which

text containing sarcasm is used to train algorithms for sarcasm detection. However, re-

cently rules for sarcasm detection have been integrated into lexicon-based classification

(Maynard and Hare, 2015). These rules were based on a strategy that detects sarcasm

using hashtags as cues (e.g. #sarcasm, #lying and #notreally), identifies the scope of

the sarcasm, which may not be the whole document, and applies a score reversal ap-

proach, similar to the effect of negation, to the scope of the sarcasm. However, more

recent findings suggest that the #sarcasm hashtag is not a natural indicator of sarcasm

expressed between friends, but rather serves an important communicative function of

signalling the author’s intent to an audience who may not otherwise be able to draw the

correct inference about their message (as distinct from close friends who may be able to

infer sarcasm without such labels) (Bamman and Smith, 2015). Therefore, relying on

hashtags or similar explicit cues for sarcasm detection may have very limited utility par-

ticularly in the non-broadcast, highly contextualized social media communications such

as between friends (e.g on MySpace or Facebook) or between members of a discussion

forum.

3http://www.bbc.co.uk/worldservice/learningenglish/radio/specials/1210 how to converse/page13.shtml.
As cited by Maynard and Greenwood (2014)
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2.6 Conclusion from the Literature

The domains of non-review social media are characterised by the lack of training data,

making lexicon-based approaches readily suitable for sentiment classification. These

approaches also offer the advantage of better classification transparency, classifier flexi-

bility and explanation of results. Previous lexicon-based methods concentrate on the use

of low-coverage (often manually generated) lexicons that typically only provide coarse

sentiment information for terms. SentiWordNet can potentially improve sentiment clas-

sification in social media given its high coverage of terms and the level of disambiguated

polarity information it provides. However, effective integration of contextual analy-

sis while also utilising the detailed polarity information offered by the lexicon remains

under-explored. In this thesis, we address this research problem in relation to sentiment

classification for social media text (Chapter 4).

The dynamic nature of social media characterised with an evolving vocabulary and

sentiment semantics for terms means that sentiment lexicons need to be updated to

reflect such changes. Similarly, as sentiment analysis is domain-dependent, a system

for analysing social media needs to capture some characteristics of this genre while also

maintaining some level of cross-domain portability to account for the diverse nature of

social media. We address this research problem with a strategy to generate a hybrid

lexicon which combines a domain-specific and general purpose lexicons thereby capturing

the properties of both lexicons (see Chapter 5). Our approach to domain-specific lexicon

generation does not rely on human annotation but rather sentiment signals (emoticons)

within data. Thus, it is better able to capture the dynamic nature of social media.

2.7 Chapter Summary

In this chapter, we presented a review of the literature related to our work. We discussed

the three broad methods for sentiment classification: machine learning, lexicon-based

and hybrid. The discussion focused on the research progress made using each of the

methods, their strengths and weaknesses. A more detailed discussion of lexicon-based

methods was presented as these are closely related and motivate the work presented in



Chapter 2. Literature Review 42

this thesis. In particular we explained the importance of contextual analysis and the

need for adaptability when applying a static lexicon such as SentiWordNet to social

media content.



Chapter 3

Background

In this chapter, we present background details about the main sentiment lexicon and the

baseline sentiment classification algorithms used in the research. Similarly, we provide

details about our evaluation datasets, text pre-processing operations and performance

metrics employed.

3.1 SentiWordNet

Two versions of SentiWordNet exist publicly for research. Figure 3.1 illustrates the

process of generating the first version of the lexicon, SentiWordNet 1.0 (Esuli and Se-

bastiani, 2006). Initial seed synsets (positive and negative) are expanded by exploiting

the synonymy and antonymy relations in WordNet. The polarity of a seed synset is

propagated to the synsets that are reachable through the synonymy relation while the

opposite polarity is propagated in the case of antonymy. As there is no direct synonym

relation between synsets in WordNet as synonymous terms are already grouped in synset,

the relations: See-also, Similar-to, Pertains-to, Derived-from and Attribute are used to

represent the synonymy relation. Thereafter, textual definitions of the expanded synsets

(glosses) along with that of objective seed synsets are used as training data for eight

diverse classifiers of positive, negative and objective classes. These classifiers assigned

sentiment class to every synset and the proportion of classification for each class are

deemed to be the sentiment scores for the synset.

43
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Figure 3.1: SentiWordNet 1.0

In the second and enhanced version of the lexicon, SentiWordNet 3.0 (Baccianella et al.,

2010), sentiment scores are optimised via a random-walk using the PageRank approach

(Brin and Page, 1998). This optimisation involves leveraging WordNet’s graph structure,

where a link is formed from one synset, S1, to another, S2, if a term from S1 occurs in

the gloss of S2. This graph is illustrated in Figure 3.2 where the synsets {proper#1}

and {satisfactory#1} connect to the target synset, {well#1,good#1}, because of the

occurrence of the words ‘proper’ and ‘satisfactory’ in the gloss of the target synset.

These form the Backward neighbours of the target synset. Likewise, the target synset

connects to {exceptionally#1} and {fortunately#1,luckily#1} (its Forward neighbours).

Starting with scores from SentiWordNet 1.0, the random walk iteratively adjusts scores

using the relation in Equation 3.1 until convergence.

a
(k)
i ← α

∑
j∈B(i)

a
(k−1)
j

|F (j)| + (1− α)ei (3.1)

where a
(k)
i denotes the value of a target synset, ai, at the kth iteration, F (i) is the set of

forward neighbours of ai, B(i) is the set of backward neighbours of ai, ei is a constant
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such that
∑

i ei = 1 and 0 < α < 1 is a control parameter.

Forward neighbours

Synset terms:
Proper#1, …

Gloss terms:
…

Synset terms:
satisfactory#1, …

Gloss terms:
…

Synset terms:
well#1, good#1…

Gloss terms:
Proper or satisfactory 

Synset terms:
exceptionally#1, …

Gloss terms:
It worked exceptionally well

Synset terms:
fortunately#1, luckily#1 …

Gloss terms:
By good fortune

Backward neighbours

Figure 3.2: Graph Structure in WordNet

Figure 3.3 shows a fragment from SentiWordNet. Scores for a specific term within

a synset can be extracted by specifying the synset’s identification number (ID) or

the term’s lemma, part-of-speech (PoS) and sense number. For instance, the positive

(+score) and negative (-score) for the first sense of the adjective ‘scarce’ can be extracted

by specifying the ID: 00016756 or the three parameters: ‘scarce’ as the lemma, ‘a’ as the

PoS and ‘1’ as the sense number. Next we look at the baseline algorithms for sentiment

classification using SentiWordNet and other lexicons.

PoS ID +score -score synset gloss

a 00016756 0 0.25 scarce#1 deficient in quantity or number 

compared with the demand; …

n 00735936 0 0.625 misdeed#1 

misbehaviour#1 

misbehavior#1

improper or wicked or immoral 

behavior

r 00309249 0.125 0.125 despicably#1 in a despicable manner; "he acted 

despicably"

a 00017782 0.625 0 acceptable#1 worthy of acceptance or satisfactory; 

"acceptable levels of radiation“ …

n 04632063 0.75 0 chirpiness#1 cheerful and lively

v 02746140 0.625 0 beat#12 be superior; "Reading beats watching 

television"; "This sure beats work!"

Figure 3.3: A fragment from SentiWordNet 3.0
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3.2 Lexicon-based Methods: The baseline Algorithms

Depending on the amount of sentiment information a lexicon can provide as discussed

in Chapter 2, three baseline score aggregation strategies for sentiment classification can

be derived from existing research: term counting, maximum score and aggregate-and-

average.

The term counting simply counts the number of terms belonging to each sentiment class

from the given document. Thereafter, the document is classified as the class with the

majority count. Any ties are broken in favour of the class having the natural tendency

to occur more often (typically, the positive class). It can be observed that this approach

disregards term polarity intensities which are vital for sentiment expression. It is there-

fore not surprising that the term counting approach often gives poor results (Hamouda

and Rohaim, 2011, Ohana and Tierney, 2009). With the maximum score approach,

a given document is assigned to the sentiment class of its strongest sentiment-bearing

term (Thelwall et al., 2012, 2010). Lastly, with the aggregate-and-average approach,

sentiment class for a given document is determined by the average sentiment intensity

of all its terms.

This thesis adopts the aggregate-and-average approach as the baseline sentiment clas-

sification algorithm. Using SentiWordNet, the approach is outlined in Algorithm 1.

Positive (t+) and negative (t−) scores for each term are extracted from the lexicon.

Thereafter, these scores are respectively summed for all terms contained in Doc (steps

4-7 in Algorithm 1). The sentiment class of the input text is deemed positive if the net

positive score (Doc+) exceeds the net negative score (Doc−) and, negative, otherwise

(steps 8-12).

3.3 Machine Learning Methods: The baseline Algorithms

Three benchmark classifiers are particularly used namely: Näıve Bayes, Support Vector

Machines and Logistic Regression. Here we present a brief background about these

classifiers.
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Algorithm 1 Base
INPUT: Doc, document to be classified

S, Sentiment Lexicon
OUTPUT: Class, Sentiment class for Doc

1: Initialise: Doc+, Doc−

2: for all t∈ Doc do
3: Retrieve t+ and t− from S
4: if t++ t− > 0 then
5: Doc+ ← Doc+ + t+; Doc− ← Doc−+ t−

6: end if
7: end for
8: if Doc+ ≥ Doc− then
9: Return Positive

10: else
11: Return Negative
12: end if

3.3.1 Näıve Bayes Classifiers

Näıve Bayes is a probabilistic classifier that operates by building statistical models

of classes from the training dataset. In order to describe the classifier, assume that

documents from the training dataset are divided into m mutually exclusive classes,

C = {c1, c2, ..., cm}. Then, the parameters to the multinomial model for class c ∈ C

would be: θc = [θc1, θc2, ..., θcn], where n is the number of features in the vocabulary,∑
j θcj = 1 and θcj is the conditional probability that feature j occurs in class c. The

conditional probability θcj is typically smoothed by a Laplace count to avoid zero val-

ues. The class label for a test document d = {d1, d2, ..., dn}, where dj is the frequency

of feature j in document d, is predicted using the Bayes rule (Rahman, 2009):

label(d) = arg max
c

(
P (c)

P (d|c)
P (d)

)
(3.2)

The probability P (d|c) is estimated by using a multinomial distribution, i.e.

P (d|c) =

( ∑
d1,d2,...,dn

dj

)∏
j

(θcj)
dj (3.3)

The multinomial distribution assumes that the features in document d are independent

of each other. This is known as the Näıve Bayes Assumption and only holds because of

the stochastic nature in which words are used in language (Domingos and Pazzani, 1996).

The multinomial coefficients in Equation 3.3 and the probability P (d) in Equation 3.2

can be dropped as they are constant across all classes. This simplifies Equation 3.2 as
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follows:

label(d) = arg max
c

(
P (c)

∏
j

(θcj)
dj

)
(3.4)

The multiple products in Equation 3.4 have the tendency to lead to an arithmetic un-

derflow thus, it is common practice to represent it in logarithm space:

label(d) = arg max
c

(
logP (c) +

∑
j

djθcj

)
(3.5)

Finally, the label of document d is taken as the class that yields the maximum value of

the resultant Bayes rule formulation as shown in Equation 3.5

3.3.2 Maximum Entropy Classifiers

These are feature-based classifiers that work on the idea that the most uniform model

that satisfies a given constraint should be preferred. In a two-class scenario, it is the

same as using logistic regression to find a distribution over the classes. Unlike the

Näıve Bayes, this classifier makes no feature independence assumptions thus features

like bigrams and phrases can be added in building the classifier without overlap (Go

et al., 2009). The model is represented by the following:

P (c|d, λ) =
exp

(∑
i λifi(c, d)

)∑
c′ exp

(∑
i λifi(c, d)

) (3.6)

Where, c is the class, d is the document to be classified, and λ is a weight vector. The

weight vectors decide the significance of a feature in classification. A higher weight

means that the feature is a strong indicator for the class. The weight vector is found

by numerical optimization of the lambdas to maximize the conditional probability. The

Maximum Entropy classifier was found to perform best in sentiment classification com-

pared to Näıve Bayes or Support Vector Machines (Go et al., 2009, Thelwall et al.,

2012).
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3.3.3 Support Vector Machines

The Support Vector Machine (SVM) belongs to a family of classifiers that perform

classification by building a separating boundary between classes of interest. A special

property of the SVM is that it simultaneously tries to minimise the generalisation error

while maximising the geometric margin between the classes (Vapnik, 1998). Thus, it

is also known as the maximum margin classifier. Figure 3.4 illustrates a simplified

version of a linear SVM trained on instances from two classes. Here the SVM constructs

a separating hyperplane and then maximises the margin between the two classes. In

calculating the margin, the SVM constructs two parallel hyperplanes, one on each side

of the initial one. These hyperplanes are then expanded perpendicularly away from

each other until they are in contact with the closest training instances from either class.

These instances are known as the support vectors and illustrated in bold in Figure

3.4. Intuitively, the best separation is the one with the largest margin between the two

hyperplanes. Thus, the larger the margin; the lower the generalisation error.

Margin 1

Hyperplane

Margin 2

Figure 3.4: Support Vector Machines: Classification

SVM is a popular classifier for sentiment classification in particular and text classification

in general and it is often considered to be the state-of-the-art classifier.
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3.4 Datasets and Statistics

In this research, we perform evaluations on six publicly available benchmark datasets

from different social media platforms. Some statistics from these are shown in Table 3.1

where a bracketed value shows the proportion of the corresponding marker (i.e. row)

over the number of documents in the corresponding dataset (i.e. column). The datasets

represent varying lengths of social media text, use of non-standard/informal terms and

occurrence of one sentiment class (positive or negative) compared to the other. Thus

enabling us to study the performance of our proposed algorithms on these criteria. The

datasets are made available from two sources: cyberEmotions project1 and SemEval

20142. In this research, we use only the positive and negative documents from the

datasets for the evaluation.

3.4.1 CyberEmotions datasets

This consists of 4 datasets labelled by three human annotators. Each document is

assigned two scores by an annotator, each ranging from 1 to 5, indicating the strength

of the positive and negative sentiment contained in the document. We use the maximum

mean score for each sentiment class to label each document as positive or negative. The

datasets are as follows.

Digg: This consists of comments crawled from the social news website: digg.com. Com-

ments are extracted from discussion topics expected to contain expressions of sentiment,

such as politics and lifestyle. It has 48% more negative than positive comments and are

relatively lengthy in size, with an average of 6 sentences and 78 words per comment.

MySpace: This consists of message exchanges between a pair of Internet “friends”

from myspace.com. Thus, it is mostly positive (68% more positive than negative). The

messages are relatively shorter in size with an average of 2 sentences and 12 words per

message.

1www.cyberemotions.com
2http://alt.qcri.org/semeval2014/index.php?id=tasks
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Youtube: This is a collection of comments posted on Youtube. It has 36% more positive

than negative comments that are relatively moderate in size, with average of 2 sentences

and 18 words per comment.

RunnersW: This is a collection of comments from a specialised sports forum: run-

nersworld.com. It has 34% more positive than negative comments that are relatively

lengthy with average of 5 sentences and 55 words per comment.

3.4.2 SemEval2014 datasets

These are two datasets introduced in SemEval 2014, in relation to task 10B (sentiment

classification exercise). The datasets are manually labelled for sentiment classes of pos-

itive, negative and neutral via Amazon Mechanical Turk. We exclude neutral labelled

documents for the current task. The datasets are as follows:

Twitter: This is a collection of 2587 positive and 843 negative Twitter posts (i.e. 50%

more positive than negative documents). It has an average of 2 sentences and 18 words

per document.

LiveJ: This collection includes responses to blogs on the social networking site, livejour-

nal.com. It is the shortest of our datasets in document length with average of 1 sentence

and 12 words per documentIt is also the least skewed in class composition with just 16%

more positive than negative documents.
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Table 3.1: Datasets and statistics

stats Digg LiveJ MySpace RunnersW Twitter Youtube

#Documents

Positive 201 427 702 484 2587 1665

Negative 572 304 132 221 843 767

Statistics

Avg. sentence 6 1 2 5 2 2

Avg. word 78 12 12 55 16 18

Negation 522(0.68) 31(0.04) 351(0.42) 987(1.40) 1227(0.36) 844(0.35)

Intensifiers/Dim 371(0.48) 240(0.33) 165(0.20) 541(0.77) 396(0.16) 448(0.18)

Discourse markers 743(0.96) 411(0.56) 543(0.65) 1231(1.75) 1161(0.34) 1238(0.51)

Capitalisation 95(0.12) 54(0.07) 84(0.10) 121(0.17) 669(0.20) 231(0.09)

Repeat letter 13(0.02) 23(0.03) 61(0.07) 16(0.02) 51(0.01) 61(0.03)

Emoticons 37(0.05) 91(0.12) 192(0.23) 180(0.26) 530(0.15) 341(0.14)

3.5 Text Pre-processing

Text pre-processing is an integral component of many NLP tasks including sentiment

analysis. It usually involves a number of steps in a pipeline aimed at transforming raw

text into a format suitable for input to an algorithm.

