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Random Forest (RF) is an ensemble classification technique that was developed by Leo

Breiman over a decade ago. Compared with other ensemble techniques, it has proved

its accuracy and superiority. Many researchers, however, believe that there is still room

for optimizing RF further by enhancing and improving its performance accuracy. This

explains why there have been many extensions of RF where each extension employed a

variety of techniques and strategies to improve certain aspect(s) of RF. The main focus

of this dissertation is to develop new extensions of RF using new optimization tech-

niques that, to the best of our knowledge, have never been used before to optimize RF.

These techniques are clustering, the local outlier factor, diversified weighted subspaces,

and replicator dynamics. Applying these techniques on RF produced four extensions

which we have termed CLUB-DRF, LOFB-DRF, DSB-RF, and RDB-DR respectively.

Experimental studies on 15 real datasets showed favorable results, demonstrating the

potential of the proposed methods. Performance-wise, CLUB-DRF is ranked first in

terms of accuracy and classification speed making it ideal for real-time applications, and

for machines/devices with limited memory and processing power.
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Chapter 1

Introduction

1.1 Background

Data mining is an important and interesting subfield in computer science that has

received significant attention from the research community particularly over the past

decade. In a nutshell, data mining can be defined as the process of extracting knowledge

and/or unknown interesting patterns from structured, semi-structured or unstructured

data Jiawei and Kamber (2011). Its importance and significance stem from the fact that

it specializes in analyzing the data from different perspectives and summarizing it into

useful information. Such information can be used to increase revenues, cut costs, or both

Fawagreh et al. (2014a). What makes it an interesting field is that it applies methods at

the intersection of multiple disciplines including artificial intelligence, machine learning,

statistics, and database systems Fayyad et al. (1996).

Following the taxonomy used in Fayyad et al. (1996), data mining involves seven common

classes of tasks: anomaly detection, association rule learning, clustering, classification,

regression, summarization, and sequential pattern mining. The research work reported

in this dissertation deals with classification which builds models from previously classified

data to predict future data with unknown classes.

The bulk of data mining methods can be traced back to an area known as machine

learning. It initially evolved from the study of pattern recognition and computational

learning theory in artificial intelligence, and deals with the study and construction of

algorithms that can learn from data and make predictions on data Kohavi and Provost

2
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(1998). Machine learning algorithms are classified into supervised and unsupervised

learning. Supervised learning involves establishing a mapping between a set of input

variables X and an output variable Y and applying this mapping to predict the outputs

for unseen data. One typical example of supervised learning is classification which, as

defined above, builds models from labeled data that are able to predict class labels for

future data. Classification algorithms normally use a training set where all objects are

already associated with known class labels. The classification algorithm learns from the

training set and builds a model, also called a classifier, as shown in Figure 1.1. Once

the model is validated through the testing data as shown in Figure 1.2, it is deployed in

the field.

Unsupervised learning, on the other hand, attempts to discover hidden patterns in unla-

beled data. A typical example of unsupervised learning is clustering which is a technique

used to classify objects by splitting a diverse group into smaller groups of similar objects

whose characteristics of similarity are not known in advance. As outlined in Section 1.5,

we will be using clustering as a technique to meet one of our research objectives.

Outlook HWDone Weekend Play 

Sunny TRUE TRUE Yes 

Sunny TRUE FALSE Yes 

Rainy FALSE FALSE No 

Rainy FALSE TRUE Yes 

Sunny FALSE TRUE Yes 

Sunny FALSE FALSE No 

Rainy TRUE TRUE Yes 

Rainy TRUE FALSE No 

Training Data Classification Algorithm 

Classifier  

Figure 1.1: Classification Process - Classifier Construction

Since single classifier systems have limited predictive performance Yan and Goebel

(2004), Polikar (2006), Maclin and Opitz (1999), Rokach (2010), to boost the perfor-

mance of classification, ensemble classification was developed. Ensemble classification
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Outlook HWDone Weekend Play 

Sunny TRUE TRUE Yes 

Sunny TRUE FALSE Yes 

Rainy FALSE FALSE No 

Testing Data Classifier  

(Sunny, True, …) 

Decision: Play?  

Yes 

Figure 1.2: Classification Process - Prediction

is an application of ensemble learning which involves using multiple models that jointly

work together to solve the same problem Polikar (2006), Rokach (2010), Kuncheva and

Whitaker (2003). Likewise, in ensemble classification, multiple classifiers are used and

tend to perform better than the individual classifiers in the ensemble. A popular en-

semble classification technique that has attracted significant attention from the research

community is Random Forest (RF) Breiman (2001). Ever since its inception back in

2001, researchers have striven to produce several extensions of RF in order to further

enhance its performance. In an evaluation study made by Fernández-Delgado et al.

(2014) where 179 classifiers arising from 17 families (discriminant analysis, Bayesian,

neural networks, support vector machines, decision trees, rule-based classifiers, boost-

ing, bagging, stacking, random forests and other ensembles, generalized linear models,

nearestneighbors, partial least squares and principal component regression, logistic and

multinomial regression, multiple adaptive regression splines and other methods) were

evaluated, RF has proven to be the best family of classifiers. The main aim of this dis-

sertation is to enhance RF in two directions: extreme pruning and feature engineering.

Extreme pruning produces a much more smaller ensemble than the original one with

performance comparable and mostly better than the initial one. Feature engineering

deals with improving feature interaction which is not an inherent characteristic of RF.
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1.2 Problem Statement

A well established principle in ensemble classification is that ensembles tend to perform

better when the individual classifiers in the ensemble exhibit a high level of diversity

Kuncheva and Whitaker (2003), Brown et al. (2005), Adeva et al. (2005), Tang et al.

(2006). With one common goal in mind, many researchers have exploited this principle

and developed several expansions of RF in order to boost its performance. In this

dissertation, we will exploit this principle even further by considering new diversity

techniques that, to the best of our knowledge, have not been exploited before to produce

more accurate RF ensembles. As will be discussed in the subsequent chapters, these

techniques are clustering, the Local Outlier Factor, diversified weighted subspaces, and

replicator dynamics.

Extensions of RF, regardless of the techniques they use, should improve performance

accuracy as well as provide timely classification. In 2006, an international provider of

on-demand Internet streaming media, called Netflix Inc., held an open competition to

find a collaborative filtering algorithm that would best predict whether or not a user

would like a particular film or TV show based on previous ratings. In 2009, a team

known as “BellKor’s Pragmatic Chaos” won the grand prize of $1 million. Though the

team’s algorithm was 10% more accurate than Netflix’s own prediction system, Netflix

never implemented the team’s solution into its own service. The main reason being, as

explained by Netflix, was that the team’s 100 algorithm ensemble was too complex and

computationally demanding. Of the 100 algorithms, only 2 were implemented by Netflix.

The additional accuracy gain achieved by the rest of the algorithms, as Netflix justified,

was not worth the engineering effort to integrate them into a production environment.

The Netflix story puts a huge emphasis on three highly desirable properties of classifi-

cation algorithms, namely, simplicity, accuracy and speed. In this dissertation, we have

developed non-computationally demanding RF methods/algorithms to support these

properties. Speed wise and as outlined in Section 1.5, some the proposed methods

developed perform ensemble pruning producing a much more smaller ensemble of the

original one and therefore, run much faster. Accuracy wise, because high correlated

trees in an RF can increase the forest error rate Breiman (2001), Bernard et al. (2010),

the added diversity that has been injected by these methods is likely to reduce the

correlation between trees and consequently, reduce the forest error rate.
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1.3 Dissertation Goal

Considering the aforementioned evaluation study made by Fernández-Delgado et al.

(2014) where RF has produced the best results, the main goal of this dissertation is

to build on the success of RF and use different techniques and strategies to produce

new methods of RF that produce more accurate ensembles. Since classification accu-

racy and classification speed are highly desirable properties for many applications, it

is of paramount importance to develop methods that outperform the traditional RF.

Examples of such applications include but not limited to medical diagnosis, autopsy,

agriculture, and credit rating. Such applications have zero tolerance for misclassifica-

tion that could lead to severe consequences.

1.4 Research Questions

In our quest for developing more accurate RF ensembles, we have identified the following

questions. Answering them will help us achieve our goal:

• What techniques can be used to produce the least correlated trees in an RF en-

semble?

• Can we achieve high pruning levels that allow RF to operate in real-time applica-

tions?

• Can we improve feature interactions in RF?

• Can we add a dynamic characteristic in RF that makes the model easily incremen-

tally updatable?

1.5 Aims, Objectives and Approaches

There are two aims of this dissertation. The first is to perform extreme pruning on RF

ensembles in order to produce ensembles that are much smaller in size than the original

ones, and yet, perform as least as good as the original ones. The second aim is to apply

feature engineering techniques in order to improve interactions among the features.
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To meet the first aim, two objectives need to be addressed. In the first objective,

trees are clustered into groups where each group contains similar trees. To eliminate

redundant trees, a tree is then selected from each group. One approach to meet this

objective is to utilize a known diversity technique called clustering Jain et al. (1999)

to find diverse trees in the ensemble. This can be done by clustering the trees in the

ensemble into a predefined number of clusters and then selecting a representative from

each cluster as shown in Figure 1.3. In this figure, the original ensemble consisted of 20

trees. Since 4 clusters were used, the resulted ensemble after pruning contained only 4

trees. Therefore, the pruning level achieved was 80%.
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Figure 1.3: Extreme Pruning via Clustering

In the second objective, trees to be ranked according to a certain evaluation measure

and then the ones with the highest ranking are selected. Doing so will eliminate many

redundant trees. This approach can be met by utilizing the Local Outlier Factor (LOF)

Breunig et al. (2000) for the first time ever to extreme prune RF ensembles by assigning

each tree an LOF value and then selecting the top k (where k is a predefined integer)

trees with the highest weighted LOF values as shown in Figure 1.4. In this figure, an

80% pruning level has also been achieved since the top 4 trees were picked to form the

pruned ensemble.

By addressing two more objectives, the second aim can be met. In the first one, ran-

dom projections of the training data are performed prior bagging in order to inject an

additional level of diversity into the constituent trees of the ensemble. Such projections
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Figure 1.4: Extreme Pruning via Local Outlier Factor

are then given a weight to reflect their predictive power. The approach to meet this ob-

jective is to use diversified weighted subspaces where each subspace contains a random

subset of the features. Each subspace eventually corresponds to a sub-forest. When all

the sub-forests are taken collectively, they form a diversified Random Forest as shown in

Figure 1.5. The trees in such a forest are likely to have improved feature interaction. The

  feature space  

  … 

  … 

𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒1 𝑠𝑢𝑏𝑠𝑝𝑎𝑐𝑒𝑛 

𝑠𝑢𝑏𝑓𝑜𝑟𝑒𝑠𝑡1 𝑠𝑢𝑏𝑓𝑜𝑟𝑒𝑠𝑡𝑛 

 𝑡1           …             𝑡𝑘  𝑡1           …             𝑡𝑘 

Diversified Random Forest 

Figure 1.5: Diversified Random Forest via Diversified Subspaces

second objective aims at further improving the diversified forest of the previous objec-

tive by growing/shrinking the sub-forests. Poorly performing sub-forests, possibly due

to noisy and correlated features are shrunk, and well performing sub-forests are grown.

This objective can be met by using an approach heavily used in evolutionary game the-

ory known as replicator dynamics Schuster and Sigmund (1983). The goal here is to
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make the ensemble easily incrementally updatable by growing some sub-forests with new

trees that can improve the performance, and shrink others by removing existing trees

that can worsen the performance as shown in Figure 1.6.

Figure 1.6: Applying Replicator Dynamics (RD) to a Diversified Random Forest

1.6 Research Contributions

The following contributions have been made and published as outlined in Section 1.8:

• To meet the objectives pertaining to the extreme pruning aim, the CLUB-DRF

and LOFB-DRF methods have been developed. The first method is based on

clustering and the second one is based on LOF. Though clustering was used before

to prune other types of ensembles Bakker and Heskes (2003), Giacinto et al. (2000),

Lazarevic and Obradovic (2001), Qiang et al. (2005), it has not been used before to

prune RF ensembles, and the pruning levels achieved on other types of ensembles

were not extreme. These methods were proposed to fill this research gap. As

will be discussed in Chapters 4 and 5, both our ensemble pruning techniques have

achieved an unprecedented pruning level reaching as high as 99% at the time of



Chapter 1. Introduction 10

boosting the predictive accuracy of the ensemble! This notably high pruning level

makes these techniques ideal candidates for real-time applications.

• To meet the objectives pertaining to the feature engineering aim, the DSB-RF and

RDB-DRF methods were developed. The DSB-RF method produces a diversified

forest with diversified sub-forests based on diversified subspaces. Such a forest

is likely to have improved feature interaction. RDB-DRF extends DSB-RF by

applying RD to make it incrementally updatable.

1.7 Organization of the Thesis

The thesis will be divided into four main parts. In this section, the chapter(s) of each

part are identified and a brief overview of the main topics discussed in each chapter is

given.

• Part I (Preliminaries): This part is composed of the first 3 chapters (including

this chapter) and aims at laying out the foundation of the thesis. Following the

introduction in this chapter, topics related to pruning, diversification, and Random

Forests are covered. Chapter 2 covers topics related to ensemble pruning and

diversification. The different categories of pruning techniques will be covered as

well as topics related to diversity creation methods. An overview of Random

Forests is presented in Chapter 3 where many related topics will be discussed

including background, applications, strengths, and weaknesses.

• Part II (Ensemble Pruning): consists of two contributions related to ensemble

pruning covered in Chapters 4 and 5 respectively. Chapter 4 introduces CLUB-

DRF : the first ensemble pruning method that is clustering-based. Key topics to be

covered in this chapter include clustering, CLUB-DRF, and experimental study.

Chapter 5 presents LOFB-DRF : the other ensemble pruning method that is based

on the Local Outlier Factor (LOF). Topics to be covered in this chapter include

LOF, LOFB-DRF, and experimental study.

• Part III (Feature Engineering): contains two other contributions related to

feature engineering and Replicator Dynamics (RD) covered in Chapters 6 and

7 respectively. Chapter 6 introduces DSB-RF : the method that applies feature
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engineering to produce a diversified RF based on diversified subspaces. Key topics

to be covered in this chapter include DSB-RF and experimental study. Chapter

7 enhances DSB-RF by applying RD. After a brief introduction to RD, details,

coupled with an experimental study, are given to show how it can be applied to

enhance DSB-RF.

• Part IV (Final Remarks): describes conclusion and future work which are

covered in Chapter 8.

1.8 Thesis Outcomes

The following papers have been published as a result of the research conducted in this

thesis:

• Fawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. “Random forests:

from early developments to recent advancements.” Systems Science & Con-

trol Engineering: An Open Access Journal 2.1 (2014): 602-609.

• Fawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. “Diversified

Random Forests Using Random Subspaces.” Intelligent Data Engineering

and Automated Learning–IDEAL 2014. Springer International Publishing, 2014.

85-92.

• Fawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. “CLUB-DRF: A

Clustering Approach to Extreme Pruning of Random Forests”,Research

and Development in Intelligent Systems XXXII. Springer International Publishing,

2015. 59-73.

• Fawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. “A Replica-

tor Dynamics Approach to Collective Feature Engineering in Random

Forests”, Research and Development in Intelligent Systems XXXII. Springer In-

ternational Publishing, 2015. 25-41.

• Fawagreh, Khaled, Mohamed Medhat Gaber, and Eyad Elyan. “An Outlier

Detection-based Tree Selection Approach to Extreme Pruning of Ran-

dom Forests”, 17th International Conference on Engineering Applications of

Neural Networks–EANN 2016. Springer International Publishing, 2016. 267-282.



Chapter 2

Ensemble Pruning and

Diversification

2.1 Overview

This chapter provides a literature review on ensemble pruning and diversification that

are relevant to the research conducted in this thesis. For ensemble pruning, this chapter

looks at the different ensemble pruning techniques used to produce pruned ensembles.

For diversification, the different diversity techniques are discussed and some common

ensemble diversity measures are described.

2.2 Background

Ever since the inception of RF back in the year of 2001, several extensions have been

developed to boost its performance. Such extensions can be classified into two main

categories: those that use an ensemble pruning technique (see Section 2.4) to produce

pruned RF ensembles and those that do not. Extensions in the first category start

with an ensemble of a particular size and tend to produce a subset of this ensemble

that performs at least as good as the original one. The ones in the second category

use different techniques/strategies to construct more accurate ensembles without doing

any pruning. Following an introduction to ensemble classification and pruning, we will

explore these two categories in greater detail.

12
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2.3 Ensemble Classification

As an application of ensemble learning, ensemble classification was developed to boost

the accuracy of classification since single classifier systems have limited predictive perfor-

mance Yan and Goebel (2004), Polikar (2006), Maclin and Opitz (1999), Rokach (2010).

Ensemble learning involves using multiple models that jointly work together to solve the

same problem Polikar (2006), Rokach (2010), Kuncheva and Whitaker (2003). Likewise,

in ensemble classification, multiple classifiers are used and tend to perform better than

the individual classifiers in the ensemble Polikar (2006), Rokach (2010), Maclin and

Opitz (1999). To classify an instance, a voting scheme is used. A popular and simple

voting scheme is majority voting Lam and Suen (1997) where each classifier in the en-

semble casts a vote for its predicted class label. The class label that wins the majority

of the votes is returned as the chosen candidate of the ensemble. An alternative voting

scheme is veto voting where other classifiers decisions are vetoed by a single classifier

Shahzad and Lavesson (2012), Sun and Dance (2012). As an extension of veto voting,

a recent voting scheme is called trust-based veto voting Shahzad and Lavesson (2013).

In this voting scheme, the trust of each classifier is considered to determine whether a

classifier or a set of classifiers can veto the decision.

The accuracy and diversity of the individual classifiers in the ensemble are likely to make

the ensemble produce favorable results. A classifier with an error rate less than random

guessing is considered an accurate classifier, and two classifiers are considered diverse if

they produce different prediction errors on unseen data Yang et al. (2007). The more

diversity the classifiers exhibit, the more accurate results they tend to produce Brown

et al. (2005). In fact, empirically speaking, ensembles tend to perform better when the

constituent models exhibit high level of diversity Kuncheva and Whitaker (2003). This

justifies why many ensemble methods strive to promote diversity among their constituent

models Brown et al. (2005), Adeva et al. (2005).

Popular ensemble methods include boosting, bagging, and stacking. Boosting follows an

incremental approach where, after building a sequence of classifiers, each classifier works

on the incorrectly classified instances of the previous one in the sequence. A represen-

tative of this class of techniques is AdaBoost Freund and Schapire (1997). However,

AdaBoost is known to suffer from overfitting Bylander and Tate (2006).
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Bootstrap Aggregating (Bagging) Breiman (1996) is another class of ensemble approaches.

In this approach, a randomly drawn sample with replacement of the data is used to build

each classifier in the ensemble. When labeling unlabeled instances, each classifier gives

an equal vote. With respect to model overfitting, bagging is known to be more im-

pervious than boosting. A main representative of bagging is Random Forests Breiman

(2001).

Stacking is historically one of the first ensemble learning methods. It combines several

base classifiers, which can belong to absolutely different classes of machine learning

methods, by means of a “meta-classifier” that takes as its inputs the output values of

the base classifiers Wolpert (1992), Seewald (2002). Although stacking is a heuristic

method and does not guarantee improvement in all cases, in many practical studies, it

shows excellent performance.

2.4 Ensemble Pruning Techniques

Several enhancements have been made in recent years in order to produce a subset

of an ensemble that performs as well as, or better than, the original ensemble. The

purpose of ensemble pruning (also known as ensemble selection, selective ensemble and

ensemble thinning) is to search for such a good subset. This is particularly useful for

large ensembles that require extra memory usage, computational costs, and occasional

decreases in efficiency Zhang et al. (2006). A survey of ensemble pruning techniques

can be found in Tsoumakas et al. (2009) where such techniques were classified into

three main categories: clustering-based, ranking-based, and optimization-based. The

following subsections explore these techniques in greater detail.

2.4.1 Clustering-Based Techniques

Clustering based-techniques consist of two stages. In the first stage, a clustering algo-

rithm is employed in order to discover groups of models that make similar predictions.

Pruning each cluster then follows in the final stage. In this stage, several approaches

have been used. One approach is by using the cluster centroids as values of the target

variable, a new model is trained for each cluster Bakker and Heskes (2003). Another

interesting approach was proposed by Giacinto et al. (2000) which involved selecting a
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representative classifier from each cluster that is the farthest distant from the rest of

the clusters. A yet different approach by Lazarevic and Obradovic (2001) that does not

guarantee the selection of a single model from each cluster was by iteratively removing

models from the least to the most accurate, until the accuracy of the entire ensemble

starts to increase. Selecting the most accurate model from each cluster was proposed by

Qiang et al. (2005).

When using a clustering algorithm that requires the number of clusters to be specified

in advance (as in K-means), one interesting and challenging question that immediately

comes to mind is how to determine this number so that it is not high and it is not low.

Mardi Mardia et al. (1980) proposed a simple rule of thumb: number of clusters ≈
√

n
2 ,

where n refers to the number of data points to be clustered. Following this rule can

alleviate the empty cluster problem Pakhira (2009) from happening.

2.4.2 Ranking-Based Techniques

Ranking-based techniques use an evaluation measure in order to rank models. A di-

versity measure called Kappa pruning is used in Margineantu and Dietterich (1997)

as an evaluation measure. By calculating the κ statistic of agreement on the training

dataset, all pairs of classifiers are ranked. Kappa pruning can be generalized by ac-

cepting a parameter to specify any pairwise diversity measure for either classification or

regression models. Another ranking-based pruning method for ensembles is orientation

ordering Mart́ınez-Muñoz and Suárez (2006). The signature vector of a classifier ht is

an important concept in orientation ordering. It is defined as an N -dimensional vector

with elements taking the value +1 if ht(xi) = yi and -1 if ht(xi) 6= yi. The ensemble

signature vector is the average signature vector of all classifiers in an ensemble, and is

an indicative of the ensemble’s ability to correctly classify each example in the pruning

set (the training set in this method) using majority voting for classifier combination.

In ranking-based ensemble pruning methods, an interesting issue that arises is the choice

of the final number of models to choose following the ranking process. Selecting a fixed

user-specified amount or percentage of models is a common method. In Kappa pruning

for example, classifier pairs are selected in ascending order of agreement until a specified

number of models has been reached.
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2.4.3 Optimization-Based Techniques

Optimization-based techniques are classified into three categories: genetic algorithms,

semi definite programming, and hill climbing. In the following subsections, the original

ensemble H is denoted as H = {ht | t = 1, 2, ..., T} where T refers to the number of

training samples in the training dataset, and ht refes to a particular tree in the ensemble.

2.4.3.1 Genetic Algorithms

Genetic algorithms fall under the umbrella of evolutionary algorithms. Using techniques

inspired by natural evolution, such as inheritance, mutation, selection, and crossover

Mitchell (1998), Haupt and Haupt (2004), Banzhaf et al. (1998), evolutionary algorithms

generate solutions to optimization problems. The Gasen-b method Zhou and Tang

(2003) used a genetic algorithm to perform stochastic search in the space of model

subsets. Using one bit for each model, the ensemble is represented as a bit string.

Depending on the value of the corresponding bit, models are included or excluded from

the ensemble. In addition to the standard mutation and crossover operations, Gasen-b

defined a fitness function for an individual S ⊆ H as the accuracy of S on a separate

validation set using voting for model combination.

2.4.3.2 Semi-Definite Programming

As a mathematical problem, Zhang et al. (2006) expressed ensemble pruning and then

applied semi-definite programming (SDP) techniques to solve it. Initially, ensemble

pruning was expressed as a quadratic integer programming problem to find a fixed-size

subset of k classifiers with high accuracy and maximum divergence. Subsequently, this

quadratic integer programming problem was found to resemble the max cut with size k

problem, which, using an algorithm based on SDP, can be approximately solved. As an

input parameter, the algorithm developed in Zhang et al. (2006) required the number

of classifiers to be kept. It ran in polynomial time.
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2.4.3.3 Hill Climbing

Hill climbing employs a greedy search algorithm where, from the neighborhood of the

current state, the next state is visited. States represent the different subsets of models.

The neighborhood of a subset S ⊆ H contains the subsets that can be built by adding

or removing one model from S. The greedy search utilized traverses the search space

from one end representing an empty ensemble to the other end representing a complete

ensemble. Two types of search approaches can be applied depending on the direction

of the graph: forward selection Caruana et al. (2004), Fan et al. (2002), Partalas et al.

(2009), Margineantu and Dietterich (1997), Martınez-Munoz and Suárez (2004) and

backward elimination Banfield et al. (2005), Partalas et al. (2008), Yang et al. (2005).

Forward selection involves starting with no variables in the model, testing the addition of

each variable using a chosen model comparison criterion, adding the variable (if any) that

improves the model the most, and repeating this process until none improves the model.

Backward elimination, on the other hand, involves starting with all candidate variables,

testing the deletion of each variable using a chosen model comparison criterion, deleting

the variable (if any) that improves the model the most, and repeating this process until

no further improvement is possible.

Like ranking-based methods, hill climbing ensemble pruning methods use an evaluation

measure which can be either performance-based or diversity-based. For performance-

based measures, accuracy was used in Margineantu and Dietterich (1997), Fan et al.

(2002), Yang et al. (2005). In addition to accuracy, Caruana et al. (2004) experimented

with other performance metrics including root-mean-squared-error, mean cross-entropy,

lift, precision/recall break-even point, precision/recall F-score, average precision, and

Receiver Operating Characteristic (ROC) area. A cost model based measure was used

in Fan et al. (2002). Diversity-based measures, on the other hand, use a diversity metric

to ensure that the models in the ensembles are diverse. To measure diversity, several

diversity measures including disagreement, double fault, Kohavi-Wolpert variance, inter-

rater agreement, generalized diversity and difficulty are used Tang et al. (2006). These

are all covered in Section 2.6.
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2.4.4 Other Techniques

Techniques that do not fall in any of the above categories are described here. A method

based on the McNemar non-parametric test of significance was proposed in Latinne

et al. (2001). The method a priori determines the minimum number of trees in the

RF to use in order to obtain prediction accuracy comparable to the one obtained with

larger ensembles. In addition to maintaining accuracy with fewer trees, the method

significantly improves classification speed and reduces memory costs.

Pruning an ensemble of heterogeneous classifiers using statistical tests was proposed in

Tsoumakas et al. (2005), Tsoumakas et al. (2004). Such tests determine whether the

differences in predictive performance among the classifiers of the ensemble are significant.

Only the classifiers with significantly better performance than the rest are retained and

subsequently combined with the method of (weighted) voting.

A reinforcement learning approach to ensemble pruning was proposed in Partalas et al.

(2006), Partalas et al. (2009). In specific, the problem of pruning an ensemble of T

classifiers is modeled as an episodic task, where an agent takes T sequential actions,

each one corresponding to either the inclusion or exclusion of a classifier ht | t = 1...T ,

from the final ensemble. The Q-learning Watkins and Dayan (1992) algorithm is then

used to approximate the optimal policy for this task.

