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Abstract  

Ismail Labed I Robert Gordon University 

 

In the last decade, shale reservoirs emerged as one of the fast growing hydrocarbon 

resources in the world unlocking vast reserves and reshaping the landscape of the oil and 

gas global market. Gas-condensate reservoirs represent an important part of these 

resources.  The key feature of these reservoirs is the condensate banking which reduces 

significantly the well deliverability when the condensate forms in the reservoir below the 

dew point pressure. Although the condensate banking is a well-known problem in 

conventional reservoirs, the very low permeability of shale matrix and unavailability of 

proven pressure maintenance techniques make it more challenging in shale reservoirs.  

The nanoscale range of the pore size in the shale matrix affects the gas flow which deviates 

from laminar Darcy flow to Knudsen flow resulting in enhanced gas permeability. 

Furthermore, the phase behaviour of gas-condensate fluids is affected by the high capillary 

pressure in the matrix causing higher condensate saturation than in bulk conditions. A good 

understanding and an accurate evaluation of how the condensate builds up in the reservoir 

and how it affects the gas flow is very important to manage successfully the development of 

these high-cost hydrocarbon resources.  

This work investigates the gas Knudsen flow under condensate saturation effect and phase 

behaviour deviation under capillary pressure of gas-condensate fluids in shale matrix with 

pore size distribution; and evaluates their effect on well productivity.  

Knudsen flow in shale matrix under the effect of condensate saturation is investigated using 

pore network modelling with a random log-normal pore size distribution. The multi-scale 

gas flow model of Beskok-Karniadakis was used to model the gas flow in shale pore level 

and the apparent gas permeability was calculated for the whole network. A new parameter, 

“Relative Correction Factor” defined as the ratio of Knudsen dry gas permeability to 

Knudsen gas-condensate permeability, was introduced to evaluate the change of 

condensate saturation effect on Knudsen flow.  

The phase behaviour of gas-condensate fluids in shale matrix was examined through 

combination of modified Peng-Robinson Equation of State (PREOS) and pore size 

distribution. An iterative algorithm is used to model the interaction of EOS and capillary 

pressure as a function of pore size distribution and to provide dew point and condensate 

saturation calculation in Constant Volume Depletion (CVD) simulations.  
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The performance of shale gas-condensate reservoirs was studied using a semi-analytical 

model in Laplace domain of single matrix block with constant fracture pressure. The 

Knudsen effect under two-phase flow and phase behaviour deviation were incorporated to 

this model. In addition, numerical compositional simulation was used to investigate the 

whole matrix-fracture system using logarithmic grid refinement technique.  

Results showed that Knudsen flow under condensate banking effect is not only a function 

of condensate saturation; it is also affected by pressure and pore size distribution. The 

reduction of Knudsen flow under condensate banking is higher at low pressure and in more 

dispersed pore size distribution (at high standard deviation values). The semi-analytical 

models showed that the effect of condensate saturation and pressure is significant (about 

25% of the production gained by Knudsen flow). Hence, assumption of a constant mean 

effective pore size in gas apparent permeability calculation in shale matrix with condensate 

banking results in overestimation of Knudsen flow contribution in well productivity.  

The phase behaviour calculation showed a significant impact of the pore size distribution 

on dew point and condensate drop out. In addition, the phase behaviour deviation is more 

pronounced in lean condensates than rich condensate due to the lower pore size at which 

the gas-condensate interface forms resulting in a higher capillary pressure. Furthermore, 

using a single pore radius leads to inaccurate estimation of phase behaviour deviation 

(lower for lean condensate and higher for rich condensate). The effect of this phase 

behaviour on well deliverability can cause a moderate production loss from 2.5% to 5%. 

As result, it is highly recommended that the analysis of pore structure and distribution of 

shale matrix are incorporated into the reservoir evaluation workflow on a routine basis 

during exploration and development phases of shale gas-condensate reservoirs.  Thus, the 

apparent gas permeability under reservoir conditions in terms of pressure and condensate 

saturation and the phase behaviour deviation can be predicted accurately.   

This thesis contributes to the existing knowledge of gas-condensate reservoir engineering 

by improving the understanding and proposing a new modelling approaches of gas-

condensate flow behaviour and phase behaviour in shale matrix.  The effect of condensate 

saturation and pressure on Knudsen enhanced permeability is identified and formulated 

using 3D pore network modeling. Besides, a new modeling approach of phase behaviour 

deviation in a pore size distribution using PREOS is introduced in this work where the effect 

of pore sizes variation on phase behaviour is incorporated more accurately than the average 

pore size model.  
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Symbols 

b : Empirical slip coefficient  

𝐶𝑓 : Hydraulic fracture conductivity, md.ft 

𝐶𝑔 : Langmuir gas content, scf/ton 

𝐶𝑚
𝛿  : Class Contribution in gas flow 

𝑐𝑓 : Compressibility factor, psi-1 

𝐷𝑖 : Nominal decline rate 

𝑓
𝑖𝑐

 : Fugacity of condensate for a component 𝑖, psi 

𝑓
𝑖𝑔

 : Fugacity of gas for a component 𝑖, psi 

𝑓 : Probability density function of long-normal distribution 

𝐺𝑖𝑗
𝑐  : Condensate conductivity of nanotube 𝑖𝑗 

𝐺𝑖𝑗
𝑔

 : Gas conductivity of nanotube 𝑖𝑗 

I0  and I1 : Modified Bessel functions 

𝐾𝑖 : Equilibrium ratio 

𝑘∞ : Intrinsic permeability, mD 

𝑘𝐷,𝐺𝐶 : Darcy permeability with condensate blockage, mD 

𝑘𝐷 : Darcy pore network permeability, mD 

𝑘𝑎𝑝𝑝,𝐺𝐶 : Knudsen permeability with condensate blockage, mD 

𝑘𝑎𝑝𝑝 : Apparent permeability, mD 

𝑘𝑒𝑓𝑓.𝑔 : Gas effective permeability, mD 

𝑘𝑓 : Fracture permeability, mD 

𝑘𝑟𝑔 : Darcy relative permeability 

𝐾𝑛 : Knudsen number 

𝐿 : Channel length, m 
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M : Average molecular mass, kg/kmol 

𝑛, 𝑎  and 𝑏 : Pore distribution parameters of 𝜉𝑟𝑒𝑙  model 

𝑃𝐷 : Dimensionless pseudo-pressure 

𝑃𝐿 : Langmuir pressure, psi 

𝑃𝑐 : Pressure in condensate phase, psi 

𝑃𝑐𝑎𝑝 : Capillary pressure, psi 

𝑃𝑑 : Dew point pressure, psi 

𝑃𝑔 : Pressure in gas phase, psi 

Pi : Pore network inlet pressure, psi 

Po : Pore network outlet pressure, psi 

𝑃 : Reservoir pressure, psi 

𝑃(𝑝) : Pseudo-pressure, psi2/cp 

𝑞𝑎𝑝𝑝 : Apparent gas flowrate, Mscf/d 

𝑅𝑎𝑣𝑔 : Average pore size, m 

𝑅𝑒𝑓𝑓 : Effective average pore size, m 

𝑅𝑚𝑎𝑥 : Maximum pore size, m 

𝑅𝑚𝑖𝑛 : Minimum pore size, m 

𝑟𝐷 : Dimensionless coordinate, r-direction 

𝑟𝑒 : Matrix radius of equivalent matrix cross section, ft 

Rg : Universal gas constant = 8314 J/kmol/K 

Rg,min : Gas minimum pore size, m 

𝑅 : Nanotube hydraulic radius, m 

𝑟 : Radial coordinate, ft 

𝑆𝑐 : Condensate saturation 

𝑠 : Standard deviation of log-normal distribution 

𝑡𝐷 : Dimensionless time 

T : Reservoir temperature, K 
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𝑡 : Time, days 

𝑉𝐿 : Langmuir volume, scf/ton 

𝑉𝑟𝑒𝑙 : Condensate relative volume 

𝑤∞ : Intrinsic fracture width, ft 

𝑤𝑒𝑓𝑓 : Effective fracture width, ft 

𝑥𝑒 : Matrix block dimension in X-direction, ft 

𝑥𝑖  : Mole fraction of component 𝑖 in condensate 

𝑦𝑒 : Matrix block dimension in Y-direction, ft 

𝑦
𝑖 
 : Mole fraction of component 𝑖 in gas 

𝑍 : Gas compressibility factor 

 

Greek Symbols 

∆𝐶𝑚 : Relative Chang Class Contribution in gas flow 

∆𝑃 : Pressure difference, psi 

∆𝑃𝑡ℎ𝑟 : Differential pressure threshold 

𝛼 : Dimensionless rarefaction coefficient 

α : Biot’s coefficient 

𝛽 : Forchheimer parameter 

 𝛽∞ : intrinsic Forchheimer parameter 

 𝛽𝑒𝑓𝑓 : Effective fracture Forchheimer parameter 

𝜀 𝑓 : Equilibrium error tolerance 

𝜀 𝜎 : IFT error tolerance 

𝜂 : Diffusivity constant 

𝜃 : Gas-condensate contact angle 

𝜇 : Fluid viscosity, cp 

µavg : Pore network average viscosity 

𝑣 : Mean of log-normal distribution 
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𝜆 : Average minimum free path, nm 

𝜉 : Micro channels correction factor 

 𝜉𝐷𝐺 : Enhancement factor for dry gas 

 𝜉𝑟𝑒𝑙 : Relative Correction Factor 

𝜌𝑐 : Condensate molar density 

𝜌𝑔 : Gas molar density 

𝜎𝑒𝑓𝑓 : Effective stress, psi 

𝜎𝑔𝑐 : Gas-condensate interfacial tension 

𝜎𝑛 : Normal stress 𝜎𝑛, psi 

𝜏 : Tortuosity 

𝜙 : Rock porosity 

𝜙
𝑖𝑐

 : Fugacity coefficient of condensate for a component 𝑖 

𝜙
𝑖𝑔

 : Fugacity coefficient of gas for a component 𝑖 

 

Subscripts 

∞ : Intrinsic property 

c : Condensate 

𝑐𝑎𝑝 : Capillary 

𝐷𝐺 : Dry gas 

eff : Effective  

𝑓 : Fracture 

𝑔𝑐 : Gas-condensate 

g : Gas 

i : Integer from 1 to N 
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1.1 Background 

In the last decade, shale plays emerged as one of the most important oil and gas resources 

in the world. As at 2014, shale gas accounted for 51% of all US natural gas reserves (EIA 

2015). Shale reservoirs are characterised by very small pore size (from 3 to 100 nm) and a 

very low matrix permeability which ranges in nano-Darcy. Hydraulic fracturing is required 

to make this type of resources commercially valuable.  

The gas-condensate flow in hydrocarbon reservoirs has long been recognized as having the 

most complex fluid flow dynamics in reservoir engineering (Hinchman and Barree 1985, 

Barnum, et al. 1995, Du, Guan and Bai 2004). A condensate buildup can rapidly occur around 

a producing well when the bottom hole flowing pressure falls below dew-point. The 

condensate accumulation reduces the gas relative permeability resulting in a brisk decline 

of well productivity and reduction of heavy components fraction at the wellhead. This 

phenomenon is usually referred to as condensate banking or condensate blockage. The 

condensate banking is controlled by three factors: the flow behaviour, the phase behaviour 

and the development strategy.  

The flow behaviour represents the interaction of gas-condensate flow with condensate 

saturation in the reservoir. The phase behaviour consists of the variation of the PVT 

properties of gas-condensate (dew point, condensate saturation and phases molecular 

composition) fluids as function of fluid composition and reservoir conditions (pressure and 

temperature). The development strategy is defined by the drilling and completion practices 

and the production control of the well.  

In conventional reservoirs, the condensate banking effect can be alleviated by pressure 

maintenance to be able to produce at a bottomhole pressure above the dew point. In shale 

reservoirs, due to the very low permeability, wells start to produce under a bottomhole 

pressure below the dew point in the few first days or months of production. As no method 

is available to maintain pressure in shale reservoirs, this type of resources remains 

producing under condensate banking effect for all production period.  
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1.2 The Knowledge Gap in Shale Gas-Condensate Reservoir Engineering 

After a decade of extensive development of shale reservoirs in the US and Canada, gas-

condensate flow in shale matrix still represents a basic scientific question. The key points 

of the knowledge gap in shale gas-condensate reservoir engineering can be addressed in 

terms of the three factors that control the condensate banking phenomena as discussed in 

the following Sections.   

1.2.1 Multiphase Flow Behaviour in Shale Matrix  

In conventional reservoirs, the effect of condensate banking on gas flow is interpreted by 

using relative permeability models. The apparent gas permeability at a condensate 

saturation is adjusted using the gas relative permeability as a correction factor.  

However, in shale reservoirs at the nanopore level, the gas flow deviates from conventional 

Darcy flow to Knudsen flow resulting in an enhanced apparent gas permeability. The 

Knudsen flow is well-established theory in fluid dynamics (Steckelmacher 1986) and it is 

mainly applied for single phase gas flow in fabricated micro and nano-channels with 

applications ranging from membrane gases separation to MEMS (Microelectromechanical 

systems) (Koros and Fleming 1993, Copic 2008). 

For shale gas reservoir engineering, although the dry gas flow under Knudsen conditions in 

shale matrix has been the subject of numerous research studies (Javadpour 2009, Civan 

2010, Freeman, et al. 2012, Mehmani, Prodanović and Javadpour 2013), the effect of 

multiphase gas-condensate flow is still not well addressed in terms of the effect of condense 

saturation on the apparent gas permeability. As Knudsen flow is highly dependent on pore 

size, the effect of condensate accumulation alters the range of pore sizes that are accessible 

by gas flow which affects Knudsen flow at the macroscale level. Therefore, the 

understanding of how Knudsen flow is affected by condensate banking   is essential to 

evaluate accurately the shale gas-condensate well performance.   Using the dry gas Knudsen 

flow models can lead to an overestimation of recovery of wells under the condensate 

banking effect. 

1.2.2 Phase Behaviour in Shale Matrix 

For PVT calculation in conventional reservoirs, the difference of pressure between liquid 

and pressure at pore level under capillary forces effect is not taken into consideration when 

applying Equation of State (EOS) as its effect is assumed to be insignificant (Sigmund et al.  
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1973).  Results from PVT experiments in laboratory at bulk condition (i.e. no capillary 

pressure) are routinely used to tune the EOS for compositional reservoir simulations.  

Conversely, in shale gas condensate reservoirs, phase behaviour deviation due to capillary 

condensation in nanopore shale matrix is a key factor for reserves estimation and well 

performance calculation. The condensate starts forming in matrix nanopores at higher 

pressure and reaches higher saturation levels than at bulk conditions. The phenomenon has 

been investigated theoretically in the past using single nanotube with average pore radius 

as an equivalent of shale matrix (Brusilovsky 1992, Espósito, Tavares and Castier 2005, 

Firincioglu, Ozkan and Ozgen 2012, Pang, et al. 2013, Nojabaei, Johns and Chu 2013, Jin and 

Firoozabadi 2015). Nevertheless, different pore sizes in shale matrix exhibit different phase 

behaviour deviation as the capillary pressure depends on pore radius. Thus, different pore 

sizes contribute differently to the macroscale phase behaviour. In order to improve the 

modelling of phase behaviour deviation of gas-condensate fluids in shale matrix, it is 

essential to represent the porous media in terms of their pore size distribution instead of 

the average pore radius.  

1.2.3 Performance of Shale Gas-Condensate Reservoirs 

As mentioned in Sections 1.2.1 and 1.2.2, the shale gas-condensate reservoirs are 

characterised by deviation of flow behaviour and phase behaviour compared to 

conventional reservoirs. The evaluation of effect of this deviation on well performance is 

imperative to achieve an accurate prediction of ultimate well recovery.  

Moreover, the development strategy of shale wells is different from that of conventional 

wells. Conventional reservoirs are developed using vertical, deviated or horizontal wells 

with or without vertical hydraulic fracture. The multistage hydraulic fracturing combined 

with horizontal well in shale well development creates separate matrix blocks resulting into 

two porous media with several magnitude difference of permeability. As a result, the 

condensate generation and propagation is more complex than in conventional wells; this 

needs to be well addressed and assessed.   

1.3 Research Objectives 

This thesis aims to provide an improved modelling of gas-condensate flow and phase 

behaviour in shale matrix with focus on the condensate banking effect through the following 

objectives: 
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 To model the enhanced gas permeability by the Knudsen flow under the effect of 

condensate situation in the shale matrix with pore size distribution and to develop 

a formulation of Knudsen flow in gas-condensate two phase flow. 

 To investigate the key parameters that control the reduction of Knudsen flow as 

function of condensate saturation. 

 To model the phase behaviour deviation of gas-condensate fluids under the capillary 

pressure effect in shale matrix with pore size distribution and to determine the 

impact of pore size distribution on the phase behaviour deviation. 

 To evaluate the condensate saturation, Knudsen flow and phase behaviour 

deviation on shale gas-condensate well performance.   

 To investigate the accumulation and propagation of condensate banking in 

multistage fractured horizontal well and how it affects the well productivity.   

1.4 Research Approach  

The research initially started with reviewing published data of shale reservoirs 

characteristics and current development practices in the shale industry. A literature review 

of the research in flow behaviour and phase behaviour was conducted as the subject is one 

of the most active research areas in petroleum engineering. Relevant research studies from 

material science multiphase flow and PVT in nanotubes were investigated for possible 

adoption in the shale gas condensate reservoir modelling.  

The gas-condensate flow in shale matrix was investigated numerically by using pore 

network modelling. The pore network was modelled using log-normal pore size distribution 

and Knudsen flow was used to model gas flow in individual pores. A code was developed in 

Matlab to solve the equations system.  The apparent gas permeability under different flow 

types; Darcy and Knudsen was calculated for the whole pore network. The effect of 

condensate banking on Knudsen flow was evaluated and a relative correction factor was 

proposed to assess the relationship between Knudsen flow and condensate saturation. The 

effect of pore size distribution on the relative correction factor was investigated by running 

numerical simulations with varying log-normal distribution in terms of mean  (𝑣) and 

standard deviation (𝑠).   

The phase behaviour deviation of gas-condensate fluids in shale matrix was evaluated using 

a pore size distribution and modified Peng-Robinson equation of state. The VLE (Vapour 

Liquid Equilibrium) calculation was modelled at the nanotube scale using different gas and 
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condensate pressure as a function of the capillary pressure. The macro-scale phase 

behaviour was calculated by upscaling the PVT results (e.g. dew point and condensate 

saturation) from nanotube to pore network using the log-normal distribution. The CVD 

(Constant Volume Depletion) experiment under capillary pressure effect was simulated and 

compared to bulk CVD in order to evaluate the phase behaviour deviation. The effect of pore 

size distribution on the phase behaviour deviation was investigated as well and compared 

to the single tube method (where pore network is simplified into a single tube with average 

pore radius).  In addition, the phase behaviour deviation of rich condensate versus lean 

condensate is compared.  

The effect of both flow behaviour deviation and phase behaviour deviation of gas-

condensate fluids on the well performance was investigated using a semi-numerical model 

of a single shale matrix block. The fluid flow in the matrix from the centre to the edge which 

is in contact with fracture at constant pressure. The model equation was solved in Laplace 

domain which is capable of reflecting both transient and pseudo-steady states in the matrix. 

As the flow behaviour deviation and the phase behaviour occur only in the shale matrix, it 

was assumed that this model results were representative of how the deviation affect the 

well proactivity.  

In order to understand the interaction between the matrix and hydraulic fracture, 

numerical compositional simulator was used to investigate how the condensate banking 

generates and propagates in the reservoir and how it affects the well productivity.  The 

commercial software package does not include the flow behaviour and phase behaviour 

models presented in this work but it provides a basic understanding of the performance of 

shale gas-condensate wells.  

Furthermore, the well design optimisation in terms of the hydraulic fracture spacing was 

addressed using numerical simulation and economic evaluation with a view to maximizing 

the NPV (Net Present Value) of the asset.   

1.5 Contributions to Knowledge 

This work has made substantial contributions to the subject of shale gas-condensate 

reservoir engineering. These contributions are discussed in the following Sections: 

1.5.1 Knudsen Flow Under Condensate Banking Effect 

This work proposed a pore network modelling of Knudsen flow reduction under condensate 

banking. The concept relative permeability in Darcy flow was extended to Knudsen flow by 
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introducing a new parameters called “Relative Correction Factor” (𝜉𝑟𝑒𝑙). The new parameters 

can be easily introduced in reservoir engineering tools to calculate the gas effective 

permeability 𝑘𝑒𝑓𝑓.𝑔 as function of saturation and pressure. 

 𝑘𝑒𝑓𝑓.𝑔(𝑆𝑐, 𝑃) =  𝜉𝑟𝑒𝑙  𝜉𝐷𝐺  𝑘𝑟𝑔 𝑘∞ (1.1) 

where 𝑆𝑐 is condensate saturation, 𝑃 is the reservoir pressure, 𝜉𝐷𝐺 is the correction factor for 

dry gas Knudsen flow, 𝑘𝑟𝑔 is Darcy relative permeability for Darcy flow and 𝑘∞ is the  

intrinsic permeability.  

 𝜉𝑟𝑒𝑙 can be incorporated directly into the existing reservoir engineering tools to correct the 

gas apparent permeability under Knudsen flow and condensate banking saturation. 

 The output of this work demonstrated that  𝜉𝑟𝑒𝑙 is not only a function of condensate 

saturation but also reservoir pressure and pore size distribution. While the condensate 

saturation controls the effective pore size of gas Knudsen flow, pressure affects the degree 

of contribution of each pore size range. This relationship can be formulated as  

 𝜉𝑟𝑒𝑙 = 1 −
𝑎

𝑃𝑏
 (𝑆𝑐)

𝑛 (1.2) 

where 𝑛, 𝑎  and 𝑏 are parameters of the pore distribution which can be determined 

theoretically by pore network modelling. 

These findings can be extended to the gas-water flow in shale matrix where the variation of 

water saturation in the reservoir generates similar effect on Knudsen flow.  

1.5.2 Phase Behaviour in Shale Matrix  

 This work proposed a new modelling of phase behaviour of gas-condensate fluids in shale 

matrix which takes into consideration the pore size distribution. The results of this model 

demonstrated the effect of pore size distribution on phase behaviour deviation under the 

effect of capillary pressure. Numerical CVD simulations showed that the deviation in lean 

condensate is more pronounced than in rich condensate due to effect of changing pore 

radius of gas-condensate interphase. Furthermore, these simulations showed that use of 

single pore radius to evaluate the phase behaviour deviation can lead into an inaccurate 

estimation of phase behaviour in terms of dew point and condensate saturation.  

1.5.3 Shale Gas-Condensate Well Performance  

This study contributes to the existing understanding of the performance of shale gas-

condensate wells by examining the effect of flow behaviour and phase behaviour deviation 
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on well production. This study revealed the importance of taking into consideration the 

effect of condensate banking on Knudsen flow and how significantly it affects the well 

production calculation. Knudsen flow minimises the negative effect of condensate banking, 

the correction of Knudsen flow to the effect of condensate saturation and pressure should 

be taken into consideration to not overestimate its contribution to the well production.  

Moreover, this work concluded that although the high capillary pressure in shale matrix 

induces the phase behaviour deviation of gas-condensate fluids resulting in higher dew 

point and higher condensate saturation, its effect on the well recovery is limited (less than 

5%). 

1.6 Arrangement of Thesis 

Chapter 1 provides a brief presentation of the research background, the knowledge gap in 

shale gas-condensate reservoir engineering, the project objectives and the approach 

adopted.  

Chapter 2 provides an overview of shale resources and presents the key shale reservoirs 

characteristics such as Total Organic Matter (TOC), porosity structure and permeability. In 

addition, current drilling and completion practices in shale reservoir development, drive 

mechanism and recovery factor levels are reviewed.   

Chapter 3 covers the flow behaviour modelling of gas-condensate fluids in shale matrix. It 

starts with the review of the gas and liquid flow in nanotubes separately. Previous work on 

liquid saturation effect on slip/Knudsen flow is also reviewed.    The second part of Chapter 

3 presents the modelling of gas condensate flow through pore network modelling with 

random pore radius distribution with log-normal law. The Knudsen flow was used to model 

gas flow in nanotube and macroscale permeability was calculated by solving the flow 

equation. Moreover, Chapter 3 provides the simulation results in terms condensate 

trapping, effect of condensate saturation on gas apparent permeability and the effect of pore 

size distribution on relative correction factor. 

0  describes the modelling of phase behaviour deviation of condensate in shale matrix using 

modified Peng-Robinson EOS. It provides the developed algorithms for the numerical CVD 

simulation in pore network.  Additionally, it discusses the effect of capillary pressure and 

pore size distribution on condensate drop out in CVD experiments.   

Chapter 5 includes a gas-condensate flow model in single block of shale matrix with the 

integration of results from Chapter 3 and 0. This chapter describes the model used to study 
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the effect of condensate banking, Knudsen flow and deviated phase behaviour on shale 

matrix performance.  

Chapter 6 investigates the performance of shale gas-condensate wells through 3D 

numerical reservoir simulation. It starts with a review of the limitations of the available 

reservoir engineering tools for shale gas-condensate well performance evaluation including 

Decline Curve Analysis (DCA), semi-analytical models and 3D numerical reservoir 

simulations. The key features of the numerical model of ¼ SRV (Stimulated Reservoir 

Volume) are described. The numerical simulation results are discussed in terms of 

condensate banking propagation and its effect on productivity, the effect of Non-Darcy flow 

and the stress-dependent permeability effect. The hydraulic fracture spacing optimisation 

using numerical simulation results and economic calculation are also presented in this 

Chapter.   

Chapter 7 summarises the key findings of the research and its contributions to knowledge 

in shale gas-condensate reservoir engineering and presents the recommendations for the 

development of shale gas-condensate resources. In Chapter 8, the suggestions for future 

research are proposed in order to continue the improvement of the modelling of gas–

condensate flow in shale reservoirs.  
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2.1 Introduction 

For a long time, shale formations were considered only as source rocks for hydrocarbon 

systems and they were rarely targeted for hydrocarbon production due to their very low 

permeability. In the past decade shale plays emerged in the US and Canada thanks to 

horizontal drilling and multistage fracturing technologies. In spite of shale industry success 

in North America, the cost of extraction remains one of the highest among oil and gas 

resources where fields are developed with industrial drilling; i.e. replicating the same well 

design for the whole field.   The main reason behind this approach is the lack of 

understanding of shale reservoirs performance where the rock fabric, pore system, storage, 

flow behaviour and phase behaviour are different from conventional sandstone and 

carbonate reservoirs.  

For shale gas-condensate reservoirs, condensate banking effect adds more complexity to 

the problem. Good understating of well performance and customised well design 

optimisation and production strategy are therefore key to economic development of shale 

plays.  

This chapter aims to review the shale reservoir characteristics in terms of fluid storage and 

fluid flow that make shale resources different from the other reservoirs. More 

comprehensive review of flow behaviour and phase behaviour are carried out in Chapters 

3 and 4. On the other hand, development strategies and reservoir mechanisms are reviewed 

in order to understand how the shale matrix interacts with hydraulic fracture and wellbore. 

Thus an appropriate modelling of shale matrix and well derivability is completed in Chapter 

5 and Chapter 6 respectively. 

2.2 Shale Resources  

2.2.1 Shale Formations 

Shale is the most common sedimentary rock. It is a fine-grained rock composed mainly of 

clay-sized particles and silt-sized particle (Speight 2013, Schön 2011). Shale rocks show fine 
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bedding from mm-scale to cm-scale and they are more laminated and fissile than 

sandstones and carbonates and readily splits in thin sheets (Tucker 2009). Figure 2.1 

illustrates an example of core photos of a fine layered shale compared to a clean sandstone.  

 

Figure 2.1: Photos of core examples of a) layered dark grey shale rock and b) hard sandstone 

(source: University of Kentucky) 

There are two types of shale; the dark organic-rich and the light organic-lean. Dark shale 

formations were deposited in low or no oxygen conditions preserving organic material from 

decay. Under high pressure and high temperature, hydrocarbons were generated in the 

shale formation called source rock and small volume of these hydrocarbons were expelled 

and migrated upward to sandstones or carbonate formation known as Conventional 

Reservoirs. When a shale formation is produced economically using horizontal drilling and 

hydraulic fracturing it becomes a source rock and reservoir rock at the same time known as 

shale reservoir. Shale reservoirs along with coal bed methane and tight gas are named 

Unconventional Reservoirs.  

Unlike conventional reservoirs, shale reservoirs are continuous auto-trap formations (see 

Figure 2.2). Usually, shale reservoirs are associated with low exploration risk due to their 

geographic extent however they exhibit a high horizontal heterogeneity where sweet spots 

are related to high productivity. The water contact is absent and water is present mainly as 

capillary-bound and clay-bound water (Passey et al.  2010).  