Tokenisation PoS tagging Lemmatisation
/ Stemming

Conversion to 
consistent 

case

Stop‐word 
filtering

Raw text

Processed 
text

Figure 3.5: Text Pre-processing Steps

Figure 3.5 shows the typical text-preprocessing operations for sentiment analysis. First,

an input text is broken into its unit constituents (tokenisation). This step is very im-

portant in sentiment analysis of social media text because sentiment information can

be sparsely and unusually represented. For instance, a single cluster of punctuations
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like >:-( might tell the whole story and should be kept together at tokenisation. Sec-

ond, the resultant tokens are tagged with their respective PoS. In this research, PoS

information is required for score extraction from SentiWordNet. This step is normally

bypassed for lexicons that do not distinguish between PoSs and some machine learning

approaches. Third, lemmatisation or stemming is performed on the PoS tagged tokens.

The goal of both lemmatization and stemming is to reduce inflectional forms and some-

times derivationally related forms of a word to a common base form. However, the two

differ in that stemming employs crude heuristics to achieve the goal to an extent that

the resultant token may not be a valid language word while lemmatisation achieves the

goal with reference to a standard dictionary thus the resultant token is not changed

beyond meaningful words. For example, whereas when lemmatised smoking becomes

smoke, it becomes smok when stemmed. In this research we employ lemmatisation as

entries in SentiWordNet are in their base dictionary form (lemma). Fourth, the tokens

are converted to a consistent case (usually lower case). This avoids algorithms from

distinguishing between tokens such as “HERE” and “Here”. However, it is possible

that a sentiment classifier may benefit from capitalisation for emphasis such as “AWE-

SOME,” as compared to “awesome,” would imply varying sentiment intensity. In our

lexicon-based approach, capitalisation for emphasis is retained and used by our algo-

rithm. Finally, stop-word filtering is typically performed in NLP tasks to remove words

that are poor discriminators. Although this may be a form of feature reduction for ma-

chine learning, it is typically unnecessary for lexicon-based methods as stop-words are

typically not included in a lexicon or are associated with zero values in high-coverage

lexicons (e.g. SentiWordNet) thus cannot influence classification. Therefore, in this

research, we do not perform stop-word filtering.

3.6 Evaluation Metrics

As typical with unbalanced datasets (Li et al., 2005), in this research we report evaluation

results using precision, recall and F measure. The Contingency Table 3.2 illustrates the

arrangement of classifier outcome given human judgment in a two-class problem (positive

and negative). Where, TP is the number of positive documents correctly classified as
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positive (“true positive”), FP is the number of negative documents falsely classified as

positive (“false positive”), TN is the number of negative documents correctly classified as

negative (“true negative”) and FN is the number of positive documents falsely classified

as negative (false negative).

Table 3.2: Contingency Table

Classification
Human Judgment
Positive Negative

Classifier Judgment
Positive TP FP
Negative FN TN

Precision for a given class c is the fraction of correctly classified documents out of

documents classified as c. Thus, the precision values for the two classes, positive (Ppos)

and negative (Pneg), are determined as follows:

Ppos =
TP

TP + FP
, Pneg =

TN

TN + FN
(3.7)

Recall is the fraction of documents correctly classified out of all documents from a given

class c. Therefore, the recall values for the two class, positive (Rpos) and negative (Rneg),

are determined as follows:

Rpos =
TP

TP + FN
, Rneg =

TN

TN + FP
(3.8)

The F Measure for a class c is given by the harmonic mean of the class’ precision and

recall as follows:

Fc =
2PcRc

Pc +Rc
(3.9)

We combine F Measure from the two classes, positive (Fpos) and negative (Fneg), into

a single value by taking their arithmetic mean as follows:

AvgF =
Fpos + Fneg

2
(3.10)

Finally, we report statistical significance of results using the chi-square (χ2) test for

two proportions (Berenson et al., 2012), at 95% confidence level. This compares the

contingency tables produced by any two competing systems.
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3.7 Chapter Summary

In this chapter, we presented details about SentiWordNet, the main lexicon used in

various stages of our research. This includes the lexicon generation process and the

baseline sentiment classification algorithm using the lexicon. We also discussed the

benchmark supervised machine learning algorithms for sentiment classification namely:

Näıve Bayes, Maximum Entropy and Support Vector Machines. Finally, we provided

details about the text pre-processing operations employed in the research, the datasets

and metrics used for evaluation.



Chapter 4

SmartSA: A Contextual

Sentiment Classifier for Social

Media

Adopting the lexicon-based methodology, this chapter presents SmartSA, a sentiment

classification system for social media text that leverages rich sentiment information in

SentiWordNet for contextual analysis. We show how contextual adjustment of Sen-

tiWordNet scores for terms based on negation, intensification/diminishing, discourse

structure and other non-lexical phenomena can significantly influence sentiment analy-

sis of social media. Given that sentiment scores are associated to word senses in Senti-

WordNet, it is imperative to investigate the applicability of word sense disambiguation

(WSD) in determining the right sense for terms in relation to other score extraction

approaches that avoid WSD. To this end, we formalise score extraction approaches from

the literature and introduce a Lesk-like algorithm for WSD (Lesk, 1986).

Being a high-coverage lexicon, SentiwordNet offers sentiment scores for typical sentiment

modifying terms. In this chapter, we analyse the behaviour of these terms both as senti-

ment carriers and as sentiment modifiers of other terms. This informed our strategies for

local contextual analysis in SmartSA. The main contribution of SmartSA is the use of

contextual information to improve sentiment scores. We apply this information in two

56
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places. Firstly, context is used to identify the correct sense when extracting scores from

SentiWordNet. Secondly, the extracted scores are adjusted on the basis of contextual

analysis.

Figure 4.1 shows the main components of the classifier. Sentiment classification of doc-

uments involves the extraction of scores from SentiWordNet. Thereafter, contextual

analysis is applied to modify prior polarities of documents’ terms. Here, we introduce

strategies for negation, intensification/diminishing, discourse analysis, capitalisation, re-

peating letters/characters and emoticons. Sentiment class for a given document is deter-

mined by the maximum of the contextually modified scores. Details of these operations

are presented next.

documents

Lexicon: 
SentiWordNet

Score 
extraction 
strategies

Pre‐
processing

Negative

PositiveNegation

Intensifier/Dim

Discourse

Capitalisation

Repeat letter

Emoticons 

Contextual Analysis

Lexical

Non‐Lexical

Figure 4.1: SmartSA

4.1 Score Extraction

Lexicon-based sentiment analysis involves the extraction of sentiment scores from a

lexicon. Several score extraction approaches are possible with SentiWordNet given the

detailed information it provides about terms. Typically, these approaches (presented in

the next subsections) require part-of-speech (PoS) tags of terms to be determined prior

to the extraction of the terms’ positive and negative scores, (c={+, -}).
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4.1.1 Most Frequent Word Sense (MFWS)

In WordNet (and also SentiWordNet), word senses for terms are ordered according to

their natural usage frequency, with the first sense (sense1) being the most frequent.

This sense has higher chance to occur in a document than any other sense, thus, can be

representative for the term. This approach is given in equation 4.1.

score(t|PoS)c = score(t|PoS, sense1)c (4.1)

4.1.2 Average of Word Senses (AWS)

In this approach, sentiment score of a term given PoS is determined by the average score

over all the term’s words senses as given in equation 4.2.

score(t|PoS)c =

|sense(t|PoS)|∑
i=1

score(t|PoS, sensei)c

|sense(t|PoS)| (4.2)

Where |sense(t|PoS)| is the number of senses of the term, t, when occuring as the given

part-of-speech, PoS.

4.1.3 Weighted Average of Word Senses (WAWS)

Here, frequency of word sense, as given by the sense order, i, in WordNet, is used to

obtain a weighted average as follows.

score(t|PoS)c =

|sense(t|PoS)|∑
i=1

1

i
× score(t|PoS, sensei)c

|sense(t|PoS)| (4.3)

4.1.4 Average of Word Senses and Parts of Speech (APoS)

In equation 4.4, sentiment score for a given term is the average scores over all its word-

senses across all PoS. Averaging in this way avoids word sense disambiguation as well as
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PoS tagging which could be prone to error especially with informal social media content.

score(t)c =

|PoS|∑
j=1

( |sense(t|PoS)|∑
i=1

score(t|PoS, sensei)c

|sense(t|PoS)|

)
|PoS| (4.4)

4.1.5 Word Sense Disambiguation (WSD)

WSD involves the identification of the meaning evoked by words in context. It provides

the ideal approach for the extraction scores from SentiWordNet since scores are asso-

ciated to word senses rather than terms. We introduce a variant of the Lesk (1986)

method for WSD (Algorithm 2). This method is based on the idea that similar adjacent

terms imply similar sense. Thus, for each sense of a target term for which sense is to

be disambiguated (step 3), its gloss is extracted from SentiWordNet (step 4) and simi-

larity with the context (adjacent terms) of the term is measured. We use all terms that

co-occur with the target term in a document as the context of the term, as opposed to

sentence or text window, since documents in our domain of application (social media)

are short in size. We use the cosine similarity metric to quantify the similarity between

a term’s gloss and the term’s context. Finally, the sense with the highest similarity is

returned as the adjudged word sense of the target term. The algorithm also ensures that

in the case of a tie, the most frequent sense as specified by sense order is returned.

4.2 Contextual Analysis

In social media, two types of modifiers affect term polarity in context: lexical and

non-lexical valence shifters. Lexical valence shifters are in the form of dictionary recog-

nisable words whereas non-lexical valence shifters are other word inflections and artificial

symbols that affect the expression of sentiment such as repeating a letter or character,

capitalisation for emphasis and the use of emoticons. Crucial to implementing any score

adjustment strategy is the identification of the terms affected by modifiers in text (scope

of modifiers). This can be the immediate term succeeding the modifier (e.g. in “I didn’t



Chapter 4. SmartSA: A Contextual Sentiment Classifier for Social Media 60

Algorithm 2 WSD

INPUT: t, term to be disambiguated
D, document containing t
S, SentiWordNet

OUTPUT: Sense, Adjudged word sense of t
1: sense ← sense1

2: tempScore ← 0
3: for all sensei ∈ senses(t) do
4: glossi ← ExtractGloss(sensei) from S
5: scorei ← CoSim(glossi, D)
6: if scorei > tempScore then
7: tempScore ← scorei
8: sense ← sensei
9: end if

10: end for
11: Return sense

enjoy it”) or a term farther away from the modifier “I don’t think I will enjoy it”. The

modified term can also be before the modifier (e.g. I enjoy it very much) or after (e.g. I

very much enjoy it). Ideally, it is the task of a dependency parser to identify modifiers

in text and the terms they modify. However, with the attendant non-standard spelling

and grammar of social media, standard parsers often fail to produce satisfactory results

(Liu et al., 2011, Ritter et al., 2011). For instance, with the omission of the apostrophe

in “I dont like sausages”, the Stanford parser1 fails to recognise the negation. Therefore,

instead of using the standard parsers, we adopt the window-based approaches, whereby

modifiers are assumed to affect terms within a specific text window (Hogenboom et al.,

2011, Thelwall et al., 2012, 2010).

4.2.1 Lexical Valence Shifters

Lexical valence shifters are typically used to increase sentiment (i.e. intensifiers e.g.

‘very’, ‘highly’); decrease sentiment (i.e. diminishers e.g. ‘slightly’, ‘somewhat’) or

negate sentiment (i.e. negation terms, e.g. ‘not’, ‘never’). These terms are associated

with sentiment scores in SentiWordNet. For example, the positive and negative scores

of the adverb ‘very’ are 0.25 and 0.0 respectively, thus, the term always contributes

positively. However, this term can also contribute negatively, for example in ‘very bad’.

1http://nlp.stanford.edu:8080/parser/
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Therefore, it is important to determine the polarity contribution likely to be made and

modify scores accordingly.

4.2.1.1 Negation

Negation is a common linguistic phenomenon that affect sentiment expressions in a

profound way. Taking into account the positive and negative scores for terms in Sen-

tiWordNet, we propose and investigate the following implementation of the switch

(Taboada et al., 2011) and shift (Taboada et al., 2011) approaches of handling negation

in SmartSA. The choice of a window size as the scope of negation should be guided by

two requirements: the need to capture the affected words despite a long-distance effect

of the negation, and the need to constrict the size so as not to capture other terms that

are not affected by the negation. Existing literature suggests several text window sizes as

the scope for negation ranging from one to five words following the negation word or on

both sides of the negation word (i.e. a radius). For instance, Polanyi and Zaenen (2004)

and Kennedy and Inkpen (2006) assume the word following a negation word as its scope

while Paltoglou and Thelwall (2012) assume a radius of five words from a negation word

to be its scope. However, a recent studies show that there is no significant difference in

performance between various radii (between 1 and 5) as the scope of negation (Dadvar

et al., 2011, Paltoglou and Thelwall, 2012). Indeed, Dadvar et al. (2011) found that the

performance in sentiment classification remains the same with a three, four, or five term

window, which was slightly better than using a two or one term window. This shows

that a three term window is more appropriate than the other alternatives, as it attains

the best performance with the least number of terms to search. Therefore, in this work,

we use a radius of three terms from a negation term as the scope of the negation. Our

negation detection is based on a list of negation terms by Thelwall et al. (2012) extended

to include scenarios when apostrophe is omitted or misplaced for terms such as in don’t,

wouldn’t, couldn’t and can’t.

Switch. Involves the swap of positive and negative scores of terms that are under the

influence of negation. This will have the same effect as switch approaches implemented
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with single score lexicons. Consider examples (a) and (b) in Figure 4.2 where positive

and negative prior polarities of “not good / not excellent” are swapped after the switch

operation. This reflects the contextual polarity (negative) of the phrases. However,

switch tends to produce an undesired effect of making negated high sentiment-bearing

terms more negative than negated low sentiment-bearing terms. For instance “not ex-

cellent” is overall more negative (-1.625) than “not good” (-1.138). The shift approach

is supposed to mitigate against this limitation.
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in SmartSA. We use a text-window size of three terms before and after a negation term

to establish the scope of the negation. Our negation detection is based on the list of

negation terms provided in (Thelwall et al., 2012) extended to include scenarios when

apostrophe is omitted or misplaced in terms such as ‘don’t’, ‘wouldn’t’, ‘couldn’t’ and

‘can’t’.

Switch Involves the swap of positive and negative scores of terms under the influence

of negation. This will have the same effect as switch approaches implemented with

single score lexicons. Consider examples (a) and (b) below where positive and negative

prior polarities of “not good / not excellent” are swapped after the switch operation.

This reflect the contextual polarity (negative) of the phrases. However, switch tend

to produce an undesired effect of making negated high sentiment-bearing terms more

negative than negated low sentiment-bearing terms. For instance “not excellent” is

overall more negative (-1.625) than “not good” (-1.138). The shift approach is supposed

mitigate against this limitation of switch.

Before Switch After Switch

(a) not good → not good : sum

pos: 0.000 0.638 pos: 0.000 0.125 = 0.125

neg: 0.625 0.125 neg: 0.625 0.638 = 1.263

pos-neg=-1.138

(b) not excellent → not excellent

pos: 0.000 1.000 pos: 0.000 0.000 = 0.000

neg: 0.625 0.000 neg: 0.625 1.000 = 1.625

pos-neg=-1.625

Shift : With the shift approach, negation is considered as a sentiment diminisher

rather than complete inverter of sentiment. With single score lexicons, this involves

reducing a term polarity score by a certain weight. With shift the dominant polarity

of negated terms are ignored as shown in example (c) and (d). This not only account

for the contextual polarity of the phrases (negative) but also produces the desired effect

of making moderate sentiment-bearing terms (e.g. ‘good’) more intense when negated

than high sentiment-bearing terms (e.g. ‘excellent’)

Figure 4.2: Switch negation

Shift. With this approach, negation is considered as a sentiment diminisher rather

than complete inverter of sentiment. With single score lexicons, this involves reducing a

term polarity score by a certain weight. Considering that, negation seems to affect the

dominant polarity of terms, we implement the shift approach in SmartSA by focusing

on this polarity dimension. When a term is negated, its dominant polarity is ignored.

For instance, in Figure 4.3 examples (c) and (d), the contextual polarity of the phrases

‘not good’ and ‘not excellent’ becomes negative after the shift operation. The relative

intensities of their polarity are also maintained (i.e. ‘not good’ is more negative than

‘not excellent’).