2.5 Pruned/Unpruned RF Ensembles

Not much work has been reported to produce pruned RF ensembles that are smaller in

size than the original ones. Consequently, this area is considered a hot research area

that is worth investigating. In fact, as we shall see later in Chapters 4 and 5, we will

explore this area further by introducing novel methods. The only prominent extension

found in this area was by Latinne et al. (2001). As described in the previous subsection,

the McNemar non-parametric test of significance was used to a priori determine the

minimum number of trees in the RF.
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As for unpruned RF ensembles, many extensions were developed to produce more ac-

curate ensembles without reducing their initial size. What follows describes, in chrono-

logical order by year of publication, some of these extensions emphasizing on the tech-

niques/strategies used by the perspective researchers to boost the performance.

New ways were investigated by Robnik-Šikonja (2004) to improve the performance of

RF. By using several attribute evaluation measures instead of just one, the correlation

between trees is decreased without any loss in their strength. Another way to improve

the performance of RF as proposed by Robnik-Šikonja (2004) is to change the voting

method. Instead of using majority voting, weighted voting is used. With this voting

technique, internal estimates are used to identify instances most similar to the instance

being labeled. The votes of the corresponding trees are then weighted with the strength

they demonstrate on these near instances. Improvements were demonstrated on several

classification datasets.

By replacing majority voting with more sophisticated dynamic integration techniques,

Tsymbal et al. (2006) found a way to improve the performance of RF on some datasets.

Three techniques were used: Dynamic Selection (DS), Dynamic Voting (DV), and Dy-

namic Voting with Selection (DVS). Using DV and DVS integration strategies, exper-

imental studies showed that dynamic integration was able to improve the accuracy of

RF on 12 out of 27 datasets.

The significance decline in RF when the number of features is large and the number of

truly informative features is small (as in the DNA microarray dataset) was investigated

by Amaratunga et al. (2008). A novel and simple approach to remedy this decline

was proposed by picking the eligible subsets of features to split each node by weighted

random sampling instead of simple random sampling, with the weights tilted in favor

of the informative features. The approach demonstrated superior performance when

applied to several actual microarray datasets.

To remedy the limitations of the off-line algorithm which has limited usability for many

practical problems, Saffari et al. (2009) proposed a novel on-line RF algorithm. Ideas

from on-line bagging, extremely randomized forests, and on-line decision tree growing

procedures were combined to produce the on-line version of the algorithm. To boost

performance, a temporal weighting scheme for adaptively discarding some trees based
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on their out-of-bag-error was added. Experiments have shown that the performance of

the on-line algorithm proved comparable to the off-line version.

Finally, Bader-El-Den and Gaber (2012) developed an approach to enhance the accuracy

of RF by using genetic algorithms Goldberg (1989) . The approach was called Genetic

Algorithm based Random Forest (GARF). Experiments have shown that GARF out-

performed other state-of-the-art classification techniques including AdaBoost.

Table 8.1 below shows a summary, ordered in chronological order by year of publication,

of the aforementioned extensions to boost the performance of RF.

Table 2.1: Summary of RF Extensions

Ref. Technique(s) Summary

Robnik-
Šikonja
(2004)

several attributes mea-
sures, weighted voting

Decreased correlation between trees
by using several attribute evaluation
measures. Used weighted voting in-
stead of majority voting

Tsymbal
et al.
(2006)

dynamic intergration
techniques

Replaced majority voting with more
sophisticated dynamic integration
techniques: Dynamic Selection
(DS), Dynamic Voting (DV), and
Dynamic Voting with Selection
(DVS)

Amaratunga
et al.
(2008)

weighted random sam-
pling

Improved the declining performance
when the number of features is large
and the number of truly informative
features is small by using weighted
random sampling instead of simple
random sampling when picking fea-
tures to split each node

Saffari
et al.
(2009)

on-line RF algorithm Introduced a novel on-line RF algo-
rithm to remedy the limitations of
the off-line algorithm

Bader-
El-Den
and Gaber
(2012)

genetic algorithms Used genetic algorithms to boost
the performance of RF

2.6 Diversity Creation Methods

Because of the vital role diversity plays on the performance of ensembles, it had received

a lot of attention from the research community. The work done to date in this domain

was summarized by Brown et al. (2005) from two main perspectives. The first is a review
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of the various attempts that were made to provide a formal foundation of diversity. The

second is a survey of the various techniques to produce diverse ensembles. For the latter,

two types of diversity methods were identified: implicit and explicit. While implicit

methods tend to use randomness to generate diverse trajectories in the hypothesis space,

explicit methods, on the other hand, choose different paths in the space deterministically.

In light of these definitions, bagging and boosting in the previous section are classified

as implicit and explicit respectively.

Ensemble diversity techniques were also categorized in Brown et al. (2005) into three

categories: starting point in hypothesis space, set of accessible hypotheses, and manipu-

lation of training data. Methods in the first category use different starting points in the

hypothesis space, therefore, influencing the convergence place within the space. Because

of their poor performance of achieving diversity, such methods are used by many authors

as a default benchmark for their own methods Maclin and Opitz (1999). Methods in

the second category vary the set of hypotheses that are available and accessible by the

ensemble. For different ensembles, these methods vary either the training data used

or the architecture employed. In the third category, the methods alter the way space

is traversed. Occupying any point in the search space gives a particular hypothesis.

The type of the ensemble obtained will be determined by how the space of the possible

hypotheses is traversed.

2.6.1 Diversity Measures

Though there have been many diversity measures developed over the past years as will

be seen shortly, it is important to emphasize that measuring diversity is not a straight-

forward process due to the lack of a generally accepted formal definition Kuncheva and

Whitaker (2003). The first doubt on diversity measures was presented by Kuncheva and

Whitaker (2003), where several experiments revealed that the effectiveness of existing

diversity measures is discouraging, since diversity measurements seem to have no rela-

tion with ensemble performance and therefore, are not true indicators of performance.

In fact, because the right formulation and measures for diversity remain unsolved, Zhou

(2012) argues that understanding ensemble diversity remains a holy grail problem.

Despite the surprizing revealation described above, ensemble diversity measures were

nevertheless developed to measure the diversity of a certain technique or perhaps to
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compare the diversity of two techniques. A theoretical analysis on six existing diversity

measures was presented in Tang et al. (2006): disagreement measure Skalak (1996),

double fault measure Giacinto and Roli (2001), Kohavi Wolpert variance Kohavi et al.

(1996), inter-rater agreement Fleiss et al. (2013), generalized diversity Partridge and

Krzanowski (1997), and measure of difficulty Tang et al. (2006). The goal was not

only to show the underlying relationships between them, but also to relate them to the

concept of margin, which is one of the contributing factors to the success of ensemble

learning algorithms.

The following notation will be used in the following subsections:

L: total number of base classifiers

N : total number of training samples

P : average classification accuracy of the base classifiers on the training data

li: product of L and sum of the weights of the base classifiers that classify the training

sample xi incorrectly, li = L
∑

Oij=−1wj where:

Oij: is oracle output of the base classifier hj on the training sample xi (defined as

1 if the training sample xi is classified correctly by the base classifier hj , or -1

otherwise)

wj : is the weight of the base classifier hj

2.6.1.1 Disagreement Measure

The Disagreement Measure (DM) is used to measure the diversity between two base

classifiers hj and hk, and is calculated as follows:

DMj,k =
n(1,−1) + n(−1, 1)

n(1, 1) + n(1,−1) + n(−1, 1) + n(−1,−1)
(2.1)

where

• n(1,−1): means number of training instances that were correctly classified by hj ,

but are incorrectly classified by hk

• n(−1, 1): means number of training instances that were incorrectly classified by

hj , but are correctly classified by hk
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• n(1, 1): means number of training instances that were correctly classified by hj

and hk

• n(−1,−1): means number of training instances that were incorrectly classified by

hj and hk

The higher the DM, the more diverse the classifiers are. By taking the average of all

pairs of base classifiers, diversity within the whole set of base classifiers is then calculated

as:

DM =
2

L(L− 1)

L∑
j=1

L∑
k=j+1

DMj,k (2.2)

In Equation 2.1, since n(1, 1) + n(1,−1) + n(−1, 1) + n(−1,−1) = N , the previous

equation can be represented as

DM =
2

NL(L− 1)

L∑
j=1

L∑
k=j+1

(nj,k(1,−1) + nj,k(−1, 1)) (2.3)

Diversity is proportional with DM and tends to increase when it increases.

2.6.1.2 Double-Fault Measure

The Double Fault Measure (DFM) uses a slightly different approach where the diversity

between two classifiers is calculated as:

DFMj,k =
n(−1,−1)

n(1, 1) + n(1,−1) + n(−1, 1) + n(−1,−1)
(2.4)

Similar to DM, since the denominator=N , the diversity within the whole set of base

classifiers is calculated as:

DFM =
2

NL(L− 1)

L∑
j=1

L∑
k=j+1

nj,k(−1,−1) (2.5)

Diversity is conversely proportional with DFM and tends to decrease when the value of

DFM increases.
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2.6.1.3 Kohavi-Wolpert Variance

In their decomposition formula of the classification error of a classifier, Kohavi and

Wolpert introduced the Kohavi-Wolpert (KW) variance in 1996. This measure origi-

nated from the bias-variance decomposition of the error of a classifier. The following

equation gives the KW variance in its simplest form

KW =
1

NL2

N∑
i=1

li(L− li) (2.6)

Diversity is proportional with KW and tends to increase when it increases.

2.6.1.4 Measurement of inter-rater agreement

A measure of inter-rater (inter-classifier) reliability was developed and called k to mea-

sure the level of agreement within a set of classifiers. To be diverse, this measure is

based on the assumption that a set of classifiers should disagree with one another. The

k is calculated as:

k = 1−

N∑
i=1

li(L− li)li

NL(L− 1)P (1− P )
(2.7)

Diversity is conversely proportional with k and tends to decrease when it increases.

2.6.1.5 Generalized Diversity

Proposed by Partidge and Krzanowski in 1997, this measure is similar to DFM. Given

two classifiers, Partidge and Krzanowski argued that maximum diversity is achieved

when one classifier yields incorrect classification while the other yields correct classifi-

cation. They also argued that minimum diversity occurs when the two classifiers fail

together. For a sample xi that is randomly drawn from the training set, let Tj denote

the probability that li = j, the Generalized Diversity (GD) is defined as:
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GD = 1−

L∑
j=1

j(j−1)
L(L−1)Tj

L∑
j=1

j
LTj

(2.8)

Diversity is proportional with GD and tends to increase when it increases.

2.6.1.6 The measure of “difficulty”

Developed by Hansen and Salamon in 1990. For a sample xi that is randomly drawn

from the training set, a discrete random variable V is defined where Vi = (L − li)/L.

The measure of difficulty was defined as the variance of V over the whole training set

as given by the following equation:

diff = var(Vi) (2.9)

Diversity is conversely proportional with the measure of difficulty and tends to decrease

when it increases.

2.7 Discussion

Looking back at the work done to boost the performance of RF in Section 2.5, we can

see that several researchers focused on improving two of RF key merits, namely, feature

selection and voting. For feature selection, Robnik-Šikonja (2004) and Amaratunga

et al. (2008) provided alternative methods for selecting the best features to split at each

node. As for voting, Robnik-Šikonja (2004) and Tsymbal et al. (2006) proposed new

voting techniques that proved to be more efficient than the traditional majority voting

technique.

As will be discussed in Chapter 3, increasing the strength of the individual trees in

the RF, and decreasing the correlation between trees, are key factors in improving the

performance by reducing the RF error rate. This approach was used by Bernard et al.

(2010).
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In Section 2.3, we have stressed the importance of diversity to achieve better perfor-

mance. This principle was exploited extensively in pruning ensembles but unfortunately,

other than RF ensembles. For example, the pruning in Bakker and Heskes (2003),

Lazarevic and Obradovic (2001), Qiang et al. (2005) was performed on neural network

ensembles. Pruning of multiple heterogeneous classifier systems including neural net-

works, MLPs , SVMs, and k-NN was addressed in Giacinto et al. (2000), Partalas et al.

(2010). AdaBoost ensembles were pruned in Margineantu and Dietterich (1997), Zhang

et al. (2006), and a novel ensemble pruning method for bagging ensembles was presented

in Mart́ınez-Muñoz and Suárez (2006).

In ensemble pruning, a key performance factor is to achieve a high pruning level. The

higher the pruning level is, the fewer classifiers are needed, which, in turn, improves

the classification speed. Table 2.2 depicts the maximum pruning level achieved by some

authors in the area of ensemble pruning.

Table 2.2: Maximum Pruning Level Achieved

Ref. Max Pruning Level

Qiang et al.
(2005)

78.5%

Lazarevic
and
Obradovic
(2001)

68%

Bakker
and Heskes
(2003)

98%

Latinne
et al.
(2001)

95%

Martınez-
Munoz
and Suárez
(2004)

90%

Fan et al.
(2002)

97%

As we shall see later in Chapters 4 and 5, we have achieved comparable and even better

pruning levels reaching as high as 99% while retaining or outperforming the accuracy of

the original ensemble. Moreover, as mentioned in Chapter 1, for the proposed methods,

new techniques have been used that, to the best of our knowledge, have not been used

before to extreme prune RF ensembles. These techniques are clustering (Chapter 4) and
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the Local Outlier Factor (Chapter 5). Because clustering has been used extensively as

a diversity technique in many applications Li et al. (2010), Kuncheva and Hadjitodorov

(2004), Brown and Martin (1998), Shemetulskis et al. (1995), Lee et al. (2008), Sharpton

et al. (2012), it likely has the potential to diversify trees in Random Forests. Likewise,

because the Local Outlier Factor has the ability to achieve diversity, and was actually one

of 3 strategies used to obtain diversity when constructing an ensemble for the KDDCup

1999 dataset Erich and Zimek (2011), we would like to see if it is capable of diversifying

trees in Random Forests.

As for feature selection, new feature engineering techniques will be used that are dif-

ferent than the techniques developed by other researchers as discussed in Section 2.5.

To produce diverse trees with reduced correlation among them, we will build on the ran-

dom subspace method that was initially introduced by Ho (1998) by assigning a weight to

each subspace (that is constructed from a fixed randomized subset of the total number of

features) according to its predictive power as described in Chapter 5. Each subspace even-

tually produces a sub-forest and during the voting process, a weighted voting technique

will be applied to select the class label that receives the highest weight.

To improve the previous technique further, in Chapter 7, we will use replicator dynamics

to grow and shrink the sub-forests as appropriate. The rationale here is that by growing

the well-performing sub-forests, more weight is given to them during the voting process,

and less weight is given to the poorly-performing sub-forests by shrinking them.

2.8 Summary

After an introduction to ensemble classification, this chapter looked at the different

ensemble pruning techniques. It then described the main distinction between pruned

and unpruned RF ensembles, and identified a research gap in the area of pruning RF

ensembles as not much work was reported in this area. Categories of ensemble prun-

ing techniques were identified and the different diversity measures were described. For

pruned and unpruned extensions of RF covered in Section 2.5, the key merits of RF

that researchers manipulated have been highlighted, namely, feature selection and vot-

ing. To achieve comparable (and even better) pruning levels in our proposed pruning
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enhancements of RF, the maximum pruning level achieved by the respective authors in

pruning other types of ensembles has been highlighted.



Chapter 3

Random Forests

3.1 Overview

Findings reported in this chapter have been published in Fawagreh et al. (2014a). This

chapter gives a gentle introduction to Random Forests. The main aim here is not only

to show the reader how Random Forests work as ensembles, but also to identify their

strengths and weaknesses. For the latter, we refer to specific weaknesses that the thesis

will address and improve upon.

3.2 Background

Random Forests (RFs) is an ensemble learning method used for classification and regres-

sion. Developed by Breiman Breiman (2001) over a decade ago, the method combines

Breiman’s bagging sampling approach Breiman (1996), and the random selection of fea-

tures, introduced independently by Ho (1995) Ho (1998) and Amit and Geman Amit

and Geman (1997), in order to construct a collection of decision trees with controlled

variation. Using bagging, each decision tree in the ensemble is constructed using a

sample with replacement from the training data. Statistically, the sample is likely to

have about 64% of instances appearing at least once in the sample. Instances in the

sample are referred to as in-bag-instances, and the remaining instances (about 36%),

are referred to as out-of-bag (OOB) instances. Each tree in the ensemble acts as a base

classifier to determine the class label of an unlabeled instance. This is done via majority

29
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voting where each classifier casts one vote for its predicted class label, then the class

label with the most votes is used to classify the instance.

3.2.1 Example

To illustrate RFs and majority voting, consider the training data depicted in Table 3.1

which consist of eight samples and four features. An RF will be created to predict the

value of the Play feature which will determine whether a child can play or not, given

the predefined values for the other features, namely, Outlook, HWDone, and Weekend.

For example, it is obvious from the training data that a child can play if (s)he finished

the homework on a sunny day regardless of whether it is a weekend or weekday. The

child cannot play on a rainy weekday even if (s)he finished the homework. To aid in

classifying new samples, an RF of three trees was created as shown in Figure 3.1. Table

3.2 shows the result of casting votes to classify the sample (rainy,false,true,?), where a

? mark is used to indicate the value of the Play feature to be determined. As shown in

Table 3.2, trees A and C voted for ”yes”, whereas tree B voted for ”no”. By majority

voting, the winning vote is therefore ”yes” (child can play).

Table 3.1: Training Data

Outlook HWDone Weekend Play

sunny true true yes

sunny true false yes

sunny false true yes

sunny false false no

rainy true true yes

rainy true false no

rainy false true yes

rainy false false no

Table 3.2: Vote Casting for (rainy,false,true,?)

Tree Vote

A yes

B no

C yes

During the construction of the individual trees in RFs, randomization is also applied

when selecting the best node to split on. Typically, this is equal to
√
F where F is the

number of features in the dataset.
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Weekend 
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HWDone 

Rainy Sunny 

No 

Play=yes           Play=no 

Tree A 

Yes No 
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Rainy Sunny 
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Yes No 

Yes No 
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Rainy Sunny 
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 Play=yes        Play=no 
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Figure 3.1: Random Forest of Three Trees

3.2.2 Algorithm

Algorithm 1 depicts the RFs algorithm where N is the number of training samples, and

S refers to the bootstrap sample with replacement that will be used for growing the

tree. As shown in the algorithm, N trees are constructed where each tree is grown as

follows. Using Bootstrap sampling, a sample S is sampled with replacement out of all

features F . This sample will be the training set for growing the tree. At each node in

the tree, best split features are selected using the Gini index and are used to split the

node. Each tree is grown to the largest extent possible and is unpruned.

In the original paper on Random Forests Breiman (2001), it was shown that the RF

error rate depends on correlation and strength. Increasing the correlation between any

two trees in an RF increases the forest error rate. A tree with a low error rate is a strong

classifier. Increasing the strength of the individual trees decreases the RF error rate.

Such findings seem to be consistent with a study made by Bernard et al. (2010) which

showed that the error rate statistically decreases by jointly maximizing the strength and

minimizing the correlation.
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Algorithm 1 Random Forests Algorithm

{User Settings}
input N , S
{Process}
Create an empty vector

−→
RF

for i = 1→ N do
Create an empty tree Ti
repeat

Sample S out of all features F using Bootstrap sampling

Create a vector of the S features
−→
FS

Find Best Split Features B(
−→
FS)

Create A New Node using B(
−→
FS) in Ti

until No More Instances To Split On

Add Ti to the
−→
RF

end for
{Output}
A vector of trees

−→
RF

3.3 Applications

Over the past decade, many applications of RFs were developed in virtually all disci-

plines, and new applications are yet to be uncovered. The ones chosen in this section

are by no means exhaustive as there are many; in fact, a number of papers can be writ-

ten about RFs applications developed to date. In this section, we have selected some

interesting ones.

In Ecology, Cutler et al. (2007) compared the accuracies of RFs and four other commonly

used statistical classifiers using various species data collected from multiple locations in

the USA. The results demonstrated superiority of RFs over the other techniques.

In Medicine, Klassen et al. (2008) conducted some experiments to explore several at-

tribute selection methods with RFs that precisely classified cancer using a published

benchmark dataset. Experimental results showed that RFs performed well for microar-

ray data in terms of speed and accuracy with several different gene sets. Hu (2009)

applied RFs to study the prediction of pathologic complete response in breast cancer.

Results showed that the feature selection scheme of RFs was able to identify important

genes of biological significance.

In Astronomy, Gao et al. (2009) conducted some experiments on multi-wavelength data
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classification. Results showed that RFs proved effective for astronomical object classifi-

cation. Thanks to its own virtues in classification, feature selection, feature weighting,

and detection of outliers, RFs have proved to be superior.

In Autopsy, Flaxman et al. (2011) introduced a new Computer-Coded Verbal Autopsy

(CCVA) method using RFs to predict cause of death. This was done by training RFs to

distinguish between each pair of causes, and then combining the results through a novel

ranking technique. The new method outperformed Physician-Certified Verbal Autopsy

(PCVA) and was recommended for analyzing past and current verbal autopsies.

In Traffic and Transport Planning, Zaklouta et al. (2011) used K-d trees and RFs to

classify 43 types of traffic signs using different size Histogram of Oriented Gradients

(HOG) descriptors and distance transforms. Results showed that RFs outperformed

K-d trees by achieving a classification rate of 97.2% and 81.8% on HOG and distance

transforms respectively.

In Agriculture, Löw et al. (2012) used a combination of RFs and Support Vector Ma-

chine (SVM) classifiers to improve crop classification accuracy, and to provide spatial

information on map uncertainty. Results showed that the feature selection merit of RFs

improved the performance of SVM. Using this hybrid classifier improved classification

accuracy compared with single classifiers and user’s and producer’s accuracy.

In Bioinformatics and Computational Biology, Boulesteix et al. (2012) amalgamated ten

years of RFs development. Practical aspects of RFs including selection of parameters,

available RFs implementations, important pitfalls, and biases of RFs and their Variable

Importance Measures (VIM) were covered. The paper also surveyed recent developments

relevant to Bioinformatics as well as some representative examples of RFs applications

in this domain. Table 3.3 below depicts a summary of the RFs applications covered in

this section.
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Table 3.3: Summary of RFs Applications

Ref. Domain Aim Summary

Cutler
et al.
(2007)

Ecology Species Classifica-
tion

Compared RFs accuracy with other
techniques to classify various species.
RFs proved to be superior to others.

Klassen
et al.
(2008)

Medicine Cancer Classifica-
tion

Did experiments to prove that RFs
were able to precisely classify cancer.
Also found that RFs performed well for
microarray data in terms of speed and
accuracy with several different gene
sets.

Hu
(2009)

Medicine Prediction of
Pathologic Com-
plete Response in
Breast Cancer

Applied RFs to study the prediction of
pathologic complete response in breast
cancer. Results showed that the fea-
ture selection scheme of RFs was able
to identify important genes of biologi-
cal significance.

Gao et al.
(2009)

Astronomy Astronomical Ob-
ject Classification

Conducted some experiments on multi-
wavelength data classification. Results
showed that RFs proved effective for
astronomical object classification.

Flaxman
et al.
(2011)

Autopsy Cause of Death
Prediction

Introduced a new computer-coded ver-
bal autopsy (CCVA) method using RFs
to predict cause of death.

Zaklouta
et al.
(2011)

Traffic and
Transport
Planning

Traffic Signs Clas-
sification

Used K-d trees and RFs to classify
43 types of traffic signs using different
size Histogram of Oriented Gradients
(HOG) descriptors and distance trans-
forms.

Löw
et al.
(2012)

Agriculture Accurate Classifi-
cation of Crops

Used a combination of RFs and Sup-
port Vector Machine (SVM) classifiers
to improve crop classification accuracy,
and to provide spatial information on
map uncertainty.

Boulesteix
et al.
(2012)

Bioinformatics Recent Develop-
ments Survey in
Bioinformatics

Amalgamated ten years of RFs devel-
opment including representative exam-
ples of RFs applications in this domain.
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3.4 Strengths

Key advantages of RF over its AdaBoost counterpart are robustness to noise and over-

fitting Breiman (2001), Liaw and Wiener (2002), Robnik-Šikonja (2004), Boinee et al.

(2005). Overfitting generally occurs when a model is constructed in such a way that it

fits the data more than is warranted. A model which overfits will generally have poor

predictive performance, as it does not generalize well. By generalization we mean how

well will the model make predictions for cases that are not in the training set. Hawkins

et al. (2004) pointed out that overfitting adds complexity to a model without any gain in

performance, or even worse, leads to poorer performance. A classifier that suffers from

overfitting is likely to have a low error rate for the training instances (in-bag-instances),

and a higher error rate for the out-of-bag instances.

Other strengths as listed in the original paper on RFs Breiman (2001) are (1) accuracy is

as good as AdaBoost and sometimes better; (2) it’s faster than bagging or boosting; (3)

it gives useful internal estimates of error, strength, correlation and variable importance;

and (4) it’s simple and easily parallelized.

3.5 Weaknesses

Though RFs have proven to be the leading ensemble classification technique according

to an evaluation study made by Fernández-Delgado et al. (2014), where 179 classifiers

arising from 17 families were evaluated, RFs do have some weaknesses. Firstly, because

current RFs algorithms tend to build ensembles with the number of trees in the range 100

to 500 Williams (2011), such ensembles are not suitable for real-time applications where

fast classification is an important desideratum. Secondly, for high-dimensional datasets,

RFs algorithms are likely to produce highly-correlated trees which can increase the forest

error rate Breiman (2001), Bernard et al. (2010). Thirdly, feature interaction is not an

inherent characteristic of RFs where decision trees are constructed without considering

that certain features interact well with some features but not well with others.

To remedy the first weakness, we have developed the enhancements CLUB-DRF and

LOFB-DRF in Chapters 4 and 5 respectively to extreme prune RFs. In doing so,

the classification speed is improved significantly making these enhancements ideal for
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real-time applications. As for the second and third weaknesses, we have developed the

enhancements DSB-RF and RDB-DRF in Chapters 6 and 7 respectively to improve

feature interaction and to reduce the correlation among trees.

3.6 Summary

A gentle introduction to Random Forests was presented in this chapter. As a leading

state of the art classification and regression technique that is robust to overfitting, Ran-

dom Forests have been used extensively in many applications as outlined in Section 3.3.

Needles to say that Random Forests have proven to be the best family of classifiers

among 17 families Fernández-Delgado et al. (2014), and a former winner of predictive

modeling and analytics competitions held by Kaggle Narayanan et al. (2011). A Ran-

dom Forest ensemble consists of a collection of decision trees where each decision tree

is constructed from a sample with replacement from the training data as depicted in

Algorithm 1. Strengths and weaknesses have been described with special attention to

the weaknesses that will be addressed in this thesis. In the next chapter, we introduce

the CLUB-DRF enhancement to produce pruned Random Forests ensembles that are

much smaller in size than the original ones, and tend to perform better.
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Chapter 4

CLUstering-Based Diverse

Random Forest (CLUB-DRF)

4.1 Overview

Findings reported in this chapter have been published in Fawagreh et al. (2015). This

chapter introduces the first enhancement related to extreme pruning which we have

termed CLUB-DRF. As will be demonstrated in the experimental study, we have achieved

extreme pruning levels reaching as high as 99% (to the best of our knowledge, this is

the highest pruning level ever reported) while retaining or outperforming the accuracy

of the original RF from which CLUB-DRF was derived. This makes CLUB-DRF ideal

for real-time applications where classification speed is an important factor.