(a) (b)
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Figure 2.2: Schematic Geology of Natural Gas Resources (US Energy Information 

Administration (EIA). 2012) 

2.2.2 Prospective Shale Resources outside North America 

Shale reservoirs are the most abundant hydrocarbon resources in the world.  US Energy 

Information Administration (EIA) (2013) published a report of the most prospective shale 

formations in 41 countries with sufficient amount of geologic data for resources assessment. 

Figure 2.3 shows the results of this report in terms of basin locations and regions assessed. 

Only the red colour areas in Figure 2.3 represent the basins with necessary data to evaluate 

technically recoverable resources. 

 

Figure 2.3: Map of assessed shale oil and gas formations (EIA 2013) 



Chapter 2 : Review of Gas Condensate Shale Reservoirs 

Ismail Labed 12 Robert Gordon University 

Table 2.1 lists the 10 countries with the largest technically recoverable resources of shale 

gas based on the EIA assessment of shale resources in 41 countries. Technically recoverable 

resources are defined as the volumes that can be produced irrespective of oil and natural 

gas prices and development costs. Table 2.1 and 2.2 shows that the top 5 countries: China, 

Argentina, Algeria, USA and Canada hold more than 50% of the world total technically 

recoverable shale gas resources. It is expected that the American shale experience will be 

replicated in other parts of the world in the near future allowing some countries to emerge 

as major producers. China and Argentina are leading the shale development outside North 

America with commercial production already underway. Other countries like Saudi Arabia, 

Australia, Algeria and Russia are still at exploration stage and yet to obtain commercial 

development.  

Table 2.1: Top 10 countries with technically recoverable shale gas resources (EIA 2014) 

 

2.2.3 Development of Shale Plays in North America 

The shale oil and gas revolution started almost ten years ago in the United States and Canada 

due to the continuous improvement of horizontal drilling and multistage hydraulic 

fracturing technologies. The existing and well developed midstream and downstream 

facilities in oil and gas industry in North America were also a key factor in the shale industry 

success. Currently, only USA and Canada have significant commercial production from shale 

reservoirs.  The major producing shale plays in North America are Marcellus, Bakken, 

Barnett, Eagle Ford and Haynesville (Hughes 2014, Wang et al.  2014). Figure 2.4 shows 

current shale plays, some prospective plays and basins. Shale plays rarely cover all basin 

area due to the high reservoir heterogeneity that affects the well productivity from one 

region to another.  
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Figure 2.4:  Shale gas and oil plays in North America showing current shale plays, 

perspective plays and basins (EIA 2011).  

U.S. Energy Information Administration (IEIA) (2016) estimated the US shale gas proven 

reserves by the end of 2013 was 159 Tcf amounting to 45% of total proved reserves. In 2013 

shale gas wells became the largest sources of total gas production in the United States 

representing 40% with a production increase from 4 Bcf/d in 2007 to 43 Bcf/d in 2016 (see 

Figure 2.5). 

 

Figure 2.5: US shale gas production (EIA 2016) 
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2.2.4 Gas Condensate Shale Plays  

Although several shale plays are producing in USA and Canada, Eagle Ford is the most 

important play that is producing significant condensate volumes (EIA 2011). The Eagle Ford 

Shale is the primary source rock for Austin Chalk hydrocarbon reservoirs (Pearson 2012). 

Shale formations depth ranges from 4,000 ft to 14,500 ft TVD (True Vertical Depth) with 

reservoir thickness from 40 to 400 ft (Halliburton 2016a). Figure 2.6 shows the Eagle Ford 

map with the three distinctive areas oil, wet/condensate and dry gas. According to the Texas 

Railroad Commission, the condensate production of Eagle Ford in 2014 consists of 20% of 

the field liquids production.  

 

Figure 2.6: Eagle Ford map showing three distinctive areas: oil, condensate and dry gas (EIA 

2010) 

2.3 Shale Reservoir Characteristics 

A comprehensive reservoir characterisation of shale resources is essential for a better 

understanding of fluid storage, fluid flow and phase behaviour for gas-condensate systems.  

Contrary to other reservoir types, shale reservoir are self-sourced reservoirs. Besides, 

porosity and permeability, the key parameters that characterise shale reservoirs are: 

Kerogen, TOC, (Total Organic Content) and thermal maturity. Moreover, gas is stored as free 

gas, adsorbed gas and dissolved gas in organic matter.  These parameters are explored 

further in the following Sections. 
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2.3.1 Kerogen 

The ability of source rocks  to generate and store hydrocarbons is determined by its kerogen 

content. Kerogen is a solid mixture of heavy organic compounds; when subjected to heat 

some types of kerogen generates oil and/or gas. There are four types of kerogen classified 

according to carbon hydrogen ratio and carbon/oxygen ratio (see Figure 2.7). Three of them 

can generate hydrocarbon: type I generates oil, type II generates wet gas and type III 

generates dry gas. Understanding the kerogen type helps to determine the type of 

hydrocarbon (oil, wet gas or dry gas) (Glorioso and Rattia 2012). 

 

Figure 2.7: Carbon hydrogen ratio and carbon/oxygen ratio classification of kerogen types 

(Glorioso and Rattia 2012) 

2.3.2 Total Organic Content (TOC) 

Total Organic Content (TOC) is the amount of material available to be converted to 

hydrocarbon depending on kerogen type; it is expressed as a percentage of weight or 

volume of the rock. For conventional reservoirs, TOC is considered as a qualitative 

measurement of a source rock potential. However, for shale reservoirs, TOC is a key 

parameter for formation evaluation because it holds a significant part of the reservoir 

porosity (see Section 2.3.4). A number of synthetic logs and real-time measurement while 

drilling methods have been developed recently to improve shale reservoir characterization 

(Zhao, et al. 2015, Rodriguez, et al. 2015, Joshi, et al. 2015). For oil and gas source rocks, the 

porosity ranges between 1% (poor content) to 10% (excellent content). Table 2.2 gives the 

average value of TOC for some active shale plays.  
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Table 2.2: TOC of currently active shale gas reservoirs (modified from Glorioso 2012). 

2.3.3 

Thermal Maturity  

Thermal maturity is a critical element for shale reservoir to determine reservoir quality and 

type of hydrocarbon.  Thermal maturity is defined by the degree to which a source rock has 

been exposed to high heat needed to break down the organic matter and generate 

hydrocarbons (Tiab and Donaldson 2015). The heat is a function of the formation depth in 

the earth’s crust. Figure 2.8 shows the generation windows of hydrocarbons. Thermal 

maturity is a key parameter that can facilitate the understanding of the potential of shale 

formation. A higher thermal maturity can indicate an improved permeability through 

nanopores in organic matter (Kuuskraa et al.  2011). The thermal maturity is determined 

by vitrinite reflectance (Ro) which is measured through microscopic reflectivity of rock 

sample. Ro values range from 0% to 3%: values below 0.6% indicate immature kerogen 

without hydrocarbon generation. Ro range between 0.6% and 0.8% indicates oil and range 

between 0.85 and 1.1% indicates wet gas. Values above 1.5% are sign of potential 

generation of dry gas (Alexande et al. 2011) 

 

Figure 2.8: Thermal maturity and hydrocarbon generation (Alexander et al. 2011) 

Contrary to conventional reservoirs, in the same shale reservoir dry gas can be found in 

deep area while oil is located in shallower levels and wet gas in-between accordingly with 

hydrocarbon generation windows depending on conditions of pressure and temperature.  
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2.3.4 Porosity 

Three types of porosity can be found in shale reservoirs: a) clay porosity, b) porosity in no-

clay matrix and c) kerogen porosity.  

Clay porosity consists of crack-like pores (linear features) with preferred alignment. In no-

clay matrix, pores appear around grain particles in triangle and crack shapes. Figure 2.9 

gives an example of the three types of porosity determined by Curtis, Ambrose and 

Sondergeld (2010) through BSE (Backscattered Electron) imaging of shale samples from 

Haynesville and Barnett plays. Pores in kerogen are round in shape; they are of few 

nanometres to tens of nanometres in diameter and some up to hundreds of nanometres. 

Curtis, Ambrose and Sondergeld (2010) reported up to 50% of porosity in Barnett kerogen 

samples is present within kerogen which makes TOC quantification essential for shale 

potential evaluation.  

 

Figure 2.9: BSE (Backscattered Electron) images of porosity types in shale reservoirs. a) 

shows intergranular porosity in Haynesville sample. b) shows clay porosity in Haynesville 

sample c) shows kerogen porosity with varying diameter with smaller pores in inner walls. 

(modified after Curtis, Ambrose and Sondergeld (2010)) 

The most common technique for shale total porosity measurement is the Gas Research 

Institute (GRI) method (also known as Crushed Shale Analysis) where crushed small 

samples, instead of conventional cores, are used in order to accelerate helium expansion to 

pore space (Kuila 2013). Currently, intensive research activities are ongoing in order to 

establish adequate techniques to measure porosity, grain density and water saturation in 

the laboratory. The main issues related to shale reservoirs are (Glorioso and Rattia 2012): 

 Removal of water and hydrocarbons from the pore space, 

 Problem of full access of gases and liquids (helium, nitrogen, methane, 

mercury and water) to the pore system due to the low permeability, 

 Adsorption effect, 
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 Presence of natural fracture. 

These challenges affect similarly the ability to carry out laboratory experiment of 

multiphase core flooding on shale samples (e.g. gas-condensate, oil-gas and oil-water) 

where the control and the measurement of phase saturation is problematic.  

2.3.5 Gas Storage 

In Shale reservoir, gas is stored in three ways as (see Figure 2.10): 

 Free gas:  stored in kerogen pores and non-organic pores and natural fracture;  

 Adsorbed gas: resides in layers of gas molecules adhered to kerogen and mineral 

surfaces under the effect of surface energy. The very small pore size in shales 

furnishes large inner pore surface area, thus they have a higher adsorption capacity 

than conventional reservoirs.  

 Dissolved gas: in organic matter (bitumen). Dissolved gas molecules are taken by 

the organic matter volume rather than the surface of organic and non-organic 

matter as adsorbed gas molecules.  

 

Figure 2.10: Gas storage in shale reservoirs. 

The adsorbed gas in shale reservoir can be described by Langmuir Isotherm in equation 2.1 

(Langmuir 1918) 

 
𝐶𝑔 = 

𝑉𝐿 𝑃

𝑃𝐿 + 𝑃
 

(2.1) 

where 𝐶𝑔 is the gas content measured (scf/ton), and 𝑉𝐿 is Langmuir volume defined as the 

maximum volume of gas that can be adsorbed on the shale surface at infinite reservoir 

pressure (scf/ton),  𝑃𝐿 is Langmuir pressure (psi) corresponding to pressure at half 

Langmuir volume, 𝑉𝐿 and 𝑃 is reservoir pressure (psi). Longmuir Isotherms are routinely 

generated using core analysis.  

Figure 2.11 depicts an example of gas content (free, adsorbed and total) of Barnett shale vs. 

pressure resulted from core sample measurements (Lewis, et al. 2004). This Figure shows 

that adsorbed gas can contribute to the production only at low reservoir pressure (under 

1000 psi).  
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Using 3D Barnett shale reservoir model, Cipolla et al. (2010) concluded that desorbed gas 

represents only 5-15% of the ultimate gas production mainly during later life of the well 

when the average reservoir pressure is low enough to allow gas desorption. Thus adsorbed 

gas has insignificant impact on development economics of shale reservoirs.   

 

Figure 2.11: Example of Barnett gas content. The red dots indicate adsorbed gas content, the 

blue is free gas, and the pink line is the total gas content (Lewis, et al. 2004).  

2.3.6 Water Saturation  

Water can be present in shale matrix only in inorganic matter as capillary bound water and 

clay bound water (Glorioso and Rattia 2012). Shale reservoirs are characterised by low 

initial water saturation known as subirreducible initial water saturation (Wang and Reed 

2009). At this saturation connate water is immobile due to high capillary pressure forces. 

The produced water during first year of well life is as a result of extended flowback of 

injected fracturing water (Zolfaghari, et al. 2015) (see Section 2.4).  

2.3.7 Permeability  

Due to the small pore size in shale reservoirs, matrix permeability is very low. It ranges from 

40 to 1000 nano-Darcy. A hydraulic fracturing operation is required to make this type of 

resources commercially valuable. Javadpour (2009), presented a summary of measured 

permeability data for 152 samples from nine shale reservoirs in Figure 2.12. From this 

Figure, we observe that 90% of the measured permeability is less than 150 nD. 

To measure permeability of shale gas reservoirs, steady-state methods are not practical 

because of the long times needed to establish a steady-state flow due to the nano-Darcy 

permeability ranges.  The pulse decay technique is usually used to determine permeability 



Chapter 2 : Review of Gas Condensate Shale Reservoirs 

Ismail Labed 20 Robert Gordon University 

in shales(Cui, Bustin and Bustin 2009). In this technique, a slight differential pressure is 

applied on the upstream and the downstream on the core sample and the pressure variation 

with time on both ends and through the sample is observed. The rock permeability is 

estimated using analytical or numerical methods.  

 

Figure 2.12: Frequency versus permeability of 152 shale gas samples from nine reservoirs. 

(a) Permeability distribution, (b) cumulative frequency distribution (Javadpour 2009).  

Crushed Shale Analysis (sometimes referred to as GRI-method) is another technique 

developed by the Gas Research Institute (GRI) to measure shale permeability of crushed 

samples (0.5-0.85mm) by using gas expansion (Luffel, Hopkins and Schettler Jr 1993). This 

technique provides the advantage of eliminating the risk of overestimation the matrix 

permeability in the pulse decay technique caused by the existence of micro-fractures in core 

samples. However, it is usually conducted at very low pressure which does not reflect the 

overburden pressure effect on shale permeability.   

2.4 Current Drilling and Completion Practices in Shale Gas Reservoirs 

As a result of the recent technical advance in horizontal drilling and hydraulic fracturing, 

shale reservoirs can be economically developed. The horizontal length of the well is drilled 

into the shale formation and it is cemented and cased. The multistage fracturing starts from 

the well toe to the heel. Every stage segment is isolated with a plug from the previous 

fractured stage and perforations are created at the centre of the stages at 100-300 ft apart 

(see Figure 2.13). Then, the hydraulic fractures are initiated from the perforation by 

pumping fracturing fluid and proppant at high pressure through the wellhead using high 

horse power pumps. At the end of the fracturing process, the plugs are drilled or milled out. 

This technique is the most common completion process used in shale wells and it is usually 

referred to as Plug and Perf. completion. 
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Another completion technique called Sliding Sleeves has been used recently instead of Plug 

and Perf. This technique consists of placing a permanent system combined with movable 

sleeves at each stage. The main advantage of Sliding Sleeves is the reduction of the 

completion time where all stages are fractured in one session without carrying on the “plug, 

perf, repeat” process (Shaw 2011). 

 

Figure 2.13: Schematic of Plug and Perf. completion(Zhao, Yang and Li 2013). 

About 2-10 million gallons (1,000-4,000 m3) of water and 2.5-5.5 MMlbs of proppant is used 

during hydraulic fracturing of one horizontal well. The role of the proppant is to keep the 

fracture open when the pumping is stopped. In addition, a number of chemical additives 

with low concentration of 1-2% are mixed with the fracturing fluid to minimise friction, to 

carry the proppant, to reduce corrosion and to prevent micro-organism growth (Gallegos 

and Varela 2015, Patel, et al. 2014). Figure 2.14 gives an example of volumetric composition 

of a fracture fluid used by Haliburton in South Texas wells. 

 

Figure 2.14: Example of volumetric composition of a fracture fluid used by Haliburton in 

South Texas wells (Halliburton 2016b) 
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In order to increase the contact between the wellbore and the reservoir, multi-stage 

fracturing aims to maximise the Stimulated Reservoir Volume (SRV) by creating successive 

fractured zone along the well path (Figure 2.15). This well stimulation technique is known 

as multi-stage fractured horizontal wells (MFHW).  

A shale well can extend horizontally up to 6500 ft with 10 to 40 fracture stages with fracture 

spacing of 150-500 ft and half-length of 300-600 ft. Well spacing varies from 60 to 85 acre. 

Practically, the well lateral length is determined by the economics of drilling and completion 

operations and wellbore stability.  

Shale wells are usually drilled perpendicular to the maximum principal stress to maximise 

the fracture propagation in the reservoir. Initiated fractures tend to open against the 

minimum principal stress.  The fracture propagation in vertical direction is carefully 

monitored so that it does not reach other formations below or above the shale formation. If 

this happens, it can cause a decrease in the well productivity or lead to fresh water 

contamination by fracturing fluids. Microseismic surveys are used routinely to monitor the 

fractures propagation in 3D and to establish an estimated SRV (Stimulated Reservoir 

Volume).  

 

 

Figure 2.15: Schematic illustration of multi-stage fractured horizontal well 

In shale reservoir development, several wells (usually 6 wells) are drilled from a single pad 

to reach large reservoir area with minimum surface use. Figure 2.16 illustrates a schematic 

of the top view of shale wells in Eagle Ford in Webb County, Texas and it shows that 3 to 6 

wells are drilled from a single pad.. This practice reduces significantly the footprint of shale 

fields where extensive drilling is needed to develop shale plays economically.   In addition, 

well pads contributed to the shale revolution by cutting the drilling cost (by reducing the 

rig move time from a well to another in the same pad) and facilities cost.  
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In the past few years, the activity of the extensive hydraulic fracturing in shale plays caused 

a public debate about the environmental risks that can be caused by this technique. The 

most important debated risk was the underground water contamination by the fracturing 

fluids (Arthur, Bohm and Layne 2009, Vengosh et al.  2014).  Hydraulic fracturing has been 

used in the industry for more than six decades and it is a well-controlled process (King 

2014). The contamination of ground water by fracturing fluid through induced fracture is 

negligible as the fractures extend less than 600 m above the well perforation(Torres, Yadav 

and Khan 2016, Flewelling, Tymchak and Warpinski 2013).  

 

 

Figure 2.16: Map of horizontal well drilling from single pad in Eagle Ford in Webb County, 

Texas (Texas RRC ). 

 

Different types of fracturing fluids are used in shale reservoirs: water based fluids, oil based 

fluids, energised fluids, multi-phase emulsions and acid fluids.  

In shale gas reservoirs, when water is pumped to initiate hydraulic fractures, it penetrates 

outer layers of shale matrix by imbibition under high capillary pressure between gas and 

water and remains trapped as the initial water saturation is subirreducible. Usually, only a 

small fraction of injected water is recovered during production. For instance, Vidic et al. 

(2013) reported that only 10% in average of injected water is recovered from Marcellus 

wells.  This phenomenon is referred to as capillary wicking or phase trapping (Mahadevan, 

Sharma and Yortsos 2007, Bertoncello, et al. 2014). In order to alleviate the effect of water 



Chapter 2 : Review of Gas Condensate Shale Reservoirs 

Ismail Labed 24 Robert Gordon University 

blocking, the industry is using more and more “water-free”, particularly CO2 or N2 energized 

fracturing fluids (Rassenfoss 2013, Asadi, et al. 2015).  

2.5 Challenges in Development of Shale Gas-Condensate Reservoirs  

2.5.1 Condensate Banking Effect 

Condensate banking has been long considered a major challenge in gas-condensate 

reservoir development projects. Gas-condensate fluids are characterised by retrograde 

condensation phenomenon where at high initial reservoir pressure the fluids is in gas phase 

but when the pressure drops below the dew point, liquid condensate starts to form in the 

reservoir and continues to accumulate with decreasing pressure. Figure 2.17 illustrates 

results of a CCE (Constant Composition Experiment) of a gas-condensate sample from 

Pearsall Shale formation in La Salle County, Texas. The condensate begins to accumulate at 

a dew point of 5123 psig and reaches a maximum dropout of 5.2 % of pore volume.  

The increasing condensate saturation in the reservoir reduces the gas relative permeability 

thus reducing the well productivity. The condensate banking effect on well productivity is 

controlled by three factors:  

 Phase behaviour: the condensate buildup and compositional change as function of 

pressure; 

 Flow behaviour: the effect of condensate saturation on gas permeability;  

 Well completion: the contact between the wellbore and the reservoir (e.g. 

vertical/horizontal, fractured/not fractured completion) 

In conventional reservoirs, the production loss due to the condensate banking can be 

significant (Hinchman and Barree 1985, Barnum, et al. 1995, El-Banbi and Wattenbarger 

1998, Du, Guan and Bai 2004) but pressure maintenance technique or producing at 

bottomhole pressure above the dew point can alleviate its effect.  
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Figure 2.17: Condensate liquid volume vs. pressure (source: RRC Texas) 

For shale reservoirs, the situation is more complex. As a result of the extremely low 

reservoir permeability, wells start to produce at a bottomhole pressure under dew point 

after few days or months of production. Besides, the pressure maintenance techniques have 

not yet been developed for shale reservoirs (see Section 2.5.3). Hence, shale gas-condensate 

wells remain under the effect of condensate banking for almost all their entire production 

period.  

Consequently, an accurate quantification of how the condensate forms in the reservoir and 

how it affects the gas permeability is crucial to predict the production of planned wells in 

field development projects and to analyse the performance of existing wells for reservoir 

management purposes.  

2.5.2 Reservoir Drive Mechanisms and Recovery Factors 

Due to the very low permeability of shale reservoirs, only the Stimulated Reservoir Volume 

(SRV) are connected to the wellbore through natural and induced fractures. Thus, the gas 

expansion is the major drive mechanism during the first stage of production. Gas desorption 

from organic matter and non-organic surface can contribute to production only at late 

production stages.   

Figure 2.18 shows the average well gas production rate vs. time for major US shale plays. 
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Figure 2.18: Average production profiles for shale gas wells in major U.S. shale (Adam 2013) 

Production from shale gas wells can be divided into three stages: 1) first short period with 

high initial production rate from hydraulic and natural fractures due to low storage capacity 

and high conductivity, 2) Production from matrix where flowrate is much lower than first 

period but with lower decline rate, 3) Late production stage where gas desorption starts to 

contribute as the average reservoir pressure is low enough to allow desorption of 

considerable gas volumes. The current shale development techniques have an estimated 

recovery factor of 28-40% while conventional reservoirs recovery factor ranges between 

60 to 80%. 

2.5.3 Enhanced Recovery  

Secondary recovery techniques such as water and gas injection are difficult to deploy 

because of the 4 to 5 orders of magnitude of permeability difference between fractures and 

matrix. Recently, utilisation of CO2 Huff-n-Puff for shale gas-condensate wells has gained 

interest from researchers and operators (Sheng 2015, Eshkalak, et al. 2014). In absence of 

proven enhanced recovery techniques for gas and gas-condensate reservoirs, the only 

available means to maximise recovery is by optimising the well design in terms of hydraulic 

fracture spacing, well spacing and lateral length (This is discussed in detail in Chapter 6).  

2.6 Shale Reservoirs vs. Conventional Reservoirs 

What makes shale reservoirs so different from other reservoir types is the extremely low 

permeability as a result of the very small pore size. Figure 2.19 provides a good comparison 
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of permeability and pore sizes between shales, tight sands, sandstones and limestones 

(Williams 2012).  Shale reservoirs are situated in the extreme bottom of pore size scale 

which is less than 300 nm while pore size in tight sands range from 300 nm up to 1 µm and 

in conventional reservoirs from 1 µm to few tens of µm. Consequently, shale permeability is 

less than few hundreds of nD. Porosity of shale reservoirs is mainly less than 10% which is 

relatively lower than other reservoir types. 

This nanoscale pore size range in shale reservoirs implies a very different gas flow regime 

that deviates from the laminar Darcy flow to slip flow and Knudsen flow. Moreover, the high 

capillary forces due to very small pore size dominate the gas-condensate flow. The gas 

single-phase flow and gas-condensate two-phase flow are investigated in Chapter 3.  

 

 

Figure 2.19: Pore size and permeability of shale vs. tight sands and conventional reservoirs 

(Williams 2012) 

The high capillary pressure in shale matrix affects, as well, the phase behaviour of gas-

condensate fluids in shale matrix. Condensate tends to start forming at higher dew point 

pressure and to reach higher saturations than in conventional reservoirs. This phase 

behaviour deviation is examined in Chapter4 whilst the effect of the deviation of flow 
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behaviour and phase behaviour of gas-condensate fluids in shale matrix is evaluated in 

Chapter 5.  

Table 2.3 gives a more extensive comparison between shale reservoirs, tight sands and 

conventional reservoirs.  

Table 2.3: Comparison between shale gas, tight gas and conventional reservoirs 

 

2.7 Summary  

Shale resources consist of the most abundant hydrocarbon resources in the world. Shale oil 

and gas development in USA and Canada have demonstrated the importance of this type of 

hydrocarbon resources and how they have been reshaping the energy landscape.  

Shale gas-condensate reservoirs are very different from conventional reservoirs in terms of 

rock properties, gas storage, gas-condensate two-phase flow and phase behaviour. Due to 

very low permeability condensate banking effect is severer due to high drawdown from 

reservoir to wellbore and affects well productivity almost throughout the entire life of the 

well. Better understanding of how condensate forms in the reservoir and how it affects the 

well productivity is crucial for well performance estimation and field development studies.    
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As enhanced recovery technologies for shale gas-condensate reservoir are still to be 

developed, the only available means to maximise production is well design optimisation by 

choosing the best hydraulic fracture spacing and well spacing to minimise condensate 

banking effect.  
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3.1 Introduction 

Condensate banking is the most challenging engineering problem in gas-condensate 

reservoir development where condensate accumulation in the reservoirs reduces 

dramatically the gas permeability resulting into loss of well productivity. Assessment of 

condensate banking effect is important to predict well productivity and to diagnose well 

performance.  

Traditionally, Darcy law combined with relative permeability models have been used for 

flow behaviour modelling in conventional reservoirs and it is widely adopted in reservoir 

engineering commercial tools.   For shale gas-condensate reservoirs, the gas flow deviates 

from Darcy flow to micro-flow known as Knudsen flow due to the very small pore size in 

shale matrix (1-300 nm) compared to conventional reservoirs (10 -200 µm). The Knudsen 

flow is highly dependent on pore size distribution and reservoir pressure (see Section 

3.2.1).  

When condensate forms in shale matrix it blocks the lowest range of pore size to the gas 

flow and only the remaining range of free pore sizes is accessible to gas flow. Thus, Knudsen 

flow is affected by condensate saturation. Disregarding this effect can lead to 

overestimation of Knudsen flow contribution in well production under condensate banking 

effect.  

Although, the gas single phase flow modelling in shale reservoirs using Knudsen flow has 

attracted researchers interest in recent years, the effect of liquid saturation (water, oil or 

condensate) on Knudsen flow has not yet been well addressed.  

In this Chapter, the effect of condensate saturation on Knudsen flow is evaluated using a 3D 

pore network with random pore size distribution. The Knudsen flow is incorporated at the 

pore level and gas permeability is evaluated for the whole network. In addition, the pore 

distribution effect in terms of log-normal median and standard deviation is investigated.  

3.2 Gas Single-phase Flow in Shale Matrix 

Shale reservoirs are dual porosity/dual permeability systems containing two media: matrix 

and fracture network. The fluid flows from matrix into the fracture and to the wellbore. The 
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matrix plays two roles; fluid storage and conductivity to the fractures while fractures serve 

only as connection between matrix and wellbore. Fluid flow in fractures in shale reservoirs 

is similar to conventional reservoirs where the same technique is used to create propped 

fractures. The main difference of fluid dynamics between shale reservoirs and conventional 

reservoirs resides in shale matrix where Darcy law fails to describe the gas flow in pores at 

nano and micro-scale.  

3.2.1 Gas Flow Regimes 

The gas flow in nanopores deviates from the standard continuum flow due to the interaction 

between molecules-molecules and molecules-pore walls (Javadpour 2007). Three non-

Darcy flow regimes: slip flow, transition flow and free-molecular flow, are distinguished 

using Knudsen number which is defined as a measure of the degree of density rarefaction 

of gas flow in micro and nano-channels. It is mathematically expressed as: 

 
𝐾𝑛 = 

𝜆

𝑅
 

(3.1) 

Where 𝑅 is the hydraulic radius (m) and λ is the average minimum free path (m)  

 

𝜆 =  
µ𝑍

𝑃
√
𝜋𝑅𝑔𝑇

2𝑀
 

(3.2) 

Where µ is the viscosity, 𝑍 is the compressibility factor, 𝜏 is the tortuosity, P is the absolute 

gas pressure (Pa), T is the absolute temperature (K), M is the average molecular mass 

(kg/kmol) and Rg = 8314 J/kmol/K is the universal gas constant. 

Table 3.1 illustrates the classification of flow conditions according to the Knudsen number 

limits in pipes as the continuum, slip, transition, and free molecular flow regimes (Roy et al. 

2003). 