It can be noted, from examples (a)-(c), that it is possible to remove sentiment scores of

the negation term ‘not’ from the aggregation process without changing the contextual

polarities of the phrases. However, recent literature suggest that negation terms are
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Before Shift After Shift

(c) not good → not good : sum

pos: 0.000 0.638 pos: 0.000 0.638 = 0.000

neg: 0.625 0.125 neg: 0.625 0.125 = 0.750

pos-neg=-0.750

(d) not excellent → not excellent

pos: 0.000 1.000 pos: 0.000 1.000 = 0.000

neg: 0.625 0.000 neg: 0.625 0.000 = 0.625

pos-neg=-0.625

It can be noted, from examples (a)-(d), that it is possible to remove sentiment scores of

the negation term ‘not’ from the aggregation process without an impact on sentiment

prediction of the phrases. However, recent literature suggest that negation terms are

sentiment carriers of their own. Thus by including scores of the negation terms in

the aggregation, we implement the concept that negation terms are both modifiers of

sentiment as well as sentiment-bearing terms. An exception arise with negation of

negative dominant terms (terms that are more negative than positive), whereby including

scores of negation terms will produce undesired result. For instance, not angry still

remained overall negative after shift operation in example (e). Thus in such cases, we

exclude scores of negation terms from the aggregation (example f).

Before Shift After Shift

(e) not angry → not angry : sum

pos: 0.000 0.307 pos: 0.000 0.307 = 0.307

neg: 0.625 0.500 neg: 0.625 0.500 = 0.625

pos-neg=-0.318

Before Shift After Shift (without scores)

(f) not angry → not angry

pos: 0.000 0.307 pos: 0.000 0.307 = 0.307

neg: 0.625 0.500 neg: 0.625 0.500 = 0.000

pos-neg=-0.307

Figure 4.3: Shift negation

sentiment carriers of their own (Potts, 2011a). This is further evident from the high

sentiment scores associated with such terms in SentiWordNet. Therefore, in SmartSA

we include scores of negation terms in the aggregation. Thus, by doing so we implement

the concept that negation terms are both modifiers of sentiment and sentiment-bearing.

An exception arises with negation of negatively dominant terms (terms that are more

negative than positive). In such a case, including the scores of negation terms will

produce undesired result because sentiment scores for negation terms from SentiWordNet

are very negative and typically more negative than many negative terms such as ‘angry’,

‘bad’ or ‘worry’. Thus, the scores of the negation may dominate the aggregate leading

to the incorrect assessment of phrases like “not angry”, “not bad” or “don’t worry”. For

instance, ‘not angry’ still remains overall negative after the shift operation as shown in

Figure 4.4, example e. Therefore, in the case of negation of negatively dominant terms,

we exclude the scores of the negation terms from the aggregation as shown in Figure

4.4, example f.

4.2.1.2 Intensification/Diminshing

Intensifiers and diminishers are linguistic constructs used to increase and decrease sen-

timent or emotional charge of terms. In SmartSA, the dominant polarity of sentiment-

bearing terms within the scope of an intensifier is increased (or decreased in the case of

a diminisher) relative to the strength of the intensifier (or diminisher) as illustrated in
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Before Shift After Shift

(e) not angry → not angry : sum

pos: 0.000 0.307 pos: 0.000 0.307 = 0.307

neg: 0.625 0.500 neg: 0.625 0.500 = 0.625

pos-neg=-0.318

Before Shift After Shift (without scores)

(f) not angry → not angry

pos: 0.000 0.307 pos: 0.000 0.307 = 0.307

neg: 0.625 0.500 neg: 0.625 0.500 = 0.000

pos-neg=0.307

the need for parsers trained with text untypical of social media yet maintaining

the theoretical framework of RST. Our strategies to account for local context

also incorporate non-lexical modifiers commonly used to express or emphasise

sentiment in social media: capitalisation, sequence of repeated character and

emoticons. Second, we introduce an approach to hybridize general purpose lex-

icon with genre-specific sentiment polarities (global context) and vocabulary.

This approach thus has the effect of capturing the dynamic nature of social

media. The main contributions of this paper are as follows:

• We introduce a set of strategies relevant to social media and high-coverage

lexicon (SWN) to adjust term prior polarity due to its local context. These

include strategies for negation, intensification/diminishing, discourse struc-

ture and non-lexical modifiers.

• We introduce a strategy to adapt a lexicon to a domain by facilitating

genre-specific vocabulary enhancement using distance-supervised learning.

• We provide a comparative analysis with state-of-the-art systems

To the best of our knowledge, this is the first time SWN, together with the

proposed contextual analysis are applied to sentiment classification of social

media. The rest of the paper is organised as follows. Related work is presented

3

Figure 4.4: Modified shift negation

Figure 4.5. We use a lexicon of intensifiers and diminshers where each term is assigned

a strength score of 1 or 2 indicating the degree to which the term increases or decreases

sentiment (Thelwall et al., 2012). For instance, the intensification strength of ‘extremely’

is 2 while that of ‘very’ is 1. However, Taboada et al. (2011) argue that rather than

absolute values, modifiers should have scores relative to the sentiment strength of the

term they modify. Thus, they proposed assigning a modifier a percent score of the term

they modify. Adapting this approach, we convert the strengths assigned to modifiers by

Thelwall et al. (2012) to a percentage increase or decrease in dominant polarity of terms

(50% for 1 and 100% for 2). This approach also ensures that the score of a modifier does

not exceed the score of the term being modified. Notice that, similar to negation terms,

intensifiers and diminishers are associated with sentiment scores in SentiWordNet. Thus,

the scores could be incorporated into the aggregation or nullified. We investigate both

options in the evaluation of SmartSA.
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4.2.1.2 Intensification/Diminshing

In SmartSA, dominant polarity of sentiment-bearing terms within the scope of inten-

sifier is increased (decreased in the case of diminisher) relative to the strength of the

intensifier (or diminisher) as illustrated in example (g). We use a lexicon of intensifiers

and diminshers provided in (Thelwall et al., 2012) where each term is assigned strength

of 1 or 2 indicating the degree to which the term increases or decreases sentiment. For

instance, the intensification strength of ‘extremely’ is 2 while that of ‘very’ is 1. We

convert these strengths to percentage increase or decrease in dominant polarity of terms

(50% for 1 and 100% for 2). Notice that, similar to negation terms, intensifiers and di-

minishers are associated with sentiment scores in SentiWordNet. Thus the scores could

be incorporated into the aggregation or nullified. We investigate both options in the

evaluation Section.

As sentiment-bearing

(g) really awful : sum

pos: 0.438 0.250 = 0.688

neg: 0.065 0.542 = 0.607

pos-neg=0.081

As modifier

(h) really awful : sum

pos: 0.438 0.250 = 0.688

neg: 0.065 0.542×(100%+50%) = 0.878

pos-neg=-0.19

4.2.1.3 Discourse structure

Discourse structure is concerned with how text units (discourse segments) are organised

to convey meaning. This structure is determined through discourse analysis involving,

the identification of discourse segments of text, their structural arrangement and the

relation that may exist among them. A popular theory for discourse analysis is the

rhetorical structure theory (RST) ?. It posits that text can be broken into non overlap-

ping spans in a tree-like structure with relations that may exist between two adjacent

spans. Each text span can either have the status of the central focal point of the writer’s

message (i.e. nucleus), or a supporting message that shed more light on the nucleus (i.e.

satellite). Mann and Thompson ? highlighted 24 relation types which include: the

introduction of additional information (elaboration), conflicting statements (concession)

Figure 4.5: Intensifier as modifier
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Table 4.1: Grouping of Discourse Structures

Group Markers Example Effect

1
Concession Admitting, Albeit, Allow-

ing that, Although
[although I don’t like the
series,]S [I really enjoyed
this episode]N

No effect on
nucleus, de-
crease satel-
lite

Background X earlier, X later, Over X,
From X to Y, But X af-
ter, But X later, Between
X and Y

[I was happy the lap-
top was working]S [but 3
days later it stopped]N

2
Condition As because, As far as, As

long as, Assuming that,
Conceding that

[if the world ends on
december2,]S [i’m gonna
be so disappointed]N

Decrease
Nucleus,
Decrease
Satellite

Circumstance When, After, Following,
Once, Before, While, And
then, And when, now that,

[The animal is
dangerous]N [when
left in hunger]S,

Purpose So that, So as [the quality of the food
should be improved]N [so
as to improve sales]S

3

Elaboration And, In fact, In addition,
Also, By verb-ing, For ex-
ample

[in addition to the
location,]N [the food also
tastes good]S,

No effect on
Nucleus, In-
crease Satel-
lite

Evaluation It (is|was) (our|my)
(opinion|understanding)
(that), In (our|my) opin-
ion, it (seems|seemed) to
(us|me) (that)

[Now it seems action of
Yadav]N [have back fired]S

Re-statement Or, For instance
Summary In any case, In sum, To

sum up, In summary, In a
nutshell

Cause/Result So that, In case, Because,
Since, After all, On the
grounds that, Given that,
Therefore

[I always eat in that
restaurant]N [because of
its friendly staff]S

4.2.1.3 Discourse structure

Discourse structure is concerned with how text units (discourse segments) are organised

to convey meaning. This structure is determined through discourse analysis involving

the identification of discourse segments of text, their structural arrangement and the

relation that may exist among them. A popular theory for discourse analysis is the

rhetorical structure theory (RST) (Mann and Thompson, 1998). It posits that text

can be broken into non-overlapping spans in a tree-like structure with relations that
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may exist between any two adjacent spans. Each text span can either have the sta-

tus of the central focal point of the writer’s message (i.e. nucleus) or a supporting

message that help in understanding the nucleus (i.e. satellite). Mann and Thompson

(1998) highlighted 24 relation types which include: the introduction of additional in-

formation (elaboration), conflicting statements (concession) and conditional statements

(condition). These relations can either hold between 2 adjacent nuclei (paratactic), or

between a nucleus and a satellite (hypotactic) spans.

The major challenges of automatic discourse analysis are: to split a piece of text into

discourse segments, to identify applicable relations, their spans and the statuses of the

spans (nucleus or satellite); and the construction of a valid RST tree. There exists a

large body of work on these, focused on supervised or unsupervised methods. Super-

vised methods often use Penn Discourse Treebank (PDTB 2), a human annotated corpus

for discourse structure, to train machine learning algorithms which in turn predict the

structure of unseen documents (Hernault et al., 2010, Soricut and Marcu, 2003). Pre-

vious work on sentiment classification of reviews has employed the supervised discourse

analysis parsers (Heerschop et al., 2011, Taboada et al., 2008). However, considering

that the PDTB corpus is made of documents from the Wall Street Journal, which are

fairly well-written in terms of the use standard spellings for terms, punctuations and

grammar, one can expect parsers trained on this data to perform poorly on informal

social media data.

The unsupervised discourse parsing relies on insights from corpus studies to generate

rule-based parsers. Existing rule-based algorithms are formulated using insights from

fairly formal text, similar to PDTB. However, unlike machine learning models, these

algorithms are flexible and can be extended to incorporate insights from social media

data. For instance, the terms that signal the occurrence of discourse relations (discourse

markers) can be shortened in social media. For example, ‘because’ can as well be written

as ‘cos’, ‘bcos’ or ‘bc’. Therefore, it is useful to incorporate these variations.

The main idea behind harnessing discourse structure for sentiment analysis is that,

since discourse structure of a text can specify segments of the text that are more (or

2https://www.seas.upenn.edu/pdtb/
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less) important to the writer’s message, it can also be exploited to associate weights to

the segments. Consequently, sentiment terms that occur within the important segments

will have higher weights. This should lead to an improved sentiment analysis. Working

with this notion, in SmartSA we use regular expressions to identify occurrences of

discourse markers and apply a weight to their scope. Here, the scope of a discourse

marker is the two text segments (nucleus/satellite) involved in the relation that the

marker represents. We use the rule-based algorithm in Marcu (2000) to split a text

into discourse segments using lists of discourse markers per relation, which we extend to

include social media variation the markers (Das, 2010). Next, we need to determine the

nucleus/satellite (or nucleus/nucleus, for paratactic relations). To this end, we utilise

the contextual information derived from corpus study of distributional environments

for discourse markers (Das, 2010). This information specifies the nucleus/satellite of a

relation in reference to a given segment containing a discourse marker from the specified

relation (this can be the segment before or after). This is usually influenced by the

position of the discourse marker within its segment (beginning, middle or end).

After the discourse segmentation and the identification of nucleus/satellite segments,

we apply a weight corresponding to the potential effect of each segment for sentiment

analysis. Considering that, similar to the role of intensifiers/diminshers, the effect of

discourse increases/decreases sentiment, we mapped this on the effect of typical inten-

sifier/diminisher (i.e. 50% increase/decrease). Although, Mann and Thompson (1998)

identified 24 generic discourse relations, not all are relevant for sentiment analysis. Thus,

here we concentrate on the subset of 11 relations identified to be useful for sentiment

analysis (Das, 2010). Although Das (2010) identifies the discourse relations that are

important for sentiment analysis and the distributional information of their markers,

which enables the identification of the nucleus and satellite for each marker, they did

not utilise such information for sentiment analysis. Hence, we introduce the groupings

and weights in order to utilise the relations for sentiment analysisWe heuristically group

the discourse relations according to their potential effect, with respect to sentiment ex-

pression, to their nucleus or satellite. Table 4.1 shows the groupings, some discourse

markers (or constructs) for each relation, and some example sentences that illustrate
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the behaviour of the relations. A full list of these constructs can be found in (Das,

2010). The groupings are discussed in more details next.

Group 1: No Effect on Nucleus, Decrease Satellite. These are the relations of

concession and background. Concession holds between conflicting information present in

nucleus and satellite segments whereby the writer clearly favours the nucleus, though not

denying the satellite. Therefore, it is worthwhile for a sentiment analysis system to con-

centrate on the sentiment expressed within the nucleus of this relation while suppressing

the satellite. For example, in [although I don’t like the series,]S [I really enjoyed this

episode]N, the writer seems to promote the positive sentiment (really enjoy) within the

nucleus segment (denoted by the subscript N) despite the negative sentiment (don’t like)

of the satellite segment (denoted by the subscript S). In this example, the relation is

signalled by the discourse marker although (denoted in bold font). For background, the

satellite provides a context based on which the information provided in the nucleus can

be better understood. The sentiment expressed in this context can be the same or differ-

ent from that expressed in the nucleus. However, since the nucleus is the focal point of

the relation, it is more reliable to concentrate on the sentiment it conveys and suppress

the sentiment in the satellite which can be tangential to the sentiment expressed in the

nucleus. For example, in [I was happy the laptop was working]S [but 3 days later it

stopped]N, the focus is on the negative sentiment within the nucleus (stopped) despite

the positive sentiment in the satellite (happy).

Group 2: Decrease Nucleus, Decrease Satellite. These are the relations of con-

dition, circumstance and purpose. Condition presents a hypothetical future whereby

the realisation of the nucleus depends on the realisation of the satellite. However, both

nucleus and satellite are unrealised. Thus, for the purpose of sentiment analysis, such

situation can be given low weight. For instance, in [if the world ends on december 2,]S

[i’m gonna be so disappointed]N, despite the negatively charged terms in both segments

(world ends, so disappointed), the text still seems to remain largely neutral. For circum-

stance, the satellite sets the framework within which the reader is expected to interpret

the nucleus. It tends to soften both the nucleus and the satellite. For example, the
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statement: [The animal is dangerous]N [when left in hunger]S, though dominated by

negative terms (dangerous, hunger) is still of mild sentiment. Similarly, in purpose, the

satellite presents a situation to be realised through the activity in the nucleus, as in the

example: [the quality of the food should be improved]N [so as to improve sales]S.

Group 3: No effect on Nucleus, Increase Satellite. These are elaboration, eval-

uation, re-statement, summary and cause/result. Elaboration exists between a nucleus

and a satellite when the satellite presents additional information to better understand

the nucleus. Thus, the sentiment expressed in the satellite tends to be supportive of

the nucleus. It also tends to be more verbose, increasing the chance of containing

sentiment-bearing terms. For example, in [in addition to the location,]N [the food

also tastes good]S, the sentiment expressed within the satellite (good) also applies to

the nucleus. Re-statement tends to function similar to elaboration. The satellite is the

paraphrase of the nucleus. Thus, sentiment within the satellite is important as it is also

applicable to the nucleus. In evaluation, the satellite tends to contain an opinion regard-

ing the nucleus. This is directly relevant for sentiment analysis as it signals a reliable

location for opinions. For example, [Now it seems action of Yadav]N [have back fired]S,

the evaluation marker (it seems) signals the appearance of the sentiment-charged term

(back fired) in the satellite. In the summary relation, the satellite provides concise and

overall information the writer meant to convey from an often lengthier nucleus. The

opinion expressed in the satellite is thus representative of the text and can be given

high weights. Finally, the cause/result signifies relation between satellite and nucleus

whereby the information given in the satellite is the cause of the information present

in the nucleus. Both segments tend to present the same sentiment orientation, with

satellite being central to believing the nucleus. For example, in the text: [I always eat in

that restaurant]N [because of its friendly staff]S, the positive justification in the satellite

(friendly staff) adds strength to the overall sentiment of the text.
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4.2.2 Non-lexical Modifiers

In addition to lexical valence shifters, non-lexical modifiers are also commonly used to

increase sentiment in social media. These modifiers manifest in the form of term inflec-

tion with a sequence of repeating characters/letters, capitalization and the occurrence

of emoticons.