4.2 Background

Compared with other ensemble techniques, RFs, introduced in the previous chapter, have

proved its accuracy and superiority Fernández-Delgado et al. (2014). Many researchers,

however, believe that there is still room for enhancing and improving its performance

accuracy. This explains why, over the past decade, there have been many extensions

of RF where each extension employed a variety of techniques and strategies to improve

certain aspect(s) of it. As discussed in Section 2.3, since it has been proven empirically

that ensembles tend to yield better results when there is a significant diversity among
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the constituent models, the objective of this chapter is twofold. First, it investigates

how data clustering (a well known diversity technique) can be applied to identify groups

of similar decision trees in RFs in order to eliminate redundant trees by selecting a

representative from each group (cluster). Second, these likely diverse representatives

are then used to produce an enhancement of RF, termed CLUB-DRF, that is much

smaller in size than RF, and yet performs at least as good as RF, and mostly exhibits

higher performance in terms of accuracy. The latter refers to a known technique called

ensemble pruning (see Section 2.4 in Chapter 2). Experimental results on 15 real datasets

from the UCI repository prove the superiority of our proposed enhancement over the

traditional RF. Most of the experiments achieved unprecedented extreme pruning levels

reaching as high as 99% while retaining or outperforming the RF accuracy.

4.2.1 Motivation

Current RF algorithms tend to build between 100 and 500 trees Williams (2011). Some

empirical and theoretical studies have also clearly demonstrated that adding more trees

to an RF beyond a certain number (i.e. 500) won’t necessarily improve the RF accu-

racy Bernard et al. (2009). Our research aims at pruning RF ensembles by producing

subsets of the original ones that are significantly smaller in size and yet, have accuracy

performance that is at least as good as that of the original RF from which they were

derived. In other words, we are aiming at finding the optimial or near-optimal number

of trees that will be used to generate an accurate RF.

4.3 Clustering

Clustering has been used extensively as a diversity technique in many applications Li

et al. (2010), Kuncheva and Hadjitodorov (2004), Brown and Martin (1998), Sheme-

tulskis et al. (1995), Lee et al. (2008), Sharpton et al. (2012). Unlike classification,

clustering is an unsupervised learning technique that attempts to organize objects into

clusters (groups) where the members in one cluster are more similar to each other than

those members in other clusters. Each group is referred to as a cluster, hence, a cluster

is a group of similar objects which are dissimilar to other objects belonging to other

clusters. Clustering is considered a data exploration method as it helps to unveil the
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natural grouping in a dataset without a prior knowledge of the groups to be produced.

One of the earliest and most popular clustering algorithms is called K-means. It was

developed by MacQueen et al. MacQueen et al. (1967) in the late sixties and despite its

seniority, it is still considered as one of the most widely used algorithms, mainly due to

its simplicity, efficiency, and empirical success Jain (2010).

Unfortunately, however, this algorithm has a limitation that it only works with numerical

data. To overcome this limitation, there have been some extensions of this algorithm

to work with categorical data Huang (1998) Huang and Ng (1999) San et al. (2004).

Huang Huang (1998) developed an extension of K-means called K-modes that uses modes

instead of means, and can handle categorical data using the following simple matching

dissimilarity measure:

d1 =

m∑
j=1

δ(xj , yj) (4.1)

where x, y be two categorical objects with m categorical attributes, xj and yj (j=1..m)

refer to the categorical attributes of X and Y respectively and

δ(xj , yj) =


0, if xj = yj

1, otherwise

(4.2)

According to the above dissimilarity measure, for the two categorical objects provided,

the total number of discrepancies, of the corresponding attribute categories, is calculated.

The similarity of the two objects is conversely proportional to the number of mismatches;

the smaller it is, the more similar the two objects are. Algorithm 2 outlines the main

steps involved in the K-modes algorithm Huang (1997) where the constant k refers to the

number of clusters to be created and Objects refers to the set of objects to be clustered.

The algorithm starts by assigning an initial mode to each cluster. Each object is then

allocated to the cluster whose mode is nearest to it according to Equation 4.1. After

each allocation, the modes are updated and the dissimilarity of each object against the

current modes is retested. If the object’s nearest mode belongs to another cluster, it is

moved to that cluster. This process is repeated until no further movement of objects is

possible between clusters.
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Algorithm 2 K-modes Algorithm

{User Settings}
input k, Objects
{Process}
Create a set Clusters containing k clusters
Select k initial modes, one for each cluster
for i = 1→ Objects.size() do

for j = 1→ k do
if (isNearestTo(Objects.element(i), Clusters.element(j))) then

Allocate(Objects.element(i),Clusters.element(j))
UpdateMode(Clusters.element(j))

end if
end for

end for
repeat

for i = 1→ Objects.size() do
for j = 1→ k do

if (isNearestTo(Objects.element(i), Clusters.element(j))) then
m=findCurrentCluster(Objects.element(i))
Reallocate(Objects.element(i), Clusters.element(j))
UpdateMode(Clusters.element(m))
UpdateMode(Clusters.element(j))

end if
end for

end for
until No More Movement of Objects Between Clusters
{Output}
Clusters

In the experimental stage we will be using a popular machine learning software suite

called Waikato Environment for Knowledge Analysis (WEKA) Hall et al. (2009). This

suite comes with a clustering algorithm called SimpleKMeans that integrates K-means

and K-modes to work with both numerical and categorical data.

4.4 CLUB-DRF

In this section, we propose an enhancement of RF called CLUB-DRF that spawns a

child RF that is 1) much smaller in size than the parent RF and 2) has an accuracy that

is at least as good as that of the parent RF. In the remainder of this chapter, we will

refer to the parent/original traditional RF as simply RF, and refer to the resulted child

RF based on our method as CLUB-DRF.



Chapter 4. CLUstering-Based Diverse Random Forest (CLUB-DRF) 42

4.4.1 CLUB-DRF Algorithm

Figure 4.1 shows the CLUB-DRF approach and the corresponding algorithm is displayed

in Algorithm 3 below where T refers to the training dataset and N refers to the number

of training samples. The constant k refers to the number of clusters to be created which

we define as a multiple of 5 in the range 5 to 40. This way and as we shall see in the

experimental section, we can compare the performance of CLUB-DRF of different sizes

with that of RF. As outlined in the experimental section, the size of the parent RF to

be created is 500 trees. When the number of clusters is multiple of 5 in the range 5 to

40, this means the pruning levels will be in the range 99% to 92% respectively, which we

consider a reasonable range for extreme pruning. Initially, we considered a maximum of

50 clusters to achieve pruning levels in the range 99% to 90%, however, an empty cluster

problem Pakhira (2009) surfaced so we had to reduce the maximum to 40 clusters.

As shown in Algorithm 3, a clustering-based technique is applied to produce diverse

groups of trees in RF. Assuming that the trees in RF are denoted by the vector
−→
RF=<t1, t2,· · · ,tn> (where n is number of trees in RF ), and the training set is de-

noted by T={r1,r2,· · · ,rm}. Each tree in RF will then be used to classify each record

in the training set to determine the class label c. We use C(ti, T ) (where ti ∈
−→
RF ) to

denote a vector of class labels obtained after having ti classify the training set T . That

is, C(ti, T ) = <ci1, ci2, · · · , cim>. The result obtained of having each tree classify the

training records will therefore be a super vector
−→
Å containing class labels vectors as

classified by each tree:
−→
Å = C(t1, T ) ∪ C(t2, T ) ∪ ...C(tn, T )

This set will be fed as input to a clustering algorithm as shown in Figure 4.1. When

clustering is completed, we will have a set of clusters where each cluster contains vec-

tors that are similar and likely to have the least number of discrepancies. For example,

using a training set of 5 records with the class label being a boolean (Y/N), the vectors

<Y, Y, Y,N,N> and <Y, Y, Y, Y,N> are likely to fall in the same cluster. However, the

vectors <Y, Y, Y,N,N> and <Y,N,N, Y, Y > are likely to appear in different clusters

because there are many discrepancies in the class labels. As defined above, since a

cluster contains similar objects that are not similar to other objects belonging to other

clusters, a vector of class labels as classified by a tree in one cluster will be dissimilar

(different) from another vector belonging to another cluster, and this means that the

two vectors are diverse.
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Figure 4.1: CLUB-DRF Approach

It is important to remember that the size of the resulted CLUB-DRF is determined by

the number of clusters used. For example, if the number of the clusters is 5, then the

resulted CLUB-DRF will have size 5, and so on.

The final step in the algorithm is to select a representative from each cluster. For this,

three variations will be used and are discussed next.

4.4.1.1 Best Representative on Training CLUB-DRF

In this variation, from each cluster, we loop over the instances in each cluster and find

the accuracy of their corresponding trees on the training data. The representative tree

selected from each cluster is the one that has achieved the highest performance on the

training data. According to Algorithm 3, the tree will then be added to CLUB-DRF.

The resulted CLUB-DRF that uses this variation will be refrred to as BestRepOnTrain-

ing CLUB-DRF.
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Algorithm 3 CLUB-DRF Algorithm

{User Settings}
input T , N , k
{Process}
Create an empty vector

−→
Å

Create an empty vector
−→
RF

Create an empty vector
−−−−−−−−−→
CLUB-DRF

Using N, call Random Forests Algorithm (Algorithm 1, Chapter 3) to create
−→
RF

for i = 1→
−→
RF.size() do

−→
Å =

−→
Å ∪ C(

−→
RF.tree(i), T )

end for
Cluster

−→
Å into a set of k clusters: cluster1 ... clusterk

for i = 1→ k do
Find a representative C(

−→
RF.tree(j), T ) in clusteri

Add its
−→
RF.tree(j) to

−−−−−−−−−→
CLUB-DRF

end for
{Output}
A vector of trees

−−−−−−−−−→
CLUB-DRF

4.4.1.2 Best Representative on OOB CLUB-DRF

In this variation, a similar approach is used as in the previous variation except that

we pick the tree that has achieved the highest performance on the out-of-bag (OOB)

instances. As mentioned in Section 3.2 in Chapter 3, these are the instances that were

not included in the sample with replacement that was used to build the tree, and they

account for about 36% of the total number of instances. Using the OOB samples to

evaluate a tree gives an unbiased estimate of its predictive accuracy since, unlike training

data that was seen by the tree when it was built, OOB data was not seen and therefore,

it is a more accurate measure of the tree’s predictive accuracy. The resulted CLUB-DRF

that uses this variation will be referred to as BestRepOnOOB CLUB-DRF.

4.4.1.3 Random Representative CLUB-DRF

In this variation, from each cluster, we randomly pick an instance and select its corre-

sponding tree without assessing its performance. The resulted CLUB-DRF that uses

this variation will be referred to as RandomRep CLUB-DRF. Unlike the previous two

variations which have been overfitted on the training and OOB samples respectively,

this variation does not suffer from overfitting as accuracy was not involved as a selection

criterion in the selection of the representative.
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4.5 Experimental Study

For our experiments, 15 real datasets with varying characteristics from the UCI reposi-

tory Bache and Lichman (2013) have been used. Table 4.1 below lists these datasets in

ascending order by the number of instances. These datasets will also be used in all the

other proposed enhancements in Chapters 5, 6, and 7.

Table 4.1: Experiments Datasets

Name Number of Features Number of Instances

pasture 23 36

squash-unstored 24 52

squash-stored 25 52

white-clover 32 63

sonar 61 208

glass 10 214

breast-cancer 10 286

vote 17 435

soybean 36 683

eucalyptus 20 736

diabetes 9 768

vehicle 19 846

credit 21 1000

car 7 1728

audit 13 2000

To use the holdout testing method, each dataset was divided into 2 sets: training and

testing. Two thirds (66%) were reserved for training and the rest (34%) for testing. The

size of the parent RF (refer back to Figure 4.1) was 500 trees; a typical upper limit

setting for RFs Williams (2011). This upper limit was chosen for two main reasons.

First, the more trees we have, the more diverse ones we can get. Secondly, for many

clusters, the more trees there are, the more unlikely the problem of empty clusters

Pakhira (2009) will surface.

The CLUB-DRF algorithm described above was implemented using the Java program-

ming language utilizing the API of WEKA Hall et al. (2009). It was run 10 times on

each dataset where a new RF was created in each run. The average of the 10 runs for

each resulted CLUB-DRF was calculated to produce the average for a variety of metrics

including accuracy, standard deviation, F-Measure, and Area Under Curve (AUC). The

minimum and maximum accuracy obtained over the 10 runs for each cluster increment
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were also calculated. For RF, only the average accuracy, F-Measure, and AUC have

been calculated as shown in the last 3 columns in Tables 4.2, 4.4, and 4.6.

Due to the lack of a generally accepted formal definition for measuring diversity in

ensembles, and the discouraging effectiveness of existing diversity measures Kuncheva

and Whitaker (2003) as discussed in Subsection 2.6.1, no diversity measure was ever

implemented in this chapter’s experiments, and hence, no diversity metrics were ever

reported. This also applies to experiments carried out in other chapters.

4.5.1 Results

Results of the above 3 variations of CLUB-DRF on the 15 datasets are reported next. In

the result tables of all variations, the average accuracy of the resulted CLUB-DRF has

been highlighted in boldface when it is greater than that of RF, and underlined when it

is equal to that of RF. In this section, for simplicity, we will refer to the resulted forest

produced by each variation as CLUB-DRF.

4.5.1.1 Best Representative on Training CLUB-DRF Results

Table 4.2 compares the performance of CLUB-DRF and RF. Taking a closer look at this

table, observe that CLUB-DRF outperformed RF on 14 datasets. Interestingly enough,

of the 14 datasets, in all settings of CLUB-DRF, CLUB-DRF completely outperformed

RF on 5 of the datasets, namely, pasture, eucalyptus, car, sonar, and vehicle. More

precisely, a pruned RF using CLUB-DRF, regardless of its size, outperformed RF. For

the sonar dataset, the poor performance by both RF and CLUB-DRF is attributed

to the fact that this dataset is a timer-series dataset, and trees in general do not work

well with such datasets. Nevertheless, as shown in Table 4.2, the pruned CLUB-DRF

ensemble outperformed the original RF ensemble which is what ensemble pruning is all

about.

When comparing the best performer CLUB-DRF accuracy with that of RF for each

dataset, the result is statistically significant as demonstrated by a p-value of 0.003237

using the paired t-test with 95% confidence.
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Table 4.2: BestRepOnTraining CLUB-DRF & RF

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

breast-cancer

5 69.07 60.82 72.16 3.23 0.65 0.59 69.79 0.63 0.58

10 72.37 70.10 77.32 2.10 0.64 0.59

15 70.31 67.01 72.16 1.65 0.64 0.59

20 71.34 67.01 74.23 2.39 0.64 0.59

25 70.21 67.01 75.26 2.54 0.64 0.58

30 69.69 65.98 73.20 2.07 0.63 0.58

35 69.48 65.98 73.20 2.36 0.64 0.58

40 70.82 69.07 73.20 1.39 0.64 0.58

audit

5 96.15 93.81 97.35 0.93 0.92 0.89 96.56 0.92 0.88

10 96.70 96.46 96.90 0.14 0.93 0.89

15 96.42 95.87 96.61 0.20 0.92 0.88

20 96.68 96.46 96.90 0.15 0.92 0.89

25 96.36 95.87 96.61 0.22 0.92 0.88

30 96.55 96.31 96.90 0.20 0.92 0.88

35 96.47 96.31 96.90 0.18 0.92 0.88

40 96.59 96.46 96.76 0.10 0.92 0.88

credit

5 77.88 69.12 88.24 6.03 0.68 0.63 77.18 0.67 0.61

10 77.29 71.76 81.76 3.28 0.68 0.62

15 78.15 75.29 80.29 1.87 0.68 0.62

20 77.65 75.88 80.00 1.45 0.67 0.62

25 76.62 75.00 78.53 0.94 0.67 0.62

30 76.74 74.71 78.24 1.09 0.67 0.61

35 76.41 74.12 79.12 1.40 0.67 0.61

40 76.47 73.82 78.24 1.27 0.67 0.61

pasture

5 48.33 25.00 66.67 13.84 0.48 0.60 42.50 0.43 0.57

10 60.00 33.33 83.33 15.72 0.45 0.57

15 45.00 25.00 66.67 13.02 0.43 0.56

20 51.67 33.33 66.67 11.06 0.44 0.56

25 47.50 33.33 75.00 12.94 0.44 0.57

30 54.17 41.67 75.00 10.70 0.45 0.58

35 44.17 25.00 58.33 9.17 0.43 0.56

40 49.17 41.67 58.33 6.92 0.43 0.57

squash-unstored

5 75.00 41.67 91.67 13.44 0.61 0.71 68.33 0.58 0.70

10 74.17 58.33 83.33 7.86 0.61 0.72

15 71.67 41.67 91.67 12.47 0.60 0.71

20 74.17 58.33 91.67 10.83 0.61 0.71

25 66.67 58.33 83.33 9.13 0.59 0.71

30 72.50 58.33 83.33 9.17 0.60 0.71

35 70.00 58.33 83.33 6.67 0.59 0.71

40 66.67 50.00 75.00 10.54 0.59 0.69

squash-stored

5 62.50 41.67 83.33 11.33 0.56 0.64 57.50 0.50 0.58

10 63.33 50.00 75.00 7.64 0.54 0.62

15 56.67 50.00 75.00 7.26 0.52 0.60

20 61.67 50.00 66.67 5.53 0.53 0.61

25 55.00 41.67 75.00 8.50 0.53 0.61

30 56.67 50.00 66.67 6.24 0.53 0.60

35 54.17 41.67 66.67 7.68 0.52 0.60

40 57.50 41.67 66.67 6.92 0.50 0.59

white-clover

5 71.43 64.29 78.57 5.53 0.62 0.55 75.00 0.60 0.55

10 69.29 50.00 78.57 9.61 0.62 0.57

15 74.29 64.29 85.71 6.55 0.62 0.57

Continued on next page
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Table 4.2 – continued from previous page

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

20 76.43 64.29 92.86 8.48 0.62 0.56

25 72.14 64.29 85.71 6.74 0.61 0.56

30 69.29 50.00 78.57 7.86 0.61 0.57

35 75.00 71.43 85.71 5.76 0.61 0.56

40 75.71 71.43 85.71 4.74 0.60 0.55

eucalyptus

5 60.74 50.92 71.17 7.72 0.53 0.71 47.67 0.51 0.70

10 54.42 49.08 63.19 4.24 0.53 0.72

15 51.60 48.47 56.44 2.46 0.52 0.71

20 51.66 46.01 57.06 3.52 0.52 0.71

25 50.25 46.01 54.60 2.29 0.51 0.70

30 51.41 47.24 56.44 2.87 0.51 0.70

35 50.12 47.85 52.15 1.45 0.51 0.70

40 50.00 47.24 52.76 1.72 0.51 0.70

soybean

5 84.97 80.79 89.40 3.09 0.79 0.90 82.45 0.75 0.89

10 83.25 77.48 88.08 3.48 0.76 0.89

15 82.65 79.47 88.74 2.85 0.76 0.89

20 81.92 77.48 85.43 2.79 0.75 0.89

25 82.52 77.48 85.43 2.28 0.76 0.89

30 82.72 80.13 84.11 1.05 0.75 0.89

35 82.12 80.79 83.44 0.84 0.75 0.89

40 82.58 80.13 86.75 1.80 0.75 0.89

diabetes

5 80.08 73.56 85.82 4.92 0.71 0.68 81.26 0.71 0.67

10 81.38 77.01 84.67 2.17 0.71 0.68

15 79.96 75.86 83.52 2.31 0.71 0.68

20 80.23 78.16 83.14 1.42 0.71 0.67

25 79.69 76.63 82.76 1.80 0.71 0.67

30 80.34 78.16 82.38 1.52 0.71 0.67

35 81.34 79.31 82.76 1.00 0.71 0.67

40 80.88 79.31 82.76 0.99 0.71 0.67

glass

5 74.93 65.75 84.93 6.51 0.66 0.77 68.90 0.63 0.75

10 71.23 65.75 79.45 4.58 0.65 0.76

15 71.23 67.12 76.71 2.74 0.65 0.76

20 70.68 65.75 80.82 3.98 0.65 0.76

25 68.90 64.38 75.34 3.19 0.64 0.76

30 70.41 65.75 72.60 2.14 0.64 0.76

35 68.77 64.38 71.23 2.36 0.64 0.76

40 69.04 65.75 71.23 1.64 0.64 0.76

car

5 63.62 61.90 66.33 1.33 0.56 0.79 62.41 0.56 0.78

10 62.98 61.73 64.46 0.79 0.55 0.78

15 62.60 60.88 64.97 1.11 0.56 0.78

20 62.89 61.90 63.78 0.57 0.56 0.79

25 62.74 61.56 63.95 0.67 0.56 0.78

30 62.47 61.73 63.27 0.54 0.56 0.78

35 62.53 60.54 63.95 0.97 0.56 0.78

40 62.55 61.56 63.61 0.60 0.56 0.78

sonar

5 12.68 4.23 36.62 10.82 0.26 0.00 0.70 0.30 0.00

10 6.62 1.41 12.68 2.96 0.26 0.00

15 4.79 1.41 7.04 2.11 0.27 0.00

20 4.23 0.00 12.68 3.27 0.28 0.00

25 3.10 1.41 5.63 1.64 0.29 0.00

30 3.94 0.00 7.04 2.25 0.29 0.00

35 3.94 1.41 7.04 1.97 0.29 0.00

40 2.39 0.00 5.63 1.89 0.29 0.00

Continued on next page
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Table 4.2 – continued from previous page

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

vehicle

5 73.72 67.71 83.68 4.47 0.67 0.78 69.69 0.65 0.77

10 73.02 68.40 77.78 3.15 0.66 0.77

15 72.74 68.40 76.74 2.45 0.66 0.77

20 70.90 68.40 75.69 2.21 0.66 0.77

25 70.28 68.75 73.96 1.47 0.65 0.77

30 69.90 68.06 71.53 1.10 0.65 0.76

35 70.38 69.10 72.92 1.07 0.66 0.77

40 70.45 67.71 72.92 1.34 0.65 0.77

vote

5 94.73 92.57 95.95 0.95 0.92 0.95 95.95 0.91 0.94

10 95.47 94.59 96.62 0.68 0.92 0.94

15 95.41 94.59 95.95 0.51 0.91 0.94

20 95.61 94.59 95.95 0.45 0.91 0.94

25 95.68 94.59 95.95 0.45 0.92 0.94

30 95.68 95.27 95.95 0.33 0.91 0.94

35 95.61 94.59 95.95 0.45 0.91 0.94

40 95.74 95.27 95.95 0.31 0.91 0.94

As demonstrated in Table 4.2, since for each dataset, 8 CLUB-DRF s of multiple of 5 sizes in the

range 5 to 40 have been generated, Table 4.3 shows some performance statistics for this variation

including RF (the parent) performance, the number of winning CLUB-DRF s, and accuracy of

best and worst CLUB-DRF performers. As demonstrated in the 3rd column of the table, it is

easy to observe that CLUB-DRF outperformed RF on 14/15 datasets. For the vote dataset

where RF outperformed CLUB-DRF, the difference was by only 0.21% when compared with the

best performer CLUB-DRF.

Table 4.3: Performance Statistics of BestRepOnTraining CLUB-DRF

Dataset RF Accuracy # of Winning
CLUB-DRFs

Best Accuracy Worst Accuracy

breast-cancer 69.79% 5 72.37% 69.07%

audit 96.56% 3 96.70% 96.15%

credit 77.18% 4 78.15% 76.41%

pasture 42.50% 8 60.00% 44.17%

squash-unstored 68.33% 6 75.00% 66.67%

squash-stored 57.50% 3, 1 tie 63.33% 54.17%

white-clover 75.00% 2, 1 tie 76.43% 69.29%

eucalyptus 47.67% 8 60.74% 50.00%

soybean 82.45% 6 84.97% 81.92%

diabetes 81.26% 2 81.38% 79.69%

glass 68.90% 6, 1 tie 74.93% 68.77%

car 62.41% 8 63.62% 62.47%

sonar 0.70% 8 12.68% 2.39%

vehicle 69.69% 8 73.72% 70.28%

vote 95.95% 0 95.74% 94.73%
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4.5.1.2 Best Representative on OOB CLUB-DRF Results

Table 4.4 compares the performance of CLUB-DRF and RF. As demonstrated in this table,

CLUB-DRF outperformed RF on 13 datasets. Of the 13 datasets, interestingly enough, CLUB-

DRF, regardless of its size, outperformed RF on 6 of the datasets, namely, breast-cancer, pasture,

eucalyptus, glass, sonar, and vehicle. Table 4.5 shows performance statistics for this variation.

As shown in the table, for the audit and vote datasets where RF outperformed CLUB-DRF,

the outperformance was only by 0.06% (in the case of audit), and only by 0.14% (in the case

of vote). After applying the paired t-test for this variation, a p-value of 0.001087 was obtained

indicating that the result is statistically significant.