 Table 3.1: Classification of flow conditions in pipes according to the Knudsen number limits 

(Roy et al. 2003) 

 

a) Continuum Flow (Kn < 0.01)  

Continuum flow occurs at Kn values under 0.01 where molecule-molecule interaction is the 

dominant force. Hagen–Poiseuille law describes continuum flow in channels as  
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𝑞 =  

𝜋

8
 
𝑅4∆𝑃 

𝜇 𝐿
 (3.3) 

Where 𝑞 is fluid rate (m3/s), 𝑅 is the radius of the channel (m), ∆𝑃 is pressure difference 

(Pa), 𝜇 is the fluid viscosity (cp) and 𝐿 is the channel length (m).  

b) Slip Flow (10−3 < 𝐾𝑛 < 10−1)  

At 10−3 < 𝐾𝑛 < 10−1 range the molecule-wall effect is more pronounced but molecule-

molecule is still dominant. Slip flow to slip flow regime dominates when gas molecules near 

to the channel walls don’t exhibit a zero velocity (slip). Navier-Stokes equation is still valid 

to describe this flow regime with a velocity discontinuity at channel walls. Klinkenberg 

(1941) model is routinely used to correct permeability measurement in gas core flooding at 

laboratory conditions.   

c) Transition Flow (10−1 < 𝐾𝑛 < 10) 

Transition flow occurs with increasing 𝐾𝑛 numbers (10−1 < 𝐾𝑛 < 10) translated by a 

transition from slip flow to free molecular flow. At this range of Kn, traditional flow 

dynamics laws start break down. 

d) Free Molecular Flow (𝐾𝑛 > 10) 

In free molecular flow, molecule-wall interaction is dominant when average minimum free 

path is higher than channel radius (𝜆 ≫ 𝑅). Molecules are more likely to collide with the 

channel wall than colliding with other molecules. Figure 3.1 summaries the flow regimes 

according to Knudsen number.  

 

 

Figure 3.1: Different gas flow regimes as function of Knudsen number (not to scale, adapted 

from Javadpour (2009)) 
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3.2.2 Microflow Correction Factor  

Using Direct-simulation of Monte Carlo (DSMC) and Linearized Boltzmann solution (LBS) 

results, Beskok and Karniadakis (1999) proposed a general flow model that covers all gas 

flow regimes in micro channels using a correction factor 𝜉 where 

 𝜉 = (1 + 𝛼𝐾𝑛)(1

+
4𝐾𝑛

1 − 𝑏𝐾𝑛
) 

(3.4) 

Therefore, Hagen–Poiseuille equation can be modified to 

 
𝑞 =  𝜉

𝜋

8
 
𝑅4∆𝑃 

𝜇 𝐿
 (3.5) 

Where 𝛼 is the dimensionless rarefaction coefficient, and b is the empirical slip coefficient 

independent of the gas properties that can be determined experimentally or using direct-

simulation of Monte Carlo (b = -1 for fully-developed slip flow through channels and tube). 

The rarefaction coefficient 𝛼 is a characteristic of gas flow (similar to Knudsen number 𝐾𝑛) 

where the large values correspond to continuum flow and the large values correspond to 

free molecular flow.  

Beskok and Karniadakis (1999) used Loyalka and Hamoodi (1990) experimental data and 

proposed the following correlation of the rarefaction coefficient 𝛼 in function of Knudsen 

number.  

 
𝛼 = 

128

15 𝜋2
 𝑡𝑎𝑛−1(4 𝐾𝑛

0.4) (3.6) 

Civan (2010) using the same set of data provided another correlation 

 
𝛼 =

1.358

1 +
0.170

𝐾𝑛0.4348

 
(3.7) 

Figure 3.2 illustrates an example of the correction factor, 𝜉 for methane at a reservoir 

temperature of 250˚F as a function of pore radius at different pressure values and it 

indicates that Knudsen flow increases with decreasing pore radius and decreasing pressure 

and at pressure values more than 2000 psi the correction factor is less significant. The 

continuous lines represent results using Beskok and Karniadakis correlation for the 

dimensionless rarefaction coefficient, α in Equation (3.6) and dashed lines are results Civan 

correlation in Equation (3.7). The two α correlation give very similar values for the 

correction factor. 
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Figure 3.2: Log-log plot of correction factor vs pore radius for different pressure values. The 

continuous lines represent results using Beskok and Karniadakis correlation for the 

dimensionless rarefaction coefficient, 𝜶 and dashed lines are Civan correlation. 

3.2.3 Gas Flow Regimes by Reservoir Type 

In order to identify the contribution of each flow regime in the gas flow in porous media 

regarding the three different reservoirs types: conventional reservoirs, tight gas reservoirs 

and shale gas reservoirs, the gas flow regimes limits were calculated as function of pore size 

and reservoir pressure for methane at an average gas and gas-condensate reservoirs 

temperature of 250°F. CH4 gas represents the dominant component of free gases which 

allows for the building of a reference case for different gas compositions.  

Results of these calculations are presented in Figure 3.3. In shale matrix, the gas flow is 

dominated by both slip flow regime and transition regime. Within the same shale reservoirs, 

the two flow regime can occur at different pore sizes.  

Slip flow can occur in tight reservoirs with continuum flow at different reservoir pressures 

and pore sizes.  In conventional reservoirs (sandstones and carbonates), gas flow is 

controlled only by continuum regime (see Figure 3.3). Slip flow can be observed only at very 

low pressure and temperature ranges usually at lab conditions where permeability  

correction are carried out using Klinkenberg (1941) model.  

In this work, for more clarity, the Knudsen flow refers to multi-scale flow that can occur in 

shale reservoirs which include slip and transition flows.  
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Figure 3.3: The range of gas flow regimes as function of reservoir pressure and pore size for 

Methane at 393°F. Gas flow in shale reservoirs is controlled mainly by slip flow and 

transition flow regimes while free molecular flow is unlikely to occur in productive shale 

reservoirs. Tight gas reservoirs are dominated by both slip flow and continuum flow 

regimes. In conventional reservoirs, only continuum flow regime can be appearing at 

reservoir condition.  

3.2.4 Gas Flow Modelling in Shale Porous Media  

For shale gas reservoir calculation, many authors adopted Beskok and Karniadakis (1999) 

model in order to correct matrix permeability from Darcy law to more accurate microflow 

permeability under slip and transition flow regimes as 

 𝑘 =  𝜉 𝑘∞ (3.8) 

 Where 𝑘 is the gas apparent permeability, 𝑘∞  is the intrinsic permeability of shale matrix 

and 𝜉 is the microflow correction factor defined in equation (3.4). The shale matrix is 

modelled as a bundle of capillary pressure with the same pore size equivalent to the average 

pore size 𝑅𝑎𝑣𝑔. 

 𝑅𝑎𝑣𝑔 is inserted in equation (3.1) to calculate 𝜉 as function of pressure. A correlation is used 

to estimate 𝑅𝑎𝑣𝑔 from intrinsic permeability,  𝑘∞, porosity, 𝜙 and tortuosity, 𝜏  as: 

 
𝑅𝑎𝑣𝑔 =  𝐴 𝜏

𝑎
 𝑘∞

𝑏

𝜙𝑐
 

(3.9) 
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Where A, a, b and c are constants parameters. For example, Civan et al. (2011) used Carman 

(1956) correlation 

 
𝑅𝑎𝑣𝑔 = √8𝜏√

𝐾∞
𝜙

 

(3.10) 

And Ziarani and Aguilera (2012) used Windland’s correlation (published by Kolodzie 

(1980)) 

 
𝑅𝑎𝑣𝑔 =  5.395

 𝑘∞
0.588

(100 𝜙)0.864
 

(3.11) 

Although this method gives a quick and simple model to be applied in shale gas calculation, 

the representation of shale matrix with a constant pore size can give inaccurate estimation 

of apparent gas permeability.  

Michel et al. (2011) gave a significant contribution by deriving a correction factor for log 

normal pore size distribution. They proposed an effective average pore size as 

 𝑅𝑒𝑓𝑓 = 𝑣 𝑒
3𝑠2 (3.12) 

where 𝑣 is the median and 𝑠 is the standard deviation log normal distribution. This 

correlation is applicable only for free gas flow where all pore sizes contribute to the flow 

and no condensate blockage is considered. A gas-condensate two-phase flow modelling is 

needed to describe the well performance in shale gas-condensate reservoirs. Hence a model 

of Knudsen flow under two-phase is provided in Section 3.6. 

3.3 Gas-Condensate Two-phase Flow in Shale Matrix  

3.3.1 Liquid Flow in Nanotubes 

Condensate flow in shale matrix is still a very active subject in nanochannels research. In 

the research community a liquid flow is always a continuum flow governed by Hagen–

Poiseuille equation as the rarefaction effect does not extend to liquids (Mattia and Gogotsi 

2008). Many researchers (Günther and Jensen 2006, Gogotsi, Libera and Yoshimura 2000) 

emphasised the similarity of the slug flow of gas-liquid fluids between microscale and 

nanoscale. Figure 3.4 represents water vapour-liquid in carbon nanotube showing a similar 

meniscus gas-liquid interface observed in macrochannels (Gogotsi, Libera and Yoshimura 

2000). Experimental studies for hydrocarbon fluids (e.g. gas-condensate fluids) flow in 

nanotube have not been reported in the literature.  
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Figure 3.4: TEM (Transmission Electron Microscope) micrographs of water trapped in closed 

carbon nanotube showing a similar meniscus gas-liquid interface (Gogotsi, Libera and 

Yoshimura 2000) 

3.3.2 Condensate Blockage in Shale Gas Reservoirs 

In conventional gas-condensate reservoirs, Fevang and Whitson (1996) divided a drainage 

area during depletion into three flow regions (see Figure 3.5). A single-phase gas region 

(Region N°3) far away from the producing well and its average pressure is above the dew-

point; condensate buildup region (Region N°2) where condensate starts to drop out but the 

flowing phase is only single gas due to critical condensate saturation; and near well region 

(Region N°1) constraining two phase flow (gas + condensate). Due to pressure drop, the 

liquid phase saturation exceeds the critical saturation and becomes mobile.  According to 

Fevang and Whitson (1996) the well deliverability impairment due to condensate banking 

is influenced mainly by relative permeability of gas and condensate.  

 

Figure 3.5: The three regions model of well drainage area under condensate banking effect 

(Fevang and Whitson 1996) 
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In shale gas systems, the three flow regions can be used for natural or propped fracture 

network. However, in shale matrix, only two regions can exist when the natural/propped 

fracture near to the matrix is below dew point: single-phase gas region (Region N°3) and 

condensate build-up region (Region N°2) due to the very low condensate relative 

permeability in shale matrix (see Figure 3.6). Due to high capillary pressure in nano-scale 

pores in shale matrix, all condensate formed in reservoir under dew point remains immobile 

or trapped (see Section 3.7.3). When pressure in central zone of matrix reaches dew point, 

all matrix is under Region N°2.  

 

Figure 3.6: The two gas-condensate flow regions in shale matrix. Single-phase gas region in 

matrix central area with average pressure above the dew-point. Condensate build up region 

near natural/propped fracture where condensate starts to drop out but the flowing phase is 

only gas due to high capillary pressure 

As in conventional reservoirs, condensate blockage reduces well productivity significantly 

when well matrix pressure falls below dew point. When condensate build-up in matrix, gas 

flow from this matrix decreases rapidly as pressure drops. Due to the several magnitude 

difference of permeability between matrix and hydraulic fracture, the conventional 

recovery enhancement techniques such as pressure maintenance by gas or water injection 

and huff-n-puff are not applicable.  New techniques are needed to be developed and tested. 

Meanwhile, an accurate evaluation of condensate banking effect is crucial to predict well 

production and to allow for optimum well design that minimises the impact of condensate 

banking.  

The condensate accumulation and propagation in the shale matrix are discussed further in 

Sections 5.5 and 6.4.1.  
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3.3.3 Gas Condensate Relative Permeability  

As mentioned earlier, absolute permeability measurement poses a technical challenge with 

respect to relative permeability measurement with the known techniques (steady state, 

pulse decay and crushed samples methods).   

In tight sand gas reservoirs, Permeability Jail concept is widely used to describe the relative 

permeability of gas and water in the low permeability sand. Permeability Jail consists of the 

existence of a saturation region where both gas and water become immobile (usually, 

permeability jail is defined by both Krg and Krw < 2%). This phenomenon is well observed in 

tight sands with absolute gas permeability less than 50 µD (Cluff and Byrnes 2010). Jail 

occurs as a result of capillary pressure in small pores filled by liquid blocking gas flow and 

reducing its relative permeability significantly. Figure 3.7 shows results by Cluff and Byrnes 

(2010) for gas relative permeabilities measurement for samples with absolute permeability 

ranging from 0.0001 mD to 1 mD.  

Using pore network simulation, Silin (2011) obtained similar results for gas condensate 

flow in tight sand reservoirs. As condensate accumulates in small pores, capillary pressure 

inhibits condensate flow to larger pore size and reduces gas flow gradually with increasing 

condensate saturation. 

 

 

Figure 3.7: Gas relative permeabilities measured at single Sw for absolute permeabilities 

from 0.0001 mD to 1 mD (Cluff and Byrnes 2010) 
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3.3.4 Effect of Liquid Saturation on Slip/Knudsen Flow  

The effect of liquid saturation on gas slip effect is well documented in the literature. Rose 

(1948) carried out gas–water core flooding experiments using synthetics materials and 

natural sandstone with intrinsic permeabilities ranging from 30mD to 800 mD (which are 

considered as conventional reservoirs). He found that the slippage effect decreased with 

increasing water saturation. Fulton (1951), Estes and Fulton (1956) and Sampath and 

Keighin (1982) used similar range of sandstone permeabilities and concluded to the same 

result. Rushing, Newsham and Fraassen (2003) extended Roses’s work to tight gas reservoir 

using sandstone cores with permeability ranging from 0.01 to 0.1 mD and they validated 

the same effect of water saturation on slippage effect in tight reservoirs.  

The effect of water saturation on gas slippage effect can be explained by the variation of 

pore size range that is accessible for gas flow as the water saturation increases. Due to 

capillary forces, when water saturation increase it occupies the smallest free pore size 

range, hence increasing the average pore size accessible by gas flow which reduces the gas 

slippage effect.   

Recently, Wu et al.(2014) used a synthetic material to build a 1D nanoscale slit-like channels 

with 100 nm size to describe gas-water flow in shale matrix. However, their results 

contradicted the conclusions of Rose (1948), Sampath and Keighin (1982) and Rushing et 

al. (2003); they found that gas slippage effect increases as the water saturation increases. 

The main reason behind this result is that their 1D nano-channel network lacks the pore 

interaction and the pore size variation as in shale, tight sandstone and conventional 

sandstones cores used by the other researchers. Thus, the variation of pore size accessible 

by gas with increasing water saturation is not represented in their work.  

To the best of the author’s knowledge, no shale core two-phase flow measurement is 

reported in the literature. In this case, pore network modelling can be the best alternative 

to study the two-phase flow of gas and condensate in shale reservoirs.  

3.4 Review of Pore Network Flow Modelling 

Pore-network modelling is becoming a well-established discipline for petroleum 

applications for single and multi-phase flows in porous media. The pore network modelling 

was first introduced by Fatt (1956). Usually, the void in the porous media is represented by 

a 2D or 3D network of pores connected by pore throats. The network modelling has been 

used by researchers to study macroscopic properties of porous media such as permeability 
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and relative permeability linked to pore-level physics such as pore shapes, wettability, and 

interfacial tension.   

For conventional reservoirs, traditionally, the pores are modelled as spheres or cubes and 

pore throats as curved triangular cross-section tubes. A variety of shapes were used in 

literature ranging from angular cross-section to grain boundary pores (Blunt 2001, Joekar-

Niasar and Hassanizadeh 2012). The main challenge of an accurate network modelling is to 

capture the complexity of the pore space geometry while using simple pore shapes.  For 

multiphase flow, the shapes of pores and pore throats are very important to describe the 

capillary pressure as function of wetting phase saturation. When a wetting phase exists in a 

pore, it occupies the pore corners with high capillary pressure. As saturation increases the 

capillary pressure decreases until it forms a bridge.  

The extension of pore geometry from conventional reservoirs to shale reservoirs should be 

considered carefully due to the difference of pore space geometry. As discussed in Section 

2.3.4, the shale porosity comprises organic porosity in kerogen and inorganic intergranular 

porosity.  The pore space in organic matter (kerogen) tends to have mainly a round shape 

(Curtis, Ambrose and Sondergeld 2010) which is different from the triangular intergranular 

shape in conventional sandstone reservoirs. In addition, in inorganic matter, the slit-like 

pores should be also considered besides circular pores.  

In conventional reservoirs, pore network modelling has been used to better understand gas-

condensate flow in porous media. The pore network modelling studies focused mainly on 

condensate critical saturation and relative permeability evaluation and their relationship 

with capillary forces and wettability (Fang, et al. 1996, Jamiolahmady et al.  2000, Bustos 

and Toledo 2003, Li and Firoozabadi 2000). Even, at higher permeability (than shale 

matrix), researchers face difficulties for relative permeability measurement in laboratories.  

For shale reservoirs, the situation becomes more complicated where reliable techniques for 

multiphase permeability are still under development and improvement. Currently, pore-

network modelling is the only way to investigate multiphase flow in shale reservoirs. Few 

pore network studies were reported in the literature.  Mehmani et al. (2013) used single 

phase gas pore network model to study the effect of Knudsen flow. However, they used an 

intergranular sandstone pore model. They concluded that the gas apparent permeability is 

sensitive to the fraction of nanopores. Huang et al. (2016) developed a two-phase (gas and 

water) 3D pore network model including Klinkenberg flow and gas adsorption. They used 

a mixed wettability network ( with organic and no-organic pores)  but they used a square 

cross-section for pores in kerogen which is not in line with experimental observation where 

nanopores have circular cross section (see Section 2.3.4). 



Chapter 3 : Gas-Condensate Flow Modelling in Shale Matrix 

Ismail Labed 42 Robert Gordon University 

3.5 Capillarity Induced Negative Pressure of Wetting Phase in Nanopores 

In nanometre scale, the ratio of channel inner surface to volume increases significantly 

compared to the macrochannels which induces a large effect of tension forces on 

condensate pressure to the extent that it can be under negative pressure.  In Young-Laplace 

equation (3.13), the condensate pressure is defined as a function of gas pressure and 

capillary pressure. When the capillary pressure is high enough (at low pore radius) to 

exceed the gas pressure, the condensate pressure becomes negative. 

 
𝑃𝑐 =  𝑃𝑔 −  𝑃𝑐𝑎𝑝 = 𝑃𝑔 − C 

𝜎𝑔𝑐  𝑐𝑜𝑠𝜃

𝑅
 

(3.13) 

where 𝑃𝑔 and 𝑃𝑐  are pressure in gas phase and condensate phase respectively (psi),  𝑃𝑐𝑎𝑝 is 

capillary pressure (psi) 𝜎𝑔𝑐 is gas-liquid interfacial tension (IFT) (mN/m), 𝜃 represents the 

gas-condensate  contact angle. R is the pore radius (m) and C=1.449 × 10−7 is a constant. 

An upper pore radius limit 𝑅𝑛𝑒𝑔 for pore with negative condensate pressure (i.e. 𝑃𝑐(𝑅) < 0  

when 𝑅 <  𝑅𝑛𝑒𝑔) can be defined as   

 
𝑅𝑛𝑒𝑔 = C

𝜎𝑔𝑐  𝑐𝑜𝑠𝜃

𝑃𝑔
 

(3.14) 

The negative wetting phase induced by capillary pressure is still under investigation in 

nanofluidics (Ondarçuhu and Aimé 2013).  The Young-Laplace equation extension to 

nanoscale level (about 100 nm) was proven experimentally by Sobolev et al. (2000). Tas et 

al. (2003) observed two phase (water and air) flow in hydrophilic silicon nanochannels and 

used Young-Laplace equation to identify negative water pressure.  

3.6 Gas-Condensate Flow Modelling in Shale Matrix  

3.6.1 Pore Size Distribution in Shale Matrix 

From the literature, a number of experiments were reported on the application of Mercury 

Injection Capillary Pressure technique (MCIP) to determine the pore size distribution 

(Lewis, et al. 2013, Kuila 2013, Saidian 2014, Ross and Bustin 2009, Al Hinai et al.  2014, 

Crousse, et al. 2015). Figure 3.8 represents the incremental pore space fraction vs. pore 

radius for four samples from Eagle Ford Shale (adapted from Lewis, et al.(2013)). In this 

Figure, pore radius extends from 3nm up to 300 nm with a logarithmic bell-shape around 

10 to 40 nm similar to log normal distributions. Figure 3.9 shows an approximation of Lewis, 
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et al.(2013) data (Sample 4) to a log normal distribution ln𝒩(10 , 0.6) for incremental and 

cumulative pore space vs. pore radius.  

 

Figure 3.8: Incremental pore space vs. pore radius of four samples of lower Eagle Ford Shale 

(adapted from Lewis, et al. (2013)).   

 

Figure 3.9: Approximation of measured data of Mercury Injection Capillary Pressure (MICP) 

of Sample 1 to a log normal distribution 𝐥𝐧𝓝(𝟏𝟎 , 𝟎. 𝟔) in terms of incremental pore space  

and cumulative pore space vs. pore radius.  

3.6.2 Description of the Pore Space 

In this study, porous media in shale matrix kerogen is modelled as three-dimensional cubic 

network of connected pore segments. Nodes connection segments are valueless and have 

infinite connectivity.   Each pore segment connecting nodes i and j is modelled as nanotubes 
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with radial cross section of radius 𝑅𝑖𝑗 and constant length L (see Figure 3.10).  Nanotubes 

radii are assigned randomly according to a log-normal distribution ln𝒩(𝜈 , 𝑠) of mean υ and 

standard deviation s. The 3D structure has connection factor 6 and N nodes; each node is 

connected to next nodes in X, Y and Z directions. Figure 3.11 illustrates a nanotube and an 

8×8×8 pore network structure. Figure 3.12 shows the pore radius distribution of 

ln𝒩(10 , 0.6) network and the theoretical log normal PDF used to generate it randomly. 

The dimension in X, Y and Z direction is 1 µm and porosity is 0.08.  

The PDF (Probability Density Function) for 𝑅 can be written as: 

 

𝑓(𝑅) =
√2exp [− 

1

2 
(
𝑙𝑛𝑅−𝑙𝑛𝑣

𝑠
)
2
] 

√𝜋 𝑠 𝑅 [erf (
𝑙𝑛𝑅𝑚𝑎𝑥−𝑙𝑛𝑣

√2𝑠
) erf (

𝑙𝑛𝑅𝑚𝑖𝑛−𝑙𝑛𝑣

√2𝑠
)]

 

(3.15) 

 

 

 

Figure 3.10: Modelling a 

nanotube (in green) connecting 

two nodes (in orange) 

 Figure 3.11: Example of a 3D structure pore network with 

connection factor 6 and 512 nodes with inlet and outlet indicated 

(dimensions in nm). 
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Figure 3.12: Pore radius distribution of the pore network: Histogram of pore radius and PDF 

of 𝐥𝐧𝓝(𝟏𝟎 , 𝟎. 𝟔) fitting the pore radius distribution.  

A gas condensate sample is defined in Table 3.2. Figure 3.13 displays the Constant Volume 

Depletion (CVD) liquid drop-out and Interfacial tension (IFT) used in the simulation 

generated using a PVT-i package for gas condensate fluid. The sample can be defined a 

medium-rich gas condensate fluid with maximum liquid dropout of 21.8% and dew point of 

4250 psi. The CVD  experiment mimics the fluid flow in shale reservoir where only gas flows 

in the two phase region (see Section 3.7.3).  

Table 3.2: Gas condensate sample composition used in simulations. 

 

 

  



Chapter 3 : Gas-Condensate Flow Modelling in Shale Matrix 

Ismail Labed 46 Robert Gordon University 

 

Figure 3.13: Liquid Drop-out and IFT of gas condensate Constant Volume Deletion (CVD) 

simulation.  

3.6.3 Flow Modelling  

The gas flow through nanotubes connecting two nodes i and j is described by a modified 

Hagen-Poiseuille equation established in this work as 

 

Δ𝑃𝑖𝑗 =

{
 
 

 
 1

𝜉𝑖𝑗
  [
8

𝜋
  
𝜇𝑖𝑗
𝑔
 𝐿𝑖𝑗 𝑞𝑖𝑗

𝑔

𝑅𝑖𝑗
4 ]  𝑓𝑜𝑟 𝑔𝑎𝑠

  [
8

𝜋
  
𝜇𝑖𝑗
𝑐  𝐿𝑖𝑗  𝑞𝑖𝑗

𝑐

𝑅𝑖𝑗
4 ]  𝑓𝑜𝑟 𝑐𝑜𝑛𝑑𝑒𝑛𝑠𝑎𝑡𝑒

𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 

(3.16) 

where 𝑞𝑖𝑗 is phase flow rate (m3/s), Δ𝑃𝑖𝑗 is differential pressure (Pa), 𝑅𝑖𝑗is tube radius (m),  

𝜇𝑖𝑗   is phase viscosity (cp) and 𝐿𝑖𝑗 is tube length (m); superscripts 𝑔 and 𝑐 stand for gas and 

condensate respectively.  The gas permeability correction factor of nanotube ξij  is defined 

by Equation (3.17) 

 
𝜉𝑖𝑗 = (1 + 𝛼𝑖𝑗𝐾𝑛𝑖𝑗) (1 +

4𝐾𝑛𝑖𝑗

1 − 𝐾𝑛𝑖𝑗
)     𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 

(3.17) 

where 𝐾𝑛𝑖𝑗 is the nanotube’s Knudsen number defined in Equation (3.1).  

A nanotube conductivity for gas is defined as 

 
𝐺𝑖𝑗
𝑔
 =

𝑞𝑖𝑗
𝑔

Δ𝑃𝑖𝑗
= 𝜉𝑖𝑗

𝜋𝑅𝑖𝑗
4

8 𝜇𝑖𝑗
𝑔
 𝐿𝑖𝑗

      𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 
(3.18) 
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And for condensate, as 

 
𝐺𝑖𝑗
𝑐  =

𝑞𝑖𝑗
𝑐

Δ𝑃𝑖𝑗
=

𝜋𝑅𝑖𝑗
4

8 𝜇𝑖𝑗
𝑐  𝐿𝑖𝑗

      𝑖 = 1. . 𝑁, 𝑗 = 1. . 𝑁 
(3.19) 

 

The gas flow through the pore network is governed by mass conversion of gas and 

condensate in each node (i , j) 

 
∑𝑞𝑖𝑗

𝑔

𝑁

𝑗=1

= 0  and ∑𝑞𝑖𝑗
𝑐

𝑁

𝑗=1

= 0      𝑖 = 1. . 𝑁 
(3.20) 

Equation (3.20) can be written using Equation (3.18) as 

 
∑𝐺𝑖𝑗

𝑔
 Δ𝑃𝑖𝑗

𝑁

𝑗=1

= 0  and ∑𝐺𝑖𝑗
𝑐  Δ𝑃𝑖𝑗

𝑁

𝑗=1

= 0     𝑖 = 1. . 𝑁 
(3.21) 

Replacing  Δ𝑃𝑖𝑗 by 𝑃𝑖 − 𝑃𝑗 gives 

  
𝑃𝑖∑𝐺𝑖𝑗

𝑔
 

𝑁

𝑗=1

−∑𝐺𝑖𝑗
𝑔
 𝑃𝑗

𝑁

𝑗=1

= 0    and  𝑃𝑖∑𝐺𝑖𝑗
𝑐  

𝑁

𝑗=1

−∑𝐺𝑖𝑗
𝑐  𝑃𝑗

𝑁

𝑗=1

= 0    𝑖 = 1. . 𝑁 

(3.22) 

A code was written in Matlab to generate the 3D pore network, calculate volumetric 

functions and solve the system of equations (3.22) using iterative Newton-Raphson method 

for unknown vector 𝑃𝑖.  Figure 3.14 represents a flow diagram of the code. This code is 

provided in an attached CD-ROM. 

3.6.4 Condensate Accumulation  

As pressure drops, condensate builds up in the pore network and start filling small pores. 

Due to capillary pressure, all pores lower than the minimum free pore for gas flow, Rg,min are 

considered blocked to gas flow. 

 

𝐺𝑖𝑗 = {
𝜉𝑖𝑗

𝜋𝑅𝑖𝑗
4

8𝜇𝑖𝑗𝐿𝑖𝑗
, 𝑅𝑖𝑗 ≥ 𝑅𝑔,𝑚𝑖𝑛

0, 𝑅𝑖𝑗 < 𝑅𝑔,𝑚𝑖𝑛

 

(3.23) 

A volume function is used to calculate Rg,min as function of condensate saturation Sc based on 

the pore distribution and volumes. 