4.2.2.1 Capitalisation

The informal social media communication presents the convention of term capitalisation

for emphasis. This is often used to emphasise sentiment or emotion expressions. There-

fore, we introduce an approach in which capitalisation is treated as the intensification

of the capitalised term. This adjustment is applied only if the rest of the sentence is not

capitalised because in such cases the capitalisation may not be for emphasis but writ-

ing style. We use the intensification strength of ‘very’, being an average and the most

occurring lexical intensifier in our datasets. For example, the sentence “saw this last

night...AMAZING!” becomes “saw this last night...very amazing!”. We do not extend

the intensification to the neighbouring terms because capitalisation is also often used for

abbreviations and acronyms.

4.2.2.2 Repeated Letter/Character

A repeat of the same letter or character is another phenomenon used to express emphasis

in social media. In SmartSA, when a sequence(s) of three or more letters is detected,

the target term is identified by first reducing the number of the letter to a maximum of

two and checked with SentiWordNet. If the intermediate word is not found, the repeated

letters are further reduced to one letter, one sequence at a time. We consider a sequence

of repeated letters as an intensification of not just the affected term but also its context.

This is because, unlike with capitalisation, a sequence of repeated letter is mainly for

emphasis and sometimes the affected term is not sentiment-bearing (e.g. “Mannnnnn, I

loved this show”). The occurrence of three or more consecutive exclamation or question
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marks or a mixture of both is also treated as sentiment intensification context using the

intensification weight of the word ‘very’.

4.2.2.3 Emoticons

In the informal social media, emoticons are often used to express sentiment for either

the whole document or individual sentences. In SmartSA, we identify occurrence of

emoticons based on the emoticon list in Thelwall et al. (2010). If one or more positive (or

negative) emoticons are found in a sentence, the sentence is simply assigned the scores

of the emoticon (i.e. pos=1.0, neg=0.0 for positive emoticon; pos=0.0 and neg=1.0 for

negative emoticon). We restrict the context of emoticons to sentence level as sentiment

can change from one sentence to another (Andreevskaia et al., 2015).

4.2.3 SmartSA Algorithm

The classifier is shown in Algorithm 3. It takes as input, the document to be classi-

fied, SentiWordNet and lists of lexical valence shifters and emoticons. Each sentence

contained in the document is checked for the occurrence of an emoticon. If present, the

sentence carries sentiment scores of the emoticon without further analysis of the sen-

tence’s text (steps 3-4). Otherwise, the sentence’s text is scanned for terms that contain

repeating letters or characters of question/exclamation marks. These are converted to

their dictionary equivalents (step 8) and appended with the intensifier ‘very’ (step 9).

Next, sentiment scores for each term are extracted from SentiWordNet. Terms that are

selectively capitalised within the sentence are intensified using the intensification weight

of a typical intensifier (i.e. 50%). Thereafter, score adjustments based on the occurrence

of lexical valence shifters are applied to the context of the term (i.e. its neighbourhood)

in steps 16-22. Each sentence is assigned the total adjusted scores of its terms. Likewise,

each document is assigned the total scores of its sentences. Lastly, the document class

is returned as positive, if its total positive score is greater than or equal to its total

negative score. Otherwise, the class is returned as negative. Notice that, we can choose

to or not to apply any of the contextual adjustment strategies by blocking the applicable

steps (for non-lexical valence shifters) or excluding the applicable list from the input (for
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lexical valence shifters). This makes for an easy ablation test in order to find out the

contribution of each strategy incorporated into SmartSA.

Algorithm 3 SmartSA

INPUT: S, SentiWordNet

LexValShifters{} list of Negation, Intensifiers/Diminishers and discourse markers

Emoticons{} List of positive and negative emoticons

Doc, Document to be classified

OUTPUT: Class, Sentiment class for Doc

1: Initialise Doc+, Doc−, Sent+, Sent−

2: for all Sentence ∈ Doc do

3: if ContainSingleType(Emoticon{}) then

4: Sent++← EmoticonType+; Sent−+← EmoticonType−

5: else

6: for all t ∈ Sentence do

7: if t.hasRepeatCharacter then

8: convertStandard(t, SentiWordNet)

9: sentence.replace(t, t+“ very ”)

10: end if

11: Retrieve t+ and t− from S

12: if t.isCaps AND ¬sentence.isCaps then

13: applyAdjustment(50%, t)

14: end if

15: end for

16: for all mod ∈ LexValShifters{} do
17: if mod ∈ sentence then

18: modType ← getType(mod)

19: context ← getContext(mod, modType, sentence)

20: ApplyAdjustment(modType, context)

21: end if

22: end for

23: Sent++← sum (t+ ∈ sentence), Sent−+← sum (t− ∈ sentence)

24: end if

25: Doc++← Sent+, Doc−+← Sent−

26: end for

27: if Doc+ ≥ Doc− then

28: Return Positive

29: else

30: Return Negative

31: end if
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4.3 Chapter Summary

In this chapter, we introduced a lexicon-based sentiment classification system (SmartSA)

for social media domains. The novel feature of SmartSA is that it incorporates social

media oriented contextual analysis, that exploits the rich sentiment information for

terms in SentiWordNet. First, we formalise various score extraction approaches from

the lexicon that are often used in the literature and introduced a new WSD algorithm for

the same purpose. Second, we introduced new strategies to handle negation, intensifica-

tion/diminishing and discourse structure in social media. And Third, Considering the

various phenomena often used to emphasise sentiment in social media, we introduced

non-lexical contextual analysis based on term capitalisation, elongation by repeating

letters/characters and the use of emoticons.

Evaluation of SmartSA is presented in Chapter 7. We conduct ablation experiments to

establish contributions of each contextual analysis component of the system. Thereafter,

we compare the performance of the system against a baseline (Bag-of-words) aggregation

and a state-of-the-art sentiment classification system.



Chapter 5

Hybrid Sentiment Lexicon

SmartSA (Chapter 4) implements several context-aware strategies for sentiment analy-

sis. However, as the system employs a static lexicon, it needs to be extended to address

the dynamic nature of social media. The use of a static general-purpose lexicon is

insufficient for sentiment analysis of social media because of the following limitations:

• Dynamic vocabulary : General purpose lexicons are static resources with fixed vo-

cabulary. Such vocabulary usually does not include non-standard but often sen-

timent loaded terms found in social media text (e.g. ‘lol’, ‘arrrgh’, ‘xoxo’, thx

etc).

• Dynamic polarity : For some terms, though their sentiment scores might be ob-

tained from a general purpose lexicon, such scores may not adequately represent

domain-specific semantics. For instance, the dominant polarity of ‘sucks’ in Senti-

WordNet is positive, even though it is typically used to express negative sentiment

in social media.

In this chapter, we introduce dynamic SmartSA, DSmartSA, a sentiment classifica-

tion system that integrates an approach to ascertain sentiment of domain-specific terms

and modify sentiment polarities from the general-purpose lexicon according to domain

specific semantics. We achieve this by generating a hybrid lexicon that combines sen-

timent knowledge from a general-purpose static lexicon and a domain-specific dynamic

74
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Figure 5.1: Hybrid lexicon stages

lexicon. Here, we leverage the idea of distant supervision to learn the domain-specific

lexicon. Distant supervision offers an automated strategy to generate sentiment labelled

data. Subsequently, each term from the labelled data can be associated with sentiment

scores. One of the most popular, and arguably the state-of-the-art metric for associat-

ing terms with sentiment scores is based on the Point-wise Mutual Information (PMI)

(Turney, 2002). Considering the fact that PMI does not work well on low frequency

terms (Sani, 2014), which is an inherent characteristic of newly inducted vocabulary

terms, we introduce two metrics inspired by the Term Frequency and Inverse Document

Frequency (TF, TFIDF). Further, we present a weighted strategy to integrate scores

from the domain-specific with the static lexicon to generate a hybrid lexicon.

The main contribution of this chapter is two-fold. First, we introduce an automated

approach to generating a hybrid sentiment lexicon for social media. Second, we introduce

two novel term-sentiment association metrics for generating a domain-specific lexicon

from social media.

The process of generating a hybrid lexicon from a target domain is shown in Figure 5.1.

First, a domain-specific lexicon is generated from data labelled using distant supervi-

sion. Next the hybrid lexicon is generated by combining the sentiment scores (learnt for

domain terms) in the domain-specific lexicon with existing scores in the general-purpose

static lexicon. Sentiment scores in this hybrid lexicon capture general sentiment knowl-

edge as well as domain vocabulary and context.
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5.1 Data Labelling: Distant Supervision

Distant supervision offers an automated approach to assigning sentiment class labels to

documents. It uses the presence of class specific emoticons in a document as evidence

for its true class. For example, a smiley-face emoticon according to distant supervision

would express positive sentiment and as such suggest a positive class label for the un-

derlying document content. Accordingly, given a dataset and a lexicon of class-specific

emoticons, we can assign such ‘noisy’ labels to all documents that contain them in order

to generate a labelled dataset for supervised learning tasks. This approach provides

the positive and negative datasets that we require for a positive/negative sentiment

classification. However, for a subjectivity classification, a neutral class dataset may be

required. Such a dataset have been gathered from tweets generated by the mainstream

media organisations (Go et al., 2009). In order to minimise the level of potential noise,

a reasonable strategy is needed to process documents containing emoticons from both

positive and negative classes. We noticed from our datasets that less than 1% of docu-

ments contain emoticons from both classes. Thus, we remove such documents from the

datasets.

We generate distant-supervised datasets on three domains: Twitter, Digg and MySpace

(Table 5.2). Twitter distant-supervised data (DsTwitter) consists of 20,000 sentiment

labelled tweets based on the appearance of positive and negative emoticons, selected

from a larger dataset made available by Sentiment1401. Although more data could be

selected from twitter, we use the proportionate amount of 20,000 as we intend to inves-

tigate the effect of combining data from different platforms to complement for domains

where the use of emoticons is not pervasive (e.g. Digg) or is generally scarce (e.g. MyS-

pace). Furthermore, the computational cost of processing a large dataset is a concern

in developing dynamic systems that usually iterate over some time intervals. As for

the distant-supervised data from Digg (DsDigg) and MySpace (DsMySpace), we extract

sentences that contain one or more emoticons of the same sentiment polarity (positive

or negative) from Digg and MySpace respectively, using the collections harnessed by the

CyberEmotions project2. Unlike Twitter which has a character limit, we confine the

1www.sentiment140.com
2www.cyberemotions.eu
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Table 5.1: List of emoticons

Positive Negative

:) ;) ;-) :-)
:] ;] ;-] :-]
:D =)

:( ;( ;-( :-(
:[ ;[ ;-[ :-[

labelling to sentences rather than documents. Such a sentence-level labelling is more

intuitive since emoticons often apply only to the sentence in which they appear. This

means that multiple micro-documents are generated from a single document ensuring

each micro-document is labelled according to one or more emoticons belonging to the

same sentiment class. With both collections of Digg and MySpace comments, there were

many more positive (almost 80%) compared to negative emoticons present. It may be

proper to allow this imbalance, if it is as a result of the natural class distributions in

the datasets, however, we observed that the imbalance may not be due to the natural

tendency of one class to occur more often than the other, but, due to the manner in

which emoticons are used. Accordingly, we select balanced samples from the skewed dis-

tributions for the distant-supervised datasets. The main difference between the DsDigg

and DsMySpace is in their size (DsDigg with 10,444 and MySpace with 604 documents).

Table 5.1 shows the list of emoticons used for the distant-supervised labelling. These

emoticons are carefully selected to balance a trade-off between the reliability of the sen-

timent connotation of the emoticons and the size of the lists to improve recall of labelled

documents. Still, to improve the recall we use regular expressions that ignore spaces in

between the emoticon characters. All distance-supervised datasets are preprocessed to

a reduced feature space using the approach introduced by Go et al. (2009), whereby, all

user names (preceded by the @ symbol) are replaced with the token ‘USERNAME’ and

URLs (e.g. “http://tinyurl.com/cvvg9a”) are replaced with the token ‘URL’. Moreover,

words consisting of a sequence of three or more repeated character (e.g. ”haaaaapy”)

are normalised to contain a maximum of two adjacent character repetition.
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Table 5.2: Distant-supervised datasets

Dataset Collection Labelled
documents
(pos/neg)

Selected
documents
(pos/neg)

Example text

Twitter - 800,000/800,000 10,000/10,000 -What tragedy and dis-
aster in the news this
week :(
-YAY ! found a new
cuddle buddy

Digg 1,646,153 21,214/5,222 5,222/5,222 -Those bots are pretty
bad :(
-Glad you like it guys=)

MySpace 2,867 2,824/302 302/302 -am bored aswel:(
-That’s great because I
love you too :)

5.2 Domain-Specific Lexicon

The domain-specific lexicon associates a positive and a negative score to each unique

term from the distant-supervised dataset. Crucial to this process is the pre-processing

of documents to obtain their individual terms. This is particularly difficult with infor-

mal social media text. We use TweetNLP (Gimpel et al., 2011), a recently developed

Twitter-oriented API for text tokenisation and part-of-speech tagging. Each word and

its part-of-speech (i.e. a lexeme) forms an entry into the domain-specific lexicon. Al-

though reducing words to their root form (stem) using standard stemming algorithms

is often considered harmful for sentiment analysis (Potts, 2011b) (as words with com-

pletely different sentiment connotations can be mapped to the same stem), term vari-

ations prevalent in informal communications are also likely to have a negative impact

on the task. For example, the term “cannot” may as well be written as “cant”, “ca’nt”

or “can’t”, thus resulting in an undesired variation for statistics purposes. Also, non-

standard words can be written differently as such words may not have a specific generally

accepted spelling. For instance, the words “argh”, “arghh” and “arrgh” can be used de-

liberately interchangeably. Word shortening is also likely to be common in informal

text, for example “exam” for “examination” or “fab” for “fabulous”. We introduce a

preprocessing step to address these problems. First, all uniquely identified lexemes that

are candidate terms in the domain-specific lexicons are sorted alphabetically. There-

after, if any two adjacent terms are known from a dictionary, both terms are retained.
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Otherwise, if the difference between the two terms is:

• an apostrophe (‘) or a possessive form (‘s), the term with no apostrophe or pos-

sessive form is retained (e.g would’nt and wouldnt are merged in wouldnt)

• a repeated letter, the term with no repeating letter is retained (e.g. arghh and

argh are merged in argh)

• that one is the substring of the other, the term with the full word is retained. This

is meant to collapse variation such as between exam and examination. To avoid the

undesired effect of merging words having different meanings a minimum overlap

threshold is required. We set this threshold to 4 characters, after a preliminary

investigation with different values

• that one is the plural form of the other, the term with the singular form is retained

In all these cases, the retained term takes the statistics from the two terms. This

approach helps reduce unwanted term variability without the adverse effect of stemming.

5.2.1 Term-Sentiment Association

Key to the generation of the domain-specific lexicon is to capture association of a term ti

to a class cj given a set of distant-supervised documents, D. Let Dcj be the subset of D

labelled as class cj . Similarly, let the notation TF(ti, X) represent term frequency of ti in

a set of documents X and ds(ti, cj) be the domain score of association of ti with cj . We

investigate three weighting metrics from which normalised sentiment polarity scores (for

positive and negative classes) are computed and used to populate the domain-specific

lexicon.

Supervised TF

Term frequency (TF) is the number of times a specific term appears in a document. It

is a well-established quantifier of association between documents in many text analysis

tasks (e.g. Information Retrieval). We propose supervised TF (sTF) to associate terms
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with sentiment classes (positive and negative). Here, the association of term ti with class

cj is measured as the ratio of frequency of ti in documents labelled as class cj to the

total frequency of ti in all documents (Equation 5.1). This produces association scores

that are bound to [0,1] and sum to 1 for both positive and negative classes. Thus, the

scores are directly compatible with SentiWordNet scores.

ds(ti, cj) =
TF(ti, Dcj )

TF(ti, D)
(5.1)

Supervised TFIDF

TFIDF is the combination of term’s TF with inverse document frequency (IDF). Origi-

nally designed for IR, IDF measures the popularity of a term across all documents. Terms

that appear in many documents have less weight than terms that appear in a smaller

number of documents. The TFIDF metric is designed to operate at the document level

because, in IR, a document needs to be distinguished from all other documents by virtue

of its relevance to a given query and ranking purposes. In contrast, it is the discrim-

inative power between classes that is required of a metric for sentiment classification.