Table 4.4: Performance Metrics of BestRepOnOOB CLUB-DRF & RF

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

breast-cancer

5 71.24 65.98 77.32 3.34 0.64 0.59 69.18 0.63 0.58

10 72.16 69.07 76.29 2.53 0.64 0.59

15 70.21 67.01 75.26 2.28 0.64 0.59

20 72.58 67.01 75.26 2.45 0.64 0.59

25 69.59 67.01 73.20 1.61 0.64 0.59

30 71.65 69.07 74.23 1.68 0.64 0.59

35 69.48 65.98 72.16 1.68 0.64 0.59

40 71.44 67.01 73.20 2.01 0.64 0.58

audit

5 95.86 93.22 97.05 1.19 0.92 0.88 96.53 0.92 0.88

10 96.18 94.99 96.76 0.49 0.91 0.87

15 96.06 95.43 96.76 0.50 0.91 0.88

20 96.47 95.58 97.05 0.41 0.91 0.87

25 96.30 95.87 96.61 0.31 0.91 0.87

30 96.42 96.17 96.61 0.15 0.91 0.87

35 96.39 95.72 96.61 0.25 0.91 0.87

40 96.42 96.17 96.76 0.18 0.91 0.87

credit

5 79.68 72.06 87.94 5.06 0.68 0.62 77.47 0.67 0.61

10 78.74 75.00 82.65 2.38 0.68 0.62

15 77.97 75.59 80.29 1.84 0.68 0.62

20 76.24 73.24 78.53 1.60 0.67 0.62

25 77.35 75.00 80.29 1.53 0.67 0.61

30 77.00 75.29 78.82 1.29 0.67 0.61

35 76.94 75.29 78.53 1.02 0.67 0.61

40 77.29 75.00 78.53 1.10 0.67 0.61

pasture

5 43.33 16.67 66.67 15.72 0.45 0.55 41.67 0.43 0.57

10 55.83 33.33 75.00 13.46 0.45 0.58

15 45.00 16.67 66.67 15.90 0.43 0.56

20 49.17 41.67 66.67 9.46 0.43 0.56

25 45.00 16.67 58.33 13.02 0.44 0.55

30 45.83 33.33 66.67 10.03 0.42 0.55

35 42.50 25.00 58.33 10.17 0.44 0.57

40 45.00 25.00 66.67 11.90 0.42 0.55

squash-unstored

5 76.67 50.00 100.00 12.25 0.63 0.72 72.50 0.58 0.70

10 80.00 75.00 83.33 4.08 0.64 0.73

15 70.83 58.33 83.33 10.03 0.62 0.72

20 79.17 66.67 91.67 7.68 0.60 0.72

Continued on next page
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Table 4.4 – continued from previous page

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

25 75.83 66.67 83.33 4.49 0.61 0.72

30 72.50 50.00 83.33 12.94 0.59 0.70

35 75.00 58.33 91.67 9.13 0.59 0.70

40 70.00 50.00 83.33 12.47 0.58 0.70

squash-stored

5 63.33 50.00 91.67 13.02 0.57 0.64 55.83 0.50 0.58

10 65.00 50.00 83.33 9.72 0.55 0.62

15 54.17 41.67 66.67 8.54 0.51 0.59

20 65.00 58.33 83.33 7.26 0.54 0.62

25 53.33 41.67 58.33 6.67 0.52 0.61

30 55.00 50.00 66.67 6.67 0.52 0.60

35 52.50 41.67 66.67 6.51 0.50 0.59

40 56.67 50.00 66.67 6.24 0.52 0.60

white-clover

5 75.00 57.14 92.86 10.23 0.62 0.58 77.14 0.60 0.55

10 75.71 50.00 85.71 11.16 0.62 0.57

15 67.86 57.14 85.71 10.23 0.61 0.55

20 72.14 57.14 78.57 7.46 0.60 0.55

25 72.14 57.14 85.71 10.81 0.62 0.57

30 79.29 57.14 92.86 9.82 0.62 0.57

35 73.57 64.29 85.71 6.43 0.62 0.57

40 73.57 64.29 78.57 4.57 0.62 0.56

eucalyptus

5 55.46 45.40 61.96 5.78 0.52 0.71 48.40 0.51 0.70

10 56.20 46.63 63.80 5.74 0.52 0.71

15 52.52 47.24 59.51 3.45 0.52 0.71

20 50.74 45.40 52.15 2.05 0.51 0.70

25 52.15 47.85 55.21 1.96 0.52 0.71

30 49.26 45.40 53.99 2.65 0.51 0.70

35 51.23 47.85 55.21 2.00 0.51 0.70

40 50.18 45.40 53.99 2.66 0.51 0.70

soybean

5 83.97 78.15 92.72 4.10 0.76 0.89 82.32 0.75 0.89

10 82.52 80.13 84.77 1.57 0.76 0.89

15 84.11 80.79 88.08 2.05 0.76 0.89

20 82.05 78.81 84.11 1.86 0.75 0.89

25 82.05 79.47 84.77 2.00 0.75 0.89

30 81.32 76.16 84.77 2.33 0.75 0.88

35 82.05 79.47 84.11 1.55 0.75 0.88

40 81.99 78.81 84.11 1.44 0.75 0.89

diabetes

5 80.80 74.71 84.29 3.53 0.72 0.68 81.26 0.71 0.67

10 81.15 74.71 84.29 3.56 0.71 0.68

15 79.85 77.39 83.14 1.96 0.71 0.67

20 81.42 79.31 83.14 1.24 0.71 0.67

25 80.96 78.93 82.76 1.31 0.71 0.67

30 80.88 78.54 82.76 1.14 0.71 0.67

35 79.81 77.39 81.99 1.40 0.71 0.67

40 81.38 80.08 83.14 0.94 0.71 0.67

glass

5 76.16 64.38 84.93 5.62 0.65 0.76 67.53 0.63 0.75

10 68.36 61.64 75.34 4.52 0.64 0.76

15 71.37 65.75 78.08 3.65 0.64 0.76

20 70.82 67.12 73.97 2.30 0.64 0.76

25 68.22 64.38 71.23 2.01 0.63 0.75

30 70.41 67.12 76.71 2.75 0.64 0.76

35 69.32 67.12 72.60 1.86 0.63 0.76

40 68.77 63.01 71.23 2.51 0.64 0.76

car

Continued on next page
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CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

5 64.17 62.41 67.52 1.33 0.56 0.78 62.26 0.56 0.78

10 63.01 61.56 64.29 0.75 0.56 0.78

15 62.36 60.71 64.29 1.12 0.56 0.78

20 62.35 61.22 63.78 0.82 0.56 0.78

25 62.69 60.88 63.95 0.85 0.56 0.78

30 62.18 61.05 63.10 0.82 0.56 0.78

35 61.96 60.88 63.61 0.72 0.56 0.78

40 61.99 61.05 62.59 0.54 0.55 0.78

sonar

5 12.25 7.04 18.31 3.34 0.26 0.00 0.14 0.29 0.00

10 9.15 0.00 16.90 5.20 0.28 0.00

15 6.34 0.00 14.08 4.47 0.29 0.00

20 3.38 0.00 8.45 2.76 0.29 0.00

25 3.10 0.00 7.04 2.42 0.28 0.00

30 1.83 0.00 4.23 1.27 0.28 0.00

35 3.38 0.00 4.23 1.29 0.28 0.00

40 3.38 0.00 9.86 2.69 0.28 0.00

vehicle

5 72.01 67.36 81.25 4.76 0.66 0.77 69.90 0.65 0.77

10 72.43 64.58 81.25 5.22 0.66 0.77

15 71.25 67.71 76.04 2.76 0.65 0.77

20 71.49 69.44 73.96 1.28 0.65 0.77

25 70.94 69.44 72.92 1.42 0.65 0.77

30 71.25 68.75 75.00 2.03 0.66 0.77

35 70.10 67.71 71.53 1.12 0.65 0.77

40 70.45 68.75 72.57 1.07 0.65 0.77

vote

5 94.53 91.89 97.30 1.37 0.91 0.94 95.95 0.91 0.94

10 95.74 95.27 96.62 0.43 0.91 0.94

15 95.27 93.92 96.62 0.80 0.91 0.94

20 95.61 94.59 96.62 0.54 0.91 0.94

25 95.74 94.59 95.95 0.43 0.91 0.94

30 95.81 95.27 96.62 0.41 0.91 0.94

35 95.68 95.27 95.95 0.33 0.91 0.94

40 95.81 94.59 96.62 0.51 0.91 0.94

4.5.1.3 Random Representative CLUB-DRF Results

Table 4.6 compares the performance of CLUB-DRF and RF. As expected and as shown in the

table, CLUB-DRF did not perform as well as the previous 2 variations of CLUB-DRF. This can

be attributed to the fact that, unlike the previous 2 variations where accuracy was the decisive

factor in selecting a representative from each cluster, in this variation, a representative tree was

randomly picked without assessing its performance accuracy. This emphasizes the importance of

using some sort of accuracy measure when selecting a representative from each cluster. Table 4.7

shows performance statistics for this variation. Despite the fact that RF outperformed CLUB-

DRF, the interesting observation is that, for the datasets where RF outperformed CLUB-DRF,

the outperformance between RF and the best performer CLUB-DRF for such datasets was less
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Table 4.5: Performance Statistics of BestRepOnOOB CLUB-DRF

Dataset RF # of Winning
CLUB-DRFs

Best Performer Worst Performer

breast-cancer 69.18% 8 72.58% 69.48%

audit 96.53% 0 96.47% 95.86%

credit 77.47% 3 79.68% 76.24%

pasture 41.67% 8 55.83% 42.50%

squash-unstored 72.50% 5, 1 tie 80.00% 70.00%

squash-stored 55.83% 4 65.00% 52.50%

white-clover 77.14% 1 79.29% 67.86%

eucalyptus 48.40% 8 56.20% 49.26%

soybean 82.32% 3 84.11% 81.32%

diabetes 81.26% 2 81.42% 79.81%

glass 67.53% 8 76.16% 68.22%

car 62.26% 5 64.17% 61.96%

sonar 0.14% 8 12.25% 1.83%

vehicle 69.90% 8 72.43% 70.10%

vote 95.95% 0 95.81% 94.53%

than 5%. Due to the unsatisfactory performance of this variation, the p-value for this variation

using the paired t-test was 0.9739 which is statistically insignificant.

Table 4.6: RandomRep CLUB-DRF & RF

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

breast-cancer

5 67.42 53.61 75.26 6.07 0.64 0.56 71.75 0.65 0.58

10 66.70 60.82 74.23 4.42 0.64 0.57

15 70.10 65.98 73.20 2.73 0.65 0.58

20 70.41 67.01 73.20 2.16 0.65 0.58

25 70.93 67.01 77.32 3.12 0.65 0.58

30 68.97 65.98 72.16 2.18 0.65 0.58

35 72.89 65.98 79.38 3.54 0.65 0.58

40 71.75 65.98 74.23 2.07 0.65 0.58

audit

5 94.10 92.21 95.44 1.07 0.89 0.86 96.22 0.90 0.88

10 94.22 93.09 96.03 0.76 0.89 0.86

15 95.40 94.71 96.18 0.51 0.89 0.86

20 95.41 94.85 96.03 0.38 0.89 0.86

25 95.79 94.71 96.32 0.43 0.89 0.86

30 95.62 95.15 96.03 0.26 0.89 0.86

35 95.75 95.29 96.47 0.37 0.89 0.86

40 95.51 95.00 96.18 0.44 0.89 0.86

credit

5 61.62 47.94 68.82 7.65 0.65 0.59 76.00 0.66 0.60

10 71.50 67.65 74.71 1.94 0.66 0.60

15 71.74 67.06 75.88 2.61 0.67 0.60

20 72.44 70.59 74.12 1.09 0.66 0.60

25 74.50 71.47 77.06 1.96 0.66 0.60

30 75.09 73.53 76.76 1.01 0.66 0.60

35 74.74 72.65 77.06 1.33 0.66 0.60

40 74.68 72.65 76.18 1.17 0.66 0.60

pasture

Continued on next page
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Table 4.6 – continued from previous page

CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

5 43.33 8.33 75.00 20.00 0.42 0.55 38.33 0.42 0.56

10 24.17 0.00 41.67 13.67 0.40 0.53

15 27.50 8.33 41.67 10.57 0.37 0.54

20 31.67 16.67 50.00 8.16 0.41 0.56

25 34.17 8.33 58.33 16.01 0.41 0.56

30 30.00 8.33 50.00 12.47 0.40 0.54

35 40.00 16.67 58.33 11.67 0.41 0.56

40 30.00 16.67 50.00 10.00 0.41 0.54

squash-unstored

5 58.33 50.00 72.22 8.33 0.51 0.63 60.56 0.51 0.64

10 50.56 38.89 66.67 8.77 0.49 0.62

15 56.67 38.89 72.22 9.23 0.50 0.63

20 48.89 38.89 61.11 5.44 0.50 0.64

25 53.89 44.44 66.67 7.05 0.48 0.62

30 55.56 44.44 72.22 8.24 0.50 0.63

35 50.00 38.89 61.11 6.57 0.49 0.62

40 51.67 44.44 55.56 3.56 0.50 0.63

squash-stored

5 42.22 22.22 66.67 13.43 0.48 0.54 55.56 0.50 0.56

10 47.78 27.78 61.11 8.68 0.51 0.57

15 44.44 33.33 61.11 8.24 0.46 0.54

20 49.44 38.89 61.11 7.22 0.50 0.56

25 52.78 33.33 66.67 9.38 0.49 0.54

30 50.56 33.33 55.56 7.22 0.50 0.56

35 48.33 38.89 55.56 5.00 0.49 0.55

40 48.33 38.89 55.56 6.11 0.48 0.54

white-clover

5 57.62 42.86 71.43 9.15 0.54 0.63 63.33 0.51 0.61

10 50.00 33.33 61.90 8.84 0.50 0.60

15 59.52 52.38 66.67 4.39 0.51 0.61

20 57.62 42.86 66.67 7.51 0.51 0.60

25 60.48 52.38 66.67 5.24 0.51 0.60

30 61.43 52.38 71.43 5.81 0.51 0.61

35 62.86 52.38 71.43 5.13 0.51 0.60

40 60.48 52.38 66.67 4.29 0.50 0.60

eucalyptus

5 17.32 4.40 28.80 8.00 0.19 0.56 19.60 0.21 0.57

10 16.40 5.60 24.00 5.87 0.21 0.57

15 20.64 12.40 28.80 5.04 0.22 0.57

20 18.84 11.20 24.00 4.66 0.21 0.57

25 18.12 11.60 25.20 4.21 0.21 0.57

30 18.56 11.60 23.60 3.68 0.22 0.57

35 17.24 10.00 22.80 3.72 0.21 0.57

40 19.04 16.40 23.60 2.24 0.21 0.57

soybean

5 68.02 57.76 76.29 6.93 0.71 0.84 77.76 0.73 0.85

10 70.99 65.09 76.72 4.33 0.71 0.84

15 70.99 66.81 75.43 2.90 0.70 0.84

20 73.06 68.53 82.76 4.57 0.71 0.84

25 72.67 68.97 77.16 2.51 0.71 0.84

30 72.84 66.38 82.33 3.90 0.71 0.84

35 73.15 68.53 78.88 3.21 0.72 0.85

40 72.63 69.83 75.86 1.88 0.71 0.84

diabetes

5 67.01 57.47 72.41 5.08 0.68 0.66 73.72 0.68 0.66

10 71.57 65.90 75.10 3.13 0.68 0.66

15 69.96 67.43 72.03 1.52 0.68 0.66

20 72.07 68.20 74.33 1.86 0.68 0.66

25 72.68 70.11 75.10 1.45 0.68 0.66

Continued on next page
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CLUB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

30 72.61 68.58 76.25 2.12 0.68 0.66

35 73.64 70.88 75.48 1.38 0.68 0.66

40 71.95 69.73 75.10 1.46 0.68 0.66

glass

5 56.99 50.68 64.38 4.95 0.58 0.72 63.56 0.58 0.71

10 58.63 52.05 64.38 3.51 0.57 0.71

15 60.96 58.90 64.38 1.65 0.57 0.71

20 60.82 57.53 63.01 1.75 0.57 0.71

25 60.96 56.16 65.75 2.76 0.57 0.71

30 61.37 58.90 67.12 2.44 0.57 0.71

35 61.37 57.53 65.75 2.58 0.57 0.71

40 61.37 60.27 64.38 1.34 0.57 0.71

car

5 61.60 60.20 64.12 1.36 0.56 0.78 62.36 0.56 0.78

10 61.75 61.05 62.59 0.50 0.56 0.78

15 61.97 60.88 63.27 0.76 0.55 0.78

20 61.85 60.88 62.76 0.64 0.56 0.78

25 61.67 60.71 62.76 0.59 0.55 0.78

30 61.55 60.54 62.41 0.63 0.55 0.78

35 61.70 60.54 62.24 0.54 0.56 0.78

40 61.84 60.71 62.93 0.72 0.56 0.78

sonar

5 8.45 0.00 18.31 6.07 0.26 0.00 0.28 0.29 0.00

10 6.20 1.41 14.08 3.79 0.30 0.00

15 5.92 2.82 14.08 3.26 0.32 0.00

20 3.94 0.00 8.45 3.14 0.29 0.00

25 2.82 0.00 8.45 2.36 0.30 0.00

30 3.80 0.00 7.04 2.44 0.30 0.00

35 3.66 1.41 7.04 1.80 0.30 0.00

40 2.54 0.00 5.63 2.07 0.30 0.00

vehicle

5 65.10 52.43 73.26 6.12 0.70 0.80 73.89 0.69 0.80

10 69.58 64.24 75.69 3.78 0.69 0.80

15 70.28 67.71 73.96 1.95 0.69 0.79

20 71.70 68.40 75.00 2.01 0.69 0.79

25 72.85 70.49 75.00 1.46 0.69 0.80

30 72.47 68.75 74.31 1.69 0.68 0.79

35 73.02 71.53 75.00 1.19 0.69 0.80

40 73.16 71.88 74.65 0.98 0.69 0.80

vote

5 96.62 95.27 98.65 1.00 0.95 0.97 97.97 0.95 0.97

10 96.69 95.27 97.97 0.82 0.95 0.97

15 97.57 97.30 97.97 0.33 0.95 0.97

20 97.50 97.30 97.97 0.31 0.95 0.97

25 97.70 96.62 97.97 0.54 0.95 0.97

30 97.84 97.30 97.97 0.27 0.95 0.97

35 97.70 97.30 97.97 0.33 0.95 0.97

40 97.43 96.62 97.97 0.41 0.95 0.97
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Table 4.7: Performance Statistics of RandomRep CLUB-DRF

Dataset RF # of Winning
CLUB-DRFs

Best Performer Worst Performer

breast-cancer 71.75% 1, 1 tie 72.89% 66.70%

audit 96.22% 0 95.79% 94.10%

credit 76.00% 0 75.09% 61.62%

pasture 38.33% 2 43.33% 24.17%

squash-unstored 60.56% 0 58.33% 48.89%

squash-stored 55.56% 0 52.78% 42.22%

white-clover 63.33% 0 62.86% 50.00%

eucalyptus 19.60% 1 20.64% 16.40%

soybean 77.76% 0 73.15% 68.02%

diabetes 73.72% 0 73.64% 67.01%

glass 63.56% 0 61.37% 56.99%

car 62.36% 0 61.97% 61.55%

sonar 0.28% 8 8.45% 2.54%

vehicle 73.89% 0 73.16% 65.10%

vote 97.97% 0 97.84% 96.62%

4.5.2 Analysis of the Results

4.5.2.1 Best Representative on Training CLUB-DRF Analysis

Using this variation and based on the information given in Table 4.2, for each dataset, Figure

4.2 shows the number of CLUB-DRF pruned ensembles that have outperformed RF. It is easy

to see in the figure that CLUB-DRF has outperformed RF on 14/15 datasets, of which, CLUB-

DRF has completely outperformed RF (which happens when the number of outperformers is 8)

on 5 datasets: pasture, eucalyptus, car, sonar, and vehicle. More precisely, a pruned RF using

CLUB-DRF, regardless of its size, outperformed RF on these datasets.
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Figure 4.2: Number of BestRepOnTraining CLUB-DRF Outperformers per Dataset

4.5.2.2 Best Representative on OOB CLUB-DRF Analysis

From the information given in Table 4.4, Figure 4.3 shows similar results for this variation of

CLUB-DRF. As shown in the figure, this variation outperformed RF on 13/15 datasets. Of

the 13 datasets, CLUB-DRF completely outperformed RF on 6 of them, namely, breast-cancer,

pasture, eucalyptus, glass, sonar, and vehicle.
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Figure 4.3: Number of BestRepOnOOB CLUB-DRF Outperformers per Dataset

4.5.2.3 Random Representative CLUB-DRF Analysis

As previously stated, this variation did not perform well. This is reflected in Figure 4.4 which

is based on the information presented in Table 4.6. The figure shows that CLUB-DRF outper-

formed RF on only 4 datasets, of which, CLUB-DRF completely outperformed RF on 1 dataset.

As previously explained, this is due to the lack of an accuracy measure used in this variation.
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Figure 4.4: Number of RandomRep CLUB-DRF Outperformers per Dataset

4.5.3 Outperformance Range

For each dataset, Tables 4.8, 4.9, and 4.10 below depict the outperformance range of each

CLUB-DRF, produced by each of the 3 variations respectively, over RF. This range has the

format min-max where min is calculated as the difference between the worst performer (that

outperformed RF ) and RF. Likewise, max is calculated as the difference between the best per-

former (that outperformed RF ) and RF. When RF has outperformed all CLUB-DRF s (as it is

the case for example with the dataset vote in Table 4.2), we list the difference of performance

between RF and the best performer CLUB-DRF, and show it as a negative number (as shown in

the last entry in Table 4.8) to indicate that RF was superior. These tables demonstrate a max-

imum outperformance range of 17.5%, 14.16%, and 8.17% achieved by the BestRepOnTraining,

BestRepOnOOB, and RandomRep variations respectively.

4.5.4 Pruning Level

By applying the above proposed clustering technique, we managed to achieve two objectives.

First, CLUB-DRF ensembles with diverse trees were produced. Second and more importantly,

we manged to significantly reduce the size of RF. The resulted pruned CLUB-DRF ensembles

mostly outperformed the original RF ensemble, as depicted in Figures 4.2 and 4.3. In ensemble
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Table 4.8: Outperformance Range of BestRepOnTraining CLUB-DRF over RF

Dataset Range

breast-cancer 0.42% - 2.58%

audit 0.03% - 0.14%

credit 0.11% - 0.97%

pasture 1.67% - 17.5%

squash-unstored 1.67% - 6.67%

squash-stored 4.17% - 5.83%

white clover 0.71% - 1.43%

eucalyptus 2.33% - 13.07%

soybean 0.07% - 2.52%

diabetes 0.08% - 0.12%

glass 0.14% - 6.03%

car 0.06% - 1.21%

vehicle 0.21% - 4.03%

vote -0.21%

Table 4.9: Outperformance Range of BestRepOnOOB CLUB-DRF over RF

Dataset Range

breast-cancer 0.30% - 3.40%

audit -0.06%

credit 0.50% - 2.21%

pasture 0.83% - 14.16%

squash-unstored 2.50% - 7.50%

squash-stored 0.84% - 9.17%

white clover 2.15% (only one outperformer found)

eucalyptus 0.86% - 7.80%

soybean 0.20% - 1.79%

diabetes 0.12% - 0.16%

glass 0.69% - 8.63%

car 0.09% - 1.91%

vehicle 0.20% - 2.53%

vote -0.14%

pruning, a pruning level refers to the reduction ratio between the original ensemble and the

pruned one. For example, if the size of the original ensemble is 500 trees and the pruned one is

of size 50, then 100%− 50
500 × 100% = 90% is the pruning level that was achieved in the pruned

ensemble. This means that the pruned ensemble is 90% smaller than the original one.

4.5.4.1 Best Representative on Training CLUB-DRF Pruning Level

Using the information in Table 4.2, Table 4.11 was compiled to show the pruning levels for

BestRepOnTraining CLUB-DRF. The first column in this table shows the maximum possible

pruning level for a CLUB-DRF that has outperformed RF, and the second column shows the
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Table 4.10: Outperformance Range of RandomRep CLUB-DRF over RF

Dataset Range

breast-cancer 1.14% (only one outperformer found)

audit -0.43%

credit -0.91%

pasture 1.67% - 5.00%

squash-unstored -2.23%

squash-stored -2.78%

white clover -0.47%

eucalyptus 1.04% (only one outperformer found)

soybean -4.61%

diabetes -0.08%

glass -2.19%

car -0.39%

vehicle -0.73%

vote -0.13%

pruning level of the best performer CLUB-DRF. We can see that with extremely healthy pruning

levels ranging from 96% to 99%, CLUB-DRF outperformed RF. The interesting observation

in this table is that, in both columns, the mode is 99%. This mode refers to the highest

unprecedented pruning level that was achieved by CLUB-DRF which corresponds to 5 trees

only.

Table 4.11: BestRepOnTraining CLUB-DRF: Maximum Pruning Level with Best
Possible Performance

Dataset Maximum Pruning Level Best Performer Pruning Level

breast-cancer 98% 98%

audit 98% 98%

credit 99% 99%

pasture 99% 98%

squash-unstored 99% 99%

squash-stored 99% 98%

white clover 96% 96%

eucalyptus 99% 99%

soybean 99% 99%

diabetes 98% 98%

glass 99% 99%

car 99% 99%

vehicle 99% 99%

4.5.4.2 Best Representative on OOB CLUB-DRF Pruning Level

Similarly, using the information in Table 4.4, pruning levels for BestRepOnOOB CLUB-DRF are

shown in Table 4.12. We can see that in this variation, at extremely healthy pruning levels that
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range from 94% to 99%, CLUB-DRF outperformed RF. In this table, note that 99% (highest

pruning level) is the mode in the first columns and 98% (next highest pruning level) is the mode

in the second column.

Table 4.12: BestRepOnOOB CLUB-DRF: Maximum Pruning Level with Best Possi-
ble Performance

Dataset Maximum Pruning Level Best Performer Pruning Level

breast-cancer 99% 96%

credit 99% 99%

pasture 99% 98%

squash-unstored 99% 98%

squash-stored 99% 98%

white clover 94% 94%

eucalyptus 99% 98%

soybean 99% 97%

diabetes 96% 96%

glass 99% 99%

car 99% 99%

vehicle 99% 98%

4.5.4.3 Random Representative CLUB-DRF Pruning Level

Using the information in Table 4.6, Table 4.13 depicts similar results for CLUB-DRF produced

by this variation. As shown in the table, only 3 datasets outperformed RF with a pruning level

ranging from 93% to 99%.

Table 4.13: RandomRep CLUB-DRF: Maximum Pruning Level with Best
Possible Performance

Dataset Maximum Pruning Level Best Performer Pruning Level

breast-cancer 93% 93%

pasture 99% 99%

eucalyptus 97% 97%

4.5.5 Suitability for Real-Time Applications

Looking back at the high pruning levels achieved by the 3 variations of CLUB-DRF, it is obvious

that CLUB-DRF ensembles are ideal candidates for real-time applications where fast classifica-

tion is an important desideratum. They are also typical for machines and mobile devices with

limited memory and processing power because of their small size in comparison with the size of

the classical RF ensembles.
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4.6 Time Complexity Analysis

In this section, we provide, using Big O notation, a time complexity analysis of our CLUB-DRF

and compare it with that of RF (the parent). Let n refer to the number of trees in RF, α such

that 0 < α < 1, refer to the pruning level achieved in the pruned CLUB-DRF ensemble, m refer

to the number of trees in CLUB-DRF, and f refer to the number of features in the dataset.

Since traversing the average number of nodes of all trees of in a CLUB-DRF is in the order of

O(f), the time complexity to classify an instance after having each tree in RF casts a vote for

its predicted class label is in the order of O(n×O(f)). Since m = n−n×α, the time complexity

to classify an instance after having each tree in CLUB-RF casts a vote for its predicted class

label is therefore given by O(m×O(f)).