 𝑅𝑔,𝑚𝑖𝑛 = 𝑓(𝑆𝑐) (3.24) 

Where 𝑅𝑔,𝑚𝑖𝑛 and 𝑆𝑐  can be related in discretised version  
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𝑆𝑐(𝑅𝑔,𝑚𝑖𝑛) =   
∑ 𝑅𝑖𝑗

2𝑅𝑔,𝑚𝑖𝑛
𝑅𝑚𝑖𝑛

∑ 𝑅𝑖𝑗
2𝑅𝑚𝑎𝑥

𝑅𝑚𝑖𝑛
 
 

(3.25) 

Figure 3.15a and 3.15b illustrate results of generated 𝑅𝑔,𝑚𝑖𝑛 and capillary pressure 

respectively as function of condensate saturation 𝑆𝑐  of a pore network of 8×8×8 nodes and 

pore size distribution ln𝒩 (10,0.6). Figure 3.16 represents an example of pore network 

with blocked pores in red and free pores in green at maximum condensate saturation of 

22%. 

Results of CVD in terms of µ, compressibility factor Z and average gas molecular mass M as 

a function of pressure is used to calculate conductivities Gij. 

As the condensate accumulates at the smallest range of pore size distribution, which mainly 

exists in the kerogen, the interface of gas-condensate is located in kerogen pores and 

controlled by their round cross section. In addition, the kerogen pore space accounts for 

about 50% of total porosity (refer to  Section 2.3.4)  enough to hold the condensate 

saturation. Consequently, the slit-like shape of non-organic pore space which represents the 

upper range of pore size distribution, has a minor impact on condensate accumulation vs  

𝑅𝑔,𝑚𝑖𝑛 relationship.  As a result, the non-organic pores can be modelled with a circular cross 

section without having an impact on calculation results.  
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Figure 3.14: Flow diagram of the flow modelling calculation 
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Figure 3.15: Saturation function and capillary pressure of a pore network of 8×8×8 nodes 

and 𝐥𝐧𝓝(𝟏𝟎, 𝟎. 𝟔): a) Condensate saturation Sc   as function of Rg,min  showing maximum 

condensate saturation is related to  Rg,min   of 16nm, b) Capillary pressure as function of 

saturation and for different pressure values.  

 

Figure 3.16: An example of pore network with blocked pores in red and free pores in green 

at maximum condensate saturation of 22% (dimensions in nm). 

At each pressure value, the gas Rmin is determined for the corresponding condensate 

saturation. The individual Gij conductivities are calculated using equations (3.24) and (3.25).  
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3.6.5 Network Gas Apparent Permeability and Relative Correction Factor 

Calculation 

The gas Darcy permeability and apparent permeability of the pore network are calculated 

as 

 
𝑘𝑎𝑝𝑝 =

𝑞𝑎𝑝𝑝𝜇𝑎𝑣𝑔𝐿

𝑃𝑖 − 𝑃𝑜
 

(3.26) 

And 

 
𝑘𝐷 =

𝑞𝐷𝜇𝑎𝑣𝑔𝐿

𝑃𝑖 − 𝑃𝑜
 

(3.27) 

where 𝑞𝑎𝑝𝑝 and 𝑞𝐷 are the apparent and Darcy gas flowrates respectively, µavg is the pore 

network average viscosity, L is the pore network dimension in flow direction and Pi and Po 

are inlet and outlet pressure respectively. 

The enhancement factor is calculated as 

 
𝜉 =

𝑘𝑎𝑝𝑝
𝑘𝐷

 
(3.28) 

In order to emphasise the effect of condensate blockage on correction factor, gas condensate 

correction factor𝜉𝐺𝐶 and dry gas correction factor 𝜉𝐷𝐺 are calculated as  

 𝜉𝐺𝐶 = 
𝑘𝑎𝑝𝑝,𝐺𝐶

𝑘𝐷,𝐺𝐶
 and 𝜉𝐷𝐺 =

 
𝑘𝑎𝑝𝑝,𝐷𝐺

𝑘𝐷,𝐷𝐺
 

(3.29) 

Where 𝑘𝑎𝑝𝑝,𝐺𝐶 and 𝑘𝐷,𝐺𝐶 are apparent Knudsen permeability and Darcy permeability with 

condensate blockage respectively, and 𝑘𝑎𝑝𝑝,𝐷𝐺  and 𝑘𝐷,𝐷𝐺  are apparent Knudsen 

permeability and Darcy permeability of dry gas respectively.  

In order to evaluate the effect of condensate saturation on Knudsen flow, a new parameter 

is defined  “Relative Correction factor” 𝜉𝑟𝑒𝑙 which is the ratio of 𝜉𝐺𝐶 to 𝜉𝐷𝐺  

 
𝜉𝑟𝑒𝑙 = 

𝜉𝐺𝐶
𝜉𝐷𝐺

 
(3.30) 

𝜉𝑟𝑒𝑙  is a measure of the effect of condensate blockage on Knudsen flow and it can be used to 

adjust correction factor from dry gas flow to gas condensate flow. 𝜉𝑟𝑒𝑙  for Knudsen flow can 

be perceived as the equivalent of gas relative permeability 𝑘𝑟𝑔 for Darcy flow.  

So the gas apparent permeability in the presence of condensate in shale matrix can be 

calculated as 
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 𝑘𝑔𝑎𝑝𝑝(𝑆𝑐 , 𝑃) =  𝜉
𝑟𝑒𝑙
𝜉𝐷𝐺 𝑘𝑟𝑔 𝑘∞ (3.31) 

where 𝑘∞ is the intrinsic permeability  

3.7 Results and Discussion  

3.7.1 Intrinsic Permeability  

Table 3.3 shows the result of intrinsic permeability for shale matrix as a function of varying 

𝜈  (4 to 100 nm) and 𝑠 (0.001 to 0.7 nm) with porosity 𝜙 of 6% and tortuosity 𝜏 of 1.5. The 

range of pore radius distribution of shale matrix identified with permeability between 20 

and 1000 nD is indicated with green background. In this work, only (𝜈 , 𝑠) values included 

in shale intrinsic permeability range will be used for matrix modelling.  

Table 3.3: Calculated intrinsic permeability as function of varying 𝝂  and 𝒔 with porosity 𝝓 

6% and tortuosity 𝝉 of 20. Shale matrix permeability range between 20 and 1000 nD is 

indicated in green background.  

 

3.7.2 Single Phase Gas Flow 

Calculated apparent permeability for 100% methane gas is presented in Figure 3.17. The 

enhanced gas permeability remains relatively stable near to intrinsic permeability (275 nD) 

above 1000 psi and starts to increase sharply as pressure decreases to reach around 2000 

nD at 14.7 psi.  

Figure 3.18 represents a log-log plot of numerical 𝜉 calculated with 3D pore network vs. 

analytical correction factor 𝜉𝑀𝑖𝑐ℎ𝑒𝑙 proposed by Michel et al (2011) (see equation (3.13)) for 
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methane flow in porous media with ranges of 𝑣  (from 8 nm to 50 nm) and 𝑠 (from 0.1 to 

0.7) . It shows a good match of R2-value=0.98. 

 

Figure 3.17: Apparent permeability (nD) for 𝐥𝐧𝓝(𝟏𝟎 , 𝟎. 𝟔) pore radius distribution and 

100% methane gas at reservoir temperature of 393oK 

 

 

Figure 3.18: Log-log plot of numerical 𝝃 vs. analytical 𝝃𝑴𝒊𝒄𝒉𝒆𝒍 showing a good match of R2-

value=0.98.  
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3.7.3 Condensate Trapping  

In order to investigate the effect of capillary pressure, two nanotube T1 and T2 with radii  𝑅1 

and  𝑅2 respectively were adopted for analysis (see Figure 3.19) where condensate exists in 

Tube1. The condensate will flow to Tube2 if  

 

 

Figure 3.19: Schematic of condensate flow from one nanotube to another: a) immobile 

condensate in Tube1, trapped by capillary pressure, b) condensate flowing from Tube1 to 

Tube2.   

 ∆𝑃 =  𝑃𝑙𝑖𝑞,1 −  𝑃𝑙𝑖𝑞,2  > 0 (3.32) 

Where  𝑃𝑣𝑎𝑝,1 and  𝑃𝑣𝑎𝑝,2 are gas pressure in Tube1 and Tube2 respectively and they can be 

expressed as 

   𝑃𝑙𝑖𝑞,𝑖 = 𝑃𝑣𝑎𝑝,𝑖 −  𝑃𝑐𝑎𝑝,𝑖  𝑖 = 1,2 (3.33) 

where  𝑃𝑐𝑎𝑝 is the capillary pressure. Condition (3.32) can be rewritten as  

  𝑃𝑣𝑎𝑝,1 −  𝑃𝑣𝑎𝑝,2  >  𝑃𝑐𝑎𝑝,1 −  𝑃𝑐𝑎𝑝,2 (3.34) 

We define  𝑃𝑐𝑎𝑝,1 −  𝑃𝑐𝑎𝑝,2  as the differential pressure threshold ∆𝑃𝑡ℎ𝑟 for condensate flow 

from Tube1 to Tube2  

 
∆𝑃𝑡ℎ𝑟 =  𝑃𝑐𝑎𝑝,1 −  𝑃𝑐𝑎𝑝,2 = 𝜎𝑔𝑙  𝑐𝑜𝑠𝜃 (

1

 𝑅1
−
1

 𝑅2
) 

(3.35) 

From equation (3.35), maximum and minimum ∆𝑃𝑡ℎ𝑟 at pore radius 𝑅 are defined by 

capillary pressure difference between a pore radius 𝑅 and highest pore radius connected 

tube, and lowest pore radius connected tube. Figure 3.20 illustrates the evaluation of 

maximum and minimum ∆𝑃𝑡ℎ𝑟 for pore radius range between 3 and 50nm at 500 and 3600 

psi. Minimum and maximum ∆𝑃𝑡ℎ𝑟 were evaluated at between two tubes of  𝑅1 = 50nm and 

 𝑅2 =  𝑅1 + 1𝑛𝑚 respectively. Results are presented at low and high reservoir pressure 

values of 500 and 3600 psi to emphasise low and high IFT effect and to cover pressure range 

from reservoir to near well bore area.  
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In pore radius range less than 20nm where condensate is expected to build up, minimum 

∆𝑃𝑡ℎ𝑟 is more than 8 psi for reservoir pressure 500psi and more than 0.1 psi for reservoir 

pressure 3600psi.  

For the pore network defined in Section 3.6.2 the minimum ∆𝑃𝑡ℎ𝑟 is calculated numerically 

for a range of reservoir pressures. For each nanotube with condensate saturation, ∆𝑃𝑡ℎ𝑟 is 

evaluated for a potential condensate flow to the connected nanotube with the lowest radius. 

Figure 3.21 and 3.19 shows minimum ∆𝑃𝑡ℎ𝑟 of pore network at 60, 500, 3000, 4200 psi. At 

4200psi with IFT of 0.18 mN/m minimum ∆𝑃𝑡ℎ𝑟 average is around 0.1 psi and around 100 

psi at 500 psi where IFT is 11.73 mN/m.  

In order to compare ∆𝑃𝑡ℎ𝑟  to pressure values applied on shale matrix in the field. A 

maximum reservoir pressure of 8000 psi, a minimum bottomhole pressure of 500 psi and a 

minimum shale matrix dimension of 10×10×10 ft are considered and that results to a 

maximum differential drainage pressure  ∆𝑃 of 3e-3 psi applied on the shale matrix block. 

Comparing this levels of minimum ∆𝑃𝑡ℎ𝑟 to the maximum differential drainage pressure in 

the field of 3e-3 psi (see Figure 3.20 and Figure 3.21), one can conclude that all condensate 

that forms in the matrix remains immobile (trapped).  In near wellbore area, where 

reservoir pressure is around 500 psi, condensate trapping is more pronounced, as 

illustrated in Figure 3.21 making condensate banking effect severer around wellbore than 

deep reservoir.  

 

Figure 3.20: Minimum and maximum differential pressure threshold ∆𝑷𝒕𝒉𝒓 of condensate 

fluid for pore radius range from 3 to 50nm at 500 psi and 3600 psi. Minimum and maximum 

∆𝑷𝒕𝒉𝒓 were evaluated at between two tube of R at 50nm and R at (R+1nm) respectively. 
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Figure 3.21: Minimum ∆𝑷𝒕𝒉𝒓 vs. pore radius of pore network at 60, 500, 3000, 4200 psi.  

3.7.4 Effect of Condensate Saturation on Gas Apparent Permeability 

Using the pore network model, three numerical experiments were carried out on:  

a) Darcy flow: where 𝜉𝑖𝑗  = 1, 

b) Knudsen flow with condensate blockage effect using 𝑅𝑔,𝑚𝑖𝑛 defined by equation (3.24). 

c) Knudsen flow for dry gas:  where gas permeability is calculated without condensate 

blockage i.e. 𝑅𝑔,𝑚𝑖𝑛 = 𝑅𝑚𝑖𝑛. In this exponent, the same PVT data of CVD is used for 

viscosity, Z-factor and gas molecular weight. 

The results of Darcy relative permeabilities of gas and condensate are presented in Figure 

3.22. Despite the simplicity of the pore network, the gas relative permeability results are 

similar to results reported by Cluff and Byrnes (2010) in tight sands.  The gas permeability 

declines rapidly as the condensate saturation increases to reach a very low critical 

saturation of 28% while the condensate remains immobile to very low relative permeability 

in this range. This result indicates the severity of condensate banking effect on shale gas 

well derivability. Nevertheless, it is expected that the relative permeability of condensate in 

shale matrix is much lower than presented in Figure 3.22 due to the upscaling problem. At 

macroscale level the condensate phase would have more discontinuity than in microscale 

level (in micrometre range, as presented in this work) leading to a higher critical saturation 

and a more concave relative permeability presented by the dashed line in Figure 3.22.   
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Figure 3.22: Gas Darcy relative permeability and condensate relative permeability results of 

pore network simulation. 

Figure 3.23 represents the permeability results for the three experiments carried out in this 

work using an 8×8×8 network with ln𝒩(10, 0.6) pore size distribution. Darcy permeability 

graph reflects the effect of condensate blockage on gas flow below dew point pressure. The 

permeability reduction is caused by the loss of permeability of tubes with radius less 

than 𝑅𝑔,𝑚𝑖𝑛. Knudsen permeability graph shows a similar decline below dew point but an 

enhanced permeability with decreasing pressure where Knudsen flow is more important. 

In addition, Knudsen dry gas permeability (without condensate blockage is plotted against 

Knudsen permeability (with condensate blockage). 

Figure 3.24 gives the correction factor 𝜉𝐺𝐶 under condensate blockage effect as compared to 

dry gas correction factor 𝜉𝐷𝐺  . The difference between 𝜉𝐺𝐶 and 𝜉𝐷𝐺  is caused by the loss of 

the contribution of the pores with radius below  𝑅𝑔,𝑚𝑖𝑛 to Knudsen flow under condensate 

blockage.  

Figure 3.25 illustrates  𝜉𝑟𝑒𝑙  as function of pressure. As pressure drops below dew point, 𝜉𝑟𝑒𝑙  

starts to decrease reflecting the reduction of Knudsen flow in pores with condensate 

blockage.  The lower pore radii (blocked with condensate) have an increasing contribution 

to the total Knudsen flow with decreasing pressure which explains the decline of  𝜉𝑟𝑒𝑙 .  In 

this example 𝜉𝑟𝑒𝑙  reaches lower value of 0.87 at 14.7 psi. The effect of condensate blockage 
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should be considered in correction factor calculation so that Knudsen gas permeability in 

shale matrix is not overestimated.  

 

Figure 3.23: Pore network permeabilities Darcy flow and Knudsen flow and Knudsen dry gas 

flow as function of pressure for 𝐥𝐧𝓝(𝟏𝟎 , 𝟎. 𝟔) 

 

Figure 3.24: Correction factors 𝝃𝑮𝑪 and 𝝃𝑫𝑮 
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Figure 3.25: Relative Correction Factor ξrel  for pore size distribution of 𝐥𝐧𝓝(𝟏𝟎 , 𝟎. 𝟔) 

In order to investigate the relationship between condensate saturation, pressure and 𝜉𝑟𝑒𝑙 , 

the simulation was carried out at different pressure values: 14.7, 100, 500, 1000, 2000 psi. 

At each reservoir pressure value, the condensate saturation extended (beyond the unique 

value of CVD) to range from 0 to maximum drop out of 22% and results are given in Figure 

3.26. This figure shows that at the same pressure 𝜉𝑟𝑒𝑙  decreases with increasing condensate 

saturation which can be explained by the blockage of the lower part of pores range by the 

condensate hence reducing the effect of Knudsen flow. In addition, this relationship 

between condensate saturation and 𝜉𝑟𝑒𝑙  is affected by pressure. The lower the pressure the 

higher the effect of condensate saturation on  𝜉𝑟𝑒𝑙 .  

In order to evaluate the contribution of the different pore size ranges and how it affects 𝜉𝑟𝑒𝑙 , 

two parameters are defined: the Class Contribution (CC) 𝐶𝑚
𝛿  and Relative Change of 

Contribution (RCC) ∆𝐶𝑚. The pore size distribution is divided into 100 pore size classes and 

contribution of each class (m) is expressed as a function of pressure; 𝐶𝑚
𝛿  in the dry gas flow 

was calculated for Darcy flow and Knudsen flow using Equation (3.36). 

 

𝐶𝑚
𝛿 (𝑃) =

∑ [𝑞𝑖𝑗
𝑔
]𝑖,𝑗

 
∑ ∑ 𝑎𝑏𝑠[𝑞𝑖𝑗

𝑔
]𝑁

𝑗=1
𝑁
𝑗=1

2

 , 𝑡𝑢𝑏𝑒 (𝑖, 𝑗) ∈  𝐶𝑚 ,𝑚 = 1. . 𝑁𝑐𝑙𝑎𝑠𝑠 

(3.36) 



Chapter 3 : Gas-Condensate Flow Modelling in Shale Matrix 

Ismail Labed 60 Robert Gordon University 

where 𝛿= D or Kn, refers to the flow type Darcy or Knudsen flow respectively and  𝑁𝑐𝑙𝑎𝑠𝑠 is 

the classes number. The relative change of Class Contribution ∆𝐶𝑚was calculated using 

Equation (3.37). 

 
∆𝐶𝑚(𝑃) =

𝐶𝑚
𝐾𝑛(𝑃) − 𝐶𝑚

𝐷(𝑃)

 𝐶𝑚
𝐷(𝑃)

 ,𝑚 = 1. . 𝑁𝑐𝑙𝑎𝑠𝑠 
(3.37) 

∆𝐶𝑚 is a measure of the contribution variation of each pore size class with pressure.  

Figure 3.27a shows the contribution of pore radius ranges to total gas flow rate for Darcy 

dry gas simulation whilst Figure 3.27b shows the relative change of this contribution  for 

different pressure values (14.7 100, 500, 1000 and 2200 psi). These figures depict the 

increase of the contribution of the lower range of pore size. 

The contribution pattern shifts with pressure i.e. at low pressure (250, 60 and 14.7 psi) 

lower pore sizes (under 12nm) contribute more than at high pressure (1000 and 2000 psi). 

When these pores are blocked, the correction factor 𝜉𝐺𝐶  decreases as a function of 

decreasing pressure, reflecting the loss of Knudsen flow contribution of these pores. 

As a result, the Knudsen flow under condensate banking effect should be expressed as a 

function of  both condensate saturation and reservoir pressure using the relative correction 

factor as  

 𝜉𝑟𝑒𝑙 = 𝑓(𝑆𝑐 , 𝑃) (3.38) 

Equation (3.38) reflects the effect of pore size distribution on Knudsen flow under 

condensate banking effect. The saturation controls the range of pore sizes accessible by gas 

flow and pressure affects the contribution of these pore sizes to the total Knudsen flow.  

Using the results presented in Figure 3.26, the following formulation of 𝜉𝑟𝑒𝑙  was derived  

 𝜉𝑟𝑒𝑙 = 1 −
𝑎

𝑃𝑏
 (𝑆𝑐)

𝑛 (3.39) 

where 𝑛, 𝑎  and 𝑏 are parameters of the pore distribution. For data used in this work 

estimated parameters value are shown in Table 3.4.  Figure 3.28 shows 𝜉𝑟𝑒𝑙  values from 

correlation in Equation (3.39) plotted against values obtained from simulations with R2 

=92%.  
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Figure 3.26: 𝝃𝒓𝒆𝒍  vs. condensate saturation for different reservoir pressures. 

 

Figure 3.27: Contribution of pore radius ranges to total gas flow rate for Knudsen dry gas:  a) 

the pore size class contribution to Darcy dry gas flow, 𝑪𝒎
𝑫  and b) the relative change, ∆𝑪𝒎 of 

each class of pore size under Knudsen flow for different pressure values.  

 

Table 3.4: Estimated values of 𝝃𝒓𝒆𝒍 parameters for data used in this work 

Parameter Value 

𝑛 0.927 

𝑎 2.371 
𝑏 0.193 
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Figure 3.28: Plot of 𝝃𝒓𝒆𝒍 values from simulation vs. correlation. 

3.7.5 Effect of Pore size Distribution on Relative Correction Factor 𝝃𝒓𝒆𝒍 

In order to evaluate the effect of pore size distribution, the previous experiments were 

performed for varying pore radius median and standard deviation. 8 pore networks with 

mean pore radius varying from 5 to 30 nm and constant standard deviation 0.6 were 

generated randomly to evaluate the effect of the median value. Figure 3.29 shows the results 

of 𝜉𝑟𝑒𝑙 . In this figure, the effect of condensate blockage decreases with increasing mean pore 

radius. At higher median, lower blocked pore sizes have very low contribution to total 

Knudsen flow.  As the median decreases, the pore size distribution shifts to upper levels 

which reduces the effect of Knudsen flow in the lower part of radii of the distribution.  

 

Figure 3.29: Sensitivity of Relative Correction Factor ξrel  to median of pore size distribution. 
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Other pore networks with standard deviation varying from 0.1 to 0.8 and constant median 

pore radius of 10nm were generated randomly to evaluate the effect of the standard 

deviation. Figure 3.30 shows the 𝜉𝑟𝑒𝑙  results.  

The standard deviation reflects the degree of the dispersion of pore radii. At small standard 

deviation, pore radii are concentrated around the median value which leads to an 

insignificant variation of pore radius range filled by condensate and thus a lower effect on 

𝜉𝑟𝑒𝑙 . Inversely, at high standard deviation values, the pore size distribution is more 

dispersed leading to condensate saturation change having an effect on the pore radius range 

available to free gas flow. Thus, it generates a reduction in 𝜉𝑟𝑒𝑙 . 

These results illustrate the importance of describing the shale matrix as pore size 

distribution rather than single pore radius to be able to estimate the impact of condensate 

accumulation on apparent gas permeability.  

 

Figure 3.30: Sensitivity of Relative Correction Factor ξrel  to standard deviation of pore size 

distribution. 

3.8 Summary 

At nanoscale pores in shale matrix, gas flow deviates from continuum flow to slip flow and 

transition flow where Darcy law is replaced by Knudsen enhanced permeability model of 

Beskok, Karniadakis (1999). This deviation from Darcy flow is highly dependent on pore size 

and pore pressure.  
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A more accurate modelling is needed for gas condensate two-phase flow in shale matrix at 

pore level which takes into consideration pore distribution in pore network and the effect 

of condensate accumulation on Knudsen flow. Single pore size cannot be used to describe 

Knudsen flow in shale matrix when condensate forms due to the change of the pore size 

range available for gas flow as function of condensate saturation.      

The multi-scale flow model proposed by Beskok and Karniadakis (1999) is used to evaluate 

Knudsen flow in shale pore level. 3D pore network modelling was used to evaluate gas flow 

in shale matrix under condensate banking effect using a log-normal pore size distribution. 

For dry gas systems, the simplification of the pore network to a single pore size using the 

effective pore radius proposed by Michel et al. (2011) 𝑅𝑒𝑓𝑓 = 𝑣 exp(3𝑠
2). However, for gas 

condensate systems, the evaluation of Knudsen flow using pore network models is essential 

in order to implement: 

a) the changing flow contribution of pore sizes as a function of pressure: at reservoir 

pressure under 1000 psi lower pore sizes contribute to total gas flow more than at 

pressure above 1000 psi.    

b) the condensate banking effect by eliminating the contribution of lower pore sizes 

blocked by condensate and its effect on the gas flow in connected higher pore sizes.  

All the condensate generated in shale matrix remained trapped due to high capillary 

pressure. Consequently, only gas can flow in shale matrix below the dew point pressure.  

A new parameters was introduced in this study, “Relative Correction Factor” 𝜉𝑟𝑒𝑙  defined as 

the ratio of 𝜉𝐺𝐶 to 𝜉𝐷𝐺. It is a measure of the effect of condensate blockage on Knudsen flow 

and it can be used to adjust correction factor from dry gas flow to gas condensate flow.  

Results show that condensate blockage affects the enhancement permeability factor by 

blocking small pores under capillary pressure effect. A significant reduction of Knudsen 

flow effect is observed at high condensate saturation and low reservoir pressure. 

The effect of condensate blockage is highly dependent on the pore size distribution. High 

values of standard deviation have relatively high condensate blockage effect on Knudsen 

flow due to the dispersion of pore size distribution.   

Assuming a constant mean effective pore size with pressure in gas apparent permeability 

calculation in shale matrix with condensate banking results in an overestimation of 

Knudsen flow contribution in well productivity.  
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Introducing pore network modelling and dynamic minimum gas pore radius 𝑅𝑔,𝑚𝑖𝑛  as 

function of pressure is crucial in order to estimate accurately the gas apparent permeability 

under condensate blockage in shale matrix.   
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4.1 Introduction 

Understanding phase behaviour of gas-condensate systems is crucial considering that 

condensate saturation controls the gas relative permeability hence the well productivity 

and the fraction of heavy components recovery at surface. As discussed in Chapter 3, gas 

relative permeability is highly sensitive to condensate saturation under permeability jail 

effect. Hence, even small variation of condensate saturation has an important impact on well 

dynamic calculations.    

Under high capillary pressure in shale matrix nanopores, the pressure difference between 

gas and condensate cannot be negligible in VLE (Vapour Liquid Equilibrium) calculation. 

Furthermore, as the capillary forces are highly dependent on pore size, describing shale 

porous medium with a pore size distribution is essential to evaluate accurately the phase 

behaviour deviation. Individual pores with different radii exhibit different phase behaviour 

and contribute to the macro phase behaviour according to their volumes. However, VLE 

calculation for shale reservoirs have been studied using the average pore size by many 

researchers (Brusilovsky 1992, Espósito, Tavares and Castier 2005, Firincioglu, Ozkan and 

Ozgen 2012, Pang, et al. 2013, Nojabaei, Johns and Chu 2013, Jin and Firoozabadi 2015).  

The research question that this Chapter addresses is the effect of pore size distribution on 

the phase behaviour deviation of gas-condensate fluids in shale matrix. The VLE (Vapour-

Liquid Equilibrium) calculation is modelled using PREOS combined with a log normal pores 

size distribution in order to build a model capable of generating phase behaviour of gas-

condensate in shale matrix. The deviation of condensate saturation from bulk phase 

behaviour to capillary phase behaviour is investigated for lean and rich condensate fluids.  

The effect of capillary pressure coupled with pore size distribution on condensate 

saturation vs pressure is also presented. 

4.2  Capillary Pressure Effect on Phase Behaviour 

In conventional reservoirs, the effect of capillary pressure on the phase behaviour is 

negligible due to the low vapour-liquid pressure difference. The liquid pressure in one 
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capillary tube is defined by Young–Laplace equation in Equation (3.13). In shale reservoirs, 

the capillary pressure, 𝑃𝑐  is significant due to the very small pore radii, 𝑅 which cannot be 

neglected in VLE calculations.   

Sigmund et al. (1973) investigated the effect of porous media on phase behaviour and 

concluded that only at high surface curvature the effect was significant. Recently, Chen et al. 

(2012) illustrated in a simple experimental study the capillary condensation in shale plugs 

compared to sandstone plugs showing the effect of capillary pressure on gas phase 

behaviour.  

Brusilovsky (1992) proposed a modified cubic Equation of State (EOS) that is able to 

calculate the VLE for multicomponent fluids at given defined surface curvature. They 

concluded that dew point at high capillary pressure increases compared with the 

conventional PVT cell dew point. Firincioglu, Ozkan and Ozgen (2012) in their modified 

Peng-Robinson EOS added surface forces to capillary forces and conducted flash calculation. 

They showed that surface forces are only significant compared to capillary forces for pore 

diameter less than 1 nm.   

To the best of the author’s knowledge, all work done to date only studied the effect of 

capillary pressure for one equivalent pore radius without taking into consideration the pore 

size distribution effect on the phase behaviour deviation. Pores sizes with different 

diameters exhibit different phase behaviour and contribute to the macro-scale phase 

behaviour proportional to their volumes. In addition, the interaction between the pores 

should be considered as the liquid formed in bigger pore sizes is adsorbed to smaller pore 

sizes under capillary pressure effect. The use of one pore size (mean pore size for instance) 

could lead to an underestimation of the capillary effect in shale matrix.  