Also, IDF does not incorporate class knowledge about documents as such information is

unavailable in IR tasks. We propose supervised TFIDF (sTFIDF) to associate a score to

a term given a sentiment class. In sTFIDF, IDF calculation is restricted to documents

of the same class as shown in Equation 5.2.

ds(ti, cj) = TF(ti, Dcj )× log
|Dcj |

|d ∈ Dcj : ti ∈ d|
(5.2)

Where |Dcj | is the number of documents labelled cj and |d ∈ Dcj : ti ∈ d| is the

number of documents in Dcj that contain term ti. Unlike sTF, terms are weighted

by their distribution across documents within the target class in sTFIDF. Accordingly

the strength of association of terms with class is reduced as they become more evenly

distributed across classes.
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Point-wise Mutual Information

Point-wise mutual information (PMI) can be used to associate terms with sentiment

classes as follows:

ds(ti, cj) = PMI(ti, cj) = log
P (ti, cj)

P (ti)× P (cj)
(5.3)

Where P (ti, cj) is the probability of ti and cj , P (ti) is the propability of ti and P (cj) is

the probability of cj . Calculating the probabilities from term frequencies, Equation 5.3

is re-written as follows (Mohammad et al., 2013).

ds(ti, cj) = log
TF(ti, Dcj )× |T |
TF(ti, D)× |Tcj |

(5.4)

Where |T | and |Tcj | are the number of terms in the corpus and in the documents of

class cj respectively. When a term does not occur in a class the association given by

Equation 5.4 is deemed to be 0 avoiding the log(0). Similarly, negative associations are

converted to 0, resulting in positive point-wise mutual information (pPMI) (Niwa and

Nitta, 1994, Turney and Pantel, 2010). Unlike sTF or sTFIDF, PMI has a theoretical

basis in probability theory and is arguably the most common approach to associating

terms with sentiment scores (Mohammad et al., 2013, Turney, 2002, Turney and Pantel,

2010). However, it has a tendency to produce very low values for low frequency terms

(Sani, 2014).

Table 5.3 shows the top ranking positive and negative terms from a Twitter domain-

specific lexicon. Each term is disambiguated by its parts-of-speech that in the vocabulary

of the distant-supervised dataset ( N for noun, V for verb, R for adverb, J for adjective,

and O for other). Both sTF and pPMI have a similar ranking for terms. However, they

differ in aggregate scores for terms as is evident from their formulae. For instance, the

positive/negative scores of ‘welcome O’ are 0.573/0.0 and 0.966/0.034 from pPMI and

sTF respectively. Therefore, although both pPMI and sTF provide a similar ranking

for terms, their document-level classification could be different, as it is the aggregate of
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Table 5.3: Top ranking terms from Twitter domain-specific lexicons

sTF sTFIDF pPMI

+ - + - + -
welcome O worst O good O sad O welcome O worst O
thx N stomach N thank N ugh O thx N stomach N
heyy O snowing V url N not R yum O snowing V
yum O gah O great O sick O heyy O sad O
smile N sad O love V no O vote V gah O
vote V lonely O haha O work N smile N lonely O
adorable O messed V nice O miss V adorable O messed V
proud O earthquake N thank V why R luv V earthquake N
luv V shitty O happy O hate V proud O shitty O
interested O sandra O awesome O sorry O yah O sandra O

term level scores. In contrast, sTFIDF gives a different set of top ranking terms which

are more akin to the standard vocabulary. This is because standard terms are likely to

have more distribution over documents of one class compared to their distribution over

the whole corpus.

5.3 Static Lexicon

We use SentiWordNet (Baccianella et al., 2010) as the static lexicon, from which generic

sentiment scores are obtained for terms. Given a tokenised term with its part-of-speech

(PoS) tag, sentiment scores (positive and negative) are retrieved from the lexicon as a

weighted average of scores attached to all word senses of the term as follows:

gs(ti, cj) =

|sense(t|PoS)|∑
k=1

1

i
× score(t|PoS, sensek)cj

|sense(t|PoS)| (5.5)

Where gs(ti, cj) is the general-purpose score of term ti with the sentiment class of cj (cj

is either positive or negative) and score(ti|PoS, sensei)cj is the sentiment score of the

term ti given the part-of-speech (PoS) at sense k for the sentiment class cj . Finally,

|sense(t|PoS)| is the number of word senses for the given part-of-speech (PoS) of term

ti.
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5.4 Hybrid Lexicon Generation

Scores from static, S, and domain-specific, D, lexicons for each term ti are combined

to form the hybrid score for the term (see Algorithm 4). When ti appears in both

lexicons, a weighted average of the positive and the negative scores supplied by both

lexicons is calculated using α and β as mixing parameters for positive and negative

scores respectively. This weighting favours scores from one lexicon over the other. So

α = 0.5 would lead to equal weighting of positive scores from S and D whilst α =

0 will ignore positive score from SentiWordNet lexicon (see steps 3 and 4). The use

of different mixing parameters is likely to address possible bias towards a sentiment

dimension (usually positive) due to the observation that people tend to use positive

terms in a more frequent and diverse manner (Pollyanna hypothesis) (Boucher and

Osgood, 1969). We determine optimal values for the mixing parameters, α and β as

the combination that produces the highest performance on an optimisation dataset. We

envisage as this optimisation dataset is relatively small in size, it is typically available

as part of test data.

When only one lexicon (SentiWordNet or domain-specific) contains scores for ti, such

scores are fully used without an aggregation (see steps 6 and 8). Thereafter, the new

scores for ti (i.e. t+i and t−i ) are added to the hybrid lexicon, H (step 11). Finally, H is

returned as the output.

5.4.1 Preliminary Insight: Difference in Coverage and Polarities

We conduct a preliminary study to gain insight into the variability between static and

domain lexicons in vocabulary coverage and sentiment polarities of terms. We use Twit-

ter data for this study (distant-supervised, for domain-specific lexicon generation and

human-labelled, for test). We use this data as it is the largest, thus, we can experiment

with its small and large subsets. Figure 5.2 shows the distribution of unique terms (vo-

cabulary) from the static and domain-specific lexicons. As expected, with small data

sizes (horizontal axis), the domain-specific lexicon has a very limited vocabulary (vertical

axis). Therefore, static lexicon makes the most contribution in vocabulary (for hybrid
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Algorithm 4 Generate Hybrid Lexicon

INPUT: S, Static lexicon
D, domain-specific Lexicon
α, β Mixing parameters

OUTPUT: H, Hybrid lexicon

1: for all ti ∈ (S ∪D) do
2: if ti ∈ S ∩D then
3: t+i ← α× (t+i ∈ S) + (1− α)× (t+i ∈ D)
4: t−i ← β × (t−i ∈ S) + (1− β)× (t−i ∈ D)
5: else if ti ∈ S then
6: t+i ← (t+i ∈ S)
7: t−i ← (t−i ∈ S)
8: else
9: t+i ← (t+i ∈ D)

10: t−i ← (t−i ∈ D)
11: end if
12: H.AddEntry(t+i , t

−
i )

13: end for
14: Return H

lexicon) with smaller domain data. The vocabulary intersection increases with increase

in domain data size. However, still there is a considerable difference in vocabulary cov-

erage between the two lexicons even with larger dataset sizes (e.g. 20000). With regard

to sentiment polarities for terms, both lexicons tend to agree on the same polarity more

than they differ (see Figure 5.3). However, there is also a considerable difference, which

tends to be independent of dataset size, as shown by the figure.

These differences in vocabulary coverage and sentiment polarities of terms suggest that

each individual lexicon is lacking in vocabulary and polarity representations. The static

lexicon is more likely to capture general sentiment knowledge that may not become avail-

able to the domain-specific lexicon while the domain specific lexicon is more likely to

capture new sentiment knowledge evolving in social media. Our hybrid lexicon approach

harnesses the strengths from both lexicons for potential improvement of sentiment clas-

sification accuracy.

5.4.2 Transferability Across Social Media Platforms

The occurrence of (particularly negative) emoticons is not very common on some social

media platforms. For instance, out of about 1.6 million discussion posts from Digg.com
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Figure 5.3: Polarity Difference

only about 5,000 have a negative emoticon (see Table 5.2). This is despite the fact that

the posts are extracted from topics that are likely to be rich in sentiment. Therefore,

it is imperative to investigate whether distant-supervised data obtained from one social

media platform could be used to generate a hybrid lexicon for another platform. This

falls within the realm of transfer learning.

In machine learning, transfer learning involves learning a model from training data

obtained from one domain, adapting and testing the model on another domain. This is

based on the following two assumptions:

• labelled training data, which is a magnitude larger than test data, is available

or easily obtained from one domain (in-domain) but is unavailable or difficult to

obtain from another domain (out-of-domain)

• test data is available from both domains

These, therefore, suit our problem at hand in that the in-domain is the social media

platform which has an abundance of distant-supervised data and on which we can gen-

erate the domain-specific lexicon. The out-of-domain will be the platform with little

or no distant-supervised data and on which we wish to generate a hybrid lexicon and

subsequently perform sentiment classification. This is illustrated in Figure 5.4. The dif-

ference between learning the hybrid lexicon as described earlier and the transfer learning
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Figure 5.4: Transfer learning hybrid lexicon

of the lexicon is in the use of out-of-domain data to adapt the combination of static and

domain-specific lexicons and the evaluation of the hybrid lexicon on the out-of-domain

test data. Transfer learning has been extensively studied in various NLP tasks including

sentiment analysis. For instance, in Blitzer et al. (2006), a transfer learning framework

has been proposed, which identifies features that have high mutual information with

polarity labels (i.e. pivot features). Thereafter, the pivot features are connected to

domain-specific words to guide the transfer learning. In Daume III and Marcu (2006),

a maximum entropy genre adaptation model (MEGA) was proposed, motivated by the

notion that the distribution of test data may not be identical with that of the training

data in some applications. MEGA is a simple mixture model with a hidden variable

that indicates whether the data is drawn from the in-domain distribution, the out-of-

domain distribution, or the general domain distribution. Also, in Yoshida et al. (2011),

transfer learning was performed using a Bayesian probabilistic model that handles mul-

tiple sources and multiple target domains. Here, each word is associated with three

characteristics, indicating the domain in which it is extracted, whether its polarity is

domain dependent, and its polarity label. In our work, we achieved transfer learning

of a hybrid lexicon by utilising very limited optimisation data from the target domain

and the sentiment information from the general-purpose lexicon and the domain-specific

lexicon.
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5.5 Chapter Summary

This chapter presents a novel approach to generating a hybrid lexicon by combining a

domain generated lexicon and a static lexicon using a weighted strategy. We demon-

strated how distant supervision can be exploited for this purpose. Also, to address the

drawback of PMI applied to low frequency terms, we introduced new sentiment scoring

metrics inspired by the term frequency and inverse document frequency. We also showed

how transfer learning can be exploited in generating a hybrid lexicon for domains that

have scarce distant-supervised data.

The evaluation of the hybrid lexicon approach is presented in Chapter 7. It involves

testing the main hypothesis of this chapter, that is, performance in sentiment classifica-

tion improves with a hybrid lexicon compared to either a domain-specific or a general

purpose lexicon. Also, as distant supervision has until now been used for machine learn-

ing methods to sentiment classification, we compare our lexicon-based method with

machine learning classifiers. We also study the effect of transfer learning for a hybrid

lexicon generation.



Chapter 6

Leveraging Local, Domain and

Emotion Features for Sentiment

Classification

In this chapter, we introduce a hybrid sentiment classifier that exploits local contextual

analysis (introduced in Chapter 4) and domain semantics captured by a hybrid lexicon

(introduced in Chapter 5). Although sentiment analysis and emotion detection are

inter-related fields, research in sentiment analysis has typically ignored resources from

emotion detection or has assumed certain emotion classes are equivalent to sentiment

classes (Ghazi et al., 2010, Gonçalves et al., 2013, Poria et al., 2014). In our hybrid

classifier, we introduce a novel strategy for utilising knowledge from an emotion lexicon

for sentiment classification. Since emotion and sentiment are different by definition

(Munezero et al., 2014), we do not collapse emotion classes into sentiment classes, thus,

we are able to explicitly demonstrate the contribution of emotion detection for sentiment

analysis. We present this hybrid classifier next.

88
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Figure 6.1: The Supervised Classifier

6.1 The Hybrid Classifier

The classifier φ is trained on a collection of training documents D = {d1, d2, ..., dN}

where each document dj ∈ D is associated with a class label (positive or negative). The

documents D are represented on feature sets F = {f1, f2, ..., fK} extracted from the

documents’ vocabulary, sentiment and emotion lexicons. Thus, given a new document

dq with an unknown class, the classifier φ is applied to the document to determine its

sentiment class. Figure 6.1 shows the architecture of the classifier. It comprises of

feature sets grouped as n-gram, sentiment, emotion and contextual features.

6.1.1 n-gram Features

An n-gram is a contiguous sequence of n tokens from a given piece of text. Typically,

n-grams are the basic features used in supervised sentiment classification. We extract

1-, 2- and 3-gram from training documents as n-gram features for representation after a

pre-processing step similar to that discussed in Section 5.2. That is, we use TweetNLP

for tokenisation and part-of-speech tagging after which we apply lemmatization and

social media oriented feature merging rules. We then use a binary-valued representation

for the n-gram features.
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6.1.2 Sentiment Features

As we mentioned in the literature review section, previous research shows that lexicon-

based features improve sentiment classification. However, previously explored lexicons

were mainly domain-independent. Here we explore the benefit of using the hybrid lexicon

introduced in Chapter 5 which adapts its vocabulary to social media domains. We

consider the following feature sets for which we extract values from the hybrid lexicon:

1. Total sentiment score: This is the sum of the sentiment scores for all the terms

contained in a document. We calculate this value for each polarity class c ∈

{positive, negative}.

Total score(d)c =
∑
t∈d

score(t)c (6.1)

2. Max score: This is the score of the highest sentiment-bearing term in the given

document. We determine the score for each polarity class as follows:

Max score(d)c = max
t∈d

(
Score(t)c

)
(6.2)

3. Total sentiment count : This is the number of terms from a document that have

dominant polarity of a particular sentiment class c ∈ {positive, negative}. We

determine the dominant polarity as the sentiment dimension having the maximum

score as shown in Equation 6.3. Thus, this feature also has values for both positive

and negative polarities.

Count(d)c = |{t ∈ d : Score(t)c > Score(t)c̄}| (6.3)

Where c̄ is the opposite class from c.

4. Graded score: The occurrence of high sentiment-bearing terms is indicative of

sentiment class of the document regardless of the average score for the document

Thelwall et al. (2012, 2010). In this feature (and subsequent related features), we

aim to capture the influence of high sentiment-bearing terms for classification. We
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graded the polarity spectrum of the hybrid lexicon into strong negative (-1 to -

0.5), negative (-0.49 to -0.01), positive (0.01 to 0.49) and strong positive (0.5 to 1).

Then, for each term in a given document, we calculate its overall sentiment score

(difference between positive and negative scores) and add to the respective grade

of the term as shown in Equation 6.4. Thus we have four values per document for

this feature.

Graded score(d)(a,b) =
∑
t∈ds

Score diff(t) (6.4)

Where ds = t ∈ d : a ≤ Score diff(t) ≤ b; a and b are the lower and upper bounds

of a score interval; and Score diff is the difference in positive and negative score

of the term t given by Score(t)positive − Score(t)negative.

5. Graded count : This is similar to the previous feature except that in this case we

count the number of terms belonging to a polarity grade instead of sum, as shown

in Equation 6.5

Graded count(d)(a,b) = |{t ∈ d : a ≤ Score diff(t) ≤ b}| (6.5)

6. PoS score: This is the total sentiment score for each part-of-speech PoS ∈ {noun,

verb, adjective, adverb, other}. It is aimed at capturing the relative importance of

parts-of-speech in sentiment expression. We calculate the scores for each polarity

dimension (positive and negative), thus, we have ten values per document for this

feature.

PoS score(d)c,PoS =
∑
t∈dp

Score(t) (6.6)

Where dp = t ∈ d : Pos(t) = PoS.

6.1.3 Emotion Features

The field of emotion analysis from text concerns the detection of emotive text and

the corresponding emotion class. Several emotion classes have been proposed in the

literature including the Parrott’s emotion taxonomy which comprises of six basic emotion

classes: love, joy, surprise, sadness, anger, and fear (Parrott, 2001). These emotion



Chapter 6. Leveraging Local, Domain and Emotion Features for Sentiment
Classification 92

Expression

NeutralPositive Negative

Love Joy Surprise Sadness Anger Fear

Sentiment
level

Emotion
level

Figure 6.2: Typical Emotion-to-Sentiment Relationship

classes can be detected from text with the use of emotion lexicons (unsupervised setting)

or a training dataset (supervised setting). An obvious relation between sentiment and

emotion is that emotion classes can be mapped onto sentiment classes (Gonçalves et al.,

2013). For instance, love and joy correspond to the positive sentiment while sadness,

anger and fear correspond to negative sentiment as illustrated in Figure 6.2. However,

the emotion class of ‘surprise’ is ambiguous and typically does not exclusively map to

a particular sentiment class. Therefore, emotion knowledge as cannot be completely

mapped to sentiment knowledge. This is one of the reasons why we introduce emotion

features different from sentiment features. Also, as emotion is more fine-grained than

sentiment, there is the potential that the details offered by emotion classes will help in

a more accurate sentiment detection. Therefore, in this work, we do not map emotion

classes to sentiment but use them as additional features.

Our objective is to leverage emotion knowledge from lexicons for sentiment prediction.