Because CLUB-DRF is known of its ability to perform extreme pruning as was described through-

out this chapter, m << n. It is therefore clear that the time required by CLUB-DRF to classify

an instance is going to be much smaller than that of RF. As an example, consider an RF of 500

trees (i.e., n is 500). As aforementioned, the time complexity of RF is therefore O(500×O(f)). If

we assume a 99% pruning level achieved by CLUB-DRF, then m = 500− 500× 0.99 = 5. There-

fore, the time complexity of CLUB-DRF is O(5×O(f)) which is approximately 99% smaller than

that of RF, hence, CLUB-DRF runs approximately 99% faster than RF. This example demon-

strates that the pruning level is proportional to the classification speed which tends to increase

when the pruning level increases. Since trees in RF ensembles are bushy trees with excessive

number of nodes, and since the number of nodes traversed grows proportionally with the number

of features, for high-dimensional datasets, classifying an instance is likely to take more time than

low-dimensional datasets. Hence, for high-dimensional datasets, CLUB-DRF ensembles would

be typical as they will yield faster classification time, making them cost effective not only in

terms of accuracy, but also in terms of classification speed.

4.7 Summary

A new method called CLUB-DRF was developed for the extreme pruning of Random Forests. It

was featured by clustering the trees based on their predictions on the training data. Each cluster

in the ensemble can be represented by one or more trees. To achieve extreme pruning, only

one representative from each cluster is selected. For the selection of a representative from each

cluster, three variations were used. By comparing the performance of the three variations in the

charts given in Figures 4.2, 4.3, and 4.4 respectively, we can see that BestRepOnTraining has

performed the best. It outperformed RF on 14/15 of the datasets and completely outperformed

RF on the 5/14 datasets. As depicted in the second column of Table 4.11, for the winning

datasets where CLUB-DRF outperformed RF, the pruning level achieved by CLUB-DRF was
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mostly 99% (highest pruning level ever reported to date), which corresponds to CLUB-DRF

ensembles of size 5 trees only. The BestRepOnOOB variation produced less favorable results

as it outperformed RF on 13/15 of the datasets and completely outperformed RF on the 6/13

datasets. As shown in the second column of Table 4.12, BestRepOnOOB also achieved 99% for

the winning datasets.

The RandomRep variation did not perform well compared with the others as depicted by the chart

in Figure 4.4. This is attributed to the fact that, unlike the first two variations where accuracy

was the main criteria used for the selection of a representative from each cluster, accuracy

in RandomRep was not used at all. The selection process in this variation simply involved

picking a random representative from each cluster. As previously discussed, this emphasizes the

importance of having an accuracy measure when selecting a representative from each cluster.

Thanks to the extreme pruning achieved by CLUB-DRF, it makes it usable not only for real-time

applications where speed is a significant factor, but also for machines and devices with limited

memory and processing power.



Chapter 5

Local Outlier Factor-Based

Diverse Random Forest

(LOFB-DRF)

5.1 Overview

Findings reported in this chapter have been published in Fawagreh et al. (2016). In this chapter, a

new method is proposed to prune RF ensembles which is termed LOFB-DRF. Unlike CLUB-DRF

in the previous chapter, LOFB-DRF applies the Local Outlier Factor instead of clustering. Like

CLUB-DRF, extreme pruning levels reaching as high as 99% have been achieved while retaining

or outperforming the accuracy of the original RF from which LOFB-DRF was derived.

5.2 Background

In this chapter, we will utilize another diversity technique to prune RF. As discussed in Section

2.3, empirically speaking, it has been proven that ensembles tend to perform better when the

constituent models exhibit high level of diversity. Following the footsteps of the CLUB-DRF

approach introduced in the previous chapter, the objective of this chapter is twofolds. First, it

investigates how an unsupervised learning technique, namely, Local Outlier Factor (LOF), can

be used to identify diverse trees in an RF. Second, trees with the highest weighted LOF scores

are then used to produce a pruned RF ensemble, termed LOFB-DRF, that is much smaller in

size than RF, and yet performs at least as good as RF, but mostly exhibits higher performance

65
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in terms of accuracy (this is called ensemble pruning as discussed in Section 2.4 in Chapter 2).

Experimental results on 15 real datasets prove the superiority of our proposed extension over the

traditional RF. Like CLUB-DRF, unprecedented pruning levels reaching as high as 99% have

been achieved at the time of boosting the predictive accuracy of the original ensemble. These

notably high pruning levels make the technique a good candidate for real-time applications.

5.2.1 Motivation

The main aim is to minimize the number of trees built by RF algorithms which is typically in

the range 100 to 500 trees Williams (2011). Our approach in this chapter aims at pruning RF

ensembles by producing a subset of the original ones that are significantly smaller in size and

yet, have accuracy performance that is at least as good as that of the original RF from which

they were derived. In other words, we are aiming at finding the optimal or near-optimal number

of trees that will be used to generate an accurate RF.

As discussed in the next section, the Local Outlier Factor (LOF) was used before as a diversity

technique. Since the pruning methods developed in this thesis (CLUB-DRF in the previous

chapter and LOFB-DRF in this chapter), produce pruned ensembles by selecting diverse trees,

LOF is applied as a technique to aid in the pruning process by selecting the top k trees with the

highest weighted LOF scores.

5.3 Local Outlier Factor

The LOF algorithm was developed by Breunig et al. Breunig et al. (2000) to measure the

peculiarity/outlierness of an object. The higher the LOF value assigned to an object, the more

isolated the object is with respect to its neighbors. It is considered a very powerful anomaly

detection technique in machine learning and classification. Earlier work on outlier detection was

investigated in Arning et al. (1996) Ruts and Rousseeuw (1996) Knox and Ng (1998) Knorr and

Ng (1999), however, the work was limited by treating an outlier as a binary property to classify

an object as an outlier or not, without assigning it a value to measure its outlierness as was done

in Breunig et al. (2000).

The LOF can be used as a method to achieve diversity. It was one of 3 strategies used to

obtain diversity when constructing an ensemble for the KDDCup 1999 dataset Erich and Zimek

(2011). The use of normalized LOF values is what makes our approach similar to Erich and

Zimek (2011). What makes it different, however, is that, in addition to LOF, we have used an

accuracy measure to weigh each tree. Also, we have selected the top k (where k is multiple

of 5 in the range 5 to 40) trees with the highest weighted LOF scores. In Erich and Zimek
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(2011), k = 20, 40, 80, 120, 160. Furthermore, the ensembles used in the their experiments were

not RF ensembles but rather, ensembles constructed using different strategies: feature bagging,

LOF with different values of k on the full-dimensional dataset, and combination of four different

methods (LOF, LDOF, kNN, and aggregate kNN).

Table 5.1: Height of Grade 5 Students

Student Height (cm)

S1 130

S2 132

S3 138

S4 136

S5 131

S6 153

S7 131

S8 133

S9 129

S10 133

S11 110

S12 132

S13 129

S14 134

S15 135

S16 132

S17 135

S18 134

S19 133

S20 132

S21 130

S22 131

S23 134

S24 135

S25 135

S26 134

S27 136

S28 133

S29 133

S30 130

For the construction of advanced outlier detection ensembles using LOF variants and other

algorithms, Schubert et al. (2012) developed methods for measuring similarity and diversity.

Formally, Breunig et al. Breunig et al. (2000) introduced the concept of reachability distance

in order to calculate the LOF. If the distance of object A to the k nearest neighbor is denoted

by k distance(A), where the k nearest neighbors is denoted by Nk(A), the following equation

defines the reachability distance (rd):
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rdk(A,B) = max{k distance(B), d(A,B)} (5.1)

where d(A,B) is the distance between objects A and B. The local reachability density of object

A is then defined by:

lrd(A) =

∑
B∈Nk(A) rdk(A,B)

|Nk(A)|
(5.2)

Using the local reachability density of object A as defined in Equation 5.2, the LOF for object

A is given by:

LOFk(A) =

∑
B∈Nk(A)

lrd(B)
lrd(A)

|Nk(A)|
(5.3)

The degree of the outlierness of object A is proportional with LOFk(A) and tends to increase

when LOFk(A) increases.

As an example to illustrate calculating LOF for a set of objects, consider Table 5.1 above that lists

the height (in cm) for grade 5 students. Using k = 3, we first get the k distance neighborhood

for each student. The furthest among the 3 nearest neighbors gives the k distance for each

student. To calculate the reachability distance for each student p with regard to each of its 3

nearest neighbors, for each neighbor o, we take the maximum between the distance d(s, o) and

k distance of o. The reachability density for each student is the average between the reachability

distances with regard to its nearest neighbors. The final step is to calculate the LOF for each

student. All these calculations are shown in Table 5.2.
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Table 5.2: LOF Calculation for Grade 5 Students

Student 3 Nearest Neighbors k distance Reach dist3(p) 1/lrd3(p) lrd3(p) LOF

S1 {S21,S22,S28} 3.35 {2.24,2.69,3.35} 2.76 0.36 1.77

S2 {S16,S19,S20} 1 {1.12,1,1} 1.04 0.96 1.00

S3 {S27,S4,S25} 3 {2.24,2.50,3} 2.58 0.38 2.11

S4 {S27,S15,S24} 1.12 {1.41,1.12,1.12} 1.21 0.38 1.02

S5 {S7,S12,S30} 1.12 {1.12,1.12,1.12} 1.12 0.89 0.94

S6 {S3,S4,S27} 20.25 {19.21,19.98,20.25} 19.81 0.05 13.13

S7 {S5,S30,S12} 1.12 {1.12,1.12,1.12} 1.12 0.89 0.94

S8 {S28,S29,S19} 1 {1.41,1,1} 1.14 0.88 1.08

S9 {S13,S30,S7} 2.06 {2.24,1.12,2.16} 1.84 0.54 1.30

S10 {S17,S1,S28} 8.5 {7.28,7.61,8.50} 7.80 0.13 4.17

S11 {S13,S9,S21} 20.05 {19.01,19.03,20.06} 19.37 0.05 10.00

S12 {S5,S20,S7} 1.12 {1.12,1,1.12} 1.08 0.93 0.97

S13 {S9,S30,S7} 2.24 {2.06,1.41,2.24} 1.90 0.53 1.34

S14 {S18,S23,S26} 1 {1,0.5,1} 0.83 1.20 0.94

S15 {S24,S4,S26} 1.12 {1.12,1.12,1.12} 1.12 0.89 1.09

S16 {S2,S20,S19} 1.12 {1,1,1.12} 1.04 0.96 1.00

S17 {S25,S28,S14} 2.69 {2,2.5,2.69} 2.40 0.42 2.07

S18 {S14,S23,S26} 1 {1,0.5,1} 0.83 1.20 0.87

S19 {S29,S2,S8} 1 {1,1,1} 1 1 0.95

S20 {S16,S2,S12} 1 {1.12,1,1.12} 1.08 0.93 1.02

S21 {S22,S1,S13} 2.24 {1.41,3.35,2.24} 2.33 0.43 1.48

S22 {S2,S16,S21} 1.41 {1.12,1.41,2.24} 1.59 0.63 1.24

S23 {S14,S18,S26} 0.5 {1,1,1} 1 1 1.20

S24 {S15,S4,S26} 1.12 {1.12,1.12,1.12} 1.12 0.89 1.09

S25 {S14,S18,S23} 1.41 {1.12,1.12,1.41} 1.22 0.82 1.38

S26 {S23,S14,S18} 1 {0.5,1,1} 0.83 1.20 0.94

S27 {S4,S15,S24} 1.41 {1.12,1.41,1.41} 1.31 0.76 1.14

S28 {S8,S29,S14} 1.41 {1,1,1.41} 1.17 0.85 1.21

S29 {S8,S19,S14} 1 {1,1,1} 1 1 1.03

S30 {S7,S5,S9} 1.12 {1.12,1.12,2.06} 1.43 0.70 1.10

5.4 LOFB-DRF

In this section, we again propose a new pruning method called LOFB-DRF that spawns a child

RF that is 1) much smaller in size than the parent RF and 2) has an accuracy that is at least as

good as that of the parent RF. In this enhancement, we use the LOF discussed in the previous

section. As was the case with CLUB-DRF, in the remainder of this chapter, we will refer to the

parent/original traditional RF as simply RF. We will refer to the resulted child RF based on our

method as LOFB-DRF.

5.4.1 LOFB-DRF Algorithm

Figure 5.1 shows the LOFB-DRF approach and the corresponding algorithm is displayed in

Algorithm 4 where T is the training set and N refers to the number of training samples. The
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constant k refers to the number of trees that will have the highest weighted LOF values as will be

discussed later. The domain of this constant is multiple of 5 in the range 5 to 40. The rationale

behind this range was covered in Subsection 4.4.1 which was mainly to achieve extreme pruning

levels in the range 92% to 99%. This way and as we shall see in the experiments section, we can

compare the performance of RF with an LOFB-DRF of different sizes.

As shown in the algorithm, each tree predictions on the training dataset (denoted by the vec-

tor C(ti, T )) is assigned a normalized LOF value that indicates the degree of its outlierness.

Following a weighting process (to be discussed next), the top k trees corresponding to these

predictions with the highest weighted LOF values are then selected to become members of the

resulted LOFB-DRF.

It is important to remember that the size of the resulted LOFB-DRF is determined by the

constant k. For example, if k is 5, then the resulted LOFB-DRF will have size 5, and so on.

Algorithm 4 LOFB-DRF Algorithm

{User Settings}
input T , N , k
{Process}
Create an empty vector

−−−−−−−−−−−−→
treesPredictions

Create an empty vector
−−−−−−−−−→
LOFB −RF

Using N, call Random Forests Algorithm (Algorithm 1, Chapter 3) to create
−→
RF

for i = 1→ RF.size() do
−−−−−−−−−−−−→
treesPredictions =

−−−−−−−−−−−−→
treesPredictions ∪ C(RF.tree(i), T)

end for
for i = 1→

−−−−−−−−−−−−→
treesPredictions.size() do

assignNormalizedLOF(
−−−−−−−−−−−−→
treesPredictions.element(i))

end for
for i = 1→

−−−−−−−−−−−−→
treesPredictions.size() do

assignWeight(
−−−−−−−−−−−−→
treesPredictions.element(i))

end for
Select the top k instances in

−−−−−−−−−−−−→
treesPredictions with highest weighted LOF values

Select the corresponding trees from RF and add them to
−−−−−−−−−−−→
LOFB −DRF

{Output}
A vector of trees

−−−−−−−−−−−→
LOFB −DRF

5.4.2 Selection of Trees

With reference to Algorithm 4, the selection of trees in RF that will become members of LOFB-

DRF proceeds as follows. First, predictions of each tree ti on the training dataset T is computed

as a vector C(ti, T ) and added to the vector
−−−−−−−−−−−−→
treesPredictions. At the conclusion of the first

for loop,
−−−−−−−−−−−−→
treesPredictions becomes a super vector containing vectors where each vector stores

the predictions of each tree. In the second for loop, each instance in
−−−−−−−−−−−−→
treesPredictions is then
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Figure 5.1: LOFB-DRF Approach

assigned a normalized LOF value between 0 and 1. This way, each normalized value describes

the degree of the instance being an outlier Erich and Zimek (2011). In the third for loop, a

weight is then assigned to each instance. For this, two variations will be used and are discussed

next.

5.4.2.1 LOFB-DRF Weighted on Training

In this variation, a weight is calculated as the product of the normalized LOF value and the

accuracy of the corresponding tree on the training data. Formally, let C(ti, T ) be an instance

in the super vector
−−−−−−−−−−−−→
treesPredictions, LOF C(ti, T ) be the normalized LOF value assigned to

this instance, and AccuracyRate(ti, T ) be the accuracy of the tree (ti on the training dataset T .

The weight assigned to this instance is given by:

weight = LOF C(ti, T )×AccuracyRate(ti, T ) (5.4)

The instances are then sorted in descending order by this weight and the corresponding top k

trees are then selected. We will refer to the resulted LOFB-DRF that uses this variation as

WeightedOnTraining LOFB-DRF.
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5.4.2.2 LOFB-DRF Weighted on OOB

In this variation, instead of using the accuracy on the training data, we use the accuracy on the

OOB. As discussed in Section 3.2, OOB refers to the instances that were not included in the

sample with replacement that was used to construct the tree. The weight in this variation is

calculated as:

weight = LOF C(ti, T )×AccuracyRate(ti, OOB) (5.5)

Similarly, the instances are then sorted in descending order by this weight and the corresponding

top k trees are then selected. We will refer to the resulted LOFB-DRF that uses this variation

as WeightedOnOOB LOFB-DRF.

5.5 Experimental Study

For the experiments, we used the 15 real datasets used in the previous chapter. As was the case

with CLUB-DRF, the RF (parent) in Figure 5.1 had a size of 500 trees (a typical upper limit set-

ting for RF Williams (2011)), and the LOFB-DRF algorithm described above was implemented

using the Java programming language utilizing the API of WEKA. Again, this algorithm was

run 10 times on each dataset where a new RF was created in each run. The average of the 10

runs for each resulted LOFB-DRF was calculated to produce the average for a variety of metrics

including accuracy, standard deviation, F-Measure, and AUC. The minimum and maximum ac-

curacy obtained over the 10 runs for each cluster increment were also calculated. For RF, only

the average accuracy, F-Measure, and AUC have been calculated as shown in the last 3 columns

in Tables 5.3 and 5.5.

5.5.1 Results

In this subsection, we report results of running the experiments on the two variations of LOFB-

DRF described above.

5.5.1.1 LOFB-DRF Weighted on Training Results

Table 5.3 compares the performance of WeightedOnTraining LOFB-DRF and RF on the 15

datasets used in the experiment. To show the superiority of LOFB-DRF, we have highlighted in
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boldface the average accuracy of LOFB-DRF when it is greater than that of RF. With the excep-

tion of the audit, credit, white clover, glass, vehicle, and vote datasets, LOFB-DRF outperformed

RF. Interestingly enough, in all settings of LOFB-DRF, LOFB-DRF completely outperformed

RF on 3 of the datasets, namely, squash-stored, eucalyptus, and sonar. Performance related

statistics for this variation are depicted in Table 5.4. As demonstrated in the 3rd column of the

table, it is easy to observe that LOFB-DRF outperformed RF on 9/15 datasets. For the datasets

where RF outperformed LOFB-DRF, the difference of performance between RF and the best

performer LOFB-DRF for such datasets is a small negligible fraction of less than 1%. The result

of the paired t-test for this variation was statistically significant as a p-value of 0.03512 was

achieved.

Table 5.3: Performance Metrics of WeightedOnTraining LOFB-DRF & RF

LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

breast-cancer

5 67.01 61.86 74.23 3.16 0.65 0.57 71.13 0.65 0.58

10 67.22 64.95 69.07 1.71 0.66 0.58

15 71.34 67.01 76.29 3.12 0.65 0.58

20 69.48 67.01 73.20 2.62 0.66 0.58

25 71.86 69.07 74.23 1.46 0.65 0.58

30 70.41 68.04 72.16 1.53 0.65 0.58

35 70.62 65.98 73.20 1.91 0.65 0.58

40 69.18 64.95 72.16 2.14 0.65 0.58

audit

5 95.63 94.26 96.47 0.72 0.91 0.89 96.31 0.90 0.88

10 95.74 95.00 96.18 0.35 0.90 0.88

15 95.99 95.29 96.47 0.35 0.90 0.88

20 96.06 95.29 96.76 0.39 0.90 0.88

25 96.22 95.88 96.47 0.25 0.91 0.89

30 96.03 95.59 96.47 0.25 0.90 0.88

35 96.26 95.88 96.47 0.18 0.90 0.88

40 96.00 95.59 96.47 0.27 0.90 0.87

credit

5 63.00 47.65 72.65 8.58 0.67 0.61 76.06 0.66 0.60

10 71.56 66.18 74.71 2.39 0.67 0.61

15 71.29 68.24 75.88 2.52 0.67 0.60

20 73.65 71.47 77.06 1.78 0.67 0.60

25 73.82 71.76 77.35 1.41 0.67 0.61

30 74.50 71.76 76.47 1.53 0.67 0.60

35 74.76 72.65 77.94 1.38 0.67 0.60

40 75.24 71.47 76.47 1.51 0.67 0.60

pasture

5 53.33 41.67 75.00 10.67 0.48 0.60 41.67 0.43 0.56

10 33.33 8.33 58.33 16.67 0.42 0.54

15 40.00 8.33 66.67 18.56 0.45 0.56

20 26.67 8.33 50.00 13.33 0.42 0.54

25 35.83 16.67 66.67 15.39 0.41 0.54

30 33.33 16.67 58.33 11.18 0.42 0.55

35 39.17 25.00 58.33 10.57 0.43 0.55

40 37.50 16.67 58.33 11.33 0.44 0.55

squash-unstored

5 58.89 44.44 83.33 12.47 0.58 0.66 61.11 0.52 0.64

10 54.44 33.33 66.67 9.56 0.56 0.66

15 60.56 50.00 83.33 8.77 0.55 0.65

20 60.00 50.00 66.67 5.98 0.54 0.66

Continued on next page
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Table 5.3 – continued from previous page

LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

25 63.33 55.56 77.78 7.93 0.54 0.65

30 58.33 44.44 77.78 8.70 0.53 0.65

35 67.22 50.00 83.33 10.08 0.54 0.66

40 57.78 50.00 66.67 6.19 0.53 0.65

squash-stored

5 56.67 38.89 66.67 9.56 0.57 0.59 55.56 0.51 0.56

10 59.44 44.44 66.67 7.05 0.54 0.58

15 58.33 50.00 66.67 4.48 0.54 0.58

20 58.33 50.00 61.11 3.73 0.55 0.58

25 58.33 50.00 66.67 5.12 0.53 0.57

30 56.67 55.56 61.11 2.22 0.52 0.56

35 56.11 55.56 61.11 1.67 0.52 0.57

40 56.11 55.56 61.11 1.67 0.52 0.56

white-clover

5 50.95 38.10 57.14 6.41 0.52 0.63 63.81 0.51 0.61

10 55.24 42.86 61.90 6.10 0.53 0.63

15 60.95 47.62 71.43 6.67 0.52 0.62

20 58.57 52.38 66.67 4.29 0.52 0.63

25 62.86 57.14 71.43 4.15 0.52 0.62

30 59.52 52.38 66.67 3.84 0.52 0.62

35 61.90 52.38 71.43 4.76 0.52 0.62

40 59.05 47.62 66.67 6.10 0.52 0.62

eucalyptus

5 25.80 11.20 40.40 8.73 0.26 0.60 19.92 0.21 0.57

10 21.00 12.40 28.40 4.70 0.24 0.59

15 24.32 14.80 32.00 5.01 0.24 0.58

20 24.48 15.60 29.60 4.55 0.23 0.58

25 24.68 21.20 29.60 2.35 0.23 0.58

30 24.80 14.80 33.60 5.13 0.23 0.58

35 23.96 20.00 34.40 4.20 0.23 0.58

40 21.16 15.20 28.00 3.69 0.22 0.57

soybean

5 77.28 60.78 85.78 6.80 0.79 0.88 77.59 0.73 0.85

10 78.45 70.69 85.34 5.46 0.75 0.87

15 79.57 72.84 83.62 3.50 0.76 0.87

20 76.85 74.57 78.88 1.26 0.74 0.86

25 76.90 74.14 79.31 1.88 0.74 0.86

30 76.85 72.41 81.47 2.43 0.74 0.86

35 77.33 71.98 82.33 3.66 0.73 0.86

40 76.59 71.98 81.03 2.59 0.73 0.85

diabetes

5 65.63 59.39 74.71 4.26 0.70 0.68 73.52 0.68 0.66

10 71.03 67.05 75.10 2.08 0.69 0.67

71.19 68.58 76.25 2.00 0.69 0.67

20 71.42 67.82 73.56 1.84 0.69 0.67

25 73.49 71.65 75.10 1.07 0.69 0.67

30 72.53 69.35 74.33 1.51 0.69 0.66

35 73.64 71.65 76.25 1.43 0.69 0.66

40 72.57 70.88 75.10 1.58 0.68 0.66

glass

5 57.40 49.32 67.12 5.21 0.59 0.73 63.97 0.57 0.71

10 62.88 60.27 65.75 1.98 0.59 0.72

15 61.51 58.90 64.38 1.56 0.58 0.72

20 61.51 58.90 65.75 2.41 0.58 0.72

25 62.60 58.90 65.75 2.04 0.58 0.72

30 62.05 58.90 65.75 2.30 0.58 0.72

35 63.01 60.27 65.75 1.37 0.58 0.72

40 61.78 57.53 64.38 1.78 0.58 0.72

car

Continued on next page
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Table 5.3 – continued from previous page

LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

5 61.80 60.03 63.27 0.92 0.56 0.79 62.21 0.56 0.78

10 62.69 60.37 63.95 1.06 0.56 0.78

15 62.09 60.71 63.95 0.87 0.56 0.78

20 62.77 62.07 63.95 0.66 0.56 0.79

25 62.26 60.71 63.95 0.83 0.56 0.78

30 62.33 60.88 63.27 0.81 0.56 0.78

35 62.53 61.73 63.78 0.67 0.56 0.78

40 61.92 60.54 63.27 0.80 0.56 0.78

sonar

5 5.49 1.41 11.27 3.11 0.24 0.00 0.14 0.29 0.00

10 4.65 0.00 12.68 3.57 0.27 0.00

15 2.96 0.00 8.45 2.55 0.27 0.00

20 4.08 1.41 8.45 2.13 0.30 0.00

25 4.23 0.00 9.86 2.82 0.29 0.00

30 2.39 0.00 4.23 1.27 0.29 0.00

35 2.54 0.00 5.63 1.87 0.28 0.00

40 1.83 0.00 4.23 1.55 0.28 0.00

vehicle

5 65.24 52.08 73.96 8.14 0.70 0.80 73.58 0.69 0.80

10 70.24 66.67 73.26 2.30 0.70 0.80

15 72.43 68.75 76.04 2.45 0.70 0.80

20 72.40 68.75 75.35 1.66 0.69 0.80

25 72.64 70.49 75.35 1.38 0.69 0.80

30 73.09 71.88 74.65 0.87 0.70 0.80

35 72.43 70.49 74.65 1.23 0.69 0.80

40 73.33 71.53 75.69 1.25 0.69 0.80

vote

5 96.82 95.27 97.97 0.80 0.96 0.98 97.97 0.95 0.97

10 97.09 95.27 97.97 0.86 0.96 0.97

15 97.57 96.62 97.97 0.45 0.95 0.97

20 97.43 96.62 97.97 0.51 0.95 0.97

25 97.57 96.62 97.97 0.45 0.95 0.97

30 97.70 97.30 97.97 0.33 0.95 0.97

35 97.64 96.62 97.97 0.45 0.95 0.97

40 97.64 96.62 97.97 0.45 0.95 0.97

5.5.1.2 LOFB-DRF Weighted on OOB Results

Table 5.5 compares the performance of WeightedOnOOB LOFB-DRF and RF on the 15 datasets

used in the experiment. As demonstrated in the table, this variation did not perform as well as

the previous one. With the exception of the datasets squash-unstored, eucalyptus, and sonar, RF

outperformed LOFB-DRF. Performance related statistics for this variation are depicted in Table

5.6. Though RF outperformed LOFB-DRF on the majority of the datasets, the outperformance

range is small and insignificant. Due to the unsatisfactory performance of this variation, the

result of the paired t-test was statistically insignificant as a p-value of 0.2159 was achieved.
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Table 5.4: Performance Statistics of WeightedOnTraining LOFB-DRF