4.3      Methodology of VLE Calculation 

4.3.1 Criteria for Equilibrium  

The chemical equilibrium of multicomponent systems is expressed by the equality of 

fugacity of each component in vapour and liquid phases. For gas condensate system under 

capillary effect, this condition is expressed as   

 𝑓
𝑖𝑐
= 𝑓

𝑖𝑔
   i = 1. . 𝑛𝑐 (4.1) 

Where 𝑓
𝑖𝑐

 and 𝑓
𝑖𝑔

  are fugacities of component 𝑖 in condensate and gas respectively. By 

replacing the fugacity by its definition, equation (4.1) is rewritten as   
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 𝑥𝑖 𝜙𝑖𝑐𝑃𝑐 = 𝑦𝑖 𝜙𝑖𝑔𝑃𝑔   i = 1. . 𝑛𝑐 (4.2) 

Where 𝜙
𝑖𝑐
 and 𝜙

𝑖𝑣
 are fugacity coefficients for condensate and gas respectively calculated 

by EOS (Equation of State).  

The equilibrium ratio is extended from conventional equation to include 𝑃𝑔  and 𝑃𝑐  

 
𝐾𝑖 =

𝑦
𝑖 

𝑥𝑖 
 =

𝜙
𝑖𝑐
𝑃𝑐

𝜙
𝑖𝑔
𝑃𝑔
  i = 1. . 𝑛𝑐 

(4.3) 

In contrast, 𝐾𝑖 =
𝜙𝑖𝑐

𝜙𝑖𝑔
  usually used in conventional calculation.  

4.3.2 Equation of State 

Equation of state (EOS) is a thermodynamic equation which describes fluid phases (gas, 

liquid and solid) properties: pressure, temperature, volumes and internal interaction. The 

equation of state was pioneered by Van der Waals in 1873 by predicting the coexistence of 

vapour-liquid (see Table 4.1).  

Redlich and Kwong (1949) developed a modified Van der Waals’ EOS to improve its 

accuracy by proposing a temperature dependency for the attractive parameter a. Later, 

Soave (1972) and Peng-Robinson (1976) modified Redlich-Kwong EOS and proposed a 

more general formulation for the attractive parameter in order to improve EOS prediction 

of vapour pressure and equilibrium ratio. Since then numerous modifications of EOS have 

been proposed on empirical and theoretical basis (e.g. Martin (1979), Schmidt and Wenzel 

(1980) and Patel and Teja  (1982)). Peng-Robinson is considered the most successful 

equation of states and it is routinely used in hydrocarbon PVT calculations (Danesh 1998). 

Table 4.1 provides examples of various versions of equations of state.  

Table 4.1: Cubic Equations of State (P is pressure, T is temperature, R is ideal gas constant, V 

is molar volume, a is a measure of the attractive forces between the molecules and b is 

related to the size of the molecules).  
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Originally, EOS was developed for pure component systems (i.e. fluids of single molecular) 

but then extended to multi-components by using mixing rules to determine the interaction 

forces in the mixture. Simple random mixture rules are well accepted for hydrocarbon fluids 

modelling where components are assumed randomly dispersed in the mixture (Danesh 

1998). 

In this work Peng-Robinson equation of state with random mixing rules was used to relate 

pressure, temperature, volume and composition for both gas and condensate phases, 

necessary for fugacity coefficient calculation.  

4.3.3 IFT Correlation 

The interfacial tension (IFT) for a gas-condensate fluid with 𝑛𝑐 components is calculated 

using Parachor method developed by Reno and Katz (1943) as follows: 

 𝐼𝐹𝑇 =  [∑𝑃𝑖(𝑥𝑖𝜌𝑐 − 𝑦𝑖𝜌𝑔)

𝑛𝑐

𝑖=1

]

n

 (4.4) 

where 𝑃𝑖 is the Parachor of component 𝑖, 𝑥𝑖 and 𝑦
𝑖
are the mole fractions of component 𝑖 in 

the liquid and gas phase and n is the correlation exponent. 𝜌𝑐 and 𝜌𝑔 are condensate and 

gas molar densities, respectively, calculated from equation (4.5). 

 
𝜌𝑐,𝑔 = 

𝑃𝑐,𝑔

𝑍𝑐,𝑔𝑅𝑔 𝑇
 

(4.5) 

where 𝑃𝑐,𝑔 is condensate or gas phase pressure (MPa), 𝑍𝑐,𝑔 is condensate or gas phase Z-

factor,  

 𝑅𝑔 is the gas constant and 𝑇 is the reservoir temperature (K).  Equation (4.4) is called the 

Parachor method and it is commonly used in hydrocarbon PVT calculation. Reno and Katz 

(1943) proposed a value 4 for the exponent n. The Parachor is a constant of pure 

components and it’s a measure of the molecular volume and chemical composition 

(Schechter and Guo 1998). Reno and Katz’s (1943) correlation Hough and Stegemeier 

(1961) and Chien (1984) proposed exponent values of 3.67 and 3.91, respectively instead 

of 4. Firoozabadi and Katz (1988) compared calculated IFT using different exponents with 

experimental data and concluded that a quadratic exponent provides the best IFT 

estimation. The effect of the exponent variation according to different correlations has a 

marginal effect on final results.   
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4.4 Phase Behaviour Modelling in Single Pore 

Constant Volume Depletion (CVD) is a routine PVT experiment carried out in laboratory and 

its results are used to analyse production from gas-condensate reservoirs under natural 

depletion. Initially, a streamline gas sample is collected in a cell at pressure above dew point. 

The cell volume is expanded until reaching the dew point and the reference volume is 

recorded. The volume is then increased regularly to reach pressure values with constant 

incremental change of 50 to 150 psi. At each pressure step, the excess of gas above the 

reference volume is removed and condensate and gas saturation are recorded. Figure 4.1 

illustrates the schematic of CVD experiment for gas-condensate fluid with 3000 psi dew 

point and 150 psi pressure step.  

 

Figure 4.1: Schematic of CVD experiment with dew point at 3000 psi and pressure step of 

150 psi 

Obviously, CVD experiments are carried in laboratory (bulk condition) at null capillary 

pressure which cannot be representative of phase behaviour in shale matrix under capillary 

pressure effect.  As mentioned in Chapter 3, CVD experiment reflects the gas-condensate 

flow in shale matrix better than CCE (Constant Composition Depletion) where condensate 

remains almost immobile and only free gas flows.  

4.4.1 Dew Point Estimation 

In order to be able to combine IFT with equation of state, an algorithm was developed in 

Matlab which includes two convergence criteria for both fugacity and IFT  The Matlab code 

of this algorithm is provided in an attached CD-ROM.  Initially, the bulk dew point 𝑃𝑑
𝑏𝑢𝑙𝑘 is 
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estimated using bulk calculation without capillary pressure (𝑃𝑙 = 𝑃𝑔). For dew point 

calculation under capillary pressure effect, the algorithm starts with the bulk dew point 

𝑃𝑑
𝑏𝑢𝑙𝑘 as an initial guess then the IFT at this pressure is calculated using the bulk gas and 

condensate compositions as initial values. The use of the bulk dew point 𝑃𝑑
𝑏𝑢𝑙𝑘 as an initial 

guess is justified in order accelerate the algorithm rather than selecting a random initial 

guess. An EOS calculation is carried out resulting to fugacity values for both gas and 

condensate and their equilibrium is verified against a tolerance value 𝜀 𝑓 using Condition 

(4.6) 

  ∑(1 − 
𝑓
𝑖𝑔

𝑓
𝑖𝑐

)

2

≤ 𝜀 𝑓

𝑛𝑐

𝑖=1

 (4.6) 

This process is repeated until the equilibrium condition (4.6) is satisfied. If it is not the case, 

a new dew point is calculated as 

 𝑃𝑑,𝑛𝑒𝑤  =  𝑃𝑑,𝑜𝑙𝑑  ∑
𝑦𝑖

𝐾𝑖

𝑛𝑐

𝑖=1

 (4.7) 

where 𝑦𝑖 is gas molar fraction and 𝐾𝑖 the equilibrium ratio of component i. 

When condition (4.6) is satisfied a new 𝜎 𝑛𝑒𝑤 is calculated using equations (4.4) and (4.5). 

The new 𝜎 𝑛𝑒𝑤 is checked against the previous 𝜎 𝑜𝑙𝑑 (which was to calculate the input 

capillary pressure) to evaluate the IFT convergence by a tolerance factor 𝜀 𝜎 

 |𝜎𝑛𝑒𝑤 − 𝜎𝑜𝑙𝑑|  ≤  𝜀 𝜎   (4.8) 

 Figure 4.2 illustrates the flow diagram for the described dew point pressure calculation.  

Table 4.2 lists the fluid composition, temperature and wettability used in the dew point 

calculation. Figure 4.3 gives the dew point calculation results for five pore radii of 3, 5, 10, 

50 and 100 nm. In Figure 4.3a, the dew point lines for each pore radius is plotted with the 

bulk dew point line and it shows that the dew point in nanopores is higher than bulk dew 

point. Figure 4.3b gives the deviation of dew point from the bulk conditions.  The deviation 

is inversely proportional to pore radius; e.g. 3nm pore has a positive deviation up to 300 psi 

while 100nm pore has a deviation less than 20 psi. Moreover, the dew point deviation at the 

same pore radius decreases significantly towards the critical point where vapour and liquid 

share similar properties resulting in a null IFT (see Figure 4.3c).  
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Table 4.2: Fluid and tube properties used in calculation.    
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 Figure 4.2: Flow diagram for single tube CVD simulation 
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Figure 4.3: Dew point deviation in single tubes of 3, 5 and 10 nm: a) capillary dew point vs. 

bulk dew point, b) dew point deviation as function of temperature and c) IFT as function of 

temperature.  
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4.4.2 CVD Condensate Saturation 

After capillary dew point calculation, a second algorithm is needed to calculate the gas-

condensate equilibrium in the two-phase regions under the dew point and then to estimate 

the condensate saturation and other properties such as Z-factor, density and IFT. At each 

pressure step, the total system molar composition is known as 𝑧𝑖 but the molar composition 

of gas and condensate phases are unknown which are controlled by fugacity equation and 

capillary pressure.    

Very similar to the dew point algorithm, condensate saturation is calculated using two 

layers, one for fugacity and another for IFT.  The only difference resides at the end of fugacity 

loop where a new equilibrium ratio 𝐾𝑖,𝑛𝑒𝑤 for each component is calculated as  

 𝐾𝑖,𝑛𝑒𝑤  =  𝐾𝑖,𝑜𝑙𝑑  
𝑓𝑖𝑐
𝑓𝑖𝑔

 (4.9) 

The dew point is used as a volume reference, i.e. the algorithm simulates decrease of 

pressure from dew point to next lower pressure step by cell volume expansion and the 

excessive gas volume above the initial volume at the dew point pressure is evacuated. 

Therefore, the total molar composition is updated by removing the evacuated gas moles 

from the cell. The CVD experiment describes more accurately (than CCE) the multiphase 

flow in shale matrix where only gas can flow while condensate remains almost immobile. 

Figure 4.4 illustrates the flow diagram for the CVD calculations. 

Figure 4.5 represents the result of condensate relative volume of capillary CVD numerical 

simulation for 3, 5, 10, 20 and 50 nm radii plotted against bulk CVD. It shows that the lower 

the tube radius the higher the phase behaviour deviation with maximum condensate 

relative volume deviation of 17% for 3nm radius tube.  
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 Figure 4.4: Flow diagram for single tube CVD simulation 
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Figure 4.5: CVD condensate relative volume for single tube with different radii: 3, 5, 10, 20, 

30 nm plotted against bulk CVD.  

4.5 Phase Behaviour Modelling in Pore Network 

4.5.1 CVD Numerical Simulation 

In shale matrix which is described usually by pore size distribution, assuming one pore size 

to carry out phase behaviour calculation will be misleading because of the difference of 

phase behaviour of each pore size and the volumetric contribution of each pore size range.  

Figure 4.6 illustrates an example of incremental pore space by pore radius range for a pore 

size distribution of log-normal (10nm, 0.6) with Rmin =3nm and Rmax =200nm plotted with 

the PDF. Although the pore deviation increases by decreasing pore radius, the contribution 

of small pore radius range is insignificant compared to higher pore range where the phase 

behaviour deviation is less significant. Consequently, the phase behaviour calculation under 

capillary pressure effect must be carried out for the pore distribution range rather than pore 

radius average or median.  

In this work, two models are presented to evaluate the deviation of phase behaviour from 

bulk to under capillary pressure effect for gas condensate fluids in shale matrix: Discretised 

Pore Space Model (DPSM) and Continuous Pore Space Model (CPSM).  
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Figure 4.6: PDF vs. incremental pore space of log-normal(10, 0.6) 

4.5.2 Discretised Pore Space Model (DPSM) 

The pore space is discretised from continuous log-normal distribution to N tubes and the 

condensate is assumed to start to build up simultaneously in each tube separately without 

interconnection.  In order to upscale the condensate relative volume (and other fluid 

properties) from pore scale to macro scale, the individual tube pore volume is used as 

weight for condensate relative volume averaging as shown in Equation (4.10) 

 
𝑉𝑟𝑒𝑙 = ∑𝑉𝑟𝑒𝑙

𝑖  𝑉𝑝𝑜𝑟𝑒
𝑖

𝑁

𝑖=1

 
(4.10) 

where 𝑉𝑟𝑒𝑙 is macro-scale (pore media) condensate relative volume, 𝑉𝑟𝑒𝑙
𝑖  is the tube 𝑖  

condensate relative volume and 𝑉𝑝𝑜𝑟𝑒
𝑖  is the tube 𝑖  pore space.  

 

Figure 4.7: Schematic diagram of Discretised Pore Space Model representing porous media s 

bundle of N tubes.  
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4.5.3 Connected Pore Space Model (CPSM) 

In the continuous pore space model, the interaction between tubes is considered. The 

condensate starts to generate in the smallest pore size under the effect of high capillary 

pressure (see Figure 4.7). As the condensate saturation increases with decreasing pressure 

below dew point, the condensate fills next pore size range.  

 

Figure 4.8: Schematic diagram of Connected Pore Space Model representing porous media as 

connected nanotubes. Y-axis represents pore radius and X-axis represents the incremental 

pore space fraction of pore radius.  

Figure 4.9 and Figure 4.10 show the flow diagram of DPSM and CPSM methods respectively. 
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Figure 4.9: Flow diagram of CVD 

experiment simulation using DPSM.  

Figure 4.10: Flow diagram of CVD experiment 

simulation using CPSM. 
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4.5.4 CVD Numerical Simulation in Pore Network 

A number of CVD numerical simulation was carried out for lean and rich gas condensate 

fluids and a pore distribution of ln𝒩(10 , 0.6) with minimum pore radius of 1nm and 

maximum pore radius of 300nm. Table 4.3 summarises the input data for the numerical 

simulation. All the codes necessary to perform the PVT calculations were written in Matlab. 

These codes are provided in attached CD-ROM. 

Table 4.3: Fluids and pore size distribution properties used in CVD numerical simulation 

 

4.5.5 Bulk vs. Capillary Phase Behaviour  

Figure 4.11 represents condensate saturation of CVD simulation carried out for a lean 

condensate fluid shale matrix with a pore distribution described in Table 4.3.  The CVD 

simulation were completed for bulk condition (no capillary effect), Discretised Pore Space 

Model (DPSM) and Continuous Pore Space Model (CPSM). Figure 4.11(a) shows the higher 

condensate saturations resulted from capillary models (DPSM and CPSM) compared to bulk 

conditions. Higher condensate saturation in the matrix leads to higher condensate banking 

effect on well performance. 

The main disadvantage of this approach is that EOS cannot be applied as pore diameter and 

pressure combination resulting in negative liquid pressure (see Figure 4.11a). Comparing 

the two capillary models, CPSM gives higher condensate saturations and higher dew point 

pressure. Figure 4.11b depicts a condensate saturation deviation up to 60% of CPSM around 

near to the dew point pressure while for DPSM the deviation is about 25%. Between 2000 

psi and 500 psi, CPSM deviation is around 10% and twice the DPSM deviation.  
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 The CPSM reflects the effect of the condensate build up gradually in the small pores where 

the capillary pressure effect is more pronounced resulting in higher dew point and 

condensate saturation than DPSM where condensate is assumed to start forming in all pores 

sizes simultaneously.  

In DPSM, although phase behaviour is more important in small pores (less than 20 nm) their 

contribution to the overall phase behaviour deviation is not significant due to the small 

volume contribution. In small pores the fluid condenses at higher pressure than bulk dew 

point and the liquid dropout in the two phase regions is higher. The deviation is more 

pronounced at the dew point as the fluid condenses at higher pressure and in the two phase 

region. For this example, the dropout volume deviation can reach up to 10% for 20nm. 

Figure 4.12 shows the effect of capillary pressure on the heavy components fraction (C4, C7, 

C10 and C14) of produced gas. The produced gas is referred to as the gas removed at each 

CVD numerical simulation step. The capillary model, CPSM, results in lower fraction of 

heavy component compared to the bulk model. Under capillary pressure with higher 

condensate saturation, the generated condensate has higher heavy component fraction than 

in bulk model. Not considering the capillary trapping of the heavy components fraction in 

the reservoir would lead to an overestimation of the predicted commercial value (i.e. 

calorific value) of the surface produced gas.    

 

Figure 4.11: Condensate saturation of pore size distribution vs. bulk condensate saturation 

of CVD experiment simulation 
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Figure 4.12 Effect of capillary pressure on heavy components fraction of produced gas: CPSM 

models show a lower fraction of heavy component than bulk model leading to a lower 

surface commercial value.  

4.5.6 Rich vs. Lean Condensate 

Figure 4.13 compares the condensate saturation of CVD simulation of lean and rich 

condensate fluids in the same pore size distribution given in Table 4.3 using CPSM method. 

The rich condensate fluid exhibits a lower degree of deviation in terms of condensate 

saturation compared to lean condensate fluid. This deviation difference can be explained by 

the different pore sizes where the gas-condensate meniscus occurs. Figure 4.14 shows the 

pore radius of gas-condensate interface meniscus for lean and rich condensates. This Figure 

indicates that pore radius meniscus is higher in rich condensate than lean condensate.  

 

Figure 4.13: Comparison of condensate saturation deviation between lean and rich 

condensate.  
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Figure 4.14: Pore radius of gas condensate interface meniscus at equilibrium for lean and 

rich condensate.  

4.5.7 CPSM vs. 𝑹𝒂𝒗𝒈 Method 

Many authors (Brusilovsky 1992, Espósito, Tavares and Castier 2005, Firincioglu, Ozkan 

and Ozgen 2012, Pang, et al. 2013, Nojabaei, Johns and Chu 2013, Jin and Firoozabadi 2015) 

used single nanotube with an average pore size to study the phase behaviour in shale 

matrix. However, using average pore size can lead to an underestimation of the phase 

behaviour deviation. For example, Figure 4.15 shows the CVD condensate saturation results 

for lean condensate (see Table 4.3) using CPSM method vs. single tube method with  

 𝑅𝑎𝑣𝑔 = 𝑣 𝑒
𝑠2 2⁄ = 11.97 𝑛𝑚 (4.11) 

The average pore radius method gives a lower condensate saturation compared to CPSM 

method due to the pore radius of 11.97 𝑛𝑚 used in calculation which is greater than the 

actual pore radius of gas-condensate interface predicted by CPSM. 
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Figure 4.15: Condensate saturation using CPSM vs. single tube with Ravg.  

4.5.8 Pore Distribution Effect 

Furthermore, the pore size distribution effect is investigated by varying the standard 

deviation s = 0.1, 0.5 and 0.9 for the same pore size distribution and lean condensate data 

in Table 4.3. Results are presented in Figure 4.16.  At low s values, the pore size distribution 

is concentrated around the mean value 𝑣=10nm resulting to high capillary pressure and 

high phase behaviour deviation. At high s values, the pore size is more scattered towards 

bigger pore sizes with low capillary pressure and less deviation.  

 

 

Figure 4.16: Effect of varying standard deviation, s=0.1,0.5 and 0.9 on condensate saturation 

deviation: a) Incremental pore space fraction vs. pore radius of different distributions and  

b) condense saturation of different distribution deviation compared to bulk. 
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4.5.9 Wettability Effect 

Rock wettability to condensate can change significantly from one shale play to another and 

even in the same reservoir. It has a direct effect on capillary pressure as mentioned by 

Young-Laplace Equation (3.13). Figure 4.17 represents the sensibility of CVD condensate 

saturation to rock wettability of condensate for 0.4 to 1 values. As expected, condensate 

saturation under capillary pressure has a high dependency on rock wettability. Hence, 

wettability measurement and averaging wettability heterogeneity is important for an 

accurate phase behaviour modelling of gas-condensate fluids in shale matrices.   

 

Figure 4.17: CVD condensate saturation sensitivity to wettability 

4.6 Summary  

Shale reservoir matrix is characterised by very small pore sizes in the range of nanometre 

resulting in very high capillary pressure. Unlike conventional reservoir, capillary pressure 

effect on phase behaviour cannot be negligible; i.e. it must be considered in VLE calculation 

of gas-condensate systems.  

The dew point and condensate saturation were investigated in single tubes using Peng-

Robinson EOS and compositional IFT model. An iterative algorithm is used to solve the 

system for dew point calculation and condensate saturation in CVD simulation. Results 

show the phase behaviour deviation in terms of dew point and CVD condensate saturation 

is more important in small pore radii. The dew point deviation for all pore radii decreases 

as temperature and pressure move towards critical point where IFT is null.   
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As different pore radii exhibit different phase behaviours, the pore size distribution should 

be used in the VLE calculation of shale reservoir matrix. Two models were proposed in this 

work to model the upscaling of CVD simulation from single nanotube to shale matrix. The 

first model, Discretised Pore Space Model (DPSM) represents the matrix porous media as 

bundle of capillary tubes where the condensate forms simultaneously in all tubes. Second 

model, Connected Pore Space Model (CPSM) depicts the interaction between tubes under 

capillary pressure where the condensate starts to build up in small pores and continues to 

fill the larger pore gradually. Both models use an iterative algorithm to converge towards 

system solution.  Results show that CPSM predicts more accurately dew point and CVD 

condensate saturation than DPSM thanks to the connected pores method. 

Beside the higher condensate saturation that affects the well performance, the capillary 

pressure effect contributes to the trapping of the heavy components in the matrix resulting 

in a leaner produced gas at the surface than in conventional reservoirs.   

The phase behaviour deviation is more pronounced in lean condensates than rich 

condensate due to the smaller pore size at which the gas-condensate interface forms 

resulting in a higher capillary pressure.  

Using pore size distribution in phase behaviour calculation under capillary pressure effect 

for shale gas-condensate reservoirs is crucial in order to evaluate accurately reservoir 

saturations and compositional change as a function of pressure. 

Rock wettability is a key parameter in phase behaviour calculation under capillary pressure 

effect as it affects the condensate saturation deviation.    
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5.1 Introduction 

As mentioned in Chapters 3 and 4, the very small pore size in shale matrix impacts the gas-

condensate multiphase flow where Darcy flow deviates to Knudsen flow and phase 

behaviour is affected by high capillary pressure. Even though the hydraulic fracturing 

enhances the conductivity of the reservoir, fluid needs to flow from the matrix to the 

fracture. Consequently, evaluation of matrix flow performance is crucial for well production 

calculations.   

Furthermore, in shale reservoirs, condensate banking effect occurs mainly in the matrix 

rather in the fracture network. In hydraulic fractures, gas and condensate phases can flow 

simultaneously with very low effect on productivity. However, due to the high capillary 

forces in the matrix, condensate banking causes reduction of the gas relative permeability 

hence a decrease of productivity.  

Consequently, investigating condensate banking effect in shale matrix and how it is 

influenced by Knudsen flow and phase behaviour deviation can be considered 

representative of their effect on the well productivity.  

In this chapter, the research objective regarding the evaluation of the effects of condensate 

banking, flow behaviour deviation (Knudsen flow) and phase behaviour deviation under 

capillary pressure on gas-condensate flow from matrix to fracture is addressed. A one block 

matrix flow model is derived in Laplace domain which covers both transient and pseudo-

steady state flows. Results of Knudsen flow and phase behaviour deviation modelling from 

Chapters 3 and 4 were used as input data to the model and their effect on production is 

examined.   

5.2 Previous work 

The shale matrix reservoirs are described as hydraulically/naturally fractured reservoirs 

with dual-porosity system: matrix with low permeability and high storativity and fracture 

network which represents induced hydraulic fracture with or without natural factures. The 

fluid flows from matrix to fracture network and then to the wellbore.  
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Dual porosity well models were first introduced by Barenblatt, Zheltov and Kochina (1960) 

and later extended to well test analysis of slightly compressible fluids by Warren and Root 

(1963). Kazemi (1969) introduced a new model for matrix-fracture transient flow using slab 

matrix model and bounded radial reservoir. El-Banbi and Wattenbarger (1998) presented 

for the first time linear flow in fractured reservoirs using dual porosity for constant 

pressure and constant rate. Many other models (Brown and Ozkan 2009, Bello and 

Wattenbarger 2010, Stalgorova and Mattar 2013) were developed by extending El-Banbi 

and Wattenbarger’s model by considering an additional outer unstimulated region (with 

natural fractures only) in communication with the SRV. 

While dual porosity models for single phase high compressible fluids (gas reservoirs) were 

derived from slightly compressible models using the pseudopressure and pseudotime 

functions, gas-condensate reservoirs cannot be described by analytical dual porosity 

models. The main reason is the pseudopressure function difference between fracture and 

matrix because they have different relative permeability functions.  Where liquid and gas 

relative permeabilities in matrix have a concave shape, in fracture relative permeability is 

more straight line like due to the difference of interfacial tension in matrix and fracture.  

This pseudopressure function discontinuity represents the major difficulty in extending 

dual porosity models from single phase to gas condensate reservoirs.  

Numerical simulation is widely used to evaluate well performance of fractured gas-

condensate reservoirs both conventional and unconventional. However, flow behaviour and 

phase behaviour deviation of gas-condensate fluids are not yet introduced into commercial 

simulators as it is still under research domain. For this research, no open source dual 

porosity compositional numerical simulator was available to incorporate the necessary 

models to describe the phenomena. As a result, in this work the effect of flow behaviour and 

phase behaviour deviation is investigated by using only a single matrix block with constant 

fracture pressure.  

5.3 Mathematical Model 

Conventionally, matrix in naturally fractured reservoirs is modelled as cubes, cylinders, 

slabs, or matchsticks. In shale reservoirs, the hydraulic fractures are usually intuited in 

vertical direction creating vertical matrix geometries that can be idealised as match sticks 

(see Figure 5.1).  As discussed in Chapter 3, the condensate flow in shale matrix is assumed 

to be negligible.  
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Figure 5.1: Modelling matrix as matchstick   

Diffusivity equation for radial flow in matrix writes in field units 

 0.006328

𝑟
 
∂

𝜕𝑟
(
𝜉𝑘𝑟𝑔𝑘∞

𝜇
 (𝜌 𝑟)

∂𝑝

𝜕𝑟
) = 𝜌𝜙𝑐𝑓  

∂𝑝

𝜕𝑡
+ 𝜙 

∂𝜌

𝜕𝑡
 

(5.1) 

where 𝑟 is radial coordinate,  𝜉 is the Knudsen enhancement factor, 𝑘𝑟𝑔 is gas relative 

permeability, 𝑘∞ is intrinsic rock permeability, 𝜇 is gas viscosity, 𝜌 is gas density, 𝑝 is 

pressure, 𝜙 is rock porosity, 𝑐𝑓 is formation compressibility and 𝑡 is time. 