To this end, we adopt features similar to those used to represent sentiment knowledge

(the previous sub-section) and extract values for the emotion classes. Although there

are a number of different emotion schemes (as highlighted in Section 2.2.2.), here, we use

the Parrott (2001)’s scheme. Our choice of this scheme is motivated by three reasons.

Firstly, because it provides a more balanced sets of positive and negative emotions.
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For instance, out of the six Parrott (2001) emotion classes, two are positive, three are

negative, and one is ambiguous; while out the of the six Ekman (1999) emotion classes,

only one is positive, four are negative, and one is ambiguous. Secondly, Parrott (2001)

scheme has been argued to be more appropriate for the social media text because of its

inclusion of the ‘love’ emotion class, which is common in social media, and is not present

in the Ekman (1999) set of emotions (Bandhakavi et al., 2014). Thirdly, because there

exists a twitter-oriented emotion lexicon based on the Parrott (2001) scheme, which has

been shown to produce a state-of-the-art performance (Bandhakavi et al., 2014), and

which we can conveniently re-use in this work.

6.1.4 Contextual Features

We introduce the following feature sets to integrate local context into the classifier.

These include features that capture word-based sentiment modification (lexical valence

shifters) and modification based on the use of social media oriented symbols (non-lexical

modifiers).

6.1.4.1 Lexical Valence Shifters

These are modifiers based on the explicit use of standard sentiment-modifying terms

(negation, intensifiers, diminishers and discourse markers). Following the in-depth anal-

ysis we conducted about these modifiers in Chapter 4, here we derive the following

feature sets to capture the influence of such modifiers

1. Negation: This feature records the number of times negation occur in the given

document. Negation also affects the n-gram features: a term t becomes t NEG in

a negated context.

2. Intensifiers: The number of times intensification occurs in the given document.

3. Diminishers: The number of times diminishers occur in the given document.
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4. Discourse: The number of times each of the discourse relations introduced in

Section 4.2.1.3 occurs in the given document. Again, we group the discourse rela-

tions according to their effect, with respect to sentiment, on nucleus and satellite

segments.

6.1.4.2 Non-Lexical Valence Shifters

Similar to the lexical valence shifters, non-lexical valence shifters are often used to modify

sentiment in social media (e.g. by capitalisation or repeating a letter/character). They

are also used directly to express sentiment (e.g. emoticons). We derive the following

feature sets based on the non-lexical valence shifters for integration into the hybrid

classifier:

1. Capitalisation: Here we record the number of terms that have all their characters

in uppercase. Where all the terms in the document are in capital letters, we set

the value for this feature to zero, as in such situation the capitalisation is unlikely

for emphasis.

2. Repeat letter : This is the number of elongated words by repeating a letter (e.g.

haaaaaappy).

3. punctuation: In this feature set we record the number of contiguous sequences of

two or more exclamation marks or question marks or combination of both excla-

mation and question marks (e.g. !!!, ???, !?!).

4. emoticon: In this feature set, we record the number of positive and negative emoti-

cons from a given document. We determine sentiment class (positive or negative)

of emoticons using an emoticon lexicon (Thelwall et al., 2012). Also, we introduce

a feature that captures whether the last token in the document is a positive or

negative emoticon.

5. hashtag : This records the number of hashtags from the given document.
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6.2 Chapter Summary

The main hypotheses presented are that the lexicon-based strategies introduced in previ-

ous chapters can improve a hybrid method (combining supervised learning and lexicon-

based knowledge) to sentiment classification. Similarly, emotion knowledge can improve

classification accuracy. To investigate these hypotheses, we proposed feature sets to

be extracted from training data, local context analysis as well as from the hybrid and

emotion lexicons. These are integrated into a hybrid sentiment classifier.

Evaluation of the hybrid classifier is discussed in Chapter 7. It involves testing the

hypotheses of this chapter using distant-supervised datasets for training and human-

labelled datasets for testing.



Chapter 7

Evaluations

In this chapter we present evaluations of our sentiment classification strategies discussed

in Chapters 4, 5 and 6. These include the evaluation of SmartSA and the contribution

of each strategy integrated into the system. We also study the performance of the hybrid

lexicon approach in comparison to the static or the domain-specific lexicon and compare

the transferability of a hybrid lexicon from one social media platform to another. Finally,

we investigate the performance of the hybrid sentiment classifier that exploits features

extracted from local contextual analysis, sentiment and emotion lexicons.

7.1 Evaluation of SmartSA and Related Strategies

The aim of this evaluation is to study the performance of sentiment analysis strategies

introduced in Chapter 4. First, we conduct an experiment to ascertain the performance

of our WSD approach in comparison to the existing approaches to score extraction from

SentiWordNet. Next, we investigate the performance of each score adjustment strategy

proposed for SmartSA as well as the overall performance of the system in comparison

with the baseline and the state-of-the-art systems. These experiments are designed to

provide evidence towards addressing our first research question: Does the accuracy of

lexicon-based sentiment analysis benefit from the integration of local context knowledge?

Accordingly, we investigate the following classifier settings:

96
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• Score extraction strategies: These are the approaches of Most Frequent Sense

(MFWS), Word Sense Disambiguation (WSD), Averaging at Word Sense level

(AWS), Weighted Averaging at Word Sense (WAWS) and averaging at Part-of-

speech level (APoS). Details of these strategies are discussed in Section 4.1.

• Base: The baseline lexicon-based sentiment classification approach (see Algorithm

1)

• Contextual score adjustment strategies: These are the lexical strategies of switch

negation (Switch), shift negation (Shift), intensification/diminishing (IntDim)

and discourse markers (Disc). With all these approaches, sentiment scores of the

involved modifiers can be included into the aggregation process. Also, we inves-

tigate the performance of non-lexical strategies: capitalisation (Caps), repeated

letter, exclamation or question mark (Rp) and appearance of emoticons (Em).

• SmartSA: Our sentiment classification algorithm that integrates contextual score

adjustment strategies (Algorithm 3).

• SentiStrength: a state-of-the-art, lexicon-based sentiment classifier designed

for the social media text (Thelwall et al., 2012). The system takes a piece of

text as input, assesses its sentiment content, and produces a number of outputs;

including the binary (positive or negative) class, trinary (positive, negative, or

neutral) class, dual (both positive and negative scores) for the text. It uses a

sentiment lexicon derived from the Linguistic Inquiry and Word Count (LIWC)

software (Pennebaker et al., 2007), and extended with social media slang such

as lol, lolol and lmao. Also, it uses an additional manually created lexicon of

emoticons, and performs a number of contextual adjustments of prior polarities

based on both the lexical and non-lexical modifiers. An extensive evaluation on

social media datasets shows the system to produce state-of-the-art performance,

better than many existing approaches; hence, our decision to use this system as a

state-of-the-art classifier in our evaluations.
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The differences between our system and SentiStrength are, first, in the lexicons

used by the systems. While SentiStrength uses a relatively smaller lexicon de-

rived from LIWC, we use a lexicon with high term coverage (SentiWordNet). Sec-

ond, unlike in SentiStrength, we use sentiment scores of negation in SmartSA,

and incorporate a strategy for discourse analysis. Finally, instead of the manual

addition of social media oriented terms in a lexicon, as is the case with Sen-

tiStrength; with a hybrid lexicon, we introduced an automated approach to

extending a lexicon with social media terms in SmartSA. SentiStrength can be

used with a number of different settings. In our evaluations, we used its default

setting, as this is the setting used in the evaluation of the system (Thelwall et al.,

2012).

7.1.1 Results of Score Extraction Strategies

As expected, WSD performed better than the rest on 3 (Digg, RunnerW and Youtube)

out of the 6 datasets as shown in Table 7.1. These datasets have the highest document

sizes (as shown in Table7.4), and so, are likely to provide sufficient context for effec-

tive word sense disambiguation. Also, it is noteworthy that these datasets contain the

least proportion of non-lexical valence shifters - an indication of being relatively more

formal/standard. This might have helped obtain more overlap between term context

and dictionary glosses which might have influenced the better performance of WSD.

However, it can be noted that even on these 3 datasets, the WAWS performed only

marginally worse than WSD. Nevertheless, the results show that despite the challenges

of social media data, the proposed WSD approach is quite competitive with the existing

approaches. The WAWS consistently outperformed AWS on all datasets. This shows

the importance of using sense order (and by extension, sense frequency) as weights for

averaging scores. This is further demonstrated by the performance of MFWS which, in

some datasets (MySpace and LiveJ), performs better than WSD.

We also observed that although averaging at word sense level resulted in better per-

formance, such an approach applied at the PoS level (APoS) resulted in the worst
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Table 7.1: Results from score extraction strategies on test datasets

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Digg
WAWS 37.44 75.24 50.00 85.56 53.85 66.10 58.05
WSD 38.65 76.19 51.28 86.41 55.59 67.66 59.47
AWS 35.65 70.95 47.46 83.24 52.97 64.74 56.10
MFWS 36.34 72.86 48.49 84.21 53.15 65.17 56.83
APoS 33.97 68.10 45.33 81.44 51.40 63.02 54.18

RunnersW
WAWS 81.60 76.03 78.72 54.33 62.44 58.10 68.41
WSD 82.00 78.10 80.00 56.56 62.44 59.35 69.68
AWS 81.43 75.21 78.20 53.49 62.44 57.62 67.91
MFWS 81.26 74.38 77.67 52.67 62.44 57.14 67.41
APoS 78.03 71.90 74.84 47.49 55.66 51.25 63.05

Youtube
WAWS 79.33 86.91 82.95 64.14 50.85 56.73 69.84
WSD 79.77 86.91 83.19 64.72 52.15 57.76 70.48
AWS 78.72 86.01 82.20 61.99 49.54 55.07 68.64
MFWS 77.86 84.50 81.04 58.72 47.85 52.73 66.89
APoS 76.50 82.10 79.20 53.80 45.24 49.15 64.18

MySpace
WAWS 88.67 82.48 85.46 32.04 43.94 37.06 61.26
WSD 86.94 79.63 83.12 25.13 36.36 29.72 56.42
AWS 88.44 81.58 84.87 29.26 41.67 34.38 59.63
MFWS 87.00 80.06 83.39 25.53 36.36 30.00 56.70
APoS 86.32 78.21 82.07 22.73 34.09 27.27 54.67

LiveJ
WAWS 81.95 76.58 79.17 69.88 76.32 72.96 76.07
WSD 80.65 70.26 75.10 64.62 76.32 69.98 72.54
AWS 81.58 72.60 76.83 66.67 76.97 71.45 74.14
MFWS 80.84 72.13 76.24 66.00 75.99 70.64 73.44
APoS 75.91 68.62 72.08 61.16 69.41 65.02 68.55

Twitter
WAWS 84.90 75.88 80.14 44.19 58.60 50.38 65.26
WSD 84.04 75.11 79.32 42.40 56.23 48.35 63.84
AWS 84.47 75.49 79.73 43.29 57.41 49.36 64.55
MFWS 83.17 74.33 78.50 40.61 53.86 46.31 62.41
APoS 83.61 74.72 78.92 41.50 55.04 47.32 63.12
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performance. This finding seems to reflects the higher ambiguity in the APoS setting

compared to the rest which further supports the usefulness of sense disambiguation.

7.1.2 Results of Score Adjustment Strategies

Tables 7.2 and 7.3 show results of sentiment classification using various score adjustment

strategies introduced in this research. Bold font indicates the best performance on a

dataset under categories of lexical and non-lexical valence shifters respectively, as well

as between SmartSA and SentiStrength. Asterisk (*) indicates significant difference

from the Base.

All the proposed strategies improve the Base classification except Switch and Shift.

These are the only cases where sentiment scores attached to negation terms are not in-

cluded in the aggregation process. However when scores are included (Switch+scores

and Shift+scores), performance increases above the Base. This clearly shows that

negation terms are sentiment-bearing terms as well as sentiment modifiers of other terms.

This finding supports the findings in Potts (2011a) where negation terms were found

to align with negatively labelled documents. A different result pattern is seen for score

adjustment based on intensifiers/diminishers and discourse markers. Here scores asso-

ciated with the markers do not contribute to better classification as IntDim and Disc

performed better than IntDim+scores and Disc+scores in most of the datasets. There-

fore, although sentiment scores for intensifiers/diminshers and discourse markers might

be obtained from SentiWordNet, such terms tend to function more as modifiers than as

bearing sentiment of their own.

Score adjustment based on negation provides the most improvement on a majority of the

datasets (4 out 6) with larger margin on lengthier datasets, 4.32% on Digg and 3.76%

on RunnersW. It can also be observed, from the datasets statistics, that these datasets

have the highest proportion of negation terms even though one is composed mostly of

positive documents and the other, mostly of negative. This shows that in addition to

having a correlation with negative documents (Potts, 2011a), negation is also a char-

acteristic of lengthy documents. IntDim gives more performance improvement than

Disc on a majority of the datasets (5 out of 6) even though the occurrence of discourse
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Table 7.2: Results from SmartSA and related strategies on test datasets

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Digg
Base 37.44 75.24 50.00 85.56 53.85 66.10 58.05
Switch 35.37 80.00 49.05 86.32 46.33 60.30 54.68
Shift 35.88 80.48 49.63 86.82 47.20 61.15 55.39
Switch+scores 40.24 79.52 53.44 88.28 56.64 69.01 61.23
Shift+scores 41.26 80.95 54.66 89.19 57.69 70.06 62.36
IntDim 40.27 84.76 54.60 90.59 53.85 67.55 61.08
IntDim+scores 38.28 76.19 50.96 86.26 54.90 67.10 59.03
Disc 40.79 83.33 54.77 90.08 55.59 68.75 61.76
Disc+scores 40.32 83.33 54.34 89.94 54.72 68.04 61.19
Caps 38.17 77.62 51.17 86.76 53.85 66.45 58.81
Rp 37.44 75.24 50.00 85.56 53.85 66.10 58.05
Em 39.09 77.62 51.99 86.94 55.20 67.53 59.76
SmartSA 43.00 83.33 56.73 90.67 59.44 71.81 64.27*
SentiStrength 45.60 81.90 58.68 90.60 64.20 75.15 66.87*

LiveJ
Base 81.95 76.58 79.17 69.88 76.32 72.96 76.07
Switch 77.18 76.81 76.99 67.65 68.09 67.87 72.43
Shift 78.10 76.81 77.45 68.17 69.74 68.95 73.20
Switch+scores 82.00 76.81 79.32 70.09 76.32 73.07 76.20
Shift+scores 82.41 76.81 79.51 70.27 76.97 73.47 76.49
IntDim 82.04 77.05 79.47 70.30 76.32 73.19 76.33
IntDim+scores 81.80 76.81 79.23 70.00 75.99 72.87 76.05
Disc 81.80 76.81 79.23 70.00 75.99 72.87 76.05
Disc+scores 81.80 76.81 79.23 70.00 75.99 72.87 76.05
Caps 81.95 76.58 79.17 69.88 76.32 72.96 76.07
Rp 81.95 76.58 79.17 69.88 76.32 72.96 76.07
Em 82.29 77.28 79.71 70.61 76.64 73.50 76.61
SmartSA 82.50 77.28 79.80 70.69 76.97 73.70 76.75
SentiStrength 73.10 93.70 82.13 85.30 51.60 64.30 73.33

RunnersW
Base 81.60 76.03 78.72 54.33 62.44 58.10 68.41
Switch 78.79 83.68 81.16 58.64 50.68 54.37 67.77
Shift 79.26 83.68 81.41 59.28 52.04 55.42 68.42
Switch+scores 79.56 82.85 81.17 58.71 53.39 55.92 68.55
Shift+scores 82.15 83.68 82.91 62.74 60.18 61.43 72.17
IntDim 82.17 78.10 80.08 56.73 62.90 59.66 69.87
IntDim+scores 81.68 76.45 78.98 54.76 62.44 58.35 68.67
Disc 81.76 76.86 79.23 55.20 62.44 58.60 68.92
Disc+scores 81.60 76.03 78.72 54.33 62.44 58.10 68.41
Caps 81.58 76.86 79.15 55.02 61.99 58.30 68.73
Rp 81.64 76.24 78.85 54.55 62.44 58.23 68.54
Em 82.20 77.27 79.66 56.00 63.35 59.45 69.56
SmartSA 83.06 84.09 83.57 64.19 62.44 63.30 73.44*
SentiStrength 81.00 73.80 77.23 51.90 62.00 56.50 66.87
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Table 7.3: Results from SmartSA and related strategies on test datasets

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Twitter
Base 84.90 75.88 80.14 44.19 58.60 50.38 65.26
Switch 83.26 78.43 80.77 43.81 51.60 47.39 64.08
Shift 83.22 78.24 80.65 43.59 51.60 47.26 63.96
Switch+scores 85.15 76.50 80.59 45.03 59.07 51.10 65.85
Shift+scores 86.02 78.24 81.95 47.73 60.97 53.54 67.75
IntDim 85.59 77.85 81.54 46.80 59.79 52.50 67.02
IntDim+scores 85.13 76.11 80.37 44.67 59.19 50.92 65.65
Disc 85.42 77.70 81.38 46.43 59.31 52.09 66.74
Disc+scores 84.94 76.07 80.26 44.38 58.60 50.51 65.39
Caps 85.52 77.85 81.50 46.70 59.55 52.35 66.93
Rp 85.04 76.27 80.42 44.68 58.84 50.79 65.61
Em 86.11 78.82 82.30 48.40 60.97 53.96 68.13*
SmartSA 87.93 80.29 83.94 52.25 66.19 58.40 71.17*
SentiStrength 86.20 84.20 85.19 54.70 58.60 56.58 70.87*