Dataset RF Winning
LOFB-DRFs

Best Performance Worst Performance

breast-cancer 71.13% 2 71.86% 67.01%

audit 96.31% 0 96.26% 95.63%

credit 76.06% 0 75.24% 63.00%

pasture 41.67% 1 53.33% 26.67%

squash-unstored 61.11% 2 67.22% 54.44%

squash-stored 55.56% 8 59.44% 56.11%

white-clover 63.81% 0 62.86% 50.95%

eucalyptus 19.92% 8 25.80% 21.00%

soybean 77.59% 2 79.57% 76.59%

diabetes 73.52% 1 73.64% 65.63%

glass 63.97% 0 63.01% 57.40%

car 62.21% 5 62.77% 61.80%

sonar 0.14% 8 5.49% 1.83%

vehicle 73.58% 0 73.33% 65.24%

vote 97.97% 0 97.70% 96.82%

Table 5.5: Performance Metrics of WeightedOnOOB LOFB-DRF& RF

LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

breast-cancer

5 62.78 57.73 68.04 3.52 0.61 0.55 71.96 0.65 0.58

10 61.34 56.70 68.04 3.24 0.62 0.56

15 67.94 62.89 72.16 2.93 0.63 0.57

20 66.70 60.82 72.16 3.26 0.63 0.57

25 69.48 63.92 75.26 3.33 0.63 0.57

30 68.25 62.89 74.23 3.57 0.63 0.57

35 69.38 62.89 77.32 3.94 0.63 0.57

40 68.25 61.86 72.16 3.32 0.63 0.57

audit

5 89.46 87.21 92.50 1.71 0.83 0.799 96.31 0.90 0.88

10 89.28 87.79 91.18 1.09 0.84 0.79

15 92.26 91.62 93.24 0.49 0.84 0.79

20 91.94 91.03 93.53 0.63 0.84 0.80

25 93.12 91.91 94.41 0.73 0.84 0.80

30 92.88 91.91 93.53 0.50 0.84 0.80

35 93.56 92.79 94.12 0.38 0.84 0.80

40 93.38 92.65 93.97 0.48 0.85 0.80

credit

5 68.71 66.47 73.24 2.04 0.64 0.58 75.71 0.66 0.60

10 66.56 62.65 69.71 2.03 0.65 0.59

15 73.41 72.06 74.71 0.89 0.65 0.59

20 71.03 69.41 73.24 1.15 0.65 0.59

25 74.00 72.65 76.76 1.18 0.65 0.59

30 71.88 69.71 75.00 1.49 0.65 0.59

35 74.26 72.06 76.47 1.28 0.65 0.59

40 72.47 70.88 73.82 1.05 0.65 0.59

pasture

5 39.17 16.67 58.33 13.46 0.42 0.57 40.83 0.43 0.57

10 31.67 8.33 66.67 16.16 0.43 0.57

15 35.00 25.00 50.00 7.26 0.42 0.56

20 31.67 8.33 50.00 12.25 0.41 0.55

25 35.83 25.00 58.33 10.57 0.41 0.55

Continued on next page
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Table 5.5 – continued from previous page

LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

30 27.50 8.33 50.00 11.81 0.41 0.55

35 32.50 16.67 41.67 7.86 0.41 0.55

40 25.83 16.67 41.67 8.70 0.41 0.55

squash-unstored

5 52.78 33.33 66.67 11.98 0.49 0.61 58.89 0.51 0.64

10 51.11 33.33 66.67 9.23 0.52 0.63

15 61.67 50.00 72.22 6.31 0.52 0.63

20 54.44 44.44 72.22 6.94 0.52 0.63

25 61.11 50.00 72.22 6.57 0.51 0.63

30 57.78 38.89 72.22 9.69 0.51 0.63

35 58.33 38.89 72.22 10.02 0.50 0.63

40 55.00 38.89 72.22 8.77 0.50 0.62

squash-stored

5 47.78 16.67 66.67 12.96 0.45 0.54 55.56 0.51 0.56

10 41.67 16.67 55.56 12.23 0.46 0.55

15 50.56 27.78 66.67 11.77 0.47 0.55

20 48.33 27.78 61.11 8.98 0.47 0.55

25 50.56 38.89 66.67 8.41 0.47 0.55

30 47.78 38.89 61.11 7.54 0.47 0.55

35 48.89 38.89 61.11 6.48 0.47 0.55

40 46.11 33.33 61.11 8.26 0.47 0.55

white-clover

5 47.14 28.57 61.90 11.94 0.45 0.57 64.29 0.51 0.61

10 37.14 23.81 47.62 8.19 0.46 0.58

15 48.10 28.57 61.90 11.94 0.47 0.58

20 44.76 14.29 66.67 14.32 0.47 0.59

25 51.43 33.33 66.67 8.98 0.48 0.59

30 50.48 33.33 61.90 8.83 0.48 0.59

35 52.38 38.10 61.90 7.38 0.48 0.59

40 49.52 42.86 61.90 6.80 0.48 0.59

eucalyptus

5 20.88 14.40 26.00 3.99 0.22 0.57 20.16 0.21 0.57

10 14.56 8.40 19.20 3.47 0.21 0.57

15 18.92 12.00 22.80 3.15 0.21 0.57

20 16.76 11.60 22.00 2.88 0.21 0.57

25 18.24 14.40 23.20 2.50 0.21 0.57

30 16.72 12.00 22.00 3.07 0.21 0.57

35 17.96 11.60 21.60 2.73 0.21 0.57

40 16.84 10.80 20.40 3.11 0.21 0.57

soybean

5 58.71 50.43 63.79 3.88 0.60 0.79 77.59 0.73 0.85

10 54.74 49.14 58.62 3.18 0.61 0.79

15 61.25 58.19 63.79 1.88 0.61 0.79

20 59.18 56.90 62.07 1.53 0.62 0.79

25 61.42 59.05 63.36 1.56 0.62 0.80

30 60.09 56.47 63.36 1.68 0.62 0.80

35 62.33 59.91 64.66 1.50 0.63 0.80

40 61.98 59.48 64.22 1.22 0.63 0.80

diabetes

5 71.65 67.43 74.33 2.07 0.67 0.65 73.64 0.68 0.66

10 66.97 63.22 70.11 2.00 0.67 0.65

15 72.22 70.88 75.10 1.13 0.67 0.65

20 69.81 68.20 71.65 1.12 0.67 0.65

25 73.03 71.26 74.71 1.05 0.67 0.65

30 71.23 68.58 73.18 1.22 0.67 0.65

35 73.10 70.88 75.86 1.41 0.67 0.65

40 72.11 69.73 74.71 1.57 0.67 0.65

glass

5 56.03 52.05 60.27 2.63 0.52 0.68 63.42 0.58 0.71

Continued on next page
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LOFB-DRF Size AVG MIN MAX SD F-Measure AUC AVG F-Measure AUC

10 53.42 47.95 58.90 3.78 0.53 0.68

15 57.67 50.68 63.01 3.32 0.53 0.68

20 55.89 50.68 60.27 3.67 0.54 0.69

25 58.63 54.79 64.38 3.05 0.54 0.69

30 57.12 52.05 63.01 3.36 0.54 0.69

35 59.45 56.16 64.38 2.68 0.54 0.69

40 59.04 57.53 63.01 1.88 0.55 0.69

car

5 61.12 60.54 61.56 0.35 0.52 0.72 62.18 0.56 0.78

10 60.70 60.20 61.05 0.27 0.52 0.73

15 60.90 60.54 61.05 0.18 0.53 0.73

20 60.70 60.37 60.88 0.18 0.53 0.73

25 60.71 60.37 60.88 0.15 0.53 0.74

30 60.66 60.54 60.88 0.13 0.53 0.74

35 60.73 60.37 60.88 0.18 0.53 0.74

40 60.66 60.37 60.88 0.15 0.53 0.74

sonar

5 13.10 4.23 22.54 5.91 0.38 0.00 0.0 0.29 0.00

10 7.04 1.41 14.08 3.45 0.36 0.00

15 10.14 4.23 19.72 4.17 0.38 0.00

20 6.06 1.41 12.68 2.96 0.37 0.00

25 8.03 2.82 14.08 3.51 0.37 0.00

30 6.06 2.82 11.27 2.52 0.36 0.00

35 6.62 2.82 9.86 2.28 0.35 0.00

40 5.49 2.82 8.45 2.13 0.35 0.00

vehicle

5 70.24 65.63 72.57 2.21 0.66 0.78 74.13 0.69 0.80

10 67.12 64.93 69.79 1.68 0.67 0.78

15 71.84 69.79 73.26 1.00 0.67 0.78

20 70.17 69.10 71.53 0.74 0.67 0.78

25 72.53 70.49 74.31 1.21 0.67 0.78

30 71.08 70.14 72.57 0.88 0.67 0.78

35 72.99 71.88 74.65 0.74 0.67 0.78

40 72.01 70.49 73.96 1.02 0.67 0.78

vote

5 95.95 94.59 97.30 0.80 0.93 0.96 97.97 0.95 0.97

10 95.27 93.24 97.30 1.17 0.93 0.96

15 96.35 95.95 97.30 0.45 0.93 0.96

20 96.01 94.59 97.30 0.88 0.93 0.96

25 96.62 95.27 97.30 0.60 0.93 0.96

30 96.42 95.27 97.97 0.80 0.93 0.96

35 97.09 96.62 97.97 0.53 0.93 0.96

40 96.62 95.95 97.97 0.60 0.93 0.96

5.5.2 Analysis of the Results

5.5.2.1 LOFB-DRF Weighted on Training Analysis

Using the information depicted in Table 5.3, for each dataset, Figure 5.2 shows the number of

WeightedOnTraining LOFB-DRF pruned ensembles that have outperformed RF. It is easy to
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Table 5.6: Performance Statistics of WeightedOnOOB LOFB-DRF

Dataset RF Winning
LOFB-DRFs

Best Performance Worst Performance

breast-cancer 71.96% 0 69.48% 61.34%

audit 96.31% 0 93.56% 89.28%

credit 75.71% 0 74.26% 66.56%

pasture 40.83% 0 39.17% 25.83%

squash-unstored 58.89% 2 61.67% 51.11%

squash-stored 55.56% 0 50.56% 41.67%

white-clover 64.29% 0 52.38% 37.14%

eucalyptus 20.16% 1 20.88% 14.56%

soybean 77.59% 0 62.33% 54.74%

diabetes 73.64% 0 73.10% 66.97%

glass 63.42% 0 59.45% 53.42%

car 62.18% 0 61.12% 60.66%

sonar 0.0% 8 13.10% 5.49%

vehicle 74.13% 0 72.99% 67.12%

vote 97.97% 0 97.09% 95.27%

see in the figure that LOFB-DRF has outperformed RF on 9/15 datasets, of which, LOFB-

DRF has completely outperformed RF on 3 datasets: squash-stored, eucalyptus, and sonar.

More precisely, a pruned RF using LOFB-DRF, regardless of its size, outperformed RF on these

datasets.

0
1
2
3
4
5
6
7
8

Dataset

Outperformers Distance from Max Outperformers

Figure 5.2: Number of WeightedOnTraining LOFB-DRF Outperformers per Dataset



Chapter 5. Local Outlier Factor-Based Diverse Random Forest (LOFB-DRF) 80

5.5.2.2 LOFB-DRF Weighted on OOB Analysis

Since WeightedOnOOB LOFB-DRF pruned ensembles did not perform well as discussed above,

less favorable results are obtained as shown in Figure 5.3. This figure is based on the information

presented in Table 5.5.
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Figure 5.3: Number of WeightedOnOOB LOFB-DRF Outperformers per Dataset

5.5.3 Outperformance Range

Tables 5.7 and 5.8 depict the outperformance range of the two variations of LOFB-DRF over RF.

A negative number indicates that RF was superior to LOFB-DRF and the absolute value of this

number refers to the performance difference between RF and best performer LOFB-DRF. Taking

a closer look at Table 5.7, we can see that LOFB-DRF outperformed RF on 9/15 datasets with a

maximum outperformance range of 11.66%. For the few datasets where RF outperformed LOFB-

DRF, the outperformance difference for such datasets was only less than 1%. As for Table 5.8,

LOFB-DRF outperformed RF on 3 datasets with a maximum outperformance range of 13.10%.

Though RF outperformed LOFB-DRF on the majority of the datasets, the outperformance

range, with the exception of the white-clover and soybean datasets, is small and insignificant.



Chapter 5. Local Outlier Factor-Based Diverse Random Forest (LOFB-DRF) 81

Table 5.7: Outperformance Range of WeightedOnTraining LOFB-DRF over RF

Dataset Range

breast-cancer 0.21% - 0.73%

audit -0.05%

credit -0.82%

pasture 11.66% (only one outperformer found)

squash-unstored 2.22% - 6.11%

squash-stored 0.55% - 3.88%

white clover -0.95%

eucalyptus 1.08% - 5.88%

soybean 0.86% - 1.98%

diabetes 0.12% (only one outperformer found)

glass -0.96%

car 0.05% - 0.56%

vehicle -0.25%

vote -0.27%

Table 5.8: Outperformance Range of WeightedOnOOB LOFB-DRF over RF

Dataset Range

breast-cancer -2.48%

audit -2.75%

credit -1.45%

pasture -1.66%

squash-unstored 2.22% - 2.78%

squash-stored -5.00%

white clover -11.91%

eucalyptus 0.72% (only one outperformer found)

soybean -15.26%

diabetes -0.54%

glass -3.97%

car -1.06%

vehicle -1.14%

vote -0.88%

5.5.4 Pruning Level

5.5.4.1 LOFB-DRF Weighted on Training Pruning Level

Pruning level in ensemble pruning was discussed in Subsection 4.5.4. Table 5.9 shows the pruning

levels where the first column shows the maximum possible pruning level for an LOFB-DRF that

has outperformed RF, and the second column shows the pruning level of the best performer

LOFB-DRF. With extremely healthy pruning levels ranging from 93% to 99% as depicted in

the first column, our technique outperformed RF. Like CLUB-DRF, this makes LOFB-DRF a

natural choice for real-time applications, where fast classification is an important desideratum
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(refer back to Subsection 4.5.5 for more details). The interesting observation in this table is that,

in both columns, the mode is 99% which refers to the highest pruning level that was achieved

by LOFB-DRF which corresponds to 5 trees only.

Table 5.9: Maximum Pruning Level with Best Possible Performance
(WeightedOnTraining LOFB-DRF)

Dataset Maximum Pruning Level Best Performance Pruning Level

breast-cancer 97% 95%

pasture 99% 99%

squash-unstored 95% 93%

squash-stored 99% 98%

eucalyptus 99% 99%

soybean 98% 97%

diabetes 93% 93%

car 98% 96%

5.5.4.2 LOFB-DRF Weighted on OOB Pruning Level

Table 5.10 shows the pruning levels for this variation. As expected, only 2 datasets are listed as

these are the datasets that outperformed RF. Note that the mode in both columns is also 99%.

Table 5.10: Maximum Pruning Level with Best Possible Performance
(WeightedOnOOB LOFB-DRF)

Dataset Maximum Pruning Level Best Performance Pruning Level

squash-unstored 97% 97%

eucalyptus 99% 99%

5.6 Time Complexity Analysis

The time complexity analysis of CLUB-DRF in Section 4.6 also holds for LOFB-DRF. Reason

being is that both techniques achieve the same pruning level, hence, depending on the pruning

level used, pruned ensembles produced by both techniques will have identical sizes. Therefore,

they are likely to have the same time complexity given by O(m × O(f)), where f refers to the

number of features in the dataset, O(f) refers to order of traversing the average number of nodes

of all trees in an LOFB-DRF, m = n − n × α, is the number of trees in LOFB-DRF, n is the

number of trees in RF, and 0 < α < 1 is the pruning level.
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5.7 Summary

We have used the Local Outlier Factor as a new ensemble pruning technique for the extreme

pruning of Random Forests. This technique was used to produce an enhancement of Random

Forests called LOFB-DRF. As demonstrated in the charts in Figures 5.2 and 5.3, the Weighte-

dOnTraining LOFB-DRF variation performed better than the WeightedOnOOB LOFB-DRF

variation. By outperforming RF on 9/15 datasets and a maximum outperformance range of

11.66%, the extremely pruned LOFB-DRF ensembles using the WeightedOnTraining variation

are not only typical for real-time applications, but also for machines and mobile devices with

limited memory and processing power. Interestingly enough, a 99% pruning level was the mode

in both columns in Tables 5.9 and 5.10. This means that for the majority of the datasets, the

smallest LOFB-DRF that outperformed RF is of size 5, and the best performer is also of size

5. Size 5 is the size of the smallest pruned ensemble produced by LOFB-DRF (and also by

CLUB-DRF ) and corresponds to a 99% pruning level; the highest pruning level achieved by

both LOFB-DRF and CLUB-DRF.
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Chapter 6

Diversified Subspaces-Based

Random Forest (DSB-RF)

6.1 Overview

Findings reported in this chapter have been published in Fawagreh et al. (2014b). This chapter

introduces the first enhancement related to feature engineering which is termed DSB-RF. Our

method aims at improving feature interaction which is not an inherent characteristic of RFs.

As subsequently discussed in this chapter, this is done by using weighted subspaces where each

subspace contains a fixed random subset of features.

6.2 Background

By continuing to utilize the principle that diversity can lead to better performance, this chapter

proposes a new method to promote diversity in RFs. The method uses randomly selected sub-

spaces, giving a weight to each subspace according to its predictive power, and using this weight

in majority voting. Such random subspaces are likely to improve feature interaction which is not

an inherent characteristic of RFs, and to reduce the correlation among them. Because highly

correlated trees in an RF can increase the forest error rate Breiman (2001) Bernard et al. (2010),

we expect our method to reduce the error rate and therefore, improve the performance. The

new forest is termed Diversified Subspaces-Based Random Forest (DSB-RF ). What distinguishes

DSB-RF from the standard RF is that, in the latter, all features are used during the construction

of each tree in the forest. In DSB-RF, however, only a subset of the features is used to construct

each tree in each sub-forest, where each sub-forest, as described in the next section, corresponds
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to a subspace. Experimental study on 15 real datasets showed favorable results, demonstrating

the potential of the proposed method.

6.3 DSB-RF

As aforementioned, the method uses randomly selected subspaces. It is worth mentioning that

the random subspace method was initially introduced by Ho (1998), however, and unlike the

approach proposed in this chapter, the subspaces were not weighted according to their predictive

power.

To some extent, the standard RF already applies some diversity to the classifiers being built

during the construction of the RF. In a nutshell, there are two levels of diversity being applied.

The first level is when each decision tree is constructed using sampling with replacement from

the training data. The samples are likely to have some diversity among each other as they were

drawn at random. The second level is achieved by randomization which is applied when selecting

the best node to split on.

The ultimate objective of this chapter is to add a third level of diversity by injecting more

diversity in an RF. From the training set, a number of subspaces is created. The number of

subspaces is determined as follows:

Subspaces = bα× Zc (6.1)

where α denotes the subspace factor such that 0 < α ≤ 1 (α ∈ R), and Z is the size of the

DSB-RF to be created. The floor function (bc) returns the largest integer less than or equal

to a given number. Each subspace will contain a fixed randomized subset of the total number

of features and will eventually correspond to a sub-forest. A projected training dataset will be

created for each subspace and will be used to create the trees in the corresponding sub-forest

using bagging. Likewise, from the testing dataset, a projected testing dataset is created for each

subspace. The number of trees in each sub-forest is given by the equation

Trees =
Z

Subspaces
(6.2)

The resulted DSB-RF is shown in Figure 6.1.

A weight is then assigned to each projected training dataset using the Absolute Predictive Power

(APP) given by Cuzzocrea et al. (2013). Given a dataset S, the APP is defined by the following

equation
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DSB-RF

Figure 6.1: DSB-RF

APP (S) =
1

|Att(S)|
×

∑
A∈Att(S)

I(S,A)

E(S)
(6.3)

where E(S) is the entropy of a given dataset S, havingK instances, and I(S,A) is the information

gain of a given attribute A in a dataset S. E(S) is a measure of the uncertainty in a random

variable and is given by the following equation

E(S) =

K∑
i=1

−pi(xi) log2 pi(xi) (6.4)

where xi refers to a generic instance of S and pi(xi) denotes the probability that the instance xi

occurs in S. I(S,A) is given by

I(S,A) = E(S)−
∑

v∈V al(A)

(
|Sv|
|S|

)
E(Sv) (6.5)

where E(S) denotes the entropy of S, V al(A) denotes the set of possible values for A, Sv refers

to the subset of S for which A has the value v, and E(Sv) denotes the entropy of Sv.

This weight will be inherited by the corresponding sub-forest and will be used in the voting

process. This means that the standard voting technique currently used in the standard RF is

going to be replaced by a weighted voting technique.
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As an example to illustrate how to calculate APP for a given dataset S, consider the the training

data depicted in Table 3.1 of Chapter 3. As shown in the table, the feature space consists of the

features Outlook, HWDone, Weekend, and Play. Assume that the subspace chosen is Outlook,

Weekend, and Play, the projected training data according to this subspace is shown in Table 6.1

below.

Table 6.1: Projected Training Data

Outlook Weekend Play

sunny true yes

sunny false yes

sunny true yes

sunny false no

rainy true yes

rainy false no

rainy true yes

rainy false no

Assuming that that projected training data in Table 6.1 is referred to as S, the APP of S

according to Equation 6.3 is given as:

APP (S) =
1

2
×
(
I(S,Outlook)

E(S)
+
I(S,Weekend)

E(S)

)
(6.6)

Starting with the denominator in Equation 6.6, according to Equation 6.4, E(S) is calculated

as:

E(S) = −2

8
log2

2

8
+−2

8
log2

2

8
+−2

8
log2

2

8
+−2

8
log2

2

8
= 4× (−2

8
×−2) = 2 (6.7)

As for the numerator, I(S,Outlook), according to Equation 6.5, is calculated as:

I(S,Outlook) = 2−
(
|Ssunny|
|S|

E(Ssunny) +
|Srainy|
|S|

E(Srainy)

)
= 2−

(
4

8
E(Ssunny) +

4

8
E(Srainy)

) (6.8)

According to Equation 6.4:

E(Ssunny) = E(Srainy) = −4

8
log4

4

8
=

1

2
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Substituting E(Ssunny) and E(Srainy) into Equation 6.8 yields:

I(S,Outlook) = 2−
(

4

8
× 1

2
+

4

8
× 1

2

)
= 1

1

2

Repeating the same calculations for I(S,Weekend) in Equation 6.6 yields:

I(S,Weekend) = 2−
(
|Strue|
|S|

E(Strue) +
|Sfalse|
|S|

E(Sfalse)

)
= 2−

(
4

8
E(Strue) +

4

8
E(Sfalse)

) (6.9)

According to Equation 6.4:

E(Strue) = E(Sfalse) = −4

8
log4

4

8
=

1

2

Substituting E(Strue) and E(Sfalse) into Equation 6.9 yields:

I(S,Weekend) = 2−
(

4

8
× 1

2
+

4

8
× 1

2

)
= 1

1

2

Finally, putting everything together by substituting the values I(S,Outlook), I(S,Weekend),

and E(S) into Equation 6.6 produces:

APP (S) =
1

2
× (1.5 + 1.5) =

3

4
= 0.75 (6.10)

6.3.1 Algorithm

Algorithm 5 summarises the main steps involved in the construction of a DSB-RF according to

the aforementioned discussion where Z is the desired size of the DSB-RF to be created, α is the

subspace factor, and featurePercent is desired percentage of features in the subspace.

As shown in the algorithm above, after creating empty vectors for the DSB-RF to be generated

and for the weights that will be assigned to the sub-forests, using Equation 6.1, the algorithm

creates N subspaces each containing featurePercent of all features F drawn at random. Each

subspace is then used to create projected training and testing datasets. A weight to each pro-

jected training set is assigned using Equation 6.3. After calculating the number of trees in each
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Algorithm 5 DSB-RF Algorithm

{User Settings}
input Z, α, featurePercent
{Process}
Create an empty vector

−−−−−−→
DSB-RF

Create an empty vector
−−−−−−→
Weights

Using Equation 6.1, create N subspaces each containing featurePercent of the fea-
tures chosen at random from all features F
For each subspace i in the previous step, create a projected training set TRi

Repeat the previous step to create a projected testing set TSi for each subspace (this
is required for the testing phase)
Using Equation 6.3, assign a weight to each projected training set and add this weight

to
−−−−−−→
Weights

Using Equation 6.2, determine the number of trees in each subspace:
treesPerSubspace = Z/N

for i = 1→ N do
for j = 1→ treesPerSubspace do

Create an empty tree Tj
repeat

Sample S out of all features in the corresponding projected training set TRi

using Bootstrap sampling

Create a vector of the S features
−→
FS

Find Best Split Feature B(
−→
FS)

Create a New Node using B(
−→
FS) in Tj

until No More Instances To Split On

Add Tj to the
−−−−−−→
DSB-RF

end for
end for
{Output}
A vector of trees

−−−−−−→
DSB-RF

A vector of weights
−−−−−−→
Weights (to replace standard voting by weighted voting)

subspace (treesPerSubspace) using Equation 6.2, the outer and inner for loops create N sub-

forests where each sub-forest contains treesPerSubspace trees. Each tree in each sub-forest is

constructed from a sample S out of all features in the corresponding projected training set using

Bootstrap sampling. The output of the algorithm are a vector of trees
−−−−−−→
DSB-RF , and a vector

of weights
−−−−−−→
Weights (to be used in the voting process).

6.4 Experimental Study

Traditional RFs and DSB-RF s were tested on 15 real datasets from the UCI repository Bache

and Lichman (2013) and both had an initial size of 500 trees. To allow enough diversity, two

types of DSB-RF s will be created: the first contains 10 sub-forests with 50 trees each, and the

second contains 20 sub-forests with 25 trees each. To create such DSB-RF s, we used as subspace
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factors 2% and 4% respectively. By Equations 6.1 and 6.2, these subspace factors produced these

two types of DSB-RF s. In the remainder of this chapter, we will refer to these types as Type I

and Type II respectively. We used a random 50%, 60%, 70%, 80%, and 90% of the features for

each subspace.

6.4.1 Results

Detailed results of the experiments, based on the average of 10 runs, are depicted in Tables 6.2

and 6.3. In these tables, we have highlighted in boldface the average accuracy of the resulted

DSB-RF when it is greater than that of RF, and underlined the accuracy when it is equal to that

of RF. Interestingly enough, taking a closer look at Tables 6.2 and 6.3, you will see that DSB-RF

has performed consistently well on the medical datasets, namely, diabetes and breast-cancer.

As demonstrated in Table 6.4 in the next subsection, Type I performed well on 70% of the

features, and Type II performed well on 90% of the features. The result of the paired t-test for

these two cases is a p-value of 0.3947 and 0.6795 respectively. These values suggest no statistical

significance. A further analysis of the proposed method will be given next followed by a proposed

solution using Replicator Dynamics (RD) in the next chapter.