Replacing 𝜌 =
𝑝𝑀

𝑍𝑅𝑇
 and 𝑐𝑔 =

1

𝑝
−
1

𝑍

∂𝑍

𝜕𝑝
 in Equation (5.1) gives 

 0.006328

𝑟
 
∂

𝜕𝑟
(𝑘∞

𝜉𝑝

𝜇𝑍
 
∂𝑝

𝜕𝑟
) = 𝜙𝑐𝑡

𝑝

𝑍
 
∂𝑝

𝜕𝑡
 

(5.2) 

Pseudo-pressure 𝑃 is defined in equation (5.3) 

 
𝑃(𝑝) =  ∫ 2

𝜉𝑘𝑟𝑔𝑝

𝜇𝑍
 𝑑𝑝

𝑝

0

 
(5.3) 

and replaced in equation (5.2) gives  

 ∂2𝑃

𝜕𝑟2
+
1

𝑟

∂𝑃

𝜕𝑟
=  
1

𝜂
 
∂𝑃

∂𝑡
 

(5.4) 

where 𝜂 is the diffusivity constant 

 
𝜂 =  

0.006328 𝜉𝑘∞
𝜙𝜇𝑐𝑡

 
(5.5) 

5.3.1 Matrix Dimensionless Variables  

Matrix dimensionless pressure is defined as  
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𝑃𝐷 =

𝑃𝑖 − 𝑃 

𝑃𝑖 − 𝑃𝑓
 

(5.6) 

Where 𝑃 𝑖 is initial reservoir pseudo-pressure,  𝑃𝑓 is fracture pseudo-pressure  

Matrix dimensionless time is 

 𝑡𝐷 = 
𝜂

 𝑟𝑒
2 
 𝑡 

(5.7) 

Matrix dimensionless coordinate, r-direction 

 𝑟𝐷 =
𝑟

𝑟𝑒
 (5.8) 

where 𝑟 is radial coordinate and  𝑟𝑒 is matrix radius of equivalent matrix cross section 

defined as   

 
𝑟𝑒 = √

𝑥𝑒 𝑦𝑒
𝜋

 
(5.9) 

5.3.2 Equations 

Boundary conditions of matrix block are:  

𝑃(𝑟, 0) = 𝑃𝑖, at t=0, all reservoir at initial pressure  

∂𝑃

𝜕𝑟
|
𝑟=0

= 0 , symmetry of pressure in matrix block  

𝑃(𝑟 = 𝑟𝑒) = 𝑃𝑓 , pressure continuity from matrix to fracture 

In dimensionless variables equation (5.4) becomes  

 ∂2𝑃𝐷
𝜕𝑟𝐷

2
++

1

𝑟𝐷

∂𝑃𝐷
𝜕𝑟𝐷

=  
∂𝑃𝐷
∂𝑡𝐷

 
(5.10) 

And with boundary conditions 

𝑃𝐷(𝑟𝐷, 0) = 0 

𝜕P𝐷

𝜕𝑟𝐷
|
𝑟𝐷=0

= 0   

𝑃𝐷(𝑟𝐷 = 1) = 1  

Equation (5.10) is converted into Laplace domain 

 𝜕2𝑃𝐷̅̅ ̅

𝜕𝑟𝐷
2
+
1

𝑟𝐷

𝜕𝑃𝐷̅̅ ̅

𝜕𝑟𝐷
= 𝑠𝑃𝐷̅̅ ̅ + 𝑃𝐷̅̅ ̅(𝑟𝐷, 0) 

(5.11) 

And with boundary condition in Laplace domain 
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𝑃𝐷̅̅ ̅(𝑟𝐷, 0) = 0 

𝜕𝑃𝐷̅̅ ̅̅

𝜕𝑟𝐷
|
𝑟𝐷=0

= 0   

𝑃𝐷̅̅ ̅(𝑟𝐷 = 1) =
1

𝑠
 

The general solution of (5.11) is  

 𝑃𝑚𝐷̅̅ ̅̅ ̅̅ = 𝐴 I0(√𝑠𝑟𝐷) + 𝐵 I1 (√𝑠𝑟𝐷) (5.12) 

where I0 and I1 are modified Bessel functions; A and B are determined by applying boundary 

conditions 

𝐵 = 0 

𝐴 =  
1

s I0(√𝑠)
 

Thus, matrix pseudo-pressure in Laplace domain is defined as  

 
𝑃𝐷̅̅ ̅ =

I0(√𝑠𝑟𝐷)

s I0(√𝑠)
 

(5.13) 

The pseudo-pressure derivative in Laplace domain is  

 𝑑𝑃

𝑑𝑟

̅̅ ̅̅
|
𝑟=𝑟𝑒

= −
(𝑃𝑖 −𝑃𝑓)

𝑟𝑒

I1(√𝑠)

√𝑠 I0(√𝑠)
 

(5.14) 

The gas flowrate from matrix to fracture is given by 

 
𝑞 =  

𝑘𝑚 𝐴𝑒

1422 𝑇 𝑟𝑒  
(𝑃𝑖 − 𝑃𝑓) ℒ

−1 [
𝑑𝑃

𝑑𝑟

̅̅̅̅
|
𝑟=𝑟𝑒

] 
(5.15) 

Where 𝐴𝑒 =  2𝜋 𝑟𝑒 ℎ  and ℎ is the matrix block thickness.  

The Laplace inverse ℒ−1 [
I1(√𝑠)

√𝑠 I0(√𝑠)
] is calculated in time domain using Stehfest (1970) 

algorithm.  

5.4 Input Data 

Table 5.1 presents the matrix, pore size distribution and reservoir properties used for 

matrix flow evaluation. The relative enhancement factor for gas under condensate banking 

effect is calculated using the results of the network model as described in Chapter 3. Table 

5.2 provides the gas-condensate fluid composition which was used to generate the PVT 
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properties (such as gas viscosity 𝜇 and is compressibility factor, 𝑍 and condensate 

saturation). Figure 5.2 depicts the CVD condensate saturation as function of pressure. As 

the condensate flow in matrix is negligible, CVD reflects the phase behaviour of gas-

condensate fluid in matrix.   

Table 5.1: Matrix, Reservoir and Knudsen flow Input Data  

Property Value 

Porosity, 𝝓 0.10 

Intrinsic permeability, 𝒌∞ (nD) 150 

Formation compressibility, 𝒄𝒇 (psi-1) 1×10-6 

Pore size median, 𝝂 (nm) 10 

Pore size standard deviation , 𝒔 (nm) 0.6 

Matrix block thickness, h (ft) 100 

Initial Reservoir Pressure, 𝒑𝒊 (psi) 4500 

 

Table 5.2: Composition of gas-condensate fluid 

Component Molar Composition (%) 

C1 80 

C4  12 

C7 7.2 

C10 0.4 

C14 0.4 

 

 

Figure 5.2: CVD Condensate saturation as function of pressure 
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5.5 Condensate Banking Effect 

In this case, only condensate banking effect on production is investigated i.e. without 

introducing the Knudsen flow and phase behaviour deviation.  

Figure 5.3 gives the log-log plot of gas production rate and Figure 5.4 shows the pressure 

profile in the matrix for different time steps. The R direction is oriented from the matrix 

centre at (r=0 ft) to the matrix edge (r= 177 ft) which is in direct contact with the fracture 

(the flow direction is from matrix centre to matrix edge). As showed in Figure 5.4, the 

pressure decline moves from the edge towards the centre and two pressure regimes can be 

distinguished: transient regime for t<166 days and pseudo-steady regime for t>166 days 

when the pressure decline reaches the matrix centre (see Figure 5.3).  

 

Figure 5.3: Log-Log plot of Gas flowrate showing transient regime and pseudo-steady state.  

 

Figure 5.4: Matrix pressure profile for different time steps   
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As a result, when matrix pressure drops below dew point condensate starts to form first at 

the outer zone which is directly in contact with fracture and propagate towards the block 

centre.  Figure 5.5a gives the condensate saturation profiles generated as function of 

pressure using CVD results. For instance, at t=0.8 days the free gas in the inner zone of the 

matrix in encircled by condensate ring of approximately 5 ft thickness. This condensate 

banking, enveloping the matrix, locks the gas inside the matrix under the effect of gas 

relative permeability reduction by condensate accumulation. Figure 5.5b illustrates the gas 

relative permeability profile in the matrix for different time steps and it shows the reduction 

of relative permeability as the condensate spreads from the edge to the block centre. For 

example, at t=10 days, although the most important part of the matrix is at free gas phase, 

it is encircled by a thin layer of highly reduced gas relative permeability.  

This mechanism of condensate banking enveloping matrix blocks is a distinctive feature of 

shale gas-condensate reservoirs compared to conventional reservoirs where the 

condensate banking manifests mainly around the wellbore or the fracture face.  A more 

detailed discussion of condensate propagation and accumulation in the reservoir is 

provided in Section 6.4.1. 

 

Figure 5.5: Matrix profiles for different time steps: a) condensate saturation and b) gas 

relative permeability 

The gas cumulative production vs. time is shown in Figure 5.6 with and without condensate 

banking. The no condensate banking case was generated by using relative permeability 

equal to unity i.e. condensate saturation has no effect on gas permeability. In this example, 

the effect of condensate banking translates to about 30% loss of production.  
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Figure 5.6: Condensate banking effect on matrix cumulative gas production 

As mentioned in Section 2.5.3, the absence of effective enhanced recovery techniques to 

reduce the effect of condensate banking makes the production loss almost inevitable when 

producing from this type of reservoirs. This production loss makes the development of shale 

gas-condensate reservoirs more commercially challenging than dry shale gas reservoirs 

which should be carefully considered during field development studies.  

Developing new techniques to minimise the production loss due to condensate banking will 

represent the main challenge that researchers and engineers have to tackle in order to 

improve the recovery of shale gas-condensate reservoirs. 

5.6 Knudsen Flow Effect 

The Knudsen flow enhances the gas permeability in shale matrix at pore pressure (see 

Figure 5.7).  The Knudsen flow partially reduces the effect of condensate banking on gas 

permeability under dew point but its effect is significant only under 1000 psi while 

condensate banking forms under 3758 psi.  

Figure 5.8 represents the gas flow rate of Darcy flow vs. Knudsen flow where gas flow rate 

is higher under Knudsen flow than Darcy flow resulting to a higher cumulative production 

by 25%. Figure 5.9 shows the ratio of Knudsen to Darcy flow qKnudsen/qDarcy vs. average 

reservoir pressure and it indicates that qKnudsen/qDarcy   ratio increases as the reservoir 

pressure decreases.  
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The average matrix pseudo-pressure is derived from equation (5.6) in Laplace domain and 

calculated using equation (5.16) 

 

𝑃̅ =
𝑃𝑖
𝑠
− (𝑃𝑖 − 𝑃𝑓)

I0 (√𝑠
𝑟

𝑟𝑒
)

s I0(√𝑠)
 

(5.16) 

As expected, the Knudsen flow starts to have a significant effect when the reservoir pressure 

drops below 2000 psi.  

As the condensate banking effect and Knudsen flow manifest at the same reservoir pressure 

range, Knudsen flow helps to alleviate partially the productivity decline of gas-condensate 

reservoirs.  

 

Figure 5.7: Gas permeability enhancement factor   

 

Figure 5.8: Gas flow rate and cumulative production of Darcy vs. Knudsen flow.  
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Figure 5.9: qKnudsen/qDarcy vs. average reservoir pressure 

In Figure 5.8, the effect of condensate banking on Knudsen flow was not considered. Here, 

the effect of the Relative Correction Factor 𝜉𝑟𝑒𝑙  is incorporated in order to reflect this effect 

on production. The pseudo-pressure 𝑃 is modified by introducing  𝜉𝑟𝑒𝑙  in equation (5.3) to 

become  

 
𝑃(𝑝) =  ∫ 2

(𝜉𝑟𝑒𝑙  𝜉 ) 𝑘𝑟𝑔𝑝

𝜇𝑍
 𝑑𝑝

𝑝

0

 
(5.17) 

𝜉𝑟𝑒𝑙  is described as function of condensate saturation and pressure as in Equation (3.38).  

Figure 5.10 compares the cumulative production for Darcy flow, dry gas Knudsen flow 

(without correction to condensate saturation) and Knudsen flow under condensate banking 

(without correction to condensate saturation). This Figure shows that the condensate 

banking effect on Knudsen flow causes a reduction of 25% of the production gained by 

Knudsen flow (compared to Darcy flow). Consequently, not correcting the Knudsen flow to 

the condensate saturation effect leads to an overestimation of the production gain by 

Knudsen flow by 33% equivalent to an overestimation of the total production by 19%.  
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Figure 5.10: Gas flow rate and cumulative production of Darcy vs. Knudsen flow. 

5.7 Phase Behaviour Effect  

The phase behaviour deviation of gas-condensate fluids under capillary pressure induces a 

higher dew point and higher condensate saturation compared to bulk phase behaviour 

(Chapter 5). Figure 5.11 gives an example of CVD condensate saturation vs. pressure of lean 

condensate (see Table 5.2) showing higher condensate saturation. A higher condensate 

saturation results in a lower gas relative permeability. Figure 5.12 gives gas relative 

permeability vs. pressure under capillary pressure effect compared to bulk phase 

behaviour.  

 

Figure 5.11: CVD condensate saturation of bulk vs. capillary phase behaviour 
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Figure 5.12: Gas relative permeability of bulk vs. capillary phase behaviour for lean 

condensate 

The cumulative production under capillary pressure vs. bulk phase behaviour are presented 

in Figure 5.13. The production reduction is limited (about 5%). Similarly, Figure 5.14 gives 

the cumulative production of a rich condensate fluid with and without capillary pressure 

effect. This Figure shows a 2.5% production loss which is lower than in Lean condensate 

fluid.  

Consequently, although the high capillary forces have an impact on the phase behaviour 

leading to a deviation in terms of dew point pressure and condensate saturation, its effect 

on the ultimate production is insignificant.  

 

Bulk
Capillary
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Figure 5.13: Gas cumulative production of bulk vs. capillary phase behaviour for lean 

condensate 

 

Figure 5.14: Gas cumulative production of bulk vs. capillary phase behaviour for rich 

condensate 

5.8 Summary 

The performance of shale gas-condensate reservoirs was investigated using a single matrix 

block with constant fracture pressure. The unavailability of rigorous analytical models and 

open source numerical simulation software makes this tool the only available way to 

investigate the flow behaviour and phase behaviour deviations. 

Due to high capillary pressure in the matrix, the condensate banking in shale matrix induces 

a high productivity loss up to 30%.  Thus, the development of this type of shale resources is 

considered challenging compared to oil and dry gas shale reservoirs. 

In addition, results showed that condensate banking effect on Knudsen flow reduces the 

production gain by this type of flow by up to 25%. The use Knudsen flow with correction to 

the candidate saturation can lead to an overestimation of cumulative production by about 

20%. The use of the Relative Correction Factor introduced in this thesis is crucial for an 

accurate evaluation of well performance of shale gas-condensate wells.  

As addressed in Chapter 4, lean and rich condensate fluids exhibit different levels of phase 

behaviour deviation under capillary pressure in shale matrix. The effect of this phase 

behaviour on gas production has different degree of importance. The higher condensate 

Bulk
Capillary
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build-up in shale matrix of lean condensate fluids compared to bulk causes a production 

loss of 5% while rich condensate fluids have a limited impact (less than 2.5%).  
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6.1 Introduction 

In Chapters 3 and 4, the deviation from conventional reservoirs of the flow behaviour and 

the phase behaviour in shale matrix were investigated at the micro-level. In Chapter 5, the 

effect of this deviation is evaluated using a semi-analytical model of shale matrix.  

However, gas-condensate wells are a highly complex system that contains three different 

media; shale matrix, hydraulic fracture network and wellbore. These sub-systems have 

distinctive multiphase flow behaviour and phase behaviour where the condensate banking 

effect manifests differently. In shale matrix, with the high capillary forces in nano-scale 

pores, the impact of condensate accumulation is more severe than in fractures and wellbore. 

Thus, the effect of condensate banking in shale matrix has an impact on its interaction with 

the fracture network and the wellbore.  This interaction controls the propagation of the 

condensate bank in the reservoir and as a result the well productivity.  

This Chapter aims to provide a comprehensive study of how the condensate accumulation 

affects the whole well productivity and how it propagates in the reservoir.   

3D compositional numerical simulation is used to model the shale gas-condensate 

reservoirs and to evaluate the condensate banking effect on production.   Even though the 

commercial software used in this study (Eclipse) does not include the necessary 

functionalities to model flow behaviour deviation due to Knudsen flow and phase behaviour 

deviation due to capillary pressure, it can be used to build a basic understanding of the shale 

gas condensate wells performance and how condensate forms in the reservoir and affects 

the ultimate recovery.  

Moreover, the well design optimisation in terms of hydraulic fracture spacing is investigated 

using numerical simulation and economic evaluation to identify the spacing that allows a 

maximum NPV (Net Present Value).   
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6.2 Limitations of Current Shale Gas-Condensate Reservoir Engineering 

Tools  

The use of performance analysis for shale reservoirs is essential for field development 

design and planning to increase the shale plays profitability. In this Section, three 

conventional tools are reviewed in terms of the ability to be adapted to shale gas-

condensate reservoirs: Decline Curve Analysis, Semi-analytical Models and 3D Reservoir 

Simulation.  

6.2.1 Decline Curve Analysis  

Presently, Decline Curve Analysis (DCA) technique is widely used for shale gas reservoir 

performance for economic studies and field development planning. The conventional DCA 

equation established by Arps (1945) is 

 𝑞(𝑡) = 𝑞𝑖(1 + 𝑏𝐷𝑖𝑡)
−1

𝑏⁄  (6.1) 

Where 𝑞 is flow rate (Mscf/d), 𝑞𝑖 is initial flow rate (Mscf/d), 𝐷𝑖 is nominal decline rate at 

𝑡 = 0, 𝑡 is time (years) and 𝑏 is Arps exponent.   

Despite the simplicity and practicality of DCA, the complexity of reservoir performance and 

different production regimes cannot be described accurately with DCA models.  Relatively 

short production history of shale wells makes using DCA analysis to establish long term 

production forecast very difficult. Instead, 3D reservoir models are used to generate long 

term production profiles and extract b value by fitting these profiles to equation (6.1). 

Nevertheless, different values of rate exponent 𝑏 are needed for different production 

intervals to obtain an acceptable long term accuracy (Kanfar and Wattenbarger 2012, 

Kurtoglu, Cox and Kazemi 2011, Nelson, et al. 2014). These intervals consist of: a) different 

degree of flow contribution of sub-systems (hydraulic fractures, natural fractures and 

matrix), b) transient regime and boundary-dominated flow (BDF).  In practice the 

determination of the number and limits of interval with different 𝑏 values is difficult to 

achieve.  

6.2.2 Semi-Analytical Models 

Some semi-analytical models were developed by researchers (Brown and Ozkan 2009, Bello 

and Wattenbarger 2010, Stalgorova and Mattar 2013) to describe the gas flow from multi-

stage fractured tight and shale gas reservoirs for pressure transient analysis and rate 

transient analysis.  
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The well is drilled in a Stimulated Reservoir Volume (SRV) with rectangular shape reservoir 

and by symmetry only ¼ of the model is described (𝑥𝐹  ×  𝑦𝑒 × ℎ)  where 𝑥𝐹 is hydraulic 

fracture half length (ft), 𝑦𝑒 is the fracture half spacing (ft) and ℎ is the reservoir thickness 

(ft) (see Figure 6.1).  The reservoir is modelled as fracture and matrix (dual porosity) with 

interaction function between matrix and fracture. The fluid flows from matrix through 

propped fracture to hydraulic fracture to the wellbore and the gas flow within propped 

fractures and within hydraulic fracture is described as linear flow. A convergence skin is 

introduced to take into consideration the flow convergence near wellbore in the hydraulic 

fracture.  An outer region can be added to model the flow from unstimulated area. The 

system solution for constant bottomhole pressure (BHP) or constant rate is written in 

Laplace domain and converted to time domain using Stehfest’s (1970) algorithm.  

The main disadvantage of these models is the interference between stages: 1) in the SRV, 

where symmetry of drainage area is assumed, 2) in the wellbore, where the BHP is assumed 

to be the same along perforation clusters which is interpreted by calculation of well flow 

rate 𝑞𝑤𝑒𝑙𝑙 as 

  𝑞𝑤𝑒𝑙𝑙 = 𝑁𝑠𝑡𝑎𝑔𝑒𝑠 𝑞𝑠𝑡𝑎𝑔𝑒 (6.2) 

Where 𝑁𝑠𝑡𝑎𝑔𝑒𝑠 is number of stages and 𝑞𝑠𝑡𝑎𝑔𝑒 is stage flow rate calculated by the model.  

 

 

Figure 6.1: Schematic of gas flow in ¼ hydraulic fracture in shale gas wells model with 

(matrix+ fracture) SRV, hydraulic fracture and wellbore. Arrows indicate the linear flow 

assumption in unstimulated region, SRV and hydraulic fracture.   
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Although the gas-condensate phase behaviour and flow behaviour in shale matrix can be 

easily integrated into the gas pseudopressure function, it is difficult to assign two separate 

relative permeability models for matrix and fracture due to the limitation in Laplace 

domain.  

6.2.3 3D Numerical Reservoir Simulation  

3D numerical reservoir simulation models are the most powerful tools that can describe 

more accurately (than other tools presented above) the shale gas-condensate well 

performance. The reservoir is represented as dual permeability model i.e. both matrix-

matrix and matrix-fracture flow is allowed. Local Grid Refinement (LGR) are used to 

logarithmically discretise the grid into smaller sub-cells around hydraulic fracture in order 

to capture the high pressure drawdown between hydraulic fracture and matrix.  

Cipolla et al. (2010) introduced a new LGR method combined with dual permeability 

referred to as “DK-LS-LGR” (dual permeability, logarithmically spaced local grid refinement) 

method where the grid refinement is applied for the whole hydraulic fracture network 

through the SRV and not only around the primary hydraulic fracture (see Figure 6.2a). The 

reason behind using additional LS-LGR is to model the long transient regime that occurs in 

very low permeability matrix.  Conventionally, analytical solutions by Warren and Root 

(1963) and Kazemi (1969) are used in reservoir simulation package to model fracture-

matrix interaction. However, they cannot capture the transient regime in the matrix. On the 

other hand, despite the accuracy of DK-LS-LGR method it cannot be deployed for full field 

reservoir models because it can generate high number of cells with high volume 

heterogeneity which makes the simulation very expensive.  

Another alternative to DK-LS-LGR method is MINC (Multiple Interacting Continua) method 

which consists of dividing matrix block to logarithmically spaced nested volumes in 

cylindrical or cubic shapes (see Figure 6.2b).  The challenge of using MINC with LGR around 

hydraulic fracture in shale simulation is the very small cells that can be generated at the 

overlap of LGR and MINC methods in matrix cells around hydraulic fractures.  

The gas-condensate phase behaviour is modelled with EOS (Equation of State) matched to 

the lab experiments results (such as CCE, CVD, flash calculation). A major difficulty of using 

compositional reservoir simulation tools in this work is the lack of flexibility to implement 

modified gas condensate flow models and phase behaviour models in the software source 

code. 
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Figure 6.2: Reservoir modelling techniques for shale: a) DK-LS-LGR method  

, b) MINC method. 

6.3 Reservoir Model Description 

6.3.1 Fracture Network 

Multistage fracturing of horizontal well has become the standard well completion for shale 

wells where this type of completion is required to reach an economic production volume. 

Fisher et al. (2002) , Maxwell et al. (2002) and Fisher et al. (2004) used micro-seismic (M-

S) data to observe the propagation of hydraulic fracture in Barnett Shale and they identified 

that induced fractures are extremely complex (pattern C in Figure 6.3) than the simple plan 

fracture (A pattern Figure 6.3).  

 

Figure 6.3: Increasing complexity levels of fractures (Fisher, et al. 2002).  

Figure 6.4 represents an Example of M-S mapping of extremely complex fracture network 

in core area of Barnett Shale reported by Fisher et al. (2004). This fracture network length 

is 4000 ft (2000 ft half length) and width is about 1200 ft. The grey dots are the recorded 

M-S events and the straight lines show the interpreted fracture structures. The red dots 

represent the killed wells by the treatment.  
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Figure 6.4: Example of M-S mapping of extremely complex fracture network in core area of 

Barnett Shale (Fisher et al.  2004) 

Fisher et al. (2002) suggested that the observed complexity of fracture network is a result 

of re-opening of existing natural fractures. In this example the average spacing between 

fractures is 100 ft.  

In this work, data of Fisher et al. (2004) is used to idealise the fracture network with a 

constant fracture network spacing  𝐷𝑥 = 𝐷𝑦 in x –direction and y-direction respectively to 

build a general model.  Figure 6.5 shows the fracture network modelling within ¼ SRV with 

constant fracture network spacing 𝐷𝑥 of 100 ft, a hydraulic fracture half-length of 1000 ft 

and a hydraulic fracture spacing (stage width) of 600 ft.  

The fracture network spacing 𝐷𝑥 and the hydraulic fracture half-length vary according to 

reservoir properties and the treatment program design. Generally, a hydraulic fracturing 

simulator is used to optimise hydraulic fracture geometry (width, half-length and height) 

and then select the treatment fluid and proppant (Economides and Wang 2010, Fonseca and 

Farinas 2013). The impact of natural fracture spacing is investigated in Section 6.4.4.  

The hydraulic fracture spacing of 600 ft was extracted from data of Fisher et al. (2004) 

presented in Figure 6.4.   The hydraulic fracture spacing optimisation is discussed later in 

Section 6.5.  
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Figure 6.5: Schematic of fracture network modelling in ¼ SRV with constant fracture 

network spacing 𝑫𝒙 = 𝑫𝒚 = 𝟏𝟎𝟎 𝒇𝒕  

6.3.2 Stress Dependent Fracture Conductivity 

Reservoir geomecahnics play an important role in well performance as well as in well 

fracturing. The in-situ stress is a combination of overburden stress, tectonic stress and pore 

pressure. As the reservoir pore pressure declines with production, the in-situ stress 

increases resulting in fracture conductivity reduction due to proppant embedment and 

crushing in fractures. Numerous correlations were proposed to model fracture conductivity 

as a function of stress (Raghavan and Chin 2002, Rutqvist et al.  2002, Nur and Yilmaz 1985, 

Wasaki and Akkutlu 2015, Kwon et al.  2001). The fracture conductivity can be described by 

Equation (6.3)  

 𝐶𝑓 = 𝐶𝑓0
exp[−𝐴 𝜎𝑒𝑓𝑓]  (6.3) 

Where 𝐶𝑓 is the conductivity in md.ft at the current effective stress 𝜎𝑒𝑓𝑓 in psi, 𝐶𝑓0
the initial 

conductivity in md.ft, 𝜎𝑒𝑓𝑓 is the effective stress, and A is an empirical coefficient which 

estimated by lab experiments or by well production analysis.  

The effective stress 𝜎𝑒𝑓𝑓 is defined as the difference between normal stress 𝜎𝑛 and fracture 

fluid pressure 𝑃 (Economides et al.  2000) as 

 𝜎𝑒𝑓𝑓  =  𝜎𝑛 − α𝑃 (6.4) 

where α is Biot’s coefficient, it describes to which extent the pore pressure counteracts 

elastic deformation of porous media (Biot 1941).  Havens and Batzle (2011) and Jun and 

Kegang (2014), using experimental measurements of Bakken shale formation, reported 

Biot’s coefficient ranges from 0.57 to 0.75. 
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Cipolla et al. (2010) used experimental data to estimate the stress-dependent conductivity 

of fracture network for Barnett shales. FAN et al. (2010) derived the fracture permeability 

reduction by analysing Haynesville shale gas production (see Figure 6.6). 

  

Figure 6.6: Haynesville hydraulic fracture permeability reduction factor vs. fracture fluid 

pressure (Fan, Thompson and Robinson 2010). 

 

6.3.3 Non-Darcy Flow 

The high gas velocity with high Reynold number in the hydraulic fracture shifts gas flow 

from Darcy laminar flow to non-Darcy turbulent flow causing a reduction of apparent 

conductivity. The Forchheimer correction to Darcy law is given in Equation (6.5) 

 𝑑𝑃

𝑑𝑥
=  (

𝜇

𝑘 𝐴
) 𝑞 +  𝛽 𝜌 (

𝑞

𝐴
)
2

 
(6.5) 

Where 𝑞  is the volumetric flow rate, 𝑘  is the rock permeability, 𝐴 is the section area, 𝜇 is 

the fluid viscosity, 𝜌 is the fluid density and 𝛽 is the Forchheimer parameter.  

Several β correlations were developed based on core experiments, proppant tests and 

analytical studies (Li and Engler 2001, Lopez-Hernandez, Valko and Pham 2004). Two types 

of correlation can be distinguished:  

a) Correlations with permeability: the turbulent factor β is expressed only as function of 

fracture permeability as  
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 𝛽 =
𝑎

𝑘𝑓
𝑏

 
(6.6) 

where β in ft-1, 𝑘𝑓 is fracture permeability in mD and a and b are correlation constants. The 

first fracture only correlation was developed by Cooke (1973) using brine, oil and nitrogen 

and different proppant sizes. Cooke’s correlation constants are listed in Table 6.1.  

Table 6.1: Constants a and b in Cooke equation 

 

In a similar approach Pursell and Blakely (1988) carried out nitrogen injection through 

different proppant sizes and they gave a and b constants (shown in Table 6.2 ) for two sand 

meshes 10/20 and 20/40.  

Table 6.2: Constants a and b in Pursell and Blakely (1988) equation 

 

Martins et al. (1990) used nitrogen injection at ambient temperature and high flow rates 

and different sand mesh sizes. They found that a and b constants are not affected by the 

sand mesh size and they proposed the following equation 

 
𝛽 =

8.23𝐸 + 09

𝑘𝑓
1.04  

(6.7) 

Jones (1987) used 335 sandstone and 29 limestone cores with permeability from 0.01 to 

2,500 mD and from 0.01 to 400 mD respectively. Only helium was used in his experiments. 