MySpace
Base 88.67 82.48 85.46 32.04 43.94 37.06 61.26
Switch 87.35 82.62 84.92 28.24 36.36 31.79 58.36
Shift 87.56 83.19 85.32 29.34 37.12 32.77 59.05
Switch+scores 88.15 82.62 85.30 30.68 40.91 35.06 60.18
Shift+scores 89.47 84.88 87.11 37.28 47.37 41.72 64.42
IntDim 89.28 83.05 86.05 34.25 46.97 39.61 62.83
IntDim+scores 88.96 82.62 85.67 32.97 45.45 38.22 61.95
Disc 88.99 82.91 85.84 33.33 45.45 38.46 62.15
Disc+scores 88.69 82.62 85.55 32.22 43.94 37.18 61.37
Caps 88.75 83.19 85.88 32.95 43.94 37.66 61.77
Rp 88.72 82.91 85.72 32.58 43.94 37.42 61.57
Em 89.31 83.33 86.22 34.64 46.97 39.87 63.05
SmartSA 89.31 83.33 86.22 35.00 47.37 40.26 63.24
SentiStrength 91.80 90.50 91.15 52.80 56.80 54.73 72.94*

YouTube
Base 79.33 86.91 82.95 64.14 50.85 56.73 69.84
Switch 76.94 88.77 82.43 63.41 42.24 50.70 66.57
Shift 77.14 88.77 82.55 63.76 42.89 51.28 66.92
Switch+scores 79.53 88.65 83.84 67.19 50.46 57.64 70.74
Shift+scores 79.82 88.83 84.08 67.88 51.24 58.40 71.24
IntDim 79.66 89.37 84.24 68.62 50.46 58.16 71.20
IntDim+scores 79.37 89.43 84.10 63.64 44.32 52.25 68.18
Disc 79.60 89.07 84.07 68.01 50.46 57.94 71.01
Disc+scores 79.22 86.79 82.83 63.88 50.65 56.50 69.67
Caps 79.33 86.91 82.95 64.14 50.85 56.73 69.84
Rp 79.33 86.91 82.95 64.14 50.85 56.73 69.84
Em 79.99 89.07 84.29 68.51 51.63 58.88 71.59
SmartSA 80.55 89.74 84.90 70.36 52.93 60.41 72.66
SentiStrength 83.30 91.10 87.03 75.70 60.20 67.07 77.05*
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markers is more than that of intensifiers/diminishers (Table 7.4). This suggests that

score adjustment based on the occurrence of intensifiers/diminishers is more beneficial

than discourse markers for sentiment analysis of social media. However, the consistent

improvement observed with Disc over Base shows that sentiment analysis can benefit

from discourse analysis.

For the non-lexical valence shifters, score adjustment based on emoticons (Em) per-

formed best.
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Table 7.4: Datasets statistics and average F scores

Digg LiveJ MySpace RunnersW Twitter Youtube

#Documents

Positive 201 427 702 484 2587 1665

Negative 572 304 132 221 843 767

Statistics

Avg. sentence 6 1 2 5 2 2

Avg. word 78 12 12 55 16 18

Negation 522(0.68) 31(0.04) 351(0.42) 987(1.40) 1227(0.36) 844(0.35)

Intensifiers/Dim 371(0.48) 240(0.33) 165(0.20) 541(0.77) 396(0.16) 448(0.18)

Discourse markers 743(0.96) 411(0.56) 543(0.65) 1231(1.75) 1161(0.34) 1238(0.51)

Capitalisation 95(0.12) 54(0.07) 84(0.10) 121(0.17) 669(0.20) 231(0.09)

Repeat letter 13(0.02) 23(0.03) 61(0.07) 16(0.02) 51(0.01) 61(0.03)

Emoticons 37(0.05) 91(0.12) 192(0.23) 180(0.26) 530(0.15) 341(0.14)

Average F scores

Base 58.05 76.07 68.41 65.26 61.26 69.84

Switch 54.68 72.43 67.77 64.08 58.36 66.57

Shift 55.39 73.20 68.42 63.96 59.05 66.92

Switch+scores 61.23 76.20 68.55 65.85 60.18 70.74

Shift+scores 62.36 76.49 72.17 67.75 64.42 71.24

IntDim 61.08 76.33 69.87 67.02 62.83 71.20

IntDim+scores 59.03 76.05 68.67 65.65 61.95 68.18

Disc 61.76 76.05 68.92 66.74 62.15 71.01

Disc+scores 61.19 76.05 68.41 65.39 61.37 69.67

Caps 58.81 76.07 68.73 66.93 61.77 69.84

Rp 58.05 76.07 68.54 65.61 61.57 69.84

Em 59.76 76.61 69.56 68.13 63.05 71.59

SmartSA 64.27 76.75 73.44 71.17 63.24 72.66

SentiStrength 66.87 73.33 66.87 70.87 72.94 77.05

This might be explained by the fact that emoticons are the most common non-lexical

modifiers in 4 (out of 6) of our datasets. It could also be because emoticons are more
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discriminative between positive and negative documents. The other non-lexical strate-

gies (Caps and Rp) provide marginal but consistent improvement over the Base. This

marginal improvement might be because of the limited occurrence of the non-lexical

valence shifters in our datasets which limits the opportunity for the strategies to be

extensively utilised.

SmartSA integrates best-performing options for lexical score adjustment strategies

(Shift+scores, IntDim and Disc) and the non-lexical strategies. Its performance, on

all the datasets, is consistently better than any of the individual contextual score adjust-

ment strategies and significantly better than the Base on 4 datasets. This shows that

the contextual score adjustment strategies tend to provide complementary improvement

for sentiment classification. It was particularly observed that Shift+scores tends to im-

prove classification of negative documents; IntDim, Disc and Em tend to improve both

positive and negative classification; and Caps and Rp tend to improve positive clas-

sification. The inability of SmartSA to attain significant improvement on LiveJ and

MySpace could be attributed to the relatively small occurrence of lexical valence shifters

(especially negation) in these datasets. It can also be observed that these datasets have

the shortest average document lengths, thus, rendering some of our strategies (e.g. Disc)

less relevant.

Compared to the state-of-the-art system, SentiStrength, SmartSA performed better

on 3 datasets (LiveJ, RunnersW and Twitter) while SentiStrength was better on the

other 3 datasets (Digg, MySpace and Youtube). The negation analysis integrated with

SmartSA could have especially helped in its better accuracy on RunnersW as this

dataset has a relatively high proportion of negation terms. Whereas the high coverage

of SentiWordNet might have influenced the better performance of SmartSA on LiveJ

and Twitter, the unavailability of certain, social media prolific, sentiment-bearing terms

from the lexicon could have affected the performance of SmartSA on MySpace. Such

terms (e.g. ‘lol’, ‘xoxo’, e.t.c) were manually included into the SentiStrength lexicon.

We address this problem in DSmartSA by adapting the lexicon to the vocabulary of

social media.
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7.2 Evaluation of DSmartSA and Related Strategies

The aim of this study is three-fold. Firstly, to investigate whether or not combining the

two lexicons (static and domain-specific) is better than using each individually. Secondly,

to investigate the performance of our approach compared to the performance of machine

learning algorithms that are trained on the distant-supervised datasets. Lastly, to assess

the transferability of a hybrid lexicon from one social media domain to another. A

secondary aim is to study the suitability of the term-class association metrics (sTF,

sTFIDF and pPMI) as the means to quantify the sentiment polarity scores for the

domain-specific lexicon. Accordingly, we investigate the following classifier settings:

1. Static: Lexicon-based sentiment classification using static lexicon (SentiWord-

Net) as implemented in SmartSA.

2. Domainx: Lexicon-based sentiment classification using a domain-specific lexicon.

Here, x refer to the term-sentiment association metric used.

3. Hybridx: Lexicon-based sentiment classification using a hybrid lexicon (DSmartSA).

Again, x denotes the term-sentiment association metric used in generating the

domain-specific lexicon integrated into the hybrid lexicon. For each dataset we

report results using a setting for the parameters α and β (0 ≤ {α, β} ≤ 1) that

produces the best classification accuracy on the distant-supervised data. The pa-

rameter values for the setting, on each dataset, are shown in Table 7.5.

Table 7.5: Mixing parameter values

Dataset α β

Twitter 0.5 0.3

Digg 0.3 0.3

MySpace 0.7 0.5

4. Machine Learning algorithms: These are the Support Vector Machines (SVM),

Näıve Bayes (NB) and Logistic Regression or Maximum Entropy (LR). Compar-

ison of DSmartSA with these machine learning algorithms enable us to test the
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Table 7.6: Results from DSmartSA and related strategies on test datasets

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Twitter
Machine Learning
SVM 67.40 33.20 44.49 55.60 82.70 66.49 55.49
NB 65.60 67.30 66.44 65.20 63.50 64.34 65.39
LR 71.70 78.00 74.72 75.20 68.40 71.64 73.18
Lexicon-based
Static 87.64 79.51 83.38 51.06 65.60 57.42 70.40
DomainsTF 68.20 74.50 71.21 76.20 70.20 73.08 72.15
DomainsTFIDF 71.50 70.80 71.15 69.50 70.20 69.85 70.50
DomainPPMI 66.50 70.30 68.35 71.20 67.50 69.30 68.83
HybridsTF 74.80 79.00 76.84 79.70 75.60 77.60 77.22
HybridsTFIDF 75.40 67.20 71.06 61.50 70.30 65.61 68.34
HybridPPMI 75.90 68.70 72.12 63.80 71.60 67.48 69.80

Digg
Machine Learning
SVM 35.10 49.70 41.14 69.90 55.00 61.56 51.35
NB 35.30 49.70 41.28 70.10 55.50 61.95 51.62
LR 45.80 72.20 56.05 81.70 58.20 67.98 62.02
Lexicon-based
Static 43.00 83.33 56.73 90.67 59.44 71.81 64.27
DomainsTF 81.50 44.60 57.65 53.30 89.20 66.73 62.19
DomainsTFIDF 81.40 45.60 58.45 55.50 90.00 68.66 63.56
DomainPPMI 84.30 43.60 57.47 48.30 89.10 62.64 60.06
HybridsTF 87.10 49.00 62.72 59.20 95.10 72.97 67.85
HybridsTFIDF 84.30 49.00 61.98 61.00 93.70 73.89 67.94
HybridPPMI 87.10 48.80 62.55 58.70 95.00 72.56 67.56

MySpace
Machine Learning
SVM 79.20 100 88.40 0.00 0.00 0.00 44.20
NB 86.90 43.30 57.8 26.60 73.50 39.06 48.43
LR 91.00 70.80 79.64 37.50 67.80 48.29 63.97
Lexicon-based
Static 89.31 83.33 86.22 35.00 47.37 40.26 63.24
DomainsTF 61.90 86.60 72.20 58.80 29.10 38.93 55.57
DomainsTFIDF 48.40 88.80 62.65 74.20 28.30 40.97 51.81
DomainPPMI 53.10 88.50 66.38 70.30 29.00 41.06 53.72
HybridsTF 77.20 90.30 83.24 61.70 40.20 48.68 65.96
HybridsTFIDF 54.90 91.50 68.63 77.00 31.60 44.81 56.72
HybridPPMI 62.40 61.10 61.74 72.20 33.80 46.04 53.89

utility of distant supervision in DSmartSA against its standard use in supervised

machine learning.
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7.2.1 Results and Discussion

Table 7.6 shows sentiment classification results on Twitter, Digg and MySpace test

datasets. Overall, the hybrid approach performs better than all supervised machine

learning algorithms (SVM, NB and LR) on all the three datasets; 77.26% Vs 73.18%

on Twitter, 67.94% Vs 62.02% on Digg and 65.96.9% Vs 63.97% on MySpace (when

compared with the best-performing supervised machine learning classifier, LR). This

confirms the superiority of our lexicon approach using distant-supervised learning over

the machine learning approaches to sentiment classification. These results also show

that the DSmartSA has achieved improvements over SmartSA outperforming the

state-of-the-art, SentiStrength, on one more dataset (Digg). As for the weighting

metrics, sTF performed overall best on 2 out of the 3 datasets (Twitter and MySpace).

sTFIDF performed best on the remaining dataset, Digg. Documents in this dataset

tend to have higher chance for the appearance of standard vocabulary due to their

verbosity. This could have influenced the good performance of sTFIDF because, as we

observe and mentioned previously, sTFIDF tends to favour standard terms. pPMI has

the lowest performance on all the 3 datasets, however, we note that its performance is

quite competitive with the newly introduced metrics.

The comparison of the lexicon based approaches to sentiment analysis shows that the

hybrid lexicon does perform significantly better than alternative approaches. Next, we

look at the performance of the hybrid lexicon against the individual lexicons it combined.

7.2.2 Hybrid Vs Individual Lexicons

Results from Table 7.6 show that, as expected, on the Twitter dataset the hybrid ap-

proach (HybridsTF) performs better than Static and the best-performing Domainx

approach (77.22% Vs 70.40% and 72.15% respectively). Also, Domainx performs better

than Static, indicating the inability of the static lexicon, which is generated from fairly

standard texts, to capture certain sentiment expressions from non-standard texts. Sim-

ilar results are also observed on the Digg dataset. However, although best results are

obtained with a hybrid lexicon, the Static lexicon has out performed the best Domain
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Table 7.7: Transferability of hybrid lexicon across social media domains

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Twitter as Distant-supervised dataset:

Digg 70.90 58.80 64.29 77.10 85.70 81.17 72.73+

MySpace 63.40 93.60 75.60 79.00 36.30 49.74 62.67−

Digg as Distant-supervised dataset:

MySpace 86.20 90.40 88.25 56.80 48.50 52.32 70.29+

Twitter 74.30 64.10 68.82 56.40 67.40 61.41 65.12−

MySpace as Distant-supervised dataset:

Twitter 46.10 73.30 56.60 84.30 61.10 70.85 63.73−

Digg 44.50 55.40 49.36 84.80 77.40 80.93 65.15−

All genres as source

Twitter 73.40 76.10 74.73 76.40 73.80 75.08 74.91−

Digg 70.40 73.10 71.72 73.40 70.60 71.97 71.85+

MySpace 90.40 93.00 91.68 68.40 51.20 58.56 75.12+

lexicon. Although this difference is marginal it does raise two interesting questions:

either distant-supervised labelling is more suitable for Tweets than Digg sentences or

the smaller distant-supervised data size in Digg, compared to Twitter, has affected the

reliability of the domain-specific lexicon generated from Digg. It is also interesting to

note that unlike on the Twitter dataset, all machine learning algorithms have performed

extremely poorly on the Digg dataset. Given that they rely heavily on the distant-

supervised labelled data (just as the Domainx algorithms) it is likely that considerable

noise has been introduced by relying on sentiment markers from a poorly representative

sample of data. This observation is further supported by the results from MySpace (the

smallest of the three datasets for distant supervision). Once again we see poor accu-

racy with machine learning algorithms and Static performing better than Domainx

and comparable to Hybridx. This is more likely to be caused by the very limited data

from which the domain-specific lexicon is generated for MySpace (see Table 5.2). This

suggests the need to establish minimum dataset requirements below which a domain-

specific lexicon becomes unreliable due to the small datasets size and/or atypical usage

of emoticons such as when used to express sarcasm or to soften the intensity of their

opposite sentiment. This then begs the question of can we augment smaller distant-

supervised datasets that are likely to be less representative of the underlying emoticon

usage behaviour with larger datasets that are easier to obtain from a different domain.

This issue brings us conveniently onto the next topic of transferability.
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7.2.3 Transferability Across Social Media Domains

As distant supervision relies on certain sentiment markers to label documents which

may not be very common in some social media platforms, it is imperative to assess the

performance of a hybrid lexicon on a platform different from the one it was initially

generated on (i.e. transferability of the lexicon). We use Hybrid with sTF for this

experiment as it has overall best performance. Sentiment classification results from this

experiment are shown in Table 7.7 (the plus sign, +, indicates improvement while the

minus sign, −, indicates a decline over using within platform/domain distant-supervised

data).

For Twitter, using its own domain for distant supervision (i.e. within platform) is better

than either using Digg posts or MySpace messages (77.22 Vs 65.12 and 63.73). However

with the other smaller distant-supervised datasets (Digg and MySpace) we see significant

improvements when they are augmented or replaced with the larger Twitter distant-

supervised dataset. For instance, with Digg, an increase of over 5% is observed when

using a distant-supervised Twitter dataset. Whilst with MySpace an impressive 10%

improvement is observed with a distant-supervised dataset formed by combining data

from all platforms. This performance surpasses the performance from SentiStrength,

making our dynamic hybrid lexicon approach significantly better than a state-of-the-art

system on the three datasets used in the evaluation of the hybrid lexicon approach.