Table 6.2: Accuracy Comparison Between RF & DSB-RF Type I

RF DSB-RF

Dataset 50% 60% 70% 80% 90%

pasture 40.83% 36.67% 40.83% 40.83% 40.83% 40.83%

squash-unstored 60.56% 61.67% 61.67% 61.11% 60.56% 60.00%

squash-stored 55.56% 54.44% 55.00% 53.33% 54.44% 55.00%

white-clover 63.33% 62.86% 63.33% 63.81% 63.33% 62.86%

glass 12.33% 10.82% 10.82% 12.33% 11.92% 11.92%

breast-cancer 71.65% 77.53% 76.19% 75.46% 74.02% 73.51%

diabetes 72.76% 72.64% 74.37% 79.35% 73.72% 73.98%

vote 97.97% 96.35% 97.09% 97.36% 97.43% 97.57%

car 62.31% 59.25% 60.36% 59.93% 61.51% 61.04%

vehicle 73.96% 71.35% 71.84% 73.96% 72.81% 73.82%

eucalyptus 19.72% 20.48% 20.36% 22.76% 21.20% 19.68%

sonar 0.28% 1.55% 0.99% 0.99% 0.00% 0.70%

credit 75.85% 75.68% 75.91% 76.15% 76.00% 76.35%

audit 96.28% 96.78% 96.60% 96.29% 96.54% 96.43%

soybean 77.59% 73.36% 73.97% 75.43% 75.09% 76.85%

6.4.2 Analysis of the Results

Table 6.4 summarizes the data in these tables, where we reported the number of wins, losses, and

ties. By wins, losses, and ties we refer to the number of datasets where DSB-RF, accuracy-wise,
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Table 6.3: Accuracy Comparison Between RF & DSB-RF Type II

RF DSB-RF

Dataset 50% 60% 70% 80% 90%

pasture 40.83% 40.83% 40.83% 40.00% 41.67% 40.83%

squash-unstored 60.56% 60.00% 60.00% 61.11% 60.00% 61.11%

squash-stored 55.56% 55.56% 55.56% 52.22% 54.44% 55.56%

white-clover 63.33% 62.38% 63.81% 63.33% 63.81% 63.81%

glass 12.33% 10.68% 11.10% 12.33% 11.64% 12.19%

breast-cancer 71.65% 75.98% 78.76% 77.94% 73.61% 71.86%

diabetes 72.76% 72.84% 73.79% 72.76% 73.98% 73.75%

vote 97.97% 97.23% 97.09% 97.70% 97.50% 97.77%

car 58.61% 60.15% 60.36% 59.97% 60.51% 61.55%

vehicle 73.96% 71.88% 72.92% 73.02% 73.54% 73.37%

eucalyptus 19.72% 19.12% 21.04% 23.32% 20.96% 19.48%

sonar 0.28% 0.28% 0.28% 0.85% 0.42% 0.00%

credit 75.85% 76.21% 76.09% 76.47% 75.82% 76.38%

audit 96.28% 97.18% 96.81% 96.68% 96.65% 96.44%

soybean 77.59% 74.66% 76.47% 75.60% 75.69% 77.63%

outperformed, underperformed, and equal performed RF respectively. As shown in Table 6.4,

DSB-RF Type I has outperformed RF on the majority of the datasets when the percentage of

features used is 60% and 70% (best at 70%). On the other hand, DSB-RF Type II, was superior

to RF when 60%, 70%, 80% and 90% of the features were used (best at 90%). Bar charts

summarizing the results of DSB-RF Type I and DSB-RF Type II are shown in Figures 6.2 and

6.3 respectively.

Table 6.4: Performance Comparison of RF & DSB-RF

DSB-RF Percentage of Features Wins Losses Ties

Type I

50% 5 10 0

60% 7 6 2

70% 8 4 3

80% 5 7 3

90% 5 9 1

Type II

50% 5 7 3

60% 7 5 3

70% 7 5 3

80% 8 7 0

90% 8 5 2
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Figure 6.2: DSB-DRF Type I Results

0

1

2

3

4

5

6

7

8

9

50% 60% 70% 80% 90%

Wins

Losses

Ties

Figure 6.3: DSB-DRF Type II Results
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6.4.3 Outperformance Range

For the winning datasets, Table 6.5 below depicts the outperformance range of DSB-RF over the

traditional RF. As shown in the table, Type I and Type II achieved a maximum outperformance

range of 6.59% and 7.11% respectively.

Table 6.5: Outperformance Range of RF Over DSB-RF

DSB-RF Percentage of Features Range

Type I

50% 0.50% - 5.88%

60% 0.06% - 4.54%

70% 0.01% - 6.59%

80% 0.15% - 2.37%

90% 0.15% - 1.86%

Type II

50% 0.08% - 4.33%

60% 0.24% - 7.11%

70% 0.40% - 6.29%

80% 0.14% - 1.96%

90% 0.04% - 2.94%

6.5 Time Complexity Analysis

Using Big O notation, a time complexity analysis of DSB-RF is presented. If n refer to the

number of trees in a DSB-RF, f refers to the number of features in the dataset, and O(f) refers

to the order of traversing the average number of nodes of all trees in a DSB-RF, then the time

complexity to classify an instance after each tree in a DSB-RF casts a vote for its predicted

class label is given by O(n × O(f)). It is worth mentioning that since DSB-RF does not do

any pruning as the previous two enhancements, its time complexity is likely to be comparable

to the time complexity of a traditional RF of the same size. This means that DSB-RF does

not run any faster than the traditional RF. Because DSB-RF produces unpruned ensembles, it

is considered less suitable than CLUB-DRF and LOFB-DRF for real-time applications and for

machines/devices with limited memory and precessing power.

6.6 Summary

In DSB-RF, an additional level of diversity has been injected to improve feature interaction by

using weighted subspaces where each subspace contained a fixed random percentage of features.

Eventually each subspace mapped to a sub-forest, thus, creating a forest with diverse sub-forests.
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As depicted in Table 6.4, DSB-RF Type I, with 10 sub-forests and 50 trees each, good results

were obtained at 60% and 70% of the features (best at 70%). As for the DSB-RF Type II, with

20 sub-forests and 25 trees each, as shown in the same table, good results were obtained at 60%,

70%, 80% and 90% of the features (best at 90%). As an interesting observation, DSB-RF has

demonstrated promising results especially for the medical datasets (namely breast-cancer and

diabetes) as demonstrated in Tables 6.2 and 6.3. For such datasets, it can be seen that DSB-RF

has performed consistently well regardless of the percentage of features used.

Due to two main issues that can affect the performance of DSB-RF, in the next chapter, RD

will be used to overcome these issues. The first issue is that having a large number of correlated

features in the subspace (an hence in the corresponding sub-forest) can invalidate the weight

(given by Equation 6.3) assigned to the subspace. Therefore, the absence of correlation among

features is desirable as it is likely to produce more accurate estimate of the weight.

The second issue is noisy features. A noisy feature is a feature that is not related to the class

label to be predicted and hence, can increase the classification error rate. When the training

dataset from which we the subspaces are created (refer to the top of Figure 6.1) contains many

noisy features, this can result in sub-forests containing only noisy features. Such sub-forests are

likely to have poor performance due to high classification error rate, therefore, they can affect

the overall performance of DSB-RF.

As shall be seen in the next chapter, RD aims at adjusting the size of the sub-forests by growing

the well-performing ones and shrinking the poorly-performing ones. Because highly correlated

and noisy features are likely to produce poorly-performing sub-forests, RD overcomes these issues

by shrinking the sub-forests that suffer from these issues, hence, giving them less weight in the

voting process.



Chapter 7

Replicator Dynamics-Based

Diverse Random Forest

(RDB-DRF)

7.1 Overview

Findings reported in this chapter have been published in Fawgreh et al. (2015). This chapter

introduces the second technique related to feature engineering which we have termed RDB-

DRF. This enhancement aims to further improve the performance of DSB-RF introduced in

the previous chapter by applying Replicator Dynamics (RD). As subsequently discussed in this

chapter, the evolution model of RD will be used to grow the well-performing sub-forests and

shrink the poorly-performing ones.

7.2 Background

In the previous chapter, it has been demonstrated how random subspaces can be used to create

an RF termed DSB-RF with diverse trees to promote the principle that diversity can lead to

better performance. This chapter investigates how to further improve the performance of DSB-

RF using RD in order to resolve two issues that can affect the performance of DSB-RF, namely,

correlated and noisy features, as previously discussed in the previous chapter. Though RD has

been used in evolutionary game theory and other domains as discussed in the next section, to the

best of our knowledge, however, it has not been used in RF or any extension of it. Experimental

96
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study on 15 real datasets showed favorable results, demonstrating the potential of the proposed

method.

7.3 Replicator Dynamics

Replicator Dynamics (RD) by Schuster and Sigmund (1983) is a simple model of evolution

used extensively in evolutionary game theory Taylor and Jonker (1978), Hofbauer and Sigmund

(2003), Hilbe (2011), Hauert (2010), Nowak and Sigmund (2004), Hauert et al. (2002), Roca et al.

(2009). It provides a convenient way to represent selection among a population of diverse types.

To illustrate how it works, assume that selection occurs between periods after dividing time into

discrete intervals. The proportion of each type in the next period is given by the replicator

equation as a function of the type’s payoffs and its current proportion in the population. Types

that score above the average payoffs increase in proportion, while types that score below the

average payoffs decrease in proportion. The amount of increase or decrease depends on a type’s

proportion in the current population and on its relative payoffs.

In addition to being used extensively in the domain of evolutionary game theory, to a lesser

extent, however, it was also used in other domains. In medicine, Lohmann and Bohn (2002)

used RD to analyze fMRI data of the human brain. In mathematical ecology, Bomze (1995)

used RD to describe the interaction of two populations over time. In mathematical biology,

Hutson and Schmitt (1992) used RD in the study of permanence, which, in a set of populations,

studies the long-term survival of each species. Multi-agent learning was another domain of RD

Galstyan (2013), Tuyls et al. (2006). Finally, in social networks, Olfati-Saber (2007) used RD

to understand origins of social patterns and the dominant behavioral and cultural directions in

social networks.

The most general continuous form of RD is given by the differential equation

ẋi = xi[fi(x)− φ(x)] (7.1)

such that

φ(x) =

n∑
j=1

xjfj(x) (7.2)

where the proportion of type i in the population is given by xi, the distribution of types vector in

the population is given by x = (x1, ..., xn), the fitness of type i, which depends on the population,

is given by fi(x), and φ(x) is the average population fitness which is calculated as the weighted

average of the fitness of the n types in the population.
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In the next section, we shall see how to apply RD in order to boost the performance of a DSB-RF

introduced in the previous chapter. To the best of our knowledge, RD has never been used before

in ensemble learning.

7.4 Applying Replicator Dynamics to a DSB-RF

Figure 6.1 in Chapter 6 depicts a DSB-RF. As shown in the figure, the population is n sub-

forests. Since each sub-forest corresponds to a subspace containing a randomized subset of

features, it represents, and is analogous to a diverse type. The sub-forest’s size is analogous to

the proportion of each type, the sub-forest’s accuracy is analogous to the type’s payoffs, and the

average accuracy of the entire forest is analogous to the average payoffs. The discrete periods

mentioned in the previous section correspond to loop iterations. At each iteration, the accuracy

of the sub-forest being processed is compared with the average accuracy of the entire DSB-RF

which is calculated as the average accuracy of the sub-forests. If it is found greater than, then

the size of the sub-forest grows, and if it is found less than, the size shrinks.

For growing and shrinking a sub-forest, two variations will be used. In the first one, the size

grows/shrinks by a fixed number of trees as shown in the following equations:

treesToAdd = β (7.3)

treesToRemove = γ (7.4)

It is worth pointing out that growing/shrinking a sub-forest by a fixed number of trees as per

this variation is not a standard evolution technique in RD. This variation was meant to act as

a form of regularization to allow the sub-forests to slowly grow/shrink in a controlled fashion

which may result in better performance.

In the second variation, the sub-forest grows/shrinks by adding/removing a variable number of

trees according to the following equations:

treesToAdd = b(subforestAccuracy(i)− ForestAccuracy)× numTreesc (7.5)

treesToRemove = b(ForestAccuracy − subforestAccuracy(i))× numTreesc (7.6)
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where subforestAccuracy(i) refers to the accuracy of the ith sub-forest being processed on the

OOB instances. As mentioned in Section 3.2 in Chapter 3, these are the instances that were not

included in the sample with replacement that was used to build the tree, and they account for

about 36% of the total number of instances. Using the OOB samples to evaluate a tree gives

an unbiased estimate of its predictive accuracy since, unlike training data that was seen by the

tree when it was built, OOB data was not seen and therefore, it is a more accurate measure

of the tree’s predictive accuracy. numTrees (given by Equation 6.2 in Chapter 6) refers to the

initial number of trees that was used to construct the sub-forest. The ForestAccuracy refers to

the average accuracy of the entire DSB-RF which can be calculated as follows:

ForestAccuracy =
1

Subspaces

Subspaces∑
i=1

subforestAccuracy(i) (7.7)

where the constant Subspaces is given by Equation 6.1 in Chapter 6. Figure 7.1 shows how

RD can be applied to a DSB-RF to further improve its performance by growing/shrinking the

sub-forests. As shown the figure, the process starts by first creating a DSB-RF which consists of

n sub-forests each containing a randomized subset of features. This DSB-RF is given as input

to the RDB-DRF algorithm described in the next subsection where a predefined number of loop

iterations is applied to the input DSB-RF. During each iteration, the accuracy of the sub-forest

being processed is compared with the accuracy of the entire forest. Depending on whether it

is greater/less than the forest’s overall accuracy, trees in the sub-forest are grown/shrunk. The

end result is a new forest which we have termed RDB-DRF with grown/shrunk sub-forests.

7.4.1 RDB-DRF Algorithm

Algorithm 6 outlines the main steps involved in applying RD to a DSB-RF, which is given as

input to the algorithm. The other input numIterates refers to the desired number of loop

iterations.

The outer for loop iterates over the number of iterations given by numIterates, and the inner

for loop iterates over each sub-forest in the input DSB-RF. During each iteration in the inner

loop, the accuracy of each sub-forest is compared with the accuracy of DSB-RF. If it is found

greater than, then Equation 7.3 or Equation 7.5 is used to determine how many trees to add to

the sub-forest. If it is found less than, then Equation 7.4 or Equation 7.6 is used to determine

how many trees to remove from the sub-forest. Since a sub-forest is grown when its performance

outperforms the performance of the entire forest, and is shrunk otherwise, the rationale here

is that by growing the well-performing sub-forests, more weight is given to them during the

voting process, and less weight is given to the poorly-performing sub-forests by shrinking them.

This weight adjustment is likely to yield correct classification of the instance being processed.
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As shown in the Output section of the algorithm, we refer to the resulted DSB-RF forest after

growing/shrinking it as RDB-DRF.
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Figure 7.1: Producing RDB-DRF from DSB-RF by Applying Replicator Dynamics

Algorithm 6 Applying Replicator Dynamics to a DSB-RF

{User Settings}
input DSB-RF ,numIterates
{Process}
for i = 1→ numIterates do

for j = 1→ DSB-RF .numberofSubforests() do
forestAccuracy ← calculateForestAccuracy(DSB-RF )
subforestAccuracy ← calculateSubforestAccuracy(DSB-RF .subforest(j))
if (subforestAccuracy > forestAccuracy) then

Apply Equation 7.3 or Equation 7.5 to determine treestoAdd
addTrees(DSB-RF .subforest(j), treestoAdd)

else if (subforestAccuracy < forestAccuracy) then
Apply Equation 7.4 or Equation 7.6 to determine treestoRemove
removeTrees(DSB-RF .subforest(j), treestoRemove)

end if
end for

end for
{Output}
DSB-RF with grown or shrunk sub-forests (we refer to this forest as RDB-DRF )
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7.5 Experimental Study

Since the two types of DSB-RFs in the previous chapter (refer to Type I and Type II in Section

6.4) produced favorable results, we decided to use them in our experiments in this chapter. As a

refresher, Type I refers to 10 sub-forests with 50 trees each, and Type II refers to 20 sub-forests

with 25 trees each. We used a random 70% of the features for each subspace in both types.

We chose 70% because in Table 6.4 (Chapter 6), this percentage of features was a common

denominator as it performed well in both types (Type I and Type II ) of DSB-RF used in the

experiments.

As for the number of iterations (refer to numIterates in Algorithm 6 above), we have used various

numbers of iterations including 25, 50, 100, 150, and 1000 iterations. By taking into account the

2 types of DSB-RF s mentioned above, and the various numbers of iterations, Table 7.1 lists the

different experimental scenarios that will be addressed later in this chapter.

Table 7.1: Scenario Reference Table

Scenario# # of sub-forests # of Trees Per sub-forest # of Iterations

1 10 50 25

2 10 50 50

3 10 50 100

4 10 50 150

5 10 50 1000

6 20 25 25

7 20 25 50

8 20 25 100

9 20 25 150

10 20 25 1000

7.5.1 Experiments Details

Four experiments sets were carried out. In the first and second set of experiments, we used

the first variation given by Equations 7.3 and 7.4 above. Here we chose β = γ = 1, therefore,

only 1 tree may be added/removed in each iteration. In the first experiments set, we compared

the performance of the resulted RDB-DRF with the initial DSB-RF to see whether there is

a performance gain or not. In the second experiments set, performance was compared with

traditional RFs of identical size (500 trees). Similarly, the third and fourth set of experiments

were performed using the second variation where a variable number of the initial number of

trees in the sub-forest is added or removed as per Equations 7.5 and 7.6 above. In the third

experiments set, performance of the resulted RDB-DRF was compared with the initial DSB-RF

to see whether there is a performance gain or not, and in the fourth experiments set, performance

was compared with traditional RFs of identical size.
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In each set of experiments, a new experiment was performed for each scenario listed in Table

7.1 where a new DSB-RF was created after applying Algorithm 6 above as per the parameters

specified for each scenario.

7.5.2 Results

For the first experiments set, Tables 7.2 and 7.3 show the accuracy of the winning and losing

datasets respectively. Performance in these tables is compared between RDB-DRF and the

initial DSB-RF. The Difference column in both tables shows the difference of accuracy where

the smallest difference is underlined and the largest difference is displayed in boldface.

Tables 7.4 and 7.5 show the accuracy of the winning and losing datasets respectively for the

second experiments set. Performance in these tables is compared between RDB-DRF and a

traditional RF of identical size.

Similarly, Tables 7.6 and 7.7 show the results of the third experiments set, and Tables 7.8 and

7.9 show the results of the fourth experiments set.

7.5.3 Analysis

Using the information in Tables 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, and 7.3, we recorded the number

of wins, losses, and ties. By wins, losses, and ties we refer to the number of datasets where

RDB-DRF, accuracy-wise, outperformed, underperformed, and equal performed either the initial

DSB-RF (first and third experiments sets), or the traditional RF (second and fourth experiments

sets) respectively.

Results for the first experiments set in terms of wins, losses, and ties are shown in the bar chart

in Figure 7.2. As reflected in the chart, the number of wins (where RDB-DRF outperformed the

initial DSB-RF ) exceeded the number of losses in all of the scenarios except Scenario 10 (wins

equal losses), and Scenario 2 (losses exceed wins by 1 dataset only).

Table 7.2: First Experiments Set Winning Datasets Accuracy

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

1 diabetes 72.41% 73.18% 0.77%

vehicle 73.61% 75.00% 1.39%

eucalyptus 21.20% 26.40% 5.20%

credit 75.29% 76.18% 0.89%

soybean 73.71% 76.29% 2.58%

2 squash-unstored 55.56% 61.11% 5.60%

eucalyptus 21.60% 24.00% 2.40%

credit 74.12% 76.18% 2.06%

Continued on next page
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Table 7.2 – continued from previous page

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

3 squash-unstored 61.11% 66.67% 5.56%

glass 10.96% 12.33% 1.37%

diabetes 74.33% 74.71% 0.38%

vehicle 70.83% 72.57% 1.74%

eucalyptus 18.00% 24.00% 6.00%

sonar 0.00% 1.41% 1.41%

4 squash-unstored 61.11% 72.22% 11.11%

squash-stored 44.44% 50.00% 5.56%

white-clover 61.90% 66.67% 4.77%

vehicle 72.57% 72.92% 0.35%

eucalyptus 20.80% 26.40% 5.60%

credit 77.94% 78.82% 0.88%

5 squash-unstored 50.00% 61.11% 11.11%

white-clover 61.90% 66.67% 4.77%

vehicle 72.92% 73.26% 0.34%

eucalyptus 17.20% 24.00% 6.80%

soybean 73.28% 75.43% 2.15%

6 squash-unstored 61.11% 66.67% 5.56%

diabetes 73.56% 75.10% 1.54%

vehicle 72.22% 73.26% 1.04%

eucalyptus 22.00% 26.40% 4.40%

credit 75.29% 76.18% 0.89%

audit 96.47% 96.76% 0.29%

7 squash-unstored 61.11% 66.67% 5.56%

diabetes 73.56% 73.95% 0.39%

vehicle 73.26% 73.61% 0.35%

eucalyptus 28.00% 29.20% 1.20%

audit 97.06% 97.21% 0.15%

8 squash-unstored 61.11% 77.78% 16.67%

vote 96.62% 97.30% 0.68%

vehicle 72.92% 74.65% 1.73%

eucalyptus 23.60% 29.60% 6.00%

audit 96.76% 96.91% 0.15%

soybean 77.59% 78.88% 1.29%

9 squash-unstored 61.11% 77.78% 16.67%

vehicle 72.57% 73.96% 1.39%

eucalyptus 28.00% 28.80% 0.80%

sonar 0.00% 1.41% 1.41%

audit 96.62% 97.06% 0.44%

soybean 73.71% 85.78% 12.07%

10 pasture 33.33% 41.67% 8.34%

squash-unstored 61.11% 72.22% 11.11%

eucalyptus 23.60% 30.40% 6.80%

soybean 77.16% 79.74% 2.58%

Table 7.3: First Experiments Set Losing Datasets Accuracy

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

1 breast-cancer 77.32% 75.26% 2.06%

2 breast-cancer 78.35% 74.23% 4.12%

diabetes 73.95% 73.56% 0.39%

sonar 2.82% 0.00% 2.82%

soybean 79.74% 78.02% 1.72%

3 breast-cancer 78.35% 71.13% 7.22%

vote 96.62% 95.95% 0.67%

soybean 77.59% 77.16% 0.43%

4 breast-cancer 79.38% 75.26% 4.12%

vote 97.30% 96.62% 0.68%

5 breast-cancer 76.29% 74.23% 2.06%

diabetes 74.71% 71.65% 3.15%

Continued on next page
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Table 7.3 – continued from previous page

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

credit 76.76% 74.71% 2.05%

6 breast-cancer 81.44% 72.16% 9.28%

sonar 1.41% 0.00% 1.41%

soybean 76.72% 76.29% 0.43%

7 breast-cancer 79.38% 74.23% 5.15%

vote 97.97% 96.62% 1.35%

sonar 1.41% 0.00% 1.41%

credit 77.35% 76.47% 0.88%

8 breast-cancer 77.32% 72.16% 5.16%

diabetes 73.18% 72.80% 0.38%

sonar 2.82% 0.00% 2.82%

credit 76.18% 74.71% 1.47%

9 breast-cancer 77.32% 74.23% 3.09%

diabetes 73.18% 72.80% 0.38%

vote 97.97% 97.30% 0.67%

credit 77.35% 75.88% 1.47%

10 breast-cancer 76.29% 72.16% 4.13%

diabetes 75.48% 74.71% 0.77%

vote 97.97% 97.30% 0.67%

credit 77.65% 76.76% 0.89%
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Figure 7.2: First Experiments Set Results Bar Chart

Similarly, the bar chart in Figure 7.3 shows the results for the second experiments set. Once

again and as reflected in the chart, the number of wins (where RDB–DRF outperformed a

traditional RF of identical size) exceeded the number of losses in all of the scenarios except for

Scenarios 8 and 5 (losses exceed wins by 1 and 2 datasets respectively).
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Table 7.4: Second Experiments Set Winning Datasets Accuracy

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

1 breast-cancer 72.16% 75.26% 3.10%

vehicle 72.92% 75.00% 2.08%

eucalyptus 21.20% 26.40% 5.20%

sonar 0.00% 1.41% 1.41%

credit 75.88% 76.18% 0.30%

audit 96.32% 96.76% 0.44%

soybean 75.86% 76.29% 0.43%

2 breast-cancer 72.16% 74.23% 2.07%

eucalyptus 21.20% 24.00% 2.80%

credit 75.88% 76.18% 0.30%

audit 96.32% 97.06% 0.74%

soybean 75.86% 78.02% 2.16%

3 squash-unstored 61.11% 66.67% 5.56%

diabetes 73.56% 74.71% 1.15%

eucalyptus 21.20% 24.00% 2.80%

sonar 0.00% 1.41% 1.41%

credit 75.88% 76.76% 0.88%

audit 96.32% 97.06% 0.74%

soybean 75.86% 77.16% 1.30%

4 squash-unstored 61.11% 72.22% 11.11%

breast-cancer 72.16% 75.26% 3.10%

eucalyptus 21.20% 26.40% 5.20%

credit 75.88% 78.82% 2.94%

audit 96.32% 96.91% 0.59%

soybean 75.86% 78.02% 2.16%

5 breast-cancer 72.16% 74.23% 2.07%

vehicle 72.92% 73.26% 0.34%

eucalyptus 21.20% 24.00% 2.80%

audit 96.32% 97.21% 0.89%

6 squash-unstored 61.11% 66.67% 5.56%

diabetes 73.56% 75.10% 1.54%

vehicle 72.92% 73.26% 0.34%

eucalyptus 21.20% 26.40% 5.20%

credit 75.88% 76.18% 0.30%

audit 96.32% 96.76% 0.44%

soybean 75.86% 76.29% 0.43%

7 squash-unstored 61.11% 66.67% 5.56%

breast-cancer 72.16% 74.23% 2.07%

diabetes 73.56% 73.95% 0.39%

vehicle 72.92% 73.61% 0.69%

eucalyptus 21.20% 29.20% 8.00%

credit 75.88% 76.47% 0.59%

audit 96.32% 97.21% 0.89%

8 squash-unstored 61.11% 77.78% 16.67%

vehicle 72.92% 74.65% 1.73%

eucalyptus 21.20% 29.60% 8.40%

audit 96.32% 96.91% 0.59%

soybean 75.86% 78.88% 3.02%

9 squash-unstored 61.11% 77.78% 16.67%

breast-cancer 72.16% 74.23% 2.07%

vehicle 72.92% 73.96% 1.04%

eucalyptus 21.20% 28.80% 7.60%

sonar 0.00% 1.41% 1.41%

audit 96.32% 97.06% 0.74%

soybean 75.86% 85.78% 9.92%

10 squash-unstored 61.11% 72.22% 11.11%

diabetes 73.56% 74.71% 1.15%

vehicle 72.92% 73.96% 1.04%

eucalyptus 21.20% 30.40% 9.20%

sonar 0.00% 1.41% 1.41%

Continued on next page
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Table 7.4 – continued from previous page

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

credit 75.88% 76.76% 0.88%

audit 96.32% 96.91% 0.59%

soybean 75.86% 79.74% 3.88%

Table 7.5: Second Experiments Set Losing Datasets Accuracy

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

1 glass 12.33% 10.96% 1.37%

diabetes 73.56% 73.18% 0.38%

vote 97.97% 96.62% 1.35%

car 61.90% 60.37% 1.53%

2 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

vote 97.97% 96.62% 1.35%

car 61.90% 60.37% 1.53%

3 white-clover 66.67% 61.90% 4.77%

breast-cancer 72.16% 71.13% 1.03%

vote 97.97% 95.95% 2.02%

car 61.90% 60.54% 1.36%

vehicle 72.92% 72.57% 0.35%

4 squash-stored 55.56% 50.00% 5.56%

diabetes 73.56% 73.18% 0.38%

vote 97.97% 96.62% 1.35%

car 61.90% 60.20% 1.70

5 glass 12.33% 10.96% 1.37%

diabetes 73.56% 71.65% 1.91%

vote 97.97% 96.62% 1.35%

car 61.90% 59.52% 2.38%

credit 75.88% 74.71% 1.17%

soybean 75.86% 75.43% 0.43%

6 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

vote 97.97% 97.30% 0.67%

car 61.90% 60.37% 1.53

7 white-clover 66.67% 61.90% 4.77%

vote 97.97% 96.62% 1.35%

car 61.90% 59.69% 2.21%

soybean 75.86% 72.84% 3.02%

8 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

diabetes 73.56% 72.80% 0.76%

vote 97.97% 97.30% 0.67%

car 61.90% 59.86% 2.04%

credit 75.88% 74.71% 1.17%

9 glass 12.33% 10.96% 1.37%

diabetes 73.56% 72.80% 0.76%

vote 97.97% 97.30% 0.67%

car 61.90% 60.03% 1.87%

10 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

vote 97.97% 97.30% 0.67%

car 61.90% 60.20% 1.70%

For the third and fourth experiments set, results are shown in the bar charts in Figures 7.4 and

7.5 respectively. It is clear from both figures that these experiment sets produced less favorable
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Figure 7.3: Second Experiments Set Results Bar Chart

results than the previous experiment sets as the number of wins exceeded the number of losses

in 5 scenarios only (third experiments set) and 4 scenarios only (fourth experiments set).