Jones presented the following correlation 

 
𝛽 =

6.15𝐸 + 10

𝑘𝑓
1.55  

(6.8) 

b) Correlations with permeability and porosity: equations are similar to previous type with 

addition of porosity to the correlation  
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 𝛽 =
𝑎

𝑘𝑓
𝑏𝜙𝑐

 
(6.9) 

where 𝜙 is porosity and c is a constant. Janicek and Katz (1955) performed experiments on 

sandstone, dolomite and limestone and developed the following correlation 

 
𝛽 =

1.82𝐸 + 8

𝑘𝑓
1.25𝜙0.75

 
(6.10) 

Tek et al. (1962) derived partial differential equations and used Janicek and Katz (1955) 

data to formulate their correlation 

 
𝛽 =

5.5𝐸 + 9

𝑘𝑓
1.25𝜙0.75

 
(6.11) 

Belhaj et al. (2003) developed numerical model for Non-Darcy flow in porous media and 

they validated their model with water injection through cores experiments. They 

subsequently proposed equation (6.12) 

  
𝛽 =

1.15𝐸 + 7

𝑘𝑓𝜙
 

(6.12) 

Lopez-Hernandez et al. (2004) recommended the use of Martins et al. (1990) correlation or 

Pursell and Blakely (1988) correlation as general equation for non-Darcy analysis in 

fractures in absence of experimental data. 

6.3.4 Dual Porosity/Permeability Models 

In order to model the two different media, matrix and fracture (natural or induced 

hydraulically) and dual porosity/permeability models are used to simulate the interaction 

between matrix and fracture. In commercial simulators, the matrix fracture interaction is 

only modelled using analytical dual porosity models as Warren and Root (1963) and Kazemi 

(1969). The analytical solutions were developed for pseudo-steady-state flow regime in the 

matrix. However, in shale reservoirs, due to very low permeability, transient flow regime in 

matrix controls an important period of well life.  

6.3.5 Grid 

Gridding in this numerical reservoir simulation is a very important element due to existence 

of three different media: reservoir matrix, natural fracture and hydraulic fracture network. 

Hydraulic fracture network needs to be modelled separately in order to be able to 

characterise it with different reservoir properties: porosity, permeability, non-Darcy flow 

and stress-dependent conductivity. 
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In addition, due to the high pressure draw down between fracture and matrix, logarithmic 

grid refinement is necessary to model the pressure distribution in the matrix during the 

transient flow regime. Using coarse cells instead of grid refinement makes the matrix to 

enter in a pseudo-steady state directly after production starts, which leads to an 

overestimated production. 

Cipolla et al. (2009) and Rubin (2010) studied reservoir modelling for shale dry gas using 

local grid refinement and dual permeability techniques. This technique is usually referred 

to as “DK-LS-LGR” (i.e. for dual permeability, logarithmically spaced, local grid refinement). 

They concluded that a simplified grid with 9×9 logarithmic grid refinement for matrix 

blocks and 2 ft wide grid for each fracture can simulate accurately the shale gas reservoirs. 

Cipolla et al. (2009) used a high resolution grid of 43×43 grid refinement and 0.001 ft wide 

grid as reference solution for the simplified grid. Rubin (2010) used a similar approach with 

finely-gridded reference model (approximately 6-14 million cells).  

MINC (Multiple Interacting Continua) is another technique used widely to model the 

transient flow in matrix in dual porosity models and it is also called discretised matrix or 

multi-porosity model. In this technique, the matrix is sub-divided to nested volumes 

(usually from 3 to 7 volumes) while the fractures are modelled by one cell.   Rubin (2010) 

used a dual porosity model with 4 nested MINC matrix cells and one MINC cell for fracture. 

He compared the MINC solution to the reference fine grid model and concluded that MINC 

technique provided inaccurate results due to the lack of direct connection between matrix 

and fracture through matrix-cell because of the dual porosity models where connection is 

limited to matrix-fracture. 

In this study, hydraulic fractures are represented with 1 ft wide cells and matrix blocks are 

modelled with 100 ft wide cells which is the hydraulic fracture network spacing. The 

intrinsic width of hydraulic fracture is 0.001 ft. Figure 6.7 shows the DK-LS-LGR  method 

used in this work with 9×9 logarithmic grid refinement (as proposed by  in matrix blocks 

and 1 ft wide cells for fractures). Intrinsic properties of fractures (porosity, permeability 

and non-Darcy coefficient) are upscaled from 0.001 ft thickness to effective 1ft cell 

thickness. For example, the intrinsic permeability of 4000 mD in 0.001 ft is upscaled to 4 

mD permeability for the effective thickness of 1 ft.  

Only ¼ of SRV is modelled due to symmetrical flow across the wellbore and primary 

hydraulic fracture. The half hydraulic fracture length, 𝑥𝑓 is 1000 ft and spacing of 300 ft 

which is equivalent to 16.5 acres. Table 6.3 lists the SRV properties.  
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Figure 6.7: Logarithmic grid refinement of 9×9 in matrix blocks and 1 ft wide grid for 

fractures.  

 

Table 6.3: Properties of Stimulated Reservoir Volume  

 

 

6.3.6 Gas-Condensate Fluid 

The gas condensate fluid used in the simulation is a gas-condensate with an API gravity of 

50˚ and CGR (Condensate Gas Ratio) of 110 stb/MMscf. The reservoir temperature is 310 

˚F. The fluid composition was derived from literature (Orangi, et al. 2011) which was 

estimated from an Eagle Ford gas-condensate well. Figure 6.8 shows the phase envelope of 

the gas condensate fluid. At reservoir conditions, the dew point is 3730 psi. Figure 6.9 gives 

the CVD (Constant Volume Depletion) experiment simulation of the gas-condensate fluid 

with a maximum condensate saturation of 28%. Table 6.4 represents the EOS (Equation of 

State) parameters of the gas-condensate fluid used in the simulation.  
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Figure 6.8: Gas-condensate phase envelope  

 

Figure 6.9: CVD (Constant Volume Depletion) simulation of the gas-condensate fluid at 

reservoir condition.  

Table 6.4: EOS parameters for gas-condensate fluid used in simulation 
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6.3.7 Relative Permeability Model 

While relative permeability in hydraulic fractures is well documented, researchers tend to 

use the conventional two phase/multiphase relative permeability models for shale matrix. 

However, the high capillary pressure in shale matrix compared to conventional reservoir 

makes the two phase/multiphase flow in shale matrix different. For gas condensate shale 

reservoir. It was concluded in Chapter 3 that condensate is almost immobile in shale matrix. 

Consequently, using a conventional gas condensate relative permeability would 

overestimate the condensate flow from matrix to fracture leading to an overestimation of 

well production. Figure 6.10 gives the relative permeability used in this simulation. For gas-

condensate relative permeability in fractures straight line model is used.  

 

Figure 6.10: Relative permeability model for shale matrix with almost immobile condensate 

due to high capillary pressure 

The main DATA input file of Eclipse 300 is given in Appendix B. 

6.4 Shale Gas-Condensate Well Performance 

6.4.1 Effect of Condensate Banking 

Condensate banking (accumulation) in the reservoir represents the first concern when 

evaluating well deliverability and CGR output. Additionally, given that the multiphase flow 

and the completion design (SRV) in shale reservoirs are different from conventional 

reservoirs, understanding how condensate forms and how it affects the well productivity is 

of vital importance in gas-condensate reservoir engineering.  
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Figure 6.11 shows reservoir pressure and condensate saturation at 3 months, 1 year and 3 

years of production for Reference run and Figure 6.12 shows the gas relative permeability 

at the same time steps.  

As the flowing bottomhole pressure is lower than dew point, condensate starts to build up 

in fractures near to the wellbore from the first weeks of production (see Figure 6.11a). Few 

weeks/months later, the condensate spreads into the matrix around the wellbore as the 

adjacent fracture pressure goes below dew point. The propagation of condensate banking 

in the matrix blocks happens from the outer layer towards the centre as the pressure decline 

travels from the edge to the centre. At this stage, the condensate banking is limited to the 

matrix blocks at the well bore vicinity (see Figure 6.11b). 

After 15 months of production, as the pressure declines below the dew point through the 

SRV, the condensate banking is propagated into the whole SRV enveloping the matrix blocks 

into a layer of condensate liquid while the free gas is locked in the centre zone (see Figure 

6.11a and b). The effect of condensate banking is two-folds; it reduces the gas relative 

permeability to flow from matrix to fracture, and it makes the heavy components to get 

stuck in the matrix reducing the CGR (Condensate Gas Ratio) at the surface. Figure 6.13 

represents the CGR of produced fluid and the average SRV pressure, it is indicating a sharp 

decline of heavy components production at surface after 1 year of production even when 

the average pressure is still around 4500 psi.  

After three years of production, the pressure decline reaches all matrix blocks centres but 

still above the dew point with only free gas in the matrix blocks centre through all SRV (see 

Figure 6.11a and b). 

 Figure 6.14 indicates the average poressure of fractures and matrx blocks and it shows the 

differnce of pressure decline with time. After one year productuion, the fractre pressure 

starts to decline further than the previous period (first year of production) due to the lack 

of pressure support from the matrix blocks which are envelopped by condensate. The 

condenate banking plays a role of a dynamic skin in the matrix, reducing the connectivity  

to fracture network.  

While the ultimate recovery factor for gas is about 35%, only 10% of condensate is 

recoverable due to the reduction of CGR through the production period.  

In order to evaluate the effect of condensate banking on production, a “Dry Gas” run was 

built with dry gas fluid and the same reservoir and completion properties. Although dry gas 

and gas-condensate fluids have different fluid properties (density, viscosity, CGR and 
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relative permeability), the comparison of gas production of dry gas and gas-condensate 

cases can give an indicative evaluation of condensate banking effect.  

Figure 6.15 represents the gas cumulative production of Gas-condensate case (Reference 

case) compared to the “Dry Gas” case where the results show a production reduction due 

condensate banking is about 40%. 
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Figure 6.11: a) Reservoir pressure and b) condensate saturation at 3 months, 15 months and 

three years of production.  
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Figure 6.12: SRV gas relative permeability at 3 months, 1 year and three years of production.  

 

 

Figure 6.13: CGR and SRV average pressure. 
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Figure 6.14: Average pressure for fracture and matrix.   

 

Figure 6.15: Gas cumulative production of Gas-condensate case (Reference case) vs. dry gas 

case showing the effect of condensate banking on production with reduction of 40%.  

6.4.2 Effect of Stress-Dependent Permeability and Non-Darcy Flow 

The effect of stress-dependent permeability was investigated by modelling the 

permeability reduction in the fracture network as function of pressure. The data used was 

derived from (Cipolla, Lolon et al. 2009).  The stress-dependent permeability reduction 

function is applied only at fracture cells. Figure 6.16 gives the comparison of cumulative 



Chapter 6 : Shale Gas-Condensate Reservoir Numerical Simulation and Production Optimisation 

Ismail Labed 122 Robert Gordon University 

gas production between Reference Case (without stress-dependent permeability) and 

STRESS-DEP-PERM (with stress-dependent permeability). The effect is about 10%. Non-

Darcy flow has negative effect in shale, while in conventional reservoirs has a positive 

effect.  

Figure 6.16: Effect of stress-dependent permeability: Reference Case (without stress-

dependent permeability) vs. STRESS DEP PERM (with stress-dependent permeability)  

6.4.3 Effect of Non-Darcy Flow 

The non-Darcy flow is applied into the hydraulic fracture cells where the high gas velocity 

reduces the fracture conductivity. As the fracture width in the model is upscaled from 

intrinsic width of 0.001 ft to an effective width of 1 ft, the Forchheimer parameter 𝛽 must 

be corrected. From equation (6.6) the non-Darcy differential pressure is written in terms of 

intrinsic fracture parameters  

 
[
𝑑𝑃

𝑑𝑥
]
𝑁𝐷

=   𝛽
∞
 𝜌 (

𝑞

𝑤∞ ℎ
)
2

 
(6.13) 

where  𝛽∞ is the intrinsic Forchheimer parameter, 𝑤∞ is the intrinsic fracture width and h 

is the reservoir thickness.  

Replacing intrinsic parameters in equation (6.13) with effective (upscaled) fracture 

parameters  𝛽𝑒𝑓𝑓 and 𝑤𝑒𝑓𝑓 results to  

 
 𝛽𝑒𝑓𝑓 =  (

𝑤𝑒𝑓𝑓

𝑤∞
)
2

 𝛽∞ 
(6.14) 

Using correlation from equation (6.6),   𝛽𝑒𝑓𝑓 can be expressed as 
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(6.15) 

In this study 𝛽𝑒𝑓𝑓 was estimated using Pursell and Blakeley (1988) correlation with 

proppant of 40/60-mesh sand (see Table 6.1). Figure 6.17a gives the cumulative production 

of Darcy flow vs. non-Darcy flow.  The production reduction as a result of conductivity loss 

by non-Darcy flow is limited to 4%. Production loss in conventional reservoirs is much 

higher; being about 20% in high rate (120 MMscf/D) gas wells (Bybee 2006). Figure 6.17b 

shows the gas flowrate ratio of non-Darcy to Darcy flow. The effect of non-Darcy flow is 

more important at early production years when the gas flowrate is the highest. The lower 

non-Darcy effect in shale wells compared to conventional wells can be explained by the low 

gas flow rate in individual SRV compared to high gas flow that can be produced from 

hydraulically fractured wells.  

 

Figure 6.17: Darcy flow vs. non-Darcy flow: a) comparison of cumulative production and b) 

non-Darcy/Darcy gas rate ratio.  

6.4.4 Effect of Fracture Network Spacing 

The fracture network spacing 𝐷𝑥 is the average distance between the hydraulic fractures in 

the SRV and it is equivalent to matrix block dimension. Sometimes, it is referred to as 

fracture network density which is the inverse of fracture network spacing. Figure 6.18 

shows the results of sensitivity study of fracture network spacing 𝐷𝑥  of 30, 65 and 100 ft. 

65 ft spacing generates a production increase of 45 % and 30 ft spacing enhances the 

production by 140%; the lower fracture network spacing the higher the well productivity 
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Fracture network spacing has an important effect on well production which should be 

considered a high uncertainty factor in shale simulation. The level of uncertainty can be 

controlled by using the micro-seismic interpretation to estimate an average fracture 

network spacing 𝐷𝑥 from the field.  

 

Figure 6.18: Effect of fracture network spacing 𝑫𝒙 of 30, 65 and 100 ft.  

6.5 Well Design Optimisation 

As enhanced recovery techniques, including pressure maintenance and CO2 injection, are 

not yet proven to be effective for shale gas-condensate wells, the only available way to 

maximise their economic value is by optimising the well design. Furthermore, shale 

resources development are located at the higher part of field development CAPEX which 

includes long horizontal wells, multistage fracturing and re-fracturing. Minimising the 

production cost by Mscf is crucial to keep shale resources as competitive as possible with 

the other types of resources.  

The most important factor in shale gas development is the hydraulic fracture spacing i.e. the 

distance between hydraulic fracture clusters. The shorter the spacing the higher the 

production and the higher the CAPEX.  Table 6.5 lists the commercial factors (typical to the 

US shale plays) considered for economic optimisation of well design.  
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Table 6.5: Commercial coefficients used for optimisation 

 

Figure 6.19 represents results of cumulative production for different fracture spacing from 

100 to 600 ft with 100 ft increment. The cumulative production is inversely proportional to 

fracture spacing where the highest production is about 16,000 MMscf with 100 ft spacing.  

The first year of production represents 23-36% of total 10-years production because of the 

high decline rate of production from one year to another.   

Figure 6.20 shows comparison of cash flow and NPV (Net Present Value) for different cases 

of fracture spacing. Lower fracture spacing 100 and 200 ft have the lowest payback period 

about 19 months. However higher spacings have longer payback periods that range from 2 

to 4 years.  

Although 100 ft spacing results in the highest production, when considering NPVs, fracture 

spacing 200 ft represents the optimum spacing with maximum NPV of 6.7 MM$.   

 

Figure 6.19: Cumulative Production sensitivity to hydraulic fracture spacing of 100, 200, 

300,400, 500 and 600 ft 
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Figure 6.20: Cash flow and NPV vs. Fracture Spacing: a) cumulative production, b) NPV. 

6.6 Summary 

The hydraulic fracture network induced by well treatment in shale reservoirs are 

characterised by their extremely complex geometry that increases the contact between the 

wellbore and the reservoir creating a large SRV able to maintain acceptable level of 

production rate. 

In this work, DK-LS-LGR technique is used to build a grid to deal with the fracture network 

complexity in the SRV. A proper relative permeability model was employed which takes into 

consideration the effect of high capillary pressure on two-phase flow of gas and condensate 

in the shale matrix. The generated condensate in the matrix is almost immobile while it 

blocks completely the smaller pores. Hence the gas relative permeability reduces 

significantly.  

A compositional simulation was carried out for ¼ SRV with a constant bottomhole pressure 

using a commercial software.  

Simulation results showed that condensate accumulation starts in the fractures and spread 

quickly into the nearby matrix due to the low bottomhole pressure. The condensate starts 

to form in the matrix as the pressure goes below the dew point from the outer zone (layer) 

which is in direct contact with depressurised fracture. Subsequently the condensate bank 

expands to the centre of the matrix block as pressure declines.   

Even though the effect of condensate banking in shale reservoirs starts to manifest from the 

first days of production, it reaches a high level of productivity reduction when the 

condensate envelopes all the matrix block locking the free gas inside. For this simulation 

case, this phenomenon starts only one year after production meaning that the well stays 
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under the heavy condensate banking effect almost for its whole life. A comparison of gas-

condensate with dry gas revealed that the effect of condensate banking on ultimate 

production is up to 40%.  

Furthermore, as a result of the condensate immobility in the matrix the CGR decreases 

significantly by 90% after 4 years of production which leads to a condensate recovery factor 

three times less than the gas recovery factor.  

The stress-dependent conductivity of fracture is an important factor in shale well 

performance evaluation. The reduction of fracture conductivity when the effective pressure 

increases as the reservoir pressure declines can lead to ultimate production loss of about 

10%.  

The non-Darcy flow effect on gas flow in fractures due to the high velocity has limited effect 

on production which can be explained by the low flow rate by SRV compared with high flow 

rate in conventional hydraulic fractured vertical well.   

For the reason that no proven EOR techniques are available yet for shale gas-condensate 

reservoirs (e.g. gas recycling, CO2 injection and "huff and puff" technology), well design 

optimisation is the only way possible to maximise the ultimate production. In addition, since 

multi-stage hydraulic fracturing represents an important part of the shale wells CAPEX, the 

hydraulic fracture spacing should be optimised using an economic approach rather than 

only technical evaluation. For the data set used in this study, results showed a 200 ft 

hydraulic spacing represents the optimum hydraulic fracture spacing. 
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Firstly, this chapter provides a summary of the research questions and it covers the key 

findings of this thesis and the main conclusions of the gas-condensate flow modelling in 

shale reservoirs. The developed models of flow behaviour and phase behaviour of gas-

condensate fluids in shale matrix are described briefly and the results obtained from these 

models are discussed. Secondly, recommendations for the development of shale gas-

condensate reservoirs are presented. Finally, the contributions to knowledge by this thesis 

are briefly presented.   

7.1 Research Questions 

Shale reservoirs are classified as unconventional reservoirs alongside tight gas sands and 

Coal Bed Methane (CBM).   They are self-sourced reservoirs; the hydrocarbons are 

generated and stored in the same formation. They are mainly distinguished by their very 

small pore size leading to very low permeability and relatively low porosity. Only multistage 

fractured horizontal well can produce significant flow rates.  

For shale gas-condensate reservoirs, the situation is more complicated where the high 

drawdown leads to rapid condensate build-up near the hydraulic fractures in the first 

months of production. The condensate banking affects the well productivity as the gas 

relative permeability declines sharply causing even lower recovery factor in comparison 

with dry gas wells. The condensate banking effect is controlled by phase behaviour and flow 

behaviour. 

Shale wells are located at the top of development cost scale where accurate production 

prediction and production optimisation are key elements of shale development projects. 

Better understanding and evaluation of flow behaviour and phase behaviour is essential to 

build an accurate reservoir engineering tools.  

7.1.1 Condensate effect on Knudsen Flow 

 In shale matrix, the gas flow in nanoscale pores deviates from conventional continuum 

Darcy flow to slip flow and transition flow, referred to as Knudsen flow. The Knudsen flow 

enhances the gas permeability and it is highly dependent on pore size and pore pressure.  
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The condensate saturation in shale gas-condensate reservoirs adds to the complexity of the 

problem because of the variation of pore size ranges available for gas flow as the condensate 

saturation varies with pressure. Currently, no models are available to describe the Knudsen 

flow of gas-condensate two-phase in shale matrix. Using the dry gas Knudsen flow models 

can lead an overestimation of the enhanced permeability by Knudsen flow and the ultimate 

recovery.  

7.1.2 Phase Behaviour Deviation 

The high capillary pressure induced by the very small pore size in shale matrix affects the 

phase behaviour of gas-condensate fluids. The pressure difference between gas and 

condensate (resulted from the capillary forces) generates the increase of dew point and 

condensate saturation in the reservoir compared to bulk conditions. This can aggravate the 

condensate banking effect. This phase behaviour deviation is dependent on pore size; 

different pore sizes exhibits different phase behaviour deviation.   

The phase behaviour deviation of gas-condensate fluids is normally modelled using an 

average pore radius which can lead to inaccurate results. This modelling approach does not 

reflect the contribution of different pore sizes to the shale matrix phase behaviour according 

to their volumes.  A more accurate modelling of pore size distribution effect on phase 

behaviour of gas-condensate fluids in shale matrix is needed.  

7.2 Key Findings and Conclusions 

On account of the research questions mentioned above, the key findings and conclusions of 

this thesis are discussed in the following Section.  

7.2.1 Gas-Condensate Two-phase Knudsen Flow Modelling 

In this work, 3D network model was used to evaluate gas flow in shale matrix under 

condensate banking effect using a log-normal pore size distribution. The apparent gas 

conductance model proposed by Bespoke and Karniadakis (1999) was used to describe 

Knudsen flow in single nano-pores. The network gas and condensate rates were used to 

estimate the permeability correction factor of shale matrix.  

For gas condensate systems, the evaluation of Knudsen flow using pore network models is 

essential in order to implement: a) the changing flow contribution of pore sizes as a function 

of pressure; b) the condensate banking effect by eliminating the contribution of lower pore 

sizes blocked by condensate and its effect on the gas flow in connected higher pore sizes.  
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All the condensate generated in shale matrix remained trapped due to high capillary 

pressure. Consequently, only gas can flow in shale matrix below the dew point pressure.  

In order to measure the effect of condensate blockage on Knudsen flow, a new parameter 

was proposed in this work; the “Relative Correction Factor” 𝜉𝑟𝑒𝑙   defined as the ratio of 𝜉𝐺𝐶  

to 𝜉𝐷𝐺 . 𝜉𝑟𝑒𝑙  can be used in reservoir engineering tools to adjust 𝜉𝐷𝐺  as function of pressure 

and condensate saturation. 𝜉𝑟𝑒𝑙  can be easily incorporated to shale gas-condensate 

reservoir engineering tools in order to calculate the effective gas permeability under 

condensate banking effect using Equation (3.31). 

Results showed that the condensate saturation in shale pores network influences the effect 

of Knudsen flow on apparent gas permeability. When condensate saturation increases in 

pore network it occupies the lowest possible range of pore size leaving only the upper range 

accessible by dry gas. As a result, the relative correction factor  𝜉𝑟𝑒𝑙  declines.  

In addition, this work demonstrated that the relative correction factor 𝜉𝑟𝑒𝑙  is not only 

dependent on condensate saturation but also on reservoir pressure. This is caused by the 

effect of pressure on the contribution of the different pore size ranges in the Knudsen 

enhanced permeability. Thus, the effect of condensate banking on Knudsen flow is 

controlled by the reservoir pressure. A general formulation of  𝜉𝑟𝑒𝑙  as a function of 

condensate saturation and pressure was proposed in Equation (3.39). 

Besides, varying the parameters of pore size distribution in terms of mean 𝜈 and standard 

deviation 𝑠 indicated a stronger dependency of 𝜉𝑟𝑒𝑙  on standard deviation 𝑠 compared to the 

mean parameter 𝜈. The standard deviation 𝑠 controls the dispersion of pore size 

distribution hence it controls the variation of the contribution of the different pore size 

ranges to the macro Knudsen flow. Accordingly, at higher 𝑠 values the effect of condensate 

blocking the lower pore size ranges on Knudsen flow is more pronounced than at lower 𝑠 

values.  

To describe this relationship between condensate saturation and Knudsen flow effect, shale 

porous media must be represented as a pore size distribution rather than a bundle of 

nanotubes with single pore size. Consequently, reservoir engineering tools for shale gas 

condensate reservoirs have to be equipped with fit for purpose models capable of 

describing the pore size distribution and its effect on the condensate saturation and 

Knudsen flow.  
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7.2.2 Phase Behaviour Deviation with Pore Size Distribution Modelling 

The phase behaviour deviation of gas-condensate in shale matrix was investigated using 

Peng-Robinson EOS (Equation of State) and Parachor IFT (Interfacial Tension) model at the 

pore level. Numerical CVD (Constant Volume Depletion) experiments on individual 

nanotube showed a high dependency of phase behaviour deviation in terms of dew point 

pressure and condensate saturation on pore radius. The lower the pore radius the higher 

the deviation of dew point and condensate saturation from conventional phase behaviour.  

Accordingly, at constant pore radius, the closer the reservoir temperature and pressure to 

the critical point in phase envelope the lower the phase behaviour deviation as the IFT 

decrease at the critical point.    

In order to evaluate the phase behaviour deviation of gas-condensate fluids in shale matrix, 

a VLE model was proposed in this work capable of describing the interaction between the 

different pore radii and how they affect the macro phase behaviour. This model is a 

Connected Pore Space Model (CPSM) where condensate is assumed to start to form at the 

dew point in the smallest pore and then moves to the next free smallest pore as the 

saturation increases. It incorporates an iterative algorithm for the calculation of the 

equilibrium of thermodynamic forces and capillary forces interpreted as gas-condensate 

composition and volumes and interface pore radius respectively.  

Results of CVD experiments revealed that phase behaviour deviation is more important in 

lean condensate fluids than rich condensate fluids. Lean condensate with lower maximum 

yield (compared to rich condensate) exhibits higher condensate saturation deviation as the 

IFT is higher at low pore interface radii.   Furthermore, comparison of CPSM results with 

single nanotube with average radius indicated that describing shale porous media with 

single pore radius can underestimate the phase behaviour deviation.  

7.2.3 Effect of Nanopores on Matrix Deliverability  

The effects of flow behaviour deviation and phase behaviour deviation of gas condensate 

fluids in shale matrix were evaluated using a semi-analytical model of a single matrix block.  

The model assumes a constant fracture pressure and it covers both transient and pseudo-

steady states in the matrix block.  

Due to reduction of gas permeability in the matrix by the condensate banking in shale 

matrix, the well productivity is reduced by up to 30%.  Thus, the development of this type 

of shale resources is considered challenging compared to oil and dry gas shale reservoirs. 
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Knudsen flow enhancement of gas apparent permeability contributes significantly to the 

ultimate recovery. The data set used in this work showed a production increase of 30%. It 

partially alleviated the production loss induced by condensate banking.  Knudsen flow 

should be considered in reservoir engineering calculation in order to not underestimate the 

well potential. Nevertheless, the assumption of dry gas flow when modelling Knudsen 

enhanced permeability without correcting the apparent permeability to the condensate 

banking effect on Knudsen flow can lead to an overestimation (about 20%) of the 

production gain by Knudsen flow. Hence, the use of the Relative Correction Factor, 𝜉𝑟𝑒𝑙  

proposed in this thesis is necessary to assess more accurately the effect of condensate 

banking on the performance of shale gas-condensate wells. 

On the other hand, even though it was illustrated in Chapter 4 that the condensate 

saturation in shale matrix increases under capillary forces effect (compared to bulk 

conditions), the effect of this increase on cumulative production is insignificant (2.5 - 5%).  

7.2.4 Shale Gas-Condensate Well Performance 

The performance of shale gas-condensate wells was investigated with the use of 3D 

numerical simulation. The DK-LS-LGR technique was used to model the complexity of 

fracture network and its interaction with the shale matrix. A compositional simulation was 

carried out for ¼ SRV with a constant bottomhole pressure using a commercial software.  

Numerical simulation results showed although the effect of condensate banking starts to 

manifest from the first production days/weeks, it reduces the well productivity significantly 

when all matrix blocks in the SRV are enveloped in condensate banking. In the example 

treated in this work, the full condensate banking effect starts after one year of production 

and continues during the rest of well life with reduction of 40% in production compared to 

a dry gas well.  