These results indicate that when a within platform dataset is small or unavailable, using

data from a different platform is advantageous. However, the results on MySpace raise

the question of what platform is compatible with another, considering that the Digg

generated lexicon compares favourably over Twitter lexicon even though the size of the

distant-supervised Twitter dataset is a magnitude larger than the Digg dataset.

7.3 Evaluation of the Hybrid Classifier

We conduct experiments to evaluate our hybrid approach to sentiment classification that

combines knowledge from a training dataset as well as from a hybrid sentiment lexicon

and an emotion lexicon. We use distant-supervised datasets (discussed in Section 5.1)
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for training and human-labelled data for testing. Based on the performance of machine

classifiers in the previous experiments, here we concentrate on the maximum entropy

classifier which had best results over support vector machines and näıve bayes classi-

fiers. Similarly, we use the sTF approach to quantify term-sentiment association in the

hybrid lexicon from which we extract values for sentiment features. The hybrid classifier

is aimed at combining distant-supervised (rather traditional supervised) learning with

knowledge from lexicons, thus, experiments presented here concentrate on the three so-

cial media platforms for which we have distant-supervised data (i.e. Twitter, Digg and

MySpace)

Our main objective in this evaluation is to determine whether the novel feature sets

introduced from local contextual analysis, hybrid sentiment lexicon and emotion lexicon

can improve sentiment classification accuracy. To this end, we run experiments with the

following classifier settings:

• Ngram: A baseline classifier that uses just n-gram features from the training data

• Ngram+LC: A classifier that uses n-gram and local context features

• Ngram+LC+Sent: A classifier that uses n-gram, local context and a hybrid

sentiment lexicon features

• Ngram+LC+Sent+Emo: A classifier that uses n-gram, local context, hybrid

sentiment lexicon and emotion lexicon features

With the above experimental setting, our expectation is that sentiment classification

accuracy will increase with additional feature sets. We expect features from local context

(LC) to capture linguistics aspects and writing style in social media; sentiment features

(SENT) to capture sentiment-bearing properties of terms utilising a hybrid lexicon, and

emotion features (EMO) to capture emotive aspects utilising knowledge from an emotion

lexicon.



Chapter 7. Evaluations 112

Table 7.8: Results from the hybrid classifier on test datasets

Algorithm
Positive Negative

Avg F1
P R F1 P R F1

Twitter
Ngram 71.70 78.00 74.72 75.20 68.40 71.64 73.18
Ngram+LC 73.07 78.56 75.72 76.53 68.73 72.42 74.07
Ngram+LC+Sent 73.66 80.11 76.75 78.21 70.40 74.10 75.42*
Ngram+LC+Sent+Emo 74.70 81.00 77.72 78.20 71.40 74.65 76.18*

Digg
Ngram 41.47 85.71 55.9 91.38 55.59 69.13 62.52
Ngram+LC 42.45 85.71 56.78 91.50 56.97 70.22 63.50
Ngram+LC+Sent 44.23 85.71 58.35 92.00 60.31 72.86 65.61
Ngram+LC+Sent+Emo 45.23 85.71 59.21 92.19 61.89 74.06 66.64*

MySpace
Ngram 91.00 70.80 79.64 37.50 67.80 48.29 63.96
Ngram+LC 88.80 69.28 77.83 37.27 67.34 47.98 62.91
Ngram+LC+Sent 93.20 72.32 81.44 37.73 68.26 48.60 65.02
Ngram+LC+Sent+Emo 93.24 72.79 81.76 38.38 68.35 49.16 65.46

7.3.1 Results and Discussion

As expected, the use of all feature sets (Ngram+LC+Sent+Emo) provides best clas-

sification accuracy on all the 3 datasets (Table 7.8, bold font indicates the best perfor-

mance on a dataset and asterisk, *, indicates significant difference from the baseline,

Ngram). The approach (Ngram+LC+Sent+Emo) achieves significantly better per-

formance on Twitter and Digg datasets. However, the improvement is not significant on

MySpace dataset due to the very limited training data from this platform.

The local contextual features consistently provide performance improvement over pure

n-gram features on Twitter (0.89%) and Digg (0.98%). However, a marginal degradation

is observed on the MySpace dataset. Again, this can be explained by the limited training

data from this platform, resulting in a sparser representation.

The sentiment feature set provides the most performance improvement over the baseline

on all 3 datasets. This is not surprising given the high-coverage of the hybrid lexicon used

and the domain adaptation involved. Similarly, the addition of emotion-based feature

sets provides moderate but consistent performance improvement on all the 3 datasets.

This confirms the usefulness of emotion knowledge in addition to sentiment knowledge

for sentiment classification.
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7.4 Chapter Summary

In this chapter, we presented evaluations of our sentiment classification strategies as

discussed in Chapters 4, 5 and 6. For SmartSA, the evaluations involved ablation

tests to investigate the performance of each strategy (and its various options where

applicable) as well as the combined effect of strategies integrated into the algorithm. This

is further compared with results from a state-of-the-art system for sentiment analysis

(SentiStrength). The results show SmartSA to significantly outperform the baseline.

The results also reveal that negation is most beneficial of lexical score adjustments

while emoticons are the most useful of non-lexical adjustments. However, each of the

strategies integrated into SmartSA contribute to success in sentiment classification.

The comparison with SentiStrength shows SmartSA to be competitive even though

SentiStrength uses a lexicon that is manually extended with social media oriented

vocabulary.

In DSmartSA, we investigated whether or not combining the two lexicons (static and

domain-specific) to form a hybrid lexicon is better than using each individually. Like-

wise, we investigated the performance of our hybrid lexicon approach compared with

machine learning algorithms trained with distant-supervised data. We also evaluate

the performance of the two introduced term-sentiment associations metrics (sTF and

sTFIDF) in relation to the state-of-the-art metric pPMI where both metrics performed

better than pPMI with sTF performing overall best. Lastly we assess the transferability

of the hybrid lexicon from one social media domain to another. The results show that,

as DSmartSA incorporates dynamic vocabulary and polarities of social media domains,

it improves on SmartSA and outperforms SentiStrength in sentiment classification.

The results also show the hybrid lexicon approach to outperform each of the combined

lexicons.

Finally, we presented evaluations of our hybrid classification approach combined distant-

supervised training data; features from local context analysis, the hybrid sentiment

lexicon and emotion lexicon. The results demonstrated that each of our newly introduced

feature sets improves sentiment classification performance.



Chapter 8

Conclusions

In this thesis, we addressed the problem of determining contextual polarity when lexicon-

based sentiment analysis is applied to social media content. We modelled the problem

from two perspectives: the interaction of terms with their neighbouring terms (local

context) and the interpretation of meaning specific to domain usage (domain context).

Accordingly, we set out to achieve six research objectives. In this chapter, we revisit

these objectives drawing conclusions and also propose future extensions to our work.

8.1 Objectives Revisited

1. Conduct a comparative analysis of score extraction methods for Sen-

tiWordNet with focus on using local context for word sense disam-

biguation. In Chapter 4, we formalise existing score extraction approaches from

SentiWordNet and introduced a word sense disambiguation (WSD) algorithm that

exploits local context of terms in order to determine the appropriate sense from

the lexicon. We evaluate performance of this algorithm in comparison with the ex-

isting approaches (in Chapter 7). The results confirm that WSD is useful on social

media domains that have relatively longer documents (e.g. discussion posts).

2. Develop a lexicon-based classifier to integrate local context knowledge

with sentiment content in SentiWordNet. In line with this objective, in

114
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Chapter 4 we introduced SmartSA, a sentiment classification system that inte-

grates linguistic contextual analysis for sentiment prediction using SentiWordNet,

a popular lexicon with a high term-coverage and rich sentiment information. In

SmartSA, we show how contextual adjustment of SentiWordNet scores for terms

based on negation, intensification/diminution, discourse structure and other non-

lexical phenomena can significantly influence sentiment analysis of social media.

Evaluation results also show that sentiment classification of social media signif-

icantly benefit from the contextual score adjustment introduced in SmartSA.

A further comparison with a state-of-the-art system (SentiStrength) shows

SmartSA to be competitive.

Being a high-coverage lexicon, SentiWordNet offers sentiment scores for typical sen-

timent modifying terms such as negation and intensifiers. Thus, we investigated

the behaviour of such terms when they are treated as modifiers or as sentiment-

bearing. Our results show that negation terms are sentiment-bearing in addition to

being modifiers. This confirms the previous work that shows negation to be indica-

tive of sentiment (Potts, 2011a). However, such is not the behaviour of intensifiers,

diminishers and discourse markers. Sentiment classification is better when these

terms are decoupled from their sentiment scores and treated as modifiers.

This and the previous objective provide insights to discuss our first research ques-

tion: “Does the accuracy of lexicon-based sentiment analysis benefit from the inte-

gration of local context knowledge?”. Unlike in the existing research, we investigate

this question using a lexicon with a more fine-grained sentiment information. Our

results provide evidence that shows the benefit of several strategies for local con-

text analysis. However, to achieve such a benefit, there is the need for careful

assessment of each type of modifier in relation to its modification and sentiment-

bearing characteristics. For social media domains, local context analysis should

always go beyond the lexical modifiers. Results in this research provide evidence

that non-lexical, social media oriented, sentiment modifiers consistently improve

sentiment classification accuracy. Local context knowledge is also useful in deter-

mining the correct senses (meanings) of terms in a given document. Using only

the information associated with the correct senses improves classification accuracy.
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However, the short document length nature of social media seems to make the task

of determining the correct senses (i.e. WSD) error-prone.

3. Extend the classifier developed in 2 to address the continuously evolv-

ing vocabulary typical in social media streams. In Chapter 5, we presented

a novel approach to generating a hybrid lexicon that adapts a general purpose

sentiment lexicon (SentiWordNet) to the context of social media domains. We

achieved this by first generating a domain-specific lexicon and subsequently com-

bining the lexicon with the general-purpose lexicon. This approach has the dual

effect of capturing domain-specific terms which are otherwise unavailable in the

general-purpose lexicon as well as providing a strategy to modify sentiment polar-

ities of terms depending on domain-specific usage. We demonstrated how distant

supervision can be exploited for this purpose. In order to quantify term-sentiment

association, we introduced metrics (sTF and sTFIDF) that are able to produce

better results for low frequency terms compared to a state-of-the-art metric, pPMI.

This is important since many non-standard terms encountered in social media tend

to have relatively low frequencies. Evaluation results show that when a hybrid lex-

icon is used in SmartSA (i.e. DSmartSA), further classification improvements

are gained over SentiStrength. As distant supervision is typically employed in

machine learning approaches to sentiment classification, we compared our classifier

with three state-of-the-art algorithms (Support Vector Machines, Näıve Bayes and

Maximum Entropy). Our lexicon-based classifier performed better than all three

machine learning algorithms on all our evaluation datasets. Social media datasets

vary considerably in the use of sentiment markers that can be exploited for distant

supervision ranging from platforms having an abundance to those having very few.

Thus, we introduced transfer learning in which a domain adapted (hybrid) lexicon

is generated for a domain using distant-supervised data from another domain. By

doing so, we were able to discuss compatibility between social media domains as

well as open up a future research direction.

With regards to the research question: “How can we evolve a static lexicon to

dynamically adapt to vocabulary and domain-specific semantics in social media?”;

our evaluation results provide evidence that the hybrid lexicon approach is capable



Chapter 8. Conclusions and Future Work 117

of evolving a static lexicon to reflect the vocabulary and polarities of social media

domains.

4. Investigate the utility of combining the local context analysis (in 2)

and vocabulary adaptation (in 3) in the context of a hybrid sentiment

classifier. To achieve this objective we introduced a sentiment classifier follow-

ing the hybrid sentiment classification approach combining machine learning and

lexicon-based methods (Chapter 6). We introduced a method to derive feature

sets from our local context strategies (Chapter 4) and a domain-adapted hybrid

lexicon (Chapter 5). Evaluation results show that each feature category (local con-

text and sentiment) improves sentiment classification accuracy over the baseline

of pure n-gram features.

5. Study the role of emotive concepts by integrating emotion knowledge

into the classifier developed in 4. In Chapter 6, we introduced an approach

to incorporating emotion knowledge derived from a lexicon for sentiment analysis.

Evaluation results (in Chapter 7) show that emotive features provide moderate but

consistent accuracy improvement in sentiment classification. The emotive feature

sets, in combination with feature sets from local context and domain-adapted

lexicon, provide statistically significant improvement over the baseline.

Regarding the research question: “How does emotion knowledge captured in an

emotion lexicon influence sentiment analysis?”; our results show that emotion

knowledge can provide improvement in classification accuracy. Although emotion

knowledge can be viewed to be an alternative to sentiment knowledge, this research

shows that a sentiment lexicon does not exclude the utility of an emotion lexicon

for sentiment analysis.

6. Conduct a comprehensive evaluation of all developed classifiers/strate-

gies. We conducted evaluations to ascertain the effectiveness of each of the classi-

fiers developed in this research: SmartSA, DSmartSA and the hybrid classifier

(Chapter 7). We compare the performance of these classifiers against the baseline
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and the state-of-the-art classifiers. The evaluations also involved testing the con-

tribution of each strategy integrated with the classifiers (and its alternative where

applicable).

In summary, the main contributions to knowledge from this research are, first, the intro-

duction of a word sense disambiguation (WSD) algorithm for the extraction of sentiment

scores from SentiWordNet and the detailed evaluation of this approach in comparison

with the typical approaches used for WSD. Second, the introduction of a lexicon-based

sentiment classifier (SmartSA) that integrates contextual analysis strategies to adjust

prior polarities of terms in order to account for the effect of both standard and social

media oriented sentiment modifiers as well as discourse structures. Third, the develop-

ment of an approach to dynamically improve lexical coverage and sentiment semantics

of terms given a social media domain (DSmartSA). This approach combines sentiment

knowledge from a general purpose lexicon and a target domain to create a hybrid lexicon

that captures the non-standard, sentiment rich terms; and non-standard usage of terms

for sentiment expression in social media. Another novel feature in DSmartSA is the

introduction of two new term-sentiment association metrics inspired by Term Frequency

and Inverse Document Frequency (TF, TFIDF). This is important because the state-of-

the-art metrics, based on the Point-wise Mutual Information (PMI) do not work well on

terms that have low frequencies in a collection (Sani, 2014), a characteristic of evolving

terms in social media. The fourth contribution is the development of a hybrid social

media sentiment classifier that combines distant-supervised learning, contextual analy-

sis, domain semantics, and an emotion lexicon. This classifier benefits from the deeper

analysis of supervised machine learning algorithms, local and domain context analysis

without the overhead of requiring hand-labelled data. It also allows us to measure the

extent to which our lexicon-based strategies and emotion knowledge are applicable in

the hybrid sentiment classification setting. Lastly, the assessmecnt of the[21 transfer-

ability of a hybrid lexicon (used by DSmartSA) on a social media domain different from

the one from which it was generated. This is important since distant-supervised data

(required to generate a hybrid lexicon) may not be available from some social media

domains.
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8.2 Future Work

In this section we highlight some of the limitations of the work we presented in this

thesis and also point out some desirable future extensions. Firstly, given the focus of

sentiment classification involving positive and negative classes, a natural extension to

this work is subjectivity detection whereby a piece of text is classified as “objective”

or “subjective”. It will be interesting to investigate whether a zero aggregate score is

indicative of the objective class. This is because, with high-coverage lexicons, many

terms are associated with non-zero sentiment scores including those that would appear

to be objective. Secondly, the work presented in this thesis, aimed at accounting for

contextual polarities of terms, can go beyond lexicons and domain-specific knowledge to

leverage “common-sense” knowledge. This is particularly useful in sarcasm detection.

Similar to the existing research, we notice sarcasm is quite a characteristic of social media

text and its detection is likely to have significant impact on sentiment analysis. We note

that recently resources are being developed to capture common-sense knowledge (e.g.

SenticNet). However, it remains a research problem to investigate the extent to which

such resources are useful for reasoning with social media text given the informal/non-

standard nature of its genres.

Thirdly, the hybrid lexicon approach presented for adapting a general purpose lexicon to

social media domains (hybrid lexicon) should also be considered in the context of “big

data” since volume and veracity are typical characteristics of social media platforms (e.g.

Twitter). Therefore, the approach needs to be extended to large-scale data streams us-

ing big data processing methods. Also, the transfer learning aspect of the hybrid lexicon

revealed that there is more to compatibility between domains than what is expected

(document lengths or tendency towards having similar non-standard contents). There-

fore, it will be useful to investigate the characteristics that govern the affinity between

social media domains for the purpose of transfer learning. Finally, as we investigated

the role of emotion for sentiment detection, it is also imperative to investigate the role of

sentiment for emotion detection. In particular, does the sentiment-based features help

improve emotion analysis or classification, as is the case when emotion features are used

for sentiment analysis.
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