Table 7.6: Third Experiments Set Winning Datasets Accuracy

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

1 squash-unstored 55.56% 61.11% 5.55%

squash-stored 50.00% 55.56% 5.56%

eucalyptus 19.20% 19.60% 0.40%

audit 96.03% 97.06% 1.03%

2 squash-unstored 61.11% 77.78% 16.67%

vehicle 72.22% 73.26% 1.04%

eucalyptus 24.80% 28.40% 3.60%

soybean 72.41% 75.00% 2.59%

3 squash-unstored 50.00% 55.56% 5.56%

eucalyptus 16.40% 16.80% 0.40%

soybean 78.02% 80.17% 2.15%

4 squash-unstored 66.67% 77.78% 11.11%

squash-stored 50.00% 55.56% 5.56%

vote 96.62% 97.30% 0.68%

vehicle 70.83% 72.92% 2.09%

eucalyptus 20.00% 34.00% 14.00%

soybean 72.41% 73.28% 0.87%

5 squash-unstored 61.11% 66.67% 5.56%

white-clover 61.90% 66.67% 4.77%

eucalyptus 17.60% 27.20% 9.60%

soybean 77.59% 79.74% 2.15%

6 squash-unstored 61.11% 66.67% 5.56%

eucalyptus 22.80% 24.00% 1.20%

audit 96.32% 96.76% 0.44%

Continued on next page
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Table 7.6 – continued from previous page

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

7 diabetes 73.18% 74.33% 1.15%

vehicle 71.88% 72.92% 1.04%

eucalyptus 22.80% 25.20% 2.40%

audit 96.76% 96.91% 0.15%

8 eucalyptus 22.00% 27.20% 5.20%

audit 96.32% 96.91% 0.59%

9 squash-unstored 61.11% 66.67% 5.56%

eucalyptus 19.60% 24.00% 4.40%

audit 96.62% 96.76% 0.14%

10 squash-unstored 55.56% 66.67% 11.11%

eucalyptus 24.40% 26.80% 2.40%

audit 96.62% 96.76% 0.14%

soybean 77.59% 86.21% 8.62%

Table 7.7: Third Experiments Set Losing Datasets Accuracy

Scenario Dataset Accuracy DSB-RF Accuracy RDB-DRF Difference

1 pasture 41.67% 33.33% 8.34%

breast-cancer 81.44% 76.29% 5.15%

vote 97.97% 97.30% 0.67%

credit 75.88% 75.59% 0.29%

soybean 78.02% 75.00% 3.02%

2 breast-cancer 77.32% 76.29% 1.03%

credit 76.18% 75.88% 0.30%

3 breast-cancer 78.35% 73.20% 5.15%

diabetes 75.10% 73.95% 1.15%

credit 74.12% 73.82% 0.30%

4 breast-cancer 79.38% 69.07% 10.31%

diabetes 75.48% 73.18% 2.30%

credit 76.76% 76.47% 0.29%

5 breast-cancer 75.26% 72.16% 3.10%

diabetes 75.10% 73.56% 1.54%

credit 77.35% 76.47% 0.88%

6 breast-cancer 80.41% 73.20% 7.21%

diabetes 74.33% 73.56% 0.77%

soybean 71.55% 70.26% 1.29%

7 breast-cancer 77.32% 72.16% 5.16%

soybean 72.84% 71.98% 0.86%

8 breast-cancer 75.26% 71.13% 4.13%

diabetes 73.18% 72.80% 0.38%

soybean 77.16% 76.72% 0.44%

9 diabetes 73.56% 72.41% 1.15%

vote 97.97% 96.62% 1.35%

soybean 77.59% 76.72% 0.87%

10 breast-cancer 79.38% 75.26% 4.12%

diabetes 75.48% 73.95% 1.53%

Table 7.8: Fourth Experiments Set Winning Datasets Accuracy

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

1 breast-cancer 72.16% 76.29% 4.13%

diabetes 73.56% 74.71% 1.15%

car 61.90% 64.29% 2.39%

vehicle 72.92% 73.61% 0.69%

audit 96.32% 97.06% 0.74%

2 squash-unstored 61.11% 77.78% 16.67%

breast-cancer 72.16% 76.29% 4.13%

vehicle 72.92% 73.26% 0.34%

Continued on next page
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Table 7.8 – continued from previous page

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

eucalyptus 21.20% 28.40% 7.20%

audit 96.32% 96.91% 0.59%

3 breast-cancer 72.16% 73.20% 1.04%

diabetes 73.56% 73.95% 0.39%

sonar 0.00% 1.41% 1.41%

audit 96.32% 97.06% 0.74%

soybean 75.86% 80.17% 4.31%

4 squash-unstored 61.11% 77.78% 16.67%

eucalyptus 20.00% 34.00% 14.00%

sonar 0.00% 1.41% 1.41%

credit 75.88% 76.47% 0.59%

audit 96.32% 97.21% 0.89%

5 squash-unstored 61.11% 66.67% 5.56%

vehicle 72.92% 73.26% 0.34%

eucalyptus 21.20% 27.20% 6.00%

credit 75.88% 76.47% 0.59%

audit 96.32% 96.91% 0.59%

soybean 75.86% 79.74% 3.88%

6 squash-unstored 61.11% 66.67% 5.56%

breast-cancer 72.16% 73.20% 1.04%

eucalyptus 21.20% 24.00% 2.80%

audit 96.32% 96.76% 0.44%

7 diabetes 73.56% 74.33% 0.77%

eucalyptus 21.20% 25.20% 4.00%

credit 75.88% 76.76% 0.88%

audit 96.32% 96.91% 0.59%

8 squash-unstored 61.11% 66.67% 5.56%

eucalyptus 21.20% 27.20% 6.00%

audit 96.32% 96.91% 0.59%

soybean 75.86% 76.72% 0.86%

9 squash-unstored 61.11% 66.67% 5.56%

breast-cancer 72.16% 74.23% 2.07%

car 61.90% 62.59% 0.69%

eucalyptus 21.20% 24.00% 2.80%

audit 96.32% 96.76% 0.44%

soybean 75.86% 76.72% 0.86%

10 squash-unstored 61.11% 66.67% 5.56%

breast-cancer 61.11% 75.26% 14.15%

diabetes 73.56% 73.95% 0.39%

eucalyptus 21.20% 26.80% 5.60%

audit 96.32% 96.76% 0.44%

soybean 75.86% 86.21% 10.35%

Table 7.9: Fourth Experiments Set Losing Datasets Accuracy

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

1 pasture 41.67% 33.33% 8.34%

white-clover 66.67% 57.14% 9.53%

vote 97.97% 97.30% 0.67%

eucalyptus 21.20% 19.60% 1.60%

credit 75.88% 75.59% 0.29%

soybean 75.86% 75.00% 0.86%

2 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

diabetes 73.56% 72.80% 0.76%

vote 97.97% 96.62% 1.35%

car 61.90% 60.20% 1.70%

soybean 75.86% 75.00% 0.86%

3 squash-unstored 61.11% 55.56% 5.55%

white-clover 66.67% 61.90% 4.77%

Continued on next page
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Table 7.9 – continued from previous page

Scenario Dataset Accuracy Traditional RF Accuracy RDB-DRF Difference

vote 97.97% 97.30% 0.67%

car 61.90% 61.39% 0.51%

vehicle 72.92% 72.57% 0.35%

eucalyptus 21.20% 16.80% 4.40%

credit 75.88% 73.82% 2.06%

4 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

breast-cancer 72.16% 69.07% 3.09%

diabetes 73.56% 73.18% 0.38%

vote 97.97% 97.30% 0.67%

car 61.90% 59.86% 2.04%

soybean 75.86% 73.28% 2.58%

5 glass 12.33% 10.96% 1.37%

vote 97.97% 97.30% 0.67%

car 61.90% 58.84% 3.06%

6 vote 97.97% 97.30% 0.67%

car 61.90% 59.86% 2.04%

soybean 75.86% 70.26% 5.60%

7 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

vote 97.97% 97.30% 0.67%

car 61.90% 60.54% 1.36%

soybean 75.86% 71.98% 3.88%

8 glass 12.33% 10.96% 1.37%

breast-cancer 72.16% 71.13% 1.03%

diabetes 73.56% 72.80% 0.76%

car 61.90% 60.54% 1.36%

9 white-clover 66.67% 61.90% 4.77%

glass 12.33% 10.96% 1.37%

diabetes 73.56% 72.41% 1.15%

vote 97.97% 96.62% 1.35%

10 white-clover 66.67% 61.90% 4.76%

glass 12.33% 10.96% 1.37%

car 61.90% 59.69% 2.21%

vehicle 72.92% 72.57% 0.35%

credit 75.88% 75.29% 0.59%

7.5.4 Outperformance Range

To show how well RDB-DRF performed relative to DSB-RF (first and third experiment sets),

and relative to traditional RFs (second and fourth experiment sets), in this subsection, we show

the outperformance range of RDB-DRF over DSB-RF and traditional RF. For the first, second,

third, and fourth experiment sets, such a range is displayed in Tables 7.10, 7.11, 7.12, and 7.13

respectively.

By taking a closer look at these tables, note that a maximum outperformance range of 16.67%

has been achieved in each table. Specifically speaking, Scenarios 8 and 9 in Tables 7.10 and 7.11,

Scenario 2 in Table 7.12, and Scenarios 2 and 4 in Table 7.13, have all achieved this maximum

outperformance range. As per Table 7.1, both Scenarios 8 and 9 refer to 20 sub-forests with

25 trees each, but 100 iterations for Scenario 8, and 150 iterations for Scenario 9. Scenarios 2
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Wins Losses Ties

1 4 5 6

2 4 2 9

3 3 3 9

4 6 3 6

5 4 3 8

6 3 3 9

7 4 2 9

8 2 3 10

9 3 3 9

10 4 2 9
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Figure 7.4: Third Experiments Set Results Bar Chart

Wins Losses Ties

1 5 6 4

2 5 6 4

3 5 7 3

4 5 7 3

5 6 3 6

6 4 3 8

7 4 5 6

8 4 4 7

9 6 4 5

10 6 5 4
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Figure 7.5: Fourth Experiments Set Results Bar Chart

and 4 both refer to 10 sub-forests with 50 trees each, but 50 iterations for Scenario 2, and 150

iterations for Scenario 4.
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Table 7.10: Outperformance Range of RDB-DRF over DSB-RF
(1st Experiments Set)

Scenario Range

1 0.77% - 5.20%

2 2.06% - 5.60%

3 0.38% - 6.00%

4 0.35% - 11.11%

5 0.34% - 11.11%

6 0.29% - 5.56%

7 0.15% - 5.56%

8 0.15% - 16.67%

9 0.44% - 16.67%

10 2.58% - 8.34%

Table 7.11: Outperformance Range of RDB-DRF over Traditional RF
(2nd Experiments Set)

Scenario Range

1 0.30% - 5.20%

2 0.30% - 2.80%

3 0.74% - 5.56%

4 0.59% - 11.11%

5 0.34% - 2.80%

6 0.30% - 5.56%

7 0.39% - 8.00%

8 0.59% - 16.67%

9 0.74% - 16.67%

10 0.59% - 11.11%

Table 7.12: Outperformance Range of RDB-DRF over DSB-RF
(3rd Experiments Set)

Scenario Range

1 0.40% - 5.56%

2 1.04% - 16.67%

3 0.40% - 5.56%

4 0.68% - 14.00%

5 2.15% - 9.60%

6 0.44% - 5.56%

7 0.15% - 2.40%

8 0.59% - 5.20%

9 0.14% - 5.56%

10 0.14% - 11.11%
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Table 7.13: Outperformance Range of RDB-DRF over Traditional RF
(4th Experiments Set)

Scenario Range

1 0.69% - 4.13%

2 0.34% - 16.67%

3 0.39% - 4.31%

4 0.59% - 16.67%

5 0.34% - 6.00%

6 0.44% - 5.56%

7 0.59% - 4.00%

8 0.59% - 6.00%

9 0.44% - 5.56%

10 0.39% - 14.15%

7.6 Time Complexity Analysis

Using Big O notation, a time complexity analysis of RDB-DRF is presented. If n refer to the

number of trees in RDB-DRF, f refers to the number of features in the dataset, and O(f)

refers to the order of traversing the average number of nodes of all trees in a RDB-DRF, then

the time complexity to classify an instance after each tree in a RDB-DRF casts a vote for its

predicted class label is given by O(n×O(f)). Since the sub-forests can grow/shrink, it is worth

mentioning that a RDB-DRF can be faster, slower, or simlar to that of the initial DSB-RF.

Therefore, like DSB-RF, RDB-DRF may not be a good choice for real-time applications and for

machines/devices with limited memory and precessing power. For such applications and devices,

we recommend the CLUB-DRF and LOFB-DRF enhancements developed in Chapters 4 and 5

respectively.

7.7 Summary

For the first time ever, we have used Replicator Dynamics to improve the performance of DSB-

RF, which we have introduced in the previous chapter. We have termed the new method RDB-

DRF. Favorable results were obtained as demonstrated by the first and second experiments sets

whose results were displayed in Figures 7.2 and 7.3 respectively. In such experiments, the first

variation given by Equations 7.3 and 7.4 was used. Since we chose β = γ = 1, only 1 tree may

be added/removed in each iteration. Taking a closer look at these figures, note that the number

of wins exceeds the number of losses in 80% of the scenarios. Such results proved that the first

variation given by Equations 7.3 and 7.4, which meant to act as a regularization technique as

previously discussed, produced favorable results.
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The third and fourth experiments sets, that were based on the second variation given by Equa-

tions 7.5 and 7.6, produced less favorable results as demonstrated in Figures 7.4 and 7.5 respec-

tively. Hence, for future experiments, we do recommend the first variation. As demonstrated

in Tables 7.10, 7.11, 7.12, and 7.13, all experiments sets achieved a maximum outperformance

range of 16.67%.
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

Research conducted in this dissertation was motivated by how diversity in ensembles tends to

yield better results Kuncheva and Whitaker (2003), Brown et al. (2005), Adeva et al. (2005), Tang

et al. (2006). As such, this dissertation investigated new diversity-based techniques that have

not been used before to produce more accurate Random Forests ensembles. These techniques

are clustering, the Local Outlier Factor (LOF) , weighted random subspaces, and Replicator

Dynamics (RD). These techniques were used to produce the enhancements CLUB-DRF, LOFB-

DRF, DSB-RF, and RDB-DRF respectively.

Clustering is a known diversity technique as data is grouped into clusters (groups) where each

cluster contains members that are similar to each other, but are dissimilar to other members in

other clusters. When a member is selected from each cluster, the end result is a set of members

that is diverse. When clustering is applied to RFs, it can produce pruned ensembles that are

much smaller in size than the original ones. This happens when trees are grouped into clusters,

and a representative tree from each cluster is selected. Depending on the number of trees in

the RF, and how many clusters are created, clustering can be used as a technique to extreme

prune RFs, as it is likely to achieve extreme pruning levels. Similarly, the LOF can be used as a

diversity technique by assigning each tree an LOF score, and selecting the top k trees with the

highest weighted LOF score. Extreme pruning levels can be achieved when the number of trees

in the RF is large and k is small.

As a feature engineering technique, weighted random subspaces were used to inject another level

of diversity in RF trees. This was done by creating random subspaces where each subspace

contained a random fixed subset of features, and assigning a weight to each subspace according
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to its Absolute Predictive Power (APP) given by Cuzzocrea et al. (2013). Each subspace was

used to create a sub-forest that contains a random subset of features, and when taken collectively,

a diversified RF was formed which we have termed DSB-RF. To resolve 2 issues that can affect

the performance of a DSB-RF, namely noisy and correlated features, RD was applied to further

improve its performance. This was done by growing the well-performing sub-forests and shrinking

the poorly-performing ones. By doing this, at voting time, more weight is given to the well-

performing sub-forests and less weight is given to the poorly-performing ones.

We have been able to fulfill the aims and objectives that were outlined in Section 1.5 of this

thesis. The first aim was the extreme pruning of Random Forests. As discussed in Section

1.5, there were two objectives to support this aim. The first objective was met by exploiting

clustering and the second objective was met by exploiting the Local Outlier Factor, as previously

discussed in this section. To the best of our knowledge, such techniques were not used before to

extreme prune Random Forests.

The second aim as discussed in Section 1.5 was improving feature interaction using new feature

engineering techniques. To support this aim, two objectives were met. The first objective was

met by using diversified weighted subspaces, and the second objective was met using RD, as

discussed above.

The following table lists the aims, approaches taken for each aim, and the research contributions

that were developed to meet these objectives.

Table 8.1: Summary of Aims, Approaches & Research Contributions

Aims Approaches Research Contributions

Extreme Pruning of RFs Clustering CLUB-DRF
Local Outlier Factor LOFB-DRF

Improving Feature Interaction in RFs Weighted Subspaces DSB-RF
Replicator Dynamics RDB-DRF

Next, we summarize the results of the experimental study that was performed for each method.

Starting with CLUB-DRF and comparing the performance of the three variations in the charts

in Figures 4.2, 4.3, and 4.4, we can see that BestRepOnTraining has performed the best, and

BestRepOnOOB as the second best. In the BestRepOnTraining variation, from each cluster,

the tree that has achieved the highest performance on the training data is selected. This varia-

tion outperformed RF on 14/15 of the datasets, and completely outperformed RF on the 5/14

datasets. The BestRepOnOOB variation, where from each cluster, the tree that has achieved

the highest performance on the out-of-bag (OOB) data is chosen, produced less favorable results

as it outperformed RF on 13/15 of the datasets, and completely outperformed RF on the 6/13

datasets.
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The RandomRep variation did not perform well compared with the others as depicted by the

chart in Figure 4.4. This is attributed to the fact that, unlike the first two variations where

accuracy was the main criteria used for the selection of a representative from each cluster, a

core CLUB-DRF component, which is accuracy, was removed in RandomRep. The selection

process in this variation simply involved selecting a random representative from each cluster in

the absence of accuracy. As previously discussed, this emphasizes the importance of having an

accuracy measure when selecting a representative from each cluster.

As for LOFB-DRF and as shown in the charts in Figures 5.2 and 5.3, the WeightedOnTraining

variation performed better than the WeightedOnOOB variation as it outperformed RF on 9/15

datasets . In the WeightedOnTraining variation, the top k trees having the highest weight (the

product of the normalized LOF value and the accuracy on the training data), are selected. On

the other hand, in the WeightedOnOOB variation, the top k trees having the highest weight (the

product of the normalized LOF value and the accuracy on the OOB data), are selected.

For the maximum and the best performer pruning levels depicted in both columns in Tables

4.11, 4.12, 5.9, and 5.10, both CLUB-DRF and LOFB-DRF have done extremely well. In these

tables, the pruning level achieved was mostly 99% (highest pruning level ever reported to date).

This means that for the majority of the datasets, the smallest CLUB-DRF/LOFB-DRF that

outperformed RF is of size 5, and the best performer is also of size 5. Size 5 is the size of

the smallest pruned ensemble produced by CLUB-DRF/LOFB-DRF and corresponds to a 99%

pruning level; the highest pruning level achieved by both LOFB-DRF and CLUB-DRF. This

makes the extremely pruned CLUB-DRF/LOFB-DRF ensembles typical not only for real-time

applications, but also for machines and mobile devices with limited memory and processing

power.

As depicted in Table 6.4, Type I of DSB-RF (10 sub-forests with 50 trees each), good results

were obtained at 60% and 70% of the features. As for Type II (20 sub-forests with 25 trees each),

good results were obtained at 60%, 70%, 80% and 90% of the features. Interestingly enough,

both types of DSB-RF have demonstrated promising results especially for medical datasets as

demonstrated in Tables 6.2 and 6.3.

To deal with two issues that can affect the performance of DSB-RF, namely, noisy and correlated

features as discussed in Subsection 6.4.3, RDB-DRF was developed. The performance of RDB-

DRF was the best in the first and second experiments sets depicted in Figures 7.2 and 7.3

respectively. In such experiments, the first variation given by the Equations 7.3 and 7.4 was

used. Since we adopted β = γ = 1, only 1 tree may be added/removed in each iteration to allow

the sub-forests to grow/shrink in a slow controlled fashion. Taking a closer look at these figures,

you will see that the number of wins exceeded the number of losses in 80% of the scenarios.

The second variation where a fraction of the initial number of trees in the sub-forest is added or
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removed as per Equations 7.5 and 7.6, less favorable results were obtained as depicted in Figures

7.4 and 7.5 respectively. Taking a closer look at Figure 7.4, the number of wins exceeded the

number of losses in 5 scenarios, and tied losses in 3 scenarios. In Figure 7.5, the number of wins

exceeded the number of losses in 4 scenarios, and tied losses in 1 scenario.

Performance-wise, CLUB-DRF is ranked first in terms of accuracy and classification speed mak-

ing it ideal for real-time applications, and for machines/devices with limited memory and pro-

cessing power.

8.2 Future Work

In the following two subsections, we suggest both direct and indirect future work. Direct future

work aims at using large datasets in both size and features, and re-running the experiments using

different parameters scenarios. Indirect future work, on the other hand, is a kind of visionary

work that aims at assessing the performance the new methods proposed in this thesis, on real

applications and datasets, by having them participate in various local and global competitions.

8.2.1 Direct Future Work

For CLUB-DRF, another interesting research direction would be to use other clustering algo-

rithms like DBSCAN Ester et al. (1996), CLARANS Ng and Han (2002), BIRCH Zhang et al.

(1996), and/or CURE Guha et al. (1998). There is a potential that the way clusters are formed

by each algorithm may have an impact on the performance of CLUB-DRF. This can happen

when representatives selected from the clusters of one algorithm are more/less diverse than oth-

ers selected from clusters produced by another algorithm. Different sizes for the initial RF and

also different cluster increments can also be tried.

To improve the performance of LOFB-DRF, a hybrid approach can be used that combines LOF

with clustering to boost diversity up. Using this approach, we first create clusters of trees, then

from each cluster, we select a representative that corresponds to the instance with the highest

weighted LOF value.

For both CLUB-DRF and LOFB-DRF which are typical for real-time applications as previously

discussed in Chapters 4 and 5, it would be useful to apply these methods to such applications

and assess their performance.

For DSB-RF, the Absolute Predictive Power (APP) has been used to weigh each projected

dataset. As future work, two other scenarios can be considered. In the first one, we could

use the Relative Predictive Power (RPP), also by Cuzzocrea et al. (2013), instead of APP. A
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second and more interesting scenario would be to use a hybrid approach where some projected

datasets are weighed according to APP and others according to RPP. It would be interesting to

compare the performance of the three scenarios to determine the one that yields the best results.

Furthermore, in our experiments, we have used a subspace factor of 2% and 4%, a size of 500

trees for the DSB-RF forest to be created, and 50%, 60%, 70%, 80%, and 90% of the features

in each subspace. In the future, we will attempt different values for these parameters.

As for RDB-DRF, since the first variation given by the Equations 7.3 and 7.4 produced favorable

results where we adopted β = γ = 1, it would be interesting to experiment with other values of

β and γ other than 1.

For all new methods proposed in this dissertation, we would like to extend the testing to high

dimensional and large datasets. This would be quite interesting particularly for DSB-RF and

RDB-DRF as high dimensional datasets are likely to produce more diverse sub-forests, hence,

more diverse ensembles. Because diversity can lead to better performance as was repeatedly

stated throughout the thesis, we expect higher performance for high dimensional datasets than

low dimensional datasets.

Further research can also be conducted to show how the proposed methods in this dissertation

perform when used in new and emerging applications.

8.2.2 Indirect Future Work

As a platform for predictive modeling and analytics competitions, Kaggle Narayanan et al. (2011)

offers competitions based on real applications and datasets for experimenting with different

machine learning classification techniques. Winning teams in each competition are rewarded

with valuable prizes. As previously mentioned in Chapter 1, an evaluation study made by

Fernández-Delgado et al. (2014) revealed that RF has proven to be the best family of classifiers.

It comes at no surprize, then, that RF was a former winner of Kaggle competition to predict the

set of bird species present in audio recordings, collected in field conditions Fodor (2013). Since

it has been proven empirically that the enhancements developed in this thesis outperformed

the traditional RF, it would be a good idea to have these enhancements participate in Kaggle

competitions. By doing so, the ultimate objective here is not to win a prize but rather, to

determine how well these methods perform in the field when applied to real applications and

real datasets.

Another future work direction would be to conduct an evaluation study similar to Fernández-

Delgado et al. (2014) where the methods developed in this dissertation are evaluated against

other methods. Such an evaluation study would be useful to determine the overall ranking

of these methods relative to others. Furthermore, depending on the ranking achieved by these
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methods, the study can further provide an insight as to whether further improvements are needed

to these methods or not.
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