Additionally, numerical simulations indicated that the non-Darcy flow effect on gas flow in 

fractures due to the high velocity has limited effect on production.  The gas low flow rate in 

a single hydraulic fracture is relatively lower than gas rates experienced in conventional 

hydraulic fractured vertical well.  Moreover, the stress-dependent conductivity of fracture 

should always be considered in shale well performance evaluation. The reduction of 

fracture conductivity due to the reservoir pressure decline can reduce considerably the 

ultimate production. 

The gas-condensate reservoirs have been produced under natural decline mechanisms as 

no proven pressure maintenance or CO2 injection techniques have been developed. The only 

way that gas-condensate asset value can be maximised is through well design optimisation. 
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Hydraulic fracture spacing is a key element of optimisation as the fracturing consists of a 

significant part of the well CAPEX. For the example presented in this work, it was concluded 

that a 200 ft hydraulic spacing allows for minimum condensate banking with maximum NPV 

(Net Present Value).  

7.3 Recommendations for Development of Shale Gas-Condensate 

Reservoirs  

The shale reservoirs are different hydrocarbon resources compared to other reservoir 

types in terms rock fabric, reservoir characteristics. Besides the poor reservoir quality and 

the high-cost completion techniques faced in shale reservoirs development, condensate 

banking effect represents a challenge to its commercial exploitation.   The success of field 

development and management projects of gas-condensate reservoirs relies on the 

appropriate analysis methods, techniques and tools adapted to the shale reservoirs. 

The analysis of pore structure and distribution of shale matrix should be a routine practice 

during exploration and development phases. As demonstrated in this work, the pore 

distribution has a major effect on the Knudsen flow under condensate banking. Thus, a good 

characterisation of pore distribution is vital to be able to predict accurately the apparent 

gas permeability under reservoir conditions in terms of pressure and condensate 

saturation. This can lead to more accurate production prediction for future wells and 

performance analysis of producing wells.  

Furthermore, due to the high horizontal and vertical heterogeneity in shale reservoirs, 

targeting sweet spots at early stages can improve the field development outcome through 

optimisation of well location and fracture spacing. The pore size distribution should be 

considered as one of the sweet spot factors; the lower the standard deviation (dispersion) 

the lower negative effect of condensate banking on Knudsen flow.  

In the absence of reliable multiphase flow experimental procedures, the 3D pore network 

modelling should be adopted as an alternative of core flooding experiments in order to 

deduce the flow behaviour of gas-condensate fluids in shale matrix.  3D pore network can 

be built synthetically from pore size distribution analysis or from pore space imaging.  

The finding of this work in relation to Knudsen flow under condensate saturation suggests 

the use of water-free fracturing fluids rather than water-based fluids is more beneficial. The 

fracturing water that invades the shale matrix has a similar impact as Knudsen flow by 

blocking the lowest range of pores hence reducing the enhancement of dry gas permeability 
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by Knudsen flow. Moreover, the model presented in Equation (3.39) can be used to evaluate 

the change Knudsen flow effect with variation of the in situ water saturation in the shale 

matrix.  

The well performance of shale gas-condensate reservoir should always be evaluated using 

compositional reservoir numerical simulation as it is the only available tool capable of 

dealing with the high degree of complexity of these systems. This complexity is generated 

by the compositional change of the gas-condensate fluids, the complexity of hydraulic 

fracture geometries, the matrix-fracture interaction, the transient regime in matrix and the 

permeability dependency with reservoir pressure decline. Nevertheless, the incorporation 

of the models for flow behaviour and phase behaviour deviation in shale matrix must be 

considered in order to capture the physics of gas-condensate flow in shale reservoirs.  

7.4 Summary of Contributions to Knowledge 

In Chapter 3, the Knudsen flow in shale gas-condensate reservoir is investigated through 

3D pore network modelling and the effect of both condensate saturation and pressure was 

identified and formulated by introducing a new parameter, “Relative Correction Factor”. A 

general correlation describing the Relative Correction Factor is proposed in Equation (3.39). 

This equation can be directly integrated to the existing shale reservoir engineering tools 

(numerical simulators and semi-analytical models). In addition, this thesis demonstrated 

the significance of the effect the Relative Correction Factor reduction on well ultimate 

recovery.  

On the other hand, in 0 this work proposed a new modelling approach of the Vapour Liquid 

Equilibrium (VLE) of gas-condensate fluids in shale matrix which incorporates the effect of 

pore size distribution on the phase behaviour deviation caused by the capillary pressure. 

This model generates more accurate results than the average pore size method (using single 

tube with average pore radius) where the interaction between the different pore sizes and 

their contribution to the macro phase behaviour is accounted for. This study concluded that 

although the deviation of phase behaviour can be observed in matrix but its effect on 

ultimate recovery is limited. 
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In this chapter, key suggestion for future research are presented in order to continue the 

improvement of the understanding and modelling of gas –condensate flow in shale 

reservoirs.  

8.1 Gas-Condensate Flow in Shale Matrix  

In Chapter 3, a 3D pore network of nanotube was used to evaluate the gas-condensate flow 

in shale matrix with random pore size distribution following a log-normal law.  The 

coordination number is constant (6 for all network). However, the coordination number in 

shale matrix is heterogeneous. In order to improve the network modelling, imaging 

techniques (such as Scanning Electron Microscopy and Transmission Electron Microscopy) 

of shale samples can be used to extract more accurate pore network description. This type 

of pore network models (extracted from imaging techniques) can be used to evaluate the 

gas-condensate flow and their results can be compared to this work.  

In addition, in the pore network only tubes with circular cross-section were used as 

nanopores in organic matter. However, pores in non-organic matter have slit-like shape 

with a different capillary pressure-saturation function compared to circular organic 

nanopores. This limitation can be removed by using imaging techniques results to model 

the distribution of organic matter and non-organic matter in shale matrix. 

While the 3D pore network can give an insight to the nature of multiphase flow of gas-

condensate fluids in shale matrix as presented in this work, the direct measurement of 

relative permeability is still highly required in order to fully understand condensate 

banking effect on the gas flow in shale reservoirs. The same applies to other multi-phase 

flow in shale such as oil-water and oil-gas flow. The current core flooding techniques are 

highly challenging to be applied to the shale samples due to the extremely low permeability 

and the difficulty of saturation control and measurement. The development of apparatus 

able to measure directly the relative permeability in shale matrix, through an improved core 

flooding or alternative techniques is highly recommended for future work. This will not only 

improve significantly the understanding of the shale gas-condensate well performance 
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under natural depletion but it will help to develop appropriate enhanced recovery 

techniques. 

8.2 Alternative Flow and Phase Behaviour Modelling 

In this work, the Peng-Robinson EOS (Equation of State) was modified by including the 

effect of the capillary pressure to investigate the phase behaviour deviation of gas-

condensate fluids in nanopores. However as mentioned in Section 4.4.2, condensate can 

occur at negative pressure induced by capillarity which cannot be handled by the 

equilibrium criteria expressed by Equation (4.2).  

Molecular Simulation is a well-established technique in chemical physics, materials science 

and the biomolecules modelling where thermodynamic interaction of molecule-molecule 

and molecule-wall can be modelled at the molecular level.  Thus, Molecular Simulation 

should be considered in future as an alternative to investigate the vapour liquid equilibrium 

of gas-condensate fluids in nanopores. A variety of fluid composition and rock properties 

should be used to convert the results into simple expressions to be integrated to reservoir 

simulation tools.   

In this thesis, two models DPSM and CPSM were used to investigate the effect of pore size 

distribution on the phase behaviour deviation assuming no interaction and full interaction 

between nanopores. Imaging of pore space in organic and inorganic matter in shale matrix 

showed a non-uniform pore space (e.g. variation of radius in the same pore). This is an 

important parameter that controls how the condensate generates and accumulates in the 

pore space under the effect of capillary forces. The Level Set Method (LSM) which is a direct 

modelling approach to study capillary controlled displacement of fluids in porous media can 

be used for this purpose in future work (refer to Blunt et al. 2013). However, 3D high 

resolution models of the pore space at the nano-level must be generated to be able to deploy 

this method which could be challenging.  

The methodology of evaluating the pore size distribution effect on phase behaviour, 

presented in this work, should be extended to oil shale reservoirs. Using a pore distribution 

will improve the VLE calculation under bubble point rather than using an average pore size. 

The oil-gas interface is expected to occur in higher pore radius than the average radius due 

to the high oil saturation (compared to condensate saturation in gas-condensate systems).  

8.3 Effect of Flow and Phase Behaviour Deviation on Well Performance   
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In Chapter 4, a semi-analytical model was used to analyse the effect of Knudsen flow and 

phase behaviour deviation. The model was restricted to a single matrix block and constant 

fracture pressure. In addition, as the condensate remains almost immobile, CVD dynamic 

properties were used to generate the pseudo-pressure function.  

The main challenge of extending the semi-analytical model to include both matrix and 

fracture is the linking of the two pseudo-pressure functions of matrix and fracture in 

Laplace domain. The two functions have different relative permeability models and the 

Knudsen flow existence only in matrix. Alternative mathematical modelling should be 

explored to be able to integrate matrix and fracture media into one gas-condensate (two-

phase) flow model.  

Additionally, it is highly recommended to build a 3D dual porosity/dual permeability 

compositional numerical simulator (or modifying an existing simulator) in order to 

incorporate the flow behaviour and the phase behaviour deviation.  The results of this new 

(or modified) simulator will shed more light on their effect on the whole system including 

shale matrix, hydraulic fractures and wellbore.  

Likewise, the numerical simulation will allow more accurate interaction between 

condensate and gas rather than semi-analytical which uses the CVD results. The CVD 

experiments are carried out at static condition i.e. gas and condensate don’t flow during the 

experiment. However, in the shale matrix, the gas flows from the centre of the matrix block 

towards the outer layers bringing more heavy components which leads to higher 

condensate saturation levels than normally observed in CVD experiments.  This may result 

in a more accurate estimation of the effect of phase behaviour deviation on well production 

than that reported in this work.  

8.4 Shale Reservoir Simulation 

8.4.1 Unstructured grid  

The fracture network used in Chapter 6 has an idealised geometry with uniform matrix 

blocks and it covers all the SRV. In reality, hydraulic fractures propagate in shale reservoirs 

as branches with decreasing density away from the wellbore. The effect of non-uniform 

hydraulic fracture distribution and, as a result, the non-uniformity of matrix block shape 

through the SRV should be evaluated and compared against the uniform fracture network. 

This can be achieved by using micro-seismic mapping data to generate a high-resolution 
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unstructured grid for numerical simulation. This type of gridding could be applied for all 

shale wells including oil, dry gas and gas-condensate.  

 

8.4.2 Dynamic Gridding  

The fine gridding makes the numerical simulation of full field development studies with 

multiple shale wells expensive with high investment in computing power and parallel 

software licenses. The compositional simulation for shale gas-condensate reservoirs adds 

to the complexity of the problem. Thus, the dynamic gridding should be investigated as a 

means to reduce the calculation time and computing power needed for full field numerical 

simulation. The dynamic gridding can decrease the number of active cells as a function of 

time and pressure propagation in the reservoir.  

8.5 Enhanced Recovery 

As mentioned previously, reliable enhanced recovery techniques for shale gas-condensate 

reservoirs are still to be developed. In this work, all well performance calculation was 

carried out with the assumption of natural depletion.  The relatively high development cost 

of shale reservoirs should be considered when dealing with enhanced recovery techniques. 

The economic context and the specificity of each shale play will be decisive for the enhanced 

recovery projects.  

In conventional reservoirs, dry gas or CO2 recycling techniques have been used successfully 

to increase the recovery of gas-condensate wells. Nevertheless, for shale reservoir, this 

technique should be investigated to evaluate its applicability. The low permeability in the 

shale matrix limits the direct contact between the condensate in the matrix and the injected 

dry gas or CO2 in the fracture. Thus, a longer shut-in phase (soak) will be needed than in 

conventional reservoir to allow the condensate to evaporate.   Laboratory experiments and 

field pilot project should be designed and executed to evaluate the cycle duration and the 

production gain.
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------------------------------------------------------------------------ 

-- 1/4 SRV 

------------------------------------------------------------------------ 

RUNSPEC 

TITLE 

1/4 SRV 

DIMENS 

    181    121   1  / 

WATER 

ISGAS 

FIELD 

COMPS 

5/ 

FULLIMP 

EQLDIMS 

    1  100    2    1   20 / 

TABDIMS 

    2    1   100   100    2  / 

REGDIMS  

    1    1    1*  1*  1*    1  / 

WELLDIMS 

    5   13    1    2 / 

START 

  1 'JAN' 2015  / 

HWELLS 

UNIFOUT 

--NOSIM 

GRID      ============================================================== 

INIT 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/DXV_Dx100.INC'/ 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/DYV_Dx100.INC'/  

DZ 

21901*300 / 

TOPS 

21901*6000 / 

PERMX 

21901*50e-6/ 

PORO 

21901*0.08/ 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/BOX_10_CF20.TXT'/ 

COPY 

PERMX PERMY/ 

PERMX PERMZ/ 

/ 

------------------------------- 

BOX 

122 181  1 121  1 1/ 

ACTNUM 

20328*0/ 

ENDBOX 

BOX 

1 181  38 121  1 1/ 

ACTNUM 

20328*0/ 

ENDBOX 

EDIT 
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PROPS     ============================================================== 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/GC@370K.pvo'/ 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/RELPERM1.INC'/ 

ROCK 

 1.01325  0 / 

GRAVITY 

    40.0000             0.99000           0.678 / 

PVTW 

-- Pressure (bar)     Bw        Cw          Ug      du/dp 

    1.034           1.00370    0    .60700    0.00E+00 / 

REGIONS ============================================================== 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/SATNUM.TXT'/ 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/FIPNUM.TXT'/ 

 

SOLUTION   ============================================================= 

--- depth press   oil-water   pcow    gas-oil  pcgo  black  N  type 

RPTRST 

BASIC=3 FREQ=3 SOIL PRESSURE KRG KRO/ 

EQUIL 

6000    4500   10000     0     10000    0     2*    1*   1  / 

--SWAT 

--21901*0.2 / 

--SGAS 

--21901*0.8 / 

--PRESSURE 

--21901*4500 / 

--INCLUDE 

--'../FILES/SWAT.TXT'/ 

SUMMARY    ========================================================== 

FGIP 

FGPT 

FGPR 

FOPR 

FGOR 

FOGR 

FOIP 

FOPT 

FPR 

FOSAT 

-- REGION 

RGIP 

/ 

RGPT 

/ 

RGPR 

/ 

ROPR 

/ 

RGOR 

/ 

ROGR 

/ 

RPR 

/ 

RGE 

/ 

ROSAT 

/ 

WGPR 

/ 

WOPR 

/ 

WOGR 

/ 
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WBHP 

/ 

 

WXMF 

'X1' 1 / 

'X1' 2 / 

'X1' 3 / 

'X1' 4 / 

'X1' 5 / 

/ 

--BPR 

--1 35 1/ 

RUNSUM 

SEPARATE 

EXCEL 

SCHEDULE   =========================================================== 

WELSPECS 

'X1'  'G'   1  1  1*  'GAS'/ 

/ 

COMPDAT 

'X1'   1  1 1 1   'OPEN'   0  0  0.583333  0   0.0  0 'X' 0 / 

/ 

-- Production 

WCONPROD 

'X1' 'OPEN' 'BHP'  5*  500/ 

/ 

INCLUDE 

'F:/ECLIPSE PHD/Eclipse/V3/FILES/TSTEP.INC'/ 

END 

INCLUDE Files 

BOX 

1 181 1 1 1 1/ 

PERMX 

181*20/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 13 13 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/  

ENDBOX 

BOX 

1 181 25 25 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 37 37 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 49 49 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 61 61 1 1/ 

PERMX 
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181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 73 73 1 1/ 

PERMX 

181*2/ 

PORO 

 

181*0.001/ 

ENDBOX 

BOX 

1 181 85 85 1 1/ 

PERMX 

181*10/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 97 97 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 109 109 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

BOX 

1 181 121 121 1 1/ 

PERMX 

181*2/ 

PORO 

181*0.001/ 

ENDBOX 

------------------------------------------------ 

BOX 

1 1 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

 

BOX 

13 13 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

25 25 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

37 37 1 121 1 1/ 

PERMX 

121*2/ 

PORO 
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121*0.001/ 

ENDBOX 

BOX 

49 49 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

61 61 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

73 73 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

85 85 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

97 97 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

109 109 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

121 121 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

133 133 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

145 145 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

157 157 1 121 1 1/ 

PERMX 
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121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

169 169 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

BOX 

181 181 1 121 1 1/ 

PERMX 

121*2/ 

PORO 

121*0.001/ 

ENDBOX 

------------------------------------------------------------------------------

------------------------------------------ 

DXV 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1/ 

------------------------------------------------------------------------------

------------------------------------------ 

DYV 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1 4.396 5.796 7.646 10.086 13.299 17.542 13.299 10.086 7.646 5.796 4.396 

1/ 

------------------------------------------------------------------------------

------------------------------------------ 

ECHO 

-- Units: F 

RTEMP 

--  

-- Constant Reservoir Temperature 

--  

         310 

/ 

  

EOS 
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--  

-- Equation of State (Reservoir EoS) 

--  

   PR3 

/ 

  

NCOMPS 

--  

-- Number of Components 

--  

       8 

/ 

PRCORR 

--  

-- Modified Peng-Robinson EoS 

--  

CNAMES 

--  

-- Component Names 

--  

   'C1+' 

   'C2+' 

   'C3+' 

   'C4+' 

   'NC4+' 

   'NC5+' 

   'C5+' 

   'C8+' 

/ 

MW 

--  

-- Molecular Weights (Reservoir EoS) 

--  

        16.043 

         30.07 

        44.097 

        58.124 

        58.124 

        72.151 

   80.4474962852898 

   138.414661265984 

/ 

  

OMEGAA 

--  

-- EoS Omega-a Coefficient (Reservoir EoS) 

--  

   0.457235529 

   0.457235529 

   0.457235529 

   0.457235529 

   0.457235529 

   0.457235529 

   0.457235529 

   0.457235529 

/ 

  

OMEGAB 

--  

-- EoS Omega-b Coefficient (Reservoir EoS) 

--  

   0.077796074 

   0.077796074 

   0.077796074 

   0.077796074 

   0.077796074 

   0.077796074 

   0.077796074 
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   0.077796074 

/ 

  

-- Units: R 

TCRIT 

--  

-- Critical Temperatures (Reservoir EoS) 

--  

        343.08 

       549.774 

        665.64 

        734.58 

        765.36 

        845.28 

   879.833934552316 

   1115.43516941397 

/ 

  

-- Units: psia 

PCRIT 

--  

-- Critical Pressures (Reservoir EoS) 

--  

   667.78169597908 

   708.342379977809 

   615.75820998071 

   529.052399983426 

   550.655372982749 

   488.785633984687 

   483.3915458675 

   368.36609540811 

/ 

  

-- Units: ft3 /lb-mole 

VCRIT 

--  

-- Critical Volumes (Reservoir EoS) 

--  

   1.56980902280093 

   2.37073199361773 

   3.20369188326721 

   4.21285482649638 

   4.08470715116569 

   4.98174087848051 

   5.33469120413819 

   8.7540339422573 

/ 

  

ZCRIT 

--  

-- Critical Z-Factors (Reservoir EoS) 

--  

   0.284729476628582 

   0.284634795100356 

   0.276164620041118 

   0.28273695875079 

   0.273855549100576 

   0.268438914149838 

   0.273120392161015 

   0.269395317521124 

/ 

  

SSHIFT 

--  

-- EoS Volume Shift (Reservoir EoS) 

--  

   -0.144265618878948 

   -0.103268354016888 
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   -0.0775013814750784 

   -0.0619837251487845 

   -0.0542248969856375 

   -0.0302778964820975 

   -0.029248003030088 

   0.0269664054127404 

/ 

  

ACF 

--  

-- Acentric Factors (Reservoir EoS) 

--  

         0.013 

        0.0986 

        0.1524 

        0.1848 

         0.201 

         0.251 

   0.253150360024959 

   0.446411529282408 

/ 

  

BIC 

--  

-- Binary Interaction Coefficients (Reservoir EoS) 

--  

       0 

       0       0 

       0       0       0 

       0       0       0       0 

       0       0       0       0       0 

       0       0       0       0       0       0 

 0.0406496616630927    0.01    0.01       0       0       0       0 

/ 

  

PARACHOR 

--  

-- Component Parachors 

--  

            77 

           108 

         150.3 

         181.5 

         189.9 

         231.5 

   252.383346210996 

   394.027687006592 

/ 

  

-- Units: ft3 /lb-mole 

VCRITVIS 

--  

-- Critical Volumes for Viscosity Calc (Reservoir EoS) 

--  

   1.56980902280093 

   2.37073199361773 

   3.20369188326721 

   4.21285482649638 

   4.08470715116569 

   4.98174087848051 

   5.33469120413819 

   8.7540339422573 

/ 

  

ZCRITVIS 

--  

-- Critical Z-Factors for Viscosity Calculation (Reservoir EoS) 

--  
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   0.284729476628582 

   0.284634795100356 

   0.276164620041118 

   0.28273695875079 

   0.273855549100576 

   0.268438914149838 

   0.273120392161015 

   0.269395317521124 

/ 

  

LBCCOEF 

--  

-- Lorentz-Bray-Clark Viscosity Correlation Coefficients 

--  

    0.1023 0.023364 0.058533 -0.040758 0.0093324 

/ 

 

ZI 

--  

-- Overall Composition 

--  

       0.68722 

       0.08337 

        0.0467 

       0.01045 

       0.01825 

       0.00791 

       0.02019 

       0.12591 

/ 

------------------------------------------------------------------------- 

SGOF 

--Sg Krg Krog Pcog  

0 0 0 0 

0.08 0.0000001 0 0 

0.16 0.0000128 0 0 

0.24 0.0002187 0 0 

0.32 0.0016384 0 0 

0.4 0.0078125 0 0 

0.48 0.0279936 0 0 

0.56 0.0823543 0 0 

0.64 0.2097152 0 0 

0.72 0.4782969 0 0 

0.8 1 0 0 / 

0 0 1 0  

1 1 0 0 / 

 

SWOF 

--Sw Krw Krow Pcow  

0.2 3.34E-49 0 0 

0.28 0.001 0 0 

0.36 0.008 0 0 

0.44 0.027 0 0 

0.52 0.064 0 0 

0.6 0.125 0 0 

0.68 0.216 0 0 

0.76 0.343 0 0 

0.84 0.512 0 0 

0.92 0.729 0 0 

1 1 0 0 / 

0 0 1 0 

1 1 0 0 / 

------------------------------------------------------------------------------

------------------------------------------ 

BOX 

1 181 1 1 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 13 13 1 1/ 

SATNUM 
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181*2/ 

ENDBOX 

BOX 

1 181 25 25 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 37 37 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 49 49 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 61 61 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 73 73 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 85 85 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 97 97 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 109 109 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

BOX 

1 181 121 121 1 1/ 

SATNUM 

181*2/ 

ENDBOX 

------------------------------------

------------ 

BOX 

1 1 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

13 13 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

25 25 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

37 37 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

49 49 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

61 61 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

73 73 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

85 85 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

97 97 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

109 109 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

121 121 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

133 133 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

145 145 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

157 157 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

169 169 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

BOX 

181 181 1 121 1 1/ 

SATNUM 

121*2/ 

ENDBOX 

------------------------------------

------------------------------------

------------------------------------

------------ 

BOX 

1 181 1 1 1 1/ 

FIPNUM 
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181*2/ 

ENDBOX 

BOX 

1 181 13 13 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 25 25 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 37 37 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 49 49 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 61 61 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 73 73 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 85 85 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 97 97 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 109 109 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

BOX 

1 181 121 121 1 1/ 

FIPNUM 

181*2/ 

ENDBOX 

------------------------------------

------------ 

BOX 

1 1 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

13 13 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

25 25 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

37 37 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

49 49 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

61 61 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

73 73 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

85 85 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

97 97 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

109 109 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

121 121 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

133 133 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

145 145 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

157 157 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

169 169 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

BOX 

181 181 1 121 1 1/ 

FIPNUM 

121*2/ 

ENDBOX 

------------------------------------

------------------------------------
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------------------------------------

------------ 

TSTEP 

0.00001 

1.22018E-06 

1.36907E-06 

1.53612E-06 

1.72356E-06 

1.93386E-06 

2.16983E-06 

2.43459E-06 

2.73165E-06 

3.06496E-06 

3.43895E-06 

3.85856E-06 

4.32938E-06 

4.85764E-06 

5.45036E-06 

6.11541E-06 

6.8616E-06 

7.69884E-06 

8.63825E-06 

9.69227E-06 

1.08749E-05 

1.22018E-05 

1.36907E-05 

1.53612E-05 

1.72356E-05 

1.93386E-05 

2.16983E-05 

2.43459E-05 

2.73165E-05 

3.06496E-05 

3.43895E-05 

3.85856E-05 

4.32938E-05 

4.85764E-05 

5.45036E-05 

6.11541E-05 

6.8616E-05 

7.69884E-05 

8.63825E-05 

9.69227E-05 

0.000108749 

0.000122018 

0.000136907 

0.000153612 

0.000172356 

0.000193386 

0.000216983 

0.000243459 

0.000273165 

0.000306496 

0.000343895 

0.000385856 

0.000432938 

0.000485764 

0.000545036 

0.000611541 

0.00068616 

0.000769884 

0.000863825 

0.000969227 

0.001087491 

0.001220185 

0.00136907 

0.001536121 

0.001723556 

0.001933862 

0.002169829 

0.002434588 

0.002731653 

0.003064965 

0.003438947 

0.003858562 

0.004329378 

0.004857642 

0.005450364 

0.006115409 

0.006861602 

0.007698844 

0.008638245 

0.00969227 

0.010874906 

0.012201845 

0.013690696 

0.015361213 

0.017235565 

0.019338622 

0.02169829 

0.024345882 

0.027316529 

0.03064965 

0.034389473 

0.038585623 

0.043293781 

0.048576422 

0.054503641 

0.061154092 

0.068616019 

0.07698844 

0.08638245 

0.096922703 

0.108749062 

0.122018454 

0.136906957 

0.153612133 

0.172355648 

0.193386218 

0.216982905 

0.243458824 

0.273165293 

0.3064965 

0.343894729 

0.385856232 

0.432937813 

0.485764216 

0.545036415 

0.611540916 

0.686160193 

0.769884399 

0.863824503 

0.969227034/ 

RPTRST 

BASIC=3 FREQ=3 SOIL PRESSURE KRG 

KRO/ 

TSTEP 

1.087490619 

1.220184543 

1.369069575 

1.536121328 

1.723556478 

1.933862176 

2.169829049 

2.434588236 

2.731652929 
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3.064964998 

3.438947289 

3.858562322 

4.329378132 

4.85764216 

5.450364148 

6.115409156 

6.861601929 

7.69884399 

8.638245034 

9.692270341 

10.87490619 

12.20184543 

13.69069575 

15.36121328 

17.23556478 

19.33862176 

21.69829049 

24.34588236 

27.31652929 

30*124 

28.81135685/ 

------------------------------------

------------------------------------

-
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 Abstract  

Condensate banking is the most challenging engineering problem in gas-condensate 

reservoirs development where condensate accumulation in the reservoirs reduces 

dramatically the gas permeability resulting into loss of well productivity. Assessment of 

condensate banking effect is important to predict well productivity and to diagnose well 

performance.  

Traditionally, Darcy law combined with relative permeability models have been used for 

modelling of condensate banking effect in conventional reservoirs; this approach is also 

widely adopted in reservoir engineering commercial tools. However, for shale gas-

condensate reservoirs, the gas flow deviates from Darcy flow to micro-flow known as 

Knudsen flow due to the very small pore size in shale matrix (3-300 nm) compared to 

conventional reservoirs (10 -200 μm). This gas flow is highly dependent on pore size 

distribution and reservoir pressure.  

In this paper, the effect of condensate saturation on Knudsen flow in shale matrix kerogen 

is investigated using a 3D pore network with a random pore size distribution. The Knudsen 

flow is incorporated at the pore level and gas permeability is evaluated for the whole 

network. In addition, the pore distribution effect in terms of log-normal median and 

standard deviation is investigated. The concept of relative permeability in Darcy flow is 
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extended to Knudsen flow by defining a new parameter called relative correction factor 𝜉𝑟𝑒𝑙 

in order to evaluate the effect of condensate banking on Knudsen flow. This parameter can 

be employed directly in reservoir engineering tools.  

Simulation results showed that the relative correction factor is not only dependent on 

condensate saturation but also on pressure. This is due to the impact of pressure on the 

contribution of pore size ranges into the gas flow. In addition, results showed the effect of 

pore size distribution where the standard deviation controls mainly the behaviour of 

Knudsen flow under condensate saturation. Disregarding this effect can lead to an 

overestimation of Knudsen flow contribution in well production under condensate banking 

effect.
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